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Preface

We are pleased to present the proceedings of the 5th International Conference of
Software Language Engineering (SLE 2012). The conference was held in Dresden,
Germany, during September 26–28, 2012.

SLE 2012 was co-located with the 11th International Conference on Genera-
tive Programming and Component Engineering (GPCE 2012), the 4th Interna-
tional Workshop on Feature-Oriented Software Development (FOSD 2012), and
two SLE workshops: the Industry Track of Software Language Engineering and
the SLE Doctoral Symposium.

The SLE conference series is devoted to a wide range of topics related to
artificial languages in software engineering. SLE is an international research fo-
rum that brings together researchers and practitioners from both industry and
academia to expand the frontiers of software language engineering. SLE’s fore-
most mission is to encourage and organize communication between communities
that have traditionally looked at software languages from different, more spe-
cialized, and yet complementary perspectives. SLE emphasizes the fundamental
notion of languages as opposed to any realization in specific technical spaces.

The conference program included two keynote presentations, three mini-
tutorials, and 19 technical paper presentations. The invited keynote speakers
were Oege de Moor (Semmle Ltd. and Oxford University, UK) and Margaret-
Anne Storey (University of Victoria, Canada). The mini-tutorials covered three
major technical spaces relevant to SLE: grammarware, presented by Eelco Visser
(Delft University of Technology, The Netherlands); modelware, presented by
Richard Paige (University of York, UK); and ontologyware, presented by Gian-
carlo Guizzardi (Federal University of Esṕırito Santo, Brazil).

The response to the call for papers for SLE 2012 was higher than in 2011. We
received 62 full submissions from 86 abstract submissions. From these submis-
sions, the Program Committee (PC) selected 19 papers: 17 full papers and 2 tool
demonstration papers, resulting in an acceptance rate of 31%. Each submitted
paper was reviewed by at least three PC members and each paper was discussed
in detail during the electronic PC meeting.

SLE 2012 would not have been possible without the significant contributions
of many individuals and organizations. We are grateful to Fakultät Informatik,
Technische Universität Dresden, Germany, for hosting the conference. The SLE
2012 Organizing Committee, the Local Chairs, and the SLE Steering Commit-
tee provided invaluable assistance and guidance. We are also grateful to the PC
members and the additional reviewers for their dedication in reviewing the sub-
missions. We thank the authors for their efforts in writing and then revising
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their papers. Our final thanks go to the sponsoring and cooperating institutions
for their generous support.

November 2012 Krzysztof Czarnecki
Görel Hedin
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Addressing Cognitive and Social Challenges

in Designing and Using Ontologies
in the Biomedical Domain

Margaret-Anne Storey

University of Victoria
Victoria, BC, Canada
mstorey@uvic.ca

http://www.cs.uvic.ca/~mstorey

In the life sciences and biomedical domains, ontologies are frequently used to
provide a theoretical conceptualization of a domain leading to both a common
vocabulary for communities of researchers and important standards to facilitate
computation, software interoperability and data reuse [3]. As a theory, an on-
tology defines the meaning of important concepts in a domain, describes the
properties of those concepts, as well as indicates the relations between concepts
[7]. Most ontologies will have one or more underlying hierarchical structures,
providing ways to classify or categorize important data sets. When scientific or
clinical data is annotated with ontological terms, that data can be searched for
and reasoned about more effectively.

The application of ontologies has become the cornerstone of semantic tech-
nologies in eScience facilitating many important discoveries and translational
research in biomedicine [5]. For example, terms from the Gene Ontology are
used by several research groups to manually curate experimental results from
genetic experiments so that these results can be compared, queried or reasoned
about. With such data annotations, findings about a gene from one model organ-
ism may be transferable to findings from other organisms bringing fresh insights
on the role of certain genes in disease. Moreover, computational techniques can
automate the annotations of both structured and unstructured data sets such
as research papers, or clinical notes. These powerful computational techniques
introduce many new opportunities for learning and hypothesizing about genes,
diseases, drug interactions and biological processes.

Despite the obvious benefits of using ontologies for annotating important data,
there are many challenges with designing commonly used ontologies. Each pro-
posed application of an ontology will have diverse needs in terms of the formality
requirements (i.e. how much reasoning power the ontology language may offer),
the scope of the ontology (which concepts and relations are included/excluded),
and the granularity of the concepts modeled in the ontology. Moreover, even if
decisions based on these choices can be agreed upon, often the underlying mean-
ings of the defined concepts will differ across or even within a community. Since
an ontology is a theory and theories, particularly in the life sciences, are con-
stantly evolving and open to debate, there will inevitably be a need for ontologies

K. Czarnecki and G. Hedin (Eds.): SLE 2012, LNCS 7745, pp. 1–3, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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2 M.-A. Storey

to evolve but also a need for multiple ontologies to coexist. Ontologies may fur-
ther need to include concepts from upper ontologies that contain very general
concepts, such as concepts about time and space or they may need to include
concepts from specialized domain ontologies. Mappings can be automatically or
manually created to link synonymous or related concepts in different ontologies.
These mappings are important because they will enhance the querying and rea-
soning engines that process annotated data. Research on tools to support manual
mapping activities as well as computational approaches to generate automatic
mappings between ontologies is ongoing.

To handle the inevitable emerging complexity in ontology use and design,
effective tool support is essential in helping humans understand existing ontolo-
gies, to understand how established ontologies evolve over time, to understand
and to create mappings between ontologies, and to know which terms to use from
a selected ontology for data annotation. As mentioned above, there are various
technical enhancements that can automate or partially automate the mapping
and annotation activities, but for most applications the human must interact
with and understand the underlying ontologies and data. One form of cognitive
support that is useful for ontology navigation and comprehension is information
visualization [1]. There has been extensive research on developing visualization
approaches suitable for the interactive display of ontologies over the past ten
years [4]. However, much more research is needed to evaluate and improve these
tools as most of them are difficult to use and do not scale well to more complex
ontologies and sets of mappings.

Supporting collaborative activities is also essential, as the core of ontology
reuse, use and design is centered on community consensus. When different com-
munities collaboratively develop a common ontology, tensions will inevitably
arise thus tool support that provides adequate transparency and communication
support is crucial. Ontology authors should be able to recommend changes, add
notes, compare versions and record or review ontology design decisions. Tool
support for collaborative ontology authoring is also an active area of research.

In this talk, I will discuss how the relatively recent adoption and widespread
use of ontologies and their associated computational tools is having an impact
on scientific and medical discovery within the biomedical domain. Specifically, I
will refer to examples that are supported by the BioPortal ontology library and
tools. The BioPortal library, developed by the US National Center for Biomed-
ical Ontology [6], hosts over 320 ontologies and thousands of mappings between
them. BioPortal provides a wide array of web based tools and web services for
browsing and visualizing ontologies (for example, BioMixer [2]). BioPortal also
hosts web services for recommending ontology terms and for supporting data an-
notation. Currently, there are over 16,000 unique visitors to the BioPortal each
month while the use of the underlying BioPortal technology has been spawned
for ontology library development in domains outside the biomedical space e.g.
earth science.

I will also present a recent project led by the World Health Organization that
leverages the use of social media in broadening participation in the development
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of the next version of the International Classification of Diseases [8]. The Inter-
national Classification of Diseases (ICD) is undergoing the 11th revision, and
for this revision will go beyond a simple classification to include definitions of
diseases with defined properties and relations added to concepts from other key
health terminologies, such as SNOMED. What really sets this revision apart
from earlier iterations is that for this revision many more stakeholders will be
able to have a voice in how the ICD is structured and how particular diseases
are defined. Previously, the ICD was defined by a very small number of experts.
This project highlights the upcoming role of social media and collaborative tool
support in ontology design and reuse.

To conclude this talk, I will discuss both the ongoing challenges as well as
exciting opportunities that arise from using ontologies to bridge communities
and integrate information systems.

Keywords: Ontology, biomedical, visualization, social media.
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Object Grammars
Compositional and Bidirectional Mapping between Text

and Graphs

Tijs van der Storm1,2, William R. Cook3, and Alex Loh3

1 Centrum Wiskunde & Informatica (CWI)
2 INRIA Lille Nord Europe

3 University of Texas at Austin

Abstract. Object Grammars define mappings between text and object graphs.
Parsing recognizes syntactic features and creates the corresponding object struc-
ture. In the reverse direction, formatting recognizes object graph features and
generates an appropriate textual presentation. The key to Object Grammars is the
expressive power of the mapping, which decouples the syntactic structure from
the graph structure. To handle graphs, Object Grammars support declarative an-
notations for resolving textual names that refer to arbitrary objects in the graph
structure. Predicates on the semantic structure provide additional control over the
mapping. Furthermore, Object Grammars are compositional so that languages
may be defined in a modular fashion. We have implemented our approach to Ob-
ject Grammars as one of the foundations of the Ensō system and illustrate the
utility of our approach by showing how it enables definition and composition of
domain-specific languages (DSLs).

1 Introduction

A grammar is traditionally understood as specifying a language, defined as a set of
strings. Given such a grammar, it is possible to recognize whether a given string is in
the language of the grammar. In practice it is more useful to actually parse a string to
derive its meaning. Traditionally parsing has been defined as an extension of the more
basic recognizer: when parts of the grammar are recognized, an action is invoked to
create the (abstract) syntax tree. The actions are traditionally implemented in a general-
purpose programming language.

In this paper we introduce Object Grammars: grammars that specify mappings be-
tween syntactic presentations and graph-based object structures. Parsing recognizes
syntactic features and creates object structures. Object grammars include declarative
directives indicating how to create cross-links between objects, so that the result of
parsing can be a graph. Formatting recognizes object graph features and creates a tex-
tual presentation. Since formatting is not uniquely specified, an Object Grammar can
include formatting hints to guide the rendering to text.

The second problem addressed in this paper is modularity and composition of Object
Grammars. Our goal is to facilitate construction of domain-specific languages (DSLs).
It is frequently desirable to reuse language fragments when creating new languages.
For example, a state machine language may require an expression sub-language to rep-
resent constraints, conditions, or actions. In many cases the sublanguages may also be

K. Czarnecki and G. Hedin (Eds.): SLE 2012, LNCS 7745, pp. 4–23, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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extended during reuse. We present a generic merge operator on that covers both reuse
and extension of languages.

The contributions of this paper can be summarized as follows:

– We introduce Object Grammars to parse textual syntax into object graphs.
– Cross references in the object structure are resolved using declarative paths in the

Object Grammar.
– Complex mappings can be further controlled using predicates.
– We show that Object Grammars are both compositional and bidirectional.
– The entire system is self-describing.

The form of Object Grammars presented in this paper is one of the foundations of
Ensō, a new programming system for the definition, composition and interpretation of
external DSLs1.

2 Object Grammars

In domain-specific modeling, a software system is modeled using a variety of dedicated
languages, each of which captures the essence of a single aspect. In textual model-
ing [27], models are represented as text, which is easy to create, edit, compare and
share. To unlock their semantics, textual models must be parsed into a structure suitable
for further processing, such as analysis, (abstract) interpretation or code generation.

Many domain-specific models are naturally graph structured. Well-known examples
include state machines, workflow models, petri nets, network topologies and grammars.
Nevertheless, traditional approaches to parsing text have focused on tree structures.
Context-free grammars, for instance, are conceptually related to algebraic data types. As
such, existing work on parsing is naturally predisposed towards expression languages,
not modeling languages. To recover a semantic graph structure, textual references have
to be resolved in a separate name-analysis phase.

Object Grammars invert this convention, taking the semantic graph structure (the
model) as the primary artifact rather than the parse tree. Hence, when a textual model
is parsed using an Object Grammar, the result is a graph. Where the traditional tree
structure of a context-free grammar can be described by an algebraic data type, the
graphs produced by object grammars are described by a schema. In Ensō, a schema
is a class-based information model [26], similar to UML Class Diagrams [29], Entity
Relationship Diagrams [8] or other meta-modeling formalisms (e.g., [5]).

There is, however, an impedance mismatch between grammars (as used for parsing),
and object-oriented schemas (to describe structure). Previous work has suggested the
use of one-to-one mappings between context-free grammar productions and schema
classes [1, 40]. However, this is leads to tight coupling and synchronization of the two
formats. A change to the grammar requires a change to the schema and vice versa. Ob-
ject Grammars are designed to bridge grammars and schemas without sacrificing flexi-
bility on either side. This bridge works both ways: when parsing text into object model
and when formatting a model back to text. An Object Grammar specifies a mapping

1 http://www.enso-lang.org

http://www.enso-lang.org


6 T. van der Storm, W.R. Cook, and A. Loh

between syntax and object graphs. The syntactic structure is specified using a form of
Extended Backus-Naur Form (EBNF) [41], which integrated regular iteration and op-
tional symbols into BNF. Object Grammar extend BNF with constructs to declaratively
construct objects, bind values to fields, create cross links and evaluate predicates.

2.1 Construction and Field Binding

The most fundamental feature of Object Grammars is the ability to declaratively con-
struct objects and assign their fields with values taken from the input stream. The fol-
lowing example defines a production rule named P that parses the standard notation
(x, y) for cartesian points and creates a corresponding Point object.

P ::= [Point] "(" x:int "," y:int ")"

The production rule begins with a constructor [Point] which indicates that the rule
creates a Point object. The literals "(", "," and ")" match the literal text in the input.
The field binding expressions x:int and y:int assign the fields x and y of the new point
to integers extracted from the input steam. The classes and fields used in a grammar
must be defined in a schema [26]. For example, the schema for points is:

class Point x: int y: int

Any pattern in a grammar can be refactored to introduce new non-terminals without
any effect on the result of parsing For example, the above grammar can be rewritten
equivalently as

P ::= [Point] "(" XY ")"

XY ::= x:int "," y:int

The XY production can be reused to set the x and y fields of any kind of object, not just
points.

The Object Grammars given above can also be used to format points into textual
form. The constructor acts as a guard that specifies that points should be rendered. The
literal symbols are copied directly to the output. The field assignments are treated as
selections that format the x and y fields of the point as integers.

2.2 Alternatives and Object-Valued Fields

Each alternative in a production can construct an appropriate object. The following
example constructs either a constant, or one of two different kinds of Binary objects.
The last alternative does not construct an object, but instead returns the value created
by the nested Exp.

Exp ::= [Binary] lhs:Exp op:"+" rhs:Exp

| [Binary] lhs:Exp op:"*" rhs:Exp

| [Const] value:int

| "(" Exp ")"
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This grammar is not very useful, because it is ambiguous. To resolve this ambiguity, we
use the standard technique for encoding precedence and associativity using additional
non-terminals.

Term ::= [Binary] lhs:Term op:"+" rhs:Fact | Fact

Fact ::= [Binary] lhs:Fact op:"*" rhs:Prim | Prim

Prim ::= [Const] value:int | "(" Term ")"

This grammar refactoring is independent of the schema for expressions; the additional
non-terminals (Term, Fact, Prim) do not have corresponding classes. Object grammars
allow ambiguous grammars: as long as individual input strings are not ambiguous there
will be no error. Thus the original version can only parse fully parenthesized expres-
sions, while the second version handles standard expression notation.

During formatting, the alternatives are searched in order until a matching case is
found. For example, to format Binary(Binary(3,"+",5),"*",7) as a Term, the top-level
structure is a binary object with a * operator. The Term case does not apply, because the
operator does not match, so it formats the second alternative, Fact. The first alternative
of Fact matches, and the left hand side Binary(3,"+",5) must be formatted as a Fact.
The first case for Fact does not match, so it is formatted as a Prim. The first case for
Prim also does not match, so parentheses are added and the expression is formatted as a
Term. The net effect is that the necessary parentheses are added automatically, to format
as (3+5)*7.

2.3 Collections

Object Grammars support regular symbols to automatically map collections of values.
For example, consider this grammar for function calls:

C ::= [Call] fun:id "(" args:Exp* @"," ")"

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned
objects created by zero-or-more occurrences of Exp. A collection field can also be ex-
plicitly bound multiple times, rather than using the * operator. For example, args:Exp*
could be replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
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Opened Closed Locked

close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in

from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

class Machine

start : State

states ! State*

class State

machine: Machine / states

name # str

out ! Transition*
in : Transition*

class Transition

event # str

from : State / out

to : State / in

Fig. 2. Ensō schema defining the structure of state machine object graphs

the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a
name, a type, and some optional modifiers. For example, the Machine class has a field
named states which is a set of State objects. The * after the type name is a modifier
that marks the field as many-valued. The # annotation marks a field as a primary key, as
is the case for the name field of the State class. As a result, state names must be unique
and the states field of Machine can be indexed by name. The / annotation after the
machine field indicates that the machine and states are inverses, as are from/out and
to/in. The ! modifier indicates that the field is part of the spine (a minimal spanning
tree) of the object graph. If a spanning tree is defined, then all nodes in a model must
be uniquely reachable by following just the spine fields. The spine gives object models
a stable traversal order. Note that in the example schema, the start field is not part of
the spine, since the start state must be included in the set of all states.

The textual representation in Fig. 1(b) uses names to represent links between states,
while the graphical presentation in Fig. 1(a) uses graphical edges so names are not
needed. When humans read the textual presentation in Fig. 1(b), they immediately re-
solve the names in each transition to create a mental picture similar Fig. 1(a).
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start M

M ::= [Machine] "start" \start:</states[it]> states:S*
S ::= [State] "state" name:sym out:T*
T ::= [Transition] "on" event:sym "go" to:</states[it]>

Fig. 3. Object Grammar to parse state machines

Figure 3 shows an Object Grammar for state machines2. It uses the reference
</states[it]> to look up the start state of a machine and to find the the target state
of a transition. The path /states[it] starts at the root of the resulting object model,
as indicated by the forward slash /. In this case the root is a Machine object, since M is
the start symbol of the grammar, and the M production creates a Machine. The path then
navigates into the field states of the machine (see Fig. 2), and uses the identifier from
the input stream to index into the keyed collection of all states. The same path is used
to resolve the to field of a transition to the target state.

Path ::= [Anchor] type:"."

| [Anchor] type:".."

|

[Sub] parent:Path? "/" name:sym Subscript?

Subscript

::= "[" key:Key "]"

Key ::= Path | [It] "it"

Fig. 4. Syntax of paths

References and Paths In gen-
eral, a reference <p> represents
a lookup of an object using the
path p. Parsing a reference al-
ways consumes a single identi-
fier, which can be used as a key
for indexing into keyed collec-
tions. Binding a field to a refer-
ence thus results in a cross-link
from the current object to the
referenced object.

The syntax of paths is given in Fig. 4. A path is anchored at the current object (.),
at its parent (..), or at the root. In the context of an object a path can descend into a
field by post-fixing a path with / and the name of the field. If the field is a collection,
a specific element can be referenced by indexing in square brackets. The keyword it

represents the string-typed value of the identifier in the input stream that represents the
reference name.

The grammar of schemas, given in Fig. 5, illustrates a more complex use of references.
To lookup inverse fields, it is necessary to look for the field within the class that is the
type of the field. For example, in the state machine schema in Fig. 1(b), the field from in
Transition has type State and its inverse is the out field of State. The path for the type
is type:</types[it]>, while the path for the inverse is inverse:<./type/fields[it]>,
which refers to the type object. To resolve these paths, the parser must iteratively evaluate
paths until all paths have been resolved.

To format a path, for example /states[it] in Fig. 3, the system solves the equation
/states[it]=o to compute it given the known value o for the field. The resulting name
is then output, creating a symbolic reference to a specific object.

2 The field label start is escaped using \ because start is a keyword in the grammar of gram-
mars; cf. Section 2.7.



10 T. van der Storm, W.R. Cook, and A. Loh

start Schema

Schema ::= [Schema] types:TypeDef*
TypeDef ::= Primitive | Class

Primitive ::= [Primitive] "primitive" name:sym

Class ::= [Class] "class" name:sym Parent? defined_fields:Field*
Parent ::= "<" supers:</classes[it]>+ @","

Field ::= [Field] name:sym Kind type:</types[it]> Multiplicity? Annot?

Kind ::= "#" { key } | "!" { spine } | ":"

Multiplicity ::= "*" { many && optional }

| "?" { optional }

| "+" { many }

Annot ::= "/" inverse:<./type/fields[it]> | "=" computed:Expr

Fig. 5. Schema Grammar

2.5 Predicates

The mapping between text and object graph can further be controlled using predicates.
Predicates are constraint expressions on fields of objects in the object graph. During
parsing, the values of these fields are updated to ensure these constraints evaluate to
true. Conversely, during formatting, the constraints are interpreted as conditions to
guide the search for the right rule alternative to format an object.

Predicates are useful for performing field assignments that are difficult to express us-
ing basic bindings. For instance, Ensō grammars have no built-in token type for boolean
values to bind to. To write a grammar for booleans, one can use predicates as follows:

Bool ::= [Bool] "true" { value }

| [Bool] "false" { !value }

Predicates are enclosed in curly braces. When the parser encounters the literal “true”
it creates a Bool object and set its value field to true. Alternatively, when encountering
the literal “false” the value field is assigned false, to satisfy the constraint that !value
is true.

When formatting a Bool object, the predicates act as guards. The grammar is searched
for a constructor with a fulfilled predicate or no predicate at all. Thus, a Bool object with
field value set to true prints “true” and one with field value set to false prints “false”.

A more complex example is shown in the Schema Grammar of Fig. 5. The classes
and fields used in the grammar are defined in the Ensō Schema Schema [26]. The pro-
duction rule for Multiplicity assigns the boolean fields many and optional in differ-
ent ways. For instance, when a field is suffixed with the modifier “*”, both the many

and optional fields are assigned to values that make the predicate true; in this case
both optional and many are set to true. Conversely, during formatting, both many and
optional must be true in the model in order to select this branch and output “*”.

2.6 Formatting Hints

Object Grammars are bidirectional: they are used for reading text into an object structure
and for formatting such structure back to text. Since object structures do not maintain the
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layout information of the source text, formatting to text is in fact pretty-printing, and not
unparsing: the formatter has to invent layout. As mentioned above, default lines breaks
and indenting are generated based on the repeated expressions (marked with * or +).

The layout can be further controlled by including formatting hints directly in the
grammar. There are two such hints: suppress space (.) and force line-break (/). They
are ordinary grammar symbols so may occur anywhere in a production.

The following example illustrates the use of . and /.

Exp ::= name:sym | Exp "+" Exp | "(".Exp.")"

Stat ::= Exp.";" | "{" / Stat* @/ / "}"

Spaces are added between all tokens by default, so the dot (.) is used to suppress the
spaces after open parentheses and before close parentheses around expressions. Sim-
ilarly, the space is suppressed before the semicolon of an expression-statement. The
block statement uses explicit line breaks to put the open and close curly braces, and
each statement, onto its own line. Note that the Stat repetition is separated by line-
breaks (@/) during formatting, but this has no effect on parsing.

2.7 Lexical Syntax

Ensō’s Object Grammars have a fixed lexical syntax. This is not essential: Object Gram-
mars can easily be adapted to scannerless or tokenization-based parser frameworks. For
Ensō’s goal, a fixed lexical syntax is sufficient. Furthermore, it absolves the language
designer of having to deal with tokenization and lexical disambiguation.

First of all, whitespace and comments are completely fixed: spaces, tabs and newlines
are ignored. There is one comment convention, // to end of line. Second, the way
primitive values are parsed is also fixed. In the examples we have seen the int and
sym symbols to capture integers and identifiers respectively. Additional types are real

and str for standard floating point syntax and strings enclosed in double quotes.
The symbol to capture alpha-numeric identifiers, sym, is treated in a special way,

since it may cause ambiguities with the keyword literals of a language. The parser
avoids such ambiguities in two ways. First, any alpha-numeric literal used in a grammar
is automatically treated as a keyword and prohibited from being a sym token. Second, for
both keyword literals and identifiers a longest match strategy is applied. To use reserved
keywords as identifiers they can be escaped using \. An example of this can be seen in
the state machine grammar of Fig. 3, where the start field name is escaped because
start is a keyword in grammars.

3 Self-description

The Ensō framework is fully self-describing and Object Grammars are one of the foun-
dations that make this possible. Grammars and schemas are both first-class Ensō mod-
els [24], just like other DSLs in the system. In Ensō, all models are an instance of a
schema, and grammar and schema models are no exception. Schemas are instances of a
“schema of schemas”, which is in turn an instance of itself. For grammars the relation
is formatting. For example, the state machine grammar of Fig. 3 formats state machine
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Fig. 6. The four core schema and grammar models

models. Similarly, the grammar of grammars (Fig. 7) formats itself. The grammar of
schemas (Fig. 5) parses and formats schemas. The schema of grammars (Fig. 8) in-
stantiates grammars, and is formatted using the grammar of schemas. The schema of
schemas and its relationship to other schemas are explained further in a companion pa-
per [26]. These four core models and their relations are graphically depicted in Fig. 6.

Self-description provides two important benefits. First, the interpreters that provide
the parsing and formatting behavior for Object Grammars can be reused to parse and
format the grammars themselves. The same holds for Schema factories that are used
to construct object graphs typed by a schema: the schema of schemas is just a schema
that allows the creation of schemas, including its own schema. Second, by representing
core languages grammar and schema as the first-class models of Fig. 6, they become
amenable to extension in the same way just like ordinary models. For instance, both
the Schema Schema and the Grammar Grammar reuse a generic expression language
(cf. Section 5). The self-described nature of Ensō poses interesting bootstrapping chal-
lenges. However, we consider this to be outside the scope of this paper.

3.1 Grammar Grammar

The formal syntax of Object Grammars is specified by the Grammar Grammar defined
in Fig. 7. A grammar consists of the declaration of the start symbol and a collection of
production rules. There are two types of rules: concrete rules and abstract rules. Both
types are identified by their name, which identifies the non-terminal that is introduced.
A concrete rule has a body that consists of one or more alternatives separated by (|) as
defined in the Alt rule. For an abstract rule, the body is bound through composition with
another grammar. Path is an example of an abstract rule, which was defined in Fig. 4.
See Section 5 for more discussion of grammar composition.

The grammar rules use the standard technique for expressing precedence of gram-
mar patterns, by adding extra non-terminals. An alternative is a Sequence of Patterns
possibly prefixed by a constructor (Create), which creates a new object that becomes
the current object for the following sequence of patterns. If there is no constructor, the
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start Grammar

Grammar ::= [Grammar] "start" \start:</rules[it]> rules:Rule*
Rule ::= [Rule] name:sym "::=" arg:Alt

| [Rule] "abstract" name:sym

Alt ::= [Alt] alts:Create+ @"|"

Create ::= [Create] "[" name:sym "]" arg:Sequence | Sequence

Sequence ::= [Sequence] elements:Field*
Field ::= [Field] name:sym ":" arg:Pattern | Pattern

Pattern ::= [Lit] value:str

| [Value] kind:("int" | "str" | "real" | "sym" | "atom")

| [Ref] "<" path:Path ">"

| [Call] rule:</rules[it]>

| [Code] "{" code:Expr "}"

| [Regular] arg:Pattern "*" Sep? { optional && many }

| [Regular] arg:Pattern "+" Sep? { many }

| [Regular] arg:Pattern "?" { optional }

| [NoSpace] "."

| [Break] "/"

| "(" Alt ")"

Sep ::= "@" sep:Pattern

abstract Path

abstract Expr

Fig. 7. The Grammar Grammar: an Object Grammar that describes Object Grammars

class Grammar start: Rule rules: Rule*
class Rule name: str arg: Alt?

grammar: Grammar / rules

class Pattern

class Alt < Pattern alts: Pattern+

class Sequence < Pattern elements: Pattern*
class Create < Pattern name: str arg: Pattern

class Field < Pattern name: str arg: Pattern

class Lit < Pattern value: str

class Value < Pattern kind: str

class Ref < Pattern path: Path

class Call < Pattern rule: Rule

class Code < Pattern expr: Expr

class NoSpace < Pattern

class Break < Pattern

class Regular < Pattern arg: Pattern sep: Pattern?

optional: bool many: bool

Fig. 8. The Grammar Schema
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current object is inherited from the calling rule. The Patterns in a sequence can be
Field bindings or syntactical symbols commonly found in grammar notations, such as
literals, lexical tokens, non-terminals, regular symbols, and formatting hints.

Since the grammar of grammars is itself an Ensō model, it is accompanied by a
schema of grammars. This is shown in Fig. 8. Note that the different forms of regu-
lar operators in the grammar are represented by a single class Regular with boolean
properties to define the number of repetitions.

There is something very elegant and appealing about the concise self-description in
the Grammar Grammar. For example the Create and Field rules both explain and use
the creation/binding syntax at the same time. The Ref and Call rules seem to be inverses
of each other, as the body of a Call is defined by a reference, and the body of a Ref is a
call to Path. The normal level and meta-level are also clearly separated, as illustated by
the various uses of unquoted and quoted operators (| vs. "|", * vs. "*", etc).

4 Implementation

The implementation of Ensō is a collection of interpreters for the DSLs that are used
in the system. Currently, these interpreters are implemented in the Ruby programming
language [14]. In contrast to most systems, which are based on generating code for a
parser by compiling a grammar, Ensō uses dynamic interpretation of grammars. The
same applies to schemas: a “factory” object interprets a schema to dynamically create
objects and assign fields [26].

These are the two interpreters relevant for the purpose of this paper:

parse : (S : Schema)→ GrammarS → String→ S (1)

format : GrammarS → S→ String (2)

The parse function takes a value S of type Schema, a grammar (compatible with S), and
a string, and returns a value of type S. Note that parse is dependently typed: the value
of the first argument determines the type of the result, namely S. The format function
realizes the opposite direction: given a grammar compatible with S and an value of type
S it produces a textual representation.

4.1 Parsing

The parser is implemented as an interpretive variant of the GLL algorithm [33]. GLL
is a general parsing algorithm. As a result it supports infinite lookahead and supports
the general class of context-free grammars. Tokenization of the input stream happens
on the fly, during parsing. When a certain token type is expected on the basis of the
state of the parser, the scanner is asked to provide this token at the current position of
the input stream. If it delivers, parsing continues, otherwise, an alternative branch in the
grammar will be taken. If there are no remaining branches, a parse error is issued. The
result of a successful, non-ambiguous parse is a concrete syntax tree where the nodes
are annotated with grammar patterns (e.g., Sequence, Create etc.—see Fig. 8).

If parsing is successful, the object-graph is constructed from the concrete syntax tree
in two steps. First, the spine of the object graph is created. This is shown in the left-hand
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def build(t, ob=nil, f=false, vs=[], ps=[])

l = t.label

case l.schema_class.name

when :Sequence then t.kids.each { |k|

build(k, ob, false, vs, ps)

}

when :Create then t.kids.each { |k|

build(k, ob=@factory.make(l.name))

}

when :Field then t.kids.each { |k|

build(k, ob, true, vs=[], ps=[])

}

vs.each { |v| update(ob, l.name, v) }

ps.each { |p| @fixes << [p, ob, l.name] }

when :Lit then vs << t.value if f

when :Value

vs << convert(t.value, l.kind)

when :Ref

ps << subst_it(t.value, l.path)

when :Code

l.code.assert(ob)

else then t.kids.each { |k|

ob = build(k, ob, f, vs, ps)

}

end

return ob

end

def fixup(root)

begin

later = []; change = false

@fixes.each do |path, obj, fld|

x = path.deref(root, obj)

if x then

# the path can be resolved
update(obj, fld, x)

change = true

else

# if not, try it later
later << [path, obj, fld]

end

end

@fixes = later

end while change

unless later.empty?

raise "Fix-up error"

end

end

Fig. 9. Pseudo Ruby code for building the spine and fix-up of cross-links

side of Fig. 9. The build algorithm recursively traverses the syntax tree and depending
on the label of a node, creates objects and assigns fields. The first argument to build is
the syntax tree, ob represents the “current” object; f indicates if field assignment can be
performed. Finally, vs and ps collect values and paths respectively.

For constructor directives, a factory is called to create an object of the right class.
The created object becomes the new current object when recursing down the tree. In
the case for Field nodes, the values collected in vs are directly assigned to the current
object. The paths ps are recorded as “fixes” to the current object for the current field in
the global variable @fixes; these fixes are applied later to create cross-links.

Both Literals and Values (tokens) are simply added to the collection of values vs.
Values are first converted to the expected type; the value of a literal is recorded literally,
but only when the node is directly below a field binder. When a reference is encountered
(Ref) the special keyword it is substituted for the name that has been parsed, and the
result is added to ps. Finally, predicates (Code) are asserted in the context of the current
object so that the referenced fields are appropriately set.

In the second step, the path-based references are resolved in an iterative fix-point
process. This is shown in the right-hand side of Fig. 9. The fix-point process ensures
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that dependencies between references are dynamically discovered. If in the end some
of the paths could not be resolved—for instance because of a cyclic dependency—an
error is produced.

4.2 Formatting

Formatting works by matching constructor and field binding specifications in an Ob-
ject Grammar against objects. In essence, the formatter searches for a minimal render-
ing that is compatible with the object graph. When the class in a constructor directive
matches the class of the object being formatted, the object is formatted using the body
of the production alternative. If formatting fails when recursing through the grammar,
the formatter backtracks to select a different production alternative. If no suitable alter-
natives can be found, an error is raised.

Literals are formatted directly to the output, and fields are selected from the object.
The formatter creates an intermediate formatting structure that includes the pretty print-
ing hints of the grammar. This structure is then formatted to text using Wadler’s prettier
printer algorithm [39].

5 Language Composition

Modular language development presupposes a composition operator to combine two
language modules into one. For two grammars, this usually involves taking the union of
their production rules, where the alternatives of rules with the same name are combined.
To union Object Grammars in such a way, it is also necessary to merge their target
schemas so that references to classes and fields in both languages can be resolved.

In Ensō, composition of grammars and schemas are both accomplished using the
same generic merge operator ·� ·. This operator can be characterized as an overriding
union where conflicts are resolved in favor of the second argument. Since a language
is defined by its schema and grammar, the composition of a base language B with an
extension E is given by Bgrammar � Egrammar and Bschema � Eschema.

5.1 Merge

The algorithm implementing � is shown in pseudo Ruby code in Fig. 10. There are
two passes in the merge algorithm. In the first pass, build traverses the spine of the
object graph o1 to create any new object required. If build encounters an object in o2

but none at the same location on the spine in o1, it creates a new copy of that object and
attaches it to the graph of o1. Primitive fields from o1 are always overridden by the same
fields of o2, allowing the extension to modify the original language. Pairs of objects are
merged by merging the values of each field. Collections are merged pair-wise according
to their keys; outer_join is a relational join of two collections, matching up all pairs of
items with equivalent keys and pairing up the remaining items with nil. At the same
time, the first pass also establishes a mapping memo, between each object in o2 and the
corresponding object in the same spine location in o1.



Object Grammars 17

def merge_into(type, o1, o2)

build(type, o1, o2, memo = {})

link(type, true, o1, o2, memo)

end

def build(type, a, b, memo)

return if b.nil?

memo[b] = new = a || type.new

type.fields.each do |fld|

ax = a && a[fld.name]

bx = b[fld.name]

if fld.type.Primitive? then

new[fld.name] = bx

elsif fld.spine

if !fld.many

build(fld.type, ax, bx, memo)

else

ax.outer_join(bx) do |ai, bi|

build(fld.type, ai, bi, memo)

end

end

end

end

end

def link(type, spine, a, b, memo)

return a if b.nil?

new = memo[b]

return new if !spine

type.fields.each do |fld|

ax = a && a[fld.name]

bx = b[fld.name]

next if fld.type.Primitive?

if !fld.many? then

val = link(fld.type, fld.spine, ax, bx, memo)

new[fld.name] = val

else

ax.outer_join(bx) do |ai, bi|

x = link(fld.type, fld.spine, ai, bi, memo)

unless new[fld.name].include?(x)

new[fld.name] << x

end

end

end

end

return new

end

Fig. 10. Pseudo Ruby code for the generic � operator

In the second phase, non-spine fields—those without the ! modifier—are made to
point to their new locations. The object graph is once again traversed along the spine,
but this time link looks up memo for each non-spine field in order to find the updated
target object.

5.2 Composition in Ensō

Many of the current set of languages in Ensō are defined by composing two or more lan-
guage modules. Fig. 11 shows how Ensō languages are related with respect to language
composition. Each edge in the diagram represents an invocation of �. The arrow points
in the direction of the result. For instance, the Stencil and Web languages are, indepen-
dently, merged into the Command language. As a result both Stencil and Web include,
and possibly override and/or extend the Command language. If a language reuses or ex-
tends multiple other languages, the merge operator is applied in sequence. For instance,
Grammar is first merged into Path, and then merged into Expr.

The core languages in Ensō include both the Schema and Grammar languages, as
well as Stencil, a language to define graphical model editors. Additionally, Ensō fea-
tures a small set of library languages that are not deployed independently but reused
in other languages. An example of a library language is Expr, an expression language
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Fig. 11. Language composition in Ensō. Each arrow A→ B indicates an invocation of B�A.

Table 1. SLOC count (a) and reuse percentages (b) for schemas, grammars and interpreters of
the languages currently in Ensō

Language Schema Grammar Interpreter

Grammar 53 31 1243
Schema 30 20 667
Stencil 51 26 1387
Web 79 43 885
Auth 28 16 276
Piping 80 22 306
Controller 26 14 155

Path 14 6 222
Command 39 26 265
Expr 47 30 91
XML 10 6 47

(a)

Reuse Percentages
Language Schema Grammar Interpreter

Grammar 54% 54% 20%
Schema 61% 60% 12%
Stencil 63% 68% 20%
Web 55% 59% 31%
Auth 63% 65% 25%
Piping 0% 0% 0%
Controller 64% 68% 37%

(b)

with operators, variables and primitive values. It is, for instance, reused in Grammar for
predicates and in Schema for computed fields. Command is a control-flow language that
captures loops, conditional statements and functions. The Command language reuses
the Expr language for the guards in loops and conditional statements. Another example
is the language of paths (Path), shown in Fig. 4, which provides a model to address
nodes in object graphs.

The reuse of Expr and Path are examples of a simple embedding. The languages are
reused as black boxes, without modification. The composition of Command with Sten-
cil and Web, however is different. Stencil is created by adding language constructs for
user-interface widgets, lines, and shapes to the Command language as valid primitives.
The Command language can now be used to create diagrams. A similar extension is
realized in the Web language: here a language for XML element structure is mixed with
the statement language of Web. The extension works in both directions: XML elements
are valid statements, statements are valid XML content. The Piping and Controller lan-
guages are from a domain-specific modeling case-study in the domain of piping and
instrumentation for the Language Workbench Challenge 2012 [25]. Fig. 11 only shows
the Controller part which reuses Expr.

An overview of the number source lines of code (SLOC) is shown in Table 1(a).
We show the number for the full languages in Ensō as well as the reused language
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modules (Path, Command, Expr and XML). A language consists of a schema, a gram-
mar and an interpreter. The interpreters are all implemented in Ruby. Table 1(b) shows
the reuse percentage for each language [17]. This percentage is computed as 100×
#SLOCreused/#SLOCtotal. Which languages are reused in each case can be seen from
Fig. 11. As can be seen from this table, the amount of reuse in schemas and grammars
is consistently high, with the exception of the Piping language, which does not reuse
any language. It shows that the merge operator is powerful enough to combine real
languages in a variety of ways, with actual payoff in terms of reuse.

6 Related Work

The subject of bridging modelware and grammarware is not new [1, 40]. In the recent
past, numerous approaches to mapping text to models and vice versa have been pro-
posed [13,16,19,21,23,27,28]. Common to many of these languages is that references
are resolved using globally unique, or hierarchically scoped names. Such names can
be opaque Unique Universal Identifiers (UUIDs) to uniquely identify model elements
or key attributes of the elements themselves [18]. The main difference between these
approaches and Object Grammars is that Object Grammars replace the name-based
strategy by allowing arbitrary paths through the model to find a referenced object. This
facilitates mappings that require non-global or non-hierarchical scoping rules. Below
we discuss representative systems in more detail.

The Textual Concrete Syntax (TCS) language supports deserialization and serializa-
tion of graph-structured models [21]. Field binders can be annotated with {refersTo =

〈name〉}, which binds the field to the object of the field’s class with the field 〈name〉 hav-
ing the value of the parsed token. Rules can furthermore be annotated with addToContext

to add it to the, possibly nested, symbol table. The symbol table is built after the com-
plete source has been parsed to allow forward references. Only simple references to in-
scope entities are allowed, however. Path-based references of Object Grammars allow
more complex reference resolving, possibly across nested scopes. TCS aims to have
preliminary support for pretty printing directives to control nesting and indentation,
spacing and custom separators. However, these features seem to be unimplemented.

Xtext is an advanced language workbench for textual DSL development [13]. The
grammar formalism is restricted form of ANTLR so that both deserialization and seri-
alization is supported. Xtext supports name-based referencing. To customize the name
lookup semantics Xtext provides a Scoping API in Java. Apart from the use of simple
names, Xtext differs from Object Grammars in that, by default, linking to target objects
is performed lazily. Again, this can be customized by implementing the appropriate in-
terfaces. Xtext is said to support a limited form of modularity through grammar mixins.
For lexical syntax Xtext provides a standard set of terminal definitions such as INT and
STRING, which are available for reuse.

EMFText is an Ecore based formalism similar to Xtext grammars [9, 19]. EMFText,
however, supports accurate unparsing of models that have been parsed. For models
that have been created in memory or have been modified after parsing, formatting can
be controlled by pretty printing hints similar to the . and / symbols presented in this
paper. The grammar symbol #n forces printing of the n spaces. Similarly, !n is used for
printing a line-break, followed by n indentation steps.
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In the MontiCore system both metamodel (schema) and grammar are described in
a single formalism [23]. This means that the non-terminals of the grammar introduces
classes and syntactic categories at the same time. Grammar alternatives are declared
by non-terminal “inheritance”. As a result, the defined schema is directly tied to the
syntactic structure of the grammar. The formalism supports the specification of associ-
ations and how they are established in separate sections. The default resolution strategy
assumes file-wide unique identifiers, or syntactically hierarchical namespaces. This can
be customized by programming if needed.

The Textual Concrete Syntax Specification Language (TCSSL) is another formal-
ism to make grammars metamodel-aware [15]. It features three kinds of syntax rules:
CreationRules which function like our [Create] annotations,—SeekRules, which look
for existing objects satisfying an identifying criterion,—and SingletonRules, which are
like CreationRules, but only create a new object if there is no existing object satisfying
a specified criterion. The queries used in SeekRules seem more powerful than simple,
name-based resolution; it is however unclear from the paper how they are applied for
complex scenarios. TCSSL furthermore allows code fragments enclosed in double an-
gular brackets (<<>>) but it is unclear how this affects model-to-text formatting.

Discussion. The requirements for mapping grammars to metamodels were first formu-
lated in [20]: the mapping should be customizable, bidirectional and model-based. The
Object Grammars presented in this paper satisfy these requirements. First, the mapping
is customizable because of asynchronous binding: the resulting structures are to a large
extent independent of the structure of the grammar. Path-based referencing and predi-
cates are powerful tools to control the mapping, but admit a bidirectional semantics so
that formatting of models back to text is possible. Formatting can be further guided us-
ing formatting hints. Finally, Object Grammars are clearly model-based: both grammars
and schemas are themselves models, self-formatted and self-described respectively. A
comparative overview of systems to parse text into graph structures that conform to
class-based metamodels can be found in [18].

To our knowledge, Object Grammars represent the first approach to mapping be-
tween grammars and metamodels that supports modular combination of languages.
Xtext, EMFText, TCS, MontiCore, and TCSSL are implemented using ANTLR.
ANTLR’s LL(*) algorithm, however, makes true grammar composition impossible.
Object Grammars, on the other hand, are compositional due to the use of the general
parsing algorithm GLL [33]. Moreover, the use of a general parsing algorithm has the
advantage that there is no restriction on context-free structure. For instance, the designer
of a modeling language does not have to worry about whether she can use left-recursion
or whether her grammar is within some restricted class of context-free grammars, such
as LL(k) or LR(k). As a result, Object Grammars can be structured in a way that is ben-
eficial for resulting structure, without being subservient to a specific parsing algorithm.
Object Grammars share this freedom with other grammar formalisms based on general
parsing, such as SDF [36] and Rascal [22].

The way references are resolved in Object Grammars bears resemblance to the way
attributes are evaluated in attribute grammars (AGs) [30]. AGs represent a convenient
formalism to specify semantic analyses, such as name analysis and type checking, by
declaring equations between inherited attributes and synthesized attributes. The AG
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system schedules the evaluation of the attributes automatically. Modern AG systems,
such as JastAdd [11] and Silver [35], support reference attributes: instead of simple
values, such attributes may evaluate to pointers to AST nodes. They can be used, for
instance, to super-impose a control-flow graph on the AST. Reference resolving in Ob-
ject Grammars is similar to attributes: they are declarative statements of fact, and the
system—in our case the parse function— decides how to operationally make these
statements true. Object-grammars are different, however, in the sense that the object
graph is first-class, and not a decoration of an AST. Moreover, path-based references
only allow navigating the object graph without performing arbitrary computations. Ex-
tending Object Grammars with AG style attributes is an area for further research.

Modular language development is an active area of research. This includes work on
modular extension of DSLs and modeling languages [34, 37, 38], extensible compiler
construction [4, 11], modular composition of lexers [7] and parsers [6, 32], modular
name analysis [10] and modular language embedding [31]. Object Grammars support
a powerful form of language composition through the generic merge operation (�) ap-
plied in tandem to both grammars and schemas. The merge operator covers language
extension and unification as discussed in [12]. In essence, merge captures an advanced
form of inheritance similar to feature composition [2, 3]. However, merge currently
applies only syntactic and semantic structure. To achieve the same level of composi-
tionality at the level of behavior, i.e. interpreters, is an important direction for further
research.

7 Conclusion

Object Grammars are a formalism for bidirectional mapping between text and object
graphs. Unlike traditional grammars, Object Grammars include a declarative specifica-
tion of the semantic structure that results from parsing. The notation allows objects to
be constructed and their fields to be bound. Paths specify cross-links in the resulting
graph structure. Thus the result of parsing is a graph, not a tree. Object Grammars can
also be used to format an object graph into text.

Our implementation of Object Grammars in Ensō supports arbitrary context-free
grammars. This is required when composing multiple grammars together. We have
shown how Object Grammars are used in Ensō to support modular definition and com-
position of DSLs.

Acknowledgements. We thank Atze van der Ploeg and the anonymous reviewers for
their comments on earlier drafts of this paper.
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5. Bąk, K., Czarnecki, K., Wąsowski, A.: Feature and Meta-Models in Clafer: Mixed, Special-
ized, and Coupled. In: Malloy, B., Staab, S., van den Brand, M. (eds.) SLE 2010. LNCS,
vol. 6563, pp. 102–122. Springer, Heidelberg (2011)

6. Bravenboer, M., Visser, E.: Parse Table Composition. In: Gašević, D., Lämmel, R., Van Wyk,
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Abstract. Attribute grammars enable complex algorithms to be defined on tree
and graph structures by declarative equations. An understanding of how the equa-
tions cooperate is necessary to gain a proper understanding of an algorithm
defined by an attribute grammar. Existing attribute grammar tools and libraries
provide little assistance with understanding the behaviour of an attribute evalua-
tor. To do better, we need a way to summarise behaviour in terms of attributes,
their values, their relationships, and the structures that are being attributed. A sim-
ple approach to program profiling is presented that models program execution as a
hierarchy of domain-specific profile records. An abstract event for attribute evalu-
ation is defined and evaluators are modified to collect event instances at run-time
and assemble the model. A flexible report writer summarises the event instances
along both intrinsic and derived dimensions, including ones defined by the de-
veloper. Selecting appropriate dimensions produces reports that expose complex
properties of evaluator behaviour in a convenient way. The approach is illustrated
and evaluated using the profiler we have built for the Kiama language processing
library. We show that the method is both useful and practical.

1 Introduction

Attribute grammars promote a view of tree and graph decoration based on declarative
equations defined on context-free grammar productions [18]. An attribute is defined by
equations that specify its value at a node N as a function of constant values, the values
of other attributes of N, and the values of attributes of nodes that are reachable from N.
Provided that sufficient equations are defined to cover any context in which the node can
occur, we obtain a declarative specification of an algorithm that can be used to compute
the attribute of any such node. This approach to computation on structures has been
shown to be extremely powerful. Recent applications that use attribute grammars heav-
ily are XML integrity validation [2], protocol normalization [3], Java compilation [4],
image processing [7], and genotype-phenotype mapping [11].

Any single attribute equation is usually fairly simple, but its effect is intricately in-
tertwined with that of many other equations. The value of an attribute A is ultimately
determined not just by A’s equations, but by the equations of any attribute on which A’s
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equations transitively depend. Thus, the computations that cooperate to compute a value
of A are potentially dispersed throughout the attribute grammar. This dispersal means
that it is non-trivial to determine what an attribute value is or even how an attribute is
calculated just by looking at the equations.

Powerful extensions of the original attribute grammar formalism make this problem
even worse. Equations in the original conception of attribute grammars can only refer
to attributes of symbols that occur in the context-free grammar production on which the
equation is defined. In higher-order and reference attribute grammars the value of an at-
tribute can itself be a reference to a node upon which attributes can be evaluated [15,27].
This extension is particularly useful when defining context-sensitive properties such as
name binding or programmer-defined operator precedence. This power comes at a price,
however, because it means that more parts of the grammar are in play when we are try-
ing to understand a particular attribute and how it is computed.

The situation is complicated even more by the fact that many modern attribute gram-
mar systems use a dynamically-scheduled evaluation strategy, which precludes accurate
static analysis. Some classes of attribute grammar submit to static dependence analy-
sis that enables evaluation strategies to be computed in advance of running the eval-
uator [12]. One can imagine tools based on this static analysis that would assist with
understanding the evaluation process. More recently, however, attribute grammar tools
and libraries have mostly used an approach where the evaluation strategy is determined
at run-time [9,10,24,26]. This approach admits more grammars than does a static ap-
proach, some algorithms are easier to express, and features such as higher-order and
reference attributes are easier to support. However, a dynamically-scheduled approach
also means that an accurate static analysis is not possible. Instead, dynamic analysis
support is necessary since evaluation will be influenced by the attribute values, which
will in turn be influenced by the input.

We therefore favour dynamic methods for understanding our attribute evaluators. In
this paper we focus on a profile-based approach where data is collected at run-time and
summarised to reveal relationships between different aspects of the execution. An op-
tion is to profile the code that implements the attribute evaluator. The resulting profiles
are unsatisfactory, however, as they operate at a much lower level than the attribute
grammar and require the developer to know a great deal about the implementation ap-
proach. Instead, we develop a method where both data collection and profile reports are
in terms of an abstract model of evaluation that is based on arbitrary data dimensions.
For example, the developer can ask for a profile that shows run-time and evaluation
counts for each attribute that was evaluated during the run. Multi-dimensional reports
show how dimensions are related to each other. For example, a report that summarises
first along the attribute dimension and then along the subject (tree node) dimension
gives insight into the places in the structure where the attributes were evaluated.

Specifically, the contributions of the paper are as follows.

1. The design of a general profiling framework based around generating a hierarchi-
cal model of program execution from domain-specific program events which have
properties in arbitrary dimensions (Section 3.1).

2. The design of a profile reporting scheme that is independent of the event types
produced by a program and of the dimensions possessed by the events (Section 3.2).
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3. An implementation of the profiling framework and reporting scheme for attribute
evaluators that use our Kiama language processing library [24] (Section 3.3).

4. An evaluation of the performance of the Kiama profiler that shows that it is suffi-
cient for interactive use on large inputs (Section 3.4).

5. Examples of the approach and demonstration of its utility. We use the PicoJava
Java subset and the Oberon-0 variant of Oberon (Sections 2 and Section 4).

The paper concludes with a review of related work (Section 5) and an examination of
directions for future work (Section 6).

Code and documentation for our implementation of the profiling framework can be
found at http://bitbucket.org/inkytonik/dsprofile. Kiama can be obtained
from http://kiama.googlecode.com.

2 Understanding Attribute Evaluation

To place our discussion on a concrete footing, we first illustrate the difficulties of at-
tribute grammar understanding using the problem of name analysis for Java-like lan-
guages. In this section, we describe part of a standard attribute grammar solution for
this problem and discuss how profiling can help us understand this attribute grammar.

2.1 PicoJava

The attribution we consider performs name analysis for the PicoJava language. This
attribution was originally written as an illustration of reference attributes in the JastAdd
system [8]. The Kiama distribution contains a fairly direct translation of the JastAdd
attribute grammar. We present the attribute equations in a simplified system-neutral
notation, however, since the problems of understanding the grammar and the profiling
solution are independent of the details of the specific attribute grammar notation.

PicoJava contains declarations and uses of Java-like classes and fields, but omits most
of the expression, statement and method complexity of Java. The left side of Figure 1
shows a PicoJava program consisting of a block with a declaration of class A. Class A
contains two nested classes: AA and AA’s sub-class BB. Statements are limited to simple
assignments between named objects which are either fields of the current object or
qualified accesses to fields of other objects.

The problem that is solved by the attribute grammar is to check the use of all iden-
tifiers. For example, the uses of x in the a.x and b.x expressions are legal because of
the declaration of the x field in AA and the inheritance relationship between AA and BB.
However, the use of y in b.y is illegal since BB and AA declare no y field, even though
there is a y field in the enclosing class A.

The attribute grammar operates on an abstract syntax tree representation of a pro-
gram. The right side of Figure 1 shows the tree for the program on the left side. A pro-
gram consists of a block containing a list of the top-level declarations and statements.
Declarations are either of variables or of classes. A variable declaration (VarDecl)
specifies the name of the variable and its type. Class declarations (ClassDecl) specify
the class name and an optional name of the superclass. The superclass component is
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either Some(c), if the superclass is c, or None, if there is no declared superclass. Uses
of variable or class names are Use constructs. Classes contain a recursive block for their
local declarations and statements. There is no limit to the nesting of class declarations.

2.2 Name Analysis for PicoJava

The attribute grammar that implements name analysis for PicoJava defines one main
attribute decl whose value is the declaration corresponding to a particular access of a
name. decl is a reference attribute whose value is the actual VarDecl or ClassDecl
node in the tree. decl is a synthesized attribute, meaning that it is defined in all produc-
tions that define the structure of accesses.

attribute decl : Access => Decl

Use: a:Access ::= u:Use a.decl = u.lookup (u.name)

Dot: a:Access ::= Access u:Use a.decl = u.decl

We first declare the type of the attribute. The decl attribute is defined on Access nodes
and its type is Decl, the common superclass of VarDecl and ClassDecl. The arrow
=> appeals to an intuition that attributes are functions from nodes to values.

PicoJava accesses come in two varieties: a direct use of a single name (Use) or a
field reference with respect to a nested object access (a Dot containing an Access and
a Use). In the attribute grammar the two varieties are represented by the two context-free
grammar abstract syntax productions shown. Productions are written as the production
name, a colon, then the grammar rule. The two parts of a grammar rule are separated by
::=. The symbols in the grammar rule can be given names so that they can be referred

{

class A {

int y;

AA a;

y = a.x;

class AA {

int x;

}

class BB extends AA {

BB b;

b.y = b.x;

}

}

}

Program (

Block (List (

ClassDecl ("A", None (),

Block (List (

VarDecl (Use ("int"), "y"),

VarDecl (Use ("AA"), "a"),

AssignStmt (

Use ("y"),

Dot (Use ("a"), Use ("x"))),

ClassDecl ("AA", None (),

Block (List (

VarDecl (Use ("int"), "x")))),

ClassDecl ("BB", Some (Use ("AA")),

Block (List (

VarDecl (Use ("BB"), "b"),

AssignStmt (

Dot (Use ("b"), Use ("y")),

Dot (Use ("b"), Use ("x"))))))))))))

Fig. 1. A PicoJava program (left) and its abstract syntax tree (right)
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to by the attribute equations. For example, in the first production the Access symbol is
given the name a.

Since there are two productions that define the Access symbol, we need two defi-
nitions for the decl attribute. Each production has an equation that describes how to
compute the attribute in an actual tree construct that was derived by that production.
Each equation has the form attribute = expression. References to attributes of particu-
lar symbols are written using a “dot” notation on the left-hand side of an equation and
within the right-hand side expression (e.g., a.decl). This notation is also used to ac-
cess intrinsic properties of tree nodes that are already in the tree when attribution begins
(e.g., the u.name field of a Use).

In order to describe how to compute an attribute value, an attribute equation can refer
to any symbols of the associated production to obtain data values from attributes or in-
trinsic properties. Expressions can use any facility of the host environment to compute
with these values. The overall effect of the decl equations is that the relevant decla-
ration is determined by evaluating the lookup attribute at the rightmost name use in
the access. For example, when evaluating decl for the expression a.b.c, which is rep-
resented by the tree Dot(Use(a),Dot(Use(b),Use(c))), we will evaluate decl for
b.c, decl for c and, finally, lookup("c") at the Use(c) node.

2.3 Name Lookup

The lookup attribute implements a search to find the declaration that matches a par-
ticular name. The value of n.lookup(s) is a reference to the node that represents the
declaration of s when viewed from the scope represented by the node n, or a reference
to a special “unknown declaration” value if no such node can be found.

attribute lookup (String) : Any => Decl

We indicate that the attribute can be evaluated at any node using the Any common
super-class of all tree node classes.

lookup is a parameterised attribute, since it depends on the name being sought. It is
also an inherited attribute since its value will be determined by the context surrounding
the node where it is evaluated, not by the inner structure of that node.

Use: a:Access ::= u:Use u.lookup(name) = a.lookup(name)

Dot: Access ::= a:Access u:Use u.lookup(name) =

a.decl.type.remoteLookup(name)

The first of the two cases is when lookup is evaluated at a Use node. This corresponds
to the use of an unqualified name, so we just continue the search at the parent node to
search in the current scope. The other case is when the use is qualified, in which case
it will occur as the child of a Dot node. We need to find the declaration of the object
which is being accessed, get its type and perform a remote lookup there.

We omit the definitions of the type and remoteLookup attributes since those details
are not necessary for our discussion. type returns a reference to a node representing the
class type from a declaration. remoteLookup looks for a name in a class type from the
perspective of a client of that type.
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The remaining cases for lookup propagate requests coming from Use nodes to the
appropriate parts of the tree and to trigger searches in blocks and super-classes.

...: ... ::= ... b:Block ...

if (b.contains(name))

b.lookup(name) = b.localLookup(name)

...: ... ::= ... c:ClassDecl ...

if (c.superClass != null) && (c.superClass.contains(name))

c.lookup(name) = c.superClass.remoteLookup(name)

...: p ::= ... n ...

n.lookup(name) = p.lookup(name)

In these productions, we use an ellipsis ... to indicate a part of a production whose
structure is not important. Some of the equations are conditional in that they only apply
if a Boolean condition is true. If the current node is a block and that block contains a
definition of the name we are looking for, we perform a local lookup in that block to find
the declaration. Otherwise, if we have reached a class declaration, that class has a super-
class, and the super-class contains a definition of the name, then we perform a remote
lookup in that class. The final case covers all other circumstances by just propagating
the search to the parent node. We are guaranteed to eventually reach at least a block
since all programs consist of one.

2.4 Understanding PicoJava Name Analysis

Name analysis attribution for PicoJava is a canonical example of reference attribute
grammars [8]. The equations are not lengthy, but their operation is still quite hard to
understand. Some of the difficulty is due to the inherent complexity of the problem
being solved. The tasks of name and type analysis for a language like PicoJava are
intertwined. For example, to lookup a name in the body of a class, we may need to
search the superclass type, which involves performing name analysis on the name that
appears in the superclass position of the class declaration, and so on, while avoiding
problems such as cycles in the inheritance chain. (The latter check is hidden in the
definition of the superClass attribute.)

Given this inherent complexity, it is somewhat surprising that the definitions are not
longer than they are. The main reason for their brevity is the power of the dynamically-
scheduled attribute grammar formalism to abstract away tree traversal details. When
we are writing our equations, we can reason about how declarations, global, local and
remote lookups, and types relate to each other, without having to work out a particular
tree traversal that evaluates the attributes in the correct order. The attributes are eval-
uated when their values are first demanded and caching means that we don’t need to
worry about which particular use of an attribute asks for it first. In contrast, a solution
based on tree traversals implemented by visitors, for example, would have to explicitly
plan which attributes should be evaluated at which time. Developing such a plan is a
non-trivial task for this problem.
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202 ms total time

47 ms profiled time (23.5%)

206 profile records

By attribute:

Total Total Self Self Desc Desc Count Count

ms % ms % ms % %

41 88.0 11 24.7 30 63.3 27 13.1 decl

30 63.7 10 22.8 19 40.9 32 15.5 lookup

15 32.9 9 19.0 6 13.9 19 9.2 localLookup

5 10.6 0 1.8 4 8.8 18 8.7 unknownDecl

4 8.9 4 8.9 0 0.0 33 16.0 declarationOf

3 7.9 2 4.8 1 3.1 7 3.4 remoteLookup

3 6.5 2 4.9 0 1.6 2 1.0 isSubtypeOf

By type for lookup:

Total Total Self Self Desc Desc Count Count

ms % ms % ms % %

33 60.8 7 13.2 26 47.7 12 5.8 Use

17 31.8 1 3.2 15 28.6 4 1.9 VarDecl

4 8.3 2 4.2 2 4.1 5 2.4 Block

2 3.7 0 1.1 1 2.6 4 1.9 ClassDecl

1 2.2 0 0.7 0 1.5 3 1.5 Dot

1 2.1 0 0.8 0 1.3 4 1.9 AssignStmt

Fig. 2. Extracts of profiles produced when the PicoJava name analyser processes the program in
Figure 1: attribute dimension (top); attribute and node type dimensions (bottom)

It is not possible to completely ignore tree traversal. When we are developing and
debugging the equations, we need help to understand how they function. It is not enough
to just look at each equation by itself, since the effect is achieved by a combination of
many equations. Having some information about what happens at run-time can reveal
much about how the attribute grammar works. As a simple example, if we knew that our
name analyser never evaluated the superClass attribute when processing the program
in Figure 1, we would know that the equations are not correctly implementing our intent.

2.5 Profiling PicoJava Name Analysis

The rest of this paper describes a method for producing run-time profiles of the execu-
tion of attribute evaluators. Before we present the detail, we give a couple of examples
to illustrate useful profiles of the PicoJava name analysis attribute grammar.

The simplest profile we can imagine is one that shows us which attributes are evalu-
ated during a run. The top profile in Figure 2 shows an attribute profile of the PicoJava
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name analyser that was produced as it processed the program in Figure 1.1 The first part
of the profile gives the total run-time and the time that is accounted for by the profiled
attributes. 206 attribute instances were evaluated in this run. The table summarises the
run-time by apportioning it to the attributes. Each row shows the total time taken by the
evaluation of the attribute and the portions attributable to the equations of the attribute
itself (Self) and of the attributes that those equations used (Desc for “descendants”).
The final data columns show the number of times each attribute was evaluated.

The profile shows that the decl attribute and the attributes it uses consume the vast
majority of the time, closely followed by lookup and localLookup. The profile reveals
a number of areas where further investigation might be warranted. The localLookup

attribute consumes almost a third of the time which seems excessive. We might investi-
gate whether replacing a linear search by a hashed lookup would improve performance.
Also, the unknownDecl attribute is used to return a special object to represent the case
where a declaration cannot be found. It is worrying that computing this special object
consumes ten percent of the time.

The top profile of Figure 2 shows just a single profile dimension: the attribute that
was evaluated. Our profiles can summarise execution across more than one dimension to
reveal more detail. For example, we might want to know the types of the nodes at which
the lookup attribute was evaluated. The bottom profile in Figure 2 shows the lookup

part of a multi-dimensional profile using the attribute and node type dimensions. In
this table the rows summarise a particular combination of the lookup attribute and
node type. For example, the first line summarises the cases where the lookup attribute
was evaluated at Use nodes. Since the tree in Figure 1 contains three Dot nodes, it is
comforting to see from the fifth line of the table that we looked up names three times at
such nodes.

Profiles such as those shown in Figure 2 reveal a lot about the execution of an at-
tribute evaluator in a form that is easy to absorb. Varying our choice of dimension
means that we can tailor the profiles to the particular investigation that we are carrying
out. We now consider how these sorts of profiles are produced in detail, before looking
at more complex examples.

3 Attribute Grammar Profiling

Our approach to producing profiles such as those shown in the last section is to in-
strument programs to generate domain-specific events while they run. The events are
grouped to form a record-based model of the execution in domain-specific terms. Re-
ports are generated from the model by grouping records along developer-specified
dimensions. We consider only profiling for attribute grammars in this paper, but the
method is general. By varying the events that are generated and the dimensions that are
available, profilers can be built for any domain.

Section 3.1 describes the data collection method and the record-based model of execu-
tion. Section 3.2 explains how the model is used to produce reports. The implementation

1 Elapsed time is collected in nanosecond units, but is presented in the profiles as milliseconds,
so there may be some rounding errors.
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of the approach for our Kiama language processing library is discussed in Section 3.3
and its performance is analysed in Section 3.4.

3.1 Data Collection and Execution Modelling

The data collection approach is based on a simple event model. We distinguish between
Start events that signal the beginning of some program activity and Finish events
that signal the end of an activity. We assume that the program can be modified so that
Start and Finish events will be generated at appropriate times.

Each event captures the event kind (Start or Finish), the time at which it occurred,
the domain-specific type of the event, and a collection of arbitrary data items associated
with the event instance. Each data item is tagged with a unique dimension. The dimen-
sions that an event has at generation time are its intrinsic dimensions, to differentiate
them from derived dimensions that are calculated later.

In the attribute grammar case, a single attribute evaluated event type is sufficient. We
assume that a Start instance of this event type is generated just before the evaluation
of an attribute begins, and that a corresponding Finish instance is generated just after
evaluation of an attribute ends. Attribute evaluation events have the following intrinsic
dimensions:

– attribute: the attribute that was evaluated,
– subject: the node at which the attribute was evaluated,
– parameter: the value of the attribute’s parameter (if any),
– value: the value that was calculated by the attribute’s equations, and
– cached: whether the value was calculated or came from the attribute’s cache.

The attribute, subject and parameter dimensions must be present in both the Start and
Finish events. We call this subset of the intrinsic dimensions the identity dimensions.
They are used by the profiler to recognise when a Finish event matches a Start event
that was seen earlier. The value and cached dimensions are present only in the Finish
event since their values are available only after the evaluation has been completed.

After the execution is completed, we collect the events to create a list of profile
records that describe the execution. When we see a Finish event we match it with
the corresponding Start event by comparing the identity dimensions. Each matching
Start-Finish pair is combined to form a single profile record. A record contains the
event type, the time taken between the occurrence of the Start event and the occurrence
of the Finish event, and the union of all of the intrinsic dimensions of the two events.

We also require that the events are generated in a last-in-first-out manner so that
we can automatically construct a hierarchical model of execution. In other words, if
we see a Finish event, it must be the case that the most recently seen Start event
that does not yet have a corresponding Finish event is the one that corresponds to the
new Finish event. If this condition holds, we can regard the records that are created
between a Start event and its corresponding Finish event as the descendants of the
new profile record. This hierarchical relationship is used to derive dimensions that relate
records to each other to summarise attribute dependencies (Section 4.4).

To make this discussion more concrete, consider the execution of the PicoJava name
analysis attribute evaluator. Among the events generated by this evaluator will be some
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Kind When Attribute Subject Param Value Cached
Start 4 decl Node 1
Start 4 lookup Node 1 “a”
Start 5 lookup Node 2 “a”
Finish 6 lookup Node 2 “a” Node 3 false
Finish 7 lookup Node 1 “a” Node 3 false
Finish 10 decl Node 1 Node 3 false
Start 14 decl Node 1
Finish 15 decl Node 1 Node 3 true

Record Time Attribute Subject Param Value Cached Descendants
1 1 lookup Node 2 “a” Node 3 false
2 3 lookup Node 1 “a” Node 3 false 1
3 6 decl Node 1 Node 3 false 2
4 1 decl Node 1 Node 3 true

Fig. 3. Start and finish events from a program run (top) and the profile records that summarise the
attribute evaluations signalled by the events (bottom)

that document the evaluation of the decl and lookup attributes. A possible execution
results in the events shown in the top table of Figure 3. This trace excerpt describes
four attribute evaluations. The first Start event marks the start at time step four of the
evaluation of the decl attribute at Node 1. That evaluation requires an evaluation of the
lookup attribute with parameter "a" at Node 1, and again at Node 2, which yields a
value of Node 3, which we assume is the declaration node for a. The first evaluation of
the decl attribute at Node 1 finishes at time step ten and did not use the decl attribute
cache. If the value of the decl attribute at Node 1 is subsequently demanded again,
represented by the final two events, its value will be obtained much more quickly using
the attribute cache.

Four profile records will be created, one for each attribute evaluation (bottom table
of Figure 3). For example, record three tells us that the first evaluation of decl took
a total of six time units and required the evaluation represented by record two. Record
two in turn took three time units and required the evaluation represented by record one.

3.2 Report Generation

The record list produced by the data collection process is a domain-specific model of
the execution. A report is produced from this model on the basis of one or more report
dimensions. The report generation process proceeds by considering the records one-by-
one and allocating them to report buckets according to their report dimension values.
All of the records with the same report dimension values end up in the same bucket and
their execution time is accumulated. The descendant information allows us to allocate
the elapsed time to either the attribute evaluation represented by a record (self) or to the
other evaluations demanded by that evaluation (descendants). When all of the buckets
have been assembled, a table is printed where the rows represent the different buckets
and are sorted in decreasing order or execution time.
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For example, if we choose the attribute dimension and summarise the data from the
records in Figure 3, we get the following profile report.

Total Total Self Self Desc Desc Count Count

ms % ms % ms % %

7 100.0 3 42.9 4 57.1 2 50.0 decl

4 57.1 4 57.1 0 0.0 2 50.0 lookup

Since we are using the attribute dimension we get two buckets, one for each of the two
attributes that we have recorded.

Multi-dimensional reports are produced by an analogous process. We first report
on the basis of the first dimension. Then each bucket from the first dimension table
is further summarised according to the second dimension. The process continues until
there are no more dimensions to consider.

3.3 Implementation

The profiles presented in this paper were collected using an implementation we built as
a library in the Scala language. Profiles can be generated from code written in any Java
Virtual Machine language but specific support is provided for Scala and Java.

We manually instrumented our Kiama language processing library [23,24], which
is written in Scala, to use the profiling library to collect information about attribute
evaluations. We augmented the attribute grammar evaluation code of Kiama to generate
events as described above. While the new code had to be manually inserted, its total
size is very small: only ten new method calls are needed in a module of more than five
hundred lines. These calls produce the start and finish events. Their parameters
are the event dimension names and values. This profiling support will be part of an
upcoming release of our Kiama language processing library.

Users of Kiama need to only add one call to run their code under profiler control and
to generate a report when their code is finished. All other instrumentation is in Kiama
so the application code is not further affected.

An important implementation decision we made was to not encode the available di-
mensions and the types of their values into the profiling framework. A dimension is just
represented by a string and a dimension value can be anything. Including more type
information would enable a greater level of safety in the event generation and recording
code. However, it would tie the framework to particular events and their dimensions.
Adding new ones would require updating the interfaces or a more complex event repre-
sentation with generic access to typed dimension values. Our approach is much simpler
and is extremely flexible. Instrumentation code is one line at each event generation site.
New events and dimensions can be added without recompiling the profiler.

Around 100 lines of support code in Kiama implements derived dimensions and
access to the names of the attributes. In fact, the last of these is the only non-trivial part
of the implementation. Unfortunately, Scala does not have full reflection yet so we are
not able to easily recover the attribute names. As a work-around, we currently require
the attributes to be defined as lazy values and some relatively fragile code examines
the run-time stack to determine the names when the attributes are constructed. We plan
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to replace this code with a more robust implementation and allow non-lazy attribute
definitions when proper reflection is available in the 2.10 release of Scala.

A profiling library component of less than 300 lines of code implements event cap-
ture, record representation, and report generation. The current implementation stores
profile records as instances of a custom class. A generic format such as XML or JSON
could easily be used instead and might be beneficial if the data was to be exported. As
it stands, the event data is only used internally by the library, so this generality is not
needed. We have not used any form of compression to reduce the space needed to store
the profile records, since it has not been necessary for the test cases we have tried. It
is possible that a need for space optimisation will be found when very large attribute
grammars are profiled. If space usage becomes a serious problem, an on-the-fly ap-
proach could be the solution, where aggregation is performed as events are generated
rather than at the end of the execution.

Events are time-stamped using the JVM java.lang.System.nanoTime method
which has nanosecond precision. As in all profiling systems, the measured times vary
from run to run depending on the machine load, but the relative times are stable. Precise
nanosecond times are unlikely to be very useful since they present too much detail, so
the profiler reports times in millisecond units.

Profiles that use intrinsic dimensions can be generated directly from the profile
records. Derived dimensions can be added by overriding the default implementation
of a library method that looks up dimension values. The method is given the dimension
name and a reference to the profile record. The default implementation simply looks up
the name in the record’s dimension collection. An overriding implementation can return
any value it likes. Sections 4.3 and 4.4 contain examples of derived dimension profiles.

The display of aggregated values can also be customised. By default, the profiler
uses the standard Java toString method to obtain a string representation of a value.
That implementation can be replaced by arbitrary code. For example, we could display
subject trees using a pretty-printer instead of using the default representation. Since
these sorts of values can take up a significant amount of space, they are unlikely to fit in
the profile report tables. The report writer automatically detects when the value strings
will not fit. Each such value is allocated a reference number which is used in the table.
The actual value string is printed with the reference number below the table.

3.4 Performance

The performance of a profiling library is not important in production, but can make a
difference to the efficiency of the development process. To explore the performance of
our implementation, we conducted some experiments using an attribute grammar that
is much bigger than the PicoJava one. The Kiama Oberon-0 example was developed for
the tool challenge associated with the 2011 Workshop on Language Descriptions, Tools
and Applications. Oberon-0 is the imperative language subset of the Oberon family of
languages and was originally described by Wirth [28]. The challenge compiler parses
and analyses Oberon-0 programs, then translates correct ones into equivalent pretty-
printed C code. Our test case was compiling all of our fifty-two Oberon-0 test programs
in a single run of the compiler. None of these programs is very large, but the compiler
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performs more than 32,000 evaluations of fourteen attributes while processing these
files, so it is a serious test of the profiling system.

Running the Oberon-0 compiler on this test with profiling completely disabled takes
about five to six seconds of elapsed time. Adding the event generation code to the
library, but still with no report generation, doesn’t make a difference that is noticeable
when running from the command line. We also modified the program to collect the run-
time for just the core compiler driver, thereby removing the time for other operations
such as class loading. We ran all of the Oberon-0 tests in a single run as before, repeating
the run ten times initially to warm up the virtual machine. Then we ran twenty-four tests,
discarded both the slowest two and the fastest two results to remove any outliers, and
averaged over the remaining twenty measurements. The results showed that the event
generation by itself slows the core of the compiler down by a factor of about 1.4. While
this is a significant difference, the command-line experiment shows that the slowdown
is swamped by the time taken by other operations performed by the program. Thus, we
believe that the instrumentation is practical for gathering data from large test runs.

We also investigated the time taken to produce profile reports. Producing a profile for
the attribute dimension increases the run-time from around eight seconds with profiling
turned on but no report generation, to about twelve seconds with report generation as
well. Adding a second subject dimension increases the total time to over twenty-two
seconds. Most of this time is taken by printing the many tree fragments, which illustrates
that report generation time is highly dependent on the chosen dimensions. We have not
performed any optimisation of the core of the report generator so it is likely that some
improvement could be obtained. Nevertheless, our experiments show that the current
performance is practical for typical interactive uses during development.

4 More Complex Profiles

To further demonstrate the power of our profiling approach and to provide a context for
more detailed discussion, we conclude the core of the paper by considering more com-
plex profiles. In particular, we consider different dimensions that improve our ability
to understand the execution of our attribute evaluators. The profiles are produced from
executions of the PicoJava and Oberon-0 compilers.

4.1 Parameterised Attributes

Parameterised attributes are a powerful feature of modern attribute grammar systems,
but their operation can be opaque since the parameter values are not part of the equa-
tions. Seeing the parameter values that are used can greatly increase understanding and
reveal problems. A profile along the attribute and parameter dimensions shows us ex-
actly which parameters are being used and how often. For example, the PicoJava name
analyser yields the following profile for the attribute localLookup. Parameter values
are optional, so they are shown as either Some(v), representing the value v, or None,
which denotes that a parameter was not used.
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Total Total Self Self Desc Desc Count Count

ms % ms % ms % %

8 22.1 4 11.2 4 11.0 5 2.4 Some(int)

3 9.7 2 5.9 1 3.8 1 0.5 Some($unknown)

0 1.4 0 1.0 0 0.4 3 1.5 Some(BB)

0 0.8 0 0.7 0 0.1 3 1.5 Some(y)

0 0.7 0 0.6 0 0.1 3 1.5 Some(x)

0 0.5 0 0.5 0 0.0 2 1.0 Some(AA)

0 0.2 0 0.2 0 0.0 1 0.5 Some(a)

0 0.2 0 0.2 0 0.0 1 0.5 Some(b)

Quite a lot of time is spent looking up the pre-defined type name int and something
called $unknown. The latter is only looked up once and still manages to take more
time than the lookups of “real” names. An examination of the source code triggered by
this profile reveals that $unknown is the name given to the unknown declaration. As we
observed in Section 2.5, some improvements could be made to the handling of unknown
declarations and apparently this profile shows another symptom. We would also hope
to reduce the time spent looking up pre-defined names.

4.2 Structured Attributes

Kiama has structured attributes that are groups of attributes that are associated with
each other in some way. One kind of structured attribute is a chain, which is inspired
by a similar construct in the LIGA attribute grammar system [13]. A chain abstracts a
pattern of attribution that threads a value in a depth-first left-to-right fashion throughout
a tree. The idea is that the system provides the default threading behaviour and the
attribute grammar writer can customise the equations at various places in the tree to
update the chain value. Kiama chains are implemented by a pair of attributes: one to
calculate the value of the chain that comes in to a node from its parent, and one to
calculate the value that goes back out of the sub-tree to the parent. The developer can
provide functions to transform the incoming value as it heads into a sub-tree or as it
leaves the sub-tree.

The Oberon-0 attribute grammar uses a chain to encode an environment that prop-
agates symbol information from declarations to uses. Declarations add information to
the chain and uses of names access the chain to look up information. This approach
contrasts with the name analysis approach used in the PicoJava example where parame-
terised attributes are used to search for the declaration information to bring it to the uses
where it is needed. Profiles can help us compare these two approaches to this problem.
We can profile the PicoJava name analyser along the attribute and parameter dimen-
sions to assess the overhead of looking up each name individually. We can profile the
environment attribute in the Oberon-0 compiler to find out the costs of propagating it.

4.3 Derived Dimensions

All of the profiles we have seen so far use the intrinsic dimensions whose values are
already present in profile records. A powerful extension is to produce profiles based on
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dimensions that are derived from the profile records. Derived dimensions summarise
the execution in any way we like, including in ways that are specific to the application.

For example, suppose that we are interested in knowing where the attribute evalu-
ations occur within the tree. We might wish to know whether particular attributes are
evaluated more at boundary nodes (the root and the leaves) or at the other (inner) nodes.
The profile records do not have an intrinsic dimension that gives us this information di-
rectly, but we can calculate this new location dimension from the subject dimension.

A simple implementation of the location dimension suffices to return one of the
strings “Root”, “Inner” or “Leaf”, depending on the location of the subject tree node
within the tree. Here is a typical profile that results from using the attribute dimension
with this new location dimension. We show the profile for the input half of the environ-
ment chain from the Oberon-0 attribute grammar.

Total Total Self Self Desc Desc Count Count

ms % ms % ms % %

185 26.5 52 7.5 132 18.9 3237 10.0 Leaf

133 19.0 44 6.3 89 12.8 5455 16.8 Inner

58 8.3 58 8.3 0 0.0 81 0.3 Root

The profile shows that this particular attribute is evaluated quite a lot at the leaves, which
we would expect since the names reside at the leaves and attribution associated with
them is the primary client of the environment. Evaluation at inner nodes is necessary
to transport the environment from the declarations where it is established to the leaves.
The many evaluations at the root are more of a mystery, since we would expect to
only determine an incoming environment at the root once for each input program, since
that value just contains pre-defined names. (Recall that there are fifty-two programs in
the full Oberon-0 test suite.) Examination of the compiler implementation shows that
attributed trees are transformed and the transformed trees are sometimes re-attributed,
so this repeated evaluation at a root location also makes sense. Some of the programs
only have one root evaluation as they are erroneous and are not translated.

Location is a very simple derived dimension but the idea can be taken as far as nec-
essary to reveal just those aspects of the execution needed to diagnose a problem or to
expose the way that some attribution works. A particularly powerful application of de-
rived dimensions is custom views of attribute values. We can create dimensions to show
the values aggregated according to any useful criteria. For example, an attribute might
hold a pretty-printed version of some part of the tree. We could aggregate evaluations of
that attribute along a dimension that calculates the number of lines in the pretty-printed
text. A profile along this derived dimension would allow us to analyse the impact of the
complexity of the pretty-printing task on the run-time.

4.4 Attribute Dependencies

It is sometimes desirable to examine the dynamic dependencies that are induced by the
application of the attribute equations to a particular input. Dynamic dependencies reveal
exactly how the attributes depend on each other in a particular execution. In contrast,
static dependencies that can be obtained by examining the equations themselves are an
over-approximation of the dependencies that are actually used.
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Kiama’s depends-on derived dimension aggregates attribute evaluations according
to the attributes on which they directly depend.2 For example, here is a profile along
the attribute and depends-on dimensions for the idntype attribute from the Oberon-
0 compiler. The idntype attribute holds the type of an identifier use. (We omit the
timings from this table and just show the bucket counts to save space.)

754 2.3 IdnUse(@).entity, NamedType(?).deftype

155 0.5 IdnUse(@).entity

13 0.0 IdnUse(@).entity, IntExp(?).tipe

22 0.1 IdnUse(@).entity, RecordTypeDef(?).deftype

4 0.0 IdnUse(@).entity, AddExp(?).tipe

24 0.1 IdnUse(@).entity, ArrayTypeDef(?).deftype

1 0.0 IdnUse(@).entity, DivExp(?).tipe

1 0.0 IdnUse(@).entity, IdnExp(?).tipe

Each row of this table reports a particular pattern of dependence. For instance, the first
line says that in 754 cases the attribute depended on the entity attribute of an IdnUse

node and the deftype attribute of a NamedType node. The parenthesised characters
after the node types indicate where the given node was in the tree relative to attribute
evaluation node. An at-sign means at the same node and a question mark means at a
node that is not directly connected to the attribute evaluation node.3

The profile reveals a number of things about the calculation of the idntype attribute.
Firstly, each case involves the entity attribute of the same node, which makes sense
since the entity is to what the identifier refers. We find the type in different ways depend-
ing on the kind of entity the name represents. Secondly, on 155 occasions the attribute
does not depend on any other attributes because the type can be obtained directly from
the entity. In the AddExp, DivExp and IdnExp cases the type is obtained from an ex-
pression, which will happen if the named entity is a defined constant. Finally, if the
name refers to some other kind of entity, its type will be determined from the type of its
declaration which will be a ArrayTypeDef.

Profiles of this kind are particularly useful for diagnosing issues with the distribution
of test cases. They are a convenient way to gather statistics about how many instances
of particular circumstances occur in a test run, since only some kinds of expression are
present. For example, from the profile above we might conclude that more test cases
are required to ensure that every possible kind of constant expression is tested. If the
language supports type definitions other than type aliases, record, and array types, we
should add tests for the other cases, since they are missing from the profile.

A dependency profile can be used with node location profiles (Section 4.3) to sum-
marise the pattern of dependence of an attribute with a view to simplifying that at-
tribute’s equations. For example, suppose we find that an attribute only depends on
itself at its parent node or on nothing at the root. This pattern of dependence is common
and can be abstracted out using an attribute decorator [14]. A down decorator takes care

2 Another dependencies dimension considers all transitive dependencies and generates visu-
alisations for display by GraphViz.

3 depends-on profiles can also indicate references to the parent node, to children nodes, or to
the next or previous nodes in a sequence.
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of the transport of the attribute value down the tree from the root to where it is needed.
The developer need only explicitly state the computation that should happen at the root.
Thus, profiling can assist with refactoring of attribute grammars into simpler forms.

5 Discussion and Related Work

The vast majority of previous work in the profiling area has been concentrated on execu-
tion profiles for programs, inspired by systems that include the seminal gprof tool [6].
From the perspective of our work, gprof and descendant tools collect events that cor-
respond to function calls. The call graph of the program corresponds to our descendant
relationship between profile records. Our profile reports are inspired by those of gprof.
We also distinguish between the time taken by an evaluation and those that it uses, as
gprof distinguishes between the time taken by a the caller and the callees.

Our approach is more general, since gprof and similar tools solely use the function
dimension, whereas we show the utility of domain-specific and derived dimensions to
provide different views of the execution. gprof focuses on execution time and function
call counts so issues of efficiency are paramount. In contrast, our flexible dimension-
based approach means that the values themselves are often more important than times.

Abstraction in Profiling Systems. Instead of profiling at the function level, our ap-
proach raises the level of abstraction. Abstraction increases the generality of the profil-
ing system and significantly reduces the size of the collected data compared to instruc-
tion and function-level profilers.

Sansom and Peyton Jones describe a profiler for higher-order functional languages
including Haskell [20]. The execution of higher-order programs, particularly lazy ones,
is not obvious since the compilation process is non-trivial and execution order often
does not correspond clearly to the source code. They allow developers to add “cost
centres” that aggregate data in a program-specific manner. Thus, the source-level profile
data can be lifted to a higher level. In our case, the data is always at a higher level. Their
cost centres are each associated with source code fragments rather than separated into
Start and Finish events as in our approach. Thus, the identification of an abstracted
piece of program execution is more flexible in our approach because the two events do
not have to be associated with the same source code.

Nguyen et al. describe a domain-specific language for automating the regulation of
profile data collection, processing and feedback [17]. The language allows some ab-
straction away from the details of the profile exploration process. However, it is dif-
ferent from our work in that it operates at a low level and is intended for analysing
performance of programs and system kernels in a similar fashion to gprof.

Rajagoplan et al. consider profiling for event-based programs such as graphical user
interfaces [19]. Events in their work are intrinsic to the functioning of the system,
whereas in our work they are solely part of the profiling system. They look for pat-
terns in the events which allows them to abstract away from the execution somewhat,
but they do not consider a general abstraction mechanism.

Systems such as DTrace [16], the Linux Trace Toolkit [29] and the Java Virtual Ma-
chine Tool Interface can be used to collect a large amount of trace data about program
execution. Some customisation of the data collection is usually possible. For example,
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DTrace allows the developer to write custom probes that are inserted and executed ef-
ficiently by the infrastructure. A general event tracing mechanism of this kind could
be used to collect data about attribute evaluation. However, these approaches are quite
heavyweight and have a great deal of machine or system dependence to achieve effi-
ciency. Our work shows that a lightweight, simple approach is sufficient for monitoring
the execution of language processors.

Bergel et al. describe a model-based domain-specific profiling approach [1]. Instru-
mentation code augments domain model code via an existing event mechanism or by
using the host language’s reflection framework. Custom profilers use the information
gathered to display profiles and visualisations that relate directly to domain data and
operations. The reliance on meta-programming features of the framework distinguishes
their approach from ours. We pay the price of having to instrument the attribute gram-
mar library code by hand, but as a result we make no demands on the underlying run-
time. Our profile library is independent of any particular domain and the reports have a
generic format, whereas their profilers are deliberately tailored to particular model code
and particular kinds of observations that they want to make.

Profiling Attribute Grammars. Saraiva and colleagues have investigated the efficiency
of attribute grammar evaluation approaches, notably as part of work to improve the ef-
ficiency of evaluators that are constructed as circular programs [5]. Their experiments
focused on course-grained measures such as heap usage, rather than the kind of fine-
grained analysis considered in this paper. In earlier work, Saraiva compared the perfor-
mance of functional attribute evaluators [21]. He examined properties such as hash table
size, cache misses and the number of equality tests performed between terms for both
full and incremental evaluation of attributes. Some of these measures have analogues
in our approach. The implementation appears to be custom to the particular experiment
rather than a general facility as in our library.

Söderberg and Hedin show how attribute profiles can be used to analyse caching be-
haviour in JastAdd [25]. They calculate an attribute instance graph that is an attribute
dependence graph with evaluation counts on the edges. Edges labelled with counts
greater than one point to attributes for which caching might be advantageous. Their
attribute dependence graph is similar to our collection of profile records and depen-
dency relationships, except that our records are independent of the attribute evaluation
domain. Our use of arbitrary dimensions to extend the power of profiles goes beyond
the aim of Söderberg and Hedin’s work which was to look solely at caching issues.

We developed the Noosa execution monitoring system for the Eli system, including
the attribute grammar component [22]. Noosa is a debugging system, not a profiler, but
it also uses an event-based approach to record information about the execution of a pro-
gram. Noosa doesn’t group events in the same way as the Kiama profiler, since it uses
events primarily to specify domain-specific breakpoints. The focus is on controlling the
execution as it happens rather than on summarising it after it is done. Noosa can be used
to examine the values of attributes of interest with reference to the abstract syntax tree,
but it cannot be used to summarise the execution along other dimensions.
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6 Conclusion and Future Work

We have described a new general approach to domain-specific profiling and its appli-
cation to profiling dynamically-scheduled attribute grammar evaluators. The approach
is easy to implement and its execution overhead is low enough for interactive use. We
have described applications of the profiler to attribute grammar understanding, test case
coverage, and refactoring.

Our current implementation does not handle Kiama’s circular attributes that are eval-
uated until they reach a fixed point. We plan to add support for circular attributes as we
have described for regular and parameterised ones. We will also add dimensions that
enable the operation of the fixed point computation to be examined. For example, a
useful dimension would be the number of times that a circular attribute had to be evalu-
ated before it reached a fixed point. It would also be useful to be able to distinguish the
run-time devoted to each iteration in the computation of a circular attribute.

One direction of future work will be to deploy the profiler for use in other attribute
grammar systems. The approach used with Kiama should easily transfer to other sys-
tems based on dynamic scheduling, but minor modifications should allow it to be used
with other evaluation approaches. For example, a statically-scheduled tree walking at-
tribute evaluator could be instrumented automatically by the scheduler. There might be
scope to add new dimensions, such as one that captures information about node visits.

We also plan to use our framework to investigate applications of profiling other as-
pects of language processing. A student is also working on a user interface for interac-
tive and graphical access to the profiling data.
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Abstract. This paper describes a conservative analysis to detect non-
termination in higher-order attribute grammar evaluation caused by the
creation of an unbounded number of (finite) trees as local tree-valued at-
tributes, which are then themselves decorated with attributes. This type
of non-termination is not detected by a circularity analysis for higher-
order attribute grammars. The analysis presented here uses term rewrite
rules to model the creation of new trees on which attributes will be eval-
uated. If the rewrite rules terminate then only a finite number of trees
will be created. To handle higher-order inherited attributes, the analy-
sis places an ordering on non-terminals to schedule their use and ensure
a finite number of passes over the generated trees. When paired with
the traditional completeness and circularity analyses and the assump-
tion that each attribute equation defines a terminating computation, this
analysis can be used to show that attribute grammar evaluation will ter-
minate normally. This analysis is applicable to a wide range of common
attribute grammar idioms and has been used to show that evaluation of
our specification of Java 1.4 terminates.

1 Introduction

Silver [14] is an extensible attribute grammar system designed to support the
modular specification of languages. Silver specifications define host and exten-
sion concrete syntax as well as domain-specific semantics such as optimizations,
transformations, and error-checking. It has been used to write extensible gram-
mars for mainstream languages such as Java 1.4 [15]. Attribute grammars (AGs)
were introduced by Knuth in 1968 [8] as a means to assign semantics to syntax
trees, by associating tree nodes with named values known as attributes. Once
the parser constructs the program syntax tree, the attribute evaluator evaluates
its undefined instances one at a time. In 1989 Vogt et al. introduced higher-
order attribute grammars (HOAGs) [17] in which syntax trees can be computed
and passed around a syntax tree as attribute values. These trees may also be
decorated with attributes which are then evaluated.

Static analyses of attribute grammars detect problems before evaluation and
ensure that the attribute grammar is well-defined. According to Vogt et al.,
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PR : R −→ X

PX : X −→
local LA :: A = if f(...)
then PA() else Pa(a)

PA : A −→
local LX :: X = PX()

Pa : A −→ a

PR

PX

PA PX PA ...

Fig. 1. A higher-order attribute grammar (specified in [17]) for which tree creation
may not terminate, and an example of a non-terminating tree creation sequence

a well-defined higher-order attribute grammar is one that: is complete so that
every synthesized, inherited and local instance on a node has a definition; is non-
circular so that no attribute value depends on itself, either directly or indirectly;
and has a finite number of new trees created during attribute evaluation. For the
first two conditions, Vogt et al. specify extended versions of Knuth’s tests for
completeness and circularity, which prevents abnormal termination of attribute
evaluation. But unlike with attribute grammars without higher-order attributes,
attribute evaluation for a complete, non-circular HOAG may not terminate since
creating an unbounded number of trees during higher-order attribute evaluation
can lead to non-termination. For example, Fig. 1 gives a grammar (borrowed
from [17]) for which an infinite number of trees may be created. This explains
why Vogt et al. included the third condition in their definition of well-definedness.
(However, “well-defined” is often used to describe grammars that meet only these
first two criteria: completeness and non-circularity. Vogt’s Ph.D. dissertation
adopts this use of the term [16].)

Circularity analysis prevents, among other problems, specifications that would
cause the construction of infinite syntax trees, but it does not prevent the cre-
ation of an infinite number of finite trees, as seen in the example in Fig. 1. Any
analysis to detect the creation of an unbounded number of trees will be conserva-
tive; consider the conditional expression in the example. An analysis to guarantee
that no evaluation sequences exist with infinitely many tree creation steps, com-
bined with the completeness and circularity tests, would be sufficient to ensure
higher-order attribution termination. While Vogt et al. describe a condition re-
quired to ensure non-termination, it does not seem to have been implemented or
evaluated. The analysis presented here is the first, to our knowledge, that uses
the structure of the equations and not just the attribute dependencies imposed
by them in an analysis for termination of tree creation.

In this paper, we fill this gap with a conservative analysis to ensure that
tree creation during attribution terminates. This analysis uses rewrite rules and
non-terminal orderings to model tree construction and check for the possibil-
ity of non-termination of tree construction. The analysis is on a restricted, but
useful HOAG class, and assumes a general evaluation model. We use existing



46 L. Krishnan and E. Van Wyk

r0

t0

n0

r1

t1

n1

r2

t2

n2

r3

t3

n3

r4

t4

n4

r5

t5

n5

Fig. 2. A tree creation sequence from the original tree t0, in which each non-initial tree
ti+1 is created as a local attribute on its predecessor ti at node ni

termination analyses on term rewriting systems to show termination of higher-
order attribute evaluation. The restrictions and the assumption that the gram-
mar is complete and non-circular mean that for any improper evaluation se-
quence, there is an infinite tree creation sequence starting from the original tree,
in which each non-initial tree is created as a local attribute on its predecessor.
In Fig. 1 an example of a non-terminating tree creation sequence is shown for
that example grammar. Fig. 2 shows this diagrammatically; here the tree ti+1

with root node ri+1 is created on node ni of tree ti rooted at node ri. Showing
all such sequences terminate would ensure that evaluation terminates normally.

We define a procedure to generate, for an attribute grammar, a set of rewrite
rules that model local tree creation during attribution, in the absence of inherited
attributes. Thus for each grammar, we generate rules that rewrite trees to the
values of local higher-order attributed trees that may be created during attribute
evaluation. That is, any sub-tree rooted at ni can be rewritten by the rules to
any tree ti+1 that might be the value of one of its local higher order attributes.
In other words,

〈sub-tree rooted at ni〉 =⇒+ ti+1

For example, the (non-terminating) rules generated for the grammar in Fig. 1
are as follows:

{ PX() =⇒ PA(), PX() =⇒ Pa(a), PA() =⇒ PX() }

We can show that for any tree creation sequence arising from the evaluation of
higher-order attributes, we can construct a rewrite sequence of the same length.
Thus if the rules terminate, no infinite tree creation sequence exists. We thus have
a guarantee of termination of tree creation, and thereby of attribute evaluation,
in the absence of higher-order inherited attributes. We use existing tools such as
AProVE [5] to verify that the rules terminate.

The problem of non-terminating higher-order inherited attribute evaluation is
handled by ordering the grammar non-terminals so that the type of each inher-
ited higher-order attribute value is “smaller” than the non-terminal it decorates.
In all other cases of higher-order attribute evaluation, the attribute type is no
“larger” than the non-terminal of the node on which it was created. The existence
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Fig. 3. A tree creation sequence from the original tree t0, in which each non-initial
tree ti+1 is created as a local attribute on its predecessor ti. The sequence consists of
a sequence of sub-sequences marked by the use of inherited attributes.

of such an ordering ensures that the number of higher-order inherited accesses
in any tree creation sequence is finite. An infinite tree creation sequence such as
that shown in Fig. 1 and modeled in Fig. 2 consists of a sequence of tree cre-
ation sub-sequences in which the non-terminals at the roots of the trees in each
sub-sequence, are of the same “size”, as shown in Fig. 3. Within such “constant”
tree creation sub-sequences, the rewrite rules can still be used to model tree
creation, so that if the rules terminate, then every such constant sub-sequence
must terminate. This implies, once again, that no infinite tree creation sequence
exists. Thus if the grammar’s rules are terminating and its non-terminals can be
ordered as desired, then attribute evaluation will terminate.

Contributions and Outline: Our primary contribution is an analysis that de-
tects potential non-termination of tree construction in higher-order attribute
grammars. This analysis is based on rewrite rules and an ordering on grammar
non-terminal symbols to ensure termination of tree construction and is, to the
best of our knowledge, the first of its kind. We also evaluate this analysis on the
ableJ specification [15], an attribute grammar specification for Java 1.4.

This paper is structured as follows. Section 2 presents background mate-
rial on higher-order attribute grammars and describes the restricted class of
grammars handled by the termination analysis. Section 3 describes how non-
termination of attribute evaluation is equivalent to disproving the existence of
infinite local tree creation sequences. Section 4 describes how term rewriting
rules can be used to model tree creation in the absence of higher-order inherited
attributes. Section 5 describes how the analysis handles higher-order inherited
attributes by constructing an ordering on the non-terminals that limits the num-
ber of inherited accesses. A discussion and evaluation are provided in Section 6.
Section 7 describes related work. Finally, Section 8 discusses future work and
concludes.
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2 A Restricted Class of Higher-Order Attribute
Grammars

In this section we describe RHOAGs, the class of higher-order AGs handled by
our termination analysis. The design of this class is driven by two main goals.
First, it is simple enough to conveniently illustrate the main ideas behind the
analysis, but still includes most of Silver’s important features and is expressive
enough to specify rich, complex grammars. Our attribute grammar for Java
1.4, ableJ [15], was converted to this form with a few modest modifications.
Second, the restrictions allow us to reduce the termination problem to that of
disproving infinite local tree creation sequences. Many features in Silver (such as
forwarding [13]) can be translated into this form without a loss of expressivity.

In Fig. 4, we give a formal definition of the attribute grammars in RHOAGs.
As in standard AGs [8], there are restrictions on which attribute occurrences may
be defined on a given production. Synthesized and local occurrences are defined
on their node’s production. Inherited occurrences are defined on the production
of their node’s parent, unless their node is the root of a tree evaluated as a local
attribute. In the latter case, the inherited occurrence is defined on the production
of the local’s parent node on which the local was evaluated.

Unlike standard grammars, definitions and expressions in RHOAGs are fur-
ther restricted in the following ways. There are no inherited occurrences on the
root node, for simplicity. A production may not refer to its own synthesized oc-
currences, or its children’s inherited occurrences; since it computes these values
there is no need to do so. Attributes may only be accessed on a node’s children,
its locals, or its own tree (in the case of inherited attributes). All other kinds
of accesses, such as nested accesses of attributes on attributes, are disallowed
by the syntax, allowing us to isolate the creation of new syntax trees during
evaluation to local attribute evaluation. Functions are primitive and do not take
trees as arguments or return them as results.

We use a number of additional terms and notations that we briefly describe
here. Trees are typically referred to in this analysis by their root nodes, which are
elements of the set N of tree nodes. Attribute instances have the type N×A. We
write n#a for an instance of attribute a on node n in some tree. A tree term or
simply term is a textual representation of a tree that consists of the production
name constructing its root node and the terms of its child trees enclosed in
parentheses and separated by commas. This is similar to the conventions of
algebras and term-algebras. For example, “PR(PX())” is the term denoting the
first tree in Fig. 1. We use term(n) to denote the term representing a tree rooted
at node n. The set of terms is denoted by Term . An attribution of a tree, Γ ,
maps attribute instances to their values. An attribute value may be an element
of the set PV of primitive values, a tree term in Term , a tree node in N , or be
(as of yet) undefined, in which case it is denoted by ⊥.

Fig. 5 gives an informal description of the process of higher-order attribute
evaluation for a given syntax tree t. Attribute evaluation starts with a syntax
tree, usually constructed by a parser, with all of its attribute instances undefined
(⊥). Attribution begins by evaluating attributes whose definitions are constants,
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G = 〈NT, T, P, S〉 is a context-free grammar.

– NT is a set of non-terminals.
– T is a set of terminals.
– P is a set of productions with signatures of the form NT → (NT ∪ T )∗.
– S ∈ NT is a start non-terminal.

AG = 〈G,PT, PV,A,@, F,D〉 is an attribute grammar.

– PT is a set of primitive types.
– PV is a set of primitive values with types in PT .
– A = AS ∪AI ∪ AL is a set of attributes.

• AS is a set of synthesized attributes of type NT ∪ T ∪ PT .
• AI is a set of inherited attributes of type NT ∪ T ∪ PT .
• AL is a set of local attributes of type NT .

– @ ⊆ ((AS ∪AI)×NT ) ∪ (AL × P ) is the occurs-on relation.
– F is a set of primitive functions with type signatures of the form PT ∗ → PT .
– D returns the set of attribute definitions associated with a given production.

For a production p ∈ P with signature X0 −→ X1...Xnp , D(p) contains definitions
of the form

– X0.aS = E where aS ∈ AS , aS@X0

– Xi.aI = E where 1 ≤ i ≤ np, aI ∈ AI , aI@Xi

– l = E where l@p
– l.aI = E where l@p, aI ∈ AI , aI@Li and Li is the type of l

The expressions E on the right-hand sides of these definitions have the form

– Xi where 0 ≤ i ≤ np

– X0.aI where aI ∈ AI , aI@X0

– Xi.aS where 1 ≤ i ≤ np, aS ∈ AS, aS@Xi

– l.aS where l@p, aS ∈ AS, aS@Li and Li is the type of l
– c where c ∈ T
– q(E1, ..., Enq ) where q ∈ P
– f(E1, ..., Enf ) where f ∈ F
– if EC then ET else EE

Fig. 4. Formal definition of the restricted class RHOAG of higher-order AGs

or which depend solely on attributes on terminal symbols (such as lexeme) which
are set by the parser. In each evaluation step, an undefined evaluable occurrence
(i.e., one whose required attribute instances have all been evaluated) is selected
and evaluated. Instances are evaluated one at a time until there are no more un-
defined evaluable attribute instances. If the grammar passes the circularity and
completeness tests, the process will end only when all attribute instances have
been evaluated. We assume that during attribute evaluation, attribute accesses,
function calls and tree-creating steps terminate atomically with valid values.
Conditional expressions are evaluated lazily as expected.
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SET T to { t }.
WHILE there is an evaluable attribute occurrence n#a in a tree in T

– IF a is a synthesized or local attribute

• SET e to n#a’s defining expression e, specified in n’s production.

– ELSE

• SET e to n#a’s defining expression e, specified in n’s parent node’s pro-
duction.

– SET v to the evaluated value of e.
– IF a is a local attribute

• ADD an attributed version of the tree term v to T .
• SET n#a to the root of this tree.

– ELSE

• SET n#a to v.

Fig. 5. An informal description of the process of attribute evaluation process for higher-
order attribute grammars

The semantics of local attribute evaluation is different from the semantics
of other kinds of higher-order attribute evaluation (i.e., synthesized or inher-
ited occurrences). When a local instance is evaluated, the computed tree term
value is converted into a full-fledged syntax tree with its own (undefined) at-
tribute instances. This new tree is added to the set of trees that defines each
evaluation state. Further, new trees are added only as local attributes due to
syntactic restrictions. Attribute evaluation terminates only when all instances
on all trees are defined. When an unbounded number of trees are created there
are an unbounded number of attribute instances. This leads to the type of non-
termination that is detected by the analysis presented here and not detected by
higher-order circularity analyses.

A proper evaluation sequence terminates with a valid attribution to every
attribute instance in the original tree, and any tree created during evaluation.
An improper evaluation sequence either terminates abnormally due to absent
definitions, circularities in attribute definitions, non-terminating function calls,
or other errors in the grammar definition; or does not terminate due to the
creation of an infinite number of trees. Our evaluation model is more general
than most standard evaluators, including Silver’s. This means that for a given
syntax tree, while any attribute evaluation sequence possible in Silver is also
included in this model, there are sequences in this model that are not possible in
Silver. Silver, and other current systems like JastAdd [4] and Kiama [12], use a
demand-driven attribute evaluation algorithm in which only the attribute values
that are needed are computed. The model presented here is simpler but more
general and includes all possible models of attribute grammar evaluation. It is
therefore possible that for an input tree, evaluation is non-terminating in this
model, while it is terminating in Silver.
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3 Reducing Infinite Evaluation to Infinite Tree Creation

We can reduce the problem of guaranteeing termination of attribution to that
of disproving the existence of infinite tree creation sequences.

Theorem 1: For a tree in a complete, non-circular grammar with terminat-
ing functions, if there is an improper evaluation sequence, then there is an
infinite tree creation sequence.

For a complete, non-circular grammar with terminating functions, any evalu-
ation sequence that does not terminate normally contains an infinite number
of local tree creation steps. This is because at every step of a valid evaluation
sequence, either every tree is attributed, or there is an undefined evaluable at-
tribute occurrence (because the definitions are non-circular). This means that
an evaluation sequence that does not terminate normally has an infinite num-
ber of evaluation steps. It must further evaluate an infinite number of attribute
instances, since in every step, an undefined instance is evaluated. As each tree
has only a finite number of attribute instances, an infinite number of trees must
be created via local creation steps.

The syntax trees at each evaluation step can be organized into a tree of trees,
known as the tree of locals (TOL). Each node of a TOL represents a syntax
tree. The root node represents the original program syntax tree. A TOL node’s
child nodes are the local trees that have been created on any of the nodes of its
own syntax tree. A path in a TOL is a tree creation sequence, i.e., a sequence
of trees starting from the program syntax tree, in which each non-initial tree is
the value of a local that has been evaluated on its predecessor. An evaluation
state’s syntax trees can be organized into a TOL since every local is created on
an existing tree and every local is evaluated only once. The TOL of the initial
evaluation state contains one node, labeled with the program syntax tree. The
TOL of each later step either is the same as that of its previous step, or has one
extra node and edge. In every local-evaluating step, a node for the new syntax
tree is added to the TOL, as a child of the TOL node corresponding to the
local’s parent syntax tree. In all other steps, the TOL stays the same, though
the attribution to an instance of an existing syntax tree changes. The sequences
of trees in Fig. 1 and Fig. 2 are tree creation sequences and are paths in the
TOL.

Thus for an evaluation sequence with an infinite number of local tree creation
steps, we can construct an infinite trees of locals, with increasing numbers of
nodes and edges. Each TOL node has a finite number of children, as each syntax
tree has a finite number of AST nodes, each with a finite number of locals.
König’s Lemma states that an infinite tree in which each node has a finite number
of children, has an infinite path. Thus corresponding to an infinite sequence in a
TOLs with increasing numbers of nodes and edges, we can construct an infinite
path of trees starting from the original tree, in which each non-initial tree is



52 L. Krishnan and E. Van Wyk

created as a local on its predecessor. Theorem 1 is proved formally in [9] and is
the topic of much of the rest of this paper.

4 Modeling Tree Creation with Rewrite Rules

We use rewrite rules to model tree creation so that termination of the rewrite
rules implies termination of all tree creation sequences. For a given grammar,
we derive a set of rewrite rules based on the higher-order attribute definitions in
its productions. Each generated rule is of the form p(x1, ..., xnp) =⇒ r where

– p is a production in P with signature X0 −→ X1...Xnp ,
– x1, ..., xnp are rewrite rule variables, and
– the rule’s right-hand side r contains production names, terminal symbols

and rewrite rule variables.

For a production p ∈ P with signature X0 −→ X1...Xnp , we generate a set of
rules of the form { p(x1, ..., xnp) =⇒ r | r ∈ R(e) } for every expression e that
is the RHS of a higher-order definition in D(p). Here R(e) returns a set of rule
right-hand sides for a given higher-order expression e, as defined below:

e R(e)
Xi {xi}

Xi.aS {xi}
X0.aI {INH}
l.aS R(eL) where (l = eL) ∈ D(p)

q(e1, ..., enq ) {q(r1, ..., rnq ) | ri ∈ R(ei), 1 ≤ i ≤ nq}
c {c}

if eC then eT else eE R(eT ) ∪R(eE)

A set of rewrite rules is created for each production in the grammar, based on
its attribute definitions. Each rule has a different RHS based on the RHS of the
higher-order attribute definitions. Explicit tree creation sub-expressions contain-
ing production names, terminal symbols and signature variables are represented
as such in the rules’ right hand sides. Conditional expressions are handled by gen-
erating separate rules for each sub-expression, which means multiple rules may
therefore be generated for a single definition or sub-expression. Accesses to syn-
thesized occurrences on a child are represented by the child’s signature variable.
Accesses to synthesized occurrences on local attributes are replaced by rewrite
sub-terms generated from the local’s definition. Local attributes are thereby in-
lined when generating rewrite rules; this is possible for non-circular attribute
grammars. Function symbols are not present in higher-order sub-expressions.
The rules thus retain production names and the structure of higher-order val-
ues, but do not keep track of the specific attribute instances that are accessed in
each tree-creating expression. They abstract away local attributes, conditional
expressions and specific attribute instance names, to generate a much simpler,
albeit approximate model of the tree creation process. Note that while we gener-
ate rewrite rules for inherited accesses, these are meant to be place-holders. The
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synthesized attribute pp :: String occurs on Stmt, Expr ;

production doWhile s::Stmt ::= s1::Stmt e::Expr {

s.pp = "do " ++ s1.pp ++ " while ( " ++ e.pp ++ " );";

local attribute fs::Stmt = consStmt (s1, while (e, s1));

}

production ifThen s::Stmt ::= e::Expr s1::Stmt {

s.pp = "if ( " ++ e.pp ++ " ) " ++ s1.pp;

local attribute fs::Stmt = ifThenElse (e, s1, emptyStmt ());

}

production while s::Stmt ::= ’while’ ’(’ e::Expr ’)’ s1::Stmt { ... }

production consStmt s::Stmt ::= s1::Stmt s2::Stmt { ... }

production assign s::Stmt ::= id::Id_t ’=’ e::Expr ’;’ { ... }

production ifThenElse

s::Stmt ::= ’if’ ’(’ e::Expr ’)’ s1::Stmt ’else’ s2::Stmt { ... }

production emptyStmt s::Stmt ::= ’;’ { ... }

– doWhile (s1, e) =⇒ consStmt (s1, while (e, s1))
– ifThen (e, s1) =⇒ ifThenElse (e, s1, emptyStmt ())

Fig. 6. A fragment of a higher-order attribute grammar, and the rules generated to
model tree creation during evaluation

rules do not model higher-order inherited attribute evaluation. This is handled
separately as described in Sec. 5.

Fig. 6 shows a fragment of a higher-order attribute grammar, and the rules
generated for its definitions. The left hand side of each rewrite rule is a simple
production pattern consisting of the production name and a variable in each
child slot. It rewrites tree (sub-) terms with that production at the root (the
local’s parent sub-tree) to the evaluated values of local tree terms. Thus the
rules can be used to derive the value of each evaluated local from its parent’s
sub-tree. This means that for any tree creation sequence, we can construct a
rewrite sequence of the same length. Thus if the rewrite rules terminate, then
no infinite tree creation sequence exists. We use existing tools such as AProVE
that check term rewriting systems for termination to see if the generated rules
terminate.

In any tree creation sequence, every non-initial tree can be derived via a non-
empty rewrite sequence, from the sub-tree of its predecessor on which it was
evaluated.

Lemma 1: Given a tree creation sequence t0, t1, t2, ..., if ni ∈ nodes(ti)
is the node on which tree ti+1 with root node ri+1 is evaluated, we have
term(ni) =⇒+ term(ri+1).
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A proof for this theorem is given in [9]. The intuition behind it can be understood
by referring to Fig. 1 and breaking each sequence into two parts, the first term,
and the rest of the sequence generated from that first term by the rewrite rules.
The first term in this generated rewrite sequence represents the tree value after
all conditions in its defining expression have been evaluated. The rules model
conditional expressions by generating multiple rules corresponding to the two
clauses in the expression. The first term thus is a partially evaluated version of
the expression in which all conditions have been evaluated, but in which attribute
instance accesses are not computed and are represented by the sub-trees on which
they are evaluated. This term is derivable from the tree term of the attribute
instance’s defining node, via the one rule that corresponds to the actual value of
the conditional expression. In the first term in the sequence, attribute accesses off
children or locals in the tree’s defining expression are represented by the rewrite
term of the child or local, respectively. Since the generated rules also model the
evaluation of these attribute instances of the child or local tree terms, additional
rewrites can be performed on these sub-terms to generate the actual evaluated
attribute instance value. The fact that these additional rewrites can be performed
to generate the correct value can be shown inductively on the structure of the
defining expression. The inductive assumption is that all previously evaluated
tree values have corresponding valid rewrite sequences from their parent sub-
trees to the created values.

Given that we can construct sequences that derive each tree from its prede-
cessor, we can construct a rewrite sequence that models the entire tree creation
sequence. As each tree is evaluated on a node of its predecessor, the first term
of the rewrite sequence that models this tree creation step is a sub-term of the
predecessor tree. Thus the predecessor tree itself can be rewritten to a term in
which the parent sub-tree is replaced by the local. This new term contains the
new local as a sub-term, and therefore the process can be continued for the next
evaluated local. As the rewrite sequence corresponding to each local’s evalua-
tion is non-empty, we can construct a rewrite sequence to model the entire tree
creation sequence that is at least as long as the tree creation sequence. We can
state this formally as the following theorem (proved in [9]).

Lemma 2: For a tree creation sequence t0, t1, t2, ..., there is a function
R : N −→ Term so that for i > 0, R(ti−1) =⇒+ R(ti).

Thus we have the following theorem for the case in which there are no higher-
order inherited attributes.

Theorem 2: If the rewrite rules generated for a complete, non-circular gram-
mar terminate, no improper evaluation sequence exists, in the absence of
higher-order inherited attributes.
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The proof is by contradiction. By Theorem 1, for any improper evaluation se-
quence for a tree t0, there is an infinite tree creation sequence t0, t1, t2, ... By
Lemma 2, we can define a function R so that for i > 0, R(ti−1) =⇒+ R(ti).
Thus there is an infinite rewrite sequence using the generated rules. Therefore
the rewrite rules are non-terminating, which is a contradiction. Thus, if the rules
terminate, there is no improper evaluation sequence.

5 Ordering Trees to Limit Inherited Accesses in Tree
Sequences

The term rewriting rules described in the previous section cannot model tree
creation in the presence of higher-order inherited attributes. Rules containing
just production names and child variables cannot accurately model tree creation
with inherited attributes. They do not incorporate the contextual information
required to evaluate inherited attributes (attributes on the parent node). Since
we can no longer derive each local from its parent’s sub-tree, Lemma 1 no longer
holds. Therefore, we can no longer construct a rewrite sequence corresponding
to each tree creation sequence, and so Lemma 2 no longer holds.

We present an analysis that checks the grammar for restrictions that ensure
that the number of inherited accesses in a tree creation sequence is bounded.
We have shown above that rewrite rules model tree creation sub-sequences in
which there are no inherited attributes. Thus if the rewrite rules terminate and
the grammar satisfies the restrictions that ensure finite inherited accesses, then
there are no infinite tree creation sequences and hence evaluation terminates.

The restrictions check if there is an ordering 
 on the non-terminals in the
grammar that ensures a finite number of tree creation steps using higher-order
inherited attributes.

Ordering Non-Terminals to Limit Inherited Attribute Accesses: Suppose there
exists a well-founded, reflexive and transitive ordering 
 on the grammar’s non-
terminals that satisfies the conditions enumerated below. Fig. 7 gives a formal
specification of the desired non-terminal ordering.

1. Non-terminal symbols are non-increasing from the root node of a syntax tree
to its leaves. In other words, if there is a production with X as its left-hand
side and a right-hand side containing Y , then X 
 Y .

2. The root non-terminal of any tree value is no larger than the node on which
it was evaluated. Thus, if a local attribute of type Y occurs on a production
with LHS X , then X 
 Y . Similarly, if a synthesized attribute of non-
terminal type Y occurs on X , then X 
 Y .

3. Finally, if an inherited attribute of non-terminal type Y occurs onX , then X
is larger than Y . That is, inherited occurs-on declarations are non-circular.



56 L. Krishnan and E. Van Wyk


 is a relation on NT such that

1. 
 is reflexive.
2. 
 is transitive.
3. � is well-founded.
4. X 
 Y if

(∃p ∈ P . X = lhs(p), Y ∈ rhs(p)) ∨
(∃p ∈ P , l@p . X = lhs(p), Y = typea(l)) ∨
(∃aS ∈ AS . aS@X, Y = typea(aS)).

5. X � Y if ∃aI ∈ AI . aI@X, Y = typea(aI).

Fig. 7. An ordering on a grammar’s non-terminals that ensures that the trees in any
tree creation sequence are non-increasing

where

– X ≈ Y is the same as X 
 Y ∧ Y 
 X .

– X  Y is the same as X 
 Y ∧ ¬ X ≈ Y .

– t1 
 t2 is the same as symbol(t1) 
 symbol(t2). In other words, trees are
compared using their root non-terminals.

Constructing the Desired Non-Terminal Ordering: Below we specify a sound and
terminating procedure that, for a given attribute grammar, attempts to define an
ordering on its non-terminals that satisfies the conditions in Fig. 7. Before doing
so we introduce the following abbreviated notations to specify the conditions
that the constructed ordering must satisfy.

– S(X, Y ) ≡ (∃p ∈ P . X = lhs(p), Y ∈ rhs(p)) ∨
(∃p ∈ P , l@p . X = lhs(p), Y = typea(l)) ∨
(∃aS ∈ AS . aS@X, Y = typea(aS)).

– I(X, Y ) ≡ ∃aI ∈ AI . aI@X, Y = typea(aI).

We need a procedure that constructs an ordering 
 as required by Fig. 7 on a
given attribute grammar’s non-terminals so that for any X,Y ∈ NT , S(X, Y )
implies X 
 Y and I(X, Y ) implies X  Y . Procedure A in Fig. 8 gives such
a procedure.

The intuition behind Procedure A can be understood as follows. For any tree
creation sequence, we can construct a path in GSCC of the nodes that correspond
to the strongly connected components (SCC) of the non-terminal symbols at the
roots of the trees in the sequence. For “non-inherited” tree creation steps, we
either stay at the same SCC node (in those cases in which X ≈ Y ), or move to
another SCC node (in those cases in which X  Y ). For all other tree creation
steps, we move to another SCC node. Thus if the graph has no cycles, then there
can only a finite number of “inherited” tree creation steps.
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Procedure A:

1. Construct a directed graph GNT whose vertexes correspond to the non-
terminals in NT , and with an edge 〈X, Y 〉 if and only if S(X, Y ).

2. Construct a directed graph GSCC whose vertexes correspond to the strongly
connected components (SCC) of GNT , and with an edge 〈SX , SY 〉 if and only
if there exist X ∈ SX and Y ∈ SY where either I(X, Y ), or S(X, Y ) and
¬S(Y, X).

3. If GSCC has cycles, return failure, the required ordering doest not exist.
4. The desired ordering is defined as follows: X 
 Y if vand only if there is a

(possibly trivial) path in GSCC from X’s SCC to Y ’s SCC. Note that this
means that X ≈ Y if and only if X and Y are in the same SCC in GNT .

Fig. 8. A procedure that, for a given attribute grammar, attempts to define an ordering
on its non-terminals that satisfies the conditions in Fig. 7

Lemma 3: The ordering 
 generated by Procedure A for a given attribute
grammar satisfies the conditions in Fig. 7.

As an example, we consider an attribute grammar for a simple imperative lan-
guage. Syntax trees for programs in this language have non-terminals that in-
clude statements (Stmt) which derive expressions (Expr) and types (Type). The
symbol table for looking up variable names is implemented as a higher-order
inherited attribute of type Env that decorates statements and expressions, as
expected. Since Env occurs as an inherited attribute on the non-terminals ap-
pearing in the syntax tree, the algorithm in Fig. 8 computes the following:

Stmt ≈ Expr, Stmt ≈ Type and Stmt  Env (and Expr  Env, Type  Env)

If such a language also allows names to be bound to types, as in the typedef

construct in C, we might add a type environment (TypeEnv) that maps type
names to type representations (TypeRep). If this type environment was an in-
herited attribute on the environment (that would be used to look up type names
that were bound to variables names in Env) then it would add another level to
the ordering of non-terminals, resulting in the following:

Env  TypeEnv and Env  TypeRep and TypeEnv ≈ TypeRep

Proving termination: If such an ordering exists, then every tree created as a
local attribute is no larger (with respect to 
) than the tree on which it was
created. Thus the trees in any tree creation sequence (corresponding to a path
in the tree of locals) are non-increasing, as stated in the following lemma.
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Lemma 4: Assume 
 exists as described in Fig. 7. For any evaluation se-
quence with a tree creation sequence t0, t1, t2, ... we have ti 
 ti+1, for all
i ≥ 0.

We define a constant tree creation sequence as a tree creation sequence in which
there are no steps in which the generated tree is strictly smaller (with respect
to 
) than its parent tree. It is thus a tree creation sequence t0, t1, t2, ... where
t0 ≈ t1 ≈ t2 ≈ ...

Lemma 5: If 
 exists as described in Fig. 7, then for any infinite tree creation
sequence, there exists an infinite constant tree creation sequence.

Since the trees in a constant tree creation sub-sequence are not created using
inherited attribute accesses, we can show that the rewrite rules defined in the
previous section are sufficient to model such sub-sequences.

Lemma 6: For a constant tree creation sequence t0, t1, t2, ..., there is a
function R : N −→ Term so that for i > 0, R(ti−1) =⇒+ R(ti).

The proof of this is similar to that for Lemma 2. The only additional complexity
is that the rewritten terms are “pruned” versions of the actual tree terms, in
which all sub-trees rooted at nodes less than the roots of trees in the constant tree
creation sequence, are replaced by the INH place-holder term. In effect, we ignore
the parts of the tree with non-terminals less than the roots of the trees in the
constant tree creation sequence. This is necessary as the rewrite rules, lacking the
context in which inherited attributes are evaluated, represent inherited accesses
with the placeholder INH. Thus if higher-order inherited attributes are present,
we can no longer generate the actual local trees using the rules. We can prove
inductively that for constant tree creation steps, we can rewrite the pruned
parent sub-tree tree to the pruned new local tree (that is not INH) via a non-
empty rewrite sequence. The full proof is given in [9].

Thus if there exists an infinite constant tree creation sequence, then there
exists an infinite rewrite sequence. So if the rules terminate, then all constant
tree creation sequences terminate. Ordering non-terminals in this way therefore
allows us to limit the number of inherited accesses in a tree creation sequence,
and then use rewrite rules to model the parts of the sequence that do not use
inherited attributes. We thus have the following theorem to show termination in
the presence of higher-order inherited attributes.

Theorem 3: If the rewrite rules generated for a complete, non-circular gram-
mar terminate, and the non-terminals can be ordered as desired, no improper
evaluation sequence exists.
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The proof is by contradiction. By Theorem 1, for any improper evaluation se-
quence for a tree t0, there is an infinite tree creation sequence t0, t1, t2, .... If
the non-terminals can be ordered as required, then for an infinite tree creation
sequence, there is an infinite constant tree creation sequence t′0, t′1, t′2, ..., by
Lemma 5. By Lemma 6, we can define a function R so that for i > 0, R(t′i−1) =⇒+

R(t′i). Thus there is an infinite rewrite sequence using the generated rules. There-
fore the rewrite rules are non-terminating, which is a contradiction. Thus if the
rules terminate, and the non-terminals can be ordered as desired, there is no
improper evaluation sequence.

Proofs of all theorems and their supporting lemmas are given in [9].

6 Discussion and Evaluation

The inspiration for using rewrite rules to model tree creation comes from a
feature in Silver that can be rewritten using standard higher-order attribute
grammars and thus is not part of the RHOAGs class. This feature is forward-
ing [13] and it has some similarities to rewriting in an attribute grammar setting.
To use forwarding, a production in the grammar computes a new syntax tree
and designates it as being “semantically equivalent” to the construct defined by
the production. For example, the doWhile production in Fig 6 creates the local
tree fs that is the translation of a do-while construct, as a sequence of the loop
body and a while-loop with the same condition and body. This encodes the idea
that “doWhile(c) {s}” is equivalent to “s; while(c) {s}”. To use forward-
ing, this production could designate the consStmt(s1, while(e, s1)) tree as
its forwards-to tree. During attribute evaluation, if the “forwarding” production
does not explicitly specify a definition for an attribute that is requested, then
the production “forwards” that attribute query to the semantically equivalent
forwards-to tree. The attribute is evaluated on that tree and returned to the
original forwarding-tree, to be returned as the value of the attribute for the
original query.

The concept of forwarding is useful in extensible language design [15], espe-
cially in avoiding defining attributes that can more easily be defined by trans-
lation to a “core” language. For example, an attribute used to translate this
sample language to machine code may be defined on the while production,
but not on the doWhile production that forwards to the equivalent while-loop
construct described above. In some sense, forwarding is non-destructive rewrit-
ing of the forwarding-tree to the forwarded-to-tree for attribute evaluation. Our
initial interest was in showing that the process of forwarding would eventually
terminate and forwarding’s resemblance to rewriting led us in this direction. For-
warding can be translated away to higher-order attributes if extra “copy” rules
are generated for each missing synthesized attribute equation that was handled
by forwarding. For this analysis, it is possible to do this transformation without
the loss of accuracy. Note that for other analyses, such as for completeness and
circularity, translating away forwarding results in less precise analyses and thus
this is not done for those analyses [13].
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The problem of showing termination, whether for attribute evaluation or term
rewriting systems, is undecidable, so our goal is an approximate solution. To
some extent, it is similar to showing termination of the attribute evaluator pro-
gram written in a programming language such as Haskell or Java. Silver trans-
lates attribute grammar specifications to Java and we could attempt to analyze
that generated code. However analysing such lower-level implementations would
discard much of higher-level domain-specific information about AGs that is use-
ful in the analysis. We desire a simpler abstraction on which to perform anal-
yses such as termination, one that incorporates our domain knowledge of AGs
as well as information gained from our implementations of AG specifications
for real-world programming languages. Our experience with grammars such as
ableJ shows us that sticking to a few simple and reasonable guidelines regard-
ing higher-order attribute definitions, will guarantee termination of higher-order
attribution.

The design of the generated rewrite-rules that model tree creation is guided by
several factors. Since a constantly failing analysis would technically be sufficient
in a conservative analysis, the generated rules must be useful and be able to show
termination of sophisticated grammars such as ableJ. Finally, we must be able
to formally show that the rules are correct for our purposes; if the generated rules
are terminating, then there are no infinite tree creation sequences and therefore
attribution in general terminates. The nature of the problem requires us to walk
a fine line between developing an analysis that is simple enough to be easily
proven correct and efficiently executed, but is not so imprecise that it cannot
show termination for a large class of useful and interesting grammars. In our
experience with ableJ the rules we define satisfy both these conditions.

The termination analysis is conservative, in that there are terminating gram-
mars for which the analysis fails. This follows first from the fact that both
AProVE and the ordering generator are conservative. Further, the constructed
rewrite rules are conservative in how they model tree creation since they derive
more terms than are actually generated during higher-order evaluation. For ex-
ample, attribute instance names are not retained in the sub-terms corresponding
to synthesized attribute accesses. Thus the rules derive sequences corresponding
to the evaluation of every possible higher-order synthesized instance on the child
or in-lined local. Only one of these will correspond to the actual run-time eval-
uation sequence in which a particular attribute instance is evaluated. Similarly,
only one of the rules generated for the conditional expressions in a definition
will model the tree created once all conditions are evaluated. While the rules
are approximate in that they may not be able to show termination for all termi-
nating grammars, they are correct. They can show termination for non-trivial
grammars such as ableJ in a reasonable amount of time.

While the class RHOAG is expressive enough to include grammars similar to
ableJ, there are some grammars and Silver features that are beyond the scope
of our analysis. Firstly, it does not handle certain kinds of attribute definitions
in which the generated tree has the same production name as the defining pro-
duction and the child trees are retrieved via accesses to synthesized attributes
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on child nodes. An example would be a synthesized attribute that stores the
“base” versions of “extended” statements such as the doWhile and ifThen pro-
ductions in Fig. 6. For “base” productions such as while and ifThenElse this
attribute would be constructed with the same production. Unfortunately the
rules we generate for such definitions are always non-terminating and therefore
not useful. Finally, since the analysis assumes that the grammar is non-circular,
it does not handle reference attribute grammars since the circularity problem is
undecidable in that setting.

7 Related Work

In Knuth’s original work on attribute grammars [8] he gave a circularity analysis.
In the attribute grammar community it is not uncommon to extend this anal-
ysis when new features are added to the attribute grammar paradigm. In their
specification of higher-order attribute grammars, Vogt et al. extended Knuth’s
circularity analysis to that setting. In the original work on forwarding the com-
pleteness analysis was combined with the circularity analysis to accommodate
the need to use global attribute dependency information in the completeness
analysis [13,1]. In the case of reference and remote attributes [6,2], it is not
possible to have a precise circularity analysis, as the problem is undecidable [2].

In Vogt et al.’s original paper on HOAGs they define “well-definedness” to
include termination of tree construction and state a lemma [17, Lemma 3.2, page
142] that imposes a condition that would ensure termination of tree construc-
tion. This condition requires that non-terminal attributes (the terminology used
for higher-order attributes) do not appear more than once in a path in their
formulation of trees. This is similar to our imposition of an ordering on non-
terminals for higher-order inherited attributes. But our use of rewrite rules for
local and synthesized higher order attributes is less restricting and allows for a
more precise analysis. In other work [16] they drop this termination requirement
for grammars to be considered “well-defined”.

There is also a trove of related work in the area of program termination for
functional and imperative programming and by necessity we cannot attempt
to cover this area. One track of work began with the work by Lee, Jones and
Ben-Amram[10] on the “size change” principle applied to first order functional
programs. Here, the size of a parameter for each function call must always de-
crease over a domain with a fixed smallest value. This was later extended to
higher-order functional programs [11]. This work was done for call-by-value lan-
guages. While some techniques in these works might also be useful in an analysis
on higher order attribute grammar termination, they are not immediately ap-
plicable since they are designed for imperative or functional programming lan-
guages. We could, in principle, translate the attribute grammar specification to
a functional program [7] (in fact, Silver formerly translated attribute grammar
specifications to Haskell). But as described above, an analysis that uses the do-
main knowledge captured in the attribute grammar constructs is simpler and
the use of such domain knowledge often leads to more precise analyses.
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8 Future Work and Conclusion

There are several possible avenues for future work. First, we will look at relaxing
the restrictions on the class RHOAG of higher-order attribute grammars handled
by our termination analysis. We would like to handle grammars with attribute
definitions that construct trees with the same production name as the attribute’s
production. We would also like to handle grammars that make use of Silver’s
case constructs. Finally we would like to relax the analysis’ and its correctness
proof’s assumptions of grammar non-circularity in order to handle reference
attribute grammars (RAGs).

The rules we generate are simple and do not make full use of the analytical
power of tools such as AProVE. We expect that much simpler analyses could be
used to show termination for the rules generated for most grammars. One possi-
ble approach would be to order productions (based on tree creating definitions)
and then verify that the generated rules satisfy the corresponding recursive path
ordering (RPO) [3]. This would provide a possible avenue for modularizing the
analysis. We expect to be able to specify a modular condition (on extension
specifications) that ensures the existence of the desired production ordering in
the composed grammar. We also expect to be able to specify a modular condi-
tion on extensions that guarantees that the composed grammar’s non-terminals
can be ordered to limit the number of inherited accesses in tree creation se-
quences. Such modular analyses are important in our Silver extensible language
framework, which aims at the development of modular and composable language
extensions.

To conclude, in this paper we described an analysis that checks attribute
grammars for termination of higher-order attribute evaluation. With the higher-
order circularity and completeness tests, this analysis ensures that attribute
evaluation terminates normally. We have implemented this analysis in Silver
and have run this analysis on ableJ, an extensible specification of the Java 1.4
programming language. Future work will include enlarging the class of HOAGs
handled by the termination analysis, and developing a modular version for use
in our extensible language framework.
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Abstract. A metamodel is variously defined as a model of a model, a
definition of a language, a description of abstract syntax, and a descrip-
tion of a domain. It is all of these things and more. Metamodels can be
confusing, and explaining why they are constructed, what you can do
with them, and how they are built can be challenging, especially when
trying to bridge the gap between the modelware and grammarware com-
munities. In this example-driven mini-tutorial, we introduce the key con-
cepts and ideas behind metamodelling and explain why metamodels are
useful, and particularly how they differ from grammar-based approaches
to language development. We give some tips on how grammarware re-
searchers can explain what they do to modelware researchers, and vice
versa, in the spirit of interdisciplinarity and improving collaboration.

1 Introduction

We provide an introduction to metamodelling for grammarware researchers. We
assume that such researchers are comfortable and experienced with defining and
implementing grammars, using Extended Backus-Naur Form (EBNF), parser
generator tools, and grammar-based manipulation of languages (e.g., for com-
pilation, analysis, extraction and comparison). We also assume that these re-
searchers have little to no experience with metamodelling, and may be confused
as to why metamodelling is even done. However, such researchers may be inter-
ested in finding ways to explain their research to modellers, and may seek to
better understand modelling research.

The entry barrier to metamodelling can be quite high, not least because of
the cumbersome ‘metamodel-speak’ terminology (which can be particularly chal-
lenging for non-native English speakers), and the lack of standard definitions. In
this tutorial, we aim to lower the entry barrier.

We start the tutorial, in Section 2, with some basic definitions, illustrated
with very small examples of metamodels, constructed in different languages. In
Section 3 we discuss reasons for constructing metamodels, as well as the key dif-
ferences and similarities between metamodelling and grammar-based approaches.
We also explain a typical metamodelling process, which will help to clarify some
of the key differences between metamodelling and grammar-based approaches to
language design, and briefly note the important standards for metamodelling.
Finally, in Section 4, we present two examples of metamodels and illustrate how
they may be used.

K. Czarnecki and G. Hedin (Eds.): SLE 2012, LNCS 7745, pp. 64–82, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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2 What Is a Metamodel?

Much paper has been expended on definitions of the term metamodel. Some of
the key literature in the area includes Bézivin’s papers on software modernisation
[2] and the classic On the Unification Power of Models [3]. A further influential
reference is Atkinson and Kühne’s Model-Driven Development: a Metamodelling
Foundation [1]. The Object Management Group (OMG) has published numer-
ous standards, including its MDA Foundation Model [8] which provides OMG
definitions of metamodelling. As of yet, there is no consensus among experts on
a precise definition of metamodel, and differences in vocabulary and terminology
across the definitions serves to promote confusion.

Since our purpose is to lower the entry barrier to metamodelling, we adopt a
simple definition, not incompatible with those used by many other researchers,
but expressed in a hopefully clear and unambiguous way.

Definition. A metamodel is a description of the abstract syntax of a language,
capturing its concepts and logic, using modelling infrastructure.

A language (for software or systems engineering) has an abstract syntax, a con-
crete syntax, and a semantics. A language description is a formal expression that
is amenable to processing by software. The concepts captured in a metamodel
are the important terms that the language is defined to express. The logic de-
fines how concepts can be combined to produce meaningful expressions in the
language. The modelling infrastructure is an important element of the definition;
without it, there would be no difference between a metamodel and a grammar.
We will see some examples of modelling infrastructure shortly; this infrastruc-
ture supports the unification principle of metamodelling: that is, models and
metamodels (and indeed operations upon each) are treated uniformly. To put it
simply, metamodels are also models.

Any machine processable language can be given a metamodel, including tex-
tual and visual languages. Let’s look at two small examples.

2.1 Example 1: A Metamodel for Eiffel (a Textual Language)

Consider, firstly, Listing 1.1, which is a part of an object-oriented program writ-
ten in the Eiffel language [13].

Listing 1.1. Fragment of an Eiffel program

class CITIZEN

inherit PERSON

feature {ANY}
spouse: CITIZEN
children , parents: SET[CITIZEN]
single : BOOLEAN is do
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Result := (spouse=Void)
end

feature {BIG GOVERNMENT}
divorce is
require not single
do .. end
ensure single and (old spouse).single

invariant
single or spouse.spouse=Current;
parents.count <= 2

end −− CITIZEN

An EBNF grammar for Eiffel can be found in Eiffel reference books, and the
Eiffel compiler implements various parsing algorithms for Eiffel. However, if we
identify a suitable metamodelling infrastructure, we can also define a metamodel
for Eiffel, describing the important concepts and logic of Eiffel.

For now, it is sufficient to assume that “metamodelling infrastructure” is
some technology that allows entities (holding data) to be defined, related and
instantiated. Thus, for example, an object-oriented programming language might
suffice (this is not completely correct, but it will suffice for now; we clarify this
shortly). The metamodel uses the semantics of the metamodelling infrastructure,
a form of referential semantics of the concepts and logic of languages defined by
the metamodel. For example, the metamodel for Eiffel can be described in Java.
Listing 1.2 gives part of the metamodel, focusing on the important concepts in
Eiffel: classes and features (operations and attributes), invariants and parents.

Listing 1.2. Part of an Eiffel metamodel specified in Java

class EIFFEL CLASS {
public ArrayList<EIFFEL FEATURE> features;
public ArrayList<EIFFEL INVARIANT> invariants;
public ArrayList<EIFFEL CLASS> parents;

}

What does this Java class describe? Firstly, it describes an entity (called EIF-
FEL CLASS) that consists of several public fields. Each field is an ArrayList.
The first field describes the features of EIFFEL CLASS (the Eiffel attributes
and operations), the second the invariants, and the third the parent classes.
The generic parameters of the ArrayLists are important, and are key parts of
the metamodel: they represent descriptions of other important entities in the
metamodel, viz., EIFFEL FEATURE and EIFFEL INVARIANTs. Note that
EIFFEL INVARIANT encodes the concepts and logic of Eiffel invariants, partic-
ularly their abstract syntax; an evaluation function would be needed to evaluate
the invariant on an object state.
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The Java program in Listing 1.2 is a description of the abstract syntax of parts
of the Eiffel language. Describing the abstract syntax is the first step in a meta-
modelling process that leads to the development of a rich modelling language
and toolset (e.g., with semantics, model editing support and interoperability
with other languages). In practice, in developing modelware, describing abstract
syntax is often the only step that’s taken. We present the metamodelling process
later.

Why might we want to create a metamodel for Eiffel? Widely accepted gram-
mars/EBNF, with parsers, exist. Reasons for creating a metamodel include de-
siring to use model management technology and tools (e.g., model refactoring
tools, model merging tools), or to enable interoperation between existing Eif-
fel grammar-based tools with model management tools. Other motivations are
discussed later.

2.2 Example 2: Metamodel for ER Diagrams (a Visual Language)

Now let’s see a second example, a metamodel for a visual language. Often,
when working with databases, we construct data models. A very simple data
model consists of a number of entities, containing attributes, as well as ref-
erences to other entities. We might express data models using some form of
entity-relationship (ER) diagrams. A metamodel for a (simplified) ER diagram
language can be described as shown in Fig. 1. Here, instead of using Java as the
modelling infrastrcture to express the metamodel, we use UML [10].

Fig. 1. A data metamodel in UML

This UML class diagram describes concepts DataModel, Entity, Attribute
and EntityReference. Each concept has a number of attributes (particularly
ones describing names of concepts). The concepts are also related. In particular,
DataModel is composed of zero or more Entity concepts, and an Entity is,
in turn, composed of a number of Attribute concepts. The EntityReference
concept is a little different, in that it refers to exactly one Entity concept (the
arrow without a diamond, pointing at Entity).
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Once again, this metamodel captures the abstract syntax of an ER diagram
language; it says nothing about the concrete syntax or the semantics that the
end-users of the ER language might apply. By decoupling the definition of ab-
stract and concrete syntax, we allow ourselves flexibility in designing and deploy-
ing different concrete syntaxes that conform to the abstract syntax, but also go
only part of the way towards producing something that is helpful to end-users.

There is an important point to note about the example metamodel shown
in Fig. 1: it allows models to be instantiated that we may not want. Consider
the Entity concept; it has a name field. When we construct an ER diagram,
we populate it with a number of entities (each of which are instances of the
Entity concept). Each of these entities must have a name. However, there is
nothing in the metamodel shown in Fig. 1 that requires entities to have unique
names, nothing to prevent us from using the same name for each and every
entity. We probably want to enforce unique entity naming in the metamodel and
language definition. To do this, traditionally we need to augment the description
of abstract syntax with well-formedness rules, i.e., constraints on the metamodel
that prevent ill-formed models from being constructed. If we were using Java
to express a metamodel, we could write a simple method that traversed the
ArrayLists to ensure that all entities had different names. When using UML
concrete syntax to express a metamodel, we typically use the OMG standard
Object Constraint Language (OCL) for this purpose. An example of an OCL
constraint for this metamodel is shown in Listing 1.3. It states that in the context
of any DataModel, names of entities must be unique (there are a number of
different ways to express this).

Listing 1.3. OCL well-formedness rule

context DataModel inv:
self . entity−>collect(name).size() = self . entity . size ()

2.3 Mathematical Definitions

A lightweight yet mathematical definition of metamodel was given in [4]; we
restate it (lightly changed) here. First, we define a notion of a model.

Definition: a model M is a triple (G,Ω, μ) where G is a directed multigraph, Ω
is a reference model associated with a (potentially different) directed multigraph
GΩ, and μ is a mapping function that associates elements of G with nodes of GΩ.

The mapping between model and reference model is called conformance; this
is the fundamental relationship involved in defining metamodels. Models are
said to conform to one or more metamodels. The issue of when models should
conform to a metamodel is one for debate, and typically depends on the tools
that are being used to construct the models. Generally, a model must conform
to a metamodel for a tool to be able to load and process the model.

To understand what follows, it is helpful to remind onesself about the unifi-
cation principle mentioned earlier: a metamodel is also a model.
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The definition given is very broad, and allows arbitrary notions of conformance
to be defined. In practice in MDE, typically only three definitions of conformance
are used.

– Terminal Model: model M is called a terminal model and its reference model
Ω is a metamodel. A classic example of this is where M is a UML class
diagram and Ω is the UML metamodel.

– Metamodel: in this situation, M is itself a metamodel (e.g., the UML meta-
model from the OMG) and its reference model Ω is called a metametamodel.
A classic example of this situation is where M is the UML metamodel and Ω
is MOF, the OMG standard through which metamodels are defined. Ecore
(which is part of Eclipse EMF) is an implementation of a simplified form of
MOF.

– Metametamodel: M is a metametamodel (e.g., MOF or Ecore). How are
these defined, i.e., what is its Ω? Metametamodels are self-defining: that is,
they are used to implement themselves. As such Ω is M . MOF and Ecore are
both self-defining. Interestingly, Ecore in comparison with the UML meta-
model is relatively straightforward (in terms of number of concepts and their
relationships)1.

2.4 Summary

The example metamodels presented in this section, in Java and in UML’s class
diagram syntax, illustrate how to define the abstract syntax of languages using
mechanisms other than EBNF. We return to discussion of the characteristics
of metamodelling infrastructures, as well as the overall metamodelling process,
shortly. Before that, we motivate metamodelling, and address the question why
construct metamodels in the first place? In doing so, we also aim to suggest the
key differences between metamodelling and grammarware.

3 Why Metamodel?

Metamodels are constructed for a number of reasons. A common one is to pre-
cisely describe a language so that tools can be implemented to support that
language (e.g., editors); this of course is also a reason why EBNFs and context-
free grammars are created. Indeed, both grammarware and modelware share a
number of common use cases; some typical grammarware use cases were pre-
sented in [14]. We create metamodels and grammars in order to:

– present and process large amounts of documentation in a structured way;
– generate valid, well-formed text from a variety of input sources (models,

metamodels, programs);

1 This is not the case for MOF, which has a complex relationship with the UML
metamodel, and won’t be discussed further here.
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– enable traceability use cases, where we want to link machine-processable
artefacts (models, programs, grammars, metamodels) to each other and to
external artefacts, such as documentation, web pages, and requirements;

– document and support language evolution over time;
– precisely define languages in a way that allows us to use (software) tools to

check sentences written in the languages;
– compare languages, in terms of their features, their structures, and their

patterns.

What can you do with a metamodel once you have constructed one? There are
a number of possibilities, including the following.

– You can create well-formed models that conform to the concepts and logic
expressed in the metamodel. This is analogous to creating well-formed sen-
tences that conform to an EBNF in grammarware.

– You can transform models that conform to your metamodel into other forms,
e.g., into models that conform to a different metamodel. This is called model
transformation. A classic example of this is transforming a UML class model
into a relational database model. This is roughly analogous to program trans-
formation, but not quite – for reasons we’ll get to shortly.

– You can check that models satisfy desirable (or mandatory) properties. We
have seen one approach to this earlier, when we wrote an OCL constraint
(Listing 1.3). As another example, consider the datamodel metamodel shown
earlier. It allows all kinds of models to be created, except those where two
different entities have the same name. We may want to disallow further mod-
els, for example, ones where names of Entity concepts and EntityReference
concepts are the same. We could express this property as a set of OCL rules
applied to the metamodel, or we could transform our model into another form
that allows such properties to be easily checked (e.g., a theorem prover). This
is roughly analogous to writing a type (or property) checker for an abstract
syntax tree, e.g., using a tree walker; however, in metamodelling the prop-
erty checking generally abstracts away from internal algorithms needed to
traverse trees or data structures.

– You can generate text from models that conform to your metamodel. For
example, you can produce documentation, or code, or web pages. This is
generally distinguished from model transformation as it produces a non-
model artefact (which is also why we said the analogy between model and
program transformation is inexact).

– You can compare models that conform to the same metamodel, or to different
metamodels. Comparison could be done as a precursor to version control on
models, or to highlight differences between models, or as part of a testing
process. Model comparison is roughly equivalent to the process of program
comparison.

3.1 (Meta)modelware versus Grammarware

It appears that what you can do with metamodels you can do with grammars
(and vice versa). At the very least, there are many similarities between the
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two approaches. So what are the key differences between metamodelware and
grammarware? Again, this is a matter of debate, but there are a number of
important differences worth mentioning.

– Trees and Graphs: Metamodelling, and metamodelling infrastructure, is
designed to be applicable to both tree-based languages and graph-based lan-
guages; that is, languages where the abstract syntax is a tree, or a graph.
By contrast, grammarware is best applied to tree-based languages (which
doesn’t mean that you can’t apply grammar technology to graph-based lan-
guages, only that it may be more awkward to do so).

– Abstract vs. Concrete Syntax First: When defining a new language,
the modelware engineer starts with the definition of the abstract syntax of
the language, while the grammarware engineer starts with the definition of
(one of) the concrete syntaxes of the language. The modelware community
generally takes a modelling approach to language definition, starting with a
conceptual model of a language (i.e., abstract syntax). By comparison, the
grammarware community generally (though not exclusively) starts with a
design (concrete syntax).

– Metamodel-Concrete Syntax vs. Grammar-AST: For textual lan-
guages, modelware and grammarware approaches converge as after defining
the abstract syntax of the language (metamodel), the modelware engineer
will also need to define the textual concrete syntax of the language. On the
other hand, after defining the grammar of the language, the grammarware
engineer will need to define the DOM/AST of the language so that any fur-
ther manipulation happens on a semantically rich structure rather than on
a homogeneous concrete syntax tree.

– Standards: In the modelware space, there is a widely accepted de facto
standard for defining the abstract syntax of languages (EMF/Ecore). In the
grammarware world, there is a variety of EBNF-derived grammar definition
languages which are not generally consistent with each other, though there
have been efforts on standardising EBNF [12], which do not seem to have
had the same impact as metamodelling standards.

– EMF Standard Tools: The dominance of EMF as a de facto standard
has lead to the development of a large number of model/DOM management
languages and tools which can work with models conforming to any language
defined using MOF/Ecore, regardless of its concrete syntax(es). Such tools
include model-to-model and model-to-text transformation languages, model
validation and refactoring engines, model comparison and merging tools etc.
In our view, the absence of such a dominating framework for constructing
consistent DOM/AST implementations in the grammarware hampers the
development of such language-agnostic tools.

– Concrete Syntax Tools: Once the abstract syntax of a language is defined
in the modelware world, there is a selection of mature tools that the engineer
can use to develop textual (e.g., Xtext, EMFText), graphical (e.g., GMF,
Graphiti), or hybrid concrete syntaxes for the language. To our knowledge
there are no widely accepted toolkits for developing alternative graphical
syntaxes for textual languages in the GW world.
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– Metamodels as Models: Metamodels and models are unified by their
metamodelling infrastructure, and can generally be treated interchangeably.
To put it another way, by construction, a metamodel can be treated like just
any other kind of model.

This last point is the key one: in Model-Driven Engineering, everything is a
model, including metamodels, the infrastructure upon which metamodels are
defined (we discuss this later), transformations, comparisons, properties, etc.
This unified treatment of the universe of discourse has both advantages and dis-
advantages. For one, it is conceptually elegant: everything is a model, you just
need to understand what type of model it is in order to process it effectively.
Second, it allows remarkably generic and flexible programs to be written that
process models. Third, it removes many of the semantic gaps that arise between
software engineering artefacts. However, there is a price to be paid, including
the inevitable inefficiencies that arise when processing models that have deep
structure, as well as the hidden complexity of models constructed using meta-
modelling infrastructure.

3.2 Metamodelling Process

Metamodelling generally follows a well-defined process that has been developed
over a long time, in particular as a result of the development of UML, as well as
significant experience in building domain-specific languages. The objective of the
metamodelling process is to develop a specification (ideally, but not necessarily,
with supporting tools) for a language. The process is generally iterative, and
is also non-trivial: a complex modelling domain (like object-oriented software)
will invariably lead to a complex modelling language, and hence a complicated
metamodel or set of metamodels. Nevertheless, the process that is followed for
developing a complex metamodel is generally no different than that for a less
complex one. The basic steps, derived from [5], are typically as follows.

1. Select a metamodelling infrastructure (see Section 3.3).
2. Define an abstract syntax using said infrastructure.
3. Define well-formedness rules and any operations on the metamodel.
4. Define one or more concrete syntaxes that conform to the abstract syntax.
5. Define semantics.
6. Define mappings to other languages, e.g., by using transformations.

In language developments, the metamodelling process may end at different steps.
A proof-of-concept or prototype might stop after the second or third step. For
deployment in production, the first five steps might be carried out (for example,
the semantics of the language might need to be defined in order to support exe-
cution or simulation). To support working with legacy/brownfield2 development,
as well as integration with other software development tools, all six steps may
need to be carried out.
2 Greenfield development of software starts from scratch, with no dependence on pre-
vious software/requirements; brownfield development involves consideration and in-
teroperation with existing systems - that is, the usual case in software engineering!
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3.3 Metamodelling Standards and Infrastructure

The first step in the typical metamodelling process is to select a metamodelling
infrastructure. There are a number of standard infrastructures available today.

– The OMG’s metamodelling stack is based on the Meta-Object Facility (MOF)
[9]. MOF is reflective (it defines itself), and is used to define metamodels such
as the UML, as well as many others. The OMG stack is generally called a
four-level stack: at the top of the stack is MOF, which defines metamodels
that sit at the next level of the stack. Below metamodels are models, which
are instances of metamodels. Finally, models themselves can be instantiated,
and these instances are at the bottom of the stack.

MOF is sufficient to define the abstract syntax of languages, but does
not provide native support for, for instance, well-formedness rules. MOF
actually consists of two versions (including Essential MOF and Complete
MOF ) and are generally used in concert with OCL to define well-formedness
rules. UML’s metamodel is defined in terms of MOF and OCL. As of yet, the
OMG does not have a widely accepted standard for defining concrete syntax
or semantics, though some metamodellers use HUTN [7] as a concrete syntax,
and some use UML directly to define the semantics of languages. Work is
underway at the OMG on a Diagram Definition standard to support some
concrete syntax [11]. An implementation of MOF is available via NetBeans,
as its Metadata Repository (MDR).

– The Eclipse Modelling Framework (EMF) supports the Ecore standard,
which is a simplified implementation of MOF. Ecore is the de facto standard
for metamodelling currently, and is used in the Eclipse implementation of
UML, along with many other general-purpose and domain-specific language
tools.

– MetaDepth is a so-called deep metamodelling infrastructure [6]. It avoids
a well-known issue with the OMG metamodelling approach, wherein some
concepts (particularly objects) appear in multiple levels of the stack (objects,
for example, are concepts appearing both in metamodels and models). Other
approaches to avoiding this problem include the Golden Braid architecture
[5].

4 Examples

In this section we briefly present two more examples of metamodels. For the
first example, we present an abstract syntax and a concrete syntax, defined and
implemented using Eclipse’s EMF and GMF. For the second example, we present
both abstract and concrete syntaxes, and brief details of a model transformation
that uses the metamodel to support a real scenario.

4.1 Conference Language

This example presents a domain-specific language for defining schedules for a
conference. The idea is to provide a customised editor for domain-experts (con-
ference managers) who know about important concepts like participants, tracks
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(presentations on a particular theme) and slots where talks can be scheduled
in a track. These domain-experts are not knowledgeable about metamodelling.
The goal is to build a simple editor that supports creation of conference models
that take into account important conference timetabling concepts.

Having decided to use the EMF modelling infrastructure, the next step in
the process of Section 3.2 is to define an abstract syntax. This requires us to
think about the key concepts and structures of a conference timetable. What
are these? There are tracks, consisting of a number of slots into which talks can
be scheduled. Talks have participants (we may need to be sure that we avoid
clashes, as a participant may need to give several talks). There is also the critical
conference session – lunch.

Based on this, we can define an abstract syntax metamodel. In the process of
defining this metamodel, we identify a number of recurring concepts: some con-
cepts have names, and some concepts include timing information. These recur-
ring concepts are extracted and abstracted, using inheritance (which MOF/Ecore
supports).

We implemented our metamodel using the Ecore metamodelling language of
EMF. A graphical view of the metamodel is shown in Fig. 2. The types used for
the fields (EInt and EString) are built-in Ecore types.

Fig. 2. Metamodel, in Ecore’s EMF notation, defining the abstract syntax for Confer-
ence timetabling
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The next step would be to define any well-formedness rules on the abstract
syntax; this could be done using OCL. For example, we may want to state that
each speaker at the conference is a presenter of a talk scheduled in a slot (in
effect, this ensures that we haven’t missed anyone, i.e., that all talks have a
registered speaker who is scheduled into a slot). This could be expressed in OCL
as follows.

Listing 1.4. OCL well-formedness rule for conference timetable

context Conference inv:
self .speakers−>includes(
self .elements−>select(t|Track).slots . talk .presenter)

The next step of the process of Section 3.2 is to define a concrete syntax, based
on the abstract syntax. We typically do this in collaboration with the end-
users/domain-experts. As we have chosen EMF as our metamodelling infras-
tructure, it is sensible to use Eclipse’s Graphical Modelling Framework (GMF)
as a mechanism to define our concrete syntax. We also choose to build a graph-
ical syntax, as conference timetablers may be more comfortable with this. An
example graphical concrete syntax, implemented using Eclipse’s GMF, is shown
in Fig. 3.

This graphical syntax conforms to the abstract syntax of Fig. 2. Indeed, the
Lunch slot (annotated with a food icon) is an instance of the Lunch metaclass;
all other concepts and relationships are instances of abstract syntax concepts.
We have chosen to represent Tracks as rounded rectangles (with calendar anno-
tations), and Slots as dashed rectangles (with clock annotations), for example.

Fig. 3. Conference timetabling concrete syntax
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GMF provides the support needed to specify and implement this concrete syntax
– with substantial effort. In fact, for this editor, we made use of the EuGENia3

toolset to automatically generate the concrete syntax editor from an annotated
version of the abstract syntax of the language that appears in Listing 1.5 (this
time using a textual syntax, as opposed to the graphical syntax of Ecore demon-
strated earlier in Figure 2).

Listing 1.5. Definition of a graphical syntax for the Conference DSL

@namespace(uri=”conference”, prefix=”conference”)
package conference;

@gmf.node(label=”name”)
abstract class NamedElement {
attr String[1] name;

}

@gmf.diagram
class Conference extends NamedElement {
val ConferenceElement[∗] elements;
val Participant[+] speakers;

}

abstract class ConferenceElement {
}

class Track extends ConferenceElement, NamedElement {

@gmf.compartment(layout=”list”)
val Slot [∗] slots ;

}

@gmf.node(border.style=”dash”)
class Slot extends TimedElement {

@gmf.compartment(layout=”list”, collapsible=”false”)
val Talk[1] talk ;

}

class Talk extends NamedElement {

@gmf.link(style=”dash”)
ref Participant [1] presenter ;

}

@gmf.node(label=”name,country”, label.pattern=”{0}, {1}”)
class Participant extends NamedElement {
attr String[1] country;

3 http://www.eclipse.org/epsilon/doc/eugenia/

http://www.eclipse.org/epsilon/doc/eugenia/
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}

@gmf.node(label=”hour,minute”, label.pattern=”{0}:{1} Lunch”)
class Lunch extends ConferenceElement, TimedElement {
}

@gmf.node(label=”hour,minute”, label.pattern=”{0}:{1}”)
class TimedElement {
attr int [1] hour;
attr int [1] minute;

}

To demonstrate the orthogonality between the abstract and concrete syntaxes,
we have also developed a textual syntax for the same language using the EMF-
Text toolkit4. Listing 1.6 demonstrates the model of Figure 3 represented using
this textual syntax.

Listing 1.6. The model of Figure 3 expressed using a textual syntax
CONFERENCE ”TED”

TRACK ”Society” :
AT 09:15 : TALK ”Nurturing creativity” PRESENTED BY ”Elizabeth Gilbert”
AT 10:15 : TALK ”The best stats you’ve ever seen”

PRESENTED BY ”Hans Rosling”
AT 11:15 : TALK ”Are we happy?” PRESENTED BY ”Dan Gilbert”

AT 12:15 LUNCH

TRACK ”Technology” :
AT 13:15 : TALK ”Wii Remote Hacks” PRESENTED BY ”Johny Lee”
AT 14:15 : TALK ”The magic of truth and lies (and iPods)”

PRESENTED BY ”Marco Tempest”
AT 15:15 : TALK ”Why SOPA is a bad idea” PRESENTED BY ”Clay Shirky”

REGISTERED SPEAKERS :
”Elizabeth Gilbert” FROM USA,
”Hans Rosling” FROM Sweden,
”Dan Gilbert” FROM USA,
”Johny Lee” FROM USA,
”Marco Tempest” FROM Switzerland,
”Clay Shirky” FROM USA

To define the concrete syntax, we needed to write an extended grammar that
refers to the abstract syntax of the language, and from this grammar EMF
generated a parser that can parse text that conforms to the grammar to in-
memory models that conform to the abstract syntax of the Conference lan-
guage, and vice-versa, also, it generates IDE tooling such as a sophisticated edi-
tor supporting code completion, syntax highlighting etc. The extended grammar

4 http://www.emftext.org

http://www.emftext.org
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appears in Listing 1.75. It is instructive to reflect between this listing and the
metamodel presented in Fig. 3 (and the corresponding concrete syntax definition,
based on the metamodel, in Listing 1.5).

Listing 1.7. The EMFText grammar defining a textual syntax for the Conference DSL

SYNTAXDEF conference
FOR <conference>

START Conference

OPTIONS {
licenceHeader =”licence.txt”;
reloadGeneratorModel = ”true”;
generateCodeFromGeneratorModel = ”true”;
tokenspace = ”1”;
disableLaunchSupport = ”true”;
disableDebugSupport = ”true”;

}

TOKENSTYLES {
”QUOTED 34 34” COLOR #404040;

}

RULES {
Conference ::=

”CONFERENCE” #1 name[’”’,’”’]
!0 ( !0 elements )∗
!0 ”REGISTERED” ”SPEAKERS” ”:” !0 speakers (”,” !0 speakers)∗;

Participant ::= name [’”’,’”’] #1 ”FROM” #1 country [];

Talk ::= ”TALK” #1 name[’”’,’”’] #1 ”PRESENTED” ”BY” presenter[’”’,’”’] !0;

Track ::= ”TRACK” #1 name[’”’,’”’] ”:” !0 (slots)∗;

Slot ::= ”AT” #1 hour[] #0 ”:” #0 minute[] ”:” #1 talk;

Lunch ::= ”AT” hour[] #0 ”:” #0 minute[] #1 ”LUNCH” !0;
}

Here it is worth stressing that due to the architecture of EMF, programs that
work with Conference models (e.g., to validate them, transform them etc) are
agnostic of the actual concrete syntax in which the models are concretely de-
scribed.

5 Although we have intentionally kept the Conference language – and as a result, its
textual concrete syntax – simple, it should be mentioned that EMFText has been
used to implement the complete textual syntax of Java 5.
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4.2 Proposal Language

Our second example illustrates a task that many academics have encountered –
writing grant proposals. In particular, in European project proposals, there are
numerous tables that have to be produced, summarising the deliverables of the
project, the research milestones, the work packages that break up the project
into parts, the tasks associated with these work packages, and the partners that
carry out these tasks. The information is repeated multiple times in different
ways: summary tables (e.g., capturing all work packages and the effort associated
with the project), task tables for each work package (summarising the tasks and
effort associated with each task and work package), Gantt chart, etc. It is easy
for information to become inconsistent: invariably a significant part of debugging
a project proposal is ensuring that the tables and Gantt chart are consistent.

To help manage project proposals more effectively, we develop a metamod-
elling toolset to support construction of project models that capture the key
details. A single model is used to describe project work packages, tasks, part-
ners, etc., and is used thereafter to automatically generate the content needed
in the project proposal. The content can be inserted into the proposal directly.

We work through this metamodelling example using parts of the process from
Section 3.2. We first present an abstract syntax metamodel, capturing the key
concepts of the domain. This is presented in Fig. 4.

We would next create well-formedness constraints (e.g., that work packages
have distinct names). These are generally straightforward. An important con-
straint might be that the start date of each task is before the end date, and that
each partner leads at least one work package.

Project

name
title

title
type

Work Package
name
ID
country

Partner

title

Deliverable

title
startdate
enddate

Task

1..* 2..*

*

*

*

participants 1..**

taskleader

0..1

*

effort

*

Fig. 4. Project content metamodel
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Listing 1.8. OCL well-formedness rules for proposal system

context Task inv:
self . startdate < self .enddate

context Project inv:
self .workpackage.leader.size () = self .partner. size ()

Now we consider concrete syntax. We choose to use XML as the concrete syntax
of this language. XML is widely used and understood, numerous smart editors
exist to create and validate it, and all our partners were already familiar with
it. Each concept in the abstract syntax is mapped directly to an XML concept.
To illustrate this, Fig. 5 shows a partial model of a European project, including
details of tasks and partners.

From models that are expressed in this modelling language, we can use Model-
Driven Engineering (MDE) techniques and tools to automatically generate the
information that we need for our project proposal. For example, we have im-
plemented MDE transformations that automatically generate Gantt charts (in
LATEX format) that show the main deliverables from the work packages of the
project, shown in Fig. 6. The Gantt chart that is produced by the typesetting
macros is shown in Fig. 7.

From the same project model, we can also automatically generate work pack-
age effort tables, as well as summary tables of deliverables and work packages.
By construction, these are consistent.

Fig. 5. Project instance in XML
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Fig. 6. LATEX macros generated automatically from project model

Fig. 7. Generated Gantt chart

5 Conclusions

We have given an overview of metamodelling, concentrating on small examples
and key lessons for grammarware researchers. In particular, we have tried to high-
light the key differences between building a language via grammars, and build-
ing a language via metamodels. In practice, this involves different technology
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choices, leading to different implications. With metamodelling, the unification
power of modelling is critical: everything (including models and metamodels)
can be treated as models, thus allowing engineers to use and reuse tools and in-
frastructure for multiple purposes. Eclipse is a good example of such flexible and
reusable infrastructure. The downside of metamodelling is its hidden complex-
ity: behind every model, there may be a complex metamodel, but also complex
metamodelling infrastructure, which can make it difficult to understand how
models have been implemented, but also how models and metamodels should
change over time. Nevertheless, the power of metamodelling and its infrastruc-
ture can lead to practical automation of numerous repetitive tasks, using generic
and standardised tools.
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Abstract. The Object Constraint Language is widely used to express
precise and unambiguous constraints on models and object oriented pro-
grams. However, the notion of temporal constraints, controlling the sys-
tem behavior over time, has not been natively supported. Such temporal
constraints are necessary to model reactive and real-time systems. Al-
though there are works addressing temporal extensions of OCL, they
only bring syntactic extensions without any concrete implementation
conforming to the OCL standard. On top of that, all of them are based
on temporal logics that require particular skills to be used in practice.

In this paper, we propose to fill in both gaps. We first enrich OCL by
a pattern-based temporal layer which is then integrated into the current
Eclipse’s OCL plug-in. Moreover, the temporal constraint support for
OCL, that we define using formal scenario-based semantics, connects to
automatic test generators and forms the first step towards creating a
bridge linking model driven engineering and usual formal methods.

Keywords: OCL, Object-oriented Programming, Temporal con-
straints, Eclipse/MDT, Model-Driven Engineering, Formal Methods.

1 Introduction

The Object Constraint Language (OCL) is an expression-based language used to
specify constraints in the context of object-oriented models [2]. It is equivalent
to a first-order predicate logic over objects, but it offers a formal notation similar
to programming languages. OCL may complete the specification of all object-
oriented models, even if it is mostly used within UML diagrams.

The OCL constraints may be invariants that rule each single system state,
or preconditions and postconditions that control a one-step transition from a
pre-state to a post-state upon the call of some operation. Thus, it is not possible
to express constraints of dynamic behavior that involve different states of the
model at different instants. This is essentially due to the absence of the notion
of time and events in OCL. This limitation seems to form the main obstacle
which the use of OCL faces today in the verification and validation areas. The
standard OCL published in [2] does not provide any means of featuring temporal
quantification, nor of expressing temporal properties such as safety or liveness.
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Adding a temporal layer to the OCL language forms a primordial step towards
supporting the automatic verification and validation of object-oriented systems.

In this paper, we propose a temporal extension of OCL that enables mod-
elers/developers to specify temporal constraints on object-oriented models. We
do so by relying on Dwyers ’s patterns [3]. A temporal constraint consists in a
pattern combined with a scope. A pattern specifies the behavior that one wants
to exhibit/avoid, while a scope defines the piece of execution trace to which a
given pattern applies. This allows us to write temporal OCL constraints with-
out any technical knowledge of formalisms commonly used to describe temporal
properties such as LTL or CTL logics. We integrated this extension into the
Eclipse/MDT current OCL plug-in.

In this work, we are also interested in formal methods applied to oriented-
object systems for guiding software testing. Indeed, we will use the temporal
properties that were formally written in our OCL temporal extension, as test
purposes. Test purposes are commonly used to focus on testing particular as-
pects of models, avoiding other irrelevant ones [4,5]. Thinking of functional and
security properties when writing test purposes is a common practice, but it has
not been automated. Despite the interest of test purposes in the process of test
case derivation, the lack of formal methods for their description and tools for
their automatic generation forms one of the serious obstacles which the use of
testing techniques faces today in the industrial areas.

To support test purposes specification, we enrich our language with formal
scenario-based semantics; the behavior to be tested is expressed as a temporal
OCL expression, and then automatically translated into a regular expression.
This latter is generic enough to be used by a large family of generation tech-
niques of test cases from object-oriented models. After its integration into the
Eclipse/MDT current OCL plug-in, our language provides a framework not only
to constrain dynamic behavior of object-oriented systems, but other to generate
functional tests for objects and verify their properties. The language is indeed
used in the validation of smart card product security [1]. It provides a means
to express security properties (provided by Gemalto) on UML specification of
the GlobalPlatform, the latest generation smart card operating system. In this
work [6], the test requirements are expressed as OCL temporal constraints de-
scribed in our proposed language and then transformed into test scenarios. These
are then animated using the CertifyIt tool, provided by the Smartesting com-
pany to generate test cases.1

This paper is organized as follows. Section 2 presents the OCL language while
Section 3 discusses its limitations on the expression of temporal aspects. Sec-
tion 4 recalls the related works. Section 5 describes our proposal for extending
OCL to support time and events. Section 6 provides the formal scenario-based
semantics of our language. Section 7 describes the implementation of the pro-
posed extension in the Eclipse’s OCL plug-in and Section 8 presents the use of
our proposal as a test purpose framework within the TASCCC project. Finally,
Section 9 concludes and presents the future work.

1 www.globalplatform.org, www.gemalto.com, www.smartesting.com

www.globalplatform.org
www.gemalto.com
www.smartesting.com
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2 Object Constraint Language (OCL)

OCL is a formal assertion language, easy to use, with precise and unambiguous
semantics [2]. It allows the annotation of any object-oriented model, even if it is
most used within UML diagrams. OCL is very rich, it includes fairly complete
support for:

– Navigation operators to navigate within the object-oriented model,
– Set/Sequence operations to manipulate sets and sequences of objects,
– Universal/Existential Quantifiers to build first order (logic) statements.

We briefly recall these OCL capabilities by means of an example. The UML
class diagram in Figure 1 represents the structure of a simple software system.
This system has a free memory attribute corresponding to the amount of free
memory that is still available, and the following three operations:

– load(app: Application): downloads the application app given as a parameter.
– install(): installs interdependent applications already loaded. Different ap-

plications can be loaded before a single call of install(), but only applications
having all their dependencies already loaded are installed.

– run(app: Application): runs the application app given as a parameter that
should be both already loaded and installed.

A system keeps references to the previously installed applications using the as-
sociation end-point installed apps. An Application has a size attribute and keeps
references to the set of applications it depends on using the association end-point
dependencies. We will use this illustrative example along this work.

Fig. 1. A model example

Exp 1 describes three typical OCL expressions. The first expression
all apps dependencies installed verifies that every installed application has its
dependencies installed as well. The all dependencies expression is a recursive
function that builds the transitive closure of the (noncyclic) dependencies asso-
ciation. The may install on expression is a boolean function which has a system
as parameter and verifies that installing the application with its dependencies
fits into the system’s free memory.
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1 con tex t System
2 def : a l l a p p s d e p e n d e n c i e s i n s t a l l e d : Boo lean =

s e l f . i n s t a l l e d a p p s−>f o r A l l ( app : A p p l i c a t i o n | s e l f . i n s t a l l e d a p p s−>
i n c l u d e s A l l ( app . dependenc i e s ) )

4 con tex t App l i c a t i o n
5 def : a l l d e p e n d e n c i e s : Set ( A p p l i c a t i o n ) =

s e l f . d ependenc i e s . a l l d e p e n d e n c i e s−>a sSet ( )−> i n c l u d i n g ( s e l f )

7 def : m a y i n s t a l l o n ( s y s : System ) : Boo lean =
8 ( s e l f . a l l d e p e n d e n c i e s − s y s . i n s t a l l e d a p p s ) . s i z e−>sum( ) < s y s . f ree memory

Exp. 1. OCL Expressions

Exp 1 illustrates the OCL ability to navigate the model (self.installed apps,
app.dependencies), select collections of objects and manipulate them with func-
tions (including(), sum()), predicates (includesAll()) and universal/existential
quantifiers (forAll()) to build boolean expressions.

3 OCL Limitations

3.1 OCL is a First-Order Predicate Logic

OCL boolean expressions are first order predicate logic statements over a model
state. They are written with a syntax which is similar to programming languages.
Such OCL expressions are evaluated over a single system state, which is a kind of
a snapshot given as an object diagram at some point in time. An object diagram
is a particular set of objects (class instances), slots (attribute values), and links
(association instances) between objects. For example, an equivalent first order
statement of all apps dependencies installed expression is:

∀s ∈ Sys, ∀a, b ∈ App, (s, a) ∈ Ins ∧ (a, b) ∈ Dep⇒ (s, b) ∈ Ins

where a state (object diagram) is a tuple (Sys,App, Ins,Dep, free, size)

– Sys is the set of System objects
– App is the set of Application objects
– Ins ⊆ Sys×App is the set installed apps links, (s, a) ∈ Ins iff the Application

instance a is installed on the System instance s
– Dep ⊆ App×App is the set dependencies links, (a, b) ∈ Dep iff the Applica-

tion instance a depends on the Application instance b
– free : Sys → N is the function that associates each System instance s to

the amount of free memory available
– size : App → N is the function that associates each Application instance a

to its memory size.

The first order logic allows quantification over finite and infinite domains2 con-
trary to the OCL language which has no free quantification over infinite domains
such as Z or N. Indeed, in OCL, one distinguishes three kinds of domains:

2 Note that the first order logic over the set theory (with possibly many infinite sets)
is undecidable.
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– Set of objects.
– Set of some Primitive Type values.
– Time that is the set of all instants of the model’s life. It corresponds to N if

time is discrete, Q if time is dense or R if time is continuous.

The OCL expressions presented in Exp 1 are typical examples of OCL quantifi-
cation (forAll(), exists()) over sets of objects (e.g. self.dependencies) and sets of
primitive type values (e.g. self.all dependencies.size of PrimitiveType::Integer).
Since these sets are selections/subsets of an object diagram, they are finite by
construction. Hence, there is no limitation to use OCL quantifiers over them.
However, since Time is intrinsically infinite, quantification over it is restricted
within OCL. This last point will be detailed in the next subsections.

3.2 Temporal Dimension

As previously mentioned, the OCL expressions are evaluated over a single system
state at some point in time. But, the OCL language also provides some implicit
quantification over time by means of OCL rules. An OCL rule is a temporal
quantification applied to an OCL boolean expression, and may be an invariant
of a class, a pre- or a post-condition of an operation.

The expression within an invariant rule has be to be satisfied throughout
the whole life-time of all instances of the context class. The first expression in
Exp 2 specifies the invariant which requires, in all system states, a nonempty
free memory and the installation of dependencies of all installed applications.
The precondition and postcondition are used to specify operation contracts. A
precondition has to be true each time the corresponding operation is called, and
a postcondition has to be true each time right after the corresponding operation
execution has terminated. The second expression in Exp 2 describes the rule
that provides the load(app: Application) contract. It requires that the applica-
tion given as a parameter is not already installed and there is enough memory
available to load it. Then, it ensures that the free memory attribute is updated
using the @pre OCL feature.

1 con tex t System
2 i n v : s e l f . f ree memory > 0 and a l l a p p s d e p e n d e n c i e s i n s t a l l e d = t r u e

4 con tex t System : : l oad ( app : A pp l i c a t i o n ) :
5 pre : s e l f . i n s t a l l e d a p p s−>e x c l u d e s ( app ) and s e l f . f ree memory > app . s i z e
6 post : s e l f . f ree memory = s e l f . f ree memory@pre − app . s i z e

Exp. 2. OCL rules

The operation parameters can be used within a pre or a post-condition rule,
but the @pre OCL feature is only used within a post-condition rule. When @pre
is used within the boolean expression of a post-condition rule, it is evaluated
over two system states, one right before the operation call and one right after
its execution. In other words, OCL expressions describe a single system state
or a one-step transition from a previous state to a new state upon the call of
some operation. Therefore, there is no way to make OCL expressions involving
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different states of the model at different points in time. OCL has a very limited
temporal dimension.

To illustrate the temporal limits of OCL, let us consider the following temporal
properties for the example presented in Figure 1:

safety 1: each application can be loaded at most one time
safety 2: an application load must precede its run
safety 3: there is an install between an application loading and its run
liveness: each loaded application is installed afterwards

Such temporal properties are impossible to specify in OCL without at least
enriching the model structure with state variables. In temporal logics [7], we for-
mally distinguish the safety properties from the liveness ones. Safety properties
for bad events/states that must not happen and liveness properties for good
events/states that should happen. As safety properties consider finite behaviors,
they can be handled by modifying the model and adding variables which save
the system history. If we consider the first safety property, one solution is to save
within a new attribute loaded apps the set of applications already loaded, but
not yet installed and then check in the load(app: Application) precondition that
the loaded application is neither installed, nor loaded:

1 con tex t System : : l oad ( app : A pp l i c a t i o n ) :
2 pre : s e l f . i n s t a l l e d a p p s−>e x c l u d e s ( app ) and

s e l f . l o aded apps−>e x c l u d e s ( app ) and s e l f . f ree memory > app . s i z e

Even if specifying complementary temporal OCL constraints must not alter
the model, such case-by-case techniques are of no use when specifying liveness
properties that handle infinite behaviors.

In this work, we are mainly interested in temporal constraints from the tem-
poral logics point of view, when they are ruling the dynamic behavior of systems.
They specify absence, presence and ordering of the system life-time steps. A step
may be a state that holds for a while or an event occuring at some point of time.

3.3 Events

An event is a predicate that holds at different instants of time. It can be seen
as a function P : T ime → {true, false} which indicates at each instant, if the
event is triggered. The subset {t ∈ T ime | P (t)} ⊆ T ime stands then for all time
instants at which the event P occurs. When quantifying time, we need to select
such subsets of T ime that correspond to events. We commonly distinguish five
kinds of events in the object-oriented paradigm:

Operation call instants when a sender calls an operation of a receiver object
Operation start instants when a receiver object starts executing an operation
Operation end instants when the execution of an operation is finished
Time-triggered event that occurs when a specified instant is reached
State change that occurs each time the system state changes (e.g when the

value of an attribute changes). Such an event may have an OCL expression
as a parameter and occurs each time the OCL expression value changes.
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OCL only provides an implicit universal quantification over operation call events
within pre-conditions and a universal quantification over operation end events
within post-conditions. However, it lacks the finest type of events which is state
change. State change events are very simple, but powerful construct. It can
replace other types of events. Suppose we add a chronometric clock that is now
a part of our system. This common practice will create a new object clock within
our system that has a time attribute. Each change of that attribute will generate
a state-change event. A time-triggered event of some specified instant will be
then one particular state-change in which the OCL boolean expression clock.time
= instant becomes true.

To replace operation call, start and end events using the state-change event,
we need to integrate the stack structure within the system model. We do not
recommend this technique that is in contradiction to the model-driven engi-
neering approach because it pollutes the system model with platform specific
information and ruins all the abstraction effort.

3.4 Quantification

OCL has no existential quantification over time or events. For example, the
second safety property we previously proposed needs existential quantification:
it exists a load() operation call that precedes a run() operation call.

The other quantification limitation we identified is that OCL sets its few
temporal quantification constructs within OCL rules, prior to the quantifica-
tion over objects within the OCL expressions. Again, the second safety property
needs quantifying over objects prior to quantifying over time: for all applica-
tion instance app, it exists a load(app) operation call that precedes a run(app)
operation call. We intend to relate the load event of the particular application
app with its run. This quantification order is the way to define the relations we
may need between events.

4 Related Work

Several extensions have been proposed to add temporal constraints to the OCL
language. [8] presents an extension of OCL, called TOCL, with the basic opera-
tors of the common linear temporal logic (LTL). Both future and past temporal
operators are considered. This paper only provides a formal description of the
extension based on Richters ’s OCL semantics [9]. It gives no explanation of how
all presented formal notions can be implemented. In [10,11], authors propose an
extension of OCL for modeling real-time and reactive systems. A general notion
of time and event is introduced, providing a means to describe the temporal
behavior of UML models. Then, OCL is enriched by (1) the temporal operator
@event (inspired by the OCL operator @pre) to refer to the expression value
at the instant when an event occurs, and (2) the time modal operators always
and sometime. [12] proposes a version of CTL logic, called BOTL, and shows
how to map a part of OCL expressions into this logic. Indeed, there is no ex-
tension of OCL by temporal operators, but a theoretical precise mapping of a
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part of OCL into BOTL. [13] provides an OCL extension, called EOCL, with
CTL temporal operators. This extension is strongly inspired by BOTL [12],
and allows model checking EOCL properties on UML models expressed as ab-
stract state machines. A tool (SOCLE), implementing this extension, is briefly
presented with verification issues in mind; however, there is no tool available
at the project site [14]. Similarly, Flake et al. [15] formalize UML Statechart
within the Richters’s OCL semantics and extend OCL with Clocked CTL in
order to provide a sound basis for model-checking. [16] proposes templates (e.g.
after/eventually template) to specify liveness properties. A template is defined
by two clauses: a cause and a consequence. A cause is the keyword after followed
by a boolean expression, while a consequence is an OCL expression prefixed by
keywords like eventually, immediately, infinitely, etc. These templates are formally
translated into observational μ-calculus logic. This paper gave no means to OCL
developers to implement such templates. It only formally addresses some liveness
properties; other liveness and safety properties are not considered. [17] adds to
OCL unary and binary temporal operators such as until and always and [18] pro-
poses past/future temporal operators to specify business components. Both [17]
and [18]’proposals are far from being used in the context of concrete implemen-
tation conforming to the standard OCL [2]. For instance, in [18], an operator
may be followed by user-defined operations (with possible side effects) that are
not concretely in conformance with the standard OCL. Table 1 summarizes the
state of the art and emphasizes the need for a complete approach.

Table 1. Related work

Temporal Event Quantification Formal
Approach Layer Constructs Order Tooling Semantics

Ziemann et al. [8] LTL + past no no no trace semantics

Calegari et al. [10,11] future/past yes no not conforming trace
modal operators to OCL standard semantics

Distefano et al. [12] CTL no no no BOTL

Mullins et al. [13] CTL no no not conforming inspired
to OCL standard by BOTL

Bradfield et al. [16] template clauses no no no observational
(response pattern) μ-calculus

Ramakrishnan et al. [17] future/past no no no no
Conrad et al. [18] modal operators

Flake et al [15] Clocked CTL state-oriented no no trace semantics

Among temporal constraints we have the particular case of timings proper-
ties that are commonly used within the real-time systems development. Timings
are static duration constraints between event occurrences, they are necessary to
specify WCETs (Worst Case Execution Time), deadlines, periods. . . There are
surprisingly many efforts to annotate statically this kind of constraints using
UML profiles. MARTE [19] is an UML extension defining stereotypes (RTSpec-
ification, RTFeature, RTAction) that annotate classes and operations to specify
their timings.
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5 OCL Temporal Extension

After identifying the OCL limitations that are absences of temporal operators,
event constructs and free quantification (see Section 3), and after reviewing most
existing OCL temporal extensions (see Section 4), we give in the following our
contribution about OCL temporal extension:

– A pattern-based language contrary to most of OCL temporal extensions that
are based on temporal logics such as LTL or CTL (see Section 4). The techni-
cality and the complexity of these formalisms give rise naturally to difficulties
even to the impossibility, in some cases, of using them in practice [3];

– Enrichment of OCL by the notion of events that is completely missing in
the existing temporal extensions of OCL;

– A user-friendly syntax and formal scenario-based semantics of our OCL tem-
poral extension (see Section 6);

– A concrete implementation conforming to the standard OCL [2]. In fact, all
the works mentioned in Section 4 only address the way OCL has to be ex-
tended to deal with temporal constraints. The main purpose behind them
was to use OCL in verification areas such as model checking. However, they
did not reach this last step, at least not in practice, due to the absence of con-
crete implementations conforming to the standard OCL [2] of the proposed
extensions.

5.1 Temporal Patterns

Formalisms such as linear temporal logic (LTL) and tree logic (CTL) have re-
ceived a lot of attention in the formal methods community in order to describe
temporal properties of systems. However, most engineers are unfamiliar with
such formal languages. It requires a lot of effort to bridge the semantic gap be-
tween the formal definitions of temporal operators and practice. To shed light on
this obstacle, let us consider the safety 3 property, its equivalent LTL formula
looks like:

�(load ∧ ¬run⇒ ((¬run U (install ∧ ¬run)) ∨ ¬ � run))

It means that each time (�) we have a load, this implies that there will be no
run at least until (U) the install happens or there will be no run at all in the
future (¬�run). To avoid such error-prone formulas, Dwyer et al. have proposed
a pattern-based approach [3]. This approach uses specification patterns that, at
a higher abstraction level, capture recurring temporal properties. The main idea
is that a temporal property is a combination of one pattern and one scope. A
scope is the part of the system execution path over which a pattern holds.

Patterns [3] proposes 8 patterns that are organized under a semantics classi-
fication (left side of Figure 2). One distinguishes occurrence (or non-occurrence)
patterns from order patterns.

Occurrence patterns are: (i) Absence: an event never occurs, (ii) Existence:
an event occurs at least once, (iii) BoundedExistence has 3 variants: an event
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occurs k times, at least k times or at most k times, and (iv) Universality: a state
is permanent.

Order patterns are: (i) Precedence: an event P is always preceded by an
event Q, (ii) Response: an event P is always followed by an event Q, (iii)
ChainPrecedence: a sequence of events P1, . . . , Pn is always preceded by a se-
quence Q1, . . . , Qn (it is a generalization of the Precedence pattern), and (iv)
ChainResponse: a sequence of events P1, . . . , Pn is always followed by a sequence
Q1, . . . , Qn (it is a generalization of the Response pattern as well).

Scopes [3] proposes 5 kinds of scopes (right side of Figure 2): (i) Globally cov-
ers the entire execution, (ii) Before Q covers the system execution up to the first
occurrence of Q, (iii) After Q covers the system execution after the first occur-
rence of Q, (iv) Between Q and R covers time intervals of the system execution
from an occurrence of Q to the next occurrence of R, and (v) After Q until R is
same as the Between scope in which R may not occur.

Property Patterns

Occurrence

Absence

Universality Existence

Bounded
Existence

Order

Precedence

Chain
Precedence

Chain
Response

Response

Q R Q Q R Q

globally

before Q

after Q

between Q and R

after Q until R

Fig. 2. Dwyer’s patterns and scopes

Back to our temporal property safety 3 : there is an install between an appli-
cation loading and its run. It simply corresponds to the Existence pattern (exists
install) combined with the Between scope (between load and run). It is clear that
the patterns of Dwyer et al. dramatically simplify the specification of temporal
properties, with a fairly complete coverage. Indeed, they collected hundreds of
specifications and they observed that 92% of them fall into this small set of pat-
terns/scopes [3]. Furthermore, a complete library is provided [20], mapping each
pattern/scope combination to the corresponding formula in many formalisms
(e.g. LTL, CTL, QREs, μ-calculus).

For these reasons, we adopt this pattern-based approach for the temporal part
of our OCL extension and we bring enhancements to improve the expressiveness:

– Dwyer et al. have chosen to define scopes as right-open intervals that include
the event marking the beginning of the scope, but do not include the event
marking the end of the scope. We extend scopes with support to open the
scope on the left or close it on the right. This adds one variant for both the
Before and After scopes and three supplementary variants for the Between
and After . . . until scopes. We have chosen open intervals as default semantics.

– In Dwyer et al. work, Between and After . . . until scopes are interpreted rel-
ative to the first occurrence of the designated event marking the beginning
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of the scope (Figure 2). We kept this as default semantics and we provide
an option to select the last occurrence semantics.

– To respect the classical semantical conventions of temporal logics, we re-
named the After . . . until scope as After . . .unless. Then to improve the us-
ability, we added the scope When that has an OCL boolean expression as a
parameter and that covers the execution intervals in which this OCL expres-
sion is evaluated to true. The When scope is derived from the After . . . unless
scope as follows:

When P ≡ After becomesTrue(P ) unless becomesTrue(not P )

The becomesTrue event is introduced in Subsection 5.2.
– Order patterns describe sequencing relationships between events and/or

chains of events. The Dwyer et al. semantics adopt non strict sequencing.
For example, A,B (is) preceding B,C in both A,B,C and A,B,B,C execu-
tions. We add features to specify strict sequencing for an order pattern. For
example, A,B (is) preceding strictly B,C only in the A,B,B,C execution.
We provide same constructs to have strict sequencing within one chain of
events, A,B to denote a non strict sequencing and A;B for a strict one.

– In Dwyer et al. work, there is no construct equivalent to the temporal op-
erator Next. For example, A (is) preceding C in both A;C and A;B;C exe-
cutions. We add features to specify the Next temporal operator for an order
pattern. For example, A (is) preceding directly C only in the A;C execution.
The directly feature is a particular case of strict sequencing.

These enhancements are inspired by our needs within the TASCCC project
[1] and the Dwyer ’s notes about the temporal properties that were not sup-
ported [20]. It is obvious that these enhancements improve the requirement cov-
erage (i.e. 92%) shown by Dwyer, but we did not measure it precisely.

5.2 Events

Events are predicates to specify sets of instants within the time line. We discussed
in Section 3 the different types of events in the object-oriented approach. There
are operation (call/start/end) events, time-triggered events and state change
events. We have seen that when integrating the clock into the system, time-
triggered events are particular state change events. Hence, we only need to extend
OCL with the necessary construct for both operation and state change events.

We aim to connect our OCL temporal extension to formal methods such as
model-checking and test scenario generation. Formal methods are mainly based
on the synchronous paradigm that has well-founded mathematical semantics and
that allows formal verification of the programs and automatic code generation.
The essence of the synchronous paradigm is the atomicity of reactions (operation
calls) where all the occurring events during such a reaction are considered si-
multaneous. In our work, we will adopt the synchronous paradigm, and we then
merge the operation (call/start/end) events into one call event, named isCalled,
that leads the system from a pre-state to a post-state without considering neither
observing intermediate change states.
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isCalled: is a generic event construct that unifies both operation events and
state change events. It has three optional parameters:

– op: is the called operation. The keyword anyOp is used if no operation is
specified

– pre: is an OCL expression that is a guard over the system pre-state and/or
the operation parameters. The operation invocation will lead to a call event
only if this guard is satisfied by the pre-state of the call. If it is not satisfied,
the event will not occur even if the operation is invoked.

– post: is an OCL expression that is a guard over the system post-state and/or
the return value. The operation invocation will lead to a call event only if
this guard is satisfied by the post-state of the call.

becomesTrue: is a state change event that is parameterized by an OCL boolean
expression P , and designates a step in which P becomes true, i.e. P was evaluated
to false in the previous state. In the object-oriented paradigm, a state change is
necessarily a consequence of some operation call, therefore the becomesTrue
construct is a syntactic sugar and stands for any operation call switching P to
true (see Figure 3):

becomesTrue(P ) ≡ isCalled(op : anyOp, pre : not P, post : P )

op
√

pre
√

post
√

isCalled(op, pre, post)
√

anyOp

P X P
√

becomesTrue(P )
√

Fig. 3. Events

We also define two generic operators/constructors over events:

Disjunction: ev1 | ev2 occurs when ev1 occurs or ev2 occurs

Exclusion: ev1 \ ev2 occurs when ev1 occurs and ev2 does not

Other operators (Negation, Conjunction, . . . ) can be easily derived:

not(event) ≡ isCalled(anyOp, true, true) \ event

becomesTrue(P1) ∧ becomesTrue(P2) ≡ isCalled(anyOp,¬P1 ∧ ¬P2, P1 ∧ P2)
�= becomesTrue(P1 ∧ P2)

5.3 Quantification

Our OCL extension supports universal quantification over objects prior to quan-
tification over time. The OCL feature let V ariables in can be used within our
OCL extension on the top of temporal expressions (see Section 7.3).
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6 Semantics

Several formal semantics have been provided to describe the OCL language.
These are not given in this paper, only the semantics of our OCL temporal
extension are defined. Interested readers may refer to [2,9].

A test case is a scenario/sequence of operations calls. Since we are inter-
ested in test cases generation, we adopt a scenario-based semantics over the
synchronous paradigm to formally describe our temporal extension. The essence
of that paradigm is the atomicity of reactions (operation calls) where all the
events occurring during such a reaction are considered as simultaneous. A reac-
tion is one atomic call event, that leads the system directly from a pre-state to
a post-state without going through intermediate states.

6.1 Events

We define the set of all atomic events of a given object model as follows:

Definition 1 (Alphabet of Atomic Events). Let O be the set of all op-
erations and E be the set of all OCL expressions of an object model M. The
alphabet Σ of atomic events is defined by the set O× E× E.

An atomic event e ∈ Σ then takes the form: e = (op, pre, post). It stands
for a call of the operation op in a context where pre stands for the precondition
satisfied in the pre-state and post for the postcondition satisfied in the post-state.

We now give the formal meaning of the notion of events introduced in the
grammar presented in Figure 5.

Definition 2 (Events). Let Σ be the alphabet of atomic events, O be the set
of all operations and E the set of all OCL expressions. An event is either an
isCalled(op, pre, post) or becomesTrue(P) where:

isCalled(op, pre, post)={(op, pre′, post′) ∈ Σ | pre′ =⇒ pre, post′ =⇒ post} and

becomesTrue(P ) ={(op, pre, post) ∈ Σ | op ∈ O, pre =⇒ ¬P, post =⇒ P}

Definition 2 calls for the following three comments:

– In our language, the operation op can be replaced by anyOp the set of all
operations as follows:

isCalled(anyOp, pre, post) =
⋃

op∈O

{(op, p, q) ∈ Σ | p⇒ pre, q ⇒ post}
– becomesTrue(P ) is equivalent to isCalled(anyOp,¬P, P ). We keep this prim-

itive to make our language easier to use.
– An event does not represent a single atomic event, but a specific subset

of atomic events. It is intuitively the set of all atomic events in which the
operation op is invoked, in a pre-state which implies the expression pre and
leading to a post-state which implies the expression post. The set of all events
is then defined3 as the set 2Σ .

3 2X denotes the set of all subsets of X.



96 B. Kanso and S. Taha

A disjunction (resp. exclusion) of events is an event. By considering events
as subsets of Σ, the semantics of the disjunction (resp. exclusion) constructor |
(resp. \) over events is given as a simple union (resp. minus) over sets.

Definition 3 (Operators over Events). Let Σ be the alphabet of atomic
events. The disjunction operator | and the exclusion operator \ over Σ
are defined as follows:

| : 2Σ × 2Σ → 2Σ

(E1, E2) �→ E1 ∪E2

\ : 2Σ × 2Σ → 2Σ

(E1, E2) �→ E1 − E2

6.2 Scenarios

We introduce the notion of a scenario, which allows us to interpret our OCL tem-
poral expressions. A scenario σ in a modelM is a finite sequence (e0, . . . , en) ∈
Σ∗ of atomic events. Such a scenario embodies the temporal order between
atomic event triggering, where the notion of time is implicitly specified. In a
scenario (e0, . . . , en), there is a logical time associated to the atomic event e0
which precedes the logical time associated to the atomic event e1, and so on.

In the following, for every scenario σ ∈ Σ∗ of length n, we write σ =
(σ(0), . . . , σ(n− 1)). Thus, σ(i) denotes the atomic event at index i and σ(i : j)
the part of σ containing the sequence of atomic events between i and j.

6.3 Temporal Expressions

We define here the semantics for our temporal expressions that are evaluated
over event-based scenarios.

Definition 4 (Scopes). Let S be the set of scopes defined in the grammar pre-
sented in Figure 5. The semantics of a scope s ∈ S is given by the function
[[s]]s : Σ∗ −→ 2Σ

∗
defined for every σ ∈ Σ∗ of length n as follows:

– [[globally]]s(σ) = {σ}
– [[before E]]s(σ) = {σ(0 : i− 1) | σ(i) ∈ E and ∀k, 0 ≤ k < i, σ(k) �∈ E}
– [[After E]]s(σ) = {σ(i + 1 : n− 1) | σ(i) ∈ E and ∀k, 0 ≤ k < i, σ(k) �∈ E}
– [[between E1 and E2]]

s(σ) = {σ(ik + 1 : jk − 1) |
∀k ≥ 0, ik < jk < ik+1, σ(ik) ∈ E1, σ(jk) ∈ E2,
∀m, ik ≤ m < jk, σ(m) �∈ E2 and ∀l, jk < l < ik+1, σ(l) �∈ E1}

– [[after E1 unless E2]]
s(σ) =

{σ(ik + 1 : jk − 1) | ∀k ≥ 0, ik < jk < ik+1, σ(ik) ∈ E1, σ(jk) ∈ E2,
∀m, ik ≤ m < jk, σ(m) �∈ E2 and ∀l, jk < l < ik+1, σ(l) �∈ E1}

∪ {σ(i : n− 1) | σ(i) ∈ E1, ∀m ≥ i, σ(m) �∈ E2}

Definition 5 (Patterns). Let P be the set of patterns defined in the grammar
presented in Figure 5. The semantics of a pattern p ∈ P is given by the
function [[p]]p : Σ∗ −→ {true, false} defined for every σ ∈ Σ∗ as follows:
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– [[never E]]p(σ)⇔ ∀i ≥ 0, σ(i) �∈ E
– [[always P ]]p(σ)⇔ [[never(isCalled(anyOp, ,¬P ))]]p(σ)
– [[E1 preceding E2]]

p(σ)⇔ ∀i ≥ 0, (σ(i) ∈ E2 ⇒ ∃k ≤ i, σ(k) ∈ E1)
– [[E1 following E2]]

p(σ)⇔ ∀i ≥ 0, (σ(i) ∈ E2 ⇒ ∃k ≥ i, σ(k) ∈ E1)

– [[eventually E α times]]p(σ)⇔ card
({i | σ(i) ∈ E})

⎧⎨
⎩

= k if α = k
≥ k if α = at least k
≤ k if α = at most k

Definition 6 (OCL temporal expressions). The semantics of an OCL
temporal expression (pattern, scope) ∈ P× S over a scenario σ ∈ Σ∗, denoted
by σ � (pattern, scope), is defined by:

σ � (pattern, scope)⇐⇒ ∀σ′ ∈ [[scope]]s(σ), [[pattern]]p(σ′)

Due to the lack of space in this paper, we do not provide the semantics of
all variants of patterns and scopes that we defined in our temporal extension,
interested readers may refer to [21].

7 Integration within the Eclipse/MDT Tool-Chain

7.1 Structure of Eclipse’s OCL Plug-In

The Eclipse/MDT OCL Plug-in [22] provides an implementation of the OCL
OMG standard for EMF-based models. It provides a complete support for OCL,
but we will only focus on some capabilities that are represented and highlighted
in red within Figure 4.

*.oclstdib

*.ocl

*.tocl

inputs

xtext

oclstdib CST

completeOCL
CST

temporalOCL
CST

concrete tree

M2M pivot

abstract tree

validator

evaluator

toTestScenarios

tools

Fig. 4. Eclipse MDT/OCL 4.× with Temporal extension

On the left of Figure 4, there are two Xtext editors that support different as-
pects of OCL usage. The completeOCL editor for *.ocl documents that contain
OCL constraints, and the OCLstdlib editor for *.oclstdlib documents that facili-
tates development of the OCL standard library. This latter is primarily intended
for specifying new functions and predicates to use within OCL expressions.
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In the middle of Figure 4, the architecture of the OCL plug-in is based around
a pivot model. The pivot model isolates OCL from the details of any particular
UML or Ecore (or EMOF or CMOF or etc.) meta-model representation. OCL
expressions can therefore be defined, analyzed and evaluated for any EMF-based
meta-model. Notice that most object-oriented meta-models (e.g. UML) are al-
ready specified within EMF.

From left to right, the Xtext framework [23] is used to transform the OCL
constraints document to a corresponding Concrete Syntax Tree (CST). Then,
using a Model to Model transformation (M2M), it generates the pivot model
which corresponds to the Abstract Syntax Tree (AST). Notice that the CST
and the AST are both defined within the OMG standard [2]. Finally on the
right of Figure 4, the OCL plug-in provides interactive support to validate OCL
expressions through their pivot model and evaluate them on model instances.

As highlighted in blue in Figure 4, we integrated our temporal extension
within the Eclipse/MDT OCL tool-chain with respect to its architecture. We
first extended the OCL concrete grammar to parse *.tocl documents that con-
tain temporal OCL properties. After that, we extended in Ecore both comple-
teOCLCST and pivot meta-models with all the temporal constructs we defined.
We kept both Xtext and M2M frameworks. Finally, in a join work with our
partner LIFC within the TASCCC project, we developed a tool to transform
temporal properties to test scenarios [1,6] (see Section 8).

Due to the lack of space in this paper, we do not give the implementation
details on the temporalOCLCST structure and the pivot extension, but the
temporal OCL plug-in is published with documentation under a free/open-source
license [21].

7.2 Concrete Syntax

We extended the OCL concrete grammar defined within the OMG standard [2]
and implemented it within the Eclipse/MDT plug-in. The syntax of our language
for *.tocl documents is summarized in Figure 5.

TempOCL ::= temp (name)? ‘:’ TempSpec

TempSpec ::= Quantif ? Pattern Scope

Quantif ::= let Variable (‘,’ Variable)* in

Pattern ::= always OclExpression

| never Event
| eventually Event ((at least | at most)? integer times)?
| EventChain preceding(directly | strictly)? EventChain
| EventChain following (directly | strictly)? EventChain

Event ::= CallEvent ( ‘|’ Event)?
| ChangeEvent ( ‘|’ Event)?

EventChain ::= Event (‘,’ Event)*
| Event (‘;’ Event)*

Scope ::= globally
| before Event (‘[’ | ‘]’)?
| after (‘[’ | ‘]’)? Event
| between (‘[’ | ‘]’)? last? Event and Event (‘[’ | ‘]’)?
| after (‘[’ | ‘]’)? last? Event unless Event (‘[’ | ‘]’)?
| when OclExpression

CallEvent ::= isCalled ‘(’ (anyOp | op : Operation)

(‘,’ pre : OclExpression)?

(‘,’ post : OclExpression)? ‘)’

ChangeEvent ::= becomesTrue ‘(’ OclExpression ‘)’

Fig. 5. Grammar of the OCL temporal extension
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In this figure, non-terminals are designated in italics and terminals in bold.
(. . . )? designates an optional part and (. . . )* a repetitive part. Finally, the non-
terminals imported from the standard OCL grammar (e.g. OclExpression) are
underlined. This grammar represents the temporal layer we added to OCL ex-
pressions (temporal patterns, events constructs and support of quantification).
Taking advantage of the integration within the Eclipse/MDT OCL, we devel-
oped, with the help of the Xtext framework, a temporal OCL editor which pro-
vides syntax coloring, code formatting, code completion, static validation (well
formedness, type conformance. . . ) and custom quick fixes, etc. Furthermore,
there is an outline view that shows the concrete syntax tree of the temporal
OCL property on-the-fly (while typing). Figure 6 illustrates a snapshot of the
outline view.

7.3 Examples of Temporal Properties

In Exp 3, the temporal properties we identified in Section 3 are written using
our OCL temporal extension. Due to our grammar, the temporal properties
seem to be written in natural language. They are ruling call event occurrences
with different patterns: following (strict), preceding (non-strict), existence and
boundedexistence that are combined with globally and between scopes. Both
safety 2 and safety 3 properties require quantification over objects prior to tem-
poral operators to specify relations between events. For instance, in safety 2 we
need to specify that the load of an application app must precede the run of the
same application app, and not any other. To do so, we introduced the variable
apptoInstall which allows us to set the same parameter apptoInstall for both
load and run operations.

1 con tex t System
2 temp s a f e t y 1 :
3 e v en tu a l l y i s C a l l e d ( l oad ( app : A pp l i c a t i o n ) ) at most 1 t imes
4 g l o b a l l y

6 temp s a f e t y 2 : l e t a p p t o I n s t a l l : A pp l i c a t i o n i n
7 i s C a l l e d ( l oad ( app : A pp l i c a t i o n ) , pre : app =

a p p t o I n s t a l l )
8 p reced i ng i s C a l l e d ( run ( app : A pp l i c a t i o n ) , pre : app =

a p p t o I n s t a l l )
9 g l o b a l l y

11 temp s a f e t y 3 : l e t a p p t o I n s t a l l : A pp l i c a t i o n i n
12 e v en tu a l l y i s C a l l e d ( i n s t a l l ( ) )
13 between i s C a l l e d ( l oad ( app : A pp l i c a t i o n ) , pre : app =

a p p t o I n s t a l l )
14 and i s C a l l e d ( run ( app : A pp l i c a t i o n ) , pre : app =

a p p t o I n s t a l l )

16 temp l i v e n e s s : i s C a l l e d ( i n s t a l l ( ) )
17 f o l l ow i n g s t r i c t l y i s C a l l e d ( l oad ( app : A p p l i c a t i o n ) )
18 g l o b a l l y

Exp. 3. Temporal OCL constraints

The safety 3 property is not relevant because having an install call between the
load and the run does not ensure that the application will be really installed.
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This will not happen if some dependencies are not loaded. To overcome this,
we propose in Exp 4 two variants of the safety 3 property. The safety 3 v1
property ensures that there is a particular install call, leading to a post-state
where the application is installed. The safety 3 v2 property only specifies that
the application becomes installed independently of any operation call (see the
becomesTrue semantics in Subsection 5.2). It requires any operation call from
a pre-state where the application was not installed to a post-state where it is
installed.

1 temp s a f e t y 3 v 1 : l e t a p p t o I n s t a l l : A p p l i c a t i o n i n
2 e v en tu a l l y i s C a l l e d ( i n s t a l l ( ) ,
3 post : s e l f . i n s t a l l e d a p p s−>i n c l u d e s ( a p p t o I n s t a l l ) )
4 between . . .

6 temp s a f e t y 3 v 2 : l e t a p p t o I n s t a l l : A p p l i c a t i o n i n
7 e v en tu a l l y becomesTrue ( s e l f . i n s t a l l e d a p p s−>i n c l u d e s ( a p p t o I n s t a l l ) )
8 between . . .

Exp. 4. Variants of Safety 3 property

8 Application: Test Purpose Framework

Testing nowadays programs leads naturally to an exponential state space. When
reducing the state space, the testing process derivation may miss test cases of
interest and yield irrelevant ones. Test purposes (test intentions) are viewed as
one of the most promising directions to cope with this limit [4,5]. They are
commonly used to guide the test generation techniques. A test purpose is a
description of the part of the specification that we want to test and for which
test cases are later generated.

Thinking of functional and security properties when writing test purposes is a
common practice, but it has not been automated. We propose to automatically
handle test purposes. We first specify the test purposes as OCL temporal prop-
erties using our extension. Then, we transform them automatically into regular
expressions. This phase was achieved in a join work with our partner LIFC who
generates automatically regular expressions from properties written in our OCL
extension and measures the coverage of the properties [6]. Considering scenario-
based semantics (see Section 6), the regular expressions generated are equivalent
to the OCL temporal expressions from which they are derived. This automatic
transformation is done based on the complete library given by Dwyer et al. [24,3],
mapping each pattern/scope combination to the corresponding formula in many
formalisms such as LTL, CTL, QRegExps and μ-calculus.

We choose regular expressions as an output language because they are generic
enough to be used (with some adaptation) in large family of test generation tech-
niques that are guided by test purposes. For instance, our framework connects
naturally to the combinatorial test generation tool Tobias [25], that unfolds,
in a combinatorial way, tests expressed as regular expressions. Furthermore,
approaches such as [4,5,26] that describe their test purposes manually in the
form of Labeled Transition systems (LTS) or Input-Labeled Transition systems



Temporal Constraint Support for OCL 101

(IOLTS), could easily be targets of our framework. We only need to translate
the regular expressions produced from the OCL temporal expressions into these
two formalisms, which requires a little technical effort.

The first use of this test purpose framework is within the TASCCC project [1]
which aims to automatize testing security properties on smart card products and
experiment it on GlobalPlatform, a last generation smart card operating system.
The process of test generation used in this project consists mainly of five phases:

1. Identifying security properties from the Common Criteria standard4;
2. Writing these security properties using our OCL temporal extension and

based on the GlobalPlatform UML model distributed by Smartesting;
3. Translating the OCL temporal properties into equivalent test scenarios that

are regular expressions over an alphabet of API calls;
4. Transforming the test scenarios into test cases by means of Tobias [25];
5. Animating the generated test cases on the GlobalPlatform. This is performed

by the CertifyIt tool of Smartesting.

Figure 6 is a snapshot of the Temporal OCL editor in which the GlobalPlatform
security properties (extracted from Common Criteria) were entered and the cor-
responding regular expressions were generated. The visible property specifies
that each logical channel must keep secured between the last successful call of
ExternalAuthenticate and a command needing authentication.

Fig. 6. The Temporal OCL editor (GlobalPlatform properties)

9 Conclusion

Although many temporal extensions of OCL exist, they have never been used
convincingly in practice. To cope with this, we have presented a pattern-based ex-
tension of the OCL language to express temporal constraints on object-oriented

4 www.commoncriteriaportal.org

www.commoncriteriaportal.org
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systems. We defined our language with a formal scenario-based semantics to
support the specification of test purposes and their automatic translation into
regular expressions. We also developed this extension and integrated it into the
Eclipse’s OCL plug-in (version 4.×). As regards practical applications, our OCL
extension is used in a test purpose framework dedicated to UML/OCL mod-
els in order to develop strategies to support the automatic testing of security
properties on the smart card operating system GlobalPlatform.

Future work. As previously stated, adding temporal aspects to the OCL language
could be a promising direction to explore model checking techniques. We intend
to connect our language to usual model checking tools inspired by the work
proposed by Distefano et al. in [12].
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Abstract. The increasing application of Model-Driven Engineering in
a wide range of domains, in addition to pure code generation, raises
the need to manipulate models at runtime, as part of regular programs.
Moreover, certain kinds of programming tasks can be seen as model
transformation tasks, and thus we could take advantage of model trans-
formation technology in order to facilitate them.

In this paper we report on our works to bridge the gap between regular
programming and model transformation by enabling the manipulation
of Java APIs as models. Our approach is based on the specification of a
mapping between a Java API (e.g., Swing) and a meta-model describing
it. A model transformation definition is written against the API meta-
model and we have built a compiler that generates the corresponding
Java bytecode according to the mapping. We present several applica-
tion scenarios and discuss the mapping between object-oriented meta-
modelling and the Java object system. Our proposal has been validated
by a prototype implementation which is also contributed.

Keywords: Model-Driven Engineering, Model Transformations, Trans-
formations at Runtime, APIs, Java Virtual Machine.

1 Introduction

Model-Driven Engineering (MDE) is becoming a popular software development
paradigm to automate development tasks via domain-specific languages (DSLs)
and code generation. The application of MDE to more advanced scenarios is
leading to a trend to use models at runtime as part of running systems [4].
The use of models at runtime requires interacting with functionality written
in general-purpose languages (GPL), in particular made available in the form of
APIs. However, there is a gap between model management frameworks and GPLs
that overcomplicate this application scenario. Additionally, we have observed
that certain kinds of programming tasks can be more naturally expressed using
model transformation languages, rather than using GPLs like Java. Hence, we
could take advantage of model transformation technology to facilitate them, but
the lack of proper integration mechanisms hinders this possibility.

The most common approach to bridge the modeling technical space
(also known as modelware) and existing programming APIs is writing ad-hoc
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Fig. 1. (a) Transformation at runtime with an intermediate model representing the
“live” objects. (b) Our approach, where runtime objects are seamlessly seen as models.

programs that map a given model to some API, using the facilities of the under-
lying meta-modeling framework (e.g., generated classes or reflective interfaces
in EMF). Applications of this approach can be found in [5,17], and some auto-
matic mapping tools have been proposed to facilitate this task [11,14,15]. Given
a meta-model that represents the API, models are injected from live objects or
objects are created from a given model. The main issue with these approaches is
that models that imitate the API object structure must be created at runtime
as well, together with the machinery to create or read the runtime objects from
the models, which is inefficient and adds unnecessary complexity. This approach
is depicted in Fig. 1(a).

Instead, in this paper we propose a more direct approach which provides a
better integration of model transformations with programs written using GPLs
(Java in particular), as depicted in Fig. 1(b). In particular, our approach permits
model transformations to use directly Java objects as if they were part of a model,
conformant to a meta-model. This takes the benefits of MDE to the program
level, realizing some aspects of Bertrand Meyer’s Single Product Principle: “The
program is the model. The model is the program” [13], and enabling a better
integration of modeling and programming tasks.

Our approach is based on the specification of a mapping between a Java API
(e.g., Swing) and a meta-model describing it. A model transformation definition
is written against the API meta-model and then compiled into the correspond-
ing Java bytecode according to the mapping. In this way, the integration of Java
programs and model transformation technology is seamless. In this paper, we
present several application scenarios and discuss the challenges involved in map-
ping object-oriented meta-modeling to the Java object system. Our proposal has
been validated by a prototype implementation, which is also contributed.

Paper Organization. Section 2 gives an overview of our approach. Section 3
presents some background and introduces a running example. Section 4 details
our approach to describe APIs by means of meta-models. Section 5 presents more
sophisticated mapping constructs to support different API styles. Section 7 eval-
uates the approach on further examples in different scenarios. Section 8 compares
with related work and Section 9 ends with the conclusions and future work.



106 J. Sánchez Cuadrado, E. Guerra, and J. de Lara

2 Overview

In this section, we identify the requirements and challenges posed by the integra-
tion of modelware and object-oriented programming languages, and introduce
our approach. We will focus on the integration from the perspective of model ma-
nipulations typically performed with model-to-model transformation languages,
and using Java as the target GPL. For simplicity, we will consider the manipu-
lation of object-oriented APIs, although the approach can be generalised to any
kind of object-oriented program.

As explained in the introduction, several approaches exist to bridge the mod-
elware technical space and GPLs, most notably Java [1,3,9,11]. However, a prac-
tical bridge should fulfil in addition the following requirements:

– Non-intrusive. It must not require modifying existing meta-models or exist-
ing APIs (e.g., using manually written annotations).

– Seamless integration. Once transformations are defined, they should be
easily and seamlessly invoked from programs, as black-boxes, using regu-
lar constructs of the GPL. For instance, it should be possible to invoke
a transformation by creating a new transformation object, setting the in-
volved models and calling a run method. This aspect includes integration
at the IDE level as well. And the other way round: model transformation
developers should be able to deal with runtime objects as if they were model
elements, described by a meta-model, using the model transformation lan-
guage normally.

– Efficient. The bridge between Java objects and models should be efficient
from both performance and memory usage point of views. In the ideal case,
it should not require intermediate data structures, so that the model-based
manipulations of Java objects become as efficient as if they were written
using Java code. Such an intermediate representation would hinder some
uses of transformations at runtime, like streaming transformations.

– API style coverage. APIs may provide access to objects in different ways,
being the use of getter and setter methods the simplest one. A practical
bridge should consider the most common access mechanism to cover a wider
range of APIs.

Although some researchers have proposed solutions to bridge models and Java
objects (cf. Section 8), to the best of our knowledge, no existing tool satisfies all
the previous requirements.

2.1 Architecture

The elements of our approach are depicted in Figure 2. In general, a transfor-
mation definition, written in some transformation language, manipulates models
that conform to some meta-models. We extend this pattern to allow a transfor-
mation definition to manipulate objects of a given API as if they were model



Transformations@runtime 107

Fig. 2. Elements of our approach

elements. The underlying idea is to specify an API description model that, from
the perspective of the transformation developer, acts as a meta-model for the
API. This model establishes a mapping between the API and a set of meta-model
elements that are used to write a transformation definition against them.

In our solution, the transformation definition is compiled to an intermediate
language, called IDC (Intermediate Dependency Code), that provides primitive
instructions for model manipulation (see next section for more details). This
compilation step is performed without taking into account whether the transfor-
mation will deal with an API or a regular model. Then, the IDC intermediate
representation is compiled to the Java Virtual Machine (JVM) bytecode format.
At this step, the API description is used by the back-end compiler to generate
bytecode to access Java objects directly (e.g., using method calls). Despite com-
piling a transformation definition to the JVM, our tool relies on the underlying
meta-modeling framework when regular (meta-)models are used, with indirect
access to model elements via a model handler (e.g., EMF Model Handler in the
figure). Please note that this architecture is not specific to Java or the JVM, but
the only requirements are that the underlying programming system be object
oriented and that there is an interoperability mechanism so that the transforma-
tion language can manipulate the runtime objects. For instance, our approach
could be adapted to other virtual machines (e.g., .NET) but also to a compiler
pipeline, such as GCC, by generating compatible object code.

3 Background and Running Example

In this section we provide a running example that will be used throughout the
paper. However, we first outline the technical context of our work, that is, the
Eclectic transformation tool [7], the IDC intermediate language and the Java
Virtual Machine (JVM).

Eclectic is a transformation tool based on the idea of a family of model trans-
formation languages. Instead of having a large language with many constructs,
we provide several small languages, each one of them focused on a specific kind
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Fig. 3. Excerpt of the IDC meta-model

of transformation task. By now, the family is made of: (i) a unidirectional rule-
based mapping language – in the style of the declarative part of ATL [12] – to
specify correspondences between source and target model elements, (ii) a pat-
tern language, (iii) a language for attribute computation, inspired by attribute
grammars, (iv) a template-based, target-oriented language and (v) a language
to orchestrate the execution of the different transformation tasks. Each language
compiles down to the IDC intermediate language, which provides the composi-
tion and interoperability mechanisms. The translation from API descriptions to
JVM bytecode is performed at the IDC level, so that every language of Eclectic
can take advantage of the bridge. For the sake of simplicity, in this paper we will
just use one language of Eclectic: the mapping language.

IDC is a simple, low-level language composed of a few instructions, some
of them specialized for model manipulation. Figure 3 shows an excerpt of its
meta-model. Every instruction inherits from the Instruction abstract metaclass.
Since most instructions produce a result, they also inherit from Variable (via
InstructionWithResult) so that the produced result can be referenced as a variable.
Indeed, we use a simplified form of Static Single Assignment (SSA) to represent
data dependencies between instructions [8], since every generated value is stored
into a uniquely identified variable.

The IDC language provides instructions to create closures, invoke methods,
create model elements and set and get properties (Set and Get in Figure 3),
among others. In IDC, there is no notion of rule, but the language provides a
more general mechanism based on queues. A Queue holds objects of some type,
typically source model elements and trace links. The ForAllIterator receives notifi-
cations of new elements in a queue, and executes the corresponding instructions.
There are two special instructions to deal with queues: Emit puts a new object
into a queue, while Match retrieves an element of a queue that satisfies a given
predicate. If such an element is not readily available, the execution of this piece of
code is suspended into a continuation [6] until another part of the transformation
provides the required value via an Emit.
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Fig. 4. (a) Petri nets meta-model. (b) A small excerpt of the jGraph API.

To some extent, IDC can be considered as an event-based approach to model
transformation. If the transformation is executed in batch mode (i.e., all source
model elements are readily available) then the transformation queues are just
filled at the beginning and the transformation proceeds normally.

IDC transformations are compiled to the JVM. The JVM is a stack-based
virtual machine based on instructions called bytecodes. Interestingly, the JVM
instruction set is statically typed, since it requires detailed type information to
perform operations over objects. For instance, calling a method requires speci-
fiying the name of the class or interface where the method was defined, the types
of the parameters and the return type. We have taken this characteristic into
account in the design and implementation of the bridge between meta-models
and Java classes.

3.1 Running Example

As a motivating example, let us suppose we are using Petri net models con-
forming to the meta-model in Figure 4(a), and we are interested in visualizing
such models for debugging purposes. A possible solution is to use an API like
jGraph1 which allows visualizing graph-like structures and provides automatic
layout capabilities. However, if we address this task using plain Java and EMF,
this would require writing an interpreter that imperatively traverses the model,
keeps track of the cycles and instantiates the jGraph classes.

Instead, with our approach, we build a simple transformation that maps Petri
net concepts (places, transitions and arcs) to jGraph API concepts. In particular,
the excerpt of the jGraph API used in this transformation is shown in Figure 4.
The mxCell class represents a visualizable element. Its setVertex and setEdge meth-
ods identify whether the cell acts as a vertex or as an edge. If it is an edge, the
setSource and setTarget methods can be used to establish connections to other
elements. A cell has an associated Geometry that establishes its size. This value
is compulsory and can be set in the constructor or with the setGeometry method.
For simplicity, we will not consider it until Section 4.3.

1 http://jgraph.com

http://jgraph.com
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1 mapping petrinet2jgraph (in) −> (out)
2 in : ’platform:/resource/example/petrinet.ecore’
3 out : ’platform:/resource/example/jgraph.apidesc’
4

5 from p : in!PetriNet to g : out!Graph
6 g.cells <− p.nodes
7 g.cells <− p.arcs
8 end
9

10 from place : in!Place to cell : out!Cell
11 cell.vertex = true
12 cell.value = place.name

13 end
14

15 from t : in!Transition to cell : out!Cell
16 cell.vertex = true
17 cell.value = t.name
18 end
19

20 from arc : in!Arc to cell : out!Cell
21 cell.edge = true
22 cell.source <− arc.source
23 cell.target <− arc.target
24 end

Fig. 5. Transformation from Petri nets to jGraph with the Eclectic mapping language

Figure 5 shows the corresponding transformation, using the Eclectic mapping
language. Rules establish a mapping between a source type and a target type.
Line 1 declares the transformation name and parameters (input and output
models), whose conforming meta-model is given in lines 2 and 3. Please note
that for out we do not use a regular meta-model, but an API description that
acts as a meta-model. Then, four transformation rules are defined translating
each element of the Petri net into jGraph. The = operator assigns an attribute
value and the ← operator resolves a reference.

This program declaratively specifies the transformation between two data
structures: the Petri net model and the jGraph’s representation of visualizable
graphs. The transformation is defined as if there were models in the source and
target domains; however, the transformation actually produces Java objects in
the target. This is done by including an API description model in place of the
target meta-model. The next section explains how to describe an API.

4 Mapping Meta-models to the Java Object Model

APIs in object-oriented languages are typically formed by a set of classes that
represent the elements of some domain (e.g., widgets in a GUI toolkit). We
propose to establish a mapping between API classes and a meta-model that
describes the structure of the API. Several descriptions may be available for a
given API, perhaps focussing on a different aspect. Describing an API as a meta-
model permits the use of model transformation tools to manipulate the object
graph of the API. An additional advantage is that the meta-model provides a
compact description of the API that simplifies the access to its structure, since it
does not contain behaviour methods (i.e., in contrast to get/set methods, which
are related to the structure).

In this way, a key point of our approach is the mapping between meta-
modeling concepts and object-oriented API concepts. To specify this mapping,
we have built a meta-model called API description. API description models will
drive the bytecode generation phase of our compiler.
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Fig. 6. Core elements of the API description meta-model

The rest of the section explains how APIs are described in our approach. First
of all, we focus on the basic mappings that correspond to basic object-oriented
constructs. Next, we introduce a DSL to specify these mappings. Finally, we deal
with the mapping of constructors.

4.1 Basic Mapping

We have designed the mapping between a meta-model and an API from the per-
spective of the primitive operations over model elements that our model trans-
formation engine requires. There are three kinds of operations: create elements,
read features and write features (i.e., accessing features).

The simplest mapping is a one-to-one correspondence between meta-classes
and API classes, and structural features (attributes for primitive types and refer-
ences for classes) with getter and setter methods. The mapping for features must
take into account whether the it is multivalued or not. Following the Java conven-
tions, a mono-valued feature is mapped to a pair of accessor methods FeatureType
get〈〈featureName〉〉() and void set〈〈featureName〉〉(FeatureType value). In the case of
multi-valued features, the pair of accessor methods is Collection<FeatureType>

get〈〈featureName〉〉() and void add〈〈featureName〉〉(FeatureType value).
However, an API may overlook these conventions, providing different access

mechanisms. In [11], a fixed number of simple mappings is proposed. In our case,
we do not restrict our API meta-model to some predefined mappings, but it has
been designed with extensibility in mind so that new mappings can be added as
they are discovered. Figure 6 shows the core meta-model.

An APIDescription is composed of ClassMapping elements, mapping a metaclass
to a Java class (canonical name in the meta-model). Each feature of the meta-
class must be mapped via a FeatureMapping. The mechanisms to access properties
are abstracted by the GetMechanism and SetMechanism classes, which can be spe-
cialized with concrete mechanisms. One of such is the one-to-one correspondence
explained above (through SimpleGet and SimpleSet).

The meta-model also includes detailed information about parameters and re-
turn types. This is needed in our case because the JVM specification requires
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the compiler to generate bytecode with this information. In any case, this infor-
mation can be gathered via reflection to alleviate the user from this burden.

4.2 A DSL to Specify Mappings

We have built a textual DSL to facilitate the task of specifying mappings. The
DSL allows specifying the meta-model that describes the API at the same time
as the mapping to the API. There are four basic constructs:

1. metaclass maps a metaclass to the corresponding Java class or interface. The
metaclass is automatically marked as abstract if it is mapped to an interface
or an abstract Java class.

2. ref establishes a mapping for a reference (i.e., a feature whose type is a
metaclass). Moreover, an access mechanism has to be specified. The simplest
one is to associate a getter and a setter method. The *modifier indicates that
the meta-model feature is multivalued. In the Java side, Array<JavaType>

and CollectionType<JavaType> indicate that a method takes or returns several
elements.

3. attr establishes a mapping for an attribute. It is similar to ref, but it deals with
primitive types. We support the Java primitive types, and also java.lang.String

as a primitive type. Automatic conversions between the meta-model type and
the actual Java type are also supported (e.g., byte is converted to int).

4. constructor indicates how to create a new object. There is a straightforward
mapping to the empty constructor if it is available. In the next subsection,
we elaborate on how to establish mappings to non-empty constructors.

Figure 7 shows the mapping definition for the running example. As it can be seen,
the Graph metaclass is mapped to the mxGraph Java class. The cells multivalued
reference is mapped to the addCell method so that the generated transformation
code will add cells one-by-one. This method takes a java.lang.Object as parameter,
but from the transformation point of view, the object will always be a mxCell

object (see next mapping from Cell to mxCell) . Finally, the feature is write-only
because jGraph’s API does not offer any getter method for cells. In Section 5 we
will show an extension to overcome this limitation.

4.3 Mapping Constructors

In meta-modelling, metaclasses do not have constructors to ensure proper initial-
isation of objects, but the multiplicities assigned to features act as initialisation
constraints. On the other hand, Java classes require at least one constructor,
which does not necessarily need to be an empty constructor. In a model transfor-
mation, a model element (or a set of target elements that form a target pattern)
is first created by a rule, and then initialised assigning values to features. Hence,
there is a mismatch between model element instantiation and constructor-based
instantiation of Java classes when an empty constructor has not been defined.

We have devised two extensions of the API description model to deal with this
problem. The first extension permits associating literal values to the parameters
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1 api jgraph described by ”http://jgraph/api”
2 metaclass Graph to com.mxgraph.view.mxGraph {
3 empty constructor
4 ref cells∗ : Cell
5 set method addCell(java.lang.Object) : java.lang.Object
6 // no get method is defined −> readonly property
7 }
8

9 metaclass Cell to com.mxgraph.model.mxCell {
10 empty constructor
11 attr edge : Boolean
12 get method getEdge() : boolean
13 set method setEdge(boolean) : void
14 attr vertex : Boolean
15 get method getVertex() : boolean
16 set method setVertex(boolean) : void
17 ref source : Cell
18 set method setSource(com.mxgraph.model.mxCell) : void
19 ref target : Cell
20 set method setTarget(com.mxgraph.model.mxCell) : void
21 }

Fig. 7. API description for jGraph

of a constructor. When the class is created, our engine uses the literal values
as constructor parameters. This approach only works with constructors whose
parameters can be primitive types or null.

The second extension provides greater flexibility by delaying instantiation
until all parameter values are available. The underlying idea is to associate a
constructor parameter to a feature of the meta-model, so that the corresponding
object is not created until the value of all parameters are given by means of fea-
ture assignments (set instructions in IDC). Then, instead of setting the feature,
the value is used as part of the constructor.

This process is transparent both to the transformation developer and to the
transformation language developer, because the reordering of the instructions
is made at the IDC level. As an example, even though jGraph’s mxCell has an
empty constructor, a better practice is to use another constructor that takes
the cell value and a Geometry object as parameters. This ensures that cells are
valid by construction. Figure 8 illustrates the rewriting process. The left-hand
side shows the rule to transform Places extended to consider that a Geometry

object has to be created as well (the linking construct establishes a link between
both target elements). Below, the mapping from Cell to mxCell now includes a
constructor statement that specifies which properties the constructor depends on.

Figure 8(b) shows the resulting IDC code. First, the target elements are cre-
ated (instructions 1 and 2), and then, a new trace link is created and emitted to
the trace (3-6). Afterwards, the features are set (we use intermediate variables v,
lit1, lit2). It is important to note that feature assignments in the original trans-
formation are translated to IDC Set instructions (9, 12, 13), despite the fact that
they are actually constructor parameters.

Figure 8(c) shows the result of the rewriting. The Set instructions that cor-
respond to constructor parameters are removed, but the assigned values will be
used as constructor parameters. To this end, every instruction that is directly
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from p : in!Place to
to c : out!Cell, g : out!Geometry
linking c.geometry = g

c.value = p.value
g.width = 20
g.height = 20 [...]

end

metaclass Cell to mxCell
constructor(value, geometry)
ref geometry : Geometry
constructor com[...].mxGeometry
get method [...]

end
(a)

forAll p : in!Place
1 c = new out!Cell
2 g = new out!Geometry
3 tlink = new trace!Link
4 tlink.s = p
5 tlink.t = c
6 emit tlink to Trace
7 c.geometry = g
8 v = p.value
9 c.value = v
10 lit1 = 20
11 lit2 = 20
12 g.width = lit1
13 g.height = lit2
end

(b)

forAll p : in!Place
10 lit1 = 20
11 lit2 = 20
2 g = new out!Geometry(lit1, lit2)
8 v = p.value
1 c = new out!Cell(v, g)
3 tlink = new trace!Link
4 tlink.s = p
5 tlink.t = c
6 emit tlink to Trace
end

(c)

Fig. 8. Translation and rewriting for constructors. (a) Transformation rule and API
description. (b) Standard translation to IDC (in pseudocode). (c) Rewritten version
that meets constructor dependencies.

or indirectly part of the computation of the value is moved before the creation
instruction. If two or more target elements have mutually recursive constructors,
it will result in a compiler error. Besides, it is worth noting that, at runtime,
computing a value required by a constructor may require another transforma-
tion rule to produce it, so the scheduling of the transformation may become
affected. In our case, we have the Match instruction to retrieve values from the
transformation trace model. As explained in Section 3, this instruction is able
to stop the computation of a rule if the value is not available, resuming the rule
when another rule provides such a value. This mechanism allows performing this
rewriting safely.

An important property of this strategy is that it is non-intrusive, in the sense
that we do not need to change the transformation language adding constructors,
but all the rewritings are performed at the IDC level.

5 Extending the Mapping

The presented mapping considers the basic elements needed to manipulate Java
APIs with a model transformation language. However, it is limited to APIs that
expose their structure via accessor methods. In this section, we present some
extensions that we have added in order to cover a wider range of APIs. First,
we will present an extension mechanism enabling flexible user-defined mappings.
Then, we will present some extensions based on design patterns.

5.1 User-Defined Mappings

A simple extension is to consider mappings expressed using Java code. This
permits specifying feature mappings that require accessing the API using some
mechanism that is not supported by the API description language.
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We have extended our meta-model and the DSL to consider get and set mech-
anisms implemented using Java code. In this extension, method calls are not
performed over the original receptor object, but with an additional level of indi-
rection. A “mapper class” is then implemented, that contains methods that are
mapped to the meta-model features, in charge of getting or setting values for
a given API object. Hence, the methods of this class contain API access logic
that is not provided as simple method calls by the API, but must be manually
written the API user.

Listing 1 shows a modified version of the API specification for the running
example, which enables the retrieval of the cells of a graph. First, the mapper

keyword selects the class implementing the methods that will perform the map-
ping (there is one mapper class per API description). Then, a syntax similar to
the one for the getter methods is used, but replacing method by mapper. Listing 2
shows the piece of Java code that implements the mapping for the cells feature
in the getCells method. A mapper class must implement IUserDefinedMapping and
provide the setContext method. The latter is an initialization method to estab-
lish the transformation runtime information in case it is needed (e.g., access the
source model to lookup some object).

api jgraph described by ”http://jgraph/api”
mapper class example.JGraphMapping

metaclass Graph to com.mxgraph.view.mxGraph {
empty constructor

ref cells∗ : Cell
get mapper getCells(com.mxgraph.view.mxGraph) :
Array<com.mxgraph.model.mxCell>

set method addCell(java.lang.Object) :
java.lang.Object

}

Listing 1. User-defined mapping for “cells”

public class JGraphMapping implements
IUserDefinedMapping {

public mxCell[] getCells(mxGraph receptor) {
mxCell root= ((mxCell) graph.getDefaultParent());
mxCell[] cells= new mxCell[root.getChildCount()];
for(int i = 0; i < root.getChildCount(); i++) {
cells[i] = (mxCell) root.getChildAt(i);

}
return cells;

}
public void setContext(Context contex) { ... }

}

Listing 2. Mapper class for jGraph

5.2 Mappings Related to Design Patterns

In practice, object-oriented programs use a variety of techniques to provide
greater flexibility to some aspects regarding construction of objects, structure
or behaviour. Some of these techniques have been documented as design pat-
terns [10]. We have studied which design patterns are relevant for our mapping,
so that support for them can be provided extending the core meta-model.

We have identified six relevant patterns for our case: Abstract Factory, Sin-
gleton, Composite, Facade, Observer and Iterator. Our approach is to provide a
description of how the pattern is instantiated in a given API, so that our com-
piler is able to generate the access code according to the description. Figure 9
shows the extension of the core mapping meta-model to describe the Iterator and
Observer patterns. Currently, we have just given support to these two patterns,
thus in the rest of the section we will focus on them. In any case, we expect that
supporting the other four patterns will involve similar elements.
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Fig. 9. Extensions to support design patterns. (a) Iterator. (b) Observer.

Iterator. An aggregated object provides access to its contents via another object
that holds the iteration state. In our case, a reference may need to be filled from
the elements of an iterator. Figure 9(a) shows how this pattern is represented
in our meta-model. One or more IteratorDescription elements are declared, speci-
fying the methods used to perform the iteration. If no currentElement is given, a
Java-like iterator style is assumed (i.e., the nextElement method increments the
iterator and returns the next element). Given this specification, the access to a
multivalued feature can be mapped to an iterator. Our compiler generates the
code to perform the iteration and retrieve the corresponding elements.

Observer. This pattern allows one or more subscribers to receive events of some
type from a publisher. A transformation can be a subscriber (observer) so that
a rule is triggered if its source pattern matches an incoming event. A transfor-
mation can behave as a publisher (observable) if it emits an event of some type
each time a rule creates a new target element.

If a transformation uses an API that requires an observer, the transformation
class automatically implements the required interfaces. The user of the transfor-
mation just needs to register the transformation in the corresponding observable.
Figure 9(b) shows the extension to deal with observers. One or more Observer

classes can be associated to an API. Each one of them contains a set of Up-

dateMethod elements that receive event objects as parameters. The event objects
have to be described with the API description language as well, so that trans-
formation rules can use them. The interest reference indicates which parameters
of the update method must be passed to the transformation engine, discarding
the rest. As explained in Section 3, at the IDC level, we use queues to feed the
transformation engine. Thus, it is straightforward to fill IDC queues with the
event objects received in the update methods. Effectively, by using this pattern
we enable a form of streaming transformations.

6 Implementation and Integration

This section outlines some details of our implementation and the tool support.
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6.1 Integration with Java Code

One distinctive aspect of our approach is that it seamlessly integrates with ex-
isting Java code. When a transformation definition is compiled, a class that acts
as a front-end to configure and invoke the transformation is created. In this
way, from the developer perspective, a transformation definition is just a Java
class that performs a complex computation, taking some data structure and
returning another one. For example, executing the running example will only
involve writing a piece of code similar to the one shown in Listing 3. In con-
strast, other model transformation tools (e.g., ATL or ETL) provide dedicated
launching mechanisms that are mainly intended to deal with EMF models.

1 public class Test {
2 public static void main(String[] args) {
3 petrinet2jgraph t = new petrinet2jgraph();
4 EMFLoader loader = new EMFLoader();
5 t.setInModel(loader.load(”PetriNet.ecore”, ”model.xmi”));
6 t.execute();
7

8 mxGraph g = t.getOutModel().getRoot(mxGraph.class);
9 // some code to launch the visualization

10 }
11 }

Listing 3. Invoking a transformation compiled with Eclectic

6.2 Implementation and Tool Support

We have implemented the architecture shown in Figure 2. Transformation defi-
nitions are written with Eclectic, whose concrete syntax has been implemented
using Xtext. The Eclectic compiler has been bootstrapped, so that internally it
has the same architecture. Notably, we have used a subset of Eclectic to imple-
ment the middle-end compiler of Eclectic. The back-end compiler is written in
Java, using the BCEL library2 to generate bytecode. This step of the compilation
deals with the translation of the IDC instructions, using the API description to
generate the bytecode that access directly the Java objects.

Regarding tool support, we have built an Eclipse plugin that includes editors
for the Eclectic languages and integrates the Eclectic compiler so that transfor-
mations are automatically re-compiled after a change. The .class files generated
by the compilation process are added to the project classpath, so that they can
readily be used in the Eclipse workspace. Finally, the binaries and the source
code of our tool have been publicly released3.

7 Case Studies and Assessment

We have evaluated our approach by implementing some case studies that exercise
different kinds of APIs. Additionally, we have identified three main application
scenarios for our approach, and we organise the case studies according to them.

2 http://jakarta.apache.org/bcel/
3 Eclectic web site: http://sanchezcuadrado.es/projects/eclectic

http://jakarta.apache.org/bcel/
http://sanchezcuadrado.es/projects/eclectic
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7.1 Application Scenarios

Model to Java. The first scenario consists of transforming a regular model, con-
forming to some meta-model, to Java objects that will be integrated with a
running system. The running example of Section 3 belongs to this scenario.
We have also implemented a simple transformation from UML class diagrams
to Swing graphical user interfaces. Unlike a normal code generation approach,
ours enables the dynamic generation of pieces of an application at runtime from
a model, which ultimately permits runtime modifications just by changing the
model and re-executing the transformation.

Java to model. The second scenario is the reverse situation. A set of Java live
objects are processed by the transformation engine to yield a given model. We
have identified two situations where this scenario could be particularly useful.
The first one is reverse engineering at runtime, where the structure of a system
at a given moment can be automatically analysed by means of a model transfor-
mation in order to discover certain information. This has the advantage that the
source code of the application is not needed. We are implementing a case study
where a transformation is used to reverse engineer a Swing GUI at runtime. A
UML class model that represents the underlying design of the GUI is obtained,
so that it can be compared against Swing best practices.

The second one is the possibility of taking advantage of existing APIs that
perform some complex processing and generate an in-memory data structure
that has to be further manipulated.

An important advantage of our approach is that there is no need to create a
dedicated injector (i.e., a program that reads an artifact in the source technology
and generates a model that can be manipulated using MDE technology). Instead,
an existing API is directly used.

We have implemented two case studies of this kind. First, we have built a
simplified version of the Jar2Uml case study4. In this application, the BCEL
(Byte Code Engineering Library) APIis used to read the structure of a Jar file,
which is then transformed into a UML class diagram.

The second case study involves using the Twitter4J API to read a stream of
tweets from Twitter. A model-to-model transformation is in charge of discovering
a graph of relationships between users emiting these tweets (and mentioned in
them) and hashtags (i.e., keywords). Figure 10 shows (a) the Twitter4J API and
(b) a simple meta-model to represent some relationships that arise in Twitter.
The description of this API includes the Observer pattern to notify about events
such as new tweets produced by users. Figure 10(c) shows the declaration of
the TweetListener and the update method onStatus. The [0] modifier indicates
that we are interested in the first parameter (as in general the update method
could include more than one parameter). Our compiler automatically implements
the update method and connects the received event to the rules “waiting” for
values of this type. It is worth noting that this is a streaming transformation,
which produces a target model, which gets continously updated as new events

4 http://ssel.vub.ac.be/ssel/research/mdd/jar2uml

http://ssel.vub.ac.be/ssel/research/mdd/jar2uml
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(a) (b)

observer MyListener : twitter4j.TwitterListener {
update [0] onStatus(twitter4j.Status) : void
// other update methods ...

}

metaclass Tweet to twitter4j.Status {
attr text : String get method getText() : String
ref user: User get method getUser() : twitter4j.User
ref hashtags∗: HashTag

get method getHashtagEntities() :
Array<twitter4j.HashTagEntity>

}

metaclass HashTag to twitter4j.HashtagEntity {
attr text : String get method getText() : String

}
(c) (d)

Fig. 10. (a) Twitter4J API. (b) Meta-model for relationships. (c) Excerpt of the JTwit-
ter4J API description. (d) Resulting model.

arrive. This is possible because IDC features a scheduling mechanism based on
continuations that allow us to stop a transformation rule until the required data
is available, in this case associated to another event (a new tweet).

Pure Java transformations. In our experience there are several programming
tasks that could be seen as a model transformation task. In many cases one needs
to establish a mapping between semantically equivalent data structures. For in-
stance, the Transfer Object J2EE pattern advocates creating POJOs (Plain Old
Java Object) to transfer information between application tiers. The mappings
between Business Objects and POJOs can be seen as a model transformation.

We have implemented two simple case studies of this scenario as a proof of
concept. In the first one, the Java reflective API is used to access the information
of classes of a given API, and we generate a PDF file (using the iText API5)
that summarizes the methods and properties of each class.

In the second case study, we have implemented a transformation from ANT
files to JGraph in order to visualize dependencies among build targets. Fig-
ure 11(a) shows an excerpt of the API description. The Iterator pattern is used
in the ANT API to give access to the dependencies of a given target. We have
specified the usage of this pattern in the API as explained in Section 5, by

5 http://itext.com

http://itext.com
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describing the iterator class and establishing which methods are used to perform
the iteration. In this case, the API uses a java.util.Enumeration, and hence the
model does not include a method to retrieve the current element, but only the
method to retrieve the next one. Figure 11(b) shows the visualization obtained
after executing the transformation for an ANT build file generated by Eclipse.

iterator Enumeration : java.util.Enumeration {
finished hasMoreElements() : boolean
next nextElement() : java.lang.Object

}

metaclass Target to org.apache.tools.ant.Target {
attr name : String get method getName() : String
ref dependencies∗ : Target
get iterator Enumeration method

getDependencies() : java.util.Enumeration
}

(a) (b)

Fig. 11. (a) ANT API description (excerpt). (b) Dependencies in an Eclipse build file.

7.2 Assessment

The implementation of the case studies has shown that our approach provides a
practical mechanism to integrate modelware and object-oriented programs.

The first scenario we tackle (model to Java) has been traditionally addressed
by creating an ad-hoc processor that traverses a source model programatically
an instantiates the API objects. Our approach simplifies this task in cases where
there is a mapping between the source model and the API, since we can benefit
from model-to-model transformation technology that is specialized for this task.

In the second scenario (Java to model), our approach permits leveraging ex-
isting APIs to facilitate obtaining an in-memory representation of complex arte-
facts, while model transformation technology is used to perform the analysis of
such artefacts. Using the Observer pattern, we have shown that it is possible to
apply this approach to construct streaming transformations, which listen to a
stream of events and continuously update the target model.

The case studies for the third scenario (pure Java transformations) show that
it is possible to apply model transformation technology to certain kinds of pro-
gramming tasks that have a transformation nature, which otherwise would typi-
cally require writing a certain amount of boilerplate code. However, a model trans-
formation language is a specialized language and therefore the programmer only
needs to focus on the transformation task at hand, abstracting from accidental
complexity. Hence, the development is facilitated and readability is improved. On
the other hand, applying this approach may require from developers to learn a
new language, and the cost-benefit of this trade-off has not been assessed yet.

With respect to performance, with our approach Java objects are in general
dealt with as if they were manipulated with Java code, thus no overhead is
expected. However, there are a few cases where our implementation still does not
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generate direct JVM calls, but reflection needs to be used. We aim at improving
this part of the Eclectic compiler.

Finally, we found our API description DSL expressive enough in most cases.
We added the user-defined mappings as a fallback, but we needed to use it in
the case studies only three times. Our aim is to extend the DSL as we gain
more insight about which idioms are used most frequently in APIs, in particular
supporting the four design patterns mentioned in Section 5.

8 Related Work

Even though model-based development is increasingly used in software projects,
there is scarce integration between model-based technologies and object-oriented
programming. Next we review the few proposals we are aware of.

Api2MoL [11] is a tool to automate the process of bridging models and APIs.
Like our approach, it provides a DSL to describe the mapping between a meta-
model and an API. However, this DSL is limited to a small fixed number of basic
mappings. It is implemented as an interpreter that acts as injector (to create a
model from API objects) or extractor (to recreate the API objects from the
model). Our API description model is more expresive than that of Api2MoL. In
fact, it would be straightforward to implement Api2MoL with our tooling.

The Sm@rt project [14] aims at model-based runtime system management.
A meta-model mirroring a system management API is created, and each meta-
model element is associated a template defining the Java code that is in charge
of performing the mapping. Then, a synchronization engine is automatically
generated from this template-based specification. The Sm@rt project is specially
tailored for management APIs, although other kinds of APIs can be supported
by providing the Java code to perform the mapping.

CHART [9] is a graph transformation language that manipulates Java ob-
jects. It requires manual annotation of Java classes and methods to give them a
graph-like structure. Besides, it enforces a particular style of the object-oriented
programs since graph edges have to be represented with a Java interface.

Tom [3] is a term-rewriting language that has been piggybacked into Java. It
uses algebraic terms as the underlying data structure, but is able to transform
any data structure as long as a formal anchor is provided. Our API description
model is indeed a formal anchor. Tom allows mapping algebraic terms to Java
classes generated by EMF, but this requires providing some boilerplate code in
the rewriting specification to take into account that we are dealing with a graph.

Table 1 summarizes the requirements that a practical bridge between models
and objects should fulfil (cf. Section 2), and how they are handled (or not) by the
aforementioned approaches. First, the approaches differ in the domain of appli-
cation (synchronization engines, graph transformation, term rewriting or model
transformation). Only Api2MoL, Sm@rt and Eclectic are non-intrusive. An im-
portant requirement is a seamless integration of the used transformation and
programming languages, which is only fully achieved by Eclectic (CHART and
Tom require generating the transformation as textual Java classes). At runtime,
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Api2MoL and Sm@rt use an intermediate model, which may affect the efficiency
in certain scenarios. On the contrary, the other approaches use Java objects di-
rectly, with the constraint that Tom only supports tree-like structures. Finally,
Tom and Eclectic provide flexible mechanisms to access objects, including also
getter and setter methods.

Table 1. Comparison of approaches. SE : Synchronization Engines, GT : Graph Trans-
formation (in-place), TR : Term Rewriting (for trees) and MT : Model Transformation.

Domain Non- IDE Runtime API style
intrusive Integration

Api2MoL SE Yes No Intermediate model Getter/Setter
Sm@rt SE Yes No Intermediate model Management
CHART GT No Java text Java objects Getter/Setter
Tom TR Only for trees Java text Java objects (trees) Flexible

Eclectic MT Yes Bytecode Java objects Flexible

SiTra [1] is a simple approach to write model transformations in Java. It pro-
vides a Java interface that all implemented rules has to follow, and a Transformer
class which executes the defined rules. Hence, this approach provides only a very
light support for model transformations, which have to be encoded in Java, and
there is no support to handle EMF models.

Other approaches based on Virtual Machines include the EMF Transforma-
tion Virtual Machine (EMFTVM) [16], or ATL [12], which provides dedicated
Virtual Machines for model transformations. Our approach has the advantage of
facilitating the integration of model transformation languages and GPLs based
on the JVM. Also, the scheduling mechanism based on continuations of IDC is
more flexible allowing e.g. streaming transformations.

Regarding API description languages, the approaches to discover API meta-
models proposed in [11] and [15], as well the Framework Specific Modeling Lan-
guages (FSMLs) proposed in [2] are complementary to our work.

9 Conclusions and Future Work

In this paper, we have presented an approach for the seamless integration of
model transformation and general-purpose programming languages, like Java.
The approach enables the manipulation of Java objects as if they were modeling
elements, in a transparent way. For this purpose, we use a mapping model, which
describes both the meta-model against which the transformation is defined, and
the mapping to the API to be used. The approach enables the use of transfor-
mations at runtime, and its seamless integration in programming projects.

In the future, we plan to extend Eclectic with further specialized languages.
We also plan to provide a more complete support for streaming transformations
and to provide means to model API protocols (method dependencies) which
induce a certain scheduling of transformation rules, as well as looking into how
to support API composition.
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Abstract. Model-Driven Engineering (MDE) has established itself as
a viable means of coping with the increasing complexity of software
systems. Model-to-platform transformations support the required ab-
straction process that is crucial for a model-driven approach and are,
therefore, a central component in any MDE solution. Although there
exist numerous strategies and mature tools for certain isolated subtasks
or specific applications, a general framework for designing and struc-
turing model-to-platform transformations, which consolidates different
technologies in a flexible manner, is still missing, especially when bidi-
rectionality is a requirement.

In this paper, we present: (1) An abstract, conceptual framework for
designing and structuring bidirectional model-to-platform transforma-
tions, (2) a concrete instantiation of this framework using string gram-
mars, tree grammars, and triple graph grammars, (3) a discussion of our
framework based on a set of core requirements, and (4) a classification
and detailed survey of alternative approaches.

Keywords: bidirectional model-to-platform transformations, string
grammars, tree grammars, triple graph grammars.

1 Introduction

Model-Driven Engineering (MDE) has established itself as a viable means of
coping with the increasing complexity of modern software systems by increas-
ing productivity, supporting platform independence and interoperability, and
reducing the gap between problem and solution domains [2].

Model transformations, in general, play a central role in any model-driven
solution [2] and model-to-platform transformations, in particular, enable an ab-
straction from platform-specific details, which is usually an important first step
in the Model-Driven Architecture (MDA) approach [2]. In this paper, a platform
is defined as the final step in a given transformation chain and, in this context,
includes textual files (XML files, configuration files, property files and code in a
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programming language), folder and file hierarchies (structures in a filesystem),
engineering tools with internal data structures that can be manipulated via an
API, and very simple and typically generic tree-like structures. A model is an
abstraction that is suitable for a particular purpose. We regard models as being
conform to a metamodel, which is a representation of relevant concepts and re-
lations in a domain usually specified with a standard modelling language such
as UML1, MOF2 or Ecore [20].
Application areas of model-to-platform transformations include:

1. Round trip engineering involving code generation (forward engineering), and
system comprehension (reverse engineering).

2. The development and evolution of Domain Specific Languages (DSLs).
3. The integration of different tools with tool-specific import/export formats.

As these applications are and always have been crucial tasks in software engi-
neering, various approaches and tools already exist [8,9,19]. Current approaches
are, however, either application specific (e.g., fixed metamodel), only handle an
isolated subtask (e.g., only code generation), or are strongly tied to a certain
technology or standard (e.g., Ecore). A general framework that can be used to
design and structure model-to-platform transformations in a flexible manner is,
therefore, still missing, especially when bidirectionality, crucial in many applica-
tions [5,12], is an important requirement. Such a framework must combine and
consolidate state-of-the-art technologies in such a way that the strengths of in-
dividual components are emphasized and weaknesses are compensated, but still
be general enough to allow a free choice and replacement of concrete standards
or technologies. In this paper, we present:

1. An abstract, conceptual framework for structuring the required components
of a bidirectional model-to-platform transformation.

2. A concrete instantiation of this framework based on string grammars and
tree grammars using ANTLR [18], and Triple Graph Grammars (TGGs) [14]
using eMoflon [1] and the Eclipse Modeling Framework (EMF) [20].

3. A discussion of our framework based on a set of core requirements.
4. A classification and detailed survey of alternative approaches.

The paper is structured as follows: Section 2 presents our running example,
discusses further application domains for bidirectional model-to-platform trans-
formations, and identifies a set of core requirements. Section 3 introduces an
abstract conceptual framework, independent of any concrete technologies, to-
gether with a concrete instantiation thereof as a proof-of-concept. Section 4
classifies related approaches and compares them with our framework based on
our requirements, while Sect. 5 concludes the paper with a summary and a brief
overview of future work.

1 Unified Modeling Language.
2 Meta-Object Facility.
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2 Application Domains and Core Requirements

Model-to-platform transformations are relevant in a multitude of application
domains. In this section, we focus on application areas that additionally involve
bidirectionality and derive a minimal set of core requirements.

Our running example is taken from the application domain Round Trip En-
gineering and is used consequently in the rest of the paper to introduce and
explain all relevant concepts.

2.1 Running Example: Round Trip Engineering

Inspired by a real-world system modernization and re-engineering application
scenario3, our running example involves a software developer (Fig. 1::14) who
is trying to improve a software system that consists of a substantial number of
source code files (Fig. 1::2). The developer has a set of refactoring rules (Fig. 1::3)
which are to be automatically applied to the software system to result in an
improved version (Fig. 1::4). For our concrete example, each source code file
specifies a number of components, each of which can require other components.

To support system comprehension, e.g., in preparation of a re-engineering of
the system, a dependency analysis of the complete system (possibly comprising
thousands of components) is required. A suitable metamodel that captures the
relevant concepts needed to express the dependencies in the system (Fig. 1::5) is
established and a platform-to-model transformation (Fig. 1::6) is used to extract
a dependency graph (Fig. 1::7) from the software system. The refactoring rules
can now be expressed as a model transformation (Fig. 1::8) that can be applied to
yield an improved dependency graph (Fig. 1::9). The final step is to update/re-
generate the system with a model-to-platform transformation (Fig. 1::10).

To keep things simple, we restrict the analysis to only the component depen-
dency graph and ignore the internal specification of each component. Although
components can require components in different source files, we restrict the anal-
ysis to a single file for presentation purposes. The sample file depicted in Fig. 2
consists of four components T, L, R and B. The components form a depen-
dency diamond as B requires T indirectly via L and R. Due to certain domain
specific reasons (e.g, redundant memory allocation for the topmost component),
our client wishes to avoid such diamond dependency subgraphs. The refactoring
rule for our running example is as follows: If the component at the base of the
diamond (B) is not required by any other components, it should be copied5 and
one of the dependencies (R) must be transferred to the copy (B Copy) to break
up the diamond. The refactored file according to this rule is depicted in Fig. 3.

A model-driven approach is advantageous as the metamodel is an abstraction,
which can be chosen to be exactly suitable for the task, i.e., the refactoring

3 Part of an industrial cooperation with Eckelmann AG (www.eckelmann.de)
4 The notation Fig. n::m refers to label m in Fig. n.
5 A further simplification as, in reality, an analysis of the content of the component is
required to determine how it can be appropriately split into two independent parts.

www.eckelmann.de
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Fig. 1. Overview of the running example

1 Component T {
2 // ...
3 }
4 Component L requires T {
5 // ...
6 }
7 Component R requires T {
8 // ...
9 }

10 Component B requires L R {
11 // ...
12 }

Fig. 2. Before refactoring

1 Component T {
2 // ...
3 }
4 Component L requires T {
5 // ...
6 }
7 Component R requires T {
8 // ...
9 }

10 Component B requires L {
11 // ...
12 }
13 Component B_Copy requires R {
14 // ...
15 }

Fig. 3. After refactoring
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rules can be expressed as model transformations in a very concise, readable and
maintainable manner. Furthermore, bidirectionality is a crucial requirement as
the results of the model transformations must be reflected in the source code.

Our running example from the domain of round-trip engineering shows that
bidirectional model-to-platform transformations are crucial to support the au-
tomation of repetitive, boring tasks (manually refactoring the source code files).
In the following, we give a brief overview of other application domains which we
use to derive a set of core requirements.

2.2 Further Application Domains

Round-trip engineering is not the only application domain where bidirectional
model-to-platform transformations are necessary. From numerous examples we
choose two further domains and give a schematic representation of the workflow
and requirements for bidirectionality in each case.

DSL Development and Evolution: Domain Specific Languages (DSLs) are
programming languages of limited expressiveness, which are designed to be max-
imally suitable for a particular task or domain [8]. The systematic development
of such languages to increase productivity and improve communication between
domain experts and professional software developers is a major application of
MDE technologies in general, and model transformations in particular.

Models that conform to a certain metamodel (Fig. 4::1) can be specified in ab-
stract syntax, i.e., as typed attributed graphs with respect to the metamodel (the
type graph). For domain experts who wish to create models in the DSL, a textual
concrete syntax is a more suitable means of specifying models, and supporting
this requires at least a unidirectional text-to-model transformation (Fig. 4::2).

There are two reasons why bidirectionality is an important requirement in this
context: Firstly, there might be a different group of domain experts who prefer
to use some other kind of concrete syntax (possibly visual) to specify models
of the same DSL (Fig. 4::3). To exchange models freely between the different
groups of experts, it must be possible to transform back and forth, which requires
a bidirectional model-to-platform transformation for each supported concrete
syntax of the DSL. Secondly, a DSL will evolve over time to accommodate new
or changed requirements and this can be supported via a corresponding model
transformation from the old version of the metamodel to a new one (Fig. 4::4). In
a real-world scenario, all models specified in the old version of the DSL (Fig. 4::2),
must be transformed to be conform to the new metamodel and a possibly new
version of the textual concrete syntax (Fig. 4::5). Such DSL evolution support
clearly requires a bidirectional model-to-platform transformation for each version
of the DSL.

Tool Integration: Engineering processes typically involve different stakehold-
ers who work together to build or maintain a system. Each stakeholder has a
specialized viewpoint or specific needs regarding the complete engineering pro-
cess and uses established engineering tools in the corresponding (sub)domain.
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An efficient exchange of data and information between the tools in use, i.e., tool
integration [21], avoids redundancy and ensures consistency across tool borders.

A schematic tool integration setup is depicted in Fig. 5. An engineer in a cer-
tain domain works with his preferred engineering tool A (Fig. 5::1). To exchange
data with another engineer using a different tool B (Fig. 5::7), the relevant data
for the integration must be extracted from the tools. Engineering tools are very
often commercial off-the-shelf tools and might only offer a tool-specific import/-
export format (Fig. 5::2), very often XML [15]. In a tool integration scenario, a
tool adapter (Fig. 5::3) is required to extract a suitable model (Fig. 5::4) from the
available textual exchange format via a bidirectional model-to-platform transfor-
mation. The extracted model can then be synchronized (Fig. 5::5) with different
but related models from other tools (Fig. 5::6), updating the data in the tools
via respective tool adapters. Bidirectionality is thus an important requirement.

2.3 Core Requirements

After highlighting important application domains for bidirectional model-to-
platform transformations, we derive a core set of requirements in this section,
divided into two main groups: (1) Requirements concerning the resulting bidirec-
tional model-to-platform transformation that is to be implemented, and (2) re-
quirements concerning the process of establishing such a transformation.

Requirements Concerning the Resulting System: All requirements are
formulated for a “correct” system, i.e., we assume that the transformation must
perform as specified, e.g., by a testsuite, before requirements are considered.

(R1) Maintainability: The most important requirement is that the complete
transformation be maintainable. This means that it should be relatively easy to
extend, improve or otherwise adapt the transformation for all participants and
stakeholders. This implies a number of sub-requirements including:

– Support for bidirectionality to ensure that changes in requirements can be
reflected in the system without introducing inconsistencies,

– Readability to support communication and knowledge transfer amongst de-
velopers and to allow for a validation by domain experts who might not be
professional software engineers and must at least understand parts of the
transformation,

– Stability allowing subsystems to be exchanged as required without causing
ripple-effects in others.

(R2) Scalability: Depending on the exact limits posed by the application domain
and concrete scenario, the transformation must scale with respect to memory
consumption and runtime complexity. If possible, this should be guaranteed by
the applied approach, e.g., polynomial runtime.



130 A. Anjorin et al.

model-to-
platform

platform-
to-model

model-to-
platform

platform-
to-model

metamodelmetamodel

abtract syntax
(model)

abtract syntax
(model)

conforms to conforms to

other 
concrete 
syntax

textual concrete syntax
(DSL V1)

textual concrete syntax
(DSL V2)

model transformation

evolution

model-to-X

X-to-model

3 1 4

2 5

Fig. 4. DSL Development and Evolution

data from tools that is 
relevant for the integration

model 
synchronization

model-to-
platform

platform-to-
modeltool specific 

exchange format

import

export

metamodel Bmetamodel A

conforms to conforms to

engineering tool B

engineering tool A tool adapter Aol A
1

2

pol adapte

3

sync

ms to

4

rms to
6

el
zation

5 7

Fig. 5. Tool Integration

Requirements Concerning the Process: For the actual process involved in
establishing a bidirectional model-to-platform transformation, we consider the
following two requirements.

(R3) Productivity: The most important requirement concerning the development
process is productivity, i.e., the speed of development which implies usability,
adequate tool support, the possibility to iteratively develop and improve the
system, and support for testing (static analysis for validation, debugging).

(R4) Generality: To handle real-world applications, the approachmust be general
enough. This means that the restrictions posed by the approach should not be too
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limiting, i.e., should not restrict the class of possible applications to such an extent
that the approach becomes useless for most practical purposes. This requirement
has two implications:Theapproachmust offer (i) a flexible andwell-defined fallback
to a turing complete language for situations where restrictions cannot be met, and
(ii) a uniform treatment of a wide range of platforms including XML and other
textual formats, directory structures, and generic data structures.

3 The Moflon Code Adapter (MOCA) Framework

Figure 6depicts a framework for organizing the components necessary for abidirec-
tional model-to-platform transformation. This framework is abstract in the sense
that it does not prescribe any concrete technologies or modelling standards. The
main idea of our approach is to separate the transformation into two distinct parts:
(i) A platform-to-tree transformation and (ii) a tree-to-model transformation.

The platform (Fig. 6::1) is transformed via a parser (Fig. 6::2) to a simple
tree structure (Fig. 6::3). This tree structure should be a minimal abstraction of
the platform which is nonetheless accessible to the chosen bidirectional transfor-
mation language (Fig. 6::4). Trees are transformed back to the platform via an
unparser (Fig. 6::2) which typically linearizes the tree structure and adds plat-
form details which were abstracted away by the parser if necessary. A crucial
point is to keep the parser and unparser as simple as possible. In our opinion,
this first step is often not worth supporting with a bidirectional language6, and,

targetsource

tree-to-platform 
(unparser)

conforms toconforms toplatform-to-tree
(parser)

model-to-tree
(backward transformation)

tree-to-model
(forward transformation)

1

tree metamodel target metamodel

bidirectional 
language

derived from

2 3 4 5

platform

Fig. 6. The Moflon Code Adapter (MOCA) Framework

6 This is not always true, e.g., if the application scenario requires layout preservation.



132 A. Anjorin et al.

if it is kept to a bare minimum, almost all complexity can be shifted to the
model-to-tree transformation, which can be appropriately handled with a suit-
able bidirectional transformation language (Fig. 6::4). In an MDE context, the
tree should be a very simple structure which is nonetheless already conform to
the modelling standard as required by the bidirectional transformation language
and the target model (Fig. 6::5). As almost all standard parsers are context-free,
“very simple” usually means acyclic and homogeneous with respect to typing
(i.e., very few or even only a single “node” type is used).

The process prescribed by the framework already has a number of advantages:

Separation of Concerns: A strict separation of platform comprehension and
generation (Fig. 6::2) from the actual transformation (Fig. 6::4) positively af-
fects maintainability (R1) and productivity (R3) as the (un)parser can be kept
very simple and be replaced without having to change the transformation. Fur-
thermore, the bidirectional language can operate on a tree structure without
irrelevant details of the textual representation leading to a simpler transfor-
mation with the clear task of (i) adding appropriate typing information and
(ii) deducing context-sensitive relations to obtain the target model (Fig. 6::5).

A Clear Interface to Different (un)parser Technologies: Establishing
a simple tree structure for the bidirectional transformation consolidates XML
and different abstract syntax trees produced by parsers. Even the directory and
file structure can be embedded in the tree structure if it is relevant for the
transformation. This positively affects the generality (R4) of the approach.

Demanding only a semi-structured, i.e, hierarchical structure, greatly simpli-
fies the task of parsing and unparsing and clearly places most of the complexity in
the transformation, which can be supported with a bidirectional language. This
applies the right tool for the right job and also allows for using standard parser
and unparser technology via simple adapters, which can be easily replaced. This
positively affects maintainability (R1) and productivity (R3).

Modularity: In general, the modular structure of the framework enables a high
level of reuse and exchangeability of the platform, parser and/or unparser, the
model-to-tree transformation, the target metamodel and the modelling stan-
dard without affecting all other components. This positively affects maintain-
ability (R1) as components are stable, productivity (R3) due to possible reuse,
e.g., of existing (un)parsers, and generality (R4), as at least parts of the system
can be ported to a different platform or standard.

3.1 An Implementation of MOCA in eMoflon

As a proof-of-concept, the MOCA framework has been realized as part of our
metamodelling tool eMoflon [1] and can be downloaded and used as described
in our detailed tutorial7. Our MOCA implementation is currently in use for

7 Available from www.moflon.org

www.moflon.org
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a lecture at our university, and in two ongoing projects handling real world
applications8 from the industry.

Figure 7 depicts the concrete instantiation of the abstract MOCA framework
as realized in eMoflon. The supported platform (Fig. 7::1) is a directory structure,
which can contain files with different textual content as indicated by the shading
in the diagram. To complement a built-in directory “parser”, the user must
provide a parser (Fig. 6::2) for each type of file, to produce an abstract syntax
tree which is inserted as a shaded subtree into the resulting tree (Fig. 6::3). Our
MOCA implementation provides dedicated support for XML via an adapter
layer, i.e., arbitrary XML files can be automatically transformed to instances
of our tree metamodel (MocaTree). To handle arbitrary textual formats, we
provide support for parsers and unparsers generated with ANTLR [18] via string
grammars and tree grammars with templates [19], respectively.
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Fig. 7. A realization of the MOCA Framework as part of eMoflon

The textual format for our running example (Fig. 2 and 3) is non-standard
and requires a parser. Using ANTLR, this involves specifying a lexer and parser
as depicted for the example in Fig. 8. Please note how the parser builds up an
abstract syntax tree indicated in the textual syntax as (̂ROOT CHILDREN). Using
our ANTLR MOCA adapter, the abstract syntax tree produced by the parser
can be directly loaded as an EMF model without any further effort. Please note
that the lexer and parser do absolutely nothing else apart from recognizing the
textual content and building a simple, homogeneous hierarchical structure.

8 A bidirectional RTF to HTML transformation and a common DSL for consolidating
iOS and Android app development.
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COMPONENT:  'Component'; 
SPEC:       'SPEC'; 
BODY :      '{' .* '}' 
REQUIRES:   'requires';  
ID:         ('a'..'z'| 'A'..'Z')+; 
WHITESPACE: ('\t' | ' ' | '\r' | '\n')+ 

(a) Lexer Grammar

main: componentSpec+  
  -> ^(SPEC componentSpec+);  
componentSpec: COMPONENT ID dep? BODY 
  -> ^(ID ^(REQUIRES dep?) BODY); 
dep: REQUIRES reqs+=ID+  
  -> $reqs+; 

(b) Parser Grammar

Fig. 8. Lexer and Parser Grammars

For code generation, the context-free nature of the tree is exploited using a tree
grammar, which traverses the structure of the tree in a depth-first manner and
evaluates a set of templates to produce text (Fig. 9). We use StringTemplate [19]
as a template language, which is a very restricted, extremely simple template
language with a minimal set of commands. Enforcing such simple templates
leads to a strict model-view separation with various advantages [17]. These four
simple rule-based specifications (Fig. 8, Fig. 9) implement the first step in the
framework, the platform-to-tree transformation (Fig. 7::2), for our example.

main:  ^('SPEC' 
         content+=component*)  
  -> file(content={$content}); 
 
component: ^(name=STRING  
             r+=reqs  
             body=STRING)  
  -> component(name={$name},  
               r={$r},  
               body={$body}); 
 
reqs: ^('REQUIRES' 
        l+=STRING*)  
  -> reqs(l={$l});  

(a) Tree Grammar

file(content) ::= << 
<content; separator="\n\n"> 
>> 
 
component(name, r, body) ::= << 
Component <name> <r>{<body>} 
>> 
 
 
 
 
reqs(l) ::= << 
<if(l)> 
requires <l; separator=" "> 
<endif>  
>> 

(b) Templates

Fig. 9. Tree grammar and templates

In our MOCA implementation, we use Triple Graph Grammars (TGGs)[14]
as the bidirectional language to transform the context-free, homogeneous “tree”
(Fig. 7::3) to the target model (Fig. 7::5). eMoflon is EMF/Ecore based and
thus, the modelling standard used is EMF. Figure 10 depicts the TGG Schema
for the running example, which is a triple of the metamodels involved in the
transformation. To the left, the tree consists of files and nodes, while our target
model, to the right, consists of “components” which can require other compo-
nents and are all contained in a specification. Our complete tree metamodel
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Fig. 10. TGG Schema (Triple of involved metamodels)

is just complex enough to represent XML files, directory structures and parse
trees without losing information, i.e., we have basic concepts of folders, files,
and nodes with attributes and labels. In the middle, correspondence types are
defined, which are used for traceability. Already from the schema, it is clear
that each file corresponds to a specification, and that both components and
requirements correspond to nodes in the tree.

A TGG specification consists of a schema and a set of rules that describe
the simultaneous evolution of triples of connected source, correspondence and
target models. The advantage of using TGGs is that both forward and backward
transformations can be automatically derived from this single specification and
are guaranteed to be compatible with the described simultaneous evolution.

In sum, the required transformation for our running example consists of three
TGG rules, one to transform files and specifications, one to handle components
and one to create the requirement relation between components. The latter is
depicted in Fig. 11. Please note that the hexagonal shape of correspondence
types in the TGG schema and correspondences in the TGG rule is just syntactic
sugar to indicate at a glance that these objects belong to the correspondence
domain, i.e., can be interpreted as traceability types and links, respectively.

A TGG rule consists of context elements, depicted in black without any
stereotype, and create elements depicted in green with an additional create
stereotype. Context elements must be created by other rules and are used to
induce an implicit dependency between rules, e.g., the TGG rule NodeToRe-

quirement can only be applied if the two components involved (component and
reqComponent) have already been created and identified with nodes in the tree
by other rules (Fig. 11). The rule creates a requirement between component and
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nodeComponent: Node

requirements: Node

index==0

component: Component
n2c: NodeToComponent

<<create>>
req: Node

root: Node

name=="SPEC"

requiredNode: Node reqComponent: Component
rn2c: NodeToComponent

<<create>>
requirement: Requirement

<<create>>

n2r: NodeToRequirement

{eq(req.name, requiredNode.name)}

+parentNode
+children

+parentNode
+children +requirement

+target+source

+parentNode

+children

+parentNode

+children +target+source
+component

+source +target

Fig. 11. TGG Rule NodeToRequirement

reqComponent, reflecting this in the tree by creating a new requirements node
req for nodeComponent, with its name equal to that of requiredNode. This
condition is expressed using the attribute constraint eq(req.name, required-

Node.name). The TGG rule NodeToRequirement showcases the two main tasks
of the bidirectional transformation: (i) Introducing appropriate typing, e.g., a
Requirement instead of just a Node, and (ii) replacing the context-free acyclic
tree with a context-sensitive graph structure, e.g., connecting two components
via a requirement directly instead of having separate nodes with the same name.

To complete our running example, we can now specify the refactoring rules
using an appropriate transformation language that can operate on the target
model. Figure 12 depicts a graph transformation rule using Story Driven Mod-
elling (SDM)[7], our graph transformation language for unidirectional model
transformations in eMoflon. The rule is declarative and concise, and the dia-
mond structure to be found can actually be “seen”. According to the refactoring
rule (Fig. 12), the dependency diamond should only be resolved if component is
not required by any other components. This is enforced using a negative appli-
cation condition (NAC) depicted by the crossed out element otherReq.

If the diamond structure is found and the NAC is not violated, the require-
ment req2 is relocated to a new component newComponent, created as a copy
of component. Please note the stereotype destroy/create used to indicate el-
ements that should be deleted/created9, the attribute assignments used to ini-
tialize the attribute values in newComponent, and the fixed (bound) elements
starting from which the other elements must be found, indicated with a thicker
border (component and this).

After applying the rule to all components, the refactored model can be trans-
formed back to a tree and used to generate the refactored textual file as re-
quired (Fig. 3). After a backward or forward transformation, the created triple

9 Additionally indicated via the red/green colour of the elements.
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req2: Requirementreq1: Requirement

component:
Component

reqComp1:
Component

reqComp2:
Component

req1toRoot:
Requirement

root: Component

req2toRoot:
Requirement

<<create>>

newComponent: Component

name:=component.getName()+"_copy"
description:=component.description

otherReq:
Requirement

this: Specification

+component

+component

+requirement
 <<destroy>>

+requirement

+requirement +requirement

+component +component

 <<create>>

+requirement

+component  <<create>>+component

Fig. 12. SDM refactoring rule

of source, correspondence and target models can be visualized in eMoflon using
our integrator which represents the correspondence model visually as links.10

In addition to the advantages of the abstract MOCA framework, our concrete
choice of languages and standards has the following advantages:

Homogeneity via Complementary Languages: Our choice of languages,
i.e., string grammars, tree grammars combined with templates with minimal
logic, triple graph grammars and SDMs are all rule-based and declarative11 .
Based on our experience of working with this mix of languages, we believe that
a high level of homogeneity is attained by supporting a common rule-based
thinking in patterns. This positively affects maintainability (R1) and productiv-
ity (R3) as there is no disturbing shift in paradigm and trained skills in one
language can be transferred to all others.

Formal Properties and Guarantees: By separating the transformation into
different steps, the formal properties of the different individual languages still
hold for the corresponding step. For example, the runtime complexity for LL(*)
parsing (worstcase O(n2), in practice actually much less [18]) holds for tree
generation, while TGGs guarantee polynomial runtime [14] for the tree-to-model
transformation. Depending on the application scenario, such runtime efficiency
can be crucial for scalability (R2). Furthermore, TGGs also guarantee that the
derived transformations are correct with respect to the specified TGG, i.e., only
a single specification is used, which positively affects maintainability (R1).

Flexible Fallback to Java: In our experience, practical problems can almost
never be completely solved with a DSL. For example, even if a large part of a
transformation can be specified with TGGs, certain parts, especially low-level

10 Please refer to our tutorial (www.moflon.org) for screenshots and further details.
11 SDMs are programmed graph transformations and, therefore, also have usual imper-

ative language constructs such as if-else and loops.

www.moflon.org
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attribute manipulation, must be specified using SDMs or directly in Java. All
languages used in our MOCA implementation support a fallback to a more gen-
eral language when necessary: ANTLR offers syntactic and semantic predicates
in string and tree grammars [18], which can be used to embed Java statements
to support the lexer/parser, SDMs offer MethodCallExpressions [1] to mix Java
code in graph transformations in a type safe manner, and TGGs offer Attribute-
Constraints, which are implemented in Java. ANTLR and eMoflon are both
completely generative, i.e, map specifications to standard Java code which also
simplifies mixing in hand-written code. This positively affects generality (R4),
as basically any problem can be tackled that could also have been solved directly
in a general purpose language, in our case Java.

Iterative Workflow: Last but not least, an iterative workflow is possible as the
target metamodel can be iteratively refined. In each step, more parts of the tree
can be handled by TGG rules until the transformation is complete. The platform
can also be handled in an iterative manner, e.g., by using regular expressions
to “filter” the textual files in the first iterations instead of a parser. ANTLR
also supports this with a “fuzzy” parsing mode that ignores all content that
cannot be parsed, i.e., parses these parts as a string block without further pro-
cessing/structuring. An iterative workflow improves productivity (R3) as most
mistakes can be found early enough in the development process.

3.2 Limitations and Drawbacks

Every approach has limitations and in the following, we discuss the most impor-
tant drawbacks of our framework and its concrete implementation in eMoflon:

A Steep Learning Curve: Separating the transformation into different steps
that are implemented with different languages has the potential of increasing
complexity in general. Although we have tried to choose complementary lan-
guages with a common paradigm, it is still challenging to master all the different
languages, especially without prior experience with rule-based languages.

Requires a Model-to-Model Transformation: Requiring a model-to-tree
transformation as a separate step introduces an extra transformation language
(TGGs) and tool dependency in the transformation chain.

Incrementality: The separation in different parts advocated by our framework
makes the task of supporting incrementality for the complete transformation
chain more challenging than if all steps were merged in a single specification.

4 Related Work

In this section, we discuss the main groups of alternative approaches to our
generalized tree-based approach and highlight main strengths and weaknesses.
We do not try to give a complete list of concrete tools but rather focus on groups
of approaches, mentioning a few concrete representatives in each case.
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4.1 Combination of Unidirectional Approaches

Although there is an increasing number of bidirectional languages available, the
standard way of implementing bidirectional model-to-platform transformations
is still to use two unidirectional transformation languages, one for each direction.
Typical combinations include Xtext [6] for platform-to-model and Xpand12 for
model-to-platform, or ANTLR for platform-to-model and Velocity13 for model-
to-platform. The main advantage is clear; A combination of standard, mature
unidirectional approaches is very general (R4) and “gets the job done” while ex-
isting bidirectional approaches are mostly still in development and are often not
usable for real-world application scenarios, although they might work very well
for a restrained class of problems. The flexible combination and the possibility of
implementing parts of the transformation in standard languages offered by our
framework is, in this respect, a pragmatic approach to having the best of both
worlds, i.e., still profiting from the advantages of a bidirectional language. Simi-
larly, standard approaches typically scale well (R2) with respect to runtime and
memory consumption. A challenge, however, is handling incremental changes
which becomes difficult when separate tools are used for each direction. Scala-
bility then becomes a major problem if the scenario involves a synchronization
in contrast to a batch transformation.

A further disadvantage of a combination of unidirectional approaches is that
it is hard to maintain (R1): Changes to the forward transformation have to
be carefully reflected in the backward transformation and vice-versa, and this
gets increasingly difficult with the complexity of the transformation. Productiv-
ity (R3) also suffers as two separate specifications have to be implemented. A
bidirectional language would be advantageous in both cases.

4.2 Tightly Integrated Software Development Environments

A second group of approaches are tightly integrated software development envi-
ronments that provide view-based, syntax directed editing, keeping the concrete
and abstract syntax of models synchronized at all times. This means that the
editor operates directly on the abstract syntax of a model and reflects changes
immediately in the presented concrete syntax (the view). Examples for such
environments include Furcas [10], MPS and Ipsen [16].

A syntax directed editing approach usually has rich support from the corre-
sponding framework/environment with which the transformation can easily be
specified, i.e., although this depends on the concrete environment, the process
is usually quite productive (R3) and the resulting transformation is maintain-
able (R1) as it is truly bidirectional. Scalability (R2), especially with respect to
memory consumption, again depends on the concrete environment, but incre-
mentality can easily be supported with such a tightly integrated approach.

A disadvantage is that there is a high dependency on the enclosing framework.
This becomes problematic when the transformation is to be ported to a new

12 OpenArchitectureWare, http://www.eclipse.org/gmt/oaw/
13 The Apache Jakarta Project, http://jakarta.apache.org/velocity/

http://www.eclipse.org/gmt/oaw/
http://jakarta.apache.org/velocity/
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modelling standard or a component has to be replaced. A further disadvantage
is that an on-the-fly synchronization of concrete and abstract syntax might not
be possible in some application scenarios, as text files might have to be changed
“offline”. Furthermore, most approaches in this group are geared towards DSL
development and are not suitable for, e.g., a scenario where large parts of static
text must be generated, which is more suited for template-based code generation.

4.3 Grammar-Based Approaches

Grammar-based approaches such as Xtext, Spoofax [13], and Monticore [11] pro-
vide appropriate extensions to EBNF to allow context-sensitive relationships to
a certain extent. As depicted in Fig. 13(a), the main idea is to derive as much
as possible from the grammar, i.e., not only a parser, but also a metamodel,
an editor, and an unparser. A metamodel can be extracted from the grammar
either via an implicit transformation from EBNF to a modelling language (Ecore
in the case of Xtext), or by extending EBNF to a complete modelling language
which can be used to specify both the textual concrete syntax and the abstract
syntax of the language combined in the grammar. The latter approach is taken
by Monticore. Bidirectionality can be supported by using the non-terminals in
the grammar to pretty print model elements to text.

Grammar-based approaches lead to very compact, concise specifications and
are highly productive when the target language can be described with the gram-
mar. Getting an editor “for free” is also a major productivity boost, especially
when developing a textual DSL. In general, however, every grammar can only
describe a limited class of languages, and, due to the fact that the grammar is
used to derive all other components, a fallback to Java similar to what ANTLR
offers cannot be supported. Every realistic transformation, therefore, will always
require a subsequent model-to-model transformation, especially when the tar-
get metamodel was established before the textual syntax. In many cases, e.g.,
round-tripping as opposed to DSL development, the textual syntax and the
target metamodel are fixed and already exist. In such a case it becomes quite
challenging to specify a perfectly fitting grammar.

Supporting bidirectionality is also difficult in complex cases and most ap-
proaches do not place a strong focus on bidirectionality, only providing a default
pretty printer that must be extended and refined. The price of having a com-
pact, concise specification is that all components are merged making it difficult,
if not impossible, to reuse the text comprehension part of the grammar for a
different target metamodel, or to change the textual syntax but retain the same
metamodel. Last but not least, grammar-based approaches are not suitable for
cases where a lot of text is to be ignored or filtered and when a lot of static parts
are to be generated.

4.4 Template-Based Approaches

Template-based approaches such as Xround [4] and [3] provide an interesting
contrast to grammar-based approaches by deriving the complete bidirectional
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Fig. 13. Schematic overview of grammar-based and template-based approaches

transformation from a set of templates. As depicted in Fig. 13(b), a set of tem-
plates in a fixed template language is used to derive an unparser (code is simply
generated with the templates) and a parser. The parser works by matching text
fragments with potential templates until the exact sequence of chosen templates
can be identified. Corresponding model elements can be derived from this se-
quence of templates as the target metamodel is fixed and known to the parser,
i.e., there is a mapping between model elements and templates.

In contrast to a grammar-based approach, this works quite well for cases with
large parts of static text which must be ignored/generated. For a typical textual
DSL, however, with almost a 1-1 relationship between text and model elements
for conciseness, the templates must contain a lot of logic and not so much static
text, reducing readability and maintainability of the templates.

Although the generated textual syntax can be flexibly varied, the parser can
only be realized efficiently if the template language and the target metamodel are
fixed. This means that a template-based approach is a productive, maintainable
solution for a fixed metamodel, i.e., a concrete application. The parser would,
however, have to be almost completely re-implemented for every new metamodel.
Depending on the complexity of the supported template language, it can also be
quite challenging to parse textual content using templates in a scalable manner,
i.e., complex logic in the templates can easily lead to an explosion of the template
search space.

5 Conclusion and Future Work

In this paper, we presented a flexible, general framework for structuring bidirec-
tionalmodel-to-platform transformations. A set of core requirements derived from
typical application domains was used to argue the advantages of a clear separation
of the transformation into two distinct steps: A text-to-tree transformation (text
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comprehension/generation)which is held as simple as possible, and a tree-to-model
transformation (typing and context-sensitive relations), which should be imple-
mented with a bidirectional language. A realization of our framework in eMoflon14

shows that a flexible blend of rule-based, declarative languages can be combined
successfully. Existing approaches for bidirectional model-to-platform transforma-
tion are either not general enough, i.e., only work for a certain standard/domain,
or not flexible enough, i.e., components cannot be exchanged. Our choice of TGGs
as a bidirectional language opens up a large class of applications for TGGs, with
new challenges. Future tasks include improving support for incrementality in our
TGG implementation by exploiting the asymmetric nature of model-to-platform
transformations (information loss is only in one direction) as compared to the gen-
eral case. We are also working on optimizing our current TGG algorithm to deal
with weakly typed trees, necessary for an efficient inference of context-sensitive re-
lations, and are investigating concepts for improving modularity and reuse/com-
position of the transformation languages (string grammars, tree grammars, tem-
plates, TGGs).
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Abstract. Model transformations are precious and effortful outcomes
of Model-Driven Engineering. As any other artifact, transformations are
also subject to evolution forces. Not only are they affected by changes to
transformation requirements, but also by the changes to the associated
metamodels. Manual co-evolution of transformations after these meta-
model changes is cumbersome and error-prone. In this setting, this paper
introduces a semi-automatic process for the co-evolution of transforma-
tions after metamodel evolution. The process is divided in two main
stages: at the detection stage, the changes to the metamodel are de-
tected and classified, while the required actions for each type of change
are performed at the co-evolution stage. The contributions of this paper
include the automatic co-evolution of breaking and resolvable changes
and the assistance to the transformation developer to aid in the co-
evolution of breaking and unresolvable changes. The presented process
is implemented for ATL in the CO-URE prototype.

1 Introduction

Model-Driven Engineering (MDE) describes software development approaches
that are concerned with reducing the abstraction gap between the problem do-
main and the software implementation domain. The complexity of bridging the
abstraction gap is tackled through the use of models that describe complex sys-
tem at multiple levels of abstraction and from a variety of perspectives, combined
with automated support for transforming and analyzing those models [6]. In
this way developers can concentrate on the essence of the problem while reusing
mapping strategies. Benefits include increased productivity, shorter development
time, improved quality or better maintenance [15]. However, a Damocles’ sword
hanging over MDE is evolution. The main MDE artifacts are: (i) models, (ii)
metamodels and (iii) transformations. While model and transformation evolu-
tion can be faced in isolation, metamodel evolution impacts models and trans-
formations alike. Metamodel changes might have disturbing consequences on
their instance models, and break apart the associated transformations. The for-
mer issue (a.k.a. model co-evolution) has been the subject of substantial work
[4,9,16]. Unfortunately, transformation co-evolution has received less attention.
Nevertheless, not only are transformations main enablers of the MDE advan-
tages but their creation is programming intensive and frequently more costly

K. Czarnecki and G. Hedin (Eds.): SLE 2012, LNCS 7745, pp. 144–163, 2013.
© Springer-Verlag Berlin Heidelberg 2013
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than its model counterpart [5]. This substantiates the effort to provide solid
basis to assist during the transformation co-evolution effort.

Unlike previous approaches [10], we do not force to describe the evolution in
terms of ad-hoc operands, but evolution is ascertained from differences between
the original and the evolved metamodel. Next, differences are classified as [4]:
(i) Non Breaking Changes (NBC), i.e., changes that do not affect the transfor-
mation; Breaking and Resolvable Changes (BRC), i.e., changes after which the
transformations can be automatically co-evolved; and Breaking and Unresolvable
Changes (BUC), i.e., changes that require human intervention to co-evolve the
transformation. Finally, the transformation is subject to distinct actions based
on the type of the change, i.e., no action for NBC, automatic co-evolution for
BRC, and assisting the user for BUC. The outcome is an evolved transformation
that tackles (or warns about) the evolved metamodel. This approach is realized
in the CO-URE prototype that takes as input the original Ecore metamodel,
the evolved Ecore metamodel and an ATL rule transformation [11], and outputs
an evolved ATL transformation. CO-URE makes intensive use of High-Order
Transformations (HOTs) whereby the original transformation is handled as a
model which needs to be mapped into another model (i.e. the evolved trans-
formation). The approach can be generalized to any transformation language
that provides a metamodel representation. We regard as main contributions (1)
the automatic co-evolution of BRC, (2) the assistance for BUC, and (3), the
CO-URE prototype.

The paper starts with a motivating scenario. Next, we outline the co-evolution
process whose two main stages, detection and co-evolution, are presented in
more detail in Sections 4 and 5, respectively. Section 6 introduces the CO-URE
architecture and describes one of its HOT rules. Related work and conclusions
end the paper.

2 Motivating Scenario

As any other software artifact, metamodels are subject to evolution. During de-
sign alternative metamodel versions may be developed. During implementation
metamodels may be adapted to a concrete metamodel formalism supported by a
tool. Finally, during maintenance errors in a metamodel may be corrected. More-
over, parts of the metamodel may be redesigned due to a better understanding or
to facilitate reuse [22]. Simultaneously, metamodels lay at the very center of the
model-based software development process. Both models and transformations
are coupled to metamodels: models conform to metamodels, transformations are
specified upon metamodels. Hence, metamodel evolution percolates both models
and transformations. We focus on transformation co-evolution after metamodel
evolution.

We use the popular Exam2MVC transformation [13] as a running example.
This scenario envisages different types of exam questions from which Web-based
exams are automatically generated along the MVC pattern [13]. Figure 1 presents
the ExamXML metamodel and the AssistantMVC metamodel. The Exam2MVC
transformation generates an AssistantMVC model out of an ExamXML model.
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Fig. 1. ExamXML metamodel and AssistantMVC metamodel: original (above) and
evolved (below)

Next, we introduce a set of evolution scenarios to be considered throughout
the paper (see Figure 1):

– Scenario 1. The AssistantMVC’s Multiple class is introduced in the target
metamodel. This new class abstracts away the commonality of three existing
classes: MultipleChoiceController, MultipleChoiceView and MultipleChoice.

– Scenario 2. Property optional is deleted from ExamXML’s ExamElement.
– Scenario 3. The AssistantMVC’s fontColor metaproperty is changed from

string to integer.
– Scenario 4. The ExamXML’s OpenElement class is splitted into OpenEle-

ment_1 and OpenElement_2.
– Scenario 5. New subclass ExerciseElement is added to ExamElement meta-

class, and a new property style is added to View target metaclass.

The question is now how these changes impact the Exam2MVC transformation,
better said, how can the designer be assisted in propagating these changes to
the transformation counterpart. Next section outlines the process.

3 Transformation Co-evolution Process: An Outline

This section outlines the transformation co-evolution process aiming at assisting
designers by automating co-evolution whenever possible. This process comprises
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Fig. 2. Transformation co-evolution process

two main stages: detection and co-evolution (see Figure 2). Inputs include the
original metamodel (M), the evolved metamodel (M’) and the original transfor-
mation (T).

Detection Stage. The original metamodel and the modified metamodel are
compared, and a set of differences are highlighted. Differences can range from
simple cases (e.g. ’class renaming’) to more complex ones (e.g. ’class splitting’).
Simple changes are those that are conducted as a single shot by the user. By
contrast, complex changes are abstractions over simple ones as they conform a
meaningful transaction on the metamodel. Complex changes need to be treated
as a unit not only from the perspective of the metamodel, but also from the co-
evolution perspective. Otherwise, we risk to miss the intention of the designer
when evolving the metamodel, and hence, to propagate this misunderstanding to
the transformation. To this end, the detection stage includes two tasks: simple-
change detection and complex-change detection. The outcome is a set of changes,
both simple and complex.

Co-evolution Stage. Having a set of metamodel changes as input, this step
first classifies changes based on their impact on the transformation rules. Based
on the notation used in [4], we identify three types of metamodel changes:

1. Non Breaking Changes (NBC). These changes have no impact on the trans-
formation. This case is illustrated by the first scenario: the introduction of the
Multiple class as an abstraction of two existing classes. Superclass extraction
has generally no impact on the transformation since metaclass properties are
still reachable through inheritance. Therefore, this type of changes need to
be detected, but no further action is required.

2. Breaking and Resolvable Changes (BRC). These changes do impact the trans-
formation rules, but this impact is amenable to be automated. The fourth sce-
nario is a case inpoint.Here,OpenElement is splitted intoOpenElement_1 and
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Fig. 3. Exam2MVC transformation: original (above), co-evolved (below)

OpenElement_2 classes. Accordingly, rules having OpenElement as its source
might give rise to two distinct transformation rules that tackle the specifics of
OpenElement_1 and OpenElement_2 (see Figure 3).

3. Breaking and Unresolvable Changes (BUC). These changes also impact the
transformation, but full automatization is not possible and user interven-
tion is required. Reasons include: the semantics of the metamodel, the spe-
cific characteristics of the transformation language, or the specificity of the
change. Hence, it will be designer’s duty to manually guide the co-evolution.
This is illustrated by scenario 3: AssistantMVC’s fontName metaproperty is
changed from string to integer. Type changes are the most ambiguous ones
due to transformation languages being dynamically typed, and hence, sus-
ceptible to generate type errors at runtime. For instance, a rule could assign
’Times ’ to fontName. FontName has now be turned into an integer, hence,
making this rule inconsistent. In those cases, the option is to warn about the
situation, and let the designer provide a contingency action (e.g. coming up
with the “integer” counterpart of the formerly valid value ’Times ’).

In short, for each type of change (i.e. NBC, BRC or BUC), we propose a course of
action: no action, automatic transformation, and assisted transformation, respec-
tively. To this end, the co-evolution process is complemented by two auxiliary
steps: a Conversion to Conjunctive Normal Form (CNF) step (to address
removals) and an optional similarity analysis step (to handle additions). Next
two sections delve into the details.

4 Detection Stage

This stage takes as input both the original metamodel and the evolved meta-
model, and infers the set of changes that went in between. This is achieved
through two tasks: simple-change detection and complex-change detection.
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Fig. 4. The Difference model (above) & DiffExtended model (below) for the running
example. Simple changes that account for a more abstract complex change are arranged
as descendants of the complex change (e.g. AddModel, UpdateAttribute, RemoveElement
are now part of a ComplexChange whose changeType is SplitClass).

4.1 Simple-Change Detection

We detect simple changes as a difference between the original metamodel and
the evolved metamodel. To this end, we use EMF Compare [19]. This tool takes
two models as input and obtains the differences along the Difference metamodel.
Back to our running example, EMF Compare is used to detect the simple changes
between the original and evolved ExamXML metamodel as well as the original
and evolved AssistantMVC metamodel. The output is a Difference model. Fig-
ure 4 (above) illustrates this Difference model for the ExamXML metamodel
(scenarios 2 and 4): UpdateAttribute, RemoveModelElement, AddModelElement
and RemoveAttribute. In other words, it detects that the name of the class is
changed from OpenElement to OpenElement_2, the specificQuestion1 metaprop-
erty is removed from OpenElement_2, the attribute optional is being removed,
and a new class with name OpenElement_1 is added.

4.2 Complex-Change Detection

Simple changes might be semantically related to achieve a common higher-order
modification. For a list of complex changes refer to [9] (we are going to analyze
those relevant from the point of view the transformation co-evolution). For in-
stance, the previous AddModelElement simple change hides a class split. We need
to infer that a set of simple changes unitedly account for a split. Alternatively,
we risk to treat each simple change on its own, which could lead to unwanted
co-evolution in the transformation.

We regard complex changes as predicates over simple changes. These are aux-
iliary predicates needed to define them: C is the set of metaclasses and P the
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Fig. 5. DiffExtended metamodel: EMFCompare’s Difference metamodel is extended
with the ComplexChange class

set of metaproperties of a metamodel. Subclass(s: C, c: C): s is subclass of
c; Added_class(c: C): c is added to the metamodel; Added_attribute(p:
P, c: C): p has been added to c; Deleted _attribute(p: P, c: C): p has
been deleted from c; IsAttributeOfClass(p: P, c: C): p belongs to c; Added
_supertype(s: C, c: C): supertype relationship has been added from s to
c; Deleted_supertype(s: C, c: C): supertype relationship has been deleted
from the s to c; Added_reference(p: P, c: C, d: D): Reference p from c
to d is added; Deleted_reference(p: P, c: C, d: D): Reference p from c to
d is deleted; Added_composition(s: C, c: C): composition relationship has
been added from the s to the c; Composed_name(z: string, p: string, x:
string): delivers a new string x out of input strings z and p; Splitted_name(c,
x) returns true if c can be obtained from x by concatenating such suffix. A no-
tation convention exists to name split classes: the name of the original class
concatenated with a number (e.g. OpenElement_1, OpenElement_2 ); Split-
ClassName(c: C): returns true if the new name of c is the concatenation of
the old name and “_1”. The list of detection predicates follows:

– ExtractSuperclass(c:C) iff Added_class(c) ∧ ∃p∈P, ∃s∈C
(Added_attribute(p, c) ∧ Added_supertype(s, c) ∧ Deleted _attribute(p,
s))

– PullMetaproperty(c:C, s:C) iff ∃p∈P (Subclass(s, c) ∧
Added_attribute(p,c) ∧ Deleted _attribute(p, s))

– PushMetaproperty(p: P) iff ∃s, c∈C (Subclass(s, c) ∧
Deleted_attribute(p,c) ∧ Added _attribute(p, s))

– FlattenHierarchy(c:C) iff (Deleted_class(c) ∧ ∀p∈ P |
IsAttributeOfClass(p, c) , ∀s∈ C | Subclass(s, c) (Deleted _attribute(p,c)
∧ Deleted_supertype(s, c) ∧Added_attribute(p, s)))

– MoveMetaproperty(c:C, p:P, d:C) iff (Deleted_attribute(p,c) ∧
Added _attribute(p, d) )
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– ExtractMetaclass(c:C, d:C) iff (Added_class(d) ∧ ∀p∈P |
IsAttributeOfClass(p, c) (Added _attribute(p,d) ∧ Deleted_attribute(p,
c)))

– InlineMetaclass(c:C, d:C) iff (Added_class(d) ∧ Deleted_class(c) ∧
∀p∈ P | IsAttributeOfClass(p, c) (Added _attribute(p,d) ∧
Deleted_attribute(p, c)))

– InheritanceToComposition(c:C, d:C) iff (Deleted_supertype(d, c) ∧
Added _composition(d, c))

– GeneralizeSupertype(c:C, s:C, d:C) iff (Deleted_supertype(d, s) ∧
Added _supertype(d, c) ∧Subclass(s, c))

– InlineSubclass(c:C, d:C) iff (Deleted_class(c) ∧ Subclass(c, d) ∧ ∀p∈P
| IsAttributeOfClass(p, c) (Added _ attribute(p,d) ∧ Deleted_attribute(p,
c)))

– ReferenceToIdentifier(c:C, d:C, p:P) iff (Deleted_reference(p, c, d) ∧
Added _attribute(p, c) ∧ Added_attribute(p, d))

– SplitReferenceByType(c:C, d:C, x:C, s:C, p:P, y:P, z:P) iff
(Deleted_ reference(p, c, d) ∧ Added_reference(y, c, x) ∧
Added_reference(z, c, s))

– PropertyMerge(p:P, z:P, x:P) iff ∃c∈C (Deleted_attribute(p,c) ∧
Deleted _attribute(z, c) ∧ Added_attribute(x, c) ∧ Composed_name(z, p,
x)). The last predicate delivers x by concatenating strings z and p.

– ClassMerge(c:C, d:C) iff ∃y∈C (Subclass(c, y) ∧ Subclass(d, y) ∧
Deleted_class(d) ∧ Composed_name(c, d, x))

– SplitClass(c:C, d:C, x:C) iff ∃y∈C (Subclass(c, y) ∧ Subclass(d, y) ∧
Added_class(d) ∧ Splitted_name(d, c)∧ SplitClassName(c)). The latter
predicate needs a bit of explanation.

Implementation wise, simple changes are obtained using EMFCompare using the
Difference metamodel. We propose to extend the Difference metamodel to ac-
count also for complex changes. Figure 5 shows an extract of the DiffExtended
metamodel. Using the predicates aforementioned we infer complex changes that
are represented as a DiffExtended model. Figure 4 provides a DiffExtended model
where complex changes are also introduced. In the case that a simple change can
belong to different complex changes, the biggest one has priority, e.g. Flatten-
Hierarchy over MoveMetaproperty, as the first one includes the second.

In short, this task is realized as a transformation that takes a Difference model
as input and obtains a DiffExtended model that includes both single and complex
changes. Now, we are ready to percolate those changes to the transformation
rules.

5 Co-evolution Stage

5.1 Similarity Analysis Step

Additional degrees of automatization can be achieved by using metamodel
matching techniques. A similarity analysis is conducted between the source and
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target metamodels using tools such as AML (AtlanMod Matching Language) [7].
These tools compute similarity based on the element names and the structural
similarity of the metamodels. The output can be used to assist designers to fill
the gaps. The approach rests on the matching effectiveness. We performed an
empirical experiment based on a test-bed of 17 transformations from the ATL
zoo1. Matching effectiveness had an average of 22-23% success (i.e., cases were
an adequate binding could be suggested to the designer). This step is optional,
and the weaving similarity model can be added as an input to the adaptation.

5.2 Conjunctive Normal Form Conversion Step

Rule filters are first-order predicates, normally specified using OCL. Equivalence
rules of Predicate Calculus are applied to each boolean expression to get its
equivalent Conjunctive Normal Form (CNF), i.e., a conjunction of clauses, where
a clause is a disjunction of literals (see [3] for futher details). Once in CNF, filters
can be subject to “surgically removal”, as explained in Subsection 5.4.

5.3 Co-evolution Step

We treat transformations as models. That is, transformations are described along
a transformation metamodel. Therefore, it is possible to define (high order) trans-
formations (HOTs) that take a transformation as input, and return a somehow
modified transformation. This is precisely the approach: define correspondences
that map the original transformation into an evolved transformation, taking the
changes obtained during the detection stage as parameters. These HOTs are
realized as ATL rules. In what follows, we summarize those rules in terms of
co-evolution actions. These actions are expressed as predicates over the origi-
nal transformation rules. To this end, we capture a transformation rule R as
a tuple Rule(id, source, targets, filters, mappings) where “source” and “targets”
refer to classes of the input and output metamodel, respectively; “filters” is a
set of related predicates over the source element, such that the rule will only
be triggered if the condition is satisfied; finally, “mappings” refer to a set of
bindings to populate the attributes of the target element. A binding construct
establishes the relationship between a source and a target metamodel elements.
Normally, a mapping part contains a binding for each target metaclass’ property.
Its semantics denote what needs to be transformed into what instead of how the
transformation must be performed. The left-hand side must be an attribute of
the target element metaclass. The right-hand side can be a literal value, a query
or an expression over the source model. Figure 3 illustrates an example of a
transformation in ATL.

Transformation rules are the facts. Next, co-evolution actions are described
through a set of operands and predicates over these rule facts. To avoid clutter-
ing the description with iterations, we consider multi-valued predicates to return
a single value. For instance, if a set of rules is used as parameter in the following
1 http://www.eclipse.org/m2m/atl/atlTransformations/

http://www.eclipse.org/m2m/atl/atlTransformations/
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Bindings(r), bindings of all the rules in the set will be returned. Underscore will
be used similarly to Prolog, as “don’t care” variables. Predicates are intensional
definitions of rule sets, and include: RulesBySource(s) denotes the set of rules
whose source is s; RulesByTarget(t) denotes the set of rules whose target is
t; Binding(r, p) returns the bindings of rule r which hold property p; Bind-
ings(r) returns the bindings of rule r; TargetsOfRule(r) returns the targets of
rule r; FiltersOfRule(r) returns the filters of rule r; FiltersOfProperty(p)
returns the filters where the property p appears.

Operands act on rules: deleteRule(r), which deletes the rule r; deleteTar-
get(r, t) which deletes target t from rule r; deleteBinding(r, b), which deletes
binding b from rule r; addRule(r), which adds rule r; addTarget(r, t), which
adds target t to rule r; addBinding(r, b), which adds a binding b to rule r;
moveTarget(r1, t, r2), which moves r1 ’s target t together with its bindings
to rule r2; moveBinding(r1, b, r2) which moves r1 ’s binding b to r2, pro-
vided r2 holds a target that matches b’s lefthand side; updateFilter(r1, f1,
f2), which updates f1 by f2 among r1 ’s filters; deleteFilter(r1, f1), which
deletes one of r1 ’s filters; updateBinding(r1,b1, b2), which substitutes r1 ’s
binding b1 by b2; updateSource(r, s1, s2), which updates source s of rule r
to s2 ; concatClass(c1, c2), which concats two classes names. These operands
are used to specify how metamodel changes impact the transformation rules, i.e.
the co-evolution actions. The list below and the list at the end of this subsection
summarize the actions related to simple and complex changes, respectively.

– removeMetaclass (c: C): (BRC) deleteRule(RulesBySource(c)),
deleteFilter(RulesBySource(c), FiltersOfProperty(c.properties)),
deleteBinding(RulesBySource(c), Binding(RulesBySource(c), c.properties))

– removeMetaproperty(p: P): (BRC) deleteFilter(RulesBySource(c),
FiltersOfProperty(p)), deleteBinding(RulesBySource(c),
Binding(RulesBySource(c), p)). Deletions should be minimal (in
Subsection 5.4)

– updateLowerBound (p: P,NewBound): (NBC) No action
– updateUpperBound (p: P,NewBound): (NBC) updateFilter(_, Filter-

sOfProperty(p), f2), updateBinding(_, Binding(_, p), b2). In case lower-
Bound converts from 1 to *, f2 will insert a forAll expressions to check that
all instances fulfill the condition and b2 will use the first() to take the first el-
ement of the sequence. In case lowerBound changes from * to 1, asSequence()
will be used in f2 and b2 to convert an element into a sequence.

– updateEType: (BUC) Syntactically right, but possible runtime type errors
(refer to [18]). A warning note is generated.

– updateESuperTypes: (BUC) (if a metaproperty of the ancestors is ac-
cessed) Propose to copy the metaproperty of the superclass in the class.

– updateIsAbstract (c: C,NewValue): (NBCor BRC) If metaclass c
is turned into abstract (NewValue = “true”) : Delete (Rule(c)), Delete
(RHS(c)). If metaclass c is turned into a non-abstract class (NewValue =
“false”) then, do nothing.
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– updateELiterals (c: C): (BUC) Comment the structure the literal is used
in, in case the user wants to use another literal. Alternative: use the default
one.

– addClass(c: C): (NBC) see Subsection 5.5
– add Metaproperty(p: P): (NBC) see Subsection 5.5

Next, we illustrate the distinct casuistic using our running example:

– Scenario 1. The AssistantMVC’s Multiple class is introduced in the target
metamodel. This is a NBC scenario.

– Scenario 2. The property “optional” is deleted from AssistantMVC’s Exam-
Element. When a property is removed from the metamodel, different ap-
proaches can be taken, where the most simplistic one could be to remove the
whole transformation rule where the property is used in a binding or boolean
expression. However, this is a very restrictive and rather coarse-grained ap-
proach. We advocate the use of what we call the principle of minimum
deletion, where only the part that is absolutely necessary is removed (see
next subsection).

– Scenario 3. The AssistantMVC’s fontName metaproperty is changed from
string to integer. This is a BUC case.

– Scenario 4. The AssistantMVC’s OpenElement class is splitted into OpenEle-
ment_1 and OpenElement_2. As a result, rules having OpenElement as
source should be co-evolved (see Figure 3). This is the case of the Open-
Question rule, which is splitted in two rules: OpenQuestion_1 and Open-
Question_2. The former contains the bindings related to OpenElement_1
while the latter keeps the bindings for OpenElement_2.

– Scenario 5. New subclass ExerciseElement is added to ExamElement meta-
class, and a new property style is added to View target metaclass. Additive
evolution is a NBC case. Even though, it is not unusual to need new rules
or bindings to maintain the metamodel coverage level. For this purpose we
include in the co-evolution the option to generate partially new rules, as they
are not fully automatable (see Subsection 5.5).

Complex Changes and their impact on transformation evolution:

– MoveMetaproperty (c: C, p: P, d: C) if c, d ∈ SourceClasses: update-
Binding(RulesBySource(c), Binding(RulesBySource(c), p), newBinding(p))
where newBinding works out a binding by navigating to the new location
of the property, in case both classes c and d are related (navigability exists
through associations). If they are not related, user assistance will be needed.

– MoveMetaproperty (c: C, p: P, d: C) if c, d ∈ TargetClasses:
deleteBinding(RulesByTarget(c), Binding(RulesByTarget(c), p)) or if Bind-
ing(RulesByTarget(d), p) > 0: moveBinding(RulesByTarget(c), Binding
(RulesByTarget(c), p), RulesByTarget(d)).

– FlattenHierarchy (c: C) if c ∈ SourceClasses:
deleteRule(RulesBySource(c)) and {if RulesBySource(Subclass(c)) >0 then
moveBinding(RulesBySource(c), Binding(RulesBySource(c), p),
RulesBySource (subclass(c))) else addRule(rule(_, subclass(c), _, _, _))}.
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– FlattenHierarchy (c: C) if c ∈ TargetClasses:
deleteTarget(RulesBySource(c), c) and {if RulesByTarget(Subclass(c)>0
then moveBinding(RulesBySource(c), Binding (RulesBySource(c), p),
RulesBySource(subclass(c))) else addTarget (RulesBySource(subclass(c)),
Subclass(c))}.

– ExtractMetaclass (c: C, d: C) if c, d ∈ SourceClasses: ad-
dRule(rule(id, c, d, _, _)) and moveBindings(RulesBySource(c), Bind-
ings(RulesBySource(c)), id).

– ExtractMetaclass (c: C, d: C) if c, d ∈ TargetClasses:
addTarget(Rule(c, d), d) and moveBinding(RulesBySource(c), Bind-
ings(RulesBySource(c)), addTarget(Rule(c, d), d)).

– InlineMetaclass (c: C, d: C): ”Extract metaclass” case and
deleteRule(RulesBySource(c)).

– InheritanceToComposition (c: C, d: C): When c is the source: update-
Filter(RulesBySource(c), FiltersOfRule(RulesBySource(c)), f2), where in f2
refImmediateComposite() will be used in the filter. For instance: select(v |
v.oclIsTypeOf (OpenElement))[Expression] will be converted to ExamEle-
ment.refImmediateComposite() [Expression]. When d is the source: update-
Binding(RulesBySource(c), Bindings(RulesBySource(c)), b2), where in b2
the name of the composition relation will be introduced in the path of the
binding. For instance, OpenElement.question [Expression] must be converted
to OpenElement.examElement.question [Expression].

– GeneralizeSupertype (c: C, s: C, d: C):
deleteBinding(RulesBySource(c), Binding (RulesBySource(c),
Metaproperties(s))).

– InlineSubclass (c: C, d: C): deleteRule(RulesBySource(c)) and
moveBinding (RulesBySource(c), Bindings(RulesBySource(c)),
RulesBySource(d)).

– ReferenceToIdentifier (c: C, d: C, p: P): (As a convention, the
id will have the same name as the deleted reference) updateBind-
ing(RulesBySource(c), Binding (RulesBySource(c), p), newBinding), where
the newBinding will replace reference by metaclass.id, e.g. if metaclass C
with a relation p to D is converted to C with a metaproperty referring to
the new id in D, bindings p ← D (being D a reference to the generated
element of type D) will be adapted to p ← D.p.

– SplitReferenceByType (c: C, d: C, x: C, s: C, p: P, y: P, z: P):
deleteBinding(RulesBySource(d), p) and if x and s elements are created in
the same rule:addBinding(RulesBySource(d), new_b).

– PropertyMerge (p: P, z: P, x: P) if p, z, x ∈ SourceProperties:
updateBinding(_, Binding(_, p), newBinding), where in newBinding x is
used instead of p or z.

– PropertyMerge (p: P, z: P, x: P) if p, z, x ∈ TargetProperties:
updateBinding(_, Binding(_, p), newBinding) and deleteBinding(_, Bind-
ing(_, z)), where newBinding will use x instead of p and z.

– ClassMerge (c: C, d: C) if c, d ∈ Source-
Classes: deleteRule(RulesBySource(c)) and deleteRule (RulesBySource(d))
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Table 1. Truth table for removed elements. RT value will be interpreted as true,
and RF value as false. L represents a literal, which is an OCL expression that can be
evaluated to a boolean value and does not include a boolean change.

L1 L2 L1 AND
L2

L1OR L2 NOT
L1

RT L2 L2 RT RF

RF L2 RF L2 RT

RT RF RF RT -
RT RT RT RT -
RF RF RF RF -

and addRule(rule(_, concatClass(c, d), union(TargetsOfRule (Rules-
BySource(c)), TargetsOfRule(RulesBySource(d))), _ , union(Bindings
(RulesBySource(c)), Bindings(RulesBySource(d)))). If there are filtes in the
rules: updateSource(_, c, concat(c, d)) and updateSource(_, d, concat(c,
d)).

– ClassMerge (c: C, d: C) if c, d ∈ TargetClasses: deleteTarget
(RulesByTarget(c), c) and deleteTarget(RulesByTarget(d), d) and addTar-
get(RulesByTarget(c), concatClass(c, d)) and addTarget(RulesByTarget(d),
concatClass(c, d)).

– SplitClass (c: C, d: C): deleteRule(RulesBySource(c)) and
addRule(rule(_, d, TargetsOfRule(RulesBySource(c)),
FiltersOfRule(RulesBySource(c)), Binding(RulesBySource(c),
Metaproperties(d)))) and addRule(rule(_, SplitClassName(c),
TargetsOfRule(RulesBySource(c)), FiltersOfRule(RulesBySource(c)),
Binding (RulesBySource(c), Metaproperties(SplitClassName(c))))) .

– PushMetaproperty (p: P): (like move metaproperty)

5.4 The Case of the removeProperty Change

When a metaclass or a metaproperty is deleted, affected transformation elements
have to be removed while keeping the transformation logic coherent. Coherence
refers to deleting only the strictly necessary parts to prevent negative conse-
quences. For instance, two rules might exist with complementary filters. Those
filters may refer to a property. If the deletion of this property leads to the re-
moval of the whole filter, these two rules will no longer have a discriminating
filter. Therefore, the impact of metamodel element deletions should be as re-
strictive as possible. This is specially pressing for rule filters. This subsection
discusses a way to “surgically” remove “dead” parts of rule filters. Casuistic in-
cludes:

– Expressions with string concatenation. This is the easiest case, let be style
← fontName + fontColor; an expression with the concatenation of two
string metaproperties, if one of them (e.g. fontName) is removed, then the
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expression is re-adapted to contain the rest of the metaproperties, i.e. the
new expression is changed to style ← fontColor.

– Expressions with creator operations of collections: Collection types are sets,
ordered sets, bags, and sequences. With expressions like Set{London, Paris,
Madrid} → union(Set{birthCity, liveCity, workCity}), after removing a
metaproperty (e.g. birthCity), the new expression will keep the rest of the
elements, i.e Set{London, Paris, Madrid} → union(Set{liveCity, workCity}).

– Expressions with other operations on collections: There are other operations
to work with collections, as append(obj), excluding(obj), including(obj), in-
dexOf(obj), insertAt(index, obj), and prepend(obj). In this case, if the re-
moved metaproperty is the parameter of the function, this part of the
expression is removed. So, with an expression like Set{London, Paris,
Madrid} → append(workCity), after removing the workCity metaprop-
erty the new expression will maintain the left hand of the expression, i.e
Set{London, Paris, Madrid}.

– Boolean expressions: since a removed metaproperty cannot be evaluated,
that element in the expression must be considered as undefined. Moreover,
before rewriting the expression with that undefined part, it is convenient
to simplify the expression as much as possible, i.e. converting it into an-
other equivalent expression, easier to deal with. Thus, equivalence rules of
Predicate Calculus are applied to each boolean expression to get its equiv-
alent CNF. Inspired by [3], table 1 is proposed as truth table which defines
conversion rules for CNF expressions.

As an example, consider a metamodel with three metaproperties: Eras-
musGrant, that says if the student has an Erasmus type grant; speakEnglish,
that says if s/he has a good English level; and enrolledLastYear, that indi-
cates if s/he is in his/her last undergraduate year. In the process of meta-
model redesign, the designer could help giving some clue about the reason to
take the decision of removing a metaproperty from the metamodel (removal
policy). For example, if all students in the university had a very good level
of English (because it is a new precondition for the enrollment), it could
be considered as satisfied by default, and in case of removing the speak-
English metaproperty, its value could be reinterpreted as removed&satisfied-
by-default (RT). On the other hand, if the university had decided not to
participate in the Erasmus Program, no student would have such grant, and
in case of removing the ErasmusGrant metaproperty, its value could be rein-
terpreted as removed&unsatisfied-by-default (RF).

If, in the previous example, there had been this expression not Eras-
musGrant or (speakEnglish and enrolledLastYear), and later the redesign
process decided to remove the speakEnglish metaproperty, then according
to the truth table the expression would be rewritten as not ErasmusGrant
or enrolledLastYear ; if the removed metaproperty had been ErasmusGrant
with RF policy, then the new expression would have been true.

– Expressions with loop operations: In ATL the syntax used to call an itera-
tive expression is the following: source → operation_name (iterators | body).
Among these operations there are any(expr), collect(expr), exists(expr),
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Fig. 6. Generated skeletons for the new style property (above) and the new Exer-
ciseElement class (below)

forAll(expr), one(expr), select(expr), and so on. For instance, in self.items
→ exists(i | i.question.size()>50), if the removed metaproperty (e.g. items)
takes part in the source, the whole expression is removed, but if the removed
metaproperty takes part in the body, the rules for the boolean expressions
must be applied.

– For more ambiguous cases, we resort to reporting the ambiguity and letting
the designer decide. For instance, if the returned type of a helper is removed,
the helper cannot be considered during binding, and a warning note is intro-
duced. Or if the removal of a property makes the scope of two rules coincide
then, the first one is commented.

Back to our second scenario (i.e. removal of optional from ExamElement), con-
sider we have two rules whose filters refer to optional :

– (value>5 and optional) or long. Applying equivalences from table 1, the
evolved filter becomes (value > 5 or long)

– not ((value>5 and optional) or long). Using Morgan’s laws, its CNF coun-
terpart is: (not value>5 or not optional) and not long. Applying equivalences
from table 1, the evolved filter results in (not value>5 and not long).

In this way, “surgical removal” permits to limit the impact of deletion of prop-
erties in the associated rules.

5.5 The Case of addClass and addProperty Changes

Although additive evolution is considered NBC, it is not unusual to need new
rules or bindings to maintain the metamodel coverage level. For this purpose,
we include in the co-evolution the option to generate partially new rule skele-
tons. Our fifth scenario illustrates this situation: addition of the ExerciseElement
metaclass, and addition of the style property to the View metaclasss. The engi-
neered co-evolution can be seen at work in Figure 6: a rule is partially generated
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Fig. 7. CO-EUR architecture

to tackle the addition of a new source metaclass while a new partial binding is
proposed to address new properties. In the latter case, only a simple binding is
generated (e.g. target_metaproperty ← source_metaproperty) which needs to be
completed by the designer (in the example, xml.style).

6 Implementation

The CO-EUR prototype is available2 as a proof-of-concept of the feasibility of
this approach for ATL rule co-evolution. Figure 7 depicts the main CO-EUR
modules that mimic the co-evolution workflow introduced in Section 2. CO-EUR
takes an ATL file (.atl), two Ecore metamodels (.ecore) as input, and returns an
ATL file that tackles the differences between the input Ecore models.

The main effort was devoted to the adaptation module. Implementation wise,
this module also represents the main innovative approach since transformation
co-evolution is achieved using HOT transformations. Along the MDE motto:
“everything is a model” [2], transformations are models that conform to their
own metamodel (i.e., the transformation language). Being models, (Higher Or-
der) transformations can be used to map the original transformation model into
a co-evolved transformation model that caters for the metamodel changes. Fig-
ure 8 outlines one such HOT transformation that tackles the splitClass case.
The pattern includes: a “main” rule, some lazy rules that are called from it
2 www.onekin.org/downloads/public/examination-assistant.rar

www.onekin.org/downloads/public/examination-assistant.rar


160 J. García, O. Diaz, and M. Azanza

Fig. 8. HOT rules to cope with class split. HOTs’ input and output models conform
to the ATL metamodel.

to create elements, and some helpers to modularize the functionality. In this
specific case, Module_Splitclass is the “main” rule (line 9), which will be exe-
cuted when there is any change of type Splitclass. In the to part of the rule,
the helper deleteRule_Splitclass is called (line 13) which causes the deletion
of the rule referring to the deleted metaclass. Then, the imperative part of
the rule (do) creates two new rules: MatchedRule2MatchedRule_Splitclass and
MatchedRule2MatchedRule2 _Splitclass (lines 16 and 17). These rules in turn re-
fer to rule SOPE2SOPE _Splitclass (line 24), which creates a SimpleOutPatter-
nElement for the new generated rules. Finally, this rule invokes B2B_Splitclass
to geneate the bindings (lines 34 and 39).

7 Related Work

Although co-evolution of models after metamodel evolution has been widely
studied [4,9,16], transformations have raised less attention. A lot of research has
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been carried out in the model co-evolution area and some proposals have been
done to semi-automatically adapt models to metamodel evolution. Three main
strategies have been used [10]: (i) manual specification: these approaches pro-
vide transformation languages to manually specify the migration (e.g. [16]); (ii)
matching approaches: they intend to automatically derive a migration from the
matching between two metamodel versions (e.g. [4]); and (iii) co-evolution based
on operators: they record the coupled operations which are used to evolve the
metamodel and which also encapsulate a model migration (e.g. [9]). Following
this classification, our approach would be in the second type, as we do not know
changes in advance or make them in any specific tool. But on the other hand,
we rely our complex changes in a taxonomy of operators based on the third type
([9]). Our approach is similar, as each change has an associated co-evolution,
but the difference is that we do not create explicitly the operators, as they are
automatically derived. In some cases changes in metamodels do not affect trans-
formations, as studied in [18], where authors conclude that the addition of new
classes and broadening of multiplicity constraints do not break the subtyping re-
lationship between metamodel versions. But often changes do have an impact on
transformations. To the best of our knowledge, two authors ([14] and [17]) have
dealt with transformation co-evolution. The first case is limited to graph-based
languages, considering simple changes and considering subtractive changes only
as coarse-grained removals (i.e., rule level deletions). In contrast, we focus on
rule-based declarative languages, deleting as little as possible, and considering
complex changes. In [17] authors explain a fundamental idea, e.g., the conve-
nience of using operators in the co-evolution of transformations. Compared to
this publication, our contribution would be an automatic conversion from simple
to complex changes, minimum deletion and an implementation of co-evolutions
in ATL. First issue of the approach, the conversion of simple to complex changes
is treated in [8] and [21]. The former is based on a DSL for expressing model
matching and the later uses a sequence of operator instances as evolution trace,
and they allow to make changes over changes.

Our co-evolution process only guarantees that the transformation is syntac-
tically correct, and if other correctness properties need to be checked, other
complementing works will have to be considered, as analysis and simulation [1],
testing [12] or metamodel coverage [23]. In the case where co-evolution is done
manually, coverage analysis can be used to determine whether the changes to a
metamodel affect the transformation [20].

8 Conclusions

We addressed how metamodel evolution can be semi-automatically propagated
to the transformation counterpart. The process flow includes: (1) detecting sim-
ple changes from differences between the original metamodel and the evolved
metamodel, (2) deriving complex changes from simple changes, (3) translating
boolean expressions to the CNF form, (4) if available, capitalize on model simi-
larity, and finally, (5) map the original transformation into an evolved transfor-
mation that (partially) tackles the evolved metamodel. The approach is realized
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for EMOF/ Ecore-based metamodels, and ATL transformations. The approach
relieves domain experts from handling routine cases so that they can now focus
on the more demanding scenarios (e.g. additive evolution). The use of high-level
transformations implies the existence of a transformation metamodel. So far this
is available for main transformation languages such as ATL or RubyTL.
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Abstract. The employment of optimistic model versioning systems allows multi-
ple developers of a team to work independently on their local copies of a software
model. The merging process towards one consolidated version can be error-prone
and time-consuming when performed without any tool support. Recently, several
sophisticated approaches for model merging have been presented. However, even
for multi-view modeling languages like UML, which distribute the information
on the modeled system over different views, these views are merged indepen-
dently of each other. Hence, inconsistencies are likely to be introduced into the
merged model. We suggest to solve this problem by exploiting information stored
in one view as constraint for the computation of a consolidated version of another
view. More specifically, we demonstrate how state machines can guide the inte-
gration of parallel changes performed on a sequence diagram. We give a concise
formal description of this problem and suggest a translation to the satisfiability
problem of propositional logic.

1 Introduction

At least since Brooks’ 1987 publication on software engineering, awareness has been
brought to the collective consent that software is inherently complex [8]. According to
Brooks, this complexity can be split into essential complexity introduced by the prob-
lem domain itself and accidental complexity emerging from inadequate representations
of the problem domain. Essential complexity is enclosed in the very nature of software,
and can thus hardly be reduced. To mitigate accidental complexity, software engineer-
ing practice is shifting from code-centric development to a model-driven engineering
(MDE) [5] paradigm, which is based on multi-view modeling languages like the Unified
Modeling Language (UML). In MDE, software models are not only employed as in-
formal design sketches, but serve as first-class development artifacts used for automatic
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code generation. UML introduces different views on the system under development in
order to make the complexity of large systems manageable. These views are represented
as different diagrams, each highlighting a certain aspect of the system while abstracting
from others. For example, the internal behavior of objects is shown in state machines
whereas interactions between objects are specified by sequence diagrams.

However, not only software itself, but also the process of building software is inher-
ently complex. Already 40 years ago [21], software engineering was defined as multi-
person construction of multi-version software. The combination of multiple persons
and multiple versions of software is thus, in addition to the complexity of the soft-
ware itself, another important source of complexity. Consequently, tools supporting
team work and change management emerged [14], in particular, version control sys-
tems (VCS). Two different versioning paradigms are distinguished. On the one hand,
pessimistic versioning systems grant exclusive access to a resource by locking it for all
but one developer, with the consequence that no conflicts are possible, but also all but
one developer are interrupted in their work. On the other hand, optimistic versioning
systems manage parallel modifications of a software artifact by comparing and merging
independently evolved versions with a common ancestor. In the rest of this paper, we
consider optimistic versioning.

Initially, VCS were applied only to textual artifacts such as source code, but with
the increasing importance of software models in the software engineering process, the
need to version control also the modeling artifacts became evident. However, due to
the graph-based nature of models, existing VCS, which have been successfully em-
ployed on source code, are only of limited value for model versioning. Thus, dedi-
cated model versioning systems based on different algorithms are necessary. Several
approaches have been presented recently [10] for both single-view modeling languages
and multi-view modeling languages like UML. As far as version control for multi-view
models is concerned, however, current approaches merge each diagram individually and
ignore valuable information spread across different diagrams. By ignoring this informa-
tion, false conflicts may be reported or unsatisfactory merge results may be returned,
giving rise to inconsistencies between different views of the software model.

In this paper, we propose an approach in which information distributed over the state
machine and the sequence view of a model is taken into account when merging se-
quence diagrams. In particular, we show how two versions of a sequence diagram can
be consistently merged by taking the behavior expressed by state machines into ac-
count. Since the merged version is not unique in general, the goal is to precalculate a
set of consistent merges to support the modeler in integrating the modifications. Given
a multi-view modeling language with several concepts as found in UML, we give a
formal specification of the merging problem, which allows for a direct encoding to a
formalism for which tool support is available. We chose propositional logic as host
language to represent the merging problem of sequence diagrams in terms of a satisfia-
bility problem (SAT) [12] because the required constraints are directly transferable and
powerful solvers are available.

This paper is structured as follows. In Section 2, we discuss an example illustrating
the problems occurring during the merge of sequence diagrams. We review related work
in Section 3. In Section 4, we give an overview of the modeling language concepts
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Fig. 1. State machines of an email client and an email server

considered in this paper in terms of a graphical metamodel, which we then transform
to a formal representation. On this basis, we give a concise definition of the sequence
diagram merging problem in Section 5. The translation of this problem to a satisfiability
problem of propositional logic is explained in Section 6. We present our implementation
and an evaluation in Section 7. Finally, we conclude and give an outlook to future work.

2 A Motivating Example

The following example about an email protocol is to motivate the approach developed
in this paper. Figure 1 shows state machines of an email-client and an email-server
implementing a simplified variant of the Simple Mail Transfer Protocol (SMTP). Only
basic sending functionality is realized and no error handling is included. The initial state
of each state machine is indicated by an incoming arrow from a black circle. States are
connected to each other by transitions. Each transition carries a label that consists of
two parts, separated by a “/”. The string on the left indicates a trigger, whose receipt
in the source state of the transition causes the state machine to change its state to the
target state of the transition. The string on the right of each transition indicates a set
of effects, which are symbols that are sent when the transition is executed and which
may again trigger state transitions in the same or other state machines. For example, the
state machine Client starts in state Idle and waits until it receives uCon, which causes
its transition to state conPend. During the execution of the transition it sends the trigger
sCon, which is received by the state machine Server and causes its transition from state
waiting to accepting. During the execution of this transition Server triggers ok, which is
again received by Client, triggering the transition to state connected, and so on.

A valid model may only partially specify the system under consideration. For exam-
ple, the first transition on Client is triggered by a user, for which no state machine is
defined. In this case, an unconstrained state machine is assumed. Such a state machine
contains only one state from which any symbol is received and sent.

Communication scenarios between users, clients, and servers are modeled by se-
quence diagrams showing sequences of exchanged messages. Sequence diagrams de-
scribe interactions where the interaction partners, called lifelines, are instances of state
machines. Figure 2 shows three sequence diagrams SDo, SDα, and SDβ . The lifelines
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are represented by labeled rectangles and vertical dashed lines. Each label contains the
name of the lifeline on the left of the colon (e.g., c) and the name of the state machine in-
stantiated by the lifeline on the right of the colon (e.g., Client). A message is represented
as arrow connecting two lifelines and contains a symbol which can be found as effect
on some transition of the sender’s state machine and as trigger on some transition of the
receiver’s state machine. A sequence diagram is consistent with the state machines that
are instantiated by its lifelines if for each lifeline the sequence of received messages is
a path of triggers in the corresponding state machine. For example, for the uppermost
diagram in Figure 2, SDo, the sequence of received messages for lifeline c:Client causes
triggers uCon → ok → ok. This sequence is also found as a path in the corresponding
state machine, namely connecting states idle → conPend → connected → identified. A
similar argument holds for s:Server. Since for u:User we assume an unconstrained state
machine, no restriction is imposed on the order of the messages received by u:User, so
this lifeline is also consistent.

Consider the following evolution scenario. Starting from the sequence diagram SDo

of Figure 2, which shows the authentication process of an email protocol, two modelers,
Alice and Bob, independently perform some modifications. Alice extends the scenario
with a logout message resulting in the revised sequence diagram SDα, while Bob adds
the communication necessary to send an email, manifesting in revision SDβ . Trying to
merge the modifications of both modelers without any additional information, it is not
automatically decidable in which order the added messages from both revisions should
be arranged. Hence, we have a merge conflict.

It thus has to be decided manually how the changes are integrated. Several syntac-
tically correct merges of the sequence diagram are possible, namely all possible per-
mutations of the two concatenated sequences that preserve the relative order of the
messages. However, many of these options turn out to be inconsistent with the state
machines. When taking the state machines into account, then only one merged version
is possible: Alice’s modifications have to be appended after Bob’s changes, otherwise
the sequence diagram would model a scenario which is forbidden by the state machines.

3 Related Work

The requirements of model versioning systems strongly diverge from the requirements
of traditional versioning systems for text-based artifacts like source code [2,3,4]. In
consequence, several approaches to conflict detection algorithms and model merging
strategies have been presented over the last few years (cf. the survey article by Brosch
et al. [10]). These approaches are either realized on the generic metamodeling level
resulting in language independent solutions or use language specific information in
order to yield better support for a specific modeling language. Our approach falls into
the latter category. However, we are not aware of any approach dealing with the merge
problem of sequence diagrams where the sequence diagrams have to be kept consistent
with the state machine view. Westfechtel [28] discusses the merge of ordered features in
EMF models by aggregating elements into linearly ordered clusters. The order within
a cluster is determined either at random or by a user. Since the merge is performed on
the metamodel level to keep the approach generic, the information available within the
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Fig. 2. Evolution of a sequence diagram

model cannot be used for merging. Gerth et al. [18] provide dedicated merge support
for business process models ensuring a consistent outcome. They formalize process
models as process terms and use a term rewriting system to detect and interactively
resolve merge conflicts. However, there is no support for calculating all valid merge
solutions. Cicchetti et al. [13] propose to define conflict patterns which can be tailored
towards the application on sequence diagrams. Such a conflict pattern can be equipped
with a reconciliation strategy for resolving the conflict. Nejati et al. [19] present an
approach for merging two state machines. This approach exploits syntactical as well
as semantical information provided by the models in order to compare variants and
perform consistency checks.

Outside the research of model versioning, several approaches have been presented
to verify the consistency of different views of a model and to eliminate inconsistencies.
Diskin et al. [15] present a framework based on category theory for consistency checking
of views. They first integrate the relevant parts of the metamodels into one global meta-
model such that all instance models become instance models thereof. These instance
models can then be checked for inconsistencies. Van Der Straeten et al. [26] use the
SAT-based constraint solver Kodkod to detect and resolve inconsistencies between class
and sequence diagrams. Egyed [16] proposes to identify inconsistencies in an incremen-
tal manner. Sabetzadeh et al. [23] present an approach to check consistency between a
set of different, but overlapping models. Therefore, they merge this set of models to one
model. Tsiolakis [25] suggests to collect constraints distributed over views like the class
diagram or state machines and integrate them in the sequence diagram in terms of state
invariants yielding pre- and postconditions for individual messages.

In the context of model versioning, these approaches can be used to check whether
the merged version introduces inconsistencies, i.e., to perform quality control on the
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Fig. 3. Metamodel of the tMVML

merge result. In previous work [9], we propose to use model checking to validate the
merged version of an evolving sequence diagram. No support for the merging process
itself is provided.

4 The Modeling Language tMVML

In order to give a concise definition of the sequence diagram merging problem, an ex-
plicit statement on the modeling language concepts is essential. Therefore, we define
the modeling language tMVML, the Tiny Multi-View Modeling Language in terms of a
metamodel. The concepts and terminology of tMVML are inspired by the Unified Mod-
eling Language (UML) of the OMG [20]. The compactness of the metamodel allows
not only a focused presentation of our approach, but also a direct technical realization
as discussed in Section 7. Concepts to describe the static structure of a system as found
in a class diagram and specification facilities for behavior as offered by the activity dia-
gram are not relevant for this work and therefore omitted. However, interfaces to other
views and advanced concepts of state machines and sequence diagrams not discussed
in this paper are prepared for later versions of tMVML.

With the same motivation as in other works on the formalization of UML [17], we
then present a formalization of the concepts of tMVML suitable for our purposes. This
formalization enables us to precisely define the sequence diagram merging problem in
the context of model versioning.

4.1 The tMVML Metamodel

The implementation of the tMVML metamodel is available at our project website [1].
We consider the excerpt relevant for this work, which is depicted in Figure 3. For better
readability we typeset instances of metaclasses in standard lowercase font using the
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same name as the metaclass, e.g., in order to to refer to an instance of the metaclass
State we simply write “state”.

The tMVML metamodel has a root class Model which contains two classes represent-
ing views, SequenceDiagramView and StateMachineView, and the class ActionSymbol.
Action symbols realize the communication between different state machines and de-
scribe communication in sequence diagrams. The StateMachineView contains a set of
state machines, each containing a set of states. States are connected by transitions. To
each transition an action symbol can be assigned as trigger and one or more action sym-
bols can be assigned as effects. The SequenceDiagramView contains a set of sequence
diagrams. A sequence diagram consists of a set of lifelines and a set of messages. Each
message carries an action symbol and is attached via a send event and a receive event to
one or two lifelines. Each lifeline consists of a sequence of events. Messages are ordered
relative to the lifelines they are attached to. In this work, we only consider synchronous
message passing, for which a message order relative to the sequence diagram suffices.
However, on order to stay close to the definition of sequence diagrams in the UML
standard and to be able to extend our approach to asynchronous message passing and
timed events, we base our approach on ordered events rather than on ordered messages.

In the following, we formalize the metamodel of tMVML as is required for a concise
specification of the sequence diagram merging problem.

4.2 Formalization of the tMVML Metamodel

Let LA be the language describing tMVML models defined over the alphabet A =
(AS ,AA,AL,AM ,AE) where AS denotes a set of states, AA denotes a set of action
symbols,AL denotes a set of lifelines,AM denotes a set of messages, andAE denotes
a set of events. The class Model is the root element of the metamodel and contains the
classes ActionSymbol, StateMachineView, and SequenceDiagramView. Each instance
of ActionSymbol is an element of AA. The elements composing the classes StateMa-
chineView and SequenceDiagramView, sets of state machines respectively sequence
diagrams, are defined in the following along with their components and associations,
Besides the language concepts and their interplay, we introduce and define important
properties of a sequence diagram, namely well-formedness, time consistency, lifeline
conformance, and correctness, which are required to formulate the sequence diagram
merging problem.

By P(X) we refer to the power set of a set X and for any tuple Y = (y1, . . . , yn), by
πi(Y ) = yi with 1 ≤ i ≤ n, we refer to the projection to the i-th element. We continue
to typeset instances of metaclasses in standard lowercase font.

Definition 1 (State machine). Given the alphabet A, a state machine is a quadruple
(S,Atr , Aeff , T ), where

– S ⊆ AS is a set of states,
– Atr , Aeff ⊆ AA are sets of action symbols, and
– T ⊆ (S × Atr × P(Aeff ) × S) is a relation representing the transitions between

states.
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A state machine consists of a set of states, two alphabets, and transitions between states.
For a transition t ∈ T with t = (s, a, A, s′), s is the source state of the transition, s′ the
target state, a an action symbol that, when received, triggers the execution of the tran-
sition, and A is a set of action symbols that are sent when the transition is executed.
In Figure 1, state machine Server contains states S = {waiting, accepting, ready,
fromRcvd, rcptRvd}, triggers Atr = {sCon, sDone, sFrom, sRcpt, sData, sHello}, and
effect Aeff = {ok}. Examples for transitions are (waiting, sCon, {ok}, accepting) and
(ready, sDone, {},waiting). The formalization of the communication between state ma-
chines is not relevant for this problem formulation and is therefore omitted. It can be
found in previous work [9].

Definition 2 (Sequence diagram). Given the alphabet A and a set SM of state ma-
chines, a sequence diagram is a quadruple (L,M, lprop,msg), where

– L ⊆ AL is a set of lifelines,
– M ⊆ AM is a set of messages,
– lprop : L→ (SM×P(AE)× P(AE)× P(AE ×AE)) describes lifelines, and
– msg : M → (AA ×

⋃
l∈L π2(lprop(l))×

⋃
l∈L π3(lprop(l))) describes messages.

For a lifeline l with lprop(l) = (SM , Esnd , Ercv , >), SM is the state machine asso-
ciated to l, Esnd and Ercv are sets of send and receive events handled by l, and the
relation > describes the {ordered} constraint of the association between the classes
lifeline and event in the tMVML metamodel. We assume that

– Esnd and Ercv are disjoint,
– the relation > is transitive, antisymmetric, and irreflexive,
– for all (e1, e2) ∈ >, it holds that e1, e2 ∈ Esnd ∪ Ercv , and
– for two lifelines, the sets of send and receive events are pairwise disjoint.

For a message m with msg(m) = (a, s, r), a is the action symbol, s the send event, and
r the receive event associated to m. We assume that

– for each message, its send event is distinct from its receive event
– for any two messages, their send events are pairwise distinct
– for any two messages, their receive events are pairwise distinct

Figure 4 shows the sequence diagram SDo of Figure 2 indicating additional elements
described in Definition 2. Usually, much information is omitted in the concrete syntax
as in Figure 2 to avoid an information overflow for the human reader. In the sequence
diagram SDo, the set L contains the lifelines u, c, and s. Lifelines c and s are instances
of the state machines Client and Server of Figure 1. The state machine for u, User, is
not shown. Each message is depicted as arrow between two lifelines. Each arrowhead
represents a receive event and each arrowtail a send event. Sender and receiver lifelines
may be identical. In Figure 4, lifeline s handles events sConRcv1, okSnd1, sHelloRcv1,
and okSnd2, hence lprop(s) = (Server,{okSnd1,okSnd2},{sConRcv1,sHelloRcv1},>)
with sConRcv1 > okSnd1 > sHelloRcv1 > okSnd2. Further, msg(m2) =
(sCon, sConSnd1, sConRcv1).
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Fig. 4. Sequence diagram SDo from Figure 2 indicating messages and events

We use the following functions to refer to elements of a sequence diagram: Given
the alphabet A and a sequence diagram SD = (L,M, lprop,msg), let lprop(l) =
(SM l, E

snd
l , Ercv

l , >l) for each l ∈ L and let E =
⋃

l∈L(E
snd
l ∪ Ercv

l ). Then we
have:

– act : M → AA, snd : M → AE , and rcv : M → AE , such that act(m) =
π1(msg(m)), snd(m) = π2(msg(m)), and rcv(m) = π3(msg(m)), i.e. the action
symbol, send event and receive event of a message.

– symb : E → AA is a partial function such that symb(e) = a iff
• e ∈ Esnd

l for some l ∈ L and there exists an m ∈ M with act(m) = a and
snd(m) = e, or

• e ∈ Ercv
l for some l ∈ L and there exists an m ∈ M with act(m) = a and

rcv(m) = e,
i.e., the action symbol of the message an event is associated to. Note that each
function value is unique due to the pairwise disjointness of sets of events on lifelines
and distinctness of events on messages as described in Definition 2.

– life : E → L such that life(e) = l iff e ∈ π2(lprop(l)) ∪ π3(lprop(l)). Note that
each function value is unique due to the pairwise disjointness of sets of events on
lifelines as described in Definition 2.

We define properties of sequence diagrams to specify correct merge results: First, the
well-formedness of a sequence diagram enforces an order on the events w.r.t. a lifeline.

Definition 3 (Well-Formedness). A sequence diagram (L,M, lprop,msg) is well-
formed iff for each l ∈ L the relation π4(lprop(l)) is total.

This total order over events per lifeline imposes a relation over the messages of a se-
quence diagram, which we need for the second property: A sequence diagram is time
consistent when any message m is not received after a message n if m has been sent
before n on the same lifeline, or in other words, messages cannot overtake one another.
We first define the message ordering relation over a sequence diagram, which describes
an order of a sequence diagram’s messages according to the order of its events.

Definition 4 (Message Ordering). Given a well-formed sequence diagram of the form
(L,M, lprop,msg), the message ordering relation ⊆M ×M contains a pair (m,n)
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iff for msg(m) = (am, sm, rm), msg(n) = (an, sn, rn), l = life(sm),>l= π4(lprop(l)),
k = life(rm), and >k= π4(lprop(k)) it holds that

– life(sn) = l and sm >l sn,
– life(rn) = l and sm >l rn,
– life(sn) = k and sm >k sn, or
– life(rn) = k and sm >k rn.

In SDo of Figure 2, the message order is given by m1  m2  m3  m4  m5.

Definition 5 (Time Consistency). A well-formed sequence diagram is called time con-
sistent iff the transitive closure of its message ordering relation  is antisymmetric.

The third property is called lifeline conformance and concerns the lifelines of a se-
quence diagram and the state machines modeling their behavior. Roughly, a lifeline l
is conformant with the state machine SM defined in π1(lprop(l)), if the sequence of
action symbols of the messages received by l occurs as a path of triggers in SM .

Definition 6 (Lifeline Conformance). Let

– SD = (L,M, lprop,msg) be a well-formed, time consistent sequence diagram,
– l ∈ L be a lifeline with lprop(l) = (SM , Esnd , Ercv , >l),
– SM = (S,Atr , Aeff , T ) be a state machine modelling the behavior of l, and
– (e1, . . . , en) be the sequence of events where for all i, j with 1 ≤ i, j ≤ n it holds

that ei, ej ∈ Ercv and ei >l ej iff i > j.

Then, the lifeline l is conformant to SM iff there exists a sequence of transitions
(s1, a1, A1, s2), (s2, a2, A2, s3), . . . , (sn, an, An, sn+1) such that ai = symb(ei).

In Figure 4, consider lifeline s of sequence diagram SDo. The state machine defined for
s is Server, shown in Figure 1. The sequence e for s is (sConRcv1, sHelloRcv1). The
sequence resulting from the action symbols connected to these events, (sCon, sHello),
can be found as path of triggers in Server, namely connecting the states waiting to
accepting and accepting to ready. The lifeline s is therefore conformant with its state
machine. If the action symbol of m4 was sData instead of sHello, then s would not be
conformant, as from the only state that can be reached by a transition triggered by sCon
there is no outgoing transition triggered by sData. Note that effects are not considered
because they do not change the state of their sender.

Finally, a sequence diagram is correct, if it has the three discussed properties.

Definition 7 (Correctness of a Sequence Diagram). A sequence diagram SD is cor-
rect iff

1. SD is well-formed;
2. SD is time consistent;
3. all lifelines of SD are conformant to their state machine.

This concludes the specification of the relevant language concepts and their proper-
ties. We provided a formal description, which will be necessary to define the sequence
diagram merging problem in the next section.
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5 Problem Definition

In the context of optimistic model versioning, two versions of a concurrently evolved
model, the revisions, have to be combined into one consolidated version. We consider
the problem of merging two revisions of a sequence diagram into a consolidated, cor-
rect sequence diagram using information from the original sequence diagram and the
associated state machines.

Definition 8 (Revision). A sequence diagram SDα = (Lα,Mα, lpropα,msgα) de-
fined over the alphabetA is a revision of a correct sequence diagram SDo = (Lo,Mo,
lpropo,msgo) defined over the same alphabet iff

– Lo ⊆ Lα, Mo ⊆Mα,
– for each l ∈ Lo it holds that π1(lprop

o(l)) = π1(lprop
α(l)) and πi(lprop

o(l)) ⊆
πi(lprop

α(l)) for each i ∈ {2, 3, 4}
– for each m ∈Mo it holds that msgα(m) = msgo(m), and
– SDα is correct.

In Figure 2, the sequence diagrams SDα and SDβ are revisions of sequence diagram
SDo. Please note that we consider only additions in this work. We will treat deletions
and updates in future work.

In the following, we use the position function pos defined over messages for the
integration of two revisions of a sequence diagram. Given a correct sequence diagram
S = (L,M, lprop,msg), pos : M → {1, . . . , |M |} such that for all m,n ∈M it holds
that pos(m) = pos(n) iff m = n and pos(m) > pos(n) iff m  n.

A consolidated version of a sequence diagram and two revisions is a correct sequence
diagram that contains the messages and lifelines of the original sequence diagram and
all added messages and lifelines from the revisions. The order of messages relative to
the original diagram and the revisions is maintained. Merging the two revisions, each
message can be placed on one of a set of positions. This set of positions is returned by
the function allow, which is defined as follows.

Definition 9 (Allowed Positions). Given three correct sequence diagrams SDx =
(Lx,Mx, lpropx,msgx), for x ∈ {o, α, β}, SDα and SDβ being revisions of SDo,
and the position function posx : Mx → {1, . . . , |Mx|} with x ∈ {o, α, β} let M =
Mo ∪Mα ∪Mβ and I = {1, 2, . . . , |M |}. Then allow : M → P(I) assigns to each
message m a set of positions, such that

– if m ∈ Mo and poso(m) = posα(m) = posβ(m) then allow(m) = {poso(m)}
(m remains at the same position),

– if m ∈ Mo and poso(m) �= posα(m) or poso �= posβ(m), then allow(m) =
{poso(m) + |N |} where N = {n ∈ Mα | posα(n) < posα(m)} ∪ {n ∈ Mβ |
posβ(n) < posβ(m)}

– if m �∈Mo and m ∈Mx with x ∈ {α, β} then
allow(m) = {i ∈ I | posx(m)+ |N ′| ≤ i ≤ posx(m)+ |N ′′|} where for n′ ∈Mo,
y ∈ {α, β}, y �= x, posx(n′) = maxn∈Mo|posx(n)<posx(m) pos(n), n′′ ∈ Mo, and
poso(n′′) = poso(m) + 1,

N ′ =
{{n ∈My | posy(n) < posy(n′)} if ∃ n′ ∈Mo s.t posx(n′) < posx(m)
∅ otherwise
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and

N ′′=
{{n ∈My | posy(n) < posy(n′′)} if ∃ n′′ ∈Mo s.t. posx(n′′)>posx(m)
My \Mo otherwise

Consider the sequence diagramsSDo,SDα andSDβ shown in the upper part of Figure 5,
where SDα and SDβ are revisions of SDo. In SDα, the message a4, and in SDβ the
messages b4 and b5 are added between the original messages o2 and o3. In a merged
sequence diagram, each of a4, b4 and b5 must again be placed between o2 and o3. Also,
in order to maintain their order from the revisions, b5 must be placed after b4. Similar
conditions are given for the messages a5 and b6 inserted after o3. Table 1 shows the
values posx(m) and allow(m) for each message m in the upper part of Figure 5.

If in the merged sequence diagram each message m is placed on one of the positions
defined in allow(m) and exactly one message has been placed at each position, the
merged sequence diagram is time consistent. However, in order for the merged sequence
diagram to be correct, the messages have to be placed such that the lifelines conform to
their state machines. If this is also the case, then the merged diagram is a consolidated
version, defined as follows.

Definition 10 (Consolidated Version). Given the correct sequence diagrams SDo =
(Lo,Mo, lpropo,msgo), SDα = (Lα,Mα, lpropα,msgα), and SDβ = (Lβ,Mβ ,
lpropβ , msgβ), where SDα and SDβ are revisions of SDo, a consolidated version
SDγ = (Lγ ,Mγ , lpropγ ,msgγ) is a sequence diagram such that

1. Lγ = Lα ∪ Lβ ,
2. Mγ = Mα ∪Mβ ,
3. for each i ∈ {α, β, o} and for each m ∈M i it holds that msgγ(m) = msgi(m),
4. for each l ∈ Lγ and for i ∈ {α, β} it holds that if l ∈ Li then

– π1(lprop
γ(l)) = π1(lprop

i(l)), and
– πj(lprop

γ(l)) ⊆ πj(lprop
i(l)) for each j ∈ {2, 3, 4}

5. for each m ∈Mγ it holds that pos(m) ∈ allow(m), and
6. Sγ is correct.

The source of complexity in the computation of a consolidated version arises from the
exponential number of possible message orderings under consideration of the allow
function and the constraint arising from the lifeline-conformance requirement.

Consider the example shown in Figure 5 and Figure 6. The upper part of Figure 5
depicts an original sequence diagram (SDo) and two revisions (SDα and SDβ) with the
values of the respective posx function. The revised diagrams contain added messages
between messages o2 and o3 and at the end of the diagram. The lower part of the
figure depicts six different time consistent merged diagrams. Figure 6 shows two state
machines describing the behavior of the lifelines. The two rightmost merged diagrams
are also consolidated versions, i.e. correct with respect to the state machines depicted in
Figure 6. It can be easily checked that the sequence of actions on messages received by
lifeline y of the rightmost diagram, (o1, b4, b5, a4, a5) occurs as path in state machine
Y and so does the sequence of lifeline x (o2, o3, b6), but in the leftmost diagram, for
sequence (o1, a4, b4, b5, a5) of lifeline y this is not the case.
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Definition 11 (Merging Problem). Given a triple (SDo, SDα, SDβ) where SDo =
(Lo,Mo, lpropo,msgo), SDα = (Lα,Mα, lpropα,msgα), and SDβ = (Lβ,Mβ ,
lpropβ , msgβ) are valid sequence diagrams, and SDα and SDβ are revisions of SDo,
the merging problem is to find a consolidated version of SDo, SDα, SDβ .
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Fig. 5. Sequence diagram (SDo) and two revisions (SDα and SDβ) with its six time consistent,
but not necessarily lifeline-conformant, merges (below), and the values of the respective posx

function (left column).
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Fig. 6. The state machines modeling the behavior of the lifelines in Figure 5

Table 1. Allowed positions for each message of Figure 5

m poso(m) posα(m) posβ(m) allow(m)

o1 1 1 1 {1}
o2 2 2 2 {2}
o3 3 4 5 {6} N = {a4,b4,b5}
a4 - 3 - {3,4,5} N ′ = ∅, N ′′ = {b4,b5}
a5 - 5 - {7,8} N ′ = {b4,b5}, N ′′ = {b4,b5,b6}
b4 - - 3 {3,4} N ′ = ∅, N ′′ = {a4}
b5 - - 4 {4,5} N ′ = ∅, N ′′ = {a4}
b6 - - 6 {7,8} N ′ = {a4}, N ′′ = {a4,a5}
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6 Encoding to SAT

We propose to translate the sequence diagram merging problem to a satisfiability prob-
lem of propositional logic (SAT) [7]. Over the last years, propositional logic has proven
to be a powerful host language for a wide range of real-life problems like verification
and planning, not least because the availability of efficient and stable solvers [22]. For
our merging problem, we take advantage of this technology. An introduction to propo-
sitional logic and the satisfiability problem can be found in many elementary textbooks
on logic, for example by Büning and Lettmann [12].

Given an instance (SDo, SDα, SDβ) of the sequence diagram merging problem,
with SDx = (Lx,Mx, lpropx,msgx) for x ∈ {o, α, β}, defined over a set SM of
state machines, let

– Sall =
⋃

SM∈SM π1(SM ) be the set of all states of all state machines,
– Tall =

⋃
SM∈SM π4(SM ) be the set of all transitions of all state machines,

– M = Mo ∪Mα ∪Mβ be the set of all messages, and
– k = |M | the total number of messages.

Further, duplicate and rename each state machine referenced by more than one lifeline
in a way that π1(lprop(l)) is pairwise distinct for all lifelines. Then the encoding is
represented by a non-CNF formula φ over three sets of variables as follows.

– vm = {mi | m ∈ M ∧ i ∈ allow(m)}. Variables of this set encode the placement
of each message at each of its allowed positions. If mi evaluates to true, it means
that message m is placed at position i.

– vc = {csi | 1 ≤ i ≤ k, s ∈ Sall )}. Variables of this set encode the source state
of a state machine for each position before a message is received. If csi evaluates
to true, it means that at position i, before the message placed on i is received, the
state machine containing s is in state s, or in other words, s is the source state of
the transition triggered by the action symbol of the message placed on i.

– vt = {tsi | 1 ≤ i ≤ k, s ∈ Sall}. Variables of this set encode the target state of a
state machine for each position after a message has been received. If tsi evaluates
to true, it means that at position i, after the message placed on i has been received,
the state machine containing s is in state s, or in other words, s is the target state of
the transition triggered by the action symbol of the message placed on i.

φ is a conjunction of subformulas encoding the requirements given by Definition 10 of
a consolidated version SDγ of sequence diagrams SDo, SDα and SDβ .

1. Lγ = Lα ∪ Lβ ,
2. Mγ = Mα ∪Mβ ,
3. for each i ∈ {α, β, o} and for each m ∈M i it holds that msgγ(m) = msgi(m),
4. for each l ∈ Lγ and for i ∈ {α, β} it holds that if l ∈ Li then

(a) π1(lprop
γ(l)) = π1(lprop

i(l)), and
(b) πj(lprop

γ(l)) ⊆ πj(lprop
i(l)) for each j ∈ {2, 3, 4}

5. for each m ∈Mγ it holds that pos(m) ∈ allow(m), and
6. Sγ is well-formed,
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7. Sγ is time consistent, and
8. Sγ all lifelines are conformant to their state machines.

The first set of subformulas encodes point 2 (union of messages), point 5 (allow func-
tion), and point 6 (well-formedness): Each message must be placed on exactly one of
the positions returned by its allow function.

∧
m∈M

( ∨
i∈allow(m)

mi

)
∧

∧
m∈M

∧
i,j∈allow(m)

i�=j

(
¬mi ∨ ¬mj

)

The next subformula encodes point 4b (order of messages on lifelines) and point 7
(time-consistency): The message order from the revisions is maintained in the consoli-
dated version.

∧
x∈{o,α,β}

∧
m∈Mx

∧
i∈allow(m)

(
¬mi ∨

∨
n∈Mx,
n�m

∨
j>i,

j∈allow(n)

nj

)

Finally point 8 (lifeline conformance) is the most difficult. It is encoded as conjunction
of the following three subformulas, two of which are non-CNF. In our implementation
these formulas are converted to CNF using Tseitin variables [24]. Note that point 4a is
implicitly included in this part of the encoding.

1. For each message m and each of its allowed positions one pair of source and target
states attached to a transition carrying the message symbol as trigger must be placed
on the same position:

∧
m∈M

∧
i∈allow(m)

(
¬mi ∨

∨
t∈trans(m)

(c
π1(t)
i ∧ t

π4(t)
i )

)

where trans(m) = {t ∈ π4(π1(lprop(life(rcv(m))))) | π1(m) = π2(t)}, i.e. all
transitions of the state machine instanced by the lifeline that receives the message
and carrying the same label as the message.

2. At each position exactly one source state and one target state must be placed:

k∧
i=1

⎛
⎝( ∨

csi∈vc

csi

)
∧
( ∨

tsi∈vt

tsi

)
∧

∧
s∈Sall

∧
r∈Sall\s

(
(¬csi ∨ ¬cri ) ∧ (¬tsi ∨ ¬tri )

)⎞⎠

3. If a state machine stops in state s at position i, then, when it eventually continues
at position i + l, it must still be in state s. Other state machines may be placed at
positions i+ j, j < k.
k−1∧
i=1

∧
M∈SM

∧
s∈π1(SM )⎛

⎝(
tsi →

∧
r∈π1(SM )\s

¬cri+1

)
∧
( i∧

j=1

(
tsi ∧

j∧
l=1

¬csl →
∧

r∈π1(SM )\s
¬crj+1

))⎞⎠
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In this section we clearly see the benefit of the formal specification of the sequence
diagram merge problem given in the previous section. On the basis of this specification,
the encoding to SAT is straightforward and relies only on standard techniques of mod-
eling with propositional logic. To implement a sequence diagram merging tool, only the
mapping to the presented SAT encoding has to be realized. The actual problem solving
is completely handed over to a SAT solver.

7 Case Study

The problem description given in Section 5 allows us to encode the merging problem
of sequence diagrams as satisfiability problem of propositional logic (SAT). Since the
SAT representation of such an encoding can become very large, tool support is needed
for the automatic generation of both the translation to SAT and the reverse translation of
the models of the SAT problem to the merged diagrams. We implemented a prototype
described in the following. With this prototype, we conducted a first case study on a
representative benchmark set.

7.1 Implementation

Our prototype implementation is available on our project website [1]. It consists of
four modules: difference provider, SAT encoder, SAT solver, and model merger. All
modules except for the SAT solver are implemented in Java. The difference provider,
which is an implementation of the tMVML metamodel, and the model merger are based
on the Eclipse Modeling Framework (EMF).1 To solve SAT instances, we use the off-
the-shelve SAT solver PICOSAT [6].

The workflow is depicted in Figure 7. First, the diff provider takes a tMVML con-
formant sequence diagram and two revisions thereof as input and calculates the set
of atomic differences based on EMF Compare’s2 three-way comparison. Even if EMF
Compare reports different kinds of atomic changes, such as add, update, or delete, our
current implementation is limited to process changes where messages are added to the
sequence diagrams. The differences are then analyzed and a table that implements the
allow function is created.

The SAT Encoder receives as input three sequence diagrams and the table imple-
menting the allow function, and generates the encoding as described in Section 6.

The non-CNF part of the encoding is converted to CNF on-the-fly. As explained
in Section 6, each combination of a message m and one of its allowed positions p ∈
allow(m) is represented by a boolean variable. This information is maintained in a table
that maps message/position pairs to boolean variables and vice versa.

Next, the SAT solver processes the generated formula and either returns a logical
model consisting of a boolean variable assignment or unsatisfiable. If a logical model is
found, it is handed over to the merger. The merger identifies the variables that encode
message/position pairs and maps them back to messages and positions. Based on this

1 http://www.eclipse.org/modeling/emf/
2 http://wiki.eclipse.org/EMF_Compare

http://www.eclipse.org/modeling/emf/
http://wiki.eclipse.org/EMF_Compare
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Fig. 7. Implementation workflow

information, a consolidated version conforming to the tMVML metamodel is retrieved
by copying the origin sequence diagram and inserting the added messages of the two
revisions at their respective positions.

Finally, the negation of the logical model is added to the previous encoding. This
way we make sure that in the following iteration a different logical model, if one exists,
is found. This procedure is repeated until the SAT solver returns unsatisfiable, i.e. no
more solutions exist.

7.2 Benchmark Set

To study the impact of using information provided by state machines to guide the merg-
ing of two differently evolved sequence diagrams, a representative benchmark set is
required. Available benchmark sets as presented by Brosch et al. [11] contain only
modeling scenarios of a single view and focus on class diagrams. Since versioning
systems do not explicitly store the two revisions but only the merged versions, suitable
test cases cannot be extracted from available projects. We therefore established our own
benchmark set.

The benchmark set consists of three different families, each containing five different
versioning scenarios. The first family on a subset of the SMTP protocol is based on
the state machines presented in Section 2. The second family models the behavior of
a coffee machine and its users similar to the example presented in previous work [9].
Finally, in the third family we model the behavior of the dining philosophers problem,
inspired by the running example in the work of Varró [27]. For each versioning sce-
nario, we distinguish between three different cases: (1) All lifelines are fully specified
by state machines, (2) some lifelines are specified by state machines, and (3) no lifeline
is specified by a state machine. If no state machine is specified for a lifeline, we assume
an unconstrained state machine, which contains only one state from which any action
symbol can be received. Note that although the models of our benchmark set are for-
mulated in tMVML, they can be reused in other case studies because they are realized
as Ecore models. Hence, a translation to other modeling languages like full UML can
be achieved by the means of model transformations. The benchmark set is available at
our project website.

7.3 Evaluation

We tested our approach on 45 test cases consisting of three families, each with five ver-
sioning scenarios and three different state machine setups as described in Section 7.2.
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Table 2. Statistics on state machines of the benchmark sets

Set # SM # action symbols # states # transitions
email 3 15 16 19
coffee 2 9 7 8
philosopher 2 8 7 8

Table 3. Overview on benchmarks

Set ID
SDo SDα SDβ full SM some SM no SM

LL Ms LL Ms LL Ms # Sol Time # Sol Time # Sol Time

em
ai

l

1 3 5 3 7 3 12 1 <1 1 <1 55 3.8
2 3 5 3 8 3 15 0 <1 2 <1 110 8.0
3 3 5 3 14 3 14 2 <1 2 <1 1,000 205
4 3 5 4 14 3 16 2 <1 2 <1 1,000 215
5 3 5 4 14 3 18 2 1.5 2 <1 1,000 232

co
ffe

e

1 2 5 2 6 2 9 2 <1 2 <1 5 <1
2 2 5 2 6 2 6 0 <1 0 <1 2 <1
3 2 0 2 2 2 2 2 <1 6 <1 6 <1
4 2 5 2 9 2 9 2 <1 70 6.0 70 6.0
5 2 5 2 9 2 9 34 2.9 34 2.9 70 6.0

ph
ilo

so
ph

er 1 4 0 4 2 4 5 6 <1 15 1.4 15 1.8
2 4 0 4 1 4 5 0 <1 5 <1 5 <1
3 4 0 4 9 4 9 506 90 1,000 201 1,000 164
4 4 0 4 9 4 5 253 33 1,000 167 1,000 120
5 4 0 4 9 4 5 0 <1 1,000 168 1,000 121

Details of the different test cases are shown in Table 2. For each experiment we verified
the correctness of the merged version with a verifying tool we implemented. The veri-
fication process is trivial: For each lifeline the sequence of received message symbols
is retrieved, and then it is checked whether this sequence is found as path of trigger
symbols in the corresponding state machine.

Table 3 shows statistics on the number of found solutions and runtime of the different
instances. The leftmost columns show the names, number of lifelines (LL), and number
of messages (Ms) of each instance, and the three rightmost columns show the number of
found solutions (#Sol) and runtime (Time) of each instance. For those instances whose
number of solutions exceeded 1,000, we stopped the algorithm when 1,000 solutions
were found, as having too many solutions is impractical. The evaluation shows that in
general a specification of all state machines results in few solutions quickly found.

For the instances without state machines, we can compute the number of models by∏
f∈F

(nf+mf )!
nf !mf !

where F is the set of fragments of the merged model, a fragment being
a set of messages with each message inserted between the same two messages of the
original diagram, each message inserted at the beginning, or each message inserted at
the end of the original diagram. nf is the number of messages in fragment f inserted
from one revision, and mf the number of messages inserted from the other.
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8 Conclusion and Future Work

In this paper, we demonstrated how information encoded in the state machine view of a
software model can be used to guide the merging of concurrently evolved versions of a
sequence diagram. Such merging support is urgently needed to realize optimistic model
versioning systems.

We illustrated our approach for the modeling language tMVML, which borrows many
concepts from UML. For tMVML, we specified a metamodel in Ecore, which provided
us with the powerful tool support of the Eclipse environment to build a prototype of
our approach. In order to give a formal specification of the merging problem itself, we
first formalized the concepts of tMVML along with some important properties of the
sequence diagram. On this basis, we derived an exact problem specification, which can
be directly encoded as a satisfiability problem of propositional logic, the prototypical
problem for the complexity class NP. To solve such a problem, highly optimized solv-
ing tools, SAT solvers, are available. This way, instead of implementing a complicated
merging algorithm, our tool encodes the constraints of a merging problem into a propo-
sitional formula, and the computation of a set of consolidated versions, that are correct
sequence diagrams merged from two different versions, is done by the SAT solver. From
this set of sequence diagrams the software modeler can select a convenient version. By
this means, user effort is reduced and merging errors are avoided.

As we showed in our experiments, our approach in general generates too many solu-
tions to be considered, checked, and compared by a human, particularly when the state
machines are only partially or not at all specified. Therefore, an automatic approach to
decide upon a set of relevant solutions is needed. It is subject to future work to develop
ranking and filtering techniques to offer helpful pre-selections. For example, heuris-
tics could be used to avoid unnecessary interleavings of new messages, supposing that
the intention of a modeler is to keep the newly introduced sequences together. Further,
it should be possible for the modeler to specify additional constraints for the merged
model in order to cut down the number of solutions. To determine user intentions, we
plan to conduct extensive user experiments.

So far we represent the models only in abstract syntax. However, in an ongoing
project we are developing dedicated visualization techniques for sequence diagram
merging. First mockups are available at our project website [1].

We aim to extend tMVML and plan to consider more concepts like hierarchical states
for state machines, or combined fragments for sequence diagrams. At the moment our
prototype supports additions only, but in future deletions and updates will be included.
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Abstract. The complete and executable definition of a Domain Spe-
cific Language (DSL) includes the specification of two essential facets:
a model of the domain-specific concepts with actions and their seman-
tics; and a scheduling model that orchestrates the actions of a domain-
specific model. Metamodels can capture the former facet, while Models
of Computation (MoCs) capture the latter facet. Unfortunately, theo-
ries and tools for metamodeling and MoCs have evolved independently,
creating a cultural and technical chasm between the two communities.
Consequently, there is currently no framework to explicitly model and
compose both facets of a DSL. This paper introduces a new framework
to combine a metamodel and a MoC in a modular fashion. This allows
(i) the complete and executable definition of a DSL, (ii) the reuse of a
given MoC for different domain-specific metamodels, and (iii) the use of
different MoCs for a given metamodel, to account for variants of a DSL.

1 Introduction

Domain-specific languages (DSLs) offer a limited, dedicated set of concepts to
domain experts to let them express their concerns about a system. Previous stud-
ies have shown that the limited expressiveness of DSLs, combined with dedicated
tools, can increase the productivity in the construction of software-intensive sys-
tems, while reducing the number of errors [1]. A recent study by Hutchinson et
al. has even demonstrated that DSLs are one of the main motors for an industrial
adoption of model-driven engineering [2].

Defining a DSL completely and precisely is difficult, in particular when it
comes to the formal definition of its semantics. However, Bryant et al. [3] point
out that the formal definition of DSL semantics is the foundation for the major
expected benefits of DSLs: the automatic generation of the DSL tooling (e.g.,
editor and compiler), the formal analysis of model behavior, or the rigorous
composition of multiple concerns modeled with different languages.
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Fig. 1. Our approach to implement the behavioral semantics of a DSL

As described in the left of Figure 1, Harel et al. synthesizes the construction of
a DSL as the definition of a triple: abstract syntax, concrete syntax and semantic
domain [4]. This work focuses on the definition of the abstract syntax (AS), the
semantic domain (SD) and the respective mapping between them (Mas_sd).
Several techniques can be used to define those three elements. This paper focuses
on executable metamodeling techniques, which allow one to associate operational
semantics to a metamodel. In this context, we argue that the formal definition of
the semantic domain must rely on two essential assets: the semantics of domain-
specific actions and the scheduling policy that orchestrates these actions. It is
currently possible to capture the former in a metamodel and the latter in a Model
of Computation (MoC), but the supporting tools and methods are such that it
is very difficult to connect both to form a whole semantic domain (see right of
Figure 1).

We propose to model domain-specific actions and MoCs in a modular and
composable manner, resulting in a complete and executable definition of a DSL.
We experiment this proposal by leveraging two state-of-the-art modeling frame-
works developed in both communities: the Kermeta workbench [5] that supports
the investigation of innovative concepts for metamodeling, and the ModHel’X
environment [6] that supports the definition of MoCs. We foresee two major
benefits for this composition: the ability to reuse a MoC in different DSLs, and
the ability to reuse domain-specific actions with different MoCs to implement
semantic variation points of a DSL. Saving the verification effort on MoCs and
domain-specific actions also reduces the risk of errors when defining and vali-
dating new DSLs and their variants. We illustrate this approach and the reuse
capacities through the actual composition of the fUML DSL with a sequential
and then a concurrent version of the discrete event MoC.

The rest of the paper proceeds as follows: Section 2 introduces fUML, our
case study throughout the paper. Then we describe how to design the domain-
specific actions of a DSL and the MoC, respectively using Kermeta (Section 3)
and ModHel’X (Section 4). We propose in Section 5 a tool-supported approach
to combine them to implement the complete behavioral semantics of a DSL in
a modular and reusable fashion. Finally, we present in Section 6 the application
of our approach to vary the MoC of fUML. Section 7 presents related work, and
Section 8 concludes and proposes directions of future work.
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Fig. 2. Activity of the members of our team during our work sessions

2 Case Study: fUML

The Semantics of a Foundational Subset for Executable UML Models (fUML)
[7] is an executable subset of UML that can be used to define the structural and
behavioral semantics of systems. It is computationally complete by specifying
a full behavioral semantics for activity diagrams. This means that this DSL
is well-defined and enables implementors to execute well-formed fUML models
(here execute means to actually run a program).

As an example, Figure 2 shows an executable fUML model representing the
activity of our team when we meet for work sessions. We are used to first having
a coffee while talking together about the latest news. When we finish drinking
our coffee and talking, we begin to work.

The fUML specification includes both a subset of the abstract syntax of UML,
and an execution model of that subset supported by a behavioral semantics. We
introduce these two parts of the specification in the rest of this section.

2.1 The fUML Abstract Syntax

Figure 3 shows an excerpt of the fUML metamodel corresponding to the main
concepts of the abstract syntax. The core concept of fUML is Activity that
defines a particular behavior. An Activity is composed of different elements called
Activity Nodes linked by Activity Edges. The main nodes which represent the
executable units are the Executable Nodes. For instance, Actions are associated
to a specific executable semantics. Other elements define the activity execution
flow, which can be either a control flow (Control Nodes linked by Control Flow)
or a data flow (Object Nodes linked by Object Flow).

The example in Figure 2 uses an illustrative set of elements of the abstract
syntax of fUML. The start of the Activity is modeled using an Initial Node. A
Fork Node splits the control flow in two parallel branches: one for the Action of
having a coffee, the other for the Action of talking to each other. Then a Join
Node connects the two parallel branches to the Action of working.

Of course, the abstract syntax also includes additional constraints in the meta-
model to precise the well-formedness rules (a.k.a. static semantics). For example,
such an additional constraint expresses that control nodes can only be linked by
control flows. fUML uses the Object Constraint Language (OCL) [8] in order to
define those constraints.

We refer the reader to the specification of fUML for all the details about the
comparison with UML2 and the whole description of the fUML metamodel [7].
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Fig. 3. Excerpt of the fUML Metamodel

2.2 The fUML Behavioral Semantics

To support the execution of models, fUML introduces a dedicated Execution
Model. The activity execution model has a structure largely parallel to the ab-
stract syntax using the Visitor design pattern [9] (called SemanticVisitor). Note
that although the semantics is explained using visitors, which are rather at the
implementation level, it is left open by the fUML specification to implement the
language using other means than visitors.

In addition, to capture the behavioral semantics, the interpretation needs to
define how the execution of the activity proceeds over time. Thus, concepts are
introduced in the execution model for which there is no explicit syntax. Such
concepts support the behavior of an activity in terms of tokens that may be held
by nodes and offers made between nodes for the movement of these tokens.

Based on the execution model, the specification denotationally describes the
behavioral semantics of fUML using axioms in first order logic. Moreover, a ref-
erence implementation of the fUML semantics has been proposed in Java1. Both
define the domain-specific actions (i.e., the behavioral semantics of the domain-
specific concepts defined in the abstract syntax) as a concrete implementation
of the visitor, including a deeply scattered scheduling of such domain-specific
actions. We refer to the latter concern as (part of) the Model of Computation
(MoC) of the language. Such an implementation prevents the reuse of a MoC
for different DSLs (e.g., the fact that all the domain-specific actions should run
1 Cf. http://portal.modeldriven.org/

http://portal.modeldriven.org/
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in sequence is a behavioral specification that can be reused in many domains),
as well as its easy replacement with another one for the same DSL. Indeed,
several semantic variation points exist in the MoC. As stated by the specifica-
tion itself, some semantic areas “are not explicitly constrained by the execution
model: The semantics of time, the semantics of concurrency, and the semantics
of inter-object communications mechanisms” [7]. We investigate in the rest of
this paper an approach to modularly define the domain-specific actions and the
MoC of a software language. Such an approach aims at supporting the reuse and
the variability in languages, and is illustrated through the fUML case study.

3 Using Kermeta for an Executable Metamodel of fUML

Kermeta is a workbench that can be used for implementing domain-specific lan-
guages (DSLs). It supports different meta-languages depending on the DSL con-
cern (abstract syntax, static semantics, behavioral semantics and connection to
concrete syntax), and modularization features. In this section, we provide some
background on Kermeta, and we show benefits and drawbacks in implementing
both the abstract syntax and the behavioral semantics.

3.1 Abstract Syntax Definition

First of all, to build a DSL in Kermeta, one implements its abstract syntax (i.e.,
the metamodel), which specifies the domain concepts and their relations. The
abstract syntax is expressed in an object-oriented manner using Ecore [10], an
implementation aligned with the meta-language MOF (Meta Object Facility)[11].

MOF provides language constructs for specifying a DSL metamodel: pack-
ages, classes, properties, multiple inheritance and different kinds of associations
between classes. The semantics of these core object-oriented constructs is close
to the object model common to various languages such as Java and C#.

To implement fUML’s abstract syntax, we reuse the metamodel standardized
by the OMG (cf. Figure 3 for an excerpt). In practice, the OMG provides the
fUML metamodel in terms of MOF, and we automatically translate it into an
Ecore-based metamodel (the format supported by the Kermeta workbench).

The static semantics of a DSL (i.e. the context conditions) corresponds to
the well-formedness rules on top of the abstract syntax (expressed as invariants
of metamodel classes) [4]. The static semantics is used to filter syntactically in-
correct DSL models before actually running them. Kermeta supports OCL to
express the static semantics2 and it translates this semantics into equivalent Ker-
meta constraints, directly woven into the relevant metamodel classes using the
Kermeta keyword aspect. Listing 1.1 shows the well-formedness rule previously
introduced for fUML as expressed in the Kermeta workbench using OCL.
2 Note that Kermeta fully support OCL, and thus similarly supports the axiomatic se-

mantics (expressed as pre- and post-conditions on operations of metamodel classes).
It is used to check the correctness of a DSL model’s execution either at design time
using model-checking or theorem proving, or at runtime using assertions, depending
on the execution domain of the DSL.



Bridging the Chasm between Metamodeling and MoC 189

Listing 1.1. Weaving the Static Semantics of fUML into the Standard Metamodel

1 package fuml;
2 require "fuml.ecore"
3 aspect class ControlFlow {
4 inv : self.source.oclIsKindOf(ControlNode) and
5 self.target.oclIsKindOf(ControlNode)
6 }

In Kermeta, the abstract syntax and the static semantics are conceptually and
physically (at the file level) defined in two different modules. Consequently, it is
possible to define several variants of the static semantics for the same domain,
i.e. to share a single MOF metamodel between different static semantics.

3.2 Behavioral Semantics Definition
To define the behavioral semantics of a DSL, one must first define the required
data structure (i.e., the execution model) using MOF. The abstract syntax and
the execution model are then the basis to implement the behavioral semantics.
Nevertheless, MOF does not include concepts for the definition of the behav-
ioral semantics and OCL is a side-effect-free language. To define the behavioral
semantics of a DSL, Kermeta provides an action language [5]. It can be used to
define either a translational semantics (for building a compiler) or an operational
semantics [12] (for building an interpreter).

The Kermeta language is imperative, statically typed, and includes classical
control structures such as blocks, conditional statements, loops and exceptions. It
also implements traditional object-oriented mechanisms for handling multiple in-
heritance and generics, and provides an execution semantics to all MOF constructs
that must have a semantics at runtime, such as containment and associations. For
example, if a reference is part of a bidirectional association, the assignment oper-
ator semantics has to handle both ends of the association. Kermeta also borrows
the semantics of multiple inheritance from the Eiffel programming language [13].

Using the Kermeta language, the domain-specific actions are expressed as
methods of the classes of the abstract syntax [5]. Similarly to the static seman-
tics, the methods are added to the relevant metamodel classes (using the keyword
aspect). Unlike the specification and the Java implementation that largely du-
plicate the structure of the abstract syntax to describe the structure of the visitor
(see Section 2.2), aspects avoid duplicating the structure while keeping a con-
ceptual and physical separation. For instance, in Listing 1.2, the method execute
is added to the concept CallBehavioralAction of the fUML abstract syntax. This
method is the Kermeta-based specification of the corresponding fUML behav-
ioral semantics that consists in calling the behavior associated to the action.

Listing 1.2. Weaving the Behavioral Semantics of fUML into the Standard Metamodel

1 aspect class CallBehavioralAction {
2 operation execute() : Integer is do
3 result := self.behavior.call() // call the associated behavior
4 end
5 }
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Once the domain-specific actions have been described, it is necessary to de-
scribe their scheduling according to a particular model of computation. We de-
scribe in the next section the usual way to do this in Kermeta, and we discuss
the drawbacks of this approach.

3.3 Mashup of the DSL Concerns

As introduced above, all pieces of static semantics and domain-specific actions
are encapsulated in metamodel classes. The aspect keyword enables DSL de-
signers to relate the language concerns (abstract syntax, static semantics, and
domain-specific actions) together. It allows designers to reopen a previously cre-
ated class to add some new information such as new methods, new properties or
new constraints. It is inspired from open-classes [14].

In addition, Kermeta provides the keyword require that one uses to actually
mash up those concerns. A DSL implementation requires an abstract syntax, a
static semantics and the domain-specific actions. Listing 1.3 shows how such an
implementation looks like in Kermeta. Three require keywords are used to im-
port three modules, each of which specifies one of the three concerns. The require
mechanism also provides some flexibility with respect to the static semantics and
the domain-specific actions. For example, several sets of domain-specific actions
could be defined in different modules and then chosen depending on particular
needs. It is also convenient to support semantic variations of the same concept.

Listing 1.3. Mashup of the fUML Concerns

1 package fuml;
2 require "fuml.ecore" // abstract syntax
3 require "fuml.ocl" // static semantics
4 require "fuml.kmt" // domain-specific actions
5 class Main {
6 operation Main(): Void is do
7 // Scheduling calls to domain-specific actions
8 // to drive the execution of an fUML model
9 end

10 }

The Kermeta-based implementation of fUML follows the approach above. All
fUML concerns are separated in different units, and the fUML runtime environ-
ment is the result of the mashup.

Finally, to implement the entire behavioral semantics, it is necessary to spec-
ify how the domain-specific actions are scheduled. One approach is to scatter
the scheduling policy across all the methods defining the domain-specific actions
in the visitor, as done in the specification and in the Java-based reference im-
plementation. While this approach is easy to implement, it clearly prevents the
modularization of the scheduling policy, which would be required to enable its
variability. To avoid scattering the scheduling policy, another approach is to ex-
tract it in the main class that starts the execution of the model for a particular
purpose, and therefore according to a particular MoC (see Listing 1.3). Although
this approach of separating the MoC from the domain-specific actions allows the
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use of the same MoC for variants of the domain-specific actions, the MoC is
strongly coupled to the DSL and must be redefined from scratch for every new
DSL. It is thus impossible to reuse or to adapt a MoC for different DSLs.

In the next section, we present how the MoC-based modeling framework called
ModHel’X can be used to improve the aforementioned approach. This new ap-
proach paves the way for reusing the implementation of MoCs. Then, we intro-
duce in Section 5 an approach to combine such a MoC with the domain-specific
actions, enabling the reuse of a MoC in different domains, and the implementa-
tion of different MoCs for a specific domain.

4 Using ModHel’X Models of Computation for fUML

ModHel’X [6,15] is a framework for building and executing multi-paradigm mod-
els, that is to say models built from parts described using different modeling
paradigms. In ModHel’X, the behavioral semantics of a modeling paradigm is
given by the combination of two elements:

1. A Model of Computation (MoC), which is a set of rules defining the se-
mantics of control and concurrency, the semantics of communications and
the semantics of time of the modeling paradigm. Synchronous Data-Flows
(SDF), Discrete Events (DE), and Kahn Process Networks (KPN) [16] are
examples of models of computation.

2. A library of components with predefined behavior. For instance, the compo-
nent library of the synchronous data-flow MoC of ModHel’X includes com-
ponents representing mathematic functions like addition, multiplication, etc.
The behavior of those components correspond to the domain-specific actions
introduced in Section 2.2.

Therefore, building a ModHel’X model is a two-step process: (1) choose compo-
nents to assemble and (2) choose the MoC according to which the components
interact. In the following, we present how MoCs and components are represented
in ModHel’X to allow model execution. Then we will show how they can be used
in the description of any DSL.

4.1 Generic Abstract Syntax

At the core of ModHel’X is a generic metamodel for describing the structure
of models, and a generic execution engine for interpreting such structures using
the semantics defined by MoCs. This means that all ModHel’X models have the
same abstract syntax (given by the generic metamodel of ModHel’X) but each
model may have a different execution semantics depending on the MoC which is
used by the execution engine to interpret it. The fact that all models have the
same abstract syntax is what allows ModHel’X to support the composition of
models which have different semantics. The composition mechanism itself is not
presented in this paper because it is not used yet in the presented methodology,
but a detailed description can be found in [15].
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Figure 4 shows a simplified excerpt of the metamodel of ModHel’X. To illus-
trate the concepts in this metamodel, we show in Figure 5 how the fUML model
of Figure 2 would be described in ModHelX. An element of a ModHel’X model
which has a behavior is a block, represented as a gray rectangle in Figure 5. In-
deed, blocks are the mechanism used in ModHel’X to represent domain-specific
actions. In the fUML example, ActivityNodes are represented by blocks because
they all have a behavior (which can relate to control in the case of ControlNodes,
or to executable behaviors in the case of ExecutableNodes).

Blocks communicate with their environment through pins (black circles in
Figure 5), and the structure of a model is defined by establishing relations be-
tween the pins of blocks (the lines with arrows on the figure).

There are two different kinds of blocks in ModHel’X. Interface blocks are
blocks whose behavior is described by an internal ModHel’X model. They are
the mechanism we use for supporting heterogeneity through hierarchy (see [15]
for more details). Atomic blocks are the basic building blocks which are the
leaves of the hierarchy of models. For instance, the control nodes of fUML (join
and fork in particular), would be atomic blocks in ModHel’X. While we provide
libraries of atomic blocks for all the MoCs implemented in ModHel’X, we do not
provide specific tools to allow users to define their own domain-specific atomic
blocks because it is out of the scope of ModHel’X as a MoC-based experimen-
tation platform for heterogeneous modeling. This means that the behavior of
atomic blocks has to be described using a formalism which is external to our
framework (for instance C or Java). Therefore, it is interesting for ModHel’X
to benefit from techniques such as those provided by Kermeta to allow users to
design and specify easily their own domain-specific atomic blocs, i.e. their own
domain-specific actions. We will show in Section 5 how the approach proposed
in this paper allows the use of Kermeta specifications of the behavior of the
ActivityNodes of fUML in ModHel’X.

structure 1 1 moc

* *

interface

*

source

1
target

1

Model

BlockStructure
<<abstract>>

ModelOfComputation

<<abstract>>
Block

Pin Relation

Fig. 4. Simplified excerpt of the generic metamodel of ModHel’X

4.2 Abstract Semantics for Models of Computation

As introduced previously, ModHel’X is dedicated to the execution of models.
The execution of a model in ModHel’X is performed by the generic execution
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MoC

Init Fork

Have a coffee

Talk

Join Work Final

Fig. 5. fUML example model in ModHel’X

engine, which computes a series of observations, or snapshots. The MoC of a
model is responsible for computing each snapshot of the model according to its
specific semantics.

As illustrated by the sequence diagram in Figure 6, to compute a snapshot of
a model, the MoC repeatedly chooses a block to observe (schedule operation),
observes its behavior through its interface (update) and propagates observed
information between blocks (propagate). It repeats this process until the com-
putation of the reaction of the model is complete.

The schedule and propagate operations, as well as the rules for determining
the stopping conditions of the algorithm, form the generic interface of MoCs.
Together with the generic execution algorithm, they form the abstract semantics
of ModHel’X. The scheduling and propagation operations must be specified as
MoC-specific actions for each MoC (see Figure 7) because they are the implemen-
tation of the rules that define the control, concurrency, time and communication
semantics of the corresponding modeling paradigm. The update operation is
delegated to each block to provide the MoC with an observation of its behavior
through its interface, while keeping the internal details in a complete black box.

To implement the semantics of fUML in ModHel’X, we would have to choose
or to build a MoC which implements the scheduling and propagation policies
defined in the specification. Although the specification does not say much about

schedule():scheduledBlock

update()

propagate()

snapshot()

eng:ExecutionEngine moc:ModelOfComputation

scheduledBlock:Block

while

[canGoFurther()]

Fig. 6. Abstract semantics of ModHel’X
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time, concurrency, and inter-object communications, we know that Activity-
Nodes are linked by control and object flows on which tokens are propagated
using the mechanism of offers. This is in favor of an event-based model of com-
putation. Moreover, ExecutableNodes can represent the call of actions, so their
behavior can take time. We could therefore choose to use the well-known Dis-
crete Events (DE) model of computation [16], which already exists in ModHel’X.
We present its semantics in the following section.

4.3 The Discrete Events (DE) MoC

DE is a MoC for the simulation of communicating processes, for instance hosts
exchanging messages on a network. In DE, blocks exchange events at given dates.
A block is observed when it receives an event from an upstream block or when
it has spontaneous behavior. When observed, a block may produce outgoing
events, to be transmitted to downstream blocks. If several events have the same
timestamp, they are delivered at the same time, but in a sequence of microsteps
(determined by a topological ordering of the blocks), so that the overall obser-
vation at that time is causal and deterministic.

The classical version of DE allows blocks to run concurrently. The schedul-
ing algorithm for DE in ModHel’X relies on a global event queue. At a given
instant, the MoC looks for all the events ei with the smallest time tag tnow and
advances the current time to tnow. It then looks for the blocks bj which are the
targets of the ei events and schedules one of the minimal elements among the
bj according to the topological ordering of the blocks. The choice of a minimal
element guarantees that events produced at tnow during the update of a block
can be processed by their target at tnow in one iteration. A mechanism which is
out of the scope of this paper is used to avoid cycles in the graph of blocks. The
snapshot is complete when no event with time-stamp tnow remains in the queue.

The fUML specification leaves open the type of scheduling of the activity
nodes: their execution may be concurrent or sequential. The classical version of
DE, the “concurrent” one described above, may therefore be used as one possible
scheduling for fUML, but a sequential variant of DE is also possible.

We have designed a “Sequential DE” MoC that has the following differences
with the “Concurrent DE” MoC. At a given moment, only one block may be
active. A block is said to be active if it has been given control (i.e. events have
been provided to the block and the block has been observed), but it has not
released control (i.e. it has not produced events yet). Sequential DE keeps track
of the blocks that are active-able. If a block receives an event at t, then it is
active-able starting at time t. But contrary to Concurrent DE that systematically
and immediately activates all the active-able blocks, Sequential DE waits for the
currently active block to release control (which will involve taking a new snapshot
if the release is not immediate) before activating another active-able block.

The following section shows how the ModHel’X implementation of these two
MoCs, “ConcurrentDE” and “SequentialDE”, can be used to drive the execution
of an fUML model in which the domain-specific actions are described in Kermeta.
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Fig. 7. Elements of the semantics of a DSL in our approach

5 Bridging the Chasm

The previous sections have shown that:

– It is possible to easily define the abstract syntax and the execution model
of a DSL, together with the semantics of its domain-specific actions, using
Kermeta. However, a model of computation has to be written from scratch
for each DSL in order to define the scheduling policy of these actions.

– ModHel’X offers various models of computation and provides means to de-
fine customized models of computation on top of an execution engine which
allows the simulation of heterogeneous models. However, no specific tool is
provided to help the user specify domain-specific actions which are repre-
sented as blocks in a ModHel’X model.

In this section, we now bridge the chasm between these two worlds in order to
benefit from the advantages of both. As a result, we present a general methodol-
ogy that allows us to execute models described with DSLs defined in a modular
way. We present the application of this methodology to the fUML case study.
We have also applied the methodology to the Software and Systems Process
Engineering Metamodel specification of the OMG [17]. The corresponding ex-
periments are available online at http://www.gemoc.org/kermeta-modhelx.

Our approach is based on the decomposition of a DSL semantics as shown in
Figure 7. The structure of the MoC, on the left, and of the domain, on the right,
have been presented in the previous sections. In the following sections, we show
how the abstract syntax and execution models on both sides can be mapped,
and how the abstract semantics of the MoC modeling framework (ModHel’X in
our case), combined with the concrete execution semantics of the MoC, is used
to schedule domain-specific actions in order to execute a model.

5.1 Abstract Syntax Mapping

First, the abstract syntax of the DSL is mapped onto the abstract syntax of
ModHel’X, to enable model execution through the generic engine. In the case
of fUML, the control structure and the activity nodes must be mapped onto
ModHel’X elements. Activity nodes have domain-specific actions that must be

http://www.gemoc.org/kermeta-modhelx
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Fig. 9. Example fUML model and its wrapping ModHel’X model using DE

callable, so they are naturally mapped onto atomic blocks (that can be observed
through the update operation). Control edges are mapped onto relations between
blocks, which represent the possible flow of control.

Figure 8 shows the mapping between the two metamodels, and Figure 9 shows
the result of the syntactic transformationof an fUMLmodel into aModHel’Xmodel
using the DE MoC. This model transformation is made before the execution starts,
by instantiating a wrapper for each activity node. For fUML, we need two kinds of
wrappers.ActivityNodeWrapper wraps reactive activity nodes, i.e. nodes that start
a behavior, which possibly takes some time, when they are given control. All activ-
ity nodes except InitialNodes are of this kind. However InitialNodes must create
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control at the start of the simulation, without receiving control explicitly. That
is why they are wrapped into specific InitialNodeWrappers. Then, for each edge in
the fUML model, we create a relation between the pins of the relevant blocks in the
ModHel’X model. It must be noted that in this case, the mapping between activ-
ity nodes and blocks, and between control edges and relations is straightforward.
However, in the general case, the structure of the ModHel’Xmodel maybe different
from the structure of the domain-specific model.

5.2 Abstract Semantics to Domain Specific Actions Mapping

We must now map the abstract semantics of ModHel’X onto the domain-specific
actions. The entry point of the abstract semantics for blocks is the update oper-
ation. Therefore, an activity node is wrapped into a special kind of block, which
has an update operation that calls the domain-specific actions of the node. The
wrapper acts as a block in the ModHel’X model, so its class is a subclass of Block.
On the other hand it must execute the associated domain-specific actions, so it
relies on the DSL’s method signatures. Figure 10 shows how the wrapper maps
the abstract semantics of ModHel’X onto the domain-specific semantics of fUML.
When DE gives control to the wrapper block by calling its update method, the
wrapper calls the domain-specific action (the fire operation). If the wrapped
activity node is an action which takes time, the wrapper also requests to be
observed in the future, so that it can handle the termination of the action.

The schedule and propagate operations allow the MoC to choose which block
should be updated next, and how information produced by the update should
be propagated to the other blocks.

5.3 Execution Model Mapping

The last item of Figure 7 to be mapped is the execution model, which represents
the state of the execution of the model. The update operation of the wrapper
synchronizes the execution models on both sides. In the case of the DE MoC and
of fUML, DE events represent control on the MoC side, and must be translated
into fUML control tokens before the domain-specific actions are called. When the
fUML model has updated its execution model, control tokens must be converted
into DE events so that the MoC has the necessary information to schedule the
rest of the execution. Time must also be synchronized so that the MoC knows
when to schedule a block, and activity nodes know when they terminate.

In the general case, the wrapper has to synchronize three aspects of the exe-
cution model: control, time and data. In this example, the DE/fUML wrapper
adapts control and time only; we did not deal with the adaptation of data in
this work.

One of the difficulties of the approach is to decide what to model in the
MoC and what to model in the domain-specific actions. In order to favor the
modularity and the reuse of the MoC for different DSLs, we decided to handle
only the control and time aspects in the MoC and the wrapper. An example
of such a design decision is the choice of whether to check in the MoC or in a
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Fig. 10. Mapping fUML domain-specific semantics on ModHel’X abstract semantics

domain-specific action if an activity node can be activated. Both can be done: the
wrapper can be responsible for calling fire only when all the inputs of the block
have received an event, or fire can be responsible for executing the activity only
when all incoming control edges have a control token. We chose to implement
the latter behavior in the fire domain-specific action even though this is related
to control, because it is the core semantics of fUML that states that an activity
node is executed only when it has received control on all its incoming edges.

6 Implementations and Execution Traces

We have experimented the approach proposed in this paper using Kermeta and
ModHel’X to implement fUML3. Using our implementation, we have been able to
execute the fUML WorkSessionActivity example, wrapped as shown in Figure 9.
The following sections present the execution traces obtained using the classical
“Concurrent” DE MoC, then its “Sequential DE” variant. To help differentiat-
ing the two executions, we have chosen different durations for the Have a coffee
action (10 minutes), the Talk action (15 minutes) and the Work action (45 min-
utes). The execution traces obtained using our implementation are graphically
depicted by the timing diagrams shown on Figure 11. Those diagrams illustrate
the time at which the different actions respectively start and complete.

6.1 Using the Concurrent DE MoC

The execution obtained using the Concurrent DE MoC is illustrated by the
timing diagram shown on the left part of Figure 11. With Concurrent DE, the
two actions after the Fork start concurrently at t = 0, the beginning of the
execution of the overall activity. So a first snapshot is taken at time t = 0,
3 The experiments are provided at http://www.gemoc.org/kermeta-modhelx

http://www.gemoc.org/kermeta-modhelx
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Fig. 11. Timing diagrams of the execution traces when the model is scheduled by
different MoCs

and we see on the timing diagram that both the Have a coffee and the Talk
actions start. After that, two more snapshots are taken when each of the actions
completes: at t = 10 for Have a coffee; at t = 15 for Talk. Within the latter
snapshot, the Join is activated since the two preceding actions are finished and
it releases control to the Work action, which therefore starts at t = 15. A last
snapshot is taken when the Work action completes at t = 15 + 45 = 60.

6.2 Using the Sequential DE Variant

The execution obtained using the Sequential DE MoC is illustrated by the timing
diagram shown on the right part of Figure 11. With Sequential DE, the two
actions after the Fork become active-able at the initial time (t = 0). But since
only one of them can be active at the same time, the MoC chooses to start one
of them, for instance Have a coffee. So a first snapshot is taken at time t = 0. A
second snapshot is taken when the Have a coffee action completes (t = 10). At
that time, the Talk action can start. A third snapshot is taken when the Talk
action completes (t = 25 = 10+ 15). During this snapshot, the Join is activated
and it releases control to the Work action, which therefore starts at t = 25. A
last snapshot is taken at t = 25 + 45 = 70, when the Work action completes.

As illustrated by the timing diagrams of Figure 11, we have managed to ob-
tain two different executions of the same fUML model by changing the model of
computation which is used to schedule it. This shows how the modular descrip-
tion of the semantics of DSLs as the association of a model of computation and
a set of domain-specific actions facilitates the obtention of variants of a given
DSL. In the following, we compare our approach to related work in the domains
of modeling language engineering and MoC-based modeling.

7 Related Work

Much work have been done on the design and implementation of both software
languages and models of computation. In this paper, we propose a conceptual
and technical framework to bridge the chasm between them. This framework
leverages experiences of both communities. This section presents related work in
the field of language design and implementation, and then in the field of models
of computation.
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The problem of the modular design of languages has been explored by sev-
eral authors (e.g. [18,19]). For example, JastAdd [19] combines traditional use
of higher order attribute grammars with object-orientation and simple aspect-
orientation (static introductions) to get a better modularity mechanism. With
a similar support for object-orientation and static introductions, Kermeta and
its aspect paradigm can be seen as an analogue of JastAdd in the DSML world.
Rebernak et al. [20] and Krahn et al. [21] contributed to the field in the context
of model-driven DSLs. While they also advocate modularity of DSL compilers
and interpreters, we go further: we take advantage of modularity mechanisms
for integrating the body of knowledge on models of computation, and allow their
reuse and variability.

A language workbench is a software package for designing software languages
[22,23]. For instance, itmay encompass parser generators, specialized editors,DSLs
for expressing the semantics and others. Early language workbenches include Cen-
taur [24], ASF+SDF [25], TXL [26] and Generic Model Environment (GME) [27].
Among more recent proposals, we can cite Metacase’s MetaEdit+ [28], Microsoft’s
DSL Tools [29], Clark et al.’s Xactium [30], Krahn et al’s Monticore [21], Kats and
Visser’s Spoofax [31], Jetbrain’s MPS [32]. The important difference of our ap-
proach is that we explicitly address the MoC concern in the design of a language,
providing a dedicated tooling for its implementation and reuse. Our approach is
also 100% compatible with all EMF-based tools (at the code level, not only at the
abstract syntax level providedby Ecore), hence designing a DSL with our approach
easily allows reusing the rich ecosystem of Eclipse/EMF. This issue was previously
addressed in the context of the Smalltalk ecosystem [33]. Our contribution brings
in a much more lightweight approach using one dedicated meta-language per lan-
guage design concern, and providing the user with advanced composition mecha-
nisms to combine the concerns in a fully automated way.

In the context of component-based modeling, models of computation are used
to define the interactions between the behavior of the components of a model. [34]
describes several characteristics of models of computation, as well as a framework
for comparing them.

Several approaches to the definition of models of computation have been pro-
posed. Connector-based approaches like BIP [35] describe the interactions be-
tween behaviors using connectors, which can be considered as operators in a
process algebra. From the properties of the connectors, it is possible to predict
global properties of the models. In the case of BIP, the choice of connectors guar-
antees that the synthesized controller fires only interactions valid in the model.
The result is therefore correct by construction.

The Clock Constraints Specification Language (CCSL) [36] can also be used
to describe models of computation. It defines the semantics of the MARTE UML
profile and it has been used for instance to model communication patterns in
AADL [37]. We also used it in previous work to describe models of computation
and the interactions between heterogeneous models of computation [38].

However, these approaches describe how component behaviors are combined
in an instance of a model. Other approaches like Ptolemy [16] and ModHel’X [39]
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allow the definition of models of computation independently of any model in-
stance. Such definitions are therefore reusable for any model which obeys the
abstract semantics of the framework. This abstract semantics defines a set of
operations which drive the execution of models. Each model of computation pro-
vides concrete semantics to these abstract operations. The approach presented
in this article relies on such reusable definitions of models of computation.

8 Conclusion and Perspectives

Although previous work has been done on the execution of UML models, as
discussed in section 7, to the best of our knowledge, we introduce in this paper
the first conceptual and technological bridge between executable metamodeling
and models of computation at the level of the metamodels. We leverage on the
experience of their respective fields and we provide an approach for a modular
design and implementation of executable DSLs.

This approach includes a generic design pattern for metamodels bridging the
gap between domain-specific actions woven into the metamodel and a reusable
model of computation. We provide an actual implementation of this pattern,
using Kermeta to weave executable actions into metamodels, and ModHel’X to
schedule their execution according to a reusable MoC. The tools as well as the
different fUML bridges presented in the paper can be freely downloaded on line.

Such a modular design and implementation of a behavioral semantics leverages
on experience coming from two communities to achieve many expectations. As
we illustrate with the fUML example coming from the OMG, many languages
have variants of their model of computation, which current implementations do
not take into consideration. Moreover, since the correct behavior of models is
very dependent on the properties of their MoC, the design and implementation
of a MoC can be critical. Being able to reuse validated MoCs, or validating an
implementation of a MoC through reuse in various contexts is an advantage.
Our approach addresses these two considerations by offering the reuse of MoCs
between DSLs. The other way around, being able to reuse the domain-specific
actions of a DSL with different MoCs in order to implement semantic variation
points is also an advantage.

This first step to combine executable metamodeling and MoCs opens many
exciting perspectives that we are proactively exploring. We first plan to examine
very carefully the perimeter of the possible wrappers to propose suitable abstrac-
tions (e.g., control, time, communication, etc) and patterns for their definition.
Then, we would like to fully exploit the benefits coming from the two communi-
ties. In particular, we explore the application of this approach for heterogeneous
executable modeling, taking advantage of the composition features supported by
ModHel’X for multi-paradigm modeling.
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Abstract. Grammatical inference – used successfully in a variety of
fields such as pattern recognition, computational biology and natural lan-
guage processing – is the process of automatically inferring a grammar by
examining the sentences of an unknown language. Software engineering
can also benefit from grammatical inference. Unlike the aforementioned
fields, which use grammars as a convenient tool to model naturally occur-
ing patterns, software engineering treats grammars as first-class objects
typically created and maintained for a specific purpose by human de-
signers. We introduce the theory of grammatical inference and review
the state of the art as it relates to software engineering.

Keywords: grammatical inference, software engineering, grammar in-
duction.

1 Introduction

The human brain is extremely adept at seeing patterns by generalizing from
specific examples, a process known as inductive reasoning. This is precisely the
idea behind grammatical induction, also known as grammatical inference, where
the specific examples are sentences and the patterns are grammars. Grammat-
ical inference is the process of identifying an unknown language by examining
examples of sentences in that language. Specifically, the input to the process is
a set of strings and the output is a grammar.

The main challenge of identifying a language of infinite cardinality from a
finite set of examples is knowing when to generalize and when to specialize.
Most inference techniques begin with the given sample strings and make a series
of generalizations from them. These generalizations are typically accomplished
by some form of state-merging (in finite automata), or non-terminal merging (in
context-free grammars).

Grammatical inference techniques are used to solve practical problems in a
variety of different fields: pattern recognition, computational biology, natural lan-
guage processing and acquisition, programming language design, data mining,
and machine learning. Software engineering, in particular software language en-
gineering, is uniquely qualified to benefit because it treats grammars as first-class
objects with an intrinsic value rather than simply as a convenient mechanism to
model patterns in some other subject of interest.
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Historically there have been two main groups of contributors to the field of
grammatical inference: theorists and empiricists. Theorists consider language
classes and learning models of varying expressiveness and power, attempting to
firm up the boundaries of what is learnable and how efficiently it can be learned,
whereas empiricists start with a practical problem and, by solving it, find that
they have made a contribution to grammatical inference research.

Grammatical inference is, intuitively as well as provably, a difficult problem to
solve. The precise difficulty of a particular inference problem is dictated by two
things: the complexity of the target language and the information available to the
inference algorithm about the target language. Naturally, simpler languages and
more information both lead to easier inference problems. Most of the theoretical
literature in this field investigates some specific combination of language class
and learning model, and presents results for that combination.

In Section 2 we describe different learning models along with the type of infor-
mation they make available to the inference algorithm. In Section 3 we explore
the learnability, decidability, and computational complexity of different learn-
ing models applied to language classes of interest in software engineering: finite
state machines and context-free grammars. Section 4 discusses the relationship
between theoretical and empirical approaches, and gives several practical exam-
ples of grammatical inference in software engineering. In Section 5 we list the
related surveys, bibliographies, and commentaries on the field of grammatical in-
ference and briefly mention the emphasis of each. Finally, in Section 6 we discuss
the main challenges currently facing software engineers trying to adopt gram-
matical inference techniques, and suggest future research directions to address
these challenges.

2 Learning Models

The type of learning model used by an inference method is fundamental when
investigating the theoretical limitations of an inference problem. This section
covers the main learning models used in grammatical inference and discusses
their strengths and weaknesses.

Section 2.1 describes identification in the limit, a learning model which allows
the inference algorithm to converge on the target grammar given a sufficiently
large quantity of sample strings. Section 2.2 introduces a teacher who knows
the target language and can answer particular types of queries from the learner.
This learning model is, in many cases, more powerful than learning from sample
strings alone. Finally, Section 2.3 discusses the PAC learning model, an elegant
method that attempts to find an optimal compromise between accuracy and
certainty. Different aspects of these learning models can be combined and should
not be thought of as mutually exclusive.

2.1 Identification in the Limit

The field of grammatical inference began in earnest with E.M. Gold’s 1967 paper,
titled “Language Identification in the Limit” [24]. This learning model provides
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the inference algorithm with a sequence of strings one at a time, collectively
known as a presentation. There are two types of presentation: positive presenta-
tion, where the strings in the sequence are in the target language; and complete
presentation, where the sequence also contains strings that are not in the target
language and are marked as such. After seeing each string the inference algorithm
can hypothesize a new grammar that satisfies all of the strings seen so far, i.e. a
grammar that generates all the positive examples and none of the negative ex-
amples. The term “information” is often used synonymously with “presentation”
(e.g. positive information and positive presentation mean the same thing).

The more samples that are presented to the inference algorithm the better
it can approximate the target language, until eventually it will converge on the
target language exactly. Gold showed that an inference algorithm can identify
an unknown language in the limit from complete information in a finite number
of steps. However, the inference algorithm will not know when it has correctly
identified the language because there is always the possibility the next sample
it sees will invalidate its latest hypothesis.

Positive information alone is much less powerful, and Gold showed that any
superfinite class of languages cannot be identified in the limit from positive
presentation. A superfinite class of languages is a class that contains all finite
languages and at least one infinite language. The regular languages are a su-
perfinite class, indicating that even the simplest language class in Chomsky’s
hierarchy of languages is not learnable from positive information alone.

There has been much research devoted to learning from positive information
because the availability of negative examples is rare in practice. However, the
difficulty of learning from positive data is in the risk of overgeneralization, learn-
ing a language strictly larger than the target language. Angluin offers a means to
avoid overgeneralization via “tell-tales”, a unique set of strings that distinguish
a language from other languages in its family [2]. She states conditions for the
language family that, if true, guarantee that if the tell-tale strings are included
in the positive presentation seen so far by the inference algorithm then it can be
sure its current guess is not an overgeneralization.

2.2 Teacher and Queries

This learning model is similar in spirit to the game “twenty questions” and uses a
teacher, also called an oracle, who knows the target language and answers queries
from the inference algorithm. In practice, the teacher is often a human who
knows the target language and aids the inference algorithm, but in theory can
be any process hidden from the inference algorithm that can answer particular
types of questions. Angluin describes six types of queries that can be asked of the
teacher, two of which have a significant impact on language learning: membership
and equivalence [6]. A teacher that answers both membership and equivalence
queries is said to be a minimally adequate teacher because she is sufficient to
help identify DFAs in polynomial time without requiring any examples from the
target language [5].
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For a membership query, the inference algorithm presents a string to the
teacher who responds with “yes” if the string is in the language or “no” if it
is not. Likewise for an equivalence query, the inference algorithm presents a
grammar hypothesis to the teacher who answers “yes” or “no” if the guess is
equivalent to the target grammar or not. In the case when the teacher answers
“no” she also provides a counter-example, a string from the symmetric difference
of the target language and the guessed language, allowing the inference algorithm
to zero in on the target grammar. The symmetric difference of two sets A and
B are the elements in either A or B but not both: A

⊕
B = (A ∪B)− (A ∩B).

Queries provide an alternate means to measure the learnability of a class of
languages. They can be used on their own or in conjunction with a presentation
of samples, either positive or complete, to augment the abilities of the learner.
Section 3 discusses how learning with queries differs in difficulty from learning
in the limit for various language classes.

2.3 PAC Learning

In 1984 Valiant proposed the Probably Approximately Correct (PAC) learning
model [55]. This model has elements of both identification in the limit and learn-
ing from an oracle, but differs because it doesn’t guarantee exact identification
with certainty. As its name implies, PAC learning measures the correctness of its
result by two user-defined parameters, ε and δ, representing accuracy and con-
fidence respectively. This learning model is quite general and thus uses different
terminology than typically found in formal languages, but of course applies just
as well to grammatical inference. The goal is still to learn a “concept” (grammar)
from a set of “examples of a concept” (strings).

Valiant assumes there exists a (possibly unknown) distribution D over the
examples of a target concept that represent how likely they are to naturally
occur, and makes available to the inference algorithm a procedure that returns
these examples according to this distribution. As with Gold’s identification in
the limit, PAC learning incrementally approaches the target concept with more
accurate guesses over time.

A metric is proposed to measure the distance between two concepts, defined
as the sum of probabilities D(w) for all w in the symmetric difference of L(G)
and L(G′). In Figure 1, the lightly shaded regions represent the symmetric differ-
ence between L(G) and L(G′). The area of this region decreases as the distance
between the two concepts decreases. In the case of grammatical inference, these
two concepts refer to the target grammar and the inference algorithm’s current
guess.

The PAC learning model’s criteria for a successful inference algorithm is one
that can confidently (i.e. with probability at least 1−δ) guess a concept with high
accuracy (i.e. distance to the target concept is less than ε). Valiant demonstrates
the PAC learning model with a polynomial time algorithm that approximates
bounded conjunctive normal form (k-CNF) and monotone disjunctive normal
form (DNF) expressions using just the positive presentation from D and a mem-
bership oracle.
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Fig. 1. The PAC-learning measure of distance between two language concepts

The novelty and uniqueness of Valiant’s model intrigued the grammatical
inference community, but negative and NP-hardness equivalence results (e.g.
[33,49]) dampened enthusiasm for PAC learning. Many feel Valiant’s stipula-
tion that the algorithm must learn polynomially under all distributions is too
stringent to be practical since the learnability of many apparently simple concept
classes are either known to be NP-hard, or at least not known to be polynomially
learnable for all distributions.

Li and Vitanyi propose a modification to the PAC learning model that only
considers simple distributions [43]. These distributions return simple examples
with high probability and complex examples with low probability, where sim-
plicity is measured by Kolmogorov complexity. Intuition is that simple examples
speed learning. This is corroborated by instances of concepts given by the authors
that are polynomially learnable under simple distributions but not known to be
polynomially learnable under Valiant’s more general distribution assumptions.

Despite the learnability improvements that simple PAC learning offers, the
PAC learning model has attracted little interest from grammatical inference
researchers in recent years. Identification in the limit and query-based learning
models remain far more prevalent, with newer models such as neural networks
and genetic algorithms also garnering interest.

3 Complexity

A significant portion of the grammatical inference literature is dedicated to an
analysis of its complexity and difficulty, with results typically stated for a specific
grammar class or type. The broadest form of result is simply whether a language
class can be learned or not, while other results consider learning in polynomial
time, learning the simplest grammar for the target language, or identifying the
target language with a particular probability. Table 1 outlines the complexity
results for different language classes and learning models.
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Table 1. Learnability and complexity results for various language classes using different
learning models

Language Presentation Queries
Class Complete Positive Membership

Only
Equivalence
Only

Both

Finite Identifiable in
the limit [24]

Identifiable in
the limit [24]

k-reversible
automata

Polynomial
[4]

Strictly
deterministic
automata

Identifiable in
the limit [60]

Superfinite Identifiable in
the limit [24]

Not
identifiable in
the limit [24]

Regular Finding the
minimum
state DFA is
NP-hard [25]

Polynomial
for
representative
sample [3]

No
polynomial
algorithm [7]

Polynomial
[5]

Polynomial [15]

Reversible
context-free

Identifiable in
the limit with
structured
strings [52]

Noncounting
context-free

Identifiable
with
structured
strings [16]

Very simple Polynomial
identifiable in
the limit [59]

Polynomial
[59]

Structurally
reversible
context-free

Polynomial
[11]

Simple de-
terministic

Polynomial
[28]

Context-free As hard as
inverting RSA
[8]

Polynomial
with
structured
strings [51]
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Gold showed that a large class of languages can be identified in the limit
from complete information including the regular, context-free, context-sensitive,
and primitive recursive classes. This identification can be accomplished by a
brute-force style of technique called identification by enumeration where, as each
new example is presented, the possible grammars are enumerated until one is
found that satisfies the presentation seen so far. By contrast, positive information
alone cannot identify the aforementioned classes in the limit, nor any other
superfinite class [24]. The subsequent sections describe the two easiest grammar
classes to infer from the Chomsky hierarchy: regular grammars and context-free
grammars. Very little research has been attempted on the inference of more
powerful grammar classes such as context-sensitive and unrestricted grammars,
so they are omitted from this overview.

3.1 Deterministic Finite Automata

For any non-trivial language, multiple different grammars can be constructed
to generate it. Likewise, there can exist DFAs that differ in their size but are
equivalent in the sense that they accept the same language. When inferring
a DFA from examples, it is naturally desirable to find the smallest DFA that
accepts the target language. There exists only one such minimal DFA for a
given language, known as the canonical DFA acceptor for that language. Despite
the strong identification power of complete information, finding the minimal
DFA that accepts an unknown regular language from a finite set of positive and
negative samples is NP-complete [25].

Early claims of polynomial-time inference algorithms use the number of states
in the target language’s canonical acceptor as the input size. With this criteria,
Angluin gives negative results for the polynomial identification of regular lan-
guages using membership queries only [3] or equivalence queries only [7]. How-
ever, if the membership oracle is augmented with a representative sample of
positive data, a set of strings that exercise all the live transitions in the target
language’s canonical acceptor, then it is possible to identify a regular language
in polynomial time [3]. By combining the power of both membership and equiv-
alence queries, a regular language can be identified in polynomial time even
without a single positive example in the unknown language [5]. Her proposed
algorithm runs in time polynomial to the number of states in the minimum DFA
and the longest counter-example provided by the equivalence oracle.

Several algorithms have been developed for the inference of DFAs from exam-
ples. These algorithms generally start by building an augmented prefix tree ac-
ceptor from positive and negative samples, then perform a series of state merges
until all valid merges are exhausted. Each state merge has the effect of gener-
alizing the language accepted by the DFA. The algorithms differ by how they
select the next states to merge, constraints on the input samples, and whether
or not they guarantee the inference of a minimal DFA.

An early state-merging algorithm is described by Trakhtenbrot and Barzdin
that infers a minimal DFA in polynomial time, but requires that all strings up
to a certain length are labeled as positive or negative [54]. The regular positive
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and negative inference (RPNI) algorithm also finds the canonical acceptor but
allows an incomplete labeling of positive and negative examples which is more
common in practice [48]. RPNI does, however, require the positive examples
contain a characteristic set with respect to the target acceptor. A characteristic
set is a finite set of positive examples S ⊂ L(A) such that there is no other
smaller automata A′ where S ⊂ L(A′) ⊂ L(A). Lang provides convincing em-
pirical evidence that his exbar algorithm out-performs comparable algorithms,
and represents the state of the art in minimal DFA inference [38].

The algorithms discussed so far are guaranteed to infer a minimal DFA for
the given examples, but evidence driven state merging (EDSM) algorithms relax
this requirement for better scalability and performance. The order that states in
a prefix tree are merged has a significant impact on an algorithm’s performance
because each merge restricts possible future merges. Bad merge decisions cause
a lot of backtracking that can be avoided with smarter merge decisions. EDSM
algorithms are so named because they use evidence from the merge candidates to
determine a merge that is likely to be a good generalization, such as the heuristic
proposed by Rodney Price in the first EDSM algorithm [39] and a winner of the
Abbadingo Learning Competition. Differences in EDSM algorithms come down
to the search heuristic used to select merges, and several have been tried such as
beam search [38], stochastic search and the self-adaptive greedy estimate (SAGE)
algorithm [32]. These search heuristics are comparable in performance and are
the best known inference algorithms for large or complex DFAs.

3.2 Context-Free Grammars

Polynomial-time algorithms to learn higher grammar classes have also been
investigated, in particular for context-free grammars. Identifying context-free
grammars in polynomial time is considerably more difficult than for DFAs, so
most polynomial results in the literature either learn a strict subset of context-
free grammars, use structured strings as input, or both. Unlike DFA inference,
there is currently no known polynomial algorithm to identify a general context-
free language from positive and negative samples.

Angluin and Kharitonov give a hardness result that applies to all context-
free languages: constructing a polynomial-time learning algorithm for context-
free grammars using membership queries only is computationally equivalent to
cracking well-known cryptographic systems, such as RSA inversion [8].

Anecdotally, it appears a fruitful method to find polynomial-time learning
algorithms for context-free languages from positive samples is to adapt corre-
sponding algorithms from DFA inference, with the added stipulation that the
sample strings be structured. A structured string is a string along with its un-
labelled derivation tree, or equivalently a string with nested brackets to denote
the shape of its derivation tree. Sakakibara has shown this method effective by
adapting Angluin’s results for learning DFAs by a minimally adequate teacher
[5] and learning reversible automata [4] to context-free variants with structured
strings [51,52].
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Clark et al. have devised a polynomial algorithm for the inference of languages
that exhibit two special characteristics: the finite context property and the finite
kernel property [15]. These properties are exhibited by all regular languages,
many context-free languages, and some context-sensitive languages. The algo-
rithm is based on positive data and a membership oracle. More recently, Clark
has extended Angluin’s result [5] of learning regular languages with membership
and equivalence queries to a larger subclass of context-free languages [14].

Despite the absence of a general efficient context-free inference algorithm,
many researchers have developed heuristics that provide relatively good perfor-
mance and accuracy by sacrificing exact identification in all cases. We describe
several such approaches related to software engineering in Section 4.

4 Applications in Software Engineering

Grammatical inference has its roots in a variety of separate fields, a testament
to its wide applicability. Implementors of grammatical inference applications
often have an unfair advantage over purely theoretical GI research because theo-
rists must restrict themselves to inferring abstract machines (DFAs, context-free
grammars, transducers, etc.) making no additional assumptions about the under-
lying structure of the data. Empiricists, on the other hand, can make many more
assumptions about the structure of their data because their inference problem
is limited to their particular domain.

Researchers attempting to solve a practical inference problem will usually
develop their own custom solution, taking advantage of structural assumptions
about their data. Often this additional domain knowledge is sufficient to over-
come inference problems that theorists have proved impossible or infeasible with
the same techniques in a general environment. The applications described in the
following sections use grammatical inference techniques, but rarely result from
applying a purely theoretical result to a practical problem.

4.1 Inference of General Purpose Programming Languages

Programming language design is an obvious area to benefit from grammatical
inference because grammars themselves are first-class objects. Programming lan-
guages almost universally employ context-free, non-stochastic grammars to parse
a program, which narrows the possible inference approaches considerably when
looking for an inductive solution. When discussing the inference of programming
language grammars here, the terms “sample” and “example” refer to instances
of computer programs written in the target programming language.

Crespi-Reghizzi et al. suggest an interactive system to semi-automatically
generate a programming language grammar from program samples [17]. This
system relies heavily on the language designer to help the algorithm converge on
the target language by asking for appropriate positive and negative examples.
Every time the learning algorithm conjectures a new grammar, it outputs all
sentences for that grammar up to a certain length. If the conjectured grammar



Grammatical Inference in Software Engineering 213

is too large, there will be sentences in the output that don’t belong and the
designer marks them as such. If the conjectured grammar is too small, there will
be sentences missing from the output and the designer is expected to provide
them. The designer’s corrections are fed back into the algorithm which corrects
the grammar and outputs a new conjecture, and the process repeats until the
target grammar is obtained.

Another system is proposed by Dubey et al. to infer a context-free grammar
from positive samples for a programming language dialect when the standard lan-
guage grammar is already known [21]. Their algorithm requires the non-terminals
in the dialect grammar to be unchanged from the standard grammar, but allows
for the terminals and production rules to be extended in the dialect grammar
(i.e. new keywords can be added in the dialect along with their associated gram-
mar rules). Their approach has the advantage of being fully automated so the
designer simply needs to provide the dialect program samples and the standard
language grammar. However, like many current CFG inference techniques, a
heuristic is used which cannot guarantee the output grammar converges exactly
to the target grammar.

4.2 Inference of Domain Specific Languages

Domain specific languages (DSLs) are languages whose syntax and notation are
customized for a specific problem domain, and are often more expressive and
declarative compared to general purpose languages. DSLs are intended to be
used, and possibly designed, by domain experts who do not necessarily have
a strong computer science background. Grammatical inference allows the cre-
ation of a grammar for a DSL by only requiring positive (and possibly negative)
program samples by the designer.

Črepinšek et al. propose a genetic approach to infer grammars for small DSLs
using positive and negative samples [56]. They combine a set of grammar pro-
duction rules into a chromosome representing a complete grammar, then apply
crossover and mutation genetic operators that modify a population of chromo-
somes for the next generation. They use a fitness function that reflects the goal
of having the target grammar accept all positive samples and reject all negative
samples. Since a single random mutation is more likely to produce a grammar
that rejects both positive and negative samples, the authors found that testing a
chromosome on only positive samples converges more quickly to the target gram-
mar than testing it on negative samples. Therefore, they chose a fitness value
proportional to the total length (in tokens) of the positive samples that can
be parsed by a chromosome. Negative samples, used to control overgeneraliza-
tion, are only included in the fitness value if all positive samples are successfully
parsed.

This genetic approach has been shown to accurately infer small DSLs [56],
including one discussed by Javed et al. to validate UML class diagrams from
use cases [29]. Javed et al. express UML class diagrams in a custom DSL and
require a domain expert to provide positive and negative use cases written in
that DSL. The system validates these use cases against the given UML diagrams
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and reports feedback to the user, who can use that feedback to change the
UML diagrams to improve use case coverage. In this situation the computer is
providing valuable context and information to the human user who is making
the important generalization and specialization decisions for the grammar, but in
theory UML diagrams can be synthesized entirely from the use case descriptions
given a sufficiently powerful grammar inference engine.

Javed et al. extend their genetic algorithm by learning from positive samples
only by using beam search and Minimum Description Length (MDL) heuris-
tics [40] in place of negative examples to control overgeneralization of the con-
jectured grammar [31]. The idea here is to find the simplest grammar at each
step and incrementally approach the target grammar. MDL is used as a measure
of grammar simplicity, and beam search is used to more efficiently search the
solution space of possible grammars. One disadvantage of this approach is it re-
quires the positive samples to be presented in a particular order, from simplest
to most complex, which allows the learning algorithm to encode the incremental
differences from the samples into the target grammar. The authors’ subsequent
effort into a grammar inference tool for DSLs, calledMAGIc, eliminates this need
for an order-specific presentation of samples by updating the grammar based on
the difference between successive (arbitrary) samples [46,27]. This frees the de-
signer from worrying about the particular order to present their DSL samples to
the learning algorithm. Hrnčič et al. demonstrate how MAGIc can be adapted
to infer DSLs embedded in a general purpose language (GPL) given the GPL’s
grammar [26]. The GPL’s grammar rules are included in the chromosome, but
frozen so they cannot mutate. Learning, therefore, occurs strictly on the DSL
syntax and the locations in the GPL grammar where the embedded DSL is
allowed.

The inference of DSLs can make it easier for non-programmer domain experts
to write their own domain-specific languages by simply providing examples of
their DSL programs. It can also be used in the migration or maintenance of
legacy software whose grammar definitions are lost or unavailable.

4.3 Inference of Graph Grammars and Visual Languages

Unlike one-dimensional strings whose elements are connected linearly, visual
languages and graphs are connected in two or more dimensions allowing for
arbitrary proximity between elements. Graph grammars define a language of
valid graphs by a set of production rules with subgraphs instead of strings on
the right-hand side.

Fürst et al. propose a graph grammar inference algorithm based on positive
and negative graph samples [23]. The algorithm starts with a grammar that pro-
duces exactly the set of positive samples then incrementally generalizes towards
a smaller grammar representation, a strategy similar to typical DFA inference
algorithms which build a prefix tree acceptor then generalize by merging states.
The authors demonstrate their inference algorithm with a flowchart example
and a hydrocarbon example, making a convincing case for its applicability to
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software engineering tasks such as metamodel inference and reverse engineering
visual languages.

Another graph grammar inference algorithm is proposed by Ates et al. which
repeatedly finds and compresses overlapping identical subgraphs to a single non-
terminal node [9]. This system uses only positive samples during the inference
process, but validates the resulting grammar by ensuring all the graphs in the
training set are parsable and other graphs which are close to but distinct from
the training graphs are not parsable. Ates et al. demonstrate their algorithm
with two practical inferences: one for the structure of a programming language
and one for the structure of an XML data source.

Kong et al. use graph grammar induction to automatically translate a webpage
designed for desktop displays into a webpage designed for mobile displays [35].
The inference performed is similar to the aforementioned proposed by Ates et
al. [9] because they both use the Spatial Graph Grammar (SGG) formalism and
subgraph compression. The induction algorithm consumes webpages, or more
accurately their DOM trees, to produce a graph grammar. After a human has
verfied this grammar it is used to parse a webpage, and the resulting parse is
used to segment the webpage into semantically related subpages suitable for
display on mobile devices.

Graph grammar inference algorithms are less common than their text-based
counterparts, but provide a powerful mechanism to infer patterns in complex
structures. Parsing graphs is NP-hard in general, causing these algorithms to be
more computationally expensive than inference from text. Most graph grammar
learners overcome this complexity by restricting their graph expressiveness or
employing search and parse heuristics to achieve a polynomial runtime.

4.4 Other Uses in Software Engineering

Section 3 describes the difficulty inferring various language classes from positive
samples alone, and in particular that only finite languages can be identified in
the limit from positive samples [24]. The SEQUITUR algorithm, developed by
Nevill-Manning and Witten, is designed to take a single string (long but finite)
and produce a context-free grammar that reflects repetitions and hierarchical
structure contained in that string [47]. This differs from typical grammar infer-
ence algorithms because it does not generalize. Data compression is an obvious
use of this algorithm, but it has found other uses in software engineering. For ex-
ample, Larus uses the SEQUITUR algorithm to concisely represent a program’s
entire runtime control flow and uses this dynamic control flow information to
identify heavily executed paths in the program to focus performance and com-
piler optimization efforts [41]. It can also be used on the available positive sam-
ples as a first step in a generalizing context-free grammar inference algorithm,
such as in [46] to seed an initial population of grammars for a genetic approach.

Ahmed Memon proposes using grammatical inference in log files to identify
anomalous activity [45]. He treats the contents of log files in a system run-
ning normally as a specific language, and any erroneous or anomalous activities
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reported in the log file are therefore not part of this language. Memon trains a
grammar from positive log file samples of a system running normally, then parses
subsequent log file entries using this grammar to identify anomalous activity. The
inference procedure depends on knowledge of the domain, specifically sixteen text
patterns that appear in typical log files: dates, times, IP addresses, session IDs,
etc. Once these patterns are identified and normalized, a custom non-terminal
merging algorithm is used to generalize the log file grammar.

Another recent use for grammatical inference is in the area of model-driven
engineering. The relationship between a grammar and the strings it accepts is
analogous to the relationship between a metamodel and the instance models it
accepts. Javed et al. describe a method to use grammar inference techniques on
a set of instance models to recover a missing or outdated metamodel [30]. The
process involves converting the instance models in XML format to a domain-
specific language, then performing existing grammar inference techniques on
those DSL programs. The authors use their previously developed evolutionary
approach [57] to do the actual inference, then recreate a metamodel in XML
format from the result so the recovered metamodel can be loaded into a modeling
tool. Liu et al. have recently extended this system to handle models with a
more complex and segmented organizational structure [44]. The authors refer to
these as multi-tiered domains because they support multiple viewpoints into the
model.

Two similar problems are grammar convergence [37] and grammar recov-
ery [36], both which involve finding grammars for a variety of software artifacts.
The goal of grammar convergence is to establish and maintain a mapping be-
tween software artifact structures in different formats that embody the same
domain knowledge. Grammatical inference can aid in the early steps of this
process to produce a grammar for each knowledge representation by examining
available concrete examples. Existing grammar transformation and convergence
techniques can then be used on the resulting source grammars to establish a
unified grammar.

Grammar recovery can be viewed as a more general version of the grammar
inference problem because it seeks to recover a grammar from sources such as
compilers, reference manuals and written specifications, in addition to concrete
program examples. The effort by Lämmel and Verhoef to recover a VS COBOL
II grammar includes leveraging visual syntax diagrams from the manual [36].
These diagrams give clues about the shape of the target grammar’s derivation
tree, knowledge that is known to greatly improve the accuracy of grammati-
cal inference techniques. For example, reversible context-free and non-counting
context-free languages are known to be identifiable from positive examples with
these types of structured strings [52,16]. Furthermore, structured strings can be
used to identify any context-free language in polynomial time with a member-
ship and equivalence oracle [51]. In the case of grammar recovery, an existing
compiler for the language (even without the compiler source code) may be used
as a membership oracle.
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5 Related Surveys

Many surveys of grammatical inference have been written to introduce newcom-
ers to the field and summarize the state of the art. Most give a thorough overview
of grammatical inference in general, but each emphasise different aspects of the
literature.

Fu and Booth (1986) give a detailed technical description of some early infer-
ence algorithms and heuristics with an emphasis on pattern recognition examples
to demonstrate its relevance [22]. This survey is heavy on technical definitions
and grammatical notation, suitable for someone with prior knowledge in for-
mal languages who prefers to get right into the algorithms and techniques of
grammatical inference.

Vidal (1994) provides a concise but thorough overview of the learning models
and language classes in grammatical inference, with ample citations for follow-up
investigation [58]. He presents each learning model in the context of fundamental
learnability results in the field as well as their practical applications without
getting too deeply into the details of each learning model.

Dana Ron’s doctoral thesis (1995) on the learning of deterministic and proba-
bilistic finite automata primarily investigates PAC learning as it relates to iden-
tifying DFAs, and describes practical applications of its use [50]. Although not
exhaustive of grammatical inference in general, this thesis is a good reference for
someone specifically interested in DFA inference.

Lee (1996) presents an extensive survey on the learning of context-free lan-
guages, including those that have non-grammar formalisms [42]. She discusses
approaches that learn from both text and structured data, making it relevant to
software engineering induction problems.

Sakakibara (1997) provides an excellent overview of the field with an empha-
sis on computational complexity, learnability, and decidability [53]. He covers
a wide range of grammar classes including DFAs, context-free grammars and
their probabilistic counterparts. This survey is roughly organized by the types
of language classes being learned.

Colin de la Higuera (2000) gives a high-level and approachable commentary
on grammatical inference including its historical progress and achievements [18].
He highlights key issues and unsolved problems, and describes some promising
avenues of future research. This commentary is not meant as a technical introduc-
tion to inference techniques nor an exhaustive survey, and therefore contains no
mathematical or formal notation. It rather serves as a quick and motivational
read for anyone interested in learning about grammatical inference. A similar
piece on grammatical inference is written by Honavar and de la Higuera (2001)
for a special issue of the Machine Learning journal (volume 44), emphasizing
the cross-disciplinary nature of the field.

Cicchello and Kremer (2003) and Bugalho and Oliveira (2005) survey DFA
inference algorithms in depth, with excellent explanations about augmented pre-
fix tree acceptors, state merging, the red-blue framework, search heuristics, and
performance comparisons of state of the art DFA inference algorithms [13,10].
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de la Higuera (2005) provides an excellent guide to grammatical inference,
geared toward people (not necessarily experts in formal languages or computa-
tional linguistics) who think grammatical inference may help them solve their
particular problem [19]. He gives a general roadmap of the field, examples of
how grammatical inference has been used in existing applications, and provides
many useful references for further investigation by the reader.

Pieter Adriaans and Menno van Zaanen (2006) compare grammatical infer-
ence from three different perspectives: linguistic, empirical, and formal [1]. They
introduce the common learning models and broad learnability results in the
framework of each perspective, and comment on how these perspectives over-
lap. This survey is useful for someone who comes from a linguistic, empirical, or
formal languages background and wishes to learn about grammatical inference.

6 Future Direction and Challenges

Software engineers are finding a variety of uses for grammatical inference in their
work, but grammatical inference is still relatively rare in the field. The theoret-
ical work in grammatical inference is largely disconnected from these practical
uses because implementers tend to use domain specific knowledge to craft cus-
tom solutions. Such solutions, while successful in some cases, usually ignore the
powerful algorithms developed by the theoretical GI community. Domain knowl-
edge should continue to be exploited – we are not advocating otherwise – but
domain knowledge needs to be translated into a form general-purpose inference
algorithms can use. We believe this is the biggest challenge currently facing soft-
ware engineers wanting to use grammatical inference in their applications: how
to map their domain knowledge to theoretical GI constraints.

Constraints can be imposed in several ways, such as simplifying the gram-
mar class to learn, providing negative samples, adding a membership and/or
equivalence oracle where none existed, or partially structuring the input data.
Often these constraints are equivalent to some existing structural knowledge or
implicit assumptions about the input data, but identifying these equivalences is
nontrivial.

while limit > a do

begin

if a > max then max = a;

a := a + 1

end

Fig. 2. A sample program in an unknown Pascal-like language

We motivate this approach with a concrete example, inspired by an exam-
ple from Sakakibara [52]. Suppose you have a collection of computer programs
written in an unknown language with a Pascal-like syntax and wish to infer a
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grammar from the collection. For clarity, Figure 2 shows a sample program in
the collection and Figure 3 shows the target grammar to learn (a subset of the
full Pascal grammar).

Statement → Ident := Expression

Statement → while Condition do Statement

Statement → if Condition then Statement

Statement → begin Statementlist end

Statementlist → Statement;Statementlist

Statementlist → Statement

Condition → Expression > Expression

Expression → Term+ Expression

Expression → Term

Term → Factor

Term → Factor × Term

Factor → Ident

Factor → (Expression)

Fig. 3. The target grammar for the Pascal-like language [52]

At first glance this inference problem seems too difficult to solve. It is a
context-free grammar with positive samples only, and Gold proved learning a
superfinite language in the limit from positive-only samples is impossible [24].
Even with the addition of negative samples there is no known algorithm to
efficiently learn a context-free language.

On closer inspection, however, there is additional structural information in the
input samples, hidden in a place grammarware authors and parsers are trained to
ignore – the whitespace. By taking into account line breaks and indented sections
of source code in the input samples, a structured string can be constructed for
each program. If we further assume the target grammar is reversible then we
can apply a result by Sakakibara, who showed reversible context-free grammars
can be learned in polynomial time from positive structured strings [52].

This particular solution depends on two assumptions: (1) all the input sam-
ples have meaningful and consistent whitespace formatting, and (2) the target
grammar is in the class of reversible context-free grammars. The assumption
that the target grammar is reversible context-free is reasonable, as many DSLs
would fit this criterion. The Pascal subset grammar in Figure 3 is in fact re-
versible context-free, but full Pascal is not because adding a production rule like
Factor → Number to this grammar violates the criteria of reversibility [52].

Leveraging domain knowledge and structural assumptions is quite power-
ful when inferring grammars from examples and should be encouraged, but at
present mapping this domain-specific knowledge to abstract constructs in gram-
matical inference research requires some creativity and awareness of theoretical
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results in the field. Allowing the extensive work done in the theoretical gram-
matical inference community to bear on specific applications of GI would be a
great boon to software engineering.

7 Conclusion

In grammatical inference, an inference algorithm must find and use common
patterns in example sentences to concisely represent an unknown language in
the form of a grammar. This process spans two axes of complexity: the language
class to be learned and the learning model employed.

The theoretical foundations of grammatical inference are now well established
thanks to contributions by Gold, Angluin and others. The state of the art, how-
ever, still has plenty of room to grow, and Colin de la Higuera identifies ten open
problems on the theoretical side of grammatical inference that he believes are
important to solve going forward [20].

In practice, assumptions can often be made which are not possible in a purely
theoretical setting because a specific problem domain has limited scope, allowing
for a better outcome than one would expect from simply applying the smallest
enclosing theoretical result. Some work has already been done to investigate this
relationship deeper, such as that by Kermorvant and de la Higuera [34] and Cano
et al [12]. It would be valuable to find a widely applicable technique to equate
domain assumptions with either a restriction in the class of language to learn,
or an augmentation of the learning model.

Theoretical grammatical inference research continues to advance in many dif-
ferent directions: the language classes being learned, the learning models in use,
the criteria for a successful inference, and the efficiency of the inference algo-
rithms. Existing applications for grammatical inference are continually refined
and new applications are found in a wide variety of disciplines.
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Abstract. Extending a language by embedding within it another lan-
guage presents significant parsing challenges, especially if the embedding
is recursive. The composite grammar is likely to be nondeterministic as
a result of tokens that are valid in both the host and the embedded lan-
guage. In this paper we examine the challenges of embedding the Tom
language into a variety of general-purpose high level languages. Tom
provides syntax and semantics for advanced pattern matching and tree
rewriting facilities. Embedded Tom constructs are translated into the
host language by a preprocessor, the output of which is a composite pro-
gram written purely in the host language. Tom implementations exist for
Java, C, C#, Python and Caml. The current parser is complex and diffi-
cult to maintain. In this paper, we describe how Tom can be parsed using
island grammars implemented with the Generalised LL (GLL) parsing
algorithm. The grammar is, as might be expected, ambiguous. Extract-
ing the correct derivation relies on our disambiguation strategy which is
based on pattern matching within the parse forest. We describe different
classes of ambiguity and propose patterns for resolving them.

Keywords: GLL, Tom, island grammars, parsing, disambiguation.

1 Introduction

Modern software systems are composed of a wide range of programming lan-
guages. In many cases there is even a mixture of programming languages within
one program. A traditional example is Cobol with CICS or SQL embeddings. It
is possible for these embeddings to be realised via strings in which the extension
constructs are encoded. In this case the parser of the host language does not
need to be aware of the fact that another language is present. The drawback of
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these string encodings is that syntax errors in the embedded language constructs
are not detected until a later phase in which these constructs are processed.

In the last decade language developers have been working on extending
general-purpose programming languages with domain-specific languages, referred
to in this paper as guest languages. The language embeddings which are not
simple string encodings present a challenge from a parsing point of view, es-
pecially if the general-purpose programming language and the embeddings can
be unboundedly nested. Tom [1] is an example of such an extension which pro-
vides general-purpose programming languages, such as Java, C, C#, Python,
and Caml, referred to in this paper as the host language, with advanced pattern
matching, term rewriting and tree traversal functionality. The Tom compiler
processes the Tom constructs and generates corresponding host language code.
The host-language compiler can then be used to build the final program from
the generated code. The main advantage of this two-phase compiling approach is
that the host-language compiler remains unaware of the extension constructs. As
a result, the host language can evolve without breaking the extension’s compiler,
and the guest language can be used to extend other host languages.

If language embeddings are not simple string encodings, the syntax of the host
language needs to be modified to accommodate the guest language. This is usu-
ally done by using tags which signal the beginning and end of guest constructs.
In case of nesting host constructs inside guest constructs, another set of tags
may be employed for notifying the parser of the return to the host language [2].
However, the use of tags for switching between languages is not very convenient
for developers who use the language. In Tom, only an opening tag is used, while
the closing tag is the same as the closing tag of blocks in the host language. Fur-
thermore, switching to the host language inside Tom constructs does not need
any special tag, and the host and guest languages may be unboundedly nested.
These features make parsing Tom even more challenging.

Parsing the full syntax of the host language is neither desirable nor practical
in many cases, especially for Tom, in which we only need to extract the guest
constructs. One way to avoid parsing the full syntax of the host language is to
use island grammars [3]. An island grammar captures the important constructs,
embedded constructs in our case, as “island” and ignores the rest as “water”.
Two main issues should be taken into consideration while parsing island gram-
mars. First, the class of deterministic context-free languages is not closed under
union, meaning that the union of two deterministic languages may no longer be
deterministic. Therefore, even if one designs LL(k) or LR(k) syntax for a lan-
guage extension, there is no guarantee that the resulting language is in the same
class. Second, the host and extension languages may share tokens, which may
lead to ambiguities. The ambiguities from shared tokens cannot always be re-
solved by rewriting the grammar, using more lookahead tokens or backtracking,
so there is a need for more sophisticated disambiguation schemes.

Attempting to parse an island grammar of a language using standard LL or
LR parsing techniques will, at the very least, involve significant modifications
in the parser and, in worst case, may not even be possible. For example, the
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current Tom parser uses multiple parsers, implemented in ANTLR1, to deal
with the host and Tom constructs separately. This implementation is complex,
hard to maintain, and does not reflect the grammar of the language. Moreover,
having a complex parser implementation makes the changes in and evolution of
(both) languages a burden.

During the last 30 years, more efficient implementations of generalised parsers
have become available. Since the algorithm formulated by Tomita [4] there
have been a number of generalised LR parsing (GLR) implementations, such
as GLR [5], a scannerless variant (SGLR) [6] and Dparser2. Johnstone and Scott
developed a generalised LL (GLL) parser [7] in which the function call stack in a
traditional recursive descent parser is replaced by a structure similar to the stack
data structure (Graph Structured Stack) used in GLR parsing. GLL parsers are
particularly interesting because their implementations are straightforward and
efficient.

Our goal is to avoid manipulation within a parser in order to provide a generic,
reusable solution for parsing language embeddings. We have chosen Tom as
our case study, mainly because of challenges involved in parsing Tom such as
recursive embedding and the lack of closing tags. In this paper, we present an
island grammar for Tom in EBNF. The fundamental question is how to deal with
ambiguities present in island grammars which support recursive embedding. For
disambiguation we perform pattern matching within the parse forest. To validate
our approach, we conducted parsing experiments using an improved version of
our Java implementation of GLL [8].

The rest of this paper is organised as follows. In Section 2 we introduce Tom
as a language for term rewriting and give a brief description of the GLL parsing
algorithm along with some notes on our GLL implementation. Section 3 describes
the idea of island grammars by defining an island grammar for Tom. In Section 4
we illustrate our mechanism for resolving ambiguities in island-based grammars
by providing disambiguation rules for different types of ambiguities present in
Tom. The results of parsing Tom examples are presented in Section 5. In Section 6
we present other work in the area of parsing embedded languages and compare
our approach with them. Finally, in Section 7, a conclusion to this paper and
some ideas for future work are given.

2 Preliminaries

In this section we introduce the Tom language which is used for two different
purposes in the rest of this paper. First, Tom is used as an example of an
embedded syntax with recursive nesting, which poses difficulties for conventional
deterministic parsers. Second, Tom is used as a pattern matching and rewriting
technology for implementing a disambiguation mechanism for island grammars.
The rest of this section gives a brief explanation of the GLL parsing algorithm
and our Java-based GLL implementation.

1 http://www.antlr.org/
2 http://dparser.sourceforge.net/

http://www.antlr.org/
http://dparser.sourceforge.net/
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2.1 Tom in a Nutshell

Tom [9,1] is a language based on rewriting calculus and is designed to integrate
term rewriting and pattern matching facilities into general-purpose programming
languages (GPLs) such as Java, C, C#, Python, and Caml. Tom relies on the
Formal Island framework [10], meaning that the underlying host language does
not need to be parsed in order to compile Tom constructs.

The basic functionality of Tom is pattern matching through the %match con-
struct. This construct can be seen as a generalisation of the switch-case construct
in many GPLs. The %match construct is composed of a set of rules where the left-
hand side is a pattern, i.e., a tree that may contain variables, and the right-hand
side an action, given by a Java block that may in turn contain Tom constructs.

A second construct provided by Tom is the backquote (‘) term. Given an
algebraic term, i.e., a tree, a backquote term builds the corresponding data
structure by allocating and initialising the required objects in memory.

A third component of the Tom language is a formalism to describe algebraic
data structures by means of the %gom construct. This corresponds to the defini-
tion of inductive types in classical functional programming. There are two main
ways of using this formalism: the first one is defining an algebraic data type in
Gom and generating Java classes which implement the data type. This is similar
to the Eclipse Modeling Framework3, in which a Java implementation can be
generated from a meta-model definition. The second approach assumes that a
data structure implementation, for example in Java, already exists. Then, an
algebraic data type in Gom can be defined to provide a mapping to connect the
algebraic type to the existing implementation.

Listing 1 illustrates a simple example of a Tom program. The program starts
with a Java class definition. The %gom construct defines an algebraic data type
with one module, Peano. The module defines a sort Nat with two constructors:
zero and suc. The constructor suc takes a variable n as a field. Given a sig-
nature, a well-formed and well-typed term can be built using the backquote
(‘) construct. For example, for Peano, ‘zero() and ‘suc(zero()) are correct
terms, while ‘suc(zero(),zero()) or ‘suc(3) are not well formed and not well
typed, respectively.

In the example in Listing 1, the plus() and greaterThan() methods are
implemented by pattern matching. The semantics of pattern matching in Tom is
close to the match which exists in functional programming languages, but in an
imperative context. A %match construct is parametrised by a list of subjects, i.e.,
expressions evaluated to ground terms, and contains a list of rules. The left-hand
side of the rules are patterns built upon constructors and new variables, without
any restriction on linearity (a variable may appear twice, as in x,x). The right-
hand side is a Java statement that is executed when the pattern matches the
subject. Using the backquote construct (‘) a term can be created and returned.
Similar to the standard switch/case construct, patterns are evaluated from top
to bottom. In contrast to the functional match, several actions, i.e., right-hand
side, may be fired for a given subject as long as no return or break is executed.

3 http://www.eclipse.org/modeling/emf/

http://www.eclipse.org/modeling/emf/


228 A. Afroozeh et al.

public class PeanoExample {

%gom {
module Peano
Nat = zero() | suc(n: Nat)
}

public Nat plus(Nat t1, Nat t2) {
%match(t1,t2) {
x,zero() -> { return ‘x; }
x,suc(y) -> { return ‘suc(plus(x,y)); }

}

boolean greaterThan(Nat t1, Nat t2) {
%match(t1,t2) {
x,x -> { return false; }
suc( ),zero() -> { return true; }
zero(),suc( ) -> { return false; }
suc(x),suc(y) -> { return ‘greaterThan(x,y); }
}

}

public final static void main(String[] args) {
Nat N = ‘zero();
for(int i=0 ; i<10 ; i++) { N = ‘suc(N); }

} }

Listing 1. An example of a Java and Tom program. Tom parts are in bold

In addition to the syntactic matching capabilities illustrated above, Tom also
supports more complex matching theories such as matching modulo associativity,
associativity with neutral element, and associativity-commutativity.

2.2 Generalised LL Parsing

Top down parsers whose execution closely follows the structure of the underlying
grammar are attractive, particularly because they make grammar debugging
easier. GLL is a top down parsing technique which is fully general, allowing even
left recursive grammars, which has worst-case cubic runtime order and which is
close to linear on most ‘real’ grammars. In this section we give a basic description
of the technique, a full formal description can be found in [7].

A GLL parser effectively traverses the grammar using the input string to guide
the traversal. There may be several traversal threads, each of which has a pointer
into the grammar and a pointer into the input string. For each nonterminal A
there is a block of code corresponding to each alternate of A. At each step
of the traversal, (i) if the grammar pointer is immediately before a terminal
we attempt to match it to the current input symbol; (ii) if it is immediately
before a nonterminal B then the pointer moves to the start of the block of code
associated with B; (iii) if it is at the end of an alternate of A then it moves to the
position immediately after the instance of A from which it came. This control
flow is essentially the same as for a classical recursive descent parser in which
the blocks of code for a nonterminal X are collected into a parse function for X
with traversal steps of type (ii) implemented as a function call toX and traversal
steps of type (iii) implemented as function return. In classical recursive descent,
we use the runtime stack to manage actions (ii) and (iii) but in a general parser
there may be multiple parallel traversals arising from nondeterminism; thus in
the GLL algorithm the call stack is handled directly using a Tomita-style graph
structured stack (GSS) which allows the potentially infinitely many stacks arising
from multiple traversals to be merged and handled efficiently.
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Multiple traversal threads are handled using process descriptors, making the
algorithm parallel rather than backtracking in nature. Each time a traversal
bifurcates, the current grammar and input pointers, together with the top of
the current stack and associated portion of the derivation tree, are recorded in
a descriptor. The outer loop of a GLL algorithm removes a descriptor from the
set of pending descriptors and continues the traversal thread from the point at
which the descriptor was created. When the set of pending descriptors is empty
all possible traversals will have been explored and all derivations (if there are any)
will have been found. Details of the creation and processing of the descriptors
by a GLL algorithm can be found in [7] and a more implementation oriented
discussion can be found in [11].
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Fig. 1. SPPF

The output of a GLL parser is a representation of all the possible derivations
of the input in the form of a shared packed parse forest (SPPF), a union of
all the derivation trees of the input in which nodes with the same tree below
them are shared and nodes which correspond to different derivations of the same
substring from the same nonterminal are combined by creating a packed node
for each family of children. To make sure that descriptors contain only one tree
node, the root of the current subtree, the SPPFs are binarised in the natural
left associative manner, with the two left-most children being grouped under an
intermediate node, which is in turn then grouped with the next child to the left,
etc. It is this binarisation that keeps both the size of the SPPF and the number
of descriptors worst-case cubic.

In detail, a binarised SPPF has three types of SPPF nodes: symbol nodes,
with labels of the form (x, j, i) where x is a terminal, nonterminal or ε and
0 ≤ j ≤ i ≤ n (n is the size of the input); intermediate nodes, with labels
of the form (t, j, i); and packed nodes, with labels for the form (t, k), where
0 ≤ k ≤ n and t is a grammar slot. (A grammar slot is essentially an LR(0)-
item, a formal definition can be found in [7].) Terminal symbol nodes have no
children. Nonterminal symbol nodes, (A, j, i), have packed node children of the
form (A ::= γ·, k) and intermediate nodes, (t, j, i), have packed node children
with labels of the form (t, k), where j ≤ k ≤ i. A packed node has one or
two children, the right child is a symbol node (x, k, i), and the left child, if it
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exists, is a symbol or intermediate node, (s, j, k). For example, for the grammar
S ::= abc | aA, A ::= bc we obtain the SPPF as shown in Fig. 1. As is clear from
this example, for ambiguous grammars there will be more than one derivation.

2.3 GLL Implementation Notes

Currently, the GLL parsing algorithm does not natively support EBNF; there-
fore, we convert a grammar described in EBNF to an equivalent BNF grammar
prior to the generation of a GLL parser. In our conversion scheme, for example,
an EBNF symbol X∗, the repetition of X , is replaced by a nonterminal named
X ∗, having two alternates: X ∗ ::= X X ∗ and X ∗ ::= ε. As the consequence,
the resulting SPPF contains symbol nodes associated with the EBNF symbols
introduced in the conversion. After parsing, when an SPPF is created, we remove
the nodes associated with the EBNF conversion, by replacing them with their
children, so that the resulting SPPF corresponds to the initial EBNF grammar.

Our GLL implementation uses a separate lexer. The lexer is driven by the
parser and returns all possible token types seen at a particular point of the
input. These tokens may overlap. Being a top-down parser, GLL decides at
each grammar position whether tokens received from the lexer are relevant. This
check is performed by testing the token types against the first and follow sets of
nonterminals at the position. All the relevant tokens at a position are consumed
and irrelevant ones are simply ignored. Moreover, the syntax of lexical definitions
used by our lexer is inspired by SDF [12]. The difference with SDF is that we
only escape characters which have a special meaning in the regular expression
definitions. These characters are \, ., ^, [, ], and -.

3 Island Grammars: Tom Syntax as an Example

Island grammars are a method for describing the syntax of a language, concen-
trating only on relevant constructs. An island grammar comprises two sets of
rules: rules for islands describing the relevant language constructs which should
be fully parsed and rules for water describing the rest of the text with which
we are not concerned. In parsing embedded languages, the embedded language
and host language constructs are captured as island and water, respectively. In
this section, we define an island grammar for Tom. The presented approach is
general enough to be used in other contexts as well.

context-free syntax
Program ::= Chunk*
Chunk ::= Water | Island

Listing 2. The starting rules of an island grammar

The starting rules of an island grammar are shown in Listing 2. As can be seen, a
program is defined as a list of Chunk nonterminals, each being either an island or
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water. The rules defining water are presented in Listing 3. In island grammars,
the overlap between water and island tokens should be recognised. To this end,
we define fine-grained Water tokens being as small as the building blocks of
the supported host languages. In addition, our island grammar is designed to
be host-language agnostic, although it may not possible to completely achieve
it. For this purpose, the water definition should be flexible and capture the
different varieties of tokens appearing in different supported host languages. For
example, SpecialChar in Listing 3 is defined as the union of all different symbols
appearing in the host languages supported by our island grammar.

context-free syntax
Water ::= Identifier | Integer | String | Character | SpecialChar

lexical syntax
Identifier ::= [a-zA-Z_]+[a-zA-Z0-9\-_]*
Integer ::= [0-9]+
String ::= ["]([^"\\]|[\\][nrf\\"’tb])*["]
Character ::= [’]([^’\\]|[\\][nrf\\"’tb])[’]
SpecialChar ::= [; : + \- = & < > * ! % : ? | & @ \[ \] \^ # $ { } , \. ( )]

Listing 3. The definition of Water

context-free syntax
Island ::= TomConstruct | BackQuoteTerm
TomConstruct ::= IncludeConstruct | MatchConstruct | GomConstruct | ...

Listing 4. Tom constructs

As can be seen in Listing 4, Tom islands fall into two groups: Tom constructs,
prefixed by %, and the backquote term. Most of the Tom constructs have the
same structure. In this section, we focus on two constructs: the %include con-
struct, which is the simplest construct of Tom, and the %match construct, which
is one of the most used features of Tom. The syntax of these constructs is pre-
sented in Listing 5. As can be seen, the production rule of PatternAction con-
tains Chunk*, meaning that Tom and host-language constructs can be recursively
nested inside a %match construct.

context-free syntax
IncludeConstruct ::= "%include" "{" Water* "}"

MatchConstruct ::= "%match" ( "(" MatchArguments ")" )? "{" PatternAction* "}"
MatchArguments ::= Type? Term ("," Type? Term)*
PatternAction ::= PatternList "->" "{" Chunk* "}"
Term ::= Variable | VariableStar | Identifier "(" ( Term ("," Term)* )? ")"

lexical syntax
Identifier ::= [a-zA-Z_]+[a-zA-Z0-9\-_]*
Variable ::= Identifier
VariableStar ::= Identifier [*]
Type ::= Identifier

Listing 5. The %include and %match constructs
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Listing 6 introduces the backquote term. As can be seen, a new water type,
BackQuoteWater, is introduced in the backquote term definition. The differ-
ence between BackQuoteWater and Water is that the former does not contain
parentheses, dot, or commas, while the latter does. These characters should be
captured as part of a backquote term’s structure and not as water. Examples
of backquote terms are ‘x, ‘x*, ‘f(1 + x), ‘f(1 + h(t), x), and ‘(f(x)%b).
The idea behind backquote terms is to combine classical algebraic notations of
term rewriting with host language code such as "1 +" or "%b". Note that x and
f(x) inside a backquote term can be interpreted as Tom terms or Java variables
and method calls. Based on the defined grammar in Listing 6 and the disam-
biguation rules in Section 4.3, x and f(x) are recognized as Tom terms. In the
compilation phase, if these terms were not valid Tom terms, they will be printed
to the output as they are, thus producing Java variables and method calls.

context-free syntax
BackQuoteTerm ::= "‘" CompositeTerm | "‘" "(" CompositeTerm+ ")"
CompositeTerm ::= VariableStar | Variable

| Identifier "(" (CompositeTerm+ ("," CompositeTerm+)*)? ")"
| BackQuoteWater

BackQuoteWater ::= Identifier | Integer | String | Character | BackQuoteSpecialChar

lexical syntax
BackQuoteSpecialChar ::= [; : + \- = & < > * ! % : ? | & @ \[ \] \^ # $ { }]

Listing 6. The backquote term

4 Disambiguation

In this section we propose a pattern matching technique to resolve the ambi-
guities present in island grammars. The pattern matching is performed after
parsing, when an SPPF is fully built. As discussed in Section 2.2, an SPPF pro-
vides efficient means for representing ambiguities by sharing common subtrees.
An ambiguity node in an SPPF is a symbol or an intermediate node having
more than one packed node as children. For example, consider the grammar of
arithmetic expressions in Listing 7. For this grammar, the input string "1+2+3"

is ambiguous. Its corresponding SPPF is presented in Fig. 2, which contains an
ambiguity occurring under the root symbol node.

context-free syntax
E ::= E "+" E | Digit
lexical syntax
Digit ::= [1-9]+

Listing 7. A simple grammar for arithmetic expressions

For SPPF visualisation, packed nodes are represented by small circles, interme-
diate nodes by rectangles, and symbol nodes by rounded rectangles in which the
name of the symbol node is written. If a symbol node represents a terminal, the
matched lexeme is also shown next to the terminal name, e.g., Digit: 1. Key-
words, such as "+", are represented by themselves without the quotation marks.
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Fig. 3. The reduced SPPF

Furthermore, for a more compact visualisation, nodes related to the recognition
of layout, whitespace and comments, are excluded from the figures in this sec-
tion. In our GLL implementation, layout is recognised after each terminal and
before the start symbol of a grammar. Layout is captured through the nonter-
minal Layout, which is defined as Layout ::= LayoutDef*, where LayoutDef

is a lexical definition, e.g., whitespace.
While an SPPF is built, intermediate nodes are added for binarisation, which

is essential for controlling the complexity of the GLL parsing algorithm. Fur-
thermore, the version of the GLL algorithm we are using creates packed nodes
even when there are no ambiguities. These additional nodes lead to a derivation
structure which does not directly correspond to the grammar from which the
SPPF has been created.

After the successful construction of an SPPF, one can traverse the SPPF and
remove all packed nodes which are not part of an ambiguity, i.e., the packed
nodes which are the only child. The intermediate nodes which only have one
child, the ones which do not present an ambiguity, can also be removed. When a
node is removed, its children are attached to the parent of the node. Care should
be taken that the order of children in the parent remains intact. By removing
unnecessary packed and intermediate nodes, the SPPF presented in Fig. 2 can
be reduced to the SPPF in Fig. 3.
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To resolve ambiguities in an SPPF,we traverse a reduced SPPF to find the deep-
est ambiguity node. Then, the children of this node are checked against a set of
disambiguation rules. A disambiguation rule is a rewrite rule that can either (i) re-
move a packed nodematching an “illegal” pattern, or (ii) prefer a packed node over
another one. These rules are called remove and prefer rules, respectively. In prefer
rules, none of the patterns is illegal, but if both patterns appear under an ambiguity
node, one of them should be preferred. A disambiguation rule may apply to more
than one packed node under an ambiguity node or may not apply at all.

After applying the set of disambiguation rules on an ambiguity node, if only
one packed node remains, the disambiguation is successful. Then, the remaining
packed node is replaced by its children. To completely disambiguate an SPPF,
disambiguation is performed bottom up. This is because, in many cases, resolving
ambiguities in higher level ambiguity nodes in an SPPF depends on first resolving
the ambiguities in deeper levels, as subtrees of an ambiguity node in a higher level
may be ambiguous themselves. By performing the disambiguation bottom up, it
is ensured that the subtrees of an ambiguity node are not ambiguous, thus they
can uniquely be specified by tree patterns. If the entire disambiguation procedure
is successful, an SPPF is transformed into a parse tree only containing symbol
nodes. The syntax of disambiguation rules is as follows:

– A remove rule is written as remove P, where P is a pattern matching a packed
node under an ambiguity node.

– A prefer rule is written as prefer Pi Pj, where Pi and Pj are patterns match-
ing sibling packed nodes under an ambiguity node, in which Pi should be pre-
ferred to Pj. Note that in this notation the list of packed nodes is considered
modulo associativity-commutativity (AC), i.e., as a multiset data-structure,
and thus the order in which packed nodes appear does not matter.

– A packed node is written as (s1 s2 ... sn), where each si is a pattern de-
scribing a symbol node.

– A symbol node whose children are not important for us is represented by its
label, e.g., E. If a symbol node represents a keyword, it should be surrounded
by double-quotes, e.g., "+".

– A symbol node in the general form is written as l(s1 s2 ... sn), where l is
the label of the symbol node, and each si is a pattern describing the sym-
bol node’s ith child which is a symbol node. In patterns describing symbol
nodes, no packed node can appear. This is because in the bottom up disam-
biguation we always examine the deepest ambiguity node whose subtrees are
not ambiguous and, therefore, do not contain packed nodes. Note that ad-
ditional packed and intermediate nodes which are not part of an ambiguity
are already removed before applying patterns.

– " " and " *" match any symbol node and zero or more occurrences of any
symbol node, respectively.

It should be mentioned that the user does not need to explicitly specify layout
when writing patterns using this syntax. Layout is automatically captured after
each terminal symbol, when patterns are translated to Tom rewrite rules, see
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Section 4.4. The ambiguity shown in Fig. 3 can be resolved by selecting the left-
associative derivation, i.e., (1+2)+3, rather than the other derivation, 1+(2+3).
For this purpose, we define the right-associative derivation as illegal and re-
move it using the following rule: remove (E "+" E(E "+" E)). As can be seen,
the disambiguation rule closely follows the grammar rules in Listing 7 and the
resulting SPPF in Fig. 3.

4.1 The Island-Water Ambiguity

Tom islands, with the exception of the backquote term, do not have unique
opening and closing tags. We define a token as unique if it only appears in either
the host or the embedded language. The lack of unique opening and closing
tags may mislead the parser into recognising a Tom construct as a collection of
successive water tokens. This leads to an ambiguity which we call the island-
water ambiguity.

Consider the starting rules of Tom’s island grammar in Listing 2. When a
GLL parser is about to select the alternates of Chunk, if the current input index
points to a percentage sign followed by a Tom construct name, such as include
or match, both alternates of Chunk are selected. Processing both alternates may
lead to an island-water ambiguity. The SPPF corresponding to parsing the input
"%include {file}" is illustrated in Fig. 4.

Program

Chunk_*

Chunk Chunk Chunk Chunk

Chunk

Chunk

Island

TomConstruct

IncludeConstruct

%include { Water }

Identifier: file

Water Water Water Water

SpecialChar: % Identifier: include SpecialChar: { SpecialChar: }

Fig. 4. The Island-Water ambiguity in an %include construct

The island-water ambiguity can be resolved by preferring an island to a sequence
of water tokens. This can be achieved by the following disambiguation rule:

prefer (Chunk(Island)) (Chunk(Water) *)
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As for this example, if the ambiguity contains more than one water token, the
ambiguity occurs under a node labelled Chunk *, which is in fact a node resulting
from the EBNF to BNF conversion, see Section 2.3. The conversion, however,
does not affect the writing of patterns, as patterns describe tree structures under
packed nodes and not their parent, the ambiguity node.

4.2 The Island-Island Ambiguity

Detecting the end of a Tom construct is significantly more difficult than its
beginning. Tom constructs end with a closing brace, which is also the end-of-
block indicator in the supported host languages of Tom. Detecting the end of
a Tom construct may lead to what we call the island-island ambiguity, which
happens between islands with different lengths. In this kind of ambiguity, some
closing braces have been wrongly interpreted as water.

1 %match(s) {
2 x -> {
3 { System.out.println(‘x); }
4 }
5 }

Listing 8. A %match construct containing an Island-Island ambiguity

An example of a Tom program containing an island-island ambiguity is given
in Listing 8. Parsing this example produces two different match constructs, and
hence an ambiguity. A match construct needs at least two opening and closing
braces to be successfully recognised, and the rest of the tokens, including any
other closing braces, may be treated as water. For this example, every closing
brace, after the second closing brace on line 4, may be interpreted as the closing
brace of the match construct.

Resolving the island-island ambiguity is difficult, mainly because it depends
on the semantics of the embedded and host languages. We disambiguate this
case by choosing the match construct which has well-balanced braces in its inner
water fragments. There are two ways to check the well-balancedness of braces.
First, we can use a manual traversal function which counts the opening and
closing braces inside water fragments of a Tom construct. This check is, however,
expensive for large islands. Second, we can prevent islands with unbalanced
braces to be created in the first place by modifying the lexical definition of
SpecialChar in Listing 3. We remove braces from the lexical definition and add
"{" Chunk* "}" as a new alternate to Water. With this modification, opening
and closing braces can only be recognised as part of a match construct or pairs
of braces surrounding water tokens. We chose the second option for resolving
the island-island ambiguities occurring in Tom’s island grammar.

4.3 The Backquote Term Ambiguities

Identifying the beginning of a backquote term is straightforward because the
backquote character does not exist in Tom’s supported host languages. There-
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fore, no ambiguity occurs at the beginning of a backquote term. However, a
number of ambiguities may occur while detecting the end of a backquote term.
The simplest example of an ambiguous backquote term is ‘x, in which x can ei-
ther be recognised as BackQuoteWater or Variable. This ambiguity is depicted
in Fig. 5. For disambiguation, we prefer a Variable over BackQuoteWater by
the following disambiguation rule:

prefer (Variable) (BackQuoteWater)

Program

Chunk

Island

BackQuoteTerm

` CompositeTerm

BackQuoteWater Variable: x

Identifier: x

Fig. 5. BackQuoteWater/Variable

Program

Chunk_*

Chunk Chunk Chunk

Island

BackQuoteTerm

` CompositeTerm

VariableStar: x*

Island Water

BackQuoteTerm

CompositeTerm

BackQuoteWater Variable: x

Identifier: x

SpecialChar: *

Fig. 6. Variable/VariableStar

Another example of ambiguity in the backquote term can be observed in ‘x*,
which can be recognised as a backquote term containing VariableStar, denoting
a list of terms, or a backquote term containing the variable x after which a water
token (the asterisk character) follows. The disambiguation in this case depends
on the typing information of the host language. For example, ‘x* y, considering
Java as the host language, should be recognised as ‘x multiplied by y, and not
‘x* followed by y, provided that y is an integer. We do not, however, deal with
the typing complexities and currently follow a simple rule: if an asterisk character
directly follows a variable, the recognition of VariableStar should be preferred.
The SPPF corresponding to the parsing of ‘x* is shown in Fig. 6.

In the SPPF in Fig. 6 two ambiguities are present: one between the recogni-
tion of x as BackQuoteWater or Variable, which is already discussed. The new
ambiguity, caused by the presence of the asterisk character is under Chunk *,
can be resolved by the following rule:
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prefer (Chunk(Island(BackQuoteTerm)))

(Chunk(Island(BackQuoteTerm)) Chunk(Water))

An ambiguity similar to the one present in ‘x* occurs in backquote terms ending
in parentheses, see Listing 6. For example, in ‘x(), parentheses can be recognised
as water and not as part of the backquote term. We use a disambiguation rule
in which a backquote term containing the parentheses as part of the backquote
term should be preferred to the one in which parentheses are recognised as water.

4.4 Implementation

So far, we described our disambiguation mechanism without exploring the im-
plementation details. To implement disambiguation rules, we use the pattern
matching and rewriting facilities of Tom. Listing 9 defines an algebraic data
type for an SPPF using a %gom construct. The algebraic type defines a sort
SPPFNode with three constructors, corresponding to three node types present
in an SPPF, and the sort NodeList defining a list of nodes. The SymbolNode

constructor creates a symbol node with its label and its list of the children. The
PackeNode and IntermediateNode constructors create a packed or intermediate
node by their list of children. Finally, concNode is the constructor for creating
a list of SPPNode terms using the * operator.

%gom {
SPPFNode = SymbolNode(label:String, children:NodeList)

| PackedNode(children:NodeList)
| IntermediateNode(children:NodeList)

NodeList = concNode(SPPFNode*)
}

Listing 9. The algebraic type definition for an SPPF

In addition to the algebraic signature in Listing 9, we use a Tom mapping which
connects the Java implementation of an SPPF, used by the parser, to the alge-
braic view. For example, using the mapping, an instance of the SymbolNode class,
from the Java implementation, is viewed as a SymbolNode algebraic constructor.
The subterms of this constructor, which are of sort String and NodeList, are
then automatically retrieved by the mapping. More importantly, through this
algebraic view, the Java implementation can be automatically traversed using
Tom strategies, without the need to provide hand-written visitors. All this ef-
ficient and statically-typed machinery is generated and optimised by the Tom
compiler.

SymbolNode("E", concNode(z1*,
PackedNode(concNode(

SymbolNode("E",_)
SymbolNode("+",_),_,
SymbolNode("E", concNode(SymbolNode("E",_), SymbolNode("+",_), _, SymbolNode("E",_)))

)),z2*)) -> SymbolNode("E", concNode(z1*, z2*));

Listing 10. A rewrite rule in Tom for disambiguating binary operators



Island Grammar-Based Parsing Using GLL and Tom 239

Listing 10 shows how the rule for removing a right-associative derivation, i.e.,
remove (E "+" E(E "+" E)), for the grammar in Listing 7, is translated to a
Tom rewrite rule. The notation concNode(z1*, PackedNode(...), z2*) de-
notes associative matching with neutral element, meaning that the subterm
PackedNode is searched into the list of packed nodes, and the context, possibly
empty, being captured by variables z1* and z2*. Furthermore, the anonymous
variable " " is automatically added after each terminal to capture layout.

5 Results

Using the island grammar and the disambiguation rules presented in sections 3
and 4, respectively, we were able to parse all the Tom programs from the tom-
examples package. This package, which is shipped with the source distribution
of Tom, contains more than 400 examples (for a total of 70,000 lines of code)
showing how Tom is used in practice. The size of these examples varies from 24
lines of code (679 characters) to 1,103 lines of code (30,453 characters).

Based on our findings, the examples having a size of about 10,000 characters
could be parsed and disambiguated in less than one second, and the disambigua-
tion time of an instance was always lower than its parsing time. Moreover, from
what we observed, the parsing time for Tom examples was linear.

Table 1. Parsing times for the selected Tom examples (in milliseconds)

Example file #Lines #Tokens Parsing time Disambiguation time Total time

Peano.t 84 340 362 64 426
Compiler.t 169 1,365 718 304 1,022
Analysis.t 253 1,519 667 358 1,025
Langton.t 490 3,430 1,169 524 1,693
TypeInference.t 909 6,503 1,632 850 2,482
BigExample.t 1,378 11,682 2,917 739 3,656

In order to evaluate the efficiency of our approach, we selected five representative
examples, see Table 1. Peano is a simple example manipulating Peano integers.
Compiler is a compiler for a Lazy-ML implementation. Analysis is a bytecode
static analyser based on CTL formulae. Langton is a cellular automata simula-
tor, which contains many algebraic patterns. TypeInference is a type-inference
algorithm for patterns, in presence of sub-typing. This example contains many
nested %match constructs. We also considered an artificial example, BigExample,
that could be made as big as needed, by concatenating pieces of code.

We compared our implementation with the current implementation of the
Tom parser, which also uses an island-grammar approach, implemented using
the ANTLR parser generator. Currently, the ANTLR 3-based implementation is
approximatively twice as fast on a few examples than the GLL implementation.
However, our GLL implementation is not yet thoroughly optimised. In particular,
the scanner can be made more efficient. Therefore, we expect to obtain better
results in the future.
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6 Related Work

The name “island grammar” was coined in [13] and later elaborated on in [3].
Moonen showed in [3] how to utilise island grammars, written in SDF, to generate
robust parsers for reverse engineering purposes. Robust parsers should not fail
when parsing incomplete code, syntax errors, or embedded languages. However,
the focus of [3] is more on reverse engineering and information extraction from
source code rather than parsing embedded languages.

There has been considerable effort on embedding domain-specific languages in
general-purpose programming languages. For example, Bravenboer and Visser
[14] presented MetaBorg, a method for providing concrete syntax for object-
oriented libraries, such as Swing and XML, in Java. The authors demonstrated
how to express the concrete syntax of language compositions in SDF [12], and
transform the parsed embedded constructs to Java by applying rewrite rules
using Stratego4. In MetaBorg the full grammar of Java is parsed, while we use an
island-grammar based approach. Furthermore, MetaBorg uses distinct opening
and closing tags for transition between the host and embedded languages which
prevents many ambiguities to happen in the first place.

The ASF+SDF Meta-Environment5 has been used in a number of cases
for developing island grammars. SDF, the underlying syntax formalism of the
ASF+SDF Meta-Enviornment, provides the prefer and avoid mechanisms to
mark nodes in the parse forest which should be kept or removed [15]. These
mechanisms, however, do not work in all cases and may produce unpredictable
results. For example, [16,17] show examples of island grammars which cannot
be disambiguated using SDF. The problem with prefer and avoid mechanisms is
that the decision for selecting the desired parse tree under an ambiguity node
is made by only considering the highest level production rule, which are marked
with prefer or avoid. In many cases, disambiguation cannot be done by merely
checking the highest level rule, and there is a need to explore the subtrees in
more detail. Our disambiguation syntax allows the user to express the trees
under ambiguity nodes using patterns in as much detail as needed.

The use of term rewriting and tree matching for resolving ambiguities is not
new. For example, in [18], the authors demonstrated how to use rewrite rules
written in ASF+SDF to resolve semantic ambiguities present in programming
languages such as Cobol and C. Our approach in defining disambiguation rules
is very similar to the one presented in [18]. However, our focus is on resolving
context-free ambiguities in island grammars, rather than semantic ambiguities.
In addition, we provide a simple pattern matching notation, whereas in [18] the
disambiguation rules are expressed using a complete term rewriting language.

An example of using island grammars in parsing embedded languages which
does not use a generalised parsing technique is presented by Synytskyy et al.
in [19]. The authors presented an approach for robust multilingual parsing using
island grammars. They demonstrated how to parse Microsoft’s Active Server

4 http://strategoxt.org/
5 http://www.meta-environment.org/Meta-Environment/ASF+SDF

http://strategoxt.org/
http://www.meta-environment.org/Meta- Environment/ASF+SDF
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Pages (ASP) documents, a mix of HTML, Javascript, and VBScript, using island
grammars. For parsing, they used TXL6, which is a hybrid of functional and
rule-based programming styles. TXL uses top-down backtracking to recognise
the input. Due to too much backtracking, for some grammars, the parsing might
be very slow or impractical [20]. Moreover, a grammar expressed in TXL is
disambiguated by ordering the alternates. In contrast to this work, we used a
generalised parser which has the worst case complexity of O(n3). Moreover, our
disambiguation mechanism covers a wider range of ambiguities than alternate
ordering.

Another related work which does not use a generalised parsing technique
is presented by Schwerdfeger and Van Wyk in [21]. The authors described a
mechanism for verifying the composability of deterministic grammars. In their
approach, grammar extensions are checked for composability, and if all exten-
sions pass the check, an LR parser and a context-aware scanner is generated
for the composition. The context-aware scanner is used to detect the overlaps
between tokens. The presented approach in [21] parses the full grammar of the
host language instead of an island grammar. Furthermore, as mentioned by the
authors, not all extensions pass the composiblitiy check. Our approach is more
generic compared to [21] since by using GLL no restriction exists on composing
grammars. More importantly, as explained in Section 2.3, a GLL parser with
a separate lexer only consumes token types which are relevant at the parsing
position, thus effectively providing context-sensitive lexing, without the need
to modify the parser or change the parsing algorithm. Finally, using GLL and
our disambiguation mechanism, we are able to deal with complex, ambiguous
grammars.

For island grammar-based parsing, it is essential to deal with tokens which
overlap or have different types. Aycock and Nigel Horspool in [22] proposed the
Schrödinger’s token method, in which the lexer reports the type of a token with
multiple interpretations as the Schrödinger type, which is in fact a meta type
representing all the actual types. When the parser receives a Schrödinger’s token,
for each of its actual types, parsing will be continued in parallel. The authors
then demonstrated how to modify a GLR parser to support the Schrödinger’s
token.

An alternative to Schrödinger’s token is to use scannerless parsing [6]. In scan-
nerless parsing there is no explicit lexer present, so the parser directly works on
the character level. This has the advantage of giving the parser the opportunity
to decide on the type of a token based on the context in which the token’s char-
acters appear. Scannerless parsing has mainly two disadvantages. First, because
every character in the language is a token, the size of the parse forest is larger
than parsing with a scanner. Second, ambiguities happening at the character
level, e.g., the longest match for keywords, should be explicitly resolved in the
parse forest. A GLL parser with a separate scanner provides the same power as
a scannerless parser, without having to deal with character level ambiguities, as
they are already resolved by the longest match at the lexical level.

6 http://www.txl.ca/

http://www.txl.ca/
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7 Conclusions and Future Work

In this paper we have shown how languages based on island grammars can be
parsed using existing technologies such as GLL and Tom. We developed a host-
agnostic island grammar for Tom which only fully parses the Tom constructs and
ignores the host language constructs. The primary challenge of island grammar-
based parsing is the ambiguities resulting from the overlap between host and
embedded language tokens. We analysed different ambiguity classes of Tom’s
island grammar and provided patterns for resolving them.

Our main objective was to avoid modification within the parser in order to pro-
vide a generic solution for parsing embedded languages. We proposed a method
for disambiguating island grammars using pattern matching and rewriting the
parse forest. Our disambiguation mechanism is implemented by the pattern
matching mechanism of Tom. In addition, in one case, the island-island ambigu-
ity, we rewrote the grammar to resolve the ambiguity. Using our approach, one
can express a modular island grammar in EBNF, independent of the complexity
or the number of embedded languages.

We performed a number of experiments to validate our findings. In these ex-
periments, we parsed all the Tom files from the tom-examples package, with
different characteristics such as different sizes and number of islands. Moreover,
we compared our GLL implementation with the current ANTLR implementa-
tion. The GLL implementation has a parsing speed comparable to the current
implementation, but in a few cases the ANTLR implementation is twice as fast.

As future work, there are a number of paths we shall explore. First, we will
investigate how we can improve our GLL implementation as it is not yet thor-
oughly optimised. Second, we shall work on replacing the current ANTLR im-
plementation with the GLL implementation in the Tom compiler. Third, we will
investigate the possibility of pattern matching while parsing to increase the effi-
ciency of the disambiguation process. Finally, we plan to apply our approach to
other language compositions, e.g., Java+XML or Java+SQL, to determine how
generic our method is.
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Abstract. The theory of context-free languages is well-understood and
context-free parsers can be used as off-the-shelf tools in practice. In par-
ticular, to use a context-free parser framework, a user does not need
to understand its internals but can specify a language declaratively as
a grammar. However, many languages in practice are not context-free.
One particularly important class of such languages is layout-sensitive
languages, in which the structure of code depends on indentation and
whitespace. For example, Python, Haskell, F#, and Markdown use in-
dentation instead of curly braces to determine the block structure of code.
Their parsers (and lexers) are not declaratively specified but hand-tuned
to account for layout-sensitivity.

To support declarative specifications of layout-sensitive languages, we
propose a parsing framework in which a user can annotate layout in a
grammar. Annotations take the form of constraints on the relative posi-
tioning of tokens in the parsed subtrees. For example, a user can declare
that a block consists of statements that all start on the same column. We
have integrated layout constraints into SDF and implemented a layout-
sensitive generalized parser as an extension of generalized LR parsing.
We evaluate the correctness and performance of our parser by parsing
33 290 open-source Haskell files. Layout-sensitive generalized parsing is
easy to use, and its performance overhead compared to layout-insensitive
parsing is small enough for practical application.

1 Introduction

Most computer languages prescribe a textual syntax. A parser translates from
such textual representation into a structured one and constitutes the first step
in processing a document. Due to the development of parser frameworks such
as lex/yacc [15], ANTLR [18,17], PEGs [6,7], parsec [13], or SDF [8], parsers
can be considered off-the-shelf tools nowadays: Non-experts can use parsers, be-
cause language specifications are declarative. Although many parser frameworks
support some form of context-sensitive parsing (such as via semantic predicates
in ANTLR [18]), one particularly relevant class of languages is not supported
declaratively by any existing parser framework: layout-sensitive languages.

Layout-sensitive languages were proposed by Landin in 1966 [12]. In layout-
sensitive languages, the translation from a textual representation to a structural
one depends on the code’s layout and its indentation. Most prominently, the off-
side rule prescribes that all non-whitespace tokens of a structure must be further
to the right than the token that starts the structure. In other words, a token

K. Czarnecki and G. Hedin (Eds.): SLE 2012, LNCS 7745, pp. 244–263, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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if x != y:
if x > 0:

y = x
else:

y = -x

(a) Python: Indentation resolves
the dangling else problem.

do input <- readInput
case input of
Just txt -> do putStrLn ”thank you”

sendToServer txt
return True

Nothing -> fail ”no input”

(b) Haskell: Nested block structure.

Fig. 1. Layout-sensitive languages use indentation instead of curly braces

is offside if it occurs further to the left than the starting token of a structure;
an offside token must denote the start of the next structure. In languages that
employ the offside rule, the block structure of code is determined by indentation
and layout alone, whose use is considered good style anyway.

The offside rule has been applied in a number of computer languages includ-
ing Python, Haskell, F#, and Markdown. The Wikipedia page for the off-side
rule1 lists 20 different languages that apply the offside rule. For illustration,
Figure 1 shows a Python and a Haskell program that use layout to declare the
code’s block structure. The layout of the Python program specifies that the else
branch belongs to the outer if statement. Similarly, the layout of the Haskell pro-
gram specifies to which do-block each statement belongs. Unfortunately, current
declarative parser frameworks do not support layout-sensitive languages such as
Python or Haskell, which means that often the manually crafted parsers in com-
pilers are the only working parsers. This makes it unnecessarily hard to extend
these languages with new syntax or to create tools for them, such as refactoring
engines or IDEs.

Our core idea is to declare layout as constraints on the shape and relative
positioning of syntax trees. These layout constraints occur as annotations of pro-
ductions in the grammar and restrict the applicability of annotated productions
to text with valid layout. For example, for conditional expressions in Python,
we annotate (among other things) that the if keyword must start on the same
column as the else keyword and that all statements of a then or else branch must
be further indented than the if keyword. These latter requirements are context-
sensitive, because statements are rejected based on their appearance within a
conditional statement. Thus, layout constraints cannot be fully enforced during
the execution of a context-free parser.

We developed an extension of SDF [8] that supports layout constraints. The
standard parsing algorithm for SDF is scannerless generalized LR parsing [21].
In a generalized parsing algorithm, all possible parse trees for an input string
are processed in parallel. One approach to supporting layout would be to parse
the input irrespective of layout in a first step (generating every possible parse
tree), and then in a second step discard all syntax trees that violate layout

1 http://en.wikipedia.org/w/index.php?title=Off-side_rule&oldid=517733101

http://en.wikipedia.org/w/index.php?title=Off-side_rule&oldid=517733101
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constraints. However, we found that this approach is not efficient enough for
practical applications: For many programs, the parser fails to terminate within
30 seconds. To improve performance, we identified a subset of layout constraints
that in fact does not rely on context-sensitive information and therefore can be
enforced at parse time. We found that enforcing these constraints at parse time
and the remaining constraints at disambiguation time is sufficiently efficient.

To validate the correctness and to evaluate the performance of our layout-
sensitive parser, we have build layout-sensitive SDF grammars for Python and
Haskell. In particular, we applied our Haskell parser to all 33 290 Haskell files
in the open-source repository Hackage. We compare the result of applying our
parser to applying a traditional generalized parser to the same Haskell files
where block structure has been made explicit through curly braces. Our study
empirically validates the correctness of our parser and shows that our layout-
sensitive parser can compete with parsers that requires explicit block structure.

We make the following contributions:

– We identify common idioms in existing layout-sensitive languages. Based on
these idioms, we design a constraint language for specifying layout-sensitive
languages declaratively.

– We identify context-free layout constraints that can be enforced at parse
time to avoid excessive ambiguities.

– We implement a parser for layout-sensitive languages based on an existing
scannerless generalized LR parser implementation in Java.

– Weextendedexisting layout-insensitiveSDFgrammars forPythonandHaskell
with layout constraints.

– We evaluate the correctness and performance of our parser by parsing 33 290
open-source Haskell files and comparing the results against parse trees pro-
duced for Haskell files with explicit block structure. Our evaluation suggests
that our parser is correct and fast enough for practical application.

Our parser, grammars, and raw evaluation data are open-source and available
online at http://github.com/seba--/layout-parsing. While our parser im-
plementation is based on a scannerless parser, the ideas presented in this paper
are applicable to parsers with separate lexers as well.

2 Layout in the Wild

Many syntactic constructs in the programming language Haskell use layout to
encode program structure. For example, the do-Block in the simple Haskell pro-
gram in Figure 2(a) contains three statements which are horizontally aligned at
the same column in the source code. We visualize the alignment by enclosing
the tokens that belong to a statement in a box. More generally, a box encloses
code corresponding to a subtree of the parse tree. The exact meaning of these
boxes will become clear in the next section, where they form the basis of our
constraint language.

A Haskell parser needs to check the alignment of statements to produce cor-
rect parse trees. For example, Figure 2(b) displays an incorrect parse tree that

http://github.com/seba--/layout-parsing
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main = do print 16

print (11 + 12)

print 42

(a) Three statements with
correct vertical alignment.

main = do print 16

print (11 + 12)

print 42

(b) Wrong parse: State-
ments have to begin in
the same column, hence
print 42 cannot be a state-
ment.

main = do print 16

print (11 + 12)

print 42

(c) Correct parse: Only
two statements, where the
second print is applied to
three arguments.

Fig. 2. Simple Haskell programs

wrongly identifies print 42 as a separate statement, even though it is further in-
dented than the other statements. Figure 2(c) visualizes the correct parse tree
for this example: A do-Block with two statements. The second statement spans
two lines and is parsed as an application of the function print to three arguments.
In order to recognize program structure correctly, a parser for a layout-sensitive
language like Haskell needs to distinguish programs as in Figure 2(a) from pro-
grams as in Figure 2(c).

It is not possible to encode this difference in a context-free grammar, be-
cause that would require counting the number of whitespace characters in ad-
dition to keeping track of nesting. Instead, many parsers for layout-sensitive
languages contain a handwritten component that keeps track of layout and in-
forms a standard parser for context-free languages about relevant aspects of
layout, for instance, by inserting special tokens into the token stream. For exam-
ple, the Python language specification2 describes an algorithm that preprocesses
the token stream to delete some newline tokens and insert indent and dedent
tokens when the indentation level changes. Python’s context-free grammar as-
sumes that this preprocessing step has already been performed, and uses the
additional tokens to recognize layout-sensitive program structure.

This approach has the advantage that a standard parser for context-free lan-
guages can be used to parse the preprocessed token stream, but it has the dis-
advantage that the overall syntax of the programming language is not defined in
a declarative, human-readable way. Instead, the syntax is only defined in terms
of a somewhat obscure algorithm that explicitly manipulates token streams.
This is in contrast to the success story of declarative grammar and parsing
technology [11].

Furthermore, a simple algorithm for layout-handling that informs a standard
parser for context-free languages is not even enough to parse Haskell. The Haskell
language specification describes that a statement ends earlier than visible from
the layout if this is the only way to continue parsing [14]. For example, the Haskell
program in Figure 3(a) is valid: The statement print (11 + 12) only includes one
closing parenthesis, because the second closing parenthesis cannot be consumed
inside the statement. An algorithm for layout handling could not decide where

2 http://docs.python.org/py3k/reference/

http://docs.python.org/py3k/reference/
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catch ( do print 16

print(11 +

12) )

(\e -> do putStr "error: "

print e )

(a) Exception handler.

catch ( do print 16

print (11 +

12) ) (\e -> do
putStr "error: "

print e )

(b) Means the same as (a).

Fig. 3. Both variants of this more complicated Haskell program have valid layout

to end the statement by counting whitespace characters only. Instead, additional
information from the context-free parser is needed to decide that the statement
needs to end because the next token cannot be consumed. As a second and
more extreme example, consider the program in Figure 3(b) that has the same
parse tree as the program in Figure 3(a). In particular, the statements belong to
different do-blocks even though they line up horizontally. These two programs
can only be parsed correctly by close cooperation between the context-free part of
the parser and the layout-sensitive part of the parser, which therefore have to be
tightly integrated. This need for tight integration further complicates the picture
with low-level, algorithmic specifications of layout rules prevalent in existing
language specifications and implementations.

In this section, we have focused our investigation of layout-sensitive languages
on Haskell and Python, but we believe our box model is general enough to explain
layout in other languages as well.

3 Declaring Layout with Constraints

Our goal is to provide a high-level, declarative language for specifying and im-
plementing layout-sensitive parsers. In the previous section, we have discussed
layout informally. We have visualized layout by boxes around the tokens that
belong to a subtree in Figures 2 and 3. We propose (i) to express layout rules
formally as constraints on the shape and relative positioning of boxes and (ii) to
annotate productions in a grammar with these constraints. The idea of layout
constraints is that a production is only applicable if the parsed text adheres to
the annotated constraint.

For example, Figure 4 displays an excerpt from our grammar for Haskell that
specifies the layout of Haskell do-blocks with implicit (layout-based) as well
as explicit block structure. This is a standard SDF grammar except that some
productions are annotated with layout constraints. For example, the nonterminal
Impl stands for implicit-layout statements, that is, statements of the form
(but not or ). The layout constraint layout(”1.first.col < 1.left.col”) formally
expresses the required shape for subtree number 1.
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context-free syntax
Stm -> Impl {layout("1.first.col < 1.left.col")}
Impl -> Impls
Impl Impls -> Impls {cons("StmSeq"), layout("1.first.col == 2.first.col")}
Stm -> Expls
Stm ";" Expls -> Expls {cons("StmSeq")}
Impls -> Stms {cons("Stms")}
"{" Expls "}" -> Stms {cons("Stms"), ignore-layout}
"do" Stms -> Exp {cons("Do"), longest-match}

Fig. 4. Excerpt of our layout-sensitive Haskell grammar. Statements with implicit lay-
out (Impl) have to follow the offside rule. Multiple statements have to align horizontally.
Statements with explicit layout (Expl) are not layout-sensitive.

tree ::= number
tok ::= tree.first | tree.left | tree.right | tree.last
ne ::= tok.line | tok.col | ne +ne | ne -ne
be ::= ne ==ne | ne <ne | ne >ne | be && be | be || be | !be
c ::= layout(be) | ignore-layout

Fig. 5. Syntax of layout constraints c that can annotate SDF productions

We provide the full grammar of layout constraints in Figure 5. Layout con-
straints can refer to direct subtrees (including terminals) of the annotated pro-
duction through numerical indexes.

Each subtree exposes its shape via the source location of four tokens in
the subtree, which describe the relevant positions in the token stream. Lay-
out constraints use token selectors to access these tokens: first selects the first
non-whitespace token, last selects the last non-whitespace token, left selects the
leftmost non-whitespace token that is not on the same line as the first token,
and right selects the rightmost non-whitespace token that is not on the same line
as the last token. Figure 6(a) shows how the positions of these tokens describe
the shape of a subtree.

It is essential in our design that layout rules can be described in terms of the
locations of these four tokens, because this provides a declarative abstraction
over the exact shape of the source code. As is apparent from their definition,
the token selectors left and right fail if all tokens occur in a single line. Since a
single line of input satisfies any box shape, we do not consider this a constraint
violation.

For each selected token, the position selectors line and col yield the token’s
line and column offset, respectively. Hence the constraint 1.first.col < 1.left.col

specifies that the left border of the shape of subtree 1 must look like . In other
words, the constraint 1.first.col < 1.left.col corresponds to Landin’s offside rule.
Consider the following example:
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catch ( do print 16

print (11 +

12) )

first

left

right

last
whitespace

(a) The source locations of four tokens
induce (an abstraction of) the shape of
a subtree.

1
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t.
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=
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>
1
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ig
h
t.
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o
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1.first.col
< 1.left.col

1.first.col
== 1.left.col

1.first.col
> 1.left.col

(b) Layout constraints to restrict the
shape of a box.

Fig. 6. Example layout constraints and the corresponding boxes

print (11 + 12)

* 13

Here, the constraint 1.first selects the first token of the function application,
yielding the character p for scannerless parsers, or the token print otherwise. 1.left
selects the left-most token not on the first line, that is, the operator symbol *.
This statement is valid according to the Impl production because the layout
constraint is satisfied: The column in which print appears is to the left of the
column in which * appears. Conversely, the following statement does not adhere
to the shape requirement of Impl because the layout constraint fails:

print (11 + 12)

* 13

Consequently, the Impl production is not applicable to this statement.
The layout constraint 1.first.col < 1.left.col mentions only a single subtree of

the annotated production and therefore restricts the shape of that subtree. Fig-
ure 6(b) shows other examples for layout constraints that restrict the shape of
a subtree. In addition to these shapes, layout constraints can also prescribe the
vertical structure of a subtree. For example, the constraint 1.first.line == 1.last.line

prohibits line breaks within the subtree 1 and 1.first.line + num(2) == 1.last.line re-
quires exactly two line breaks.

If a layout constraint mentions multiple subtrees of the annotated production,
it specifies the relative positioning of these subtrees. For example, the nonter-
minal Impls in Figure 4 stands for a list of statements that can be used with
implicit layout. In such lists, all statements must start on the same column. This
horizontal alignment is specified by the layout constraint 1.first.col == 2.first.col.
This constraint naturally composes with the constraint in the Impl production:
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A successful parse includes applications of both productions and hence checks
both layout constraints.

The anti-constraint ignore-layout can be used to deactivate layout validation
locally. In some languages such as Haskell and Python, this is necessary to sup-
port explicit-layout structures within implicit-layout structures. For example,
the Haskell grammar in Figure 4 declares explicit-layout statement lists. Since
these lists use explicit layout {stmt;...;stmt}, no additional constraints are needed.
Haskell allows code within an explicit-layout list to violate layout constraints im-
posed by surrounding constructs. Correspondingly, we annotate explicit-layout
lists with ignore-layout, which enables us to parse the following valid Haskell
program:

do print (11 + 12)

print 13

do { print 14;
print 15 }

print 16

Our Haskell parser successfully parses this program even though the second
statement seemingly violates the shape requirement on Impl. However, since the
nested explicit statement list uses ignore-layout, we skip all its tokens when apply-
ing the left or right token selector. Therefore, the left selector in the constraint of
Impl fails to find a leftmost token that is not on the first line, and the constraint
succeeds by default.

We deliberately kept the design of our layout-constraint language simple to
avoid distraction. For example, we left out language support for abstracting over
repeating patterns in layout constraints. However, such facilities can easily be
added on top of our core language. Instead, we focus on the integration of layout
constraints into generalized parsing.

4 Layout-Sensitive Parsing with SGLR

We implemented a layout-sensitive parser based on our extension of SDF [8]
with layout constraints. Our parser implementation builds on an existing Java
implementation [10] of scannerless generalized LR (SGLR) parsing [19,21]. A
SGLR parser processes all possible interpretations of the input stream in parallel
and produces multiple potential parse results. Invalid parse results can be filtered
out in an additional disambiguation phase.

We have modified the SGLR parser to take layout constraints into account.3

As a first naive but correct strategy, we defer all validation of layout constraints
until disambiguation time. As an optimization of this strategy, we then identify
layout constraints that can be safely checked at parse time.

3 We can reuse the parse-table generator without modification, because it automat-
ically forwards layout constraints from the grammar to the corresponding reduce-
actions in the parse table.
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4.1 Disambiguation-Time Rejection of Invalid Layout

SDF distinguishes two execution phases: parse time and disambiguation time.
At parse time, the SGLR parser processes the input stream to construct a parse
forest of multiple potential parser results. This parse forest is input to the dis-
ambiguation phase, where additional information (e.g., precedence information)
specified together with the context-free grammar is used to discard as many of
the trees in the parse forest as possible. Ideally, only a single tree remains, which
means that the given SDF grammar is unambiguous for the given input.

While conceptually layout constraints restrict the applicability of annotated
productions, we can still defer the validation of layout constraints to disambigua-
tion time. Accordingly, we first parse the input ignoring layout constraints and
produce all possible trees. However, to enable later checking of token positions,
during parsing we store line and column offsets in the leaves of parse trees.

After parsing, we disambiguate the resulting parse forest by traversing it.
Whenever we encounter the application of a layout-constrained production, we
check that the layout constraint is satisfied. For violated constraints, we reject
the corresponding subtree that used the production. If a layout violation occurs
within an ambiguity node, we select the alternative result (if it is layout-correct).

The approach described so far is a generic technique that can be used to in-
tegrate any context-sensitive validation into context-free parsing. For instance,
Bravenboer et al. [1] integrate type checking into generalized parsing to dis-
ambiguate metaprograms. However, layout-sensitive parsing is particularly hard
because of the large number of ambiguities even in small programs.

For example, in the following Haskell programs, the number of ambiguities
grows exponentially with the number of statements:

foo = do print 1
foo = do print 1

print 2

foo = do print 1
print 2
print 3

For the first program, the context-free parser results in a parse forest with one
ambiguity node that distinguishes whether the number 1 is a separate statement
or an argument to print. The second example already results in a parse forest
with 7 ambiguity nodes; the third example has 31 ambiguity nodes. The number
of ambiguities roughly quadruples with each additional statement.

Despite sharing between ambiguous parse trees, disambiguation-time layout
validation can handle programs of limited size only. For example, consider the
Haskell programthat contains 30 repetitions of the statement print 1 2 3 4 5 6 7 8 9.
After parsing, the number of layout-related ambiguities in this program is so big
that it takes more than 20 seconds to disambiguate it. A more scalable solution
to layout-sensitive parsing is needed.

4.2 Parse-Time Rejection of Invalid Layout

The main scalability problem in layout validation is that ambiguities are not
local. Without explicit block structure, it is not clear how to confine layout-based
ambiguities to a single statement, a single function declaration, or a single class



Layout-Sensitive Generalized Parsing 253

declaration. For example, in the print examples from the previous subsection, a
number on the last line can be argument to the print function on the first line.
Similarly, when using indentation to define the span of if-then-else branches as
in Python, every statement following the if-then-else can be either part the else
branch or not. It would be good to restrict the extent of ambiguities to more
fine-grained regions at parse time to avoid excessive ambiguities.

Internally, SGLR represents intermediate parser results as states in a graph-
structured stack [19]. Each state describes (i) a region in the input stream, (ii)
a nonterminal that can generate this input, and (iii) a list of links to the states
of subtrees. When parsing can continue in different ways from a single state, the
parser splits the state and follows all alternatives. For efficiency, SGLR uses local
ambiguity packing [19] to later join such states if they describe the same region
of the input and the same nonterminal (the links to subtrees may differ). For
instance, in the ambiguous input print (1 + 2 + 3), the arithmetic expression is
described by a single state that corresponds to both (1+2)+3 and 1+(2+3). Thus,
the parser can ignore the local ambiguity while parsing the remainder of the
input.

Due to this sharing, we cannot check context-sensitive constraints at parse
time. Such checks would require us to analyze and possibly resplit parse states
that were joined before: Two parse states that can be treated equally from
a context-free perspective may behave differently with respect to a context-
sensitive property. For example, the context-free parser joins the states of the
following two parse trees representing different Haskell statement lists:

print (11 + 12)

print 42

print (11 + 12)

print 42

The left-hand parse tree represents a statement list with two statements. The
right-hand parse tree represents a statement list with a single statement that
spans two lines. This statement violates the layout constraint from the Haskell
grammar in Figure 4 because it does not adhere to the offside rule (shape ).
Since the context-free parser disregards layout constraints, it produces both
statement lists nonetheless.

The two statement lists describe the same region in the input: They start and
end at the same position, and both parse trees can be generated by the Impls

nonterminal (Figure 4). Therefore, SGLR joins the parse states that correspond
to the shown parse trees. This is a concrete example of two parse trees that differ
due to a context-sensitive property, but are treated identically by SGLR.

Technically, context-sensitive properties require us to analyze and possibly
split parse states that are not root in the graph-structured stack. Such a split
deep in the stack would force us to duplicate all paths from root states to the split
state. This not only entails a serious technical undertaking but likely degrades
the parser’s runtime and memory performance significantly.

To avoid these technical difficulties, we would like to enforce only those layout
constraints at parse time that do not interact with sharing. Such constraints
must satisfy the following invariant: If a constraint rejects a parse tree, it must
also reject all parse trees that the parser might represent through the same



254 S. Erdweg et al.

parse state. For constraints that satisfy this invariant, it cannot happen that
we prematurely reject a parse state that should have been split instead: Each
tree represented by such state would be rejected by the constraint. In particular,
such constraints only use information that is encoded in the parse state itself,
namely the input region and the nonterminal. This information is the same for
all represented trees and we can use it at parse time to reject states without
influencing splitting or joining.

In our constraint language, the input region of a tree is described by the token
selectors first and last. Since the input region is the same for all trees that share
a parse state, constraints that only use the first and last token selectors (but not
left or right) can be enforced at parse time without influencing sharing: If such
a constraint rejects any random tree of a parse state, the constraint also rejects
all other trees because they describe the same input region.

One particularly useful constraint that only requires the token selectors first

and last is 1.first.col == 2.first.col, which denotes that trees 1 and 2 need to be
horizontally aligned. Such constraint is needed for statement lists of Haskell and
Python. Effectively, the constraint reduces the number of potential statements to
those that start on the same column. This confines many ambiguities to a single
statement. For example, the constraint allows us to reject the program shown
in Figure 2(b) at parse time because the statements are not aligned. However,
it does not allow us to reject or distinguish the programs shown in Figure 2(a)
and 2(c); we retain an ambiguity that we resolve at disambiguation time.

Technically, we enforce constraints at parse time when executing reduce ac-
tions. Specifically, in the function DO-REDUCTIONS [21], for each list of subtrees,
we validate that the applied production permits the layout of the subtrees. We
perform the regular reduce action if the production does not specify a layout
constraint, or the constraint is satisfied, or the constraint cannot be checked at
parse time. If a layout constraint is violated, the reduce action is skipped.

The remaining challenge is to validate that we in fact reduce ambiguity to a
level that allows acceptable performance in practice.

5 Evaluation

We evaluate correctness and performance of our layout-sensitive generalized
parsing approach with an implementation of a Haskell parser. Correctness is in-
teresting because we reject potential parser results based on layout constraints;
we expect that layout should not affect correctness. Performance is critical be-
cause our approach relies on storing additional position information and creating
additional ambiguity nodes that are later resolved, which we expect to have a
negative influence on performance. We want to assess whether the performance
penalty of our approach is acceptable for practical use (e.g., in an IDE). Specif-
ically, we evaluate the following research questions:

RQ1: Can a layout-sensitive generalized Haskell parser parse the same files and
produce equivalent parse trees as a layout-insensitive Haskell parser that
requires explicit layout?
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RQ2: What is the performance penalty of the layout-sensitive Haskell parser
compared to a layout-insensitive Haskell parser that requires explicit layout?

5.1 Research Method

In a controlled setting, we quantitatively compare the results and performance
of different Haskell parsers on a large set of representative Haskell files.

Parsers and parse results. We have implemented the layout-sensitive parser as
discussed above by modifying the original SGLR parser written in Java.4 We
have extended an existing SDF grammar for Haskell that required explicit lay-
out5 with layout constraints. We want to compare our parser to a reimplemen-
tation of GHC’s hand-tuned LALR(1) parser that has been developed by others
and is deployed as part of the haskell-src-exts package.6 Here, we refer to it sim-
ply as GHC parser. However, comparing the performance of our layout-sensitive
SGLR parser to the hand-optimized GHC parser would be unfair since com-
pletely different parsing technologies are used. Also comparing the produced
abstract syntax trees of both parsers is not trivial, because differently struc-
tured abstract syntax trees are generated. Therefore, we primarily compare our
layout-sensitive parser to the original SGLR parser that did not support layout.

However, the original SGLR parser is layout-insensitive and therefore not
able to parse Haskell files that use implicit layout (which almost all Haskell files
do). Therefore, we also used the pretty printer of the haskell-src-exts package
to translate Haskell files with arbitrary combinations of explicit and implicit
layout into a representation with only explicit layout. Since the pretty printer
also removes comments, the files may be smaller and hence faster to parse.
Therefore, we use the same pretty printer to create a file that uses only implicit
layout and contains no comments either.

Overall, we have three parsers (GHC, the original SGLR parser, and our
layout-sensitive SGLR parser) which we can use to parse three different files
(original layout, explicit-only layout, implicit-only layout). We are interested in
the parser result and parse time of four combinations:

GHC. Parsing the file with original layout using the GHC parser.
SGLR-Orig. Parsing the file with original layout (possible mixture of explicit

and implicit layout) with our layout-sensitive SGLR parser.
SGLR-Expl. Parsing the file after pretty printing with explicit layout only and

without comments with the original SGLR parser.
SGLR-Impl. Parsing the file after pretty printing with implicit layout only and

without comments with our layout-sensitive SGLR parser.

We illustrate the process, the parsers, and the results in Figure 7. All SGLR-
based parsers use the same Haskell grammar of which the original SGLR parser

4 Actually, we improved the original implementation by eliminating recursion to avoid
stack overflows when parsing files with long comments or long literal strings.

5 http://strategoxt.org/Stratego/HSX
6 http://hackage.haskell.org/package/haskell-src-exts

http://strategoxt.org/Stratego/HSX
http://hackage.haskell.org/package/haskell-src-exts
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Fig. 7. Evaluation setup

ignores the layout constraints. Our Haskell grammar implements the Haskell
2010 language report [14], but additionally supports the following extensions to
increase coverage of supported files: HierarchicalModules, MagicHash, FlexibleIn-
stances, FlexibleContexts, GeneralizedNewtypeDeriving. We configured the GHC
parser accordingly and, in addition, deactivated its precedence resolution of infix
operators, which is a context-sensitive mechanism that can be implemented as
a post-processing step. Running the C preprocessor is necessary in many files
and performed in all cases. Note that SGLR-Orig and SGLR-Impl use the same
parser, but execute it on different files.

Subjects. To evaluate performance and correctness on realistic files, we selected
a large representative collection of Haskell files. We attempt to parse all Haskell
files collected in the open-source Haskell repository Hackage.7 We extracted
the latest version of all 3081 packages that contain Haskell source code on
May 15, 2012. In total, these packages contain 33 290 Haskell files that amount
to 258 megabytes and 5 773 273 lines of code (original layout after running cpp).

Data collection. We perform measurements by repeating the following for each
file in Hackage: We run the C preprocessor and the pretty printer to create
the files with original, explicit-only, and implicit-only layout. We measure the
wall-clock time of executing the GHC parser and the SGLR-based parsers on
the prepared files as illustrated in Figure 7. We stop parsers after a timeout of
30 seconds and interpret longer parsing runs as failure. We parse all files in a
single invocation of the Java virtual machine and invoke the garbage collector
between each parser execution. After starting the virtual machine, we first parse
20 packages (215 files) and discard the results to account for warmup time of
Java’s JIT compiler. A whole run takes about 6 hours. We repeat the entire
process with all measurements three times after system reboots and use the
arithmetic mean of each file and parser over all runs.

We run all performance measurements on the same 3 GHz, dual-core ma-
chine with 4GB memory and Java Hotspot VM version 1.7.0 04. We specified a
maximum heap size of 512MB and a maximum stack size of 16MB.

7 http://hackage.haskell.org

http://hackage.haskell.org
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least one parser.

Fig. 8. Correctness of layout-sensitive parsing

Analysis procedure. We discard all files that cannot be parsed by the GHC
parser configured as described above. On the remaining files, for research ques-
tion RQ1 (correctness), we evaluate that the three abstract syntax trees produced
by SGLR parsers are the same (that is, we perform a form of differential testing).

For research question RQ2 (performance penalty), we determine the relative
slow down between SGLR-Expl and SGLR-Impl. We calculate the relative perfor-
mance penalty between parsers separately for each file that can be parsed by all
three parsers. We report the geometric mean and the distribution of the relative
performance of all these files.

5.2 Results

Correctness. Of all 33 290 files, 9071 files (27 percent) could not be parsed by
the GHC parser (we suspect the high failure rate is due to the small number of
activated language extensions). Of the remaining 24 219 files, 22 812 files (94 per-
cent) files could be parsed correctly with all three SGLR-based parsers (resulting
in the same abstract syntax tree). We show the remaining numbers in the Venn
diagram in Figure 8(a). Some differences are due to timeouts; the diagram in
Figure 8(b) shows those results that do not time out in any parser.

Performance. The median parse times per file of all parsers are given in Fig-
ure 9(b). Note that the results for GHC are not directly comparable, since they
include a process invocation, which corresponds to an almost constant overhead
of 15ms. On average SGLR-Impl is 1.8 times slower than SGLR-Expl. We show
the distribution of performance penalties as box plot in Figure 9(a) (without out-
liers). The difference between SGLR-Orig and SGLR-Impl is negligible; SGLR-Impl
is slightly faster on average because pretty printing removes comments.

In Figure 9(c), we show the parse times for all four parsers (the graph shows
how many percent of all files can be parsed within a given time). We see
that, as to be expected, SGLR-Expl is slower than the hand-optimized GHC, and
SGLR-Impl is slower than SGLR-Expl. The parsers SGLR-Impl and SGLR-Orig

perform similarly and are essentially not distinguishable in this figure.



258 S. Erdweg et al.

0 1 2 3 4

(a) Distribution of rela-
tive performance penalty
(SGLR-Impl/SGLR-Expl).

median time/file

GHC (<)19ms
SGLR-Expl 8ms
SGLR-Orig 18ms
SGLR-Impl 17ms

(b) Median parse times.

0 100 200 300 400 500
0

20
40

60
80

10
0

Time (in ms)

F
ile

s 
pa

rs
ed

 in
 g

iv
en

 ti
m

e 
(in

 p
er

ce
nt

)

GHC
SDF−Expl
SDF−Orig
SDF−Impl

(c) Distribution of parsing times.

Fig. 9. Performance of layout-sensitive parsing

5.3 Interpretation and Discussion

As shown in Figure 8(a), SGLR-Orig and SGLR-Impl do not always produce the
same result as SGLR-Expl. Of these differences, 40 can be ascribed to timeouts,
which occur in SGLR-Expl as well as in SGLR-Orig and SGLR-Impl. The re-
maining differences are shown in Figure 8(b). We investigated these differences
and found that the five files that only SGLR-Expl can parse are due to Haskell
statements that start with a pragma comment, for example:

{-# SCC ”Channel Write” #-} liftIO . atomically $ writeTChan pmc m

Since our SGLR-based parsers ignore such pragma comments, the statement
appears to be indented too far. We did not further investigate due to the low
number of occurrences of this pattern.

For the 274 files that only SGLR-Expl and SGLR-Impl can parse, we took
samples and found that SGLR-Orig failed because of code that uses a GHC
extension called NondecreasingIndentation, which is not part of the Haskell 2010
language report but cannot be deactivated in the GHC parser. The extension
allows programs to violate the offside rule for nested layout blocks:

foo = do
print 16
do
print 17
print 18

pretty-prints to

foo = do
print 16
do
print 17
print 18

None of the SGLR-based parsers can handle such programs. However, the GHC
pretty printer always produces code that complies with the offside rule. Thus,
SGLR-Expl and SGLR-Impl can parse the pretty-printed code, whereas SGLR-Orig
fails on the original code. We consider this a bug of the reimplementation of the
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GHC parser, which does not implement the Haskell 2010 language report even
when configured accordingly.

Finally, GHC accepts 1651 files that none of the SGLR-based parsers accepts.
Since not even the layout-insensitive parser SGLR-Expl accepts these files, we
suspect inaccuracies in the original Haskell grammar independent of layout.

Regarding performance, layout-sensitive parsing with SGLR-Impl entails an
average slow down of 1.8 compared to layout-insensitive parsing with SGLR-Expl.
Given the median parse times per file (Figure 9(b)), this slow down is still in
the realm of a few milliseconds and suggests that layout-sensitive parsing can
be applied in practice. In particular, this slow down seems acceptable given the
benefits of declarative specifications of layout as in our approach, as opposed to
low-level implementation of layout within a lexer or the parser itself. Further-
more, we expect room for improving the performance of our implementation of
layout-sensitive parsing, as we discuss in Section 6.

Overall, regarding correctness (RQ1), we have shown that layout-sensitive
parsing can parse almost all files that the layout-insensitive SGLR-Expl can parse.
In fact, we did not find a single actual difference that would indicate an incorrect
parse. Regarding performance penalty (RQ2), we believe that the given slow
down does not inhibit practical application of our parser.

5.4 Threats to Validity

A key threat to external validity (generalizability of the results) is that we have
analyzed only Haskell files and parse only files from the Hackage repository.
We believe that the layout mechanisms of Haskell are representative for other
languages, but our evaluation cannot generalize beyond Haskell. Furthermore,
files in Hackage have a bias toward open-source libraries. However, we believe
that our sample is large enough and the files in Hackage are diverse enough to
present a general picture.

An important threat to internal validity (factors that allow alternative expla-
nations) is the pretty printing necessary for parser SGLR-Expl. Pretty printing
removes comments but possibly adds whitespace. The pretty-printed files with
explicit layout have a 45 percent larger overall byte size compared to origi-
nal layout, whereas the pretty-printed files with implicit layout have a 15 per-
cent smaller byte size. Unfortunately, we have no direct influence on the pretty
printer. We believe that the influence of pretty printing is largely negligible, be-
cause whitespace and comments should not trigger ambiguities (the similarity
of the performance of SGLR-Orig and SGLR-Impl can be seen as support).

It may be surprising that GHC (and also SGLR-Orig) fail to parse over one
quarter of all files. We have sampled some of these files and found that they
require more language extensions than we currently support. For example, the
GADTs and TypeFamilies extensions seem to be popular, but we did not im-
plement their syntax in our grammar and deactivated them in the GHC parser.
In future work, we would like to support Haskell more completely, which should
increase the number of supported Hackage files.
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Regarding construct validity (suitability of metrics for evaluation goal), we
measured performance using wall-clock time only. For the SGLR-based parsers,
we control JIT compilation with a warmup phase. By running the garbage collec-
tor between parser runs and monitoring the available memory, we ensured that
all parsers have a similar amount of memory available. However, the layout-aware
parser stores additional information and may perform different in scenarios with
less memory available. Furthermore, we can, of course, not entirely eliminate
background noise. Although we have repeated all measurements only three times,
we believe the measurements are sufficiently clear and we have checked that vari-
ations between the three measurements are comparably minor for all parsers (for
over 95 percent of all files, the standard deviation of these measurements was
less than 10 percent of the mean).

6 Discussion and Future Work

We modified an SGLR parser to support validation of layout constraints at parse
time and disambiguation time. Here, we summarize some technical implications,
potential improvements, and limitations of our parser.

Technical implications. Layout-sensitive parsing interacts with traditional dis-
ambiguation methods such as priorities or follow restrictions. For example, con-
sider the following Haskell program, which can be parsed into two layout-correct
parse trees (boxes indicate the toplevel structure of the trees):

do return 5

+ 7

do return 5

+ 7

In both parse trees, the do-block consists of a single statement that adheres to
the offside rule. However, the Haskell language report specifies that the left-hand
parse tree is correct: For do-blocks the longest match needs to be selected.

SDF provides a longest-match disambiguation filter for lexical syntax, called
follow restrictions [20]. A typical use of follow restrictions is to ensure that
identifiers are not followed by any letters, which should be part of the identifier
instead. Since, in fact, both of the above parse trees correspond to some valid
Haskell program (dependent on layout), not even context-free follow restrictions
enable us to disambiguate correctly because they ignore layout. Similarly, a
priority filter would reject the same parse tree irrespective of layout.

For this reason, we added a disambiguation filter to SDF called longest-match.
We use it to declare that, in case of ambiguity, a production should extend as far
to the right as possible. We annotated the production for do-blocks in Figure 4
accordingly. Since our parser stores position information in parse trees anyway,
the implementation of the longest-match filtering is simple: For ambiguous appli-
cations of a longest-match production we compare the position of the last tokens
and choose the tree that extends further.

More generally, it should be noted that due to position information in parse
trees, our parser supports less sharing than traditional GLR parsers do. Our
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parser can only share parse trees that describe the same region in the input
stream. We have not yet investigated the implications on memory consumption,
but our empirical study indicates that the performance penalty is acceptable.

Performance improvements. In our implementation of layout-sensitive general-
ized parsing, we mostly focused on correctness and only addressed performance
in so far as it influences the feasibility of our approach. Therefore, in our cur-
rent implementation, we suspect two significant performance improvements are
still possible. First, we interpret layout constraints by recursive-descent with
dynamic type checking. We have profiled the performance of our parser and
found that about 25 percent of parse time and disambiguation time are spent
on interpreting layout constraints. We expect that a significant improvement is
possible by compiling layout constraints when loading the parse table. Second,
our current implementation validates all layout constraints at disambiguation
time. However, we validate many constraints at parse time already (as described
in Section 4.2). We suspect that avoiding the repeated evaluation of those con-
straints represents another significant performance improvement.

Limitations. In general, context-sensitive properties can be validated after pars-
ing at disambiguation time without restriction. However, the expressivity of our
constraint language is limited in multiple ways. First, layout constraints in our
language are compositional, that is, a constraint can only refer to the direct sub-
trees of a production. It might be useful to extend our constraint language with
pattern-matching facilities as known, for example, from XPath. However, it is
not obvious how such pattern matching influences the performance of parsing
and disambiguation; we leave this question open. A second limitation is that we
focus on one-dimensional layout-sensitive languages only. However, a few layout-
sensitive languages employ a two-dimensional syntax, for example, for type rules
as in Epigram [16]. We would like to investigate whether our approach to layout-
sensitivity generalizes to two-dimensional parsers.

7 Related Work

We have significantly extended SDF’s frontend [8] and its SGLR backend [19,21]
to support layout-sensitive languages declaratively.We are not aware of any other
parser framework that provides a declarative mechanism for layout-sensitive
languages. Instead, existing implementations of parsers for layout-sensitive lan-
guages are handwritten and require separate layout-sensitive lexing.

For example, the standard Python lexer and parser are handwritten C pro-
grams.8 While parsing, the lexer checks for changes of the indentation level in
the input, and marks them with special indent and dedent tokens. The parser
then consumes these tokens to process layout-sensitive program structures. This
implementation is non-declarative.

8 http://svn.python.org/projects/python/trunk/Modules/parsermodule.c

http://svn.python.org/projects/python/trunk/Modules/parsermodule.c
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As another example, the GHC Haskell compiler employs a layout-sensitive
lexer that uses the Lexer generator Alex9 in combination with manual Haskell
code. The generated layout-sensitive lexer manages a stack of layout contexts
that stores the beginning of each layout block. When the parser queries the lexer
for layout-relevant tokens (such as curly braces), the lexer adapts the layout
context accordingly. These interactions between parser and lexer are non-trivial
and require virtual tokens for implicit layout. Since the layout rules of Haskell
are hard-coded into the lexer, it is also not easy to adapt the parser and lexer
for other languages. The same holds for the Utrecht Haskell Compiler [2].

Data-dependent grammars [9] support the declaration of constraints to re-
strict the applicability of a production. However, constraints in data-dependent
grammars must be context-insensitive [9, Lemma 4], and therefore cannot be
used to describe languages with context-sensitive layout such as Haskell.

8 Conclusion

We have presented a parser framework that allows the declaration of layout
constraints within a context-free grammar. Our generalized parser enforces con-
straints at parse time when possible but fully validates parse trees at disam-
biguation time. We have empirically shown that our parser is correct and the
performance penalty is acceptable compared to layout-insensitive generalized
parsing. We believe that this work will enable language implementors to specify
the grammar of their layout-sensitive languages in a high-level, declarative way.

Our original motivation for this work was to develop a syntactically extensible
variant of Haskell in the style of SugarJ [4], where regular programmers write
syntactic language extensions. This requires a declarative and composable syntax
formalism as provided by SDF [8,3]. Based on the work presented here, we have
been able to implement SugarHaskell [5], an extensible preprocessor and IDE for
Haskell.

Acknowledgments. We thank Doaitse Swierstra for discussion and challenging
Haskell examples, and the anonymous reviewers for their feedback. This work is
supported in part by the European Research Council, grant No. 203099.
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Abstract. In almost all language processing applications, languages are parsed
employing classical algorithms (such as the LR(1) parsers generated by Bison),
which are sequential due to their left-to-right state-dependent nature. Although
early theoretical studies on parallel parsing algorithms delineated potential speed-
ups on abstract parallel machines using a data-parallel approach, practical devel-
opments have not materialized, except in recent experiments on ad hoc parsers
for large XML files. We describe a general-purpose practical generator (PA-
PAGENO) able to produce efficient deterministic parallel parsers, which exhibit
significant speedups when parsing large texts on modern multi-core machines,
while not penalizing sequential operation. The generated parser relies on the
properties of Floyd’s operator precedence grammars, to provide a naturally paral-
lel implementation of the parsing process. Parsing of each text portion proceeds in
parallel and independently, without communication and synchronization, until all
partial parse stacks are recombined into the final result. Since Floyd’s grammars
can express most syntaxes with little adaptation, we have performed extensive ex-
periments, on both synthetically generated texts and real JSON documents. The
effective parallel code portion in the generated parsers exceeds 80% for most of
the tested scenarios.

Keywords: Parser generation, Parallel Parsing, Floyd Operator Precedence Gram-
mars.

1 Introduction

Language parsing, also known as syntactic analysis, occurs in many situations: compi-
lation, natural language processing, document browsing, genome sequencing, program
analysis targeted at detecting malicious behaviours, and others. Although syntactic anal-
ysis is less computationally demanding than semantic analysis, it is frequently applied
to very large data sets in contexts where speedups and related energy saving are often
important. The common linear-time left-to-right LR(1) and LL(1) algorithms used for
deterministic context-free (or BNF) languages are an important milestone of algorith-
mic research. Due to their ability to recognise a wider class of formal languages, they
superseded earlier algorithms such as the ones employing Floyd’s operator-precedence
grammars (FG), which rely on only local information to decide parsing steps (for an
introduction see e.g. [1]). The LR and LL algorithms are amenable to efficient im-
plementations on serial computing machines, such as the ones provided in popular
parser generators (e.g. Bison), but their structure hinders efficient parallelization: early
attempts at it have not been successful, and appear to be almost abandoned.

K. Czarnecki and G. Hedin (Eds.): SLE 2012, LNCS 7745, pp. 264–274, 2013.
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In this work we describe a general-purpose optimized FG-based parallel-parser gen-
erator. As mentioned, FGs have already been used successfully to define early program-
ming languages; they have a very fast sequential parser, which is still used by modern
compilation platforms (gcc for instance) to parse expressions with multiple operator
precedences. Recently, research on formal methods has renewed the interest for FGs,
thanks to their nice closure and decidability properties [2]. In particular, the relevant
feature distinguishing FG languages from LR and LL ones is the closure under the
substring extraction; this property enables independent parallel parsing of substrings.
Starting from a straightforward sequential parser, we have implemented a parser gener-
ator producing two versions of an associative reduction scheme, and measured consis-
tent speedups on both synthetic benchmarks and large real JSON files. Measurements
indicate good scalability on different multi-core architectures, leading to significant re-
ductions of parsing time with respect to state-of-the-art sequential parsers.

Related research. The straightforward idea of splitting a long text into chunks, to be
parsed in parallel and subsequently recombined by further parsing actions, has moti-
vated several studies in the period 1965-1990. Early theoretical studies on data-parallel
algorithms such as the ones reported in [3,4] determined the computational complexity
that can be obtained in principle on certain abstract parallel machines by using a data-
parallel approach.

Parallel parsing requires an algorithm that, unlike a classical parser, is able to process
substrings which are not syntactically legal, although they occur in legal strings. A sub-
string parser operates on a substring without any knowledge of the outcome of parsing
left and right contexts. Incidentally, substring parsing algorithms have been also studied
for different purposes, such as processing damaged or faulty texts. Notable examples of
substring parsing research have adapted shift-reduce LR(1) parsers, by dropping the con-
dition that the text to the left of the chunk under examination should have been parsed
already. The first, and simpler approach due to Mickunas and Schell [5], modifies an
LR(1) parser in order to start in several possible states and to scan the chunk as far as de-
terministically possible. However, a significant amount of the computation is typically
left to the chunk recombination phase as this may propagate changes on all the chunks
preceding the one being recombined. In other approaches, such as [6] and [7], each chunk
parser carries on all possible alternative parses and subsequently, it recombines the parsed
chunks: assuming the original grammar to be LR(1), this chunk parsing can be done in
linear time although with constants greater than the ones for shift-reduce parsing.

The few people who have performed some limited experimentation on such
algorithms have generally found that performances critically depend on the cut points
between chunks: if a chunk starts, say, with begin, the parser can recognize almost
completely a full language block. On the contrary, starting a chunk on an identifier
opens too many syntactic alternatives. As a consequence such parsers have been typ-
ically combined with language-dependent heuristics for splitting the source text into
chunks that start on keywords announcing a splitting friendly construct.

After a long intermission, research in the field of parallel parsing has recently re-
sumed with more practical goals, such as to parse XML documents on multicore ma-
chines, both servers and clients. Some published works, e.g., [8] and [9], rely explic-
itly on the assumption that the parsed language is either XML or a subset of it, in
order to devise ad-hoc strategies to extract parallelism from the parsing process.
In other words, such projects no longer qualify as general-purpose parsers. Although
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specialized parsers, say, for XML, may be of interest to particular communities, our
project is the first to develop a general-purpose language-independent parallel parser
generator, and validate it with experiments on real-world benchmarks on modern ar-
chitectures. In addition to this, we provide guidelines for the implementation and opti-
mization of the algorithm, such as the design of a unified data structure for the abstract
syntax tree and parser stack representation, which has proved instrumental for obtaining
the high code fraction executed in parallel, reported in the experimental results.

The paper is organized as follows: Section 2 provides the background and the def-
initions regarding FGs, Section 3 proposes our parallel parsing algorithm, Section 4
delineates the implementation strategies employed and reports the results of the exper-
imental validation campaign. Finally, Section 5 draws our conclusions.

2 Definitions and Background on Operator Precedence Grammars

Since Floyd’s operator precedence Grammars (FG) and parsers are a classical tech-
nique for syntax definition and analysis, it suffices to recall the main relevant concepts
from e.g. [1]. Let Σ denote the terminal alphabet of the language. A BNF grammar in
operator form consists of a set of productions P of the form A→ α where A is a non-
terminal symbol and α, called the right-hand side (rhs) of the production, is a nonempty
string made of terminal and nonterminal symbols, such that if nonterminals occur in α,
they are separated by at least one terminal symbol. The set of nonterminals is denoted
by VN . It is well known that any BNF grammar can be recast into operator form. To
qualify as FG, an operator grammar has to satisfy a condition, known as absence of
precedence conflicts. We will now introduce informally the concept of precedence re-
lation, a partial binary relation over the terminal alphabet, which can take one of three
values: � (yields precedence) , � (takes precedence) , =̇ (equal in precedence). For a
given FG, the precedence relations are easily computed and represented in the oper-
ator precedence matrix (OPM). A grammar for simple arithmetic expressions and the
corresponding OPM are in Fig. 1. Entries like + � a and a � + indicate that, when
parsing a string containing the pattern . . . + a + . . ., the rhs a of rule F → a has to
be reduced to the nonterminal F . Similarly the pattern . . . + (E) × . . . is reduced by

Grammar G consists of Σ = {a,+,×, (, )}, VN = {E, T, F}, axiom = E and

P = {E → E + T | T, T → T × F | F, F → (E) | a}
Operator precedence matrix:

M2 =

a + × ( )
a � �

+ � � � � �

× � � � � �

( � � � � =̇
) � � �

Fig. 1. Example of FG for arithmetic expressions
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rule F → (E) to . . . + F × . . . since the relations are . . . + �(
=̇

E) � × . . .. There is
no relation between terminals a and ( because they never occur as adjacent or separated
by a nonterminal. A grammar is FG if for any two terminals, at most one precedence
relation holds. In sequential parsers it is customary to enclose the input string between
two special characters ⊥, such that ⊥ yields precedence to any other character and any
character takes precedence over ⊥.

Precedence relations precisely determine if a substring matching a rhs should be
reduced to a nonterminal. This test is very efficient, based on local properties of the
text, and does not need long distance information (unlike the tests performed by LR(1)
parsers). In case the grammar includes two productions such as A → x and B → x
with the same rhs, the reduction of string x leaves the choice between A and B open.
The uncertainty could be propagated until just one choice remains open, but, to avoid
this minor complication, we assume without loss of generality, that the grammar does
not have repeated rhs’s [2].

The mentioned local properties suggest that FG are an attractive choice for data-parallel
parsing, but even for sequential parsing, they are very efficient [1]: “Operator-precedence
parsers are very easy to construct and very efficient to use, operator-precedence is the
method of choice for all parsing problems that are simple enough to allow it”. In prac-
tice, even when the language reference grammar is not a FG, small changes permit to
obtain an equivalent FG, except for languages of utmost syntactic complexity. This is
witnessed by the JSON grammar employed as our benchmark, described in Section 4.

3 PAPAGENO

3.1 Parallel Parsing Algorithm

As the parallel algorithm implemented by our generator stems directly from sequential
FG parser, we first describe the latter, providing the extension to the parallel technique
afterwards. As far as we know, this is the first design and realization of a parallel parsing
algorithm for FGs. We also note that this algorithm performs an effective parse of the
token stream and is thus different from parallel bracket matching algorithms such as
the one presented by Cole [10]. The key idea driving Algorithm 1 is that, wherever a
series of =̇ precedence relations enclosed by a pair of �,� is found between adjacent
tokens, the enclosed symbol string is the handle of a reduction. To find handles, the
parser uses the operator precedence matrix OPM and a (pushdown) stack S to keep
track of the tokens to be reduced when the next � relation is found. As the parsing
algorithm needs to recognise a particular grammar rule (e.g. for building the Abstract
Syntax Tree AST representation) upon reduction, the list of productions P is needed
to detect the actual production to be applied. Provided that the algorithm is adapted to
always shift nonterminal symbols, it is possible to reuse it for all the stages of parallel
parsing with no modifications.

In the case of a serial parsing the algorithm takes an empty stack S as a parame-
ter, and the list of input tokens as I , which can be thought as delimited by two special
symbols marking the beginning and the end of the token stream. Algorithm 1 operates
as follows: it obtains the symbol under the cursor and checks its precedence relation
with the terminal symbol occupying the highest place on the parsing stack (lines 3–4).
If the precedence relation is not � or the symbol is not a terminal, the symbol is pushed
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Algorithm 1. Floyd Grammar Parser
Globals: OPM : Precedence matrix of G, P : List of productions of G
Input: I : Input symbol list, S: Parsing stack
Output: S: the parsing stack after the parsing action

1 begin
2 while I �= ∅ do
3 token ← READ CURSOR(I)
4 prec ← OPM(token,TOP TERMINAL(S))
5 if prec �= � or IS NONTERMINAL(token) then
6 PUSH(S , (token, prec))
7 MOVE CURSOR FORWARD(I)
8 else
9 repeat

10 (token , prec) ← POP(S)
11 PUSH(rhs rebuild , token)
12 until prec= �

13 if ∃ p ∈ P | RHS(p) = rhs rebuild then
14 SEMANTIC ACTION(LHS(p))
15 PUSH(S , (LHS(p),⊥))
16 else
17 return NIL

18 return S

on the top of the stack and the cursor is moved forward by one position (lines 5–7). If
the parsing algorithm meets a � precedence relation, it needs to rebuild the rhs of the
corresponding rule to perform the proper reduction action: this is performed through
an auxiliary stack, rhs rebuild, where the algorithm stores the elements from the top of
the stack, until it finds a � precedence relation. Upon finding the � precedence rela-
tion, the algorithm checks if the rebuilt rhs is a valid production of the grammar and
performs the reduction action if this is the case. If the rebuilt rhs is not a valid pro-
duction the algorithm terminates abnormally signalling that the input string is not valid
through returning NIL. If the serial parsing procedure terminates correctly, Algorithm 1
is expected to return a parsing stack containing only the axiom of G.

Exploiting the fact that the parser makes the decision whether to shift or to reduce
only on the basis of the precedence matrix OPM , the current token, and the top of
the stack, it is possible to divide the token stream into different chunks or substrings,
and perform a substantial amount of the parsing with different workers. The essential
quality of this algorithm is that all the parsing actions performed on a chunk are final,
i.e. no parsing work is ever undone on a substring, thus all the parsing actions performed
by the worker threads are correct and useful. To this end, the input is split into as many
chunks as the desired number of workers w, and all the workers run the aforementioned
algorithm returning their stacks at the end.

Since the splitting of the token stream is not constrained in any way, nor it depends
on the language grammar, the result returned by a worker will likely be a nonempty
stack S, since there are no warranties that an arbitrary substring of a sentence is a valid
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Fig. 2. Typical usage of the PAPAGENO toolchain, starting from a grammar and lexical specifi-
cation, obtaining the parsing library. Specifications provided by the user are marked in yellow,
generated C source code is marked in green.

sentence of the language. Such nonempty stack can be partitioned in two parts: one
containing only =̇ and � relations (i.e. the lower one), and one containing � and =̇ (i.e.
the upper one).

We thus combine the results of two adjacent parsers employing as the parsing stack
of the new parser the upper part of the stack of the left worker, and as input stream
the lower part of the right one. As the parsing algorithm is able to shift the nonterminal
symbols on the stack, it will be able to handle the input stream even if it is not composed
by tokens only.

3.2 The PAPAGENO Parser Generator

PAPAGENO, the parallel parser generator tool, produces a C implementation of the
parallel parsing algorithm described before, from the specification of a grammar in op-
erator precedence (Floyd) form. The implementation of the parser is combined with a
lexical scanner obtained from the de-facto standard scanner generator Flex, to obtain a
fully functional parser library, which can be linked with the main application being de-
veloped. We chose to employ serial lexers generated by Flex to enhance the ease of use
of the tool, however designing a parallel lexer is a rather easy task, as lexical analysis
is inherently local and provides a mean to split the input data properly. Moreover the
performance loss is negligible as the lexing process is very fast. The parsing process
is started by invoking the parse call, which receives two parameters: a reference to
the input character stream, and the number of workers onto which the parsing process
should be split. As depicted in Figure 2, the typical workflow to employ PAPAGENO is
analogous to the one of common parser generators such as Yacc/Bison. The user writes
two files: a grammar specification, describing the grammar rules and any semantic ac-
tions to be performed jointly with reductions, and a lexical specification, describing
the terminals or tokens used by the grammar. PAPAGENO can thus be employed as a
drop-in replacement for common parser generators, provided that the user checks the
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form of the language grammar, and removes the possible precedence conflicts in the
rules.

For the sake of clarity, and to ease the study of the implementation and possible
modifications, the C parser implementation is split into a grammar-independent part
(support for data structures, parsing algorithm implementation) and a grammar depen-
dent part (token and productions representation), residing in different compilation units.
The choice of the C language as the target for the implementation was driven by the
need to produce highly performing parser implementations while retaining the largest
portability. To ease the adoption of PAPAGENO, the syntax of the grammar specifica-
tion file follows closely the one used by Yacc/Bison, thus requiring little or no effort
to port an existing grammar definition. In particular, semantic attributes of the termi-
nals and nonterminals may be conveniently accessed through the same syntax as Bison,
and the semantic actions to be triggered upon a reduction are specified in the same
way. To guide the user during the process of representing the grammar in Floyd form,
PAPAGENO offers diagnostic messages pinpointing any existing precedence conflicts
between terminal symbols, and it outputs a printable form of the precedence matrix.

3.3 Performance Tuning Strategies

It would be impossible to achieve the potential advantages of parallel parsing without a
careful choice of efficient programming techniques, of which we report here the most
significant ones. We have found that memory access represents the bottleneck of our
parsing technique, due to the computational lightweight nature of FG parsing, therefore
the parsers generated by PAPAGENO exploit various techniques to relieve as much as
possible the memory pressure on the target architecture. First, the terminal and nonter-
minal symbols are represented as integers, taking care to use the most significant bit as
a flag to separate terminals or non-. In this way, it is possible to decide whether a list
node should be shifted on the stack or not, through a simple check on the first bit of the
value, avoiding the use of a lookup table.

In addition to this, since the precedence value can only assume four different values
(namely, �, =̇,� and ⊥), we use a bit-packed representation of the OPM effectively
reducing its size by four times against a straightforward character based representation,
which allows to achieve low latency access to the table thanks to the fact that it is small
enough to fit in the processor cache memories. To prevent performance losses from
fragmented memory allocation, typical of pointer based structures such as the AST, we
manage a preallocated userspace memory pool, wrapping the common memory alloca-
tion function (malloc). This technique both increases the data locality and prevents
the workers, implemented as POSIX threads, from being serialized during the calls to
the malloc function. As far as the size of the memory pool goes, PAPAGENO preal-
locates half of the estimated size of the AST, through computing the average branching
factor from the length of the right hand sides of the grammar rules, and increases the
allocated pool size by one fifth of this quantity, if the parser needs more memory.

Another performance tuning technique concerns a smart representation for the rhs of
the rules, to ease the checks upon reduction. The rhs are stored in a prefix tree (trie),
thus allowing the parsing process to find the matching production in linear time w.r.t.
the length of the rhs of the productions. In order to further compress the trie, we use the
technique described by Germann et al. in [11], which represents the trie as an array, both
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S → OBJECT
OBJECT → {} | {MEMBERS }
MEMBERS → PAIR | PAIR ,MEMBERS
PAIR → STRING : VALUE
VALUE → STRING | number | OBJECT | ARRAY | bool
STRING → ′′′′ | ′′ CHARS ′′

ARRAY → [ ] | [ELEMENTS ]
ELEMENTS → VALUE | VALUE ,ELEMENTS
CHARS → CHAR | CHAR CHARS CHARS → char | char CHARS
CHAR → char

Fig. 3. Official JSON grammar. Uppercase symbols denote nonterminals, while lowercase ones
are tokens; the only one modified rule needed to transform the grammar in operator precedence
form is underlined.

improving the data locality and reducing the size of the data structure, while retaining
the same cost in the lookup operations. This technique involves the representation of
the pointers of the trie structure as indexes stored in the same array as the trie values.

4 Benchmark Application: The JSON Language

We chose the JavaScript Object Notation (JSON) language as a case study to evalu-
ate the performances of the generated parser. JSON is a data representation language
described in the Internet Engineering Task Force document RFC4627, and widely em-
ployed in web applications as a less verbose substitute for XML. We also picked JSON
as the average size of a JSON file is larger than a compilation unit of a common pro-
gramming language. The official grammar of JSON, listed in Fig. 3 required only a triv-
ial change to be put into Floyd compliant form, thus confirming the expressive power of
this family of languages. The generated parser for the JSON grammar was tested on two
different x86-64 Linux hosts to evaluate the achieved speedups: the first host is an In-
tel Core i7 920, a high end desktop CPU endowed with Simultaneous Multi-Threading
(SMT) capabilities, while the second one is a quad-Opteron 8378, (16 physical cores
in total, 4 cores per socket), a typical server grade platform. All the hosts were running
a Linux 2.6 series kernel and were equipped with enough RAM to contain the whole
AST and token list.

As a testbench, we chose real world JSON files of different sizes, in order to evalu-
ate the speedup obtainable. The set of chosen files encompasses the configuration file of
AdBlocker, a common browser plugin (80 kB), the Gospel of John (150kB), a statistic
data-bank on food consumption provided by the Italian Institute of Statistics (1.6MB),
a file containing statistics on n-grams present in English in Google Books (10MB), and
the index of all the documents available on the UK Comprehensive Knowledge Archive
Network (75MB). Figure 4(a) and 4(b) report the speedup factors over a serial pars-
ing process achieved on the aforementioned testbench by the 16 core and 4-core-SMT
platforms respectively while raising the number of workers. The tone of grey in the
plot indicates the length of the string, with the lighter greys representing shorter strings.



272 A. Barenghi et al.

0 5 10 15

2

4

Number of Workers

Sp
ee

du
p

(a) Speedups w.r.t input string
length - 16 Core Platform

2 4 6 8

1

2

3

4

Number of Workers

Sp
ee

du
p

(b) Speedups w.r.t input string
length - 4 Core Platform

Bison 1 2 4 8 16
0

0.5

1

Number of Workers

Pa
rs

in
g

T
im

e

(c) Comparison with Bison - 16
Core Platform

Fig. 4. Speedups obtained with respect to the string length (Figures (a) and (b) )and comparison
with Bison generated LALR(1) parsers (Figure (c)). Running times have been normalized taking
as time unit the execution time of the Bison generated parser.

Moreover, the theoretical speedups predicted by Amdahl’s law for a parallel code por-
tion of 75%-80%-85% are plotted in background as a reference gauge. Already for
small string lengths (80kB) the algorithm yields a speedup higher than 2×, but the full
advantages of parallel parsing become evident from strings as small as 150kB (where
the parallel execution portion reaches 75%) and are fully exploited starting from the 1.6
MB dataset. These results show that our approach is already effective and profitable for
text sizes in the range of the average webpage (Google reports in its web metrics report
in 2010 an average page size of 320 kB [12]). We also report that, without employing
the aforementioned performance tuning techniques to optimize memory accesses and
reduce inter-worker serializations (packed structures and memory pooling), the portion
of code effectively executed in parallel by the architecture was significantly lower.

Overall, the parallel parsing strategy shows a promising exploitation of the multiple
cores available on modern platforms. In particular, this strategy effectively exploits the
advantages of simultaneous multi-threading enabled architectures, as raising the num-
ber of workers beyond the one of the physical cores of the architecture (i.e. above four
in our case) still yields significant speedups. A quantitative measure of the parallel code
portion shows that 95% of the instructions are performed in parallel on the four cores
thanks to the interleaving of the instructions from two workers on a single core per-
formed by the architecture. This tight instruction interleaving exploits the stalls caused
by the memory load and store actions to perform computations from another worker
effectively obtaining a parallel code portion close to the theoretical maximum. Finally,
Figure 4(c) provides a comparison of the overall parsing times against the ones of a se-
rial LR parser generated by Bison. The depicted data show how our approach behaves
consistently better than Bison when employing at least two workers, while showing
comparable running times even when employed in serial mode. In particular, the pars-
ing time for the longest string (75MB in size) is effectively cut down from 10.51s to
2.07s, a roughly five-fold improvement.

As there is no recent open literature report on the performances of a general purpose
parallel parser generator, we report the work of Lu et al. [8], who built an XML specific
parser. The authors report that, exploiting selected features of the language identified
via a preparsing phase, it is possible to obtain speedups ranging from 2.35× to 2.55×
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on a quad core machine, depending on the target XML structure. To this approach we
compare favourably as we achieve higher speedups without the use of a preparsing pass
or any specific knowledge about the points where the input token stream is split.

5 Conclusion

We have presented a new parallel parser generator which exploits the properties of
operator precedence grammars, also known as Floyd grammars. Such grammars are ex-
pressive enough to be used a real world programming language (for instance Algol68
has a fully specified FG). The tool generates automatically a C implementation of the
parser given a grammar description provided in Bison compatible syntax, and an addi-
tional parameter indicating how many threads are desired. The experimental validation
of the effectiveness of the generated parsers, employing the grammar of JSON as a prac-
tical test case shows that the code portion running in parallel reaches 85% on common
multicore architectures and scales well up to 16 cores.

As a future direction to enhance our tool, we foresee the development of a parallel
lexer generator. This will allow a complete parallelization of the lexing-scanning pro-
cess, thus allowing an easier distribution of the workload among different execution
units. Also, the same distinguishing FG property of closure under substring extraction
will allow us to couple parallel parsing with incremental techniques.

Acknowledgements. We thank Brad Chen of Google Inc. for practical indications
on the benchmarks, and in particular for suggesting to use JSON. Valerio Ponte has
participated in the early development of the tool.
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Abstract. This paper presents TouchRAM, a multitouch-enabled tool
for agile software design modeling aimed at developing scalable and
reusable software design models. The tool gives the designer access to
a vast library of reusable design models encoding essential recurring de-
sign concerns. It exploits model interfaces and aspect-oriented model
weaving techniques as defined by the Reusable Aspect Models (RAM)
approach to enable the designer to rapidly apply reusable design concerns
within the design model of the software under development. The paper
highlights the user interface features of the tool specifically designed for
ease of use, reuse and agility (multiple ways of input, tool-assisted reuse,
multitouch), gives an overview of the library of reusable design models
available to the user, and points out how the current state-of-the-art in
model weaving had to be extended to support seamless model reuse.

1 Introduction

Model-Driven Engineering (MDE) [12] is a unified conceptual framework in
which the whole software life cycle is seen as a process of model production,
refinement, and integration. High-level specification models are refined or com-
bined with other models using model transformations to include more and more
solution details and to ultimately produce a model that can be executed.

In practice, MDE faces several important challenges that prevent the wide-
spread adoption of modeling as a means to improving the software development
process. In the context of this work, the two relevant challenges are scalability
and reusability of models. Models of complex applications tend to grow in size,
to a point where even individual views are not readily understood or analyzable
anymore. Furthermore, building complex models is very time consuming: models
are often created from scratch, as opposed to reusing existing models.

Aspect-orientation modeling (AOM) techniques define special kinds of model
transformations called model weavers that have been successfully used to sep-
arate and compose crosscutting concerns within software models, focussing in
particular on the intricacies of concern interactions and conflicts. AOM makes
it possible to package models of generic concerns in such a way that they are
easy to reuse within other models. Furthermore, by providing weaver support
for model hierarchies, complex models can be build by composing existing ones.

K. Czarnecki and G. Hedin (Eds.): SLE 2012, LNCS 7745, pp. 275–285, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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This paper presents TouchRAM, a multitouch-enabled tool for agile software
design modeling aimed at developing scalable and reusable software design mod-
els. The tool gives the designer access to a vast library of reusable design models
encoding essential recurring design concerns and provides support to rapidly ap-
ply these concerns within the design of the software under development. This
is enabled by exploiting model interfaces and aspect-oriented model weaving
techniques as defined by the Reusable Aspect Models (RAM) approach [10].

The paper is structured as follows: Section 2 gives an overview of the tool
implementation and background on RAM. Section 3 highlights the tool features
specifically targeted at agile software design modeling: subsection 3.1 presents
how the GUI streamlines model manipulation; subsection 3.2 outlines the library
of reusable design concern models available to the user and explains how they
can be applied within an application model, and subsection 3.3 explains how
the tool supports working with model hierarchies. Section 4 points out how the
current state-of-the-art in model weaving had to be extended to support seamless
model reuse and model hierarchies, and the last section draws some conclusions.

2 Background

This section presents background information on the tool, i.e., what technologies
and frameworks it is built on and other implementation details. In order to make
the tool accessible to a wide audience, cross-platform compatibility was one of
the major design concerns. We therefore opted to do our development entirely
in Java. As a result, all libraries and frameworks we considered to use to build
our user interface and model transformation backend had to be implemented in
Java as well.

2.1 Architecture

TouchRAM consists of the front end, i.e., the graphical user interface (GUI) and
the backend, which contains the RAM meta-model and the RAM model weaver.

The GUI of the TouchRAM tool is realized using the open source Java frame-
work Multitouch for Java (MT4j) [3]. MT4j is a framework for creating visual
applications in 2D or 3D using OpenGL for software or hardware accelerated
graphics rendering. An event stack that allows for different kinds of input events
is also provided; the tool ships with support of mouse and keyboard input as well
as multitouch input through the TUIO protocol [4]. TouchRAM has been tested
for 32 and 64 bit architectures on the Mac OSX, Windows and Linux (Ubuntu)
platforms, however, its dependence on Java and TUIO means it should work on
any environment where both these are supported.

While the user interface of TouchRAM relies on MT4j, all other components of
the tool are decoupled from the GUI based on a Model-View-Controller design.
This makes separate evolution of the GUI and the backend possible.

The foundation of the backend is the RAM meta-model that defines the ab-
stract syntax for RAM models created with the tool. The meta-model is defined
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using the Eclipse Modeling Framework (EMF) [14]. The provided facility allows
us to define the structured data model and generate the required Java code
that is used by TouchRAM. Furthermore, we are able to serialize our models in
XMI (XML Metadata Interchange) format corresponding to that meta-model.
Command-based editing provided by EMF.Edit is used in order to offer the user
undo/redo functionality. The User Interface is notified of changes to the model
through EMFs built-in notification mechanism. The Object Constraint Language
(OCL) is used for constraints on the meta-model, specification of derived prop-
erties and implementation of operations defined in the meta-model.

The RAM weaver, which is invoked by the GUI on command of the user, is
capable of composing multiple models together. Instead of directly implementing
the weaving with Java, TouchRAM uses the Kermeta workbench [1]. Kermeta
provides an object-oriented model transformation language based on lambda
expressions similar to OCL and works with EMF-based meta-models. Further-
more, Kermeta includes support for aspect-orientation. Transformations written
in Kermeta are compiled into Scala code, which runs on a standard Java VM.

2.2 Reusable Aspect Models

TouchRAM is based on Reusable Aspect Models (RAM), an aspect-oriented
multi-view modeling approach that integrates class diagram, sequence diagram
and state diagram AOM techniques [10]. As a result, RAM aspect models can
describe the structure and the behavior of a concern under study. Currently,
however, TouchRAM only supports structural modeling.

RAM aspect models define an aspect interface that clearly designate the
functionality provided by the aspect, as well as its mandatory instantiation
parameters [5]. When an aspect model is applied, all mandatory instantiation
parameters must be mapped to compatible model elements in the application
model. Flexibility is achieved by allowing any model element to optionally be
composed or extended. RAM supports the creation of elaborate aspect depen-
dency chains. This makes it possible to model an aspect that provides complex
functionality by decomposing it into aspects that provide simpler functional-
ity. At the same time, aspects providing simpler functionality can be reused in
several aspects of complex functionality. As a result, scattering and tangling of
models can be prevented at all complexity levels.

3 Tool Features Supporting Agile Software Design

Modeling raises the level of abstraction in comparison to source code, and there-
fore has the potential for enabling fast exploration of software designs. To make
this possible, though, a modeling tool must be designed accordingly. In this sec-
tion we report on three key features of the TouchRAM tool specifically targeted
at agile software design: the streamlined model manipulation capabilities offered
by the TouchRAM GUI, the reusable design concern library, and navigation
through different levels of abstraction.
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3.1 Streamlined Model Manipulation

Exploiting Platform Capabilities. The GUI of TouchRAM has been designed
to provide intuitive and fast model manipulation capabilities to ensure that the
user can focus entirely on the task of modeling. This starts by maximally ex-
ploiting the input and output hardware of the platform that the tool is running
on. On the input side, TouchRAM supports multitouch and gesture-based input
as well as standard mouse and keyboard. The tool was designed without modes,
i.e., at any time, the modeler can use gestures or the mouse/keyboard to manip-
ulate the model, depending on what input is most efficient. On the output side,
TouchRAM is designed to support heterogeneous screen sizes, mainly by pro-
viding high performance support for panning and zooming. The user can change
the zoom level at any time by either using the mouse wheel or a two-finger scale
gesture. To assure that a model created on one screen can be opened on a differ-
ent screen without losing the overall overview of the model, TouchRAM scales
models according to the current screen dimensions when opening.

Intuitive Editing. General tasks are performed using simple gestures (i.e., tap,
double-tap and tap-and-hold) that work with both mouse and touch input. For
example, tap-and-hold is used to create or edit model elements. When performed
on the background, a class is created. Tapping-and-holding on a class puts the
class in edit mode which allows to delete or add attributes or operations. Double-
tapping allows to edit an element or one of its properties. When done on the
visibility field or return type of an operation or the type of an attribute, a selector
menu pops up displaying semantically correct choices for that element.

Certain manipulations can be done very efficiently using multitouch. For in-
stance, the tool can recognize advanced gesture commands, i.e., drawing a rect-
angle to create a class, performing a zig-zag movement to delete a model element,
or drawing a line to create an association. For users that do not have access to
multitouch input, TouchRAM offers (less efficient) mouse equivalents for these
commands, for instance, double-clicking on one class to put it into edit mode,
and then double-clicking another class to create an association between the two
or clicking and holding to inherit from that class.

Of course there are also manipulations that are more efficiently done with the
keyboard and mouse, e.g., writing text or detailed positioning of model elements.
For users that do not have access to a keyboard, TouchRAM displays a popup
touch-keyboard whenever a text input is expected.

Some manipulations can also be accomplished in multiple ways. For instance,
when adding a new operation to a class and a keyboard is available, the whole
signature can be written at once. The given signature is then parsed and checked
for conformance to the meta-model. For example, entering “+ String getName()”
creates an operation called getName which is public, has no parameters and
returns a String. If no keyboard is available, only the model element names
need to be provided using the touch-keyboard. The tool displays the potential
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semantically valid visibility, parameters and return types choices to the modeler,
who selects the desired elements with a simple tap.

Tool-Assisted Layout. Currently TouchRAM does not provide support for
automated layout of class diagrams. However, the modeler can rearrange classes
one by one, or multiple classes simultaneously using multitouch gestures. The
relationships between classes, i.e., associations and inheritance, are repositioned
automatically by the tool using a sophisticated algorithm. The relationship lines
are attached to the class angle depending on the relative position of the related
classes, minimizing line crossings.

3.2 Library of Reusable Design Concern Models

The success of modern programming languages such as Java is partially due to
the fact that they ship with a significant library of reusable code. The Java Class
Library as an example offers a programmer thousands of classes that provide so-
lutions for common implementation concerns, including classes for all common
data structures, such as lists, trees, and maps. That way, a programmer does
not need to code these classes herself, but simply reuses their behavior by in-
stantiating them and calling the appropriate methods.

The idea of the reusable design concern model library (RDCML) that ships
with TouchRAM is similar, but is applied to modeling. Its purpose is to increase
modeling productivity by providing models for common design concerns that
a modeler can use within an application model with minimal effort when ap-
propriate1. Each model in the library is self-contained, i.e., it contains all the
structural and behavioral model elements pertaining to a design concern, and is
typically relatively small (1 - 6 classes). The model interface clearly designates
all the classes, associations and operations that are visible, i.e., that can be in-
stantiated / called at runtime to invoke the functionality provided by the model.
The current models in the RDCML are organized into the following categories:

– The design patterns category contains aspects for the basic structural, be-
havioral and creational design patterns (e.g., Singleton, Observer, Command,
etc.)

– The utility category contains aspects that provide basic functionalities like
copying (Copyable aspect) and naming (Named aspect), as well as data struc-
tures involving multiple objects, such as Map.

– The networking category contains aspects relevant to networking, such as
Serializer, SocketCommunication and NetworkedCommand.

– The workflow category contains aspects that are useful whenever the ap-
plication needs to define and execute flexible workflows. For example, the
current library supports sequential, conditional, timed, nested and parallel
execution of activities.

1 The RDML is not meant to replace standard class libraries. On the contrary, in
order to access functionality provided by standard programming language libraries,
TouchRAM currently provides support for importing Java classes into design models
using reflection.
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– The transactions category contains aspects that provide state checkpointing
and recovery support, as well as design solutions for isolating concurrently
running activities.

Applying a Reusable Design Concern. When elaborating an application
model, a modeler typically starts by defining application-specific structure and
behavior. When appropriate, she can also choose to apply aspect models from the
RDCML to complete her design. In RAM terminology this is called instantiation.
Aspect models are reusable, because they can be instantiated multiple times in
the same application model, or in several distinct application models.

When the modeler applies an aspect from the library, TouchRAM displays
an instantiation view, which allows the modeler to establish a mapping from
classes and methods in the library model (also called the lower-level aspect)
to the application model (also called the higher-level aspect). The instantiation
view is divided into two parts: the higher-level aspect is viewed in the top and
the lower-level aspect is viewed in the bottom of the view. Tapping on a class in
the bottom view highlights the classes that it can be mapped to in the higher-
level aspect. Just like for standard model manipulations, the tool assists the
modeler in creating semantically correct mappings. This is illustrated in Fig. 1.
It depicts a situation where a modeler applies the Observer design pattern model
to a StockExchange application model. She has already mapped the |Subject
class of the lower-level aspect to the Stock class, and the |Observer class to the
StockWindow class, and is now in the process of mapping the |modify operation
of |Subject. Since |modify is part of class |Subject in the lower-level aspect, and
|Subject was already mapped to Stock in the higher-level aspect, TouchRAM
marks only the methods of Stock with matching parameters as selectable.

Fig. 1. Instantiation View of TouchRAM



TouchRAM: A Multitouch-Enabled Tool 281

The Observer example also nicely illustrates why reusable design concern
models are more powerful than OO programming language libraries. Class li-
braries can only encapsulate implementation concerns if the structural and be-
havioral interface for the concern is contained in a single class. This is not the
case for the Observer design pattern, since it involves two classes (Subject and
Observer) with distinct behavioral responsibilities (modify, notify, update, etc.).

3.3 Navigating Levels of Abstraction

Instantiations can not only be used to reuse models of the RDCML. A modeler
can define her own reusable aspect models, which allows her to decompose a big
application model into several smaller inter-dependent models that describe dif-
ferent application-specific design concerns. TouchRAM supports complex model
dependency chains, and hence big models can be built by combining many small
aspect models that describe the design at different levels of abstraction. For ex-
ample, the low-level aspect Observer shown in Fig. 1 actually depends on an
even lower-level aspect called ZeroToManyAssociation, which uses the Java im-
plementation class java.util.Set to link an instance of a |Data class to many
instances of the |Associated class. The Observer aspect uses this low-level de-
sign concern to link a |Subject instance with many |Observers, as shown in the
instantiation directives on the bottom line of Fig. 1.

When using TouchRAM, it is not uncommon to create software designs with
model hierarchies with many layers of abstraction/models. A modeler can pro-
ceed in a top-down manner, starting at high-level application-specific models,
and incrementally adding lower-level design details, either self-modeled or from
the RDCML. Conversely, the modeler can also start by designing lower-level
models first, and then raise their level of abstraction by adding higher-level
models that depend on them.

TouchRAM allows the modeler to easily navigate through the model hierarchy.
When she opens an aspect model, a list of its instantiations is shown in the
bottom of the editing view. She can view the instantiated aspect simply by
tapping on the eye icon of an instantiation: a new view opens to display the
instantiated aspect. This allows the modeler to focus on each individual design
concern at each level of abstraction in isolation.

TouchRAM also allows the modeler to visualize how a higher-level aspect
interacts with a lower-level aspect. Tap-and-hold on an instantiation instructs
the RAM weaver to combine the lower-level aspect with the higher-level one
according to the instantiation mapping to yield a woven model that displays the
model elements from both models, i.e., from both levels of abstraction. Using this
feature, the modeler can selectively visualize specific lower-level design details,
for instance for analysis reasons.

To experiment with different designs, the modeler can exchange design mod-
els at a given level of abstraction with other ones providing similar functional-
ity. Typically this simply involves replacing an instantiation in the higher-level
model, and then asking the weaver to compose the models again.
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Finally, with the “weave all” command, the modeler can instruct the weaver
to “flatten all levels of abstraction” and produce a woven model that contains
all the specified design details. The details on how the weaver handles model
hierarchies are presented in the next section.

4 Hierarchical Model Weaving

The core of the class diagram weaver in TouchRAM is based on the symmetric
composition technique proposed by France et al. [11] that was implemented in
a tool called Kompose [8,2]. In essence, Kompose merges two class diagrams
into one by looking at the signature of the model elements in each diagram,
and then combining those with matching signatures. After the merge, post-
merge directives can be used in order to make changes to the resulting model, if
necessary. In order to support reuse, pre-merge directives can be used to prepare
a generic model for a specific use, e.g., to change general model element names
to names used in the application model so that the signature-based weaving
algorithm will merge them.

Kompose does not directly support aspect hierarchies as defined in RAM, and
therefore can not be used as such to support incremental top-down or bottom-
up modeling as described in subsection 3.3. We had to considerably modify and
extend the approach to fit our needs.

4.1 Instantiation Types

To use a design concern model within another design model, the modeler specifies
an instantiation mapping between the two models as described in subsection 3.2.
Elements that can be mapped are classes, operations, associations, attributes,
and parameters. Currently there are two types of instantiations that can be
created: depends and extends. The two types correspond to the two different
ways of using TouchRAM to incrementally build models of significant size.

The depends instantiation is used when the two models are modeling different
levels of abstraction of the software design, as it is the case for top-down or
bottom-up development. With depends, the modeler is required to provide map-
pings for all lower-level model elements that she wants to expose at the higher
level. The visibility of all unmapped elements is by default switched from public
to aspect-private [5] by the weaver to encapsulate the low-level details.

The extends instantiation is used when the designer’s intent is to increment
a current design model with additional functionality. Since in this case both
design models are at the same level of abstraction, they often refer to the same
model elements. Therefore, with extends, default mappings are created for all
model elements that have the same signature, and all model elements from the
lower-level model maintain their visibility properties during the weaving process.

4.2 Weaving Instantiations

In order to allow design exploration across levels of abstractions and increments
in a flexible and agile way, our weaver must be capable of weaving any two
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directly dependent design concern models within a hierarchy together. The re-
sulting model must be one that correctly replaces the two original models within
the hierarchy. This is achieved by updating the instantiation directives from the
lower level.

For example, in Fig. 2 A depends on B, which in turn depends on C and
D. When weaving B into A to yield a new model A+B, our algorithm needs to
update the instantiations made in B that originally mapped elements from C and
D to elements in B to now map the elements from C and D to the corresponding
elements in A. In our example, aspect A mapped |B->|A and Y->X, but aspect
B mapped |C->|B and |D->Y. After weaving B into A, the updated mappings
are |C->|A and |D->X.

The general rule to update instantiations at weave time is as follows: Given
two aspects A and B where A depends on B, for each mapping m1 in A where
a left hand side element appears on the right hand side of a mapping m2 in B
(text colored in red linked by dotted lines in Fig. 2), create a new mapping in
A between the left hand side element of m2 and the right hand side elements of
m1 (text colored in blue linked by dashed lines in Fig. 2).

4.3 Weaving Algorithm

The following list summarizes the steps that our weaver executes to weave a
reusable design concern model B into model A:

aspect A depends on B

structural view
|A

- int a
|A

Instantiations:
B:

aspect B depends on C, D

structural view
|B

- int b
|B

Instantiations:
C:
D:

|C → |B;
|D → Y;

- int x
X

- int y
Y

aspect C
structural view

|C

- int c
|C

aspect D
structural view

|D

- int d
|D

aspect A depends on C,D

structural view
|A

- int a
- int b

|A

Instantiations:
C:
D:

|C → |A;
|D → X; 

- int x
- int y

X

Before Weaving B into A After Weaving B into A

|B → |A; Y → X; 

aspect C
structural view

|C

- int c
|C

aspect D
structural view

- int d
|D

Fig. 2. Updating Instantiation Directives During Weaving
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1. Process extends instantiations: If the instantiation is of type extends, cre-
ate default mappings for all model elements in B that have corresponding
model elements in A. For classes, the names must match. For operations, the
signature must match.

2. Check for name clashes: In the woven model, two classes representing differ-
ent design classes can not have the same name. Therefore, if at this point
there exists a class in B with a name that matches the name of a class in A,
but there is no mapping defined between the classes and the signatures of
the operations in the classes do not match, the weaver terminates with an
exception. The modeler is prompted to resolve the name conflict by either
renaming the class in A or by defining an explicit mapping.

3. Weave: Merge model elements from B with model elements from A according
to the instantiation mapping. Elements in B that are not mapped explicitly
are simply copied into A. This yields the woven model A+B.

4. Update instantiations: Update the instantiations in B according to the rule
described above and add them to A+B.

5 Conclusion

This paper presented TouchRAM, a multitouch tool for agile software design
modeling aimed at developing scalable and reusable software design models.
TouchRAM is available at http://www.cs.mcgill.ca/~joerg/SEL/TouchRAM.html.
The tool highlights are: 1) a streamlined user interface that exploits mouse and
touch-based input to enable intuitive and fast model editing, 2) a library of
reusable design concern models, and 3) support for model interfaces and elabo-
rate hierarchical model dependencies. With TouchRAM, a modeler can rapidly
build complex software designs following either a top-down, bottom-up, or incre-
mental design approach. The tool provides facilities to inspect different levels of
abstraction of the design being modeled by navigating the model dependencies,
to combine individual models in order to provide insight on how different models
interact, as well as generate a complete woven model, if desired.

To the best of our knowledge, TouchRAM is currently the only AOM tool
supporting aspect hierarchies. Unfortunately we were not able to verify that
claim, since the other existing AOM tools are not readily available for the general
public. These include: the Motorola WEAVR [7], which is a proprietary tool
for modeling with the SDL notation, MATA [15], an AOM plugin for Rational
Architect, and the UML/Theme tool [6].

We are currently working on providing export/import functionality to/from
standard UML to integrate TouchRAM with other MDE tools used for software
development. We are also planning on adding support for sequence diagrams and
state diagrams to specify the behavior of software designs as described in [10].
Finally, we want to integrate some of the ideas of researchers from the HCI com-
munity that have worked on touch-based manipulations of diagrams in order to
improve the TouchRAM interface. For instance, Frisch et al. [9] present a way
for handling complex and large models by introducing off-screen visualization



TouchRAM: A Multitouch-Enabled Tool 285

techniques in order to effectively navigate software models. The basic premise of
their work is to represent model elements that are clipped from the current view-
able area by proxies. Schmidt et al. [13] present several interesting multitouch
interaction techniques designed for the exploration of node-link diagrams.
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Abstract. In recent years, there has been a growing interest in the use of Foun-
dational Ontologies, i.e., ontological theories in the philosophical sense to pro-
vide real-world semantics and principled modeling guidelines for conceptual 
domain modeling languages. In this paper, we demonstrate how a philosophi-
cally sound and cognitively-oriented ontological theory of objects and moments 
(property-instances) has been used to: (i) (re)design a system of modeling pri-
mitives underlying the conceptual domain modeling language OntoUML; (ii) 
derive supporting technology for mapping these conceptual domain models to 
less-expressive computationally-oriented codification languages. In particular, 
we address here a mapping strategy to OWL (Web Ontology Language) which 
addresses the issue of temporally changing information.              

Keywords: Ontological Foundations, Conceptual Domain Modeling, Tempo-
rally Changing Information, UFO, OntoUML, OWL.          

1 Introduction  

In December 2011, the Object Management Group (OMG) released a new Request 
for Proposal (RFP) entitled SIMF (Semantic Information Modeling Federation) [1]. 
The SIMF initiative is aimed at developing a “standard that addresses the federation 
of information across different representations, levels of abstraction, communities, 
organizations, viewpoints, and authorities.  Federation, in this context, means using 
independently  conceived  information sets together for purposes beyond those for 
which the individual information sets were originally defined”. Moreover, the pro-
posal should “define, adopt and/or adapt languages to express the conceptual domain 
models,  logical  information  models  and  model  bridging  relationships  needed  to  
achieve  this federation”. 

Information Federation is inherently a semantic interoperability problem and un-
derlying this RFP there is the recognition that current modeling technologies fall short 
in suitably supporting this task of semantic interoperability. At first, at the conceptual 
domain modeling level, we need a language which is truthful to the subtleties of the 
subject domains being represented. Moreover, this language should be expressive 
enough to make explicit the ontological commitment of the different worldviews un-
derlying different models to be federated. 
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In a seminal paper [2], John Mylopoulos defines conceptual modeling as “the ac-
tivity of representing aspects of the physical and social world for the purpose of 
communication, learning and problem solving among human users” and states that 
“the adequacy of a conceptual modeling notation rests in its ability to promote under-
standing and problem solving regarding these domains among these human us-
ers…not machines”. In summary, conceptual modeling is about representing in dia-
grammatic notations, conceptualizations of reality to be shared among human users. 
For this reason, as defended by a number of authors over the years [3,4], a conceptual 
modeling notation should have its primitives grounded in the categories of a Founda-
tional Ontology. Moreover, following the aforementioned desiderata, this Founda-
tional Ontology should be one that takes both Cognition and Linguistic Competence 
seriously into consideration [5,6]. 

The expressivity in a modeling language needed to make explicit the ontological 
commitments of a complex domain tends to make this language prohibitive from a 
computational point of view in tasks such as automated reasoning. Conversely, com-
putationally tractable logical languages tend to lack the expressivity to handle this 
essential aspect of semantic interoperability. For this reason, as defended in [5,6], we 
need a two level approach for domain modeling: (i) firstly, we should develop con-
ceptual models as rich as possible to efficiently support the tasks of meaning negotia-
tion and semantic interoperability across “communities,  organizations,  viewpoints, 
and  authorities”; (ii) once the proper relationship between different information mod-
els is establish, we can generate (perhaps several different) implementations in differ-
ent logical languages addressing different sets of non-functional design requirements. 

In this paper, we illustrate a number of the aforementioned aspects. Firstly, we present 
a fragment of a Cognitive Foundational Ontology which has been employed over the 
years to analyze, re-design and integrate a number of conceptual modeling languages and 
reference models (section 2). Secondly, we illustrate how this Foundational Ontology has 
been used to redesign an Ontologically and Cognitively well-founded Conceptual Do-
main Modeling Language (CDML) (section 3). Finally, we show that these theory’s 
ontological categories (which define the ontological semantics of this CDML) can be 
directly employed for creating transformations between models in this language and 
computationally-oriented representations (section 4). In particular, we address here the 
issue of devising transformation strategies for representing the important modal (tempor-
al) aspects of this CDML in OWL (Web Ontology Language), given the limitations of 
the latter language in representing this sort of information. And at last, section 5 of the 
article presents some final considerations.                        

2 Ontological Background 

In this section, we discuss the Unified Foundational Ontology (UFO). UFO is a reference 
ontology of endurants based on a number of theories from Formal Ontology, Philosophi-
cal Logics, Philosophy of Language, Linguistics and Cognitive Psychology. In the se-
quel, we restrict ourselves to a fragment of this ontology, depicted in Figure 1. Moreover, 
due to space limitations and the focus of the paper, we present the ontological categories 
comprising UFO superficially. For an in depth presentation and corresponding formaliza-
tion, one should refer to [7].  
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Fig. 1. A Fragment of the Unified Foundational Ontology (UFO) 

2.1 Objects and Moments 

A fundamental distinction in this ontology is between the categories of Individual and 
Universal. Individuals are entities that exist in reality possessing a unique identity. 
Universals, conversely, are pattern of features which can be realized in a number of 
different individuals. The core of this ontology exemplifies the so-called Aristotelian 
ontological square or what is termed a “Four-Category Ontology” [8] comprising the 
category pairs Object-Object Universal, Moment-Moment Universal. From a meta-
physical point of view, this choice allows for the construction of a parsimonious on-
tology, based on the primitive and formally defined notion of existential dependence: 
We have that a particular x is existentially dependent (ed) on another particular y iff, 
as a matter of necessity, y must exist whenever x exists. Existential dependence is a 
modally constant relation, i.e., if x is dependent on y, this relation holds between these 
two specific particulars in all possible worlds in which x exists.  

The word Moment is derived from the german Momente in the writings of E.  
Husserl and it denotes, in general terms, what is sometimes named trope, abstract 
particular, individual accident, mode or property instance. Thus, in the scope of this 
work, the term bears no relation to the notion of time instant in colloquial language. 
Typical examples of moments are: a color, a connection, an electric charge, a  
social commitment. An important feature that characterizes all moments is that they 
can only exist in other particulars (in the way in which, for example, electrical charge 
can exist only in some conductor). To put it more technically, we say that moments 
are existentially dependent on other individuals (named their bearers). Existential 
dependence can also be used to differentiate intrinsic and relational moments: intrin-
sic moments are dependent of one single particular (e.g., color, a headache, a tempera-
ture); relational moments (or relators) depend on a plurality of individuals (e.g., an 
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employment, a medical treatment, a marriage). A special type of existential depen-
dence relation that holds between a moment x and the particular y of which x depends 
is the relation of inherence (i). Thus, for a particular x to be a moment of another par-
ticular y, the relation i(x,y) must hold between the two. For example, inherence glues 
your smile to your face, or the charge in a specific conductor to the conductor itself. 
Here, we admit that moments can inhere in other moments. Examples include the 
individualized time extension, or the graveness of a particular symptom. The infinite 
regress in the inherence chain is prevented by the fact that there are individuals that 
cannot inhere in other individuals, namely, Objects. 

Examples of objects include ordinary entities of everyday experience such as an 
individual person, a dog, a house, a hammer, a car, Alan Turing and The Rolling 
Stones but also the so-called Fiat Objects such as the North-Sea and its proper-parts 
and a non-smoking area of a restaurant. In contrast with moments, objects do not 
inhere in anything and, as a consequence, they enjoy a higher degree of independence. 
To state this precisely we say that: an object x is independent of all other objects 
which are disjoint from x, i.e., that do not share a common part with x. This definition 
excludes the dependence between an object and its essential and inseparable parts 
[7], and the obvious dependence between an object and its essential moments.  

To complete the Aristotelian Square, depicted in Figure 2, we consider here the 
categories of object universal and moment universal. We use the term universal here 
in a broader sense without making any a priori commitment to a specific theory of 
universals. A universal thus can be considered here simply as something (i) which can 
be predicated of other entities and (ii) that can potentially be represented in language 
by predicative terms. We also use the relation of instantiation (or classification) be-
tween individuals and universals. Object universals classify objects and moment uni-
versals classify moments. Examples of the former include Apple, Planet and Person. 
Examples of the latter include Color, Electric Charge and Headache. Finally, we de-
fine the relation of characterization between moment universals and the universals 
instantiated by the individuals that exemplify them: a moment universal M characte-
rizes a universal U iff every instance of U bears and instance of M.  

Object Universal

Object

Moment Universal

Moment

characterizes

inheres in

instantiates

instantiatesexemplifie
s

 

Fig. 2. The ontological Square 

2.2 Object Universals  

Within the category of object universals, we make a fundamental distinction based on 
the formal notions of rigidity and anti-rigidity: A universal U is rigid if for every in-
stance x of U, x is necessarily (in the modal sense) an instance of U. In other words, if 
x instantiates U in a given world w, then x must instantiate U in every possible world 
w’. In contrast, a universal U is anti-rigid if for every instance x of U, x is possibly  
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(in the modal sense) not an instance of U. In other words, if x instantiates U in a given 
world w, then there must be a possible world w’ in which x does not instantiate U. An 
object universal which is rigid is named here a Kind. In contrast, an anti-rigid object 
universal is termed here a Phased-Sortal [7]. The prototypical example highlighting 
the modal distinction between these two categories is the difference between the Kind 
Person and the Phase-Sortals Student and Adolescent instantiated by the individual 
John in a given circumstance. Whilst John can cease to be a Student and Adolescent 
(and there were circumstances in which John was not one), he cannot cease to be a 
Person. In other words, while the instantiation of the phase-sortals Student and Ado-
lescent has no impact on the identity of a particular, if an individual ceases to instan-
tiate the universal Person, then she ceases to exist as the same individual.  

In the example above, John can move in and out of the Student universal, while being 
the same individual, i.e. without losing his identity. This is because the principle of iden-
tity that applies to instances of Student and, in particular, that can be applied to John, is 
the one which is supplied by the Kind Person of which the Phase-Sortal Student is a sub-
type. This is always the case with Phased-Sortals, i.e., for every Phased-Sortal PS, there 
is a unique ultimate Kind K, such that: (i) PS is a specialization of K; (ii) K supplies the 
unique principle of identity obeyed by the instances of PS. If PS is a Phased-Sortal and K 
is the Kind specialized by PS, there is a specialization condition ϕ such that x is an in-
stance of PS iff x is an instance of K that satisfies condition ϕ.  

A particular type of Phased-Sortal emphasized in this article is what is named in 
the literature a Role. A role Rl is an anti-rigid object type whose specialization condi-
tion ϕ is an extrinsic (relational) one. For example, one might say that if John is a 
Student then John is a Person who is enrolled in some educational institution, if Peter 
is a Customer then Peter is a Person who buys a Product x from a Supplier y, or if 
Mary is a Patient than she is a Person who is treated in a certain medical unit. In other 
words, an entity plays a role in a certain context, demarcated by its relation with other 
entities. This meta-property of Roles is named Relational Dependence and can be 
formally characterized as follows: A universal T is relationally dependent on another 
universal P via relation R iff for every instance x of T there is an instance y of P such 
that x and y are related via R [7]. 

2.3 Qualities and Quality Structures 

An attempt to model the relation between intrinsic moments and their representation 
in human cognitive structures is presented in the theory of conceptual spaces intro-
duced in [9]. The theory is based on the notion of quality dimension. The idea is that 
for several perceivable or conceivable quality universals there are associated quality 
dimensions in human cognition. For example, height and mass are associated with 
one-dimensional structures with a zero point isomorphic to the half-line of nonnega-
tive numbers. Other properties such as color and taste are represented by multi-
dimensional structures. Moreover, the author distinguishes between integral and se-
parable quality dimensions: “certain quality dimensions are integral in the sense that 
one cannot assign an object a value on one dimension without giving it a value on the 
other. For example, an object cannot be given a hue without giving it a brightness 
value (…) Dimensions that are not integral are said to be separable, as for example 
the size and hue dimensions.”  He then defines a quality domain as “a set of integral 
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dimensions that are separable from all other dimensions” [9]. Furthermore, he defends 
that the notion of conceptual space should be understood literally, i.e., quality do-
mains are endowed with certain geometrical structures (topological or ordering struc-
tures) that constrain the relations between its constituting dimensions. Finally, the 
perception or conception of an intrinsic aspect can be represented as a point in a quali-
ty domain. This point is named here a quality value. 

Once more, an example of a quality domain is the set of integral dimensions related 
to color perception. A color quality c of an apple a takes its value in a three-
dimensional color domain constituted of the dimensions hue, saturation and brightness. 
The geometric structure of this space (the color spindle [9]) constrains the relation 
between some of these dimensions. In particular, saturation and brightness are not 
totally independent, since the possible variation of saturation decreases as brightness 
approaches the extreme points of black and white, i.e., for almost black or almost 
white, there can be very little variation in saturation. A similar constraint could be 
postulated for the relation between saturation and hue. When saturation is very low, all 
hues become similarly approximate to grey. 

We adopt in this work the term quality structures to refer to quality dimensions and 
quality domains, and we define the formal relation of association between a quality struc-
ture and an intrinsic aspect universal. Additionally, we use the terms quality universals 
for those intrinsic moment universals that are directly associated with a quality structure, 
and the term quality for an aspect classified under a quality universal. Furthermore, we 
define the relation of valueOf connecting a quality to its quality value in a given quality 
structure. Finally, we also have that quality structures are always associated with a unique 
quality universal, i.e., a quality structure associated with the universal Weight cannot be 
associated with the universal Color. This is not to say, however, that different quality 
structures cannot be associated with the same quality universal. For instance, with the 
quality universal color, we can have both the HSB (Hue-Saturation-Brightness) structure 
and the RGB (Red-Green-Blue) structure. In Figure 3 below, we illustrate an entity, its 
intrinsic color quality and the value of this quality mapped to into two different quality 
structures, hence, producing two different (albeit comparable) quality values.  

 

Fig. 3. An object, some of its inhering qualities and the associated quality structures 
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The view of qualities defended here assumes that change is substitution (as op-
posed to variation) of moments, i.e. “the color of x turned from red to brown” is 
represented by a red-quality of x that temporally precedes a brown-quality of x. As a 
consequence, we have that although a quality q can have different quality values in 
different quality spaces, their values in each of these structures cannot be changed. 
Taking this view into consideration, we elaborate further in two orthogonal partitions 
capturing specific characteristics of qualities which are related to aspects of temporal 
change of their bearers.  

In the first partition, we distinguish between necessary (mandatory) versus con-
tingent (optional) qualities; in the second, we distinguish between immutable versus 
mutable ones. The former distinction refers to the need for an entity to bear that 
property, regardless of its value. For instance, suppose that in a given conceptualiza-
tion of (legal) Person, both name and age are mandatory characteristics of people 
(every person has a name and an age) whilst ssn (social security number) and nick-
name (alias) are, in contrast, optional characteristics of people. Now, notice that the 
relation between a person and age is a relation of generic dependence, i.e., the same 
person can bear different age qualities in different situations as long as they are all 
instances of the quality universal age. This brings us to the second of these partitions: 
a quality q is immutable to a bearer x of type T iff x must bear that very same quality 
in all possible situations in which x instantiates T. In this case, the relation between x 
and q is a relation of specific dependence (as opposed to a generic one). Again, let us 
suppose that, in a given conceptualization, (legal) persons cannot change their proper 
names. In this situation, a name would not only be a necessary but also an immutable 
characteristic of people. Suppose now that, in this conceptualization, that although ssn 
is an optional characteristic of people, once an ssn is assigned to a person, it cannot be 
changed. In this case, ssn would be an immutable and contingent quality. Finally, in 
this conceptualization, we assume that nicknames are both optional to people and, 
once assigned, can always be changed. In this case, nickname would be an example of 
a contingent and mutable quality.        

2.4 Relators, Relations, Roles and Qua Individuals 

Following the philosophical literature, we recognize here two broad categories of 
relations, namely, material and formal relations [7]. Formal relations hold between 
two or more entities directly, without any further intervening individual. Examples 
include the relations of existential dependence (ed), subtype, instantiation, parthood, 
inherence (i), among many others not discussed here [7]. Domain relations such as 
working at, being enrolled at, and being the husband of are of a completely different 
nature. These relations, exemplifying the category of Material relations, have materi-
al structure of their own. Whilst a formal relation such as the one between Paul and 
his headache x holds directly and as soon as Paul and x exist, for a material relation of 
being treated in between Paul and the medical unit MU1 to exist, another entity must 
exist which mediates Paul and MU1. These entities are termed relators.  
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Relators are individuals with the power of connecting entities. For example, a med-
ical treatment connects a patient with a medical unit; an enrollment connects a student 
with an educational institution; a covalent bond connects two atoms. The notion of 
relator is supported by several works in the philosophical literature [7] and, they play 
an important role in answering questions of the sort: what does it mean to say that 
John is married to Mary? Why is it true to say that Bill works for Company X but not 
for Company Y? Again, relators are special types of moments which, therefore, are 
existentially dependent entities. The relation of mediation (symbolized m) between a 
relator r and the entities r connects is a sort of (non-exclusive) inherence and, hence, a 
special type of existential dependence relation. It is formally required that a relator 
mediates at least two distinct individuals [7].   

An important notion for the characterization of relators (and, hence, for the charac-
terization of material relations) is the notion of foundation. Foundation can be seen as 
a type of historical dependence [7,10], in the way that, for instance, an instance of 
being kissed is founded on an individual kiss, or an instance of being punched by is 
founded on an individual punch, an instance of being connected to between airports is 
founded on a particular flight connection. Suppose that John is married to Mary. In 
this case, we can assume that there is an individual relator m1 of type marriage that 
mediates John and Mary. The foundation of this relator can be, for instance, a wed-
ding event or the signing of a social contract between the involved parties. In other 
words, for instance, a certain event e1 in which John and Mary participate can create 
an individual marriage m1 which existentially depends on John and Mary and which 
mediates them. The event e1 in this case is the foundation of relator m1.     

Now, let us elaborate on the nature of the relator m1. There are many intrinsic mo-
ments that John acquires by virtue of being married to Mary. For example, imagine all 
the legal responsibilities that John has in the context of this relation. These newly 
acquired properties are intrinsic moments of John which, therefore, are existentially 
dependent on him. However, these moments also depend on the existence of Mary. 
We name this type of moment externally dependent moments, i.e., externally depen-
dent moments are intrinsic moments that inhere in a single individual but are existen-
tially dependent on (possibly multiple) other individuals. The individual which is the 
aggregation of all externally dependent moments that John acquires by virtue of being 
married to Mary is named a qua individual (in this case, John-qua-husband-of-Mary). 
A qua individual is, thus, defined as an individual composed of all externally depen-
dent moments that inhere in the same individual and share the same foundation. In the 
same manner, by virtue of being married to John, Mary bears an individual Mary-qua-
wife-of-John. 

The notion of qua individuals is the ontological counterpart of what has been 
named role instance in the literature [11] and represent the properties that characterize 
a particular mode of participation of an individual in a relation. Now, the entity which 
is the sum of all qua individuals that share the same foundation is a relator. In this 
example, the relator m1 which is the aggregation of all properties that John and Mary 
acquire by virtue of being married to each other is an instance of the relational proper-
ty marriage. The relation between the two qua individuals and the relator m1 is an 
example of formal relation of parthood [7].  
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The relator m1 in this case is said to be the truthmaker of propositions such as 
“John is married to Mary”, “Mary is married to John”, “John is the husband of Mary”, 
and “Mary is the wife of John”. In other words, material relations such as being  
married to, being legally bound to, being the husband of can be said to hold for the 
individuals John and Mary because and only because there is an individual relator 
marriage m1 mediating the two. Thus, as demonstrated in [7,10], material relations are 
purely linguistic/logical constructions which are founded on and can be completely 
derived from the existence of relators. In fact, in [7], we have defined a formal rela-
tion of derivation (symbolized as der) between a relator type (e.g., Marriage) and each 
material relation which is derived from it.   

Finally, there is an intimate connection between qua individuals and role types: let 
T be a natural type (kind) instantiated by an individual x, and let R be a role type spe-
cializing T. We have that there is a qua individual type Q such that x instantiates R iff 
x bears an instance of Q. Alternatively, we have that for every role type R there is a 
relator type RR such that x instantiates R iff x is mediated by an instance of RR. Note 
that this conforms to the formal property of roles as relationally dependent types. 

The summary of the discussion promoted in this section is illustrated in Figures 4 
to 6. Figure 4, illustrates the inherence relation between John and his externally de-
pendent moments which are existentially dependent on Mary (as well as analogous 
relations in the converse direction). In figure 5, John instantiates the role type Hus-
band (which is a specialization of the kind (Male) Person) iff there is a qua individual 
John-qua-husband-of-Mary which inheres in John. Moreover, this figure illustrates 
that the qua individuals John-qua-husband-of-mary and Mary-qua-wife-of-John are 
mutually existentially dependent. In other words, John cannot be the Husband of 
Mary without Mary being the wife of John. Finally, Figure 6 shows that the material 
relation married to is derived from the relator type Marriage and, thus, tuples such as 
<John,Mary> and <John,Mary> are instances of this relation iff there is an instance of 
Marriage that mediates the elements of the tuple. 

 

Fig. 4. Objects and their inhering externally dependent moments: in this example, the object 
bears a number of moments (j1,j2,j3), which inhere (i) in John but which are also existentially 
dependent (ed) on Mary. Mutatis Mutandis, the model depicts a number of moments of Mary 
(m1,m2,m3), which inhere in Mary but which are also existentially dependent on John. 
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Fig. 5. Objects, their instantiating roles and their inhering qua individuals: in this example, 
John and Mary instantiate (::) the roles Husband and Wife, respectively, in virtue of the qua 
individuals that inhere (i) in them. These roles are specializations of the type Person ( ). 
Moreover, John-qua-husband-of-Mary (which is an aggregations of the moments j1, j2 and j3) is  
mutually existentially dependent (ed) on Mary-qua-wife-of-John (an aggregation of moments 
m1, m2 and m3).     

 

Fig. 6. Material Relations are founded on relators that mediate their relata: in this example, the 
marriage relator M1 between John and Mary mediates (m) these two entities by virtue of being 
existentially dependent on both of them. This relator is an aggregation of the qua individuals 
John-qua-husband-of-Mary and Mary-qua-wife-of-John (represented by the two ellipses). 
Moreover, M1 is the foundation for the tuples <John,Mary> and <Mary,John>, which instan-
tiate (::) the material relation married to, which, in turn, is derived (der) from the relator uni-
versal Marriage which M1 instantiates.  
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3 Using a Foundational Ontology to Design a Well-Founded 
Conceptual Modeling Language 

In this section, we present a Conceptual Domain Modeling language termed On-
toUML [7]. OntoUML is an example of a conceptual modeling language whose  
metamodel has been designed to comply with the ontological distinctions and axioma-
tization of the UFO foundational ontology. This language and its foundations are 
currently being considered as candidates to contribute to a response to the SIMF Re-
quest for Proposal [1].   

The OntoUML metamodel contains: (i) elements that represent ontological distinc-
tions  prescribed  by  an  underlying  foundational  ontology;  (ii)  constrains  that  
govern  the possible relations that can be established between these elements. These 
constraints, which are derived from the axiomatization of the ontological theory, re-
strict the ways in which the modeling primitives can be related. The goal is to have a 
metamodel such that all grammatically correct specifications according to this meta-
model have logical models that represented intended state of affairs of the underlying 
conceptualization [5].  

For instance, the language has modeling primitives to explicitly represent the no-
tions of kinds, subkind and roles as well as the notions quality and relator previously 
discussed. Kinds and subkinds are represented by the corresponding stereotypes 
«kind» and «subkind». In an analogous manner, roles are represented by the stereo-
type «role». In the axiomatization of the UFO ontology we have that anti-rigid types 
cannot be a supertype of rigid one [7]. So, as an example of formal constraint in this 
language, we have that classes stereotyped as «kind» or «subkind» cannot appear in 
an OntoUML model as a subtype of class stereotyped as «role». 

As discussed at length in [12], quality universals are typically not represented in a 
conceptual model explicitly but via attribute functions that map each of their in-
stances to points (quality values) in a quality structure. Accordingly, the datatype 
associated with an attribute A of class C is the representation of the quality structure 
that is the co-domain of the attribute function represented by A. In other words, a 
quality structure is the ontological interpretation of the (Onto)UML datatype con-
struct. Moreover, we have that a multidimensional quality structure (quality domain) 
is the ontological interpretation of the so-called structured datatypes. Quality domains 
are composed of multiple integral dimensions. This means that the value of one di-
mension cannot be represented without representing the values of others. The fields of 
a datatype representing a quality domain QD represent each of its integral quality 
dimensions. Alternatively, we can say that each field of a datatype should always be 
interpreted as representing one of the integral dimensions of the QD represented by 
the datatype. The constructor method of the datatype representing a quality domain 
must reinforce that its tuples always have values for all the integral dimensions. Final-
ly, an algebra (as a set of formal constraints) can be defined for a datatype so that the 
relations constraining and informing the geometry of represented quality dimensions 
are also suitably characterized.  

There are, nonetheless, two situations in which one might want to represent quality 
universals explicitly. The first of these is when we want to represent that a quality might 
be projected to different quality spaces (i.e., the underlying quality universal is associated 
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with alternative quality structures). This idea is represented in figure 7. In this case, the 
color quality aggregates the different values (in different quality spaces) that can be asso-
ciated with that object (the apple, in this case). Notice that, in these situations, it is as if the 
color quality is representing a certain ‘aspectual slice’ of the Apple, or the Apple-qua-
colored object.  

 

Fig. 7. Representing quality types which can be associated to multiple quality structures [12] 

A second situation in which one might want to represent qualities explicitly is 
when modeling a temporal perspective on qualities. This is illustrated in Figure 8 
below. In that model, we have different color qualities (with different associated qual-
ity values) inhering in a given apple in different situations.    

 

Fig. 8. Temporal change in properties as quality replacement 

As illustrated in Figures 7 and 8, in this language, one can employ the stereotype 
«quality» to explicitly represented quality universals and a stereotyped relation of 
«characterization» to represent its ontological counterpart. As discussed in section 2, 
the characterization relation between an intrinsic moment universal and the universal 
it characterizes is mapped at the instance level onto an inherence relation between the 
corresponding individual moments and their bearers. That means that every instance 
m of a class M stereotyped as «quality» is existentially dependent of an individual c, 
which is an instance of the class C related to M via the «characterization» relation. 
Inherence has the following characteristics: (a) it is a sort of existential dependence  
relation; (b) it is a binary formal relation; (c) it is a functional relation. These three 
characteristics impose the following metamodel constraints on the «characterization» 
construct: by (a) and (c), the association end connected to the characterized universal 
must have the cardinality constraints of one and exactly one; by (a), the association 
end connected to the characterized universal must have the meta-attribute (isReadOn-
ly = true); «characterization» associations are always binary associations. 
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Regarding mutability/immutability and necessity/contingency of qualities, we use 
the following representation strategy. The necessity of a given quality (or, conse-
quently, of a given quality value) is represented by a minimum cardinality ≥ 1 in the 
association end connected to the «quality» class (or the association end connected to 
the associated datatype). Alternatively, a contingent quality is represented by a mini-
mum cardinality = 0 in the referred association end. The immutability of a quality (or 
the corresponding quality value) is represented by using the tagged value readOnly 
applied to the referred association end (i.e., by making its meta-attribute isReadOnly 
= true). Finally, the absence of this tagged value in a given association end indicates 
that a mutable quality (quality value) is being represented. 

Finally, in the language, the stereotype «relator» is used to represent the ontologi-
cal category of relator universals. As discussed in section 2, a relator particular is the 
actual instantiation of the corresponding relational property. Material relations stand 
merely for the facts derived from the relator particular and its mediating entities. In 
other words, relations are logico-linguistic constructions which supervene on relators.  
Therefore, as argue at length in [7,10], the representation of the relators of material 
relations must have primacy over the representation of the material relations them-
selves. In this paper, we simply omit the representation of material relations.  

In the sequel, we provide a final example of formal constraints incorporated in the 
OntoUML metamodel which is derived from its underlying ontological foundations. 
Relators are existentially dependent entities. Thus, as much as a characterization rela-
tion, mediation is also a directed, binary, existential dependence relation. As conse-
quence, we have that a relation stereotyped as «mediation» in OntoUML must obey 
the following constraints: (i) the association end connected to the mediated universals 
must have the cardinality constraints of at least one; (ii) the association end connected 
to the mediated universals must have the meta-attribute (isReadOnly = true); (iii) 
«mediation» associations are always binary associations. Moreover, since a relator is 
dependent (mediates) on at least two numerically distinct entities, we have the follow-
ing additional constraint (iv) Let R be a class representing a relator universal and let 
{C1…Cn} be a set of classes mediated by R (related to R via a mediation relation). 
Finally, let lowerCi be the value of the minimum cardinality constraint of the associa-
tion end connected to Ci in the mediation relation. Then, (

=

n

i 1

lowerCi) ≥ 2. 

3.1 Discussion 

As shown in [7], the distinction among rigid and anti-rigid object types incorporated 
in the OntoUML language provides for a semantically precise and ontologically well-
founded semantics for some of the much discussed but still ad hoc distinctions among 
conceptual modeling constructs. Since its first proposal in this line of work [13], this 
distinction has had an impact in conceptual model validation [14], in the discovery of 
important ontological design patterns [13], as well as in the formal and ontological 
semantics of derived types in conceptual modeling [15]. Moreover, it has influenced 
the evolution of other conceptual modeling languages, such as ORM 2.0 [16]. Finally, 
as argued in [7,17], this distinction has a direct impact even in the choice of different 
design alternatives in different implementation environments. 
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Analogously, the explicit representation of intrinsic moments and quality structures 
in the language allows for providing an ontological semantics and clear modeling 
guidelines for attributes, datatypes, weak entities and domain formal relations [10,12]. 
Moreover, the model presented in Figure 7 illustrates a design pattern for modeling 
properties associated to alternative quality structures. Since its first proposal in [12], 
this pattern has been applied in several domains (e.g., [18]).   

Finally, the strategy for the representation of material relational properties dis-
cussed here has been applied in a series of publications to address a number of impor-
tant and recurrent conceptual modeling problems. For instance, in [10], it was used to 
address the problem of the collapse of cardinality constraints in material relations; in  
[19], it has used as an integral part in the development of a solution the so-called 
problem of transitivity of parthood relations; in [20], in an industrial case study of 
ontology reverse engineering, the systematic identification of the material content of 
relations (i.e., relators) was reported as a fruitful technique for knowledge elicitation 
when interacting with domain experts; in [21], the ontological theory of relations 
underlying this approach has been used to disambiguate the semantics of two funda-
mental modeling constructs in Goal-Oriented Requirements Engineering; finally, in 
[22], the same theory has been employed to provide ontological semantics and clear 
modeling guidelines for disambiguating the constructs of association specialization, 
association subsetting and association redefinition in UML 2.0.    

Because the distinctions and constraints comprising this language are explicitly and 
declaratively defined in the language metamodel, they can be directly implemented 
using metamodeling architectures such as the OMG’s MOF (Meta Object Facility). 
Following this strategy, [7] reports on an  implementation  of  an OntoUML  graphi-
cal  editor  by  employing  a  number  of  basic Eclipse-based  frameworks such as the 
ECore (for  metamodeling purposes)  and MDT (for the purpose of  having automatic  
verification of OCL  constraints).  An interesting aspect of this strategy is that, once 
the ontological constraints have been incorporated in  the  metamodel,  they  give  rise  
to  syntactical  constraints.  These  constraints  in  the language  metamodel,  thus,  
limit  the  set  of  grammatically  correct  models  that  can  be produced using the 
language to those whose instances only represent consistent state of affairs according 
to the underlying ontology.    

4 From an Ontology-Driven Conceptual Domain Model  
to a Computationally-Driven Specification in OWL 

4.1 Temporally Changing Information in Conceptual Domain Models 

The model of Figure 9 below (termed as running example in the remainder of this 
section) illustrates some important aspects related to change that should be hig-
hlighted in the discussion that follows. This model represents a situation in which a 
person, who can be a man or a woman, is identified by his/her name. Moreover, 
he/she can have a social security number (ssn) that cannot change. He/she has an age 
that change annually, and can also be referred by one or more nicknames that may 
change along his/her life. Finally, a man can get married to only one woman per time 
(and vice-versa), thus, becoming husband and wife, respectively. 
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We distinguish here three sources of changes: attributes, relations and type instan-
tiation. Regarding intrinsic properties, we can classify them under the dimensions of 
necessary (mandatory) versus contingent (optional), and mutable versus immutable 
as discussed in section 2. Furthermore, the generic dependence between the Kind 
Person and Quality Universal age is also present in the relation marriedTo between 
Husband and Wife (and vice-versa). In other words, both association ends of the rela-
tion marriedTo, albeit mandatory for the associated types (Husband and Wife), are 
mutable. Finally, we have a third source of change in this model, related to the anti-
rigidity of the role universals Husband and Wife. As previously discussed, a particular 
man instantiates the Role Husband contingently and when mediated by a particular 
marriage relator. Mutatis Mutandis, the same can be said for the role Wife. 

 
Fig. 9. An OntoUML Conceptual Domain Model with sources of temporal change 

4.2 OWL 

The OWL (Web Ontology Language) is a well known formal language for 
representing ontologies on the Semantic Web. In this work, we are particularly inter-
ested in its DL based variants, which we refer simply as OWL in the remainder of this 
text. DL consists of a family of subsets of classical first order logics that is designed 
focusing on decidable reasoning. Using DL-based languages, one is able to represent 
static scenarios with immutable truth-values such that the information about the do-
main can be completed but cannot be really changed. In particular, the instantiation of 
a class or property cannot be retracted, except through external intervention. For ex-
ample, once a model represents that John being 28 years old instantiates the class 
Husband, this information cannot be changed. 

DL has two important characteristics to be taken into account here, namely, open 
world assumption (OWA) and monotonicity. The former entails that what is stated in 
the model is true but not necessarily the entire truth about a domain, i.e., new infor-
mation can always be discovered about the represented entities. However, a monoton-
ic logical system is such that the addition of new information/premises must not inter-
fere in the information that has been previously derived. Consequently, what is true in 
one situation must remain true regardless of any addition of information to the model.  
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In an OWL model, we can codify the distinction between mandatory versus optional 
properties (represented by cardinality constraints). However, we cannot represent the 
distinction between immutable versus mutable, neither the one between rigid versus anti-
rigid types. Due to the aforementioned monotonicity of the language, all stated relations, 
attribute assignments and classification assignments become immutable. In order to cir-
cumvent these limitations, a number of authors have been investigating different strate-
gies for representing temporally changing information in OWL [24, 25].  

Most of these approaches employ a strategy which consists of interpreting all en-
during entities in a domain model (e.g., objects, qualities, relators) as events 
(processes). This view is grounded in a philosophical stance named Perdurantism 
[26,27]. In a perdurantistic view, a domain individual is seen as a 4D (four-
dimensional) “space-time worm” whose temporal parts are slices (snapshots) of the 
worm. As argued in [6], although such a view can be accurate in representing the 
current state of knowledge in natural sciences, the distinction between enduring and 
perduring entities is a fundamental cognitive distinction, present both in human cogni-
tion and language. For this reason, as argued in [5], we advocate that such a distinc-
tion should be explicitly considered both in conceptual modeling languages as well as 
in their underlying foundational ontologies. Moreover, besides the philosophical con-
troversy associated with perdurantism, there are a number of issues triggered by such 
4D-driven approaches which can become prohibitive for certain design scenarios. 
Some of these issues are discussed in the next section and are addressed by an alterna-
tive approach considered in this article, namely, a reification-driven approach. 

Property-reification is definitely not a new idea. In fact, it is a well-know solution 
for representing temporal information in knowledge representation going back at least 
to the eighties. Despite this, and despite some clear advantages of this approach for 
certain design problems, this solution is dismissed in [24] for the lack of an ontologi-
cal interpretation (or ontological counterpart) for the reified properties. In the next 
section, we demonstrate that: (i) the ontological categories underlying OntoUML 
provides for a direct ontological interpretation for these reified entities in the pro-
posed approach; and (ii) these categories can be directly employed for creating trans-
formation patterns between OntoUML models and OWL specifications, in which at 
least part of the original modal semantics is retained.           

4.3 Reifying Temporal Knowledge in OWL Supported by Ontological Categories 

Reification is an operation that makes the reifed (objectified) entity amenable to refer-
ence, qualification and quantification. In [28], Quine presents reification as a strategy for 
forging links between sentences or clauses represented in a first order logic (FOL) lan-
guage. For example, the sentence ‘Sebastian walked slowly and aimlessly in Bologna at 
t’ can be reified as ∃x (x is a walk and x is slow and x is aimless and x is in Bologna and x 
is at t and x is by Sebastian) where x is the objective reference that connect all clauses. 

In this section, we are particularly interested in reification as a strategy for 
representing temporal knowledge using DL-based versions of OWL. It means that we 
are restricted to a subset of FOL whose predicates are at most binary. For example, 
the statement ‘John is married to Mary at t’ is to be reified as something like ∃x (isRe-
latedTo(x, John) ∧ isRelatedTo(x, Mary) ∧ holds(x, t)). Indeed, in face of this repre-
sentation some questions arise: what is this thing that is related to John and Mary? 
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Can this thing keep existing (holding) without being related to both John and Mary? 
Are John and Mary related to each other in the very same way? 

In the sequel, we employ the ontological notions defined in section 2 to answer 
such questions and to provide ontological meaning for the reified temporal know-
ledge. More specifically, we intend to reify/objectify the individuals’ properties and to 
attribute to them the time interval during which they hold having a certain value. For 
example, the time interval during which John has the age of 27 years old, or the one 
during which he is married to Mary. 

As mentioned, reifying the properties of an individual allows one predicating and 
quantifying over them. It includes attributing to them a time interval during which it is 
held to be true. Thereby, in Figure 10, we present two illustrative schemas of applying 
an ontologically-grounded reification approach to the running example in a temporal 
view. The object and moment individuals are represent by graphical elements in dif-
ferent shapes, whose projection onto the timeline corresponds to the individual’s tem-
poral extension. Moreover, the spatial inclusion of elements represents the inherence 
relation (i.e. the spatially included elements inhere in the container) and also reflects 
the temporal inclusion imposed by the existential dependence. The mandatory proper-
ties are represented as rectangles, while the optional properties are represented as 
rounded corner rectangles. Moreover, the mutable properties are in a lighter grey 
shade than those immutable ones. 

18 19 20 21 22 23 24

 

Fig. 10. A schematic representation of an object with (a) its reified qualities; (b) representing 
reified relators and qua individuals 

In Figure 10a, the larger rectangle represents the object individual John that is an 
instance of the class Person; the elements contained in that rectangle represent the 
qualities corresponding to the reification of John´s attributes. Particularly, the quality 
John’s name has the same width extension than the individual John, representing that 
it has the same temporal extension of John. In contrast, the necessary and mutable 
attribute age is represented by many qualities (John’s ages) that together must have 
the same width extension than the individual John. The Figure 10b represents the 
founding relator of the material relation marriedTo between the object individuals 
John and Mary, as well as the reification of the correspondent role instantiations (qua 
individuals). The relator that mediates the couple is represented by the rounded corner 
rectangle identified as JMMarriage, and the qua-individuals that compose it are 
represented by the elements connected to it by an arrow. 

In Figure 11, we propose a framework that reflects the ontological notions pre-
sented in section 2 and allows for representing temporal information in OWL. Every 
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individual has a temporal extent; individuals are specialized into moments and ob-
jects; a moment is existentially dependent of at least one individual, and can be either 
a relator or an intrinsic moment. The former mediates two or more individuals, whilst 
the latter inheres in exactly one individual and can be either a quality or a qua-
individual; a quality has one datatype value; a qua individual is part of one relator 
and is existentiallyDependentOf at least another qua-individual. The relations inhere-
sIn, mediates and partOf are specializations of existentiallyDependentOf. 

Following, the model of Figure 9 will be used as support for explaining a number 
of methodological guidelines discussed in the sequel which can systematically be 
used to specialize the framework represented in Figure 11.  

 

Fig. 11. An Ontology-based Framework for the systematic reification of properties in OWL. 
The classes depicted in gray are original OWL constructs which are then specialized by ele-
ments of the proposed framework (whose classes are depicted in white).  

a. The rigid/necessary classes (e.g. Person) should specialize the class Object. 
b. The anti-rigid/contingent classes (roles) should be represented as subclasses of the 

class QuaIndividual. This qua individual type classifies all the qua-individuals result-
ing from the reification of the participation of individuals of a same object class in a 
same material relation. For example, the class Husband is represented as the class 
QuaHusband, which group all the qua-individuals resulting from the reification of the 
participation of Man’s individuals in the material relation marriedTo.  

c. The material relations of the domain should be explicitly represented as sub-
classes of class Relator. This relator types classifies all the relator individuals re-
sulting from the reification of the same material relation. For example, the materi-
al relation marriedTo is represented as the Marriage class; 

d. Attributes should be represented as subclasses of the class Quality. A quality type 
classifies all the qualities resulting from the reification of a certain attribute of in-
dividuals of the same type. For example, the attribute name of the concept Person 
is represented as the class Name, which classifies all the quality individuals result-
ing from the reification of the instantiation of the attribute name of individuals of 
the class Person.  

Moreover, we must restrict which and how properties can be or must be applied over 
the classes. We use the terms minC, maxC and exacC for referring to the minimum, 
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maximum and exact values of cardinality holding for attributes or relation association 
ends, respectively. 

a. every instance of a qua-individual class must inheresIn exactly one individual of 
the correspondent object class and only inheresIn it. For example, any individual 
quaHusband must inheresIn exactly one instance of Man and cannot inheresIn 
anything else;  

b. every instance of a qua-individual class must be partOf exactly one individual of 
the correspondent relator class and only be partOf it. For example, any individual 
quaHusband must be partOf exactly one instance of Marriage and cannot be par-
tOf anything else; 

c. every instance of a qua-individual class must be existentiallyDependentOf all 
other qua-individuals participating in the same relation. For example, any individ-
ual quaHusband must be existentiallyDependentOf all other qua-individuals that 
are part of the relator Marriage and cannot be existentiallyDependentOf anyother 
qua-individual; 

d. every instance of a relator class must mediates only individuals of the correspon-
dent object classes (e.g. an individual of the class Marriage must mediates only 
instances of the classes Man or Woman); 

e. every instance of a relator class must have as part (inverse partOf) only individu-
als of the qua-individual classes that inhere in the individuals of object classes that 
the relators mediate (e.g. any individual of the class Marriage must have as part 
only instances of the classes QuaHusband or QuaWife. These qua individuals in-
here in individuals of the classes Man and Woman mediated by individuals of the 
class Marriage);  

f. every instance of a relator class must have as part (inverse partOf) at least minC, 
at most maxC or exactly exactC instances of the correspondent qua-individual 
classes (e.g. any individual of the class Marriage must be part of exactly one in-
stance of the class Man and exactly one instance of the class Woman); 

g. every instance of a relator class must mediate at least minC, at most maxC or 
exactly exactC instances of the correspondent object classes (e.g. any individual 
of the class Marriage must mediate exactly one instance of the class Man and ex-
actly one instance of the class Woman); 

h. for immutable material relation, the domain individuals must be mediated by 
(inverse mediates) at most maxC or exactC instances of the relator class. Other-
wise, if it is mutable, no cardinality restrictions are imposed to the number of 
relators mediating the domain individuals (inverse mediates); 

i. every instance of a quality class must inheresIn exactly one individual of the corres-
pondent object class and only inheresIn it. For example, any individual Name must 
inheresIn exactly one instance of Person and cannot inheresIn anything else; 

j. every instance of a quality class must hasValue exactly one value of the corres-
pondent datatype and only it. For example, any individual Name must hasValue 
exactly one String value and cannot be related via hasValue to anything else; 

k. for necessary attributes, every instance of the correspondent object class must 
bear (inverse inheresIn) at least one instance of the quality class. Otherwise, for 
contingent attributes, the minimum cardinality is not restricted. For example, 
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every instance of the class Person must have at least one instance of the quality 
Age inhering in it, whilst such restriction does not hold for the quality SSN. 

l. for immutable attributes, every instance of the correspondent object class must 
bear (inverse inheresIn) at most maxC or exactly exacC instances of the quality 
class. In contrast, for mutable attributes, the maximum cardinality is not re-
stricted. It means that every time the attribute changes, a new quality individual is 
necessary for holding the new value. For example, every instance of the class Per-
son must have at most one instance of the quality SSN inhering in it, whilst such 
restriction does not hold for the quality Age. 

Figure 12 depicts an implementation of the running example following the proposed 
reification approach. Notice that possible instantiations of this model are the situa-
tions illustrated by Figures 10.a and 10.b.    

 

Fig. 12. Mapping the model of Figure 9 to OWL using the framework of Figure 11. In this 
model, the domain independent classes specializing Thing in figure 11 (i.e., the classes pro-
posed in our framework representing different ontological categories of individuals) are de-
picted in full-lined grey boxes; domain-specific classes extending those are represented in full-
lined white boxes. Finally, specializations of the OWL construct datatype are represented in 
dashed grey boxes. 

4.4 Discussion 

In a logical theory representing a conceptual model, time-indexed properties are often 
represented introducing a temporal parameter in the instantiation relation, i.e. at t, x is  an 
instance of the property P. There are at least three different interpretations of this  tempo-
ralization: (i) ‘at  t’  is  a  modal  operator  that applies to propositions, like ‘at t (x is 
red)’; (ii) t is just an additional argument that transforms unary properties in binary ones 
(i.e. in  relations)  like  ‘x  is  red-at-t’; (iii) ’at t’ is a modifier of the particular, i.e., ‘x-at-t 
is red’, where ‘x-at-t’ is, in a four dimensional view, the temporal slice of x. 

Both option (i) and a solution somewhat similar to option (ii) are widely used in 
conceptual modeling (see Figures 13.a and 13.b, respectively). Option (iii) can be 
found in some novel proposals in data modeling (see, for instance, [29]). The view 
defended here allows for an alternative representation, which is similar but not equiv-
alent to (iii). As previously discussed, this alternative view assumes that a change in 
an endurant is given by a substitution of moments, i.e., the temporal information is 
coded in the temporal extension of moments. This solution could be easily 
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represented in Figure 8 without adding complexity to the definition of intrinsic prop-
erties. Additionally, this solution has two benefits when compared to (iii). First, as  
opposed to (iii), one does not necessarily commit to four-dimensionalism, since mo-
ments  can  be  conceived  as  persisting  entities  in  the  same  way  as  substantial  
individuals  (objects). In other words, in the alternative proposed in this paper, one 
does not have to assume the existence of temporal slices of moments. Second, in a 
(Onto)UML class diagram for conceptual modeling, classes are supposed to represent 
persisting objects such as Apple in (iii), not snapshots of objects  such  as  AppleS-
napshot  in  the  same  model.  Snapshots of  objects  that  instantiate  the  types de-
picted in a class diagram are supposed be represented via instance diagrams. 

 
 

 

Fig. 13. Different strategies for representing temporally changing information in Conceptual 
Modeling: (a-left) time modality; (b-center) time-indexed relations (c) entity snapshots 

Regarding the conceptual representations in Figure 13, notice that neither (a) nor 
(b) could be directly represented in OWL since: (i) OWL cannot represent ternary 
relations; (ii) OWL properties cannot have properties themselves. Regarding (c), in 
[25], we have proposed two alternative approaches for representing temporal informa-
tion in OWL following a 4D (perdurantist) view. In both approaches, we divide the 
entities in two levels: individual concepts level, for the properties that do not change, 
and time slice level, for registering the changes on mutable properties. Although that 
proposal allows one to reasonably represent the intended models, those approaches 
have the following drawbacks:  

 
• proliferation of time slices: any change occurred in a certain time slice leads to 

what we call a proliferation of time slices. It means that it is necessary to dupli-
cate every time slice in the chain of connected instances that includes the instance 
on change; 

• oddity in ontological interpretation of contingent concepts: in 4D approaches the 
anti-rigid classes are classes that apply only to time-slices, whilst the rigid classes 
apply both to 3D entities (ordinary objects, qualities and relators) and their time-
slices. This makes the ontological interpretation for the anti-rigid classes (like 
Husband and Wife) rather odd; 

• repetition of the immutable information on time slice level: the properties that are 
immutable but not necessary are represented at the time slice level. This leads to 
a tedious repetition of this information across the time slices of the same individ-
ual concept; 

• not guaranteeing immutability in the time slice level: since the immutable proper-
ties represented at time slice level must be repeated across the time slices of the 
same individual concept, we cannot  guarantee that this property value does not 
change across time slices. 
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If we compare the reification approach proposed here with these 4D-based proposals, 
the following can be stated regarding the aforementioned drawbacks: 

• proliferation of (time-slice) individuals: changes no longer cause proliferation of 
individuals. Although we do have, in this case, the need for new (reified) individ-
uals, the number of these individuals do not increase for each change. For this 
reason, under this respect, we consider the reification proposal more scalable than 
the 4D ones; 

• oddity in the ontological interpretation of contingent concepts: we have homoge-
neous ontological interpretation for necessary and contingent concepts in the rei-
fication proposal; 

• repetition of the immutable contingent information: except for the mutable prop-
erties, no other property is repeated in the reification proposal; 

• not guaranteeing the immutability of contingent properties: since the immutable 
properties are represented just once in the reification proposal, its value cannot 
change. 
 

It is important to highlight that, despite these benefits, there are also limitations and 
drawbacks in the reification approach. For instance, as pointed out in [24], when reifying 
relations, we lose the ability to (directly) associate with them meta-properties such as 
symmetry, reflexivity, transitivity and functionality. However, as discussed in depth in 
[7], the application of these meta-properties to material relation is far from a trivial issue. 
For instance: (i) material relations are never reflexive (since relators must mediate at least 
two distinct individuals); (ii) symmetry has to differentiate extensional symmetry from 
intentional symmetry (which can properly be represented here by the roles associated 
with relators); (iii) transitivity of material relations is an issue of great complexity which 
has been partially treated, for example, in [19], for the case of parthood relations.  

In any case, this discussion highlights our argument in section 1 that there is not 
one single design solution that should fit all design problems. This is by itself enough 
a good reason for separating conceptual domain modeling from the multiple imple-
mentations which can be derived from it and which can be chosen for maximizing 
specific sets of non-functional requirements.  

Finally, although we are aware of initiatives for addressing time representation 
and reasoning in OWL, we deemed this issue out of scope for this particular paper. 
However, having a proper axiomatization in that respect is necessary for imposing the 
temporal restrictions pointed out in our reification proposal, namely: (i) the existential 
dependence relation must imply temporal inclusion of the dependent individual in the 
time-extent of the individual(s) it depends on; (ii) a reified necessary and immutable 
property must have exactly the same time-extent of the individual it depends on; and 
(iii) a reified necessary and mutable property must have the temporal projection of all 
its individuals equal to the time-extent of the individual they depend on (i.e. the prop-
erty age). These issues should be properly dealt with in a fuller approach. 

5 Final Considerations 

To promote semantic interoperability between information models (and applications 
which depend on them), we need to be able to guarantee truthfulness to the domain in  
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reality being represented in these models (intra-model consistency). Moreover, we need 
to guarantee that we establish the correct relations (with the correct semantics) between 
elements pertaining to different models (inter-model consistency). In order to achieve 
these objectives, we must rely on representation mechanisms that are able to make expli-
cit its ontological commitments and which are able to capture the subtleties of the subject 
domains being represented. Moreover, this should be done in a manner that are consistent 
with how humans as cognitive agents construct and shared their mental models of those 
subject domains. After all, tasks such as domain understanding, problem-solving and 
meaning negotiation are meant to be performed by human agents in these scenarios.  

Following a tradition on what is now termed Ontology-Driven Conceptual Model-
ing, we argue in this article that these representation mechanisms should be grounded 
in Foundational Ontologies. In this paper, we present an ontological theory which is 
built on the idea of property-instances (tropes, moments, modes). This idea affords an 
ontology which has an illustrious pedigree in philosophy and which has correspond-
ing support both in cognition and language. Moreover, this idea can provide an  
ontological interpretation and can be used to derive modeling guidelines to many 
conceptual modeling constructs (e.g., weak entities, reified attributes and associations, 
datatypes). Finally, as demonstrated in this paper, this idea provides a modeling 
framework for systematically representing temporally changing information in a class 
of description-logics/frame-based languages, represented here by the language OWL.              
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Abstract. In textual software languages, names are used to reference
elements like variables, methods, classes, etc. Name resolution analyses
these names in order to establish references between definition and use
sites of elements. In this paper, we identify recurring patterns for name
bindings in programming languages and introduce a declarative meta-
language for the specification of name bindings in terms of namespaces,
definition sites, use sites, and scopes. Based on such declarative name
binding specifications, we provide a language-parametric algorithm for
static name resolution during compile-time. We discuss the integration
of the algorithm into the Spoofax Language Workbench and show how
its results can be employed in semantic editor services like reference res-
olution, constraint checking, and content completion.

1 Introduction

Software language engineering is concerned with linguistic abstraction, the for-
malization of our understanding of domains of computation in higher-level soft-
ware languages. Such languages allow direct expression in terms of the domain,
instead of requiring encoding in a less specific language. They raise the level of
abstraction and reduce accidental complexity. One of the key goals in the field
of language engineering is to apply these techniques to the discipline itself: high-
level languages to specify all aspects of software languages. Declarative languages
are of particular interest since they enable language engineers to focus on the
What? instead of the How?. Syntax definitions are a prominent example. With
declarative formalisms such as EBNF, we can specify the syntactic concepts of a
language without specifying how they can be recognized programmatically. This
declarativity is crucial for language engineering. Losing it hampers evolution,
maintainability, and compositionality of syntax definitions [15].

Despite the success of declarative syntax formalisms, we tend to program-
matic specifications for other language aspects. Instead of specifying languages,
we build programmatic language processors, following implementation patterns
in rather general specification languages. These languages might still be con-
sidered domain-specific, when they provide special means for programmatic lan-
guage processors. They also might be considered declarative, when they abstract
over computation order. However, they enable us only to implement language
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processors faster, but not to specify language aspects. They lack domain concepts
for these aspects and focus on the How?. That is a problem since (1) it entails
overhead in encoding concepts in a programming language and (2) the encoding
obscures the intention; understanding the definition requires decoding.

Our goal is to extend the set of really declarative, domain-specific languages
for language specifications. In this paper, we are specifically concerned with name
binding and scope rules. Name binding is concerned with the relation between
definitions and references of identifiers in textual software languages, including
scope rules that govern these relations. In language processors, it is crucial to
make information about definitions available at the references. Therefore, tra-
ditional language processing approaches provide programmatic abstractions for
name binding. These abstractions are centered around tree traversal and in-
formation propagation from definitions to references. Typically, they are not
specifically addressing name binding, but can also be used for other language
processing tasks such as compilation and interpretation.

Name binding plays a role in multiple language engineering processes, includ-
ing editor services such as reference resolution, code completion, refactorings,
type checking, and compilation. The different processes need different informa-
tion about definitions. For example, name resolution tries to find one definition,
while code completion needs to determine all possible references in a certain
place. The different requirements lead either to multiple re-implementations of
name binding rules for each of these purposes, or to non-trivial, manual weaving
into a single implementation supporting all purposes. This results in code dupli-
cation with as result errors, inconsistencies, and increased maintenance effort.

The traditional paradigm influences not only language processing, but also lan-
guage specification. For example, the OCL language standard [19] specifies name
binding in terms of nested environments, which are maintained in a tree traversal.
The C# language specification [1] defines name resolution as a sequence of impera-
tive lookup operations. In this paper, we abstract from the programmatic mechan-
ics of name resolution. Instead, we aim to declare the roles of language constructs
in name binding and leave the resolution mechanics to a generator and run-time
engine. We introduce the NameBinding Language (NBL), a language with linguis-
tic abstractions for declarative definition of name binding and scope rules. NBL
supports the declaration of definition and use sites of names, properties of these
names associated with language constructs, namespaces for separating categories
of names, scopes in which definitions are visible, and imports between scopes.

NBL is integrated in the Spoofax Language Workbench [14], but can be reused
in other language processing environments. From definitions in the name binding
language, a compiler generates a language-specific name resolution strategy in
the Stratego rewriting language [25] by parametrizing an underlying generic,
language independent strategy. Name resolution results in a persistent symbol
table for use by semantic editor services such as reference resolution, consistency
checking of definitions, type checking, refactoring, and code generation. The
implementation supports multiple file analysis by default.
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We proceed as follows. In Sect. 2 and 3 we introduce NBL by example, using a
subset of the C# language. In Sect. 4 we discuss the derivation of editor services
from a name binding specification. In Sect. 5 we give a high-level description of
the generic name resolution algorithm underlying NBL. In Sect. 6 we discuss the
integration of NBL into the Spoofax Language Workbench. Sect. 7 and 8 are for
evaluation and related work.

2 Declarative Name Binding and Scope Rules

In this section we introduce the Spoofax Naming Binding Language illustrated
with examples drawn from the specification of name binding for a subset of
C# [1]. Fig. 1 defines the syntax of the subset in SDF [24]. The subset is by no

Using* NsMem* → CompilationUnit {"Unit"}

"using" NsOrTypeName ";" → Using {"Using"}
"using" ID "=" NsOrTypeName → Using {"Alias"}
ID → NsOrTypeName {"NsOrType "}
NsOrTypeName "." ID → NsOrTypeName {"NsOrType "}

"namespace" ID "{" Using* NsMem* "}" → NsMem {" Namespace"}
Partial "class" ID Base "{" ClassMem * "}" → NsMem {"Class"}

→ Partial {" NonPartial"}
"partial " → Partial {"Partial "}

→ Base {"NoBase "}
":" ID → Base {"Base"}

Type ID ";" → ClassMem {"Field"}
RetType ID "(" {Param ","}* ")" Block ";" → ClassMem {"Method "}

ID → Type {" ClassType"}
"int" → Type {"IntType "}
"bool" → Type {"BoolType "}
Type → RetType
"void" → RetType {"Void"}
Type ID → Param {"Param"}

"{" Stmt* "}" → Block {"Block"}
Decl → Stmt
EmbStmt → Stmt
"return" Exp ";" → Stmt {"Return "}
Type ID ";" → Decl {"Var"}
Type ID "=" Exp ";" → Decl {"Var"}
Block → EmbStmt
StmtExp ";" → EmbStmt
"foreach " "(" Type ID "in" Exp ")" EmbStmt → EmbStmt {"Foreach "}

INT → Exp {"IntLit "}
"true" → Exp {"True"}
"false" → Exp {"False"}
ID → Exp {"VarRef "}
StmtExp → Exp
Exp "." ID → StmtExp {" FieldAccess"}
Exp "." ID "(" {Exp ","}* ")" → StmtExp {"Call"}
ID "(" {Exp ","}* ")" → StmtExp {"Call"}

Fig. 1. Syntax definition in SDF for a subset of C#. The names in the annotations are
abstract syntax tree constructors.
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means complete; it has been selected to model representative features of name
binding rules in programming and domain-specific languages. In the following
subsections we discuss the following fundamental concepts of name binding: def-
inition and use sites, namespaces, scopes, and imports. For each concept we give
a general definition, illustrate it with an example in C#, and then we show how
the concept can be modeled in NBL.

2.1 Definitions and References

The essence of name binding is establishing relations between a definition that
binds a name and a reference that uses that name. Name binding is typically
defined programmatically through a name resolution algorithm that connects
references to definitions. A definition site is the location of a definition in a
program. In many cases, definition sites are required to be unique, that is, there
should be exactly one definition site for each name. However, there are cases
where definition sites are allowed to be non-unique.

class C1 {}
class C2:C1 {}
partial class C3:C2 {}
partial class C3 {}

Fig. 2. Class declarations in C#

Example. Figure 2 contains class definitions in
C#. Each class definition binds the name of a
class. Thus, we have definition sites for C1, C2,
and C3. Base class specifications are references
to these definition sites. In the example, we have
references to C1 as the base class of C2 and C2 as the base class of C3. (Thus, C2
is a sub-class of, or inherits from C1.) There is no reference to C3. The definition
sites for C1 and C2 are unique. By contrast, there are two definition sites for C3,
defining parts of the same class C3. Thus, these definition sites are non-unique.
This is correct in C#, since regular class definitions are required to be unique,
while partial class definitions are allowed to be non-unique.

Abstract Syntax Terms. In Spoofax abstract syntax trees (ASTs) are repre-
sented using first-order terms. Terms consist of strings ("x"), lists of terms
(["x","y"]), and constructor applications (ClassType("C1")) for labelled tree
nodes with a fixed number of children. Annotations in grammar productions
(Fig. 1) define the constructors to be used in AST construction. For example,
Class(Partial(), "C3", Base("C2"), []) is the representation of the first
partial class in Figure 2. A term pattern is a term that may contain variables (x)
and wildcards (_).

Model. A specification in the name binding language consists of a collection of
rules of the form pattern : clause∗, where pattern is a term pattern and
clause∗ is a list of name binding declarations about the language construct
that matches with pattern. Figure 3 shows a declaration of the definitions and
references for class names in C#. The first two rules declare class definition
sites for class names. Their patterns distinguish regular (non-partial) and par-
tial class declarations. While non-partial class declarations are unique definition
sites, partial class declarations are non-unique definition sites. The third rule
declares that the term pattern Base(c) is a reference to a class with name c.
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rules
Class(NonPartial(), c, _, _): defines unique class c
Class(Partial(), c, _, _) : defines non−unique class c
Base(c) : refers to class c
ClassType(c) : refers to class c

Fig. 3. Declaration of definitions and references for class names in C#

Thus, the ": C1" in Figure 2 is a reference to class C1. Similarly, the second
rule declares a class type as a reference to a class.

2.2 Namespaces

Definitions and references declare relations between named program elements
and their uses. Languages typically distinguish several namespaces, i.e. different
kinds of names, such that an occurrence of a name in one namespace is not
related to an occurrence of that same name in another.

class x {
int x;
void x() {
int x; x = x + 1;

}
}

Fig. 4. Homonym class,
field, method, and variable
declarations in C#

Example. Figure 4 shows several definitions for the
same name x, but of different kinds, namely a class,
a field, a method, and a variable. Each of these kinds
has its own namespace in C#, and each of these
namespaces has its own name x. This enables us
to distinguish the definition sites of class x, field x,
method x, and variable x, which are all unique.

Model. We declared definitions and references for
the namespace class already in the previous example. Figure 5 extends that
declaration covering also the namespaces field, method, and variable. Note
that it is required to declare namespaces to ensure the consistency of name bind-
ing rules. Definition sites are bound to a single namespace (defines class c),
but use sites are not. For example, a variable in an expression might either refer
to a variable, or to a field, which is modeled in the last rule. In our example,
this means that variable declarations hide field declarations, because variables
are resolved to variables, if possible. Thus, both x in the assignment in Figure 4
refer to the variable x.

2.3 Scopes

Scopes restrict the visibility of definition sites. A named scope is the definition
site for a name which scopes other definition sites. By contrast, an anonymous

namespaces class field method variable
rules

Field(_, f) : defines unique field f
Method(_, m, _, _): defines unique method m
Call(m, _) : refers to method m

Var(_, v): defines unique variable v
VarRef(x): refers to variable x otherwise to field x

Fig. 5. Declaration of name bindings for different namespaces in C#
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1 class C {
2 void m() { int x; }
3 }
4
5 class D {
6 void m() {
7 int x;
8 int y;
9 { int x; x = y + 1; }

10 x = y + 1;
11 }
12 }

Fig. 6. Scoped homonym method and
variable declarations in C#

rules
Class(NonPartial(), c, _, _):

defines unique class c
scopes field, method

Class(Partial(), c, _, _):
defines non−unique class c
scopes field, method

Method(_, m, _, _):
defines unique method m
scopes variable

Block(_): scopes variable

Fig. 7. Declaration of scopes for different
namespaces in C#

scope does not define a name. Scopes can be nested and name resolution typically
looks for definition sites from inner to outer scopes.

Example. Figure 6 includes two definition sites for a method m. These definition
sites are not distinguishable by their namespace method and their name m, but,
they are distinguishable by the scope they are in. The first definition site resides
in class C, the second one in class D. In C#, class declarations scope method dec-
larations. They introduce named scopes, because class declarations are definition
sites for class names. The listing also contains three definition sites for a variable
x. Again, these are distinguishable by their scope. In C#, method declarations
and blocks scope variable declarations. Method declarations are named scopes,
blocks are anonymous scopes. The first definition site resides in method m in
class C, the second one in method m in class D, and the last one in a nameless
block inside method m in class D. In the assignment inside the block (line 9),
x refers to the variable declaration in the same block, while the x in the outer
assignment (line 10) refers to the variable declaration outside the block. In both
assignments, y refers to the variable declaration in the outer scope, because the
block does not contain a definition site for y.

Model. The scopes ns clause in NBL declares a construct to be a scope for
namespace ns. Figure 7 declares scopes for fields, methods, and variables. Named
scopes are declared at definition sites. Anonymous scopes are declared similarly,
but lack a defines clause.

Namespaces as Language Concepts. C# has a notion of ‘namespaces’. It
is important to distinguish these namespaces as a language concept from name-
spaces as a naming concept, which group names of different kinds of declara-
tions. Specifically, in C#, namespace declarations are top-level scopes for class
declarations. Namespace declarations can be nested. Figure 8 declares a top-level
namespace N, scoping a class declaration N and an inner namespace declaration N.
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namespace N {
class N {}
namespace N { class N {} }

}

Fig. 8. Nested namespace declarations in
C#

namespaces namespace
rules

Namespace(n, _):
defines namespace n
scopes namespace, class

Fig. 9. Declaration of name bindings for
nested namespace declarations in C#

The inner namespace declaration scopes another class declaration N. The def-
inition sites of the namespace name N and the class name N are distinguish-
able, because they belong to different namespaces (as a naming concept). The
two definition sites of namespace name N are distinguishable by scope. The
outer namespace declaration scopes the inner one. Also, the definition sites of
the class name N are distinguishable by scope. The first one is scoped by the
outer namespace declaration, while the second one is scoped by both namespace
declarations.

Model. The names of C# namespace declarations are distinguishable from names
of classes, fields, etc. As declared in Figure 9, their names belong to the namespace
namespace. The name binding rules for definition sites of names of this namespace
models the scoping nature of C# namespace declarations.

Imports. An import introduces into the current scope definitions from another
scope, either under the same name or under a new name. An import that imports
all definitions can be transitive.

Example. Figure 10 shows different kinds of imports in C#. First, a using direc-
tive imports type declarations from namespace N. Second, another using direc-
tive imports class C from namespace M into namespace O under a new name D.
Finally, classes E and F import fields and methods from their base classes. These
imports are transitive, that is, F imports fields and methods from E and D.

Model. Figure 11 shows name binding rules for import mechanisms in C#. The
first rule handles using declarations, which import all classes from the name-
space to which the qualified name qname resolves to. The second rule models
aliases, which either import a namespace or a class under a new name, depend-
ing on the resolution of qname. The last rule models inheritance, where fields
and methods are imported transitively from the base classes.

2.4 Types

So far, we discussed names, namespaces, and scopes to distinguish definition
sites for the same name. Types also play a role in name resolution and can be
used to distinguish definition sites for a name or to find corresponding definition
sites for a use site.
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using N;

namespace M {
class C { int f; }

}

namespace O {
using D = M.C;
class E:D {

void m() {}
}
class F:E { }

}

Fig. 10. Various forms of imports
in C#

rules
Using(qname):

imports class from namespace ns
where qname refers to namespace ns

Alias(alias, qname):
imports namespace ns as alias
where qname refers to namespace ns
otherwise imports class c as alias
where qname refers to class c

Base(c):
imports field (transitive),

method (transitive)
from class c

Fig. 11. Declaration of import mechanisms in
C#

class C {
void m() {}
void m(int x) {}
void m(bool x) {}
void m(int x, int y) {}
void m(bool x, bool y) {}

void x() {
m();
m(42);
m(true);
m(21, 21);
m(true, false);

}
}

Fig. 12. Overloaded method decla-
rations in C#

Example. Figure 12 shows a number of over-
loaded method declarations. These share the
same name m, namespace method, and scope
class C. But we can distinguish them by
the types of their parameters. Furthermore,
all method calls inside method x can be
uniquely resolved to one of these methods by
taking the argument types of the calls into
account.

Model. Figure 13 includes type information
into name binding rules for fields, methods,
and variables. Definition sites might have
types. In the simplest case, the type is part
of the declaration. In the example, this holds for parameters. For method calls,
the type of the definition site for a method name depends on the types of the
parameters. A type system is needed to connect the type of a single parameter,
as declared in the rule for parameters, and the type of a list of parameters, as
required in the rule for methods. We will discuss the influence of a type system
and the interaction between name and type analysis later. For now, we assume
that the type of a list of parameters is a list of types of these parameters.

Type information is also needed to resolve method calls to possibly overloaded
methods. The refers clause for method calls therefore requires the correspond-
ing definition site to match the type of the arguments. Again, we omit the de-
tails how this type can be determined. We also do not consider subtyping here.
Method calls and corresponding method declarations need to have the same
argument and parameter types.
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3 Name Binding Patterns

We now identify typical name binding patterns. These patterns are formed by
scopes, definition sites and their visibility, and use sites referencing these def-
inition sites. We explain each pattern first and give an example in C# next.
Afterwards, we show how the example can be modelled with declarative name
binding rules.

rules
Method(t, m, p∗, _):

defines unique method m of type (t∗, t)
where p∗ has type t∗

Call(m, a∗):
refers to method m of type (t∗, _)
where a∗ has type t∗

Param(t, p): defines unique variable p of type t

Fig. 13. Types in name binding rules for overloaded methods in C#

Unscoped Definition Sites. In the simplest case, definition sites are not
scoped and globally visible.

Example. In C#, namespace and class declarations (as well as any other type
declaration) can be unscoped. They are globally visible across file boundaries. For
example, the classes C1, C2, and C3 in Figure 2 are globally visible. In Figure 4,
only the outer namespace N is globally visible.

In contrast to C#, C++ has file scopes and all top-level declarations are only
visible in a file. To share global declarations, each file has to repeat the decla-
ration and mark it as extern. This is typically achieved by importing a shared
header file.

rules
CompilationUnit(_, _):

scopes namespace, class

(f, CompilationUnit(_, _)):
defines file f
scopes namespace, class

Fig. 14. Different ways to model file
scope for top-level syntax tree nodes

Model. We consider any definition site
that is not scoped by another definition
site or by an anonymous scope to be in
global scope. These definition sites are vis-
ible over file boundaries. File scope can
be modelled with a scoping rule in two
different ways. Both are illustrated in Fig-
ure 14. The first rule declares the top-level
node of abstract syntax trees as a scope
for all namespaces which can have top-level declarations. This scope will be
anonymous, because the top-level node cannot be a definition site (otherwise
this definition site would be globally visible). The second rule declares a tuple
consisting of file name and the abstract syntax tree as a scope. This tuple will
be considered a definition site for the file name. Thus, the scope will be named
after the file.
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Definition Sites Inside Their Scopes. Typically, definition sites reside inside
the scopes where they are visible. Such definition sites can either be visible only
after their declaration, or everywhere in their surrounding scope.

Example. In C#, namespace members such as nested namespace declarations
and class declarations are visible in their surrounding scope. The same holds for
class members. In contrast, variable declarations inside a method scope become
visible only after their declaration.

Model. Scoped definition sites are by default visible in the complete scope. Op-
tionally, this can be stated explicitly in defines clauses. Figure 15 illustrates
this for namespace declarations. The second rule in this listing shows how to
model definition sites which become visible only after their declaration.

Definition Sites Outside Their Scopes Some declarations include not only
the definition site for a name, but also the scope for this definition site. In such
declarations, the definition site resides outside its scope.

rules
Namespace(n, _):

defines non−unique namespace n in surrounding scope

Var(t, c):
defines unique variable of type t in subsequent scope

Fig. 15. Declaration of the visibility of definition sites inside scopes

class C {
void m(int[] x) {

foreach (int x in x)
System.Console.WriteLine(x);

}
}

Fig. 16. foreach loop with scoped iterator
variable x in C#

Example. Let expressions are a
classical example for definition
sites outside their scopes. In C#,
foreach statements declare iter-
ator variables, which are visible
in embedded statement. Figure 16
shows a method with a parameter
x, followed by a foreach statement
with an iterator variable of the same name. This is considered incorrect in C#,
because definition sites for variable names in inner scopes collide with definition
sites of the same name in outer scopes. However, the use sites can still be re-
solved based on the scopes of the definition sites. The use site for x inside the
loop refers to the iterator variable, while the x in the collection expression refers
to the parameter.

Model. Figure 17 shows the name binding rule for foreach loops, stating the
scope of the variable explicitly. Note that definition sites which become visible
after their declaration are a special case of this pattern. Figure 18 illustrates
how this can be modelled in the same way as the foreach loop. The first rule
assumes a nested representation of statement sequences, while the second rule
assumes a list of statements.
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using N.N.N;

namespace N’ {
class C {

C f;
void m(C p) { }

}
class D {

void m(C p) {
p.m(p.f);

}
}

}

Fig. 19. Contextual use
sites in C#

Contextual Use Sites. Definition sites can be ref-
erenced by use sites outside of their scopes. These use
sites appear in a context which determines the scope
into which they refer. This context can either be a di-
rect reference to this scope, or has a type which deter-
mines the scope.

Example. In C#, namespace members can be imported
into other namespaces. Figure 8 shows a class N in a
nested namespace. In Figure 19, this class is imported.
The using directive refers to the class with a qualified
name. The first part of this name refers to the outer
namespace N. It is the context of the second part, which
refers to the inner namespace N. The second part is then the context for the last
part of the qualified name, which refers to the class N inside the inner namespace.

rules
Foreach(t, v, exp, body):

defines unique variable v of type t in body

Fig. 17. Declaration of definition sites outside of their scopes

rules
Seq(Var(t, v), stmts):

defines unique variable v of type t in stmts

[Var(t, v) | stmts]:
defines unique variable v of type t in stmts

Fig. 18. Alternative declaration of definition sites becoming visible after their decla-
ration

rules
NsOrType(n1, n2):

refers to namespace n2 in ns
otherwise to class n2 in ns
where n1 refers to namespace ns

FieldAccess(e, f):
refers to field f in c
where e has type ClassType(c)

MethodCall(e, m, p∗):
refers to method m of type (t∗, _) in c
where e has type ClassType(c)
where p∗ has type t∗

Fig. 20. Declaration of contextual use sites
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Figure 19 also illustrates use sites in a type-based context. In method m in
class D, a field f is accessed. The corresponding definition site is outside the
scope of the method in class C. But this scope is given by the type of p, which is
the context for the field access. Similarly, the method call is resolved to method
m in class C because of the type of p.

Model. Figure 20 illustrates how to model contextual use sites. The scope of the
declaration site corresponding to a use site can be modelled in refers clauses.
This scope needs to be determined from the context of the use site. The first rule
resolves the context of a qualified name part to a namespace ns and declares the
use site to refer either to a namespace or to a class in ns. The remaining rules
declare use sites for field access and method calls. They determine the type of
the context, which needs to be a class type. A field access refers to a field in
that class. Similarly, a method call refers to a method with the right parameter
types in that class.

4 Editor Services

Fig. 21. Error checking

Modern IDEs provide a wide range of edi-
tor services where name resolution plays a
large role. Traditionally, each of these ser-
vices would be handcrafted for each lan-
guage supported by the IDE, requiring
substantial effort. However, by accurately
modeling the relations between names in
NBL, it is possible to generate a name res-
olution algorithm and editor services that
are based on that algorithm.

Reference Resolving. Name resolution is exposed directly in the IDE in the
form of reference resolving: press and hold Control and hover the mouse cursor
over an identifier to reveal a blue hyperlink that leads to its definition side. This
behavior is illustrated in Fig. 22.

Fig. 22. Reference resolution of name field reference to name field definition
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Fig. 23. Code completion for fields and local variables

Constraint Checking. Modern IDEs statically check programs against a wide
range of constraints. Constraint checking is done on the fly while typing and
directly displayed in the editor via error markers on the text and in the outline
view. Error checking constraints are generated from the NBL for common name
binding errors such as unresolved references, duplicate definitions, use before def-
inition and unused definitions. Fig. 21 shows an editor with error markers. The
message parameter in the post method has a warning marker indicating that
it is not used in the method body. On the line that follows it, the posterName

variable is assigned but has not yet been declared, violating the visibility rules
of Figure 15. Other errors in the method include a subsequent duplicate defini-
tion of posterName, which violates the uniqueness constraint of the variable

namespace of Figure 5, and referencing a non-existent property nam.

Code Completion. With code completion, partial (or empty) identifiers can be
completed to full identifiers that are valid at the context where code completion
is executed. Figure 23 shows an example of code completion. In the left program
code completion is triggered on a field access expression on the user object. The
user object is of type User, so all fields of User are shown as candidates. On
the right, completion is triggered on a variable reference, so all variables in the
current scope are shown.

5 Implementation

To implement name resolution based on NBL, we employ a name resolution
algorithm that relies on a symbol table data structure to persist name bindings
and lazy evaluation to resolve all references. In this section we give an overview
of the data structure, the name resolution algorithm, and their implementation.

Persistence of Name Bindings. To persist name bindings, each definition and
reference is assigned a qualified name in the form of a URI. The URI identifies
the occurrence across a project. Use sites share the URIs of their corresponding
definition sites.

A URI consists of the namespace, the path, and the name of a definition
site. As an example, the URI method://N/C/m is assigned to a method m in
a class C in a namespace N. Here, the segments represent the names of the
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scopes. Anonymous scopes are represented by a special path segment anon(u),
where u is a unique string to distinguish different anonymous scopes. For use in
analyses and transformations, URIs can be represented in the form of ATerms,
e.g. [method(),"N","C","m"] is URI for the method m.

All name bindings are persisted in an in-memory data structure called the
semantic index. It consists of a symbol table that lists all URIs that exist in a
project, and can be efficiently implemented as a hash table. It maps each URI to
the file and offset of their occurrences in the project. It can also store additional
information, such as the type of a definition.

Resolving Names. Our algorithm is divided into three phases. First, in the
annotation phase, all definition and use sites are assigned a preliminary URI,
and definition sites are stored in the index. Second, definition sites are analyzed,
and their types are stored in the index. And third, any unresolved references are
resolved and stored in the index.

Annotation Phase. In the first phase, the AST of the input file is traversed in
top-down order. The logical nesting hierarchy of programs follows from the AST,
and is used to assign URIs to definition sites. For example, as the traversal enters
the outer namespace scope n, any definitions inside it are assigned a URI that
starts with ‘n.’. As a result of the annotation phase, all definition and use sites
are annotated with a URI. In the case of definition sites, this is the definitive
URI that identifies the definition across the project. For references, a temporary
URI is assigned that indicates its context, but the actual definition it points to
has to be resolved in a following phase. For reference by the following phases,
all definitions are also stored in the index.

Definition Site Analysis Phase. The second phase analyzes each definition site
in another top-down traversal. It determines any local information about the
definition, such as its type, and stores it in the index so it can be referenced
elsewhere. Types and other information that cannot be determined locally are
determined and stored in the index in the last phase.

Use Site Analysis Phase. When the last phase commences, all local informa-
tion about definitions has been stored in the index, and non-local information
about definitions and uses in other files is available. What remains is to resolve
references and to determine types that depend on non-local information (in par-
ticular, inferred types). While providing a full description of the use site analysis
phase and the implementation of all name binding constructs is outside the scope
of this paper, the below steps sketch how each reference is resolved. See the NBL
website 1 for links to the algorithm’s source files.

1. Determine the temporary URI ns://path/n which was annotated in the
first analysis phase.

2. If an import exists in scope, expand the current URI for that import.
3. If the reference corresponds to a name-binding rule that depends on non-local

information such as types, retrieve that information.
1 http://strategoxt.org/Spoofax/NBL

http://strategoxt.org/Spoofax/NBL
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4. Look for a definition in the index with namespace ns, path path, and name
n. If it does not exist, try again with a prefix of path that is one segment
shorter. If the no definition is found this way, store an error for the reference.

5. If the definition is an alias, resolve it.

An important part to highlight in the algorithm is the interaction between name
and type analysis that happens for example with the FieldAccess expression of
Figure 20. For name binding rules that depend on types or other non-local infor-
mation, it is possible that determining the type recursively triggers name resolu-
tion. For this reason, we apply lazy evaluation, ensuring that any reference can be
resolved lazily as requested in this phase. By traversing through the entire tree,
we ensure that all use sites are eventually resolved and persisted to the index.

6 Integration into Spoofax

The NBL, together with the index, is integrated into the Spoofax Language
Workbench. Stratego rules are generated by the NBL that use the index API to
interface with Spoofax. In this section we will show the index API and how the
API is used to integrate the editor services seen in Section 4.

IndexAPI. Once all analysis phases have been completed, the index is filled with
a summary of every file. To use the summaries we provide the index API with a
number of lookups and queries. Lookups transform annotated identifiers into def-
initions. Queries transform definitions (retrieved using a lookup) into other data.
The API is used for integrating editor services, but is also exposed to Spoofax lan-
guage developers for specifying additional editor services or other transformations.

index−lookup−one performs a lookup that looks for a definition of given
identifier in its owning scope. The index−lookup lookup performs a lookup
that tries to look for a definition using index−lookup−one. If it cannot be
found, the lookup is restarted on the outer scope until the root scope is reached.
If no definition is found at the root scope, the lookup fails. There is also an
index−lookup−all variant that returns all found definitions instead of stopping
at the first found definition. Finally, index−lookup−all−levels is a special
version of index−lookup−all that supports partial identifiers.

editor−complete:
ast → identifiers
where

node@COMPLETION(name) := <collect−one(?COMPLETION(_))> ast ;
proposals := <index−lookup−all−levels(|name)> node ;
identifiers := <map(index−uri−name)> proposals

Fig. 25. Code completion

To get data from the index, index−get−data is used. Given a definition and
a data kind, it will return all data values of that kind that is attached to the
definition. Uses are retrieved in the same way using index−get−uses−all.
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Reference Resolution. Resolving a reference to its definition is very straight-
forward when using index−lookup, since it does all the work for us. The only
thing that has to be done when Spoofax requests a reference lookup is a simple
transformation: node →<index−lookup> node. The resulting definition has lo-
cation information embedded into it which is used to navigate to the reference.
If the lookup fails, this is propagated back to Spoofax and no blue hyperlink will
appear on the node under the cursor.

constraint−error:
node → (key, "Duplicate definition")
where

<nam−unique> node ;
key := <nam−key> node ;
defs := <index−lookup−one> key ;
<gt> (<length> defs, 1)

Fig. 24. Duplicate definitions constraint check

Constraint Checking. Con-
straint checking rules are called
by Spoofax after analysis on ev-
ery AST node. If a constraint
rule succeeds it will return the
message and the node where the
error marker should be put on.

The duplicate definition con-
straint check that was shown
earlier is defined in Figure 24. First nam−unique (generated for unique defi-
nitions by the NBL) is used to see if the node represents a unique definition;
non-unique definition such as partial classes should not get duplicate definition
error markers. The identifier is retrieved using nam−key and a lookup in the
current scope is done with index−lookup−one. If more than one definition is
found, the constraint check succeeds and an error marker is shown on the node.

Code Completion. When code completion is requested in Spoofax, a
completion node is substituted at the place where the cursor is. For example,
if we request code completion on VarRef("a"), it will be substituted by
VarRef(COMPLETION("a")) to indicate that the user wants to complete this
identifier. See Figure 25 for the code completion implementation. We first re-
trieve the completion node and name using collect−one. Completion propos-
als are gathered by index−lookup−all−levels since it can handle partial
identifiers. Finally the retrieved proposals are converted to names by mapping
index−uri−name over them.

7 Evaluation and Discussion

Our aim with this work has been to design high-level abstractions for name res-
olution applicable to a wide range of programming languages. In this section we
discuss the limitations of our approach and evaluate its applicability to differ-
ent languages and other language features than those covered in the preceding
sections.

Limitations. There are two areas of possible limitations of NBL. One is in the
provided abstraction, the other is in the implementation algorithm that supports
it. As for the provided abstraction, as a definition language, NBL is inherently
limited in the number of features it can support. While the feature space it
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supports is extensive, ultimately there may always be language features or vari-
ations that are not supported. For these cases, the definition of NBL, written in
Stratego, can be extended, or it is possible to escape NBL and extend an NBL
specification using handwritten Stratego rules. As for the implementation algo-
rithm, NBL’s current implementation strategy relies on laziness, and does not
provide much control over the traversal for the computation of names or types.
In particular, sophisticated type inference schemes are not supported with the
current algorithm. To implement such schemes, the algorithm would have to
be extended, preferably in a way that maintains compatibility with the current
NBL definition language.

Coverage. During the design and construction of NBL, we have performed a
number of studies on languages and language features to determine the extent
of the feature space that NBL would support. In this paper we highlighted many
of the features by using C# as a running example, but other languages that we
studied include a subset of general-purpose programming languages C, Java, and
domain-specific languages WebDSL [10], the Hibernate Query Language (HQL),
and Mobl [12]. We also applied our approach to the Java Bytecode stack machine
language using the Jasmin [17] syntax.

For our studies we used earlier prototypes of NBL, which led to the design
as it is now. Notable features that we studied and support in NBL are partial
classes, inheritance, visibility, lexical scoping, imports, type-based name resolu-
tion, and overloading; all of which have been discussed in Sect. 4. In addition, we
studied aspect-oriented programming with intertype declarations and pointcuts,
file-based scopes in C, and other features. Our design has also been influenced
by past language definitions, such as SDF and Stratego. Altogether, it is fair to
say that NBL supports a wide range of language features and extensive variabil-
ity, but can only support the full range of possible programming languages by
allowing language engineers to escape the abstraction. In future work, we would
like to enhance the possibilities of extending NBL and design a better interface
for escapes.

8 Related Work

We give an overview of other approaches for specifying and implementing name
resolution. The main distinguishing feature of our approach is the use of linguistic
abstractions for name bindings, thus hiding the low level details of writing name
analysis implementations.

Symbol Tables. In classic compiler construction, symbol tables are used to
associate identifiers with information about their definition sites. This typically
includes type information. Symbol tables are commonly implemented using hash
tables where the identifiers are indexed for fast lookup. Scoping of identifiers can
be implemented in a number of ways; for example by using qualified identifiers
as index, nesting symbol tables or destructively updating the table during pro-
gram analysis. The type of symbol table influences the lookup strategy. When
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using qualified identifiers the entire identifier can be looked up efficiently, but
considering outer scopes requires multiple lookups. Nesting symbol tables always
requires multiple lookups but is more memory efficient. When destructively up-
dating the symbol table, lookups for visible variables are very efficient, but the
symbol table is not available after program analysis. The index we use is a sym-
bol table that uses qualified identifiers. We map qualified identifiers (URIs) to
information such as definitions, types and uses.
Attribute Grammars. Attribute Grammars [16] (AGs) are a formal way
of declaratively specifying and evaluating attributes for productions in formal
grammars. Attribute values are associated with nodes and calculated in one or
more tree traversals, where the order of computations is determined by depen-
dencies between attributes.

Eli provides an attribute grammar specification language for modular and
reusable attribute computations [13]. Abstract, language-independent compu-
tations can be reused in many languages by letting symbols from a concrete
language inherit these computations. For example, computations Range, IdDef,
and IdUse would calculate a scope, definitions, and references. A method defi-
nition can then inherit from Range and IdDef, because it defines a function and
opens a scope. A method call inherits from IdUse because it references a func-
tion. These abstract computations are reflected by naming concepts of NBL and
the underlying generic resolution algorithm. However, NBL is less expressive,
more domain-specific. Where Eli can be used to specify general (and reusable)
computations on trees, NBL is restricted to name binding concepts, helping to
understand and specify name bindings more easily.

Silver [26] is an extensible attribute grammar specification language which can
be extended with general-purpose and domain-specific features. Typical exam-
ples are auto-copying, pattern matching, collection attributes, and support for
data-flow analysis. However, name analysis is mostly done the traditional way;
an environment with bindings is passed down the tree using inherited properties.

Reference Attribute Grammars (RAGs) extend AGs by introducing attributes
that can reference nodes. This substantially simplifies name resolution imple-
mentations. JastAdd [7] is a meta-compilation system for generating language
processors relying on RAGs and object orientation. It also supports parametrized
attributes to act as functions where the value depends on the given parameters.
A typical name resolution as seen in [5,7,2] is implemented in lookup attributes
parameterised by an identifier of use sites, such as variable references. All nodes
that can have a variable reference as a child node, such as a method body, then
have to provide an equation for performing the lookup. These equations im-
plement scoping and ordering using Java code. JastAdd implementations have
much more low level details than NBL declarations. This provides flexibility, but
entails overhead on encoding and requires decoding for understanding. For exam-
ple, scopes for certain program elements are encoded within a set of equations,
usually implemented by early or late returns.

Visibility Predicates. CADET [20] is a notation for predicates and functions
over abstract syntax tree nodes. Similar to attribute grammar formalisms, it
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allows to specify general computations in trees but lacks reusable concepts for
name binding. Poetsch-Heffter proposes dedicated name binding predicates [21],
which can be translated into efficient name resolution functions [22]. In contrast
to NBL, scopes are expressed in terms of start and end points and multi-file
analyses are not supported.

Dynamic Rewrite Rules. In term rewriting, an environment passing style
does not compose well with generic traversals. As an alternative, Stratego allows
rewrite rules to create dynamic rewrite rules at run-time [3]. The generated
rules can access variables available from their definition context. Rules generated
within a rule scope are automatically retracted at the end of that scope. Hemel
et al. [11] describe idioms for applying dynamic rules and generic traversals
for composing definitions of name analysis, type analysis, and transformations
without explicitly staging them into different phases. Our current work builds
on the same principles, but applies an external index and provides a specialized
language for name binding declarations.

Name analysis with scoped dynamic rules is based on consistent renaming,
where all names in a program are renamed such that they are unequal to all other
names that do not correspond to the same definition site. Instead of changing
the names directly in the tree, annotations can be added which ensure unique-
ness. This way, the abstract syntax tree remains the same modulo annotations.
Furthermore, unscoped dynamic rewrite rules can be used for persistent map-
pings [14].

Textual Language Workbenches. Xtext [6] is a framework for developing
textual software languages. The Xtext Grammar Language is used to specify
abstract and concrete syntax, but also name bindings by using cross-references in
the grammar. Use sites are then automatically resolved by a simplistic resolution
algorithm. Scoping or visibility cannot be defined in the Grammar Language, but
have to be implemented in Java with help of a scoping API with some default
resolvers. For example field access, method calls, and block scopes would all need
custom Java implementations. Only package imports have special support and
can be specified directly in the Grammar Language. Common constraint checks
such as duplicate definitions, use before definition, and unused definitions also
have to be specified manually. This increases the amount of boilerplate code that
has to be rewritten for every language.

In contrast to Xtext’s Grammar Language, NBL definitions are separated
from syntax definitions in Spoofax. This separation allows us to specify more
advanced name binding concepts without cluttering the grammar with these
concepts. It also preserves language modularity. When syntax definitions are
reused in different contexts, different name bindings can be defined for these
contexts, without changing the grammar. From an infrastructure perspective,
Spoofax and Xtext work similarly, using a global index to store summaries of
files and URIs to identify program elements.

EMFText [8] is another framework for developing textual software languages.
Like Xtext, it is based on the Eclipse Modeling Framework [23] and relies on
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metamodels to capture the abstract syntax of a language. While in Xtext this
metamodel is generated from a concrete syntax definition, EMFText takes the
opposite approach and generates a default syntax definition based on the UML
Human-Usable Textual Notation [18] from the metamodel. Language designers
can then customize the syntax definition by adding their own grammar rules.

In the default setup, reference resolution needs to be implemented in Java.
Only simple cases are supported by default implementations [9]. JastEMF [4]
allows to specify the semantics of EMF metamodels using JastAdd RAGs by
integrating generated code from JastAdd and EMF.
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Abstract. Domain-specific languages (DSLs) are an important tool for effective
system development. They provide concepts that are close to the problem do-
main and allow analysis as well as generation of full solution implementations.
However, this comes at the cost of having to develop a new language for every
new domain. To make their development efficient, we must be able to construct
DSLs as much as possible from reusable building blocks. In this paper, we dis-
cuss how such building blocks can be constructed for the specification and anal-
ysis of a range of non-functional properties, such as, for example, throughput,
response time, or reliability properties. We assume DSL semantics to be pro-
vided through a set of transformation rules, which enables a range of analyses
based on model checking. We demonstrate new concepts for defining language
modules for the specification of non-functional properties, show how these can
be integrated with base DSL specifications, and provide a number of syntactic
conditions that we prove maintain the semantics of the base DSL even in the
presence of non-functional–property specifications.

1 Introduction

Domain-specific languages (DSLs) are an important tool for reaping the proposed ben-
efits of model-driven engineering [1]. DSLs are languages based on concepts closer to
the problem domain than the technical solution. They are, therefore, a good way to al-
low domain-experts, who may lack programming skills, to construct or participate in
constructing substantial parts of new systems. In addition, because much more knowl-
edge of the domain is available when interpreting statements in a DSL, it is possible
to provide much more extensive code generation; this can enable complete generation
of running systems from a relatively simple DSL-based model [2]. However, for DSLs
to be effective, they may need to be implemented for very narrow domains [1], which
implies that a large number of DSLs needs to be implemented. This requires highly
efficient techniques for developing new DSLs, ideally based on an ability to reuse and
compose partial languages for new domains.
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In the design of software systems, many researchers distinguish between functional
and non-functional properties (NFPs)—also sometimes referred to as extra-functional
properties or quality of service. While functional properties are constraints on what
the software system does, NFPs are constraints on how it does it—for example, how
much resources are used or how long it takes to process an individual request. NFPs
are important for the overall quality of a system, so they clearly need to be taken into
account throughout development. We need to be able to predict and analyse NFPs from
an early stage of development, so as to avoid costly re-design or re-implementation
at a later stage. When developing systems based on DSLs, these DSLs, consequently,
need to include an ability to express and analyse relevant NFPs. However, the analysis
of NFPs is difficult and usually requires substantial specialist expertise. Integrating an
ability to specify NFPs into DSLs can substantially increase the effort required to build
a DSL. In this paper, we propose a technique for allowing NFP specification to be
encapsulated into reusable DSL components. This way, the burden of specifying the
NFPs of DSLs is drastically reduced, and specialist expertise is mainly required when
the language component is constructed. Developing new DSLs capable of specifying
particular NFPs in the context of a particular domain then becomes a matter of weaving
in the NFP’s language component.

The e-Motions language and system allows the definition of visual DSLs and their se-
mantics through in-place model-transformation rules, providing support for their anal-
ysis through simulation or model checking in Maude [3]. In [4], Troya, Rivera, and
Vallecillo build on the ideas of the e-Motions framework [5, 6] to keep track of specific
NFPs by adding auxiliary objects to DSLs. However, their approach still requires the
NFP specification and analysis component to be redefined from scratch for every new
DSL. In this paper we build on their work, but aim to modularise the NFP part into
its own language component. To do so, we take inspiration from the work in [7] where
Zschaler introduced the notion of context models to provide an interface between TLA+

specifications of non-functional and functional properties. We will use parametrisation
over meta-models to achieve a similar effect for our language components. Specifically,
we present a formal framework for such language components, syntactic conditions for
their consistency and proofs of these conditions. We also present a basic prototype im-
plementing these ideas in the context of e-Motions. However, a full integration is not in
the scope of this current paper.

While our prototype and original motivation are for the case of e-Motions, both our
approach and formal framework are more general. They can be applied for any DSL
specification whose semantics are based on model transformations. Moreover, while
our work is clearly motivated from the need of modularising NFP specifications, the
formal framework covers arbitrary conservative extensions of such DSLs, guaranteeing
them to be spectative in the sense of [8].

The remainder of this paper is structured as follows: In Section 2, we discuss a de-
tailed motivating example to explain the vision of what we would like to achieve. Sec-
tion 3 then presents a formalisation of these ideas together with consistency conditions
and sketches of their proofs (see [9] for additional details on this). Section 4 briefly
discusses our initial prototype. Finally, Section 5 discusses related work followed by
conclusions and an outlook to future work in Section 6.
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Fig. 1. Production line (a) metamodel and (b) concrete syntax (from [4])

2 Motivating Example

In this section, we present an example of what we want to achieve. This is based on
work presented by Troya, Rivera, and Vallecillo in [4]. Their work defines DSLs from
two parts: a meta-model of the language concepts and a set of transformation rules to
specify the behavioural semantics of the DSL.

Figure 1(a) shows the metamodel of a DSL for specifying production-line systems,
for producing hammers out of hammer heads and handles, which are generated in re-
spective machines, and transported along the production line via conveyors and trays.
As usual in MDE-based DSLs, this metamodel defines all the concepts of the language
and their interconnections; in short, it provides the language’s abstract syntax. In addi-
tion, a concrete syntax is provided. In the case of our example, this is sufficiently well
defined by providing icons for each concept (see Figure 1(b)); connections between
concepts are indicated through arrows connecting the corresponding icons.

Instances of this DSL are intended as token models [10]. That is, they describe a
specific situation and not the set of all possible situations (as is the case, e.g., for class
diagrams). The behavioural semantics of the DSL can, therefore, be given by specify-
ing how models can evolve; that is, what changes can occur in a particular situation.
This is specified through a set of model transformation rules. Figure 2 shows an ex-
ample of such a rule. The rule consists of a left-hand side matching a situation before
the execution of the rule and a right-hand side showing the result of applying the rule.1

Specifically, this rule shows how a new hammer is assembled: a hammer generator a

1 There are some other parts to the rule, but they are not relevant for our current discussion. For
a more detailed discussion, please refer to material on e-Motions [5, 6].
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Fig. 2. Assemble rule indicating how a new hammer is assembled (from [4])

has an incoming tray of parts and is connected to an outgoing conveyor belt. Whenever
there is a handle and a head available, and there is space in the conveyor for at least
one part (specified by an OCL constraint in the left-hand side of the rule), the hammer
generator can assemble them into a hammer. The new hammer is added to the parts
set of the outgoing conveyor belt. The complete semantics of our production-line DSL
is constructed from a number of such rules covering all kinds of atomic steps that can
occur.2

For production line systems, we are interested in a number of non-functional prop-
erties. For example, we would like to assess the throughput of the product line or how
long it takes for a hammer to be produced.3 We can achieve this by extending our DSL
specification with observers [4]. Different from [4], here we suggest defining specifi-
cation languages for observers entirely separately from any specific DSL. We will use
the same mechanisms we used for defining the product line DSL to define a DSL that
enables us to specify throughput or production time of systems.

Figure 3(a) shows the meta-model for a DSL for specifying production time. Two
things should be noted about this meta-model:

2 The complete specification of the Production Line example can be found at
http://atenea.lcc.uma.es/E-motions/PLSExample.

3 We use this property as an example here. Other properties can be defined easily in a
similar vein as shown in [4] and on http://atenea.lcc.uma.es/index.php/
Main Page/Resources/E-motions/PLSObExample.

http://atenea.lcc.uma.es/E-motions/PLSExample
http://atenea.lcc.uma.es/index.php/Main_Page/Resources/E-motions/PLSObExample
http://atenea.lcc.uma.es/index.php/Main_Page/Resources/E-motions/PLSObExample


336 F. Durán, S. Zschaler, and J. Troya

MMRespTime p Server, Queue, 
Request

(a) Meta-model. (b) Concrete syntax.

Fig. 3. Meta-model and concrete syntax for response time observer

1. It defines no concept production time. Instead, it defines something called response
time, which is a more generic concept. Production time is really only meaningful in
the context of production systems. However, the general concept of response time
covers this sufficiently well.

2. It is a parametric model (i.e., a model template). The concepts of Server, Queue,
and Request and their interconnections are parameters of the meta-model, and
they are shaded in grey for illustration purposes. We use them to describe in which
situations response time can be specified, but these concepts will need to be mapped
to concrete concepts in a specific DSL.

Figure 3(b) shows the concrete syntax for the response time observer object. Whenever
that observer appears in a behavioural rule, it will be represented by that graphical
symbol.

Figure 4 shows an example transformation rule defining the semantics of the re-
sponse time observer. This states that if there is a server with an in queue and an out
queue and there initially are some requests (at least one) in the in queue, and the out
queue contains some requests after rule execution, the last response time should be
recorded to have been equal to the time it took the rule to execute. Similar rules need
to be written to capture other situations in which response time needs to be measured,
for example, where a request stays at a server for some time, or where a server does not
have an explicit in or out queue.

Note that the rule in Figure 4 looks different from the rule shown in Figure 2. This
is because the rule is actually a rule transformation, while Figure 2 is a transformation
rule. The upper part of Figure 4 (shaded in grey for illustration purposes) is a pattern or
query describing transformation rules that need to be extended to include response-time
accounting. The lower part describes the extensions that are required. So, in addition
to reading Figure 4 as a ‘normal’ transformation rule (as we have done in the previous
paragraph), we can also read it as a rule transformation stating: “Find all rules that match
the shaded pattern and add ResponseTime objects to their left and right-hand sides
as described.” In effect, observer models become higher-order transformations [11].

As the rules in observer models are rule transformations, we can allow some addi-
tional concepts to be expressed. For example, Figure 4 uses multiplicities to express that
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Fig. 4. Sample response time rule

there may be an arbitrary number of requests (but at least one) associated with a queue.
This is not allowed in ‘normal’ transformation rules (there we need to explicitly show
each instance). However, using multiplicities allows expressing patterns to be matched
against transformation rules—a match is given by any rule that has the indicated number
of instances in its left- or right-hand side.

To use our response-time language to allow specification of production time of ham-
mers in our production-line DSL, we need to weave the two languages together. For
this, we need to provide a binding from the parameters of the response-time meta-model
(Figure 3(a)) to concepts in the production-line meta-model (Figure 1(a)). Specifically,
we bind:

– Server to Assemble as we are interested in measuring response time of this
particular machine;

– Queue to LimitedContainer as the Assemble machine is to be connected
to an arbitrary LimitedContainer for queuing incoming and outgoing parts;

– Request to Part as Assemble only does something when there are Parts to
be processed; and

– Associations:
• The in and out associations from Server to Queue are bound to the corre-

sponding in and out associations from Machine to Tray and Conveyor,
respectively; and

• The association from Queue to Request is bound to the association from
Container to Part.
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Fig. 5. Woven meta-model for measuring production time of the hammer assembler (highlighting
added for illustration purposes)

Weaving the meta-models according to this binding produces the meta-model in Fig-
ure 5. The weaving process has added the ResponseTime concept to the meta-model.
Notice that the weaving process also ensures that only sensible woven meta-models can
be produced: for a given binding of parameters, there needs to be a match between the
constraints expressed in the observer meta-model and the DSL meta-model. We will
discuss this issue in more formal detail in Section 3.

The binding also enables us to execute the rule transformations specified in the ob-
server language. For example, the rule in Figure 2 matches the pattern in Figure 4, given
this binding: In the left-hand side, there is a Server (Assemble) with an in-Queue
(Tray) that holds two Requests (Handle and Head) and an out-Queue (Convey-
or). In the right-hand side, there is a Server (Assemble) with an in-Queue (Tray)
and an out-Queue (Conveyor) that holds one Request (Hammer). Consequently,
we can apply the rule transformation from Figure 4, which produces the rule shown in
Figure 6. This rule is equivalent to what would have been written manually.

Clearly, such a separation of concerns between a specification of the base DSL and
specifications of languages for non-functional properties is desirable. In the next sec-
tion, we discuss the formal framework required for this and how we can distinguish safe
bindings from unsafe ones.

3 Formal Framework

Graph transformation [12] is a formal, graphical and natural way of expressing graph
manipulation based on rules. In graph-based modelling (and meta-modelling), graphs
are used to define the static structures, such as class and object ones, which represent
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Fig. 6. Result of weaving Figure 2 and Figure 4

visual alphabets and sentences over them. We formalise our approach using the typed
graph transformation approach, specifically the Double Pushout (DPO) algebraic ap-
proach, with positive and negative application conditions [13]. Our graphs are, in par-
ticular, typed attributed graphs [14]. We however carry on our formalisation for weak
adhesive high-level replacement (HLR) categories (see [15]).

The concepts of adhesive and (weak) adhesive HLR categories abstract the foun-
dations of a general class of models, and comes together with a collection of general
semantic techniques. Thus, e.g., given proofs for adhesive HLR categories of general
results such as the Local Church-Rosser, or the Parallelism and Concurrency Theorem,
they are automatically valid for any category which is proved an adhesive HLR cat-
egory. This framework has been a break-through for the DPO approach of algebraic
graph transformation, for which most main results can be proven in these categorical
frameworks, and instantiated to any HLR system. One of these cases is the one of in-
terest to us: the category of typed attributed graphs was proven to be an adhesive HLR
category in [14].

In this section, we present a formal framework of what it means to define specifi-
cation languages for non-functional properties separately to ‘normal’ DSLs, and in a
way that can be reused across such DSLs. To this end, we will first abstract away from
the concrete representation of languages and models in e-Motions [5, 6] that we have
used in Section 2. Instead, we will formally represent the key elements of which such
languages and models consist and the functions which are used to manipulate them.
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MObs

MMObs  RlsObs

MDSL

MMDSL  RlsDSL

Binding

BMM  BRls

MDSL

(MMDSL Binding MMObs)  (RlsDSL Binding RlsObs) 

Fig. 7. Architecture of the formal framework

Figure 7 provides a graphical overview of the formal framework we are proposing.
It can be seen that this consists of five parts:

1. MDSL: The specification of a DSL (without any notion of non-functional proper-
ties);

2. MObs : The specification of a language for modelling non-functional properties of
interest;

3. Binding: An artefact expressing how the parameters of MObs should be instantiated
with concepts from MDSL in order to weave the two languages;

4. ⊗: A function that performs the actual weaving; and
5. M

D̂SL
: A DSL that combines the specification of some functionality (as per MDSL)

and some non-functional properties (as per MObs).

3.1 The Models Involved and Their Relationships

Following the algebraic graph transformation approach, a DSL can be seen as a typed
graph grammar. A typed graph transformation system GTS = (TG , P ) consists of
a type graph TG and a set of typed graph productions P . A typed graph grammar
GG = (GTS , S) consists of a typed graph transformation system GTS and a typed
start graph S. A language is then defined by the set of graphs reachable from S using
the transformation rules P .

Definition 1 (DSL) . The specification MX of a DSL X is given by a metamodel MMX ,
representing the structural concepts of the language, and a set of transformation rules
RlsX , defining its behavioural semantics. �

A metamodel is just a type graph, and a transformation rule associated to it is a graph
production typed over the type graph provided by such metamodel.

The languages MDSL and M
D̂SL

are DSL specifications. MObs is, essentially, also
a normal DSL specification. Notice that we assume a single observer model MObs for
each non-functional property. If we needed several of these properties, we could con-
sider MObs to be the combination of the specifications of these non-functional proper-
ties, or we could iterate the process by instantiating M

D̂SL
once obtained with a second

observers model MObs′ producing a resulting specification M̂̂
DSL

, which could again

be instantiated by another observers model MObs′′ , etc.
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Although MObs is, essentially, a normal DSL specification, it is however parame-
trised and has a dual interpretation:

1. As a specification language for non-functional properties; and
2. As a higher-order transformation specification [11] expressing how DSLs need to

be modified to enable the specification of a particular non-functional property.

Specifically, in the observer model MObs , we distinguish a parameter sub-model MPar

which specifies just enough information about real systems to define the semantics of
the non-functional property, but not more. This parameter sub-model MPar is a sub-
model of MObs in the sense that MMPar is a subgraph of MMObs , and each transfor-
mation rule in RlsPar is a sub-rule of a rule in RlsObs .

This notion of sub-model and that of binding are captured by the general notion of
DSL morphism, which can be defined as follows.

Definition 2 (DSL Morphism). Given DSL specifications MA and MB , a DSL mor-
phism MA →MB is a pair (δ, ω) where δ is a meta-model morphism MMA → MMB ,
that is, a mapping (or function) in which each class, attribute and association in the
meta-model MMA is mapped, respectively, to a class, attribute and association in MMB

such that

1. class maps in δ must be compatible with the inheritance relation, that is, if class C
inherits from class D in MMA, then δ(C) must inherit from class δ(D) in MMB ;

2. class maps and association maps in δ must be consistent, that is, the images of
the extremes of an association K in MMA must lead to classes associated by the
association δ(K);

3. attribute maps and class maps in δ must be consistent, that is, given an attribute a
of a class C, its image δ(a) must be an attribute of the class δ(C);

and where ω is a set of transformation rules such that for each rule r1 ∈ RlsA there is a
transformation rule σ : r1 → r2 for some r2 ∈ RlsB .

Rules r1 and r2 in a rule map σ : r1 → r2 must have the same time constraints
(ongoing or atomic, same duration, softness, periodicity, etc.). �

Definition 2 could be relaxed in several ways, e.g., condition 2 could be relaxed to allow
superclasses of the images of the extremes of an association K to be related by its image
δ(K); similarly for condition 3, since it could be that the attribute δ(a) is an attribute
inherited from some superclass of δ(C). However, we leave these relaxations, and a
study of their effects on the formal framework presented, to future work.

Note also that the role of the parameter model MPar is useful for establishing the
way in which the DSL’s metamodel and rules are to be modified. The binding DSL
morphism is key for it, since it says how the transformations are to be applied. An in-
clusion morphism (ι, ω) : MPar ↪→MObs can be seen as a transformation rule, with the
binding indicating how such rule must be applied to modify the DSL system being in-
strumentalised. Specifically, the metamodel morphism ι : MMPar ↪→ MMObs indicates
how the metamodel MMDSL must be extended, and the family of higher-order trans-
formations (HOT) rules σi : r1,i ↪→ r2,i in ω indicate how the rules in RlsDSL must
be modified. Notice that these rule transformations match those presented in Section 2:
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A transformation rule like the one in Figure 4 is interpreted as a rule transformation
where the parameter part (the shadowed sub-rule) is its left-hand side, and the entire
rule its right-hand side.

Since MPar is not intended for DSL specification, but only as constraints in the
different transformations involved, i.e., for matching, we can enrich its expressiveness,
for example, by allowing associations with multiplicity 1..n as in Figure 4. The left-
hand side of this HOT rule can in this way match rules whose queues have 1, 2, or any
number of request objects associated. Notice that this rule is woven with the Assemble
rule in Figure 2, which has a head and a handle associated to its in tray. It could be seen
as the inclusion and the binding happening on specific submodels, those defined by the
concrete match. We do not consider this additional flexibility in the formalisation below.
Notice however that the matches induce corresponding rules for which the formalisation
does work.

3.2 Model Weaving

MObs and MDSL are woven to produce a combined DSL, M
D̂SL

. This weaving is en-
coded as a function ⊗ : MObs × MDSL × Binding → M

D̂SL
, which is graphically

depicted in Figure 7. As indicated above, Binding is a DSL morphism, which expresses
how the parameters of MObs should be instantiated with concepts from MDSL in order
to weave the two languages. Intuitively,⊗ works in two stages:

1. Binding stage. In this stage, Binding is used to produce an instantiated version of
MObs (and its parameter sub-model MPar ), MObs′ = (MMObs′ ,RlsObs′), which is
the result of replacing each parameter element p ∈ MMPar by a corresponding
element from MMDSL in MObs in accordance with Binding. The resulting MMObs′

is used to construct the output meta-modelMM
D̂SL

= MMDSL �Binding MMObs′ .
The operator�Binding stands for disjoint union, where elements related by Binding

are identified and the rest are distinguished. Each rule σ′
i : r

′
1,i ↪→ r′2,i in RlsObs′ is

the result of a similar replacement of a rule σi : r1,i ↪→ r2,i in RlsObs .
2. Transformation stage. In this stage, RlsObs′ is used to transform RlsDSL. For each

inclusion morphism σ′
i : r

′
1,i ↪→ r′2,i, the corresponding rule r ∈ RlsDSL is identi-

fied and transformed according to σ′
i. This step produces Rls

D̂SL
.

Note that the rules and appropriate matches to apply the HOT rules should be guided
by Binding. Although there might be cases in which we can systematically apply the
HOT rules on the rules in RlsDSL, in general this is not the case. Note that each HOT
rule defined by a rule in RlsObs may be applicable to different rules in RlsDSL, and
for each of them there might be more than one match. Although there might be many
cases in which a partial binding might be enough, we however assume that the binding
is complete.

The semantics of the weaving operation, informally described above, is provided
by the pushout of DSL morphisms MPar ↪→MObs and MPar ↪→MDSL in the cat-
egory DSL of DSL specifications and DSL morphisms. Although the details of the
pushout construction can be found in [9], we sketch it here. Given DSL morphisms
(δ1, ω1) : A→ B and (δ2, ω2) : A→ C , with DSLs X = (MMX ,RlsX ) for X = A,
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B,C, the pushout object of (δ1, ω1) and (δ2, ω2) is, up to isomorphism, the DSL spec-
ification D = (MMD ,RlsD ), together with DSL morphisms (δ′1, ω

′
1) : C → D and

(δ′2, ω′
2) : B → D, where δ′1 : MMC → MMD and δ′2 : MMB → MMD are the pushout

of δ1 : MMA → MMB and δ2 : MMA → MMC , and RlsD is the disjoint union of those
rules in RlsB and RlsC that are not targets of rules in RlsA, and the set of rules r̃A
resulting from the amalgamation of rule morphisms rA1 → rB2 in ω1 and rA1 → rC2 in
ω2 for all rules rA in RlsA. The rule injections from rules in RlsB and RlsC that are not
targets of rules in RlsA and the amalgamation-induced rule morphisms rB2 → r̃A and
rC2 → r̃A characterise the family of rule transformations ω′

2 (resp., ω′
1).

A
(δ2,ω2) ��

(δ1,ω1)

��
po

C

(δ′1,ω
′
1)

��
B

(δ′2,ω
′
2)

�� D

3.3 Semantic Consistency

The construction of Binding as a binding morphism (δ, ω) : MPar → MDSL ensures
basic syntactic consistency between the observer model and the DSL model to be wo-
ven. However, it does not ensure semantic consistency. We could, for instance, specify
a deadlock behaviour in the observers, changing the behaviour of the system DSL after
the weaving. While it will likely not be possible to provide sufficient conditions for
binding validity (see [7, pp. 9–11] for a discussion of the reasons), we should be able to
provide at least some necessary conditions. As a minimum, we require that the exten-
sion be conservative, not changing the very nature and behaviour of the original DSL,
namely:

M
D̂SL

|MMDSL
∼= MDSL (1)

We use M
D̂SL

|MMDSL
to denote the language specification that results from removing

any non-MMDSL elements from the meta-model and rule set of M
D̂SL

. Essentially, we
mean to say that adding observers does not change the basic structure and behaviour de-
fined by MDSL. This is the typical condition one would expect in this kind of situations,
and has been established in many different contexts before—perhaps first in [16].

Condition (1) is too hard to check directly, and therefore we need simpler, if possible
syntactic, conditions implying it. If we break (1) down into conditions for the meta-
model and the rule component of M

D̂SL
, we get the following two conditions:

MM
D̂SL

|MMDSL
∼= MMDSL (2)

Π
(
Rls

D̂SL

) |MMDSL
∼=stuttering Π (RlsDSL) (3)

We have again used the restriction operator |MMDSL
, although in this case applied both to

meta-models and traces, but with the same effect, namely, removing any non-MMDSL

elements (both from the meta-model MM
D̂SL

and rules in Rls
D̂SL

). Π (RlsX) denotes
the set of behaviours (possible executions, or traces) modelled by the transformation
rules of a DSL X ; that is, the set of all (potentially infinite) traces of model states
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as rewritten by these transformation rules. For traces, we use ∼=stuttering to explicitly
state that the traces in Π

(
Rls

D̂SL

) |MMDSL
may in fact have more steps than those in

Π (RlsDSL), but because of the restriction down to MMDSL, these remaining extra steps
should all be identities (stuttering steps).

The above conditions (2) and (3) could only be checked by performing the weaving
and analysing the result. However, both the weaving and the checking on the resulting
specification are potentially expensive. Instead, we want to check the safety of an ob-
server model and a binding morphism simply by looking at the models themselves with-
out having to perform the weave. We are, therefore, looking for conditions on MObs and
the binding morphism, if possible syntactic, so that they can be automated, or at least,
performed once and for all. We in fact claim that analysing MObs , and simple syntactic
conditions on the parameter inclusions MPar ↪→MObs and on the instantiating binding
(δ, ω) : MPar →MDSL are sufficient to imply the satisfaction of (2) and (3).

We first discuss conditions for the structural part encoded in MMObs , and then dis-
cuss the behavioural semantics.

Structural Conditions. In any adhesive category, the pushout of a monomorphism along
any map is a monomorphism [17, Proposition 2.1]. Therefore, since MMPar → MMObs

is a monomorphism, the induced morphism MMDSL → MM
D̂SL

is also a monomor-
phism. Notice that in addition to new classifiers, attributes and associations involving
observers, new attributes for classes in MMPar and new associations between classes
in MMPar may be introduced in MMObs . This might be convenient for modelling some
NFPs and does not cause problems from a semantic point of view.

Behavioural Conditions. We need to ensure that adding observers to a DSL specifica-
tion does not prevent any behaviour of any instance of that DSL that was previously
allowed, and, moreover, that no new behaviours are added.

It can be shown that we can have (3) by imposing a similar condition on the mor-
phism MPar →MObs . More precisely, it can be shown that

Π (RlsObs) |MMPar ≡stuttering Π (RlsPar ) (4)

implies

Π
(
Rls

D̂SL

) |MMDSL
≡stuttering Π (RlsDSL)

We still need methods for checking (4). The formalisation of the construction in [9]
suggests some ideas in this direction, but we leave it as future work.

4 A Prototypical Implementation

For the implementation of our prototype we have used ATL [18], a hybrid model trans-
formation domain specific language that contains a mixture of declarative and impera-
tive constructs. ATL transformations are unidirectional, operating on read-only source
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Fig. 8. Correspondences meta-model

models and producing write-only target models. During the execution of a transfor-
mation, source models may be navigated but changes are not allowed. Target models
cannot be navigated.

Following the proposal presented in Figure 7, we have split the binding process in
two ATL transformations: one for weaving the meta-models, MMDSL and MMObs , and
another one for weaving the behavioural rules, RlsDSL and RlsObs . In our example, the
former produces the meta-model shown in Figure 5, while the latter produces the woven
rule depicted in Figure 6 (plus the remaining rules in RlsDSL). For the remainder of this
section, let us clarify that by binding we mean the relations established between two
models. As for correspondence(s) and matching(s), we use them indistinctly when we
refer to one or more specific relations among the concepts in both models (either DSL
and observer meta-models or DSL and observer behavioural rules).

The binding between MDSL and MObs is given by a model that conforms to the
correspondences meta-model shown in Figure 8. Thus, both bindings, between meta-
models and between behavioural rules, are given in the same model. For the binding
between meta-models (Figures 1(a) and 3(a) in our example), we have the classes
MMMatching, ClassMatching and RefMatching that specify it. We will have
one object of type MMMatching for each pair of meta-models that we want to weave.
In our example, we have one object of this type, and its attributes contain the names of
the meta-models to weave. Objects of type MMMatching contain as many classes
(objects of type ClassMatching) as there are correspondences between classes in
both meta-models. Each object of type ClassMatching stores the names of the
classes in both meta-models that correspond. We have three objects of this type, as
described in Section 2. Regarding the objects of type RefMatching, contained in the
refs reference from MMMatching, they store the matchings between references in
both meta-models. Attributes obClassName and DSLClassName keep the names
of the source classes, while obRefName and DSLRefName contain the names of the
references. Once again, and as described in Section 2, there are three objects of this
type in our example.
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WeaveMetaModels.atl

BMM

MMDSL

MMObs

GCSDSL

GCSObs

RlsDSL

RlsObs

BRls

MMDSL

GCSDSL

RlsDSLWeaveBeh.atl

Fig. 9. Transformations schema

Regarding the binding between rules (RlsDSL and RlsObs ), there is an object of type
RuleMatching for each pair of rules to weave, so in our example there is only one.
It contains the names of both rules (Assemble and RespTime). Objects of types
ObjectMatching and LinkMatching contain the correspondences between ob-
jects and links, respectively, in the rules. Concretely, our correspondence models differ-
entiate between the bindings established between left- and right-hand side in rules, as
we describe later. In our behavioural rules described within e-Motions, which conform
to the Behavior meta-model (presented in [5]), the objects representing instances of
classes are of type Object and they are identified by their id attribute, and the links
between them are of type Link, identified by their name, input and output objects. Sim-
ilar to the binding between meta-models, objects of type ObjectMatching contain
the identifier of the objects matching, and instances of LinkMatching store informa-
tion about matchings between links (they store the identifier of the source classes of the
links as well as the name of the links). The correspondences between rules Assemble
and RespTime are those described at the end of Section 2.

A detailed documentation of the weaving process, performed by two ATL trans-
formations, is available in [19]. Here, we limit ourselves to a high-level overview of
the transformation architecture. As shown in Figure 9, we have split the overall weav-
ing function into two model transformations, one for weaving the metamodels and the
other for weaving the rules. Apart from the models already presented in Figure 7, GCS
models (graphical concrete syntax) also take part in the transformations. They store in-
formation about the concrete syntax of DSL and observer models. Both transformations
work in two stages to ensure the original DSL semantics are preserved. First, they copy
the original DSL model into the output model. Second, any additions from the observer
model are performed according to the binding information from the weaving model.

The first transformation, named WeaveMetaModels.atl, deals with the weave
of meta-models and GCSmodels. In the first step, the transformation copies both models
from the DSL into the output models. Next, it decorates the models created with the con-
cepts from the observer meta-model and GCS model. Regarding the output meta-model,
it adds the classes, references and attributes representing observers. In our example this
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means inserting the ResponseTime class, adding its attributes and establishing the
respTime reference among Assemble and ResponseTime classes. As for the
output GCS file, it means adding all the necessary data regarding the concrete syntax of
the ResponseTime class.

Between its inputs, the second transformation, WeaveBeh.atl, takes the models
produced by the first transformation. It performs in a similar way. The first step is to
copy all those rules from RlsDSL in the output model with the behavioural rules. Next,
those rules having correspondences with rules in RlsObs are decorated with observer
objects, links and attributes.

5 Related Work

We discuss related work in two areas: modelling of non-functional properties and mod-
ular language definition.

5.1 Modelling of Non-Functional Properties

Modelling and analysis of non-functional properties has been an active research area for
a substantial amount of time already. Our work is related to other work aiming to sup-
port specification of a wide range of non-functional properties—for example, languages
such as QML [20], CQML [21], CQML+ [22], or SLAng [23]. These languages take a
meta-modelling approach to the specification of non-functional properties in a two-step
process: In a first step, modellers specify non-functional characteristics—for example,
performance. These characteristics are then used in a second step to express constraints
over application models; that is, non-functional properties. This is similar to our ap-
proach: An observer model MObs effectively defines a non-functional characteristic.
A woven DSL M

D̂SL
can then be used to model non-functional properties. The ap-

proaches mentioned above differ in their amount of formal rigor (increasing from QML
to CQML+ and SLAng) and the type of systems they support (all except SLAng are
aimed at component-based systems; SLAng is meant for service-based systems). They
typically do not provide extensive support for analysis of the models created.

More formal renderings of these concepts can be found in [16] and [7]. The former
presents a formal encoding of real-time properties using so-called history-determined
variables, which are then used to model non-functional characteristics that depend on
time. [7] extends this to a formal framework for specifying non-functional properties
of component-based systems. While these approaches can potentially enable proofs of
non-functional properties, it is not clear how well they are suited to predictive analysis
of system properties—for example through simulation.

The approach by Troya and Vallecillo [4] aims to address this issue by providing
a specification based on observers and transformations. This enables predictive anal-
ysis through simulation based on an encoding in e-Motions [5, 6], which is translated
into Maude. However, their approach requires the details of a non-functional character-
istic to be redefined completely for each DSL. Our proposal is an extension of this work
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using ideas from [7, 16] to separate the specification of non-functional characteristics
from that of the functional behavioural semantics of a DSL.

5.2 Modular Languages, Models, and Transformations

We propose to weave two language definitions: One language enables the (abstract)
specification of a set of non-functional properties while the second language focuses
entirely on specifying relevant behaviours in a particular domain. Below we briefly re-
view some related work in the general area of modular definition of languages, models,
and transformations. We discuss selected related work in three areas:

1. Modular definition of languages;
2. Modular definition of models; and
3. Modular definition of model transformations.

Modular Definition of Languages. There is a large body of work on modularly defin-
ing computer languages. Most of this work (e.g., [24–26]) deals with textual languages
and in particular with issues of composing context-free grammars. While the general
idea of language composition is relevant for our work, this specific strand of research is
perhaps less related and will, therefore, not be discussed in more detail.

For languages based on meta-modelling, there is much less research on language
composition. Much of the work on model composition (see next sub-section) is of
course of relevance as meta-models are models themselves. Christian Wende’s work
on role-based language composition [27] is an approach that specifically addresses the
modularisation of meta-models. For a language module, Wende’s work allows the def-
inition of a composition interface by allowing language designers to use two types of
meta-model concepts: meta-classes and meta-roles. Meta-classes are used as in normal
meta-modelling to express the core meta-model concepts. Meta-roles are like meta-
classes, however they actually represent concepts to be provided by another language—
including definitions of operations and attributes, which are left abstract in the meta-
role. Meta-roles are, thus, similar to our use of meta-model parameters in MMObs .
However, Wende’s work uses meta-class operations to provide an operational view on
language semantics, while we use model transformations to encode language semantics.

Modular Modelling. Our notation for expressing parametrised meta-models is based
on how UML expresses parametrised models. Similar notations have been used in
aspect-oriented modelling (AOM) approaches—for example, Theme/UML [28] or RAM
[29]. More generally, our language composition technique is based on the notion of
model weaving from AOM. Theme/UML, RAM, or Reuseware [30] are examples of
aspect-oriented modelling techniques, which are asymmetric [31]; that is, they make a
distinction between a base model and an aspect model (the model that is parametrised)
that is woven into the base model. This is also true of our approach: MDSL is the base
model and MObs is the model that is woven into it. There is an alternative approach to
AOM that is more symmetric and considers all models to be woven as equal. This is
typically based on identifying corresponding elements in different models and merging
these. Examples are UML package merge or signature-based merging [32]. Most types
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of AOM also consider syntactic weaving only, disregarding the semantics of the mod-
ular models. In contrast, we explicitly consider the model semantics and povide formal
notions ensuring that the composition does not restrict the set of behaviours modelled
in the base DSL.

Modular Model Transformations. The semantics of the languages we are discussing
are expressed using model transformations. As such, work on modularising model
transformations is of relevance to our work. Generally, this work can be distinguished
into work on external and on internal modularisation of model transformations: The
former considers a complete model transformation as the unit of modularity, while
the latter aims to provide modularity inside individual transformations [33]. As we are
modifying the internals of the base transformation by adding in detail described in the
observer transformation rules, our approach is an internal modularisation technique.
Nonetheless, ideas from external composition approaches are of interest to us. In par-
ticular, the work on model typing and reusable model transformations presented in [34]
shows how the set of meta-model concepts effectively used by a model transformation
can be computed and how this can be used to make the transformations more reusable.
This is similar to the way in which we use the parametrised part of MMObs to make the
observer transformation rules more reusable and to adapt them to different DSLs.

6 Conclusions and Outlook

We have presented a formal framework for language components for the specification
of non-functional properties (NFPs) in domain-specific languages (DSLs). Specifically,
this enables language designers to encapsulate the semantics of particular NFPs in a
reusable language specification that can be woven into a base DSL specification to
produce a DSL that also enables the modelling and analysis of that particular NFP in the
context of a specific domain. We have presented conditions for the consistency of such
language components; in particular these ensure that weaving a language component
with a DSL does not add neither remove valid behaviours from the semantics of any
expressions in that DSL.

Our work makes a number of assumptions about the structure of the base DSL as well
as about the NFPs to be specified. In the future, we aim to reduce these assumptions to
provide a more general framework for the specification of NFPs in DSLs. Most im-
portantly, we will further study the cases where there is no simple alignment between
RlsObs and RlsDSL. This will require more powerful pattern-expression constructs in
RlsObs |MMPar

and a more complex weaving algorithm that allows observer rules to be
bound to multiple DSL rules and vice versa. Our current formalisation also does not
consider the effect of well-formedness rules defined for any of the DSLs involved, al-
though their addition should be relatively straightforward.
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AOSD VI. LNCS, vol. 5560, pp. 39–82. Springer, Heidelberg (2009)

31. Harrison, W.H., Ossher, H.L., Tarr, P.L.: Asymmetrically vs. symmetrically organized
paradigms for software composition. Technical Report RC22685, IBM Research (2002)

32. Reddy, Y.R., Ghosh, S., France, R.B., Straw, G., Bieman, J.M., McEachen, N., Song, E.,
Georg, G.: Directives for Composing Aspect-Oriented Design Class Models. In: Rashid, A.,
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Abstract. We present a modular well-definedness analysis for attribute
grammars. The global properties of completeness and non-circularity are
ensured with checks on grammar modules that require only additional
information from their dependencies. Local checks to ensure global prop-
erties are crucial for specifying extensible languages. They allow inde-
pendent developers of language extensions to verify that their extension,
when combined with other independently developed and similarly ver-
ified extensions to a specified host language, will result in a composed
grammar that is well-defined. Thus, the composition of the host language
and user-selected extensions can safely be performed by someone with
no expertise in language design and implementation. The analysis is nec-
essarily conservative and imposes some restrictions on the grammar. We
argue that the analysis is practical and the restrictions are natural and
not burdensome by applying it to the Silver specifications of Silver, our
boot-strapped extensible attribute grammar system.

1 Introduction

There has been considerable interest in extensible language frameworks and
mechanisms for defining language implementations in a highly modular manner.
Many of these frameworks allow language extensions that add new syntax and
new semantic analyses to be composed with the implementation of a so-called
host language, such as C or Java, resulting in an extended language with new,
possibly domain-specific, features. It is our contention that for these frameworks
to be useful to programmers and more widely used, the language extensions
need to be able to be developed independently and the process of composing
the host language with a selected set of extensions needs to be easily doable by
programmers with no knowledge of language design and implementation.

There are several systems that support, to varying degrees, the development
of modular and composable language extensions. For example, JastAdd [6] is a
system based on attribute grammars (AGs) extended with reference attributes [8]
which has been used to develop extensible compilers for Java [5] and Modelica.
MetaBorg [4] is based on term rewriting systems with strategies [21] and has been
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used to build extensible specifications of Java and other languages. SugarJ [7] is
an extension to Java in which new syntax to SugarJ can be defined in imported
libraries written in SugarJ. Our system, Silver [17,9], is an attribute grammar
system with forwarding [16], a mechanism for language extension that is useful
for combining extensions developed independently, which has also been used to
define an extensible specification of Java [18] and other languages.

Our work is motivated by two important questions related to how easy it is
for a non-expert to use these frameworks to create new languages from indepen-
dently developed language extensions.

1. How easy is it to compose the host and extension specifications? Must sig-
nificant glue code be written to combine them, or can one basically direct
the tools to compose the host and selected extensions automatically?

2. What assurances are provided to the user that the selected extensions will
in fact be composable such that the composition defines a working compiler,
translator, or interpreter for the specified extended language?

The formalisms on which the above systems are based (context free grammars
(CFG), attribute grammars, and term rewriting systems) are all quite easily and
naturally composed, and thus adequately address our first question above. The
problem arises with the second question: the composition may not have desirable
or required properties for that formalism. For example, CFGs compose but the
resulting grammar may be ambiguous and thus not suited as a specification for
a parser. Similarly, composed AGs may not be complete (i.e. missing required
attribute equations) or it may contain circularities in the attribute definitions.

In 2009, Schwerdfeger and VanWyk described amodular determinism analysis
for context free grammar fragments that could be run by the language extension
developer to verify that their extension CFG, when composed with the host lan-
guage CFG and other independently developed and similarly verified extension
CFGs, would result in a deterministic grammar, from which a conflict-free LR(1)
parse table could be constructed [14]. Formally, this was expressed as

(∀i ∈ [1, n].isComposable(CFGH , CFGE
i ) ∧ conflictFree(CFGH ∪ {CFGE

i )})
=⇒ conflictFree(CFGH ∪ {

CFGE
1 , . . . ,CFGE

n

}
)

Note that each extension grammar CFGE
i is tested, with respect to the host

language grammar CFGH , using the isComposable and conflictFree analysis.
If all extensions independently pass this analysis, then their composition is a
CFG from which a conflict-free deterministic LR parse table can be generated.
Of course, this analysis puts some restrictions on the type of syntax that can
be added to a language as a composable language extension, but we have found
these restrictions to be natural and not burdensome [14]. This analysis is used in
Copper, the integrated parser and context-aware scanner packaged with Silver.

One of the primary contributions of this paper is a modular analysis for at-
tribute grammar completeness and circularity-detection that is meant to provide
the sort of assurances described in the second question above. The modular com-
pleteness analysis, called modComplete , provides the following guarantee:

(∀i ∈ [1, n].modComplete(AGH ,AGE
i )) =⇒ complete(AGH ∪ {AGE

1 , ...,AGE
n }).
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This analysis has the same form as the modular determinism analysis described
above in that it verifies the property of attribute grammar completeness inde-
pendently on each of the attribute grammar specifications of language exten-
sions. The guarantee is that the non-expert can direct Silver to compose host
and extension specifications (that pass this analysis) knowing that the resulting
attribute grammar will be complete. Thus an entire class of common attribute
grammar errors can be solved by the extension developers, who have some un-
derstanding of language design and implementation, and this burden will not
fall on the non-expert doing the composition of the extensions.

Additional contributions of the paper include the following.

– In specifying the modular completeness analysis we define a notion of effec-
tive completeness that is useful in higher-order attribute grammars [23] as
well as with forwarding.

– Unlike the original (non-modular) completeness analysis for attribute
grammars with forwarding [16,1], our analysis distinguishes between missing
equations and cycles in the attribute dependencies resulting in better error
messages to the developer.

– We extend the completeness analysis to a modular circularity analysis.
– We evaluate the restrictions imposed by the modular analysis on the Silver-

language source specification of our (bootstrapped) Silver compiler. This
highly-modular specification was written before the analysis was developed.
We find that the restrictions are not overbearing.

Paper contents: Section 2 provides needed background on attribute grammars,
defines a simplified AG language over which the analyses are described, and
defines the mechanism for computing flow-types of nonterminals in the AG. In
Section 3 we present a modular analysis for effective completeness which we then
extend in Section 4 to allow for more flexible organization of grammars and to
include additional AG features found in full-featured attribute grammar speci-
fication languages such as Silver. Section 5 describes our experience in applying
this analysis on the specification of Silver. In Section 6 we augment the analysis
to also ensure non-circularity. Related (Section 7) and future work (Section 8)
are discussed, followed by concluding remarks (Section 9).

2 Background

We begin with a broad overview of attribute grammar analysis, and then get
more specific, with an example grammar and flow graphs later in the section.

Attribute grammars [11] are a formalism for describing computations over
trees. Trees formed from an underlying context-free grammar are attributed with
synthesized and inherited attributes, allowing information to flow, respectively,
up and down the tree. Each production in the grammar specifies equations that
define the synthesized attributes on its corresponding nodes in the tree, as well as
the inherited attributes on the children of those nodes. These equations defining
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the value of an attribute on a node may depend on the values of other attributes
on itself and its children.

An attribute grammar is considered complete if there are no missing equations.
That is, for all productions, there is an equation for every synthesized attribute
that occurs on the nonterminal the production constructs, and for all children
of the production, there is an equation for every inherited attribute that occurs
on that child’s nonterminal.

An attribute grammar is considered non-circular (and, if also complete, then
well-defined) if on every possible tree allowed by the context-free grammar, there
is no attribute whose value, as specified by the attribute equations, eventually
depends upon itself. Knuth presents [11] an algorithm to ensure non-circularity
in a complete attribute grammar. This algorithm is based upon constructing a
graph for each production that describes how information flows around locally
within that production. Alone, this is insufficient information: a production has
no idea how its own inherited attributes might depend on its own synthesized
attributes, nor can it know how its children’s synthesized attributes might de-
pend upon the inherited attributes it provides them. This global information is
determined by a data flow analysis that results in a set for every nonterminal
containing every possible flow of information between attributes on that nonter-
minal. Non-circularity can be checked using these sets.

Attribute grammars have been extended in a variety of ways. Higher-order at-
tribute grammars [23] allow attributes to themselves contain trees that are as-yet
undecorated by attributes. These trees are made useful by permitting produc-
tions to “locally anchor” a tree and decorate it, as if it had been a child. A child,
however, is supplied when a tree is created, whereas these “virtual children” are
defined by an equation during attribute evaluation that, of course, may have
dependencies on the values of attributes, like any other equation. Higher-order
attribute grammars amend the notion of completeness by requiring all inherited
attributes to be supplied to these “virtual children,” as well. The notion of non-
circularity is also further extended, by requiring that the synthesized attributes
of each “virtual child” have an implicit dependency on the equation defining that
tree. These virtual children can potentially lead to the creation of an unbounded
number of trees, and thus the nontermination of attribute evaluation.

Forwarding [16] was introduced to attribute grammars to allow for language
extension. A language extension that introduces new productions combined with
another that introduces new attributes on existing nonterminals presents a seri-
ous problem for completeness: the new attribute may not be defined on the new
production. This is sometimes referred to as the expression problem.1 If, however,
those new productions forward requests for synthesized attributes without defin-
ing equations to semantically equivalent trees in the host language, the new at-
tributes can simply be evaluated on that host tree instead and returned as the
value of the attribute for the forwarding production, resolving the problem. For-
warding amends the notion of completeness by allowing a production that for-
wards to omit synthesized attribute equations, as they can instead be supplied by

1 http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt

http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt
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D ::= nonterminal nnt ; | synthesized attribute ns ::T ;

| inherited attribute ni ::T ; | attribute na occurs on nnt ;

| production np nlhs ::nnt ::= nrhs ::T { S }
| aspect production np nlhs ::nnt ::= nrhs ::T { S }

S ::= nlhs .ns = E ; | nrhs .ni = E ;

| local nlocal ::T = E ; | nlocal .ni = E ;

| forwards to E { A } ;

A ::= ni = E
E ::= nlocal | nlhs .na | nrhs .na | nlocal .na | · · ·
T ::= nnt

Fig. 1. The language Agf

the forward tree. Forwarding’s necessary modifications to non-circularity roughly
follow those of higher-order attribute grammars: the forward tree appears as a
“virtual child” and all synthesized attributes on a forward tree have a dependency
on the equation defining this tree. Forwarding introduces implicit “copy” rules for
synthesized attribute equations the production is missing, as well as for any inher-
ited attributes not supplied to the forward tree.

A problem for completeness identified by the forwarding paper, but also ex-
isting for higher-order attribute grammars, is the inconvenience of requiring all
inherited attributes to be supplied. Frequently, only a subset of synthesized at-
tributes are demanded, which in turn only require a subset of inherited at-
tributes. This shows up frequently for forwarding, where a production may only
use its own children to synthesize a “pretty print” attribute, relying on the for-
ward tree for everything else (such as “translation.”) This production would be
required to supply its children with inherited attribute equations that are never
used, merely to pretty print the tree. An amended notion of effective complete-
ness of inherited attributes can be used instead: we require that all inherited
attributes needed to compute any accessed synthesized attribute be supplied, in-
stead of simply all of them outright. An effectively complete attribute grammar
can compute non-circularity in the same manner as a complete one: if these
equations are never demanded, they will never have an effect on flow graphs of
a nonterminal, and can be ignored in the flow graphs of a production.

2.1 The Language

The language defined in Fig. 1 describes a simplified attribute grammar lan-
guage, based on our attribute grammar language, Silver, but with many or-
thogonal features (such as an indication of a starting symbol) omitted, and
some introduced later in Section 4. It should generalize well to other attribute
grammar languages that include forwarding. Declarations are represented by D.
Attributes are declared separately from the occurs-on declarations that indicate
what nonterminals (nnt) the attribute (na) decorate. Semantic equations (S)
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can be supplied separately from declaring a production via aspect productions.
The possible equations include defining synthesized attributes (ns) for the pro-
duction’s left hand side (nlhs) and inherited attributes (ni) for children (nrhs)
and locals (nlocal). Local declarations allow for “locally anchoring” trees, as in
higher-order attribute grammars. Finally, productions may forward, and pro-
vide equations to change the inherited attributes supplied to the forward tree,
which are otherwise copied from the forwarding tree. Note that one restriction
not reflected in the grammar is that a forward may not appear in an aspect pro-
duction. Expressions (E) are largely elided from the language above. Only those
expressions that induce dependencies in a production’s flow graph are shown.
As a result, even though referring to a child’s tree (nrhs) is a valid expression,
it does not appear in E because a child tree is simply a value with no incurred
flow dependencies. Similarly, any sort of function call expression induces no de-
pendencies on its own, and simply aggregates dependencies from its component
expressions.

We will write AGH to indicate a host language, which should be a valid at-
tribute grammar consisting of a set of declarations (D.) We will write language
extensions (also consisting of a set of declarations D) as AGE , and these gram-
mars should be valid in combination with the host language they extend (i.e.
AGH ∪ AGE is valid for each AGE .) By validity, we mean certain properties
about the grammars that we consider to be part of a “standard” environment
and semantic analysis. For example, we will assume the grammars have all names
bind properly and are type correct. We will assume that duplicate declarations
of nonterminals, attributes, and productions are caught locally, and that if they
occur in different grammars they are not duplicates but truly different symbols
with different “fully-qualified” names based on the name of the grammar.

Fig. 2 shows an example of a small host language with two extensions. Note
that one extension introduces a new production that forwards to its semantic
equivalent in the host language (via De Morgan’s laws), and that another ex-
tension introduce a new “translation” attribute for the productions in the host
language. Both the errors and java attributes for the or production will be
ultimately be computed by consulting the forwards tree.

The flow graphs for some of the productions of the composed grammars of
Fig. 2 are shown in Fig. 3. Note that we use arrows to represent dependencies
necessary to evaluate attributes, rather that using them to indicate the direction
of information flow. A flow type [13] is a function fnt : syn → {inh} that
defines, for a nonterminal, what inherited attributes each synthesized attribute
that occurs on that nonterminal may depend upon. A flow type can also be
thought of as a graph, where edges are always from synthesized attribute nodes
to inherited attribute nodes. A production’s flow graph and the flow types for
each nonterminal can be combined into a stitched flow graph. In the figure, the
flow type for Expr is shown, along with the stitched flow graph for the production
not. The flow types introduce edges between the attributes on the nonterminals
of each child, virtual child, and forward in the stitched flow graph.
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host grammar
nonterminal Expr;

synthesized attribute errors::[Msg];

inherited attribute env::Env;

attribute errors occurs on Expr;

attribute env occurs on Expr;

production and

e::Expr ::= l::Expr r::Expr

{ e.errors = l.errors ++ r.errors;

}

production not

e::Expr ::= s::Expr

{ e.errors = s.errors;

}

production var

e::Expr ::= n::Name

{ e.errors = lookup(e.env, n.lexeme);

}

or extension
production or

e::Expr ::= l::Expr r::Expr

{ forwards to

not(and(not(l), not(r))); }

java extension
synthesized attribute java::String;

attribute java occurs on Expr;

aspect production and

e::Expr ::= l::Expr r::Expr

{ e.java = l.java ++ "&&" ++ r.java; }

aspect production not

e::Expr ::= s::Expr

{ e.java = "!" ++ s.java; }

aspect production var

e::Expr ::= n::Name

{ e.java = n.lexeme; }

Fig. 2. An example of a host grammar for boolean propositions, with two extensions

2.2 Flow Type Computation

Knuth’s (corrected) algorithm for ensuring non-circularity can be thought of
as computing a set of flow types for each nonterminal. For now, we are only
concerned with computing a single flow type per nonterminal. The flow type
computation is a function flowTypes(D) : nt → syn → {inh}. Supplied with a
set of declarations that form a valid attribute grammar, it results in a function
mapping each nonterminal to a flow type. In principal, flow types could be
computed using the standard non-circularity algorithm, by merging the set of
flow types into just one for each nonterminal. It is significantly more efficient to
compute them directly, with a slightly modified algorithm:

1. Local flow graphs for each production are computed.

2. Begin with an empty flow type for every nonterminal & synthesized attribute.

3. Iterate over every production. Produce a stitched flow graph for that pro-
duction using the current set of flow types. If there are any paths from a
synthesized attribute on the production’s left hand side nonterminal to an
inherited attribute on the same that are not yet present in the current flow
type for that nonterminal, add them to the nonterminal’s flow type.

4. Repeat until no new edges are introduced in a full pass over the productions.

We also have need to extend the domain of the flow type function ftnt to track not
just synthesized equation dependencies, but also those for forward equations. We
will write ftnt (fwd) to refer to the dependencies potentially necessary to evaluate
all forward equations for the nonterminal nt.
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Fig. 3. Flow graphs for the grammar of Fig. 2. Also including the flow type of Expr,
and an example stitched flow graph.

3 Modular Flow Analysis for Completeness

The modular completeness analysis modComplete checks six properties of the
host and each extension attribute grammar individually to ensure that the com-
position of the host and these extensions will be effectively complete. Two of
these properties require the flow types for host and extension grammars to have
been computed. The analysis modComplete is defined as follows:

modComplete(AGH ,AGE ) �
noOrphanOccursOn(AGH ,AGE ) ∧ noOrphanAttrEqs(AGH ,AGE ) ∧
noOrphanProds(AGH ,AGE ) ∧ synComplete(AGH ,AGE ) ∧
modularFlowTypes(flowTypes(AGH ),flowTypes(AGH ∪AGE )) ∧
inhComplete(AGH ,AGE ,flowTypes(AGH ∪ AGE ))

Each of these checks is defined in turn below. In these discussions, we will use the
notation “n is exported by AG1 or AG2” to mean that the symbol n is declared
in the grammars AG1 or AG2. This ensures that when export statements are
introduced in the extended analysis (Section 4) the language used below will still
be a correct description of the requirements. We will also say that something is
“in scope” if the information is available in the standard environment for a
grammar, as described in Section 2.

No orphan occurs-on declarations: The check noOrphanOccursOn ensures that
there will be no duplicate occurs-on declarations in the composition of the host
and all extension grammars, denoted AGall .
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noOrphanOccursOn(AGH ,AGE ) holds if and only if each occurs-on dec-
laration “attribute a occurs on nt” in AGH ∪ AGE is exported by the
grammar declaring a or the grammar declaring nt.

Every occurs-on declaration will have all potentially duplicate occurs-on dec-
larations in its scope. This prevents, for example, an occurs-on relation being
declared in an extension AGE for an attribute and non-terminal that are both
defined in the host AGH . However, it still permits the occurs-on declaration if
the nonterminal or the attribute are declared in the extension.

No orphan attribute equations: The check noOrphanAttrEqs ensures that there
will be no more than one equation for the same attribute for the same production
in AGall.

noOrphanAttrEqs(AGH ,AGE ) holds if and only if each equation n.a =
e in a production p is exported by the grammar declaring the (non-
aspect) production p or the grammar declaring the occurs-on declaration
“attribute a occurs on nt” (where n has type nt.)

Similar to the orphaned occurs-on declarations, this rule ensure that each
equation must have all potential duplicate equations in scope. This relies on the
orphaned occurs check: if two extensions can independently make the same at-
tribute occur on the same nonterminal, in such a way that the standard environ-
ment cannot catch the duplicate occurs, then it also cannot catch the duplicate
equations. Also note that this rule applies equally to synthesized and inherited
attribute equations, and that we have not yet ensured there exists at least one
equation, only ruled out the possibility of more than one.

No orphan production declarations: The check noOrphanProds ensures that ex-
tension productions forward, in order to allow forwarding to solve the problem
its introduction is intended to solve.

noOrphanProds(AGH ,AGE ) holds if and only if for each production decla-
ration p in AGH ∪AGE with left hand side nonterminal nt, the production
p is either exported by the grammar declaring nt, or p forwards.

This rule is different from the previous two in that there’s no choice of where a
declaration can appear. The grammar declaring the nonterminal in effect declares
a fixed set of productions that do not forward, and this set will be known to
every extension grammar. As a result, a production is either in the host language
AGH , declared in the extension and forwards, or is declared in the extension and
its left hand side is a nonterminal also declared in the extension.
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Completeness of synthesized equations: The check synComplete ensures that for
every production, an equation exists to compute every synthesized attribute that
occurs on its left hand side non-terminal in AGall.

synComplete(AGH ,AGE ) holds if and only if for each occurs-on declaration
attribute a occurs on nt, and for each non-forwarding production p that
constructs nt, there exists a synthesized equation defining the value of that
attribute for that production.

This rule relies on the previous orphaned productions rule to ensure that all
non-forwarding productions are in scope at the occurs declaration. It further
relies on the previous orphaned equations rule (and thus, the orphaned occurs
rule) to ensure that all potential equations for those non-forwarding productions
are in scope, and thus we can check for their existence. Any production that
forwards will be able to obtain a value for this attribute via its forward tree if
it lacks an equation, and therefore they do not need checking.

The rules up to this point ensure synthesized completeness in a modular way.
No set of composed extensions that satisfy the above rules could result in a miss-
ing or duplicate synthesized equation for any production in the resulting com-
posed attribute grammar, AGall. These rules critically rely on forwarding. With-
out forwarding, nonterminals are no more extensible than standard datatypes
in ML or Haskell, in that new synthesized attributes are possible, but not new
productions. We now turn to inherited attributes and flow types.

Modularity of flow types: The check modularFlowTypes ensures that all gram-
mars will agree on the flow types. For occurrences in AGH , an extension is not
allowed to change the flow types. For those in AGE , it ensures they depend upon
those inherited attributes needed to evaluate forward equations, at a minimum.

modularFlowTypes(flowTypes(AGH ),flowTypes(AGH ∪AGE )) holds if and
only if given ftHnt ∈ flowTypes(AGH ) and ftH∪E

nt ∈ flowTypes(AGH ∪ AGE ),

1. For all synthesized attribute occurrences attribute s occurs on nt
declared in AGH , ftH∪E

nt (s) ⊆ ftHnt(s)
2. For all nonterminals nt declared in AGH , ftH∪E

nt (fwd) ⊆ ftHnt(fwd)
3. For all synthesized attribute occurrences, s, declared in AGE where nt

is declared in AGH , ftH∪E
nt (s) ⊇ ftHnt(fwd).

The first two properties prevent an extension from modifying the flow types of
host language occurrences, including the forward flow type. The purpose of the
requirement on extension attributes is less obvious, but boils down to potentially
needing to be able to evaluate forwards to get to the host language production on
which this attribute is defined (in particular for productions from other exten-
sions.) Our implementation deals with this last requirement by simply modifying
the flow types, rather than raising an error if one runs afoul.
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Fig. 4. The dependencies among the modularity analysis rules

Effective completeness of inherited equations: The check inhComplete ensures
that no evaluation of attributes will demand an inherited attribute that is missing
a defining equation. For each access of a synthesized attribute from a child or
local, we ensure that a sufficient set of inherited attributes has been supplied to
that child or local.

inhComplete(AGH ,AGE ,flowTypes(AGH ∪ AGE )) holds if and only if for
every production p in AGH ∪ AGE and for every access to a synthesized
attribute n.s in an expression within p (where n has type nt,) and for each
inherited attribute i ∈ ftnt (s), there exists an equation n.i = e for p.

This rule is sufficient to ensure that, when the host and extension are com-
posed alone, no missing inherited attribute equations will be demanded. Together
with the previous modularity rule for flow types, it’s is also sufficient to ensure
this property holds for AGall because the flow type for host attribute occur-
rences cannot be changed by an extension. Finally, we can also be sure there are
no duplicate inherited equations thanks to the earlier orphaned equations rule.

Fig. 4 summarizes the dependencies between the rules and how effective com-
pleteness is established. We achieve effective completeness for AGall by ensuring
modular effective inherited completeness and modular synthesized completeness
hold for each extension individually, with no further checks necessary.

This analysis ultimately boils down to two major restrictions on extensions.
First, the host language fixes a set of non-forwarding productions, and any ex-
tension to this language must ultimately be expressible in terms of these pro-
ductions (via forwarding.) Second, for each host language synthesized attribute
occurrence, the host language fixes a set of inherited dependencies. Our expe-
rience so far suggests that host languages are typically rich enough to express
many interesting extensions, and many extensions that need inherited informa-
tion can usually “piggy back” that information on already existing host language
inherited attributes (e.g. the environment.) Further evaluation of the practicality
of these rules will be presented in Section 5.
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G ::= · | grammar ng { M D } G
M ::= import ng ; | export ng ; | option ng ;

| export ng with ntg ;

Fig. 5. Extending the language Agfwith a module system

4 Extending the Analysis

We extend Agf in two ways: first, by introducing a module system for it, and
second, by introducing several other features found in Silver to the language that
affect the modularity analysis.

4.1 A Module System

So far we have referred to attribute grammars AGH and AGE as host and
extension grammars, however this does not reflect the reality of developing large
attribute grammars. In Fig. 5, we introduce a module system to Agf . Each
grammar is named, and consists of a set of module statements and a set of
attribute grammar declarations. We will consider each module statement in turn.

The analysis presented in Section 3 is easily generalized to apply to acyclic
import graphs between grammars. An import (import ng) makes explicit the
information available in the standard environment for a module, whereas we
previously merely stated that extension grammars have in their environment
their host language’s symbols. To apply the modularity analysis, we consider
every grammar to be an “extension” to the composition of all the grammars it
imports, and we otherwise apply the analysis unchanged. The modularity rules
are formulated such that being designated a “host” or “extension” confers no
special status beyond what “is extending” and what “is being extended.” A
grammar that imports nothing satisfies all the modularity rules. In addition to
allowing the host language to be broken up into multiple grammars, this allows
extensions to make use of other extensions.

Exports (export ng) allow grammars to be broken apart arbitrarily into
different pieces, and be largely treated as a single grammar for the purpose
of the analysis. For example, we might want to separate the concern of type
checking from the host language, but type checking may not pass the analysis as
an “extension.” To allow this, we can have the host language grammar export
the type checking grammar, essentially designating it part of the host. Again,
the modularity rules do not require any changes, because we were already careful
to word the rules to note when a symbol is “exported by” a grammar.

So far, however, this is still a limiting situation for host languages. Many
languages have multiple potential configurations that cannot be reflected as ex-
tensions, for modularity reasons or simply because they conflict outright with
alternative configurations. For example, GHC Haskell has many optional features
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E ::= ref nlocal | ref nlhs | ref nrhs | E .na

| case E of p → Ep | nv .na | · · ·
p ::= np(nv) |

Fig. 6. Extending the language Agfwith references and pattern matching

that can be enabled, some of which cannot be activated together. To support
these configurations, we introduce options to the language. An option (option
ng) declaration behaves identically to an export, when computing any of the re-
quirements imposed by Section 3, but has no effect on the standard environment.
This allows, for example, new non-forwarding productions to be introduced in
a grammar that is not necessarily the host language, but still allows the mod-
ularity rules to ensure that any extensions account for their existence. This in
turn necessitates another new feature, conditional exports, to allow an extension
grammar to optionally include support for a feature that may or may not be in
the host language (because it is an optional component.) A conditional export
(export ng with ntg) is identical to a normal export of ng, so long as the
importing module also imports its triggering grammar (ntg), such as an optional
component of the host language. If not, the conditional export is ignored.

Finally, our last modification to the module system is to account for import
cycles. The above generalization to arbitrary import graphs works until a cycle
is encountered. If there is a cycle, then a “host” grammar will actually include
the “extension” in its flow type computations, and thus won’t flag that exten-
sion’s violations. To handle cycles (and as a bonus, to compute flow types much
more efficiently,) we compute flow types just once, globally. To ensure we still
generate the same flow types, production graphs are partitioned into standard
edges and suspect edges. Only standard edges are used when stitching produc-
tion graphs, and computing updates to flow types. Suspect edges are generated
from synthesized (and forward) equations that are not permitted to affect their
corresponding flow type. (Note that this includes implicit synthesized equations
generated by forwards.) During the flow type computation, the dependencies
suspect edges would introduce are considered, and only those direct edges to
LHS inherited attributes that are already in their corresponding flow type are
admitted as a standard edge. In this way, these edges’ valid dependencies have
effect on the rest of the graph, while avoiding affecting their own flow type.

4.2 Additional Language Features

Silver also supports a version of reference/remote attributes [8,3], and pattern
matching [9]. References refer to trees that have already been given their inher-
ited attributes elsewhere, whereas higher-order attributes refer to a tree that is
“anchored” and supplied inherited attributes locally. References present a unique
problem: the “decoration site” of the reference is unknown. It is not possible to
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know what inherited attributes where supplied, if any. We adopt an extremely
conservative solution to this obstacle. We will refer to the set of all inherited at-
tributes known to occur on a nonterminal nt by the grammar that declares
nt as ftnt(ref). This particular choice isn’t important, only that all grammars
will agree on a consistent set. Whenever a reference is taken (ref nn, where
nn has type nt), we consider it to depend on ftnt(ref ). Whenever an attribute
is demanded from a reference (E . na where E is a reference to a nonterminal
nt), we ensure that the flow type ftnt (a) ⊆ ftnt (ref ). Thus, the set of inherited
attributes on a reference type is fixed by the host language. This could be ex-
tremely limiting, however in Section 5 we present some evidence that it is still
quite workable.

Silver allows for pattern matching on trees, in a manner that respects forward-
ing [9]. In order to perform the pattern matching, therefore, we must be able to
evaluate the forward equation for any production, and therefore the scrutinee
must be supplied ftnt (fwd). As a bonus, the interaction of pattern matching with
forwarding, combined with the orphaned production rules of Section 3, allows
pattern matching expressions to ensure all possible cases are covered. Pattern
matching is capable of extracting references to the children of a production, but
in a manner that constitutes a known “decoration site,” and thus we do not
have to fall back on treating them like references (so long as reference is not
otherwise taken.) Given a set of inherited attributes known to be supplied to
the scrutinee i, for each case matching a production p, we can flow i through
the production flow graph for p, and determine the set of inherited attributes
that will be supplied to each child of p extracted as a pattern variable. For each
pattern variable attribute access (nv . a where nv has type nt) we can ensure
the flow type ftnt (a) is a covered by this set.

Silver has a number of other features that have relatively trivial effects on
the modularity analysis: collection attributes, autocopy attributes, and newly-
introduced default equations, see Section 5. The later two present no complica-
tions, and in fact are greatly simplified by the analysis: for grammars that pass
the analysis, all implicit equations they introduce are statically known. Our no-
tion of collection attributes do not allow for remote contributions, unlike those
of Boyland [3]. Collections attributes are synthesized attributes that have two
different kinds of defining equations: base and contribution. Base equations are
treated identically to ordinary equations for the modularity analysis. Contribut-
ing equations are allowed to exist in places that violate the orphaned equations
rule (as there are allowed to be any number of them), but are still subject to the
inherited completeness rule and the host language’s flow type.

Finally, Silver supports an alternative composition model that more resem-
bles that of classes in object-oriented languages. Closed nonterminals, instead of
having a fixed set of non-forwarding productions, have a fixed set of attributes
instead, and non-forwarding productions may appear in any grammar. As an ex-
ample, many languages will have a concrete syntax tree with a single synthesized
attribute to construct an abstract syntax tree. This poses a potential serious an-
noyance for extensions, given the modularity rules: the extension might have to
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duplicate the forwards for the concrete and the abstract productions. Making
concrete syntax nonterminals closed resolves the issue.

5 Evaluation of Modular Completeness Analysis

To evaluate the analysis, and the practicality of writing specifications that satisfy
the restrictions imposed, we have implemented the analysis and applied it to
the Silver specifications for the Silver compiler. We chose to analyze Silver itself
because it was one of the most complex attribute grammar specifications we have.
The host language has an interesting type system, it includes several optional
components that may or may not be included, it has several composable language
extensions (some add new syntax, some add new attributes, some both), and it
has a full translation to Java. It’s also the Silver specification we use most, and
as a result we believe it would have the fewest bugs.

The caveat for evaluating on Silver is that what is considered “host” vs “ex-
tension” is also under our control. To alleviate this concern somewhat, we briefly
describe a few of the extensions, to demonstrate they are interesting and non-
trivial. A “convenience” extension introduces new syntax that greatly simplifies
making large numbers of similar occurs declarations, by allowing nonterminal
declarations to be annotated with a list of them. A testing extension adds several
constructs for writing and generating unit tests for the language specification.
An “easy terminals” extension allows simple terminals to be referred to by their
lexeme in production declarations (using ’to’ instead of To kwd, for example.)
Finally, the entire translation to Java is implemented as a composable language
extension.

A technical report documents all issues raised by the analysis and the changes
made to address them [10]. A brief summary of those results is reported here.

Silver focuses specifically on language extension, and as a result, we had cho-
sen not to implement the monolithic analysis, to better enable separate com-
pilation. Without the modular analysis, we had simply gotten by without a
static completeness analysis. One set of changes made in response to the analy-
sis were expected: we found (and fixed) several bugs. The analysis found several
legitimately missing synthesized and inherited attribute equations. It also found
several productions that should have been forwarding, but were not.

Another positive set of changes improved the quality of the implementation,
even if they did not directly fix bugs. We discovered several extraneous attribute
occurrences that simply never had equations, and were never used either. Many
uses of references were found to be completely unnecessary and eliminated. One
particularly interesting change has to do with how concrete syntax specifica-
tions are handled in Silver. Silver’s host language supplies a “standard” set
of declarations for concrete syntax, while Copper-specific declarations are kept
in a separate optional grammar. The analysis raised a simple error: the Java
translation attributes for parser declarations were being supplied by the Copper
grammar, which is a violation of the rules. The decision was made to move this
parser declaration out of the host language and into the Copper optional gram-
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mar, and that it actually belonged there all along: it does, after all, generate a
Copper parser.

Some parts of the analysis were motivated by our attempts to get Silver to
conform to the restrictions. The specification of the Silver host language is broken
up into several grammar modules for standard software engineering reasons of
modularity. Many of these modules are not meant to be considered composable
language extensions. This motivated the introduction of the “option” module
statement. We also found that we were abusing forwarding, using it as a way to
define default values for attributes where the forwarded-to tree was not, in fact,
semantically equivalent to the forwarding tree in the slightest. To resolve this,
we introduced the notion of default attribute values as a separate concept, so
these uses of forwarding could be eliminated.

There were two sorts of negative changes made to the Silver specification in or-
der to make it pass the analysis. The first of these resulted from the conservative
rules for handling reference attributes. Two sets of inherited attribute equations
had to be supplied whose values are never actually used. In one case, a nonter-
minal representing concrete syntax information has two synthesized attributes,
one for a normalization process and one for translation. These attributes have
different inherited dependencies, but the analysis required the full set for both
because the synthesized attributes internally used references.

The second sort of negative changes involved introducing workarounds for
code that we already knew needed refactoring, but we did not want to fix, yet.
In fact, in many of these cases, the analysis lead us to code that already had
“TODO” comments complaining about a design for reasons unrelated to the
analysis. The most significant of these is the use of a single nonterminal as a
data structure to represent several different types of declarations in Silver (at-
tributes, types, values, occurs-on, etc.) This is a legacy from when Silver did not
have parametric polymorphism and needed to group all of these together into
a single monomorphic type. To make the analysis pass, we introduced “error”
equations for attributes that did not have sensible values otherwise (e.g. at-
tributes for value declarations that do not apply to type declarations.) However,
the use of “error” equations to make the analysis pass still provides a stati-
cally detectable indication that we are, in essence, making a temporary end-run
around the analysis. These error equations are essentially a form of “technical
debt” - legitimate problems that we will change later, but for various reasons
decide not to do just yet. On the positive side, it lets the developer distinguish
between bugs to fix now and changes to make later.

In our experience with Silver, the analysis found a few bugs, motivated us to
fix a small number of design flaws, and introduced a relatively small amount of
technical debt. The analysis also found problems that inspired some changes to
Silver (e.g. options, defaults) to more easily write specifications that satisfied
the restrictions. We found the use of “error” equations reasonable, as a way to
document technical debt and refactorings that should be made at a later date
(or in the worst case, an explanation of why the attribute really could never
be demanded, despite the analysis indicating otherwise.) In the end, most of
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the changes necessary were to the host language itself, and the extensions then
passed without further effort.

6 Extending the Modular Analysis to Circularity
Analysis

So far we have focused only on ensuring completeness of the composed attribute
grammar in a modular way. This involved making use of flow information that
is typically used to ensure non-circularity, but we only computed a single flow
type for each nonterminal instead of a set, as is normally done in circularity
analyses. To ensure non-circularity, we will go back to calculating these flow sets
once again.

In this section we define a modular non-circularity analysis. As in the modular
completeness analysis, this analysis is performed independently on each exten-
sion to ensure non-circularity in the final composed grammar. This analysis,
modNonCircular , is defined as follows:

modNonCircular (AGH ,AGE ) �
modComplete(AGH ,AGE ) ∧ nonCircular(AGH ∪ AGE )∧
modFlowSets(flowSets(AGH ),flowSets(AGH ∪AGE ))

The modComplete analysis is unchanged, and the analysis nonCircular is the
standard non-circularity analysis for attribute grammars [11,23,16].

Modularity of flow sets: The check modFlowSets ensures that extensions do
not introduce any flow types whose host language component is not already
accounted for in the host language’s flow sets. The extension can still introduce
new flow types, so long as they differ only in edges from synthesized attribute
occurrences declared in AGE .

modFlowSets(flowSets(AGH ),flowSets(AGH ∪AGE )) holds if and only if
for every ftH∪E

nt in flowSets(AGH ∪AGE ), there is a ftHnt in flowSets(AGH )
such that for every s ∈ dom(ftHnt), ft

H∪E
nt (s) ⊆ ftHnt(s).

This rule is justified by a well-known optimization for computing flow sets,
where flow types that are “covered” by another flow type in the same flow set
can be discarded. All this rule does is ensure that all flow types generated by the
extension (restricted back to the host language) can be discarded in this fashion,
and consequently do not affect the non-circularity check.

This analysis, too, can handle the extensions introduced in Section 4, with
the caveat that the conservative rules introduced for handling references may
result in false positive circularities. Finally, while we have not yet evaluated this
analysis in practice, we believe the major potential problem for it is ensuring
that the extension developer can understand the resulting requirements. The
graphs that are contained in the flow sets are not necessarily subject to easy
intuition the way flow types are.
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7 Related Work

Knuth introduced attribute grammars [11] and provided a circularity analysis. In
presenting higher-order attributes, Vogt et al. [23] extended Knuth’s complete-
ness and circularity analyses to that setting. Reference and remote attributes do
not have a precise circularity analysis [3], as the problem is undecidable. Com-
pleteness in these settings is simply a matter of using occur-on relationships to
check for the existence of equations for all of the required attributes. With for-
warding, flow-analysis is used to check completeness and thus a definedness anal-
ysis that combines the check of completeness and circularity was defined [16,1].
This analysis used dependency functions instead of flow graphs in order to dis-
tinguish between synthesized attributes that depend on no inherited attributes
and those that cannot be computed because of a missing equation or circularity,
and thus conflate this two types of errors. All of these are non-modular analyses.

Saraiva and Swierstra [13] present generic attribute grammars in which an AG
has grammar symbols marked as generic and not defined in the grammar. Com-
position in this model is the instantiation of these generic symbols with specific
ones. Here, flow-types can be computed on the generic grammar being imported
and then used when flow analysis is done on the instantiating/importing gram-
mar. This composition model, however, is very different from the language ex-
tension model described in Section 1. It does not allow for multiple independent
extensions to be composed, except by first merging them into a single extension,
on which the analysis must then be performed, effectively making it monolithic.

In AspectAG, Viera et al. [20] have shown the completeness analysis can be
encoded in the type system of Haskell. However, this analysis is again performed
at the time of composition (by the type checker) and is thus a monolithic analysis.

Current AG systems such as JastAdd [6] and Kiama [15] do not do static
flow analysis but, like previous versions of Silver, instead provide error messages
at attribute evaluation time that indicates the missing equation or circularity.
An extension writer can write test cases to test his or her specification and
perhaps find any lurking problems, but this does not provide any assurances if
independently developed grammars are later composed.

8 Current and Future Work

We would like to apply these analyses to other attribute grammars specified
using Silver to further evaluate their usefulness. One is possibility is ableJ our
extensible specification of Java with many different language extensions [18].

We plan to evaluate the practicality of the circularity analysis. We have not
done this on the Silver compiler because Silver is a lazily evaluated language,
and our compiler implementation has known “circularities” between attributes
that are, in fact, well-defined thanks to laziness. To apply the non-circularity
analysis to Silver, we will have to determine whether these can be eliminated or
the analysis can be extended to somehow deal with these apparent circularities.

The completeness and circularity detection analyses do not check that an
unbounded number of attributable trees will not be created. This is the third
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component of well-definedness identified by Vogt et al.in their original work on
higher order attribute grammars [23], but dropped as a well-definedness require-
ment in his Ph.D. dissertation [22]. Other members of our group have separately
explored a termination analysis based on term rewriting systems [12].

9 Conclusion

We have presented a modular analysis for completeness and non-circularity in
attribute grammars. This differs from prior analyses in that languages extensions
are checked prior to being composed together, independently of each other, with
no checks necessary after composition to ensure these properties. In the extensi-
ble language scenario described here we do not have the luxury of a monolithic
(composition time) analysis since the person composing the extension grammars
is not expected, nor required, to understand attribute grammars, or even know
what they are. For extensible languages and extensible language frameworks to
be useful to most programmers we believe that these sort of modular analyses
are critical in order to ensure that the composition of independently developed
language extensions “just works.”

The analyses do not, and cannot, check that the forwards tree on a produc-
tion is semantically equivalent to the tree doing the forwarding. The language
developer is stating, by using the forwarding mechanism that the two are se-
mantically equivalent. If they are not then the attribute values returned from
the forwarded-to tree may not be correct. However, a misuse of forwarding in
this fashion is a problem with one specific extension, rather than a problem aris-
ing from the composition of extensions (though it may only be exposed by a
composition of extensions.)

The two questions raised in Section 1 are related to ease of composition of
grammars by the non-expert programmer, and not about ease of specification of
the language or language extensions by the language developer. The restrictions
imposed by the modular analysis are designed to ease the work of the non-expert
programmer. That said, we certainly do want to provide as much support as
possible to the language developer. The extensions to the analysis to cover all
the language features of Silver and to provide new features such as options and
attribute defaults are there to make conforming to the restrictions easier. In our
experience with Silver, these imposition of the restrictions is more than offset by
the strong guarantees that the analyses provide.
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Lämmel, R., Visser, J., Saraiva, J. (eds.) GTTSE 2009. LNCS, vol. 6491,
pp. 408–425. Springer, Heidelberg (2011)

16. Van Wyk, E., de Moor, O., Backhouse, K., Kwiatkowski, P.: Forwarding in At-
tribute Grammars for Modular Language Design. In: Nigel Horspool, R. (ed.) CC
2002. LNCS, vol. 2304, pp. 128–142. Springer, Heidelberg (2002)

17. Van Wyk, E., Bodin, D., Gao, J., Krishnan, L.: Silver: an extensible attribute
grammar system. Science of Computer Programming 75(1-2), 39–54 (2010)

18. Van Wyk, E., Krishnan, L., Schwerdfeger, A., Bodin, D.: Attribute Grammar-
Based Language Extensions for Java. In: Ernst, E. (ed.) ECOOP 2007. LNCS,
vol. 4609, pp. 575–599. Springer, Heidelberg (2007)

19. Van Wyk, E., Schwerdfeger, A.: Context-aware scanning for parsing extensible
languages. In: Intl. Conf. on Generative Programming and Component Engineering
(GPCE). ACM Press (October 2007)

20. Viera, M., Swierstra, S.D., Swierstra, W.: Attribute grammars fly first-class: How
to do aspect oriented programming in Haskell. In: Proc. of 2009 International
Conference on Functional Programming, ICFP 2009 (2009)

21. Visser, E.: Stratego: A Language for Program Transformation Based on Rewriting
Strategies System Description of Stratego 0.5. In: Middeldorp, A. (ed.) RTA 2001.
LNCS, vol. 2051, pp. 357–361. Springer, Heidelberg (2001)

22. Vogt, H.: Higher order attribute grammars. Ph.D. thesis, Department of Computer
Science, Utrecht University, The Netherlands (1989)

23. Vogt, H., Swierstra, S.D., Kuiper, M.F.: Higher-order attribute grammars. In: ACM
Conf. on Prog. Lang. Design and Implementation (PLDI), pp. 131–145 (1989)

http://melt.cs.umn.edu/pubs/kaminski12tr


Meta-language Support for Type-Safe Access

to External Resources

Mark Hills1, Paul Klint1,2, and Jurgen J. Vinju1,2

1 Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
2 INRIA Lille Nord Europe, France

Abstract. Meta-programming applications often require access to het-
erogeneous sources of information, often from different technological
spaces (grammars, models, ontologies, databases), that have specialized
ways of defining their respective data schemas. Without direct language
support, obtaining typed access to this external, potentially changing,
information is a tedious and error-prone engineering task. The Rascal
meta-programming language aims to support the import and manipula-
tion of all of these kinds of data in a type-safe manner. The goal is to
lower the engineering effort to build new meta programs that combine
information about software in unforeseen ways. In this paper we describe
built-in language support, so called resources, for incorporating external
sources of data and their corresponding data-types while maintaining
type safety. We demonstrate the applicability of Rascal resources by ex-
ample, showing resources for RSF files, CSV files, JDBC-accessible SQL
databases, and SDF2 grammars. For RSF and CSV files this requires
a type inference step, allowing the data in the files to be loaded in a
type-safe manner without requiring the type to be declared in advance.
For SQL and SDF2 a direct translation from their respective schema
languages into Rascal is instead constructed, providing a faithful trans-
lation of the declared types or sorts into equivalent types in the Rascal
type system. An overview of related work and a discussion conclude the
paper.

1 Introduction

Software language engineers, such as those working in the grammarware, mod-
elware, or ontologyware domains, write meta-programs. These programs, used
for tasks such as calculating software metrics, performing static analysis, mining
software repositories, and building IDEs, use information provided by a wide
number of different sources. While some of these are internal to the application,
some may be external, e.g., the contents of software repository commit messages,
the values in a database storing bug reports, or an already-defined grammar for
the language being manipulated. In general, this external information may be
created using a number of different tools, each with its own data formats and
methods of storing data. These data formats can be defined explicitly, such as
with a table definition in a database or an SDF2 [7,16] definition for a gram-
mar, but may also be defined implicitly, such as is found in RSF (Rigi Standard
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Format) files, which provide a textual representation of binary relations (see Sec-
tion 4.1), and in CSV (Comma-Separated Values) files, which provide a textual
representation of tabular data.

Without direct language support for accessing external data sources, different
libraries have to be developed, each targeted at a different data source. Each
library provides a different mechanism for naming these data sources and deter-
mining the type of data stored in a resource, including how the external values
and types map into the values and types of the host language. Actually writing
out these types is a manual task, and synchronization in cases where the under-
lying types change (e.g., a database table that has been altered, a CSV file with
added columns) also must be performed manually. The more sizable and complex
data sources described by Bugzilla’s entity/relationship (E/R) model are a case
in point. This paper is about managing these repetitive and error-prone soft-
ware language engineering tasks in the context of the Rascal meta-programming
language [10].

We describe built-in Rascal language support for incorporating external sources
of data (identified byURIs) and their corresponding types: resources. Resources al-
low themeta-programmer to generate type declarations statically, when a resource
is imported, before type-checking takes place. This resources feature builds on es-
sentialRascal language features, described in Section 2. This discussion of enabling
features is then followedby themain contributions of this paper, given in Sections 3
and 4. Section 3 discusses the design of theRascal resources language feature, while
Section 4 demonstrates the use of resources through four case studies, including
the application of resources to typical software engineering tasks. Sections 5 and 6
then close, presenting relatedwork and a final discussionwith ideas for future work,
respectively.

2 Enabling Rascal Features

To explain Resources, we first discuss four key enabling Rascal features: type lit-
erals that allow types to be treated as values, source location literals that provide
access to external resources via Uniform Resource Locators (URIs), string tem-
plates for code generation, and the Rascal-to-Java bridge to connect arbitrary
Java libraries to Rascal.

2.1 Type Literals

The Rascal type system provides a uniform framework for both built-in
and user-defined types, with the latter defined for both abstract datatypes and
grammar non-terminals (also referred to as concrete datatypes). A built-in tree
datatype (node) acts as an umbrella for both abstract and concrete datatypes.
The type system is based on a type lattice with void at the bottom and value
at the top (i.e., the supertype of all types). In between are the types for atomic
values (bool, int, real, str, loc, datetime), types for tree values (node and de-
fined abstract and concrete datatypes), and composite types with typed elements.
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Examples of the latter are list[int], set[int], tuple[int,str], rel[int,str],
and, for a given non-terminal type Exp, map[Exp,int]. Sub-typing is always
covariant with respect to these typed elements; with functions, as is standard, re-
turn types must be covariant, while the argument types are instead contravariant.
For example, for sets, set[int] is a subtype of set[value], while for functions,
int(value) is a subtype of value(int).

Formal type parameters allow the definition of generic types and functions.
All non-atomic types can have explicit type parameters, written either as &T or
&T <: Bound. The former can be bound to any Rascal type, the latter only to
subtypes of the type Bound. For example, rel[&T,&T] defines a generic binary
relation type over elements of the same type, list[&T <: num] defines a list
with elements that can only be one of the subtypes of the type num, and list[&T]
reverse(list[&T] L) defines the type of a function with the name reverse that
returns a list with the same element type as its argument L.

Reified types make it possible to manipulate types as ordinary values that can
be passed around, queried and manipulated. Rascal’s reification operator creates
self-describing type values which contain both the reified type and all datatypes
used in this type. A type can be reified using the prefix reification operator (#);
we call such an expression a type literal. A reified type value contains a symbol
to represent the type and a map of definitions for any abstract or concrete
datatype dependencies. It is guaranteed to have the type type[&T], where the
type parameter &T is bound to the type that was reified. For example:

– #int produces a literal value type(\int(),()) of type type[int].
– #rel[int,str,bool] produces type(\rel([\int(),\str(), \bool()]),
()) of type type[rel[int,str,bool]].

The type data constructor used to build type literals is built in to Rascal;
the representations for type symbols and their definitions are defined as Ras-
cal datatypes in a library module. Above, the map of definitions was empty: ().
For abstract or concrete datatypes this map will contain the complete (possi-
bly recursive) abstract datatype or grammar. Assume a definition for Boolean
connectives:

data Bool = and(Bool l, Bool r) | t() | f();

then the reified type #Bool will produce the following term of type type[Bool]
(some details have been elided):

type(adt("Bool"),

(adt("Bool"):choice(...,constructor(adt("Bool"),"and",

[label("l",adt("Bool")),label("r",adt("Bool"))]),...)))

Such self-describing type values are particularly useful in the context of defining
resources, where we want to import, and compute types for, otherwise untyped
or unknown data from outside of Rascal. Using type literals we can write library
functions that bind arbitrary (external) data to specific types.
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2.2 Source Locations

Rascal provides built-in support for location literals (values of type loc) that
are Uniform Resource Identifiers1 (URIs) optionally followed by text coordinates
that allow the identification of specific text ranges in the information the URI
points at. Location literals are quoted with bars, such as
|http://www.rascal-mpl.org|.

In addition to the standard schemes like file (local file access) and http (re-
mote file access), a number of Rascal-special schemes are supported such as cwd
(current working directory), home (the user’s home directory), std (the Rascal
standard library), jar (an entry in a jar file), and project (an Eclipse project).
The collection of schemes is openly extensible – the extension implements a
contribution interface in Java.

The location datatype conveniently provides direct access to parts of the URI
and gives short-hands to interact with file systems and web pages. Source loca-
tions in Rascal are very versatile and are, for instance, used for tasks such as
accessing source code locations in editors and providing hyperlinking functional-
ity in the IDE. In the context of the resources feature, we use them to identify
external sources of type information.

2.3 String Templates and Concrete Syntax Templates

Rascal provides both string templates and concrete syntax templates for code
generation, a frequently occurring operation in meta-programming. String tem-
plates are multi-line string literals with a left-margin, interpolation of arbitrary
expressions, auto-indentation, and structured control flow. For example, the fol-
lowing code generates the definition of a Java class named name with a number
of fields (given as name×type pairs in relation fields), all indented by 2 spaces:

str class(str name, rel[str,str] fields) =

"class <name> {
’ <for (<f,t> <- fields) {><t> <f>;

’<}>
’}";
Concrete syntax templates are parsed fragments of code, used for pattern

matching and pattern construction. Concrete syntax fragments are supported
for languages that have a grammar defined in Rascal. For example:

import lang::rascal::syntax::Rascal;

Module m = ‘module M imports N; ...‘;

The fragment within the backquotes will be parsed using the grammars defined
in the current scope (here, the imported grammar of Rascal). Concrete syntax
fragments allow for anti-quoting to expand variables or to match and bind parts
using pattern matching. The benefit of concrete syntax fragments is that both
generated code and patterns are statically guaranteed to be syntactically correct.

1 See http://www.ietf.org/rfc/rfc3986.txt.

http://www.rascal-mpl.org
http://www.ietf.org/rfc/rfc3986.txt
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2.4 Rascal-to-Java Bridge

The Rascal-to-Java Bridge makes it possible to call Java functions from Rascal
code and to build Rascal data values in Java code. Rascal users can extend their
library reusing existing Java code or building on top of the Java standard library.
This enables, for example, reuse of JDBC libraries, open Java compilers, SMT
solvers, and the Apache Math library. The author of a library written in Java
is responsible for producing Rascal data of the right type. Consider the size
function for lists:

@javaClass{org.rascalmpl.library.Prelude}
public java int size(list[&T] lst);

The modifier java indicates that the function size is written in Java and the
annotation javaClass defines in which class the method size can be found. The
function is then implemented by the following Java code:

public class Prelude {
IValueFactory vf;

...

IInteger size(IList lst) {
return vf.integer(lst.length());

}
}

The Java API IValueFactory makes it possible to construct arbitrary Rascal
values. If the returned type does not match the return type of the associated
Rascal function, a run-time type exception will occur, ensuring this mechanism
cannot be used to break type safety.

3 Rascal Resources

Given the above motivation and prerequisites, we explain the core contribution
of this paper: the design and realization of user-defined resources in Rascal.

3.1 Design of Resources

There are four requirements for resources in Rascal. First, resources should be
accessible with a uniform naming scheme. Second, access to resources should
be statically typed. Third, the types of resources should be transparently ob-
servable to the Rascal programmer. Fourth, where possible, resources should be
implemented directly in Rascal. We discuss the first three requirements below.

Uniform Naming Scheme: Many of the libraries for accessing external sources
of data in Rascal use their own naming schemes to refer to the sources of the data.
For instance, file-based resources tend to use the location of the file, encoded as a
Rascal location. By contrast, JDBC resources use JDBC connect strings, strings
encoding the information needed to connect to the database (host, database,
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user id, etc), and built either directly as strings or using driver-specific functions
that accept the proper parameters. Resources based on data retrieved in JSON
format over HTTP may encode the query URL directly.

To obtain a uniform naming scheme, we took as inspiration work on both the
Unix [14] and Plan 92 operating systems. Unix introduced a major innovation in
the handling of I/O by providing a uniform interface for many input and output
sources. This allowed special devices, such as terminals, and pseudo-devices to be
treated like files, given they provided implementations of operations such as read
and write. Plan 9 took this even further and allowed each resource (including
processes and network resources) to have a unique path name to be accessed
uniformly. This goal of providing a uniform addressing mechanism can also be
realized by the URIs that we already use in Rascal locations, as described above.

It is natural to use Rascal’s existing location values to identify and locate ex-
ternal sources of data and types. These external sources introduce new schemes,
which bind to functionality for interpreting specific kinds of external data sources
(like comma separated values or JDBC data sources). The authority, path and
query components serve to identify, unambiguously, which particular source of
data is imported and to provide all necessary parameters to do so. We use a
+ sign to split the scheme into a logical and a physical part. Two examples of
locations that identify resources are:

– |csv+file:///Users/foo/projects/data.csv| uses a CSV resource to ac-
cess a file in a folder of user foo.

– |sdf:///languages/ansi-c/syntax/Main|uses an SDF resource to import
a grammar with main module languages/ansi-c/syntax/Main (using an
implicit search path, see below).

The format of the information in the location is dependent on the resource—the
only requirement is that it be representable as a URI.

Access to Resources is Statically Typed: As already discussed, the Rascal
type system provides ways to introduce type-checked identifiers, such as names
of abstract datatypes and their fields (data Person = person(str name, int
age)) and relations with named columns (rel[AST class, int NCLOC]). Types
not only provide safety, they also provide access via meaningful identifiers to
project, select and update parts of datatypes.

Without the resources feature we could already (easily) provide general access
to external data. In that case, all imported data is of type value. To analyze and
manipulate such data, pattern matching is needed extensively, as well as indexing
into containers using anonymous “magic” constants. The next best thing is to
use type literals (described above). If the client code of a library that imports
external data provides a specification of the expected type, then at least the
client code can be made type correct and use the appropriate API. For example,
we can write: readCSV(#rel[str name, int age], |home:///people.csv|) to
obtain a typed API to a person/age database stored in a CSV file. The first step

2 See http://cm.bell-labs.com/plan9/.

http://cm.bell-labs.com/plan9/
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in providing a Rascal resource is to create such a generic library with read
functions that are parameterized with the expected return type.

Type literals may solve the type safety issue with external data sources, but
the heavy-lifting is in the client code that provides a complete type specification
for the external data. For a CSV file with twenty columns, one needs to manu-
ally infer a type literal from the CSV file that reflects their types. For an SQL
database, one needs to come up with corresponding relation types for every table
(imagine a relatively simple situation with 20 tables with 5 columns each). For
an external grammar formalism, one needs to port each non-terminal into a Ras-
cal syntax definition. Moreover, all these schemas are subject to evolution and
maintenance, leading to cumbersome co-evolution between a data source and its
reflection in the Rascal type system. Finally, the semantics of the mapping from
one type system to another may require a sizable intellectual effort—recall the
“impedance mismatch” between object-oriented (OO) and E/R representations
of data.

Our solution to this remaining problem is to apply code generation at module
import time. One code generator is needed for each kind of foreign data, e.g.,
CSV or JDBC. Such a code generator is needed in the standard library for each
common kind of foreign data, and is reusable for every external data source of this
kind. The generated code typically makes use of generic library code accepting
type literals as arguments. A designated user-defined code generator generates
all required type definitions and interface functions automatically. Since what is
generated is standard Rascal code, like a a user would themselves write, the code
can then be type checked by the Rascal type checker when the module is loaded,
before execution. Public definitions in the generated module provide the module
signature used during type checking inside the importing module, ensuring the
resource is used safely. Since resources are treated as standard Rascal values, the
type checker has the same limitations as with other Rascal code: most type errors
are caught statically, while a few (e.g., missing fields on constructor values) are
caught using dynamic checks that throw exceptions in error cases.

The reuse of code generators solves the problem of inferring complex type
definitions for every new data source as well as their co-evolution. Type-safety
is provided as well as an appropriate API. What remains is the specialized,
one-time design of a code generator for every new kind of external data. This
design influences how many static guarantees can be made and which kinds of
co-evolution will go detected. For example, if a CSV resource generator does not
support column names, then swapping two columns with the same inferred types
in a file will go undetected by Rascal’s type system.

Resource Types Are Transparent: The types of external resources can be
provided implicitly by way of type-inspection APIs, or explicitly by providing
them as complete type definitions. We opt for the latter, since we believe that this
is easier to understand for the programmer. By design, the resource generators
produce the source code of full Rascal modules, containing all type definitions
and access functions. The user can read the generated code like any other Rascal
module, debug it if necessary, and use the same IDE support for browsing and



Meta-language Support for Type-Safe Access to External Resources 379

Fig. 1. Processing the import of an external resource using a URI scheme

querying Rascal modules, yet does not need to maintain it manually. Because of
the complexity of the mapping between external and internal types and values,
we believe that the ability to interact with the generated source code is an
essential engineering prerequisite.

3.2 Syntax and Semantics of Resources

As depicted in Figure 1, to extend Rascal with a new resource type (say myschema)
the following ingredients are needed:

– A library, e.g. LibMySchema, that handles the basic access to and communi-
cation with the external resource, using type literals.

– A Rascal module, e.g. MySchema, that contains the code generator for the
myschema resource. The code generator function takes two arguments and is
declared to work for a specific schema using a tag: @resource{myschema}.

– Rascal client code, e.g. MyApp, which imports a to-be-generated resource
module using this notation: import S = |myschema+...://...|; Since it
is a myschema resource, it starts with myschema. This schema name connects
the use of a resource with the proper generator that has been defined for
that resource.

Given these ingredients, the following steps are executed when the MyApp appli-
cation is loaded (Figure 1):

➊ First all non-resource module dependencies are loaded. This means the
MySchema module that implements the myschema resource is loaded and its
declarations are executed. When the declaration of the generate function
is evaluated, the @resource tag triggers the binding of myschema to this
function. Typically the generator depends on a LibMySchema module to get
access to the external type information, which is imported now transitively.

➋ Then the resource modules are loaded. For every specific schema used, in
this case only myschema, its associated generator function is called providing
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the name of the module to be generated (S) and the user-provided URI
(L) as arguments. Resource modules are loaded after non-resource modules
to ensure that the generator functions have been registered; this restriction
could be relaxed, but only at the cost of a more detailed analysis to ensure
that all needed generator functions are imported before the resources that
use them.

➌ As a result of the call, the code generator uses the information provided in the
URI to acquire and manipulate external data sources, eventually generating
the source code of a statically correct module with the given name.

➍ Finally, the generated module S is imported, like any normal module, by the
client application, which may trigger more imports if the generated module
imports library modules. Note that generated modules may contain resource
imports themselves, which may be useful in cases of importing resources that
are themselves structured modularly.

After these steps module MyApp can use the freshly created API of module S.

4 Sample Resources for Software Language Engineers

When a software language engineer is studying a large software system he/she
wants to tap into as many relevant information sources as possible and wants
to integrate their contents into a unified result. Examples are bug reports that
are stored in a relational database, metrics stored in a spreadsheet, a call graph
stored in some textual format, or a complete grammar stored in an external
grammar file. In the following sections we demonstrate that all these needs can
be addressed by Rascal’s resources concept.

4.1 Rigi Standard Format (RSF)

Rigi Standard Format3 is the main file exchange format for the Rigi system [13]
and is used to describe binary relations. Although RSF has been superseded by
richer formats such as GXL4 and GraphML5 we use it here for its simplicity. An
RSF file contains triples of the form verb subject object and can simultane-
ously define several binary relations. The verb part of a triple determines the
relation to which the triple contributes. Here is an example:

call main printf

call main listcreate

data main FILE

data listcreate List

file listcreate list.c

lineno listcreate 10

lineno main 150

...

3 See http://www.rigi.cs.uvic.ca/downloads/rigi/doc/node52.html.
4 See http://www.gupro.de/GXL/.
5 See http://graphml.graphdrawing.org/.

http://www.rigi.cs.uvic.ca/downloads/rigi/doc/node52.html
http://www.gupro.de/GXL/
http://graphml.graphdrawing.org/
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@resource{rsf}
public str generate(str moduleName, loc src) {

map[str, type[value]] rels = getRSFTypes(src);

return "module <moduleName>
’import lang::rsf::IO;
’<for(rname <- rels) {>
’public <rels[rname]> <rname>() {
’ return readRSFRelation(#<rels[rname]>, \"<rname>\", <src>);
’}<}>"’;

}

Fig. 2. Resource generator for RSF

These triples define the relations call, data, file and lineno. The first three
will correspond to Rascal relations of type rel[str,str], while lineno will get
type rel[str,int]. In order to create support for RSF resources, two steps
are needed. First, basic I/O functionality is needed to support the resource
format itself. In the case of RSF, we have extended the existing RSF library
lang::rsf::IO to support resources. There are two essential functions:

– map[str, type[value]] getRSFTypes(loc src) returns a map of rela-
tion names and their inferred types. By default, all elements in the relations
have type str, but consistent use of bool, int, or real values at fixed posi-
tions in the triples will lead to more precise typing (for instance, with lineno

above).
– &T readRSFRelation(type[&T] result, str name, loc src)6, given an

expected type and a relation name, returns the typed relation with the given
name for the RSF resource at location src.

Using this, we can create a generator that supports RSF. A simplified version
is shown in Figure 2. It essentially processes the given location, extracts the
relation names and types from the RSF triples at that location, and uses string
templates to generate a Rascal module with declarations for typed functions to
extract the various relations from the RSF triples.

Next, we illustrate RSF resources using extracted facts from JHotDraw7:

CALL AbstractConnector_2354 Figure_1715

CALL AbstractConnector_2354 Geom_3544

INHERITANCE AbstractConnector_2354 Connector_1478

CONTAINMENT AbstractConnector_2354 Figure_1715

CALL AbstractFigure_2788 ChopBoxConnector_2286

...

An RSF resource for this data is created by:

import RSF;

import JHotDraw52 = |rsf+file:///Users/.../JHotDraw52.rsf|;

6 &T could be replaced with rel[&T1,&T2] to enforce that the return type is a relation;
this change will be made in a future version of the code.

7 See http://code.google.com/p/crocopat/source/browse/tags/crocopat-2.1.4/

examples/projects/JHotDraw52.rsf.

http://code.google.com/p/crocopat/source/browse/tags/crocopat-2.1.4/examples/projects/JHotDraw52.rsf
http://code.google.com/p/crocopat/source/browse/tags/crocopat-2.1.4/examples/projects/JHotDraw52.rsf
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module JHotDraw52
import lang::rsf::IO;

public rel[str, str] CALL() =
readRSFRelation(#rel[str, str], "CALL", |file:///Users/.../JHotDraw52.rsf|);

public rel[str, str] INHERITANCE() =
readRSFRelation(#rel[str, str], "INHERITANCE", |file:///Users/.../JHotDraw52.rsf|);

public rel[str, str] CONTAINMENT() =
readRSFRelation(#rel[str, str], "CONTAINMENT", |file:///Users/.../JHotDraw52.rsf|);

Fig. 3. Generated module JHotDraw52

This will generate the module JHotDraw52 shown in Figure 3. Finally, one can
use this resource, for instance, by defining a function that reads the CALL relation
from it (accessible using function CALL) and computes its transitive closure:

rel[str, str] indirectCalls() = CALL()+;

The bottom-line is that Rascal can handle the untyped data in an RSF file in a
fully type-safe manner.

4.2 Comma-Separated Values (CSV)

The CSV format was originally intended for exchanging information between
spreadsheets and databases but is today used as an exchange format in many
other application domains as well. A CSV file has the following structure:

– a header line consisting of field names separated by commas;
– one or more lines consisting of values separated by commas.

The CSV format differs in various respects from the RSF format:

– RSF can define several relations at once; CSV can define only one relation.
– RSF only supports binary relations; CSV supports relations of arbitrary

arity.
– The RSF format is fixed; in a CSV file, the header line is optional and the

default separator (comma) can be redefined.

The Rascal lang::csv::IO library supports the standard CSV format8 and has
been extended to support CSV resources.

The major challenge compared to RSF resources is to handle the variability
mentioned above. Our solution is to use the standard query parameters in the
URI that describes the location of the CSV data. In the following example we
want to process the metrics collected by the Eclipse Metrics Plugin9. The relevant
data are collected in the file methods.csv (a run of the metrics plugin on the
source code of the Rascal system itself) in the user’s home directory, and we want
the function for reading the metrics resource to be named METHOD METRICS:

8 See http://tools.ietf.org/html/rfc4180.
9 See http://eclipse-metrics.sourceforge.net/.

http://tools.ietf.org/html/rfc4180
http://eclipse-metrics.sourceforge.net/
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module METHODS
import lang::csv::IO;

alias METHOD_METRICSType = rel[str PACKAGE, str TYPE, str METHOD, int LINE, int NOL, int NOS,
int FE, int NLS, int NOP, int CC, int LOCm];

public METHOD_METRICSType METHOD_METRICS() =
return readCSV(#METHOD_METRICSType, |home:///methods.csv|, ());

Fig. 4. Generated module METHODS

import CSV;

import METHODS = |csv+home:///methods.csv?funname=METHOD_METRICS|;

This will generate the METHODS module shown in Figure 4. For convenience, the
alias METHOD METRICSType is created as an abbreviation for the actual relation
type. The functions in the generated module METHOD can, for instance, be used in
the following comprehension to compute the methods with the largest cyclomatic
complexities (field CC):

{ <m.PACKAGE, m.METHOD, m.CC> | m <- METHOD_METRICS(), m.CC > 50 };
In this particular example, four methods were found, two of which are shown:

rel[str, str, int]: {
<"org.rascalmpl.interpreter","reify",53>, ...

<"org.rascalmpl.library.vis.util","unPrintableKeyName",59>

}
The full power of the relational calculus that is embedded in Rascal can now be
used to further explore these metrics data in a type-safe manner.

4.3 Java Database Connectivity (JDBC)

Column Type Nullable
userid mediumint(9) N

login name varchar(255) N
cryptpassword varchar(128) Y

realname varchar(255) N
disabledtext mediumtext N
mybugslink tinyint(4) N
extern id varchar(64) Y

disable mail tinyint(4) N

Fig. 5. Schema for table profiles

A number of systems, such as Bugzilla,
use relational databases to store infor-
mation useful in language engineering
tasks. For instance, information about
bug reporters is stored in Bugzilla
in a table named profiles, which
contains data that conforms to the
schema shown in Figure 5.

One popular way to gain access
to this information in Java is to use
JDBC, a standard Java API for query-
ing, updating, and exploring the meta-
data of databases. Using Rascal’s ability to call Java functions, we have written
a JDBC library that allows JDBC calls to be made from within Rascal code. For
instance, to connect to a Bugzilla database, select all the records from profiles,
and then close the connection, the following code would be run:
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module Profiles
import JDBC;

alias profilesType = rel[int userid, str login_name,
Nullable[str] cryptpassword, str realname, str disabledtext,
int mybugslink, Nullable[str] extern_id, int disable_mail];

public profilesType resourceValue() {
registerJDBCClass("com.mysql.jdbc.Driver");
con = createConnection("jdbc:mysql://host/bugs?user=usr&password=pass");
profilesType res = loadTable(#profilesType, con, "profiles");
closeConnection(con);
return res;

}

Fig. 6. Generated JDBC resource for the profiles table

registerJDBCClass(mysqlDriver);

con = createConnection("jdbc:mysql://host/bugs?user=usr&password=pass");

res = loadTable(con,"profiles");

closeConnection(con);

The first line registers the proper JDBC driver, in this case for MySQL. The
second line then actually creates the connection, using a JDBC connect string
formatted according to the requirements of the MySQL JDBC driver. The third
line loads the data in the table into res; since no type information is provided,
the data is loaded as a set of values, which can then be de-constructed using
pattern matching. Finally, the fourth line closes the connection.

It is possible to instead load a typed representation of the data with loadTable,
which returns the data in a relation with named fields of the proper type. How-
ever, this requires computing the type manually. As was discussed in Section 3,
determining the correct type literal is a non-trivial task, here made more diffi-
cult by the need to map from native MySQL types, to JDBC types, and then to
Rascal types, along with the need to properly account for null values (Rascal
has no equivalent of null, so a datatype Nullable, parameterized by the actual
column type, is used instead). For this simple table, this process would derive
the following type literal representing a row in the table:

#tuple[int userid,str login_name,Nullable[str] cryptpassword,str realname,

str disabledtext,int mybugslink,Nullable[str] extern_id,int disable_mail]

Two JDBC Resources are currently defined to provide type safe access to JDBC
tables. The first, jdbctable, provides access to a specific table, while the second,
jdbctables, provides access to all tables in a database. The following two import
statements import the profiles table and all Bugzilla tables, respectively:

import Profiles=|jdbctable+mysql://host/bugs/profiles?user=u&password=p|;

import AllTables=|jdbctables+mysql://host/bugs?user=u&password=p|;

The first of the resource imports generates a module, Profiles, containing the
code shown in Figure 6. The second import creates similar code for each table
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P = profiles(); B = bugs(); S = bug_status();

deltaDurations = { < p.login_name, b.bug_id,
createDuration(ts, b.delta_ts).days > | s <- S, s.id==5, p <- P, b <- B,
b.assigned_to==p.userid, b.bug_status==s.value,
notnull(ts) := b.creation_ts };

perPerson = { < p,
( 0 | it + d | <_,d> <- deltaDurations[p] ) / size(deltaDurations[p]) > |
p <- deltaDurations<0> };

rel[str, int]: { <"person1",1>, <"person2",17>, <"person3",7>, ... , <"personN",8> }

Fig. 7. Compute average days/person to resolve a bug, using the JDBC resource

in the database, with the table name used to give a name to the function used
to retrieve the resource (e.g., resourceValue in Figure 6). Using the imported
tables, one can then perform queries over the data. For instance, one may want
to find the average number of days, per person, it takes from when a bug is
assigned to when it is resolved10. This is done using the code shown in Figure 7.

The first line in Figure 7 extracts the relations stored in tables profiles, bugs,
and bug status into variables P, B, and S, respectively. Relation deltaDurations
is then created using a comprehension, which enumerates all bug statuses; fil-
ters these to only include tuples with id 5 (status “resolved” in this Bugzilla
database); enumerates all profiles; enumerates all bugs; and filters the bugs to
include only those bugs assigned to the user represented by the profile, with
a status the same as the current status, and with a non-null creation times-
tamp (checked using pattern matching, with a non-null timestamp represented
as timestamp ts wrapped in the notnull constructor). For each matching com-
bination of status, profile, and bug (after accounting for all the conditions just
mentioned), a tuple is added to the computed relation containing the login name
of the profile, the id of the bug, and the number of days between the creation
timestamp and the timestamp of the last change to the bug information, which
we assume here represents the date when the bug was resolved – i.e., a relation
between logins, bug ids, and days to resolve the bug. perPerson is built in a
similar way: for each login name p, the days related to p are summed, with the
result divided by the number of records to compute the average. The resulting
relation is shown, in part, in Figure 7 below the code, with login names made
anonymous.

4.4 Syntax Definition Formalism

The Syntax Definition Formalism (SDF) [7,16] is an EBNF-like grammar formal-
ism extended with disambiguation constructs. It is generally used to define both
the concrete and the abstract syntax of software languages in the same defini-
tion. There are many open-source grammars available written in SDF11. These

10 Technically, this shows the average from the creation date to the delta date, which
is the date of the last change to the bug information.

11 See http://www.syntax-definition.org.

http://www.syntax-definition.org
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@resource{sdf}
public str generate(str name, loc at) {

def = loadSDF2Module(at.host, [|rascal:///|]);
gr = fuse(sdf2grammar(name, def));
return "module <name>

’
’<grammar2rascal(gr)>
";

}

Fig. 8. Resource generator for SDF

grammars are complex engineering artifacts [9], especially if they are written
with the intention to generate a syntactically and semantically correct parser.
Since it is appealing to reuse such SDF grammars, we have implemented an
SDF resource that can, for instance, import an SDF syntax definition of Java5
into a Rascal module as follows:

import lang::sdf2::utils::Resource;

import Java5 = |sdf://languages/java/syntax/Java5|;

The resource generator is implemented as shown in Figure 8. This implementa-
tion deserves some explanation:

– We use the search path for Rascal modules to search for SDF files. The URI
|rascal:///| represents the root of the entire Rascal search path which is
passed to a function that will traverse all the imports of a modular SDF
specification and produce a single syntax tree listing all relevant modules.
Adding an SDF grammar to any Rascal project in the Eclipse workspace
will make it available for use.

– Since SDF’s module system has an entirely different semantics from Rascal’s
module system, modules in SDF can not map to modules in Rascal. The fuse
function flattens the internal grammar such that SDF’s module semantics
are implemented12.

– The sdf2grammar function (800 LOC in Rascal), in particular, attempts to
maintain the semantics of SDF’s disambiguation features. Bouwers et al. have
described some of the intricacies of the semantics of disambiguation [3]. Some
disambiguation features in SDF are more powerful than their counterparts
in Rascal. Their semantics have been limited in the design of Rascal to
make them easier to understand and debug. At the same time, Rascal has
additional disambiguation features that can replace the earlier “mis-uses” of
the power of SDF. The translation is intentionally not complete, such that
features that do not map are documented in the resulting Rascal grammar.
sdf2grammar is not fast, it was written for brevity and clarity first, with
optimization as a later goal.

The complexity of such a translation from one EBNF-based formalism to another
may be daunting, but being able to reuse it transparently via the resource feature

12 SDF’s renaming and module parameter features are not yet implemented.
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adds all the more value. It is particularly useful to be able to read the source
code of the resulting Rascal module like any normal module. We also expect
that further maintenance may take place in the generated Rascal modules. This
can be achieved by replacing the above import of the Java5 resource by a direct
import of the generated module Java5.

5 Related Work

Rascal resources fit in the field of interfacing data sources and programming
languages. A large amount of related work exists on interfaces (libraries, code
transformations, language extensions) for accessing external (especially database)
resources. Because of space, we only discuss the most directly related work.

5.1 Scripting Languages

Scripting languages, like Rascal, often serve as “glue” between systems that need
to be combined. Rascal has a static type system, while most other scripting
languages (Python, Ruby, Perl) have dynamic type systems. Such languages
have the advantage that data conversion between two systems can be limited
to the shape of the data and not much time has to be spent on bridging type
systems. Dynamically typed languages serve well as glue because they pose no a
priori, static, limitations on the kind of data that can be processed. Our resources
concept is unnecessary for dynamically typed languages, since there is no static
type system to use in the first place.

One can use Rascal as a mostly dynamically typed language when no optional
type declarations are used and all data is simply of type value, list[value],
set[value] or node. XML documents can, for instance, be represented in this
way. In this style, one has to use pattern matching to analyze and transform these
untyped data structures, effectively encoding the type system into the program.

Compared to this dynamically typed programmingmodel using pattern match-
ing, Rascal resources are at the other end of the spectrum and use external
datatype definitions, bringing the external data into the typed world. Note that
the generated code should be type-safe unless the underlying schema has changed
since the last generation of the interface. In this unusual case, Rascal produces
a run-time type error if the schema change results in a type change.

5.2 Object/Relational Mapping

There have been many attempts, in many language paradigms, at solving the
impedance mismatch [11] between the representation of data in a relational
database and in program values. This includes PLAIN [15], a Pascal-like pro-
gramming language extended with statements to query a database, and the Mi-
crosoft ADO.Net Entity Framework [12], a data access framework for Microsoft’s
.Net platform. [5] provides a comprehensive overview of the problems involved
in integrating programming languages and databases.
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In our work on Rascal resources we have not focused specifically on access to
databases, and we have not yet attempted to optimize access, instead working
with a model where all data of interest is loaded into Rascal and then manipu-
lated using Rascal expressions (see Figure 7 for an example). However, there is
nothing inherent to our solution that would prevent this optimization. Since we
are most interested in working with existing data, we also do not yet support
writing to databases, and would need a stateful interaction library, such as that
developed for working with Maude-based analysis tools [8], to do so efficiently.

5.3 XML Binding and AST Generators

The problem of being able to use typed interfaces on data that is serialized in
an untyped or otherwise foreign notation can be found in many places. In the
XML domain, this is called binding’ and generation of typed interfaces from
XSD or DTD schemas is common practice [2,4,1]. In the (compiler) front-end
domain we, and many others, have generated APIs for abstract syntax trees from
grammars [6]. This is also a kind of data-binding.

5.4 LINQ

LINQ provides language support for type-safe SQL-like query syntax on external
data-sources. By implementing a Provider, library authors can relatively easily
add support for foreign data representations. A LINQ provider may even examine
the syntax tree of a query and decide how to implement it.

Rascal resources share a similar goal, but the design is quite different. Instead
of enabling an adapter to access the remote data, Rascal resources are about
transforming external data into local data representations. LINQ provides, like
Rascal, guarantees for type safety of the client code.

5.5 F#3.0 Type Providers

Rascal’s resources also resemble the feature of Type Providers in F#3.013. We
briefly discuss commonalities and some significant differences.

Type Providers in F#provide a hook into the type system. The user may declare,
using source code annotations, certain extensions to the type system, which may
manipulate the set of declared types. Implementing a Type Provider entails the
implementation of an interface to produce literal representations of new types,
new properties and new methods. The net effect is that after a programmer has
declared the intention to use a certain kind of type provider, at every use site
of the generated types the provider mechanism will query external data sources
for type information and bind new type names “dynamically” at type-checking
time to the relevant scope in the F#program.

13 See http://msdn.microsoft.com/en-us/library/hh156509(v=vs.110).aspx.

http://msdn.microsoft.com/en-us/library/hh156509(v=vs.110).aspx
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Granularity. A Type Provider is a module (dll) which provides functions to add
types to a relevant scope. These functions may be parameterized, for example
by a location URI, such that the generated types are specific for the call site.
Rascal’s resources are generators of modules, which statically contain all the
type information that is present via a statically known URI. They are “module
providers” rather than type providers and thus have a larger granularity. They
will bind the new type names for the entire module that imports the resource.

Dynamic & Lazy versus Static & Eager. By design, Type Providers make ev-
ery change in external definitions of schemas immediately visible, and by us-
ing dynamic and lazy retrieval of type information exploratory programming13

can be supported. Still, if a schema changes the user does need to rebuild
the F#project13. Rascal’s design requires a regeneration of the type definitions,
which it does every time an importing module is (re)loaded. It does so eagerly—a
resource must produce a complete set of type definitions for the data that will
later be loaded dynamically. For large database schemas the Rascal programmer
would have to wait until an entire E/R schema is translated or individually select
which tables to import, while in F#the schema can be explored on a table-by-
table basis. However, the Rascal programmer always gets a complete overview of
the available types as a literal Rascal program, while the F#programmer would
need to exercise the generated structure to discover these types, using IDE fea-
tures such as auto-completion.

Definition. F#’s type providers are written in F#. A new type provider consists
of functions that return lists of type literals. To implement a type provider,
the programmer needs access to and understanding of F#’s reflection API. The
construction of the types is type safe, calls to the reflection API are type-checked
and the type-correctness of the generated type definitions can be guaranteed.

For Rascal resources, we currently use string templates to generate a new
Rascal module. The generating program thus has no static guarantees of cor-
rectness regarding the generated program, while the generated program is fully
type-checked before execution. Note that both Rascal and F#use type parame-
terized type literals to link generic data to specific types.

Example. For comparison, Figure 9 shows Rascal code for a resource generator
that produces a set of 100 datatypes, each with three kinds of constructors of
which one has 100 fields and 2 functions defined on each type. This example mim-
ics precisely the example F#type provider called HelloWorldTypeProvider.14

Rascal’s and F#’s type declarations are not entirely compatible, but the two
example snippets generate definitions of the same size and complexity. The size of
the F#example is much larger (67 non-commented non-empty lines), compared
to Rascal (14). F#also needs 5 library modules to access the reflection API and
the Type Provider API, while Rascal needs no API. The benefit of F#’s added
explicitness is the type-safety that Rascal does not guarantee at generation time,
while Rascal’s solution is simpler to understand (we claim).

14 See http://msdn.microsoft.com/en-us/library/hh361034(v=vs.110).

http://msdn.microsoft.com/en-us/library/hh361034(v=vs.110)
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module HelloWorldResource
@resource{helloworld}
str generate(loc uri, str name)

= "module <name>
’<for (i <- [1..100]) {>
’@doc{This is an example generated type definition}
’data Type<i> = unit_<i>()
’ | data_<i>(str x)
’ | nested_<i>(str sp_1, <for (j <- [2..100]) {>, str sp_<j><}>)
’ ;
’@doc{This computes some property}
’int property(Type<i> arg) = ...;
’@doc{This computes some function}
’str method(Type<i> arg, int i) = ..."
’<}>";

Fig. 9. The Rascal Resource generator to mimic F#’s HelloWorldTypeProvider

Rascal does, however, support the construction of statically syntax correct
modules using its concrete syntax feature. For example:

@resource{hello}
Module generator(loc uri, str name) = ‘module <[Name] name> ...‘;

5.6 OData

Rascal resources share some of the same goals as the Open Data Protocol15, or
OData. OData also uses URIs to identify resources, and is focused on providing
a standard interface to resource data, but is a protocol, not a programming
language mechanism. In the future, an OData Rascal resource would provide a
clean way for Rascal to access information shared using the OData standard.

6 Discussion

We have presented the design and implementation of typed, uniform access to
external resources in Rascal. This brings the flexibility of managing external
datatypes in dynamically typed languages to the world of statically typed lan-
guages. Although we believe that the examples in Section 4 demonstrate that
we have made good progress towards satisfying the requirements listed earlier in
Section 3, some comments are in order.

First, it could be beneficial to check the static safety of the generated code at gen-
eration time, instead of as part of the module load process. Currently, generation
can (if using concrete syntax) only guarantee that the generated code is syntac-
tically correct. This would require invoking the checker as part of the generation
process. Second, we have focused so far on resources that can easily be read fully
into Rascal and manipulated using Rascal code. For larger resources, this is not
practical, and we instead would need a method of gradually reading in resource

15 See http://www.odata.org/.

http://www.odata.org/
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data. Along with this, it would be useful to leverage the optimization and search
capabilities of external systems. For instance, the not-null check shown in the JDBC
example in Section 4 is currently performed using pattern matching in Rascal, but
could also be done directly by the database. Third, we have focusedmainly on read-
ing resources, and would like to provide better support for writing data back to
external data sources after making changes within Rascal.

We intend to further explore and extend the possibilities of resources for other
resource types that are relevant for the software language engineer.

Acknowledgments. We would like to thank the anonymous reviewers, whose
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Abstract. With the Xtext framework, building domain specific languages (DSLs)
integrated into the Eclipse IDE has become increasingly popular and viable even
for non-trivial domains. However, sophisticated DSLs may require advanced type
checking capabilities, since they usually include expressions, types and the no-
tion of type conformance. In this paper we compare a number of approaches and
frameworks for implementing type systems for Xtext languages regarding flexi-
bility, required effort and usability. We use a common case study to illustrate the
trade-offs between the various tools.

1 Introduction

Developing languages is time consuming: it involves defining grammars, parsers, con-
straints, type systems and generators or interpreters, as well as an IDE. With the rising
popularity of domain-specific languages (DSLs), there is an increasing need for better
tool support for building languages and their IDEs. Traditional parser generators (such
as Flex/Bison [25] or ANTLR [28]) help only with the concrete and abstract syntax of
a language. Modern language workbenches (such as Xtext [3], MPS [37] or Spoofax
[24]) generate editors, complete with syntax highlighting, code completion and static
error highlighting, based on a grammar definition. They significantly reduce the effort
for implementing a language and its IDE.

Judging by the uptake in industry, Xtext [3] is currently one of the most popular lan-
guage workbenches. It is based on Eclipse, and, from an enriched grammar, generates
an Eclipse-based editor, a parser and an abstract syntax tree based on EMF Ecore [35].
It also provides APIs and languages for defining scopes, constraint checks and gener-
ators as well as additional IDE aspects that cannot be automatically derived from the
grammar. Type checking is a specific case of constraint checking. In order to check if a
type is valid, that type (and all other types in the program) first has to be calculated. For
non-trivial languages, type calculation can be quite elaborate.

In Xtext, both constraints and transformations or generators are by default imple-
mented in Java (or Xtend [2], a modernized, Java-like language that comes with Xtext).
However, Xtext provides no specific support for defining type systems, beyond imple-
menting typing rules in Java/Xtend as part of the validation. As languages become more
sophisticated, there is a need for dedicated support for implementing type systems that
lets users express typing rules concisely. The main feature of such type system imple-
mentation tools should be the calculation of the type of program elements. They should

K. Czarnecki and G. Hedin (Eds.): SLE 2012, LNCS 7745, pp. 392–412, 2013.
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also integrate with the constraint checking facilities to perform the actual type checks.
More specifically, a type system definition framework has to support the following fea-
tures, in addition to the obvious requirement of being able to calculate the types for all
typed language concepts. The framework must . . .

F1 allow to express typing rules in a concise way,
F2 support common cases for typing rules (e.g., assignment of fixed types to elements,

the derivation of the type of one element from the type of one of its properties and
the computation of common (super-)types), but not prevent the user from imple-
menting manually more sophisticated (corner) cases,

F3 report type specifications that are incomplete or refer to AST concepts that do not
exist (or have been deleted after a typing rule has been specified),

F4 integrate with the validation framework of the language development tool so typing
errors can be reported together with other constraint errors,

F5 support test and debugging of typing rules.

Note that in the context of this paper, type calculation and checking does not include
name resolution (linking and scoping in Xtext terminology) or simple constraint check-
ing. Both are supported reasonably well by writing Xtend code (which supports, for
instance, functional abstractions).

Contribution. Our primary contribution is a comparison between various approaches
for implementing type systems for Xtext-based languages. We start out by showing
how to implement type systems with Xtext only and then compare three alternative
approaches: Xsemantics, the Xtext Type System (XTS) and the type system introduced
by Xbase. Our secondary contribution is a brief look at other language workbenches
and the ways they defined type systems for DSLs.

The paper is structured as follows: in Section 2 we introduce a case study that is
used to compare the various type system definition approaches discussed in this paper.
In Section 3 we then present the implementation of the type system for this language
using the default way suggested by Xtext: an implementation in plain Java/Xtend. We
then illustrate three alternative approaches. In Section 4 we will show how to inte-
grate a DSL type system with Xbase, a reusable expression language, integrated with
Java, and shipped with Xtext. We then implement the type system for our case study
in Xsemantics (Section 5) and in XTS (Section 6), two DSLs for implementing type
systems for Xtext-based languages. In Section 7 we evaluate and compare these ap-
proaches based on their support for the features introduced above. We also provide
recommendations on when to use which approach. We conclude the paper with a re-
view of related work (Section 8). The code of all examples in this paper is available at
https://github.com/markusvoelter/typesystemcomparison.

2 Case Study

The comparison of the various tools for type system definition are based on the example
language discussed in this section. It is a language for describing data entities and GUI
forms to edit them. The example language is not intended to have all features relevant in

https://github.com/markusvoelter/typesystemcomparison
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practice: it is only used as a case study to illustrate the implementation of type systems,
and we will concentrate on the features that are more interesting to this end.

Fig. 1 shows an overview over the abstract syntax of the language. An Entity can
have Attributes of primitive types such as boolean, string, int and float, or
EntityTypes, which represent the type of an Entity. Attributes can have a type
and an initialization expression. If both the type and the init expression are specified,
we require that the (inferred) type of the expression is a subtype of the Attribute’s
type. If no Attribute type is specified, then the initialization expression is mandatory
and used to infer the type of the Attribute. Entities can specify a base entity they
extend, so there is a subtyping relationship on EntityTypes implied by the transitive
closure of the extends relation.

Fig. 1. The essential parts of the meta model (AST) generated from the grammar

A Form references an Entity and owns widgets such as text fields and checkboxes.
Widgets refer to a specific attribute of the entity. Widgets may also contain a check

clause, which verifies the content of the widget (for example, the length of the input).
In check expressions one can access the current content of the widget using the wid-

getcontent expression, which will must be typed to the type of the corresponding at-
tribute. Listing 1 shows an example program with a Person entity and a PersonForm

to edit it. Note that the attribute isAdult has an explicit type, and its initialization ex-
pression conforms to that type; greeting has no explicit type, and its type is inferred
from its initialization expression.

The part of the example grammar that is used by all variants of type system imple-
mentation is shown in Listing 2. The Type and Expression part of the grammar is
the same for the the plain Xtext grammar and the Xsemantics and Xtext/TS grammars
(for lack of space we do not show the complete grammar of expressions). In the Xbase
scenario, the rule Expression is replaced with the Xbase’s XExpression.

Person {

name : ;

firstName : ;

age : ;

weight : ;

isAdult : = age > 18;

greeting = "Hello " + firstName

+ " " + name + "!";

}

PersonForm Person {

(20) -> name

( ) >= 2;

(20) -> firstName;

(5) -> age 12.2> ;

(5) -> weight 0< ;

-> isAdult;

(30) -> greeting;

}

Listing 1. Forms and Entities DSL
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�����: (entities+=���	�
 | forms+=��� )*;

���	�
: "entity" name=ID (’extends’ superType=[���	�
])? "{" (attributes+=����	����)* "}";

����	����: name=ID ( ((":" type=�
��)? "=" expr=�������	��) | (":" type=�
��) )";";

���: "form" name=ID "edits" entity=[���	�
] "{" (widgets+=�	����)* "}";

�	����: �����	���� | ���������	����;

�����	����: "text" "("length=Number")" "->" attr=[����	����] ("check" check=�������	��)?";";

���������	����: "checkbox" "->" attr=[����	����] ("check" check=�������	��)? ";" ;

�
��: ��		�	���
�� | ���	�
�
��;

���	�
�
��: ref=[���	�
];

��		�	���
��: ������
�� | ��������
�� |  ��	���
��;

������
��: ������
�� | !���
��;

������
��: {������
��} "float";

!���
��: {!���
��} "int";

��������
��: {��������
��} "bool";

 ��	���
��: { ��	���
��} "string";

�������	��: ��������������	��;

/* skipped full Expression grammar */
���	� ������� �������	��: ’(’ �������	�� ’)’ | {�	�����������} "widgetcontent" |

{"�����#$} "lengthOf" "(" expr=�������	�� ")" | {���	�
�
��} "new" ref=[���	�
] |

{�������"	�����} value=("true"|"false") | {�����"	�����} value=Float |

{!��"	�����} value=INT | { ��	��"	�����} value=STRING | {����	����%�$} attr=[����	����];

Listing 2. Grammar of case study DSL

Xtext grammars are essentially EBNF with the following differences. For each gram-
mar rule, an EMF EClass is generated in the meta model (e.g., there will be a metaclass
TextWidget). The grammar specifies property names, so they can be generated into
the metaclass (TextWidget will have a property length). Finally, Xtext grammars
support expressing references natively. The attr=[Attribute] syntax in the Tex-

tWidget rule expresses that in the generated EClass there will be a property attr that
is a non-containing reference to Attribute. Scoping rules (to be written separately)
determine which instances of Attribute are valid targets for the reference. Also, con-
straints and typing rules have to be expressed separately. This paper is about expressing
the typing rules efficiently.

To compare the different type system variants, we implement the following checks
in each of them: the Attribute’s initialization expression (if present) must conform to
the Attribute’s declared type (if specified); the check expression must be boolean;
the text widgets must not refer to boolean Entity attributes; the checkbox widgets
must refer only to boolean attributes. The + operator can be used both for arithmetic
addition (in this case its type is numeric) and as string concatenation: if one of the
operands is a string, the type of + will be string.

3 Plain Xtext

The plain Xtext implementation requires the implementation of three kinds of opera-
tions: one to calculate the actual type of an expression, one to calculate the expected
type (which depends on the context in which the expression is used), and one that
checks whether one type is assignable to another. The first two are implemented by
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1 ����� GuiDslTypeProvider {

2 @Inject ������	
� TypeConformance conformance // Xtend "extension" and google @Inject
3 Type _bool = GuiDslFactory::eINSTANCE.createBooleanType // local var for easy use
4 Type _float = GuiDslFactory::eINSTANCE.createFloatType // local var for easy use
5 @Inject CyclicDependencyType cyclicType // ... similar for other basic types
6
7 ��� Type getType(EObject e) { getType(e, newHashSet()) }

8 ��� Type getType(EObject e, Collection<EObject> visited) {

9 	� (visited.contains(e)) ���� cyclicType ���� visited.add(e)

10 ��	��� e {

11 Widget : e.attr.getType(visited)

12 Attribute ���� e.expr != ���� && e.type != ����

13 && e.type.isAssignable(e.expr.getType(visited)) : e.type

14 Attribute ���� e.expr != ���� : e.expr.getType(visited)

15 Attribute ���� e.type != ���� : e.type

16 AttributeRef : e.attr.getType(visited)

17 AndOrExpression : _bool

18 Comparison : _bool

19 // type is the most general, e.g. int + float => float
20 Plus : mostGeneral(e.left.getType(visited), e.right.getType(visited))

21 Minus : mostGeneral(e.left.getType(visited), e.right.getType(visited))

22 // ... similar for other expressions
23 �������: ����

24 } }

25 ��� Type getExpectedType(EObject e) { internalGetExpectedType(e.eContainer, e.

eContainingFeature) } ...

Listing 3. Type provider in Xtend

GuiDslTypeProvider1, partially shown in Listing 3. The method getType(EObject

expr) determines the actual type of an expression expr. It avoids endless loops in
case of cyclic dependencies (typically due to a malformed cyclic entity hierarchy) by
caching already visited elements (line 9). The type of primitive types BooleanType as
well as the type of an EntityType (see grammar in Listing 2) is defined to be itself
(not shown). The type of a Comparison is always boolean (line 18), there is no need
for recursive computation. The method getExpectedType() expects that the elements
in a Comparison container are boolean as well.

The type of an Attribute (lines 12-15) is the type of its type feature, if present.
If there is only an init expression, its type is taken. If there is both a type feature and
a conforming init expression, the type of the former is taken. If the init expression is
non-conformant, getType() returns the type of the init expression, while getExpect-
edType() will return the type of the Attribute’s type feature. This will lead to an
intended type error when the validator checks expected types against actual types. Ref-
erences to attributes (line 16) have the type of the referenced attribute.

The operation getExpectedType() in Listing 3 (line 25) returns the expected type
of an EObject by checking its container. It calls another operation (not shown here)
with the container of the EObject and the feature of the container that contains itself.
For instance, if the container of an expression is a Widget and the feature of the wid-
get containing the expression is the check clause, the expected type is boolean. An
expression is also expected to be boolean if its container is a Comparison. However,

1 This class is written in Xtend [2]. Xtend compiles to Java and provides functional ab-
stractions (useful for interpreters and AST navigation), templates (for code generators),
and syntactic sugar like extension methods and a concise getter/setter syntax. For in-
stance, isAssignable(a, b) may be written as a.isAssignable(b), and a.getType()

as a.type.
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1 ����� TypeConformance {

2 ��� ���	�
�� isAssignable(Type left, Type right) {

3 left.eClass == right.eClass || right.eClass.EAllSuperTypes.contains(left.eClass) }

4 ��� ���	�
�� isAssignable(EntityType left, EntityType right) {

5 internalIsAssignable(left.ref, right.ref, newHashSet() }

6 ��� internalIsAssignable(Entity left, Entity right, Collection<Entity> visited) {

7 �� (visited.contains(right)) ��
�� �����; // cycle detected
8 visited.add(right)

9 left == right || (right.superType != ��� && internalIsAssignable(left, right.superType,

visited) ) }

10 ��� ���	�
�� isAssignable(FloatType left, IntType right) { 
�� }

11 ��� ���	�
�� isAssignable(StringType left, NumberType right) { 
�� }

Listing 4. Type conformance specification (Xtend code)

	���� ����� GuiDslJavaValidator ��
���� AbstractGuiDslJavaValidator {

@Check // slightly simplified code for publication
def checkType(Expression object) {

val expectedType = object.getExpectedType

val actualType = object.getType

�� (expectedType == ���) ��
��;

�� (!expectedType.isAssignable(actualType)) {

error("Type error, expected ’" + expectedType + "’ but was ’" + actualType + "’");

// ... other validation methods
}

Listing 5. Xtext validator

if an expression is contained in a -, * or /, it is expected to be of a NumberType. For a
+, a string is expected, unless there is a common type of the arguments that is more
specific. The method returns null to indicate that there is no expected type.

The GuiDslTypeProvider uses the Xtend code in Listing 4 to compute whether
another type can be provided where a certain type is expected, also known as type
conformance or subtyping, which is an important part of a type system. The method
isAssignable(left, right) returns true if an element of type right can be used
where an element of type left is expected. Thanks to polymorphic dispatch, a call to
isAssignable() will be dispatched to the method having the most specific parame-
ter types given the run-time types of the arguments. The first method (line 2) accepts
Types and reuses the type hierarchy of the EMF metamodel generated from the DSL
grammar. For instance, the EMF metamodel class FloatType subclasses NumberType,
and thus eClass().getEAllSupertypes() called on a FloatType instance contains
NumberType which in turn means that FloatType can be used where NumberType is
expected. The methods in lines 4 to 9 specify that one EntityType is a subtype of
another one if the contained Entity (e.g. Person) are the same, or if the first is a
supertype of the second (e.g. Teacher extends Person). Here, the reference su-

perType is not an EMF reference, but the one specified in the grammar for Entity.
As in Listing 3, the visited entities are cached to avoid endless loops in case of cyclic
hierarchies. The other methods deal with the remaining special cases.

Finally, the validator in Listing 5 uses the classes shown above to implement the
checks on the widgets (see Section 2). A method annotated with @Check is called by
Xtext for every model element that fits the parameter type. In the example, the actual
and expected types of expressions are checked for assignability (using concise Xtend
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syntax). In case there is no expected type, e.g. for an attribute whose type is only defined
by the derivation expression, there is no need to issue an error.

4 Xbase

To leverage type checking and scoping of Xbase in this scenario, the Expression rule
in the grammar is replaced with the Xbase XExpression, which allows to write a spec-
ification on how Xbase should generate Java classes from Entities and Forms. Listing 6
shows the complete code (without comments) necessary to let Xbase automatically gen-
erate Java classes for entities and forms. For each Entity, a Java class is inferred with
supertype references (line 8), getters (line 10), fields (line 12) and setters (line 13).

Also, for each Widget of a Form, a method with return type boolean is added to the
Form’s Java class, whose name is derived from the attribute’s name the widget refers
to (line 20). Of course, the method can only be inferred if there was an attribute and a
check clause defined for the widget in the DSL file (line 19).

1 ����� XGuiDslJvmModelInferrer �����	� AbstractModelInferrer {

2 @Inject ������
�� JvmTypesBuilder // Xtend "extension" keyword
3 @Inject ������
�� IQualifiedNameProvider

4 @Inject ������
�� GuiTypeProvider guiTypeProvider

5
6 	�� 	
����� ��
	 infer(Entity element, IJvmDeclaredTypeAcceptor acceptor, �������

preIndexingPhase) {

7 acceptor.accept(element.toClass(element.fullyQualifiedName)).initializeLater [

8 
� (element.superType != ����) superTypes += element.superType.cloneWithProxies

9 ��� (a : element.attributes) {

10 ��� getter = a.toGetter(a.name, a.getJvmType)

11 
� (a.expr != ����) { getter.body = a.expr } ���� {

12 members += a.toField(a.name, a.getJvmType)

13 members += a.toSetter(a.name, a.getJvmType) }

14 members += getter

15 }]}

16
17 	�� 	
����� ��
	 infer(Form form, IJvmDeclaredTypeAcceptor acceptor, �������

preIndexingPhase) {

18 acceptor.accept(form.toClass(form.fullyQualifiedName)).initializeLater [

19 form.widgets.filter[check != ���� && attr != ����].forEach[ w |

20 members += w.toMethod(’check’+w.attr.name.toFirstUpper, form.newTypeRef(

Boolean::TYPE)) [

21 parameters += w.toParameter(’widgetcontent’, w.attr.getJvmType)

22 body = w.check

23 ]]]} ...

Listing 6. JvmModelInferrer written in Xtend

With this inference specification, Xbase will take care of type checking the check

clause of a Widget. The case study also requires that the keyword widgetcontent

in the check clause must refer to the attribute the widget refers to. This is done in
Xbase by adding a parameter widgetcontentwith the attribute’s type (line 21).

The validator in the Xbase scenario is shown in Listing 7. The validation methods are
similar to the plain Xtext scenario (e.g. for a TextWidget, line 3), but now JvmTypes

are compared (line 6), which are supplied by a type provider (line 2) which delegates to
the built-in Xbase type provider.
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1 ����� XGuiDslJavaValidator �����	� XbaseJavaValidator { // google guice @Inject
2 @Inject �
���� ������
�� GuiTypeProvider typeProvider; // and Xtext @Check
3 @Check 	�� ��
	 checkTextWidgetForNonBoolean(TextWidget widget) {

4 ��� jvmTypeReference = widget.attr.getJvmType

5 
� (jvmTypeReference == ����) ������;

6 
� (jvmTypeReference.getQualifiedName().equals(Boolean::TYPE.getName()))

7 error("Textbox may NOT refer to boolean attributes.", ...

8 } ...

Listing 7. Xtext validator in the Xbase scenario

5 Xsemantics

Xsemantics [7] (the successor of Xtypes [6]) is a DSL (written in Xtext) for writing
type systems, reduction rules, interpreters (and in general relation rules) for languages
implemented in Xtext. In this paper we illustrate its use for defining type systems. Xse-
mantics is intended for developers who are at least a little familiar with formal type sys-
tems and operational semantics since it uses a syntax that resembles deduction rules in a
formal setting [12,20,31]. A type system definition in Xsemantics is a set of judgments
(formally, assertions about the typing of programs) and a set of rules (formally, implica-
tions between judgments, i.e., they assert the validity of certain judgments, possibly on
the basis of other judgments [12]) which have a conclusion and a set of premises; these
rules can act on any Java object, though, typically, they will act on EObjects which are
elements of the metamodel of a language implemented in Xtext. Xsemantics relies on
Xbase to provide a rich syntax for defining rules, thus giving full access to Java types.
Starting from the definitions of judgments and rules, Xsemantics generates Java code
that can be used in a language implemented in Xtext for scoping and validation (it also
generates a validator in Java).

An Xsemantics judgment consists of a name, a judgment symbol (which can be cho-
sen from some predefined symbols) and the parameters of the judgment; these pa-
rameters are separated by a relation symbol that can be chosen from some predefined
symbols. The parameters can be either input parameters (default) or output parameters
(using the output keyword followed by the Java type). The judgment definitions for
our case study are shown in Listing 8.

��������	 {

type |- EObject typable : 
����� Type

isAssignable |- Type left <∼ Type right // whether right is assignable to left
mostGeneral |- Type first ∼∼Type second |> 
����� Type // most general between 1st and 2nd

}

Listing 8. Judgment definitions in Xsemantics

Once the judgments are declared, we can start declaring the rules of the judgments. Each
rule consists of a name, a rule conclusion and the premises of the rule. The conclusion
consists of the name of the environment of the rule, a judgment symbol and the parame-
ters of the rules, which are separated by a relation symbol that can be chosen from some
predefined symbols. To enable better IDE tooling and a more ”programming”-like style,
Xsemantics rules are written in the other direction with respect to standard deduction
rules: the conclusion comes before the premises.
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����� BooleanLiteralType

G |- BooleanLiteral lit :

XsemGuiDslFactory::eINSTANCE.createBooleanType Γ ! true : boolean

���	 AttributeRefType

G |- AttributeRef attrRef : Type type


��� { G |- attrRef.attr : type }
Γ ! attr : T

Γ ! ref attr : T

���	 LengthOfType

G |- LengthOf len : XsemGuiDslFactory::eINSTANCE.createIntType


��� { G |- len.expr : ��� StringType stringType }
Γ ! exp : string

Γ ! lengthOf(exp) : int

���	 WidgetContentType

G |- WidgetContent widgetContent : Type type


��� { G |- 	��(G, ’widgetcontent’, Attribute) : type }
Γ ! Γ (widgetcontent) : T

Γ ! widgetcontent : T

Listing 9. Some examples of rules and axioms in Xsemantics

The things that make a rule belong to a specific judgment are the judgment symbol
and the relation symbols (which separate the parameters); moreover, the types of the
parameters of a rule must be (Java) subtypes of the corresponding types of the judgment
(or exactly the same Java types). Two rules belonging to the same judgment must differ
for at least one input parameter’s type.

The premises of a rule, which are specified in a from block, can be any Xbase expres-
sion, or a rule invocation. If one thinks of a rule declaration as a function declaration,
then a rule invocation corresponds to a function invocation, thus one must specify the
environment to pass to the rule, as well as the input and output arguments. The premises
of an Xsemantics rule are considered to be in a logical and relation and are verified in
the same order they are specified in the block. If one needs premises (or blocks of
premises) in a logical or relation, the operator or can be used to separate blocks of
premises. If a rule does not require any premise, we can use a special kind of rule,
called axiom, which only has a conclusion. In the premises one can assign values to the
output parameters; and when another rule is invoked, upon return, the output arguments
will have the values assigned in the invoked rule.

The rule environment (taken from the type theory where it is usually denoted by
Γ ) allows to pass additional arguments to rules (e.g., contextual information, bindings
for specific keywords, like widgetcontent as in Listing 12, etc.). An empty environ-
ment can be passed using the keyword empty. When passing an environment during
a rule invocation, one can specify additional environment mappings, using the syntax
key <- value. In general, environment mappings concern free variables occurring in
the rule (like widgetcontent).

At runtime, upon rule invocation, the generated Java system will select the most
appropriate rule according to the runtime types of the passed argument (using the poly-
morphic dispatch mechanism provided by Xtext). If one of the premises fails, then the
whole rule will fail. In particular, if the premise is a boolean expression, it will fail if
the expression evaluates to false. If the premise is a rule invocation, it will fail if the
invoked rule fails.

In Listing 9 we present some rules for the judgment type (see Listing 8, recall that in
the rules of these judgments the second parameter is an output parameter). In Listing 9
we also show on the right the typical type deduction rules in a possible formalization
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���� MinusType

G |- Minus minus : NumberType type

���� {

// require number types
G |- minus.left : �	� NumberType leftType

G |- minus.right : �	� NumberType rightType

// get the most general
G |- leftType ∼∼rightType |> type

}

���� PlusType

G |- Plus plus : Type type

���� {

// deal with any type
G |- plus.left : �	� Type leftType

G |- plus.right : �	� Type rightType

// get the most general (may be string)
G |- leftType ∼∼rightType |> type

}

Listing 10. Some rules for binary expressions

���� IsAssignableBase G |- Type left <∼ Type right ���� { left.eClass == right.eClass }

	
��� BooleanAssignableToString G |- StringType left <∼ BooleanType right

	
��� IntAssignableToString G |- StringType left <∼ NumberType right

	
��� IntAssignableToFloat G |- FloatType left <∼ IntType right

���� EntityTypeAssignable G |- EntityType left <∼ EntityType right

���� {

left.ref == right.ref ��

�����(right.ref, XsemGuiDslPackage::eINSTANCE.entity_SuperType,

XsemGuiDslPackage::eINSTANCE.entity_SuperType, �����(Entity)).contains(left.ref) }

Listing 11. Some rules for the isAssignable judgment

of our case study, to show how the specifications are similar (apart from the order of
the conclusion and the premises). For typing a literal (in the example a boolean literal)
we write an axiom (since there is no premise) and the result is a BooleanType (cre-
ated through the EMF factory for our language). The rule for typing an AttributeRef

can be read as follows: the type of an AttributeRef is the type resulting from typing
the corresponding referred attribute (the feature attr, refer to Listing 2). The type of
a LengthOf expression is an integer type, provided that the expression argument of
LengthOf has string type. Finally, for typing widgetcontentwe make use of the rule
environment: we access the environment with the predefined function env, by specify-
ing the key and the expected Java type of the corresponding value. If no key is found in
the environment or the value cannot be assigned to the specified Java type the premise
will fail. We will show how an environment is passed later in Listing 12. Thus, this rule
will type widgetcontentwith the type of the corresponding attribute.

The rules for Minus and Plus are shown in Listing 10 (the rules for mostGeneral
are not shown). The typing rule for Minus requires that the two subexpressions have a
numeric type (recall that since we specify a NumberType as the output argument in rule
invocation, its invocation will succeed only if the result is assignable to NumberType);
the resulting type will be the most general type, thus, for instance, if one of the two
subexpressions has the type FloatType and the other one IntType, the resulting type
will be FloatType. Recall that we use + not only as the arithmetic operator, but also
for string concatenation; in particular, if one of the subexpression is a string, the whole
expression is considered a string concatenation. Thus, the rule for Plus computes the
types of the two subexpressions, and then gets the most general; if one of them is a string
type, the whole expression will have string type (see also subtyping rules in Listing 11).

The rules of the judgment isAssignable (Listing 8), which basically implements
subtyping, do not have an output parameter, they accept two types as parameters: they
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succeed if the right parameter is assignable to the left parameter. In Listing 11 we show
some rules for this judgment. The first rule is the most general and states that types of the
same kind are assignable to each other (in this context “kind” corresponds to EClass);
moreover, we have axioms saying that booleans and integers are assignable to strings
(for instance, like in Java, by an implicit conversion through toString method). Fi-
nally, an integer can be assigned to a float. For the subtyping between two EntityTypes
the idea is that right can be assigned to left either if they are the same type (entity
subtyping is reflexive) or if left is a “super entity” (possibly indirectly) for right. To
avoid dealing with possible malformed cyclic hierarchies, we use a predefined function
of Xsemantics, to compute the “closure” of a graph in a cycle-proof way:

getAll(eObject, feature to collect, feature to follow, expected type)

In Listing 11, it will return all the superclasses of right.
In an Xsemantics system we can specify some special rules, checkrule, which do

not belong to any judgment. They are used by Xsemantics to generate a Java valida-
tor for the Xtext language. A checkrule has a name, a single parameter (which is the
EObjectwhich will be checked by the validator) and the premises (but no rule environ-
ment). The syntax of the premises of a checkrule is the same as in the standard rules.
Xsemantics will generate a Java validator with a @Check method for each checkrule;
just like in Java validators for Xtext languages, one can have many checkrules for the
same JavaType (provided the rule name is unique).

��������� AttributeTypeChecks �	� Attribute attribute ��	
 {

�
�� |- attribute : ��� Type type

}

��������� CheckMustBeBoolean �	� Widget widget ��	
 {

widget.check == ���� 	�

’widgetcontent’ <- widget.attr |- widget.check : ��� BooleanType boolType

}

��������� CheckTextWidgetAttributeNotBoolean �	� TextWidget widget ��	
 {

’widgetcontent’ <- widget.attr |- widget.attr : ��� Type attrType

!(attrType ��������	� BooleanType)

}

��������� CheckCheckBoxWidgetAttributeBoolean �	� CheckBoxWidget widget ��	
 {

’widgetcontent’ <- widget.attr |- widget.attr : ��� BooleanType attrType

}

Listing 12. Some checkrules for the Validator

In Listing 12 we present some checkrules for validating the elements of our language
(see Section 2). The first checkrule basically states that an Attribute is correct if we
can give it a type (in the empty environment). The second one accepts a Widget and
ensures that either its check part is not specified or it has a boolean type; note that in
this case we pass to the type rule invocation an explicit environment so that we are able
to type possible occurrences of widgetcontent. These first two rules also show an
important use of the environment: since the rule for typing widgetcontent (Listing 9)
requires that the string ‘widgetcontent’ is bound to an attribute in the environment, and
since when typing an attribute we provide an empty environment, then a possible occur-
rence of widgetcontent in an attribute’s initialization expression (which is accepted
by the grammar) will be automatically (and correctly) rejected. The third checkrule
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requires that the TextWidget’s attribute is not of boolean type, while the fourth one
requires that the checkbox’s attribute has a boolean type (by implicitly trying to assign
the result type, in the rule invocation, to a boolean type).

6 XTS

XTS [38] was originally developed as a framework with a Java API to declaratively
specify type system rules. Later, a DSL was added on top of the framework. The DSL
provides several usability advantages such as code completion into the target metamodel
and static consistency checks for the type system definition. From the type system ex-
pressed with the DSL, Java code is generated that uses the original Java API. The DSL
only covers the most important cases of type system specification. For the remainder,
Java code has to be written against the framework API. XTS has been used in several
commercial projects, by the author and by independent third parties.

Each XTS type system specification starts with a header. It specifies the fully quali-
fied class name of the type system implementation class generated from this specifica-
tion file. It also specifies the platform URI of the Ecore file for the target language as
well as the fully qualified name of the EMF-generated package class for that Ecore file:

���������� org.typesys.xts.guidsl.typesys.GuiDlsTypesystem
���	� 
��� "platform:/resource/or...esys/xts/guidsl/GuiDsl.ecore"
������ ����� org.typesys.xts.guidsl.guiDsl.GuiDslPackage

Type system specifications mostly consists of typeof clauses, which define how the
type for a given EClass is calculated. It can optionally specify constraints on the types
of properties of these metaclasses. In the code below we specify that the type of in-
stances of Type (and all its subclasses, indicated by a +) is a clone of itself. In other
words, types are their own types. We also specify the subtyping relationship between
FloatType and IntType: wherever a FloatType is expected, an IntType can be used
as well (but not the other way around). IntType is more specialized.

�����
 Type+ -> �����

������� IntType ��� FloatType

The type of string and boolean literals is fixed (it does not depend on any further con-
text), so it can be assigned statically. However, for number literals it depends on its
value whether it is an integer or float type. This cannot be be expressed declaratively
in the DSL. So we declare the type for NumberLiteral to be calculated with Java code.

�����
 StringLiteral -> StringType
�����
 BooleanLiteral -> BooleanType
�����
 NumberLiteral -> ������

javacode leads to the generation of an abstract method in the generated type system
class, which we have to override in a manually written subclass:

������ EObject type( NumberLiteral s, TypeCalcTrace trace ) {
�
 ( s.getValue().equals(s.getValue().intValue())) 	���	� create(cl.getIntType());
	���	� create(cl.getFloatType()); }

Before we define the type system rules for expressions, we define two characteristics.
A characteristic is essentially a named set of types. Instead of listing the set of types
over and over again, we can use the characteristic as a shortcut:
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��	���	����� COMPARABLE { IntType, FloatType, BooleanType, StringType }
��	���	����� NUMERIC { IntType, FloatType }

Then we define the type for expressions. Expression itself has no type, since it is
abstract, and all its subclasses specify their own typing rules. It is useful to make this
explicit in the specification since the type system DSL editor will then check that all
subconcepts of Expression are actually covered by their own type system rules:

�����
 Expression -> ���	��

We can now take a look at some of the more interesting cases (Listing 13). For Compari-
son (one of the binary expressions not shown in the grammar in Listing 2), the type will
be BooleanType and the left and right arguments have to be COMPARABLE (see the
characteristic above). In addition, they also have to be compatible. For instance, while
boolean and string types are both COMPARABLE, they cannot be compared to each other.
This is why we need this explicit compatibility check using the :<=: operator. It rep-
resents ordered compatibility, meaning that the type on the left must be the same or
a subtype of the type specified on the right. In contrast, :<=>: represents unordered
compatibility where the left must be the same or a subtype of the right, or vice versa.
An example is in the typing rule for Plus. The Plus also shows the use of common as
a type specification. This expresses that the type is the common supertype of the two
arguments. This only works if the two types are either the same or part of a subtype
relationship (such as FloatType and IntType).

������ Comparison -> BooleanType {

���	
����� left :<=: ��
(COMPARABLE)

���	
����� right :<=: ��
(COMPARABLE)

���	
�������������� left :<=>: right

}

������ Plus -> ������ left right {

���	
����� left :<=: StringType, ��
(NUMERIC)

���	
����� right :<=: StringType, ��
(NUMERIC)

���	
�������������� left :<=>: right

}

������ Equality -> BooleanType {

���	
����� left :<=:

��
(COMPARABLE), BooleanType

���	
����� right :<=:

��
(COMPARABLE), BooleanType

���	
�������������� left :<=>: right

}

Listing 13. Some rules for binary expressions

������ Widget -> ����
���

������ CheckBoxWidget -> ����	
� attr {

// 3) checkboxes must refer to boolean attrs
���	
����� attr :<=: BooleanType

// 1) the check expression must be boolean
���	
����� check :<=: BooleanType

}

������ TextWidget -> ����	
� attr {

���	
����� length :<=: IntType

// 2) text widgets may only
// refer to non-boolean attributes
���	
����� attr :<=:

StringType, IntType, FloatType

���	
����� check :<=: BooleanType

}

Listing 14. Types for widgets

Let us now look at some more special cases: the type of the AttributeRef is the
type of the referenced Attribute, reachable via the attr reference:

�����
 AttributeRef -> 
���	� attr
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The type of the widgets (they are not expressions, but as we will see below, it is useful
for them to have a type) are shown in Listing 14. They implement the checks for our
case study (see the comments in Listing 14).

We can now calculate the type of the widgetcontent expression, which has the
type of the Attribute referenced by the parent widget. This is expressed by (relying
on the fact that we have provided a type for the Widget, as mentioned above):

�����
 WidgetContent -> ������	 Widget

Finally, the type of an Entity also has to be calculated with Java code, because it
has to be an EntityType that references the corresponding entity. While a declar-
ative way for specifying such a rule is easily imaginable (e.g. typeof Entity ->

EntityType(ref=this)), the DSL currently does not support it:

�	������� EObject type(Entity element, TypeCalcTrace trace) {
EntityType et = (EntityType)create(cl.getEntityType());
et.setRef(element);
	���	� et; }

There is one more interesting open issue. We have to implement the subtyping relation-
ship between entities. This is not so simple, because we compare EntityTypes, and
the subtyping depends on whether their corresponding referenced entities are subtypes
of each other (covariance). So instead of declaring a subtype relationship directly in
the XTS specification, we implement a type comparison method in Java. The method
internalCompareTypesOrdered() checks the entity subtype relation with cycle de-
tection as seen in the plain Xtext case (Listing 4, method internalIsAssignable()).

�	������� ������ compareTypes( EntityType t1, EntityType t2, CheckKind k, TypeCalcTrace t
){

�
 ( k == CheckKind.same ) 	���	� t1.getRef() == t2.getRef();
�
 ( k == CheckKind.ordered ) 	���	� internalCompareTypesOrdered(

t1.getRef(), t2.getRef(), Sets.<Entity>newHashSet());
	���	� 
���; }

Once again, the DSL could easily be extended to support this feature, for example using
subtype Entity covariant ref.

7 Evaluation

7.1 When to Use Which Approach

The choice of which type system framework to use to implement the type system for a
DSL in Xtext mainly depends on the context of the DSL itself. In this section we sum-
marize our experiences, and evaluate the features of the mechanisms and frameworks
described in this paper.

Plain Xtext. The plain Xtext strategy (Section 3) is always feasible, and, by relying
on the powerful features of Xtend, it is even easier to deal with complex model visits.
However, if the DSL has to rely on an involved type system, implementing such func-
tionalities in plain Java/Xtend might still be a big effort. The complete control on all the
parts of the implemented type system comes at the cost of having to deal with all the
internal details, without relying on any abstraction. For instance, as shown in Listing 3,
loop protection for type computations has to be implemented manually.
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Xbase. If the DSL has to be tightly integrated with Java, there is basically one single
sensible choice: rely on Xbase. By “integration with Java” we mean that the DSL must
reuse Java types not only in declarations but also in the actual operation code (for in-
stance, it must create objects in a Java-like style and invoke methods on such instances).

From Xbase the DSL “inherits” a rich Java-like syntax for expressions (including
closures and type inference) and the complete Java type system. In particular, the ex-
pression parts of the DSL will be dealt with directly by Xbase, relieving the programmer
from the big burden of having to reimplement repetitive type checks. It is also possi-
ble to customize several aspects of Xbase expressions, including the syntactic shape
(though it might not be possible to change radically such syntax without experiencing
grammar ambiguities) and the typing and semantics. The latter scenario, though, might
require some deeper knowledge of Xbase internals (for which, in most cases, the code
of Xbase is the only documentation). For instance, in Xsemantics itself, Xbase is used
for the syntax of the premises of rules; however, single boolean Xbase expression state-
ments in the premises of an Xsemantics rule have a different semantics: if the expression
does not evaluate to true the whole rule must fail. In Xbase, a boolean expression used
as a statement is not considered valid (it represents a statement with no side effect).
To deal with that, in Xsemantics, a custom validator is implemented to “intercept” the
checks in the Xbase validator in order not to issue an error in these situations. Similarly,
a custom Xbase compiler is implemented in Xsemantics in order to wrap the generated
Java code for boolean expressions with Java code that deals with possible failures of
such expressions. Thus, the more the DSL is similar to Java, the easier it will be to
reuse Xbase. Otherwise, things might get more complicated, though it is still possible
to customize the typing and semantics of Xbase expressions.

Xsemantics. Xsemantics can be a useful framework for implementing a language which
has been formalized using standard meta-theory mechanisms: define the type system of
the language, its semantics, and then prove that the language is sound by showing that
the semantics is consistent with the type system. Xsemantics aims at providing a rich
syntax for defining any kind of rules: relations among elements (e.g., subtyping), static
semantics (i.e., type systems) and dynamic semantics (i.e., reduction rules that can be
used for interpreting a program). Xsemantics syntax aims at resembling the way deduc-
tion rules are written in a formal setting (see Listing 9). Thus, it is easy to implement
the formal definition of type system and operational semantics in Xsemantics, since the
gap between formal systems syntax and the actual implementation is reduced. More-
over, when implementing type systems in Xsemantics, the details of the original formal
type system are not lost and spread through several lines of Java (or Xtend) code, and
the programmer is relieved from many implementation details, thanks to the declarative
style of Xsemantics rule syntax. For instance, Xsemantics was used to implement the
type system of Featherweight Java [22] (a minimal Java core, used to prove properties
of Java-like languages) which was previously implemented manually in Xtext [5], and
to implement type inference with unification for computing the most general type for a
simple lambda calculus (see the examples in [7]). Furthermore, it is being employed to
re-engineer the implementation of other languages implemented in Xtext, which have a
solid theoretical foundation ([33,8]).



Approaches and Tools for Implementing Type Systems in Xtext 407

XTS. XTS offers a concise syntax for the most common tasks when defining type
systems. These include specifying that the type of an element is a copy of itself, subtype
relationships and compatibility constraints, grouping several elements (characteristic)
to save constraint code, and access to EMF features of model elements which allows
to specify that a model element has the type of one of its features. XTS has been used
in several real-world Xtext DSLs and has proven to be useful and stable. While a few
additional features would be worth adding to the DSL (e.g. instantiating structured types
such as the EntityType), the fact that only a few types have to be calculated in Java is
not a big problem in practice.

7.2 Evaluation Regarding the Features

In this section we evaluate the four approaches regarding their ability to support the
features introduced in Section 1.

F1, Conciseness. Since XTS only targets type systems, the specification of a type
system in XTS is more compact than Xsemantics (where judgments for typing and
subtyping have to defined explicitly). Xbase can be compact if only Xbase-provided
typing is needed. The plain Xtext-approach is the most verbose because Xtext itself
does not directly support typing rules and because users have to express typing rules
with a GPL. However, this GPL, Xtend, can be quite concise, alleviating this problem
to some extent.

F2, Support for Common Cases. XTS is certainly optimized towards the most com-
mon cases, they can be expressed very concisely. As a trade-off, rarer cases have to be
expressed in Java, relying on the Generation Gap pattern [36]. In Xsemantics the need
of providing custom Java code is rare since it relies on Xbase for rule implementation,
thus it already has a richer syntax; on the other hand, the common case is not quite
as concise as in XTS. Type system specification with Xbase relies on the fact that the
common cases are already implemented in Xbase itself, so users get them almost ”for
free”. However, implementing corner cases may require deep knowledge of the inner
workings of Xbase. The plain Xtext case does not provide any direct support for typing;
so support for the common cases has to be built manually.

F3, Consistency Checking. All approaches refer to program elements using the EClasses
of the Ecore model and detect when there are typing rules that refer to no longer existing
elements of the AST. XTS however also provides additional static checks that ensure,
for example, that each subconcept of an abstract concept has a type specification.

F4, Integration with Validation. All four alternatives can be integrated with Xtext val-
idation; in Xbase and Xsemantics this is fully automatic. In XTS, the user has to write
a single 3 line stereotypical validation method manually. The plain Xtext case relies on
the developer to provide such integration.

F5, Test and Debugging. An important feature that we believe type system frameworks
should provide is the ability to keep a trace of the computation that brings to the deriva-
tion of a type (or of its failure). This is crucial both for debugging and for testing the
type system. Both Xsemantics and XTS provide mechanisms for accessing such traces.
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In XTS, a popup window is available for the Xtext editor that shows the type of program
elements and the trace in the editor itself. Xbase does not come with a trace facility for
type computations, neither is the plain Xtext case. For debugging, all alternatives rely
on debugging (generated) Java code and testing can be done with the regular means of
testing constraints in Xtext. Xbase also allows to debug Xbase expressions, thus it is
also possible to directly debug Xtend and Xsemantics code.

Summarizing, both Xsemantics and XTS provide all the functionalities that we outlined
in the Introduction, thus they complement Xtext for the implementation of DSLs which
require an involved type system. In particular, the Java code generated by these frame-
works seamlessly integrates in the validation mechanisms of Xtext. The table below
shows a summary.

Plain Xtext Xbase Xsemantics XTS
F1, Conciseness - 0 + ++
F2, Common Cases - 0/+ + +
F3, Consistency Checking 0 0 + +
F4, Integration with Validation 0 ++ ++ +
F5, Test and Debugging 0 0 + +

8 Related Work

This section discusses related work concerning Xtext (we also refer to [30] for a wider
comparison) and other language workbenches regarding type system implementations.

Tools like IMP (The IDE Meta-Tooling Platform) [13] and DLTK (Dynamic Lan-
guages Toolkit) [1] only deal with IDE functionalities and do not address type system
definition specifically. The same is true for TCS (Textual Concrete Syntax) [23] and
EMFText [19]. However, the latter two rely on a metamodel (abstract syntax) expressed
using EMF Ecore, so the XTS and Xsemantics type system frameworks discussed in
this paper could be used with EMFText and TCS. This does not hold for MPS [37] and
Spoofax [24] since they are not built on top of EMF. However, they both come with
their own support for type system specification.

In MPS, language developers specify declarative type system equations with a spe-
cial DSL. A solver then tries to solve all the type system equations relevant to a given
program in order to compute and check types for program elements. The following is
the type equation for a local variable declaration of the form int x = 3;. It expresses
that the type of the init expression (the 3 in the example) must be the same or a subtype
of the type of the dtype property (int in the example).

�����
(lvd.init) :<=: �����
(lvd.dtype);

The following code shows the type calculation of an array initialization expression (as
in {1, 2, 3.5}). The second line computes the type T as the common supertype of all
the types of the elements in the initialization expression (float in the example). The
third line then makes the type of the complete arrInitExpr an array of T.
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���� �	 T

�	��� ( e: init.elements ) T :<=: �����
(e)
�����
(arrInitExpr) :==: ��� ArrayType(T);

Spoofax relies on the Stratego [11] term transformation language for defining most
language aspects beyond the grammar. For typing, Spoofax predefines a transformation
rule type-of which returns the type of a program element passed in as an argument.
It has to be overridden for any language concept that needs to be typed. Below are the
rules that type the Int by assigning IntType:

������
: Int(value) -> IntType()

The type of Add depends on the type of its arguments, so where clauses must be used
to distinguish the cases:

������
: Add(exp1, exp2) -> IntType()
���	� <������
> exp1 => IntType() ; <������
> exp2 => IntType()

������
: Add(exp1, exp2) -> StringType()
���	� <������
> exp1 => StringType() ; <������
> exp2 => StringType()

Both in MPS and in Spoofax, the typing rules are declarative. If language extensions
are added, the type system for the additional language concepts can be defined by just
adding additional cases.

Many systems (for example, SILVER [40], JastAdd [16] and LISA [26]) describe
type systems using attribute grammars. Attribute grammars associate attributes with
AST elements. These attributes can capture arbitrary data about the element (such as
its type). Xsemantics and XTS can be seen as special-purpose attribute grammars in
the sense that they associate a type attribute with program elements. As a consequence
of the fact that Xsemantics and XTS are purpose-built for typing, they provide a more
concise notation, more specific error reporting regarding the consistency of the type
system and a custom Xtext-based editor. Of course, in contrast to general-purpose at-
tribute grammar systems, Xsemantics and XTS cannot be used for anything else except
type system specification.

OCL [39,27] is an expression language for declaring constraints on (meta)models. It
is not particularly well suited for typing, however, since it lacks the necessary typing-
specific high-level abstractions available in Xsemantics and XTS.

EriLex [41] is a software tool for embedded DSLs and it supports specifying syn-
tax, type rules, and dynamic semantics of such languages but it does not generate any
artifact for IDE functionalities. On the contrary, Xtext shares with older tools (like the
Synthesizer Generator [32] and Centaur [9]) the philosophy that a tailored editor is cru-
cial for the usability of a language (in particular the immediate feedback about problems
in the program being edited) and thus a framework for implementing languages should
address also this functionality.

In contrast to many other approaches (such as Centaur [9], MPS [37], ASF+SDF [10],
Ruler [15], PLT Redex [17], and EriLex [41]), Xsemantics and XTS specifications do
not refer to the grammar elements of the language but only to the structure of the EMF
model representing the AST. Thus, they might be used with any other framework that
uses EMF metamodels (though this still requires some investigation).

In contrast to for example Ott [34], neither Xsemantics nor XTS aim at providing
mechanisms for formal proofs for the language and the type system. They do no gen-
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erate versions of the type system for proof assistants like Coq [4], HOL [18] or Is-
abelle [29]. Maude [14], a language based on rewriting logic, can be used as a semantic
framework, with formal analysis capabilities, to specify and prototype other languages.
Whether Xsemantics and XTS could be used for formal proofs is still under investiga-
tion.

As the focus on Xtext suggests, our paper addresses only external DSLs, where DSL
programs are separate from programs written in programming languages. With internal
DSLs, the DSL programs are embedded in host programs written in a suitable program-
ming language. Also, the DSL is defined and implemented with the means of that host
language. In case the host language supports static typing, the host language’s type sys-
tem is used for typing the DSL. This is illustrated, for example by [21] which describes
embedding of DSLs into Scala. Internal DSLs are however most often used with lan-
guages that use dynamic typing (such as Groovy or Ruby), so static typing, as discussed
in this paper, does not apply.

9 Conclusion and Future Work

In this paper we presented approaches for developing type systems for DSLs imple-
mented in Xtext. While a type system can always be implemented in plain Java or
Xtend, still it is crucial for productivity to have a dedicated framework with specific
functionalities for implementing type systems. Xtext provides the expression language
Xbase that can be reused in a DSL. This is useful in cases where the DSL is tightly
coupled with Java, as Xbase provides a full integration with the Java type system.

Xsemantics and XTS both provide a framework and a DSL to make the implemen-
tation of type systems more concise and more maintainable, regardless of whether the
DSL is tied to Java or not. Conciseness is achieved via the declarative specification of
type system rules, focusing on type computation and subtyping while hiding implemen-
tation details. Improved maintainability is a consequence of conciseness and the static
checks of type system completeness in the type system specification editor.

Future work will focus on the support for expressing extensible type systems. Xtext
allows a language to extend another language, making the concepts defined in that lan-
guage available to the new language. Both XTS and Xsemantics currently do not sup-
port the definition of typing rules in a way that is similarly extensible.
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