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Abstract We address the question of a Berry-Esseen type theorem for the speed of
convergence in a multivariate free central limit theorem. For this, we estimate the
difference between the operator-valued Cauchy transforms of the normalized partial
sums in an operator-valued free central limit theorem and the Cauchy transform
of the limiting operator-valued semicircular element. Since we have to deal with
in general non-self-adjoint operators, we introduce the notion of matrix-valued
resolvent sets and study the behavior of Cauchy transforms on them.
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1 Introduction

In classical probability theory the famous Berry-Esseen theorem gives a quantitative
statement about the order of convergence in the central limit theorem. It states
in its simplest version: If .Xi/i2N is a sequence of independent and identically
distributed random variables with mean 0 and variance 1, then the distance between
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Sn WD 1p
n
.X1 C � � � C Xn/ and a normal variable � of mean 0 and variance 1 can be

estimated in terms of the Kolmogorov distance � by

�.Sn; �/ � C
1p
n

�;

where C is a constant and � is the absolute third moment of the variables Xi . The
question for a free analogue of the Berry-Esseen estimate in the case of one random
variable was answered by Chistyakov and Götze in [2] (and independently, under
the more restrictive assumption of compact support of the Xi , by Kargin [10]): If
.Xi/i2N is a sequence of free and identically distributed variables with mean 0 and
variance 1, then the distance between Sn WD 1p

n
.X1 C � � � C Xn/ and a semicircular

variable s of mean 0 and variance 1 can be estimated as

�.Sn; s/ � c
jm3j C p

m4p
n

;

where c > 0 is an absolute constant and m3 and m4 are the third and fourth moment,
respectively, of the Xi .

In this paper we want to present an approach to a multivariate version of a free
Berry-Esseen theorem. The general idea is the following: Since there is up to now
no suitable replacement of the Kolmorgorov metric in the multivariate case, we
will, in order to describe the speed of convergence of a d -tuple .S

.1/
n ; : : : ; S

.d/
n / of

partial sums to the limiting semicircular family .s1; : : : ; sd /, consider the speed of
convergence of p.S

.1/
n ; : : : ; S

.d/
n / to p.s1; : : : ; sd / for any self-adjoint polynomial

p in d non-commuting variables. By using the linearization trick of Haagerup and
Thorbjørnsen [5,6], we can reformulate this in an operator-valued setting, where we
will state an operator-valued free Berry-Esseen theorem. Because estimates for the
difference between scalar-valued Cauchy transforms translate by results of Bai [1]
to estimates with respect to the Kolmogorov distance, it is convenient to describe the
speed of convergence in terms of Cauchy transforms. On the level of deriving equa-
tions for the (operator-valued) Cauchy transforms we can follow ideas which are
used for dealing with speed of convergence questions for random matrices; here we
are inspired in particular by the work of Götze and Tikhomirov [4], but see also [1].

Since the transition from the multivariate to the operator-valued setting leads to
operators which are, even if we start from self-adjoint polynomials p, in general not
self-adjoint, we have to deal with (operator-valued) Cauchy transforms defined on
domains different from the usual ones. Since most of the analytic tools fail in this
generality, we have to develop them along the way.

As a first step in this direction, the present paper (which is based on the
unpublished preprint [13]) leads finally to the proof of the following theorem:

Theorem 1.1. Let .C; �/ be a non-commutative C �-probability space with �

faithful and put A WD Mm.C/ ˝ C and E WD id ˝� . Let .Xi/i2N be a sequence of
non-zero elements in the operator-valued probability space .A; E/. We assume:
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• All Xi ’s have the same �-distribution with respect to E and their first moments
vanish, i.e. EŒXi � D 0.

• The Xi are �-free with amalgamation over Mm.C/ (which means that the
�-algebras Xi , generated by Mm.C/ and Xi , are free with respect to E).

• We have sup
i2N

kXi k < 1.

Then the sequence .Sn/n2N defined by

Sn WD 1p
n

nX

iD1

Xi ; n 2 N

converges to an operator-valued semicircular element s. Moreover, we can find � >

0, c > 1, C > 0 and N 2 N such that

kGs.b/ � GSn.b/k � C
1p
n

kbk for all b 2 � and n � N ;

where
� WD

n
b 2 GLm.C/ j kb�1k < �; kbk � kb�1k < c

o

and where Gs and GSn denote the operator-valued Cauchy transforms of s and of
Sn, respectively.

Applying this operator-valued statement to our multivariate problem gives the
following main result on a multivariate free Berry Esseen theorem.

Theorem 1.2. Let .x
.k/
i /d

kD1, i 2 N, be free and identically distributed sets of d

self-adjoint non-zero random variables in some non-commutative C �-probability
space .C; �/, with � faithful, such that the conditions

�.x
.k/
i / D 0 for k D 1; : : : ; d and all i 2 N

and
sup
i2N

max
kD1;:::;d

kx
.k/
i k < 1

are fulfilled. We denote by † D .	k;l /
d
k;lD1, where 	k;l WD �.x

.k/
i x

.l/
i /, their joint

covariance matrix. Moreover, we put

S.k/
n WD 1p

n

nX

iD1

x
.k/
i for k D 1; : : : ; d and all n 2 N:

Then .S
.1/
n ; : : : ; S

.d/
n / converges in distribution to a semicircular family .s1; : : : ; sd /

of covariance †. We can quantify the speed of convergence in the following way. Let
p be a (not necessarily self-adjoint) polynomial in d non-commutating variables
and put



116 T. Mai and R. Speicher

Pn WD p.S.1/
n ; : : : ; S.d/

n / and P WD p.s1; : : : ; sd /:

Then, there are constants C > 0, R > 0 and N 2 N (depending on the polynomial)
such that

jGP .z/ � GPn.z/j � C
1p
n

for all jzj > R and n � N ;

where GP and GPn denote the scalar-valued Cauchy transform of P and of Pn,
respectively.

In the case of a self-adjoint polynomial p, we can consider the distribution
measures 
n and 
 of the operators Pn and P from above, which are probability
measures on R. Moreover, let F
n and F
 be their cumulative distribution functions.
In order to deduce estimates for the Kolmogorov distance

�.
n; 
/ D sup
x2R

jF
n.x/ � F
.x/j

one has to transfer the estimate for the difference of the scalar-valued Cauchy
transforms of Pn and P from near infinity to a neighborhood of the real axis.
A partial solution to this problem was given in the appendix of [14], which we will
recall in Sect. 4. But this leads to the still unsolved question, whether p.s1; : : : ; sd /

has a continuous density. We conjecture that the latter is true for any self-adjoint
polynomial in free semicirculars, but at present we are not aware of a proof of that
statement.

The paper is organized as follows. In Sect. 2 we recall some basic facts about
holomorphic functions on domains in Banach spaces. The tools to deal with matrix-
valued Cauchy transform will be presented in Sect. 3. Section 4 is devoted to the
proof of Theorems 1.1 and 1.2.

2 Holomorphic Functions on Domains in Banach Spaces

For reader’s convenience, we briefly recall the definition of holomorphic functions
on domains in Banach spaces and we state the theorem of Earle-Hamilton, which
will play a major role in the subsequent sections.

Definition 2.1. Let .X; k � kX /, .Y; k � kY / be two complex Banach spaces and let
D � X be an open subset of X . A function f W D ! Y is called

• Strongly holomorphic, if for each x 2 D there exists a bounded linear mapping
Df .x/ W X ! Y such that

lim
y!0

kf .x C y/ � f .x/ � Df .x/ykY

kykX

D 0:
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• Weakly holomorphic, if it is locally bounded and the mapping

� 7! �.f .x C �y//

is holomorphic at � D 0 for each x 2 D, y 2 Y and all continuous linear
functionals � W Y ! C.

An important theorem due to Dunford says, that a function on a domain (i.e. an
open and connected subset) in a Banach space is strongly holomorphic if and only
if it is weakly holomorphic. Hence, we do not have to distinguish between both
definitions.

Definition 2.2. Let D be a nonempty domain in a complex Banach space .X; k � k/

and let f W D ! D be a holomorphic function. We say, that f .D/ lies strictly
inside D, if there is some  > 0 such that

B.f .x// � D for all x 2 D

holds, whereby we denote by Br.y/ the open ball with radius r around y.

The remarkable fact, that strict holomorphic mappings are strict contractions in
the so-called Carathéodory-Riffen-Finsler metric, leads to the following theorem of
Earle-Hamilton (cf. [3]), which can be seen as a holomorphic version of Banach’s
contraction mapping theorem. For a proof of this theorem and variations of the
statement we refer to [7].

Theorem 2.3 (Earle-Hamilton, 1970). Let ; ¤ D � X be a domain in a Banach
space .X; k � k/ and let f W D ! D be a bounded holomorphic function. If f .D/

lies strictly inside D, then f has a unique fixed point in D.

3 Matrix-Valued Spectra and Cauchy Transforms

The statement of the following lemma is well-known and quite simple. But since it
turns out to be extremely helpful, it is convenient to recall it here.

Lemma 3.1. Let .A; k � k/ be a complex Banach-algebra with unit 1. If x 2 A is
invertible and y 2 A satisfies kx � yk < 	 1

kx�1k for some 0 < 	 < 1, then y is
invertible as well and we have

ky�1k � 1

1 � 	
kx�1k:

Proof. We can easily check that

1X

nD0

�
x�1.x � y/

�n
x�1
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is absolutely convergent in A and gives the inverse element of y. Moreover we get

ky�1k �
1X

nD0

�kx�1kkx � yk�nkx�1k <
1

1 � 	
kx�1k;

which proves the stated estimate. ut
Let .C; �/ be a non-commutative C �-probability space, i.e., C is a unital C �-

algebra and � is a unital state (positive linear functional) on C; we will always
assume that � is faithful. For fixed m 2 N we define the operator-valued C �-
probability space A WD Mm.C/ ˝ C with conditional expectation

E WD idm ˝� W A ! Mm.C/; b ˝ c 7! �.c/b;

where we denote by Mm.C/ the C �-algebra of all m � m matrices over the complex
numbers C. Under the canonical identification of Mm.C/˝C with Mm.C/ (matrices
with entries in C), the expectation E corresponds to applying the state � entrywise
in a matrix. We will also identify b 2 Mm.C/ with b ˝ 1 2 A.

Definition 3.2. For a 2 A D Mm.C/ we define the matrix-valued resolvent set

�m.a/ WD fb 2 Mm.C/ j b � a is invertible in Ag

and the matrix-valued spectrum

	m.a/ WD Mm.C/n�m.a/:

Since the set GL.A/ of all invertible elements in A is an open subset of A
(cf. Lemma 3.1), the continuity of the mapping

fa W Mm.C/ ! A; b 7! b � a

implies, that the matrix-valued resolvent set �m.a/ D f �1
a .GL.A// of an element

a 2 A is an open subset of Mm.C/. Hence, the matrix-valued spectrum 	m.a/ is
always closed.

Although the behavior of this matrix-valued generalizations of the classical
resolvent set and spectrum seems to be quite similar to the classical case (which
is of course included in our definition for m D 1), the matrix valued spectrum is in
general not bounded and hence not a compact subset of Mm.C/. For example, we
have for all � 2 C, that

	m.�1/ D fb 2 Mm.C/ j � 2 	Mm.C/.b/g;

i.e. 	m.�1/ consists of all matrices b 2 Mm.C/ for which � belongs to the spectrum
	Mm.C/.b/. Particularly, 	m.�1/ is unbounded for m � 2.
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In the following, we denote by GLm.C/ WD GL.Mm.C// the set of all invertible
matrices in Mm.C/.

Lemma 3.3. Let a 2 A be given. Then for all b 2 GLm.C/ the following inclusion
holds: ˚

�b j � 2 �A.b�1a/
� � �m.a/

Proof. Let � 2 �A.b�1a/ be given. By definition of the usual resolvent set this
means that �1 � b�1a is invertible in A. It follows, that

�b � a D b
�
�1 � b�1a

�

is invertible as well, and we get, as desired, �b 2 �m.a/. ut
Lemma 3.4. For all 0 ¤ a 2 A we have

n
b 2 GLm.C/ j kb�1k <

1

kak
o

� �m.a/

and

	m.a/ \ GLm.C/ �
n
b 2 GLm.C/ j kb�1k � 1

kak
o
:

Proof. Obviously, the second inclusion is a direct consequence of the first. Hence,
it suffices to show the first statement.

Let b 2 GLm.C/ with kb�1k < 1
kak be given. It follows, that h WD 1 � b�1a is

invertible, because

k1 � hk D kb�1ak � kb�1k � kak < 1:

Therefore, we can deduce, that also

b � a D b
�
1 � b�1a

�
(1)

is invertible, i.e. b 2 �m.a/. This proves the assertion. ut
The main reason to consider matrix-valued resolvent sets is, that they are the

natural domains for matrix-valued Cauchy transforms, which we will define now.

Definition 3.5. For a 2 A we call

Ga W �m.a/ ! Mm.C/; b 7! E
�
.b � a/�1

�

the matrix-valued Cauchy transform of a.

Note that Ga is a continuous function (and hence locally bounded) and induces
for all b0 2 �m.a/, b 2 Mm.C/ and bounded linear functionals � W A ! C a
function
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� 7! �
�
Ga.b0 C �b/

�
;

which is holomorphic in a neighborhood of � D 0. Hence, Ga is weakly
holomorphic and therefore (as we have seen in the previous section) strongly
holomorphic as well.

Because the structure of �m.a/ and therefore the behavior of Ga might in general
be quite complicated, we restrict our attention to a suitable restriction of Ga. In this
way, we will get some additional properties of Ga.

The first restriction enables us to control the norm of the matrix-valued Cauchy
transform on a sufficiently nice subset of the matrix-valued resolvent set.

Lemma 3.6. Let 0 ¤ a 2 A be given. For 0 < � < 1 the matrix valued Cauchy
transform Ga induces a mapping

Ga W
n
b 2 GLm.C/ j kb�1k < � � 1

kak
o

!
n
b 2 Mm.C/ j kbk <

�

1 � �
� 1

kak
o
:

Proof. Lemma 3.4 (c) tells us, that the open set

U WD
n
b 2 GLm.C/ j kb�1k < � � 1

kak
o

is contained in �m.a/, i.e. Ga is well-defined on U . Moreover, we get from (1)

.b � a/�1 D �
1 � b�1a

��1
b�1 D

1X

nD0

�
b�1a

�n
b�1

and hence

kGa.b/k � k.b � a/�1k � kb�1k
1X

nD0

�kb�1kkak�n
<

�

1 � �
� 1

kak (2)

for all b 2 U . This proves the claim. ut
To ensure, that the range of Ga is contained in GLm.C/, we have to shrink the

domain again.

Lemma 3.7. Let 0 ¤ a 2 A be given. For 0 < � < 1 and c > 1 we define

� WD
n
b 2 GLm.C/ j kb�1k < � � 1

kak ; kbk � kb�1k < c
o

and

�0 WD
n
b 2 GLm.C/ j kbk <

�

1 � �
� 1

kak
o
:
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If the condition
�

1 � �
<

	

c

is satisfied for some 0 < 	 < 1, then the matrix-valued Cauchy transform Ga

induces a mapping Ga W � ! �0 and we have the estimates

kGa.b/k � k.b � a/�1k <
�

1 � �
� 1

kak for all b 2 � (3)

and
kGa.b/�1k <

1

1 � 	
� kbk for all b 2 �: (4)

Proof. For all b 2 � we have

Ga.b/ � b�1 D E
�
.b � a/�1 � b�1

� D E
h 1X

nD1

�
b�1a

�n
b�1

i
;

which enables us to deduce

kGa.b/�b�1k � kb�1k
1X

nD1

�kb�1kkak�n � �

1 � �
�kb�1k <

�

1 � �
� c

kbk < 	 � 1

kbk :

Using Lemma 3.1, this implies Ga.b/ 2 GLm.C/ and (4). Since we already know
from (2) in Lemma 3.6, that (3) holds, it follows Ga.b/ 2 �0 and the proof is
complete. ut
Remark 3.8. Since domains of our holomorphic functions should be connected it is
necessary to note, that for � > 0 and c > 1

� D ˚
b 2 GLm.C/ j kb�1k < �; kbk � kb�1k < c

�

and for r > 0

�0 D ˚
b 2 GLm.C/ j kbk < r

�

are pathwise connected subsets of Mm.C/. Indeed, if b1; b2 2 GLm.C/ are given, we
consider their polar decomposition b1 D U1P1 and b2 D U2P2 with unitary matrices
U1; U2 2 GLm.C/ and positive-definite Hermitian matrices P1; P2 2 GLm.C/ and
define (using functional calculus for normal elements in the C �-algebra Mm.C/)

� W Œ0; 1� ! GLm.C/; t 7! U 1�t
1 P 1�t

1 U t
2 P t

2 :

Then � fulfills �.0/ D b1 and �.1/ D b2, and �.Œ0; 1�/ is contained in � and �0 if
b1; b2 are elements of � and �0, respectively.

Since the matrix-valued Cauchy transform is a solution of a special equation (cf.
[8, 12]), we will be interested in the following situation:
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Corollary 3.9. Let � W GLm.C/ ! Mm.C/ be a holomorphic function satisfying

k�.w/k � M kwk for all w 2 GLm.C/

for some M > 0. Moreover, we assume that

bGa.b/ D 1 C �.Ga.b//Ga.b/ for all b 2 �

holds. Let 0 < �; 	 < 1 and c > 1 be given with

�

1 � �
< 	 min

n1

c
;

kak2

M

o

and let � and �0 be as in Lemma 3.7.
Then, for fixed b 2 �, the equation

bw D 1 C �.w/w; w 2 �0 (5)

has a unique solution, which is given by w D Ga.b/.

Proof. Let b 2 � be given. For all w 2 �0 we get

k�.w/k � M kwk � �

1 � �
� M

kak
and therefore

kb�1�.w/k � kb�1kk�.w/k � �

1 � �
� M

kak2
� � < �	 < 1:

This means, that 1 � b�1�.w/ and hence b � �.w/ is invertible with

k.b � �.w//�1k � kb�1kk.1 � b�1�.w//�1k

� kb�1k
1X

nD0

kb�1�.w/kn

<
�

1 � �	
� 1

kak ;

and shows, that we have a well-defined and holomorphic mapping

F W �0 ! Mm.C/; w 7! .b � �.w//�1
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with

kF.w/k D k.b � �.w//�1k <
�

1 � �	
� 1

kak <
�

1 � �
� 1

kak
and therefore F.w/ 2 �0.

Now, we want to show that F.�0/ lies strictly inside �0. We put

 WD min
n1

2
� 1

kbk C 	kak ;
�
1 � 1 � �

1 � �	

�
� �

1 � �
� 1

kak
o

> 0

and consider w 2 �0 and u 2 Mm.C/ with ku � F.w/k < . At first, we get

kb � �.w/k � kbk C k�.w/k � kbk C M

kak � �

1 � �
� kbk C 	kak

and thus

ku � .b � �.w//�1k D ku � F.w/k <  � 1

2
� 1

kbk C 	kak � 1

2
� 1

kb � �.w/k ;

which shows u 2 GLm.C/, and secondly

kuk D ku � .b � �.w//�1k C kF.w/k

<  C 1 � �

1 � �	
� �

1 � �
� 1

kak

<
�

1 � �
� 1

kak
which shows u 2 �0.

Let now w 2 �0 be a solution of (5). This implies that

w�1F.w/ D w�1.b � �.w//�1 D �
bw � �.w/w

��1 D 1;

and hence F.w/ D w. Since F W �0 ! �0 is holomorphic on the domain �0
and F.�0/ lies strictly inside �0, it follows by the Theorem of Earle-Hamilton,
Theorem 2.3, that F has exactly one fixed point. Because Ga.b/ (which is an
element of �0 by Lemma 3.7) solves (5) by assumption and hence is already a fixed
point of F , it follows w D Ga.b/ and we are done. ut
Remark 3.10. Let .A0; E 0/ be an arbitrary operator-valued C �-probability space
with conditional expectation E 0 W A0 ! Mm.C/. This provides us with a unital (and
continuous) �-embedding � W Mm.C/ ! A0. In this section, we only considered the
special embedding

� W Mm.C/ ! A; b 7! b ˝ 1;
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which is given by the special structure A D Mm.C/ ˝ C. But we can define matrix-
valued resolvent sets, spectra and Cauchy transforms also in this more general
framework. To be more precise, we put for all a 2 A0

�m.a/ WD fb 2 Mm.C/ j �.b/ � a is invertible in A0g

and 	m.a/ WD Mm.C/n�m.a/ and

Ga W �m.a/ ! Mm.C/; b 7! E 0�.�.b/ � a/�1
�
:

We note, that all the results of this section stay valid in this general situation.

4 Multivariate Free Central Limit Theorem

4.1 Setting and First Observations

Let .Xi/i2N be a sequence in the operator-valued probability space .A; E/ with
A D Mm.C/ D Mm.C/ ˝ C and E D id ˝� , as defined in the previous section. We
assume:

• All Xi ’s have the same �-distribution with respect to E and their first moments
vanish, i.e. EŒXi � D 0.

• The Xi are �-free with amalgamation over Mm.C/ (which means that the
�-algebras Xi , generated by Mm.C/ and Xi , are free with respect to E).

• We have sup
i2N

kXi k < 1.

If we define the linear (and hence holomorphic) mapping

� W Mm.C/ ! Mm.C/; b 7! EŒXi bXi �;

we easily get from the continuity of E , that

k�.b/k �
�

sup
i2N

kXi k
�2kbk for all b 2 Mm.C/

holds. Hence we can find M > 0 such that k�.b/k < M kbk holds for all b 2
Mm.C/. Moreover, we have for all k 2 N and all b1; : : : ; bk 2 Mm.C/

sup
i2N

kEŒXi b1Xi : : : bkXi �k �
�

sup
i2N

kXik
�kC1kb1k � � � kbkk:

Since .Xi/i2N is a sequence of centered free non-commutative random variables,
Theorem 8.4 in [15] tells us that the sequence .Sn/n2N defined by
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Sn WD 1p
n

nX

iD1

Xi ; n 2 N

converges to an operator-valued semicircular element s. Moreover, we know from
Theorem 4.2.4 in [12] that the operator-valued Cauchy transform Gs satisfies

bGs.b/ D 1 C �.Gs.b//Gs.b/ for all b 2 Ur;

where we put Ur WD fb 2 GLm.C/ j kb�1k < rg � �m.s/ for all suitably small
r > 0.

By Proposition 7.1 in [9], the boundedness of the sequence .Xi /i2N guarantees
boundedness of .Sn/n2N as well. In order to get estimates for the difference between
the Cauchy transforms Gs and GSn we will also need the fact, that .Sn/n2N is
bounded away from 0. The precise statement is part of the following lemma, which
also includes a similar statement for

SŒi�
n WD Sn � 1p

n
Xi D 1p

n

nX

j D1
j 6Di

Xj for all n 2 N and 1 � i � n:

Lemma 4.1. In the situation described above, we have for all n 2 N and all 1 �
i � n

kSnk � k˛k 1
2 and kSŒi�

n k �
r

1 � 1

n
k˛k 1

2 ;

where ˛ WD EŒX�
i Xi � 2 Mm.C/.

Proof. By the �-freeness of X1; X2; : : : , we have

EŒX�
i Xj � D EŒX�

i � � EŒXj � D 0; for i 6D j

and thus

kSnk2 D kS�
n Snk � kEŒS�

n Sn�k D 1

n

				
nX

i;j D1

EŒX�
i Xj �

				 D k˛k:

Similarly

kSŒi�
n k2 D k.SŒi �

n /�SŒi�
n k

� kEŒ.SŒi �
n /�SŒi�

n �k

D
				EŒS�

n Sn� � 1

n
EŒX�

i Xi �

				

D n � 1

n
k˛k;

which proves the statement. ut
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We define for n 2 N

Rn W �m.Sn/ ! A; b 7! �
b � Sn

��1

and for n 2 N and 1 � i � n

RŒi�
n W �m.SŒi �

n / ! A; b 7! �
b � SŒi�

n

��1
:

Lemma 4.2. For all n 2 N and 1 � i � n we have

Rn.b/ D RŒi�
n .b/ C 1p

n
RŒi�

n .b/XiR
Œi�
n .b/ C 1

n
Rn.b/XiR

Œi�
n .b/XiR

Œi�
n .b/ (6)

and

Rn.b/ D RŒi�
n .b/ C 1p

n
RŒi�

n .b/XiRn.b/ (7)

for all b 2 �m.Sn/ \ �m.S
Œi �
n /.

Proof. We have

�
b � Sn

�
Rn.b/

�
b � SŒi�

n

� D b � SŒi�
n

D �
b � Sn

� C 1p
n

�
b � SŒi�

n

�
RŒi�

n .b/Xi

D �
b � Sn

� C 1p
n

�
b � Sn

�
RŒi�

n .b/Xi C 1

n
Xi R

Œi�
n .b/Xi ;

which leads, by multiplication with Rn.b/ D .b � Sn/�1 from the left and with
R

Œi�
n .b/ D .b � S

Œi�
n /�1 from the right, to (6).

Moreover, we have

�
b � SŒi�

n

�
Rn.b/

�
b � Sn

� D b � SŒi�
n D �

b � Sn

� C 1p
n

Xi ;

which leads, by multiplication with Rn.b/ D .b � Sn/�1 from the right and with
R

Œi�
n .b/ D .b � S

Œi�
n /�1 from the left, to equation (7). ut

Obviously, we have

Gn WD GSn D E ı Rn and GŒi�
n WD G

S
Œi�
n

D E ı RŒi�
n :
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4.2 Proof of the Main Theorem

During this subsection, let 0 < �; 	 < 1 and c > 1 be given, such that

�

1 � �
< 	 min

n1

c
;

k˛k
M

o
(8)

holds. For all n 2 N we define

�n WD � min
n 1

ksk ;
1

kSnk ;
1

kS
Œ1�
n k

; : : : ;
1

kS
Œn�
n k

o

and
�n WD ˚

b 2 GLm.C/ j kb�1k < �n; kbk � kb�1k < c
�
:

Lemma 3.4 shows, that �n is a subset of �m.Sn/.

Theorem 4.3. For all 2 � n 2 N the function Gn satisfies the following equation

ƒn.b/Gn.b/ D 1 C �.Gn.b//Gn.b/; b 2 �n;

where
ƒn W �n ! Mm.C/; b 7! b � ‚n.b/Gn.b/�1;

with a holomorphic function

‚n W �n ! Mm.C/

satisfying

sup
b2�n

k‚n.b/k � Cp
n

with a constant C > 0, independent of n.

Proof. (i) Let n 2 N and b 2 �m.Sn/ be given. Then we have

SnRn.b/ D bRn.b/ � .b � Sn/Rn.b/ D bRn.b/ � 1

and hence
EŒSnRn.b/� D E

�
bRn.b/ � 1

� D bGn.b/ � 1:

(ii) Let n 2 N be given. For all

b 2 �m;n WD �m.Sn/ \
n\

iD1

�m.SŒi �
n /

we deduce from the formula in (6), that
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EŒSnRn.b/� D 1p
n

nX

iD1

EŒXiRn.b/�

D 1p
n

nX

iD1



E

�
XiR

Œi�
n .b/

� C 1p
n

E
�
Xi R

Œi�
n .b/XiR

Œi�
n .b/

�

C 1

n
E

�
Xi Rn.b/XiR

Œi�
n .b/XiR

Œi�
n .b/

��

D 1

n

nX

iD1



E

�
XiR

Œi�
n .b/XiR

Œi�
n .b/

� C 1p
n

E
�
Xi Rn.b/XiR

Œi�
n .b/XiR

Œi�
n .b/

��

D 1

n

nX

iD1



E

�
XiG

Œi�
n .b/Xi

�
GŒi�

n .b/ C 1p
n

E
�
Xi Rn.b/XiR

Œi�
n .b/XiR

Œi�
n .b/

��

D 1

n

nX

iD1

�
�.GŒi�

n .b//GŒi�
n .b/ C r

Œi �
n;1.b/

�
;

where

r
Œi �
n;1 W �m.Sn/\�m.SŒi �

n / ! Mm.C/; b 7! 1p
n

E
�
Xi Rn.b/XiR

Œi�
n .b/XiR

Œi�
n .b/

�
:

There we used the fact, that, since the .Xj /j 2N are free with respect to E , also

Xi is free from R
Œi�
n , and thus we have

E
�
Xi R

Œi�
n .b/

� D EŒXi �E
�
RŒi�

n .b/
� D 0

and
E

�
Xi R

Œi�
n .b/XiR

Œi�
n .b/

� D E
�
XiE

�
RŒi�

n .b/
�
Xi

�
E

�
RŒi�

n .b/
�
:

(iii) Taking (7) into account, we get for all n 2 N and 1 � i � n

Gn.b/ D E
�
Rn.b/

� D E
�
R

Œi�
n .b/

� C 1p
n

E
�
R

Œi�
n .b/Xi Rn.b/

� D G
Œi�
n .b/ � r

Œi �
n;2.b/

and therefore
GŒi�

n .b/ D Gn.b/ C r
Œi �
n;2.b/

for all b 2 �m.Sn/ \ �m.S
Œi �
n /, where we put

r
Œi �
n;2 W �m.Sn/ \ �m.SŒi �

n / ! Mm.C/; b 7! � 1p
n

E
�
RŒi�

n .b/XiRn.b/
�
:
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(iv) The formula in (iii) enables us to replace G
Œi�
n in (ii) by Gn. Indeed, we get

EŒSnRn.b/� D 1

n

nX

iD1

�
�.GŒi�

n .b//GŒi�
n .b/ C r

Œi �
n;1.b/

�

D 1

n

nX

iD1

�
�
�
Gn.b/ C r

Œi �
n;2.b/

��
Gn.b/ C r

Œi �
n;2.b/

� C r
Œi �
n;1.b/

�

D �.Gn.b//Gn.b/ C 1

n

nX

iD1

r
Œi �
n;3.b/

for all b 2 �m;n, where the function

r
Œi �
n;3 W �m.Sn/ \ �m.SŒi �

n / ! Mm.C/

is defined by

r
Œi �
n;3.b/ WD �.Gn.b//r

Œi �
n;2.b/ C �.r

Œi �
n;2.b//Gn.b/ C �.r

Œi �
n;2.b//r

Œi �
n;2.b/ C r

Œi �
n;1.b/:

(v) Combining the results from (i) and (iv), it follows

bGn.b/ � 1 D EŒSnRn.b/� D �.Gn.b//Gn.b/ C ‚n.b/;

where we define

‚n W �m;n ! Mm.C/; b 7! 1

n

nX

iD1

r
Œi �
n;3.b/:

Due to (8), Lemmas 3.4 and 3.7 show that �n � �m;n and Gn.b/ 2 GLm.C/

for b 2 �n. This gives

�
b � ‚n.b/Gn.b/�1

�
Gn.b/ D 1 C �.Gn.b//Gn.b/

and hence, as desired, for all b 2 �n

ƒn.b/Gn.b/ D 1 C �.Gn.b//Gn.b/:

(v) The definition of �n gives, by Lemma 3 and by Lemma 4.1, the following
estimates

kGn.b/k � kRn.b/k � �

1 � �
� 1

kSnk � �

1 � �
� 1

k˛k 1
2

; b 2 �n
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and

kGŒi�
n .b/k � kRŒi�

n .b/k � �

1 � �
� 1

kS
Œi�
n k

� �

1 � �
� 1
q

1 � 1
n
k˛k 1

2

; b 2 �n:

Therefore, we have for all b 2 �n by (ii)

kr
Œi �
n;1.b/k � 1p

n
kXi k3kRn.b/kkRŒi�

n .b/k2 � 1p
n

n

n � 1

� �

1 � �

1

k˛k 1
2

�3kXik3

and by (iii)

kr
Œi �
n;2.b/k � 1p

n
kXi kkRn.b/kkRŒi�

n .b/k � 1p
n � 1

� �

1 � �

1

k˛k 1
2

�2kXi k

and finally by (iv)

kr
Œi �
n;3.b/k � 2M kGn.b/kkr

Œi �
n;2.b/k C M kr

Œi �
n;2.b/k2 C kr

Œi �
n;1.b/k

� 1p
n � 1

� �

1 � �

1

k˛k 1
2

�3kXi k �



2M C 1p
n � 1

M
� �

1 � �

1

k˛k 1
2

�
kXi k C

r
n

n � 1
kXi k2

�

� Cp
n

for all b 2 �n, where C > 0 is a constant, which is independent of n. Hence,
it follows from (v) that

sup
b2�n

k‚n.b/k � Cp
n

:

ut
The definition of �n ensures, that

G WD Gs W �m.s/ ! Mm.C/

satisfies
bG.b/ D 1 C �.G.b//G.b/ for all b 2 �;

where

� WD
n
b 2 GLm.C/ j kb�1k < � � 1

ksk ; kbk � kb�1k < c
o

	 �n:
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We choose

0 < � <
c � 1

c C 1
and 0 < �� < .1 � �/� (9)

(note, that 0 < � < 1) and we put c� WD c � .1 C c/� , which fulfills clearly
1 < c� < c. Since we have �� < � and c� < c, we see

��

1 � �� c� <
�

1 � �
c < 	

and hence
��

1 � �� <
	

c� : (10)

Finally, we define

��
n WD �� min

n 1

ksk ;
1

kSnk ;
1

kS
Œ1�
n k

; : : : ;
1

kS
Œn�
n k

o

and
��

n WD
n
b 2 GLm.C/ j kb�1k < ��

n ; kbk � kb�1k < c�o
� �n:

Corollary 4.4. There exists N 2 N such that

ƒn.��
n/ � �n for all n � N :

Proof. Since we have by Theorem 4.3

sup
b2�n

k‚n.b/k � Cp
n

for all 2 � n 2 N, we can choose an N 2 N such that

sup
b2�n

k‚n.b/k � �

c� .1 � 	/

holds for all n � N . Now, we get for all b 2 ��
n :

(i) ƒn.b/ is invertible: Since (4) gives

kGn.b/�1k � 1

1 � 	
kbk for all b 2 �n;

we immediately get

kƒn.b/ � bk � k‚n.b/kkGn.b/�1k < �
kbk
c� < �

1

kb�1k <
1

kb�1k
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(ii) We have kƒn.b/�1k < �n: Using Lemma 3.1, we get from (i) that

kƒn.b/�1k � 1

1 � �
kb�1k <

��
n

1 � �
< �n:

iii) We have kƒn.b/kkƒn.b/�1k < c: Using

kƒn.b/ � bk < �
kbk
c�

from (i) and

kƒn.b/�1k <
1

1 � �
kb�1k

from (ii), we get

kƒn.b/kkƒn.b/�1k � �kbk C kƒn.b/ � bk�kƒn.b/�1k

<
�
1 C �

c�
� 1

1 � �
� kbkkb�1k

<
c� C �

1 � �
< c:

Finally, this shows ƒn.b/ 2 �n. ut
Corollary 4.5. For all n � N we have

Gn.b/ D G.ƒn.b// for all b 2 ��
n :

Proof. For all n 2 N we define

�0
n WD

n
b 2 GLm.C/ j kbk <

�n

1 � �

o
:

Let n � N and b 2 ��
n be given. We know, that

ƒn.b/G.ƒn.b// D 1 C �.G.ƒn.b///G.ƒn.b//

holds, i.e. w D G.ƒn.b// 2 �0
n is a solution of the equation

ƒn.b/w D 1 C �.w/w; w 2 �0
n:

Combining (8) with Lemma 4.1, we get

�

1 � �
< 	 min

n1

c
;

k˛k
M

o
� 	 min

n1

c
;

kSnk2

M
I n 2 N

o
:

Hence, the equation above has, by Theorem 3.9, the unique solution w D Gn.b/ 2
�0

n. This implies, as desired, Gn.b/ D G.ƒn.b//. ut
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Corollary 4.6. For all n � N we have

kG.b/ � Gn.b/k � C 0 1p
n

kbk for all b 2 ��
n ;

where C 0 > 0 is a constant independent of n.

Proof. For all b 2 ��
n � �n � � we have

G.b/ � Gn.b/ D G.b/ � G.ƒn.b//

D E
�
.b � s/�1 � .ƒn.b/ � s/�1

�

D E
�
.b � s/�1.ƒn.b/ � b/.ƒn.b/ � s/�1

�

and therefore by (4), which gives

kGn.b/�1k � 1

1 � 	
kbk for all b 2 ��

n ;

and (since ƒn.b/ 2 �n � �) by (3)

kG.b/ � Gn.b/k � k.b � s/�1k � kƒn.b/ � bk � k.ƒn.b/ � s/�1k

�
� �

1 � �
� 1

ksk
�2 � k‚n.b/k � kGn.b/�1k

� C 0 1p
n

kbk;

where

C 0 WD C

1 � 	

� �

1 � �
� 1

ksk
�2

> 0:

This proves the corollary. ut
We recall, that the sequence .Xi /i2N is bounded, which implies boundedness of

the sequence .Sn/n2N as well. This has the important consequence, that

��
n D �� min

n 1

ksk ;
1

kSnk ;
1

kS
Œ1�
n k

; : : : ;
1

kS
Œn�
n k

o
� ��

for some �� > 0. If we define

�� WD
n
b 2 GLm.C/ j kb�1k < ��; kbk � kb�1k < c�o

;
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we easily see �� � ��
n for all n 2 N. Hence, by renaming �� to � etc., we

have shown our main Theorem 1.1.

We conclude this section with the following remark about the geometric structure
of subsets of Mm.C/ like �.

Lemma 4.7. For � > 0 and c > 1 we consider

� WD
n
b 2 GLm.C/ j kb�1k < �; kbk � kb�1k < c

o
:

For �; 
 2 Cnf0g we define

ƒ.�; 
/ WD

0
BBB@

� 0 : : : 0

0 
 : : : 0
:::

:::
: : :

:::

0 0 : : : 


1
CCCA 2 GLm.C/:

If 1
�

< j
j holds, we have ƒ.�; 
/ 2 � for all

max
n 1

�
;

j
j
c

o
< j�j < cj
j: (11)

Particularly, we have for all j�j > 1
�

, that �1 2 �.

Proof. Let 
 2 Cnf0g with 1
�

< j
j be given. For all � 2 Cnf0g, which satisfy
(11), we get

kƒ.�; 
/�1k D kƒ.��1; 
�1/k D max
˚j�j�1; j
j�1

�
< �:

and

kƒ.�; 
/k � kƒ.�; 
/�1k D max
˚j�j; j
j� � max

˚j�j�1; j
j�1
�

D
(

j
jj�j�1; if j�j < j
j
j�jj
j�1; if j�j � j
j

< c;

which implies ƒ.�; 
/ 2 �. In particular, for � 2 Cnf0g with j�j > 1
�

we see that

 D � fulfills (11) and it follows �1 D ƒ.�; �/ 2 �. ut
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4.3 Application to Multivariate Situation

4.3.1 Multivariate Free Central Limit Theorem

Let .x
.k/
i /d

kD1, i 2 N, be free and identically distributed sets of d self-adjoint non-
zero random variables in some non-commutative C �-probability space .C; �/, with
� faithful, such that

�.x
.k/
i / D 0 for k D 1; : : : ; d and all i 2 N

and
sup
i2N

max
kD1;:::;d

kx
.k/
i k < 1: (12)

We denote by † D .	k;l /
d
k;lD1, where 	k;l WD �.x

.k/
i x

.l/
i /, their joint covariance

matrix. Moreover, we put

S.k/
n WD 1p

n

nX

iD1

x
.k/
i for k D 1; : : : ; d and all n 2 N:

We know (cf. [11]), that .S
.1/
n ; : : : ; S

.d/
n / converges in distribution as n ! 1

to a semicircular family .s1; : : : ; sd / of covariance †. For notational convenience
we will assume that s1; : : : ; sd live also in .C; �/; this can always be achieved by
enlarging .C; �/.

Using Proposition 2.1 and Proposition 2.3 in [6], for each polynomial p of degree
g in d non-commuting variables vanishing in 0, we can find m 2 N and a1; : : : ; ad 2
Mm.C/ such that

�1 � p.S.1/
n ; : : : ; S.d/

n / and �1 � p.s1; : : : ; sd /

are invertible in C if and only if

ƒ.�; 1/ � Sn and ƒ.�; 1/ � s;

respectively, are invertible in A D Mm.C/. The matrices ƒ.�; 1/ 2 Mm.C/ were
defined in Lemma 4.7, and Sn and s are defined as follows:

Sn WD
dX

kD1

ak ˝ S.k/
n 2 A for all n 2 N

and

s WD
dX

kD1

ak ˝ sk 2 A:



136 T. Mai and R. Speicher

If we also put

Xi WD
dX

kD1

ak ˝ x
.k/
i 2 A for all i 2 N;

then we have

Sn D 1p
n

nX

iD1

Xi :

We note, that the sequence .Xi/i2N is �-free with respect to the conditional
expectation E W A D Mm.C/ ! Mm.C/ and that all the Xi ’s have the same
�-distribution with respect to E and that they satisfy EŒXi � D 0. In addition, (12)
implies supi2N kXi k < 1. Hence, the conditions of Theorem 1.1 are fulfilled. But
before we apply it, we note that .Sn/n2N converges in distribution (with respect to E)
to s, which is an Mm.C/-valued semicircular element with covariance mapping

� W Mm.C/ ! Mm.C/; b 7! EŒsbs�;

which is given by

�.b/ D EŒsbs� D
dX

k;lD1

id ˝�Œ.ak ˝ sk/.b ˝ 1/.al ˝ sl /� D
dX

k;lD1

akbal	k;l :

Now, we get from Theorem 1.1 constants �� > 0, c� > 0 and C 0 > 0 and N 2 N

such that we have for the difference of the operator-valued Cauchy transforms

Gs.b/ WD EŒ.b � s/�1� and GSn.b/ WD EŒ.b � Sn/�1�

the estimate

kGs.b/ � GSn.b/k � C 0 1p
n

kbk for all b 2 �� and n � N ;

where we put

�� WD
n
b 2 GLm.C/ j kb�1k < ��; kbk � kb�1k < c�

o
:

Moreover, Proposition 2.3 in [6] tells us

�
�1 � p.S.1/

n ; : : : ; S.d/
n /

��1 D .� ˝ idC/
�
.ƒ.�; 1/ � Sn/�1

�

and �
�1 � p.s1; : : : ; sd /

��1 D .� ˝ idC0/
�
.ƒ.�; 1/ � s/�1

�
;

where � W Mm.C/ ! C is the mapping given by �..ai;j /i;j D1;:::;m/ WD a1;1. Since
� ı .� ˝ idC/ D � ı E , this implies a direct connection between the operator-
valued Cauchy transforms of Sn and s and the scalar-valued Cauchy transforms of
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Pn WD p.S
.1/
n ; : : : ; S

.d/
n / and P WD p.s1; : : : ; sd /, respectively. To be more precise,

we get
GPn.�/ WD �Œ.� � Pn/�1� D �

�
GSn.ƒ.�; 1//

�

and
GP .�/ WD �Œ.� � P /�1� D �

�
Gs.ƒ.�; 1//

�

for all � 2 �C.Pn/ and � 2 �C.P /, respectively.
If we choose 
 2 C such that j
j > 1

��

holds, it follows from Lemma 4.7, that
ƒ.�; 
/ 2 �� is fulfilled for all � 2 A.
/, where A.
/ � C denotes the open set
of all � 2 C satisfying (11), i.e.

A.
/ WD
n
� 2 C j max

n 1

�� ;
j
j
c�

o
< j�j < c�j
j

o
:

If we apply Propositions 2.1 and 2.2 in [6] to the polynomial 1

g p (which

corresponds to the operators 1



Sn and 1



S ), we easily deduce that

�1 � 1


g�1
p.S.1/

n ; : : : ; S.d/
n / and �1 � 1


g�1
p.s1; : : : ; sd /

are invertible in C if and only if

ƒ.�; 
/ � Sn and ƒ.�; 
/ � Sn;

respectively, are invertible in A. Moreover, we have


g�1GPn.�
g�1/ D �
�
GSn.ƒ.�; 
//

�

and

g�1GP .�
g�1/ D �

�
Gs.ƒ.�; 
//

�

for all � 2 �C. 1

g�1 Pn/ and � 2 �C. 1


g�1 P /, respectively.

Particularly, for all � 2 A.
/ we get ƒ.�; 
/ 2 �� and hence � 2 �C. 1

g�1 Pn/\

�C. 1

g�1 P / for all n � N . Therefore, Theorem 1.1 implies

j
jg�1jGP .�
g�1/ � GPn .�
g�1/j D ˇ̌
�

�
Gs.ƒ.�; 
// � GSn.ƒ.�; 
//

�ˇ̌

� 		Gs.ƒ.�; 
// � GSn.ƒ.�; 
//
		

� C 0 1p
n

kƒ.�; 
/k

� C 0 1p
n

maxfj�j; j
jg

� C 0c�j�j 1p
n
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and hence

jGP .�
g�1/ � GPn.�
g�1/j � C 0c� 1p
n

j�
g�1j:

This means, that

jGP .z/ � GPn .z/j � C 0c� 1p
n

jzj

holds for all z 2 C with z

g�1 2 A.
/ and all n � N . By definition of A.
/, we

particularly get

jGP .z/ � GPn.z/j � C
1p
n

for all
1

c� j
jg < jzj < c�j
jg and n � N ;

where we put C WD C 0.c�/2j
jg > 0. Since z 7! GP .z/ � GPn.z/ is holomorphic
on fz 2 C j jzj > Rg for R WD 1

c�

j
jg > 0 and extends holomorphically to 1, the
maximum modulus principle gives

jGP .z/ � GPn.z/j � C
1p
n

for all jzj > R and n � N :

This shows Theorem 1.2 in the case of a polynomial p vanishing in 0. For a general
polynomial p, we consider the polynomial Qp D p � p0 with p0 WD p.0; : : : ; 0/,
which leads to the operators QP D P � p01 and QPn D Pn � p01. Since we can
apply the result above to Qp and since the Cauchy transforms GP and GPn are just
translations of G QP and G QPn

, respectively, the general statement follows easily.

4.3.2 Estimates in Terms of the Kolmogorov Distance

In the classical case, estimates between scalar-valued Cauchy transforms can be
established (for self-adjoint operators) in all of the upper complex plane and lead
then to estimates in terms of the Kolmogorov distance. In the case treated above,
we have a statement about the behavior of the difference between two Cauchy
transforms only near infinity. Even in the case, where our operators are self-adjoint,
we still have to transport estimates from infinity to the real line, and hence we can
not apply the results of Bai [1] directly. A partial solution to this problem was
given in the appendix of [14] with the following theorem, formulated in terms of
probability measures instead of operators. There we use the notation G
 for the
Cauchy transform of the measure 
, and put

DC
R WD fz 2 C j Im.z/ > 0; jzj > Rg:
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Theorem 4.8. Let 
 be a probability measure with compact support contained in
an interval Œ�A; A� such that the cumulative distribution function F
 satisfies

jF
.x C t/ � F
.x/j � �jt j for all x; t 2 R

for some constant � > 0. Then for all R > 0 and ˇ 2 .0; 1/ we can find ‚ > 0 and
m0 > 0 such that for any probability measure � with compact support contained in
Œ�A; A�, which satisfies

sup
z2D

C

R

jG
.z/ � G�.z/j � e�m

for some m > m0, the Kolmogorov distance �.
; �/ WD sup
x2R

jF
.x/ � F�.x/j
fulfills

�.
; �/ � ‚
1

mˇ
:

Obviously, this leads to the following questions: First, the stated estimate for the
speed of convergence in terms of the Kolmogorov distance is far from the expected
one. We hope to improve this result in a future work. Furthermore, in order to apply
this theorem, we have to ensure that p.s1; : : : ; sd / has a continuous density. As
mentioned in the introduction, it is a still unsolved problem, whether this is always
true for any self-adjoint polynomials p.
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