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Abstract Let X D .Xn/n2Z be a stationary Markov chain with a stationary
probability distribution � on the state space of X and the transition operator
Q W L2.�/ ! L2.�/. Let f 2 L2.�/ be a function on the state space of X .
The solvability in L2.�/ of the Poisson equation f D g � Qg implies that the
stationary sequence .f .Xn//n2Z can be represented in the form

f .Xn/ D �
g.XnC1/ � .Qg/.Xn/

� C �
g.Xn/ � g.XnC1/

� D �n C �n .n 2 Z/:

Here � D .�n/n2Z is a stationary sequence of square integrable martingale
differences, and � D .�n/n2Z is an L2-coboundary that is a difference of two
consecutive elements of a stationary sequence of square integrable random vari-
ables. This representation reduces the Central Limit Theorem (CLT) question for
.f .Xn//n2Z to the well-studied case of martingale differences. However, in many
situations the martingale approximation as a tool in limit theorems works well,
though the above martingale-coboundary representation does not hold. In particular,
if the transition operator Q is normal in L2.�/, 1 is a simple eigenvalue of Q, and
the assumptions
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(1) �2
f D R

D
1�jzj2
j1�zj2 �f d z < 1,

(2) limn!1 n� 1
2 j Pn�1

kD0 Qkf j2 D 0

hold true for a real-valued function f 2 L2.�/, the Central Limit Theorem for
.f .Xn//n2Z was established via the martingale approximation.

In the present paper we show that under condition (1) .f .Xn//n2Z admits a
generalized form of the martingale-coboundary representation as the sum of a
square integrable stationary martingale difference and a generalized coboundary.
The latter is a stationary sequence of random variables which are increments of a
stationary sequence of m-functions introduced in the paper. Furthermore, it turns out
that assumption (2) means exactly that the generalized coboundary can be neglected
in the limit. Connection with generalized solutions to the Poisson equation is also
studied.

Keywords Generalized coboundary • Limit theorems • Markov chain • Martin-
gale approximation • Normal transition operator • Poisson equation
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1 Introduction

Let � D .�n/n2Z be a stationary (in the strict sense) sequence of integrable random
variables. Assume also that � is a sequence of martingale differences that is for
every n

E.�nj�n�1; �n�2; : : : / D 0:

Let, moreover, � be ergodic, real-valued and E�2
n < 1. Then, according

to the classical results of Billingsley [1] and Ibragimov [11], the sequence �

satisfies the Central Limit Theorem (CLT). It is known that under the same
conditions also the Functional Central Limit Theorem (FCLT) and the Law of the
Iterated Logarithm (including its functional form due to Strassen) are valid. Under
appropriate assumptions some of these results extend to not necessarily stationary
sequences or arrays of martingale differences.

A natural idea is to use a certain approximation by martingales (that is the sums of
martingale differences) to establish limit theorems of the above-mentioned type for
the sums of dependent random variables more general than martingale differences.
More precisely, one needs to construct a martingale difference approximation of
the random sequence in question and represent the error of this approximation in a
form which allows us, under the appropriate normalization, to neglect by this error
in the limit. In the stationary setup an approach to this problem was proposed in [7]
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basing on the so-called martingale-coboundary representation. The latter means that
a stationary sequence � D .�n/n2Z admits the representation

�n D �n C �n; n 2 Z; (1)

where � D .�n/n2Z is a stationary sequence of martingale differences, and � D
.�n/n2Z is a so-called coboundary which can be written as

�n D �n � �n�1; n 2 Z; (2)

with a certain stationary sequence � D .�n/n2Z. One says in this case that �

is a coboundary of � ; we speak of a B-coboundary if each of �n in the above
representation belongs to a certain Banach space B of random variables. It is
assumed that the random sequences �; �; � in this representation are defined on a
common probability space so that they are jointly stationary. A convenient way to
formulate this type of interrelation between random sequences (which does not lead
to any loss of generality) is to assume that a probability preserving invertible map
T acts on the basic probability space so that

�nC1 D �n ı T; �nC1 D �n ı T; �nC1 D �n ı T .n 2 Z/:

As to the asymptotic distributions of the sums

n�1X

kD0

�k; n � 1; (3)

normalized by dividing by positive reals tending to 1, it is clear that one can neglect
by the contribution of the sequence � into these sums and extend to � D � C �

certain limit theorems originally known to hold for the martingale difference �. To
deduce the martingale-coboundary representation for a stationary sequence �, some
conditions need to be imposed on �. These conditions are usually stated in terms
of a compatible filtration .Fn/n2Z (that is a family of sub-�-fields satisfying � � � �
Fn�1 � Fn � FnC1 � � � � and T �1Fn D FnC1) on the basic probability space.
Specifying such a filtration is a standard prerequisite to develop the martingale
approximation for stationary sequences. Given such a filtration .Fn/n2Z, we need
to distinguish between a general non-adapted sequence and an adapted sequence
� D .�n/ where �n is Fn-measurable for every n 2 Z. The latter case can be treated
easier and is equivalent to the study of functions of a stationary Markov chain with
a general measurable state space. Though only very special Markov chains emerge
in this context, and, on the other hand, both adapted and non-adapted cases can
be studied, basing on the martingale-coboundary representation and without any
reference to markovianity [7], it is the whole class of general Markov chains where
the application of the martingal-coboundary decomposition can be done in a very
natural, simple and elegant way in terms of a condition related to the so-called
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Poisson equation. More specifically, let X D .Xn/n2Z, � and Q W L2.�/ ! L2.�/

be, respectively, a stationary Markov chain, its stationary probability distribution
and its transition operator. Let f 2 L2.�/ be a function on the state space of X .
Then the solvability in g 2 L2 of the Poisson equation

f D g � Qg (4)

implies the applicability of the above mentioned martingale-coboundary representa-
tion to the stationary sequence .f .Xn//n2Z (see Abstract for an explanation; notice
that the converse is also true). Moreover, in this case � turns out to be an L2-
coboundary (that is a coboundary of a square integrable sequence �). In the context
of limit theorems this was independently observed in [13] (for the particular case of
Harris recurrent chains) and in [8] (for the general ergodic case).

Now we will explain the topic of the present paper. It was recognized during
the last three decades that the martingale approximation as a tool in limit theorems
is still effective in an area where the martingale-coboundary representation with
an L2-coboundary not always holds. This means that, under some assumptions,
� in representation (1) needs not be an L2-coboundary to make a contribution to
(3) which is, having being divided by

p
n, negligible in the limit. The first CLT

result of such kind was obtained for stationary Markov chains with normal transition
operators [2,9] (recall that a bounded operator in a Hilbert space is said to be normal
if it commutes with its adjoint). More specifically, let the chain .Xn/n2Z introduced
above have a normal transition operator Q in L2.�/ (we call such a chain normal,
too). Assuming that 1 is a simple eigenvalue of Q and, for an f 2 L2.�/, the
equation

f D .I � Q/1=2g (5)

(called the fractional Poisson equation of order 1=2 [3]) has a solution g 2 L2,
the CLT holds for .f .Xn//. Independently, under the same condition the CLT and
the FCLT for stationary Markov chains with selfadjoint transition operators were
established in [12]. Moreover, in the normal case the most general known condition
for the CLT to hold was proposed in [10]. This compound condition consists of two
assumptions which appear in Theorem 4.1 of the present paper as (1) and (2).

Later the CLT [14] and the FCLT [15] (see also [16] for an alternative proof)
were established for stationary Markov chains with not necessarily normal transition
operators under a ceratin hypothesis we call the Maxwell-Woodroofe condition. This
condition (which we just mention without further discussion in the present paper) is
stronger than the requirement that (5) is solvable in L2, but is less restrictive than the
assumption of the L2-solvability of (4). These results were achieved by means of the
martingale approximation based on relation (1). Obtaining bounds for the sequences
� and � in (1) is somewhat tricky, especially in proofs of the FCLT. This impressive
development, however, left open certain important questions, some part of which
will be touched in the present paper under the assumption of normality. In our
opinion, the key problem here is finding a suitable extension to a more general setup
of the known relation between the Poisson equation and the martingale-coboundary
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representation. This could clarify the structure of the sequence � and should be
helpful, in particular, when one needs to show that this sequence is negligible. One
may expect that the fractional Poisson equation (5) plays an important role in this
problem. However, some known facts show that the relation between the solvability
of (5) and the applicability of limit theorems is not so simple. For example, even for
selfadjoint transition operators a natural fractional modification of the martingale-
coboundary representation in general does not hold under the assumption that (5) is
solvable in L2 (see [4] for a counterexample). Further, as we mentioned above, for a
function f of a normal Markov chain to satisfy the CLT, a weaker condition than the
L2-solvability of (5) is known (see [10] and the present paper). Moreover, without
the assumption of normality the solvability of (5) in L2 does no longer imply that
the variances of sums (3) grow linearly in n [19].

These and other facts stimulate attempts to find a more precise substitute for
the Poisson condition in the context of the CLT and other limit theorems. In
this paper we analyze further the compound condition used in [10] to deduce the
CLT for normal Markov chains. To make shorter the discussion of our approach,
we only deal in this Introduction with those functions on the state space which
are completely nondeterministic. It is this class of functions to which the study of
the general case will be reduced at the cost of a certain additional assumption. We
generalize the known relation between the Poisson equation (of degree one) and
the martingale-coboundary representation. This is achieved by extending the class
of admissible solutions of the Poisson equation along with extending the class
of possible ingredients of the martingale-coboundary representation. Notice that
commonly in the first case we deal with functions defined on the state space of a
Markov chain, while in the second one we deal with functions on its path space
which forms our basic probability space. Correspondingly, we are led to two kinds
of extensions of the related L2-spaces. We call their elements t-functions and
m-functions, respectively (in general, they are not functions at all). We use the
martingale decomposition with respect to a given filtration to construct the space
of m-functions as an extension of the L2-space on the basic probability space.
To construct the space of t-functions we use a system of operators which can be
very loosely described as compressions of the system of conditional expectations
defined by the filtration mentioned above. In fact, the definition of this system
of operators involves, along with the powers of Q and Q�, the so-called defect
operators. This way we arrive at expressions which are well-known in the theory of
non-selfadjoint operators, in particular, in connection with dilations, characteristic
functions and functional models. In the context of limit theorems, we finally obtain
two conditions parallel to (1) and (2) in the abstract. The first of them requires, for
an L2-function on the state space, the solvability of the Poisson equation (of degree
one) in t-functions (under the assumption of normality of Q this is exactly (1)). This
condition guarantees (and is equivalent to) the generalized martingale-coboundary
representation involving m-function. The conditions for the applicability of the CLT
to a function f can be expressed in terms of the t-function solving the Poisson
equation with f in the right hand side. Finally we obtain conditions for the CLT to
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apply to a function f formulated entirely in terms of this function and the transition
operator Q, without any reference to the path space of the Markov chain.

The main conclusion which can be done from the present paper is that in the nor-
mal case the (generalized) coboundary can be completely and explicitly restored in
a very simple way from the martingale difference part of the martingale-coboundary
representation. This martingale difference part (rather than the coboundary) seems
to be the most natural functional parameter in the situation of the present paper.

A natural framework for some part of our considerations is given by the
classical dilation theory of (not necessarily normal) contractions in Hilbert spaces
[17, 18]. However, there are some probabilistic aspects which can not be treated
in the framework of a purely Hilbert space theory (martingale difference nature
of wandering subspaces, limit theorems). As to our approach to constructing
extensions of Hilbert spaces in terms of filtrations, it can have some parallels
in the analytic function theory in the unit disk. Clarifying these connections and
considering the general non-normal case or other limit theorems require additional
study and will not be discussed here.

The author thanks Dr. Holger Kösters and the anonymous referee for careful
reading the first version of this paper and their suggestions which improved the
paper.

2 Contractions, Transition Operators and Markov Chains

2.1 Some Notation

Let .S; M/ and Q W S � M ! Œ0; 1	 be a measurable space and a transition
probability (D Markov kernel) on it. Assume that for Q there exists a stationary
probability � on .S; M/ so that

R
S Q.s; A/�.ds/ D �.A/; A 2 M. By the same

symbol Q we will denote the transition (or Markov) operator defined on bounded
measurable functions f by the relation .Qf /.�/ D R

S f .s/Q.�; ds/. For every p 2
Œ1; 1	 the same formula defines in Lp.�/ an operator Q of norm 1 preserving
positivity and acting identically on constants.

For every n 2 Z denote by Sn a copy of S, and set 
 D Q
n2Z Sn. Assume

that X D .Xn/n2Z is a stationary homogeneous Markov chain which has � as the
one-dimensional distribution and Q as the transition operator. The latter means that

E.f .Xn/jXn�1; Xn�2; : : : / D .Qf /.Xn�1/

for every n 2 Z and every bounded measurable f . We assume that the chain
X is defined on a probability space .
; F ;P/ such a way that, for every n 2
Z, Xn.!/ D sn, the n-th entry of ! D .: : : ; s�1; s0; s1; : : : /, and also F D
�.Xn; n 2 Z/, the �-field generated by all Xn; n 2 Z. We denote by T the
P-preserving bi-measurable invertible self-map of 
 uniquely determined by the
relations Xn.T .�// D XnC1.�/; n 2 Z. Starting with .S; M/; Q and �, we can
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always construct such a chain and related objects whenever .S; M/ is a standard
Borel space. It is known that the transformation T of .
; F ;P/ is ergodic (that is
there is no A 2 F with T �1A D A and P.A/.1 � P.A// ¤ 0) if and only if 1 is a
simple eigenvalue of the transition operator Q.

For sub-�-fields M0 � M and F 0 � F the standard notations Lp.S; M0; �/ and
Lp.
; F 0;P/ will be abbreviated to Lp.M0; �/ and Lp.F 0;P/, or even to Lp.�/

or Lp.P/ if M0 D M or F 0 D F .
The Markov chain X generates on the probability space .
; F ;P/ an increasing

filtration .Fn/n2Z and a decreasing filtration .Fn/n2Z where Fn D �.Xk; k � n/

and Fn D �.Xk; k � n/, n 2 Z. These filtrations are compatible with T in
the sense that T �1Fn D FnC1 � Fn and T �1Fn D FnC1 � Fn for n 2 Z.
The increasing filtration .Fn/n2Z can be completed to obtain .Fn/�1�n�1 by
setting F�1 D T

n2Z Fn and F1 D W
n2Z Fn. Analogously, .Fn/�1�n�1 is a

completion of .Fn/n2Z defined by setting F�1 D W
n2Z Fn and F1 D T

n2Z Fn.
The above filtrations give rise to the families .En/�1�n�1 and .En/�1�n�1 of
conditional expectations. Let U and I be a unitary operator defined by Uf D f ıT ,
f 2 L2.�/, and the identity operator, respectively. We denote by j � jp and jj � jjp the
Lp.�/-norm and the Lp.P/-norm, respectively. The symbols .�; �/ and jj � jj denote
the inner product in every Hilbert space and the norm in abstract Hilbert spaces.

Recall that a contraction is an operator in a Hilbert space whose norm is less than
or equal to one. The transition operator Q in the situation described above defines
a contraction in L2.�/. Since the measurable map X0 W 
 ! S transforms the

measure P to the measure �, the mapping L2.�/ 3 f 7! Qf
defD f ı X0 2 L2.P/

is an isometric embedding of L2.�/ to L2.P/. We have to emphasize that in many
respects we just reproduce (or go in parallel to) well-known points from the dilation
theory of contractions in Hilbert spaces [17, 18].

2.2 Normal Contractions

A bounded operator Q in a Hilbert space H satisfying the relation QQ� D Q�Q is
said to be normal. We are mostly interested in normal contractions. If Q is a normal
contraction in H and f 2 H , there exists such a unique measure �f on the closed
unit disk D 	 C that

.Qmf; Qnf / D
Z

D

zm Nz n�f .d z/

for every m; n � 0. In particular, if � is a stationary probability measure for a
transition probability Q, the transition operator Q W L2.�/ ! L2.�/ has the norm
1, hence is a contraction. If, moreover, Q is normal, the above formula applies to
Q and every f 2 L2.�/. The spectral theory of normal operators allows us to
investigate the Poisson equation (4) for a normal Q in terms of �f . In particular, (4)
is solvable in L2.�/ for an f 2 L2.�/ if and only if
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Z

D

1

j1 � zj2 �f .d z/ < 1: (6)

Clearly, the latter condition implies that f is orthogonal to all fixed points of Q.

2.3 Unitary Part of a Transition Operator and Its Deterministic
� -Field

Let Q be a contraction in a Hilbert space H . It is known [17, 18] that the subspace
Hu � H defined by the relation

Hu D ff 2 H W � � � D jQ�2f j D jQ�f j D jf j D jQf j D jQ2f j D : : : g (7)

reduces the operator Q so that H D Hu ˚Hcnu, where Hu and Hcnu are completely
Q-invariant (that is both Q- and Q�-invariant), QjHu is a unitary operator, and
Hu is the greatest subspace with such properties. The operators Qu D QjHu and
Qcnu D QjHcnu are called the unitary part and the completely non-unitary part of
Q, respectively. In this notation we have

Q D Qu ˚ Qcnu:

In the case of a normal contraction Q this decomposition can be immediately
deduced by means of the projection-valued spectral measure PQ of the operator Q.
We say that a projection-valued measure is concentrated on a Borel set A � C if it
vanishes on every Borel set disjoint with A; the restriction of such a measure P to a
Borel set A is another such a (uniquely defined) measure which is concentrated on A

and agrees with P on every Borel subset of A; we denote this measure by P A. Using
this terminology and notation, PQ is concentrated on the closed unit disk D so that
PQ D P D

Q . Let K D fjzj 2 C W z D 1g and D0 D fz 2 C W jzj < 1g be the unit
circle and the open unit disk. Then Hu D PQ.K/H and Hcnu D PQ.D0/H . Let
P K

Q and P
D0

Q be the restrictions of PQ to K and to D0, respectively. Then we have

PQ D P K
Q CP

D0

Q . By abuse of notation, we also have P K
Q D PQu and P

D0

Q D PQcnu

(here PQu and PQcnu are considered, due to the canonical inclusions of Hu and Hcnu

in H , as measures with values in orthoprojections of H rather than of Hu or Hcnu).
For a normal contraction there exist simple criteria for the relations f 2 Hu and

f 2 Hcnu.

Proposition 2.1. Let Q W H ! H be a normal contraction, H D Hu ˚ Hcnu the
orthogonal decomposition defined above, jj � jj the norm in H and f 2 H .

Then f 2 Hu if and only if at least one of the relations limn!1 jjQnf jj D jjf jj,
limn!1 jjQ�nf jj D jjf jj holds. In fact, in this case equalities in (7) take place.

Further, f 2 Hcnu if and only if at least one of the relations limn!1 jjQnf jj D
0, limn!1 jjQ�nf jj D 0 holds. If so, both of these relations hold simultaneously.
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Proof. Let f D fu C fcnu, where fu 2 Hu, fcnu 2 Hcnu, and let �f be the spectral
measure of f . Then we have

jjQnfujj2 D jjQ�nfujj2 D
Z

K

jzj2n�f .d z/ D �f .K/ D jjfujj2;

jjQnfcnujj2 D jjQ�nfcnujj2 D
Z

D0

jzj2n�f .d z/ #
n!1

0;

and
jjQnf jj2 D jjQ�nf jj2 D jjQnfujj2 C jjQnfcnujj2 #

n!1
jjfujj2:

These relations, along with the relation jjf jj2 D jjfujj2 C jjfcnujj2, imply the
assertions of the proposition. ut

Let now H D L2.�/ and Q be a transition operator with the stationary
probability �. Then, according to S. Foguel’s theorem [5, 6], the subspace Hu

is of the form L2.Mdet ; �/, where Mdet is a sub-�-field of M which we will
call deterministic. (Caution: sometimes this term is used for the �-fields related
to the one-sided analogues of the condition (7)). Moreover, QjL2.Mdet ; �/ defines
a �-preserving automorphism of Mdet , and Mdet is the largest sub-�-field of
M with this property. In the Markov chain context we will use denotations Hdet

and Hndet (from deterministic and nondeterministic) instead of Hu and Hcnu,
respectively. The orthogonal projection Pdet to Hdet D L2.Mdet ; �/ coincides
with the corresponding conditional expectation E

Mdet W L2.�/ ! L2.Mdet ; �/I
the range of the complementary projection Pndet D I �E

Mdet is Hndet. In the normal
case the projection Pdet W L2.�/ ! L2.Mdet ; �/ is exactly the spectral projection
PQ.K/ of the operator Q while the complementary projection Pndet agrees with
PQ.D0/.

Remark 2.2. For an f 2 L2.�/ the orthogonal decomposition

f D fdet C fndet

with fdet D Pdet f and fndet D Pndetf leads to the decomposition of the
stationary random sequence .f .Xn//n2Z into the sum of the sequences
.fdet .Xn//n2Z and .fndet.Xn//n2Z, the second of them having zero conditional
expectation given the first one. Without additional assumptions the sequence
.fdet .Xn//n2Z may be an arbitrary stationary sequence of square-integrable
variables whose influence to the behavior of .f .Xn//n2Z is out of our control.
The sequence .fndet.Xn//n2Z, unlike .fdet .Xn//n2Z, admits some further analysis.
Under the assumption of normality of Q some problems (such as the Central Limit
Theorem) concerning .f .Xn//n2Z can be treated in terms of the spectral measures
of the functions f , fdet and fndet. Notice that �f D �fdet

C �fndet , where �fdet
and

�fndet are concentrated on K and D0, respectively.
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2.4 Defect Operators and Defect Spaces of a Contraction

We present here the definition and some properties of the defect operators and the
defect spaces of a contraction Q W H ! H (see [17] and [18] for proofs and more
details). The operators

DQ D .I � Q�Q/
1
2 ; DQ� D .I � QQ�/

1
2

are called the defect operators of Q. These operators are self-adjoint non-negative
(in the spectral sense) contractions, satisfying

QDQ D DQ�Q; DQQ� D Q�DQ� :

The spaces
DQ D DQH ; DQ� D DQ�H

are called defect spaces of Q. It follows from the above relations that

QDQ � DQ� ; Q�DQ� � DQ:

In the case of a normal contraction Q the corresponding defect operators agree,
and so are the defect subspaces. In this case the defect subspace is invariant with
respect to both Q and Q�, and the restriction DQjHcnu of the defect operator to the
completely non-unitary subspace is injective. Indeed, if f 2 Hcnu and DQf D 0

the spectral measure �f is concentrated on D0 by the first of these two relations,
while by the second relation .Qf; Qf / D .f; f /I the latter means that �f is
concentrated on K , implying �f D 0. Furthermore, it is easy to see from the
consideration of spectral measures that DQ D Hcnu if Q is a normal contraction.

Remark 2.3. When Q is a transition operator, its defect subspaces are in a natural
unitary correspondence with the spaces of the forward and the backward martingale
differences of the Markov chain X (see the next section of the paper; compare with
[18], Sect. 3.2). ut

3 Quasi-functions

3.1 Quasi-functions: m-Functions and t-Functions

Looking for a generalization of the martingale-coboundary representation and the
Poisson equation, we need some more general objects than the L2.P/-functions
of the form f .X0/ in the first case and L2.�/-functions in the second one. The
first problem is solved in terms of the filtration .Fn/n2Z determined by the Markov
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chain, while the second one is treated in terms of the transition operator and some
other auxiliary operators acting on L2.�/-functions. In both cases we obtain a
decomposition of an L2-function into a series. Removing the requirement that the
decomposition belongs to an L2-function, we arrive at a class of objects which
are given by their decompositions but, in general, are no longer functions. These
objects called quasi-functions will be considered as elements of certain Banach
spaces. These Banach spaces contain conventional L2-spaces as dense subspaces
such a way that every quasi-function can be represented in a canonical way as a limit
of L2-functions. Moreover, every operator we are interested in admits a canonical
extension from L2 to the appropriate Banach space. We will consider quasi-
functions of two kinds. Quasi-functions of the first kind generalize conventional
functions defined on the path space of the Markov chain under consideration
and will be called m-functions; quasi-functions of the second kind, generalizing
conventional functions defined on the state space of the Markov chain, will be called
t-functions. It turns out that some conventional functions on the path space can have
a martingale-coboundary representation in terms of m-functions; some of them are
conventional L2-functions, but some other are not. Also the Poisson equation for
an L2-function on the state space with no L2-solution may be sometimes solved in
t-functions.

As an introductory step, we start with considering the decompositions of
functions from L2-spaces.

3.2 Functions and m-Functions

For every g 2 L2.�/ we have the following martingale decomposition

Qg D
1X

nD0

.E�n � E�n�1/ Qg C E�1 Qg; (8)

converging in the norm of L2.P/. Rewriting the summands of (8) in terms of the
operators Q, U and the embedding g 7! Qg, we have

.E�n � E�n�1/ Qg
D U �n

E0U n Qg � U �n�1
E0U

nC1 Qg D U �n
E0E

nU n Qg � U �n�1
E0E

nC1U nC1 Qg

D U �n
eQng � U �n�1BQnC1g

(9)
and, with the limits in the norm of L2.P/,
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E�1 Qg
D lim

n!1E�n Qg D lim
n!1 U �n

E0U n Qg D lim
n!1 U �n

E0E
nU n Qg

D lim
n!1U �n

eQng D lim
n!1 U �n

BQngdet

D Qgdet :

(10)

Deriving (9) and (10), we used the fact that Qg is X0-measurable, along with some
standard properties of Markov chains. In (10) we also used the decomposition g D
gdet C gndet, the relation Qngndet !

n!1 0 and the identity U �1
AQgdet D egdet which

can be explained as follows. Since the map g ! Qg isometrically embeds L2.�/

to L2.P/, the subspace Hdet � L2.�/ is also embedded to L2.P/. Furthermore, it
can be easily verified that Hdet is a completely invariant subspace of the unitary U ,
and that U jHdet

D QjHdet
. Another way to express this is the relation U �1

AQgdet D
egdet used in (10). Moreover, this relation allows us to substitute Qg by Qgndet in the
right-hand side of (9). With (10) and properly modified (9), the identity (8) can be
rewritten as

Qg D
1X

nD0

.U �n
BQngndet � U �n�1DQnC1gndet/ C Qgdet : (11)

Assuming now g 2 Hndet, we have the following martingale decomposition:

Qg D
1X

nD0

U �n. eQng � U �1BQnC1g/: (12)

Analyzing the right-hand side of (12), observe that all terms in this series are of
the form U �n.ern � U �1

eQrn/; rn 2 Hndet .n 2 Z/. Terms of such form are mutually
orthogonal for different n 2 Z. Set

Ln D fU n.Qr � U �1eQr/ W r 2 Hndetg .n 2 Z/

and denote by M the closed subspace of L2.P/ generated by all Ln; n 2 Z. In view
of the mutual orthogonality of Ln we have

M D ˚n2ZLn (13)

(we use ˚ both as a symbol of an exterior operation and also for the closed span of
some orthogonal subspaces of a certain Hilbert space). The space M is a completely
invariant subspace of the operator U . The operator U jM is unitarily equivalent to the
two-sided shift operator, and every Ln is a wandering subspace for U jM . From now
on we will write U instead of U jM . Denoting by

W
the linear span of some set of

liner subspaces, we also have
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M D
_

n2Z
U nHndet: (14)

Indeed, the left-hand side is contained in the right-hand one because of the
obvious relation Ln � U nHndet

W
U n�1Hndet .n 2 Z/; the opposite inclusion is

a consequence of (12) and the complete invariance of M with respect to U . We will
also need the U �1-invariant spaces

Mn D ˚k�nLk

�
D

_

k�n

U kHndet

�
; n 2 Z:

Since
jj Qh � U �1

eQhjj2 D ..I � Q�Q/h; h/;

setting for every h 2 Hndet

l. Qh � U �1
eQh/ D .I � Q�Q/

1
2 h

defines a unitary map l W L0 ! DQ. As was observed in Sect. 2.4, for a normal
transition operator Q we have DQ D Hndet, and therefore l maps L0 to Hndet.
Then the space M0 is unitarily equivalent to the space of one-sided sequences of the
elements of Hndet via the correspondence

M0 3
X

n�0

U npn $ .: : : ; l.p�1/; l.p0// 2 Hndet ˝ l2.Z�/; (15)

where .pn/n�0 is a sequence of elements of L0 with
P

n�0 jjpnjj22 < 1 and
Hndet ˝ l2.Z�/ denotes the Hilbert space tensor product of Hilbert spaces. The
elements of Hndet ˝ l2.Z�/ are sequences .: : : ; a�1; a0/ with an 2 Hndet .n � 0/

and
P

n�0 janj22 < 1. By this unitary equivalence the one-sided shift � W
.: : : ; a�1; a0/ 7! .: : : ; a�1; a0; 0/ in the space Hndet ˝ l2.Z�/ corresponds to the
isometric operator U �1jM0 , while the co-isometric inverse shift ��W.: : : ; a�1; a0/ 7!
.: : : ; a�2; a�1/ corresponds to .U �1jM0/

�. Furthermore, since Q acts on the space
Hndet, we can define its coordinatewise action on Hndet ˝ l2.Z�/ by

Q.: : : ; a�1; a0/ D .: : : ; Qa�1; Qa0/:

We set OQ D l�1Ql W L0 ! L0, and extend it (with the same notation
and in agreement with (15)) to OQ W M0 ! M0 by setting OQ.

P
n�0 U npn/ D

P
n�0 U n OQpn.
We are in position now to give a description of those elements of M0 which are

martingale decompositions (12) of certain Qg with g 2 Hndet.

Proposition 3.1. The following conditions on the series
P

n�0 U npn 2 M0 are
equivalent:
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(1) the series
P

n�0 U npn represents a decomposition (12) of certain Qg with g 2
Hndet;

(2) there exists such p 2 L0 that
P

n�0 jj OQnpjj22 < 1 and p�n D OQnp for every
n � 0I

(3) there exists such r 2 Hndet that
P

n�0 jQnr j22 < 1 and for every n � 0

l.p�n/ D Qnr .

Proof. Conditions (2) and (3) are equivalent because l is a unitary operator and
OQ D l�1Ql . Let us show that (1) implies (3). According to (12), for the martingale

decomposition of an Qg with g 2 Hndet we have for n � 0 p�n D eQng�U �1BQnC1g,
so that l.p�n/ D Qn.I �Q�Q/

1
2 g D Qnr , where r D .I �Q�Q/

1
2 g. This follows

that
P

n�0 jQnr j22 D P
n�0..Q

�Q/n.I � Q�Q/g; g/ D .g; g/ < 1. Conversely,
assuming (3), let h 2 Hndet is such that

P
n�0 jQnr j22 < 1. This is equivalent to

Z

D

1

1 � jzj2 �r .d z/ < 1;

which follows that there exists such g 2 Hndet that r D .I � Q�Q/
1
2 g. Then in

the martingale decomposition Qg D P
n�0 U np0

n we have for n � 0 p0
n D AQ�ng �

U �1CQ�nC1g or l.p0
n/ D Q�n.I � Q�Q/

1
2 g D Q�nr D l.pn/, and we conclude

p0
n D pn. ut

Let c0.Z�/ be the space of all complex sequences indexed by the elements of Z�
and tending to zero, c0.Z�/ being supplied with the sup-norm. Then the injective
tensor product Hndet ˝� c0.Z�/ is the space of all sequences a D .: : : ; a�1; a0/ with
an 2 Hndet for n � 0, janj2 ! 0

n!�1 and with the norm of a D .: : : ; a�1; a0/ defined

as supn�0 janj2. The space Hndet ˝ l2.Z�/, represented as a space of sequences of
elements of Hndet, can be in a natural way continuously and injectively mapped
into Hndet ˝� c0.Z�/. Notice that the shift operators �n and ��

n can be extended to
Hndet ˝� c0.Z�/. Observe that ��na !

n!1 0 for every a 2 Hndet ˝� c0.Z�/. We can

transfer this extension, via correspondence (15), to a space containing M0. Elements
of M0 are sums

P
n�0 U npn, where pn 2 L0; n � 0, and

P
n�0 jjpnjj22 < 1. Then

the extended space denoted by M ext
0 and consisting of the formal sums

P
n�0 U npn

where pn 2 L0; n � 0, jjpnjj2 !
n!�1 0I the norm of

P
n�0 U npn is defined as

supn�0 jjpnjj2. The operators U �1jM0 and .U �1jM0/
� admit obvious extensions to

M ext
0 which we denote U �1jM ext

0
and .U �1jM ext

0
/�. Analogously, every space Mn

.n 2 Z/ can be extended to the space M ext
n . If we write the elements of M ext

n asP
k�n U kpk with pk 2 L0.k � n/; we obtain a growing sequence of subspaces of

the space

M ext D f
X

n2Z
U npn W pn 2 L0.n 2 Z/; jjpnjj2 !

jnj!1
0g:
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The space M ext is an extension of M , and we will hold the notations U and U �1

for natural extensions of these operators from M to M ext.

Definition 3.2. Elements of the Banach space M ext are called m-functions.

Remark 3.3. There are also other operators which can be naturally extended from
M to M ext. For example, so are the projections En W P

k2Z U kpk 7! P
k�n U kpk ,

n 2 Z. ut

3.3 Functions and t-Functions

The space of t-functions which we are going to define extends the space Hndet �
L2.�/. Functions from Hndet admit some decomposition; t-functions will be defined
in terms of a similar decomposition. The next problem to solve will be how to embed
the space of t-functions to the space of m-functions generalizing the embedding
g 7! g ı X0 of the space Hndet to L2.P/. This also will be done in terms of the
corresponding decompositions.

Taking in (11) the conditional expectation relative to X0 (which is, in particular,
the left inverse for the embedding g 7! g ı X0), we obtain

g D
1X

nD0

.Q�nQn � Q�.nC1/QnC1/gndet C gdet : (16)

Now we again assume that g 2 Hndet. Then we have

g D
1X

nD0

.Q�nQn � Q�.nC1/QnC1/g (17)

or

g D
1X

nD0

Q�n.I � Q�Q/Qng; (18)

where the series’ converge in the norm j � j2.
Since Q is normal, we have

.g; g/ D
1X

nD0

.Q�n.I � Q�Q/Qng; g/

D
1X

nD0

.Qn.I � Q�Q/
1
2 g; Qn.I � Q�Q/

1
2 g/:

(19)

Then, we have an isometric correspondence
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Hndet 3 g $ .: : : ; Q.I � Q�Q/
1
2 g; .I � Q�Q/

1
2 g/ 2 Hndet ˝ l2.Z�/ (20)

(the set Z� rather than ZC was chosen here for the future denotational convenience).
According to Proposition 3.1, another description of the image of Hndet in Hndet ˝
l2.Z�/ by the above correspondence is as follows:

f.: : : ; Qr; r/ W r 2 Hndet;
X

n�0

jQnr j22 < 1g:

We will identify this image with Hndet. The extension H ext
ndet � Hndet is then

defined by
H ext

ndet D f.: : : ; Qr; r/ W r 2 Hndetg
(we consider H ext

ndet as a subspace of Hndet ˝� c0.Z�/).

Definition 3.4. Elements of the Banach spaces H ext
ndet are called t-functions.

It is clear from this definition that every t-function is a sequence of functions
from Hndet with some additional properties; in case the corresponding series
converges in L2.�/ its sum gives an Hndet-representative of the corresponding
t-function; otherwise a t-function is a proper generalized function; anyway, a
t-function is a limit (in the sense of Hndet ˝� c0.Z�/) of functions from Hndet.

Let us turn now to the embedding of t-functions to m-functions. Reformulating
the mapping f 7! Qf D f ı X0, f 2 Hndet, in terms of decompositions, we obtain

Hndet 3 g $ .: : : ; .I � Q�Q/
1
2 g; Q.I � Q�Q/

1
2 g; .I � Q�Q/

1
2 g/

7!
X

n�0

U nl�1
�
Q�n.I � Q�Q/

1
2 g

� D Qg 2 M0:
(21)

This embedding can be described differently as

.: : : ; Qr; r/ 7! E.: : : ; Qr; r/ D
X

n�0

U nl�1
�
Q�nr

�
; (22)

which makes sense both for Hndet ! AHndet � M0 and for H ext
ndet ! AH ext

ndet � M ext
0 .

Proposition 3.5. Let Q W L2.�/ ! L2.�/ be a normal transition operator for a
stationary Markov chain X and f 2 Hndet have the spectral measure �f . Then the
following conditions on the function f are equivalent:

(1) f D g � Qg with some g 2 H ext
ndet;

(2) Qf D h C Qg � U Qg with some g 2 H ext
ndet and h 2 M1 such that E0h D 0;

(3) r
defD .I � Q/�1.I � Q�Q/

1
2 f 2 HndetI

(4) �2
f

defD jr j2f D R
D

1�jzj2
j1�zj2 �f d z < 1.
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Moreover, deducing (2) from (1) or (3) we can always set h D U Qg � eQg; also,
we have jjhjj22 D jr j22 D �2

f .

Proof. Let (1) holds true. Then Qg D P
n�0 U nl�1

�
Q�nr

�
for some r 2 Hndet, and

Qf D Qg � eQg D U Qg � eQg C Qg � U Qg D h C Qg � U Qg; (23)

where

h D U Qg � eQg D
X

n�0

U nC1l�1
�
Q�nr

� �
X

n�0

U nl�1
�
Q�nC1r

� D U 1l�1
�
r
� 2 L1;

(24)
and (2) follows. To establish .2/ ! .1/, apply E0 to the relation (2), obtaining
Qf D Qg � E0U QgI then check E0U Qg D eQg by means of the represention Qg DP

n�0 U nl�1
�
Q�nr

�
with some r 2 Hndet.

Let us show now that (1) and (3) are equivalent. The relation (1) holds if and only
if for some r 2 Hndet and every n � 0 QnQ.I �Q�Q/

1
2 f D Qn.I �Q/r . But this

is equivalent to Q.I � Q�Q/
1
2 f D .I � Q/r or to r D .I � Q/�1.I � Q�Q/

1
2 f

which is equivalent to (3). Since f 2 Hndet and Hndet is invariant with respect to Q,
such r 2 Hndet exists if and only if (4) holds. The last assertions follow from (23)
and (24). ut
Remark 3.6 (Unicity and reality). It is easy to see that the equation f D g � Qg

may have at most one solution g 2 H ext
ndet.

Functions we consider are in general complex-valued; so functions and quasi-
functions constitute Banach spaces over C. The involutive conjugation in these
spaces is well-defined, its fixed points are said to be real. The operators Q; Q�, their
spectral projections and conditional expectations En.n 2 Z/ preserve the reality
of functions and quasi-functions. In view of this, for example, in the orthogonal
decomposition f D fdet C fndet the summands fdet and fndet are real-valued
provided that so is f . These facts and the unicity imply that the solution of the
Poisson equation with a real right-hand side must be real; also for a real function
the ingredients of the martingale-coboundary representation must be real. Notice
that for the spectral measure �f of a real-valued function f with respect to the
operator Q the real axis is the symmetry axis. ut

4 The CLT

In addition to assumptions of Sect. 2 (including the normality of the transition
operator) we assume that 1 is a simple eigenvalue of the operator Q. It is known [10]
that this implies (and is equivalent to) the ergodicity of the shift transformation T .

We give now an alternative proof of a version of the Central Limit Theorem for
a stationary normal Markov chain (Thm. 7.1 in [10]). Let N.m; �2/ be the normal
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law with the mean value m and the variance �2, degenerate if �2 D 0. As above, D

denotes the closed unit disk in C.

Theorem 4.1. Let .Xn/n2Z be a stationary homogeneous Markov chain which has
a probability measure � as the one-dimensional distribution and a normal operator
Q W L2.�/ ! L2.�/ as the transition operator. Assume that the eigenvalue 1 of
Q is simple. Let a real-valued function f 2 L2.�/ with the spectral measure �f

satisfy the conditions

(1) �2
f D R

D
1�jzj2
j1�zj2 �f d z < 1,

(2) limn!1 n� 1
2

ˇ
ˇPn�1

kD0 Qkf
ˇ
ˇ
2

D 0.

Then the random variables
�
n� 1

2
Pn�1

kD0 f .Xk/
�

n�1
converge in distribution to

the normal law N.0; �2
f /. Moreover,

lim
n!1 n�1

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
n�1X

kD0

f .Xk/
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
2

2
D �2

f : (25)

Proof. Let us first reduce the proof to the case f 2 Hndet. Since the decomposition
L2.�/ D Hdet ˚ Hndet reduces the operator Q, the assumption (2) implies for
f D fdet C fndet .fdet 2Hdet ; fndet 2Hndet/ that

lim
n!1 n� 1

2

ˇ
ˇ
ˇ
n�1X

kD0

Qkfdet

ˇ
ˇ
ˇ
2

D 0 (26)

and

lim
n!1 n� 1

2

ˇ̌
ˇ
n�1X

kD0

Qkfndet

ˇ̌
ˇ
2

D 0: (27)

Since QjHdet
is a unitary operator which agrees, after embedding eHdet to L2.P/,

with U , for every n � 1 we have

ˇ
ˇ̌
n�1X

kD0

Qkfdet

ˇ
ˇ̌
2

D
ˇ
ˇ̌
ˇ
ˇ̌
n�1X

kD0

fdet .Xk/
ˇ
ˇ̌
ˇ
ˇ̌
2
;

which follows

lim
n!1 n� 1

2

ˇ̌
ˇ
ˇ̌
ˇ
n�1X

kD0

fdet .Xk/
ˇ̌
ˇ
ˇ̌
ˇ
2

D 0: (28)

It is therefore clear that the random variables .n� 1
2

Pn�1
kD0 fdet .Xk/; n � 1/

converges to 0 both in probability and in the norm jj � jj2. By this reason we will
assume f 2 Hndet in the rest of the proof.
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In view of the assumption (1) and Proposition 3.5, f admits the representation
f D g � Qg with some g 2 H ext

ndet, and we have

n�1X

kD0

f .Xk/ D
n�1X

kD0

U k.U Qg � eQg/ C Qg � U n Qg:

Here .U k.U Qg � eQg//k�0 is a stationary ergodic sequence of martingal differ-
ences whose variance is, by Proposition 3.5, �2

f . Then, in view of the Billingsley-
Ibragimov theorem, we only need to show that

n�1jj Qg � U n Qgjj22 !
n!1 0: (29)

We have with an r 2 Hndet from (3) in Proposition 3.5

n�1jj Qg � U n Qgjj22 D n�1
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
X

k�0

U kl�1.Q�kr/ �
X

k�0

U nCkl�1.Q�kr/
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
2

2

D n�1
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

X

0�k�n�1

U n�kl�1.Qkr/
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
2

2
C n�1

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
X

k�0

U kl�1.Q�kr/ �
X

k�0

U kl�1.Qn�kr/
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
2

2

D n�1
n�1X

kD0

jQkr j22 C n�1
ˇ
ˇ̌
ˇ
ˇ̌X

k�0

U kl�1.Q�kr/ �
X

k�0

U kl�1.Qn�kr/
ˇ
ˇ̌
ˇ
ˇ̌2

2

D n�1
n�1X

kD0

jQkr j22 C n�1jg � Qngj22 D n�1
n�1X

kD0

jQkr j22 C n�1
ˇ
ˇ
ˇ

n�1X

kD0

Qkf
ˇ
ˇ
ˇ
2

2
:

(30)

The summands of the last sum tend to zero: the first one because so does jQnr j2
and the second one by assumption (2) of the theorem. This completes the proof. ut
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