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Abstract We generalize classical results on the gap distribution (and other fine-
scale statistics) for the one-dimensional Farey sequence to arbitrary dimension. This
is achieved by exploiting the equidistribution of horospheres in the space of lattices,
and the equidistribution of Farey points in a certain subspace of the space of lattices.
The argument follows closely the general approach developed by A. Strömbergsson
and the author [Ann. Math. 172:1949–2033, 2010].
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Denote by OZnC1 the set of integer vectors in R
nC1 with relatively prime

coefficients, i.e., OZnC1 D fm 2 Z
nC1 n f0g W gcd.m/ D 1g. The Farey points of

level Q 2 N are defined as the finite set

FQ D
�

p

q
2 Œ0; 1/n W .p; q/ 2 OZnC1; 0 < q � Q

�
: (1)

The number of Farey points of level Q is asymptotically, for large Q,

jFQj � �Q WD QnC1

.n C 1/ �.n C 1/
: (2)

J. Marklof (�)
School of Mathematics, University of Bristol, Bristol BS8 1TW, UK
e-mail: j.marklof@bristol.ac.uk

P. Eichelsbacher et al. (eds.), Limit Theorems in Probability, Statistics and Number
Theory, Springer Proceedings in Mathematics & Statistics 42,
DOI 10.1007/978-3-642-36068-8 3, © Springer-Verlag Berlin Heidelberg 2013

49

mailto:j.marklof@bristol.ac.uk


50 J. Marklof

In fact, for any bounded set D � Œ0; 1/n with boundary of Lebesgue measure zero
and non-empty interior,

jFQ \ Dj � vol.D/ �Q; (3)

which means the Farey sequence is uniformly distributed in Œ0; 1/n.
The objective of the present paper is to understand the fine-scale statistical

properties of FQ. To this end, it will be convenient to identify Œ0; 1/n with the unit
torusTn D R

n=Zn via the bijection Œ0; 1/n ! T
n, x 7! xCZ

n. We will consider the
following two classical statistical measures of randomness of a deterministic point
process: Given k 2 Z�0 and two test sets D � T

n and A � R
n, both bounded, with

boundary of Lebesgue measure zero and non-empty interior, define

PQ.k; D; A/ D volfx 2 D W j.x C �
�1=n
Q A C Z

n/ \ FQj D kg
vol.D/

(4)

and

P0;Q.k; D; A/ D jfr 2 FQ \ D W j.r C �
�1=n
Q A C Z

n/ \ FQj D kgj
jFQ \ Dj : (5)

The scaling of the test set A by a factor �
�1=n
Q ensures that the expectation value

EPQ.k; D; A/ WD
1X

kD0

kPQ.k; D; A/ (6)

is asymptotic to vol.A/ for large Q. The quantity P0;Q.0; D; A/ is the natural higher
dimensional generalization of the gap distribution of sequences in one dimension,
which, in the case of the Farey sequence for A D Œ0; s� and D D T, was calculated
by Hall [6]. PQ.0;T; Œ0; s�/ corresponds in one dimension to the probability that the
distance between a random point on T and the nearest element of the sequence is at
least s=2. An elementary argument shows that in one dimension the density of this
distribution is equal to P0;Q.0;T; Œ0; s�/, see e.g. [11, Theorem 2.2] and (36) below.
The most comprehensive result in one dimension is due to Boca and Zaharescu [3],
who calculate the limiting n-point correlation measures. We refer the reader to the
survey article [4] for an overview of the relevant literature.

The results we will discuss here are valid in arbitrary dimension, and will also
extend to the distribution in several test sets A1; : : : ; As . To keep the notation
simple, we will restrict the discussion to one test set; the proofs are otherwise
identical, cf. [15, Sect. 6] for the necessary tools.

It is evident that the distribution of Farey sequences is intimately linked to the
distribution of directions of visible lattice points studied in [15, Sect. 2]. The only
difference is in the ordering of the sequence of primitive lattice points and the way
they are projected: In the Farey case we take all primitive lattice points in a blow-up
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of the polytope f.x; y/ 2 .0; 1�nC1 W xj � yg, draw a line from each lattice point
to the origin and record the intersection of these lines with the hyperplane f.x; 1/ W
x 2 R

ng. In the case of directions, we take all points in a fixed cone with arbitrary
cross-section projected radially onto the unit sphere. Since the cross section of the
cone is arbitrary, this yields (by a standard approximation argument) the statistics of
primitive lattice points in the blow-up of any star-shaped domain (with boundary of
measure zero), which are projected radially onto a suitably chosen hypersurface
of codimension one. The proof of a limit distribution for PQ.k; D; A/ for Farey
fractions is therefore a corollary of the results of [15].

If the points in FQ were independent, uniformly distributed random variables in
T

n, we would have, almost surely, convergence to the Poisson distribution:

lim
Q!1 PQ.k; D; A/ D lim

Q!1 P0;Q.k; D; A/ D vol.A/k

kŠ
e� vol.A/ a.s. (7)

The FQ are of course not Poisson distributed. But, as we will see, the limit
distributions exist, are independent of D, and are given by probability measures
on certain spaces of random lattices in R

nC1. The reason for this is as follows.
Define the matrices

h.x/ D
�

1n
t0

�x 1

�
; a.y/ D

�
y1=n1n

t0

0 y�1

�
(8)

and the cone

C.A/ D f.x; y/ 2 R
n � .0; 1� W x 2 �

�1=n
1 yAg � R

nC1: (9)

Then, for any .p; q/ 2 R
nC1,

p

q
2 x C �

�1=n
Q A; 0 < q � Q; (10)

if and only if
.p; q/h.x/a.Q/ 2 C.A/: (11)

Thus, if Q is sufficiently large so that �
�1=n
Q A � .0; 1�n, then

j.x C �
�1=n
Q A C Z

n/ \ FQj D j OZnC1h.x/a.Q/ \ C.A/j: (12)

This observation reduces the question of the distribution of the Farey sequence
to a problem in the geometry of numbers. In particular, (4) and (5) can now be
expressed as

PQ.k; D; A/ D volfx 2 D W j OZnC1h.x/a.Q/ \ C.A/j D kg
vol.D/

(13)
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and

P0;Q.k; D; A/ D jfr 2 FQ \ D W j OZnC1h.r/a.Q/ \ C.A/j D kgj
jFQ \ Dj : (14)

Let G D SL.n C 1;R/ and � D SL.n C 1;Z/. The quotient �nG can be identified
with the space of lattices in R

nC1 of covolume one. We denote by � the unique
right G-invariant probability measure on �nG. Let furthermore be �0 the right G0-
invariant probability measure on �0nG0, with G0 D SL.n;R/ and �0 D SL.n;Z/.

Define the subgroups

H D
�

M 2 G W .0; 1/M D .0; 1/

�
D

� �
A tb

0 1

�
W A 2 G0; b 2 R

n

�
(15)

and

�H D � \ H D
� �

� tm

0 1

�
W � 2 �0; m 2 Z

n

�
: (16)

Note that H and �H are isomorphic to ASL.n;R/ and ASL.n;Z/, respectively. We
normalize the Haar measure �H of H so that it becomes a probability measure on
�H nH . That is,

d�H .M / D d�0.A/ db; M D
�

A tb

0 1

�
: (17)

The main ingredient in the proofs of the limit theorems for P0;Q.k; D; A/ and
PQ.k; D; A/ are the following two equidistribution theorems. The first is the classic
equidistribution theorem for closed horospheres of large volume (cf. [15, Sect. 5]
for background and references), the second the equidistribution of Farey points on
closed horospheres [13, Theorem 6]. In the latter, a key observation is that [13,
(3.53)]

�h.r/a.Q/ 2 �n�Ha.
Q

q
/ ' �H nHa.

Q

q
/: (18)

Theorem 1. For f W Tn � �nG ! R bounded continuous,

lim
Q!1

Z
Tn

f
�
x; h.x/a.Q/

�
dx D

Z
Tn��nG

f .x; M / dx d�.M /: (19)

Theorem 2. For f W Tn � �nG ! R bounded continuous,

lim
Q!1

1

jFQj
X

r2FQ

f
�
r; h.r/a.Q/

� D
Z 1

0

Z
Tn��H nH

f .x; Ma.�
� 1

nC1 // dx d�H .M/ d�:

(20)

Both theorems can be derived from the mixing property of the action of the
diagonal subgroup fa.y/gy2R>0 . The exponential decay of correlations of this
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action was exploited by H. Li to calculate explicit rates of convergence [9]. One
can furthermore generalize Theorem 2 to general lattices � in G and non-closed
horospheres [12]. Theorem 2 may also be interpreted as an equidistribution theorem
for periodic points of the return map of the horocycle flow (in the case n D 1) to the
section

�n�H fa.y/ W y 2 R>1g ' �H nH fa.y/ W y 2 R>1g (21)

which is discussed in [1]. The identification of (21) as an embedded submanifold,
which is transversal to closed horospheres of large volume, is central to the proof of
Theorem 2 in [13].

By standard probabilistic arguments, the statements of both theorems remain
valid if f is a characteristic function of a subset S � T

n � �nG whose boundary
has measure zero with respect to the limit measure dx d�.M / or dx d�H .M / d�,
respectively. The relevant set in our application is

S D D � fM 2 �nG W j OZnC1M \ C.A/j � kg: (22)

The fact that S has indeed boundary of measure zero with respect to dx d�.M / is
proved in [15, Sect. 6]. We can therefore conclude:

Theorem 3. Let k 2 Z�0, and D � T
n, A � R

n bounded with boundary of
Lebesgue measure zero. Then

lim
Q!1 PQ.k; D; A/ D P.k; A/ (23)

with
P.k; A/ D �.fM 2 �nG W j OZnC1M \ C.A/j D kg/; (24)

which is independent of the choice of D.

In the second case, we require that the set

fM 2 �H nH W j OZnC1M \ C�.A/j � kg; C�.A/ WD C.A/a.�
1

nC1 /; (25)

has boundary of measure zero with respect to �H , which follows from analogous
arguments. With this, we have:

Theorem 4. Let k 2 Z�0, and D � T
n, A � R

n bounded with boundary of
Lebesgue measure zero. Then

lim
Q!1 P0;Q.k; D; A/ D P0.k; A/ D

Z 1

0

p0.k;C�.A// d�: (26)

where
p0.k;C/ D �H .fM 2 �H nH W j OZnC1M \ Cj D kg/; (27)

which is independent of the choice of D.
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In dimension n � 2, it is difficult to obtain a more explicit description of the limit
distributions P.k; A/ and P0.k; A/. It is however possible to provide asymptotic
estimates for large and small sets A when k D 0 and k D 1, see [2, 18] for general
results in this direction. The case of fixed A and large k is discussed in [10].

The geometry of �nG is significantly simpler in the case n D 1. This permits the
derivation of explicit formulas for the limit distributions in many instances, cf. [5,
14, 19]. For example, take A D .0; s�, and the cone C�.A/ becomes the triangle

	s;� D f.x1; x2/ 2 R
2 W 0 < x1 � 
2

3
x2�s; 0 < x2 � ��1=2g; (28)

where we have used �1 D 1
2�.2/

D 3

2 . Furthermore �H nH is simply the circle

T D R=Z, �H is the standard Lebesgue measure. Hence

p0.k; 	s;�/ D meas.fx 2 T W jf.p; q/ 2 OZ2 W .p; px C q/ 2 	s;�gj D kg/: (29)

It is now a geometric exercise to work out the case k D 0: With the shorthand
y D �1=2 and a D . 
2

3
s/�1, we deduce

p0.0; 	s;�/ D

8̂̂
<
ˆ̂:

1 if y � a

1 � 1
y

C a
y2 if a < y � a.1 � y/�1

0 y > a.1 � y/�1.

(30)

Solving for y, we have in the case 0 < a � 1
4

p0.0; 	s;�/ D

8̂
<̂
ˆ̂:

1 if y 2 Œ0; a�

1 � 1
y

C a
y2 if y 2 Œa; 1

2
�

q
1
4

� a� [ Œ 1
2

C
q

1
4

� a; 1�

0 if y 2 Œ 1
2

�
q

1
4

� a; 1
2

C
q

1
4

� a�.

(31)

For 1
4

< a < 1, we have

p0.0; 	s;�/ D
(

1 if y 2 Œ0; a�

1 � 1
y

C a
y2 if y 2 Œa; 1�;

(32)

and for a � 1, we have

p0.0; 	s;�/ D 1; y 2 Œ0; 1�: (33)

The gap distribution P0.0; Œ0; s�/ is now an elementary integral (recall (26)), which
yields
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P0.0; Œ0; s�/ D

8̂
<̂
ˆ̂:

1 if a 2 Œ1; 1/

�1 C 2a � 2a log a if a 2 Œ 1
4
; 1�

�1 C 2a C 2

q
1
4

� a � 4a log. 1
2

C
q

1
4

� a/ if a 2 Œ0; 1
4
�.
(34)

which reproduces Hall’s distribution [6]. The density of this distribution is

� d

ds
P0.0; Œ0; s�/ D 
2

3
a2 d

da
P0.0; Œ0; s�/ D

8̂
<̂
ˆ̂:

0 if a 2 Œ1; 1/

� 2
2

3 a2 log a if a 2 Œ 1
4 ; 1�

� 4
2

3 a2 log. 1
2 C

q
1
4 � a/ if a 2 Œ0; 1

4 �,

(35)
cf. [4, Theorem 2.1]. By [11, Theorem 2.2], we have

� d

ds
P.0; Œ0; s�/ D P0.0; Œ0; s�/; (36)

and hence formula (34) yields directly the density of the distribution of the distance
to the nearest element. Formula (34) was rediscovered in [8, Lemma 2.6].

Theorems 1 and 2 reduce in the case n D 1 to classic statements in the theory
of automorphic forms, with precise bounds on the rate of convergence. Sarnak [16]
proved Theorem 1 for test functions f 2 C1

0 (infinitely differentiable, compactly
supported) that are independent of the first coordinate x, and showed that the
optimal rate of convergence holds if and only if the Riemann Hypothesis is true (this
phenomenon was first pointed out by Zagier [20]). The reason for the appearance of
the Riemann zeros is that the only relevant harmonics in the problem are Eisenstein
series E2k.z; s/ of even weight 2k, whose poles are located at the poles of

1X
qD1

'.q/

q2s
D �.2s � 1/

�.2s/
: (37)

where '.s/ is Euler’s totient function and �.s/ the Riemann zeta function.
Under the Riemann Hypothesis, Sarnak’s rate is significantly better than what

one would expected from square-root cancellations—it is the square-root of that. If
the test function f depends on x (we assume again f is C1

0 ), the work of Hejhal [7]
and Strömbergsson [17] shows that the convergence rate slows to the square-root of
the horocycle length (or worse) as other terms in the harmonics dominate the error
coming from of the Riemann zeros. The object replacing the Eisenstein series in this
setting is the Poincaré series Pm;2k.z; s/ of weight 2k.

The proof Theorem 2 for n D 1 on the other hand quickly reduces to estimates
of sums of Kloosterman sums. To see this, note first of all that the statement of
Theorem 2 is equivalent to: For every bounded continuous function f W T��nH !
R (whereH is the complex upper half plane, on which � D SL.2;Z/ acts by Möbius
transformations) we have
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lim
Q!1

1

jFQj
QX

qD1

X
p2Z�

q

f

�
p

q
;

p

q
C i

Q2

q2

�
D

Z 1

0

Z 1

0

Z 1

0

f .x; u C iv/ dx du
dv

v2
:

(38)
Here Z

�
q denotes the multiplicative group of invertible residues mod q, and p is

the inverse of p mod q. One way of proving (38) is to expand f 2 C1
0 in its

harmonics (Fourier series in x and u and Mellin transform in v) which leads to
Selberg’s Kloosterman zeta function

Zm1;m2.s/ D
1X

qD1

K.m1; m2; q/

q2s
(39)

with the Kloosterman sum

K.m1; m2; q/ D
X

p2Z�
q

e2
 i.m1pCm2p/=q: (40)

As in the case of the equidistribution of closed horocycles, where the asymptotics
was determined by the poles of the Eisenstein and Poincaré series, the poles of
Zm1;m2.s/ now determine the asymptotics of (38). Note that Z0;m2 .s/ are precisely
the Fourier coefficients of E0.z; s/ and, as already understood by Selberg, Zm1;m2.s/

is the m2-th Fourier coefficient of the Poincaré series Pm1;0.z; s/. Hence the
appearance of the Riemann hypothesis in the error term of Theorem 2 mirrors
exactly the situation in Theorem 1.
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1. J.S. Athreya, Y. Cheung, A Poincaré section for horocycle flow on the space of lattices.
arXiv:1206.6597 (2012)

2. J.S. Athreya, G.A. Margulis, Logarithm laws for unipotent flows I. J. Mod. Dyn. 3, 359–378
(2009)

3. F.P. Boca, A. Zaharescu, The correlations of Farey fractions. J. Lond. Math. Soc. 72, 25–39
(2005)

4. F.P. Boca, A. Zaharescu, Farey fractions and two-dimensional tori, in Noncommutative
Geometry and Number Theory. Aspects Math., vol. E37 (Vieweg, Wiesbaden, 2006), pp. 57–77

5. N.D. Elkies, C.T. McMullen, Gaps in
p

n mod 1 and ergodic theory. Duke Math. J. 123,
95–139 (2004)

6. R.R. Hall, A note on Farey series. J. Lond. Math. Soc. 2, 139–148 (1970)
7. D.A. Hejhal, On the uniform equidistribution of long closed horocycles. Asian J. Math. 4,

839–853 (2000)
8. P.P. Kargaev, A.A. Zhigljavsky, Asymptotic distribution of the distance function to the Farey

points. J. Number Theor. 65, 130–149 (1997)



Fine-Scale Statistics for the Multidimensional Farey Sequence 57

9. H. Li, Effective limit distribution of the Frobenius numbers. arXiv:1101.3021
10. J. Marklof, The n-point correlations between values of a linear form. Ergod. Theor. Dyn. Syst.

20, 1127–1172 (2000)
11. J. Marklof, Distribution modulo one and Ratner’s theorem, in Equidistribution in Number

Theory, an Introduction. NATO Sci. Ser. II Math. Phys. Chem., vol. 237 (Springer, Dordrecht,
2007), pp. 217–244

12. J. Marklof, Horospheres and Farey fractions. Contemp. Math. 532, 97–106 (2010)
13. J. Marklof, The asymptotic distribution of Frobenius numbers. Invent. Math. 181, 179–207

(2010)
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