
Model Transformation Co-evolution:
A Semi-automatic Approach

Jokin García, Oscar Diaz, and Maider Azanza

Onekin Research Group, University of the Basque Country (UPV/EHU),
San Sebastian, Spain

{jokin.garcia,oscar.diaz,maider.azanza}@ehu.es

Abstract. Model transformations are precious and effortful outcomes
of Model-Driven Engineering. As any other artifact, transformations are
also subject to evolution forces. Not only are they affected by changes to
transformation requirements, but also by the changes to the associated
metamodels. Manual co-evolution of transformations after these meta-
model changes is cumbersome and error-prone. In this setting, this paper
introduces a semi-automatic process for the co-evolution of transforma-
tions after metamodel evolution. The process is divided in two main
stages: at the detection stage, the changes to the metamodel are de-
tected and classified, while the required actions for each type of change
are performed at the co-evolution stage. The contributions of this paper
include the automatic co-evolution of breaking and resolvable changes
and the assistance to the transformation developer to aid in the co-
evolution of breaking and unresolvable changes. The presented process
is implemented for ATL in the CO-URE prototype.

1 Introduction

Model-Driven Engineering (MDE) describes software development approaches
that are concerned with reducing the abstraction gap between the problem do-
main and the software implementation domain. The complexity of bridging the
abstraction gap is tackled through the use of models that describe complex sys-
tem at multiple levels of abstraction and from a variety of perspectives, combined
with automated support for transforming and analyzing those models [6]. In
this way developers can concentrate on the essence of the problem while reusing
mapping strategies. Benefits include increased productivity, shorter development
time, improved quality or better maintenance [15]. However, a Damocles’ sword
hanging over MDE is evolution. The main MDE artifacts are: (i) models, (ii)
metamodels and (iii) transformations. While model and transformation evolu-
tion can be faced in isolation, metamodel evolution impacts models and trans-
formations alike. Metamodel changes might have disturbing consequences on
their instance models, and break apart the associated transformations. The for-
mer issue (a.k.a. model co-evolution) has been the subject of substantial work
[4,9,16]. Unfortunately, transformation co-evolution has received less attention.
Nevertheless, not only are transformations main enablers of the MDE advan-
tages but their creation is programming intensive and frequently more costly

K. Czarnecki and G. Hedin (Eds.): SLE 2012, LNCS 7745, pp. 144–163, 2013.
© Springer-Verlag Berlin Heidelberg 2013



Model Transformation Co-evolution: A Semi-automatic Approach 145

than its model counterpart [5]. This substantiates the effort to provide solid
basis to assist during the transformation co-evolution effort.

Unlike previous approaches [10], we do not force to describe the evolution in
terms of ad-hoc operands, but evolution is ascertained from differences between
the original and the evolved metamodel. Next, differences are classified as [4]:
(i) Non Breaking Changes (NBC), i.e., changes that do not affect the transfor-
mation; Breaking and Resolvable Changes (BRC), i.e., changes after which the
transformations can be automatically co-evolved; and Breaking and Unresolvable
Changes (BUC), i.e., changes that require human intervention to co-evolve the
transformation. Finally, the transformation is subject to distinct actions based
on the type of the change, i.e., no action for NBC, automatic co-evolution for
BRC, and assisting the user for BUC. The outcome is an evolved transformation
that tackles (or warns about) the evolved metamodel. This approach is realized
in the CO-URE prototype that takes as input the original Ecore metamodel,
the evolved Ecore metamodel and an ATL rule transformation [11], and outputs
an evolved ATL transformation. CO-URE makes intensive use of High-Order
Transformations (HOTs) whereby the original transformation is handled as a
model which needs to be mapped into another model (i.e. the evolved trans-
formation). The approach can be generalized to any transformation language
that provides a metamodel representation. We regard as main contributions (1)
the automatic co-evolution of BRC, (2) the assistance for BUC, and (3), the
CO-URE prototype.

The paper starts with a motivating scenario. Next, we outline the co-evolution
process whose two main stages, detection and co-evolution, are presented in
more detail in Sections 4 and 5, respectively. Section 6 introduces the CO-URE
architecture and describes one of its HOT rules. Related work and conclusions
end the paper.

2 Motivating Scenario

As any other software artifact, metamodels are subject to evolution. During de-
sign alternative metamodel versions may be developed. During implementation
metamodels may be adapted to a concrete metamodel formalism supported by a
tool. Finally, during maintenance errors in a metamodel may be corrected. More-
over, parts of the metamodel may be redesigned due to a better understanding or
to facilitate reuse [22]. Simultaneously, metamodels lay at the very center of the
model-based software development process. Both models and transformations
are coupled to metamodels: models conform to metamodels, transformations are
specified upon metamodels. Hence, metamodel evolution percolates both models
and transformations. We focus on transformation co-evolution after metamodel
evolution.

We use the popular Exam2MVC transformation [13] as a running example.
This scenario envisages different types of exam questions from which Web-based
exams are automatically generated along the MVC pattern [13]. Figure 1 presents
the ExamXML metamodel and the AssistantMVC metamodel. The Exam2MVC
transformation generates an AssistantMVC model out of an ExamXML model.



146 J. García, O. Diaz, and M. Azanza

Fig. 1. ExamXML metamodel and AssistantMVC metamodel: original (above) and
evolved (below)

Next, we introduce a set of evolution scenarios to be considered throughout
the paper (see Figure 1):

– Scenario 1. The AssistantMVC’s Multiple class is introduced in the target
metamodel. This new class abstracts away the commonality of three existing
classes: MultipleChoiceController, MultipleChoiceView and MultipleChoice.

– Scenario 2. Property optional is deleted from ExamXML’s ExamElement.
– Scenario 3. The AssistantMVC’s fontColor metaproperty is changed from

string to integer.
– Scenario 4. The ExamXML’s OpenElement class is splitted into OpenEle-

ment_1 and OpenElement_2.
– Scenario 5. New subclass ExerciseElement is added to ExamElement meta-

class, and a new property style is added to View target metaclass.

The question is now how these changes impact the Exam2MVC transformation,
better said, how can the designer be assisted in propagating these changes to
the transformation counterpart. Next section outlines the process.

3 Transformation Co-evolution Process: An Outline

This section outlines the transformation co-evolution process aiming at assisting
designers by automating co-evolution whenever possible. This process comprises



Model Transformation Co-evolution: A Semi-automatic Approach 147

Fig. 2. Transformation co-evolution process

two main stages: detection and co-evolution (see Figure 2). Inputs include the
original metamodel (M), the evolved metamodel (M’) and the original transfor-
mation (T).

Detection Stage. The original metamodel and the modified metamodel are
compared, and a set of differences are highlighted. Differences can range from
simple cases (e.g. ’class renaming’) to more complex ones (e.g. ’class splitting’).
Simple changes are those that are conducted as a single shot by the user. By
contrast, complex changes are abstractions over simple ones as they conform a
meaningful transaction on the metamodel. Complex changes need to be treated
as a unit not only from the perspective of the metamodel, but also from the co-
evolution perspective. Otherwise, we risk to miss the intention of the designer
when evolving the metamodel, and hence, to propagate this misunderstanding to
the transformation. To this end, the detection stage includes two tasks: simple-
change detection and complex-change detection. The outcome is a set of changes,
both simple and complex.

Co-evolution Stage. Having a set of metamodel changes as input, this step
first classifies changes based on their impact on the transformation rules. Based
on the notation used in [4], we identify three types of metamodel changes:

1. Non Breaking Changes (NBC). These changes have no impact on the trans-
formation. This case is illustrated by the first scenario: the introduction of the
Multiple class as an abstraction of two existing classes. Superclass extraction
has generally no impact on the transformation since metaclass properties are
still reachable through inheritance. Therefore, this type of changes need to
be detected, but no further action is required.

2. Breaking and Resolvable Changes (BRC). These changes do impact the trans-
formation rules, but this impact is amenable to be automated. The fourth sce-
nario is a case inpoint.Here,OpenElement is splitted intoOpenElement_1 and



148 J. García, O. Diaz, and M. Azanza

Fig. 3. Exam2MVC transformation: original (above), co-evolved (below)

OpenElement_2 classes. Accordingly, rules having OpenElement as its source
might give rise to two distinct transformation rules that tackle the specifics of
OpenElement_1 and OpenElement_2 (see Figure 3).

3. Breaking and Unresolvable Changes (BUC). These changes also impact the
transformation, but full automatization is not possible and user interven-
tion is required. Reasons include: the semantics of the metamodel, the spe-
cific characteristics of the transformation language, or the specificity of the
change. Hence, it will be designer’s duty to manually guide the co-evolution.
This is illustrated by scenario 3: AssistantMVC’s fontName metaproperty is
changed from string to integer. Type changes are the most ambiguous ones
due to transformation languages being dynamically typed, and hence, sus-
ceptible to generate type errors at runtime. For instance, a rule could assign
’Times ’ to fontName. FontName has now be turned into an integer, hence,
making this rule inconsistent. In those cases, the option is to warn about the
situation, and let the designer provide a contingency action (e.g. coming up
with the “integer” counterpart of the formerly valid value ’Times ’).

In short, for each type of change (i.e. NBC, BRC or BUC), we propose a course of
action: no action, automatic transformation, and assisted transformation, respec-
tively. To this end, the co-evolution process is complemented by two auxiliary
steps: a Conversion to Conjunctive Normal Form (CNF) step (to address
removals) and an optional similarity analysis step (to handle additions). Next
two sections delve into the details.

4 Detection Stage

This stage takes as input both the original metamodel and the evolved meta-
model, and infers the set of changes that went in between. This is achieved
through two tasks: simple-change detection and complex-change detection.



Model Transformation Co-evolution: A Semi-automatic Approach 149

Fig. 4. The Difference model (above) & DiffExtended model (below) for the running
example. Simple changes that account for a more abstract complex change are arranged
as descendants of the complex change (e.g. AddModel, UpdateAttribute, RemoveElement
are now part of a ComplexChange whose changeType is SplitClass).

4.1 Simple-Change Detection

We detect simple changes as a difference between the original metamodel and
the evolved metamodel. To this end, we use EMF Compare [19]. This tool takes
two models as input and obtains the differences along the Difference metamodel.
Back to our running example, EMF Compare is used to detect the simple changes
between the original and evolved ExamXML metamodel as well as the original
and evolved AssistantMVC metamodel. The output is a Difference model. Fig-
ure 4 (above) illustrates this Difference model for the ExamXML metamodel
(scenarios 2 and 4): UpdateAttribute, RemoveModelElement, AddModelElement
and RemoveAttribute. In other words, it detects that the name of the class is
changed from OpenElement to OpenElement_2, the specificQuestion1 metaprop-
erty is removed from OpenElement_2, the attribute optional is being removed,
and a new class with name OpenElement_1 is added.

4.2 Complex-Change Detection

Simple changes might be semantically related to achieve a common higher-order
modification. For a list of complex changes refer to [9] (we are going to analyze
those relevant from the point of view the transformation co-evolution). For in-
stance, the previous AddModelElement simple change hides a class split. We need
to infer that a set of simple changes unitedly account for a split. Alternatively,
we risk to treat each simple change on its own, which could lead to unwanted
co-evolution in the transformation.

We regard complex changes as predicates over simple changes. These are aux-
iliary predicates needed to define them: C is the set of metaclasses and P the



150 J. García, O. Diaz, and M. Azanza

Fig. 5. DiffExtended metamodel: EMFCompare’s Difference metamodel is extended
with the ComplexChange class

set of metaproperties of a metamodel. Subclass(s: C, c: C): s is subclass of
c; Added_class(c: C): c is added to the metamodel; Added_attribute(p:
P, c: C): p has been added to c; Deleted _attribute(p: P, c: C): p has
been deleted from c; IsAttributeOfClass(p: P, c: C): p belongs to c; Added
_supertype(s: C, c: C): supertype relationship has been added from s to
c; Deleted_supertype(s: C, c: C): supertype relationship has been deleted
from the s to c; Added_reference(p: P, c: C, d: D): Reference p from c
to d is added; Deleted_reference(p: P, c: C, d: D): Reference p from c to
d is deleted; Added_composition(s: C, c: C): composition relationship has
been added from the s to the c; Composed_name(z: string, p: string, x:
string): delivers a new string x out of input strings z and p; Splitted_name(c,
x) returns true if c can be obtained from x by concatenating such suffix. A no-
tation convention exists to name split classes: the name of the original class
concatenated with a number (e.g. OpenElement_1, OpenElement_2 ); Split-
ClassName(c: C): returns true if the new name of c is the concatenation of
the old name and “_1”. The list of detection predicates follows:

– ExtractSuperclass(c:C) iff Added_class(c) ∧ ∃p∈P, ∃s∈C
(Added_attribute(p, c) ∧ Added_supertype(s, c) ∧ Deleted _attribute(p,
s))

– PullMetaproperty(c:C, s:C) iff ∃p∈P (Subclass(s, c) ∧
Added_attribute(p,c) ∧ Deleted _attribute(p, s))

– PushMetaproperty(p: P) iff ∃s, c∈C (Subclass(s, c) ∧
Deleted_attribute(p,c) ∧ Added _attribute(p, s))

– FlattenHierarchy(c:C) iff (Deleted_class(c) ∧ ∀p∈ P |
IsAttributeOfClass(p, c) , ∀s∈ C | Subclass(s, c) (Deleted _attribute(p,c)
∧ Deleted_supertype(s, c) ∧Added_attribute(p, s)))

– MoveMetaproperty(c:C, p:P, d:C) iff (Deleted_attribute(p,c) ∧
Added _attribute(p, d) )



Model Transformation Co-evolution: A Semi-automatic Approach 151

– ExtractMetaclass(c:C, d:C) iff (Added_class(d) ∧ ∀p∈P |
IsAttributeOfClass(p, c) (Added _attribute(p,d) ∧ Deleted_attribute(p,
c)))

– InlineMetaclass(c:C, d:C) iff (Added_class(d) ∧ Deleted_class(c) ∧
∀p∈ P | IsAttributeOfClass(p, c) (Added _attribute(p,d) ∧
Deleted_attribute(p, c)))

– InheritanceToComposition(c:C, d:C) iff (Deleted_supertype(d, c) ∧
Added _composition(d, c))

– GeneralizeSupertype(c:C, s:C, d:C) iff (Deleted_supertype(d, s) ∧
Added _supertype(d, c) ∧Subclass(s, c))

– InlineSubclass(c:C, d:C) iff (Deleted_class(c) ∧ Subclass(c, d) ∧ ∀p∈P
| IsAttributeOfClass(p, c) (Added _ attribute(p,d) ∧ Deleted_attribute(p,
c)))

– ReferenceToIdentifier(c:C, d:C, p:P) iff (Deleted_reference(p, c, d) ∧
Added _attribute(p, c) ∧ Added_attribute(p, d))

– SplitReferenceByType(c:C, d:C, x:C, s:C, p:P, y:P, z:P) iff
(Deleted_ reference(p, c, d) ∧ Added_reference(y, c, x) ∧
Added_reference(z, c, s))

– PropertyMerge(p:P, z:P, x:P) iff ∃c∈C (Deleted_attribute(p,c) ∧
Deleted _attribute(z, c) ∧ Added_attribute(x, c) ∧ Composed_name(z, p,
x)). The last predicate delivers x by concatenating strings z and p.

– ClassMerge(c:C, d:C) iff ∃y∈C (Subclass(c, y) ∧ Subclass(d, y) ∧
Deleted_class(d) ∧ Composed_name(c, d, x))

– SplitClass(c:C, d:C, x:C) iff ∃y∈C (Subclass(c, y) ∧ Subclass(d, y) ∧
Added_class(d) ∧ Splitted_name(d, c)∧ SplitClassName(c)). The latter
predicate needs a bit of explanation.

Implementation wise, simple changes are obtained using EMFCompare using the
Difference metamodel. We propose to extend the Difference metamodel to ac-
count also for complex changes. Figure 5 shows an extract of the DiffExtended
metamodel. Using the predicates aforementioned we infer complex changes that
are represented as a DiffExtended model. Figure 4 provides a DiffExtended model
where complex changes are also introduced. In the case that a simple change can
belong to different complex changes, the biggest one has priority, e.g. Flatten-
Hierarchy over MoveMetaproperty, as the first one includes the second.

In short, this task is realized as a transformation that takes a Difference model
as input and obtains a DiffExtended model that includes both single and complex
changes. Now, we are ready to percolate those changes to the transformation
rules.

5 Co-evolution Stage

5.1 Similarity Analysis Step

Additional degrees of automatization can be achieved by using metamodel
matching techniques. A similarity analysis is conducted between the source and



152 J. García, O. Diaz, and M. Azanza

target metamodels using tools such as AML (AtlanMod Matching Language) [7].
These tools compute similarity based on the element names and the structural
similarity of the metamodels. The output can be used to assist designers to fill
the gaps. The approach rests on the matching effectiveness. We performed an
empirical experiment based on a test-bed of 17 transformations from the ATL
zoo1. Matching effectiveness had an average of 22-23% success (i.e., cases were
an adequate binding could be suggested to the designer). This step is optional,
and the weaving similarity model can be added as an input to the adaptation.

5.2 Conjunctive Normal Form Conversion Step

Rule filters are first-order predicates, normally specified using OCL. Equivalence
rules of Predicate Calculus are applied to each boolean expression to get its
equivalent Conjunctive Normal Form (CNF), i.e., a conjunction of clauses, where
a clause is a disjunction of literals (see [3] for futher details). Once in CNF, filters
can be subject to “surgically removal”, as explained in Subsection 5.4.

5.3 Co-evolution Step

We treat transformations as models. That is, transformations are described along
a transformation metamodel. Therefore, it is possible to define (high order) trans-
formations (HOTs) that take a transformation as input, and return a somehow
modified transformation. This is precisely the approach: define correspondences
that map the original transformation into an evolved transformation, taking the
changes obtained during the detection stage as parameters. These HOTs are
realized as ATL rules. In what follows, we summarize those rules in terms of
co-evolution actions. These actions are expressed as predicates over the origi-
nal transformation rules. To this end, we capture a transformation rule R as
a tuple Rule(id, source, targets, filters, mappings) where “source” and “targets”
refer to classes of the input and output metamodel, respectively; “filters” is a
set of related predicates over the source element, such that the rule will only
be triggered if the condition is satisfied; finally, “mappings” refer to a set of
bindings to populate the attributes of the target element. A binding construct
establishes the relationship between a source and a target metamodel elements.
Normally, a mapping part contains a binding for each target metaclass’ property.
Its semantics denote what needs to be transformed into what instead of how the
transformation must be performed. The left-hand side must be an attribute of
the target element metaclass. The right-hand side can be a literal value, a query
or an expression over the source model. Figure 3 illustrates an example of a
transformation in ATL.

Transformation rules are the facts. Next, co-evolution actions are described
through a set of operands and predicates over these rule facts. To avoid clutter-
ing the description with iterations, we consider multi-valued predicates to return
a single value. For instance, if a set of rules is used as parameter in the following
1 http://www.eclipse.org/m2m/atl/atlTransformations/

http://www.eclipse.org/m2m/atl/atlTransformations/


Model Transformation Co-evolution: A Semi-automatic Approach 153

Bindings(r), bindings of all the rules in the set will be returned. Underscore will
be used similarly to Prolog, as “don’t care” variables. Predicates are intensional
definitions of rule sets, and include: RulesBySource(s) denotes the set of rules
whose source is s; RulesByTarget(t) denotes the set of rules whose target is
t; Binding(r, p) returns the bindings of rule r which hold property p; Bind-
ings(r) returns the bindings of rule r; TargetsOfRule(r) returns the targets of
rule r; FiltersOfRule(r) returns the filters of rule r; FiltersOfProperty(p)
returns the filters where the property p appears.

Operands act on rules: deleteRule(r), which deletes the rule r; deleteTar-
get(r, t) which deletes target t from rule r; deleteBinding(r, b), which deletes
binding b from rule r; addRule(r), which adds rule r; addTarget(r, t), which
adds target t to rule r; addBinding(r, b), which adds a binding b to rule r;
moveTarget(r1, t, r2), which moves r1 ’s target t together with its bindings
to rule r2; moveBinding(r1, b, r2) which moves r1 ’s binding b to r2, pro-
vided r2 holds a target that matches b’s lefthand side; updateFilter(r1, f1,
f2), which updates f1 by f2 among r1 ’s filters; deleteFilter(r1, f1), which
deletes one of r1 ’s filters; updateBinding(r1,b1, b2), which substitutes r1 ’s
binding b1 by b2; updateSource(r, s1, s2), which updates source s of rule r
to s2 ; concatClass(c1, c2), which concats two classes names. These operands
are used to specify how metamodel changes impact the transformation rules, i.e.
the co-evolution actions. The list below and the list at the end of this subsection
summarize the actions related to simple and complex changes, respectively.

– removeMetaclass (c: C): (BRC) deleteRule(RulesBySource(c)),
deleteFilter(RulesBySource(c), FiltersOfProperty(c.properties)),
deleteBinding(RulesBySource(c), Binding(RulesBySource(c), c.properties))

– removeMetaproperty(p: P): (BRC) deleteFilter(RulesBySource(c),
FiltersOfProperty(p)), deleteBinding(RulesBySource(c),
Binding(RulesBySource(c), p)). Deletions should be minimal (in
Subsection 5.4)

– updateLowerBound (p: P,NewBound): (NBC) No action
– updateUpperBound (p: P,NewBound): (NBC) updateFilter(_, Filter-

sOfProperty(p), f2), updateBinding(_, Binding(_, p), b2). In case lower-
Bound converts from 1 to *, f2 will insert a forAll expressions to check that
all instances fulfill the condition and b2 will use the first() to take the first el-
ement of the sequence. In case lowerBound changes from * to 1, asSequence()
will be used in f2 and b2 to convert an element into a sequence.

– updateEType: (BUC) Syntactically right, but possible runtime type errors
(refer to [18]). A warning note is generated.

– updateESuperTypes: (BUC) (if a metaproperty of the ancestors is ac-
cessed) Propose to copy the metaproperty of the superclass in the class.

– updateIsAbstract (c: C,NewValue): (NBCor BRC) If metaclass c
is turned into abstract (NewValue = “true”) : Delete (Rule(c)), Delete
(RHS(c)). If metaclass c is turned into a non-abstract class (NewValue =
“false”) then, do nothing.



154 J. García, O. Diaz, and M. Azanza

– updateELiterals (c: C): (BUC) Comment the structure the literal is used
in, in case the user wants to use another literal. Alternative: use the default
one.

– addClass(c: C): (NBC) see Subsection 5.5
– add Metaproperty(p: P): (NBC) see Subsection 5.5

Next, we illustrate the distinct casuistic using our running example:

– Scenario 1. The AssistantMVC’s Multiple class is introduced in the target
metamodel. This is a NBC scenario.

– Scenario 2. The property “optional” is deleted from AssistantMVC’s Exam-
Element. When a property is removed from the metamodel, different ap-
proaches can be taken, where the most simplistic one could be to remove the
whole transformation rule where the property is used in a binding or boolean
expression. However, this is a very restrictive and rather coarse-grained ap-
proach. We advocate the use of what we call the principle of minimum
deletion, where only the part that is absolutely necessary is removed (see
next subsection).

– Scenario 3. The AssistantMVC’s fontName metaproperty is changed from
string to integer. This is a BUC case.

– Scenario 4. The AssistantMVC’s OpenElement class is splitted into OpenEle-
ment_1 and OpenElement_2. As a result, rules having OpenElement as
source should be co-evolved (see Figure 3). This is the case of the Open-
Question rule, which is splitted in two rules: OpenQuestion_1 and Open-
Question_2. The former contains the bindings related to OpenElement_1
while the latter keeps the bindings for OpenElement_2.

– Scenario 5. New subclass ExerciseElement is added to ExamElement meta-
class, and a new property style is added to View target metaclass. Additive
evolution is a NBC case. Even though, it is not unusual to need new rules
or bindings to maintain the metamodel coverage level. For this purpose we
include in the co-evolution the option to generate partially new rules, as they
are not fully automatable (see Subsection 5.5).

Complex Changes and their impact on transformation evolution:

– MoveMetaproperty (c: C, p: P, d: C) if c, d ∈ SourceClasses: update-
Binding(RulesBySource(c), Binding(RulesBySource(c), p), newBinding(p))
where newBinding works out a binding by navigating to the new location
of the property, in case both classes c and d are related (navigability exists
through associations). If they are not related, user assistance will be needed.

– MoveMetaproperty (c: C, p: P, d: C) if c, d ∈ TargetClasses:
deleteBinding(RulesByTarget(c), Binding(RulesByTarget(c), p)) or if Bind-
ing(RulesByTarget(d), p) > 0: moveBinding(RulesByTarget(c), Binding
(RulesByTarget(c), p), RulesByTarget(d)).

– FlattenHierarchy (c: C) if c ∈ SourceClasses:
deleteRule(RulesBySource(c)) and {if RulesBySource(Subclass(c)) >0 then
moveBinding(RulesBySource(c), Binding(RulesBySource(c), p),
RulesBySource (subclass(c))) else addRule(rule(_, subclass(c), _, _, _))}.



Model Transformation Co-evolution: A Semi-automatic Approach 155

– FlattenHierarchy (c: C) if c ∈ TargetClasses:
deleteTarget(RulesBySource(c), c) and {if RulesByTarget(Subclass(c)>0
then moveBinding(RulesBySource(c), Binding (RulesBySource(c), p),
RulesBySource(subclass(c))) else addTarget (RulesBySource(subclass(c)),
Subclass(c))}.

– ExtractMetaclass (c: C, d: C) if c, d ∈ SourceClasses: ad-
dRule(rule(id, c, d, _, _)) and moveBindings(RulesBySource(c), Bind-
ings(RulesBySource(c)), id).

– ExtractMetaclass (c: C, d: C) if c, d ∈ TargetClasses:
addTarget(Rule(c, d), d) and moveBinding(RulesBySource(c), Bind-
ings(RulesBySource(c)), addTarget(Rule(c, d), d)).

– InlineMetaclass (c: C, d: C): ”Extract metaclass” case and
deleteRule(RulesBySource(c)).

– InheritanceToComposition (c: C, d: C): When c is the source: update-
Filter(RulesBySource(c), FiltersOfRule(RulesBySource(c)), f2), where in f2
refImmediateComposite() will be used in the filter. For instance: select(v |
v.oclIsTypeOf (OpenElement))[Expression] will be converted to ExamEle-
ment.refImmediateComposite() [Expression]. When d is the source: update-
Binding(RulesBySource(c), Bindings(RulesBySource(c)), b2), where in b2
the name of the composition relation will be introduced in the path of the
binding. For instance, OpenElement.question [Expression] must be converted
to OpenElement.examElement.question [Expression].

– GeneralizeSupertype (c: C, s: C, d: C):
deleteBinding(RulesBySource(c), Binding (RulesBySource(c),
Metaproperties(s))).

– InlineSubclass (c: C, d: C): deleteRule(RulesBySource(c)) and
moveBinding (RulesBySource(c), Bindings(RulesBySource(c)),
RulesBySource(d)).

– ReferenceToIdentifier (c: C, d: C, p: P): (As a convention, the
id will have the same name as the deleted reference) updateBind-
ing(RulesBySource(c), Binding (RulesBySource(c), p), newBinding), where
the newBinding will replace reference by metaclass.id, e.g. if metaclass C
with a relation p to D is converted to C with a metaproperty referring to
the new id in D, bindings p ← D (being D a reference to the generated
element of type D) will be adapted to p ← D.p.

– SplitReferenceByType (c: C, d: C, x: C, s: C, p: P, y: P, z: P):
deleteBinding(RulesBySource(d), p) and if x and s elements are created in
the same rule:addBinding(RulesBySource(d), new_b).

– PropertyMerge (p: P, z: P, x: P) if p, z, x ∈ SourceProperties:
updateBinding(_, Binding(_, p), newBinding), where in newBinding x is
used instead of p or z.

– PropertyMerge (p: P, z: P, x: P) if p, z, x ∈ TargetProperties:
updateBinding(_, Binding(_, p), newBinding) and deleteBinding(_, Bind-
ing(_, z)), where newBinding will use x instead of p and z.

– ClassMerge (c: C, d: C) if c, d ∈ Source-
Classes: deleteRule(RulesBySource(c)) and deleteRule (RulesBySource(d))



156 J. García, O. Diaz, and M. Azanza

Table 1. Truth table for removed elements. RT value will be interpreted as true,
and RF value as false. L represents a literal, which is an OCL expression that can be
evaluated to a boolean value and does not include a boolean change.

L1 L2 L1 AND
L2

L1OR L2 NOT
L1

RT L2 L2 RT RF

RF L2 RF L2 RT

RT RF RF RT -
RT RT RT RT -
RF RF RF RF -

and addRule(rule(_, concatClass(c, d), union(TargetsOfRule (Rules-
BySource(c)), TargetsOfRule(RulesBySource(d))), _ , union(Bindings
(RulesBySource(c)), Bindings(RulesBySource(d)))). If there are filtes in the
rules: updateSource(_, c, concat(c, d)) and updateSource(_, d, concat(c,
d)).

– ClassMerge (c: C, d: C) if c, d ∈ TargetClasses: deleteTarget
(RulesByTarget(c), c) and deleteTarget(RulesByTarget(d), d) and addTar-
get(RulesByTarget(c), concatClass(c, d)) and addTarget(RulesByTarget(d),
concatClass(c, d)).

– SplitClass (c: C, d: C): deleteRule(RulesBySource(c)) and
addRule(rule(_, d, TargetsOfRule(RulesBySource(c)),
FiltersOfRule(RulesBySource(c)), Binding(RulesBySource(c),
Metaproperties(d)))) and addRule(rule(_, SplitClassName(c),
TargetsOfRule(RulesBySource(c)), FiltersOfRule(RulesBySource(c)),
Binding (RulesBySource(c), Metaproperties(SplitClassName(c))))) .

– PushMetaproperty (p: P): (like move metaproperty)

5.4 The Case of the removeProperty Change

When a metaclass or a metaproperty is deleted, affected transformation elements
have to be removed while keeping the transformation logic coherent. Coherence
refers to deleting only the strictly necessary parts to prevent negative conse-
quences. For instance, two rules might exist with complementary filters. Those
filters may refer to a property. If the deletion of this property leads to the re-
moval of the whole filter, these two rules will no longer have a discriminating
filter. Therefore, the impact of metamodel element deletions should be as re-
strictive as possible. This is specially pressing for rule filters. This subsection
discusses a way to “surgically” remove “dead” parts of rule filters. Casuistic in-
cludes:

– Expressions with string concatenation. This is the easiest case, let be style
← fontName + fontColor; an expression with the concatenation of two
string metaproperties, if one of them (e.g. fontName) is removed, then the



Model Transformation Co-evolution: A Semi-automatic Approach 157

expression is re-adapted to contain the rest of the metaproperties, i.e. the
new expression is changed to style ← fontColor.

– Expressions with creator operations of collections: Collection types are sets,
ordered sets, bags, and sequences. With expressions like Set{London, Paris,
Madrid} → union(Set{birthCity, liveCity, workCity}), after removing a
metaproperty (e.g. birthCity), the new expression will keep the rest of the
elements, i.e Set{London, Paris, Madrid} → union(Set{liveCity, workCity}).

– Expressions with other operations on collections: There are other operations
to work with collections, as append(obj), excluding(obj), including(obj), in-
dexOf(obj), insertAt(index, obj), and prepend(obj). In this case, if the re-
moved metaproperty is the parameter of the function, this part of the
expression is removed. So, with an expression like Set{London, Paris,
Madrid} → append(workCity), after removing the workCity metaprop-
erty the new expression will maintain the left hand of the expression, i.e
Set{London, Paris, Madrid}.

– Boolean expressions: since a removed metaproperty cannot be evaluated,
that element in the expression must be considered as undefined. Moreover,
before rewriting the expression with that undefined part, it is convenient
to simplify the expression as much as possible, i.e. converting it into an-
other equivalent expression, easier to deal with. Thus, equivalence rules of
Predicate Calculus are applied to each boolean expression to get its equiv-
alent CNF. Inspired by [3], table 1 is proposed as truth table which defines
conversion rules for CNF expressions.

As an example, consider a metamodel with three metaproperties: Eras-
musGrant, that says if the student has an Erasmus type grant; speakEnglish,
that says if s/he has a good English level; and enrolledLastYear, that indi-
cates if s/he is in his/her last undergraduate year. In the process of meta-
model redesign, the designer could help giving some clue about the reason to
take the decision of removing a metaproperty from the metamodel (removal
policy). For example, if all students in the university had a very good level
of English (because it is a new precondition for the enrollment), it could
be considered as satisfied by default, and in case of removing the speak-
English metaproperty, its value could be reinterpreted as removed&satisfied-
by-default (RT). On the other hand, if the university had decided not to
participate in the Erasmus Program, no student would have such grant, and
in case of removing the ErasmusGrant metaproperty, its value could be rein-
terpreted as removed&unsatisfied-by-default (RF).

If, in the previous example, there had been this expression not Eras-
musGrant or (speakEnglish and enrolledLastYear), and later the redesign
process decided to remove the speakEnglish metaproperty, then according
to the truth table the expression would be rewritten as not ErasmusGrant
or enrolledLastYear ; if the removed metaproperty had been ErasmusGrant
with RF policy, then the new expression would have been true.

– Expressions with loop operations: In ATL the syntax used to call an itera-
tive expression is the following: source → operation_name (iterators | body).
Among these operations there are any(expr), collect(expr), exists(expr),



158 J. García, O. Diaz, and M. Azanza

Fig. 6. Generated skeletons for the new style property (above) and the new Exer-
ciseElement class (below)

forAll(expr), one(expr), select(expr), and so on. For instance, in self.items
→ exists(i | i.question.size()>50), if the removed metaproperty (e.g. items)
takes part in the source, the whole expression is removed, but if the removed
metaproperty takes part in the body, the rules for the boolean expressions
must be applied.

– For more ambiguous cases, we resort to reporting the ambiguity and letting
the designer decide. For instance, if the returned type of a helper is removed,
the helper cannot be considered during binding, and a warning note is intro-
duced. Or if the removal of a property makes the scope of two rules coincide
then, the first one is commented.

Back to our second scenario (i.e. removal of optional from ExamElement), con-
sider we have two rules whose filters refer to optional :

– (value>5 and optional) or long. Applying equivalences from table 1, the
evolved filter becomes (value > 5 or long)

– not ((value>5 and optional) or long). Using Morgan’s laws, its CNF coun-
terpart is: (not value>5 or not optional) and not long. Applying equivalences
from table 1, the evolved filter results in (not value>5 and not long).

In this way, “surgical removal” permits to limit the impact of deletion of prop-
erties in the associated rules.

5.5 The Case of addClass and addProperty Changes

Although additive evolution is considered NBC, it is not unusual to need new
rules or bindings to maintain the metamodel coverage level. For this purpose,
we include in the co-evolution the option to generate partially new rule skele-
tons. Our fifth scenario illustrates this situation: addition of the ExerciseElement
metaclass, and addition of the style property to the View metaclasss. The engi-
neered co-evolution can be seen at work in Figure 6: a rule is partially generated



Model Transformation Co-evolution: A Semi-automatic Approach 159

Fig. 7. CO-EUR architecture

to tackle the addition of a new source metaclass while a new partial binding is
proposed to address new properties. In the latter case, only a simple binding is
generated (e.g. target_metaproperty ← source_metaproperty) which needs to be
completed by the designer (in the example, xml.style).

6 Implementation

The CO-EUR prototype is available2 as a proof-of-concept of the feasibility of
this approach for ATL rule co-evolution. Figure 7 depicts the main CO-EUR
modules that mimic the co-evolution workflow introduced in Section 2. CO-EUR
takes an ATL file (.atl), two Ecore metamodels (.ecore) as input, and returns an
ATL file that tackles the differences between the input Ecore models.

The main effort was devoted to the adaptation module. Implementation wise,
this module also represents the main innovative approach since transformation
co-evolution is achieved using HOT transformations. Along the MDE motto:
“everything is a model” [2], transformations are models that conform to their
own metamodel (i.e., the transformation language). Being models, (Higher Or-
der) transformations can be used to map the original transformation model into
a co-evolved transformation model that caters for the metamodel changes. Fig-
ure 8 outlines one such HOT transformation that tackles the splitClass case.
The pattern includes: a “main” rule, some lazy rules that are called from it
2 www.onekin.org/downloads/public/examination-assistant.rar

www.onekin.org/downloads/public/examination-assistant.rar


160 J. García, O. Diaz, and M. Azanza

Fig. 8. HOT rules to cope with class split. HOTs’ input and output models conform
to the ATL metamodel.

to create elements, and some helpers to modularize the functionality. In this
specific case, Module_Splitclass is the “main” rule (line 9), which will be exe-
cuted when there is any change of type Splitclass. In the to part of the rule,
the helper deleteRule_Splitclass is called (line 13) which causes the deletion
of the rule referring to the deleted metaclass. Then, the imperative part of
the rule (do) creates two new rules: MatchedRule2MatchedRule_Splitclass and
MatchedRule2MatchedRule2 _Splitclass (lines 16 and 17). These rules in turn re-
fer to rule SOPE2SOPE _Splitclass (line 24), which creates a SimpleOutPatter-
nElement for the new generated rules. Finally, this rule invokes B2B_Splitclass
to geneate the bindings (lines 34 and 39).

7 Related Work

Although co-evolution of models after metamodel evolution has been widely
studied [4,9,16], transformations have raised less attention. A lot of research has



Model Transformation Co-evolution: A Semi-automatic Approach 161

been carried out in the model co-evolution area and some proposals have been
done to semi-automatically adapt models to metamodel evolution. Three main
strategies have been used [10]: (i) manual specification: these approaches pro-
vide transformation languages to manually specify the migration (e.g. [16]); (ii)
matching approaches: they intend to automatically derive a migration from the
matching between two metamodel versions (e.g. [4]); and (iii) co-evolution based
on operators: they record the coupled operations which are used to evolve the
metamodel and which also encapsulate a model migration (e.g. [9]). Following
this classification, our approach would be in the second type, as we do not know
changes in advance or make them in any specific tool. But on the other hand,
we rely our complex changes in a taxonomy of operators based on the third type
([9]). Our approach is similar, as each change has an associated co-evolution,
but the difference is that we do not create explicitly the operators, as they are
automatically derived. In some cases changes in metamodels do not affect trans-
formations, as studied in [18], where authors conclude that the addition of new
classes and broadening of multiplicity constraints do not break the subtyping re-
lationship between metamodel versions. But often changes do have an impact on
transformations. To the best of our knowledge, two authors ([14] and [17]) have
dealt with transformation co-evolution. The first case is limited to graph-based
languages, considering simple changes and considering subtractive changes only
as coarse-grained removals (i.e., rule level deletions). In contrast, we focus on
rule-based declarative languages, deleting as little as possible, and considering
complex changes. In [17] authors explain a fundamental idea, e.g., the conve-
nience of using operators in the co-evolution of transformations. Compared to
this publication, our contribution would be an automatic conversion from simple
to complex changes, minimum deletion and an implementation of co-evolutions
in ATL. First issue of the approach, the conversion of simple to complex changes
is treated in [8] and [21]. The former is based on a DSL for expressing model
matching and the later uses a sequence of operator instances as evolution trace,
and they allow to make changes over changes.

Our co-evolution process only guarantees that the transformation is syntac-
tically correct, and if other correctness properties need to be checked, other
complementing works will have to be considered, as analysis and simulation [1],
testing [12] or metamodel coverage [23]. In the case where co-evolution is done
manually, coverage analysis can be used to determine whether the changes to a
metamodel affect the transformation [20].

8 Conclusions

We addressed how metamodel evolution can be semi-automatically propagated
to the transformation counterpart. The process flow includes: (1) detecting sim-
ple changes from differences between the original metamodel and the evolved
metamodel, (2) deriving complex changes from simple changes, (3) translating
boolean expressions to the CNF form, (4) if available, capitalize on model simi-
larity, and finally, (5) map the original transformation into an evolved transfor-
mation that (partially) tackles the evolved metamodel. The approach is realized



162 J. García, O. Diaz, and M. Azanza

for EMOF/ Ecore-based metamodels, and ATL transformations. The approach
relieves domain experts from handling routine cases so that they can now focus
on the more demanding scenarios (e.g. additive evolution). The use of high-level
transformations implies the existence of a transformation metamodel. So far this
is available for main transformation languages such as ATL or RubyTL.

Acknowledgments. We thank Jordi Cabot, Arantza Irastorza and reviewers
for their help. This work has been partially supported thanks to a doctoral
grant Jokin enjoys from the Basque Government under the “Researchers Training
Program”. This work is co-supported by the Spanish Ministry of Education, and
the European Social Fund under contract TIN2011-23839 (Scriptongue).

References

1. Anastasakis, K., Bordbar, B., Küster, J.M.: Analysis of Model Transformations via
Alloy. In: Baudry, B., Faivre, A., Ghosh, S., Pretschner, A. (eds.) Proceedings of the
4th MoDeVVa Workshop Model-Driven Engineering, Verification and Validation,
pp. 47–56 (2007), http://kyriakos.anastasakis.net/prof/pubs/modevva07.pdf

2. Bézivin, J.: In Search of a Basic Principle for Model-Driven Engineering. UP-
GRADE, The European Journal for the Informatics Professional, Special Issue on
UML and Model Engineering 5(2), 21–24 (2004)

3. Cabot, J., Conesa, J.: Automatic Integrity Constraint Evolution due to Model Sub-
tract Operations. In: Wang, S., Tanaka, K., Zhou, S., Ling, T.-W., Guan, J., Yang,
D.-Q., Grandi, F., Mangina, E.E., Song, I.-Y., Mayr, H.C. (eds.) ER Workshops
2004. LNCS, vol. 3289, pp. 350–362. Springer, Heidelberg (2004)

4. Cicchetti, A., Di Ruscio, D., Eramo, R., Pierantonio, A.: Automating Co-evolution
in Model-Driven Engineering. In: Enterprise Distributed Object Computing Con-
ference (2008)

5. Di Ruscio, D., Iovino, L., Pierantonio, A.: What is Needed for Managing Co-
evolution in MDE? In: Proc. of the 2nd International Workshop on Model Com-
parison in Practice, IWMCP 2011, pp. 30–38. ACM, New York (2011)

6. France, R., Rumpe, B.: Model-Driven Development of Complex Software: A Re-
search Roadmap. In: Workshop on the Future of Software Engineering (FOSE
2007), at the 29th International Conference on Software Engineering (ICSE 2007),
Minneapolis, Minnesota, USA, pp. 37–54 (2007)

7. Garcés, K., Jouault, F., Cointe, P., Bézivin, J.: A Domain Specific Language for
Expressing Model Matching. In: Proc. of the 5ère Journée sur l’Ingénierie Dirigée
par les Modèles (IDM 2009) (2009)

8. Garcés, K., Jouault, F., Cointe, P., Bézivin, J.: Managing Model Adaptation by
Precise Detection of Metamodel Changes. In: Paige, R.F., Hartman, A., Rensink, A.
(eds.) ECMDA-FA 2009. LNCS, vol. 5562, pp. 34–49. Springer, Heidelberg (2009)

9. Herrmannsdoefer, M., Vermolen, S., Wachsmuth, G.: An Extensive Catalog of
Operators for the Coupled Evolution of Metamodels and Models. In: Software
Language Engineering, Third International Conference, Software Language Engi-
neering 2010, Eindhoven, The Netherlands, October 12-13, 2010, Revised Selected
Papers (2011)

10. Herrmannsdoerfer, M.: COPE – A Workbench for the Coupled Evolution of Meta-
models and Models. In: Malloy, B., Staab, S., van den Brand, M. (eds.) SLE 2010.
LNCS, vol. 6563, pp. 286–295. Springer, Heidelberg (2011)

http://kyriakos.anastasakis.net/prof/pubs/modevva07.pdf


Model Transformation Co-evolution: A Semi-automatic Approach 163

11. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A Model Transformation
Tool. Science of Computer Programming (SCP) 72(1-2), 31–39 (2008)

12. Küster, J.M., Abd-El-Razik, M.: Validation of Model Transformations – First Ex-
periences Using a White Box Approach. In: Kühne, T. (ed.) MoDELS 2006 Work-
shops. LNCS, vol. 4364, pp. 193–204. Springer, Heidelberg (2007)

13. Kurtev, I.: Adaptability of Model Transformations, ch. 5. PhD thesis, University
of Twente, Enschede (May 2005)

14. Levendovszky, T., Balasubramanian, D., Narayanan, A., Karsai, G.: A Novel Ap-
proach to Semi-automated Evolution of DSML Model Transformation. In: van den
Brand, M., Gašević, D., Gray, J. (eds.) SLE 2009. LNCS, vol. 5969, pp. 23–41.
Springer, Heidelberg (2010)

15. Mohagheghi, P., Dehlen, V.: Where Is the Proof? - A Review of Experiences from
Applying MDE in Industry. In: Schieferdecker, I., Hartman, A. (eds.) ECMDA-FA
2008. LNCS, vol. 5095, pp. 432–443. Springer, Heidelberg (2008)

16. Rose, L.M., Kolovos, D.S., Paige, R.F., Polack, F.A.C.: Model Migration with
Epsilon Flock. In: Tratt, L., Gogolla, M. (eds.) ICMT 2010. LNCS, vol. 6142, pp.
184–198. Springer, Heidelberg (2010)

17. Schätz, B., Deridder, D., Pierantonio, A., Sprinkle, J., Tamzalit, D.: On the Use
of Operators for the Co-Evolution of Metamodels and Transformations. In: Proc.
of the International Workshop on Models and Evolution (ME 2011) at MoDELS
2011, pp. 54–63 (2010)

18. Steel, J., Jézéquel, J.: On Model Typing. Software and System Modeling 6(4),
401–413 (2007)

19. Toulmé, A.: Presentation of EMF Compare Utility. In: Eclipse Modeling Sympo-
sium 2006, pp. 1–8 (2006)

20. van Amstel, M.F., van den Brand, M.G.J.: Model Transformation Analysis: Staying
Ahead of the Maintenance Nightmare. In: Cabot, J., Visser, E. (eds.) ICMT 2011.
LNCS, vol. 6707, pp. 108–122. Springer, Heidelberg (2011)

21. Vermolen, S.D., Wachsmuth, G., Visser, E.: Reconstructing Complex Meta-
model Evolution. In: Sloane, A., Aßmann, U. (eds.) SLE 2011. LNCS, vol. 6940,
pp. 201–221. Springer, Heidelberg (2012)

22. Wachsmuth,G.:MetamodelAdaptationandModelCo-adaptation. In:Ernst,E. (ed.)
ECOOP 2007. LNCS, vol. 4609, pp. 600–624. Springer, Heidelberg (2007)

23. Wang, J., Kim, S., Carrington, D.: VerifyingMetamodel Coverage of Model Transfor-
mations. In: Proc. of the Australian Software Engineering Conference, pp. 270–282.
IEEE Computer Society, Washington, DC (2006)


	Model Transformation Co-evolution:
A Semi-automatic Approach
	Introduction
	Motivating Scenario 
	Transformation Co-evolution Process: An Outline
	Detection Stage
	Simple-Change Detection
	Complex-Change Detection

	Co-evolution Stage
	Similarity Analysis Step
	Conjunctive Normal Form Conversion Step
	Co-evolution Step
	The Case of the removeProperty Change
	The Case of addClass and addProperty Changes

	Implementation
	Related Work
	Conclusions 
	References




