

C. Hota and P.K. Srimani (Eds.): ICDCIT 2013, LNCS 7753, pp. 455–464, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Effective Web-Service Discovery
Using K-Means Clustering

A. Santhana Vijayan1 and S.R. Balasundaram2

1 Department of Computer Science and Engineering,
National Institute of Technology, Tiruchirappalli – 620 015 Tamilnadu, India

vijayana@nitt.edu
2 Department of Computer Applications,

National Institute of Technology, Tiruchirappalli – 620 015 Tamilnadu, India
blsundar@nitt.edu

Abstract. Web Services are proving to be a convenient way to integrate distri-
buted software applications. As service-oriented architecture is getting popular,
vast numbers of web services have been developed all over the world. But it is
a challenging task to find the relevant or similar web services using web servic-
es registry such as UDDI. Current UDDI search uses keywords from web ser-
vice and company information in its registry to retrieve web services. This in-
formation cannot fully capture user’s needs and may miss out on potential
matches. Underlying functionality and semantics of web services need to be
considered. In this study, we explore the resemblance among web services us-
ing WSDL document features such as WSDL Content and Web Services name.
We compute the similarity of web services and use this data to generate clusters
using K-means clustering algorithm. This approach has really yielded good re-
sults and can be efficiently used by any web service search engine to retrieve
similar or related web services.

Keywords: Web Service, WSDL document features, K-means Clustering, WV
Tool.

1 Introduction

A Web service is a method of communication between two electronic devices over
the web (internet). It is a software system designed to support interoperable machine-
to-machine interaction over a network. It has an interface described in a machine-
processable format (specifically Web Services Description Language, known by the
acronym WSDL). The term Web-service describes a standardized way of integrating
Web-based applications using the XML, SOAP, WSDL and UDDI open standards
over an Internet protocol backbone [7]. XML is used to tag the data, SOAP is used to
transfer the data (bind), WSDL is used for describing the services available (publish)
and UDDI is used for listing what services are available (find). Fig.1. shows the web
services triad that includes a broker, a service provider and a service requestor. Used
primarily as a means for businesses to communicate with each other and with clients,

456 A. Santhana Vijayan and S.R. Balasundaram

Web services allow organizations to communicate data without intimate knowledge
of each other's IT systems behind the firewall.

Fig. 1. The Web Services triad

1.1 Classes of Web Services

There are mainly two major classes of Web services, REST-compliant Web services,
in which the primary purpose of the service is to manipulate XML representations of
Web resources using a uniform set of "stateless" operations; and arbitrary Web ser-
vices, in which the service may expose an arbitrary set of operations.

1.2 Problems Encountered in Retrieval of Non-semantic Web Services

There are so many problems encountered during the search for non-semantic web
services. There is a difficulty in the discovery of non-semantic Web services through
search engines as these engines do not recognize the Web service functionalities
summarized in the WSDL file. Based on the Web service name, location and business
defined in the WSDL file, the search engines partly relate the search terms entered by
the user in order to retrieve the results back. Web service name is essential as a part of
the search query in order to retrieve the exact service required. Hence, the user must
take care in using the accurate keywords so that appropriate services can be obtained.

There is a possibility for the user to ignore services because of using alternate
meanings for the keywords. For example, a service that includes ”motorbike” in its
name may not be retrieved from a query looking for ”two wheeler”. In order to effec-
tively improve the service discovery process by tumbling the search space, clustering
techniques can be used to group similar services based on their functionality which
improves the search engine retrieval.

The rest of our paper is organized as follows. Section 2 gives a brief introduction
on existing methods and related work. The structure of WSDL documents is described
in Section 3. Our proposed clustering approach is introduced in Section 4. The feature
extraction from WSDL documents is explained in Section 5. Section 6 describes the
feature integration process in order to set up the relation between Web services. Sec-
tion 7 includes the experiments and results. Finally, Section 8 concludes our paper
and summarizes future research activities.

XML/SOAP
(Bind)

Web services repository

Web services client Web services provider

 WSDL

(Publish)

 UDDI

(Find)

 Effective Web-Service Discovery Using K-Means Clustering 457

2 Existing Methods and Related Work

Nowadays, service discovery has become a recent research issue because of increas-
ing use of web services by most of the web application developers. WSDL documents
are used to describe the non-semantic Web services where as Web ontology lan-
guages (OWL-S) [2] or Web Service Modeling Ontology (WSMO) [3] are used to
describe the semantic web services. Non-semantic Web services are becoming more
popular because of the support obtained from both the industry and development
tools. Based on the various Web services description techniques, the process of ser-
vice discovery is somewhat different. By using various web service description meth-
ods, non-semantic web services can be discovered whereas semantic Web services
can be discovered using web ontologies such as OWL-S [2] and WSMO [3]. In our
approach, we focus on the discovery of non-semantic Web services. According to the
approach proposed by Nayak [5], the discovery of web services can be improved
using the Jaccard coefficient that determines the similarity between Web services.
With respect to other users’ experiences on similar queries, Nayak [5] give the users
with associated search terms. In our approach, the search space is reduced by cluster-
ing the Web services based on their functionality. We extract two features such as
WSDL content and web service name to compute the similarity between Web ser-
vices. We modify the approach used by Kahlid Elgazzar et. al [1].

3 WSDL Document Structure

A WSDL document defines services as collections of network endpoints, or ports. In
WSDL, the abstract definition of endpoints and messages is separated from their con-
crete network deployment or data format bindings[7]. This allows the reuse of ab-
stract definitions: messages, which are abstract descriptions of the data being ex-
changed, and port types, which are abstract collections of operations. The concrete
protocol and data format specifications for a particular port type constitutes a reusa-
ble binding.

A WSDL document uses the following elements in the definition of network
services:

<Types> – a container for data type definitions using some type system (XSD).

<Message> – an abstract, typed definition of the data being communicated.

<Operation> – an abstract description of an action supported by the service.

<Port Type> –an abstract set of operations supported by one or more endpoints.

<Binding> – a concrete protocol and data format specification for particular port type.

<Port> – a single endpoint defined as a combination of binding and network address.

<Service> – a collection of related endpoints.

458 A. Santhana Vijayan and S.R. Balasundaram

WSDL does not introduce a new type definition language. WSDL recognizes the need
for rich type systems for describing message formats, and supports the XML Schemas
specification (XSD) as its canonical type system [7].

4 Proposed Clustering Method

Our proposed method is based on the information available in WSDL documents. We
find the WSDL documents in order to extract two features such as WSDL content and
web service name which describe the semantic and behaviour of the Web service. The
functionality of a Web service can be revealed from these features [5]. These features
are then integrated together such that the web services can be clustered to form simi-
lar groups based on their functionally by using K-means clustering algorithm. A ser-
vice search engine can use this step as a precursor in categorizing the Web services
with users’ requests.

5 Feature Extraction from WSDL Document

This section describes how the two proposed features such as WSDL Content and
Web Service Name can be extracted from WSDL documents. Fig. 2. illustrates the
steps involved in feature extraction process.

Fig. 2. Block diagram of feature extraction process

 Tag Removal

Function Word Removal

 Word Stemming

Content Word Recognition

Sample WSDL File URI

WSDL File

Extract Service Name

Feature1
WSDL Contents

Feature2
Service Name

 Parsing WSDL

 Effective Web-Service Discovery Using K-Means Clustering 459

Feature 1: WSDL Content
The WSDL URI can be used to read the WSDL document contents. Let each fi denote
a WSDL document which describes a Web service si. A vector of meaningful content
words for the given Web service si can be extracted by means of processing the
WSDL document contents. In our approach, the vector can be constructed by using
the following five steps.

1) Parsing WSDL: A vector of tokens Ti can be produced by parsing the given WSDL
document contents with respect to white spaces.
2) Tag removal: In order to obtain a vector consisting only of valid content words, all
tokens from Ti that are part of a XML tag are removed. As all XML tags specified in a
given WSDL document are predefined, the process of removing XML tags from the
tokenized vector is simple.
3) Word stemming: With the help of Porter stemmer algorithm [11], only the relevant
words in Ti are reduced to their base words. Tokens among a common stem will gen-
erally have the similar meaning, for example, ‘establish’, ‘established’, ‘establishing’,
and ‘establishment’ all have the same stem ‘establish’. With respect to word devia-
tions in the semantic of a Web service, using one or all of the tokens will not make a
distinction. But, the words that appear frequently are more important when compared
to others. The number of occurrences will be considered in the following steps.
4) Function word removal: Function words are said to be autonomous with respect to
one another. With the help of Poisson distribution to model word occurrence in
documents [6], function words can be differentiated from content words. Using this
step all function words from the service word vector can be removed. By calculating
the overestimation factor for all words in the word vector, we can decide which word
is a function word as follows: (1)

fij is the number of occurrences of term ‘i’ in document j.
fdj is the number of terms occurring in document j.

The overestimation factor [6] for all words in Ti and the average avg[Λ] of all overes-
timation factors can be calculated as follows. An overestimation factor threshold
(Λthre) is formulated as follows [6].

 ^ Λ if Λ 1 1 otherwise (2)

Any word is said to be a content word if it has an overestimation factor above the
Λ

thre. Otherwise the word is termed as a function word that should be removed from
the vector Ti. By using this step, all function words from the service word vector can
be removed.

460 A. Santhana Vijayan and S.R. Balasundaram

5) Content word recognition: Certain general computing content words such as
‘data’,‘web’,‘port’, etc. are typically present in WSDL documents. We cannot distin-
guish between Web services based on these words as they appear in most WSDL
files. The goal of this step is to eliminate words which do not correspond to the spe-
cific semantics of the Web service. The k-means clustering algorithm [8] with k = 2
on Ti is then applied to cluster the remaining words into two groups such that one
group corresponds to the meaning of the Web service where as the other group is
meant for general computing words. As the number of clusters is known earlier, K-
means algorithm is used as it is simple, fast, and efficient. Normalized Google Dis-
tance (NGD) [9] is used as a featureless distance measure between two words x and y
as follows.
 , , , (3)

where M is the total number of web pages searched by Google; f(x) and f(y) are the
number of hits for search terms x and y, respectively; and f(x, y) is the number of web
pages on which both x and y occur. If the two search terms x and y never occur to-
gether on the same web page, but do occur separately, the normalized Google distance
between them is infinite. If both terms always occur together, their NGD is zero, or
equivalent to the coefficient between x squared and y squared.

Based on the similarity factor calculated using Equation (5), similar web services
can be grouped for efficient service discovery.

Feature 2 : Web Service Name
The composite name such as ‘ComputerArchitecture’ can be split up into multiple
names based on the assumption that a capital letter indicates the start of a new word.
The similarity between services names can be then found using NGD as follows:
 sim sname , sname 1 NGD sname , sname (4)

where snamei and snamej are the names of the Web services si and sj respectively.

6 Feature Integration

K- means clustering algorithm is used to cluster similar Web services based on the
two similarity features presented above as it is computationally inexpensive. The
similarity factor Θ(si, sj) between two Web services si and sj can be measured as fol-
lows:
 Θ S , S 0.5S T , T 0.5sim sname , sname (5)

Θ(si, sj) is equal to “1” if the two services are identical and
Θ(si, sj) is equal to “0” if they are completely different.

 Effective Web-Service Discovery Using K-Means Clustering 461

We normalize Θ(si, sj) by assigning weights of 0.5 to each of the two similarity fea-
tures. We determined experimentally that these weights give reasonable results. In
Equation (5), Ti and Tj are the content word vectors of services si, sj respectively.

S(Ti, Tj) is the average similarity between the content word vectors Ti, and Tj and is
calculated with
 S T , T Σa ε T Σb ε T sim a, b|T | T 6

where sim(a, b) is the featureless similarity factor computed between words a and b
using NGD based on the word coexistence in Web pages. sim(a, b) is calculated
using
 sim a, b 1 NGD a, b (7)

where a and b are the two most important content vector words belong to Ti and Tj

respectively.

7 Experiments and Results

We use two criteria to evaluate the performance of our approach, namely Precision
and Recall [10]. Precision and Recall have been often used to evaluate information
retrieval schemes [4].We extend the use of these two measures to evaluate our ap-
proach as follows:

 Precision =
∑ C P C , P (8)

 recall =
∑ C R C , R (9)

where ci is the cluster i, P and R are precision and recall for cluster ci respectively,
succ(ci) is the number of Web services successfully placed in the proper cluster ci,
mispl(ci) is the number of Web services that are incorrectly clustered into ci,
missed(ci) is the number of Web services that should be clustered into ci but are incor-
rectly placed in other clusters, and length(C) is the number of clusters.

Our experiments are based on the WSDL files obtained from online Web service
providers and brokers. The contents of the WSDL file can be directly obtained from
the corresponding URI. Using K-means clustering algorithm, the WSDL documents
are grouped together to form the following two categories such as “Computer Archi-
tecture” and “Weather”.

The contents of the WSDL documents are parsed in order to produce the content
word vector Ti. The next step is to obtain a vector consisting only of valid content
words without the XML tags by using the java library word vector tool.

462 A. Santhana Vijayan and S.R. Balasundaram

Using the Porter stemmer method, the vectors obtained in the previous step are re-
duced to their roots. Then the function words and content words can be differentiated
by calculating the overestimation factor for all the words in each vector. The Term
Frequency can be calculated using the WV Tool. The content words for the Web ser-
vices can be then discovered by clustering each word vector into two groups using the
k-means clustering algorithm, in which NGD is used as a featureless similarity meas-
ure between words.

We use Python as a scripting language for calculating the NGD and similarity fac-
tor. Feature extraction and integration is implemented using Java.

The word vectors and term frequencies generated as a result of feature extraction
process for the sample web service categories such as ‘weather’ and ‘computer archi-
tecture’ are shown in Table. 1.

Table 1. Block Word vectors and Term frequencies generated for sample files

 Term Frequency Word Vector
 0.760286 Computer
 0.304114

0.304115
0.076029
0.152057
0.076029
0.076029
0.228086
0.076029
0.076029
0.076029
0.076029
0.152057
0.076029
0.076029
0.152057
0.076029

technology
year
gener
electron
creat
person
perform
memor
stor
rapid
innov
improvement
emerg
highes
cost
bus

 0.228077 microprocessor

The clusters formed with respect to the sample service category files such as

‘weather’ and ‘computer architecture’ using K-means clustering algorithm with k=2
from content word recognition step are shown in Fig. 3.

The NGD and Similarity values obtained from feature integration process are tabu-
lated in Table. 2.

The performance of our approach using recall and precision was compared with
[1]’s approach and the results are tabulated in Table 3 and Table 4.

 Effective Web-Service Discovery Using K-Means Clustering 463

Fig. 3. Clusters generated from Content word recognition step by K-means clustering

Table 2. NGD and Similarity values generated by feature integration process

S.No Word1 Word2 NGD Similarity
1 computer computer 0 1
2
3
4
5
6
7
8
9
10
11

12

computer
computer
computer
technology
technology
technology
technology
weather
weather
computers

computers

weather
earth
system
computer
weather
earth
system
weather
earth
computer- ar-
chitecture
earth-weather

0.52845
0.39224
0.71737
0.42513
0.22959
0.24365
0.26721
0
0.34830
0.21067

0.12563

0.47154
0.60775
0.28262
0.57486
0.77040
0.75364
0.73278
1
0.65169
0.78932

0.87436

Table 3. Performance measurement of our approach

Cluster Precision Recall
Computer
Architecture

100% 75.2%

Weather 75.1% 100%

464 A. Santhana Vijayan and S.R. Balasundaram

Table 4. Performance measurement of [1]’s approach

Cluster Precision Recall
Computer
Architecture

80.2% 100%

Weather 94.1% 100%

8 Conclusion and Future Work

Our approach provides better performance in experimental results in terms of time
complexity as we consider only the relevant words for word stemming step during the
extraction of first feature, when compared to [1]’s approach. Our proposed approach
can be used as a prior step into search engines for efficient web service discovery
based on the relevant user request. In future, we decided to extend this work, by in-
cluding additional features such as context to support context-aware pervasive web
services and cloud based web services.

References

1. Elgazzar, K., Hassan, A.E., Martin, P.: Clustering WSDL Documents to Bootstrap the Dis-
covery of Web Services. In: 2010 IEEE International Conference on Web Services, vol. 1,
pp. 287–294 (2010)

2. Burstein, M., Hobbs, J., Lassila, O., Mcdermott, D., Mcilraith, S., Narayanan, S., Paolucci,
M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N., Sycara, K., Martin, D.: OWL-S: Seman-
tic Markup for Web Services. W3C Member Submission (2004)

3. Lausen, H., Polleres, A.: Web Service Modeling Ontology (WSMO). In: W3C Member
Submission (2005)

4. Deng, S., Wu, Z., Wu, J., Li, Y., Yin, J.: An Efficient Service Discovery Method and its
Application. International Journal of Web Services Research 6(4), 94–117 (2009)

5. Nayak, R.: Data mining in Web services discovery and monitoring. International Journal
of Web Services Research 5(1), 63–81 (2008)

6. Liu, W., Wong, W.: Web service clustering using text mining techniques. International
Journal of Agent Oriented Software Engineering 3(1), 6–26 (2009)

7. Coyle, F.P.: XML, Web Services and the Data Revolution. Pearson Education, South Asia
(2002)

8. Jain, A.K., Dubes, R.C.: Algorithms for clustering data. Prentice-Hall, Englewood Cliffs
(1988)

9. Cilibrasi, R.L., Vitnyi, P.M.B.: The Google similarity distance. IEEE Transactions on
Knowledge and Data Engineering 19(3), 370–383 (2007)

10. Makhoul, J., Kubala, F., Schwartz, R., Weischedel, R.: Performance measures for informa-
tion extraction. In: DARPA Broadcast News Workshop, Herdon VA (February 1999)

11. Porter, M.F.: An Algorithm for Suffix Stripping. Program 14(3), 130–137 (1980)

	Effective Web-Service DiscoveryUsing K-Means Clustering
	Introduction
	Classes of Web Services
	Problems Encountered in Retrieval of Non-semantic Web Services

	Existing Methods and Related Work
	WSDL Document Structure
	Proposed Clustering Method
	Feature Extraction from WSDL Document
	Feature Integration
	Experiments and Results
	Conclusion and Future Work
	References

