
S P R I N G E R  B R I E F S  I N
E L E C T R I C A L  A N D  CO M P U T E R  E N G I N E E R I N G

Christoph Guger · Brendan Z. Allison
Günter Edlinger Editors

Brain–Computer
Interface Research
A State-of-the-Art 
Summary



SpringerBriefs in Electrical and Computer
Engineering

For further volumes:
http://www.springer.com/series/10059

http://www.springer.com/series/10059


Christoph Guger • Brendan Z. Allison
Günter Edlinger
Editors

Brain–Computer
Interface Research

A State-of-the-Art Summary

123



Editors
Christoph Guger
Günter Edlinger
g.tec medical engineering
GmbH/Guger Technologies OG
Graz, Schiedlberg
Austria

Brendan Z. Allison
Cognitive Science Department
University of California
San Diego, CA
USA

ISSN 2191-8112 ISSN 2191-8120 (electronic)
ISBN 978-3-642-36082-4 ISBN 978-3-642-36083-1 (eBook)
DOI 10.1007/978-3-642-36083-1
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013934009

� The Author(s) 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the
work. Duplication of this publication or parts thereof is permitted only under the provisions of
the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Contents

State of the Art in BCI Research: BCI Award 2011 . . . . . . . . . . . . . . 1
Christoph Guger, Brendan Allison and Günter Edlinger

An Auditory Output Brain–Computer Interface
for Speech Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Jonathan S. Brumberg, Frank H. Guenther and Philip R. Kennedy

User-Appropriate and Robust Control Strategies to Enhance
Brain–Computer Interface Performance and Usability . . . . . . . . . . . . 15
E. V. C. Friedrich, R. Scherer and C. Neuper

What’s Your Next Move? Detecting Movement Intention
for Stroke Rehabilitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
R. Zimmermann, L. Marchal-Crespo, O. Lambercy, M.-C. Fluet,
J.-C. Metzger, J. Edelmann, J. Brand, K. Eng, R. Riener,
M. Wolf and R. Gassert

A Review of Performance Variations in SMR-Based
Brain–Computer Interfaces (BCIs). . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Moritz Grosse-Wentrup and Bernhard Schölkopf

Exploring the Cortical Dynamics of Learning by Leveraging
BCI Paradigms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Tim Blakely, Kai Miller, Jeffrey Ojemann and Rajesh Rao

An Affective BCI Using Multiple ERP Components Associated
to Facial Emotion Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Qibin Zhao, Yu Zhang, Akinari Onishi and Andrzej Cichocki

Seven Degree of Freedom Cortical Control of a Robotic Arm . . . . . . . 73
Samuel T. Clanton, Angus JC McMorland, Zohny Zohny,
S Morgan Jeffries, Robert G Rasmussen, Sharlene N Flesher
and Meel Velliste

v

http://dx.doi.org/10.1007/978-3-642-36083-1_1
http://dx.doi.org/10.1007/978-3-642-36083-1_2
http://dx.doi.org/10.1007/978-3-642-36083-1_2
http://dx.doi.org/10.1007/978-3-642-36083-1_3
http://dx.doi.org/10.1007/978-3-642-36083-1_3
http://dx.doi.org/10.1007/978-3-642-36083-1_4
http://dx.doi.org/10.1007/978-3-642-36083-1_4
http://dx.doi.org/10.1007/978-3-642-36083-1_5
http://dx.doi.org/10.1007/978-3-642-36083-1_5
http://dx.doi.org/10.1007/978-3-642-36083-1_6
http://dx.doi.org/10.1007/978-3-642-36083-1_6
http://dx.doi.org/10.1007/978-3-642-36083-1_7
http://dx.doi.org/10.1007/978-3-642-36083-1_7
http://dx.doi.org/10.1007/978-3-642-36083-1_8


Utilizing High Gamma (HG) Band Power Changes as a Control
Signal for Non-Invasive BCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
M. Smith, K. Weaver, T. Grabowski and F. Darvas

Towards a Speech BCI Using ECoG . . . . . . . . . . . . . . . . . . . . . . . . . 93
Eric C. Leuthardt, John Cunningham and Dennis Barbour

Towards Communication in the Completely Locked-In State:
Neuroelectric Semantic Conditioning BCI . . . . . . . . . . . . . . . . . . . . . 111
Daniele De Massari, Carolin A. Ruf, Adrian Furdea, Sebastian Halder,
Tamara Matuz and Niels Birbaumer

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

vi Contents

http://dx.doi.org/10.1007/978-3-642-36083-1_9
http://dx.doi.org/10.1007/978-3-642-36083-1_9
http://dx.doi.org/10.1007/978-3-642-36083-1_10
http://dx.doi.org/10.1007/978-3-642-36083-1_11
http://dx.doi.org/10.1007/978-3-642-36083-1_11


State of the Art in BCI Research: BCI
Award 2011

Christoph Guger, Brendan Allison and Günter Edlinger

Introduction

Brain–Computer Interfaces (BCIs) analyze brain signals in real-time to control
external devices, communicate with others, facilitate rehabilitation or restore
functions (Wolpaw et al. 2002; Graimann et al. 2010; Wolpaw and Wolpaw 2012).
BCIs, unlike other communication and control systems, rely on direct measures of
brain activity. That is, people simply think, and a computer does the rest. In most
BCIs, people must either think about performing certain movements, or pay
attention to specific items on a monitor. However, many new BCI paradigms are
emerging, many of which are discussed in this book.

The first BCI was described almost fifty years ago (Graimann et al. 2010). It
was an invasive BCI, meaning that it relied on sensors placed under the skull via
surgery. Almost ten years later, the first noninvasive BCI was published, in an
article that also coined the term ‘‘brain–computer interface’’ (Vidal 1973). Like
most BCIs today, it was based on the electroencephalogram (EEG) recorded from
electrodes on the surface of the head (Allison et al. 2012). In other early work,
Farwell and Donchin described a BCI that used the P300 brainwave for commu-
nication (Farwell and Donchin 1988). Up to the early 2000s, no more than 5
groups were active in brain–computer interface (BCI) research. Now, over 300
laboratories are focused on this work. This dramatic growth has been driven by
many factors, including:

1. Cheaper, smaller, and faster electronics and related instrumentation;
2. Increased understanding of normal and abnormal brain function;
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3. Improved interfaces and environments;
4. Additional testing and experimentation with target users in field settings;
5. Improved methods for decoding brain signals in real time;
6. Improved sensors, such as active and dry electrodes and improved invasive

electrodes.

The BCI Award

As a result, the performance and usability of BCI systems have advanced
dramatically over the past several years. To highlight these trends and develop-
ments of BCI technology, g.tec began to sponsor an annual BCI Award in 2010.
g.tec is a leading provider of BCI research equipment and has a strong interest in
promoting excellence in BCI research (Guger et al. 2012). The prize, endowed
with 3,000 USD, is an accolade to recognize outstanding and innovative research
in the field of brain–computer interface research and application. The competition
is open to any BCI group worldwide. There is no limitation or special consider-
ation for the type of hardware or software used in the submission.

Each year, a renowned research laboratory is asked to assemble a jury, help
judge the submitted projects and award the prize. This year, the jury was recruited
by its chair, Dr. Gert Pfurtscheller of the University of Technology in Graz,
Austria. The jury consisted of some of the most respected and accomplished
experts in the BCI community: Theresa Vaughan, Michael Tangermann, Guan
Cuntai, Robert Leeb and Jane Huggins. The jury selects and announces the winner
and presents the prize.

The winner is announced at a public ceremony attached to a major conference.
The 2010 BCI Award was presented at the BCI Meeting 2010 in Asilomar,
California, and the 2011 BCI Award was presented at a gala dinner during the
Fifth International BCI Conference in Graz, Austria (see Fig. 1). The 2012 Award
was just presented at the Society for Neuroscience in New Orleans, Louisiana.

Fig. 1 The left panel shows the BCI Meeting 2010 in Asilomar, CA, where the 2010 BCI Award
was presented. The right panel shows the gala dinner where the 2011 BCI Award was presented
at the prestigious Hotel Gollner in Graz, Austria

2 C. Guger et al.



The jury scored the submitted projects on the basis of the following criteria:

• does the project include a novel application of the BCI?
• is there any new methodological approach used compared to earlier projects?
• is there any new benefit for potential users of a BCI?
• is there any improvement in terms of speed of the system (e.g., bits/min)?
• is there any improvement in system accuracy?
• does the project include any results obtained from real patients or other potential

users?
• is the used approach working online/in real-time?
• is there any improvement in terms of usability?
• does the project include any novel hardware or software developments?

The Ten Nominees in 2011

We received a total of 64 high quality submissions in 2011. Out of these sub-
missions, the jury nominated the 10 nominees for the BCI Research Award in June
2011. Being nominated for the BCI Award is a major honor. Prof. Dr. Gert
Pfurtscheller, Chairman of the 2011 Jury, said, ‘‘The BCI Award is outstanding
because the whole world competes and only one project can win.’’ Each nominee
receives a certificate at the public ceremony, an invitation to summarize their work
in a chapter in this book, and a mark of distinction on their resume or curriculum
vita. Figure 2 presents two of the nominees receiving their certificates.

The authors, affiliations and project titles of the 10 nominated projects are:

Fig. 2 Both of these panels show nominees receiving the certificate for their team’s project. The
left panel shows (from left to right): Prof. Dr. Gernot Müller-Putz, organizer of the Fifth
International BCI Conference; Prof. Dr. Gert Pfurtscheller, Chairman of the Jury; Lisa Friedrich,
who is receiving the certificate for her nomination; Dr. Christoph Guger, CEO of g.tec, and Dr.
Brendan Allison, the emcee. The same people are shown in the right panel, except that another
nominee, Dr. Reinhold Scherer, is in the middle

State of the Art in BCI Research: BCI Award 2011 3



• Tim Blakely, Kai Miller, Jeffrey Ojemann, Rajesh Rao (University of Wash-
ington, USA). Exploring the cortical dynamics of learning by leveraging BCI
paradigms.

• Jonathan S. Brumberg, Philip R. Kennedy, Frank H. Guenther (Boston Uni-
versity, USA). An auditory output brain–computer interface for speech
communication.

• Samuel Clanton, Robert Rasmussen, Zohny Zohny, Meel Velliste, S. Morgan
Jeffries, Angus McMorland, Andrew Schwartz (Carnegie Mellon University,
University of Pittsburgh, USA). Seven degree of freedom cortical control of a
robotic arm.

• Felix Darvas (University of Washington, USA). Utilizing high gamma (HG)
band power changes as control signal for non-invasive BCI.

• Elisabeth V. C. Friedrich, Reinhold Scherer, Christa Neuper (University of
Graz, Austria). User-appropriate and robust control strategies to enhance brain
computer interface performance and usability.

• Moritz Grosse-Wentrup, Bernhard Schölkopf (Max Planck Institute for Intelli-
gent Systems, Germany). What are the neuro-physiological causes of perfor-
mance variations in brain–computer interfacing?

• Eric C. Leuthardt, Charles Gaona, Mohit Sharma, Nicholas Szrama, Jarod
Roland, Zac Freudenberg, Jamie Solis, Jonathan Breshears, Gerwin Schalk
(Washington University in St. Louis, USA). Using the electrocorticographic
speech network to control a brain–computer interface in humans.

• Daniele De Massari, Carolin Ruf, Adrian Furdea, Sebastian Halder, Tamara
Matuz, Niels Birbaumer (University of Tübingen, IRCCS, International Max
Planck Research School, Germany). Towards communication in the completely
locked-in state: neuroelectric semantic conditioning BCI.

• Qibin Zhao, Akinari Onishi, Yu Zhang, Andrzej Cichocki (RIKEN, Japan). An
affective BCI using multiple ERP components associated to facial emotion
processing.

• Raphael Zimmermann, Laura Marchal-Crespo, Olivier Lambercy, Marie-
Christine Fluet, Jean-Claude Metzger, Johannes Brand, Janis Edelmann, Kynan
Eng, Robert Riener, Martin Wolf, Roger Gassert (ETH Zürich, Switzerland).
What’s your next move? Detecting movement intention for stroke rehabilitation.

Each of these ten projects is described in a separate chapter of this book.1

Nominees described the projects they submitted, and provided some additional
background material and new developments since their submissions. In the con-
cluding chapter, the submissions are analyzed to show key properties and trends
that help identify the dominant and emerging directions of BCI research.

1 The 2010 nominees are summarized in Recent Advances in Brain-Computer Interface
Systems, edited by Reza Fazel, InTech, 2011: State-of-the-Art in BCI research: BCI Award 2010.
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An Auditory Output Brain–Computer
Interface for Speech Communication

Jonathan S. Brumberg, Frank H. Guenther and Philip R. Kennedy

Abstract Understanding the neural mechanisms underlying speech production
can aid the design and implementation of brain–computer interfaces for speech
communication. Specifically, the act of speech production is unequivocally a
motor behavior; speech arises from the precise activation of all of the muscles of
the respiratory and vocal mechanisms. Speech also preferentially relies on auditory
output to communicate information between conversation partners. However, self-
perception of one’s own speech is also important for maintaining error-free speech
and proper production of intended utterances. This chapter discusses our efforts to
use motor cortical neural output during attempted speech production for control of
a communication BCI device by an individual with locked-in syndrome while
taking advantage of neural circuits used for learning and maintaining speech. The
end result is a BCI capable of producing instantaneously vocalized output within a
framework of motor-based brain-computer interfacing that provides appropriate
auditory feedback to the user.’

Introduction

One of the primary motivating factors in brain–computer interface (BCI) research
is to provide alternative communication options for individuals who are otherwise
unable to speak. Most often, BCIs are focused on individuals with locked-in
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syndrome (LIS) (Plum and Posner 1972), which is characterized by complete
paralysis of the voluntary motor system while maintaining intact cognition,
sensation and perception. One of the many reasons for this focus is that current
assistive communication systems typically require some amount of movement of
the limbs, face or eyes. The mere fact that many individuals with LIS cannot
produce even the smallest amount of consistent motor behavior to control these
systems is a testament to the severity of their paralysis. Despite such compre-
hensive motor and communication impairment, individuals with LIS are often
fully conscious and alert, yet have limited or no means of self-expression.

A number of BCIs and other augmentative and alternative communication (AAC)
systems provide computer-based message construction utilizing a typing or spelling
framework. These interfaces often use visual feedback for manipulating the spelling
devices, and in the case of BCIs, for eliciting neurological control signals. A common
finding in patients with LIS is that visual perception is sometimes impaired, which
may adversely affect subject performance when utilizing visually-based BCI devices.
We address this issue through design of an intracortical auditory-output BCI for
direct control of a speech synthesizer using a chronic microelectrode implant
(Kennedy 1989). Part of our BCI approach benefits from prior findings for the fea-
sibility of BCIs with dynamic auditory output (Nijboer et al. 2008). We extended the
auditory output approach employing a motor-speech theoretical perspective, draw-
ing from computational modeling of the speech motor system (Guenther 1994;
Guenther et al. 2006; Hickok 2012; Houde and Nagarajan 2011), and our findings of
motor-speech and phoneme relationships to neural activity in the recording site
(Bartels et al. 2008; Brumberg et al. 2011), to design and implement a decoding
algorithm to map extracellular neural activity into speech-based representations for
immediate synthesis and audio output (Brumberg et al. 2010; Guenther et al. 2009).

Auditory Processing in Speech Production

Our speech synthesizer BCI decodes speech output using neural activity directly
related to the neural representations underlying speech production. Computational
modeling of the speech system in the human brain has revealed the presence of
sensory feedback control mechanisms used to maintain error-free speech productions
(Guenther et al. 2006; Houde and Nagarajan 2011). In particular, sensory feedback in
the form of self-perception of auditory and somatosensory consequences of speech
output is used to monitor errors and issue corrective feedback commands to the motor
cortex. Our BCI design takes advantage of two key features: (1) auditory feedback in
the form of corrective movement commands and (2) intact hearing and motor cortical
activity typically observed in cases of LIS. These features are combined in our BCI to
provide instantaneous auditory feedback driven through speech-motor control of the
BCI. This auditory feedback is expected to engage existing neural mechanisms used
to monitor and correct errors in typical speech production and send feedback com-
mands to the motor cortex for updated control of the BCI.

8 J. S. Brumberg et al.



Other groups have also investigated methods for directly decoding speech
sounds from neural activity during speech production from a discrete classification
approach using electroencephalography (DaSalla et al. 2009), electrocorticography
(Blakely et al. 2008; Kellis et al. 2010; Leuthardt et al. 2011) and microelectrode
recordings (Brumberg et al., 2011). These studies all illustrate that phoneme and
word classification is possible using neurological activity related to speech pro-
duction. The same LIS patient participated in both our microelectrode study of
phoneme production and online speech synthesizer BCI control study. The results
of our earlier study (Brumberg et al. 2011) confirmed the presence of sufficient
information to correctly classify as many as 24 (of 38) phonemes above chance
expectations (Brumberg et al. 2011). Each of these speech-decoding results could
greatly impact the design of future BCIs for speech communication. In the fol-
lowing sections, we describe some of the advantages of using a low degree-of-
freedom, continuous auditory output representation over discrete classification.

The BCI implementation (described below) employs a discrete-time, adaptive
filter-based decoder which can dynamically track changes in the speech output
signal in real-time. The decoding and neural control paradigms used for this BCI
are analogous to those previously used for motor kinematic prediction (Hochberg
et al. 2006; Wolpaw and McFarland 2004); specifically, the auditory consequences
of imagined speech-motor movements used here are analogous to two-dimensional
cursor movements in prior studies. Ideally, we would like to use motor kinematic
parameters specifically related to the movements of the vocal tract as output
features of the BCI device. Such a design is similar to predicting joint angles and
kinematics for limb movement BCIs. However, there are dozens of muscles
involved in speech production, and most motor-based BCIs can only accurately
account for a fraction of the degrees of freedom observed in the vocal mechanism.
We therefore chose a lower, two-dimensional acoustic mapping as a computational
consideration for a real-time auditory output device.

The chosen auditory dimensions are directly related to the movements of the
speech articulators. This dimension-reduction choice is similar to those made for
decoding neurological activity related to the high degree of freedom movements of
the arm and hand into two-dimensional cursor directions. Further, the auditory
space, when described as a two-dimensional plane, is topographically organized
with neutral vowels, like the ‘uh’ in ‘hut,’ in the center and vowels with extreme
tongue movements along the inferior–superior and anterior–posterior dimensions
around the perimeter (see Fig. 1 left, for an illustration of the 2D representation).
In this way we can directly compare this BCI design to prior motor-based BCI
utilizing 2D center-out and random-pursuit tasks.

Auditory Output BCI Design

The speech synthesis BCI consists of (1) an extracellular microelectrode (Bartels
et al. 2008; Kennedy 1989) implanted in the speech motor cortex (2) a Kalman

An Auditory Output Brain–Computer Interface for Speech Communication 9



filter decoding mechanism and (3) a formant-based speech synthesizer. The
Kalman filter decoder was trained to predict speech formant frequencies (or for-
mants) from neural firing rates. Formants are acoustic measures directly related to
vocal tract motor execution used in speech production, and just the first two
formants are needed to represent all the vowels in English. According to our
speech-motor approach, we hypothesized that formants were represented by the
firing rates of recorded neural units. This hypothesis was verified from offline
analyses of the recorded signals (Guenther et al. 2009).

BCI Evaluation

To evaluate our speech synthesizer BCI, a single human subject with LIS par-
ticipated in an experimental paradigm in which he listened to and repeated
sequences of vowel sounds, which were decoded and fed back as instantaneously
synthesized auditory signals (Brumberg et al. 2010; Guenther et al. 2009). We
minimized the effect of regional dialects by using vowel formant frequencies that
were obtained from vocalizations of a healthy speaker from the subject’s family.
The total delay from neural firing to associated sound output was 50 ms. The

Fig. 1 Left 2D representation of formant frequencies. The arrows indicate formant trajectories
used for training the neural decoder. Right examples of formant tuning preferences for two
recorded units. The black curve indicates mean tuning preferences with 95 % confidence
intervals in gray. The top tuning curve indicates a primarily 2nd formant preference while the
lower curve indicates a mixed preference

10 J. S. Brumberg et al.



subject performed 25 sessions of vowel–vowel repetition trials, divided into
approximately four blocks of 6–10 trials per session. At the beginning of each
session, the decoder was trained using the neural activity obtained while the
subject attempted to speak along with a vowel sequence stimulus consisting of
repetitions of three vowels (AA [hot], IY [heed], and UW [who’d]) interleaved
with a central vowel (AH [hut]). The vowel training stimuli are illustrated
graphically in Fig. 1. These four vowels allowed us to sample from a wide range of
vocal tract configurations and determine effective preferred formant frequencies,
examples of which are shown on the right in Fig. 1.

Following training, the decoder parameters were fixed and the subject partici-
pated in a vowel-repetition BCI control paradigm. The first vowel was always AH
(hut) and the second vowel was chosen randomly between IY (heed), UW (who’d)
or AA (hot). By the end of each session, the participant achieved 70 % mean
accuracy (with 89 % maximum accuracy on the 25th session) and significantly
(p \ 0.05, t test of zero-slope) improved his performance as a function of block
number for both target hit rate and endpoint error (see Fig. 2). The average time to
target was approximately 4 s.

These results represent classical measures of BCI performance. However, the
true advantage of a system that can synthesize speech in real-time is the ability to
create novel combinations of sounds on-the-fly. Using a two-dimensional formant
representation, steady monophthong vowels can be synthesized using a single 2D
position while more complex sounds can be made according to various trajectories
through the formant plane. Figure 3 illustrates an example in which the 2D formant
space can be used to produce the words ‘‘I’’ (left) and ‘‘you’’ (middle), and the
phrase ‘‘I owe you a yo–yo.’’ These words and phrases do not require any additions

Fig. 2 Results from the speech synthesizer BCI control study. Left classical measures of
performance, vowel target accuracy (top) and distance from target (bottom). Middle average
formant trajectories taken for each of the three vowel–vowel sequences over all trials. Right
average formant trajectories for each vowel–vowel sequence for successful trials only

An Auditory Output Brain–Computer Interface for Speech Communication 11



to a decoding dictionary, as would be needed by a discrete classification BCI.
Instead, the novel productions arise from new trajectories in the formant space.

Conclusion

These results are the first step toward developing a BCI for direct control over a
speech synthesizer for the purpose of speech communication. Classification-based
methods and our filter-based implementation for decoding speech from neuro-
logical recordings have the potential to reduce the cognitive load needed by a user
to communicate using BCI devices by interfacing with intact neurological corre-
lates of speech. Direct control of a speech synthesizer with auditory output yields
further advantages by eliminating the need for a typing processes, freeing the
visual system for other aspects of communication (e.g., eye contact) or for addi-
tional control in BCI operation. Future speech BCIs may utilize hybrid approaches
in which discrete classification, similar to what is used for automatic speech
recognition, are used in parallel to continuous decoding methods. The combination
of both types of decoders has the potential to improve decoding rates while making
the BCI a general communication device, capable of both speaking and tran-
scribing intended utterances. Further, we believe that speech-sound feedback is
better suited to tap into existing speech communication neural mechanisms,
making it a promising and intuitive modality for supporting real-time
communication.

The system as currently implemented is not capable of representing a complete
speech framework, which includes both vowels and consonants. However, the
results of our vowel-synthesizer BCI have led to a new line of research for

Fig. 3 An example of possible trajectories using manual 2D formant plane control. From left to
right: selection of single formant pairs yields monophthong vowels; Trajectory from AA to IY
yields the word ‘‘I’’; Trajectory from IY to UW yields the word ‘‘you’’; Complex trajectory
shown yields the voiced sentence ‘‘I owe you a yo–yo’’

12 J. S. Brumberg et al.



development of a low-dimensional (2-3D) articulatory-phonetic synthesizer for
dynamic production of vowels and consonants. In addition, we are currently
conducting studies using a non-invasive EEG-based sensorimotor (SMR) rhythm
BCI for control of the vowel synthesizer as an alternative to invasive implantation.
Early results from the non-invasive study with a healthy pilot subject have shown
promising performance levels (*71 % accuracy) within a single 2-hour recording
session. We expect users of the non-invasive system to improve performance after
multiple training sessions, similar to other SMR approaches.

Acknowledgments Supported in part by CELEST, a National Science Foundation Science of
Learning Center (NSF SMA-0835976) and the National Institute of Health (R03 DC011304, R44
DC007050-02).
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User-Appropriate and Robust Control
Strategies to Enhance Brain–Computer
Interface Performance and Usability

E. V. C. Friedrich, R. Scherer and C. Neuper

Abstract This project aimed to enhance performance and usability of mental
imagery-based BCIs by evaluating (1) user-appropriate and robust control strate-
gies, (2) whether mental imagery-based BCIs are robust and stable enough for
real-world applications and (3) user-comfort in able-bodied and disabled indi-
viduals. Three studies were conducted to address these issues. The results showed
that alternatives to motor imagery can provide a great benefit especially to severely
motor impaired users. Individually chosen control strategies from a broad range of
reliable and stable mental tasks can improve BCI usability and performance
substantially. Furthermore, participants could operate the BCI while simulta-
neously perceiving or reacting to deviant auditory stimuli and could attain stable
long-time BCI control despite longer breaks without any BCI use. This project
paid special attention to practical issues and helped to pave the way out of the
laboratory into real-world application for mental imagery-based BCIs.

Introduction

Despite the scientific and technological progress in the field, it is still not possible to
use a mental imagery-based brain-computer interface (BCI) independently and
comfortably in one’s everyday life (Wolpaw et al. 2002; Zickler et al. 2009).
Therefore, we aimed to enhance various aspects of BCI usability. In the first study,
we focused on control strategies used to encode the user’s intent. Motor imagery
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tasks are most commonly used (e.g. Kübler et al. 2005; Pfurtscheller et al. 2006;
Neuper et al. 2009; McFarland et al. 2010). However, the best strategy to modulate
brain activity might be to use multiple mental tasks to better account for individual-
specific differences (Curran and Stokes 2003; Millán et al. 2004). Thus, our first
study aimed to provide a broad range of user-appropriate mental tasks. In the future,
users could choose between them based on discriminative performance and pref-
erences. We expect that selection of appropriate strategies will allow more people to
gain better BCI control and also feel more comfortable when using a BCI. In a
second study, we evaluated whether control of such a mental-imagery based BCI
was robust and stable enough for real-world applications. To communicate and
control BCIs independently in their everyday lives, individuals will not only have to
operate a BCI while other people around them are talking or watching television but
also have to multi-task, e.g. to react to important stimuli while controlling a
wheelchair or neuroprosthesis with the BCI. Furthermore, long-term stability of BCI
control—including when the training is interrupted for months—is very important
for both severely disabled and able-bodied individuals. Therefore, the most dis-
criminative mental tasks from the first study were implemented in a 4-class feedback
paradigm. Users were not only exposed to auditory distraction while controlling the
BCI with mental imagery tasks but were also asked to multi-task. A follow-up
session—weeks after the BCI training stopped—was used to evaluate the long-term
stability of the different mental tasks. Both presented studies were conducted with
able-bodied participants. However, a choice between different mental tasks for BCI
control might be most valuable for individuals with neurological disorder. For
example, individuals suffering from stroke that affects cortical motor areas may use a
mental subtraction task rather than a motor imagery task for BCI control. Hence, two
different motor imagery tasks and three non-motor tasks were evaluated with
severely disabled users. Not only performance but also user-comfort is a big issue for
the success of a BCI—especially for individuals with motor impairment, who would
benefit from using a BCI in their everyday life. Consequently, in a third study, we not
only investigated which mental tasks were suitable for motor impaired individuals,
but also whether there are differences between able-bodied and motor impaired users
in experienced quality of imagery, task ease and enjoyment.

To summarize, our studies aimed to enhance usability of BCIs by evaluating (1)
user-appropriate control strategies, (2) whether mental imagery-based BCIs are
robust and stable enough for real-world applications and (3) user-comfort of able-
bodied and disabled individuals.

Methods

The methods of all three studies are summarized in Table 1. The methodological
details of Study 1 are described in Friedrich et al. 2012; 2013, of Study 2 in
Friedrich et al. 2011a; in press and of Study 3 in Friedrich et al. 2011b. Below we
briefly review the studies.

16 E. V. C. Friedrich et al.
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Study 1 included 9 able-bodied participants (ages 20–32, 9 female, right-han-
ded) who participated in 4 sessions without feedback. The participants were asked
to perform the mental task indicated on the screen for 7 s while staying relaxed
and trying to avoid movements. The mental tasks occurred in randomized order
and included: mental rotation (visualize a 3-dimensional L-shaped figure that
rotates 3-dimensional space); word association (generate as many words as pos-
sible that begin with the presented letter); auditory imagery (imagine listening to a
familiar tune without articulating the words but rather focusing only on the mel-
ody); mental subtraction (perform successive elementary subtractions by a pre-
sented fixed number); spatial navigation (imagine navigating through a familiar
house); imagination of familiar faces (imagine the face of the best female friend)
and motor imagery of the hand (imagine repetitive self-paced movements of the
own hand). EEG was recorded from 30 electrodes distributed over the whole scalp.

Study 2 included 14 able-bodied participants (ages 20–35, 7 female, right-
handed) who participated in 2 screenings and then 8 feedback sessions within a
5 week time period. After 10 weeks without any training, 12 of the 14 participants
performed another feedback session as follow-up. The mental tasks word associ-
ation, mental subtraction, spatial navigation and hand motor imagery were
implemented in a real-time 4-class BCI. The participants were asked to control a
bar graph by performing mental imagery for 7 s (i.e. imagery period) as indicated
by the visual cue in randomized order. EEG was recorded from 29 electrode
positions. In addition to the continuous online feedback in form of the bar graph,
discrete feedback (reward) was provided. The discrete feedback was given at the
end of a trial each time the given mental task was detected either correctly for a
period [2 s or longer than any other task. In the last two sessions, tones were
presented every second during the imagery period with the aim of distracting
users. Five 1 kHz and one 2 kHz tones were played in each trial in pseudorandom
order like in an oddball paradigm. Users were asked to either ignore all tones or to
react to the 2 kHz tones with a button press.

Study 3 included 12 motor impaired participants (ages 20–57, 7 female, right-
handed) who participated in 2 sessions without feedback. The participants were
diagnosed with spinal cord injury or stroke. The users were asked to imagine word
association, mental subtraction, spatial navigation, motor imagery of the hand and
motor imagery of the feet. The experimental paradigm and the EEG recordings
were identical to study 1.

In all studies, common spatial patterns (CSP) and Fisher’s linear discriminant
functions (LDA; with majority voting for study 2 were used for classification
(Müller-Gerking et al. 1999; Ramoser et al. 2000; Duda et al. 2001; Blankertz
et al. 2007). In study 3, for each task true positive detection rates (TPRs) were
computed by dividing the number of correctly classified samples with the same
time lag from cue onset by the number of trials.

In all studies, participants rated each of the mental tasks on a 5-point rating
scale concerning the quality of imagery (1 = no image at all, you only ‘know’ you
are thinking of the object and 5 = perfectly clear and as vivid as normal vision),
the task ease (1 = very exhausting and full concentration needed and 5 = very
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relaxing and possible to perform despite major distractions such as activated
television, visit of friends or in the traffic) and the enjoyment (1 = no fun at all and
very frustrating and 5 = a lot of fun and not frustrating at all) after every session.

Results

The classification results and oscillatory EEG activity patterns (i.e. Event-Related
(De)Synchronization, ERD/S) of the first study indicated that reliable and stable
classification of the studied mental tasks is possible (Friedrich et al. 2012). The
pair-wise discrimination of mental subtraction/motor imagery (average peak
accuracies of 85 %), word association/motor imagery and mental subtraction/
auditory imagery (both 83 %) resulted in the highest single-trial classification
performance in single-sessions. When the classifier was applied to unseen data
(off-line BCI simulation), mental rotation also showed high classification results.
On an individual basis, accuracy of specific combinations of mental tasks
reached [ 95 % accuracy. The reliability of the underlying brain patterns as to
ERD/S was determined by Cronbach’s Alpha consistency coefficients (Friedrich
et al. 2013). Most consistent over sessions were ERD/S values in both alpha bands,
which ranged between 0.80 and 0.92 for the three most consistent tasks, which
were word association, mental subtraction and spatial navigation. The classifica-
tion results as well as the brain patterns indicated that a combination of ‘brain-
teasers’—tasks that require problem specific mental work (e.g. mental subtraction,
word association)—and ‘pure imagery’—tasks that include dynamic imagination
(e.g. motor imagery, spatial navigation)—is most promising for BCI control.

Taking the above results into account, the mental tasks word association,
mental subtraction, motor imagery and spatial navigation were implemented in a
real-time feedback paradigm (study 2; Friedrich et al. 2011a; in press). Online
performance was based on the percentage of correct selections (rewards; i.e. the
ability of maintaining the desired activation long enough for selection). Except for
one user, all users were able to control at least 3 classes and 8 participants man-
aged to control all 4 classes simultaneously in single-sessions significantly over
chance level. Motor imagery achieved highest performance. Additionally, the
P300 components and reaction times upon the target stimuli in the distraction
conditions indicated that motor imagery imposed the lowest workload (Friedrich
et al. 2011a). However, performance neither decreased in the distraction situation,
nor in the follow-up session, in any of the mental tasks (Friedrich et al. in press). In
runs in which users were asked to ignore the tones, users achieved higher per-
formance than in runs without any distraction and in runs in which they were asked
to react to the target stimuli.

In study 3, the results from study 1 could be generally confirmed. However,
when evaluating the TPR, the motor disabled participants achieved poor classifi-
cation accuracy in the motor imagery task in contrast to able-bodied participants.
Furthermore, motor impaired participants did not only enjoy the mental imagery-
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based BCI generally less than able-bodied participants but rated the motor imagery
task as especially less enjoyable (Friedrich et al. 2011b). A correlation between the
task enjoyment of motor imagery and the TPR of motor imagery was significant by
trend (q = 0.3; p \ 0.1) for a sample of 35 participants including users from all
three studies. Additionally, the task ease correlated with performance.

Discussion

The aim of our studies was to enhance usability and improve BCI-control focusing
especially on practical issues. Multiple mental tasks were identified that are suitable
for BCI control. Individually chosen control strategies from the investigated range of
mental tasks could improve performance substantially. This is very valuable for users
since BCIs could be designed individually according to users’ preferences and
individual classification results. Additionally, all mental tasks were easily and vol-
untarily producible any time; thus, they also could be implemented in asynchronous
systems. In an asynchronous system, the user can send messages or commands
without any predefined time window or external cue needed. Furthermore, we
demonstrated that operating a four class mental imagery based BCI and simulta-
neously perceiving or reacting to deviant auditory stimuli has no adverse effect on the
BCI performance. The real-time BCI system also worked reliable in the long-term in
spite of longer breaks without its use. These results are extremely encouraging for
real-world application as participants succeeded in operating the 4-class BCI during
auditory distraction and after months without any training. The study including
motor impaired users showed that although motor imagery tasks are mostly used—
and also work very well for able-bodied individuals - this might not be the best choice
for motor impaired individuals. Motor disabled persons did not only perform worse
in motor imagery tasks in comparison to able-bodied users but also enjoyed them
less. The significant correlations over all users demonstrated that user-comfort
should not be treated as minor point but that there is a relation with performance.
Future studies should make more efforts to make BCIs more enjoyable and appro-
priate for potential users who really need them.

To conclude, the project included individuals with severe motor disabilities, some
of whom were already in a locked-in state and thus would potentially benefit from
BCIs. User appropriate control strategies were not only tested offline but also
implemented in a real-time feedback study and evaluated under distraction and long-
term use. For this, a new methodological approach was used. A 4-class BCI with
different mental tasks was implemented for the first time and the method of CSP was
proven to work for different mental tasks besides motor imagery for which it was
normally used. We believe that the new insights of user-appropriate control strate-
gies, robustness and stability of mental tasks and user-comfort of able-bodied and
disabled individuals will significantly enhance BCI usability and performance. Our
research provides great benefit to potential users and helps to pave the way out of the
laboratory into real-world application for mental imagery-based BCIs.
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Subsequent Work

We are developing this project further and are currently focusing on improving
performance by optimizing methods and evaluating the findings in the patient
population.

First, we are working on improving the 4-class real-time BCI. As all conducted
studies also revealed individual differences between the users in best task com-
binations and task evaluation, we aim to select mental tasks individually in future.
Our initial results suggest that high accuracies are possible with such a mental
imagery-based 4-class BCI. Additionally, the continuous online feedback should
be improved to facilitate feedback learning. Nijboer et al. (2008) suggested that
motivation and mood are also important factors for feedback learning and Kleih
et al. (2011) found significant correlations between motivation and task perfor-
mance. Therefore, we also aim at examining changes of motivation, mood, quality
of imagery, task ease and enjoyment over training sessions in future studies.

Second, a high priority for future work is to evaluate the real-time BCI with
different mental tasks with severely motor impaired individuals. The differences
between able-bodied and disabled participants in Friedrich et al. (2011b) suggested
that results from able-bodied persons cannot be projected to disabled individuals.
Besides suffering from brain injury, their impairment may be associated with other
neurological or attentional deficits that make it difficult to perform certain tasks
(Kübler et al. 2001). Furthermore, BCI applications should be adapted to the
individuals’ special needs and user-comfort should also be taken into account
(Allison and Neuper 2010; Friedrich et al. 2011b).

The goal of our subsequent work is to optimize the mental imagery-based BCI
in a way that performance and usability can be further improved by individual
selections of user-appropriate and robust mental tasks for able-bodied as well as
disabled individuals.
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Abstract BCIs have recently been identified as a method to promote restorative
neuroplastic changes in patients with severe motor impairment, such as after a
stroke. In this chapter, we describe a novel therapeutic strategy for hand rehabili-
tation making use of this method. The approach consists of recording brain activity
in cortical motor areas by means of near-infrared spectroscopy, and complementing
the cortical signals with physiological data acquired simultaneously. By combining
these signals, we aim at detecting the intention to move using a multi-modal clas-
sification algorithm. The classifier output then triggers assistance from a robotic
device, in order to execute the movement and provide sensory stimulation at the
level of the hand as response to the detected motor intention. Furthermore, the
cortical data can be used to control audiovisual feedback, which provides a context
and a motivating training environment. It is expected that closing the sensorimotor
loop with such a brain-body-robot interface will promote neuroplasticity in senso-
rimotor networks and support the recovery process.
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Introduction

Patients with neurologic injuries (e.g. after a stroke) often suffer from sensorimotor
impairments, hampering the control of their affected limbs (Roger et al. 2011). The
hand plays a unique and important role in numerous activities of daily living, and
impairments of its functionality can lead to a loss of independence and reduced
interaction with the environment.

Motor rehabilitation can be defined as the process of restoring impaired sen-
sorimotor function. While rehabilitation is traditionally supported by physiother-
apy (Pollock et al. 2008), robot assisted therapy approaches were proposed
recently, making alternative rehabilitation strategies possible. Often equipped with
a variety of sensors to control and measure kinematics and dynamics, such reha-
bilitation robots allow not only for massed practice without causing excessive
physical fatigue in therapists, but also for the precise and objective assessment of
the patient’s performance and an easy integration into a virtual reality (VR)
environment (Takahashi et al. 2008; Lambercy et al. 2011).

Active participation of the patient during exercises has been identified as a key
parameter in the success of rehabilitation. Active movement therapy (AMT) is an
approach that encourages patients to initiate a motor task at free will. It has been
shown to yield better therapeutic outcomes compared to passive movements, in
which the impaired limb is moved without the patient’s intention to do so (Ta-
kahashi et al. 2008; Hogan et al. 2006). However, a major limitation of AMT is
that it relies on remaining motor function, thus excluding patients with severe
impairments. Approximately one third of stroke survivors suffer from severe post-
stroke impairment (Buch et al. 2008), which strongly limits their capacity for
active participation in physical tasks. There is thus a need to rethink therapeutic
approaches for this important patient population, and one promising option is to
shortcut motor impairment by using cortical signals as a way to engage in ther-
apeutic physical exercises supported by a robotic interface (Ward et al. 2007).

Tackling the Problem from the Roots: Brain–Computer
Interface for Hand Rehabilitation

The direct inclusion of the source of the problem—the injured brain—into the
therapy is characteristic of all forms of AMT and is key for a successful thera-
peutic outcome. In conventional AMT, the brain is included via remaining sen-
sorimotor pathways. Employing a brain–computer interface (BCI), this concept is
adapted to the severely impaired: the injured sensorimotor pathways can be
bypassed by estimating the intention to move—the active command—directly
from cortical measurements.

24 R. Zimmermann et al.



Our approach is to develop a novel interface detecting motor intention at the
cortical level in order to trigger assistance to the hand through a dedicated robotic
device (Fig. 1). The intention detection is furthermore supported by the simulta-
neous acquisition of the patient’s physiological state (see section ‘‘Pilot Study’’).
Together with a VR environment, this BCI–robot combination induces proprio-
ceptive, visual and auditory consequences of an intended hand movement to the
brain, essentially expanding standard BCI architectures by an additional compo-
nent: the body. We define this approach as brain–body–robot interface (B2RI).
Unlike the conventional non-invasive BCI architecture with a unidirectional
interface between brain and computer, the proposed system also enables the
reverse communication from the computer to the brain, via the assistive robot and
the induced haptic sensation.

This BCI-based rehabilitation approach has the potential to provide a therapy
which opens the wide horizon of AMT to the, until now left out, severely impaired. It
is assumed that combining the intention to perform a motor task with its proprio-
ceptive and audiovisual consequences helps to promote the neuroplastic effects that
are the key for functional hand recovery (Cramer et al. 2011; Wang et al. 2010).

Fig. 1 Schematic representation of the projected therapy approach. Since muscle activation
cannot be used to initiate a movement (indicated by the interrupted arrow), a classifier detects the
intention to move based on brain activity measured with functional near-infrared spectroscopy
(fNIRS) and various biosignals, i.e. blood pressure (BP), heart rate (HR), breathing rate (BR) and
galvanic skin response (GSR). Assistance is then provided by a robotic device as needed. O2Hb/
HHb: oxy-/deoxyhemoglobin, respectively. Audiovisual feedback of the intended motor task is
provided using a virtual reality environment
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Near-Infrared Spectroscopy for Brain–Computer
Interfaces

A BCI relies on signals from the brain. To use a BCI in a rehabilitation envi-
ronment, the acquisition of brain signals should be safe, non-invasive and easy to
use. From the different non-invasive methods to record brain activity (such as
fMRI, MEG and EEG), functional near-infrared spectroscopy [fNIRS, see (Wolf
et al. 2007) for an introduction] is well suited for day-to-day use, possibly even at
home without supervision of a therapist. This is because it is safe, achieves a high
temporal resolution while maintaining sufficient spatial resolution, offers a simple
attachment of the probes to the head, is relatively robust to motion artifacts and is
available at comparatively low prices. Further benefits could include miniaturi-
zation and wireless operation (Muehlemann et al. 2008).

fNIRS is a spectroscopic approach, hence making use of wavelength-dependent
properties of human (brain-) tissue. Light at discrete wavelengths from the near-
infrared region [approx. 650–950 nm (Wolf et al. 2007)] is guided into the head.
Due to the high scattering properties of human tissue, a fraction of this light can be
detected on the head’s surface a few centimeters away from the source. A part of
the detected light reaches the cortex, carrying information about this region. The
photons are not only scattered, but also absorbed. The amount of absorbed light is
wavelength-specific and depends essentially on the local concentration of the two
major absorbers in human tissue, i.e. oxygenated hemoglobin (O2Hb) and
deoxygenated hemoglobin (HHb). By measuring the attenuation of the injected
light of at least two discrete wavelengths, changes in O2Hb and HHb can locally be
determined. Changes in local brain activity can be inferred based on the phe-
nomenon called neurovascular coupling (Pasley and Freeman 2008). It describes
the relation between increased neuronal activity and the resulting increase in
metabolic demand, which is met by a regional increase in cerebral blood flow.
Essentially, this cascade leads to a locally increased concentration of O2Hb and a
reduction in the HHb concentration, which both can be quantified with fNIRS.

Since fNIRS relies on the detection of hemodynamic changes in the cortex that
directly result from changes in brain activity, natural brain processes produce
detectable signal patterns and no intensive user training is required to operate a
fNIRS based BCI (Coyle et al. 2004; Sitaram et al. 2005).

State of the Art in fNIRS-Based BCIs

Several different tasks elicit signal patterns in the brain that can be used to control
fNIRS-based BCIs. Besides simple motor tasks such as overt motor execution (e.g.
finger tapping or pinching) (Ward et al. 2007; Cui et al. 2010) and the kinesthetic
imagery of the execution of a motor task (motor imagery, MI) (Sitaram et al. 2007;
Coyle et al. 2007; Holper and Wolf 2011), signal patterns arising from more
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cognitive tasks have been successfully classified. Examples for the latter include
arithmetic (Naito et al. 2007; Power et al. 2010), music imagery (Naito et al. 2007;
Power et al. 2010; Falk et al. 2011), preferring (Luu and Chau 2009), and emo-
tional induction (Tai and Chau 2009).

The ideal placement of the fNIRS probes (and hence the region from where the
brain signals are measured) strongly depends on the task. While motor tasks
generally alter the brain activity in motor regions such as the primary motor area
(M1) and the premotor cortex (PMC), the brain activity changes arising from tasks
such as arithmetic or emotional induction are generally measured from frontal
regions. It is worth mentioning a small but important difference between
frontal measurements and recordings over motor regions. Often, the scalp over
frontal brain areas is free of hair, unlike over motor regions. Since an efficient
coupling between light sources or detectors and the scalp is of great importance,
hair that obscures the optics can lead to poor signal quality (Coyle et al. 2007).
Furthermore, the hair roots might absorb reflected light, further reducing the
detected signal level.

Not only different tasks and measurement locations have been explored, but
also numerous strategies in processing the data prior to the classification. In
general, the fNIRS data cannot be classified directly. The selection of informative
feature signals that capture the essential differences between various brain states is
hence a key element in fNIRS-based BCIs, and diverse strategies have been
employed. Concerning the classifiers, a multitude of approaches have been
applied, e.g. support vector machines (SVM), linear discriminant analysis (LDA)
and hidden Markov models (HMM). Predominantly, binary classifiers have been
employed so far, which decode two classes (e.g. left vs. right motor tasks, or—as
in the work described here—motor intention vs. rest).

In the following, a summary of important recent publications on fNIRS-based
BCIs is given. Table 1 lists the key facts of these relevant studies in chronological
order. It becomes evident that the field is rather young and still in its infancy. The
studies conducted to date are essentially pilot studies, with rather small sample
sizes. From the employed features and classification architectures, we conclude
that neither consensus has been found on the ideal signal processing approaches,
nor a standard classifier. However, HMMs seem to outperform other approaches.

To summarize, recent studies on fNIRS based BCIs have underlined the
potential of fNIRS as a modality to detect cortical activity directly from motor
regions with decent accuracy, while requiring minimal setup time and training.
This makes fNIRS a very promising candidate for rehabilitation applications. In
the next section of this chapter, we will present results of a pilot study (Zim-
mermann et al. 2011) towards the B2RI concept introduced earlier in this chapter.
The proposed setup uses fNIRS as BCI modality. Furthermore, it also investigates
the feasibility of using physiological measurements to form a hybrid BCI (Falk
et al. 2011; Tai and Chau 2009), as outlined below.
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Pilot Study

In order to include the injured brain in the proposed rehabilitation process, brain
activity in areas that are involved in the planning and execution of a motor task
needs to be measured. A motor task was therefore chosen as stimulus and
recordings using fNIRS were made from contralateral M1 and PMC.

The spatial sensitivity of fNIRS is not restricted to cortical tissue alone, but
essentially includes the whole path that photons undergo between source and
detector. It is thus not exclusively sensitive to hemodynamic changes in cortical
tissue, but also to systemic effects such as heart beat, variations in blood pressure,
and respiration. The additional measurement of these physiological signals is
assumed to be beneficial for two reasons: first, it might help to clean the fNIRS
data and efficiently reveal the cortical signal components, and second, knowledge
about the physiological state alone can be informative to decode motor intention.
Therefore, the experiment also included the simultaneous acquisition of the sub-
ject’s physiological state (Fig. 1).

The goal of the study was to investigate and compare fNIRS and physiological
signals of healthy subjects during rest and an overt motor task, and to identify the
most informative signals. To the best of our knowledge, this combination of
functional fNIRS measurements from motor areas together with a set of infor-
mative physiological parameters is novel in a BCI application with the potential to
be used in stroke rehabilitation.

Methods

Seven healthy subjects (26.0 ± 2.2 years old) participated in this pilot study. The
motor task consisted in isometric pinching with the right index finger and thumb.
Besides rest periods in which subjects were asked not to move, they were
requested to pinch a force sensor (CentoNewton, LPM-EPFL, Switzerland) such
that the applied force matched a visually presented reference trajectory, which was
generated from a truncated Fourier series.

fNIRS data were acquired by a commercially available tissue oximeter (Oxiplex
TS, ISS Inc., USA). Contralateral M1 and ventral PMC were located using the
international 10–20-system for EEG electrodes (C3 and FC5, respectively) and
the probes were accordingly placed with adhesive bandages. In order to investigate
the differences in the cortical response between rest and pinching phases, the fNIRS
samples from rest periods in a three second window were averaged and compared to
the averages in a three second window in the subsequent pinching period. The latter
window was shifted to account for the latency in the hemodynamic response. The
shift was individually adjusted from 6 to 8 s after onset of the pinching period.

The physiological state was monitored by measuring the electrocardiogram to
obtain the heart rate (HR), the nasal respiration flow to obtain the breathing rate
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(BR), the galvanic skin response (GSR) and the mean blood pressure (BP). Dif-
ferences in the physiological signals between rest and pinching phases were
investigated by comparing the averages in five second windows, like the analyses
with fNIRS signals. The different temporal characteristic of the obtained signals
was accounted for by applying different latencies between these windows (3 s for
GSR and 5 s for all the other physiological signals). Figure 2 illustrates the
measurement setup. Details on data acquisition and post-processing can be found
in (Zimmermann et al. 2011).

Results

In M1, O2Hb increased at the group level during pinching (mean ± SD:
0.184 ± 0.134 lM; p = 0.011, paired t-test), accompanied with a consistent
decrease in HHb, which was weaker (0.064 ± 0.062 lM; p = 0.033). GSR
increased significantly (0.369 ± 0.126; p = 0.003) as well as BP
(3.327 ± 2.335 mmHg; p = 0.018) and BR (1.293 ± 1.076 bpm; p = 0.033).
The individual results are displayed in Fig. 3. No consistent effect was observed
for changes in HR, nor was a consistent brain activity change found in ventral
PMC.

Fig. 2 Measurement setup. The biosignal amplifier was used to acquire physiological signals in
real time. A Simulink

�
model was running on the host PC to control the protocol, measure the

pinching force and provide visual feedback. fNIRS data from M1 and PMC were recorded in
synchrony on a separate laptop PC. � 2011 IEEE. Reprinted, with permission, from
Zimmermann et al. (2011)
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Discussion

The above results lead to the conclusion that the proposed system is capable of
simultaneously measuring meaningful data from the motor cortices as well as from
the body during a pinching task. In M1, a consistent activation pattern (increased
O2Hb, decreased HHb) was observed across participants, which is in agreement
with the expected theoretical hemodynamic response. From all signals, GSR
showed the clearest signal change and hence was identified as an important
physiological parameter to consider in the B2RI.

A large interindividual variability of the hemodynamic responses was found in
PMC, which might be due to the somewhat approximative nature of the 10–20-
system. However, a BCI is generally trained for each user individually. Thus one still
could make use of subject-specific responses such as data from PMC or the HR.

Subsequent Work and Outlook

For a BCI to be employed in a rehabilitation application, robust online single-trial
classification in real-time is required. In the B2RI, the BCI output then triggers
assistance from a robotic device, and audiovisual feedback is provided by means
of a VR environment. In the following, these three aspects are introduced.

Towards Single-Trial Classification of fNIRS Data

As a first step towards a robust classification of fNIRS data on the single-trial level,
we investigated (Zimmermann et al. 2013): (1) how the fNIRS data could be

Fig. 3 Changes of hemodynamic and physiological parameters during a finger pinching task
compared to rest. a, b hemodynamic response in M1 and PMC, respectively. c–f physiological
parameters. Error bars indicate standard error of the mean, * indicate significance on the 5 %-
level (paired t-test). � 2011 IEEE. Reprinted, with permission, from Zimmermann et al. (2011)
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classified on a single-trial basis and (2) how the inclusion of the simultaneously
recorded biosignals could affect classification performance.

Using the data from the above-mentioned pilot study, a classifier based on
HMMs was designed and evaluated. HMMs are known to build an adequate
framework in the classification of time series as shown in previous fNIRS studies
(Sitaram et al. 2007; Power et al. 2010; Falk et al. 2011). Furthermore, they
inherently provide the possibility of a multidimensional observation space, i.e.
multiple simultaneously acquired measurement data.

Training samples were used to individually find the most informative feature
signals from the fNIRS data, and to train two HMMs separately, one HMM for
data where the subject was at rest and one with data where she/he was pinching.
Two cases were investigated: first, the observations were limited to fNIRS data
only, and second, the observation space was extended by the physiological signals.
The classification of a single signal segment that belonged to the test data set was
carried out by considering the two trained HMMs as generative models and
comparing the likelihood that either model produced the observed signal. The
performance was assessed by a fourfold cross-validation, and the HMM topog-
raphy was adjusted post hoc for each subject separately.

This approach led to a classification accuracy of 79.4 ± 11.7 % (mean ± SD)
when only fNIRS data were used, which significantly increased to 88.5 ± 7.3 %
for the combination of fNIRS data and biosignals (Zimmermann et al. 2013).

The extent to which fNIRS signals contained components that were due to
physiological effects and vice versa was not systematically analyzed. The
employed HMM framework was in principle capable of accounting for possible
correlations between signals. This gives rise to the speculation that the classifier
implicitly revealed the most informative cortical signal components from fNIRS
data by making use of the physiological signals. Future research should, however,
focus on a more explicit formulation of this problem, possibly by making use of
adaptive filtering techniques.

In this pilot study, isometric pinching was chosen to elicit changes in cortical
hemodynamics and the physiological state of subjects, mainly because it restricts
participants to a well-defined task. As shown in Table 1, not only motor execution,
but also motor imagery yielded signal patterns that were successfully classified in
BCI applications. This is appealing, as severely impaired patients that are unable
to move could trigger robotic assistance through motor imagery. Further research
therefore will be required to test whether motor imagery can be used as a substitute
for overt movement in stroke patients.

Ultimately, however, our aim is to extend this concept by detecting movement
intention, a neurological process that is more natural for BCI-naive users and may
also be better accessible by patients with severe motor impairments. This issue is
especially challenging in terms of data processing, as the conscious preparation of
a movement happens in a relatively short time. Therefore, novel classifiers based
on event-related data need to be developed.
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BCI-Triggered Assistance and Haptic Feedback

In our B2RI, the BCI is used to trigger assistance from a robotic device, in order to
provide sensory stimulation at the level of the hand as response to the detected
motor intention. In severely impaired patients, fingers can be moved passively by
the robotic interface. If some remaining motor function is present and as the
patient recovers, the robot will reduce its support (assist-as-needed). To meet these
requirements, the robotic system is required to generate sufficient forces to open
and close the hand of a hypertonic patient (resistance of up to 200 N) and allow for
a reduction of its supporting behavior based on the patient’s abilities. Integrated
position and force/torque sensing allows for a constant monitoring of the patient’s
physical contribution to the movement and on-line adaptation of assistance.

The ReHapticKnob is a two degrees of freedom (DOF) robotic device previ-
ously developed to train grasping and pronation/supination (Fig. 4) (Metzger et al.
2011). The patient’s fingers can be fastened to two handles, each of which is
mounted on a six DOF force/torque sensor (mini40, ATI Industrial Automation,
USA). This allows for the implementation of different interaction control strategies
and precise assessment of hand function during grasping. As the force applied by
the patient is recorded in all directions, assist-as-needed support can be adapted
based on small forces even if not aligned with the grasping direction. Thanks to a

Fig. 4 ReHapticKnob: high-fidelity haptic interface for the rehabilitation of hand function and
the precise assessment of the force vectors applied by the patient
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strong motor-gear combination (Re40, 150 W and GP 42C, Maxon Motor, Swit-
zerland) and advanced impedance control algorithms taking advantage of the force
sensor data, the grasping DOF can be used to render a large dynamic range of
impedances (Z-width). Therefore, the whole range from rendering transparency
(no resistance to the patient’s movement) up to complete support of hypertonic
patients can be achieved with the device (Metzger et al. 2012). A brake is attached
to the motor–gear combination to lock the finger supports such that isometric tasks
can also be performed while monitoring the force applied by the patient. Several
safety features have been implemented on the ReHapticKnob and include
mechanical and software workspace limitations, emergency buttons, redundant
position sensing and an isolation transformer to avoid leakage currents.

As it is possible to actively or passively train and precisely monitor grasping
tasks, the ReHapticKnob ideally meets the requirements of the B2RI application.
Further, the robot is equipped with a moveable monitor that can be overlaid on the
user’s hand, providing the ideal support to display the visual feedback proposed in
our B2RI concept.

Virtual Reality for Context and Augmented Feedback

VR is used in the B2RI to motivate specific training tasks and to enable augmented
audio-visual feedback to the patient. It has already been shown that adequate
visual feedback during rehabilitation has significant therapeutic benefits (Merians
et al. 2002). Notable in particular are feedback paradigms that make use of virtual
representations of limbs, since they can activate the action-observation system and
thereby motor regions by visual observation only (Holper et al. 2010). However,
the effect of visual feedback on the patient might change in the course of therapy
or possibly even within a single training session. Detecting the effects of visual
feedback in the fNIRS signals during training could hence allow for an individ-
ually optimized VR environment.

In the light of this, an experiment to study the effect of visual feedback
manipulations on the fNIRS signal during simple finger movements was conducted
(Fig. 5) (Brand et al. 2011). Two healthy subjects were asked to repeatedly flex/
extend their right index finger. They received distorted visual feedback (3D ani-
mation of a forearm) about the amount of the extension during the movement in
lieu of the observation of their actual movement, provided by a LCD-monitor/
mirror system. fNIRS data were obtained from F3 according to the 10–20-system
(presumably PMC).

The preliminary data showed an increase of the hemodynamic response in PMC
for augmented visual feedback. It was, however, not significant and a large trial-to-
trial variability, as well as possible adaptation effects, were observed. Neverthe-
less, our findings underline the prospects of fNIRS to be used as a tool to detect
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changes in the response to visual feedback on a multiple trial basis. Not only could
knowledge about the contribution of visual feedback to the hemodynamic signal
help to optimize the VR environment, but it could possibly also help to increase
the performance of our BCI for movement intention detection.

Concluding Remarks

There is a need for novel rehabilitation strategies that allow severely impaired
patients to participate in active movement therapy to promote recovery of hand
function. fNIRS can provide a promising tool to record from the brain for BCI
applications. Physiological influences on fNIRS data may be accounted for by the
simultaneous acquisition of physiological parameters. However, the decoder has to
be based on online single-trial classification of potentially rather brief stimuli,
while at the same time being accurate and robust. Once these challenges are met,
fNIRS-based BCIs can be used to trigger assistance as well as haptic feedback
from dedicated robotic devices. Together with a virtual reality environment that
allows for control of the audiovisual feedback, the patient receives a multitude of
sensory consequences of his/her intended movement. This coupling of motor
intentions and their consequences could lead to a breakthrough in the efficacy of
motor rehabilitation systems for the severely impaired.

Fig. 5 Experimental setup to investigate effects of visual feedback distortions. Subjects receive
distorted feedback by viewing a virtual hand, while performing simple finger movements. The
virtual hand moves according to an upscaled, downscaled or veridical version of the real
movement. Refer to (Brand et al. 2011) for details
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A Review of Performance Variations
in SMR-Based Brain–Computer
Interfaces (BCIs)

Moritz Grosse-Wentrup and Bernhard Schölkopf

Abstract The ability to operate a brain-computer interface (BCI) varies not only
across subjects but also across time within each individual subject. In this article,
we review recent progress in understanding the origins of such variations for BCIs
based on the sensorimotor-rhythm (SMR). We propose a classification of studies
according to four categories, and argue that an investigation of the neuro-physi-
ological correlates of within-subject variations is likely to have a large impact on
the design of future BCIs. We place a special emphasis on our own work on the
neuro-physiological causes of performance variations, and argue that attentional
networks in the gamma-range ( [ 40 Hz) are likely to play a critical role in this
context. We conclude the review with a discussion of outstanding problems.

A Brief History of BCI-Research

From the early days of research on brain-computer interfaces (BCIs) until about a
decade ago, subjects had to undergo intensive training in order to acquire the new
skill of operating a BCI (Vidal 1973; Wolpaw and McFarland 1994; Birbaumer et al.
2000; Pfurtscheller and Neuper 2001; Wolpaw et al. 2002; Wolpaw and McFarland
2004; Kübler et al. 2005). In the past ten years, machine-learning algorithms have
shortened training procedures and enabled higher information transfer rates (Lal
et al. 2004; Blankertz et al. 2007; Lotte et al. 2007; Grosse-Wentrup and Buss 2008;
Grosse-Wentrup et al. 2009). Even though machine-learning continues to make
important contributions to the field, advances have somewhat slowed down: recent
studies often report only minor enhancements in classification accuracy (Zhang
et al. 2011; Barachant et al. 2011; Samek et al. 2012). At the same time, variations in
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performance across subjects remain substantial. In a recent study based on a
two-class sensorimotor-rhythm (SMR) BCI, 30 out of 80 healthy participants
(37.5 %) did not achieve a classification accuracy of or above 70 %, which is
considered as the lower limit for reliable communication (Hammer et al. 2011).
While this constitutes an improvement of 11.2 % relative to a large-scale study
published in 2003 (Guger et al. 2003), in which 48.7 % of subjects did not exceed
70 % accuracy, a substantial percentage of users remains incapable of communi-
cating by means of a SMR-BCI. Unfortunately, completely locked-in patients in late
stages of amyotrophic lateral sclerosis (ALS), i.e., those subjects that stand to
benefit most from BCI technology, appear to belong to this group of incapable
subjects (Kuebler et al. 2009). Inter-subject variations in performance have been
reported to be less severe for P300-systems based on visual stimuli (Guger et al.
2009). These results, however, may have been confounded by overt visual attention
(Brunner et al. 2010)—a skill not readily available to many patients in need of a
BCI. Accordingly, the subsequent focus of this review is on SMR-based BCIs. Other
experimental paradigms are briefly discussed in section ‘‘Discussion’’.

Performance Variations in BCIs

The substantial variation in performance across subjects has triggered a new
research direction that aims to identify variables associated with good and poor
BCI performance. This in turn may lead to enhanced training strategies and novel
ways to adapt machine-learning algorithms to different types of users. Studies on
BCI performance variations can be classified according to (at least) four
categories:

1. Type of explanatory variables: Different types of variables may serve as the
independent variable(s) in models used to explain variations in BCI perfor-
mance. These range from psychological characteristics, such as the IQ score or
level of depression, through neuroanatomic properties, e.g., as obtained by MRI
scans, to neuro-physiological features such as resting-state a-power. While each
type of variable may provide interesting insights, their utility may differ. For
instance, neuroanatomical features that are unlikely to undergo substantial
changes over a subject’s lifetime may be useful for predicting whether a subject
is capable of operating a BCI. They are less likely to be useful, however, for
assessing learning-related changes across multiple training sessions. Accord-
ingly, studies should not only identify the types of variables under investiga-
tion, but also discuss their potential utility in BCI research. This issue is closely
related to the second category.

2. Correlates or causes of performance variations: Any type of variable found
to correlate with BCI performance may, at least in theory, be used to predict
whether a novel subject is likely to be able to operate a BCI. Only certain types
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of variables, however, are amenable to procedures, subsequently termed
interventions (Judea Pearl 2000), that transform poorly performing subjects into
able BCI operators. For instance, it is conceivable that age correlates with BCI
performance, with younger subjects performing better than an elderly (but
otherwise matched) control group. It is difficult to conceive of an intervention,
however, that alters the age of an individual subject. As such, this correlation
would constitute an interesting insight, but would not give rise to novel strat-
egies for enhancing performance in individual subjects. In contrast, a correla-
tion between depression levels and performance could be interpreted as
indicating that psychotherapy would influence a subject’s ability to operate a
BCI. The conceivability of such an intervention is not sufficient, however, to
demonstrate its utility in BCI research. According to Reichenbach’s principle,
a correlation between two variables x and y can arise either because x is a cause
of y, y is a cause of x, or both share a (possibly unobserved, i.e., latent) common
cause h. In the present example, it is conceivable that both BCI performance
and depression levels are affected by age. The ensuing spurious correlation
between depression and performance could then lead to the erroneous belief
that psychotherapy would influence BCI performance. In order to increase the
probability that novel insights translate into actual benefits for BCI users, we
consider it important to focus on variables that are likely to be actual causes,
rather than mere correlates, of performance. We denote a variable as a cause of
BCI performance if a) it is conceivable to construct a setup that experimentally
sets the value of this variable, and b) if setting this variable to different values
would result in statistically significant changes in performance. While ulti-
mately only randomized controlled trials can establish such causal relations, the
field of causal inference provides powerful tools that support the identification
of causal relations from non-interventional data (cf. ‘‘Within-Subject Variations
and the Role of Attentional Networks’’). Future studies should clearly indicate
whether they aim to identify correlates or causes of BCI-performance.

3. Inter- or intra-subject variations: Variations in performance may be studied
on the inter- and intra-subject level. In the former case, each subject’s BCI
performance, in combination with one personal attribute, constitutes one
observation pair. Observation pairs from multiple subjects may then be used to
uncover potential correlations. This approach implicitly assumes that there exist
invariant traits that determine a subject’s capability to operate a BCI. In con-
trast, the intra-subject level focuses on changes in performance levels of
individual subjects over time. In this case, multiple observations may consist
of individual trials or separate recording sessions. As such, the actual time scale
of such measures may vary from several seconds, as in the case of trial-to-trial
variations, to multiple months, e.g., when investigating learning related dif-
ferences across multiple sessions. Insights into inter- and intra-subject corre-
lations may give rise to different strategies for enhancing BCI performance. For
instance, inter-subject variations may be useful for predicting which subjects
are likely to benefit from intensive training procedures. Intra-subject variations,
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on the other hand, might be used to monitor non-stationarities in recorded data
and adapt machine-learning procedures accordingly.

4. Healthy subjects or patient populations: Even though the potential benefit for
patients often serves as a primary motivation for BCI research, most existing
studies have been carried out with healthy subjects (Mason et al. 2007). While
these studies undoubtedly provide relevant insights, their conclusions may not
transfer to patient populations. Diseases such as ALS have profound and sys-
tem-wide effects that may eliminate or even reverse effects found in healthy
populations. Furthermore, certain interventions may be feasible for healthy
subjects, but unrealistic to carry out with patients in late stages of ALS. Such
issues need to be openly discussed.

In the following, we review studies published by other groups on BCI performance
variations, and discuss how they relate to the four categories described above. The
presentation of our own work is deferred to ‘‘Within-Subject Variations and the
Role of Attentional Networks’’.

To date, all types of variables listed under the first category have been con-
sidered as potential correlates of BCI performance. Hammer et al. have assessed
correlations between online classification accuracy in a SMR-BCI and a variety of
psychological tests, including measures of visuo-motor coordination, attention
span, intelligence, and verbal- as well as non-verbal learning abilities (Hammer
et al. 2011). They found that visuo-motor coordination skills and the ability to
concentrate on a task both exhibited significant positive correlations with classi-
fication accuracy (q ¼ þ0:42 and q ¼ þ0:50, respectively). A link between
concentration and BCI performance is consistent with previous reports that
motivation, which may facilitate concentration, plays an important role in BCIs
(Nijboer et al. 2010). This has led to the suggestion that feedback in BCIs should
be designed to minimize frustration (Barbero and Grosse-Wentrup 2010; Zander
and Kothe 2011b). Contrary to the case of psychological measures, very little is
known about neuroanatomic correlates of good and poor BCI performance. One
notable exception is the study by Varkuti et al., which indicates that the structural
integrity of the corpus callosum differs between able and non-able subjects
(Varkuti et al. 2011). As white matter structures, such as the corpus callosum, are
known to be affected by ALS, this may provide an explanation for the poor
performance of these patients in SMR-based BCIs. More attention than to
neuroanatomic features has been paid to neuro-physiological correlates of per-
formance. Halder et al. have compared fMRI scans of well- and poorly performing
BCI subjects during motor-imagery and motor-observation, and found that capable
subjects exhibited larger activations in supplementary motor area (SMA) and right
middle frontal gyrus (Halder et al. 2011). This is consistent with the interpretation
that altered activity in SMA, as reported in ALS patients (Kew et al. 1993), may
adversely influence BCI-performance. Blankertz et al. have presented empirical
evidence that the resting-state amplitude of the SMR is positively correlated with
subsequent classification accuracy (q ¼ þ0:53) (Blankertz et al. 2010). This result
suggests that the ability to suppress the SMR by means of motor-imagery, which
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constitutes the basic principle of SMR-BCIs (Pfurtscheller and Neuper 2001),
is related to its resting-state amplitude. Furthermore, it indicates that mental
strategies that are aimed at enhancing resting-state SMR-amplitude could result in
improved BCI performance. While the nature of suitable mental strategies is at
present unknown, it is reasonable to assume that they may be related to psycho-
logical correlates of performance as investigated by Hammer et al. (2011).

It is interesting to note that most studies published to date, with the exception of
Varkuti et al. (2011), refrain from openly discussing the distinction between
correlates and causes of performance. Nevertheless, some studies propose inter-
ventions to enhance performance, indicating that a causal relation is suspected. For
instance, Blankertz et al. suggest to train subjects to increase their resting-state
(or pre-trial) SMR-amplitude by neurofeedback (Blankertz et al. 2010). As the
SMR’s amplitude is used to infer a subject’s intention, it is reasonable to assume
that there exists a genuine causal link between idling SMR-amplitude and BCI
performance. Furthermore, a pre-training strategy could be realized for healthy
subjects as well as patients in late stages of ALS. This appears more challenging
for the results obtained by Hammer at al., who also suggest training strategies for
enhancing the ability to focus attention and improving visuo-motor coordination
(Hammer et al. 2011). While it is conceivable that a training programme in visuo-
motor coordination might enhance BCI performance in healthy subjects, possibly
via modulation of the SMR’s resting-state amplitude, it appears non-trivial to
design such a programme for subjects with no (or only residual) movement
capabilities. In general, studies that reproduce the results reviewed here in patient
populations are urgently needed, as only the study by Nijboer et al. is not based on
healthy participants (Nijboer et al. 2010).

Somewhat surprisingly, none of the studies discussed above consider intra-
subject variations. In the following section, we first argue that an investigation of
the causes of trial-to-trial performance variations in individual subjects is likely to
have a large impact on the design of future BCI-systems, and then review our
recent progress in this domain.

Within-Subject Variations and the Role of Attentional
Networks

When investigating BCI performance across subjects, variables of interest are
typically correlated with session-averaged classification accuracy. This implicitly
assumes that a subject’s skill in operating a BCI remains constant over the course
of a recording session. Interestingly, this is not the case. Subjects exhibit large
variations in performance over the course of individual sessions. Figure 1 displays
trial-to-trial variations in performance of two subjects performing a left-/right hand
motor-imagery task (adapted from Grosse-Wentrup and Schölkopf 2012). Here,
each cross represents one trial, recorded over the course of one experimental
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session lasting for 20 min. The y-axis denotes the certainty of the employed
machine-learning algorithm in correctly classifying a trial. As such, large positive
values indicate easy to classify trials, values with small absolute values represent
uncertain trials, and negative values denote incorrect decisions (more precisely, the
values on the y-axis represent the distance of the trial’s features from the sepa-
rating hyperplane, with positive/negative values indicating that the trial’s features
are on the correct/incorrect side (Grosse-Wentrup and Schölkopf 2012)). While
both subjects are able BCI performers, with a session-average classification
accuracy of 83.3 and 95 %, respectively, there is a distinct temporal structure to
each subject’s performance. In the first few minutes of the recording session,
subject S1 exhibits excellent performance, with no trials falling into the red region.
After about 6 min, however, his performance starts to slowly decline, as seen by a
downward trend of the decoding algorithm’s certainty. For a few further minutes,
however, his performance is sufficient to avoid incorrect classification. Only after
about nine minutes into the session the first trial is incorrectly decoded. For the
next 7 min a large proportion of trials are not correctly classified. Only towards the
end of the session a slight positive drift in performance is noticeable. Subject S2,
on the other hand, shows a different temporal structure. While he already makes
only few errors in the first few minutes of the session, his performance exhibits a
further constant improvement. From about 9–15 min into the session, not a single
trial is misclassified. At 15 min, however, there is a sudden drop in performance,
followed by a slow recovery extending all the way to the end of the session.

A subject’s skill to operate a BCI may thus vary on a time-scale of a few
minutes. Such changes are overlooked if only session-averaged classification
accuracy is being investigated. But what are the causes of these variations? As for
the case of inter-subject variations, this may be investigated on several levels. We
have placed the focus of our work on the neuro-physiological level, which is based
on the following considerations. Consider Fig. 2, which depicts a thought exper-
iment on the potential effect of a neuro-physiological cause of performance
variations in a SMR-BCI. Assume we perform a study in which subjects are either
at rest of perform motor-imagery of the right hand, and we record the electro-
magnetic field of the brain over primary motor cortex (MI). Depending on whether
the subject is at rest or executes motor-imagery, we observe different distributions
of bandpower in the l-range (10–14 Hz) (upper right corner). In this example, the
optimal decision boundary for differentiating trials of rest- versus trials of motor-
imagery is given by the green line. Note that the overlap between the distributions,
shown in dark gray, specifies the minimum Bayes error. Now assume that there
exists a region in the brain, e.g., the prefrontal cortex (PFC), that modulates
activity in MI. Further, assume that a change in PFC’s activity induces a shift of
the class-conditional distributions of l-power in MI to the right. In this case, which
is depicted in the right lower corner of Fig. 2, the original optimal decision
boundary (shown in red) would be sub-optimal. Instead, the new optimal decision
boundary would also have to be shifted to the right. If we knew that PFC mod-
ulates MI, we could monitor its activity and adapt our decoding procedure
accordingly. This could give rise to new algorithms for adaptive BCIs
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(Sykacek et al. 2004; Vidaurre et al. 2006; Shenoy et al. 2006; Sugiyama et al.
2007). It is also conceivable, however, that such modulatory effects do not induce
a shift in the distributions of l-power, but rather alter their variance. This situation
is depicted in Fig. 3. Here, the optimal decision boundary for different activity
levels of PFC remains identical. Strong activation of PFC, however, leads to a
smaller overlap between the distributions of l-power at rest and during motor-
imagery, resulting in a smaller minimum Bayes error (as indicated by the overlap
of the two distributions shown in dark gray). In this thought experiment, the lower
panel in Fig. 3 thus represents a state-of-mind beneficial for operating a BCI, while
the situation depicted in the upper panel results in lower performance. Knowledge
about such a causal relation between PFC and MI could be exploited by several
strategies. First, activity in PFC could be monitored and the initiation of a new trial
could be delayed until a state-of-mind is observed that is likely to result in a
correct decision of the BCI. This could increase information transfer rates and
reduce frustration. Second, subjects could be presented with feedback on their
current state of PFC activity, thereby teaching them how to induce a state-of-mind
beneficial for operating a BCI. And finally, it is conceivable that such a causal link
could be utilized by stimulating PFC, e.g., by transcranical direct current stimu-
lation (TDCS), artificially inducing a state-of-mind in which subjects are capable
operators of a BCI. To summarize, understanding the neuro-physiological causes
of trial-to-trial performance variations would give rise to a variety of novel
strategies for enhancing BCI performance in individual subjects.

In a series of recent studies, we have identified neural processes that qualify as
potential causes of sensorimotor rhythms, thereby inducing changes in subjects’
performance levels. In a study published in 2010, we presented empirical evidence
that the amplitude of spatially distributed oscillations in the c-range (55–85 Hz)
correlates with a subject’s capability to induce a lateralization of the SMR, as
measured by the trial-wise performance metric shown in Fig. 1 (Grosse-Wentrup
et al. 2011). Interestingly, we found these c-oscillations to only correlate with how

Fig. 1 Trial-to-trial variations in performance of two subjects performing a left-/right hand
motor-imagery task (adapted from Grosse-Wentrup and Schölkopf (2012))
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well a subject modulated the SMR. They did not provide any information on its
lateralization, i.e., whether subjects performed left- or right-hand motor-imagery.
We analyzed these observations in the framework of Causal Bayes Nets (Judea
Pearl 2000; Spirtes et al. 2000; Ramsey et al. 2010), and argued that they provide
evidence for a causal influence of the neural substrate of c-range oscillations on the
SMR. Based on this conclusion, we then hypothesized that the amplitude of c-range
oscillations would allow us to predict whether an upcoming trial is likely to be

Fig. 2 Thought experiment on the potential effect of causal relations between cortical areas on
BCI-performance: shift of distributions

Fig. 3 Thought experiment on the potential effect of causal relations between cortical areas on
BCI-performance: changes in variance of distributions
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correctly decoded. We tested this hypothesis in a new group of subjects, and could
present evidence that baseline c-power (between 70–80 Hz) indeed predicts whe-
ther a subject is in a state-of-mind beneficial for operating a SMR-BCI (Grosse-
Wentrup and Schölkopf 2012). To obtain a better insight into the nature of the
involved processes, we carried out a source localization procedure. The obtained
results indicate that BCI performance can be predicted from differences in c-power
between two fronto-parietal networks (cf. Fig. 5 in Grosse-Wentrup and Schölkopf
2012), which are believed to be involved in attentional processes (Corbetta et al.
2008). This is in agreement with the observation that c-range oscillations best
predicted very slow changes in BCI performance, i.e., on a time-scale of multiple
minutes, which is the dominant frequency range of attentional- and default mode
networks (Ko et al. 2011). In summary, these studies indicate that variations in
activity between different attentional networks have an impact on a subject’s
capability to operate a SMR-BCI. The results discussed so far have been obtained
with healthy subjects. Preliminary evidence indicates that similar relations may also
be reproducible in subjects in late stages of ALS (Grosse-Wentrup 2011b), but
further evidence is required before any general conclusions may be drawn.

The next question, then, is how these insights may be used to enhance
BCI-performance in individual subjects. Following the strategies outlined above,
we first tested by how much we could increase session-average classification
accuracy by rejecting trials according to their predicted probability of being cor-
rectly decoded (Grosse-Wentrup and Schölkopf 2012). This analysis indicated
that, on a group level, classification accuracy could be enhanced by up to 15 %.
This, however, required rejecting 93.1 % of trials. In any practical situation, a
sensible trade-off between the two values would have to be chosen. It is important
to note, however, that in this setup the prediction of performance was based on
spontaneous variations in fronto-parietal activity. As all subjects had been
instructed to focus attention on the task at hand, these natural variations may have
been rather small relative to the extent that can be induced by volitional shifts of
attention. Accordingly, we designed an experimental setup to test whether subjects
could learn how to modulate fronto-parietal c-power and use this skill to induce a
state-of-mind beneficial for operating a BCI. As our previous results indicated
c-range oscillations to be an actual cause of the SMR (Grosse-Wentrup et al.
2011), we hypothesized that modulation of fronto-parietal c-power can be used to
generate a strong idling SMR. In a pilot study, we trained three healthy subjects to
modulate fronto-parietal c-power by means of neurofeedback based on online
beamforming (Grosse-Wentrup 2011a). Two of the three subjects displayed sta-
tistically significant control of c-power after one and three training sessions,
respectively. As hypothesized, volitional attenuation of fronto-parietal c-power
was accompanied by a statistically significant increase in l-power over sensori-
motor cortex. These results indicate that subjects can learn how to generate a
strong SMR by regulating fronto-parietal c-power, thereby achieving a state-of-
mind known to positively correlate with BCI-performance (Blankertz et al. 2010).
Before any general conclusions can be drawn, however, these results need to be
reproduced in a larger population including subjects in late stages of ALS.
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Discussion

In this article, we have reviewed recent progress on the correlates and causes of
performance variations in SMR-based BCIs. While substantial progress has been
made, this field of research is still in its infancy. In particular, a demonstration that
the insights obtained to date transfer into enhanced classification accuracy in
online BCIs remains outstanding. Considering the results obtained so far, it is quite
likely that this will be achieved in the near future - probably by the SMR pre-
training strategy proposed by Blankertz et al. (2010) as well as by teaching sub-
jects to attenuate fronto-parietal c-power (Grosse-Wentrup 2011a).

While such a demonstration would constitute an important advancement, many
interesting problems remain. For instance, the results discussed in ‘‘Within-Subject
Variations and the Role of Attentional Networks’’ only explain (a certain percentage
of) performance variations on a time-scale of multiple minutes. From Fig. 1 it is
apparent, however, that subject performance further varies on a trial-to-trial basis,
i.e., on a time-scale of roughly 10 s. We are not aware of any studies investigating the
neurophysiological origins of such fast variations. Also, there is at present insuffi-
cient evidence to conclude that ALS patients exhibit performance variations similar
to those of healthy subjects, or that the same neural processes can be used to predict
performance. Finally, it remains an open question how the neurophysiological
correlates of performance, as discussed here, can be mapped back onto psycholog-
ical states. For instance, mindfulness has been reported to enhance performance in
SMR- as well as P300-based BCIs (Mahmoudi and Erfanian 2006; Lakey et al.
2011), and experienced meditators are more likely to be able to operate a SMR-BCI
than healthy controls (Eskandari and Erfanian 2008). While it is reasonable to
assume that these observations are related to the attentional networks discussed
above, direct empirical evidence for such a relation is currently not available.

While we have placed the focus of this review on SMR-based BCIs, similar
progress has been made in investigating the correlates of performance variations in
P300-based systems. For instance, Mak et al. report that fronto-parietal h-power
(4.5–8 Hz) is negatively correlated with inter-subject variations in a visual speller
system (Mak et al. 2012). As h- and c-power often exhibit a positive correlation
(Canolty et al. 2006), the results of Mak et al. may be based on similar neural
processes as those reported by us (Grosse-Wentrup and Schölkopf 2012). Further
support for this hypothesis is lend by a recent study of Ahn et al., who found both
h- and c-power to predict inter-subject performance variations in SMR-based BCIs
(Ahn et al. 2012). As such, it is not unlikely that the results discussed in this review
are not specific to SMR-based BCIs, but may be linked to attentional networks that
are relevant for a variety of experimental paradigms.

In the end, we hope that this new research focus will provide the necessary
insights to construct BCIs that can be operated not only by healthy subjects but
also by completely locked-in patients, no matter whether these systems will be
based on the SMR, the P300, or utilize altogether different experimental paradigms
(Hill and Schölkopf 2012; Allison and Neuper 2010).
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Exploring the Cortical Dynamics
of Learning by Leveraging BCI
Paradigms

Tim Blakely, Kai Miller, Jeffrey Ojemann and Rajesh Rao

Abstract Brain-computer interfaces (BCIs)—systems that can record neural
activity and translate them into commands for computer systems—are sufficiently
advanced to allow users to volitionally guide them through simple tasks. Con-
temporary BCI research focuses on squeezing additional functionality out of
standardized paradigms, be it achieving more bits per second, increased degrees of
freedom, or increasing accuracy. While these studies have shown marginal
advancements in recent years, our lack of understanding concerning the underlying
neurophysiology continues to be the limiting factor in BCI development. In this
chapter, we propose turning the way research is done on BCI systems on its head;
instead of using our understanding of neural signals to incrementally advance the
state of brain-machine interfaces, we apply a BCI system as a form of experi-
mental control to study changes in neural activity. By using current BCI systems as
a tool for neuroscientific study, we can probe the underlying neuroanatomy in
novel, behaviorally controlled ways.

Significance: Recent studies have shown brain-computer interfaces (BCIs) are
viable, leveraging changes in neural potentials. After the initial studies demon-
strated that subjects could successfully control external devices via volitional
cortical activity changes alone, further progress in BCIs have been incremental yet
slow. Many studies have taken the established BCI protocol of thresholding power
in a given frequency range and attempted to add additional control feature
dimensions or apply novel user interfaces to marginally increase bit rate, both with
limited success. Instead of attempting to incrementally improve upon these met-
rics, we resolved to learn more about the underlying neurophysiological changes
that are occurring during learning by leveraging the learning period associated
with current BCI paradigms with the hope of shedding light on novel future BCI
paradigms.

T. Blakely (&) � K. Miller � J. Ojemann � R. Rao
University of Washington, Seattle, WA, USA
e-mail: tim.blakely@gmail.com

C. Guger et al. (eds.), Brain–Computer Interface Research,
SpringerBriefs in Electrical and Computer Engineering,
DOI: 10.1007/978-3-642-36083-1_6, � The Author(s) 2013

53



Experiment: We asked 7 subjects implanted with subdural ECoG electrodes to
perform the standard 1-dimensional right justified box task, where the vertical
velocity of a cursor on a screen is controlled by increasing and decreasing the
power in a broadband high frequency bin (usually 80–100 Hz) around a linear
threshold. Subjects were instructed to move the cursor to one of two targets
occupying the top or bottom half of the right hand side of the screen. This method
of BCI relies on a well-established method of control: the control feature is driven
by a single electrode, providing a 1D signed, scalar output based on difference
from the threshold. Control electrodes were chosen based on prior overt motor
screening. Subjects performed overt or imagined movements of the hand or ton-
gue, with all subjects gaining significant control over the cursor and performing as
well or better in the final runs as the initial period.

Results: All 7 subjects were able to modulate the power in the band chosen for
control. Over the course of the use of the BCI, three distinct periods of learning
were observed in all subjects: identification, amplification and refinement (see
Fig. 1). Identification periods—occurring at the beginning of training—showed no
initial difference in mean power between active (up) versus inactive (down) tar-
gets, followed by a separation between the two about the set linear threshold,
accompanied by an increase in successfully reached targets. After identification of
the threshold, an amplification period that showed significantly higher cortical
power for active targets was observed. These periods exhibited both an increase in
the mean power for each target along with an increase in the variance of the means
and a constant or increased successful target hit rate. During refinement, the
subject continues to use and learn the BCI system with a decrease in the cortical
variance between runs and a further improvement to accuracy. However, the
continuing power increases observed during identification and amplification stages
do not continue and in some cases actually decrease but remain above the

Fig. 1 Each subject’s mean cortical power for active/‘‘up’’ targets (red) versus inactive/‘‘down’’
targets (blue). All subjects show the common pattern of identification, amplification, and
refinement. Missed targets are identified by a box. Control electrodes for each patient are circled
in red
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threshold. This implies the subjects were producing less cortical activity while
retaining the same or better accuracy, and that any increases in separability of the
BCI control feature do not stem from absolute increases in power but rather from
identification of the classification threshold and a refinement of cortical activity
around it.

Further studies and results: Two of the patients who performed exceptionally
well in the BCI task were asked to perform the 1D control task with an increased
number of targets (3, 5, 6 or 7) occupying a smaller area of the screen (33, 20, 16.8
and 14.3 %, respectively), requiring finer control of the ending position of the
cursor. The three periods identified during learning of the 2-target task were also
present in the multi-target task, demonstrating that the subjects were able to
volitionally modulate the mean cortical power into one of many bins. Initial
analysis has identified areas in dorsolateral prefrontal cortex that show signifi-
cantly increased cortical activity only for ‘‘middle’’ targets (not top-most or bot-
tom-most) suggesting that these areas might be involved in some type of attention
or gain modulation (see Fig. 2). We are currently investigating these areas of
cortex and their correlations with the BCI task so that we can more clearly identify
their role in BCI system use.

Discussion: Where other groups have investigated cursor trajectories, accuracy
rates and/or bitrate output, instead we chose to investigate the underlying changes
that occur in the neural activity between the initial trials where the subject was
unfamiliar with the task and the final trials after a period of training lasting
anywhere from minutes to days—analogous to how one would learn any new
activity such as throwing a ball or driving a car. The advantage of using a BCI to
explore the learning process is that the task itself is simple, tightly controlled, and
provides a metric for the efficacy of learning in the form of target accuracy.

Our results have important implications for BCI: all three periods were
observed with a relatively short amount of training on the BCI system. This
implies continued training would not elicit continual increases in power up to the
metabolic limit, but rather a refinement in fine-grain neural activity control.

This ongoing investigation demonstrates the importance of BCIs lies not only in
the rehabilitation world, but also in providing a controlled platform for the sci-
entific community studying the human brain to investigate naturally occurring
cortical changes.

Subsequent Work

Present Utility of BCI is Limited

There is a lot of promise in the concept of a BCI. Should someone suffer some type
of accident or disability that renders them with limited or insignificant interaction
with the outside world, a device that would allow them to bypass their disability by
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Fig. 2 a One subject who used a multi-target BCI. Control electrode is identified in cyan, with
electrodes showing significant activity highlighted in blue. b Graphs of mean log power for each
target (1–5 correspond to top-bottom targets). Note that posterior superior premotor (PSP) shows
more activity for all targets requiring movement whereas the anterior inferior premotor (AIP) and
doors-lateral pre-frontal (DLPF) electrodes show higher mean power for targets 2-4, the targets
requiring finer grain control. c Significance of electrodes of interest when comparing the mean
power between targets 1 & 2, 1 & 3, 1 & 4, 1 & 5. Blue areas indicate areas greater in the latter
electrode, with yellow-red indicating higher power in the former electrode. d Illustration of the
targets compared
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directly reading desires where they are generated—at the cortex—and translating
them into real-world motions would be life-changing for the affected individuals.
Just about every neural engineering lab is working towards this vision and con-
tributing a piece to the whole puzzle. Unfortunately even the most optimistic
among neuroscientists must concede that a flexible, robust BCI system is still a
long way off; the current understanding of the way the brain processes input and
generates patterns of activity is simply not understood well enough. The most
advanced BCIs to date still have severely limited degrees of freedom and can
decode intentions at sub-perfect levels. Many contemporary systems can decode
the intent of the user at a significance level of P \ 0.05. However, thinking about it
logically paints a somewhat bleaker picture. Take the example of applying a BCI
to drive a wheelchair. This type of BCI could potentially provide a level of
freedom for paralyzed individuals, something that many labs have attempted
(Tanaka et al. 2005; Galán et al. 2008; Rebsamen et al. 2006). And yet, even
operating at a confidence level of 95 % means that the BCI system can only
correctly decode the user’s intent 19 out of 20 times. Any number of frustrating
and/or disastrous situations can be imagined for that 1 erroneous decoding; a
missed ‘‘door open’’ signal; an incorrect word chosen when writing; an erroneous
‘‘stop wheelchair’’ decode at the top of a stairwell.

Optimizing a classifier based on the current understanding of the brain seems to
provide diminishing returns, when squeezing 2 more bits/sec of information out of
the brain means designing a new paradigm around the limited number of available
controls. Why use a complex decoder for these simple tasks when a simpler
approach may provide a better control signal? Anything from eye tracking to
tongue movement can be substituted and decoded at a much higher accuracy than
current BCI models. Even a control scheme based on nasal sniffing can be more
accurate than the best BCIs available (Plotkin et al. 2010). Our current under-
standing of the brain is insufficient; we need to better understand how the brain
processes and encodes goals and intents before we begin to apply BCIs in the real
world. Ironically, BCIs may actually be just the tool to investigate these cortical
networks and provide insight into the working of the brain.

Leveraging BCIs as a Neuroscience Tool

It is an understatement to say that the brain is complex. It is capable of processing
huge amounts of data, encoding it, and executing complex coordinated motions all
simultaneously. Trying to study how the brain accomplishes this can prove difficult
due to the asynchronous, parallel nature of neural networks. The fields of psy-
chology and philosophy have been struggling with these types of problems for a
long time. Given a novel scenario, how does one ‘‘learn’’ to solve or approach a
problem? How does the brain plan and encode motor movement? Is the brain
capable of producing unique, volitional patterns of activity? It becomes nearly
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impossible to design a non-invasive experiment that can have enough scientific
controls to begin to investigate these types of questions.

By their very nature, current studies that use BCIs are simple, tightly controlled
experiments. Scientists are required to design paradigms in such a way as to
remove confounding factors that may interfere with the operation of the BCI. The
control signal that drives the BCI is likewise easily identifiable: a single control
electrode, a certain ICA component, a single frequency band, etc. It is precisely
these types of limitations that can show the true value of BCIs as a tool for
investigating more complex questions. It has been shown with many different
types of electrophysiological recordings that over a period of time, users of BCIs
can get better with training (Miller et al. 2008; Blakely et al. 2009), much like
someone may learn to kick a soccer ball better or learn to play a violin. While the
latter examples have complex and unknown inputs and outputs during the learning
process, the BCIs have very clearly established control signals, priors, and
parameters (the decoding model) that can be directly correlated to a known,
measureable output (the BCI output). Changes in the input control feature are
inherently linked with both the output feedback the subject receives and the
conscious and subconscious changes the subject makes to optimize their use of the
BCI. In this way, BCIs offer a unique, compelling and controlled way of studying
the process of feedback-driven learning.

Local Control Signals and Remote Area Activations

Many BCI studies concentrate on the activity and changes in the region of the
brain used to control the BCI, concentrating on the link from brain activity to the
output bits per second. Yet many of the modalities currently used to record
electrophysiological activity have the capability of recording from many cortical
sources in synchrony. In our ECoG BCI studies we ensure that while we are
recording from a control electrode that drives the BCI, we are simultaneously
recording activity from other remote sites that are covered by the numerous other
electrodes that have been implanted. This allows us to investigate possible inter-
actions that occur during the course of the experiment and identify changes that
may occur during learning on a novel task. In this manner we are leveraging BCI
to explore interactions and information flow in a tightly controlled manner in a
way that is not possible to do with other less-constrained experimental settings.

Novel Questions About the Brain can be Addressed with BCIs

For example, take the simple change of varying the number of targets in the
standard right-justified-box-task from two to three. This simple change does not
complicate the experimental paradigm in any way, nor the control features
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required for control. From an engineering perspective, the change is marginal;
while you may be able to get one more output state from your BCI, the user’s
accuracy will most likely be lower, thus limiting the return investigating from a
bits-per-minute perspective. But looking at it from a neuroscience perspective,
such a small change can possibly net huge insights into the way the cortex works.

The initial binary BCI asks the basic neuroscientific question ‘‘Can the brain
volitionally modify the amount of noise-like activity under the control electrode
around an arbitrary threshold?’’ By driving the cursor to the ‘‘active’’ target, the
subject volitionally increases the cortical activity under the control electrode above
an artificial threshold. Similarly, by driving the cursor to the ‘‘inactive’’ target, it
shows that the subject has either decreased the activity or maintained a sub-
threshold baseline of activity. Previous studies have demonstrated that subjects can
rapidly learn to control these types of systems as quick as 20 min, sometimes even
faster. This demonstrates that the ability to volitionally modulate specific areas of
cortex are likely not the product of synaptogenesis and rather a selective activation
of subnetworks within the brain, a unique insight into neurophysiology illuminated
by using a BCI paradigm.

Increasing the number of targets in the BCI doesn’t tell us much new about
BCIs beyond the number of bits per second or accuracy of the system in decoding
the user’s intent. Yet at the same time it opens up a number of interesting—and
very important—neuroscientific questions. This new third target, placed in
between the ‘‘maximally active’’ and ‘‘minimally active’’ requires the user to
modulate the activity generated to be on average higher than the upper limit of the
‘‘inactive’’ and yet below the lower limit of the ‘‘active’’ target. Suddenly, the
concept of ‘‘a subject can volitionally activate and deactivate a specific area of
cortex’’ becomes much more complex. How does the brain attempt to solve this
middle-ground area? If the subject can hit these targets, it means that not only can
they volitionally turn these cortical areas on and off, they can also control the level
of activity under the electrode. What is the resolution of this modulation? Is there
an upper limit to how fine-grained the brain can generate activity levels? Are there
any known models of anatomical structures could provide this type of neuro-
modulation? Answering these types of questions could have a greater scientific
significance than the concept of ‘‘output bits-per minute’’ of a BCI system.

Unique Activity in Remote Cortical Areas

Our work in ECoG represents an interesting opportunity with regards to BCI in
that while our control signal originates from one frequency band from one elec-
trode, we are simultaneously recording a large number of other electrodes over
various parts of the cortex. And this is the inherent advantage of ECoG-based
BCIs: its broad cortical coverage combined with high temporal resolution.
We have been running multitarget BCIs on a number of subjects and post hoc
analyzing the signals recorded from areas of the brain that were not directly
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involved in the generation of the control signal. As Fig. 2 suggests, there are
remote areas that show significant changes during the BCI, yet were not involved
in the actual control. These co-interested areas are prime targets for future studies
and further experiments can be designed to investigate their role.
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An Affective BCI Using Multiple ERP
Components Associated to Facial Emotion
Processing

Qibin Zhao, Yu Zhang, Akinari Onishi and Andrzej Cichocki

Abstract P300-based brain computer interfaces (BCIs) have successfully dem-
onstrated that attention to an oddball stimulus can enhance the P300 component of
the event-related potential (ERP) phase-locked to the event. However, it was
unclear whether the more sophisticated face-evoked potentials can also be mod-
ulated by related mental tasks under the oddball paradigm. This study investigated
ERP responses to image stimuli of objects, neutral faces, and emotional faces
when subjects perform attention, face recognition and discrimination of emotional
facial expressions respectively under the oddball paradigm. The results revealed
the significant difference between target and non-target ERPs for each mental task.
In addition, significant differences among the three mental tasks were observed for
vertex-positive potential (VPP) over the fronto-central sites, late positive potential
(LPP)/P3b over the centro-parietal sites and N250 over the occipito-temporal sites.
These findings indicate that a novel affective BCI paradigm can be developed
based on detection of multiple ERP components reflecting human face encoding
and emotion processing. The high classification performance for single-trial
emotional face-related ERPs demonstrated the effectiveness of the affective BCI.

Introduction

Brain computer interfaces (BCIs) are communication systems that enable the
direct communication between humans and computers through decoding of brain
activity (Wolpaw et al. 2002), which can be used to assist patients who have
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disabled motor functions. The P300 speller is one of the most popular BCI par-
adigms first introduced by Farwell and Donchin (Farwell and Donchin 1988). The
P300 ERP, elicited when users attend to an oddball stimulus, i.e., a random series
of stimulus events that contains an infrequently presented target, is a positive
deflection occurring at 300–500 ms post-stimulus over parietal cortex. This is
usually done by performing a mental count of the number of times the target visual
object is highlighted, implying the fact that neural processing of a stimulus can be
modulated by attention (Treder et al. 2010). In recent years, a number of variations
of the P300 speller have been explored such as an apparent motion and color onset
paradigm (Martens et al. 2009; Guo et al. 2008; Jin et al. 2012), the checkerboard
paradigm (Townsend et al. 2010) and the auditory oddball ERP (Furdea et al.
2009). Although the speed and accuracy of P300 BCIs have been significantly
improved by various signal processing methods (Lenhardt et al. 2008; Xu et al.
2011), the single-trial classification of the P300 ERP remains a challenging
problem. Recent studies showed that a larger N170 ERP is elicited in response to
facial stimuli than non-face objects and scrambled faces (Sadeh et al. 2008), and
face-selective N250r is elicited by immediate repetitions of faces (Schweinberger
et al. 2004; Nasr and Esteky 2009; Neumann et al. 2011). Emotional face type and
anxiety modulated ERP responses have also been investigated and divided into
three stages around 200, 250, and 320 ms (Dennis and Chen 2007; Luo et al. 2010;
Kaufmann et al. 2011). The neural processes involved in switching associations
formed with angry and happy faces diverged a peak occurring at 375 ms after
stimulus onset (Willis et al. 2010). The early posterior negativity (EPN) and late
positive potentials (LPP) related to emotional processing can be enhanced when
the subjects see a fearful face compared to a neutral face (Lee et al. 2010).

In contrast to highlighting letters in the classical P300 speller, we investigate
the three oddball BCI paradigms utilizing randomly flashed images of objects,
neutral faces and emotional faces (Zhao et al. 2011). The subjects were requested
to perform three different mental tasks, i.e., visual attention, face recognition
(identification), emotion discrimination, corresponding to three types of images.
The main objectives were to find the ERP waveforms elicited by neutral faces and
emotional faces stimuli and to investigate whether it is feasible to apply face-
related ERPs for BCI paradigm. Furthermore, the amplitude and latency of ERPs
under these three paradigms as well as classification performance were compared.

Experiment Procedure

Subjects and Data Collection

Five male subjects aged 25–31 years participated in the study. All participants
were healthy, right-handed, and had normal or corrected to normal vision. We
recorded the EEG from 16 electrodes (F5, Fz, F6, T7, C5, Cz, C6, T8, P7, P5, Pz,
P6, P8, PO7, Oz, PO8) using an 16-channel amplifier (g.tec, Guger Technologies
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OG, Austria). The left mastoid and Fpz served as reference and ground, respec-
tively. The EEG signals were sampled at 256 Hz and band-pass filtered to
0.1–100 Hz with a notch filter of 50 Hz.

Oddball Paradigm

Subjects were seated in a comfortable chair and the screen presented a 3� 3
matrix of 9 arrows with gray color and black background, corresponding to the 9
commands for the concrete BCI application. We collected data under three
experimental conditions.1 In condition 1, the subjects were asked to focus on the
target item and silently count the number of flashes. Instead of highlighting the
target arrow, the images from objects group were shown randomly at each of 9
positions. In condition 2, the images from the neutral faces group were utilized for
flashed targets and the subjects were asked to perform the face recognition tasks.
In condition 3, the images from the emotional faces group were presented as
flashed targets and the subjects were asked to perform emotion discrimination
tasks whenever the desired target is intensified. The stimulus duration (SD) was

Fig. 1 a The procedure of BCI paradigm. The stimuli were shown for 100 ms each with an ISI of
80 ms. b Three groups of images were used as stimuli corresponding to three different
experimental conditions

1 The video of experimental stimuli is available at http://www.bsp.brain.riken.jp/bci/
emotiaonfacefull.avi.
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100 ms and the inter-stimulus interval (ISI) was 80 ms for all three conditions. The
inter-trial interval (ITI) was 2 s. The procedure and the image groups are shown in
Fig. 1. The subjects performed two sessions for each experimental condition. Each
session consists of 5 runs and each run presented 9 different target items in suc-
cession with only 2 repetitions for each target.

Methods

Preprocessing

The EEG signals were band-pass filtered between 0.1 and 20 Hz. The one second
time window of EEG after each stimulus onset was extracted as an epoch and the
baseline of each EEG epoch was corrected using a 100 ms pre-stimulus interval.
All epochs containing amplitudes exceeding þ=�75lV were removed as artifacts.
For ERP analysis, the target epoches, when the desired image was flashing and the
subject was performing the corresponding mental tasks, and the non-target epoches
were averaged respectively.

Classification

The classical decoding in the visual P300 based BCI consists of feeding an epoch
of EEG after each stimulus event to a classifier. The classifier is trained on target
and nontarget responses from a training set and assigns a classifier output value
larger than the threshold for a target response and smaller than the threshold for a
nontarget response.

We organized an nth EEG epoch by a matrix Xn 2 R
J�K with J channels and K

time samples (e.g., 16� 256). Note that the number of training samples (epochs)
was typically rather small, up to a few hundred samples. In order to classify the
EEG signals as target and non-target, we use the EEG epochs from 0 to 1000 ms
after each stimulus, as this epoch should contain all face-related ERP components.
For online classification, EEG signals were downsampled to 50 Hz in order to
reduce the dimensionality of the data, which is generally used in P300-based BCI
designs (Thulasidas et al. 2006). The signals from all EEG channels are concat-
enated into a single feature vector which is then fed into a classifier.

The support vector machine (SVM), which has been widely used for ERP
classifications, was adopted in this study to perform target detection. The principle
of the SVM is to seek the maximal margin between two classes, to form the
hyperplane with the best generalization capabilities. In our study, we employed a
linear kernel SVM, and chose the optimal parameters individually for each subject
by 5-fold cross-validation.
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One EEG trial consisted of nine EEG epoches corresponding to each stimulus,
which generally must be repeated several times to provide a reliable output. In
order to improve the performance, the classifier outputs from repeated epoches
corresponding to the same stimulus were averaged. This way, the influence of
signal fluctuation was decreased and the classification score was more robust.
There are two strategies for averaging. One is to average all epochs for the same
stimuli and classify these as a single trial, and another option is to classify each
epoch individually and average over the classifier score. We took the second
strategy, as preliminary results showed better performance for this method.
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Fig. 2 Grand averaged ERPs at Cz over fronto-central region, Pz over centro-parietal region and
PO8 over occipito-temporal region corresponding to target (green) and non-target (red) stimuli.
ERPs using objects, neutral faces, emotional faces as stimuli are shown in panel (a), (b) and (c),
respectively
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Results

Off-Line ERP Analysis

For each experimental condition, grand-averaged ERPs were calculated individ-
ually for target and non-target events. We focus on key components of ERPs
elicited by faces such as the face-specific N170 (150–190 ms), VPP (140–200 ms),
N250 (240–280 ms), P300 (250–350 ms), P3b/LPP (400–800 ms). Early compo-
nents are thought to reflect basic structural encoding of faces, whereas later
components may reflect categorization and attention to motivationally relevant
information, including emotion, gender, or familiarity. Thus, different experi-
mental conditions may evoke different responses.

Figure 2a shows the grand-averaged ERP waveform elicited by objects stimuli.
Analyses of variance (ANOVA) on stimuli (target vs. nontarget) revealed a sig-
nificant modulation of attention related ERP components including VPP at Cz
electrode (F(1, 18) = 8.08, p\0:01), P300 at Cz electrode (F(1, 18) = 13.41,
p\0:002) and LPP at Cz electrode (Fð1; 18Þ ¼ 5:41, p\0:032). Although both
N170 and VPP were face selective, they also showed some responses to object
stimulus categories.

The ERPs elicited by neutral faces stimuli are shown in Fig. 2b. We observed
the significant VPP at Cz (Fð1; 18Þ ¼ 14:15, p\0:02), P300 at Cz (Fð1; 18Þ ¼
24:29, p\0:0001) and LPP at Cz (Fð1; 18Þ ¼ 7:98, p\0:012), indicating the
modulation of the face identification task for multiple ERP components during
oddball paradigm. In response to the faces stimuli, the occipitotemporal N170 at
PO8 electrode is clearly observed (Fð1; 18Þ ¼ 6:37, p\0:02). N250 activities
were recorded at the same electrode sites as N170 indicating that N250 is sensitive
to face stimuli but not to object stimuli.

The ERPs elicited by emotional faces stimuli are shown in Fig. 2c. The late
segment of the ERP is dominated by the P300 component and the following LPP
component that appears over a broad latency interval, implying elevated positivity
to affective face stimuli. Analysis of VPP amplitude revealed a significant effect of
emotion information processing at Cz electrode (Fð1; 18Þ ¼ 12:13, p\0:003) and
Pz electrode (200 ms) (Fð1; 18Þ ¼ 16:09, p\0:0008). The LPP were significantly
larger for target stimulus compared to non-target stimulus at Cz electrode
(Fð1; 18Þ ¼ 27:97, p\0:0004) and Pz electrode (Fð1; 18Þ ¼ 19:99, p\0:0003).
Additionally, LPP at PO8 electrode was also significant (Fð1; 18Þ ¼ 8:08,
p\0:011).

Further analyses have been performed to explore the effects of ERPs among the
three mental tasks and three stimulus categories in order to find the best paradigms
for ERP-based BCI. The VPP at Pz electrode revealed a significant difference
between the object (task 1) and face (task 2, 3) stimuli (Fð2; 27Þ ¼ 5:9, p\0:01),
but there was no significant difference between neutral faces and emotional faces.
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The main effects of emotional faces at Pz and Cz electrodes indicated significantly
larger LPP (Cz: Fð2; 27Þ ¼ 3:94, p\0:032, Pz: Fð2; 27Þ ¼ 3:45, p\0:05) com-
pared to the neutral faces and objects stimuli and N250 at PO8 also revealed larger
negative potentials for neutral faces and emotional faces compared to the objects
stimuli (Fð2; 27Þ ¼ 7:48, p\0:003).

In order to investigate the effects of multiple ERP components related to dis-
crimination between target and non-target epochs, we applied the bi-serial cor-
relation coefficient r2 index to evaluate the discriminant ability of spatio-temporal
ERPs. Figure 3 illustrates that the most discriminative information consisted of
two parts: (1) VPP and N250 around 200 ms and (2) LPP at the time window
(400–800 ms). The r2 of LPP observed in the time window 400–800 ms were
more pronounced for affective face stimuli than the other two types of stimuli,
demonstrating that the main effects of emotion processing are reflected in the LPP.

Performance

To compare the performance of the three oddball paradigms, we performed a 5-
fold cross-validation procedure on single trial datasets by using various epoch
lengths changed between 100 and 800 ms after stimulus onset, as illustrated in
Fig. 4a. It is clear that the paradigm exploiting emotional faces with emotion
discrimination tasks outperform both of objects and neutral faces paradigms,
especially when the epoch length is longer than 400 ms. The ROC curve, as shown
in Fig. 4b, indicates that both emotional and neutral faces paradigms are superior
to the objects paradigm; in particular, the emotional faces paradigm greatly
improves the classification performance of the single trial EEG.
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Fig. 3 Spatial and temporal distribution of discriminative information. a topographic map of r2-
value at 250 and 450 ms. b r2-value for temporal features
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Real-Time Robotic Arm Control

We developed an online affective BCI system (Onishi et al. 2011) for controlling a
robot arm to deliver the food or drinks to the subject, which is potentially helpful
for the locked-in patients.2

Subsequent Work

Face perception may rely more on configural information (i.e. prototypical spatial
relationships between parts of the face) rather than other visual object perception
(Moscovitch et al. 1997). The inversion of a face can disrupt the configural face
information, thereby making the face processing slower and more difficult (Ros-
sion et al. 1999; Marzi and Viggiano 2007) (see Fig. 5). The two components of
N170 and VPP are believed to reflect the configural processing of the face (Eimer
2000; Itier and Taylor 2004), and their amplitudes and latencies can be modulated
by the inversion of the face (Itier and Taylor 2002). The modulation results from
the greater effort of face selectivity, since the increased difficulty for inverted face
perception recruits additional selectivity mechanisms besides those for upright
face perception. Hence, a preliminary BCI paradigm (Zhang et al. 2012) based on
the inverted faces has been developed.3 Also, the emotion information could be
integrated into the face perception, thereby resulting in emotion expression pro-
cessing. Then, how the loss of configural face information affects the emotion
expression processing and whether the effect is helpful for improving the perfor-
mance of BCI systems are interesting issues.

(a) (b)

Fig. 4 a Cross-validation accuracy for ERPs with varying length of EEG epoches. b ROC curves
under three different experimental conditions

2 The videos are available at http://www.bsp.brain.riken.jp/bci/.
3 see http://www.bsp.brain.riken.jp/bci/inverted_face_paradigm.wmv.
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Although the face-sensitive potentials N170 and VPP have an evocation
mechanism different from that of the motion-onset potential N200 (Guo et al.
2008), both of them are elicited by visual stimuli and have closed latencies with
relatively small inter-subject variability. Hence, it is possible that the combination
of face and motion perception may induce ERP components with relatively high
detectability and improve target detection performance for the visual stimuli-
driven BCI system. A BCI paradigm using stimuli of rotating (moving) faces has
been designed.4 Recently, a specific paradigm, named rapid serial visual presen-
tation (RSVP), has been increasingly studied for BCI, since it requires no eye
movements and provides therefore higher applicability for the patients whose
oculomotor systems are impaired (Acqualagnav et al. 2010). Then, a facial image-
based RSVP paradigm can be accordingly employed with our affective BCI.5 More
studies are needed for the aforementioned perspectives. Our current research
explores these issues and we expect to develop an improved BCI system using the
stimuli of facial images.

The EEG dynamics of emotional processing have attracted increasing interest
in recent years. For instance, the potential feasibility of emotion-classification and
augmented emotional communication system via a live musical performance has
been demonstrated in Makeig et al. (2011). Workshops on affective brain computer
interfaces were successfully held in the past two years, aiming to bring researchers

Fig. 5 Stimuli of upright faces and inverted faces used for ERP-based BCI

4 see http://www.bsp.brain.riken.jp/bci/RotatingFace.wmv.
5 see http://www.bsp.brain.riken.jp/bci/RSVP_Face.wmv.
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from the communities of brain computer interfacing, affective computing, neur-
oergonomics, affective and cognitive neuroscience together to present state-of-the-
art progress and visions on the various overlaps between those disciplines (Nijholt
et al. 2011).

The social interactions between two subjects will be explored in our future
research by connectivity patterns and causality networks, since it is of high
importance to understand how the subnetworks in two brains interact and syn-
chronize under the specific designed experimental protocol. In particular, the
hyperscanning of multiple brains or brain to brain (B2B) interfaces may help us to
extract more reliable features corresponding to the emotional state of subjects via
multiview learning theory.

Conclusions

In summary, our affective BCI paradigm and platform has the following features
and advantages: (1) Due to applying emotional faces and optimization of visual
stimuli, the classification accuracy can be significantly improved and the number
of repetition can be dramatically reduced as compared to the standard P300 using
stimulus of letters or symbols; (2) Instead of the standard P300, we rather exploit
emotion related multiple ERPs (VPP at Cz, LPP at Cz, N250 at PO8), which
allows us to increase reliability and performance of the visual stimuli driven BCI;
(3) Our BCI system is relatively easy to use and it is more reliable; (4) Since the
high level cognitive functions are involved to express the subjects’ voluntary
intention, our BCI is promising for rehabilitation of cognitive dysfunction rather
than motor dysfunction.
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Seven Degree of Freedom Cortical
Control of a Robotic Arm

Samuel T. Clanton, Angus JC McMorland, Zohny Zohny,
S Morgan Jeffries, Robert G Rasmussen, Sharlene N Flesher
and Meel Velliste

Abstract We have recently established simultaneous 7 degree-of-freedom (DoF)
brain-computer interface (BCI) control of a robotic arm. Using signals recorded
from single units of monkeys with implanted chronic microelectrode arrays, we
can now demonstrate brain control of a prosthetic arm that exhibits the following
features: (1) simultaneous 7-degree of freedom (DoF) brain control over 3-D robot
hand translation, 3-D rotation, and finger aperture, (2) integrated kinematic
(movement) and dynamic (force) control of a brain-controlled prosthetic robot
through a novel impedance-based movement controller, (3) simplified methods for
constructing cortical extraction models based only on observation of the moving
robot, and (4) a generalized method for training subjects to use complex prosthetic
robot devices using a novel form of operator-machine shared control.

Introduction

Since the discovery of models relating arm movement to neuronal population
activity in the motor cortex (Georgopoulos et al. 1982), there have been efforts to
recruit this activity to control external devices directly with the brain. Brain-
computer interface (BCI) prosthetic devices have the potential to aid the over
250,000 people in the US alone who suffer from debilitating motor deficits such as
spinal cord injury and ALS (Wyndaele and Wyndaele 2006). BCI systems can do
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this by bypassing motor lesions located outside of the CNS; cortical activity
reflecting subject intent can instead be expressed directly by action in a machine.

Progressively more sophisticated BCI systems have been demonstrated over the
last decade, moving from 2 and 3-dimensional control of a cursor on a computer
screen (Serruya et al. 2002; Taylor et al. 2002) to indirect (Taylor et al. 2003;
Carmena et al. 2003) and finally direct control of a 4 degree-of-freedom (DoF)
robot arm (Velliste et al. 2008). In the 4-DoF experiment, the use of an
anthropomorphic physical arm facilitated the monkey incorporating arm behaviors
related to its physical structure into its control. As we progress towards the control
of increasingly sophisticated prosthetic arms, the related concept of embodiment
gains importance; BCI prosthetic devices that incorporate features of natural
movement may be more easily mapped into familiar patterns of neural control.
Natural arm movements integrate hand rotation with translation and are
characterized by fluid transitions between arm and hand motions when reaching to
and interacting with objects. While these types of movements are desired in
prosthetic control models, no prosthetic arm will be able to directly reproduce the
exact movements and dynamics of a specific subject’s natural arm. Therefore,
effective models for BCI control will incorporate general principles of natural
movement without reliance on exact replication of subject physiology. We have
recently developed a brain-computer interface robot control system that directly
addresses these issues. Recording from single units in the motor cortex, we can now
demonstrate brain control of a prosthetic arm that exhibits the following features:

(1) simultaneous 7 DoF brain control over robot hand translation, rotation, and
finger aperture, (2) integrated kinematic (movement) and dynamic (force) BCI
control of a prosthetic robot, (3) simplified methods for constructing cortical
extraction models based on only observation of the moving robot, and
(4) a generalized method for training subjects to use complex prosthetic robot
devices using a novel form of operator-machine shared control.

7-DoF BCI Experiment

Two monkey subjects (F and G, both naive to brain control) were implanted with
96-channel chronic intracortical microelectrode arrays. Monkey F had a single
array in the right hemisphere while G had three arrays, two in the left and one in
the right hemisphere. Array locations for both monkeys are shown in Fig. 3.
Cortical activity captured with these arrays was used to drive the movement of a 7-
DoF robot arm with 4-DoF attached robot hand (Barrett WAM arm and Hand,
Barrett Technologies, Cambridge, MA) that was mounted to the right of the
subject (Fig. 1) in the experiment. The arrangement of the links of the prosthetic
robot were anthropomorphic except at the robot wrist, which replaced the
abduction/adduction joint at the hand with an additional axial rotation joint. The
reachable space of the WAM endpoint was similar to that of the human arm with
different joint space configurations in each endpoint pose. The brain-controlled
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movement variables in the experiment were the Cartesian linear and rotational
velocities of the whole hand, along with grasp aperture. Finger movements of the
hand were not always available due to malfunction, so that many control sessions
were reduced to 6-DoF execution.

Spiking activity in the brain was recorded using RZ2 (TDT Inc., Alachua, FL)
signal processing systems. For monkey F, a threshold at each electrode channel was
fixed at 5–7.5 times the standard deviation of measured voltage deflections and all
threshold crosses were counted as a neural spike of a single cortical unit. Monkey G
units were at first manually sorted from within waveforms crossing the threshold,
but later automatic threshold crossing was used with a small number of additional
units (10–15) manually sorted. Spike events were transformed to firing rates using
inter-spike interval times in 30 ms bins. Firing rates were filtered with an expo-
nential filter (width 15 bins, decay constant 0.95) throughout the experiment.

Cortical Decoder Calibration

During the first part of each daily control session, subjects observed the prosthetic
robot as it autonomously executed oriented grasping tasks. Each movement exe-
cution was prompted by the monkey reaching out and pressing a button with its
own unrestrained right hand. The presentation robot then moved the target to one

Fig. 1 The BCI control experimental setup with monkey, prosthetic, and targeting robot. Axes
representing robot base and hand coordinate frames are superimposed. Arrows correspond to the
X-Y-Z axes of the experiment
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of six orientations while the prosthetic robot moved to one of six positions on the
edges of the robot workspace (Fig. 2 illustrates the set of starting positions and
target orientations). Next, an audible cue was emitted to begin the trial. The robot
hand autonomously translated, rotated towards, then grasped the target as mea-
sured cortical spike rates and robot movement velocities were recorded in 30 ms
intervals. When the robot grasped the target, a liquid reward was delivered to the
monkey, the robot positions were reset, and the system waited for the next button
press. Trials timed out and were failed after 12–14s if the hand had not grasped the
cylinder. Trials were also aborted if the monkey stopped attending to the task or
was moving in the chair.

At the end of 18–40 observation trials, a cortical decoder was calibrated to
produce a model for generating movement commands from sampled spike rates.
Sampled robot velocities were filtered with a 15 bin boxcar filter. Samples of firing
rates and velocities in which a significant amount of movement was taking place
([0:02 m/s or rad/s total velocity) were used for calibration. 1000–3000 samples
were normally used for model calibration in each session.

The calibration process first fit a preferred-direction (PD) model of the rela-
tionship between individual unit firing rates and robot movements that included the
3-D linear and rotational velocities of the hand. PD models were originally used to
describe the cosine tuning properties of cortical neurons observed during hand
movements (Georgopoulos et al. 1982). A separate PD model working in parallel
was used to relate cortical firing rates to 1-D robotic hand aperture velocity.

Fig. 2 Starting positions of the hand (spheres) and orientations of the target object. 2 axial
rotation targets are superimposed in the center of the target set. The robot hand moved backwards
from the sphere closest to the center of the targets before orienting
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Sampled linear and rotational velocities were related to firing rates by linear and
rotational PD coefficients that comprised 6-D preferred directions for each unit.
The grip model employed a 1-D preferred direction model. By using linear and
rotational velocities as the controlled motor quantities in the arm movement
equation, the 6-D PD model operates over a 6-D vector space to control both linear
and rotational motion of the hand.

PD model calibration was followed by application of the minimal variance
Optimal Linear Estimation (OLE) method (Salinas and Abbott 1994; Chase et al.
2009) to produce a decoding matrix that transformed spikes to movement com-
mands for the remainder of the experimental session. OLE is similar to the well
known Population Vector Algorithm (PVA) but avoids bias introduced by non-
uniform distributions of preferred direction.

Linear and rotational tuning parameters (linear and rotational preferred direc-
tions) from one experimental session are shown in Figs. 4 and 5, showing the
distribution of PDs for both types of movement.

BCI Operator Training

After the model calibration period of each session, the experiment entered a
training phase in which the monkey learned to use the calibrated model to perform
the oriented grasping task. When naive monkeys were first introduced to the task,
they started by first performing 3-D linear control while the 4 remaining DoF of
the oriented grasping task were controlled automatically. After proficiency was
gained, the monkeys performed the 3-D rotational portion of the otherwise
autonomously controlled task. Finally, the 6-DoF control task was performed

Fig. 3 Locations of cortical implants in both monkeys. Square outlines are silhouettes of Utah
electrode arrays. M1 primary motor cortex, PM(d/v) dorsal/ventral premotor area, C central
sulcus, PCD precentral dimple, AS arcuate sulcus, Topography adapted from He et al. (1993)
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under brain control (examples shown in Fig. 6). Grip control was also performed
during all phases when the robot hand was available.

For each DoF under brain control, an operator-machine shared control system
adaptively modified subject control commands by comparison to sets of model

Fig. 4 Distribution of linear
preferred directions of
individual units from monkey
G calibration based on
observation data. An increase
in spike rate for each cortical
unit contributes to moving the
overall robot command signal
in the direction of its
corresponding preferred
direction

Fig. 5 Distribution of
rotational preferred directions
for the same units as Fig. 4.
Increases in spike rate for
each unit contribute a
rotational velocity command
with an axis in the direction
of the unit’s PD
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commands provided by an autonomous software program that modeled the motor
task in real time. The autonomous controller generated multiple movement com-
mands simultaneously that represented motion toward and approximation of the
range of robot poses that would complete the grasping task. This reflected the fact
that there are many ways that hands grasp objects, so that we allowed that flexi-
bility in using the brain-controlled arm and hand.

This is an extension of a type of error limiting shared control that was used for
training by Velliste et al. (2008). Using this system, robot movement was not
driven directly by the autonomous controller during training, but instead provided
a template for reducing noise and error in the brain-control signal. The use of
multiple commands in the template pointing towards the boundaries of allowable
grasps allowed flexibility in how the task was completed, while still providing
overall assistance.

The autonomous controller was also aware of the solid-body characteristics of
the target cylinder and hand; when the path towards task completion poses was
obstructed (e.g. the hand was behind the cylinder), generated commands would
point toward intermediate poses preceding those from which the task could be
completed. Automatic movements and the shared control algorithm at first pro-
vided a method for the monkey to learn the task sequence by demonstration and to
connect grasping task completion with reward; this set up the operant conditioning
paradigm used for training the monkeys. As the monkeys began to learn the
relationship between intent and movement control, the shared control system

Fig. 6 Three successful 7-DoF brain control trials with movement in different linear and
rotational dimensions. a Upward linear, left yaw motion, b Downward linear, right twist motion,
c Forward linear, downward pitch motion
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prevented cortical activity unrelated to the task and control error from taking over
robot movements. As the monkeys gained control skill, the shared control algo-
rithm acted like a set of adjustable training wheels on a bicycle. By manipulating
the underlying difficulty of the task using the shared control parameters, successful
completion and reward delivery were maintained at gradually increasing levels of
monkey skill, supporting monkey motivation throughout large numbers of control
training trials.

The shared control coefficients were raised over time in accordance with heu-
ristics developed by the investigators as a function of performance and perceived
motivation level of the monkey. By independently changing the rotational and
linear shared control coefficients, control challenges in each movement type could
be effected, allowing skill to be acquired at different rates for each movement
component. The goal of using the shared control system was to gradually reduce its
influence so that the monkey eventually fully controlled the device. Progress toward
full control was represented by the maximum shared control parameter level at
which task success could be maintained. Shared control provides a consistent
method to constrain the complexity of the BCI system, which is a major factor for
enabling training to take place when a large number of effector DoF are present.

Robot Motion Controller

PD model translational and rotational velocities were defined as the movement of
the robot about a control point with a fixed relationship to the hand
(Fig. 1, coordinate axis attached to robot hand). Linear velocity DoF describe
movement of this point through space, while rotation of the hand around this point
was the basis for the rotational DoF. During grasping of an object, the control point
was located at a location near the interface of the hand and the object. When the
hand was approximated to the object, we described the coordinate system as
‘‘object centered’’ such that linear and rotational degrees-of-freedom approached
independence. Translational and rotational DoF could be manipulated indepen-
dently while maintaining a relatively consistent relationship between the hand and
object in the other DoF. Use of this method allowed us to avoid problems with
dependency between the linear and rotational DoF during grasping which would
result from alternate motion parameterizations.

Velocity commands from the shared control system drove the movement of a
torque-controlled robot arm using a novel low-level motion controller that smoothly
integrated the control of arm kinematics and forces/torques at the hand. This system
was based on a method for Cartesian impedance control (Hogan 1985) with a
superimposed kinematic control model. Robot endpoint velocity was commanded
directly during unconstrained movements, but these commands also indirectly
controlled interaction forces when the arm was under an external load. This control
model is similar to one proposed for the interaction of force and velocity in the
cortical control of natural movements (Todorov 2000). It allows an intuitive
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mechanism for transition between movement and force interactions, in addition to
providing a controllably compliant and safe way to control the prosthetic arm in a
realistic environment. While more traditional rigid robots and robot controllers
would not be able to safely interact with objects, the monkey was able to use
impedance control characteristics of this arm to interact with the cylinder target and
other objects (including the monkey itself) even when its control skill was very low.

In addition to allowing trials to continue through frequent collisions between
the robot arm and objects, controlled compliant force interactions with environ-
mental objects augmented the realism of the overall task and enhanced the per-
formance of control trials. For instance, both monkeys were observed to use the
vertical extension of the fingers and linear translation to tilt the hand towards
pitched targets. The hand often became stuck behind the target cylinder; this was
allowed to happen freely. Both monkeys were observed to pull the hand backwards
in cases where the robotic compliance behavior of the robot would allow it to free
the hand, or around the object when it would not.
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Utilizing High Gamma (HG) Band Power
Changes as a Control Signal
for Non-Invasive BCI

M. Smith, K. Weaver, T. Grabowski and F. Darvas

Abstract Current electroencephalography (EEG) Brain-Computer Interface
(BCI) methods typically use control signals (P300, modulated slow cortical
potentials, mu or beta rhythm) that suffer from a slow time scale, low signal to
noise ratio, and/or low spatial resolution. High gamma oscillations (70–150 Hz;
HG) are rapidly evolving, spatially localized signals and recent studies have shown
that EEG can reliably detect task-related HG power changes. In this chapter, we
discuss how we capitalize on EEG resolved HG as a control signal for BCI. We
use functional magnetic resonance imaging (fMRI) to impose spatial constraints in
an effort to improve the signal to noise ratio across the HG band. The overall
combination lends itself to a fast-responding, dynamic BCI.

Introduction/Rationale

A Brain-Computer Interface (BCI) is a system that acquires and analyzes brain
signals with the goal of creating a communication channel between brain and the
computer (Wolpaw et al. 2002). BCIs have great potential to facilitate the lives of
paralyzed individuals with intact brain function but damaged cortico-spinal
pathways. Current BCIs typically rely on comparably slow cortical rhythms such
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as mu/alpha (8–12 Hz), beta (17–25 Hz), or evoked potentials (e.g. P300) as
control signals. While these systems are working, overall efficacy is limited due to
the time latency it takes, which is on the order of several hundred milliseconds, for
the rhythm amplitude to evolve (Wolpaw et al. 1997; Pfurtscheller 1999;
Pfurtscheller and Lopes da Silva 1999a; Prückl 2012). That is, the reliable
detection of a response can take seconds for BCIs based on these control signals.
This makes such systems unintuitive and cumbersome to use. Ideally a smaller
response lag is desired, i.e. 100 ms or less, to ensure a fluid, natural, and practical
alternative to input devices that rely on motor movements, such as keyboards,
mice, eye trackers, etc. This requires cortical responses that can change rapidly
within the desired lag time of the system. The high gamma (HG) band has these
properties; oscillations are greater than 80 Hz and detectable power shifts within
this frequency band occur on very short time scales (*50 ms) (Darvas and
Scherer et al. 2010). Another desirable property of the HG rhythm is that it is
spatially more focal than more slowly evolving potentials and thus highly specific
to a given task (Miller 2007). The HG band has been successfully used for BCI
control using invasive electrocorticography (ECoG) techniques, e.g. (Leuthardt
et al. 2004). It has been shown that HG activity can be detected non-invasively by
electroencephalography (EEG) around primary motor cortex prior to finger
movements (Darvas 2010). However, HG signals in EEG-BCIs suffer from two
problems, (1) low signal-to-noise ratio (SNR) and (2) overlap with electromyo-
gram (EMG) activity, i.e. muscle artifacts, which we propose to overcome by a
combination of signal processing and cortical mapping, utilizing the subject’s
individual head anatomy and constraining the signal source to fMRI-guided
regions of interest (Fig. 1). The objective of this project is to develop a rapid EEG-
based BCI that is capable of detecting motor preparatory signals prior to self-paced
finger movements, so that the decision is approximately coincident with EMG
onset, i.e., real-time.

Methods

Due to the highly focal nature of the HG rhythm, single scalp electrodes, if not
placed directly over the location of the source, can ‘miss’ power shifts in this band.
However, due the large range of potential changes for point sources, the entire
EEG montage can pick up these changes collectively, but with a very small signal
in each electrode. By forming a suitable linear combination of electrodes, i.e. by
using a linear inverse method, where scalp activity is mapped back to the cortical
sources, HG changes can be recovered (Fig. 2a).

In order to extract localized HG activity with EEG during motor tasks, we use
functional magnetic resonance imaging (fMRI) to determine an individual sub-
ject’s motor areas (Fig. 2b). fMRI allows us to indirectly localize brain regions of
interest (ROIs) that are active during specific tasks. fMRI contrast is rooted in the
blood oxygenation level dependent (BOLD) signal, which is thought to be a result
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of changes in blood flow, blood volume, and oxygen consumption that accompany
neural activity (Kwong 1992). For our study, subjects participated in three
movement related, block-designed fMRI tasks with interspersed periods of rest
accompanying each active task period: 1. Motor imagery, where the subject was
instructed to imagine moving their fingers in a specified sequence (pinch the thumb
and index finger, pinch the thumb and middle finger, and then pinch the thumb and
ring finger together) without actually executing the movement. The hand that the
subject was cued to image moving was presented at random. 2. Movement
observation, where the subject was instructed to watch a random presentation of
3 s video clips showing either a person’s hand performing the same finger tapping

Fig. 1 General outline of the proposed BCI system
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sequence the subject performed in the imagery task (see Fig. 3, top row), or trees
blowing in the wind (Fig. 3, bottom row) 3. Active movement, where the subject
physically executed a self-paced finger tapping sequence (pressing a button with
the index finger, middle finger, and then thumb). The motor imagery and active
movement tasks were performed in an interval-based fashion, alternating between
3 s movement blocks and rest.

Scanning was conducted at 3T (Philips Achieva) using an 8-channel head-coil.
Functional images for each task-based scan were collected using a gradient echo
T2* weighted sequence (TE/TR = 21/2) and fMRI data processing was carried
out using FEAT (FMRI Expert Analysis Tool) Version 5.98, part of FSL
(FMRIB’s Software Library, www.fmrib.ox.ac.uk/fsl). The preprocessing pipeline
included motion correction, high-pass temporal filtering for removal of liner drift,
a spatial filter of 5 mm full-width half maximum (FWHM) and a pre-whitening
filter to remove signal autocorrelations throughout the time-course. BOLD

Fig. 3 Video clips presented to the subject during the movement observation fMRI task

Fig. 2 Comparison of local brain activity mapped from a. An EEG-BCI motor imagery feedback
session. Map shows 90 Hz power changes relative to rest, where the subject was using left hand
imagery to hit a target on the right half of the screen. Activity has been mapped to the smoothed
white matter surface. b. fMRI BOLD signals projected onto white matter surface obtained from
left hand motor imagery sessions
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responses were estimated on an individual subject basis by applying a box-car,
general-linear model design with a standard hemodynamic response convolution.
Whole-brain BOLD activity was contrasted between active and rest periods,
converted into Z-scores and thresholded at Z [ 2.3 (uncorrected). Clusters of
significant active were masked into ROIs (Fig. 4). For each participant, all func-
tional data sets were co-registered into native MPRAGE space using a rigid-body
(6 degrees of freedom) registration and trilinear interpolation.

For source estimation and cortical surface reconstruction, T1-weighted high-
resolution MEMPRAGE and FLASH structural images were acquired using a 3.0
T Philips Achieva scanner. A 3D structural image was created for each participant
(Fig. 5) by averaging across all acquired echo times within the MEMPRAGE scan
and incorporating 2 FLASH sequences (flip angle = 5 and 30 deg) using

Fig. 4 Example of an fMRI
map showing active brain
regions in one subject during
the left hand motor imagery
task. Clusters were masked
into ROIs (images are
displayed in radiologic
convention)

Fig. 5 An example of an
individual subject’s
segmented head model
reconstructed from
MEMPRAGE and FLASH
MRI scans. Segmentation
shows the boundaries of the
outer skull, inner skull and
skin surfaces
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FreeSurfer (http://surfer.nmr.mgh.harvard.edu/ Fischl (2012). ‘‘FreeSurfer.’’ Neu-
roImage.) and MNE software (http://www.martinos.org/martinos/userInfo/data/
sofMNE.php).

After constructing an individual’s headmodel and localizing ROIs, we then use
a LCMV beamformer or MNLS approach (Darvas et al. 2004) to extract source
time series from specific ROIs (i.e. the motor areas) in real time using a 32 or 64
channel EEG montage. We propose to use a combination of HG, beta, and inter-
hemisphere synchronization frequency changes to drive a BCI from these ROI
time series. While the primary input signal will be the HG rhythms, we will use
beta power changes and phase-locking in the HG and mu frequencies, which show
specific changes during motor execution, to specify discrete on/off states, during
which the system will respond to HG power changes.

When mapping by an inverse method, muscle artifacts lead to spatially wide-
spread HG signal that masquerades as cortical activity (Fig. 6). We will utilize this
property of EMG artifacts to block the system’s response during muscle activity. In
our current implementation of the HG feedback BCI, which is externally paced, we
record baseline data prior to the control task and, in addition to spatial patterns, we
also use excessive HG power changes relative to baseline to detect muscle artifacts.

Preliminary Results

Our preliminary HG-BCI (Fig. 7) test paradigm consists of a simple, externally
paced 1D cursor control paradigm. The subject is presented with a fixation cross
for 2 s, followed by a target cue, i.e. either left or right. A cursor then moves up for
10 s, during which the subject can use left or right primary motor HG power to
move the cursor to the left or right half of the screen. We ran 4 healthy subjects
with 20 trials per subject. Overall, subjects achieved a mean success rate of 65 %
(60–70 % CFI at alpha \ 0.05) on HG power changes alone. In order to test
whether these non-random outcomes were achieved by genuine cortical activity or

Fig. 6 Example of EMG
contamination. The cortex
surface has been smoothed
for better visibility. Note that
there is a widespread activity
in the frontal cortex, probably
caused by facial muscle
contraction

88 M. Smith et al.

http://surfer.nmr.mgh.harvard.edu/
http://www.martinos.org/martinos/userInfo/data/sofMNE.php
http://www.martinos.org/martinos/userInfo/data/sofMNE.php


involuntary muscle artifacts, we segmented each successful trial, i.e. where the
correct target was hit, based on movements in the correct direction to form an
average map of cortical HG changes during such movements. Results are shown in
Fig. 8, revealing the lateralization of HG power with respect to the target (note that
subjects were instructed to imagine left hand movement for right targets and vice
versa for left targets).

Fig. 8 Mapping of HG power during left or right cursor movements. Top row Snapshot of HG
power 15–22 ms prior to cursor movement. Bottom panel time course of activity from -100 to
100 ms around cursor movement. There is a specific HG increase localized in the motor areas

Fig. 7 BCI paradigm
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Future Directions

Another goal of these experiments is to identify additional cortical areas in non-
motor regions (i.e. prefrontal regions) that are activated during voluntary move-
ment, movement observation, or motor imagery. Real time measures of synchro-
nization/interaction between these areas can be used to enhance specificity of the
premotor activity and thus facilitate real time detection.

Several additional future experiments are prompted by the observation that
ECoG signals for a given function (e.g. index finger flexion) differ depending on
the task’s context, such as pinching the thumb and forefinger together versus
making a fist. These cortical signals are also evident outside of the motor cortex.
Thus, it may be possible to decode movement context using information in pri-
mary motor or secondary motor areas, such as supplementary motor area (SMA).
By using these same fMRI approaches it may be possible to identify locations
where a specific activity pattern can decode motor context or intention among
movements such as: (1) simple, self-paced index finger flexion, (2) a pinch task
involving repetitive approximation of the tips of the thumb and index finger, (3)
fist-formation repeated over the interval, and (4) tactile exploration of objects.
After localizing these context specific regions, we can then attempt to use them to
support a BCI that will distinguish imagined from real hand movements. Incor-
porating signals that occur outside of the motor cortex to drive a BCI will have a
significant impact on people with impaired or limited brain and motor control, as
well as support a BCI with a more flexible range of output.
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Towards a Speech BCI Using ECoG

Eric C. Leuthardt, John Cunningham and Dennis Barbour

Abstract Electrocorticography (ECoG) has emerged as a new signal platform for
brain–computer interface (BCI) systems. Classically, the cortical physiology that
has been commonly investigated and utilized for device control in humans has
been brain signals from sensorimotor cortex. More recently, speech networks have
emerged as a new neurophysiological substrate that could be used to both further
improve on or complement existing motor-based control paradigms as well as
expand BCI techniques to new clinical populations. We review the emerging
literature associated with the scientific, clinical, and technical findings that provide
the motivation and capability for speech-based BCIs.

Disclosures: ECL has stock ownership in the company
Neurolutions.

Introduction

The use of electrocorticographic (ECoG) signals has recently gained cogent
interest as a potential platform for clinical application for impaired patients. This
interest is based in part on ECoG’s optimal tradeoff of signal fidelity and inva-
siveness. Compared with scalp-recorded electroencephalographic (EEG) signals,
ECoG has much larger signal magnitude, increased spatial resolution (mm vs. cm
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for EEG), and higher frequency bandwidth (0–500 vs. 0–40 Hz for EEG) (Ball
et al. 2009; Freeman et al. 2003; Boulton et al. 1990; Slutzky et al. 2010). Of
particular note, amplitudes in frequencies higher than 40 Hz carry information that
appears to be particularly amenable to BCI operation. These signals, which are
difficult to detect with EEG, are thought to be produced by smaller cortical
ensembles and show stronger correlation with neuronal action potential firings
than lower frequency rhythms (Ray et al. 2008; Heldman et al. 2006). Further-
more, these high-frequency changes have also been associated with numerous
aspects of speech and motor function in humans (Crone et al. 2001a, b, 1998b;
Leuthardt et al. 2004; Schalk et al. 2007a; Wisneski et al. 2008; Pei et al. 2010).
Because ECoG electrodes do not penetrate the brain, they have been shown to
have superior long-term stability in different animal models (Bullara et al. 1979;
Loeb et al. 1977; Yuen et al. 1987; Margalit et al. 2003; Chao et al. 2010). In
addition to its superior long-term stability, a study recently showed that the neural
substrate that encodes movements is also stable over many months (Chao et al.
2010). In summary, there is substantial evidence that ECoG may have important
advantages for brain-computer interface (BCI) operation.

Up to now, ECoG signals have been used to achieve rapid acquisition of control
in one- and two-dimensional cursor tasks in humans using actual and imagined
motor movements (Leuthardt et al. 2004; Schalk et al. 2008). It was unknown
whether other neurophysiological substrates, such as the speech network, could be
used to further improve on or complement existing motor-based control para-
digms. Human speech has been extensively studied using different types of neu-
roimaging (i.e., positron emission spectroscopy (PET) or functional magnetic
resonance imaging (fMRI)), neurophysiological functional mapping (i.e., magnetic
resonance imaging (MEG) or ECoG), lesional models, or behavioral studies
(Crone et al. 2001a; Price et al. 1996; Fiez and Petersen 1998; Towle et al. 2008;
Sinai et al. 2005; Pulvermuller et al. 2006; Dronkers et al. 2004). These and other
studies have shown that speech processing involves a widely distributed network
of cortical areas that are located predominantly in the perisylvian regions (Specht
and Reul 2003; Scott and Johnsrude 2003). In particular, these regions include
Wernicke’s area, which is located in the posterior–superior temporal lobe, and
Broca’s area, located in the posterior-inferior frontal gyrus (Fiez and Petersen
1998; Towle et al. 2008; Billingsley-Marshall et al. 2007). Other findings have
suggested that left premotor cortex also plays a major role in language tasks, in
particular for the planning of articulation and speech production (Duffau et al.
2003; Heim et al. 2002). Given the broadly distributed network associated with
speech and the intuitive nature by which people regularly imagine speech, the
separable physiology and the different cognitive tasks of using linguistic intent
may provide the basis for BCI control that can be used independently or as an
adjunct to motor-derived control. Some recent studies have begun to explore the
value of these language networks for the purpose of neuroprosthetic applications.
Early on, Wilson et al. demonstrated that auditory cortex can be used for real-time
control of a cursor (Wilson et al. 2006). More recent studies have shown initial
evidence that some phonemes and words are separable during actual speech with
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ECoG (Blakely et al. 2008; Kellis et al. 2010; Schalk et al. 2007b), but concrete
evidence that BCI control can be achieved using the speech network has only
recently been demonstrated (Leuthardt et al. 2011).

In this chapter, we will examine the relevant scientific and clinical findings to
support the motivation of a linguistic BCI, the methods of ECoG–BCI, the current
demonstration of feasibility, and future directions for translating the current state
of the art towards a clinical application.

Motivation for Speech BCI

The most human of all abilities is the capacity to verbally communicate rich and
varied ideas to other members of our species. Neurological disorders that rob
individuals of this capacity are consequently some of the most dehumanizing.
A subset of these disorders spares the speech and language brain centers while
eliminating the capacity to engage the vocal apparatus itself (Karnell et al. 1999;
Roy et al. 2005; Altman et al. 2007). A diverse number of diagnoses fit into this
category, ranging from locked-in stroke patients, ventilator-dependent high spinal
cord injury, post-laryngectomy for head and neck cancers, and a number of voice
disorders affecting motoric control within the larynx. Altogether, an estimated
7.5 million Americans have trouble using their voice (http://www.nidcd.nih.gov/
health/statistics/vsl/Pages/stats.aspx).

Much as individuals with spinal cord injuries could benefit from a treatment
that reliably extracts intended movements from the brain and turns them into
actions (Leuthardt et al. 2006), patients with aberrant vocalization capability could
also benefit from a treatment capable of turning their thought patterns into spoken
or written words. A brain–computer interface (BCI) represents a combination of
hardware and software that together can extract intentions from the subject’s
cortical physiology to enhance the user’s control and communication capability
(Wolpaw et al. 2000). To date, extensive BCI work has aimed to infer motor
intentions using both invasive and noninvasive cortical signals (Leuthardt et al.
2004; Schalk et al. 2008; Taylor et al. 2002; Hochberg et al. 2006; Wolpaw and
McFarland 2004). Work performed on a speech BCI, however, has thus far been
more limited. While numerous techniques have been developed to transpose
motor-derived intentions/signals onto various types of spellers, only a few studies
have attempted any form of direct linguistic decoding. The earliest example is
work in which a neurotrophic electrode was placed in motor cortex and used to
decode various phonemes in a single locked-in subject (Kennedy and Bakay 1998).
When used for real-time vowel articulation, moderate information transfer rates
were achieved (0.57 and 6.97 bits/min) (Guenther et al. 2009). More recent studies
using electrocorticography (ECoG) have proven promising (Kellis et al. 2010).
Substantial decoding capability has been demonstrated in perisylvian cortex
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associated with the perception and articulation of speech (Leuthardt et al. 2011;
Pei et al. 2011; Mesgarani and Chang 2012; Pasley et al. 2012). In the expression
of both overt and covert speech, left posterior inferior frontal lobe (putatively
Broca’s region) appears to yield the substantial phonetic information (Pei et al.
2011). Phoneme-related ECoG signals were also recently shown to enable rapid
and effective choice selection in four human subjects (Leuthardt et al. 2011).

Taken together, a critical need exists to devise alternate methods for patients
with vocalization impairments to communicate their wishes. If motor BCIs are
analogous to a computer mouse, then a linguistic BCI is analogous to a keyboard,
allowing the juxtaposition of many discrete commands (keys/letters) to convey
complex ideas (e.g., sentences using a particular vocabulary). Just as communi-
cating ideas with a mouse alone would be cumbersome and inefficient, so too
would using a continuous-style BCI to communicate the wishes of a patient unable
to speak. Recent research is emerging that the possibility for such a communi-
cation technology is now possible.

General ECoG–BCI Methods

A BCI is a device that can decode human intent from brain activity alone in order
to create an alternate communication channel for people. More explicitly, a BCI
does not require the ‘‘brain’s normal output pathways of peripheral nerves and
muscles’’ to facilitate interaction with one’s environment. (Wolpaw et al. 2000,
2002) Thus, a true BCI creates a completely new output pathway for the brain. As
a new output pathway, the user must have feedback to improve the performance of
how they alter their electrophysiological signals. The brain must change its signals
to improve performance, but additionally the BCI may also be able to adapt to the
changing milieu of the user’s brain to further optimize functioning. This dual
adaptation requires a certain level of training and learning curve, both for the user
and the computer. The better the computer and subject are able to adapt, the
shorter the training that is required for control.

There are four essential elements to the practical functioning of a brain com-
puter interface platform.

1. Signal acquisition, the BCI system’s recorded brain signal or information input.
2. Signal processing, the conversion of raw information into a useful device

command.
3. Device output, the overt command or control functions that are administered by

the BCI system.
4. Operating protocol, the manner in which the system is altered and turned on and

off (Wolpaw et al. 2002).
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All of these elements play in concert to manifest the user’s intention to his or
her environment.

Signal acquisition is some real-time measurement of the electrophysiological
state of the brain. This measurement of brain activity is usually recorded via
electrodes. In the case of ECoG, the electrodes are beneath the skull and either
above or below the dura. (Leuthardt et al. 2004, 2006b; Schalk et al. 2004). Once
acquired, the signals are then digitized and sent to the BCI system for further
interrogation.

In the signal processing portion of BCI operation, there are two essential
functions: feature extraction and signal translation. The first function extracts
significant identifiable information from the gross signal, the second converts that
identifiable information into device commands. The process of converting raw
signal into one that is meaningful requires a complex array of analyses. These
techniques can vary from assessment of frequency power spectra, event related
potentials, and cross-correlation coefficients for analysis of ECoG signals (Moran
and Schwartz 1999; Levine et al. 2000; Pfurtscheller et al. 2003) The impetus for
these methods is to determine the relationship between an electrophysiologic event
and a given cognitive or motor task. As an example, after recordings are made
from an ECoG signal, the BCI system must recognize that a signal alteration has
occurred in the electrical rhythm (feature extraction) and then associates that
change with a specific cursor movement (translation). As mentioned above, it is
important that the signal processing be able to adjust to the changing internal
signal environment of the user. In regards to the actual device output, this is the
overt action that the BCI accomplishes. As in the previous motor-based BCI
examples, this can result in moving a cursor on a screen, controlling a robotic arm,
and driving a wheelchair (Leuthardt et al. 2006a). In the case of a linguistic BCI,
this would control would be manifested as the articulation of speech in the form of
an auditory or visual output. This output could be the discrete conjunction of
linguistic components (i.e. letters or phonemes) (Leuthardt et al. 2011) or be the
continuous representation of formants (Mesgarani and Chang 2012).

An important consideration for practical application is the overall operating
protocol. This refers to the manner in which the user controls how the system
functions. The ‘‘how’’ includes such things as turning the system on or off, con-
trolling what kind of feedback and how fast it is provided, how quickly the system
implements commands, and switching between various device outputs. These
elements are critical for BCI functioning in the real world application of these
devices. In most current research protocols, these parameters are set by the
investigator. In other words, the researcher turns the system on and off, adjusts the
speed of interaction, or defines very limited goals and tasks. These are all things
that the user will eventually need to be able to do by himself in an unstructured
applied environment.
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Linguistic ECoG–BCI

Study Overview

Leuthardt et al. demonstrated for the first time that ECoG signals associated with
different overt and imagined phoneme articulation can enable invasively monitored
human patients to control a one-dimensional computer cursor rapidly and accurately
(Leuthardt et al. 2011). This study included four patients (ages 36–48) with
intractable epilepsy undergoing temporary placement of a subdural electrode array
for clinical monitoring to identify and resect their epileptic foci. In addition to
standard clinical arrays (64 electrodes (8 9 8) spaced 10 mm apart, with a 2.3 mm
diameter), Subject 2 had an experimental microarray placed consisting of 16 mi-
crowires, 75 microns in diameter, that were spaced 1 mm apart (Fig. 1). Electro-
cortical signals were acquired using g.tec biosignal amplifiers (Graz, Austria) with
sampling rate of 1200 Hz, and bandpass filter between 0.1 and 550 Hz.

Patients underwent initial screening to identify control features for use in
subsequent closed-loop control experiments. This screening procedure began with
an experiment in which ECoG signals were recorded while the subject either
overtly (patient 1, 2, and 3) or covertly (patient 3 and 4) expressed a series of four
phonemes (‘oo’, ‘ah’, ‘eh’, and ‘ee’) or rested. Cues for the rest and phoneme tasks

Fig. 1 Clinical and research electrode arrays. Reprinted with permission from Leuthardt et al.
(2011)
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were presented as words on a video screen. During intervals between cued activity,
patients were instructed to remain inactive. The data was converted to the
frequency domain by autoregressive spectral estimation in 2 Hz bins ranging from
0 to 550 Hz. For each electrode and frequency bin, candidate features were
identified by calculating the coefficient of determination (r2) between the ‘‘rest’’
spectral power levels and the activity spectral power levels for each phoneme, and
also between spectral power levels for all possible phoneme combinations. Those
ECoG features (particular electrodes and frequency bins) with the highest r2 values
were chosen as control features for subsequent closed-loop control experiments.
Electrode selection was further constrained to anatomic areas associated with
speech processing (i.e., motor cortex, Wernicke’s, and Broca’s area).

Using the ECoG features and their associated tasks that were derived using the
screening procedure above, the patients participated in closed-loop control
experiments during which the patients’ objective was to perform the particular
phoneme articulation task so as to move a cursor on a screen along one dimension
to hit a presented targeted on either side of the screen. Two scenarios were tested,
(1) phoneme versus phoneme (patients 1 & 2); and (2) phoneme versus rest
(patients 3 & 4). Cursor velocity was derived from the ECoG features in real-time
by the BCI2000 software package. Accuracy, calculated as number of successes
divided by the total number of trials, was assessed after each block. Performance
curves were assessed over the entire duration of the closed-loop experiments
(multiple blocks) after training with a particular task and associated set of control
features. Patients performed between 61 and 139 trials for control.

Each subject demonstrated notable widespread cortical activations associated
with overt and imagined phoneme articulation. Additionally, in each subject, par-
ticular locations and ECoG frequencies separated phonemes from rest, and also
phonemes from each other (Fig. 2). These locations were in Wernicke’s area,
Auditory Cortex, Premotor Cortex, and Sensorimotor Cortex. For each of the
patients, one or more sites were used to either distinguish the phoneme articulation
versus rest (subject 3 & 4), or one phoneme versus another phoneme (subject 1 & 2).
Consistent with findings by Gaona et al., which demonstrated significant nonuni-
form behavior of gamma activity during speech tasks, we observed that a cortical
activation for different phonemes could occur at different gamma frequencies, even
within the same location (Gaona et al. 2011). These frequencies varied substantially
and occurred as high as 550 Hz. Also of note in the patient who was screened for
both real and imagined phonemes, the ECoG differences, with regards to their
topographical and frequency distribution, were often distinct between real and
imagined phoneme articulation. These differences are shown for Subject 3 in color-
coded time–frequency plots with the correlate anatomic location (Fig. 3). Our
findings demonstrate that there are widespread variations in topographic activations
between different phoneme articulations that provide signals that could be used for
device control. Such differences between phonemes were also present on the
microscale. The time course of the subject’s performance during online control is
shown in Fig. 4. Final target accuracies for all patients were between 68 and 91 %.
Closed-loop control experiment durations ranged from 4 to 15 min. Subject 2 had a
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microgrid that was placed over dorsal premotor cortex. Feature plot demonstrated
anatomically and spectrally diverse changes that occurred at very high frequencies
that enabled effective control of a cursor.

This study reports the first demonstration that ECoG signals associated with
different actual and imagined phoneme articulations can be used for rapid and
effective BCI control. This novel demonstration of ECoG–BCI is also the first
evidence that microscale ECoG recordings can be utilized for device control in
humans. It is also notable that, distinct from the motor physiology experience,
cortical signals between real and imagined speech articulation are different. This is
an important consideration for optimally screening signals that will be subse-
quently used for BCI control when the speech network is to be used. Taken
together, these findings further expand the range of ECoG signals and cognitive
operations that could be used for neuroprosthetic operation, demonstrate important
methodological considerations for use of a speech BCI, and also demonstrate that
the implanted array hardware may be quite small and minimally invasive.

Fig. 2 The optimal comparisons of various phoneme articulations against each other or against
rest are shown for each subject. In the r2 versus frequency line plots, the dotted red line represents
a p value cutoff of p \ 0.001 for the r2 values displayed. The data from these line plots are
anatomically derived from the site identified by the star. These sites were also chosen as
subsequent control features. The yellow bar represents the frequency that was chosen for control.
The color distribution on the adjacent standardized brains represents the topographic distribution
of the maxima and minima of r2 values acquired for the conditional comparisons of the selected
frequency band. a Patient 1: 00 vs EE b Patient 2: 00 vs AH c Patient 3: EH vs Rest d Patient 4:
EE vs Rest. Reprinted with permission from Leuthardt et al. (2011)
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Future Directions

Implant Localization

Preoperative planning takes on new importance as neuroprosthetic research
translates from scientific enquiry to clinical applications. The necessary first step
towards the creation of a speech-relevant neuroprosthetic is knowing where to
surgically implant it. Given the variability in location of speech cortex in neuro-
logically intact human subjects (Sanai et al. 2008; Ojemann et al. 1989), correctly
identifying the anatomic location for a small cortical implant is critically impor-
tant. There will need to be special considerations for expressively impaired sub-
jects that will be distinct from current patient populations that require brain
mapping. Centrally, these will be patients that have the cognitive capability to
speak, but are unable to physically do so due to motor or articulatory impairment.

Currently, preoperative mapping is principally performed in patients with
lesions (e.g. seizure focus or tumor) that are adjacent to eloquent cortex. Typically,
these patients are intact and able to participate in a cognitive task that corresponds

Fig. 3 Time frequency plots from three exemplar electrodes that demonstrate substantial
differences in power modulation depending on whether overt or imagined speech screening was
performed. Time zero indicates the time when the visual cue for a phoneme was presented.
Significant power modulation was thresholded to a p value \ 0.05. Only power modulations
surpassing that threshold are shown. Reprinted with permission from Leuthardt et al. (2011)
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to the site of interest. The most common technique for identifying functional
anatomic sites is the use of task-based functional MRI. In a typical application, the
subject alternates between a passive resting state and performing a task. During
these periods, the BOLD signal is measured in the MR scanner and the two images
are subtracted from each other to reveal areas of the brain that were activated
during the prescribed task (Bandettini et al. 1992; Kwong et al. 1992; Ogawa et al.
1992). While this task-based approach has been explored for preoperative mapping
in the context of BCI applications in the past (Hermes et al. 2011a, b), this may not
be an optimal approach in that there is limited validation that the patient is
‘‘imagining’’ the appropriate task and that this will be similar to the actual cog-
nitive task performed when trying to use a prosthetic. Rather, a more uniform
approach is needed that does not depend on the impaired patients’ participation for
localization, yet is still able to identify their unique functional topography.

The localization of eloquent regions with resting-state cortical physiology as
measured by spontaneous BOLD fluctuations (extra-operatively) will likely
overcome these participation related problems. Spontaneous BOLD fluctuations
are low frequency (\0.1 Hz) oscillations in neuronal activity that are anatomically
correlated within distinct functional networks (Fox and Raichle 2007). First
reported by Biswal et al., there is strong coherence which is reproducibly present
between the left and right somatomotor cortices (Biswal et al. 1995; Fox et al.
2006), between language areas (Cordes et al. 2000; Hampson et al. 2002), and
between numerous other functional regions in the absence of task performance.
Using spontaneous activity, one can generate resting-state correlation maps that
are similar to the functional maps obtained from task activations (Smith et al.

Fig. 4 Learning curves for BCI control tasks. Dotted line represents chance. Reprinted with
permission from Leuthardt et al. (2011)
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2009). Additionally, it appears that these resting state networks are stable
throughout transitions in sleep wake cycles and transitions in consciousness from
anesthesia (Breshears et al. 2010; He et al. 2008; Vincent et al. 2007), making
them potentially more useful in that not only are these networks task independent,
but also independent of the level of consciousness. Thus far, the use of resting state
networks for pre-surgical planning is a very recent development with limited
publications (Kokkonen et al. 2009; Liu et al. 2009). Moreover, the comparisons
performed thus far between resting state fMRI and brain mapping have been in
regards to cortical stimulation and not the endogenous activity when the subject is
performing a cognitive operation.

To date, two perisylvian regions have been shown to demonstrate significant
linguistic information in the surface cortical electrophysiology. ECoG recordings
from posterior superior temporal gyrus (pSTG) have been used to decode complex
auditory speech perceptions (Mesgarani and Chang 2012), and posterior inferior
frontal regions have been optimal in decoding overt and covert speech vowels and
consonant expressions (Pei et al. 2011). Given the large degree of variability in
speech localization, it will be important to identify these high information bearing
regions prior to their surgical exposure when considering device implantation.
Taken together, there is a strong emerging need to integrate these physiologic
findings to the state invariant cortical architecture. These findings will provide the
foundation for an important tool in neuroprosthetics, namely identifying optimal
loci for neuroprosthetic implantation in a clinically efficient manner.

Advanced Recording and Signal Analysis Techniques

Electrocorticography was developed within neurosurgery as a tool to probe
cortical physiology to better define seizure foci and map eloquent cortex (Goldring
et al. 1994; Goldring and Gregorie 1984). The development of implanted electrode
arrays to monitor seizure behavior in epilepsy patients revealed for the first time
high-resolution brain activity in humans performing cognitive tasks (Lesser et al.
1987). Naturally, these arrays were optimized for clinical considerations to
localize seizure foci. Only relatively recently was it appreciated that, though
significantly weaker, high frequencies could be recorded from ECoG electrodes
reliably enough to control a BCI (Crone et al. 1998b; Leuthardt et al. 2004). High-
frequency potentials are known to reflect more local brain activity (Crone et al.
1998b; Manning et al. 2009; Miller et al. 2009) than the more traditional lower
frequencies (Crone et al. 1998a), raising the possibility that compact ECoG arrays
(‘‘microscale arrays’’ or ‘‘microgrids’’) could record independent signals on each
channel and enable multichannel BCI control on a smaller scale. This combination
of a compact, nonpenetrating, multichannel BCI represents a compelling combi-
nation of characteristics for a communication prosthetic. Compact penetrating
arrays have indeed been successful at extracting linguistic intent from motor
cortex (Brumberg et al. 2011), and although Broca’s region has been postulated to
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be an excellent candidate area for a linguistic BCI (Brumberg et al. 2010), this
possibility has only been minimally explored (Leuthardt et al. 2011). Before an
ECoG Broca’s prosthetic can be exploited, several basic questions must be
addressed. (1) Are linguistic ECoG signals concentrated spatially? (2) Can
linguistic ECoG signals be reliably extracted with small electrode contacts? (3)
What is the resolution of linguistic ECoG signals that can be independently
controlled by subjects? The resolution of linguistic signals within a speech center,
such as Broca’s or Wernicke’s, is an unsettled question. Theoretical studies of
surface electrodes sampling current sources from the brain surface imply that
electrodes spaced as closely as 600 microns may extract nearly independent sig-
nals (Slutzky et al. 2010). Experiments seeking to address this question in macaque
monkey primary motor cortex during closed-loop control tasks yield estimates of
independent signal spacings of 2–4 mm (Rouse et al. 2010; Wheeler et al. 2011;
Wodlinger et al. 2011). Independent signals in human Broca’s region likely lie
within this range. The functional heterogeneity with this area implies that the
optimal electrode array spacing for extracting the most independent channels could
be variable and/or different from other brain areas (Sahin et al. 2009). Thus,
regarding hardware optimization for electrode interfaces for a speech BCI, there
still is a large need for empiric evaluation.

In addition to hardware optimization, there is also a need to developed advanced
analytic tools that are optimized both for ECoG-based platforms and speech-related
physiology. To address the first point, as ECoG–BCI platforms become more
widely studied and applied for clinical translation, new techniques of signal analysis
and feature extraction that are specifically tailored to ECoG will be critical. The
majority of feature extraction algorithms for ECoG–BCI have borrowed heavily
from techniques originally developed from electroencephalography (EEG) (Wol-
paw et al. 2000; Schalk and Leuthardt 2011). Currently the most widely published
paradigm has been the use of amplitude modulation of sensory motor rhythms of
somatomotor cortex or motor-associated cortex site (Leuthardt et al. 2004; Wilson
et al. 2006; Leuthardt et al. 2006b; Felton et al. 2007). A key distinction between
EEG and ECoG, however, has been ECoG’s more robust access to higher frequency
gamma rhythms. Because these changes in gamma power have a more local cortical
topography (Miller et al. 2007) and are more correlated with single neuron action
potential firing (Manning et al. 2009), they have enabled rapid learning of simple
BCI tasks (Leuthardt et al. 2004). Moreover, ongoing research has demonstrated
gamma rhythms to be more spatiotemporally complex than initially inferred from
the original EEG-influenced descriptions. Early reports distinguished between a
lower gamma band (35–45 Hz) and a higher gamma band (80–100 Hz) in ECoG
signals (Crone et al. 2001b). Gamma activity has also been posited to be the net
result of asynchronous neuronal firing, which results in a more uniform broadband
noise-like phenomenon that declines in amplitude as frequency rises. More recent
findings provide new evidence for functionally separable frequency bands. Gaona
et al. showed that, during a word repetition task, gamma sub-bands distinguished
stages of the task (for a given location) and differentiated cortical locations (for a
given stage of task) (Gaona et al. 2011). Additionally, these different gamma sub-
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bands, both on the macroscale and microscale, have been used for device control in
humans (Leuthardt et al. 2011). Beyond these specific examples, numerous signal
analysis techniques have been used to investigate information content in ECoG
signals, across various motor, speech, perceptual, and attentional related cognitive
tasks (Schalk et al. 2007a; Chao et al. 2010; Mesgarani and Chang 2012; Pei et al.
2011; Gunduz et al. 2011; Wang et al. 2011). Thus, while much foundational work
has explored both the broadband and narrowband phenomenology, further algo-
rithmic advances are required to fully utilize the complexity of these signal features
for more advanced BCI operation.

Regarding the second point, advanced analytic techniques that capitalize on the
unique physiology and technical aims of a speech BCI still need to be refined.
Here, we draw principally from penetrating electrode BCI work, including early
developments in speech categorization (Kennedy and Bakay 1998; Guenther et al.
2009; Brumberg et al. 2011) and other work in motor communication prostheses
(Santhanam et al. 2006; Shenoy et al. 2006; Cunningham et al. 2008). Most BCI/
BMI literature focuses on decoding moment-by-moment parameters from the
recorded signal. In the context of communication such as a speech BCI, decoding
the discrete goal of the brain activity is critical, not the moment-by-moment
parameters. The same recognition has been made in motor prostheses: if used as a
communication device (such as typing on a keyboard), the discrete choice of
which key to type is the goal, not the intended path to reach to that key. This
distinction has been successful in motor cortex with penetrating electrodes to
accomplish a high bit-rate BCI in primates (Santhanam et al. 2006; Shenoy et al.
2006; Cunningham et al. 2008). More closely, work has been done with pene-
trating electrodes in speech categorization. Most notably, the recent work of
Brumberg demonstrates proof of concept and a number of relevant classification
algorithms (Brumberg et al. 2011). Thus, between the needed developments in
ECoG signal recording and analysis, and the needed algorithmic advances for
decoding, a specific need exists to develop decoding and control algorithms that
are both ECoG and speech specific.

Conclusion

The ability to vocalize speech is central to a human being’s ability to engage and
interact in a modern society. Recent advances in brain imaging and cortical
recordings from both humans and monkeys make the possibility of converting
speech intentions from the human brain a plausible future consideration for
patients with vocalization impairment. Creating a speech neuroprosthetic that is
reliable and will convey a functional level of linguistic content will require further
research in the cortical physiology underpinning human speech and the imaging
methodology, hardware, and software to implement these insights into real world
clinical application.
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Towards Communication
in the Completely Locked-In State:
Neuroelectric Semantic Conditioning BCI

Daniele De Massari, Carolin A. Ruf, Adrian Furdea,
Sebastian Halder, Tamara Matuz and Niels Birbaumer

Abstract We introduced a Pavlovian semantic conditioning paradigm to enable
basic communication in completely locked-in state (CLIS). Patients in CLIS have
no means of communication and they have represented the target population for
brain–computer interface (BCI) research in the last 15 years. Although different
paradigms have been tested as well as different physiological signals have been
used, to date no documented CLIS patient was able to control a BCI over an
extended time period. We designed a novel paradigm based on semantic condi-
tioning for online classification of neuroelectric or any other physiological signals
to discriminate between covert (cognitive) ‘yes’ and ‘no’ responses. The paradigm
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comprised the presentation of affirmative and negative statements used as condi-
tioned stimuli and only affirmative statements were paired with electrical stimu-
lation. A CLIS patient diagnosed with amyotrophic lateral sclerosis (ALS)
participated in the study and underwent 37 daily sessions. The online classification
accuracies of the slow cortical potentials, identified as the electroencephalographic
(EEG) signature differentiating between covert ‘yes’ and ‘no’ responses, were
around chance level on average, with peaks of high communication accuracy in
some sessions.

Several neurological diseases such as amyotrophic lateral sclerosis (ALS), mus-
cular dystrophy or high spinal cord injury may lead to severe or complete motor
paralysis, making communication hard or even impossible. In case of ALS, the
disease could progress to total paralysis and is fatal unless the patient chooses to be
artificially ventilated and fed. The state of severely paralyzed patients with residual
voluntary control of particular muscles (e.g. eye muscles, lips, fingers) is known as
the locked-in state (LIS) (Bauer et al. 1979; Kübler and Birbaumer 2008). There
are also patients who lose all motor control resulting in the completely locked-in
state (CLIS) (Birbaumeret al. 2008). These patients have the greatest need for a
system that restores communication and interaction with the social environment.
In this framework, a Brain-Computer Interface (BCI) represents an attractive
alternative as a communication aid.

In the past, numerous studies described BCIs successfully controlled by LIS
patients (e.g. to select characters and thus to communicate) with different para-
digms, e.g. using slow cortical potentials, sensory motor rhythm modulation or the
P300 event-related potential (ERP) component (Birbaumer et al. 1999; Neuper
et al. 2003; Kübler et al. 2005; Halder et al. 2010). However, in the literature there
are no studies reporting a case of successful control of a BCI by patients in CLIS.
In their meta-analysis of 29 patients in different stages of physical impairment and
trained with BCIs, Kübler and Birbaumer (2008) showed that none of the seven
CLIS patients ever achieved BCI control despite intact passive cognitive func-
tioning assessed with a battery of cognitive event-related potential-tests (Kotc-
houbey et al. 2002, 2003). Moreover, all of the CLIS patients were already in CLIS
at the beginning of their BCI training. At the same time, the analysis revealed that
patients with some remaining muscle control learned to use the BCI (Kübler and
Birbaumer 2008). More recently, Murguialday et al. (2011) monitored the tran-
sition from LIS to CLIS of an ALS patient with electrophysiological measures
which led the authors to suggest the use of afferent pathways which are different
from the visual system for feedback in order to achieve reliable BCI-based
communication in CLIS. Indeed, most patients with extended paralysis of eye-
muscles develop disorders of fixation and vision due to necrosis of the cornea
(Birbaumer 2006; Murguialday et al. 2011). For this reason, the experiment
introduced herein used auditory and electrical stimuli, which involved different
afferent pathways.

One possible explanation for the failure of CLIS patients to achieve BCI
communication can be found in learning theory. According to this, if thoughts or
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intentions are not reliably followed by their anticipated consequences in the out-
side world, they extinguish as any other behavior. In this respect, it has been
hypothesized that CLIS patients present an extinction of output directed and goal
oriented thoughts, which could lead to a state incompatible with operant learning
(Kübler and Birbaumer 2008). Consequently a classical conditioning rather than
instrumental-operant learning paradigm, requiring less attentional resources and
voluntary efforts could represent a better alternative for people in CLIS. This
supposition is supported by the work performed by Dworkin and colleagues during
the 70s and 80s. They could not replicate the results obtained previously by
Miller’s group (Miller 1969) who were able to train artificially ventilated and
curarized rats to control autonomic function, such as heart rate, through operant
learning. Dworkin hypothesized that the failure was due to the absence of a
homeostatic effect of the reward involved (Dworkin and Miller 1986). The body
functions of curarized and artificially ventilated rats were kept constant, thus no
change in the equilibrium of these functions occurred during the experiment and
the reward did not induce any homeostatic restoration. Similarly, external medical
devices keep the body functions of a CLIS patient constant, depriving any reward
of its homeostasis-restoring effects.

Classical conditioning is a type of learning that was discovered by Ivan Pavlov
(1960) during his studies on digestion. Commonly, during classical conditioning a
neutral conditioned stimulus (CS) is repeatedly paired with a biologically relevant
(e.g. aversive) unconditioned stimulus (US). Once a CS-US association has been
formed the CS produces a conditioned reaction (CR) in anticipation of the US
(Moore 2002). Another associative learning technique is semantic conditioning
which is based on the generalization of CRs along a semantic dimension (word-to-
word transfer). Specifically, semantic conditioning refers to conditioning of a
reflex to a word or sentence irrespective of the particular constituent letters or
sounds of the words (Razran 1961). It has been shown that CRs (e.g. saliva
secretion, galvanic skin response, heart rates) to specific words or sentences can be
transferred to other words or sentences with similar meaning (Razran 1939, 1949;
Lacey and Smith 1954). For instance, if a subject is exposed to the pairing of the
word ‘stone’ with an electric shock until the word alone generates a heart rate
change (CR), typically this CR would be elicited also by presenting a semantically
related word (e.g. ‘rock’ in this example). This concept is known as semantic
generalization, whereas phonological generalization is based on the principle that
the subject would also manifest the CR in response to a phonologically similar
word (e.g. ‘stain’ in this example) (Motley 1974).

Within this project we propose a classical semantic conditioning design to
allow basic yes/no communication. More precisely, we intend to condition cortical
responses to the correctness of a statement. Previously, the study of Furdea et al.
(Furdea et al. 2012) investigated the applicability of semantic classical condi-
tioning within a BCI setting using unpleasant auditory stimuli as USs. Four dif-
ferent classifiers were employed to separate covert ‘yes’ from ‘no’ responses,
providing classification accuracies around chance level. It was concluded that the
poor discriminability between the two cortical CRs could be due to the nature of
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the two auditory USs used for conditioning. Consequently, in the present study, we
used as US short electrical stimulation consisting of 1ms electrical pulse delivered
over the left thumb whose intensity was set according to threshold tracking test
performed at the beginning of each daily session. The electrical pulse was gen-
erated by a bipolar direct current stimulator (DS5, Digitimer Ltd, United King-
dom). True and false statements were presented through in-ear headphones,
subject being asked to think ‘yes’ and ‘no’, according to the type of the statement.
During the conditioning phase true sentences, and thus thinking ‘yes’ (CS+) were
immediately followed by US whereas false sentences (thinking ‘no’ = CS-) were
never paired with the US. The correctness of a statement was given by the last
word and for each statement there was a proper false and true ending word:
therefore, the subject could listen to both versions of a statement due to the
randomized order of appearance of the statements.

As reported in the literature (Hilgard and Marquis 1940), the conditioned
response does not have to be identical to the reaction elicited by the US. Therefore, to
distinguish between ‘yes’ and ‘no’ thinking, the classifier was trained and tested on
electroencephalogram (EEG) epochs acquired in trials when the electrical stimu-
lation was not delivered. In other words, the model generated during the training of
the classifier did not contain any information concerning the somatosensory ERP
triggered by the US, since the neuronal CR was not expected to resemble it.

A CLIS patient underwent 37 daily sessions over 10 months. Each session
comprises 5 blocks and there were three different types of blocks: conditioning block
(in this phase the conditioning was established) which consisted of 25 true state-
ments followed by stimulation (US+) and 25 false statements (US-) in a random
order; acquisition block (in this phase the trials used to train the classifier were
acquired), which consists of 15 US ? , 30 US- and 15 true statements not followed
by stimulation (CS+ alone) in a random order; and feedback block which consists of
15 US+ , 15 US-, 15 CS ? alone and 15 CS-alone, during which the patient
received auditory feedback based on the classified EEG. The feedback consisted of
an auditory stimulus (e.g. ‘You thought yes’ or ‘You thought no’). Each block lasted
for 7–8 min with a break of 2 min between two consecutive blocks, with an inter-
trial-interval of 5 s. In the first session of the first week, 4 conditioning and 1
acquisition blocks were recorded, therefore no feedback was delivered. All the other
sessions comprise 5 blocks: 1 conditioning block, 2 acquisition blocks, and 2
feedback blocks, see Fig. 1 for an overview. The CS+ alone and CS- alone trials
recorded during the acquisition blocks were used to train the classifier. The model
obtained from the training of the classifier was used to predict the CS+ alone and
CS- alone trials of the feedback block. In each feedback block 10 predictions were
performed, 5 for true and 5 for false statements: each of those 10 statements was
repeated three times intermingled by US+ and US- trials and the averaged cortical
response was used for the prediction. The US+ and US- trials consisted of state-
ments extracted from the general knowledge (e.g. ‘Berlin is the capital of Italy/
Germany’) whereas the CS+ alone and CS- alone trials contained statements based
on the patient’s life and experience (e.g. ‘My daughter’s name is Jana/Sarah’). Those
personalized statements were introduced to enhance the involvement and attention
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of the patient. Additionally, it is clear in this experimental paradigm to which class,
either false or true, each statement belongs, except for the statements contained in
the CS+ alone and CS- alone trials of the 5th block, which were personalized
statements whose answer was not known in advance (open statements). These
statements were presented in order to ask real life questions. From the ninth session
on, a sixth (feedback) block was added at the end of each session containing the
semantically reversed version of the open statements presented in the fifth block
(e.g. ‘Last night I slept well’ was changed to ‘Last night I slept badly’). Therefore, it
was possible to calculate the accuracy of the classifier comparing the classifier
outcome for the EEG response to the two versions of each open statement presented
in block 5 and 6. Additionally, from session 12 to session 19 the electrical pulse was
substituted with a train of pulses (duration of 1 s, frequency of 20 Hz, width of single
pulses of 200 ls) generated by a Functional Electrical Stimulation (FES) device
(UNAFET 8, UNA Systems, Serbia) and paired with an auditory stimulus (75 dB)
resembling that of metal scraping. The FES stimulation was delivered over the left
upper arm through two patch electrodes positioned over extensor communis digi-
torum muscle which is responsible for the extension of the fingers. This combination
of stimuli was introduced in order to involve both the auditory system and the
proprioceptive afferent channels, as suggested in Murguialday et al. (2011).

During the entire experiment, the EEG was recorded from 32 surface electrodes
using a standard EEG cap following the International 10–20 System. The reference
lead was an electrode positioned on the tip of the nose and the ground electrode
was placed on the mastoid area behind the right ear. All electrode impedances
were reduced to 5 kX before data recording. EEG signal was sampled at 200 Hz,
and band-pass filtered between 0.009 and 40 Hz. Segments with a length of 4 s
relative to the end of the statement were extracted and used to compute the input
features for a Linear Discriminant Classifier. The features consisted of wavelet
coefficients (WC) computed using a fast (discrete) wavelet transform (FWT)
focusing on the spectral components below 3.125 Hz.

Fig. 1 Experimental paradigm. The figure presents a schematic overview of the experimental
paradigm
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The accuracy on yes/no discrimination went up to 90 %; that is, 9 out of 10
correct predictions per day. Nevertheless, the daily accuracies were not stable
across sessions, which means that (including all sessions) the classifier performed
around chance level. Additionally, an offline analysis was performed on the data to
test a different classifier (support vector machine, SVM, with non linear kernel)
and different input features. Besides WC, the SVM was also provided with signal
amplitude (SA) values obtained after low-pass filtering of the data below 5 Hz,
moving-average-filtering and decimation using a factor of 5. Both types of features
were extracted from those EEG segments acquired during CS ± alone trials, and
the classifier accuracy was computed using a 10-fold cross-validation approach.
The offline classification provided performance results around chance level across
all sessions, with peaks of high communication accuracy between 60 and 70 %.

In addition, the cognitive status of the patient was assessed through a battery of
neurophysiological examinations based on ERP (Neumann and Kotchoubey 2004).
The above mentioned paradigm was performed four times in separate days with
respect to the conditioning paradigm and revealed the largely intact cognitive ERPs
of the CLIS patient. Taking into account these findings, one may conclude that
attention and arousal requirements for this semantic classical conditioning BCI are
perhaps still too high, and patients with reduced vigilance and drowsiness during
many of the training sessions fail to demonstrate stable above chance level classi-
fication. Moreover, it is possible that the proposed ‘extinction of goal-directed
thinking’ also prevents semantic conditioning, because the ‘intention’ to anticipate a
‘yes’ or ‘no’ answer after the CS is attenuated or extinguished (Perky 1910).

This experiment represented the first attempt to classify EEG data in real-time
recorded in a CLIS patient for communication purposes within a semantic con-
ditioning paradigm. The patient was diagnosed with spinal and sporadic ALS four
years before the initial session. She entered the CLIS one year before participating
to the first measurement, and since then no communication has been possible
through any means (score 0 out of 48, in the ALS Functional Rating Scale-Revised
(Cedarbaum et al. 1999)).

The paradigm described here provides a slow communication speed compared to
other communication aids. Nevertheless, in the clinical situation of a CLIS patient,
the information transfer rate is not crucial because those patients have no means of
communication, neither by BCIs nor by other assistive technologies. On the other
hand, the lack of a communication channel is also of great concern for the inves-
tigators, who cannot infer the current emotional and cognitive condition of the
patient. In this context, real-time decoding of macroscopic brain states becomes of
the utmost importance (Blankertz et al. 2010) because future BCIs should adapt to
the users, for instance changing the stimulus presentation rate or turning off the
system according to the users’ brain state of consciousness and awareness. Partic-
ularly for ALS, it is essential to monitor the level of attention and fatigue of the
patient to avoid overloading his actual and instantaneous cognitive efficiency to
avoid frustration and disappointment. In this context, anodal transcranial direct
stimulation or high frequency transcranial magnetic stimulation can be used to avoid
fading of vigilance, changing the brain excitation level (Cohen et al. 1998).
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The ultimate goal of BCI research is to provide a non-muscular communication
channel for individuals who are no longer able to communicate by any means due
to severe physical impairment. According to this main aim, this study represents an
innovative attempt to investigate the applicability of a semantic conditioning
paradigm in a BCI setting that could enable yes/no communication for people in
CLIS without the need for operant learning. Future applications of this paradigm
should also look for different neuronal signatures such as travelling alpha-waves,
which were shown to play a role in semantic memory representations (Fellinger
et al. 2012).
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Conclusion

The preceding ten chapters summarized the ten projects that were nominated in
2011. The nominees are still active in BCI research, and have already produced
some exciting follow-up work. In this concluding chapter, we announce the winner
of the 2011 BCI Award, present some analyses of nominees and submissions, and
preview the 2012 award.

The 2011 Winner

The nominations were difficult, since many of the 64 submissions were also
excellent. The jury had an even more difficult task after choosing the nominees:
selecting the winner of the 2011 BCI Award. In addition to the honor of being
chosen, the award of $3000, and the statue, the winner was also publicly
announced at the Graz BCI conference in September 2011.

The winning team was Moritz Grosse-Wentrup and Bernhard Schölkopf from
the Max Planck Institute for Intelligent Systems in Germany (Fig. 1). Their project
was titled ‘‘What are the neuro-physiological causes of performance variations in
brain-computer interfacing?’’ The project addressed a very important point:
making BCI systems more robust. Their project even utilized gamma activity in
the EEG spectrum.

Directions and Trends Reflected in the Awards

One of the goals of the BCI Award is to help identify major directions in BCI
Research. By analyzing the different characteristics of the projects that were
nominated in 2011, we can learn more about which facets were most appealing to
the jury. Table 1 summarizes the BCI Award 2011 nominees. The nominees are
categorized according to the control signals that were utilized and application
areas.

C. Guger et al. (eds.), Brain–Computer Interface Research,
SpringerBriefs in Electrical and Computer Engineering,
DOI: 10.1007/978-3-642-36083-1, � The Author(s) 2013
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Table 1 shows that 4 projects used invasive technology (ECoG - Electrocortico-
gram/Spikes) and 6 projects measured non-invasively. Two nominated projects
used evoked potentials and three projects motor imagery (MI) as principle. The
division into application areas shows that control applications are most prominent,
followed by robot control, communication and speech reconstruction and finally by
stroke rehabilitation.

The BCI Award is also meant to show trends, such as themes that become more
or less popular across different years. To more broadly explore the different facets
of BCI research, we conducted another analysis with all 64 projects submitted to
the 2011 BCI Award, and compared the results to all 57 projects submitted to the
2010 BCI Award. Table 2 summarizes the results. Among other trends, the 2011
Award drew more submissions that described real-time BCIs, and also introduced
many new properties.

Interesting is that only two projects worked on off-line algorithms which was
much higher in the past and this shows also that BCIs became real devices. Most of
the BCIs use motor imagery, P300 principles and just a few use steady-state visual
evoked potentials (SSVEP) or auditory steady-state response (ASSR). More than
70 % of the submission are using the EEG because of its simplicity and high time
resolution compared to just a few fMRI, ECoG and NIRS projects. The most
common applications under the 64 submissions are control, stroke/neural plasticity

Fig. 1 The winner of the 2011 BCI Award, along with the jury and presenters. From left to right:
Michael Tangermann, Gernot Müller-Putz, Gert Pfurtscheller, Theresa Vaughan, Moritz Grosse-
Wentrup (fifth from left, holding the Award), Christoph Guger, Brendan Allison, Jane Huggins,
Cuntai Guan, Robert Leeb
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and spelling. But there are also many new applications like monitoring, speech,
coma, authentification, mechanical ventilation, learning and sensation that did not
exist 2010.

Conclusion and Future Directions

Overall, the BCI Awards have helped to encourage excellence in BCI research,
identify key directions, and promote BCI research around the world. The ten
projects summarized in this book represent some of the most promising
accomplishments from the top research groups. However, the 2012 BCI Award,
which is underway as of this writing, has so far been even more competitive than
before. We editors plan a book summarizing the nominees, their follow-up work,
and further analyses of major trends.

g.tec has already committed to host the fourth annual BCI Award in 2013.
Researchers are encouraged to keep abreast of relevant announcements at
bci-award.com, and consider submitting their research. Given the level of
competition, extra time to develop the best submission is strongly recommended.
We editors would like to conclude by thanking all the groups who submitted
projects to the BCI Awards over the years, and the many other innovators in BCI
research.
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