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Abstract. Web Services are proving to be a convenient way to integrate distri-
buted software applications. As service-oriented architecture is getting popular, 
vast numbers of web services have been developed all over the world.  But it is 
a challenging task to find the relevant or similar web services using web servic-
es registry such as UDDI. Current UDDI search uses keywords from web ser-
vice and company information in its registry to retrieve web services. This in-
formation cannot fully capture user’s needs and may miss out on potential 
matches. Underlying functionality and semantics of web services need to be 
considered. In this study, we explore the resemblance among web services us-
ing WSDL document features such as WSDL Content and Web Services name. 
We compute the similarity of web services and use this data to generate clusters 
using K-means clustering algorithm. This approach has really yielded good re-
sults and can be efficiently used by any web service search engine to retrieve 
similar or related web services. 

Keywords: Web Service, WSDL document features, K-means Clustering, WV 
Tool. 

1 Introduction 

A Web service is a method of communication between two electronic devices over 
the web (internet). It is a software system designed to support interoperable machine-
to-machine interaction over a network. It has an interface described in a machine-
processable format (specifically Web Services Description Language, known by the 
acronym WSDL). The term Web-service describes a standardized way of integrating 
Web-based applications using the XML, SOAP, WSDL and UDDI open standards 
over an Internet protocol backbone [7]. XML is used to tag the data, SOAP is used to 
transfer the data (bind), WSDL is used for describing the services available (publish) 
and UDDI is used for listing what services are available (find). Fig.1. shows the web 
services triad that includes a broker, a service provider and a service requestor. Used 
primarily as a means for businesses to communicate with each other and with clients, 
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Web services allow organizations to communicate data without intimate knowledge 
of each other's IT systems behind the firewall. 
 

 
     

  

 
 
 

Fig. 1. The Web Services triad 

1.1 Classes of Web Services 

There are mainly two major classes of Web services, REST-compliant Web services, 
in which the primary purpose of the service is to manipulate XML representations of 
Web resources using a uniform set of "stateless" operations; and arbitrary Web ser-
vices, in which the service may expose an arbitrary set of operations.  

1.2 Problems Encountered in Retrieval of Non-semantic Web Services 

There are so many problems encountered during the search for non-semantic web 
services. There is a difficulty in the discovery of non-semantic Web services through 
search engines as these engines do not recognize the Web service functionalities 
summarized in the WSDL file. Based on the Web service name, location and business 
defined in the WSDL file, the search engines partly relate the search terms entered by 
the user in order to retrieve the results back. Web service name is essential as a part of 
the search query in order to retrieve the exact service required. Hence, the user must 
take care in using the accurate keywords so that appropriate services can be obtained.  

There is a possibility for the user to ignore services because of using alternate 
meanings for the keywords. For example, a service that includes ”motorbike” in its 
name may not be retrieved from a query looking for ”two wheeler”. In order to effec-
tively improve the service discovery process by tumbling the search space, clustering 
techniques can be used to group similar services based on their functionality which 
improves the search engine retrieval.  

The rest of our paper is organized as follows. Section 2 gives a brief introduction 
on existing methods and related work. The structure of WSDL documents is described 
in Section 3. Our proposed clustering approach is introduced in Section 4. The feature 
extraction from WSDL documents is explained in Section 5. Section 6 describes the 
feature integration process in order to set up the relation between Web services. Sec-
tion 7 includes the experiments and results. Finally, Section 8 concludes our paper 
and summarizes future research activities. 
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Web services client Web services provider 
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2 Existing Methods and Related Work 

Nowadays, service discovery has become a recent research issue because of increas-
ing use of web services by most of the web application developers. WSDL documents 
are used to describe the non-semantic Web services where as Web ontology lan-
guages (OWL-S) [2] or Web Service Modeling Ontology (WSMO) [3] are used to 
describe the semantic web services. Non-semantic Web services are becoming more 
popular because of the support obtained from both the industry and development 
tools. Based on the various Web services description techniques, the process of ser-
vice discovery is somewhat different. By using various web service description meth-
ods, non-semantic web services can be discovered whereas semantic Web services 
can be discovered using web ontologies such as OWL-S [2] and WSMO [3]. In our 
approach, we focus on the discovery of non-semantic Web services. According to the 
approach proposed by Nayak [5], the discovery of web services can be improved 
using the Jaccard coefficient that determines the similarity between Web services. 
With respect to other users’ experiences on similar queries, Nayak [5] give the users 
with associated search terms. In our approach, the search space is reduced by cluster-
ing the Web services based on their functionality. We extract two features such as 
WSDL content and web service name to compute the similarity between Web ser-
vices. We modify the approach used by Kahlid Elgazzar et. al [1]. 

3 WSDL Document Structure 

A WSDL document defines services as collections of network endpoints, or ports. In 
WSDL, the abstract definition of endpoints and messages is separated from their con-
crete network deployment or data format bindings[7]. This allows the reuse of ab-
stract definitions: messages, which are abstract descriptions of the data being ex-
changed, and port types, which are abstract collections of operations. The concrete 
protocol and data format specifications for a particular port type constitutes a reusa-
ble binding.                                                                                             

A WSDL document uses the following elements in the definition of network  
services: 

<Types> – a container for data type definitions using some type system (XSD). 

<Message> – an abstract, typed definition of the data being communicated. 

<Operation> – an abstract description of an action supported by the service. 

<Port Type> –an abstract set of operations supported by one or more endpoints. 

<Binding> – a concrete protocol and data format specification for particular port type. 

<Port> – a single endpoint defined as a combination of binding and network address. 

<Service> – a collection of related endpoints. 
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WSDL does not introduce a new type definition language. WSDL recognizes the need 
for rich type systems for describing message formats, and supports the XML Schemas 
specification (XSD) as its canonical type system [7].  

4 Proposed Clustering Method 

Our proposed method is based on the information available in WSDL documents. We 
find the WSDL documents in order to extract two features such as WSDL content and 
web service name which describe the semantic and behaviour of the Web service. The 
functionality of a Web service can be revealed from these features [5]. These features 
are then integrated together such that the web services can be clustered to form simi-
lar groups based on their functionally by using K-means clustering algorithm. A ser-
vice search engine can use this step as a precursor in categorizing the Web services 
with users’ requests. 

5 Feature Extraction from WSDL Document 

This section describes how the two proposed features such as WSDL Content and 
Web Service Name can be extracted from WSDL documents. Fig. 2. illustrates  the 
steps involved in feature extraction process. 
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Block diagram of feature extraction process  
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Feature 1: WSDL Content 
The WSDL URI can be used to read the WSDL document contents. Let each fi denote 
a WSDL document which describes a Web service si. A vector of meaningful content 
words for the given Web service si can be extracted by means of processing the 
WSDL document contents. In our approach, the vector can be constructed by using 
the following five steps. 

1) Parsing WSDL: A vector of tokens Ti can be produced by parsing the given WSDL 
document contents with respect to white spaces. 
2) Tag removal: In order to obtain a vector consisting only of valid content words, all 
tokens from Ti that are part of a XML tag are removed. As all XML tags specified in a 
given WSDL document are predefined, the process of removing XML tags from the 
tokenized vector is simple. 
3) Word stemming: With the help of Porter stemmer algorithm [11], only the relevant 
words in Ti are reduced to their base words. Tokens among a common stem will gen-
erally have the similar meaning, for example, ‘establish’, ‘established’, ‘establishing’, 
and ‘establishment’ all have the same stem ‘establish’. With respect to word devia-
tions in the semantic of a Web service, using one or all of the tokens will not make a 
distinction. But, the words that appear frequently are more important when compared 
to others. The number of occurrences will be considered in the following steps. 
4) Function word removal: Function words are said to be autonomous with respect to 
one another. With the help of Poisson distribution to model word occurrence in 
documents [6], function words can be differentiated from content words. Using this 
step all function words from the service word vector can be removed. By calculating 
the overestimation factor for all words in the word vector, we can decide which word 
is a function word as follows:                                                                             (1) 

 
fij is the number of occurrences of term ‘i’ in document j. 
fdj is the number of terms occurring in document j. 
 
The overestimation factor [6] for all words in Ti and the average avg[Λ] of all overes-
timation factors can be calculated as follows. An overestimation factor threshold 
(Λthre) is formulated as follows [6]. 
 

            ^  Λ  if Λ   1 1      otherwise                                  (2)                           

 
Any word is said to be a content word if it has an overestimation factor above the 
Λ

thre. Otherwise the word is termed as a function word that should be removed from 
the vector Ti. By using this step, all function words from the service word vector can 
be removed. 
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5) Content word recognition: Certain general computing content words such as 
‘data’,‘web’,‘port’, etc. are typically present in WSDL documents. We cannot distin-
guish between Web services based on these words as they appear in most WSDL 
files. The goal of this step is to eliminate words which do not correspond to the spe-
cific semantics of the Web service. The k-means clustering algorithm [8] with k = 2 
on Ti is then applied to cluster the remaining words into two groups such that one 
group corresponds to the meaning of the Web service where as the other group is 
meant for general computing words. As the number of clusters is known earlier, K-
means algorithm is used as it is simple, fast, and efficient. Normalized Google Dis-
tance (NGD) [9] is used as a featureless distance measure between two words x and y 
as follows. 
  ,    ,  ,              (3) 
 

where M is the total number of web pages searched by Google; f(x) and f(y) are the 
number of hits for search terms x and y, respectively; and f(x, y) is the number of web 
pages on which both x and y occur. If the two search terms x and y never occur to-
gether on the same web page, but do occur separately, the normalized Google distance 
between them is infinite. If both terms always occur together, their NGD is zero, or 
equivalent to the coefficient between x squared and y squared. 

Based on the similarity factor calculated using Equation (5), similar web services 
can be grouped for efficient service discovery.  
 
Feature 2 : Web Service Name 
The composite name such as ‘ComputerArchitecture’ can be split up into multiple 
names based on the assumption that a capital letter indicates the start of a new word. 
The similarity between services names can be then found using NGD as follows: 
     sim sname , sname   1  NGD sname , sname               (4) 
 

where snamei and snamej are the names of the Web services si and sj respectively. 

6 Feature Integration 

K- means clustering algorithm is used to cluster similar Web services based on the 
two similarity features presented above as it is computationally inexpensive. The 
similarity factor Θ(si, sj) between two Web services si and sj can be measured as fol-
lows: 
             Θ S , S   0.5S T , T   0.5sim sname , sname              (5) 

 

Θ(si, sj) is equal to “1” if the two services are identical and 
Θ(si, sj) is equal to “0” if they are completely different.  
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We normalize Θ(si, sj) by assigning weights of 0.5 to each of the two similarity fea-
tures. We determined experimentally that these weights give reasonable results. In 
Equation (5), Ti and Tj are the content word vectors of services si, sj respectively. 

S(Ti, Tj) is the average similarity between the content word vectors Ti, and Tj and is 
calculated with 
                    S T , T Σa ε T  Σb ε T sim a, b|T | T                                                6  

where sim(a, b) is the featureless similarity factor computed between words a and b 
using NGD based on the word   coexistence in Web pages. sim(a, b) is calculated 
using 
                                     sim a, b   1  NGD a, b                                               (7) 

 
where a and b are the two most important content vector words belong to Ti and Tj 

respectively. 

7 Experiments and Results 

We use two criteria to evaluate the performance of our approach, namely Precision 
and Recall [10]. Precision and Recall have been often used to evaluate information 
retrieval schemes [4].We extend the use of these two measures to evaluate our ap-
proach as follows: 

                  Precision = 
∑ C P C  , P                      (8) 

 

                recall = 
∑ C R C  , R                    (9) 

 
where ci is the cluster i, P  and R  are precision and recall for cluster ci respectively, 
succ(ci) is the number of Web services successfully placed in the proper cluster ci, 
mispl(ci) is the number of Web services that are incorrectly clustered into ci, 
missed(ci) is the number of Web services that should be clustered into ci but are incor-
rectly placed in other clusters, and length(C) is the number of clusters. 

Our experiments are based on the WSDL files obtained from online Web service 
providers and brokers. The contents of the WSDL file can be directly obtained from 
the corresponding URI. Using K-means clustering algorithm, the WSDL documents 
are grouped together to form the following two categories such as “Computer Archi-
tecture” and “Weather”. 

The contents of the WSDL documents are parsed in order to produce the content 
word vector Ti. The next step is to obtain a vector consisting only of valid content 
words without the XML tags by using the java library word vector tool.   
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Using the Porter stemmer method, the vectors obtained in the previous step are re-
duced to their roots. Then the function words and content words can be differentiated 
by calculating the overestimation factor for all the words in each vector.   The Term 
Frequency can be calculated using the WV Tool. The content words for the Web ser-
vices can be then discovered by clustering each word vector into two groups using the 
k-means clustering algorithm, in which NGD is used as a featureless similarity meas-
ure between words. 

We use Python as a scripting language for calculating the NGD and similarity fac-
tor. Feature extraction and integration is implemented using Java. 

The word vectors and term frequencies generated as a result of feature extraction 
process for the sample web service categories such as ‘weather’ and ‘computer archi-
tecture’ are shown in Table. 1. 

Table 1. Block Word vectors and Term frequencies generated for sample files 

 Term Frequency  Word Vector 
 0.760286 Computer 
 0.304114 

0.304115 
0.076029 
0.152057 
0.076029 
0.076029 
0.228086 
0.076029 
0.076029 
0.076029 
0.076029 
0.152057 
0.076029 
0.076029 
0.152057 
0.076029 

technology 
year          
gener 
electron 
creat 
person 
perform 
memor 
stor 
rapid 
innov 
improvement 
emerg 
highes 
cost 
bus 

 0.228077 microprocessor 

 
The clusters formed with respect to the sample service category files such as 

‘weather’ and ‘computer architecture’ using K-means clustering algorithm with k=2 
from content word recognition step are  shown in Fig. 3. 

The NGD and Similarity values obtained from feature integration process are tabu-
lated in Table. 2. 

The performance of our approach using recall and precision was compared with 
[1]’s approach and the results are tabulated in Table 3 and Table 4. 
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Fig. 3.  Clusters generated from Content word recognition step by K-means clustering 

Table 2. NGD and Similarity values generated by feature integration process 

S.No Word1 Word2 NGD Similarity 
1 computer computer  0 1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
 
12 

computer 
computer 
computer 
technology 
technology 
technology 
technology 
weather  
weather 
computers 
 
computers 

weather 
earth 
system 
computer 
weather 
earth 
system 
weather 
earth 
computer- ar-
chitecture 
earth-weather 

0.52845 
0.39224 
0.71737 
0.42513 
0.22959 
0.24365 
0.26721 
0 
0.34830 
0.21067 
 
0.12563 

0.47154 
0.60775 
0.28262 
0.57486 
0.77040 
0.75364 
0.73278 
1 
0.65169 
0.78932 
 
0.87436 
 
 

Table 3. Performance measurement of our approach 

Cluster Precision Recall 
Computer  
Architecture 

100% 75.2% 

Weather 75.1% 100% 
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Table 4. Performance measurement of [1]’s approach 

Cluster Precision Recall 
Computer  
Architecture 

80.2% 100% 

Weather 94.1% 100% 

8 Conclusion and Future Work 

Our approach provides better performance in experimental results in terms of time 
complexity as we consider only the relevant words for word stemming step during the 
extraction of first feature, when compared to [1]’s approach. Our proposed approach 
can be used as a prior step into search engines for efficient web service discovery 
based on the relevant user request. In future, we decided to extend this work, by in-
cluding additional features such as context to support context-aware pervasive web 
services and cloud based web services. 
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