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Abstract. Model-Driven Engineering (MDE) has established itself as
a viable means of coping with the increasing complexity of software
systems. Model-to-platform transformations support the required ab-
straction process that is crucial for a model-driven approach and are,
therefore, a central component in any MDE solution. Although there
exist numerous strategies and mature tools for certain isolated subtasks
or specific applications, a general framework for designing and struc-
turing model-to-platform transformations, which consolidates different
technologies in a flexible manner, is still missing, especially when bidi-
rectionality is a requirement.

In this paper, we present: (1) An abstract, conceptual framework for
designing and structuring bidirectional model-to-platform transforma-
tions, (2) a concrete instantiation of this framework using string gram-
mars, tree grammars, and triple graph grammars, (3) a discussion of our
framework based on a set of core requirements, and (4) a classification
and detailed survey of alternative approaches.

Keywords: bidirectional model-to-platform transformations, string
grammars, tree grammars, triple graph grammars.

1 Introduction

Model-Driven Engineering (MDE) has established itself as a viable means of
coping with the increasing complexity of modern software systems by increas-
ing productivity, supporting platform independence and interoperability, and
reducing the gap between problem and solution domains [2].

Model transformations, in general, play a central role in any model-driven
solution [2] and model-to-platform transformations, in particular, enable an ab-
straction from platform-specific details, which is usually an important first step
in the Model-Driven Architecture (MDA) approach [2]. In this paper, a platform
is defined as the final step in a given transformation chain and, in this context,
includes textual files (XML files, configuration files, property files and code in a
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programming language), folder and file hierarchies (structures in a filesystem),
engineering tools with internal data structures that can be manipulated via an
API, and very simple and typically generic tree-like structures. A model is an
abstraction that is suitable for a particular purpose. We regard models as being
conform to a metamodel, which is a representation of relevant concepts and re-
lations in a domain usually specified with a standard modelling language such
as UML1, MOF2 or Ecore [20].
Application areas of model-to-platform transformations include:

1. Round trip engineering involving code generation (forward engineering), and
system comprehension (reverse engineering).

2. The development and evolution of Domain Specific Languages (DSLs).
3. The integration of different tools with tool-specific import/export formats.

As these applications are and always have been crucial tasks in software engi-
neering, various approaches and tools already exist [8,9,19]. Current approaches
are, however, either application specific (e.g., fixed metamodel), only handle an
isolated subtask (e.g., only code generation), or are strongly tied to a certain
technology or standard (e.g., Ecore). A general framework that can be used to
design and structure model-to-platform transformations in a flexible manner is,
therefore, still missing, especially when bidirectionality, crucial in many applica-
tions [5,12], is an important requirement. Such a framework must combine and
consolidate state-of-the-art technologies in such a way that the strengths of in-
dividual components are emphasized and weaknesses are compensated, but still
be general enough to allow a free choice and replacement of concrete standards
or technologies. In this paper, we present:

1. An abstract, conceptual framework for structuring the required components
of a bidirectional model-to-platform transformation.

2. A concrete instantiation of this framework based on string grammars and
tree grammars using ANTLR [18], and Triple Graph Grammars (TGGs) [14]
using eMoflon [1] and the Eclipse Modeling Framework (EMF) [20].

3. A discussion of our framework based on a set of core requirements.
4. A classification and detailed survey of alternative approaches.

The paper is structured as follows: Section 2 presents our running example,
discusses further application domains for bidirectional model-to-platform trans-
formations, and identifies a set of core requirements. Section 3 introduces an
abstract conceptual framework, independent of any concrete technologies, to-
gether with a concrete instantiation thereof as a proof-of-concept. Section 4
classifies related approaches and compares them with our framework based on
our requirements, while Sect. 5 concludes the paper with a summary and a brief
overview of future work.

1 Unified Modeling Language.
2 Meta-Object Facility.
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2 Application Domains and Core Requirements

Model-to-platform transformations are relevant in a multitude of application
domains. In this section, we focus on application areas that additionally involve
bidirectionality and derive a minimal set of core requirements.

Our running example is taken from the application domain Round Trip En-
gineering and is used consequently in the rest of the paper to introduce and
explain all relevant concepts.

2.1 Running Example: Round Trip Engineering

Inspired by a real-world system modernization and re-engineering application
scenario3, our running example involves a software developer (Fig. 1::14) who
is trying to improve a software system that consists of a substantial number of
source code files (Fig. 1::2). The developer has a set of refactoring rules (Fig. 1::3)
which are to be automatically applied to the software system to result in an
improved version (Fig. 1::4). For our concrete example, each source code file
specifies a number of components, each of which can require other components.

To support system comprehension, e.g., in preparation of a re-engineering of
the system, a dependency analysis of the complete system (possibly comprising
thousands of components) is required. A suitable metamodel that captures the
relevant concepts needed to express the dependencies in the system (Fig. 1::5) is
established and a platform-to-model transformation (Fig. 1::6) is used to extract
a dependency graph (Fig. 1::7) from the software system. The refactoring rules
can now be expressed as a model transformation (Fig. 1::8) that can be applied to
yield an improved dependency graph (Fig. 1::9). The final step is to update/re-
generate the system with a model-to-platform transformation (Fig. 1::10).

To keep things simple, we restrict the analysis to only the component depen-
dency graph and ignore the internal specification of each component. Although
components can require components in different source files, we restrict the anal-
ysis to a single file for presentation purposes. The sample file depicted in Fig. 2
consists of four components T, L, R and B. The components form a depen-
dency diamond as B requires T indirectly via L and R. Due to certain domain
specific reasons (e.g, redundant memory allocation for the topmost component),
our client wishes to avoid such diamond dependency subgraphs. The refactoring
rule for our running example is as follows: If the component at the base of the
diamond (B) is not required by any other components, it should be copied5 and
one of the dependencies (R) must be transferred to the copy (B Copy) to break
up the diamond. The refactored file according to this rule is depicted in Fig. 3.

A model-driven approach is advantageous as the metamodel is an abstraction,
which can be chosen to be exactly suitable for the task, i.e., the refactoring

3 Part of an industrial cooperation with Eckelmann AG (www.eckelmann.de)
4 The notation Fig. n::m refers to label m in Fig. n.
5 A further simplification as, in reality, an analysis of the content of the component is
required to determine how it can be appropriately split into two independent parts.

www.eckelmann.de
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Fig. 1. Overview of the running example

1 Component T {
2 // ...
3 }
4 Component L requires T {
5 // ...
6 }
7 Component R requires T {
8 // ...
9 }

10 Component B requires L R {
11 // ...
12 }

Fig. 2. Before refactoring

1 Component T {
2 // ...
3 }
4 Component L requires T {
5 // ...
6 }
7 Component R requires T {
8 // ...
9 }

10 Component B requires L {
11 // ...
12 }
13 Component B_Copy requires R {
14 // ...
15 }

Fig. 3. After refactoring
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rules can be expressed as model transformations in a very concise, readable and
maintainable manner. Furthermore, bidirectionality is a crucial requirement as
the results of the model transformations must be reflected in the source code.

Our running example from the domain of round-trip engineering shows that
bidirectional model-to-platform transformations are crucial to support the au-
tomation of repetitive, boring tasks (manually refactoring the source code files).
In the following, we give a brief overview of other application domains which we
use to derive a set of core requirements.

2.2 Further Application Domains

Round-trip engineering is not the only application domain where bidirectional
model-to-platform transformations are necessary. From numerous examples we
choose two further domains and give a schematic representation of the workflow
and requirements for bidirectionality in each case.

DSL Development and Evolution: Domain Specific Languages (DSLs) are
programming languages of limited expressiveness, which are designed to be max-
imally suitable for a particular task or domain [8]. The systematic development
of such languages to increase productivity and improve communication between
domain experts and professional software developers is a major application of
MDE technologies in general, and model transformations in particular.

Models that conform to a certain metamodel (Fig. 4::1) can be specified in ab-
stract syntax, i.e., as typed attributed graphs with respect to the metamodel (the
type graph). For domain experts who wish to create models in the DSL, a textual
concrete syntax is a more suitable means of specifying models, and supporting
this requires at least a unidirectional text-to-model transformation (Fig. 4::2).

There are two reasons why bidirectionality is an important requirement in this
context: Firstly, there might be a different group of domain experts who prefer
to use some other kind of concrete syntax (possibly visual) to specify models
of the same DSL (Fig. 4::3). To exchange models freely between the different
groups of experts, it must be possible to transform back and forth, which requires
a bidirectional model-to-platform transformation for each supported concrete
syntax of the DSL. Secondly, a DSL will evolve over time to accommodate new
or changed requirements and this can be supported via a corresponding model
transformation from the old version of the metamodel to a new one (Fig. 4::4). In
a real-world scenario, all models specified in the old version of the DSL (Fig. 4::2),
must be transformed to be conform to the new metamodel and a possibly new
version of the textual concrete syntax (Fig. 4::5). Such DSL evolution support
clearly requires a bidirectional model-to-platform transformation for each version
of the DSL.

Tool Integration: Engineering processes typically involve different stakehold-
ers who work together to build or maintain a system. Each stakeholder has a
specialized viewpoint or specific needs regarding the complete engineering pro-
cess and uses established engineering tools in the corresponding (sub)domain.
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An efficient exchange of data and information between the tools in use, i.e., tool
integration [21], avoids redundancy and ensures consistency across tool borders.

A schematic tool integration setup is depicted in Fig. 5. An engineer in a cer-
tain domain works with his preferred engineering tool A (Fig. 5::1). To exchange
data with another engineer using a different tool B (Fig. 5::7), the relevant data
for the integration must be extracted from the tools. Engineering tools are very
often commercial off-the-shelf tools and might only offer a tool-specific import/-
export format (Fig. 5::2), very often XML [15]. In a tool integration scenario, a
tool adapter (Fig. 5::3) is required to extract a suitable model (Fig. 5::4) from the
available textual exchange format via a bidirectional model-to-platform transfor-
mation. The extracted model can then be synchronized (Fig. 5::5) with different
but related models from other tools (Fig. 5::6), updating the data in the tools
via respective tool adapters. Bidirectionality is thus an important requirement.

2.3 Core Requirements

After highlighting important application domains for bidirectional model-to-
platform transformations, we derive a core set of requirements in this section,
divided into two main groups: (1) Requirements concerning the resulting bidirec-
tional model-to-platform transformation that is to be implemented, and (2) re-
quirements concerning the process of establishing such a transformation.

Requirements Concerning the Resulting System: All requirements are
formulated for a “correct” system, i.e., we assume that the transformation must
perform as specified, e.g., by a testsuite, before requirements are considered.

(R1) Maintainability: The most important requirement is that the complete
transformation be maintainable. This means that it should be relatively easy to
extend, improve or otherwise adapt the transformation for all participants and
stakeholders. This implies a number of sub-requirements including:

– Support for bidirectionality to ensure that changes in requirements can be
reflected in the system without introducing inconsistencies,

– Readability to support communication and knowledge transfer amongst de-
velopers and to allow for a validation by domain experts who might not be
professional software engineers and must at least understand parts of the
transformation,

– Stability allowing subsystems to be exchanged as required without causing
ripple-effects in others.

(R2) Scalability: Depending on the exact limits posed by the application domain
and concrete scenario, the transformation must scale with respect to memory
consumption and runtime complexity. If possible, this should be guaranteed by
the applied approach, e.g., polynomial runtime.
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Requirements Concerning the Process: For the actual process involved in
establishing a bidirectional model-to-platform transformation, we consider the
following two requirements.

(R3) Productivity: The most important requirement concerning the development
process is productivity, i.e., the speed of development which implies usability,
adequate tool support, the possibility to iteratively develop and improve the
system, and support for testing (static analysis for validation, debugging).

(R4) Generality: To handle real-world applications, the approachmust be general
enough. This means that the restrictions posed by the approach should not be too
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limiting, i.e., should not restrict the class of possible applications to such an extent
that the approach becomes useless for most practical purposes. This requirement
has two implications:Theapproachmust offer (i) a flexible andwell-defined fallback
to a turing complete language for situations where restrictions cannot be met, and
(ii) a uniform treatment of a wide range of platforms including XML and other
textual formats, directory structures, and generic data structures.

3 The Moflon Code Adapter (MOCA) Framework

Figure 6depicts a framework for organizing the components necessary for abidirec-
tional model-to-platform transformation. This framework is abstract in the sense
that it does not prescribe any concrete technologies or modelling standards. The
main idea of our approach is to separate the transformation into two distinct parts:
(i) A platform-to-tree transformation and (ii) a tree-to-model transformation.

The platform (Fig. 6::1) is transformed via a parser (Fig. 6::2) to a simple
tree structure (Fig. 6::3). This tree structure should be a minimal abstraction of
the platform which is nonetheless accessible to the chosen bidirectional transfor-
mation language (Fig. 6::4). Trees are transformed back to the platform via an
unparser (Fig. 6::2) which typically linearizes the tree structure and adds plat-
form details which were abstracted away by the parser if necessary. A crucial
point is to keep the parser and unparser as simple as possible. In our opinion,
this first step is often not worth supporting with a bidirectional language6, and,

targetsource

tree-to-platform 
(unparser)

conforms toconforms toplatform-to-tree
(parser)

model-to-tree
(backward transformation)

tree-to-model
(forward transformation)

1

tree metamodel target metamodel

bidirectional 
language

derived from

2 3 4 5

platform

Fig. 6. The Moflon Code Adapter (MOCA) Framework

6 This is not always true, e.g., if the application scenario requires layout preservation.
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if it is kept to a bare minimum, almost all complexity can be shifted to the
model-to-tree transformation, which can be appropriately handled with a suit-
able bidirectional transformation language (Fig. 6::4). In an MDE context, the
tree should be a very simple structure which is nonetheless already conform to
the modelling standard as required by the bidirectional transformation language
and the target model (Fig. 6::5). As almost all standard parsers are context-free,
“very simple” usually means acyclic and homogeneous with respect to typing
(i.e., very few or even only a single “node” type is used).

The process prescribed by the framework already has a number of advantages:

Separation of Concerns: A strict separation of platform comprehension and
generation (Fig. 6::2) from the actual transformation (Fig. 6::4) positively af-
fects maintainability (R1) and productivity (R3) as the (un)parser can be kept
very simple and be replaced without having to change the transformation. Fur-
thermore, the bidirectional language can operate on a tree structure without
irrelevant details of the textual representation leading to a simpler transfor-
mation with the clear task of (i) adding appropriate typing information and
(ii) deducing context-sensitive relations to obtain the target model (Fig. 6::5).

A Clear Interface to Different (un)parser Technologies: Establishing
a simple tree structure for the bidirectional transformation consolidates XML
and different abstract syntax trees produced by parsers. Even the directory and
file structure can be embedded in the tree structure if it is relevant for the
transformation. This positively affects the generality (R4) of the approach.

Demanding only a semi-structured, i.e, hierarchical structure, greatly simpli-
fies the task of parsing and unparsing and clearly places most of the complexity in
the transformation, which can be supported with a bidirectional language. This
applies the right tool for the right job and also allows for using standard parser
and unparser technology via simple adapters, which can be easily replaced. This
positively affects maintainability (R1) and productivity (R3).

Modularity: In general, the modular structure of the framework enables a high
level of reuse and exchangeability of the platform, parser and/or unparser, the
model-to-tree transformation, the target metamodel and the modelling stan-
dard without affecting all other components. This positively affects maintain-
ability (R1) as components are stable, productivity (R3) due to possible reuse,
e.g., of existing (un)parsers, and generality (R4), as at least parts of the system
can be ported to a different platform or standard.

3.1 An Implementation of MOCA in eMoflon

As a proof-of-concept, the MOCA framework has been realized as part of our
metamodelling tool eMoflon [1] and can be downloaded and used as described
in our detailed tutorial7. Our MOCA implementation is currently in use for

7 Available from www.moflon.org

www.moflon.org
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a lecture at our university, and in two ongoing projects handling real world
applications8 from the industry.

Figure 7 depicts the concrete instantiation of the abstract MOCA framework
as realized in eMoflon. The supported platform (Fig. 7::1) is a directory structure,
which can contain files with different textual content as indicated by the shading
in the diagram. To complement a built-in directory “parser”, the user must
provide a parser (Fig. 6::2) for each type of file, to produce an abstract syntax
tree which is inserted as a shaded subtree into the resulting tree (Fig. 6::3). Our
MOCA implementation provides dedicated support for XML via an adapter
layer, i.e., arbitrary XML files can be automatically transformed to instances
of our tree metamodel (MocaTree). To handle arbitrary textual formats, we
provide support for parsers and unparsers generated with ANTLR [18] via string
grammars and tree grammars with templates [19], respectively.
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Fig. 7. A realization of the MOCA Framework as part of eMoflon

The textual format for our running example (Fig. 2 and 3) is non-standard
and requires a parser. Using ANTLR, this involves specifying a lexer and parser
as depicted for the example in Fig. 8. Please note how the parser builds up an
abstract syntax tree indicated in the textual syntax as (̂ROOT CHILDREN). Using
our ANTLR MOCA adapter, the abstract syntax tree produced by the parser
can be directly loaded as an EMF model without any further effort. Please note
that the lexer and parser do absolutely nothing else apart from recognizing the
textual content and building a simple, homogeneous hierarchical structure.

8 A bidirectional RTF to HTML transformation and a common DSL for consolidating
iOS and Android app development.
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COMPONENT:  'Component'; 
SPEC:       'SPEC'; 
BODY :      '{' .* '}' 
REQUIRES:   'requires';  
ID:         ('a'..'z'| 'A'..'Z')+; 
WHITESPACE: ('\t' | ' ' | '\r' | '\n')+ 

(a) Lexer Grammar

main: componentSpec+  
  -> ^(SPEC componentSpec+);  
componentSpec: COMPONENT ID dep? BODY 
  -> ^(ID ^(REQUIRES dep?) BODY); 
dep: REQUIRES reqs+=ID+  
  -> $reqs+; 

(b) Parser Grammar

Fig. 8. Lexer and Parser Grammars

For code generation, the context-free nature of the tree is exploited using a tree
grammar, which traverses the structure of the tree in a depth-first manner and
evaluates a set of templates to produce text (Fig. 9). We use StringTemplate [19]
as a template language, which is a very restricted, extremely simple template
language with a minimal set of commands. Enforcing such simple templates
leads to a strict model-view separation with various advantages [17]. These four
simple rule-based specifications (Fig. 8, Fig. 9) implement the first step in the
framework, the platform-to-tree transformation (Fig. 7::2), for our example.

main:  ^('SPEC' 
         content+=component*)  
  -> file(content={$content}); 
 
component: ^(name=STRING  
             r+=reqs  
             body=STRING)  
  -> component(name={$name},  
               r={$r},  
               body={$body}); 
 
reqs: ^('REQUIRES' 
        l+=STRING*)  
  -> reqs(l={$l});  

(a) Tree Grammar

file(content) ::= << 
<content; separator="\n\n"> 
>> 
 
component(name, r, body) ::= << 
Component <name> <r>{<body>} 
>> 
 
 
 
 
reqs(l) ::= << 
<if(l)> 
requires <l; separator=" "> 
<endif>  
>> 

(b) Templates

Fig. 9. Tree grammar and templates

In our MOCA implementation, we use Triple Graph Grammars (TGGs)[14]
as the bidirectional language to transform the context-free, homogeneous “tree”
(Fig. 7::3) to the target model (Fig. 7::5). eMoflon is EMF/Ecore based and
thus, the modelling standard used is EMF. Figure 10 depicts the TGG Schema
for the running example, which is a triple of the metamodels involved in the
transformation. To the left, the tree consists of files and nodes, while our target
model, to the right, consists of “components” which can require other compo-
nents and are all contained in a specification. Our complete tree metamodel
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is just complex enough to represent XML files, directory structures and parse
trees without losing information, i.e., we have basic concepts of folders, files,
and nodes with attributes and labels. In the middle, correspondence types are
defined, which are used for traceability. Already from the schema, it is clear
that each file corresponds to a specification, and that both components and
requirements correspond to nodes in the tree.

A TGG specification consists of a schema and a set of rules that describe
the simultaneous evolution of triples of connected source, correspondence and
target models. The advantage of using TGGs is that both forward and backward
transformations can be automatically derived from this single specification and
are guaranteed to be compatible with the described simultaneous evolution.

In sum, the required transformation for our running example consists of three
TGG rules, one to transform files and specifications, one to handle components
and one to create the requirement relation between components. The latter is
depicted in Fig. 11. Please note that the hexagonal shape of correspondence
types in the TGG schema and correspondences in the TGG rule is just syntactic
sugar to indicate at a glance that these objects belong to the correspondence
domain, i.e., can be interpreted as traceability types and links, respectively.

A TGG rule consists of context elements, depicted in black without any
stereotype, and create elements depicted in green with an additional create
stereotype. Context elements must be created by other rules and are used to
induce an implicit dependency between rules, e.g., the TGG rule NodeToRe-

quirement can only be applied if the two components involved (component and
reqComponent) have already been created and identified with nodes in the tree
by other rules (Fig. 11). The rule creates a requirement between component and
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nodeComponent: Node

requirements: Node

index==0

component: Component
n2c: NodeToComponent

<<create>>
req: Node

root: Node

name=="SPEC"

requiredNode: Node reqComponent: Component
rn2c: NodeToComponent

<<create>>
requirement: Requirement

<<create>>

n2r: NodeToRequirement

{eq(req.name, requiredNode.name)}

+parentNode
+children

+parentNode
+children +requirement

+target+source

+parentNode

+children

+parentNode

+children +target+source
+component

+source +target

Fig. 11. TGG Rule NodeToRequirement

reqComponent, reflecting this in the tree by creating a new requirements node
req for nodeComponent, with its name equal to that of requiredNode. This
condition is expressed using the attribute constraint eq(req.name, required-

Node.name). The TGG rule NodeToRequirement showcases the two main tasks
of the bidirectional transformation: (i) Introducing appropriate typing, e.g., a
Requirement instead of just a Node, and (ii) replacing the context-free acyclic
tree with a context-sensitive graph structure, e.g., connecting two components
via a requirement directly instead of having separate nodes with the same name.

To complete our running example, we can now specify the refactoring rules
using an appropriate transformation language that can operate on the target
model. Figure 12 depicts a graph transformation rule using Story Driven Mod-
elling (SDM)[7], our graph transformation language for unidirectional model
transformations in eMoflon. The rule is declarative and concise, and the dia-
mond structure to be found can actually be “seen”. According to the refactoring
rule (Fig. 12), the dependency diamond should only be resolved if component is
not required by any other components. This is enforced using a negative appli-
cation condition (NAC) depicted by the crossed out element otherReq.

If the diamond structure is found and the NAC is not violated, the require-
ment req2 is relocated to a new component newComponent, created as a copy
of component. Please note the stereotype destroy/create used to indicate el-
ements that should be deleted/created9, the attribute assignments used to ini-
tialize the attribute values in newComponent, and the fixed (bound) elements
starting from which the other elements must be found, indicated with a thicker
border (component and this).

After applying the rule to all components, the refactored model can be trans-
formed back to a tree and used to generate the refactored textual file as re-
quired (Fig. 3). After a backward or forward transformation, the created triple

9 Additionally indicated via the red/green colour of the elements.
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req2: Requirementreq1: Requirement

component:
Component

reqComp1:
Component

reqComp2:
Component

req1toRoot:
Requirement

root: Component

req2toRoot:
Requirement

<<create>>

newComponent: Component

name:=component.getName()+"_copy"
description:=component.description

otherReq:
Requirement

this: Specification

+component

+component

+requirement
 <<destroy>>

+requirement

+requirement +requirement

+component +component

 <<create>>

+requirement

+component  <<create>>+component

Fig. 12. SDM refactoring rule

of source, correspondence and target models can be visualized in eMoflon using
our integrator which represents the correspondence model visually as links.10

In addition to the advantages of the abstract MOCA framework, our concrete
choice of languages and standards has the following advantages:

Homogeneity via Complementary Languages: Our choice of languages,
i.e., string grammars, tree grammars combined with templates with minimal
logic, triple graph grammars and SDMs are all rule-based and declarative11 .
Based on our experience of working with this mix of languages, we believe that
a high level of homogeneity is attained by supporting a common rule-based
thinking in patterns. This positively affects maintainability (R1) and productiv-
ity (R3) as there is no disturbing shift in paradigm and trained skills in one
language can be transferred to all others.

Formal Properties and Guarantees: By separating the transformation into
different steps, the formal properties of the different individual languages still
hold for the corresponding step. For example, the runtime complexity for LL(*)
parsing (worstcase O(n2), in practice actually much less [18]) holds for tree
generation, while TGGs guarantee polynomial runtime [14] for the tree-to-model
transformation. Depending on the application scenario, such runtime efficiency
can be crucial for scalability (R2). Furthermore, TGGs also guarantee that the
derived transformations are correct with respect to the specified TGG, i.e., only
a single specification is used, which positively affects maintainability (R1).

Flexible Fallback to Java: In our experience, practical problems can almost
never be completely solved with a DSL. For example, even if a large part of a
transformation can be specified with TGGs, certain parts, especially low-level

10 Please refer to our tutorial (www.moflon.org) for screenshots and further details.
11 SDMs are programmed graph transformations and, therefore, also have usual imper-

ative language constructs such as if-else and loops.

www.moflon.org
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attribute manipulation, must be specified using SDMs or directly in Java. All
languages used in our MOCA implementation support a fallback to a more gen-
eral language when necessary: ANTLR offers syntactic and semantic predicates
in string and tree grammars [18], which can be used to embed Java statements
to support the lexer/parser, SDMs offer MethodCallExpressions [1] to mix Java
code in graph transformations in a type safe manner, and TGGs offer Attribute-
Constraints, which are implemented in Java. ANTLR and eMoflon are both
completely generative, i.e, map specifications to standard Java code which also
simplifies mixing in hand-written code. This positively affects generality (R4),
as basically any problem can be tackled that could also have been solved directly
in a general purpose language, in our case Java.

Iterative Workflow: Last but not least, an iterative workflow is possible as the
target metamodel can be iteratively refined. In each step, more parts of the tree
can be handled by TGG rules until the transformation is complete. The platform
can also be handled in an iterative manner, e.g., by using regular expressions
to “filter” the textual files in the first iterations instead of a parser. ANTLR
also supports this with a “fuzzy” parsing mode that ignores all content that
cannot be parsed, i.e., parses these parts as a string block without further pro-
cessing/structuring. An iterative workflow improves productivity (R3) as most
mistakes can be found early enough in the development process.

3.2 Limitations and Drawbacks

Every approach has limitations and in the following, we discuss the most impor-
tant drawbacks of our framework and its concrete implementation in eMoflon:

A Steep Learning Curve: Separating the transformation into different steps
that are implemented with different languages has the potential of increasing
complexity in general. Although we have tried to choose complementary lan-
guages with a common paradigm, it is still challenging to master all the different
languages, especially without prior experience with rule-based languages.

Requires a Model-to-Model Transformation: Requiring a model-to-tree
transformation as a separate step introduces an extra transformation language
(TGGs) and tool dependency in the transformation chain.

Incrementality: The separation in different parts advocated by our framework
makes the task of supporting incrementality for the complete transformation
chain more challenging than if all steps were merged in a single specification.

4 Related Work

In this section, we discuss the main groups of alternative approaches to our
generalized tree-based approach and highlight main strengths and weaknesses.
We do not try to give a complete list of concrete tools but rather focus on groups
of approaches, mentioning a few concrete representatives in each case.
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4.1 Combination of Unidirectional Approaches

Although there is an increasing number of bidirectional languages available, the
standard way of implementing bidirectional model-to-platform transformations
is still to use two unidirectional transformation languages, one for each direction.
Typical combinations include Xtext [6] for platform-to-model and Xpand12 for
model-to-platform, or ANTLR for platform-to-model and Velocity13 for model-
to-platform. The main advantage is clear; A combination of standard, mature
unidirectional approaches is very general (R4) and “gets the job done” while ex-
isting bidirectional approaches are mostly still in development and are often not
usable for real-world application scenarios, although they might work very well
for a restrained class of problems. The flexible combination and the possibility of
implementing parts of the transformation in standard languages offered by our
framework is, in this respect, a pragmatic approach to having the best of both
worlds, i.e., still profiting from the advantages of a bidirectional language. Simi-
larly, standard approaches typically scale well (R2) with respect to runtime and
memory consumption. A challenge, however, is handling incremental changes
which becomes difficult when separate tools are used for each direction. Scala-
bility then becomes a major problem if the scenario involves a synchronization
in contrast to a batch transformation.

A further disadvantage of a combination of unidirectional approaches is that
it is hard to maintain (R1): Changes to the forward transformation have to
be carefully reflected in the backward transformation and vice-versa, and this
gets increasingly difficult with the complexity of the transformation. Productiv-
ity (R3) also suffers as two separate specifications have to be implemented. A
bidirectional language would be advantageous in both cases.

4.2 Tightly Integrated Software Development Environments

A second group of approaches are tightly integrated software development envi-
ronments that provide view-based, syntax directed editing, keeping the concrete
and abstract syntax of models synchronized at all times. This means that the
editor operates directly on the abstract syntax of a model and reflects changes
immediately in the presented concrete syntax (the view). Examples for such
environments include Furcas [10], MPS and Ipsen [16].

A syntax directed editing approach usually has rich support from the corre-
sponding framework/environment with which the transformation can easily be
specified, i.e., although this depends on the concrete environment, the process
is usually quite productive (R3) and the resulting transformation is maintain-
able (R1) as it is truly bidirectional. Scalability (R2), especially with respect to
memory consumption, again depends on the concrete environment, but incre-
mentality can easily be supported with such a tightly integrated approach.

A disadvantage is that there is a high dependency on the enclosing framework.
This becomes problematic when the transformation is to be ported to a new

12 OpenArchitectureWare, http://www.eclipse.org/gmt/oaw/
13 The Apache Jakarta Project, http://jakarta.apache.org/velocity/

http://www.eclipse.org/gmt/oaw/
http://jakarta.apache.org/velocity/
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modelling standard or a component has to be replaced. A further disadvantage
is that an on-the-fly synchronization of concrete and abstract syntax might not
be possible in some application scenarios, as text files might have to be changed
“offline”. Furthermore, most approaches in this group are geared towards DSL
development and are not suitable for, e.g., a scenario where large parts of static
text must be generated, which is more suited for template-based code generation.

4.3 Grammar-Based Approaches

Grammar-based approaches such as Xtext, Spoofax [13], and Monticore [11] pro-
vide appropriate extensions to EBNF to allow context-sensitive relationships to
a certain extent. As depicted in Fig. 13(a), the main idea is to derive as much
as possible from the grammar, i.e., not only a parser, but also a metamodel,
an editor, and an unparser. A metamodel can be extracted from the grammar
either via an implicit transformation from EBNF to a modelling language (Ecore
in the case of Xtext), or by extending EBNF to a complete modelling language
which can be used to specify both the textual concrete syntax and the abstract
syntax of the language combined in the grammar. The latter approach is taken
by Monticore. Bidirectionality can be supported by using the non-terminals in
the grammar to pretty print model elements to text.

Grammar-based approaches lead to very compact, concise specifications and
are highly productive when the target language can be described with the gram-
mar. Getting an editor “for free” is also a major productivity boost, especially
when developing a textual DSL. In general, however, every grammar can only
describe a limited class of languages, and, due to the fact that the grammar is
used to derive all other components, a fallback to Java similar to what ANTLR
offers cannot be supported. Every realistic transformation, therefore, will always
require a subsequent model-to-model transformation, especially when the tar-
get metamodel was established before the textual syntax. In many cases, e.g.,
round-tripping as opposed to DSL development, the textual syntax and the
target metamodel are fixed and already exist. In such a case it becomes quite
challenging to specify a perfectly fitting grammar.

Supporting bidirectionality is also difficult in complex cases and most ap-
proaches do not place a strong focus on bidirectionality, only providing a default
pretty printer that must be extended and refined. The price of having a com-
pact, concise specification is that all components are merged making it difficult,
if not impossible, to reuse the text comprehension part of the grammar for a
different target metamodel, or to change the textual syntax but retain the same
metamodel. Last but not least, grammar-based approaches are not suitable for
cases where a lot of text is to be ignored or filtered and when a lot of static parts
are to be generated.

4.4 Template-Based Approaches

Template-based approaches such as Xround [4] and [3] provide an interesting
contrast to grammar-based approaches by deriving the complete bidirectional
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Fig. 13. Schematic overview of grammar-based and template-based approaches

transformation from a set of templates. As depicted in Fig. 13(b), a set of tem-
plates in a fixed template language is used to derive an unparser (code is simply
generated with the templates) and a parser. The parser works by matching text
fragments with potential templates until the exact sequence of chosen templates
can be identified. Corresponding model elements can be derived from this se-
quence of templates as the target metamodel is fixed and known to the parser,
i.e., there is a mapping between model elements and templates.

In contrast to a grammar-based approach, this works quite well for cases with
large parts of static text which must be ignored/generated. For a typical textual
DSL, however, with almost a 1-1 relationship between text and model elements
for conciseness, the templates must contain a lot of logic and not so much static
text, reducing readability and maintainability of the templates.

Although the generated textual syntax can be flexibly varied, the parser can
only be realized efficiently if the template language and the target metamodel are
fixed. This means that a template-based approach is a productive, maintainable
solution for a fixed metamodel, i.e., a concrete application. The parser would,
however, have to be almost completely re-implemented for every new metamodel.
Depending on the complexity of the supported template language, it can also be
quite challenging to parse textual content using templates in a scalable manner,
i.e., complex logic in the templates can easily lead to an explosion of the template
search space.

5 Conclusion and Future Work

In this paper, we presented a flexible, general framework for structuring bidirec-
tionalmodel-to-platform transformations. A set of core requirements derived from
typical application domains was used to argue the advantages of a clear separation
of the transformation into two distinct steps: A text-to-tree transformation (text
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comprehension/generation)which is held as simple as possible, and a tree-to-model
transformation (typing and context-sensitive relations), which should be imple-
mented with a bidirectional language. A realization of our framework in eMoflon14

shows that a flexible blend of rule-based, declarative languages can be combined
successfully. Existing approaches for bidirectional model-to-platform transforma-
tion are either not general enough, i.e., only work for a certain standard/domain,
or not flexible enough, i.e., components cannot be exchanged. Our choice of TGGs
as a bidirectional language opens up a large class of applications for TGGs, with
new challenges. Future tasks include improving support for incrementality in our
TGG implementation by exploiting the asymmetric nature of model-to-platform
transformations (information loss is only in one direction) as compared to the gen-
eral case. We are also working on optimizing our current TGG algorithm to deal
with weakly typed trees, necessary for an efficient inference of context-sensitive re-
lations, and are investigating concepts for improving modularity and reuse/com-
position of the transformation languages (string grammars, tree grammars, tem-
plates, TGGs).
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