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Abstract An expository account of the recent theory of nonparametric inference
on manifolds is presented here, with outlines of proofs and examples. Much of the
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1 Introduction

Statistical inference on manifolds such as circles and spheres has a long history,
dating back at least to early twentieth century. But a great deal of activity was
inspired by the seminal 1953 paper of R.A. Fisher on the shifts of the earth’s
magnetic poles over geological time scales. Statistical inference on landmarks based
shape manifolds, which are of special interest in this article, came later and owes
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much of its development to the pioneering work of Kendall [32–34], providing the
appropriate geometric foundation for these spaces, and to Bookstein [13–15], who
in a somewhat different vein created methodologies for applications of statistics of
shapes to biology and medical imaging. We must also mention the work of Karcher
[31] on the uniqueness of Fréchet means of probability measures on Riemannian
manifolds, and the work of Ziezold [46] on the almost sure convergence properties
of Fréchet mean sets on metric spaces. Parametric inference for these spaces grew
quite rapidly during the past two decades or so. In addition to the work already
mentioned, important contributions were made by many authors, such as Kent
[36, 37], Goodall [26], Dryden and Mardia [18], Prentice and Mardia [43], and
others. A comprehensive account of this theory with extensive references to original
work until 1998 may be found in the book by Dryden and Mardia [19].

In the present article we provide an expository account of the recent
nonparametric theory on general manifolds, with special emphasis on shape
manifolds. This theory is largely based on the notion of the Fréchet mean of a
probability measure Q, namely, the minimizer, if unique, of the expected squared
distance from a point on the manifold. If the distance on the manifold M is the
geodesic distance with respect to a Riemannian metric, the Fréchet mean is said to
be intrinsic. If the distance is the Euclidean distance inherited from an embedding
of M in a Euclidean space, then the Fréchet mean is called extrinsic. Hendriks
and Landsman [27, 28], provided asymptotics of the extrinsic mean on regular
submanifolds of Euclidean spaces, with the embedding given by the inclusion
map. Independently of this, a theory of extrinsic inference for Fréchet means on
general manifolds originated in the 1998 dissertation of Patrangenaru, and further
developed in [10, 11]. The latter articles also provided a general theory of intrinsic
inference. While the emphasis in applications in the latter articles are to the sphere
Sd and Kendall’s planar shape spaces, embeddings of projective shape spaces
and 3D shape spaces and inference for Fréchet means on them are developed in
[2,3,8,9,39]. Further progress in both intrinsic and extrinsic inference may be found
in [4, 5] and in the monograph Bhattacharya and Bhattacharya [6]. Our goal here is
to present the core of this emerging field in a reasonably accessible manner.

Because references to Bhattacharya and Patrangenaru and Bhattacharya and
Bhattacharya occur frequently, we would henceforth refer to them as BP and BB,
respectively.

Here is an outline of the contents of the paper. In Sect. 2, basic properties
of Fréchet means on metric spaces are established, including consistency
(Theorem 2.1), and a general result on the asymptotic distribution of sample Fréchet
means on manifolds (Theorem 2.5). The latter turns out to be crucial for intrinsic
inference developed in later sections. Consistency and asymptotic distribution of
extrinsic sample means are established in Sect. 3 (Theorems 3.1, 3.3), while Sect. 4
provides the corresponding results for intrinsic sample means (Theorem 4.1). The
groundwork for statistical inference on general manifolds is laid in Sect. 5, including
the construction of confidence regions and two-sample and match pair tests, based
on the asymptotic Normal and chisquare distributions derived in earlier sections.
Section 6 describes the geometries of landmarks based shape spaces. Here an
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observation, called a k-ad, consists of k landmarks, chosen with expert help,
on an object of interest such as a brain scan, or some other digital image. The
goal may be medical diagnosis, classifying biological species and subspecies, or
computer vision/robotics. Because of differences in equipments used and/or their
positioning relative to the object while recording images, etc., one considers for
analysis the k-ad modulo an appropriate Lie group of transformations. In particular,
the similarity shape of a k-ad is its orbit (or maximal invariant) under Euclidean
rigid motions of translation and rotation, as well as scaling. The space of such
shapes of k-ads in R

m is Kendall’s shape space †km.k > m/. For m D 2, it
is more convenient for analytical and computational purposes to represent the k
points of the k-ad in R

2 as points in the complex plane. The planar shape space
†k2 can then be identified with the complex projective space CPk�2, which is a
manifold of considerable interest in differential geometry. Its natural Riemannian
structure is described in Sect. 6.1.1. Sect. 6.1.2 considers the intrinsic geometry
of †km in dimensions m > 2. Unfortunately, here the Lie group action is not
free, resulting in orbits of different dimensions in different regions of †km. If one
removes the regions of singularity, the manifold is no longer complete in the
Riemannian metric, and its curvature grows unboundedly as one approaches the
singular sets, making inference difficult. For some recent progress in overcoming
this in extending principal components analysis to Riemannian manifolds, see
[29]. Sub-section 6.1.2 is devoted to the extrinsic geometry of †k2 under the
so-called Veronese-Whitney embedding, which is equivariant under the unitary
group SU.k � 1/.

As a matter of notation, a k-ad x in R
m is represented as an m � k matrix, with

the k points appearing as k column vectors in R
m. The transpose of a matrix A is

expressed as At .
Section 6.2 defines the so-called reflection similarity shape r�.x/ of a k-ad x in

R
m, identified with the orbit of the centered and scaled k-ad z under the group

O.m/ of all orthogonal transformations. When restricted to the non-singular
part of †km using only k-ads each of which is of full rank m, the reflection-
similarity shape space R†km is a manifold, although not complete. But its
extrinsic analysis is facilitated by the embedding r�.x/ ! zt z into the space
S.k;R/ of all symmetric k � k matrices, or into S.k � 1;R/ if one reduces
the k-ad to a .k � 1/-ad by Helmertization to remove translation. Here z is the
preshape of x obtained by scaling (to norm 1) the translated, or Helmertized
k-ad. This new shape space and its embedding were originally introduced by
Bandulasiri and Patrangenaru [8], and also arrived at independently by Dryden
et al. [20]. The geometry and extrinsic inference for it was further developed
in [2, 3, 6, 9]. This is a significant step in the analysis of 3D shapes. In the
remaining two Sects. 6.3 and 6.4 we introduce affine and projective shapes.
These are of much importance in problems of scene recognition and machine
vision.
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A proper extrinsic analysis requires a good equivariant embedding, whereby a
reasonably large isometric group action on a Riemannian manifold M is replicated
on its image (in anN -dimensional Euclidean spaceEN ), by the action of a subgroup
of the general linear groupGL.N;R/, via a group homomorphism. Often this latter
is also a group of isometries on the image ofM under the embedding when endowed
with the metric tensor induced from EN . This helps preserve much of the geometry
of M . In view of this, in most examples of data analysis the results of extrinsic and
intrinsic inference turn out to be nearly identical although they are based on different
methodologies. The embeddings of the shape spaces considered in this article are
equivariant under appropriately large group actions.

To illustrate the general theory, in Sect. 7 we develop in some detail intrinsic
and extrinsic inference procedures on two specific manifolds—the sphere Sd and
the planar shape space †k2 . Section 8 provides a brief introduction to density
estimation and classification using the nonparametric Bayes theory. Finally, Sect. 9
provides three examples of data analysis using the nonparametric theory presented
in this article, and contrasts these, where possible, with results of parametric
inference carried out in the literature. As is well recognized, nonparametric methods
provide inference whose validity is model independent, while parametric models
may be miss-specified and lead to conclusions not quite right. However, this
advantage is often accompanied by larger confidence regions and smaller powers
of tests. It, therefore, comes as a pleasant surprise that in most examples where
data are available and for which parametric inference has been carried out,
the model-independent procedures for shape spaces described in this article yield
sharper inference-narrower confidence regions and much smaller p-values -than
their parametric counterparts.

Finally, mention should also be made of the work of Ellingson et al. [21] for the
estimation of the extrinsic mean of distributions of planar contours representing
continuous planar shapes, via an infinite dimensional version of the Veronese-
Whitney embedding of †k2 .

We conclude this section with a sketch of the estimation of the extrinsic mean
on M D Sd . Here the embedding J is the inclusion map of Sd into R

dC1. The
extrinsic mean �E of Q on Sd is given by �E D �J =j�J j, where �J is the mean
ofQ viewed as a measure on R

dC1. We assume �J ¤ 0, which is the necessary and
sufficient condition for the uniqueness of the extrinsic mean on Sd . The extrinsic
sample mean of i.i.d. observations X1; � � � ; Xn is, similarly, O�E D NX=j NX j, where
NX D .X1 C � � � C Xn/=n. It is easy to check that when O�E and �E are viewed as

vectors in R
dC1, O�E is asymptotically Normal N.�E;†=n/, where the .d C 1/ �

.d C 1/ matrix † is singular, since O�E lies nearly on T�E .S
d /-the tangent space

of Sd at �E . The tangential component of O�E , expressed in d coordinates with
respect to a chosen orthonormal basis of T�E .S

d /, has the asymptotic distribution
N.0;†1=n). Here†1 is a d�d matrix which is nonsingular if the covariance matrix
of Q (on RdC1 ) is nonsingular. One may use this result for estimation and testing
on Sd . For details of this and for intrinsic inference on Sd see Example 7.1.
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2 Asymptotic Distribution Theory for Fréchet Means

Let .M; �/ be a metric space and Q a probability measure on the Borel sigma-field
of M . Consider a Fréchet function of Q defined by

F.x/ D
Z
�˛.x; y/Q.dy/; x 2 M; (1)

for some ˛ � 1. We will be mostly concerned with the case ˛ D 2: Assume that
F is finite at least for one x. A minimizer of F , if unique, serves as a measure of
location ofQ. In general, the set CQ of minimizers of F is called the Fréchet mean
set of Q. In the case the minimizer is unique, one says that the Fréchet mean exists
and refers to it as the Fréchet mean of Q. If X1; � � � ; Xn are i.i.d observations with
common distributionQ, the Fréchet mean set and the Fréchet mean of the empirical
Qn D 1=n

P
1�j�n ıXj are named the sample Fréchet mean set and the sample

Fréchet mean, respectively. For a reason which will be clear from the result below,
in the case the Fréchet mean of Q exists, a (every) measurable selection from CQn

is taken to be a sample Fréchet mean.
The following is a general result on Fréchet mean sets CQ and CQn ofQ andQn

and consistency of the sample Fréchet mean.

Theorem 2.1 (Ziezold [46], BP [10], BB [6]). Let M be a metric space such that
every closed and bounded subset of M is compact. Suppose ˛ � 1 in (1) and F.x/
is finite for some x. Then .a/ the Fréchet mean set CQ is nonempty and compact,
and (b) given any � > 0, there exists a positive integer valued random variable
N D N.!; �/ and a P -null set �.�/ such that

CQn � C �
Q D fx 2 M W �.x; CQ/ < �g 8n � N;8! 2 .�.�//c : (2)

.c/ In particular, if the Fréchet mean of Q exists then the sample Fréchet mean,
taken as a measurable selection from CQn , converges almost surely to it.

Remark 2.2. Unfortunately, it does not seem possible in general to estimate the
Fréchet mean set CQ consistently by CQn , that is, the Hausdorff distance between
the two does not necessarily go to zero with probability one, as n goes to infinity.
Consider, for example, the simple case of M D Sd , with � as the chord distance
and ˛ D 2. Take an absolutely continuous Q for which CQ is not a singleton, as
would be the case for the uniform distribution in particular. It is easy to see that the
sample Fréchet mean set CQn is, with probability one, a singleton.

Unless stated otherwise, we will assume in this article that the manifold M is
connected and satisfies the property that its closed bounded subsets are compact.
Obviously this is true if M is compact. The assumption also holds for all Riemannian
manifolds which are complete under the geodesic distance, by the Hopf-Rinow
theorem (see [17], pp. 146–147).
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Remark 2.3. It has been shown by Karcher [31] for the case ˛ D 2 in (1) that, if the
Fréchet function ofQ is finite, then on a Riemannian manifoldM with non-positive
sectional curvature the Fréchet mean always exists as a unique minimizer.

We give a proof of Theorem 2.1 for a compact metric M , which is the case in
many of the applications of interest here. Part (a) is then trivially true. For part (b),
for each � > 0, write

� D inffF.x/ W x 2 M g � F.q/ 8 q 2 CQ;
�C ı.�/ D inffF.x/ W x 2 MnC �

Qg: (3)

If C �
Q D M , then (2) trivially holds. Consider the case C �

Q ¤ M , so that
ı.�/ > 0.

Let Fn.x/ be the Fréchet function ofQn, namely,

Fn.x/ D 1

n

X
1�j�n

�˛.x;Xj /:

Now use the elementary inequality,

j�˛.x; y/ � �˛.x0; y/j � ˛�.x; x0/Œ�˛�1.x; y/C �˛�1.x0; y/� � c˛�.x; x0/;

with c D 2maxf�˛�1.x; y/; x; y 2 M g, to obtain

jF.x/ � F.x0/j � c˛�.x; x0/; jFn.x/ � Fn.x
0/j � c˛�.x; x0/; 8x; x0: (4)

For each x 2 MnC �
Q find r D r.x; �/ > 0 such that c˛�.x; x0/ < ı.�/=4 8x0

within a distance r from x. Letm D m.�/ of these balls with centers x1; � � � ; xm (in
MnC �

Q) cover MnC �
Q. By the SLLN, there exist integers Ni D Ni.!/ such that,

outside a P -null set �i.�/, jFn.xi / � F.xi /j < ı.�/=4 8 n � Ni.i D 1; � � � ; m/.
Let N 0 D maxfNi W i D 1; � � � ; mg. If n > N 0, then for every i and all x in the ball
with center xi and radius r.xi ; �/,

Fn.x/ > Fn.xi /� ı.�/=4 > F.xi / � ı.�/=4 � ı.�/=4
� �C ı.�/� ı.�/=2 D �C ı.�/=2:

Next choose a point q 2 CQ and find N 00 D N 00.!/, again by the SLLN, such
that, if n � N 00 then jFn.q/ � F.q/j < ı.�/=4 and, consequently, Fn.q/ < � C
ı.�/=4, outside of a P -Null set �00.�/. Hence (2) follows with N D maxfN 0; N 00g
and �.�/ D f[�i.�/ W i D 1; � � � ; mg [ �00.�/. Part (c) is an immediate
consequence of part (b).
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Remark 2.4. For a compact metric space M , the conclusions of Theorem 2.1
hold for a generalized Fréchet function F by letting the integrand in (1) be an
arbitrary continuous function f .x; y/ onM �M instead of �˛.x; y/. Only a slight
modification of the above proof is required for this.

For noncompactM , the proof of Theorem 2.1 is a little more elaborate and may
be found in [6] or, for the case ˛ D 2, in [10].

We now proceed to derive the asymptotic distribution of sample Fréchet means
on a d -dimensional differentiable manifold M . Let Q be a probability measure on
M such that Q.U / D 1 for some open subset U of M which is C2 diffeomorphic
to an open set V of Rd .

Consider a generalized Fréchet function F on U :

F.p/ D
Z
U

f .p; p0/Q.dp0/; p 2 U; (5)

where f W U � U ! R, and the integral is finite for all p in U . Assume that
F is twice differentiable in a neighborhood of the minimizer � of F , assumed
unique, and let �n be a consistent Fréchet sample mean. Let 	 W U ! V be a C2

diffeomorphism. Write h.x; y/ D f .	�1x; 	�1y/ for x; y 2 V . Then 
 D 	.�/

and 
n D 	.�n/ are the Fréchet minimizers ofQ ı 	�1 andQn ı 	�1, respectively,
of the Fréchet functions

H.x/ D
Z
V

h.x; y/Q ı 	�1.dy/; (6)

Hn.x/ D
Z
V

h.x; y/Qn ı 	�1.dy/ D 1

n

nX
jD1

h.x; Yj /; x 2 V;

where Yj D 	.Xj /. Write  r.x; y/ D Drh.x; y/ D .@=@xr/h.x; y/ (r D
1; � � � ; d ) and and let D stand for the gradient. For example, D r.x; y/ is the
vector .D1 

r .x; y/; � � � ;Dd 
r .x; y//: By assumption, H is twice differentiable

in a neighborhood of 	.�/ and a Taylor expansion yields

0 D 1p
n

X
1�j�n

 r.
n; Yj /

D 1p
n

X
1�j�n

 r.
;Yj /C
2
4 1
n

X
1�j�n

D r.
; Yj /C �n;r

3
5 � p

n.
n � 
/; (7)

where � denotes inner product in R
d and, for some �n;r lying on the line segment

joining 
n and 
,

�n;r D 1

n

X
1�j�n

D r.�n;r ; Yj / � 1

n

X
1�j�n

D r.
; Yj /:
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The following result, which is a slight extension of Theorem 2.1 in [11], now
follows from (7).

Theorem 2.5. Let Q be a probability measure on a d -dimensional manifold M .
Assume that

(i) there exists an open subset U of M such that Q.U / D 1,
(ii) for a given function f on U � U , the generalized Fréchet function F of Q in

(5) is finite and has a unique minimizer � in U , and there is a neighborhood
of � on which p ! f .p; p0/ is twice continuously differentiable for every p0,

(iii) there exists a C2-diffeomorphism 	 W U ! V where V is an open subset of Rd

such that for the function  r.x; y/ D Drh.x; y/ D .@=@xr /f .	
�1x; 	�1y/

on V � V one has E. r .
; Y1//2 < 1 8 r D 1; � � � ; d , with 
 D 	.�/ and
Y1 having the distributionQ ı 	�1,

(iv) supfEjD r.
; Y1/ �D r.y; Y1/j W jy � 
j � �g ! 0, as � # 0, and, finally,
(v) the d � d matrix ^ D ..EDs 

r.
; Yj /// � ..EDsDrh.
; Yj /// is
nonsingular.

Then 
n D 	.�n/ has the asymptotic distribution given by

p
n.
n � 
/ ! N.0;^�1†^/ in distribution as n ! 1; (8)

where † is the covariance matrix of . r .
; Yj /; r D 1; � � � ; d /.
Remark 2.6. Suppose M is a Riemannian manifold and Q a probability on M .
If q 2 M and C.q/ is the cut locus of q (see Sect. 4 for definition), and if
Q.MnC.q// D 1, then one may take U in Theorem 2.5 to beMnC.q/. The inverse
exponential map onMnC.q/may be taken to be the required diffeomorphism 	 on
U D MnC.q/ onto its image V in the tangent space TqM:

Note that Q.MnC.q// D 1 if Q is absolutely continuous with respect to a
volume measure on M (see [24], p. 141).

Remark 2.7. On a Riemannian manifold M the Fréchet mean of Q for the case
f .p; p0/ D �2.p; p0/ with geodesic distance � is called the intrinsic mean of Q.
For manifoldsM of nonnegative curvature, a recent criterion due to Afsari [1] under
whichQ is known to have an intrinsic mean is that the support ofQ lie in a geodesic
ball of radius r�=2 where r� D minfinj.M/; �=

p NC g, inj.M/ being the injectivity
radius of M (see Sect. 4), and NC the least upper bound of sectional curvatures of
M (see [31, 38]). Hence one may take U in Theorem 2.5 to be this geodesic ball in
this case. For manifolds of non-positive curvature, the intrinsic mean always exists
provided the Fréchet function is finite [31].

Remark 2.8. On a general differentiable manifold M , it is often useful and
convenient to consider the extrinsic mean of Q which is the minimizer, if unique,
with respect to the Euclidean distance � induced by an appropriate equivariant
embedding of M in a Euclidean space EN . For the case ˛ D 2 in (1), a broad
verifiable necessary and sufficient condition for the existence of a unique minimizer
is often available (see the next section). If the assumptions of Theorem 2.5 hold then
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one may still apply it to the extrinsic sample mean, as would be the case, e.g., of
the sphere Sd D fx 2 R

dC1 W jxj2 D 1g with the embedding given by the inclusion
map in R

dC1, if one takes 	 to be the inverse exponential map on Sdnf�p0g for a
suitable point p0. But a more broadly applicable CLT for the sample Fréchet mean
is provided in the next section (see Theorem 3.3).

3 Asymptotic Distribution of the Extrinsic Sample Mean
on a Manifold

Let M be a d -dimensional differentiable manifold and Q a probability measure
on it. Consider an embedding J W M ! EN , where EN is an N -dimensional
real vector space, which we may identify with R

N . The extrinsic distance �E on
M with respect to the embedding is given by the induced Euclidean distance on
J.M/ W �E.p; q/ D jJ.p/ � J.q/j, where j:j denotes the norm on EN and <;>
denotes the inner product. Letting QJ D Q ı J�1 denote the induced distribution
on EN , and �J its mean, the Fréchet function on the image J.M/ ofM is given by

F J .x/ D
Z

jx � yj2QJ .dy/ D
Z

jx � �J � .y � �J /j2QJ .dy/ (9)

D jx��J j2 C
Z

jy � �J j2QJ .dy/C 2 < x � �J ;

Z
.y � �J /QJ .dy/ >

D jx � �J j2 C
Z

jy � �J j2QJ .dy/; .x 2 J.M//

the integration being over EN . The last sum is minimized (over J.M/) by taking
x as the orthogonal projection P.�J / of �J on J.M/, i.e., the point in J.M/, if
unique, which is at the minimum Euclidean distance from �J . Hence we have the
following useful result.

Theorem 3.1 (Patrangenaru [40], Hendriks and Landsman [28], BP [10]).
Assume that the projection P.�J / is unique. Then the extrinsic mean of Q is
�E D J�1P.�J /.

Remark 3.2. It is known that the set of points x of non-uniqueness of the projection
x ! P.x/ on EN (onto J.M/) has Lebesgue measure zero [10]. As an example,
consider the caseM D Sd , and the embedding in R

dC1 given by the inclusion map.
Then the only point of non-uniqueness of the projection map P is the origin 0 in
R
dC1, in which case the extrinsic mean set is all of Sd . The projection P in this

case is defined by P.x/ D x=jxj for x ¤ 0. Thus the extrinsic mean of Q on the
sphere is �E D �J =j�J j, which exists if and only if the Euclidean mean �J of the
induced distributionQJ on EN is nonzero.
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We now derive the asymptotic distribution of the extrinsic sample mean O�E . Let
Yi D J.Xi /, where Xi .i D 1; � � � ; n/ are i.i.d. observations from the distribution
Q on M . The mean of the probability QJ

n D 1
n

Pn
iD1 ıYi induced on EN by the

empirical Qn D 1
n

Pn
iD1 ıXi on M is Y D 1

n
.Y1 C � � � C Yn/ D R

yQJ
n .dy/. Then

J.b�E/ D P.Y /. By calculus, and the CLT,

n1=2
�
P. NY / � P.�J /� D n1=2Œ.Jacob P/�J .Y � �J /�C op.1/ ! N.0; C /; (10)

in distribution as n ! 1. Here (Jacob P/x is the N � N Jacobian matrix
of P (at x) considered as a transformation on R

N 	 EN into R
N , and C D

.Jacob P/�J †.JacobP/t
�J

, † being the N � N covariance matrix of Y1. Since

P maps a neighborhood V of �J into the image manifold J.M/ of dimension d
(smaller than N ), the rank of .Jacob P/�J is d , and the asymptotic distribution
in (10) is singular. For purposes of inference it is therefore important to consider
the differential d�J P of P at �J as a map on the N -dimensional tangent space
T�J .R

N / 	 R
N into the d -dimensional tangent space TP.�J /.J.M// of the

manifold J.M/ at P.�J /, rather than as a map on T�J .R
N / into TP.�J /.R

N / as
considered in (10). Consider a standard basis, or frame, fei W i D 1; � � � ; N g
of EN 	 R

N (in which Y 0
j s are expressed) and an orthonormal basis (frame)

fF1.y/; � � � ; Fd .y/g of the tangent space Ty.J.M// for y in a neighborhood of
P.�J / in J.M/.

Theorem 3.3 (BP [11], BB [6]). Assume that the extrinsic mean is unique and the
projection operator P is continuously differentiable in a neighborhood of �J . Then
one has

n1=2.d�J P /.Y � �J / ! N.0; 
/ in distribution, (11)

with 
 D B†Bt , and

n1=2.d NY P /.Y � �J / ! N.0; 
/ in distribution. (12)

Here B D B.�J / D ..bij .�
J /// is the d �N matrix of d�J P with respect to an

orthonormal basis fei W i D 1; � � � ; N g of T�J E
N 	 R

N and a smooth orthonormal
basis fF1.P.�J //; � � � ; Fd .P.�J //g of TP.�J /.J.M//, i.e., for y in a neighborhood
of P.�J / in J.M/; .dxP /ei D P

j bj i .P.x//Fj .P.x//.

Note that (12) follows from (11) using a Slutsky type argument.

Remark 3.4. If, for z 2 J.M/, one views Tz.J.M// as a subspace of Tz.E
N /

spanned by fei W i D 1; � � � ; N g, then B.P.y// D F.P.y//.Jacob P/y , where
the d � N matrix F.P.y// has row vectors F1.P.y//; � � � ; Fd .P.y// which form
an orthonormal basis of TP.y/.J.M//.

Remark 3.5. The matrix 
 in (11) is nonsingular if the support of the distribution of
.d�J P /.Yi ��J / does not lie in a subspace of TP.�J /.J.M// (of dimension smaller
than d ). In particular, this is the case if Q has an absolutely continuous component
with respect to the volume measure on M .
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Example 3.1. Consider the sphere Sd D fx 2 R
dC1 W jxj2 D 1g and the inclusion

map as the embedding J . Then P.x/ D x=jxj .x ¤ 0/. It is not difficult to check
that the Jacobian matrix of the projection, considered as a map on R

dC1 into R
dC1,

is given by
.Jacob P/x D jxj�1ŒIdC1 � jxj�2.xxt /�; .x ¤ 0/: (13)

Let A.x/ be a d � .d C 1/ matrix whose rows form an orthonormal basis
of Tx.Sd / D fv 2 R

dC1 W xtv D 0g. Then the differential of P.x/, as a
map on R

dC1 into Sd , is expressed in coordinates of this basis as .dxP /u D
A.x/.Jacob P/xu.u 2 R

dC1/. The left sides of (11) and (12) are then obtained
by letting x D �J and X , respectively, and u D Y � �J . For d D 2, and
x D .x1; x2; x3/t ¤ .0; 0;˙1/t , and x3 ¤ 0, one may choose the two rows of
A.x/ as .�x2; x1; 0/=p.x2/2 C .x1/2 and ..x1; x2;�..x2/2C.x1/2/=x3/=c; where
c normalizes the second vector to unity. For x D .0; 0;˙1/, one may simply take
the basis vectors of Tx.S2/ as (1,0,0), and (0,1,0). If x3 D 0 and x1 ¤ 0; x2 ¤ 0,
then the second vector in the basis may be taken as (0,0,1). Permuting the indices,
all cases are now covered.

4 Asymptotic Distribution of the Intrinsic Sample Mean
and the Role of Curvature

In this section we apply Theorem 2.5 to the intrinsic mean �I on a Riemannian
manifold M with metric tensor g. That is, �I is the Fréchet mean with respect to
the geodesic distance � D �g (with ˛ D 2 in (1)).

On the tangent space Tp.M/ at p of a complete Riemannian manifold M , one
defines the exponential map Expp W Tp.M/ ! M , by letting Expp.v/ be the point
q D �.jvj/ reached at time t D jvj by the unit speed geodesic �.t/ D �.t Ip; v/
with �.0/ D p and initial speed P�.0/ D v=jvj if v ¤ 0, and Expp.0/ D p. For each
unit vector v in Tp.M/, let t0 D t0.p; v/ be the supremum of all t such that the unit
speed geodesic �.:Ip; v/ is length minimizing on Œ0; t �. Then �.t0Ip; v/ is called a
cut point of p and the set of all cut points of p (as v varies over all unit vectors
in Tp.M/ ) is called the cut locus of p and denoted by C.p). For q 2 MnC.p/,
the inverse Exp�1

p .q/ of the exponential map is defined as v D v.q/ 2 Tp.M/

such that Expp.v/ D q. It is known that Exp�1
p is a diffeomorphism on MnC.p/

onto its image in Tp.M/, which is homeomorphic to an open ball in Tp.M/ with
center 0 (p. 271) [17]. The quantity inj.M/ D inff�g.p; C.p//Ip 2 M g is called
the injectivity radius of M . The inverse exponential map Exp�1

p .q/ gives rise to the
so-called normal coordinates of q (with pole p), q 2 MnC.p/, when expressed in
terms of an orthonormal basis of Tp.M/.

Let Q be a probability with support contained in a geodesic ball Br.p/ of
radius r centered at p. If a unique minimizer of the Fréchet function F.q/ DR
�2g.q; q

0/Q.dq0/, q 2 Br.p/, exists (in Br.p//, it is called a local intrinsic mean
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of Q in Br.p/. We will denote by NC the least upper bound of sectional curvatures
of M; if this l.u.b. is positive, and zero if the l.u.b is negative or zero. Part (a) of the
following theorem, which is an extension of Theorem 2.2 in [11], and Theorem 4.2
in [4], now follows from Theorem 2.5. Part (b) is derived in [5]. For its notation we
use the order A � B for symmetric d � d matrices A,B to mean that A � B is
nononegative definite. The function f appearing in (16) is defined as

f .x/ D

8̂
<̂
ˆ̂:
1 if NC D 0p NCx cos.

p NCx/= sin.
p NCx/ if NC > 0p NCx cosh.

p NCx/= sinh.
p NCx/ if NC < 0

(14)

with NC , as defined earlier, the l.u.b. of the sectional curvatures of M if positive,
or zero otherwise. Theorem 2.5 is a CLT for the local intrinsic sample mean �n
around the local intrinsic mean �I of a probability Q, based on i.i.d. observations
X1; � � � ; Xn with common distribution Q. Actually we look at vector valued Yi D
	.Xi/, where 	 is the inverse exponential map Exp�1

p on an appropriate open subset
of Tp.M/, and derive a CLT for 
n D 	.�n/ around 
 D 	.�I /. Estimation of �I
is then achieved via 	�1.

Theorem 4.1. Let Q have support in a geodesic ball Br.p/ with Br.p/ 

MnC.p/.

Assume the following conditions (A1)–(A5):

(A1) The local intrinsic mean �I exists in Br.p/.
(A2) Let 	 denote the inverse exponential map Exp�1

p , h.z; y/ D �2g.	
�1z; 	�1y/,

with z; y 2 V D Exp�1
p .Br.p// expressed in normal coordinates with respect

to an orthonormal basis of Tp.M/; then z ! h.z; y/ is twice continuously
differentiable for all y.

(A3) With  .r/.z; y/ � Drh.z; y/ D .@=@zr /d 2g .	
�1z; 	�1y/, one has

E. .r/.
; Y1//
2 < 1 8r D 1; � � � ; d; where 
 D Exp�1

p .�I / and Y1 has
the distribution Q ı 	�1.

(A4) One has supfEjD. .r/.y; Y1/�D. .r/.
; Y1/j W jy � 
j � �g ! 0 as � # 0.
(A5) ƒ D ..EDs 

.r/.
; Y1/// � ..fEDsDrh.z; Y1/gzDv// is nonsingular.

Then,

(a) Denoting by �n the local intrinsic sample mean, 	.�n/ has the asymptotic
distribution given by

p
n Œ	.�n/ � 	.�I /� ! N

�
0;ƒ�1 Q†ƒ�1� (15)

in distribution as n ! 1, where Q† D Cov.f .r/.
; Y1/ W r D 1; � � � ; d g/:
(b) If one takes p D �I , then 
 D 0, and

(i)  .r/.0; y/ D �2yr
(ii) E.Y1/ D R

yQ ı 	�1.dy/ D 0,
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(iii) Q† D 4Cov.Y1/ D 4E.Y1Y
t
1 /,

(iv) The matrix ƒ D ..ƒrs//1�r;s�d satisfies the order relation

ƒ � ..2E..Œ1� f .jY1j/�=jY1j2/Y r1 Y s1 C f .jY1j/ırs///1�r;s�d ; (16)

with equality in (16) in the case of constant sectional curvature.

Remark 4.2. If Q has a density component with respect to the volume measure on
M , then Q† is nonsingular.

Remark 4.3. It has been proved by W.S. Kendall [35] that if the support of Q
is contained in Br�=2.p/ where r� D minfinj.M/; �=

p NC g, then a local Fréchet
mean �I of Q exists in Br�=2.p/. The result of Afsari [1] shows that this �I is the
global minimizer onM . If, in addition, the support ofQ is contained in Br�=2.�I /,
then all the assumptions of Theorem 4.1 are satisfied [5, 6]. For manifolds with
nonpositive curvature, the central limit theorem (15) holds for all Q, provided the
Fréchet function of Q is finite and EjY1j2 < 1 (see [11], Remark 2.2)

Example 4.1. The sphere Sd D fx 2 R
dC1 W jxj2 D 1g is a compact Riemannian

manifold under the metric induced by the inclusion map. Its geodesics are the
big circles, the geodesic starting at p with an initial velocity v being given by
�.t Ip; v/ D .cos t jvj/pC.sin t jvj/v=jvj, with v 2 Tp.Sd / D fv 2 R

dC1 W ptv D 0g.
The cut locus of p is C.p/ D f�pg. The exponential map and its inverse are
given by

Expp.0/ D p;Expp.v/ D cos.jvj/p C sin.jvj/v=jvj; v ¤ 0; .v 2 Tp.Sd //I (17)

Exp�1
p .p/ D 0; Exp�1

p .q/ D arccos.ptq/=.1� .pt q/2/1=2Œq � .pt q/p�; .q ¤ p;�p/:

The geodesic distance between p and q is �g.p; q/ D arccos.ptq/ 2 Œ0; ��,
so that the injectivity radius is inj.Sd / D � . Because of isotropy, the sectional
curvature is the same for every section of Tp.Sd /, for all p, and the unit sphere has
therefore the constant curvature 1. Thus the quantity r� appearing in Remark 4.3
has the value � , so that the conclusions of Theorem 4.1 hold if the support of Q is
contained in B�=2.p/ as well as in B�=2.�I /. Here the function f in (14) is f .u/ D
u.cos u/=.sin u/. The normal coordinates y1; � � � ; yd at �I of x D Exp�I .y/,
where y is expressed as y D y1v1 C � � � C ydvd with respect to an orthonormal
basis fvr W r D 1; � � � ; d g of T�I .S

d /, are now given by (see (17)):

yr D arccos.�tI x/=.1 � .�tI x/
2/1=2xtvr ; .r D 1; � � � ; d /; x 2 Sd : (18)

Nowƒr;s is computed from its definition in (A5), with Y1r given by the right hand
side of (18) obtained by substituting X1 (with distribution Q) for x, and, similarly,
Y1s is obtained by changing r to s.
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5 Nonparametric Inference on General Manifolds

Theorems 2.5 and 3.3 allow us to construct nonparametric confidence regions for
intrinsic and extrinsic means of probability measures Q on a manifold M , and to
carry out nonparametric two-sample tests for the equality of such means of two
distributions Q1 and Q2 on M . The latter tests are really meant to distinguish Q1

from Q2. On high dimensional spaces, such as the shape spaces of main interest
here, the means are generally good indices for this purpose, as the data examples in
Sect. 9 show.

For the construction of an extrinsic confidence region for the extrinsic mean
�E of Q one may use the corresponding region for �J using (11) or (12) and
then transform by J�1. In general (12) is simpler to use. The following asymptotic
chisquare distribution is an easy consequence:

n
�
.d NY P /. NY � �J /�t . OB O† OBt/�1

�
.d NY P /. NY � �J /

� ! �2d in distribution, (19)

where �2d is the chisquare distribution with d degrees of freedom. Here OB D B. NY /
estimates B D B.�J /, and O† is the sample covariance matrix of Y1; � � � ; Yn.
The statistic does not depend on the choice of the orthonormal basis of T NY .J.M//

for computing OB. The relation (19) may be used to construct a confidence region for
the extrinsic mean �E . Bootstrapping, which leads to a smaller order of coverage
error in the case of an absolutely continuous Q; may not always be feasible if N
is large and the sample size n is not sufficiently large to ensure that, with high
probability, the bootstrap sample is not degenerate.

Turning to the (local) intrinsic mean �I of Q, (15) leads to the asymptotic
chisquare distribution

nŒ	.�n/� 	.�I /�
t Oƒ OQ†�1 OƒŒ	.�n/� 	.�I /� ! �2.d/ (20)

in distribution as n ! 1, where O denotes an estimate with Q replaced by the
empirical Qn; that is, the distribution Q ı 	�1 of Y1 is replaced by Qn ı 	�1 D
n�1 P

1�i�n ıYi . This leads to a confidence region for �I . One arbitrariness here
is the choice of the point p in computing 	. It seems reasonable to take p close
to �n. Another idea is to use p D �I , in which case 	.�I / D 0. To use (20) in
this case to obtain a confidence region would be computationally more intensive.
It would involve finding those values p such that, with 	 D Exp�1

p , the left side
in (20) (with 	.�I / D 0) is smaller than �2d .1 � ˛/, the .1 � ˛/-th quantile of
�2d . This requires computing the quantities in (20), including 	.�n/, for each p.
But, unlike the case of the extrinsic mean where the ambient vector space EN has
generally a large dimension and the bootstrap estimate of the covariance matrix †
tends to be singular, Q† in (20) is a d � d matrix. If Q is absolutely continuous,
which is a reasonable assumption in most shape data, the bootstrap construction
of the confidence region will tend to have a smaller coverage error than the one
using �2d .
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We next consider the the two-sample problem of distinguishing two distributions
Q1 and Q2 on M , based on two independent samples of sizes n1 and n2,
respectively: fYj1 D J.Xj1/ W j D 1; � � � ; n1g; fYj2 D J.Xj2/ W j D 1; � � � ; n2g.
Hence the proper null hypothesis is H0 W Q1 D Q2: For high dimensional M
it is often sufficient to test if the two Fréchet means are equal. For the extrinsic
procedure, again consider an embedding J into EN . Write �i for �Ji for the
population means and NYi for the corresponding sample means onEN (i D 1; 2/. Let
n D n1Cn2, and assume n1=n ! p1, n2=n ! p2 D 1�p1, 0 < pi < 1.i D 1; 2/,
as n ! 1. If �1 ¤ �2 thenQ1 ¤ Q2. One may then test H0 W �1 D �2.D �,say).
Since N is generally quite large compared to d , the direct test for H0 W �1 D �2
based on NY1 � NY2 is generally not a good test. Instead, we compare the two extrinsic
means �E1 and �E2 of Q1 and Q2 and test for their equality. This is equivalent to
testing if P.�1/ D P.�2/. Then, by (12), assumingH0,

n1=2d NY P. NY1 � NY2/ ! N.0;B.p1†1 C p2†2/B
t / (21)

in distribution, as n ! 1.
Here NY D p1 NY1 C p2 NY2 is the pooled estimate of the common mean �1 D �2 D

�, say, B D B.�) (see (11)), and †1, †2 are the covariance matrices of Yj1 and
Yj2. This leads to the asymptotic chisquare statistic below:

nŒd NY P. NY1 � NY2/�t Œ OB.p1 O†1 C p2 O†2/ OBt ��1Œd NY P. NY1 � NY2/� ! �2d (22)

in distribution, as n ! 1.
Here OB D B. NY /, O†i is the sample covariance matrix of Yj i . One rejects the null

hypothesis H0 at a level of significance 1 � ˛ if and only if the observed value of
the left side of (22) exceeds �2d .1 � ˛/:

For the two-sample intrinsic test, let �I1, �I2 denote the intrinsic means of Q1

and Q2 and consider H0 W �I1 D �I2. Denoting by �n1, �n2 the intrinsic sample
means, (15) implies that, underH0,

n1=2Œ	.�n1/ � 	.�n2/� ! N.0; p1ƒ
�1
1

Q†1ƒ�1
1 C p2ƒ

�1
2

Q†2ƒ�1
2 / (23)

in distribution,
where 	 D Exp�1

p for some convenient p in M , and ƒi , Q†i are as in
Theorem 4.1 with the empirical Qni in place of Qi.i D 1; 2/. For p choose �n
on the geodesic from �n1 to �n2 with Pg.�n; �n1/ D p2Pg.�n1; �n2/, and with this
choice we write O	 for 	. The test then rejects H0 W Q1 D Q2, if

nŒ O	.�n1/� O	.�n2/�t Œp1 Oƒ�1
1

OQ†1 Oƒ�1
1 C p2 Oƒ�1

2
OQ†2 Oƒ�1

2 ��1Œ O	.�n1/ � O	.�n2/� > �2d .1� ˛/:

(24)
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Finally, consider a match pair problem with i.i.d. observations .Xj1; Xj2/ having
the distribution Q on the product manifold M � M . If J is an embedding of M
into EN , then QJ .x; y/ D .J.x/; J.y// is an embedding of M � M into EN �
EN . Let �E1, �E2 be the extrinsic means of the (marginal) distributions Q1 and
Q2 of Xj1 and Xj2, respectively. Once again, we are interested in testing H0 W
Q1 D Q2 by checking if �E1 D �E2. Note that the extrinsic mean of Q is Q�E D
.�E1; �E2/. If NY1, NY2 are the sample means of Yj1 D J.Xj1/, Yj2 D J.Xj2/, j D
1; � � � ; n, on EN with E.Yj1/ D �1 and E.Yj2/ D �2, and NQY D . NY1; NY2/, then the
extrinsic sample mean in the image space QJ .M �M/ is .P. NY1/; P. NY2//. Also, write
NY D . NY1 C NY2/=2. UnderH0, �1 D �2 D �, say, and one has

n1=2d NY .P. NY1/ � P. NY2// ! N.0;†11 C†22 �†12 �†21/: (25)

On the right,†11 and†22 are the d �d covariance matrices of .d�P /.Yj1��1/ and
.d�P /.Yj2��2/, while†12 is the d�d cross covariance matrix of .d�P /.Yj1��1/
and .d�P /.Yj2 � �2/, and †21 D †t12. As above, one derives a chisquare test for
H0, using (25) and sample estimates of the covariance matrices.

6 Geometry of Shape Spaces and Equivariant Embeddings

The manifolds of main interest to us are shape spaces of landmarks based k-ads.
A k-ad is a set of k labeled landmarks, k > m, not all the same, measured on an
object or scene of interest. In general, the k-ad .x1; � � � ; xk/ is a k-tuple of points
in R

m, represented as an m � k matrix, although only m D 2 and 3 are of practical
interest for the most part. The shape of a k-ad is the k-ad modulo a Lie group of
transformations or, equivalently, it is the maximal invariant, or orbit, of the k-ad
under this group. The appropriate Lie group depends on the particular statistical
goal and the way the measurement of a k-ad may vary, for example, because of
differences in equipment, the position and angle from which the observations are
taken or recorded, etc.

6.1 Kendall’s Similarity Shape Space †k
m

The similarity shape of a k-ad x D .x1; � � � ; xk/ in R
m, not all points the same, is

its orbit under the group generated by translations, scaling and rotations. Writing
Nx D .x1 C � � � C xk/=k, < Nx >D . Nx; � � � ; Nx/, the effect of translation is removed
by looking at .x1 � Nx; � � � ; xk � Nx/ D x� < Nx >, which lies in the mk � m

dimensional hyperplaneL of Rmk made up of m� k matrices with the m row sums
all equal to zero. To get rid of scale, one looks at u D .x� < Nx >/=jx� < Nx > j,
where j:j is the usual norm in R

mk . This translated and scaled k-ad is called the
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preshape of the k-ad. It lies on the unit sphere in L, and is isomorphic to Sm.k�1/�1.
An alternative representation of the preshape is obtained as p D xH=jxH j, where
H is the k � .k � 1/ Helmert matrix comprising k � 1 column vectors forming
an orthonormal basis of 1?, namely, the subspace of Rk orthogonal to .1; � � � ; 1/t .
A standard H has the j -th column given by .a.j /; � � � ; a.j /;�ja.j /; 0; � � � ; 0/t ,
where a.j / D Œj.j C 1/��1=2 .j D 1; � � � ; k � 1/. Then p is anm� .k � 1/ matrix
of norm one. The shape �.x/ D �.p/ of x is then identified with the orbit of p
under all rotations:

�.x/ D �.p/ D fAp W A 2 SO.m/g; (26)

ŒSO.m/ D fA W AAt D Im; det.A/ D 1g�:

SO.m/ is called the special orthogonal group acting on R
m. The set of all shapes

�.x/ is Kendall’s similarity shape space †km;R > m.

6.1.1 Intrinsic Geometry of †k
2

For the case m D 2, it is convenient to regard a k-ad x D ..x1; y1/; � � � ; .xk; yk//
as a k-tuple z D .z1; � � � ; zk/ of numbers z1 D x1 C iy1; � � � ; zk D xk C iyk in the
complex plane C, and let p D .z� < Nz >/=jz� < Nz > j. Then the shape of x, or z,
is identified with the orbit Op,

�.z/ D �.p/ D fei�p W � 2 .��; ��g D Op: (27)

One may equivalently, consider the shape as the orbit f�..z� < Nz >/ W � 2 Cg.
That is, the shape of x, or z, is identified with a complex line passing through the
origin in the subspace of Ck of complex dimension k � 1 defined by QL D fq D
.q1; � � � ; qk/ 2 C

knf0g W q1 C � � � C qk D 0g 	 C
k�1nf0g. The shape space is then

identified with the complex projective space CPk�2, of (real) dimension 2k � 4.
Note that fei� W � 2 .��; ��g is a 1-dimensional compact group G.	S1/

of isometries of the preshape sphere CSk�1 D fq D .q1; � � � ; qk/ W jqj D 1;

q1 C � � � C qk D 0g. By Helmertization, we will use the representation of CSk�1
as fp D .p1; � � � ; pk�1/ 2 C

k�1 W jpj D 1g, which is isomorphic to S2k�3,
and †k2 D CSk�1=G. Recall that the metric tensor on S2k�3 	 CSk�1 is that
inherited from the inclusion map into R

2.k�1/ D f.x1; y1; x2; y2; � � � ; xk�1; yk�1/ W
.xj ; yj / 2 R

2 8j g 	 C
k�1 D f.z1; z2; � � � ; zk�1/ W zj D xj C iyj 2 C 8j g,

namely, hv;wi D Re.vw�/, when v,w are expressed as complex 1 � .k � 1/

matrices (row vectors) in CSk�1. The projection map is then � W p ! �.p/.
The vertical subspace Vp is obtained by differentiating the curve � ! ei�p, say
at � D 0, yielding ip. That is, Vp D fcip W c 2 Rg. Thus the horizontal subspace
is Hp D fQv W Re.pQv�/ D 0;Re..ip/Qv�/ D 0g D fQv W pQv� D 0g. The geodesics
�.t I �.p/; v/ for v D .dp�/Qv (for Qv in Hp), and the exponential map Exp�.p/ on
†k2 are specified by this isometry between T�.p/.†k2/ and Hp for all shapes �.p/
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(see Example 4.1). Thus, identifying vectors v in Hp with vectors v in T�.p/.†k2/,
one obtains

T�.p/.†
k
2/ D fv D .dp�/Qv W 8v such that pQv� D 0g (28)

Exp�.p/0 D �.p/; Exp�.p/v D �.cos.jQvj/p C sin.jQvj/Qv=jQvj/ .v ¤ 0; pQv� D 0/I
�.t I �.p/; v/ D �..cos t/p C .sin t/Qv=jQvj/; .t 2 R; pQv� D 0/; v ¤ 0:

Denoting by �gs and �g the geodesic distances on CSk�1 and †k2 , respectively,
and recalling that (see Example 4.1) �gs.p; q/ D arccos.Repq�/, one has

�g.�.p/; �.q// D inff�gs.p0; q0/ W p0 2 Op; q0 2 Oqg (29)

D inffarccos.Reei�pq�/ W � 2 Œ0; 2�/g
D arccos.jpq�j/ 2 Œ0; �=2�:

It follows that the geodesics are periodic with period � , and the cut locus of �.p/
is f�.q/ W all q such that arccos.jpq�j/ D �=2g, and that the injectivity radius of
†k2 is �=2. The inverse exponential map is given by Exp�1

�.p/.�.q// D v, where

v D .dp�/Qv .Qv 2 Hp/, and Qv satisfies (Use (17) with the representation of S2k�3 as
CSk�1)

Qv D Exp�1
p .qe

i� / (30)

D Œarccos.Re.pq�e�i� /�.1 � ŒRe.pq�e�i� /�2/�1=2qei� � .pq�e�i� /p;

where � is so chosen as to minimize �gs.p; qei� / D arccos.Re.pq�e�i� //. That
is, .pq�e�i� / D jpq�j, or ei� D pq�=jpq�j ( for pq� ¤ 0, i.e., for �.q/ not in
C.�.p//.

Hence, writing � D .arccos/�g.�.p/; �.q//, � ¤ 0, one has

Qv D Œarccos.jpq�j/�.1 � jpq�j2/�1=2f.pq�=jpq�j/q � jpq�jpg (31)

D Œ�= sin ��fqei� � .cos�/pg .ei� D pq�= cos�/:

This horizontal vector Qv(2 Hp) represents Exp�1
�.p/.�.q// D v.

The sectional curvature of †k2 at a section generated by two orthonormal vector
fields QW1 and QW2 is 1 C 3 cos2 	 where cos	 D hU1; iU2i, U1 and U2 being the
horizontal lifts of QW1 and QW2 (see [17]).
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6.1.2 Extrinsic Geometry of †k
2

Induced by an Equivariant Embedding

One problem with carrying out an intrinsic analysis of the Fréchet mean is that
no broad sufficient condition is known for its existence (i.e., of the uniqueness
of the minimizer of the corresponding Fréchet function). Also, often such an
analysis, assuming uniqueness, is computationally much more intensive than an
extrinsic analysis. However, for an extrinsic analysis to be very effective one should
choose a good embedding which retains as many geometrical features of the shape
manifold as possible without making it cumbersome. Let 
 be a Lie group acting
on a differentiable manifold M , and denote by GL.N;R) the linear group of
nonsingular transformations on a Euclidean space EN of dimension N onto itself.
An embedding J on M into EN is said to be 
-equivariant if there exists a group
homomorphism ˆ W � ! 	� of 
 into GL.N;R/ such that J.�p// D 	�.Jp/

8p 2 M , � 2 
 . Often, when there is a natural Riemannian structure on M , 
 is
a group of isometries ofM . Consider the so-called Veronese-Whitney embedding J
of †k2 into the (real) vector space S.k � 1;C/ of all .k � 1/ � .k � 1/ Hermitian
matrices B D B�, defined by

J�.p/ D p�p Œ�.p/ D fei�p; � 2 Œ0; 2�/; p 2 CSk�1�: (32)

The Euclidean inner product on S.k � 1;C/, considered as a real vector space,
is given by hB;C i D Re.Trace.BC �//. Let SU.k � 1/ denote the special unitary
group of all .k�1/�.k�1/ unitary matricesA (i.e.,A�A D I , det.A/ D 1) acting
on S.k � 1;C) by B ! A�BA. Then the embedding (32) is 
-equivariant, with

 D f�A W A 2 SU.k�1/g and the group action on†k2 given by: �A�.p/ D �.pA/.
For J�.pA/ D A�p�pA D 	.�A/.J�.p//, say, where the group homomorphism
on 
 onto SU.k � 1/ is given by �A ! 	.�A/ W 	.�A/B D A�BA: Note that
SU.k � 1/ is a group of isometries of S.k � 1;C/. If †k2 is given the metric tensor
inherited from S.k � 1;C/ by the embedding (32), then the embedding is isometric
as well as equivariant.

A size-and-shape similarity shape s�.z/ is defined for Helmertized k-ads
z D .z1; � � � ; zk�1/ as its orbit under SO.m/. An equivariant embedding for it
is s�.z/ ! z�z=jzj, on the size-and-shape-similarity shape space S†k2 into
S.k � 1;C/:

6.2 Reflection Similarity Shape Space R†k
m, m > 2

Form > 2, let QNSm.k�1/�1 be the subset of the centered preshape sphere Sm.k�1/�1
whose points p span R

m, i.e., which, as m � .k � 1/ matrices, are of full rank. We
define the reflection similarity shape of the k-ad as

r�.p/ D fAp W A 2 O.m/g .p 2 QNSm.k�1/�1/; (33)
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where O.m/ is the set of all m � m orthogonal matrices A W AAt D Im,
det.A/ D ˙1. The set fr�.p/ W p 2 QNSm.k�1/�1g is the reflection similarity shape
space R†km D QNSm.k�1/�1=O.m/. Since QNSm.k�1/�1 is an open subset of the
sphere Sm.k�1/�1, it is a Riemannian manifold. Also O.m/ is a compact Lie group
acting on it. Hence there is a unique Riemannian structure on R†km such that the
projection map p ! O.p/ is a Riemannian submersion.

We next consider a useful embedding of R†km into the vector space S.k � 1;R)
of all .k � 1/ � .k � 1/ real symmetric matrices (see [3, 8, 9, 20]). Define

J.r�.p// D ptp .p 2 QNSm.k�1/�1/; (34)

with p anm� .k�1/matrix with norm one. Note that the right side is a function of
r�.p/. Here the elements p of the preshape sphere are Helmertized. To see that this
is an embedding, we first show that J is one-to-one on R†km into S.k � 1;R/. For
this note that if J.r�.p// and J.r�.q// are the same, then the Euclidean distance
matrices ..jpi � pj j//1�i�j�k�1 and ..jqi � qj j//1�i�j�k�1 are equal. Since p and
q are centered, by geometry this implies that qi D Api.i D 1; � � � ; k � 1/ for some
A 2 O.m/, i.e., r�.p/ D r�.q/. We omit the proof that the differential dJ is
also one-to-one. It follows that the embedding is equivariant with respect to a group
action isomorphic to O.k � 1/.

For m > 2, a size-and-reflection shape sr�.z/ of a Helmertized k-ad z in R
m of

full rankm is given by its orbit under the groupO.m/. The space of all such shapes
is the size-and-reflection shape space SR†km. An O.k � 1/-equivariant embedding
of SR†km into S.k � 1;R/ is : J.sr�.z// D zt z=jzj.

6.3 Affine Shape Space A†k
m

Let k > m C 1. Consider the set of all k-ads in R
m, with full rank m as m � k

matrices. The affine shape of a k-ad x may be identified with its orbit under all
affine transformations:

�.x/ D fAx C c W A 2 GL.m;R/; c 2 R
mg: (35)

If the k-ad is centered as u D x� < Nx >, then the affine shape of x, or of u, is
given by

�.x/ D �.u/ D fAu W A 2 GL.m;R/g; .u centered k � ad of rank m/: (36)

The space of all such affine shapes is the affine shape space A†km. Note that two
Helmertized k-ads u and v (asm�.k�1/matrices of full rank) have the same shape
if and only if the rows of u and v span the same m-dimensional subspace of Rk�1.
Hence we can identifyA†km with the GrasmannianGm.k�1/, namely, the set of all
m-dimensional subspaces of Rk�1 (Sparr [45]. For the Grassmann manifold, refer to
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Boothby [16], pp. 63, 168, 362, 363). For extrinsic analysis on A†km 	 Gm.k � 1/,
consider the embedding of A†km into S.k � 1;R/ given by

J.�.u// D FF t ; (37)

where F D .f1 � � �fm/ is a .k � 1/ �m matrix and ff1; � � � ; fmg is an orthonormal
basis of them-dimensional subspaceL, say, of Rk�1 spanned by the rows of u. Note
that the .k � 1/� .k � 1/matrix FF t is idempotent and is the matrix of orthogonal
projection of Rk�1 onto L. It is independent of the orthonormal basis chosen. The
embedding is O.k � 1/-equivariant under the group action �.u/ ! �.uO/ .O 2
O.k � 1// on A†km, with O.k � 1/ acting on S.k � 1;R/ by A ! OAOt .

6.4 Projective Shape Space P†k
m

First, recall that the real projective space RPm is the space of all lines through the
origin in R

mC1. Its elements are Œp� D f�p W � 2 Rnf0gg for all p 2 R
mC1nfog. It is

also conveniently represented as the quotient Sm=G whereG is the two-point group
fe;�eg, e being the identity map and �ep D �p (p 2 Sm/. That is, a line through
p is identified with fp=jpj;�p=jpjg ( p 2 R

mC1nfog/. As a consequence, there is
a unique Riemannian metric tensor on RPm D Sm=G such that p ! fp;�pg is a
Riemannian submersion, with hu; viRPm D utv for all vectors u, v in TŒp�RPm. The
geodesic distance is given by �g.Œp�; Œq�/ D arccos.jptqj/ 2 Œ0; �=2�, and the cut
locus of Œp� is C.Œp�/ D fŒq� W cos.jptqj/ D �=2g, so that the injectivity radius of
RPm is �=2. Its sectional curvature is constant C1 (as it is of Sm). The exponential
map of TŒp�RPm (and its inverse on RPmn.C.Œp�// can be easily expressed in terms
of those for the sphere Sm. We will use [ ] for both representations.

The so-called Veronese-Whitney embedding of RPm into S.mC1;R/ is given by

J.Œp�/ D ppt ; .p D .p1; � � � ; pmC1/t 2 Sm/: (38)

It is clearly O.m C 1/-equivariant, with the group action on RPm as : AŒp� D
ŒAp� .A 2 O.mC 1//.

Turning to landmarks based projective shapes, assume k > m C 2.
A frame of RPm is a set of m C 2 ordered points .Œp1�; � � � ; ŒpmC2�/ such
that every subset of m C 1 of these points spans RPm, i.e., every subset of
m C 1 points of fp1; � � � ; pmC2g spans R

mC1. The standard frame of RPm is
.Œe1�; Œe2�; � � � ; ŒemC1�; Œe1 C e2 C � � � C emC1�/, where ei .2 R

mC1/ has 1 in the
ith position and zeros elsewhere. A k-ad y D .y1; � � � ; yk/ D .Œp1�; � � � ; Œpk�/ 2
.RPm/k is in general position if there exist i1 < i2 < � � � < imC2 such that
.yi1 ; � � � ; yimC2

/ is a frame of RPm. A projective transformation ˛ on RPm is
defined by

˛Œp� D ŒAp�; .p 2 R
mC1nf0g/ (39)
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whereA 2 GL.mC1;R/. The usual operation of matrix multiplication onGL.mC
1;R/ then leads to a corresponding group of projective transformations on RPm.
This is the projective group PGL.m/. Note that, for a given A in GL.m C 1;R),
cA determines the same element of PGL.m) for all c ¤ 0. The projective shape
of a k-ad y D .y1; � � � ; yk/ D .Œp1�; � � � ; Œpk�/ 2 .RPm/k in general position is its
orbit under PGL.m/:

�.y/ D f˛y � .˛Œp1�; � � � ; ˛Œpk�/ W ˛ 2 PGL.m/g ; (40)

.y D .Œp1�; � � � ; Œpk� in general position/:

The projective shape space PG†km is the set of all projective shapes of k-ads in
general position. Following Mardia and Patrangenaru [39] and Patrangenaru et al.
[41], we will consider a particular dense open subset of PG†km. Fix a set of mC 2

indices I D fij W j D 1; � � � ; m C 2g, 1 � i1 < i2 < � � � < imC2 � k. Define
PGI†

k
m as the set of shapes �.y/ in PG†km, y D .y1; � � � ; yk/ D .Œp1�; � � � ; Œpk�/;

such that every subset of mC 1 points of fŒpij �; j D 1; � � � ; mC 2g spans RPm.
The shape space PGI†km (with I D f1; 2; � � � ; m C 2g) may be identified with

.RPm/k�m�2 (see [39]). It has been shown in [12] that the full projective shape
space PG†km in a differentiable manifold.

7 Inference on Shape Spaces

In this section we indicate how Theorems 2.5, 3.3, 4.1 and the inference procedures
for general manifolds described in Sect. 5 may be applied to shape spaces, using the
sphere Sd and the planar shape space †k2 as illustrations.

For intrinsic analysis, consider the function h.z; y/ D �2g.Exppz; Exppy/
for z, y in TpM , with an appropriate choice of p. One first needs to express
explicitly the quantities Drh.z; y/, DrDsh.z; y/ in normal coordinates at p, i.e.,
at z D 0 � Exp�1

p p. (See Theorem 4.1.) For this let �.s/ be a geodesic starting
at p, and m 2 M . Define the parametric surface c.s; t/ D Expm.tExp

�1
m �.s//,

s 2 Œ0; �/, � > 0 small. Note that c.s; 0/ D m for all s, c.s; 1/ D �.s/, and that, for
all fixed s 2 Œ0; �/, t ! c.s; t/ is a geodesic starting atm and reaching �.s/ at t D 1.
Writing T .s; t/ D .@=@t/c.s; t/, S.s; t/ D .@=@s/c.s; t/, one then has S.s; 0/ D 0;

S.s; 1/ D P�.s/. Also, hT .s; t/; T .s; t/i does not depend on t and, therefore,

�2g.�.s/;m/ D
Z 1

0

hT .s; t/; T .s; t/idt: (41)

Differentiating this respect to s and recalling the symmetry .D=@s/T .s; t/ D
.D=@t/S.s; t) on a parametric surface (see [17, p. 68, Lemma 3.4]), and
.D=@t/T .s; t/ D 0, one has
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.d=ds/�2g.�.s/;m/ D 2

Z 1

0
h.D=@s/T .s; t/; T .s; t/idt (42)

D 2

Z 1

0
h.D=@t/S.s; t/; T .s; t/idt D 2

Z 1

0
.d=dt/hS.s; t/; T .s; t/idt

D 2hS.s; 1/; T .s; 1/i D �2h P�.s/;Exp�1
�.s/mi:

Setting s D 0 in (42) and letting P�.0/ D vr , with fvr W r D 1; � � � ; d g an
orthonormal basis of TpM , one shows that the normal coordinates yr of m (i.e., the
coordinates of y D Exp�1

p m with respect to fvr W r D 1; � � � ; d g/ satisfy

� 2yr � �2hExp�1
p m; vri D Œ.d=ds/�2g.�.s/;m/�sD0: (43)

From this one gets

Drh.0; y/ D �2yr.r D 1; � � � ; d /: (44)

IfQ.C.p// D 0, then writing QQ for the distribution induced fromQ by the map
Exp�1

p on TpM , the Fréchet function may be expressed as

F.q/ D
Z
�2g.q;m/Q.dm/ D

Z
h.z; y/ QQ.dy/ D QF .z/; .z D Exp�1

p q/: (45)

Since a (local) minimum of this is attained at q D �I , QF must satisfy a first order
condition Dr

QF .z/ D 0 at z D 
. In particular, letting p D �I and, consequently,

 D 0, one has

R
Drh.0; y/ QQ.dy/ D 0, so that (44) yields

Z
yr QQ.dy/ D 0 .r D 1; � � � ; d /; . QQ D Q ı 	�1; 	 D Exp�1

�I
/: (46)

Note that (44) and (46) are the relations stated in Theorem 4.1(b)(i),(ii).
By Theorem 4.1, the asymptotic distribution of the sample intrinsic mean �n is

that of 	�1.
n/, where 	 D Exp�1
p , and (see (7))

p
n.
n � 
/ ' ƒ�1Œ.1=

p
n/

X
1�j�n

Dh.
; Yj /�; .ƒrs D EDrDsh.
; Y1/; 1 � r; s � d/;

(47)
with Yj D 	.Xj /, whereXj are i.i.d. with distributionQ. By (44), the right side of
(47) simplifies to ƒ�1Œ�2.1=pn/P

1�j�n Yj �, if p D �I (and 
 D 0).

Example 7.1 (Confidence region for the intrinsic/extrinsic mean ofQ on the sphere
Sd ). Let �I be the intrinsic mean of Q on Sd . Given n i.i.d. observations
X1; � � � ; Xn on Sd with common distributionQ, let�n be the intrinsic sample mean.
Write 	 D Exp�1

�I
, and 	p D Exp�1

p , so that 	�I D 	. By Theorem 4.1,
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p
nŒ	.�n/� 	.�I // D p

n	.�n/ ! N.0;ƒ�1 Q†ƒ�1/ in distribution as n ! 1;

(48)
where the d � d matricesƒ and Q† are given by

Q† D 4Cov.	.X1//; (49)

ƒrs D 2EŒ.1� .Xt
1�I /

2/�1f1� .1� .Xt
1�I /

2/�1=2 � .Xt
1�I / arccos.Xt

1�I /g.Xt
1
r /.X

t
1
s/

C .1� .Xt
1�I /

2/�1=2 � .Xt
1�I /.arccos.Xt

1�I ///ırs �; 1 � r; s � d:

Here f
r W 1 � r � d g is an orthonormal basis of T�I S
d .

A confidence region for �I , of asymptotic level 1 � ˛, is then given by

fp 2 Sd W n	p.�n/t Oƒp
OQ†�1
p

Oƒp	p.�n/ � �2d .1 � ˛/g; (50)

whereƒp , Q†p are obtained by replacing �I by p in the expressions forƒ and Q† in
(49). The ‘hat’ (O) indicates that the expectations are computed under the empirical
Qn, rather than Q. As mentioned in Sect. 5, it would be computationally simpler to
choose a particular p D p0, say, and let 	 D Exp�1

p0
. Then (20) yields a simpler

confidence region:

fp 2 Sd W nŒ	.�n/ � 	.p/�t Oƒp0
Q†�1
p0

Oƒp0 Œ	.�n//� 	.�p/� � �2d .1 � ˛/g: (51)

We now turn to the distribution of the extrinsic mean NX=j NX j. The .dC1/�.dC1/
Jacobian matrix .Jacob/xP of the projection mapP W x ! x=jxj, viewed as a map
on R

dC1nf0g into R
dC1, is given by (13). Let B.x/ be the d � .d C 1/ matrix of

the differential dxP (on TxRdC1 into TP.x/Sd D fu 2 R
dC1 W P.x/tu D 0g) whose

d rows form an orthonormal basis of TP.x/Sd . Then the differential of the projection
map is

.dxP /u D ŒB.x/.Jacob/xP �u: (52)

If � D EX1 ¤ 0, then, by (19), a confidence region for the extrinsic mean �=j�j
is given by

fx=jxj 2 Sd W nŒ.d NXP /. NX � x/�t . OB O† OBt/�1Œ.d NXP /. NX � x/� � �2d .1� ˛/g: (53)

Here OB D B. NX/, † D Cov.X1/, and O† is obtained by replacing Q by Qn in
computing expectations.

Example 7.2 (Inference on the planar shape space †k2). To apply Theorem 4.1,
we use (47) where 	 D Exp�1

�.p/ and p is a suitable point in CSk�1. To derive a
computable expression for ƒ, write the geodesic � in the parametric surface c.s; t/
as � D � ı Q� , where Q� is a geodesic in CSk�1 starting at Q� 2 ��1f�I g. Then, with
QT .s; 1/ D .d�.s/�

�1/T .s; 1/,
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.d=ds/�2g.�.s/;m/ D 2 < T .s; 1/; P�.s/ >D 2 < QT .s; 1/; PQ�.s/ >; (54)

.d 2=ds2/�2g.�.s/;m/ D 2 < Ds
QT .s; 1/; PQ�.s/ > :

The final inner products are in TCSk�1, namely, hQv; Qwi D Re.Qv Qw�/. Note that
QT .s; 1/ D �Exp�1

Q�.s/q; q 2 ��1m, may be expressed by (30) and (31) as

QT .s; 1/ D �.�.s/= sin �.s//Œei�.s/q � .cos�.s// Q�.s/�; (55)

where �.s/ D �g.�.s/;m/ and ei�.s/ D .1= cos�.s// Q�.s/q�. The covariant deriva-
tive Ds

QT .s; 1/ is the projection of .d=ds/ QT .s; 1/ onto HQ�.s/. Since h Q�; PQ�.0/i D 0,
(54) then yields

Œ.d 2=ds2/�2g.�.s/;m/�sD0 D 2hŒ.d=ds/ QT .s; 1/�sD0; PQ�.0/i: (56)

Differentiating (55) one obtains

Œ.d=ds/ QT .s; 1/�sD0 D Œ.d=ds/.�.s/ cos �.s//= sin �.s//�sD0 Q� (57)

C Œ.�.s/cos�.s//=sin�.s//�sD0 PQ�.0/� Œ.d=ds/.�.s/=.cos �.s//.sin�.s//�sD0. Q�q�/q

� Œ�.s/=.cos �.s//.sin�.s//�sD0. PQ�.0/q�/q:

From (54), 2�.s/ P�.s/ D 2h QT .s; 1/; Q� 0.s/i, which along with (55) leads to

Œ.d=ds/�.s/�sD0 D �.1= sin r/h. Q�q�= cos r/q; PQ�.0/i; .r D �g.m;�I //: (58)

One then gets (see BB [5, 6])

hŒ.d=ds/ QT .s; 1/�sD0; PQ�.0/i D f.r cos r/=.sin r/gj PQ�.0/j2 (59)

� f.1= sin2 r/� .r cos r/= sin3 rg.Re.x//2 C r=..sin r/.cos r//.Im.x//2;

.x D ei�q PQ�.0/�; ei� D Q�q�= cos r/:

One can check that the right side of (59) depends only on �. Q�/ and not any
particular choice of Q� in ��1f�I g.

Now let f
1; � � � ; 
k�2; i
1; � � � ; i
k�2g be an orthonormal basis of T�.p/†k2
where we identify†k2 with CPk�2, and choose the unit vectors 
r D .
1r ; � � � ; 
k�1

r /,
r D 1; � � � ; k�2, to have zero imaginary parts and satisfy the conditions p�
r D 0;


tr
s D 0 for r ¤ s:

Suppose now that �.p/ D �I , i.e., �.0/ D �I . If P�.0/ D v, then �.s/ D
Exp�I .sv/, so that �2g.�.s/;m/ D h.sv; y/ with y D Exp�1

�I
m. Then, expressing v

in terms of the orthonormal basis,

Œ.d 2=ds2/�2g.�.s/;m/�sD0 D Œ.d 2=ds2/h.sv; y/�sD0 D †vivjDiDj h.0; y/: (60)
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Integrating with respect to Q now yields

X
vivjƒij D EŒ.d2=ds2/�2g.�.s/; X/�sD0; .X with distribution Q/: (61)

This identifies the matrix ƒ from the calculations (56) and (59). To be spe-
cific, consider independent observations X1; � � � ; Xn from Q, and let Yj D
Exp�1

�I
Xj .j D 1; � � � ; n/. In normal coordinates with respect to the above basis

of T�I†
k
2 , one has the following coordinates of Yj :

.Re.Y 1j /; � � � ; Re.Y k�2
j /; Im.Y 1j /; � � � ; Im.Y k�2

j // 2 R
2k�4: (62)

Writing

ƒ D
�
ƒ11 ƒ12

ƒ21 ƒ22

�

in blocks of .k � 2/ � .k � 2/ matrices, one arrives at the following expressions
of the elements of these matrices, using (59)–(62). Denote �2g.�I ;X1/ D h.0; Y1/

by �. Then

.ƒ11/rs D 2EŒ�.cot�/ırs � .1=�2/.1 � � cot �/.ReY r1 /.ReY
s
1 / (63)

C ��1.tan �/.ImY r1 /.ImY
s
1 /�I

.ƒ22/rs D 2EŒ�.cot�/ırs � .1=�2/.1 � � cot �/.ImY r1 /.ImY
s
1 /

C ��1.tan �/.ReY r1 /.ReY
s
1 /�I

.ƒ12/rs D 2EŒ�.cot�/ırs � .1=�2/.1 � � cot �/.ReY r1 /.ImY
s
1 /

C ��1.tan �/.ImY r1 /.ReY
s
1 /�I

.ƒ21/rs D .ƒ12/sr :.r; s D 1; � � � ; k � 2/:

One now arrives at the CLT for the intrinsic sample mean �n by Theorem 4.1, or
the relation (20). A two-sample test for H0 W Q1 D Q2, is then provided by (30).

We next turn to extrinsic analysis on †k2 , using the embedding (34). Let �J be
the mean of Q ı J�1 on S.k � 1;C/. To compute the projection P.�J /, let T be
a unitary matrix, T 2 SU.k � 1/ such that T�J T � D D D diag.�1; � � � ; �k�1/,
�1 � � � � � �k�2 � �k�1. For u 2 CSk�1, u�u 2 J.†k2/, write v D T u�. Then
T u�uT � D vv�, and

jju�u � �J jj2 D jjvv� �Djj2 D
X
i;j

jvivj � �j ıij j2 (64)

D
X
j

.jvj j2 C �2j � 2�j jvj j2/

D
X
j

�2j C 1 � 2
X
j

�j jvj j2;
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which is minimized on J.†k2 ) by v D .v1; � � � ; vk�1/ for which vj D 0 for j D
1; � � � ; k�2; and jvk�1j D 1. That is, the minimizing u� in (64) is a unit eigenvector
of�J with the largest eigenvalue�k�1, andP.�J / D u�u. This projection is unique
if and only if the largest eigenvalue of �J is simple, i.e., �k�2 < �k�1.

Assuming that the largest eigenvalue of �J is simple, one may now obtain
the asymptotic distribution of the sample extrinsic mean �n;E , namely, that of

J.�n;E/ D v�
nvn, where vn is a unit eigenvector of NQX D P QXj=n corresponding

to its largest eigenvalue. Here QXj D J.Xj /, for i.i.d observations X1; � � � ; Xn on
†k2 . For this purpose, a convenient orthonormal basis (frame) of TpS.k � 1;C/ 	
S.k � 1;C/ is the following:


a;b D 2�1=2.eaetb C ebe
t
a/ for a < b; 
a;a D eae

t
aI (65)

wa;b D i2�1=2.eaetb � ebe
t
a/ for b < a .a; b D 1; � � � ; k � 1/;

where ea is the column vector with all entries zero other than the a-th, and the a-th
entry is 1. Let U1; � � � ; Uk�1 be orthonormal unit eigenvectors corresponding to the
eigenvalues �1 � � � � � �k�2 < �k�1. Then choosing T D .U1; � � � ; Uk�1/ 2
SU.k � 1/ T�J T � D D D diag.�1; � � � ; �k�1/, such that the columns of T 
a;bT �
and Twa;bT � together constitute an orthonormal basis of S.k � 1;C/. It is not
difficult to check that the differential of the projection operator P satisfies

.d�J P /T va;bT
� D

(
0 if 1 � a � b < k � 1; or a D b D k � 1;

.�k�1 � �a/
�1T va;k�1T

� if 1 � a < k � 1; b D k � 1I
(66)

.d�J P /Twa;bT
� D

(
0 if 1 � a � b < k � 1;

.�k�1 � �a/
�1Twa;k�1T � if 1 � a < k � 1:

To check these, take the projection of a linear curve c.s) in S.k� 1;C/ such that
Pc.0/ is one of the basis elements va;b , or wa;b , and differentiate the projected curve
with respect to s. It follows that fT va;k�1T �; Twa;k�1T � W a D 1; � � � ; k � 2g form
an orthonotmal basis of TP.�J /J.†

k
2 ). Expressing QXj ��J in the orthonormal basis

of S.k�1;C), and d�J P. QXj ��J / with respect to the above basis of TP.�J /J.†
k
2 ),

one may now apply Theorem 3.3.
For a two-sample test for H0 W Q1 D Q2, one may use (22), as explained in

Sect. 5.
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8 Nonparameric Bayes for Density Estimation
and Classification on a Manifold

8.1 Density Estimation

Consider the problem of estimating the density q of a distribution Q on a
Riemannian manifold .M; g/ with respect to the volume measure � on M:

According to Ferguson [22], given a finite non-zero base measure ˛ on a measurable
space .X ; †/; a random probability P on the class P of all probability measures on
X has the Dirichlet distribution D˛ if for every measurable partition fB1; : : : ; Bkg
of X ; the D˛ - distribution of .P.B1/; : : : ; P.Bk// D .�1; : : : ; �k/; say, is Dirichlet
with parameters .˛.B1/; : : : ; ˛.Bk//: Sethuraman [44] gave a very convenient
“stick breaking” representation of the random P: To define it, let uj .j D 1; : : : /

be an i.i.d. sequence of beta.1; ˛.X // random variables, independent of a
sequence Yj .j D 1; : : : / having the distribution G D ˛

˛.X /
on X : Sethuraman’s

representation of the random probability with the Dirichlet prior distribution D˛ is

P �
X

wj ıYj ; (67)

where w1 D u1;wj D uj .1 � u1/ : : : .1 � uj�1/.j D 2; : : : /; and ıYj denotes the
Dirac measure at Yj : As this construction shows, the Dirichlet distribution assigns
probability one to the set of all discrete distributions on X ; and one cannot retrieve
a density estimate from it directly. The Dirichlet priors constitute a conjugate
family, i.e., the posterior distribution of a random P with distribution D˛; given
observations X1; : : : ; Xn from P is D˛CP

1�i�n ıXi
. A general method for Bayesian

density estimation on a manifold .M; g/ may be outlined as follows. Suppose
that q is continuous and positive on M: First find a parametric family of densities
m ! K.mI�; �/ on M where � 2 M and � > 0 are “location” and “scale”
parameters, such that K is continuous in its arguments, K.�I�; �/d�.�/ converges
to ı� as � # 0; and the set of all “mixtures” of K.�I�; �/ by distributions on
M � .0;1/ is dense in the set C�.M/ of all continuous densities on M in the
supremum distance, or in L1.d�/: The density q may then be estimated by a
suitable mixture. To estimate the mixture, use a prior Dˇ with full support on the
set of all probabilities on the space M � .0;1/ of “parameters” .�; �/: A draw
from the prior may be expressed in the form (67), where uj are i.i.d. beta.1; b/
with b D ˇ.M � .0;1//; independent of Yj D .mj ; tj /; say, which are i.i.d. ˇ

b
on

M � .0;1/: The corresponding random density is then obtained by integrating the
kernelK with respect to this random mixture distribution,

X
wjK.mImj ; tj /: (68)
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Given M -valued (Q-distributed) observations X1; : : : Xn; the posterior
distribution of the mixture measure is DirichletDˇX , where ˇX D ˇCP

1�i�n ıZi ,
with Zi D .Xi ; 0/: A draw from the posterior distribution leads to the random
density in the form (68), where uj are i.i.d. beta.1; bC n/; independent of .mj ; tj /

which are i.i.d. ˇX
.bCn/ : One may also consider using a somewhat different type of

priors such as D˛ � � where D˛ is a Dirichlet prior on M; and � is a prior on
.0;1/; e.g., gamma or Weibull distribution.

Consistency of the posterior is generally established by checking full Kullback-
Liebler support of the prior Dˇ (see [25], pp. 137–139). Strong consistency has
been established for the planar shape spaces using the complex Watson family of
densities (with respect to the volume measure or the uniform distribution on †k2 )

of the form K.Œz�I�; �/ D c.�/exp
jz��j2
�

in [6, 7], where it has been shown, by
simulation from known distributions, that, based on a prior Dˇ � � chosen so as
to produce clusters close to the support of the observations, the Bayes estimates of
quantiles and other indices far outperform the kernel density estimates of Pelletier
[42], and also require much less computational time than the latter. In moderate
sample sizes, the nonparametric Bayes estimates perform much better than even the
MLE (computed under the true model specification)!

8.2 Classification

Classification of a random observation to one of several groups is one of the
most important problems in statistics. This is the objective in medical diagnostics,
classification of subspecies and, more generally, this is the target of most image
analysis. Suppose there are r groups or populations with a priori given relative sizes
or proportions �i .i D 1; : : : ; r/;

P
�i D 1; and densities qi .x/ (with respect

to some sigma-finite measure). Under 0 � 1 loss function, the average risk of
misclassification (i.e., the Bayes risk) is minimized by the rule: Given a random
observation X, classify it to belong to group j if
�j qj .X/ D maxf�iqi .X/ W i D 1; : : : ; rg. Generally, one uses sample

estimates of �i -s and qi -s, based on random samples from the r groups (training
data). Nonparametric Bayes estimates of qi -s on shapes spaces perform very well
in classification of shapes, and occasionally identify outliers and misclassified
observations (see, [6, 7]).

9 Examples

In this section we apply the theory to a number of data sets available in the literature.

Example 9.1 (Paleomagnetism). The first statistical confirmation of the shifting
of the earth’s magnetic poles over geological times, theorized by paleontologists
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based on observed fossilised magnetic rock samples, came in a seminal paper by
R.A. Fisher [23]. Fisher analyzed two sets of data—one recent (1947–1948) and
another old (Quaternary period), using the so-called von Mises-Fisher model

f .xI�; �/ D c.�/ expf�xt�g.x 2 S2/; (69)

Here �.2 S2/, is the mean direction, extrinsic as well as intrinsic (� D �I D
�E/, and � > 0 is the concentration parameter. The maximum likelihood estimate
of � is O� D NX=j NX j, which is also our sample extrinsic mean. The value of the
MLE for the first data set of n D 9 observations turned out to be O� D O�E D
.:2984; :1346; :9449/, where (0,0,1) is the geographic north pole. Fisher’s 95%
confidence region for � is f� 2 S2 W �g. O�;�/ � 0:1536/g. The sample intrinsic
mean is O�I D .:2990; :1349; :9447/, which is very close to O�E .The nonparametric
confidence region based on O�I , as given by (50), and that based on the extrinsic
procedure (53), are nearly the same, and both are about 10% smaller in area than
Fisher’s region. (See [6], Chap. 2.)

The second data set based on n D 29 observations from the Quaternary period
that Fisher analyzed, using the same parametric model as above, had the MLE
O� D NX=j NX j D .:0172;�:2978;�:9545/, almost antipodal of that for the first data
set, and with a confidence region of geodesic radius .1475 around the MLE. Note
that the two confidence regions are not only disjoint, they also lie far away from
each other. This provided the first statistical confirmation of the hypothesis of shifts
in the earth’s magnetic poles, a result hailed by paleontologists (see [30]). Because
of difficulty in accessing the second data set, the nonparametric procedures could
not be applied to it. But the analysis of another data set dating from the Jurassic
period, with n D 33, once again yielded nonparametric intrinsic and extrinsic
confidence regions very close to each other, and each about 10% smaller than the
region obtained by Fisher’s parametric method (see [6], Chap. 5, for details).

Example 9.2 (Brain scan of schizophrenic and normal patients). We consider an
example from Bookstein [15] in which 13 landmarks were recorded on a midsagittal
two-dimensional slice from magnetic brain scans of each of 14 schizophrenic
patients and 14 normal patients. The object is to detect the deformation, if any,
in the shape of the k-ad due to the disease, and to use it for diagnostic purposes.
The shape space is †132 : The intrinsic two-sample test (22) has an observed value
95.4587 of the asymptotic chisquare statistic with 22 degrees of freedom, and a
p-value 3:97 � 10�11. The extrinsic test based on (24) has an observed value
95.5476 of the chisquare statistic and a p-value 3:8 � 10�11. The calculations
made use of the analytical computations carried out in Example 7.2. It is remarkable,
and reassuring, that completely different methodologies of intrinsic and extrinsic
inference essentially led to the same values of the corresponding asymptotic
chisquare statistics (a phenomenon observed in other examples as well). For details
of these calculations and others we refer to [6]. This may also be contrasted with the
results of parametric inference in the literature for the same data, as may be found in
[19], pp. 146, 162–165. Using a isotropic Normal model for the original landmarks
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data, and after removal of “nuisance” parameters for translation, size and rotation,
an F -test known as Goodall’s F -test (see [26]) gives a p-value .01. A Monte Carlo
test based permutation test obtained by 999 random assignments of the data into two
groups and computing Goodall’s F -statistic, gave a p-value .04. A Hotelling’s T 2

test in the tangent space of the pooled sample mean had a p-value .834. A likelihood
ratio test based on the isotropic offset Normal distribution on the shape space
has the value 43.124 of the chisquare statistic with 22 degrees of freedom, and a
p-value .005.

Example 9.3 (Glaucoma detection- a match pair problem in 3D). Our final
example is on the 3D reflection similarity shape space R†k3 . To detect shape
changes due to glaucoma, data were collected on twelve mature rhesus monkeys.

One of the eyes of each monkey was treated with a chemical agent to temporarily
increase the intraocular pressure (IOP). The increase in IOP is known to be a cause
of glaucoma. The other eye was left untreated. Measurements were made of five
landmarks in each eye, suggested by medical professionals. The data may be found
in [11]. The match pair test based on (25) yielded an observed value 36.29 of
the asymptotic chisquare statistic with degrees of freedom 8. The corresponding
p-value is 1:55 � 10�5 (see [6], Chap. 9). This provides a strong justification for
using shape change of the inner eye as a diagnostic tool to detect the onset of
glaucoma. An earlier computation using a different nonparametric procedure in [11]
provided a p-value .058. Also see [9] where a 95% confidence region is obtained
for the difference between the extrinsic size-and-shape reelection shapes between
the treated and untreated eyes.
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18. I.L. Dryden, K.V. Mardia, Size and shape analysis of landmark data. Biometrica 79, 57–68

(1992)
19. I.L. Dryden, K.V. Mardia, Statistical Shape Analysis (Wiley, New York, 1998)
20. I.L. Dryden, A. Kume, H. Le, A.T.A. Wood, The MDS model for shape: an alternative

approach. Biometrika 95(4), 779–798 (2008)
21. L. Ellingson, F.H. Ruymgaart, V. Patrangenaru, Nonparametric estimation for extrinsic mean

shapes of planar contours. (to appear, 2013)
22. T. Ferguson, A Bayesian analysis of some nonparametric problems. Ann. Stat. 1, 209–230

(1973)
23. R.A. Fisher, Dispersion on a sphere. Proc. R. Soc. Lond. Ser. A 217, 295–305 (1953)
24. S. Gallot, D. Hulin, J. Lafontaine, Riemannian Geometry. Universitext (Springer, Berlin, 1990)
25. J.K. Ghosh, R.V. Ramamoorthi, Bayesian Nonparametrics (Springer, New York, 2003)
26. C.R. Goodall, Procrustes methods in the statistical analysis of shape (with discussion). J. R.

Stat. Soc. Ser B. 53, 285–339 (1991)
27. H. Hendriks, Z. Landsman, Asymptotic tests for mean location on manifolds. C.R. Acad. Sci.

Paris Sr. I Math. 322, 773–778 (1996)
28. H. Hendriks, Z. Landsman, Mean location and sample mean location on manifolds: asymp-

totics, tests, confidence regions. J. Multivariate Anal. 67, 227–243 (1998)
29. S. Huckemann, T. Hotz, A. Munk, Intrinsic shape analysis: geodesic PCA for Riemannian

manifolds modulo isometric Lie group actions (with discussions). Stat. Sinica 20, 1–100 (2010)
30. E. Irving, Paleomagnetism and Its Application to Geological and Geographical Problems

(Wiley, New York, 1964)
31. H. Karcher, Riemannian center of mass and mollifier smoothing. Comm. Pure Appl. Math. 30,

509–554 (1977)
32. D.G. Kendall, The diffusion of shape. Adv. Appl. Probab. 9, 428–430 (1977)
33. D.G. Kendall, Shape manifolds, procrustean metrics, and complex projective spaces. Bull.

Lond. Math. Soc. 16, 81–121 (1984)
34. D.G. Kendall, A survey of the statistical theory of shape. Stat. Sci. 4, 87–120 (1989)
35. W.S. Kendall, Probability, convexity, and harmonic maps with small image I: uniqueness and

fine existence. Proc. Lond. Math. Soc 61, 371–406 (1990)
36. J.T. Kent, New directions in shape analysis. in The Art of Statistical Science, ed. by

K.V. Mardia. pp. 115–127 (Wiley, New York, 1992)
37. J.T. Kent, The complex Bingham distribution and shape analysis. J. Roy. Stat. Soc. Ser. B 56,

285–299 (1994)



A Nonparametric Theory of Statistics on Manifolds 205
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