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Abstract. Preserving Privacy is crucial in distributed environments wherein da-
ta mining becomes a collaborative task among participants. Solutions proposed 
on the lines of cryptography involve use of classical cryptographic constructs in 
data mining algorithms. Applicability of solutions proposed depends on the  
adversary model in which it is able to preserve privacy. Existing cryptography 
based solutions for privacy preserving clustering aim to achieve privacy in 
presence of semi honest adversary model. For the practical applicability of the 
solutions in real world settings, support of malicious adversary model is desira-
ble. As per our literature survey, the existing research lacks any fool proof solu-
tion for privacy preserving distributed clustering in malicious adversary model.  
In this paper, we propose privacy preserving distributed K-Means clustering of 
horizontally partitioned data that supports privacy in malicious adversarial 
model. The basic construct involves use of secret sharing mechanism clubbed 
with code based zero knowledge identification scheme. We use secret sharing 
for privately sharing the information and code based identification scheme to 
add support against malicious adversaries. 

Keywords: Privacy Preservation in Distributed Data Mining (PPDDM), Secure 
Multiparty Computation, Secret Sharing, Zero Knowledge Proof. 

1 Introduction 

Data mining research deals with the investigation of efficient techniques for the extrac-
tion of potentially useful information from large collections of data.Recent studies[1] 
have thrown light on some of the major challenges for data mining. One of the necessi-
ties identified is the increased user-friendliness of data mining results. This in turn, poses 
a threat to privacy concerns of individuals. Hence, there is a need to add privacy preserv-
ing mechanisms in data mining; yielding Privacy Preserving Data Mining (PPDM) [2].  

In past one decade researchers have shown good interests in PPDM field. Soon af-
ter the field was introduced, many research groups started working on solutions for 
privacy preserving data mining (PPDM)[3][4]. The cryptographic approach is one of 
those directions [5] where researchers have come up incrementally with better  
and efficient results. The only drawback of cryptography based approach is its high 
overhead[6]. Hence, for this approach, one of the chief concerns is to minimize the 
over-heads incurred in implementing the protocols.  
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However, there are other vital issues also associated with the existing solutions. In 
this paper, we concentrate on the clustering application of data mining and especially 
the K-Means clustering algorithm [7]. Existing solutions proposed for privacy preserv-
ing K-Means clustering are [2][8-14]. To the best of our knowledge, all of these solu-
tions provide security in presence of the semi honest adversary model in which partici-
pating parties follow the prescribed protocol but try to infer private information using 
the messages they receive during protocol. Increased use of this model is also because 
of its less strict definition of security and privacy. Another model that can be considered 
is the malicious model in which parties arbitrarily deviate from the protocol run in order 
to infer private information. Although semi-honest model is realistic, solutions devised 
in malicious model provide higher security in real world settings [15].  

In PPDM research, the assumption that no other party should be trusted is closest 
to reality, where individual never knows who to trust. More than that, even after the 
successful exchange of knowledge, an assurance about the integrity and trustworthi-
ness of the shared information is required. Fulfillment of such conditions strengthens 
the protocol and can make it worthy of use in malicious models.  

In literature, mechanisms to handle malicious environments are proposed [15-25]. 
Solutions for implementing basic building blocks in malicious model are proposed in 
[15-19][21][22][24]. [20][25] give solution for association rule mining in malicious 
model while [23] gives solution for k-nn classifier. As we further discuss in section 2.3, 
none of these mechanisms attempts to give solution for the data mining application like 
clustering.  In this paper, we attempt to do so by adding malicious adversary support 
inthe privacy preserving distributed K-Means clustering algorithm proposed in [2]. 

1.1 Organization 

The remainder of this paper is organized as follows: In section 2, we discuss back-
ground and related work. Section 3 describes our proposed approach. In section 4 and 
5, we show theoretical and experimental analysis respectively. 

2 Back Ground and Related Work 

2.1 Zero Knowledge Proof Systems 

In cryptography, a zero knowledge proof or zero knowledge protocol is an interactive 
method for one party to prove to another that a statement is true, without revealing 
anything other than the veracity of the statement. An effective definition of zero 
knowledge proofs of knowledge is given in [26] along with its relevance to identifica-
tion scheme that we use in this paper.  

2.2 Code Based Cryptography and Linear Codes  

The identification scheme that we use in this paper is based on error-correcting code 
theory. We use definitions of linear codes and q-ary syndrome decoding problem 
from [27]. 



422 S. Patel, V. Patel, and D. Jinwala 

 

A linear code is an error-correcting code for which any linear combination of code 
words is also a code word. We can define it more precisely as: 

“A linear code of length n and rank k is a linear subspace C with dimension k of 
the vector space Fq where Fq is the finite field with q elements, q a prime power and 
k<n. Such a code is called q-ary code. The vectors in C are called code words. The 
size of the code is the number of code words and equals qk.” 

The weight, ɷ, of a codeword is the number of its elements that are nonzero and the 
distance between two codewords is the hamming distance between them. 

The distance d of a code is minimum weight of its nonzero codewords, or equivalent-
ly, the minimum distance between distinct codewords. The error-correcting capability of 
such a code is the maximum number of d errors that the code is able to decode. A linear 
code of length n, dimension k, and distance d is called an [n,k,d] code. 

Q-ary Syndrome Decoding Problem 
Given H ϵR q–ary(n, r), y ϵR  , and an integer ɷ > 0, output a word x ϵ  , such 
that w(s) <= ɷ, H.sT= y. This problem remains NP-complete [28]. 

2.3 Related Work 

PPDM approaches are classified into two categories [6]: 1. Randomization Based and 
2.Cryptography Based. The randomization based approach for privacy preserving clus-
tering has been addressed in [29] and approaches in this category incur low computation 
and communication cost but compromise with the level of privacy. The cryptography 
based approaches provide high level of privacy but at the cost of high computation and 
communication cost [6]. In this category, the privacy preservation in clustering has been 
achieved using the Secure Multiparty Computation (SMC) [8-10], the Homomorphic 
encryption[10-12] and the secret sharing [2][13][14] based techniques. 

However, to the best of our knowledge, all of the above privacy preserving clustering 
protocols were proven or claimed to be secure only in the semi-honest model. In [30], a 
systematic method is described for converting protocols that are secure in the semi-
honest model to ones that are equally secure and privacy-preserving in the malicious 
model with the use of commitment schemes and zero-knowledge proofs. The first at-
tempt towards adding malicious adversary support in distributed association rule mining 
in data grids is proposed in [20]. In [15], authors show several constructions on equality, 
dot product and set-intersection operations in malicious model for the first time. In [19], 
authors proposed efficient and secure dot product and set-intersection protocols in the 
malicious model while reducing the computational and communication complexity of 
the proof of knowledge of [15] drastically.Recently, [21] proposed efficient set opera-
tions against the malicious adversaries. They assume no trusted set up or trusted third 
party for the computation, thus increasing the communication overhead. In [22], authors 
propose private vector addition protocol using probabilistic zero-knowledge protocol. In 
[23], authors add malicious adversary support to already existing privacy-preserving 
secure scalar product for private distributed k-nn classifier. In [24], authors present an 
implementation of Yao’s protocol with the cut-and-choose methodology, which is se-
cure in the presence of malicious adversaries. 
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Relation between secret sharing and Zero knowledge proof has been discussed in 
[31]. Authors in [32] suggest verifiable secret sharing as one of the ways to add mali-
cious adversary support. Authors in [25] proposed Peer for privacy(P4P) framework 
for privacy preserving data mining using Verifiable secret sharing to add malicious 
adversary support. 

It is apparent however, that none of the paper gives solution for clustering in distri-
buted environment in malicious model. 

3 The Proposed Approach 

3.1 Privacy Preserving Distributed K-Means Clustering Using Shamir’s 
Secret Sharing Scheme [2] 

In the distributed scenario, where data are located at different sites, the algorithm for 
K-Means clustering differs slightly. In distributed scenario, it is desirable to compute 
cluster means using union of data located at different parties. We use distributed 
Weighted Average Problem to compute intermediate cluster means in distributed 
scenario. To collaboratively compute cluster means, all parties need to send their local 
clusters to every other party. For example, if two parties want to jointly perform clus-
tering, then each party needs to send its sum of samples and number of samples  
values (of each cluster) to other party. We shall denote (ai,bi) and (di,ei) as sum of 
samples and number of samples pairs for party A and party B respectively. Joint com-
putation of the clusters can be performed using (ai+di)/(bi+ei). If parties send (ai,bi) 
and (di,ei) pairs in clear then there is a threat to privacy violations. In [2], authors 
proposed new and efficient privacy preserving computation of (ai+di)/(bi+ei) using 
Shamir’s secret sharing scheme [33]. The approach is shown in figure 1.    

 

Fig. 1. Privacy Preserving Distributed K-Means clustering using Shamir’s Secret Sharing 
scheme 

As shown in figure 1, in step 1, each party generates and distributes the shares. In 
step 2, each party performs the addition of the shares it receives including its own 
share and sends the calculated sum back to every other party. By solving the linear 
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equations corresponding to the received sums, parties are able to calculate the sum of 
the secret values of all parties using Lagrange’s interpolation. 

Taking an example of three party {P1,P2,P3} case where they share a public con-
stants C =  {3, 4, 2} corresponding to each party and have private polynomials Q = 
{2x2 + x + c, x2 + 3x + c, 4x2 + 3x + c}. The values they want to secretly share is let’s 
say {3, 4, 3} respectively. Let’s take an example where each party generates share for 
every party including self. Now when party P1 sends its share secretly to P3, it uses 
equation Q1(C3), i.e. it sends 2(2)2 + 2 + 3 = 13 to P3, similarly P2 sends 14 to P3 and 
P3 calculates its own share to be 25 by Q3(C3). This way P3 receives three quadratic 
equations including its own; their addition gives 52. Similarly P1 and P2 each will 
receive three values each and add up to get 94 and 150 respectively. These sums are 
called sum of shares. 

3.2 Attacks in Malicious Adversary Model 

In this paper, we concentrate on the malicious adversary attacks that are possible for 
the approach proposed in [2]. Some possibilities in malicious environment like a party 
aborting the protocol abruptly or sending blank messages cannot be avoided even 
while using standard zero knowledge proofs [22].These situations can easily be han-
dled by programming. However, in practical scenario following attacks are possible 
for the approach proposed in [2]: 

1. Inconsistent shares, valid sum of shares; (here inconsistent shares are the shares 
which when used for reconstruction of secret, don’t reveal correct secret.) 

2. Inconsistent shares, invalid sum of shares 
3. Consistent shares, invalid sum of shares 

From the above listed attacks, in attack 1 and 2, malicious party generates and distri-
butes inconsistent shares. This results in incorrect sum of shares and eventually incor-
rect cluster computation by all parties including malicious party. In practical scenario, 
malicious party often wants to get correct result but prevent others from getting cor-
rect result. Hence, by distributing inconsistent shares, malicious party will not achieve 
its actual goal. 

The only way for the malicious party to get correct clusters but prevent others from 
getting correct clusters is using the scenario mentioned above in Attack 3. Here, all 
parties including malicious parties generate and distribute consistent shares. But mali-
cious party sends invalid sum to all other parties in step 2 of algorithm shown in fig-
ure 1. If all other parties are honest, this will prevent honest parties to get correct  
clusters. However, malicious party gets correct clusters because the sum of shares it 
receives from honest parties are valid. Hence, attack 3 is important to thwart against 
for the approach proposed in [2]. 

In this paper, we attempt to provide the solution to attack 3. At the point of sharing 
secret sums, we use zero knowledge proof identification scheme that identifies 
whether the secret sum calculated by sending party is actually the one received. 
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3.3 Verifying the Sum of Shares 

A sum of shares received by one party P1 is the sum calculated by P3 as explained in 
section 3.1. In this case we consider, P3 sends 52 as the sum of shares to P1 and P2. In 
case of P1, its own share in 52 is 13. So the partial sum of shares that needs to be veri-
fied without P1’s own share will be 39.  

In our verification scheme, we consider 39 as partial sum, the secret value that 
needs to be verified and should be proved by party sending it. For every such s, the 
prover (party P3 in our case here) can generate a public (y, H, ω) such that y = H.sT, H 
being a common random (r × n) q-ary parity matrix, and ω is the weight of code; 
where n is the size of the code, k is the dimension of q-ary parity matrix and r is equal 
to (n-k). Exactly following the zero knowledge identification scheme in [28], the se-
quence of messages between prover and verifier happens as shown in figure 2.  

The scheme involves two parties; a Prover and a Verifier that communicate with 
each other in a five pass protocol. The Prover attempts to prove his knowledge of cer-
tain value that is known by Verifier but cannot be disclosed to him. The scheme utilizes 
q-ary codes over a finite field F, pseudo-random number generators and hash functions. 

Once all parties verify their sum of shares from all other parties, they can solve a 
set of equations to get final sum of secret values of every party. If the sum of shares is 
not correctly verified by any party, then that party sends accusation to all other party 
and the protocol terminates. 

 

 
   P is prover and V is the verifier. Let us have q = 64, n = 6, r = 3; 

H is r × n parity check matrix;  
s is the integer value to be proved and verified; s is a liner code over  of weight ω,  
α is randomly selected over ; 
u is randomly selected over ; 
γ is randomly selected q-ary code over ; 
Σ is a permutation, Π ,  is a permutation function and h is a hash function.  
Step 1: P calculates C1 = h (Σ || γ || H. ) and C2 = h (Π ,  || Π , ) and sends to  V 

Step 2: V replies with α  
Step 3: P calculates β = Π ,    and sends to V 

Step 4: V randomly selects b from {0,1} 
Step 5: If P receives b = 0, it sends Σ, γ to V, 

 V verifies C1 = h (Σ || γ || H Π , β  - α y) 
  If P receives b = 1, it sends Π ,  to V, 
 V verifies C2 = h (β - αΠ , ,Π , ) and wt (Π , ) = ω 

Fig. 2. Verification of integer value using Zero Knowledge Proof identification scheme [28] 

The pseudo code of our proposed approach is shown in figure 3.As shown in figure 
3, each party while sending the sum of shares, also prove the correctness of partial 
sum. Similarly, each party while receiving the sum of shares needs to verify with the 
party that has sent this sum too. If all sums are verified by all parties, then only the 
protocol can proceed. Upon getting the wrong/invalid sum by other party, party sends 
accusation to that party and protocol terminates. 
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4 Theoretical Analysis 

In this section, we give security and overhead analysis of the subcomponent of our 
approach. We concentrate only on zero knowledge identification scheme which we 
use to add support of malicious adversary model. 

4.1 Security Analysis 

As explained in section 3, the construction we use to add the security against malicious 
adversary model is the zero knowledge interactive proof for P(I, s) in the random oracle 
model; where I is the public construct consisting y, H and w. In identification scheme,  
 

P:  Set of parties P1,P2,…,Pn 
vis=(ai,bi): Secret value of party Pi , where ai is sum of samples and bi is no. of samples in  
cluster 
X: A set of n publicly known random values x1, x2,…,xn 
k: Degree of the random polynomial, here k = n – 1 
c: no. of clusters  
1:  do in parallel for each party Pi Є {1...n}  
 find ((ai, bi), … , (ac, bc)) using pseudo code described in Figure 2  
2:  for each secret value visЄ {ai,bi} 
3:   Select a random polynomial qi(x) = an−1xn−1 + … + a1x1 + vis 
5:   for r = 1 to n do  
6:   Compute share of party Pr, where shr(vis,Pr) = qi(xr) 
7:    send shr(vis, Pr) to party Pr 
8:    receive the shares shr(vrs, Pi) from every party Pr.  
9:  end for 
10:   compute S(xi) = q1(xi) + q2(xi) +…+qn(xi)   
11:  for r = 1 to n do  
12:    Send S(xi) to party Pr 

13:    Receive the sum S(xi) from every party Pr 
14:   Provethe partial sum S(xi)- shr(vis, Pr) to every party Pr 
15:   Verify the partial sum S(xi)- shr(vis, Pr) with every party Pr 
16:   If (partial sum from party Pr not verified) then 
17:    Broadcast an accusation to Party Pr 
18:    Terminate the algorithm. 
19:   endif 
20:           end for 
21:   Solve the set of equations using Lagrange’s interpolation to find the  
22:             sum of secret values  
23: end for 
24: Recomputeμiusing sumof samples/no. of samples  
25: until termination criteria met 

Fig. 3. Privacy preserving distributed K-means clustering in malicious adversary model using 
Zero Knowledge Proof 
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the secret key holder can prove his knowledge of s by using two blending factors: the 
transformation by means of permutation and a random vector. A dishonest prover not 
knowing s; can cheat the verifier with probability of q/2(q-1); where q is the power of 
prime number (in our case 64). Thus the protocol has to be run several times to detect 
cheating prover. In our case, we run the protocol 16 times to re-duce the probability of 
cheating the verifier to 2-16. Further, the security of the identification scheme relies on 
the properties of random linear q-ary codes. 

4.2 Computational Cost 

Adding support of malicious adversary in [2] adds extra computational cost. This 
includes the matrix vector multiplication and generation of pseudo-random numbers 
in the code based identification scheme. Apart from this, as the identification scheme 
requires parties to compute random on their own, this also adds up to computational 
overhead. 

In order to find computation cost, we use following parameters from the identifica-
tion scheme: 

N: the number of bits needed to encode an element of Fq = 8 bits 
ℓh: the output size of the hash function h = 160 bits 
δ: the number of rounds = 16 

The size of the matrix in bits would be (r × n ) N = 144 bits  
As each party acts as a prover in our scheme, the computational complexity for  

ZKP over Fq for each party is given as: 

δ( (n2)multiplications + (n2)additions ) i.e. O(n2) 

4.3 Communication Cost 

In [2], the number of messages exchanged after single round of clustering algorithm 
for a single party is O(akn) and for n parties it reaches to O(akn2); where a is the 
number of attributes in dataset, k is the numbers of cluster centers and n is the number 
of parties. 

However, the ZKP scheme used to support the malicious behavior will also need 
some amount of message exchange among parties. The cost in bytes will depend on 
the size of q-ary codes used. Let N be the number of bits needed to encode an element 
of Fq, in our case q is 64, i.e. 26, our n is 6 in this case. Bits needed to represent each 
element of Fq will be thus 4. So N = 4. But in practical programming, we simply in-
itialize a two-dimensional byte array for linear code and parity matrix. This will make 
our N = 8. The output size of our hash function is 160. Number of rounds δ is 16. 

 Size of hash: lh = 160 bits 
 Size of α: lα = 6•8 = 48 bits 
 



428 S. Patel, V. Patel, and D. Jinwala 

 

Size of γ: lγ  = 6•8 = 48 bits 
 Size of β: lβ  = 6•8 = 48 bits 
 Size of Σ: lΣ = 6•8 = 48 bits 

So the total number of bits exchanged per attribute: 

 =δ( 2 •lh + lα + lβ + 1 + (lγ + lΣ + nN)/2) 
 =16(2 •160 + 6•8 + 6•8 +1 + ( 6•8 + 6•8 + 6•8)/2) 
 =16 (320 + 48 + 48 + 1 + (48 + 48 + 48)/2) 
 =7824 bits = 978 bytes 

Hence, the communication cost for verification of value by one party will be 0.98KB 
and for n parties it reaches to 0.98 × n × (n-1) KB and hence O(n2).  

5 Experimental Results and Analysis 

We implemented our algorithm in JAVA. The experiments are conducted on Intel 
Core 2 Duo CPU with 4GB RAM and 2.3GHz speed. The datasets are taken from 
UCI machine learning repository. We provide brief outline of datasets here, however 
interested readers may find details at UCI machine learning repository. Dataset1 is 
Mammal's Milk with 2KB size, dataset2 is the river dataset with 25KB size and data-
set3 is a water treatment dataset with 82KB sizes. For our experiment, we select ini-
tial cluster centers randomly. To test the distributed application on real time data,we 
divided all the three datasets randomly into three sets. These three data sets were then 
placed on three different machines to perform real time distributed clustering. Our test 
application successfully shows fully functional distributed clustering over real net-
work. 

The Zero Knowledge Identification Scheme was simulated by creating Prover and 
Verifier programs communicating through java sockets for the verification of each 
“partial sum”. As discussed in section 3, the Prover and Verifier follows 5-pass 16-
round identification scheme. Thus for one attribute/iteration, number of messages 
exchanged will be (5· n· n-1) as Prover + (5·n·n-1) as Verifier through communication 
channel. i.e. 2·(5·n·n-1) messages. 

A 16-round of zero knowledge identification protocol practically takes 185 millise-
conds on local computer and 3011ms through LAN. The practical cost of this tunes 
out to be 2·185ms = 370ms between two parties and 370·(n·n-1)/2 for overall ex-
change over local computer and 2·3011 ms = 6022 ms between two parties making it 
6022·(n·n-1)/2 through network communication channel. 

Table 1 shows the percentage increase in overhead in terms of computational cost 
and communication cost for our approach. The observation differs here from those 
shown in [2] as in [2], the experiments were performed on local machine while in our 
experiment we show true distributed emulation of our algorithm. 



 Privacy Preserving Distributed K-Means Clustering in Malicious Model 429 

 

Table 1. Comparison of Privacy Preserving Distributed K-Means clustering in presence of semi 
honest adversary and malicious adversary model 

Test 

Communication 
Overhead 

Computation   
Overhead 

* Percentage increase 
in bytes  

attributes/iteration 

*Percentage increase in  
time(ms) 

attributes/iteration 
Mammal Dataset 

Privacy preserving K-Means 
Clustering in semi honest model  

168% 77.26 % 

Privacy preserving K-Means 
clustering in malicious model 

19152% 9988.95% 

River Dataset
Privacy preserving K-Means 
Clustering in semi honest model  

336% 226.23 % 

Privacy preserving K-Means 
clustering in malicious model 

19320 % 18462.68% 

Water treatment Dataset
Privacy preserving K-Means 
Clustering in semi honest model  

504% 229.05% 

Privacy preserving K-Means 
clustering in malicious model 

19824% 27231.71% 

*Percentage increased in resources is calculated with respect to distributed K-Means cluster-
ing algorithm without privacy preserving mechanism. 

6 Conclusion and Future Work 

In this paper, we attempted to extend the approach proposed in [2] to add the support 
of malicious adversary model using code based zero knowledge identification 
scheme. We give theoretical and practical analysis of our proposed approach by con-
sidering 16 round ZKP scheme. In our proposed approach, the probability of cheating 
the verifier is 2-16 which is reasonably small. As we verify only integer values, the 
size of matrix used is small and it results in acceptable computation and communica-
tion cost. Experimental results show that adding malicious adversary support slows 
down the performance of the algorithm. But at the same time we achieve fair conduc-
tion of protocol in presence of malicious adversary model. 

In future, we intend to consider the of inconsistent share distribution and provide the 
solution for the same. We also intend to reduce the overheads incurred by the algorithm. 
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