

C. Hota and P.K. Srimani (Eds.): ICDCIT 2013, LNCS 7753, pp. 420–431, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Privacy Preserving Distributed K-Means Clustering
in Malicious Model Using Zero Knowledge Proof

Sankita Patel1, Viren Patel2, and Devesh Jinwala1

1 S.V. National Institute of Technology, Surat, Gujarat, India
2 Government Engineering College, Dahod, Gujarat, India

{sankitapatel,virenjpatel,dcjinwala}@gmail.com

Abstract. Preserving Privacy is crucial in distributed environments wherein da-
ta mining becomes a collaborative task among participants. Solutions proposed
on the lines of cryptography involve use of classical cryptographic constructs in
data mining algorithms. Applicability of solutions proposed depends on the
adversary model in which it is able to preserve privacy. Existing cryptography
based solutions for privacy preserving clustering aim to achieve privacy in
presence of semi honest adversary model. For the practical applicability of the
solutions in real world settings, support of malicious adversary model is desira-
ble. As per our literature survey, the existing research lacks any fool proof solu-
tion for privacy preserving distributed clustering in malicious adversary model.
In this paper, we propose privacy preserving distributed K-Means clustering of
horizontally partitioned data that supports privacy in malicious adversarial
model. The basic construct involves use of secret sharing mechanism clubbed
with code based zero knowledge identification scheme. We use secret sharing
for privately sharing the information and code based identification scheme to
add support against malicious adversaries.

Keywords: Privacy Preservation in Distributed Data Mining (PPDDM), Secure
Multiparty Computation, Secret Sharing, Zero Knowledge Proof.

1 Introduction

Data mining research deals with the investigation of efficient techniques for the extrac-
tion of potentially useful information from large collections of data.Recent studies[1]
have thrown light on some of the major challenges for data mining. One of the necessi-
ties identified is the increased user-friendliness of data mining results. This in turn, poses
a threat to privacy concerns of individuals. Hence, there is a need to add privacy preserv-
ing mechanisms in data mining; yielding Privacy Preserving Data Mining (PPDM) [2].

In past one decade researchers have shown good interests in PPDM field. Soon af-
ter the field was introduced, many research groups started working on solutions for
privacy preserving data mining (PPDM)[3][4]. The cryptographic approach is one of
those directions [5] where researchers have come up incrementally with better
and efficient results. The only drawback of cryptography based approach is its high
overhead[6]. Hence, for this approach, one of the chief concerns is to minimize the
over-heads incurred in implementing the protocols.

 Privacy Preserving Distributed K-Means Clustering in Malicious Model 421

However, there are other vital issues also associated with the existing solutions. In
this paper, we concentrate on the clustering application of data mining and especially
the K-Means clustering algorithm [7]. Existing solutions proposed for privacy preserv-
ing K-Means clustering are [2][8-14]. To the best of our knowledge, all of these solu-
tions provide security in presence of the semi honest adversary model in which partici-
pating parties follow the prescribed protocol but try to infer private information using
the messages they receive during protocol. Increased use of this model is also because
of its less strict definition of security and privacy. Another model that can be considered
is the malicious model in which parties arbitrarily deviate from the protocol run in order
to infer private information. Although semi-honest model is realistic, solutions devised
in malicious model provide higher security in real world settings [15].

In PPDM research, the assumption that no other party should be trusted is closest
to reality, where individual never knows who to trust. More than that, even after the
successful exchange of knowledge, an assurance about the integrity and trustworthi-
ness of the shared information is required. Fulfillment of such conditions strengthens
the protocol and can make it worthy of use in malicious models.

In literature, mechanisms to handle malicious environments are proposed [15-25].
Solutions for implementing basic building blocks in malicious model are proposed in
[15-19][21][22][24]. [20][25] give solution for association rule mining in malicious
model while [23] gives solution for k-nn classifier. As we further discuss in section 2.3,
none of these mechanisms attempts to give solution for the data mining application like
clustering. In this paper, we attempt to do so by adding malicious adversary support
inthe privacy preserving distributed K-Means clustering algorithm proposed in [2].

1.1 Organization

The remainder of this paper is organized as follows: In section 2, we discuss back-
ground and related work. Section 3 describes our proposed approach. In section 4 and
5, we show theoretical and experimental analysis respectively.

2 Back Ground and Related Work

2.1 Zero Knowledge Proof Systems

In cryptography, a zero knowledge proof or zero knowledge protocol is an interactive
method for one party to prove to another that a statement is true, without revealing
anything other than the veracity of the statement. An effective definition of zero
knowledge proofs of knowledge is given in [26] along with its relevance to identifica-
tion scheme that we use in this paper.

2.2 Code Based Cryptography and Linear Codes

The identification scheme that we use in this paper is based on error-correcting code
theory. We use definitions of linear codes and q-ary syndrome decoding problem
from [27].

422 S. Patel, V. Patel, and D. Jinwala

A linear code is an error-correcting code for which any linear combination of code
words is also a code word. We can define it more precisely as:

“A linear code of length n and rank k is a linear subspace C with dimension k of
the vector space Fq where Fq is the finite field with q elements, q a prime power and
k<n. Such a code is called q-ary code. The vectors in C are called code words. The
size of the code is the number of code words and equals qk.”

The weight, ɷ, of a codeword is the number of its elements that are nonzero and the
distance between two codewords is the hamming distance between them.

The distance d of a code is minimum weight of its nonzero codewords, or equivalent-
ly, the minimum distance between distinct codewords. The error-correcting capability of
such a code is the maximum number of d errors that the code is able to decode. A linear
code of length n, dimension k, and distance d is called an [n,k,d] code.

Q-ary Syndrome Decoding Problem
Given H ϵR q–ary(n, r), y ϵR , and an integer ɷ > 0, output a word x ϵ , such
that w(s) <= ɷ, H.sT= y. This problem remains NP-complete [28].

2.3 Related Work

PPDM approaches are classified into two categories [6]: 1. Randomization Based and
2.Cryptography Based. The randomization based approach for privacy preserving clus-
tering has been addressed in [29] and approaches in this category incur low computation
and communication cost but compromise with the level of privacy. The cryptography
based approaches provide high level of privacy but at the cost of high computation and
communication cost [6]. In this category, the privacy preservation in clustering has been
achieved using the Secure Multiparty Computation (SMC) [8-10], the Homomorphic
encryption[10-12] and the secret sharing [2][13][14] based techniques.

However, to the best of our knowledge, all of the above privacy preserving clustering
protocols were proven or claimed to be secure only in the semi-honest model. In [30], a
systematic method is described for converting protocols that are secure in the semi-
honest model to ones that are equally secure and privacy-preserving in the malicious
model with the use of commitment schemes and zero-knowledge proofs. The first at-
tempt towards adding malicious adversary support in distributed association rule mining
in data grids is proposed in [20]. In [15], authors show several constructions on equality,
dot product and set-intersection operations in malicious model for the first time. In [19],
authors proposed efficient and secure dot product and set-intersection protocols in the
malicious model while reducing the computational and communication complexity of
the proof of knowledge of [15] drastically.Recently, [21] proposed efficient set opera-
tions against the malicious adversaries. They assume no trusted set up or trusted third
party for the computation, thus increasing the communication overhead. In [22], authors
propose private vector addition protocol using probabilistic zero-knowledge protocol. In
[23], authors add malicious adversary support to already existing privacy-preserving
secure scalar product for private distributed k-nn classifier. In [24], authors present an
implementation of Yao’s protocol with the cut-and-choose methodology, which is se-
cure in the presence of malicious adversaries.

 Privacy Preserving Distributed K-Means Clustering in Malicious Model 423

Relation between secret sharing and Zero knowledge proof has been discussed in
[31]. Authors in [32] suggest verifiable secret sharing as one of the ways to add mali-
cious adversary support. Authors in [25] proposed Peer for privacy(P4P) framework
for privacy preserving data mining using Verifiable secret sharing to add malicious
adversary support.

It is apparent however, that none of the paper gives solution for clustering in distri-
buted environment in malicious model.

3 The Proposed Approach

3.1 Privacy Preserving Distributed K-Means Clustering Using Shamir’s
Secret Sharing Scheme [2]

In the distributed scenario, where data are located at different sites, the algorithm for
K-Means clustering differs slightly. In distributed scenario, it is desirable to compute
cluster means using union of data located at different parties. We use distributed
Weighted Average Problem to compute intermediate cluster means in distributed
scenario. To collaboratively compute cluster means, all parties need to send their local
clusters to every other party. For example, if two parties want to jointly perform clus-
tering, then each party needs to send its sum of samples and number of samples
values (of each cluster) to other party. We shall denote (ai,bi) and (di,ei) as sum of
samples and number of samples pairs for party A and party B respectively. Joint com-
putation of the clusters can be performed using (ai+di)/(bi+ei). If parties send (ai,bi)
and (di,ei) pairs in clear then there is a threat to privacy violations. In [2], authors
proposed new and efficient privacy preserving computation of (ai+di)/(bi+ei) using
Shamir’s secret sharing scheme [33]. The approach is shown in figure 1.

Fig. 1. Privacy Preserving Distributed K-Means clustering using Shamir’s Secret Sharing
scheme

As shown in figure 1, in step 1, each party generates and distributes the shares. In
step 2, each party performs the addition of the shares it receives including its own
share and sends the calculated sum back to every other party. By solving the linear

424 S. Patel, V. Patel, and D. Jinwala

equations corresponding to the received sums, parties are able to calculate the sum of
the secret values of all parties using Lagrange’s interpolation.

Taking an example of three party {P1,P2,P3} case where they share a public con-
stants C = {3, 4, 2} corresponding to each party and have private polynomials Q =
{2x2 + x + c, x2 + 3x + c, 4x2 + 3x + c}. The values they want to secretly share is let’s
say {3, 4, 3} respectively. Let’s take an example where each party generates share for
every party including self. Now when party P1 sends its share secretly to P3, it uses
equation Q1(C3), i.e. it sends 2(2)2 + 2 + 3 = 13 to P3, similarly P2 sends 14 to P3 and
P3 calculates its own share to be 25 by Q3(C3). This way P3 receives three quadratic
equations including its own; their addition gives 52. Similarly P1 and P2 each will
receive three values each and add up to get 94 and 150 respectively. These sums are
called sum of shares.

3.2 Attacks in Malicious Adversary Model

In this paper, we concentrate on the malicious adversary attacks that are possible for
the approach proposed in [2]. Some possibilities in malicious environment like a party
aborting the protocol abruptly or sending blank messages cannot be avoided even
while using standard zero knowledge proofs [22].These situations can easily be han-
dled by programming. However, in practical scenario following attacks are possible
for the approach proposed in [2]:

1. Inconsistent shares, valid sum of shares; (here inconsistent shares are the shares
which when used for reconstruction of secret, don’t reveal correct secret.)

2. Inconsistent shares, invalid sum of shares
3. Consistent shares, invalid sum of shares

From the above listed attacks, in attack 1 and 2, malicious party generates and distri-
butes inconsistent shares. This results in incorrect sum of shares and eventually incor-
rect cluster computation by all parties including malicious party. In practical scenario,
malicious party often wants to get correct result but prevent others from getting cor-
rect result. Hence, by distributing inconsistent shares, malicious party will not achieve
its actual goal.

The only way for the malicious party to get correct clusters but prevent others from
getting correct clusters is using the scenario mentioned above in Attack 3. Here, all
parties including malicious parties generate and distribute consistent shares. But mali-
cious party sends invalid sum to all other parties in step 2 of algorithm shown in fig-
ure 1. If all other parties are honest, this will prevent honest parties to get correct
clusters. However, malicious party gets correct clusters because the sum of shares it
receives from honest parties are valid. Hence, attack 3 is important to thwart against
for the approach proposed in [2].

In this paper, we attempt to provide the solution to attack 3. At the point of sharing
secret sums, we use zero knowledge proof identification scheme that identifies
whether the secret sum calculated by sending party is actually the one received.

 Privacy Preserving Distributed K-Means Clustering in Malicious Model 425

3.3 Verifying the Sum of Shares

A sum of shares received by one party P1 is the sum calculated by P3 as explained in
section 3.1. In this case we consider, P3 sends 52 as the sum of shares to P1 and P2. In
case of P1, its own share in 52 is 13. So the partial sum of shares that needs to be veri-
fied without P1’s own share will be 39.

In our verification scheme, we consider 39 as partial sum, the secret value that
needs to be verified and should be proved by party sending it. For every such s, the
prover (party P3 in our case here) can generate a public (y, H, ω) such that y = H.sT, H
being a common random (r × n) q-ary parity matrix, and ω is the weight of code;
where n is the size of the code, k is the dimension of q-ary parity matrix and r is equal
to (n-k). Exactly following the zero knowledge identification scheme in [28], the se-
quence of messages between prover and verifier happens as shown in figure 2.

The scheme involves two parties; a Prover and a Verifier that communicate with
each other in a five pass protocol. The Prover attempts to prove his knowledge of cer-
tain value that is known by Verifier but cannot be disclosed to him. The scheme utilizes
q-ary codes over a finite field F, pseudo-random number generators and hash functions.

Once all parties verify their sum of shares from all other parties, they can solve a
set of equations to get final sum of secret values of every party. If the sum of shares is
not correctly verified by any party, then that party sends accusation to all other party
and the protocol terminates.

 P is prover and V is the verifier. Let us have q = 64, n = 6, r = 3;

H is r × n parity check matrix;
s is the integer value to be proved and verified; s is a liner code over of weight ω,
α is randomly selected over ;
u is randomly selected over ;
γ is randomly selected q-ary code over ;
Σ is a permutation, Π , is a permutation function and h is a hash function.
Step 1: P calculates C1 = h (Σ || γ || H.) and C2 = h (Π , || Π ,) and sends to V

Step 2: V replies with α
Step 3: P calculates β = Π , and sends to V

Step 4: V randomly selects b from {0,1}
Step 5: If P receives b = 0, it sends Σ, γ to V,

 V verifies C1 = h (Σ || γ || H Π , β - α y)
 If P receives b = 1, it sends Π , to V,
 V verifies C2 = h (β - αΠ , ,Π ,) and wt (Π ,) = ω

Fig. 2. Verification of integer value using Zero Knowledge Proof identification scheme [28]

The pseudo code of our proposed approach is shown in figure 3.As shown in figure
3, each party while sending the sum of shares, also prove the correctness of partial
sum. Similarly, each party while receiving the sum of shares needs to verify with the
party that has sent this sum too. If all sums are verified by all parties, then only the
protocol can proceed. Upon getting the wrong/invalid sum by other party, party sends
accusation to that party and protocol terminates.

426 S. Patel, V. Patel, and D. Jinwala

4 Theoretical Analysis

In this section, we give security and overhead analysis of the subcomponent of our
approach. We concentrate only on zero knowledge identification scheme which we
use to add support of malicious adversary model.

4.1 Security Analysis

As explained in section 3, the construction we use to add the security against malicious
adversary model is the zero knowledge interactive proof for P(I, s) in the random oracle
model; where I is the public construct consisting y, H and w. In identification scheme,

P: Set of parties P1,P2,…,Pn
vis=(ai,bi): Secret value of party Pi , where ai is sum of samples and bi is no. of samples in
cluster
X: A set of n publicly known random values x1, x2,…,xn
k: Degree of the random polynomial, here k = n – 1
c: no. of clusters
1: do in parallel for each party Pi Є {1...n}
 find ((ai, bi), … , (ac, bc)) using pseudo code described in Figure 2
2: for each secret value visЄ {ai,bi}
3: Select a random polynomial qi(x) = an−1xn−1 + … + a1x1 + vis
5: for r = 1 to n do
6: Compute share of party Pr, where shr(vis,Pr) = qi(xr)
7: send shr(vis, Pr) to party Pr
8: receive the shares shr(vrs, Pi) from every party Pr.
9: end for
10: compute S(xi) = q1(xi) + q2(xi) +…+qn(xi)
11: for r = 1 to n do
12: Send S(xi) to party Pr

13: Receive the sum S(xi) from every party Pr
14: Provethe partial sum S(xi)- shr(vis, Pr) to every party Pr
15: Verify the partial sum S(xi)- shr(vis, Pr) with every party Pr
16: If (partial sum from party Pr not verified) then
17: Broadcast an accusation to Party Pr
18: Terminate the algorithm.
19: endif
20: end for
21: Solve the set of equations using Lagrange’s interpolation to find the
22: sum of secret values
23: end for
24: Recomputeμiusing sumof samples/no. of samples
25: until termination criteria met

Fig. 3. Privacy preserving distributed K-means clustering in malicious adversary model using
Zero Knowledge Proof

 Privacy Preserving Distributed K-Means Clustering in Malicious Model 427

the secret key holder can prove his knowledge of s by using two blending factors: the
transformation by means of permutation and a random vector. A dishonest prover not
knowing s; can cheat the verifier with probability of q/2(q-1); where q is the power of
prime number (in our case 64). Thus the protocol has to be run several times to detect
cheating prover. In our case, we run the protocol 16 times to re-duce the probability of
cheating the verifier to 2-16. Further, the security of the identification scheme relies on
the properties of random linear q-ary codes.

4.2 Computational Cost

Adding support of malicious adversary in [2] adds extra computational cost. This
includes the matrix vector multiplication and generation of pseudo-random numbers
in the code based identification scheme. Apart from this, as the identification scheme
requires parties to compute random on their own, this also adds up to computational
overhead.

In order to find computation cost, we use following parameters from the identifica-
tion scheme:

N: the number of bits needed to encode an element of Fq = 8 bits
ℓh: the output size of the hash function h = 160 bits
δ: the number of rounds = 16

The size of the matrix in bits would be (r × n) N = 144 bits
As each party acts as a prover in our scheme, the computational complexity for

ZKP over Fq for each party is given as:

δ((n2)multiplications + (n2)additions) i.e. O(n2)

4.3 Communication Cost

In [2], the number of messages exchanged after single round of clustering algorithm
for a single party is O(akn) and for n parties it reaches to O(akn2); where a is the
number of attributes in dataset, k is the numbers of cluster centers and n is the number
of parties.

However, the ZKP scheme used to support the malicious behavior will also need
some amount of message exchange among parties. The cost in bytes will depend on
the size of q-ary codes used. Let N be the number of bits needed to encode an element
of Fq, in our case q is 64, i.e. 26, our n is 6 in this case. Bits needed to represent each
element of Fq will be thus 4. So N = 4. But in practical programming, we simply in-
itialize a two-dimensional byte array for linear code and parity matrix. This will make
our N = 8. The output size of our hash function is 160. Number of rounds δ is 16.

 Size of hash: lh = 160 bits
 Size of α: lα = 6•8 = 48 bits

428 S. Patel, V. Patel, and D. Jinwala

Size of γ: lγ = 6•8 = 48 bits
 Size of β: lβ = 6•8 = 48 bits
 Size of Σ: lΣ = 6•8 = 48 bits

So the total number of bits exchanged per attribute:

 =δ(2 •lh + lα + lβ + 1 + (lγ + lΣ + nN)/2)
 =16(2 •160 + 6•8 + 6•8 +1 + (6•8 + 6•8 + 6•8)/2)
 =16 (320 + 48 + 48 + 1 + (48 + 48 + 48)/2)
 =7824 bits = 978 bytes

Hence, the communication cost for verification of value by one party will be 0.98KB
and for n parties it reaches to 0.98 × n × (n-1) KB and hence O(n2).

5 Experimental Results and Analysis

We implemented our algorithm in JAVA. The experiments are conducted on Intel
Core 2 Duo CPU with 4GB RAM and 2.3GHz speed. The datasets are taken from
UCI machine learning repository. We provide brief outline of datasets here, however
interested readers may find details at UCI machine learning repository. Dataset1 is
Mammal's Milk with 2KB size, dataset2 is the river dataset with 25KB size and data-
set3 is a water treatment dataset with 82KB sizes. For our experiment, we select ini-
tial cluster centers randomly. To test the distributed application on real time data,we
divided all the three datasets randomly into three sets. These three data sets were then
placed on three different machines to perform real time distributed clustering. Our test
application successfully shows fully functional distributed clustering over real net-
work.

The Zero Knowledge Identification Scheme was simulated by creating Prover and
Verifier programs communicating through java sockets for the verification of each
“partial sum”. As discussed in section 3, the Prover and Verifier follows 5-pass 16-
round identification scheme. Thus for one attribute/iteration, number of messages
exchanged will be (5· n· n-1) as Prover + (5·n·n-1) as Verifier through communication
channel. i.e. 2·(5·n·n-1) messages.

A 16-round of zero knowledge identification protocol practically takes 185 millise-
conds on local computer and 3011ms through LAN. The practical cost of this tunes
out to be 2·185ms = 370ms between two parties and 370·(n·n-1)/2 for overall ex-
change over local computer and 2·3011 ms = 6022 ms between two parties making it
6022·(n·n-1)/2 through network communication channel.

Table 1 shows the percentage increase in overhead in terms of computational cost
and communication cost for our approach. The observation differs here from those
shown in [2] as in [2], the experiments were performed on local machine while in our
experiment we show true distributed emulation of our algorithm.

 Privacy Preserving Distributed K-Means Clustering in Malicious Model 429

Table 1. Comparison of Privacy Preserving Distributed K-Means clustering in presence of semi
honest adversary and malicious adversary model

Test

Communication
Overhead

Computation
Overhead

* Percentage increase
in bytes

attributes/iteration

*Percentage increase in
time(ms)

attributes/iteration
Mammal Dataset

Privacy preserving K-Means
Clustering in semi honest model

168% 77.26 %

Privacy preserving K-Means
clustering in malicious model

19152% 9988.95%

River Dataset
Privacy preserving K-Means
Clustering in semi honest model

336% 226.23 %

Privacy preserving K-Means
clustering in malicious model

19320 % 18462.68%

Water treatment Dataset
Privacy preserving K-Means
Clustering in semi honest model

504% 229.05%

Privacy preserving K-Means
clustering in malicious model

19824% 27231.71%

*Percentage increased in resources is calculated with respect to distributed K-Means cluster-
ing algorithm without privacy preserving mechanism.

6 Conclusion and Future Work

In this paper, we attempted to extend the approach proposed in [2] to add the support
of malicious adversary model using code based zero knowledge identification
scheme. We give theoretical and practical analysis of our proposed approach by con-
sidering 16 round ZKP scheme. In our proposed approach, the probability of cheating
the verifier is 2-16 which is reasonably small. As we verify only integer values, the
size of matrix used is small and it results in acceptable computation and communica-
tion cost. Experimental results show that adding malicious adversary support slows
down the performance of the algorithm. But at the same time we achieve fair conduc-
tion of protocol in presence of malicious adversary model.

In future, we intend to consider the of inconsistent share distribution and provide the
solution for the same. We also intend to reduce the overheads incurred by the algorithm.

References

1. Kriegel, H.P., Borgwardt, K.M., Kröger, P., Pryakhin, A., Schubert, M., Zimek, A.: Future
trends in data mining. Data Mining and Knowledge Discovery 15(1), 87–97 (2007)

430 S. Patel, V. Patel, and D. Jinwala

2. Patel, S., Garasia, S., Jinwala, D.: An Efficient Approach for Privacy Preserving Distri-
buted K-Means Clustering Based on Shamir’s Secret Sharing Scheme. In: Dimitrakos, T.,
Moona, R., Patel, D., McKnight, D.H. (eds.) Trust Management VI. IFIP AICT, vol. 374,
pp. 129–141. Springer, Heidelberg (2012)

3. Agrawal, R., Srikant, R.: Privacy-preserving data mining. ACM SIGMOD 29(2), 439–450
(2000)

4. Lindell, Y.: Privacy Preserving Data Mining. J. Cryptology, IACR, 177–206 (2002)
5. Pinkas, B.: Cryptographic Techniques for Privacy Preserving Data Mining. SIGKDD Ex-

plorations 4(2), 12–19 (2002)
6. Wu, X., Chu, C.-H., Wang, Y., Liu, F., Yue, D.: Privacy Preserving Data Mining Re-

search: Current Status and Key Issues. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot,
P.M.A. (eds.) ICCS 2007, Part III. LNCS, vol. 4489, pp. 762–772. Springer, Heidelberg
(2007)

7. Lloyd, S.P.: Least squares quantization in PCM. IEEE Transactions on Information
Theory 28, 129–137 (1982)

8. Vaidya, J., Clifton, C.: Privacy-preserving k-means clustering over vertically partitioned
data. In: Proc. 9th ACM SIGKDD International Conf. on Knowledge Discovery and Data
Mining. ACM Press (2003)

9. Inan, A., Kaya, S.V., Saygin, Y., Savas, E., Hintoglu, A.A., Levi, A.: Privacy preserving
clustering on horizontally partitioned data. Data Knowl. Eng., 646–666 (2007)

10. Jagannathan, G., Wright, R.N.: Privacy-preserving distributed k-means clustering over ar-
bitrarily partitioned data. In: Proc. KDD, pp. 593–599 (2005)

11. Bunn, P., Ostrovsky, R.: Secure two-party k-means clustering. In: Proc. ACM Conference
on Computer and Communications Security, pp. 486–497 (2007)

12. Jha, S., Kruger, L., McDaniel, P.: Privacy Preserving Clustering. In: de Capitani di Vimer-
cati, S., Syverson, P.F., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 397–
417. Springer, Heidelberg (2005)

13. Upmanyu, M., Namboodiri, A.M., Srinathan, K., Jawahar, C.V.: Efficient Privacy Preserv-
ing K-Means Clustering. In: Chen, H., Chau, M., Li, S.-h., Urs, S., Srinivasa, S., Wang,
G.A. (eds.) PAISI 2010. LNCS, vol. 6122, pp. 154–166. Springer, Heidelberg (2010)

14. Doganay, M.C., Pedersen, T.B., Saygin, Y., Savas, E., Levi, A.: Distributed privacy pre-
serving k-means clustering with additive secret sharing. In: Proc. 2008 International Work-
shop on Privacy and Anonymity in Information Society, Nantes, France, pp. 3–11 (2008)

15. Kantarcioglu, M., Kardes, O.: Privacy-preserving data mining in the malicious model. In-
ternational Journal of Information and Computer Security 2(4), 353–375 (2008)

16. Lindell, Y., Pinkas, B.: An Efficient Protocol for Secure Two-Party Computation in the
Presence of Malicious Adversaries. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS,
vol. 4515, pp. 52–78. Springer, Heidelberg (2007)

17. Lindell, Y., Pinkas, B., Smart, N.: Implementing Two-Party Computation Efficiently with
Security Against Malicious Adversaries. In: Ostrovsky, R., De Prisco, R., Visconti, I.
(eds.) SCN 2008. LNCS, vol. 5229, pp. 2–20. Springer, Heidelberg (2008)

18. Zhan, J., Chang, L., Matwin, S.: How to Prevent Private Data from being Disclosed to a
Malicious Attacker, Learning. In: Lin, T.Y., Xie, Y., Wasilewska, A., Liau, C.-J. (eds.)
Data Mining: Foundations and Practice. SCI, vol. 118, pp. 517–528. Springer, Heidelberg
(2008)

19. Emura, K., Miyaji, A., Rahman, M.S.: Efficient Privacy-Preserving Data Mining in Mali-
cious Model. In: Cao, L., Feng, Y., Zhong, J. (eds.) ADMA 2010, Part I. LNCS, vol. 6440,
pp. 370–382. Springer, Heidelberg (2010)

 Privacy Preserving Distributed K-Means Clustering in Malicious Model 431

20. Gilburd, B., Schuster, A., Wolff, R.: Privacy-preserving data mining on data grids in the
presence of malicious participants. In: Proc. of HPDC 2004, Honolulu, Hawaii (June 2004)

21. Hazay, C., Nissim, K.: Efficient Set Operations in the Presence of Malicious Adversaries.
In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 312–331. Sprin-
ger, Heidelberg (2010)

22. Duan, Y., Canny, J.: Practical private computation and zero-knowledge tools for privacy-
preserving distributed data mining, In: SDM 2008 (2008)

23. Shah, D., Zhong, S.: Two methods for privacy preserving data mining with malicious par-
ticipants. Information Sciences 177(23), 5468–5483 (2008)

24. Lindell, Y., Pinkas, B.: Secure Two-Party Computation via Cut-n-Choose Oblivious
Transfer. International Association for Cryptologic Research (2011)

25. Duan, Y., Canny, J.F., Zhan, J.Z.: Efficient Privacy-Preserving Association Rule Mining:
P4P Style. In: Proc. CIDM, pp. 654–660 (2007)

26. Feige, U., Fiat, A., Shamir, A.: Zero Knowledge Proofs of Identity. Computing, 210-217
(1987)

27. Bernstein, D.J., Buchman, J., Dahmen, E.: Post-Quantum Cryptography. Springer, Heidel-
berg (2008)

28. Cayrel, P.-L., Véron, P., El Yousfi Alaoui, S.M.: A Zero-Knowledge Identification
Scheme Based on the q-ary Syndrome Decoding Problem. In: Biryukov, A., Gong, G.,
Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 171–186. Springer, Heidelberg
(2011)

29. Oliveira, S.R.M.: Privacy preserving clustering by data transformation. In: Proc.18th Bra-
zilian Symposium on Databases, pp. 304–318 (2003)

30. Goldreich, O.: Foundations of Cryptography. Cambridge University Press (2001)
31. De Santis, A., Di Crescenzo, G., Persiano, G.: Secret Sharing and Perfect Zero-

Knowledge. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 73–84. Springer,
Heidelberg (1994)

32. Pedersen, T.B., Saygin, Y., Savas, E.: Secret sharing vs. encryption-based techniques for
privacy preserving data mining. In: Proc. UNECE/Eurostat Work Session on SDC (2007)

33. Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613 (1979)

	Privacy Preserving Distributed K-Means Clusteringin Malicious Model Using Zero Knowledge Proof
	Introduction
	Organization

	Back Ground and Related Work
	Zero Knowledge Proof Systems
	Code Based Cryptography and Linear Codes
	Related Work

	The Proposed Approach
	Privacy Preserving Distributed K-Means Clustering Using Shamir’sSecret Sharing Scheme [2]
	Attacks in Malicious Adversary Model
	Verifying the Sum of Shares

	Theoretical Analysis
	Security Analysis
	Computational Cost
	Communication Cost

	Experimental Results and Analysis
	Conclusion and Future Work
	References

