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1 Introduction

Throughout the paper �A stands for the Lebesgue measure of a measurable set
A � R and dim B denotes the Hausdorff dimension ofB . Given W N ! .0C1/,
let L. / denote the set of x 2 R such that

ˇ
ˇ
ˇ
ˇ
x � p

q

ˇ
ˇ
ˇ
ˇ
<
 .q/

q
(1)

has infinitely many solutions .p; q/ 2 Z � N. We begin by recalling two classical
results in metric theory of Diophantine approximation.
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Khintchine’s theorem [35]. Let  W N ! .0;C1/ be monotonic and I be an
interval in R. Then

�.I \ L. // D
8

<

:

0; if
P1

qD1  .q/ < 1;

�.I /; if
P1

qD1  .q/ D 1:
(2)

Jarnı́k–Besicovitch theorem [25, 34]. Let v > 1 and for q 2 N let  v.q/ D q�v.
Then

dim L. v/ D 2

v C 1
:

The condition that  is monotonic can be omitted from the convergence case of
Khintchine’s theorem, though it is vital in the case of divergence—see [12, 33, 42]
for a further discussion. By the turn of the millennium the above theorems were
generalised in various directions. One important direction of research has been
Diophantine approximation by algebraic numbers and/or integral polynomials,
which has eventually grown into an area of number theory known as Diophantine
approximation on manifolds.

Given a polynomial P D anx
n C � � � C a1x C a0 2 ZŒx�, the number H D

H.P/ D max0�i�n jaj j will be called the (naive) height of P . Given n 2 N and an
approximation function‰ W N ! .0;C1/, let Ln.‰/ be the set of x 2 R such that

jP.x/j < ‰.H.P // (3)

for infinitely many P 2 ZŒx� n f0g with degP � n. Note that L1.‰/ is essentially
the same as the set L.‰/ introduced above. Thus, the following statement represents
an analogue of Khintchine’s theorem for the case of polynomials.

Theorem 1. Letn 2 Nand‰ W N ! .0;C1/be monotonic. Then for any intervalI

�.I \ Ln.‰// D
8

<

:

0; if
P1

hD1 hn�1‰.h/ < 1;

�.I /; if
P1

hD1 hn�1‰.h/ D 1:
(4)

The case of convergence of Theorem 1 was proved in [17], the case of divergence
was proved in [4]. The condition that ‰ is monotonic can be omitted from the
case of convergence as shown in [6]. Theorem 1 was generalised to the case of
approximation in the fields of complex and p-adic numbers [9,19], to simultaneous
approximations in R�C�Qp [22,26] and to various other settings. When‰ D ‰w is
given by ‰w.q/ D q�w Theorem 1 reduces to a famous problem of Mahler [37, 41]
solved by Sprindžuk. The versions of Theorem 1 for monic polynomials were
established in [27, 40]. For the more general case of Diophantine approximation
on manifolds see, for example, [5, 7, 10, 15, 18, 20, 36, 42].
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The more delicate Jarnı́k-Besicovitch theorem was also generalised to the case
of polynomials and reads as follows.

Theorem 2. Let w > n and ‰w.q/ D q�w. Then

dim Ln.‰w/ D nC 1

w C 1
: (5)

The lower bound dim Ln.‰w/ � nC1
wC1 was obtained by Baker and Schmidt [2]

who also conjectured (5). The conjecture was proved in full generality in [16]. It
is worth noting that the generalised Baker-Schmidt problem for manifolds remains
an open challenging problem in dimensions n � 3; the case of n D 2 was settled
by R.C. Baker [3], see also [1, 8] and [7, 11, 43] for its analogue for simultaneous
rational approximations.

The various techniques used to prove Theorems 1 and 2 make a substantial use
of the properties of discriminants and resultants of polynomials and to some extent
the distribution of algebraic numbers. The main substance of this paper will be to
overview some relevant recent developments and techniques in this area.

2 Distribution of Discriminants of Integral Polynomials

The discriminant of a polynomial is a vital characteristic that crops up in various
problems of number theory. For example, they play an important role in Diophantine
equations, Diophantine approximation and algebraic number theory [41].

Let
P.x/ D anx

n C an�1xn�1 C � � � C a1x C a0

be a polynomial of degree n and ˛1; ˛2; : : : ; ˛n be its roots. By definition, the
discriminant of P is given by

D.P/ D a2n�2
n

Y

1�i<j�n
.˛i � ˛j /2: (6)

The following matrix formula for D.P/ is well known:

D.P/ D .�1/n.n�1/=2

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

1 an�1 an�2 : : : a0 0 : : :

0 an an�1 : : : a1 a0 : : :

: : :

0 : : : 0 an : : : a1 a0

n .n� 1/an�1 .n � 2/an�2 : : : 0 0 : : :

0 nan .n � 1/an�1 : : : a1 0 : : :

: : :

0 : : : : : : 0 nan : : : a1

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

:
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Thus, the discriminant is an integer polynomial of the coefficients of P . Conse-
quently, whenever P has rational integer coefficients the discriminantD.P/ is also
an integer. Furthermore,

jD.P/j > 1 for any P 2 ZŒx� with degP � 1 andD.P/ ¤ 0: (7)

Clearly, by (6), D.P/ ¤ 0 if and only if P has no multiple roots.
Fix n 2 N. Let Q > Q0.n/, where Q0.n/ is a sufficiently large number.

Let Pn.Q/ denote the set of non-zero polynomials P 2 ZŒx� with degP � n

and H.P/ � Q. Throughout cj , j D 0; 1; : : : will stand for positive constants
depending on n only. When it is not essential for calculations we will denote these
constants as c.n/. Also we will use the Vinogradov symbols: A � B meaning that
A � c.n/B . The expression A 	 B will mean B � A � B . Finally #S means the
cardinality of a finite set S . In what follows we consider polynomials such that

c1Q < H.P / � Q; 0 < c1 < 1: (8)

Using the matrix representation for D.P/ one readily verifies that jD.P/j <
c.n/Q2n�2 for P 2 Pn.Q/. Thus, by (7), we have that

1 � jD.P/j < c.n/Q2n�2 (9)

for polynomialsP 2 Pn.Q/ with no multiple roots. Further, it is easily verified that

#Pn.Q/ < 22nC2QnC1:

The latter together with (9) shows that Œ1; c.n/Q2n�2� contains intervals of length
c.n/Qn�3 that are not hit by the values of D.P/ for any P 2 Pn.Q/ whatsoever.
For n > 4 these intervals can be arbitrarily large. Thus, the discriminantsD.P/ are
rather sparse in the interval Œ1; c.n/Q2n�2�.

In order to understand the distribution of the values of D.P/ as P varies within
Pn.Q/, for each given v � 0 we introduce the following subclass of Pn.Q/:

Pn.Q; v/ D fP 2 Pn.Q/ W jD.P/j < Q2n�2�2v and (8) holdsg: (10)

These subclasses are of course dependant on the choice of c1, but for the moment
let us think of c1 as a fixed constant.

We initially discuss some simple techniques utilizing the theory of continued
fractions that enable one to obtain non-trivial lower bounds for #Pn.Q; v/ in terms
of Q and v.

The first observation concerns shifts of the variable x by integers. More precisely,
if m 2 Z then D.P.x// D D.P.x � m//. The height of P.x � m/ changes as m
varies. It is a simple matter to see that imposing (8) on P.x � m/ restricts m to at
most c2 values. Furthermore, (8) ensures that polynomials of relatively small height
cannot be in Pn.Q; v/.
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By (6), the fact that P belongs to Pn.Q; v/ with v > 0 implies that P must
necessarily have at least two close roots. This gives rise to a natural path to
constructing polynomialsP in Pn.Q; v/—we have to make sure that they have close
roots. We now describe a very special procedure that enables one to do exactly this.

Take n best approximations (convergents) pj
qj

to the number
p
2 with k C 1 �

j � k C n for some k 2 N. Define the polynomial

Tp
2.x/ D

kCnY

jDkC1
.qj x � pj /

of degree n. Clearly the above mentioned best approximations to
p
2 are the roots

of T . Also note that the height of T is � an, where

an D
Y

kC1�i�kCn
qi :

From the theory of continued fractions we know that qj � 3qj�1. Thus an �
c.n/qnkC1. On the other hand, we also know that for i < j

ˇ
ˇ
ˇ
ˇ

pi

qi
� pj

qj

ˇ
ˇ
ˇ
ˇ

�
ˇ
ˇ
ˇ
ˇ

pi

qi
� piC1
qiC1

ˇ
ˇ
ˇ
ˇ

D 1

qiqiC1
<
1

q2i
:

Therefore, we can estimate the following product

…1 D
Y

kC1�i<j�kCn

ˇ
ˇ
ˇ
ˇ

pi

qi
� pj

qj

ˇ
ˇ
ˇ
ˇ

2

�
Y

kC1�i�kCn�1

�
1

q2i

�2.kCn�i /
� q��

kC1;

where

� D 2

kCn�1X

iDkC1
2.k C n � i/ D 4

n�1X

`D1
` D 2n.n � 1/:

and see that

jD.Tp
2.x//j � a2n.n�1/

n …1 � q
2n.n�1/
kC1 q��

kC1 D 1:

This way we construct a polynomial of degree n with arbitrarily large height and
discriminant as small as c.n/. However, to get quantitative bounds for #Pn.Q; v/
more needs to be done. The following lemmas underpin the construction.

Lemma 1. Let I be an interval, I � R, c3 and c4 be positive constants such that
maxfc3; c4g � 1. Given a sufficiently large Q, let L1;Q.c3; c4/ be the set of x 2 I

such that the system of inequalities
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(

jqx � pj < c3Q�1;
1 � q � c4Q;

(11)

has a solution in coprime .p; q/ 2 Z � N. Then for c3c4 < �, 0 < � < 1
3
, we have

�L1;Q.c3; c4/ < 3�jI j:

Lemma 2. Let Mn.Q/ denote the set of x 2 I such that the following n systems of
inequalities

8

<

:

Q�1

3i .nC1/i < jqix � pi j < Q�1

3i�1.nC1/i�1

3i�2.nC 1/i�2Q � qi � 3i�1.nC 1/i�1Q; 1 � i � n

have solutions in f.pi ; qi /gniD1. Then �Mn.Q/ >
jI j
nC1 .

Lemma 1 is proved by summing up the measures of intervals given by the first
inequality of (11). Lemma 2 is a corollary of Lemma 1 (which should be applied n
times) and Minkowski’s theorem for convex bodies. See [21] for details.

Now take any point x1 2 Mn.Q/ and define

T1.x/ D
nY

jD1
.qj x � pj / and Q D c.n/

nY

iD1
qi ;

where .pj ; qj / arise from Lemma 2. Estimating jD.T1/j gives

jD.T1/j � Q2n�2 Y

1�i<j�n

ˇ
ˇ
ˇ
ˇ

pi

qi
� pj

qj

ˇ
ˇ
ˇ
ˇ

� 1:

We now use the fact that Mn.Q/ is a fairly large subset of I to produce other
polynomials with this property. For this purpose we choose points x2; x3; : : : 2
Mn.Q/ that are well separated. As a result we obtain

Theorem 3 ([21]). For any sufficiently largeQ there are c.n/Q
2
n polynomialsP 2

Pn.Q/ such that 1 � jD.P/j � c.n/.

The above ideas can be generalised to give a similar bound for the number of
polynomials P 2 Pn.Q/ such that jD.P/j lies in a neighborhood of some K with
c.n/ < K < c.n/Q2n�2.

Theorem 4 ([21]). For any � , 0 � � � 2n � 2, there are at least c.n/Q2=n

polynomials P 2 Pn.Q/ with discriminants satisfying the inequalities

c5Q
� < jD.P/j < c6Q�:
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We proceed by describing a more sophisticated method from [23] that produces
lower bounds for #Pn.Q; v/. The main result is as follows.

Theorem 5 ([23]). Let v 2 Œ0; 1
2
�. Then there are at least c.n/QnC1�2v polynomials

P 2 Pn.Q/ with discriminants

jD.P/j < Q2n�2�2v: (12)

Establishing upper bounds for #Pn.Q; v/ is likely a more difficult task. We
expect that if we impose some reasonable conditions on polynomialsP from Pn.Q/
(for example excluding reducible polynomials) then the lower bound given by
Theorem 5 would become sharp. We now state this formally as the following

Problem 1. Find reasonable constrains on polynomials P that chop a subclass
P 0
n.Q/ off Pn.Q/ such that #P 0.Q/ 	 #Pn.Q/ and for v 2 Œ0; 1

2
�

#fP 2 P 0
n.Q/ W jD.P/j < Q2.n�1�v/g 	 QnC1�2v: (13)

Obtaining the estimates of this ilk for a larger range of v is another problem.
We wish to note that (13) is false for Pn.Q/—see [32] for precise upper and lower
bounds in the case v < 3=5 and n D 3.

Problem 2. For each n find the function fn.v/, if it exists at all, such that for all
sufficiently largeQ one has the estimates

#fP 2 Pn.Q/ W jD.P/j < Q2.n�1�v/g 	 QnC1�fn.v/: (14)

It was shown in [32] that f3.v/ D 5
3
v for 0 � v � 3=5.

2.1 Sketch of the Proof of Theorem 5

Underlying the proof of Theorem 5 is the following result, which essentially plays
the role of Lemma 1 in this more general context. In what follows, given an interval
I � Œ�1=2; 1=2�, let Ln.I;Q; v; c7; c8/ be the set of x 2 I such that

( jP.x/j < c7Q�nCv;

jP 0.x/j < c8Q1�v
(15)

holds for some P 2 Pn.Q/.
Theorem 6. Let Q denote a sufficiently large number, v 2 Œ0; 1

2
� and let c7 and c8

be positive constants such that c7c8 < n�12�n�12. Then

�Ln.I;Q; v; c7; c8/ < jI j
4
:
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We now explain the role of Theorem 6 in establishing Theorem 5. Suppose that
P 2 ZŒx�, degP � n, janj > cH . If janj � cH then the polynomial can be
transformed into one with a large leading coefficient with the same discriminant—
see [41].

By Dirichlet’s pigeonhole principle, for any point x 2 I andQ > 1 the following
system

(

jP.x/j < Q�nCv;

jP 0.x/j < 8nQ1�v
(16)

holds for some polynomial P 2 Pn.Q/. Let � D n�22�n�15 and I D Œ�1=2; 1=2�.
Then, by Theorem 6, the set

B1 D I n Ln.I;Q; v; 1; �/[ Ln.I;Q; v; �; 8n/

satisfies �B1 > 1
2

for all sufficiently large Q. Hence for any x1 2 B1 the solution
P 2 Pn.Q/ to the system (16) must satisfy

(

�Q�nCv < jP.x1/j < Q�nCv;

�Q1�v < jP 0.x1/j < 8nQ1�v:
(17)

For all x in the interval jx � x1j < Q� 2
3 , the Mean Value Theorem gives

P 0.x/ D P 0.x1/C P 00.�1/.x � x1/ for some �1 2 Œx; x1�: (18)

The obvious estimate jP 00.�2/j < n3Q implies jP 00.�1/.x � x1/j < n3Q
1
3 . But

jP 0.x1/j 
 Q
1
2 for v � 1

2
and therefore, by (18) and the second inequality of (17),

for sufficiently largeQ we have that

�

2
Q1�v < 1

2
jP 0.x1/j < jP 0.x/j < 2jP 0.x1/j < 16nQ1�v:

There are four possible combinations for signs of P.x1/ and P 0.x1/. To illustrate
the ideas we consider the case when P1.x1/ < 0 and P 0

1.x1/ > 0—the others are
dealt with in a similar way. Our goal for now is to find a root of P close to x1. Once
again we appeal to the Mean Value Theorem:

P.x/ D P.x1/C P 0.�2/.x � x1/ for some �2 2 Œx1; x�: (19)

Write x D x1C	 and suppose that	 > 2��1Q�n�1C2v. IfP.x1/ < P.x1C	/ < 0
then the first inequality of (17) implies

0 < P.x1 C	/� P.x1/ < Q�nCv:
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On the other hand we have

jP 0.�2/	j > �

2
Q1�v2��1Q�n�1C2v D Q�nCv:

Thus in view of (19) we obtain a contradiction. This means that P1.x1 C 	/ > 0

and there is a real root ˛ of the polynomial P.x/ between x1 and x1 C 	. Once
again using the Mean Value Theorem and the estimates for P.x/ and P 0.˛/ we get

jx1 � ˛j < 2��1Q�n�1C2v D n2nC13Q�n�1C2v: (20)

Note that as well as ensuring that ˛, a root of P , is close to x1 inequalities (17)
keep ˛ sufficiently away from x1. We now explain this more formally. Again we
consider only one of the four possibilities: P.x1/ > 0, P 0.x1/ < 0. With x D
x1 C	1, by the Mean Value Theorem, we have

P.x/ D P.x1/C P 0.�3/	1; �3 2 Œx1; x�: (21)

If 	1 < 2�4n�1�Q�n�1C2v then in (21) the following holds: jP.x1/j > �Q�nCv

and jP 0.�3/	1j < �Q�nCv. It implies that the polynomial P.x/ cannot have any
root in the interval Œx1; x1 C	1� and therefore for any root ˛, we have

n�12�n�13Q�n�1C2v < jx � ˛j:
This time let ˛ be the root of P closest to x1. By the Mean Value Theorem,

P 0.˛/ D P 0.x1/C P 00.�4/.x1 � ˛/; �4 2 Œx; ˛�;
the estimate jP 00.�/j < n3Q and (20) for sufficiently largeQ we get

n�12�n�13Q1�v < jP 0.˛/j < 16nQ1�v:

The square of derivative is a factor of the discriminant of P . Taking into account
that for janj 	 H.P/ all roots of the polynomial are bounded, see [41]. Then we
can estimate the differences j˛i �˛j j, 2 � i < j � n, by a constant c.n/. This way
we obtain (12). Since �B1 � 1=2 and x1 is an arbitrary point in B1 we must have

 QnC1�2v different ˛’s that arise from (20). Since each polynomial P of degree
� n has at most n roots this gives 
 QnC1�2v polynomials in Pn.Q; v/ satisfying
(12)—see [13] for further details.

2.2 Sketch of the Proof of Theorem 6

The purpose of this section is to discuss the key ideas of the proof of Theorem 6
given in [13] as they may be useful in a variety of other tasks. We start by estimating
the measure of x such that the system
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(

jP.x/j < c11Q�nCv;

Q1�v1 < jP 0.x/j < c12Q1�v
(22)

is solvable for P 2 Pn.Q/, where v1 satisfies v < v1 � 1 and will be specified later.
We shall see that P 0.x/ can be replaced with P 0.˛/ in the second inequality

of (22), where ˛ denotes the root of P nearest to x. Indeed, using the Mean Value
Theorem gives

P 0.x/ D P 0.˛/C P 00.�1/.x � ˛/; �1 2 .˛; x/:

We apply the following inequality for jx � ˛j

jx � ˛j < n jP.x/j
jP 0.x/j ;

which was proved in [17, 41]. Then

jP 0.˛/j D jP 0.x/ � P 00.�5/.x � ˛/j; �5 2 .˛; x/:

As

jP 00.�1/.x � ˛/j � n3Qc11nQ
�n�1CvCv1 D c11n

4Q�nCvCv1

for sufficiently largeQ we obtain

3

4
Q1�v1 � 3

4
jP 0.x/j � jP 0.˛/j � 4

3
jP 0.x/j � 4

3
c12Q

1�v

and

3

4
jP 0.˛/j � jP 0.x/j � 4

3
jP 0.˛/j:

Therefore for sufficiently large Q inequality (22) implies

8

ˆ̂
<

ˆ̂
:

jP.x/j < c11Q�nCv

3
4
Q1�v1 < jP 0.˛/j < 4

3
c12Q

1�v

jaj j � Q:

(23)

Let L0
n.v/ denote the set of x, for which system (23) is solvable for P 2 Pn.Q/.

Now we are able to prove that �L0
n.v/ <

3
8
jI j.

Consider the intervals:

�1.P / D fx W jx � ˛j < 4

3
c11nQ

�nCvjP 0.˛/j�1g
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and

�2.P / D fx W jx � ˛j < c13Q�1CvjP 0.˛/j�1g:
The value of c13 will be specified below. Of course, each polynomial P has up to
n roots and potentially we have to consider all the different intervals �1.P / and
�2.P / that correspond to each P . However, this will only affect the constant in the
estimates. Thus, without loss of generality we confine ourselves to a single choice
of �1.P / and �2.P /. Obviously

j�1.P /j � 4
3
c11c

�1
13 nQ

�nC1j�2.P /j: (24)

Fix a vector b D .an; : : : ; a2/ of the coefficients of P . The polynomials P 2
Pn.Q/ with the same vector Nb form a subclass of Pn.Q/ which will be denoted by
P.b/.

The interval �2.P1/ with P1 2 P.b/ is called inessential if there is another
interval �2.P2/ with P2 2 P.b/ such that

j�2.P1/\ �2.P2/j > 1
2
j�2.P1/j:

Otherwise for any P2 2 P.b/ different from P1

j�2.P1/ \ �2.P2/j < 1
2
j�2.P1/j

and the interval �2.P2/ is called essential.

The case of essential intervals. In this case every point x 2 I belongs to at most
two essential intervals �2.P /. Hence for any vector b

X

P2P.b/
�2.P / is essential

j�2.P /j � 2jI j: (25)

The number of all possible vectors b is at most .2Q C 1/n�1 < 2nQn�1: Then,
by (24) and (25), we obtain

X

b

X

P2P.b/
�2.P / is essential

j�1.P /j < 4
3
c11c

�1
13 nQ

�nC12jI j2nQn�1 D n2nC2c11c�1
13 jI j:

Thus for c13 D n2nC5c11 the measure will be not larger than 1
8
jI j.

The case of inessential intervals. In this case we need to estimate the values of
jPj .x/j, j D 1; 2, for x 2 �2.P1/\ �2.P2/. By Taylor’s formula,

Pj .x/ D P 0
j .˛/.x � ˛/C 1

2
P 00
j .�6/.x � ˛/2 for some �6 2 .˛; x/;
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where ˛ is the root of either P1 or P2 as appropriate, and

P 0
j .x/ D P 0

j .˛/C P 00
j .�7/.x � ˛/ for some �7 2 .˛; x/:

The second summand is estimated by

jP 00.�6/.x � ˛/2j � 2n3c213Q
�3C2vC2v1 ;

while

jP 0.˛/.x � ˛/j < c13Q�1Cv:

As 2v1 < 2 � v for an appropriate choice of v1 < 3
4

we obtain

jPj .x/j � 7
6
c13Q

�1Cv; j D 1; 2: (26)

Similarly we obtain the following estimate for P 0
j .x/ when v1 � 2 � 2v :

jP 0
j .x/j � 4

3
c12Q

1�v; j D 1; 2: (27)

Let K.x/ D P2.x/ � P1.x/ 2 ZŒx�. Obviously K.x/ is non-zero and has the
formK.x/ D b1x C b0. By (26) and (27), we readily obtain that

jb1x C b0j < 8
3
c13Q

�1Cv (28)

and

jb1j D jK 0.x/j < 8
3
c12Q

1�v: (29)

Thus, the union of inessential intervals can be covered by intervals 	.b1; b0/ �
I given by (28). For fixed b0 and b1 the length of 	.b1; b0/ is bounded by
16
3
c13Q

�1Cvb�1
1 . Given that x 2 I and (28) is satisfied we conclude that b0 takes at

most jI jjb1j C 2 values. Then

X

b0

j	.b1; b0/j � 16
3
c13Q

�1Cvb�1
1 .jI jjb1j C 2/ < 6c13Q

�1CvjI j: (30)

Using (29) we further obtain that

X

b1

X

b0

j	.b1; b0/j � 25c12c13Q
1�v�1CvjI j D n2nC8c11c12jI j D 1

8
jI j

for we have that c11c12 < n�12�n�11. Finally, combining the estimates for essential
and inessential intervals we obtain 1

4
jI j as an upper bound for their total measure.

The case v � v1 can be deal with using methods described in [17] and [36].
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3 Divisibility of Discriminants by Prime Powers

Let p be a prime number. Throughout �p denotes the Haar measure on Qp

normalized to have �p.Zp/ D 1. In this section we consider the divisibility of
the discriminant D.P/, P 2 Pn.Q/ by prime powers pl . This natural arithmetical
question has usual interpretation in terms of Diophantine approximation in Qp, the
field of p-adic number. Indeed, pl jD.P/ if and only if jD.P/jp � p�l , where j � jp
stands for the p-adic norm. Thus, the question we outlined above becomes a p-adic
analogue of the problems we have considered in the previous section. Naturally, we
proceed with the following p-adic analogue of Theorem 5.

Theorem 7 ([24]). Let v 2 Œ0; 1
2
�. Then there are at least c.n/QnC1�2v polynomials

P 2 Pn.Q/ with

jD.P/jp < Q�2v: (31)

The proof of this result relies on the following p-adic version of Theorem 6.

Theorem 8 ([24]). LetQ denote a sufficiently large number and c14 and c15 denote
constants depending only on n. Also, let K be a disc in Qp. Assume that c14c15 <
2�n�11p�8 and v 2 Œ0; 1

2
�. If Mn;Q.c14; c15/ is the set of w 2 K � Qp such that the

system of inequalities
(

jP.w/jp < c14Q�n�1Cv;

jP 0.w/jp < c15Q�v

has solutions in polynomials P 2 Pn.Q/, then

�p.Mn;Q.c14; c15// <
1
4
�p.K/:

The techniques used in the proof of this theorem are essentially the p-adic
analogues of those used for establishing Theorem 6 and draw on the estimates
obtained in [39]—see [24] for more details. Skipping any explanation of the proof
of Theorem 8, we now show how it is used for establishing Theorem 7.

Let K be a disc in Qp, Mn;Q be the same as in Theorem 8, � D p�112�n�11 and

B D K n �

Mn;Q.�; p
3/[Mn;Q.1; �/

�

:

Then, by Theorem 8, �p.B/ > 1
2
�p.K/. Take any w1 2 B . Then, using Dirichlet’s

pigeonhole principle we can find a polynomial P 2 Pn.Q/ such that jP.w1/jp <
Q�n�1Cv and jP 0.w1/jp < p3Q�v. Since w1 2 B we have that

(

�Q�n�1Cv � jP.w1/jp < Q�n�1Cv;

�Q�v � jP 0.w1/jp < p3Q�v:
(32)
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Let w 2 K1 D fw 2 Qp W jw � w1jp < Q� 3
4 g. By Taylor’s formula

P 0.w/ D P 0.w1/C
nX

iD2

P .i/.w1/.w � w1/i�1

.i � 1/Š :

Since

j.i � 1/Šj�1p jP .i/.w1/jpjw � w1ji�1p � Q� 3
4 ;

and

jP 0.w/jp > �Q�v 
 Q� 1
2 ;

for all w 2 K1 we obtain that jP 0.w/jp D jP 0.w1/jp . Let ˛ be the closest root of
P.w/ to the point w1. Then, using the Mean Value Theorem, we get that jw1�˛jp �
jP.w1/jpjP 0.w1/j�1p . By (32),

jw1 � ˛jp � ��1Q�n�1C2v: (33)

To estimate the distance between w1 and the root of the polynomial we can also
apply Hensel’s lemma. Since jP.w1/jp < jP 0.w1/j2p we obtain that the sequence

wnC1 D wn � P1.wn/
P 0

1 .wn/
converges to the root ˛1 of P that lies in Qp and satisfies the

inequality

jw1 � ˛1jp � jP.w1/jpjP 0.w1/j�2p � ��2Q�n�1C3v: (34)

Since 0 < � < 1 and v > 0 the right hand side of (33) is less than that of (34).
This implies that the root ˛ belongs to the disc with center w1 of radius less than the
radius for the disc defined for the root ˛1. By Hensel’s lemma, we find that ˛1 2 Qp

but estimate (33) does not guarantee that ˛ 2 Qp. Suppose that ˛ ¤ ˛1 and consider
the discriminant of the polynomial P 2 Pn.Q/

D.P / D a2n�2
n

Y

1�i<j�n
.˛i � ˛j /2: (35)

From j˛j jp � 1 follows that j˛i � ˛j jp � 1. The product in (35) contains the
difference .˛ � ˛1/ for some i ¤ j . We have D.P/ 2 Z and jD.P/j � Q2n�2.
Assume for the moment that D.P/ ¤ 0. Then jD.P/jp � jD.P/j�1 
 Q�2nC2.
From (33) and (34) we further obtain that

j˛1 � ˛jp D j˛1 � w1 C w1 � ˛jp � maxfjw1 � ˛1jp; jw1 � ˛jpg � ��2Q�n�1C3v:

Therefore

Q�2nC2 � jD.P/jp � j˛1 � ˛j2p < ��4Q�2n�2C6v: (36)

For v � 1
2

andQ > Q0 the inequalityQ�2nC2 � ��4Q�2n�2C6v is a contradiction.
Hence, ˛1 D ˛. Thus, ˛ 2 Qp and jw1 � ˛jp satisfies condition (33).
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In the case when D.P/ D 0 one has to use the above argument with P replaced
by its factor, say QP . If ˛ and ˛1 are conjugate over Q one can take QP to be the
minimal polynomials (over Z) of ˛. Otherwise, QP is taken to be the product of the
minimal polynomials for ˛ and ˛1.

By Taylor’s formula,

P 0.˛/ D P 0.w1/C
nX

iD2
..i � 1/Š/�1P .i/.w1/.˛ � w1/

i�1: (37)

Observe that

j.i � 1/Šj�1p jP .i/.w1/jpj˛ � w1ji�1p � Q�n�1C2v:

Then, by (33), we obtain

jP 0.˛/jp D jP 0.w1/jp < p3Q�v:

Therefore

jD.P/jp D ja2n
nY

kD2
.˛1 � ˛k/

2jp ja2n�4
n

Y

2�i<j�n
.˛i � ˛j /2jp � jP 0.˛/j2p � Q�2v:

(38)

Inequality (33) implies that in the neighborhood of the point w1 2 B there exists a
root ˛ of the polynomial P with discriminant satisfying (38).

By (33), w1 lies in the disc K.˛; c.n/Q�n�1C2v/. Since w1 is an arbitrary
point of B and �p.B/ � 1

2
�p.K/, we must have � c.n/QnC1�2v�p.K/ discs

K.˛; c.n/Q�n�1C2v/ to cover B , where ˛ is a root of some P 2 Pn.Q/
satisfying (38). Since each polynomial P 2 Pn.Q/ has at most n roots we must
have � c.n/QnC1�2v different polynomialsP 2 Pn.Q/ satisfying (38), that is (31).

4 Close Conjugate Algebraic Numbers

Estimating the distance between conjugate algebraic numbers of degree n (in C) has
been investigated over the last 50 years. There are various upper and lower bounds
found. However, the exact answers are known in the case of degree 2 and 3 only.
Define 
n (respectively 
�

n ) to be the infimum of 
 such that the inequality

j˛1 � ˛2j > H.˛1/�


holds for arbitrary conjugate algebraic numbers (respectively algebraic integers)
˛1 6D ˛2 of degree n with sufficiently large height H.˛1/. Here and elsewhere
H.˛/ denotes the height of an algebraic number ˛, which is the absolute height of
the minimal polynomial of ˛ over Z. Clearly, 
�

n � 
n for all n.
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In 1964 Mahler [37] proved the upper bound 
n � n � 1, which is the best
estimate up to date. It can be easily shown that 
2 D 1 (see, e.g. [30]). Evertse [31]
proved that 
3 D 2. In the case of algebraic integers 
�

2 D 0 and 
�
3 � 3=2. The

latter has been proved by Bugeaud and Mignotte [30].
For n > 3 estimates for 
n are less satisfactory. At first Mignotte [38] showed that


n; 

�
n � n=4 for all n � 3. Subsequently Bugeaud and Mignotte [29, 30] proved

that

n � n=2 when n � 4 is even,


�
n � .n � 1/=2 when n � 4 is even,


n � .nC 2/=4 when n � 5 is odd,


�
n � .nC 2/=4 when n � 5 is odd.

In a recent paper Bugeaud and Dujella [28] have further shown that


n � n

2
C n � 2

4.n� 1/
: (39)

On taking an alternative route it has been shown in [14] that there are numerous
examples of close conjugate algebraic numbers:

Theorem 9 ([13, 14]). For any n � 2 we have that

minf
n; 
�
nC1g � nC 1

3
: (40)

There are at least c.n/Q
nC1
3 pairs of conjugate algebraic numbers of degree n .or

conjugate algebraic integers of degree nC 1/ ˛1 and ˛2 such that

j˛1 � ˛2j 	 H.˛1/
� nC1

3

The proof of Theorem 9 is based on solvability of system of Diophantine
inequalities for analytic functions [7] on the set of positive density on any interval
J � Œ� 1

2
; 1
2
�. The interval Œ� 1

2
; 1
2
� is taken to simplify the calculation of constants.

As above � will denote Lebesgue measure in R while � will be a non-negative
constant. Given an interval J � R, jJ j will denote the length of J . Also, B.x; �/
will denote the interval in R centered at x of radius �.

Let n � 2 be an integer, � � 0, 0 < � < 1 andQ > 1. Let An;�.Q; �/ be the set
of algebraic numbers ˛1 2 R of degree n and heightH.˛1/ satisfying

�Q � H.˛1/ � ��1Q (41)

and

� Q�� � j˛1 � ˛2j � ��1Q�� for some ˛2 2 R, conjugate to ˛1: (42)
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Theorem 10. For any n � 2 there is a constant � > 0 depending on n only with
the following property. For any � satisfying

0 < � � nC 1

3
(43)

and any interval J � Œ� 1
2
; 1
2
�, for all sufficiently large Q

�

0

@
[

˛12An;�.Q;�/
B.˛1;Q

�n�1C2�/\ J

1

A � 3
4
jJ j: (44)

Remark. The constant 3
4

in the right hand side of (44) can be replaced by any
positive number < 1.

Corollary 1. For any n � 2 there is a positive constant � depending on n only
such that for any � satisfying (43) and any interval J � Œ� 1

2
; 1
2
�, for all sufficiently

large Q
#
�

An;�.Q; �/\ J
� � 1

8
QnC1�2�jJ j: (45)

The deduction of the corollary is rather simple. Indeed, if we have that
B.˛1;Q

�n�1C2�/ \ 1
2
J 6D ¿ then ˛1 2 J provided that Q is sufficiently large.

Then, using (44) we obtain

#
�

An;�.Q; �/\ J
�

2Q�n�1C2� �

� �

0

@
[

˛12An;�.Q;�/
B.˛1;Q

�n�1C2�/\ 1
2
J

1

A
(44)� 1

4
jJ j;

whence (45) readily follows. Taking the largest possible value of � gives Theorem 9.
The key element of the proof of Theorem 10 is a far reaching generalisation of

the arguments around (17) shown earlier. The appropriate analogue of Theorem 6
is given by Theorem 5.8 from [7]. In order to give a formal statement we first
introduce some further notation. In what follows �0; : : : ; �n 2 R

C will be positive
real parameters satisfying the following conditions

�i � 1 when 0 � i � m � 1;

�i 
 1 when m � i � n;

�0 < "; �n > "
�1

(46)

for some 0 < m � n and " > 0, where the constants in the Vinogradov’s symbol �
depend on n only. We will also assume that

nY

iD0
�i D 1: (47)
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Lemma 3. For every n � 2 there are positive constants ı0 and c0 depending on n
only with the following property. For any interval J � Œ� 1

2
; 1
2
� there is a sufficiently

small " D ".n; J / > 0 such that for any �0; : : : ; �n satisfying (46) and (47) there is
a measurable set GJ � J satisfying

�.GJ / � 3
4
jJ j (48)

such that for every x 2 GJ there are nC1 linearly independent primitive irreducible
polynomials P 2 ZŒx� of degree exactly n such that

ı0�i � jP .i/.x/j � c0�i for all i D 0; : : : ; n : (49)

We now reprocess the main steps of the proof of this statement. Let n � 2 and
let �0; : : : ; �n be given and satisfy (46) and (47) for some m and ". Let J � Œ� 1

2
; 1
2
�

be any interval and x 2 J . Consider the system of inequalities

jP .i/.x/j � �i when 0 � i � n ; (50)

where P.x/ D anx
n C � � � C a1x C a0. Let Bx be the set of .a0; : : : ; an/ 2 R

nC1
satisfying (50). Note that Bx is a convex body in R

nC1 symmetric about the origin.
By (47), the volume of Bx equals 2nC1Qn

iD1 i Š�1. Let �0 � �1 � � � � � �n be the
successive minima of Bx . By Minkowski’s theorem for successive minima,

2nC1

.nC 1/Š
� �0 : : : �n volBx � 2nC1:

Substituting the value of volBx gives �0 : : : �n � Qn
iD1 i Š, whence we get that

�n � ��n
0

nY

iD1
i Š: (51)

Further we define certain subsets of J that we will ‘avoid’. The avoidance will
alow us to find the polynomialsP of interest as well as to establish the lower bounds
in (49). LetE1.J; ı1/ be the set of x 2 J such that �0 D �0.x/ � ı1, where ı1 < 1.
By the definition of �0, there is a non-zero polynomial P 2 ZŒx�, degP � n

satisfying

jP .i/.x/j � ı1�i .0 � i � n/: (52)

Applying Lemma 3 from [7] gives

�.E1.J; ı1// �
�

1C 1

ı˛J
max

�
ı1�0

ı1
;
1

�n

� ˛�

ı
˛

nC1

1 jJ j;
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where ıJ > 0 is a constant. By (46), maxf�0; ��1
n g < ". Therefore�.E1.J; ı1// �

ı
˛=.nC1/
1 jJ j provided that " < ıJ . Then there is a sufficiently small ı1 depending on
n only such that

�.E1.J; ı1// � 1
4nC8 jJ j: (53)

By construction, for any x 2 J n E1.J; ı1/ we have that

�0 � ı1: (54)

Combining (51) and (54) gives

�n � c16 WD ı�n
1

nY

iD1
i Š; (55)

where c16 depends on n only. By the definition of �n, there are .n C 1/ linearly
independent integer points aj D .a0;j ; : : : ; an;j / .0 � j � n/ lying in the body
�nBx � c16Bx . In other words, the polynomials Pj .x/ D an;j x

n C � � � C a0;j
.0 � j � n/ satisfy the system of inequalities

jP .i/
j .x/j � c16�i .0 � i � n/: (56)

Let A D .ai;j /0�i;j�n be the integer matrix composed from the integer points aj
.0 � j � n/. Since all these points are contained in the body c16Bx , we have that
j det Aj � vol.Bx/ � 1. That is j det Aj < c17 for some constant c17 depending on
n only. By Bertrand’s postulate, choose a prime number p satisfying

c17 � p � 2c17: (57)

Therefore, j det Aj < p. Since a0; : : : ; an are linearly independent and integer,
j det Aj � 1. Therefore, det A 6� 0 .mod p/ and the following system

At � b .mod p/ (58)

has a unique non-zero integer solution t D t .t0; : : : ; tn/ 2 Œ0; p � 1�nC1, where
b WD t .0; : : : ; 0; 1/ and t denotes transposition. For l D 0; : : : ; n define rl D
t .1; : : : ; 1; 0; : : : ; 0/ 2 Z

nC1, where the number of zeros is l . Since det A 6� 0

.mod p/, for every l D 0; : : : ; n the following system

A� � �At � b
p

C rl .mod p/ (59)

has a unique non-zero integer solution � D �l 2 Œ0; p�1�nC1. Define 
l WD tCp�l
(0 � l � n). Consider the .nC 1/ polynomials of the form
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Pl.x/ D anx
n C � � � C a0 WD

nX

iD0

l;iPi .x/ 2 ZŒx�; (60)

where .
l;0; : : : ; 
l;n/ D 
l . Since r0; : : : ; rn are linearly independent modulo p, the

vectors �At�b
p

C rl (l D 0; : : : ; n) are linearly independent modulo p. Hence, by
(59), the vectors �0; : : : ; �n are linearly independent modulo p. Hence, �0; : : : ; �n
are linearly independent overZ. Since these vectors are integer, they are also linearly
independent over R. Therefore, the vectors 
l WD t C p�l (0 � l � n) are linearly
independent over R. Hence the polynomials given by (60) are linearly independent
and so are non-zero.

Let 
 D 
l . Observe that A
 is the column t .a0; : : : ; an/ of coefficients of P . By
construction, 
 � t .mod p/ and therefore 
 is also a solution of (58). Then, since
b D t .0; : : : ; 0; 1/ andA
 � b .mod p/, we have that an 6� 0 .mod p/ and ai � 0

.mod p/ for i D 0; : : : ; n � 1. Furthermore, by (59), we have that A
 � b C prl

.mod p2/. Then, on substituting the values of b and rl into this congruence one
readily verifies that a0 � p .mod p2/ and so a0 6� 0 .mod p2/. By Eisenstein’s
criterion, P is irreducible.

Since both t and �l lie in 2 Œ0; p � 1�nC1 and 
 D t Cp�l , it is readily seen that
j
i j � p2 for all i . Therefore, using (56) and (57) we obtain that

jP .i/.x/j � c0�i .0 � i � n/ (61)

with c0 D 4.n C 1/c16c
2
17. Without loss of generality we may assume that the

.n C 1/ linearly independent polynomials P constructed above are primitive (that
is the coefficients of P are coprime) as otherwise the coefficients of P can be
divided by their greatest common divisor. Thus, P 2 ZŒx� are primitive irreducible
polynomials of degree n which satisfy the right hand side of (49). The final part of
the proof is aimed at establishing the left hand side of (49).

Let ı0 > 0 be a sufficiently small parameter depending on n. For every j D 0; n

let Ej .J; ı0/ be the set of x 2 J such that there is a non-zero polynomialR 2 ZŒx�,
degR � n satisfying

jR.i/.x/j � ı
ıi;j
0 c

1�ıi;j
0 �i ; (62)

where ıi;j equals 1 if i D j and 0 otherwise. Let �i D ı
ıi;j
0 c

1�ıi;j
0 �i . Then

Ej .J; ı0/ � An.J I �0; : : : ; �n/. In view of (46) and (47), Lemma 3 from [7] is
applicable provided that " < minfc�1

0 ; c0ı0g. Then, by the same lemma,

�.Ej .J; ı0// �
�

1C 1

ı˛J
max

�
c0�0

cn0 ı0
;

1

ı0c0�n

� ˛�

.ı0c
n
0 /
1=.nC1/jJ j ;

where ıJ > 0 is a constant. It is readily seen that the above maximum is � ıJ if
" < ıJ ı0c0. Then

�.Ej .J; ı0// � 1
4nC8 jJ j (63)
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provided that " < minfıJ ı0c0; c�1
0 ; c0ı0g and ı0 D ı0.n/ is sufficiently small. By

construction, for any x in the set GJ defined by

GJ WD J n
0

@

n[

jD0
Ej .J; ı0/ [E1.J; ı1/

1

A

we must necessarily have that jP .i/.x/j � ı0�i for all i D 0; : : : ; n, where P is
the same as in (61). Therefore, the left hand side of (49) holds for all i . Finally,
observe that

�.GJ / � jJ j �
nX

iD0
�.Ei .J; ı0//� �.E1.J; ı1//

(53) & (63)� jJ j � .nC 2/ 1
.4nC8/ jJ j D 3

4
jJ j:

The latter verifies (48) and completes the proof.
The following appropriate analogue of Lemma 3 for monic polynomials can be

obtained using the techniques of [27].

Lemma 4. For every n � 2 there are positive constants ı0 and c0 depending on n
only with the following property. For any interval J � Œ� 1

2
; 1
2
� there is a sufficiently

small " D ".n; J / > 0 such that for any positive �0; : : : ; �n satisfying (46) and (47)
there is a measurable set GJ � J satisfying

�.GJ / � 3
4
jJ j (64)

such that for every x 2 GJ there is an irreducible monic polynomials P 2 ZŒx� of
degree nC 1 satisfying (49).

5 On the Distribution of Resultants

In this section we discuss the distribution of the resultant R.P1; P2/ of polynomials
P1 and P2 from Pn.Q/. It is well known that

R.P1; P2/ D amn b
n
m

Y

1�i�n
1�j�m

.˛i � ˇj /; (65)

where ˛1; : : : ; ˛n are the roots of P1 and ˇ1; : : : ; ˇm are the roots of P2; an and bm
stand for the leading coefficients of P1 and P2 respectively, where n D degP1 and
m D degP2. The resultant R.P1; P2/ equals zero if and only if the polynomials
P1 and P2 have a common root. Since the resultant can be represented as the
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determinant of the Sylvester matrix of the coefficients of P1 and P2 it follows that
R is integer. Furthermore,

jR.P1; P2/j � Q2n (66)

for P1; P2 2 Pn.Q/. Akin to the already discussed results for the distribution of
determinants we now state their analogue for resultants.

Theorem 11 ([13]). Let m 2 Z with 0 � m < n. Then there exist 
 Q
2.nC1/

.mC1/.mC2/

pairs of different primitive irreducible polynomials .P1; P2/ from Pn.Q/ of degree
n such that

1 � jR.P1; P2/j � Q
2.n�m�1/
mC2 : (67)

Note that the left had side of (67) is obvious since P1 and P2 are primitive and
irreducible. There are a few interesting corollaries of the above theorem. Form D 0

we have at least c1QnC1 pairs .P1; P2/ that satisfy jR.P1; P2/j � Qn�1. For m D
n � 1 we have at least c2Q

2
n pairs .P1; P2/ that satisfy jR.P1; P2/j � c.n/.

To introduce the ideas of the proof we first consider the casem D 0. By Lemma 3
given in the previous section, for any x 2 GJ there are different irreducible
polynomials P1 and P2 of degree n and height � Q such that

ı0Q
�n < jPi.x1/j < c0Q�n; i D 1; 2

ı0Q < jP 0
i .x1/j < c0Q;

(68)

Denote by ˛1 the root of P1 closest to x, and by ˇ1 the root of P2 closest to x.
Using (68) and the Mean Value Theorem, one can easily find that

jx � ˛1j � Q�n�1; jx � ˇ1j � Q�n�1: (69)

By (69), we get j˛1 � ˇ1j � Q�n�1. This together with (65) gives

jR.P1; P2/j � Qn�1: (70)

For a fixed pair of .˛1; ˇ1/ inequalities (69) are satisfied only for a set of x of
measure � Q�n�1. Since �.GJ / 
 jJ j, we must have 
 QnC1 diffract pairs
.˛1; ˇ1/ with the above properties. Since each polynomial in Pn.Q/ has at most
n root, we must have 
 QnC1 pairs of different irreducible polynomials .P1; P2/
satisfying (70).

Now let 1 � m � n � 1. Let v0; : : : ; vm � �1 and v0 C v1 C � � � C vm D n �m.
By Lemma 3, for any x 2 GJ there exists a pair of irreducible polynomials P1,
P2 2 ZŒx� of degree � n such that for i D 1; 2 we have that

ı0Q
�v0 � jPi.x/j � c0Q

�v0 ;

ı0Q
�vj � jP .j /

i .x/j � c0Q
�vj ; 1 � j � m;

ı0Q � jP .j /
i .x/j � c0Q; mC 1 � j:

(71)
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Let d0; d1; : : : ; dmC1 be a non-increasing sequence of real numbers such that

dj D vj�1 � vj ; 1 � j � m; dmC1 D vm C 1: (72)

Order the roots ˛i with respect to x as follows:

jx � ˛1j � jx � ˛2j � : : : � jx � ˛nj:

We claim that the roots ˛j with 1 � j � m satisfy the following inequalities

jx � ˛j j � Q�vj�1Cvj ; .1 � j � m � 1/

jx � ˛mj � Q�vm�1:
(73)

The .j � 1/-th derivative of P.x/ D an.x � ˛1/ � � � .x � ˛n/ is

P .j�1/.x/ D .j � 1/Šan
� nY

iDj
.x � ˛i /C

X

ij

.x � ˛i1/ � � � � � .x � ˛in�j /
	

; (74)

where the sum
P

ij
involves all summands with factor .x � ˛ij /, where ij < j . If

for i < j there is a sufficiently large number s1 D c.n/ such that

jx � ˛j j < s1jx � ˛i j (75)

then (72) implies (73) for jx � ˛j j. Otherwise, (74) implies

jP .j�1/.x/j 
 jx � ˛j jjP .j /.x/j

because in this case the summand .x1 � ˛j /.x1 � ˛jC1/ � � � .x1 � ˛n/ in the above
expression for P .j�1/.x1/ dominates all the others. Now choose vj so that

v0 D .mC 1/vm Cm and v0 D .k C 1/vk � kvkC1 .1 � k � m � 1/: (76)

By the first equation of (76), we get

vm D v0 �m
mC 1

: (77)

By the other equalities of (76) we have that

vm�1 D 2v0 �mC 1

mC 1
; vk D .m � k C 1/v0 � k

mC 1
.1 � k � m � 2/: (78)
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Finally, by (77) and (78), we obtain

vj�1 � vj D vm C 1 D v0 C 1

mC 1
.0 � j � m/: (79)

Taking into account the condition

v0 C v1 C � � � C vm D n �m;

by (77) and (78), we have

v0 D 2n �m
mC 2

:

Thus roots ˛1; ˛2; : : : ; ˛m of P1 lie within � Q�.v0C1/.mC1/�1 of x. The same is
true for the roots ˇ1; ˇ2; : : : ; ˇm of P2. Hence

T .m/ D
Y

1�i;j�mC1
j˛i � ˇj j � Q� 2.nC1/.mC1/

mC2 :

Consequently

jR.P1; P2/j � Q
2.n�m�1/
mC2 : (80)

It remains to give a lower bound for the number of pairs of .P1; P2/ con-
structed above. Once again we use the fact that ˛1; : : : ; ˛m; ˇ1; ˇm lie within
� Q�.v0C1/.mC1/�1 of x. In other worlds x lies in the interval

	.P1; P2/ D ˚

x W j max
i

fmaxf˛i � xj; jˇi � xjgg � Q�.v0C1/.mC1/�1
:

Since x is an arbitrary point of GJ and �.GJ / 
 jJ j, we must have 

Q.v0C1/.mC1/�1 different pairs .P1; P2/ to cover GJ with intervals 	.P1; P2/.
Substituting the value of v0 we conclude that the number of different pairs .P1; P2/

as above is at least c.n/Q
2.nC1/

.mC1/.mC2/ as required.
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