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1 Introduction

Throughout the paper nA stands for the Lebesgue measure of a measurable set
A C Randdim B denotes the Hausdorff dimension of B. Given ¢ : N — (04 00),
let L(v) denote the set of x € R such that

0
q

‘x L 1)

q

has infinitely many solutions (p,q) € Z x N. We begin by recalling two classical
results in metric theory of Diophantine approximation.
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Khintchine’s theorem [35]. Let ¥ : N — (0, +00) be monotonic and I be an
interval in R. Then

0, if 3% ,
W 0 L)) = FLomr i) <0 @)
w(), if 392, ¥(q) = oo.

Jarnik—Besicovitch theorem [25,34]. Letv > 1 and for g € N let ¥,(q) = q".

Then )
dim L(¢,) = ——.
m L) =

The condition that ¥ is monotonic can be omitted from the convergence case of
Khintchine’s theorem, though it is vital in the case of divergence—see [12,33,42]
for a further discussion. By the turn of the millennium the above theorems were
generalised in various directions. One important direction of research has been
Diophantine approximation by algebraic numbers and/or integral polynomials,
which has eventually grown into an area of number theory known as Diophantine
approximation on manifolds.

Given a polynomial P = a,x" + --- 4+ aix + a9 € Z[x], the number H =
H(P) = maxo<;<n |a;| will be called the (naive) height of P. Givenn € N and an
approximation function ¥ : N — (0, +00), let £, (¥) be the set of x € R such that

|P(x)| < W(H(P)) 3)

for infinitely many P € Z[x] \ {0} with deg P < n. Note that £; (V) is essentially
the same as the set £(W) introduced above. Thus, the following statement represents
an analogue of Khintchine’s theorem for the case of polynomials.

Theorem 1. Letn € NandV¥ : N — (0, 400) be monotonic. Then for any interval 1

0, ] o pn—ly ,
(I 0 Lo (W) = F Lpmy W) < 00 4)
W), i Y52, hI() = oo,

The case of convergence of Theorem 1 was proved in [17], the case of divergence
was proved in [4]. The condition that W is monotonic can be omitted from the
case of convergence as shown in [6]. Theorem 1 was generalised to the case of
approximation in the fields of complex and p-adic numbers [9, 19], to simultaneous
approximationsin RxCxQ), [22,26] and to various other settings. When ¥ = W, is
given by W,,(¢) = ¢7" Theorem 1 reduces to a famous problem of Mahler [37,41]
solved by SprindZuk. The versions of Theorem 1 for monic polynomials were
established in [27, 40]. For the more general case of Diophantine approximation
on manifolds see, for example, [5,7, 10, 15, 18,20, 36,42].
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The more delicate Jarnik-Besicovitch theorem was also generalised to the case
of polynomials and reads as follows.

Theorem 2. Letw > n and V,,(q) = q~". Then

n+1
w1

The lower bound dim L, (¥,,) > Zill was obtained by Baker and Schmidt [2]
who also conjectured (5). The conjecture was proved in full generality in [16]. It
is worth noting that the generalised Baker-Schmidt problem for manifolds remains
an open challenging problem in dimensions n > 3; the case of n = 2 was settled
by R.C. Baker [3], see also [1, 8] and [7, 11, 43] for its analogue for simultaneous
rational approximations.

The various techniques used to prove Theorems 1 and 2 make a substantial use
of the properties of discriminants and resultants of polynomials and to some extent
the distribution of algebraic numbers. The main substance of this paper will be to

overview some relevant recent developments and techniques in this area.

2 Distribution of Discriminants of Integral Polynomials

The discriminant of a polynomial is a vital characteristic that crops up in various
problems of number theory. For example, they play an important role in Diophantine
equations, Diophantine approximation and algebraic number theory [41].
Let
P(x) =apx" +ap_1x" '+ 4+ aix +ag

be a polynomial of degree n and o, s, ...,q, be its roots. By definition, the
discriminant of P is given by

D(P)=a;" [] (@—a)) 6)

I<i<j<n

The following matrix formula for D(P) is well known:

1 an—1 an—> ... Qo 0 ...
0 a ay—1 ....ap ap ...
D(P) _ (_l)n(n—l)/Z 0 0 a, ... dip Qo
nm—1Da,—1 n—2a,—... 0 0 ...
0 na, mn—Nap—1 ... ay 0 ...
0 0 na, ... aqq



26 V. Bernik et al.

Thus, the discriminant is an integer polynomial of the coefficients of P. Conse-
quently, whenever P has rational integer coefficients the discriminant D(P) is also
an integer. Furthermore,

|[D(P)| =1 forany P € Z[x] withdeg P > 1 and D(P) # 0. @)

Clearly, by (6), D(P) # 0 if and only if P has no multiple roots.

Fix n € N. Let Q > Qo(n), where Qo(n) is a sufficiently large number.
Let P,(Q) denote the set of non-zero polynomials P € Z[x] with degP < n
and H(P) < Q. Throughout ¢;, j = 0,1,... will stand for positive constants
depending on n only. When it is not essential for calculations we will denote these
constants as c(n). Also we will use the Vinogradov symbols: A < B meaning that
A < c(n)B. The expression A < B will mean B <« A < B. Finally #S means the
cardinality of a finite set S. In what follows we consider polynomials such that

Q0 <H(P)<Q,0<c <1. (8)

Using the matrix representation for D(P) one readily verifies that |[D(P)| <
c(n)Q* 2 for P € P,(Q). Thus, by (7), we have that

1< |D(P)| <c(m)Q*? ©)
for polynomials P € P,(Q) with no multiple roots. Further, it is easily verified that
#PI’L(Q) < 22n+2Qn+l‘

The latter together with (9) shows that [1, c(n) Q?"~2] contains intervals of length
c(n) Q"3 that are not hit by the values of D(P) for any P € P,(Q) whatsoever.
For n = 4 these intervals can be arbitrarily large. Thus, the discriminants D(P) are
rather sparse in the interval [1, c(n) Q2" 2].

In order to understand the distribution of the values of D(P) as P varies within
P, (Q), for each given v > 0 we introduce the following subclass of P, (Q):

Pu(Q.v) ={P € P,(Q) : |D(P)| < 0> > and (8) holds}.  (10)

These subclasses are of course dependant on the choice of ¢y, but for the moment
let us think of ¢; as a fixed constant.

We initially discuss some simple techniques utilizing the theory of continued
fractions that enable one to obtain non-trivial lower bounds for #P,(Q, v) in terms
of Q andv.

The first observation concerns shifts of the variable x by integers. More precisely,
if m € Z then D(P(x)) = D(P(x —m)). The height of P(x — m) changes as m
varies. It is a simple matter to see that imposing (8) on P(x — m) restricts m to at
most ¢, values. Furthermore, (8) ensures that polynomials of relatively small height
cannot be in P,(Q,v).
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By (6), the fact that P belongs to P,(Q,v) with v > 0 implies that P must
necessarily have at least two close roots. This gives rise to a natural path to
constructing polynomials P in PP, (Q, v)—we have to make sure that they have close
roots. We now describe a very special procedure that enables one to do exactly this.

Take n best approximations (convergents) s—f to the number +/2 with k + 1 <

j <k + n for some k € N. Define the polynomial

k+n
T =[] (@x-p))

j=k+1

of degree n. Clearly the above mentioned best approximations to /2 are the roots
of T. Also note that the height of T' is < a,, where

a, = l_[ qi-

k+1<i<k+n

From the theory of continued fractions we know that g; < 3g;_;. Thus a, <
c(n)qy ;- On the other hand, we also know that fori < j

1 1
= < —-
qiqi+1 q;

Pi Pi+1

qi qi+1

qi qj

'&&

|

Therefore, we can estimate the following product

1\ 20k+n=i)
M= [] < T (—2) L 4iis

2
pi_pi

ktiicj<ktn 4 i kti<i<ktn—t i
where
k+n—1 n—1
o=2 % 2k+n—i)=4) L=2n(n-1).
i=k+1 =1

and see that
n(n— 2n(n—1) —¢
ID(T j5(x))| < a2V < g Vg, = 1.

This way we construct a polynomial of degree n with arbitrarily large height and
discriminant as small as c(n). However, to get quantitative bounds for #P,(Q,v)
more needs to be done. The following lemmas underpin the construction.

Lemma 1. Let I be an interval, I C R, c3 and c4 be positive constants such that
max{cs, c4} < 1. Given a sufficiently large Q, let L1 o(c3,c4) be the set of x € I
such that the system of inequalities
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lgx — pl < 307",

(11)
1 <g<c0,

has a solution in coprime (p,q) € Z x N. Then for c3c4 < A, 0 < A < %, we have
uLig(cs,cq) < 3AI.

Lemma 2. Let M, (Q) denote the set of x € I such that the following n systems of
inequalities

0! 4 4 0!
Ty < 19X = pil < =gy
3P AT g <3+ 10 1 i <

have solutions in {(pi,q:)}!—,. Then uM,(Q) > %

Lemma 1 is proved by summing up the measures of intervals given by the first
inequality of (11). Lemma 2 is a corollary of Lemma 1 (which should be applied n
times) and Minkowski’s theorem for convex bodies. See [21] for details.

Now take any point x; € M, (Q) and define

Ti(x)=[[@x—p) and Q=cm]]a.
j=I i=1

where (p;,q;) arise from Lemma 2. Estimating |D(77)| gives

P _Pil 1.

D)l < 0[]
qi  4j

I<i<j<n

We now use the fact that M, (Q) is a fairly large subset of I to produce other
polynomials with this property. For this purpose we choose points x;, x3,... €
M, (Q) that are well separated. As a result we obtain

Theorem 3 ([21]). For any sufficiently large Q there are c(n) Q% polynomials P €
Pu(Q) such that 1 < |D(P)| < c(n).

The above ideas can be generalised to give a similar bound for the number of
polynomials P € P,(Q) such that | D(P)| lies in a neighborhood of some K with
cn) < K <c(n)Q¥2.

Theorem 4 ([21]). For any 6, 0 < @ < 2n — 2, there are at least c(n)Q*/"
polynomials P € P, (Q) with discriminants satisfying the inequalities

esQ? < |D(P)| < ¢60°.
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We proceed by describing a more sophisticated method from [23] that produces
lower bounds for #P,(Q, v). The main result is as follows.

Theorem 5 ([23]). Letv € [0, %] Then there are at least ¢ (n) Q"= polynomials
P € P,(Q) with discriminants

|D(P)| < Q> 7272, (12)

Establishing upper bounds for #P,(Q,v) is likely a more difficult task. We
expect that if we impose some reasonable conditions on polynomials P from P,(Q)
(for example excluding reducible polynomials) then the lower bound given by
Theorem 5 would become sharp. We now state this formally as the following

Problem 1. Find reasonable constrains on polynomials P that chop a subclass
P1(Q) off P,(Q) such that #P'(Q) < #P,(Q) and for v € [0, 1]
#{P € P,(Q): [D(P)| < Q1) < @ FI72 (13)

Obtaining the estimates of this ilk for a larger range of v is another problem.
We wish to note that (13) is false for P, (Q)—see [32] for precise upper and lower
bounds in the case v < 3/5and n = 3.

Problem 2. For each n find the function f,(v), if it exists at all, such that for all
sufficiently large O one has the estimates

#{P € Py(Q) 1 [D(P)] < Q"1™ < Q1A (14)

It was shown in [32] that f3(v) = %v for0 <v <3/5.

2.1 Sketch of the Proof of Theorem 5

Underlying the proof of Theorem 5 is the following result, which essentially plays
the role of Lemma 1 in this more general context. In what follows, given an interval
I C[-1/2,1/2),let L,(I, Q,v,c7,cg) be the set of x € I such that

|P(x)] < 707",

(15)
[P'(x0)] < s Q'™

holds for some P € P,(Q).

Theorem 6. Let Q denote a sufficiently large number, v € [0, %] and let c7 and cg
be positive constants such that c7cg < n='27"712 Then

1
wL, (I, Q,v,c7,c8) < %
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We now explain the role of Theorem 6 in establishing Theorem 5. Suppose that
P € Z|x], degP < n, |ay| > cH. If |a,| < cH then the polynomial can be
transformed into one with a large leading coefficient with the same discriminant—
see [41].
By Dirichlet’s pigeonhole principle, for any point x € / and Q > 1 the following
system
|P(x)| < Q7"

(16)
|P'(x)| < 8nQ'™

holds for some polynomial P € P,(Q).Lety = n~227" Sand I = [-1/2,1/2].
Then, by Theorem 6, the set

B =I1\L,I,0,v,1,y)UL,(I,Q,v,y,8n)

satisfies uB; = % for all sufficiently large Q. Hence for any x; € B the solution
P € P,(Q) to the system (16) must satisfy

Q™ < |P(x)| < 07,

1—v / 1—v (17)
yQ " < |P/(x1)| <8nQ"".
For all x in the interval |[x — x;| < Q_.% , the Mean Value Theorem gives
P'(x) = P'(x1) + P"(&))(x — x;) forsome & € [x,x1]. (18)

The obvious estimate |P”(£,)| < n3Q implies |P”(£1)(x — x1)| < n3Q%. But
[P’ (x1)| > Q% forv < % and therefore, by (18) and the second inequality of (17),
for sufficiently large O we have that

YOI < SIP'(x))| < |P'(x)] < 2|P(xp)| < 16nQ'™".

There are four possible combinations for signs of P(x;) and P’(x;). To illustrate
the ideas we consider the case when P;(x;) < 0 and P/(x;) > O—the others are
dealt with in a similar way. Our goal for now is to find a root of P close to x;. Once
again we appeal to the Mean Value Theorem:

P(x) = P(x1) + P'(&)(x — x1) for some &, € [x1, x]. (19)

Write x = x;+A and suppose that A > 2y~ Q™" 1+2" If P(x;) < P(x;+A) <0
then the first inequality of (17) implies

0< P(x; +A)—P(x;)) < Q"
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On the other hand we have
14 —Vy ., —n— v —n+v
P'(E)A> 2072y QT = g,

Thus in view of (19) we obtain a contradiction. This means that P;(x; + A) > 0
and there is a real root o of the polynomial P(x) between x; and x; + A. Once
again using the Mean Value Theorem and the estimates for P(x) and P’(«) we get

le _ C(| < Zy—lQ—n—l"rZV — n2n+13Q—n—l+2v‘ (20)

Note that as well as ensuring that ¢, a root of P, is close to x| inequalities (17)
keep « sufficiently away from x;. We now explain this more formally. Again we
consider only one of the four possibilities: P(x;) > 0, P'(x;) < 0. With x =
x1 + Ay, by the Mean Value Theorem, we have

P(x) = P(x1) + P'(&3)A1, & € [x1.x]. 2L

If Ay < 27%n~'yQ™~1*2" then in (21) the following holds: | P(x1)| > yQ """
and |P’(§)A1| < yQ "1 It implies that the polynomial P(x) cannot have any
root in the interval [x;, x; + A1] and therefore for any root «, we have

pTla BT gy g,
This time let & be the root of P closest to x;. By the Mean Value Theorem,
Pl(a) = P'(x1) + P"(E)(x1 — ). & € [x,a],
the estimate | P”(£)| < n3Q and (20) for sufficiently large Q we get
n~127 B < P ()| < 1600

The square of derivative is a factor of the discriminant of P. Taking into account
that for |a,| < H(P) all roots of the polynomial are bounded, see [41]. Then we
can estimate the differences |o; —«;|,2 < i < j < n, by aconstant c(n). This way
we obtain (12). Since wB; > 1/2 and x, is an arbitrary point in B; we must have
> Q"F1=% different a’s that arise from (20). Since each polynomial P of degree
< n has at most 1 roots this gives > Q"= polynomials in P,(Q, v) satisfying
(12)—see [13] for further details.

2.2 Sketch of the Proof of Theorem 6

The purpose of this section is to discuss the key ideas of the proof of Theorem 6
given in [13] as they may be useful in a variety of other tasks. We start by estimating
the measure of x such that the system
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|P()| < e Q™.

22
Q'™ < |P'(x)| <cnQ'™ @

is solvable for P € P,(Q), where v, satisfies v < v; < 1 and will be specified later.

We shall see that P’(x) can be replaced with P’() in the second inequality
of (22), where « denotes the root of P nearest to x. Indeed, using the Mean Value
Theorem gives

P'(x) = P'(a) + P"(E)(x —a), & € (a,x).
We apply the following inequality for |x — |

|P(x)]
|x—05| < nm,

which was proved in [17,41]. Then

[P/(@)] = |P'(x) = P"(&5)(x — )|, &5 € (o, X).

|P//(gl)(x _ O[)I < n3chan—n—l+V+v1 — Clln4Q—n+v+V1
for sufficiently large Q we obtain
3 3 4 4
207 S P = 1P < 5P/ < e
and
3 / / 4 /
JIP @) < |P'0] = 51P @)
Therefore for sufficiently large Q inequality (22) implies

|P(x)| <cnQ™"*
70T <|P/(@)] < 3c20' (23)
laj| < Q.

Let £/, (v) denote the set of x, for which system (23) is solvable for P € P,(Q).

Now we are able to prove that L, (v) < %ll |
Consider the intervals:

o1(P) = {x < v —al < Senn@ VP @]}
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and
02(P) ={x:|x—a| <c3Q "V|P ()"}

The value of ¢;3 will be specified below. Of course, each polynomial P has up to
n roots and potentially we have to consider all the different intervals o;(P) and
0,(P) that correspond to each P. However, this will only affect the constant in the
estimates. Thus, without loss of generality we confine ourselves to a single choice
of o1 (P) and o, (P). Obviously

|o1(P)] = 3eney nQ ™" Hoa(P)). 24)
Fix a vector b = (ay,, .. ., az) of the coefficients of P. The polynomials P €
P (Q) with the same vector b form a subclass of P, (Q) which will be denoted by

P(b).
The interval o,(P;) with P € P(b) is called inessential if there is another
interval o, (P;) with P, € P(b) such that

lo2(P1) N oa(Pa)| = 5]02(Py).
Otherwise for any P, € 73(5) different from P,
l02(P1) N0z (P2)| < 3l02(Py)

and the interval o, (P») is called essential.

The case of essential intervals. In this case every point x € I belongs to at most
two essential intervals o, (P). Hence for any vector b

Yo o) <21, (25)

PeP(b)
02(P) is essential

The number of all possible vectors b is at most (2Q + 1)"~! < 2"Q"~!. Then,
by (24) and (25), we obtain

ST Je(P)] < feney n@ T T2YI12 Q" = 02" ey |1
b

PeP(b)
02 (P) is essential

Thus for ¢;3 = n2" ¢, the measure will be not larger than §|/|.

The case of inessential intervals. In this case we need to estimate the values of
|P;j(x)|, ] =1,2,for x € 02(P1) N 02(P>). By Taylor’s formula,

Pj(x) = PJ’» (@)(x —a) + %P;’(&)(x — a)? for some & € (o, x),
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where « is the root of either P, or P, as appropriate, and
Pi(x) = Pj(a) + P/ (&) (x — @) for some &; € (a, x).
The second summand is estimated by
|P"(66)(x — )| < 2nPcf, Q74

while
|P'(@)(x —a)| <30~

As 2v; < 2 — v for an appropriate choice of v < % we obtain

1Pj(x)] < g™ j =1.2. (26)
Similarly we obtain the following estimate for P ]/ (x) whenv; <2 —2v:
|P/(x)] < 5e2Q'™, j =1.2. (27)

Let K(x) = P,(x) — Pi(x) € Z[x]. Obviously K(x) is non-zero and has the
form K(x) = b1x + by. By (26) and (27), we readily obtain that

Ibix + bo| < Sci307' (28)

and
bi] = |K'(x)] < $c1p0'. (29)

Thus, the union of inessential intervals can be covered by intervals A(by,by) C
I given by (28). For fixed by and b; the length of A(b;,bo) is bounded by
13—6c13Q_H'Vb1_1. Given that x € I and (28) is satisfied we conclude that by takes at
most |1 ||b1] + 2 values. Then

D 1A bo)| < ez BTN (T ||bi| +2) < 61307 I (30)
bo

Using (29) we further obtain that

Y D IABLbo)| < 2einei3 QT = 02" oeyien|I| = 1]
b bo

for we have that ¢; ¢, < n~ 1277711, Finally, combining the estimates for essential
and inessential intervals we obtain %|I | as an upper bound for their total measure.
The case v > v; can be deal with using methods described in [17] and [36].



Distribution of Algebraic Numbers and Metric Theory of Diophantine Approximation 35
3 Divisibility of Discriminants by Prime Powers

Let p be a prime number. Throughout u, denotes the Haar measure on Q,
normalized to have 11,(Z,) = 1. In this section we consider the divisibility of
the discriminant D(P), P € P,(Q) by prime powers p’. This natural arithmetical
question has usual interpretation in terms of Diophantine approximation in @Q,, the
field of p-adic number. Indeed, p’|D(P) if and only if |D(P)|, < p~!, where |- |,
stands for the p-adic norm. Thus, the question we outlined above becomes a p-adic
analogue of the problems we have considered in the previous section. Naturally, we
proceed with the following p-adic analogue of Theorem 5.

Theorem 7 ([24]). Letv € [0, %] Then there are at least ¢ (n) Q"= polynomials
P € P,(Q) with

ID(P)]p < Q7. 31
The proof of this result relies on the following p-adic version of Theorem 6.

Theorem 8 ([24]). Let Q denote a sufficiently large number and c14 and cy5 denote
constants depending only on n. Also, let K be a disc in Q,. Assume that cisci5s <
27" p=8 and v € [0, %] If M, o(c1a, c15) is the set of w € K C Q, such that the
system of inequalities

|P(W)|p < claQ™ "1,
[P’ W), <1507

has solutions in polynomials P € P,(Q), then

tp(My 0 (cra,c15)) < $up(K).

The techniques used in the proof of this theorem are essentially the p-adic
analogues of those used for establishing Theorem 6 and draw on the estimates
obtained in [39]—see [24] for more details. Skipping any explanation of the proof
of Theorem 8, we now show how it is used for establishing Theorem 7.

Let K be adisc in Q,, M, o be the same as in Theorem 8, y = p~1127"~!! and

B =K\ (Myo(y.p) UM, o(l,y)).

Then, by Theorem 8, ., (B) = %,up (K). Take any w; € B. Then, using Dirichlet’s
pigeonhole principle we can find a polynomial P € P,(Q) such that |P(w)|, <
Q" and |P’(wy)|, < p?Q7". Since w; € B we have that

)/Q_n_l+v < IP(W1)|p < Q—n—1+v’

. (32)
YOV IP' W), < p’O7".
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Letwe K ={weQ,:|lw—wi, < Q_%}.By Taylor’s formula

wi)(w—wp)i !
i

"op®
Piw) = P + 30 2 "

=

Since
G = DISPOw)plw— w5 < 078,
and
IP'w)], =707 > 072,

for all w € K; we obtain that |P'(w)|, = |P’(w1)|,. Let & be the closest root of
P (w) to the point w;. Then, using the Mean Value Theorem, we get that |w; —a|, <
|Pw)l,| P’ (wi)[,". By (32),

Wi —al, <y~ (33)

To estimate the distance between w; and the root of the polynomial we can also
apply Hensel’s lemma. Since |P(w1)|, < |P’ (w1)|120 we obtain that the sequence

Py(wn)

Prowy) Converges to the root o) of P that lies in Q, and satisfies the
1 Whn

Wn+1 = Wi —
inequality

wi —ail, < [P P/ )] < y2Q "4, (34)

Since 0 < y < 1 and v > O the right hand side of (33) is less than that of (34).
This implies that the root « belongs to the disc with center w of radius less than the
radius for the disc defined for the root «;. By Hensel’s lemma, we find that o} € Q,
but estimate (33) does not guarantee that o € QQ,. Suppose that o # o} and consider
the discriminant of the polynomial P € P,(Q)

DP)=a? [] (@—a)) (35)

1<i<j<n

From |o;|, < 1 follows that |@; — a;[, < 1. The product in (35) contains the
difference (o0 — o) for some i # j. We have D(P) € Z and |D(P)| < Q*'2.
Assume for the moment that D(P) # 0. Then |D(P)|, > |D(P)|™! > Q—2"+2,
From (33) and (34) we further obtain that

lor —a|p = |y —wi +wi —al, < max{|w; —ai]p, (w1 —af,} < y 2o
Therefore

Q72 L D(P)], < fon —afy, <yt (36)

Forv < 3 and Q > Qy the inequality Q" +2 < y_4Q_2”._.2+6V is a contradiction.
Hence, o1 = «. Thus, @ € Q, and |w; — «|, satisfies condition (33).
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In the case when D(P) = 0 one has to use the above argument with P replaced
by its factor, say P.If o and a; are conjugate over (Q one can take P to be the
minimal polynomials (over Z) of «. Otherwise, P is taken to be the product of the
minimal polynomials for o and «;.

By Taylor’s formula,

P'(@) = P'w) + Y _(( = DY PO wi) (@ —w) ™" 37)

i=2
Observe that

|G = DI PO W)yl —wif, " < Q7712
Then, by (33), we obtain

|P(@)l, = P (W), < PO

Therefore

ID(P)|, = lap [ 1 — o), |y [T (@i —ej)’], < [P(@)]} < Q7.
k=2 2<i<j=n
(38)
Inequality (33) implies that in the neighborhood of the point w; € B there exists a
root ¢ of the polynomial P with discriminant satisfying (38).

By (33), wy lies in the disc K(a,c(n)Q""!'%2"). Since w; is an arbitrary
point of B and 11,(B) > %u,(K), we must have > ¢(n) Q""" (K) discs
K(o,c(n)Q™"'%2) to cover B, where a is a root of some P € 7P,(Q)
satisfying (38). Since each polynomial P € P,(Q) has at most # roots we must
have > ¢(n) Q" t1~?" different polynomials P € P,(Q) satisfying (38), that is (31).

4 Close Conjugate Algebraic Numbers

Estimating the distance between conjugate algebraic numbers of degree n (in C) has
been investigated over the last 50 years. There are various upper and lower bounds
found. However, the exact answers are known in the case of degree 2 and 3 only.
Define k, (respectively «,;) to be the infimum of « such that the inequality

loy — | > H(ay)™

holds for arbitrary conjugate algebraic numbers (respectively algebraic integers)
a1 # oy of degree n with sufficiently large height H (o). Here and elsewhere
H («) denotes the height of an algebraic number «, which is the absolute height of
the minimal polynomial of « over Z. Clearly, «,; < «, for all n.
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In 1964 Mahler [37] proved the upper bound k, < n — 1, which is the best
estimate up to date. It can be easily shown that k, = 1 (see, e.g. [30]). Evertse [31]
proved that k3 = 2. In the case of algebraic integers k3 = 0 and «j > 3/2. The
latter has been proved by Bugeaud and Mignotte [30].

For n > 3 estimates for k,, are less satisfactory. At first Mignotte [38] showed that
Kn.k, > n/4 for all n > 3. Subsequently Bugeaud and Mignotte [29, 30] proved
that

Kn>n/2 when n > 4 is even,
ky > (n—1)/2 when n >4 iseven,
kn > (n+2)/4 when n > 5 isodd,
ky > (n+2)/4 when n>5 isodd.

In a recent paper Bugeaud and Dujella [28] have further shown that

n—2
4n—1)

kn =2 =+ (39

n
2
On taking an alternative route it has been shown in [14] that there are numerous
examples of close conjugate algebraic numbers:

Theorem 9 ([13,14]). For any n > 2 we have that

1
min{k,, kK, } = " ;— ) (40)

There are at least c(n)Q = pairs of conjugate algebraic numbers of degree n (or
conjugate algebraic integers of degree n + 1) oy and oy such that

_ntl
IO(] —Oézl = H(O(l) 3

The proof of Theorem 9 is based on solvability of system of Diophantine
inequalities for analytic functions [7] on the set of positive density on any interval
J C [—% %] The interval [—% %] is taken to simplify the calculation of constants.

As above p will denote Lebesgue measure in R while A will be a non-negative
constant. Given an interval J/ C R, |J| will denote the length of J. Also, B(x, p)
will denote the interval in R centered at x of radius p.

Letn > 2 be aninteger, A > 0,0 <v < land Q > 1.Let A, ,(Q, ) be the set
of algebraic numbers «; € R of degree n and height H(«;) satisfying

vQ < H(ey) <v7'0Q (41)
and

v Q_A < | —az| < p~! Q_)k for some a, € R, conjugate to «;. 42)
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Theorem 10. For any n > 2 there is a constant v > 0 depending on n only with
the following property. For any A satisfying

1
0<a<tt (43)
and any interval J C [—%, %],for all sufficiently large QO
m U  B.o" " Hns| =3l (44)

a1 €A, ,(Q.A)

Remark. The constant % in the right hand side of (44) can be replaced by any
positive number < 1.

Corollary 1. For any n > 2 there is a positive constant v depending on n only
such that for any A satisfying (43) and any interval J C [—%, %],for all sufficiently
large Q

#(An0(Q. 1) N T) 2 GO, (45)

The deduction of the corollary is rather simple. Indeed, if we have that
By, Q") N 1J # @ then oy € J provided that Q is sufficiently large.
Then, using (44) we obtain

#(A0(Q.2) N J)2Q 712 >

(4

o 4)
>ul B0 Hnir) = 4L

a1 €A, (Q.4)

whence (45) readily follows. Taking the largest possible value of A gives Theorem 9.

The key element of the proof of Theorem 10 is a far reaching generalisation of
the arguments around (17) shown earlier. The appropriate analogue of Theorem 6
is given by Theorem 5.8 from [7]. In order to give a formal statement we first
introduce some further notation. In what follows &, ..., &, € RT will be positive
real parameters satisfying the following conditions

£ <1 when0<i<m-—1,
&> 1 whenm <i <n, (46)

ég'() <eg, ég'n > g7l

for some 0 < m < n and ¢ > 0, where the constants in the Vinogradov’s symbol <
depend on n only. We will also assume that

[[6=1 (7)
i=0
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Lemma 3. For every n > 2 there are positive constants 8y and ¢y depending on n
only with the following property. For any interval J C [—%, %] there is a sufficiently
small ¢ = ¢(n,J) > 0 such that for any &, . .., &, satisfying (46) and (47) there is
a measurable set Gy C J satisfying

w(Gy) = 3|J| (48)

such that for every x € G there are n+1 linearly independent primitive irreducible
polynomials P € Z[x] of degree exactly n such that

§o&i < |PO(X)| < cofi  foralli =0,....n. (49)

We now reprocess the main steps of the proof of this statement. Let n > 2 and
let &, ..., &, be given and satisfy (46) and (47) for some m and €. Let J C [—%, %]
be any interval and x € J. Consider the system of inequalities

PO <& when0<i<n, 0)

where P(x) = a,x" + --- 4+ a;x + ag. Let By be the set of (ag,...,a,) € R*™!
satisfying (50). Note that B, is a convex body in R”*! symmetric about the origin.
By (47), the volume of B, equals 2! [T, i Letdg <A <--- < A, be the
successive minima of B,.. By Minkowski’s theorem for successive minima,

2n+l

< Ag...A,vol B, < 2"F1
n+n = VORPx =

Substituting the value of vol By gives Ag... A, < []/_,i!, whence we get that

A=A (51)

i=1

Further we define certain subsets of J that we will ‘avoid’. The avoidance will
alow us to find the polynomials P of interest as well as to establish the lower bounds
in (49). Let Exo(J, 1) be the set of x € J suchthat g = A¢(x) < §;, where §; < 1.
By the definition of A, there is a non-zero polynomial P € Z[x], degP < n
satisfying

PO <&i&  (0<i<n). (52)

Applying Lemma 3 from [7] gives

1 Si1&0 1% 2%
/"L(Eoo(-],gl)) << (1 + —amax { I_SO’ _} )8111-‘1-1 |J|’
81 81 En
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where §; > 0 is a constant. By (46), max{&, §, '} < e. Therefore j1(Eoo(J,81)) <

8‘1)‘/ ("H)lJ | provided that ¢ < §;. Then there is a sufficiently small §; depending on
n only such that

W(Eso(J.81) < ziglJ . (53)

By construction, for any x € J \ Ex(J, §;) we have that

Combining (51) and (54) gives

Ay < cr6 = 87" ] i, (55)

i=1

where cj¢ depends on n only. By the definition of A,, there are (n + 1) linearly
independent integer points a; = (aoj,...,a, ;) (0 < j < n) lying in the body
AnBy C ci6Bx. In other words, the polynomials P;(x) = a, ;jx" + --- + ao
(0 < j < n) satisfy the system of inequalities

PP <eiski (0<i<n). (56)

Let A = (a; j)o<i,j<n be the integer matrix composed from the integer points a;

(0 < j < n). Since all these points are contained in the body cj¢ B, we have that

|det A] < vol(B,) <« 1. Thatis |det A| < c;7 for some constant c;7 depending on
n only. By Bertrand’s postulate, choose a prime number p satisfying

c17 < p <27 (57)

Therefore, |det A| < p. Since ay,...,a, are linearly independent and integer,
|det A| > 1. Therefore, det A # 0 (mod p) and the following system

Ai=b (mod p) (58)
has a unique non-zero integer solution T = '(to,....tn) € [0,p— 1]"T!, where
b := (0,...,0,1) and ' denotes transposition. For [ = 0,...,n define 7; =

',...,1,0,...,0) € Z"*!' where the number of zeros is /. Since det A # 0
(mod p), foreveryl = 0, ..., n the following system

—b +7  (mod p) (59)

Ay = —

has a unique non-zero integer solutiony = ¥, € [0, p—1]""!. Define 7, := 7 + p¥,
(0 <1 < n). Consider the (n + 1) polynomials of the form
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Pi(x) =aux" + -+ +ap:= Z i Pi(x) € Z[x], (60)
i=0

where (110, ...,M.,) = 7;.Since 7y, ..., Fy, are linearly independent modulo p, the

At=b

vectors — +7; (I =0,...,n) are linearly independent modulo p. Hence, by
(59), the vectors yy, ..., Y, are linearly independent modulo p. Hence, yy, ..., ¥»
are linearly independent over Z. Since these vectors are integer, they are also linearly
independent over R. Therefore, the vectors 77, := 7 4+ py; (0 <[ < n) are linearly
independent over R. Hence the polynomials given by (60) are linearly independent
and so are non-zero.

Let 77 = 7;. Observe that A7 is the column ’ (ay, . . ., a,) of coefficients of P. By
construction, 7 = 7 (mod p) and therefore 7 is also a solution of (58). Then, since
b="0,...,0,1)and AT = b (mod p), we have thata, # 0 (mod p)anda; = 0
(mod p) fori = 0,...,n — 1. Furthermore, by (59), we have that A7 = b + pF;
(mod p?). Then, on substituting the values of b and 7, into this congruence one
readily verifies that @y = p (mod p?) and so ap # 0 (mod p?). By Eisenstein’s
criterion, P is irreducible.

Since both 7 and ¥, liein € [0, p — 1]"T! and 5 = 7 + p¥,, it is readily seen that
[n:| < p? for all i. Therefore, using (56) and (57) we obtain that

IPO(X) <coki  (0<i<n) (61)

with ¢g = 4(n + 1)C16C’%7. Without loss of generality we may assume that the
(n + 1) linearly independent polynomials P constructed above are primitive (that
is the coefficients of P are coprime) as otherwise the coefficients of P can be
divided by their greatest common divisor. Thus, P € Z[x] are primitive irreducible
polynomials of degree n which satisfy the right hand side of (49). The final part of
the proof is aimed at establishing the left hand side of (49).

Let 8o > 0 be a sufficiently small parameter depending on 7. For every j = 0,1
let E;(J, o) be the set of x € J such that there is a non-zero polynomial R € Z[x],
deg R < n satisfying

IRO@)| = 87y &, (62)
where §; ; equals 1 if i = j and O otherwise. Let 6; = 8gi’j cé_&'j & . Then
E;j(J,80) C Ax(J;60....,6,). In view of (46) and (47), Lemma 3 from [7] is
applicable provided that ¢ < min{c, !, co8o}. Then, by the same lemma,

1 O T 1
Ei:(J,8 14+ — —_— SocM)V/ D) g )
H(E;(J,00)) < ( + 5 max{ o 5000&} )( 0c) [J]

where §; > 0 is a constant. It is readily seen that the above maximum is < §; if
e < 5]806’0. Then
1(E;(J,80)) < 7] | (63)
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provided that & < min{8;8yco, ¢y ', co8o} and 8y = 8y(n) is sufficiently small. By
construction, for any x in the set G defined by

Gy =J\||JE;j(J.8) UEc(J.8)
j=0

we must necessarily have that | P (x)| > §& foralli = 0,...,n, where P is
the same as in (61). Therefore, the left hand side of (49) holds for all i. Finally,
observe that

w(Gy) = [T = u(Ei(J.80)) — W(Eoo(J. 1))
i=0

(53) & (63)
> = 0+2) Gl =311

The latter verifies (48) and completes the proof.
The following appropriate analogue of Lemma 3 for monic polynomials can be
obtained using the techniques of [27].

Lemma 4. For every n > 2 there are positive constants 8y and ¢y depending on n
only with the following property. For any interval J C [—%, %] there is a sufficiently
small ¢ = e(n, J) > 0 such that for any positive &, .. . , &, satisfying (46) and (47)
there is a measurable set Gy C J satisfying

w(Gy) = 31J| (64)

such that for every x € G there is an irreducible monic polynomials P € Z[x] of
degree n + 1 satisfying (49).

5 On the Distribution of Resultants

In this section we discuss the distribution of the resultant R(P;, P,) of polynomials
Py and P, from P,(Q). It is well known that

R(P., Py =ayb), [ (@i —8)). (65)
1<i<n
1<j<m
where oy, ..., a, are the roots of Py and By, ..., B, are the roots of P»; a, and by,

stand for the leading coefficients of P; and P, respectively, where n = deg P; and
m = deg P,. The resultant R(P;, P,) equals zero if and only if the polynomials
P, and P, have a common root. Since the resultant can be represented as the
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determinant of the Sylvester matrix of the coefficients of P, and P; it follows that
R is integer. Furthermore,
|R(Py, Py)| < Q" (66)

for Py, P, € P,(Q). Akin to the already discussed results for the distribution of
determinants we now state their analogue for resultants.

2(n+1)
Theorem 11 ([13]). Let m € Z with 0 < m < n. Then there exist > Q nTDim+2
pairs of different primitive irreducible polynomials (Py, P,) from P,(Q) of degree

n such that
2(n 1)

1< [R(Py, P)| < Q 7. (67)

Note that the left had side of (67) is obvious since P; and P, are primitive and
irreducible. There are a few interesting corollaries of the above theorem. For m = 0
we have at least ¢; Q" ! pairs (P, P,) that satisfy |R(Py, P;)| < Q""'. Form =
n — 1 we have at least czQ% pairs ( Py, P,) that satisfy |R(Py, P2)| < c(n).

To introduce the ideas of the proof we first consider the case m = 0. By Lemma 3
given in the previous section, for any x € G there are different irreducible
polynomials P; and P, of degree n and height <« Q such that

SOQ_n < |P,'()C1)| <cQ™i=12

68
5,0 < |P/(x1)] < 0. (6%)

Denote by «; the root of P; closest to x, and by f; the root of P, closest to x.
Using (68) and the Mean Value Theorem, one can easily find that

Ix—on| K 07" x =Bl < Q" (69)
By (69), we get |o; — B1| < Q. This together with (65) gives
|R(Py, P)| < Q" (70)

For a fixed pair of (o, B1) inequalities (69) are satisfied only for a set of x of
measure < Q7""!. Since u(Gy) > |J|, we must have > Q"T! diffract pairs
(a1, B1) with the above properties. Since each polynomial in P,(Q) has at most
n root, we must have > Q"' pairs of different irreducible polynomials (P;, P;)
satisfying (70).

Nowletl <m <n-—1.Letvg,...,v;y > —landvyg+vi+---+v, =n—m.
By Lemma 3, for any x € G there exists a pair of irreducible polynomials Py,
P, € Z[x] of degree < n such that for i = 1,2 we have that

8007 < |Pi(x)] <coQ7,
5007 < [PV x)| <00, 1<) <m, (71)
50 <PV ()| <00, m+1<].
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Let do, d, ..., dn+1 be a non-increasing sequence of real numbers such that
di =vj—1—vj, 1 =j <m, dpt1 =vn + 1. (72)
Order the roots «; with respect to x as follows:
[x —ap] < |x—ap < ... < |x —ayl-
We claim that the roots o; with 1 < j < m satisfy the following inequalities

|x —a;| K Q7= (I<j<m-—1)

(73)
|x — | € Q7L

The (j — 1)-th derivative of P(x) = a,(x —aq) -+ (x — ) is

n

PYD(x) = (j — 1)!a,,(]_[(x —a) D () (- ain,j)), (74)
i=j i

where the sum Zi/ involves all summands with factor (x — o, ), where i; < j.If
for i < j there is a sufficiently large number s; = ¢(n) such that

|x —oj] < s1]x — o] (75)
then (72) implies (73) for |[x — «; |. Otherwise, (74) implies

[PYUTD)] > [x —ay]| PV ()]

because in this case the summand (x; — «;)(x; — j4+1) - (x1 — o) in the above
expression for P~V (x;) dominates all the others. Now choose v 7 so that

vo=m4+1Dv, +mand vo=(k+ vy —kwks1 1 <k <m-—1). (76)

By the first equation of (76), we get

py =27 77
m+1

By the other equalities of (76) we have that

2vg—m + 1 (m—k+1)vy—k
_ Vi =

v__—ﬂ
m—1 m+ 1

— (1<k<m-=2). (78)
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Finally, by (77) and (78), we obtain

vo + 1
m+1

Vici—Vvi =V, +1= 0 <j<m). (79)
Taking into account the condition
votvi+-rt+vy=n—m,

by (77) and (78), we have

2n—m
Vo= ———.
m+ 2
Thus 100ts @1, &a, . . . , &y of Py lie within < Q~0FD@+D™" of » The same is

true for the roots 81, B, ..., B of P,. Hence

_ 2(m+Dm+1D
T(m) = l_[ loi —B;| < Q7 .
I1<i,j<m+1
Consequently
2(n—m—1)
|R(P1, P)| € Q m#2. (80)

It remains to give a lower bound for the number of pairs of (P;, P;) con-
structed above. Once again we use the fact that ay,...,a,, B1, B lie within
<« Q0o FDm+DT! of ¥ n other worlds x lies in the interval

APy, Py) = {x : | max{max{e; — x|, | — x[}} < Q00D+
1

Since x is an arbitrary point of G; and u(Gy) > |J|, we must have >
QUotDm+D™" gifferent pairs (P, P2) to cover G, with intervals A(Py, P,).

Substituting the value of vy we conclude that the number of different pairs (P, P,)
2(n+1)

as above is at least ¢(n) Q @FDn+D as required.
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