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Abstract This note gives a survey of some results on limit theorems for random
matrices that have been obtained during the last 10 years in the joint research of
the author and F. Götze. We consider the rate of convergence to the semi-circle law
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1 Introduction

In this note we describe some results obtained jointly with F. Götze in the
last 10 years. We consider limit theorems for Wigner matrices (Wigner matrix
means symmetric real matrix or Hermitian matrix with independent entries up to
symmetry), limit theorems for sample covariance matrices and limit theorems for
powers and products of independent Ginibre-Girko matrices (that means matrices
with all independent entries without any symmetry). We consider results about
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the rate of convergence to the semi-circular law and Marchenko–Pastur law for
the empirical spectral distribution function of Wigner matrices and of sample
covariance matrices, respectively. For Girko–Ginibre matrices and their powers
and products we discuss the results on convergence to the limit distributions. We
consider also random matrices with dependent entries and describe Stein’s method
for random matrices with some martingale structure of dependence of entries.

2 Wigner Matrices

Let Xjk (1 � j � k � n) be independent random variables (possibly complex) with
EXjk D 0 and EjXjkj2 D 1, defined on the same probability space f�;M;Pg. We
define the Hermitian (symmetric in real case) matrix X with entries ŒX�jk D 1p

n
Xjk

for 1 � j � k � n. Consider the eigenvalues of the matrix X denoted in non-
increasing order by �1 � � � � � �n and define the empirical spectral distribution
function of this matrix as

Fn.x/ D 1

n

nX

j D1

If�j � xg;

where IfAg denotes indicator of the event A. Introduce also the expected spectral
distribution function Fn.x/ WD EFn.x/ of matrix X. Wigner [39] considered the
symmetric random matrix X with entries Xjk D ˙1 with probability 1

2
and proved

that
�n WD sup

x

jFn.x/ � G.x/j ! 0; as n ! 1; (1)

where G.x/ is the distribution function of the semi-circular law with the density
G0.x/ D 1

2�

p
4 � x2Ifjxj � 2g. This problem has been studied by several

authors. Wigner’s result [39] was extended later to different classes of distributions
of random variables Xjk. In particular, Wigner in [40] proved that (1) holds for
symmetric random matrices with sub-Gaussian entries. (A random variable � is
called subgaussian random variable if there exists a positive constant ˇ > 0 such
that Pfj�j > xg � expf�ˇx2g for any x > 0.) Later it was shown that the semi-
circular law (the statement (1)) holds under the assumption of Lindeberg condition
for the distributions of matrix entries, i e.,

Ln.�/ D 1

n2

nX

j D1

nX

kDj

EjXjkj2IfjXjkj � �
p

ng ! 0 as n ! 1; (2)

for any � > 0 (see, e.g., [16]). It was shown also that under the same assumptions

��
n WD sup

x

jFn.x/ � G.x/j ! 0 in probability as n ! 1: (3)
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We have investigated the rate of convergence in (1) and (3). This problem has
been studied by several authors. In particular, Bai [5] proved that �n D O.n� 1

4 /

assuming that sup1�j �k EjXjkj4 � M4 < 1. Later Bai et al. [9] under the condition

that sup1�j �k EjXjkj8 � M8 < 1 proved that �n D O.n� 1
2 / and E��

n D
O.n� 2

5 /. Girko [18] proved that �n D O.n� 1
2 / assuming sup1�j �k EjXjkj4 �

M4 < 1. A very interesting result was obtained recently by Erdös et al. in [13]. It
follows from their results that for random matrices whose entries have distributions
with exponential tails, i.e., PfjXjkj > tg � A expf�t~g for some A; ~ > 0, the
following holds

P

n
��

n � C n�1.log n/C ln ln n
o

� 1 � C expf�.log n/c ln ln ng (4)

with some positive constants C and c depending on A; ~ only.
We state the results obtained jointly with F. Götze in several theorems below.

Theorem 2.1 (Götze and Tikhomirov [20]). Let EXjk D 0

and EjXjkj2 D 1. Let
sup

1�j �k

EjXjkj4 � M4 < 1: (5)

Then there exist a numerical constant C > 0 such that

�n � CM
1
2

4 n� 1
2 : (6)

If in addition
sup

1�j �k

EjXjkj12 � M12 < 1;

then

E��
n � CM

1
6

12n
� 1

2 : (7)

Assuming instead of (5) the condition (8) below, we have obtained the following
result.

Theorem 2.2 (Tikhomirov [37]). Let Xjk be independent random variables with
EXjk D 0 and EjXjkj2 D 1. Assume that for some 0 < ı � 2 the following relation
holds

sup
1�j �k

EjXjkj2Cı DW M2Cı < 1: (8)

Then there exists a numerical C > 0 such that

�n � C

0

@M
ı

2Cı

2Cı

n
ı

2Cı

1

A
1� .1�ı/C

2

;

where .1 � ı/C D maxf1 � ı; 0g.
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Under stronger assumptions on the distribution of Xjk we get bounds for �n of order

O.n� 1
2 �	 / with some positive 	 > 0. In particular, in the paper of Bobkov et al.

[13] we consider random variables Xjk with distributions satisfying a Poincaré-
type inequality. Let us recall that a probability measure 
 on R

d is said to satisfy
a Poincaré-type, PI.�2/, or a spectral gap inequality with constant �2 if for any
bounded smooth function g on R

d with gradient rg

Var.g/ � �2

Z

Rd

jrgj2d
; (9)

where Var.g/ D R
Rd g2d
 �

� R
Rd gd


�2

.

Theorem 2.3 (Bobkov et al. [13]). If the distributions of Xjk’s satisfy the
Poincaré-type inequality PI (�2) on the real line, then

�n � C n�2=3;

where the constant C depends on � only. Moreover,

E��
n � C n�2=3 log2.n C 1/:

For any positive constants ˛ > 0 and ~ > 0 define the quantities

ln;˛ WD log n .log log n/˛ and ˇn WD .ln;˛/
1
~ C 1

2 : (10)

The best known result for the rate of convergence in probability to the semi-circular
law is the following:

Theorem 2.4 (Götze and Tikhomirov [28]). Let EXjk D 0, EX2
jk D 1. Assume

that there exist constants A and ~ > 0 such that

PfjXjkj � tg � A expf�t~g; (11)

for any 1 � j � k � n and any t � 1. Then, for any positive ˛ > 0 there exist
positive constants C and c depending on A and ~ and ˛ only, such that

P

n
sup

x

jFn.x/ � G.x/j > n�1ˇ2
n

o
� C expf�c ln;˛g:

Remark 2.5. In the result of (4) [13] ��
n D OP .n�1.log n/O.log log n//. In our result

��
n D OP .n�1.log n/O.1//.

Remark 2.6. If X belongs to Gaussian Unitary Ensemble (GUE) [23] or Gaussian
Orthogonal Ensemble (GOE) [38] then there exists an absolute constant C > 0 such
that

�n � C n�1: (12)
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3 Sample Covariance Matrices

In this section we consider the so called sample covariance matrices and their
generalization. Let X be rectangular matrices of order Œn � p� with independent
entries (possible complex) Xjk , j D 1; : : : ; nI k D 1 : : : ; p. We shall assume that
EXjk D 0 and EjXjkj2 D 1. Consider the matrix W D 1

p
XX�. Such matrices

are called sample covariance matrices and they were first considered in 1928 by
Wishart [41]. He obtained the joint distribution of entries of the matrix W as Xjk

are standard Gaussian random variables. We shall be interested in the asymptotic
distribution of the spectrum of the matrix W. Note that the matrix W is semi-positive
definite and its eigenvalues are non-negative. Denote the eigenvalues of the matrix
W in decreasing order by s2

1 � : : : � s2
n � 0. (Note that the numbers s1; : : : ; sn

are called singular values of matrix 1p
p

X.) Define the empirical spectral distribution

function of the matrix W by the equality

Hn.x/ D 1

n

nX

j D1

Ifs2
j � xg: (13)

Let Hy.x/ be the distribution function with the density

H 0
y.x/ D

p
.b � x/.x � a/

2�xy
C .1 � 1

y
/Cı0.x/; (14)

where a D .1 � p
y/2, b D .1 C p

y/2, and ı0.x/ denotes Dirac ı-function, aC D
maxfa; 0g for any real a. This distribution is called Marchenko–Pastur distribution
with parameter y. Assuming that p D p.n/ where limn!1 n

p
D y, and assuming

the moment condition (5), Marchenko and Pastur [29] have shown that there exists

lim
n!1EHn.x/ D Hy.x/; (15)

The result of Marchenko–Pastur was improved by many authors. As a final result
we have the following Theorem.

Theorem 3.1. Let the random variables Xjk , 1 � j � n; 1 � k � p be
independent for any n � 1 and have zero mean and unit variance. Assume that
p D p.n/ such that limn!1 n

p
D y. Further suppose that the Lindeberg condition

holds, i.e.,

Ln.�/ D 1

n2

nX

j D1

pX

kD1

EjXjkj2IfjXjkj � �
p

ng ! 0;

for any � > 0. Then

sup
x

jEHn.x/ � Hy.x/j ! 0; as n ! 1:
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Moreover, Hn.x/ converges to the Marchenko–Pastur distribution in probability.

The proof of this result may be found in [8]. We have investigated the rate of
convergence of the expected and empirical spectral distribution function of sample
covariance matrix to the Marchenko–Pastur law. This question was considered also
in the papers of Bai [6], and in Bai and co-authors [10]. Bai et al. in [10] and
independently Götze and Tikhomirov in [21] established the bound of the rate of
convergence in Kolmogorov distance �n D supx jEHn.x/ � Hy.x/j D O.n� 1

2 /,
assuming that

max
j;k�1

EjXjkj8 � C (16)

for some positive constant C > 0 independent of n. Götze and and Tikhomirov [21]
proved as well that ��

n D E supx jHn.x/ � Hy.x/j D O.n� 1
2 /, assuming

max
j;k�1

EjXjkj12 � C (17)

for some positive constant C > 0 independent of n. Somewhat later these bounds
were improved in the paper of Götze and Tikhomirov [26] and in the paper of
Tikhomirov [36]. We formulate the following result.

Theorem 3.2. Let the random variables Xjk , 1 � j � n; 1 � k � p be
independent for any fixed n � 1 and have zero mean and unit variance. Assume
that p D p.n/, where n

p
D y � 1. Let for some 0 < ı � 2

M2Cı WD sup
j;k;n

EjXjkj2Cı < 1:

Then there exist a positive constant C D C.ı/, depending on ı only , such that

�n � CM
ı

2Cı

2Cı n� ı
2Cı : (18)

The bound (18) for ı D 2 was obtained in [26], the bound for the case 0 < ı < 2 in
[36]. The question about optimality of the above mentioned bounds is still open.
But assuming that the random variables Xjk are independent standard complex
Gaussian random variables (so-called Laguerre unitary ensemble) the optimal bound
of the rate of convergence of the expected spectral distribution of the matrix W
was obtained. It turns out that �n D O.n�1/, which was proved by Götze and
Tikhomirov [23]. Recall that the distribution of a random variable X has so-called
exponential tail means that there exist constants A > 0 and ~ > 0 such that

PfjX j � tg � A expf�t~g: (19)

Assuming that the entries of the matrix X have distribution with exponential tails,
Götze and Tikhomirov have proved in [27] that
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P

n
sup

x
jHn.x/ � Hy.x/j > n�1ˇ2

n

o
� C expf�c ln;˛g; (20)

for any ˛ > 0. Here ˇn and ln;˛ were defined in (10). The constants C > 0 and
c > 0 depend on A; ~ and ˛ only. It would be interesting to extend the results
about sample covariance matrices to more general situations. First we consider the
singular values of powers of random matrices. And then we consider the asymptotic
distribution of singular values of products of independent random matrices.

3.1 Powers of Random Matrices

Let X D .Xjk/n
j;kD1 be a square random matrix of order n with independent entries

such that EXjk D 0 and EjXjkj2 D 1. In this section we shall investigate the
asymptotic distribution of the singular values of the matrix W D n� m

2 Xm or the
eigenvalues of the matrix V D WW�. For m D 1 it is the case of sample covariance
matrix with parameter y D 1. Denote by s2

1 � : : : � s2
n the eigenvalues of the

matrix V. (Note that s1 � : : : � sn are the singular values of the matrix W.) Let

H.m/
n .x/ D 1

n

mX

j D1

Ifs2
j � xg (21)

denote the empirical spectral distribution function of the matrix V. Let F C.k; m/ D
1

mkC1

�
mkCk

k

�
denote the kth Fuss–Catalan number with parameter m, for k �

1. These numbers are the moments of some distribution which we denote by
H .m/.x/. It is well known that the Stieltjes transform of this distribution, s.m/.z/ DR

1
x�zdH .m/.x/, satisfies the equation

1 C zs.m/.z/ C .�1/mC1zmC1.s.m/.z//mC1 D 0;

In the joint papers of Alexeev et al. [2] and [1] the following was proved:

Theorem 3.3. Let random variables Xjk be independent for any fixed n � 1 and
for any 1 � j; k � n. Assume that EXjk D 0 and EjXjkj2 D 1 for any j; k � 1

and
sup

j;k�1

EjXjkj4 � C; (22)

for some positive constant C > 0. Assume also that for any � > 0

Ln.�/ D 1

n2

nX

j;kD1

EjXjkj4IfjXjkj � �
p

ng ! 0 as n ! 1: (23)

Then
lim

n!1 sup
x

jEH.m/
n .x/ � H .m/.x/j D 0: (24)
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For the proof of this result we use the method of moments, see [2]. The proof of
Theorem 3.2 by the method of Stieltjes transform is given in [4].

3.2 Product of Random Matrices

Let m � 1 be a fixed integer. For any n � 1 consider an .m C 1/-tuple of integers
.p0; : : : ; pm/ with p0 D n and p� D p�.n/ for � D 1; : : : ; m, such that

lim
n!1

n

p�.n/
D y� 2 .0; 1�: (25)

Furthermore, we consider an array of independent complex random variables
X

.�/

jk ; 1 � j � p��1; 1 � k � p� , � D 1; : : : ; m defined on a common probability

space f�n;Fn;Pg with EX
.�/

jk D 0 and EjX.�/

jk j2 D 1. Let X.�/ denote the p��1 � p�

matrix with entries ŒX.�/�jk D 1p
p�

X
.�/

jk , for 1 � j � p��1; 1 � k � p� . The

random variables X
.�/

jk may depend on n but for simplicity we shall not make this
explicit in our notations. Denote by s1 � : : : � sn the singular values of the random
matrix W WD Qm

�D1 X.�/ and define the empirical distribution of its squared singular
values by

H.m/
n .x/ D 1

n

nX

kD1

Ifsk
2 � xg:

We shall investigate the approximation of the expected spectral distribution
H

.m/
n .x/ D EH.m/

n .x/ by the distribution function Hy.x/ which is defined by its
Stieltjes transform sy.z/ in the following way:

1 C zsy.z/ � sy.z/
mY

lD1

.1 � yl � zyl sy.z// D 0; (26)

where 0 � yl � 1.

Remark 3.4. In the case y1 D y2 D � � � D ym D 1 the distribution Hy has moments
M.k; m/ D F C.k; m/: The Stieltjes transform of the distribution Hy.x/ satisfies in
this case the equation

1 C zs.z/ C .�1/mC1zms.z/mC1 D 0:

The main result of this subsection.

Theorem 3.5. Assume that condition (25) holds. Let EX
.�/

jk D 0, EjX.�/

jk j2 D 1.
Suppose that the Lindeberg condition holds, i.e.,
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Ln.�/ WD max
�D1;:::;m

1

p��1p�

p��1X

j D1

p�X

kD1

EjX.�/

jk j2IfjX.�/
jk j��

p
ng ! 0 as n ! 1; (27)

for any � > 0. Then

lim
n!1 sup

x

jH .m/
n .x/ � Hy.x/j D 0:

Remark 1. For m D 1 we get the well-known result of Marchenko-Pastur for
sample covariance matrices [29].

Remark 2. We see that the limit distribution for the distribution of singular values of
product of independent square random matrices is the same as for powers of random
matrices with independent entries, see [2].

The statement of Theorem 3.5 was published in [1] and a proof of this result is given
in [3].

4 Circular Law and Its Generalization

4.1 Circular Law

Let Xjk; 1 � j; k < 1, be complex random variables with EXjk D 0 and
EjXjkj2 D 1. For a fixed n � 1, denote by �1; : : : ; �n the eigenvalues of the n � n

matrix

X D .Xn.j; k//n
j;kD1; Xn.j; k/ D 1p

n
Xjk for 1 � j; k � n; (28)

and define its empirical spectral distribution function by

Gn.x; y/ D 1

n

nX

j D1

IfRe f�j g � x; Imf�j g � yg: (29)

We investigate the convergence of the expected spectral distribution function
EGn.x; y/ to the distribution function G.x; y/ of the uniform distribution in the
unit disc in R

2.
The main results which was obtained in [19] is the following.

Theorem 4.1. Let Xjk be independent random variables with

EXjk D 0; EjXjkj2 D 1 and EjXjkj2'.Xjk/ � ~;
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where '.x/ D .ln.1 C jxj//19C
 for some 
 > 0. Then EGn.x; y/ converges weakly
to the distribution function G.x; y/ as n ! 1.

We shall prove the same result for the following class of sparse matrices. Let
"jk, j; k D 1; : : : ; n denote Bernoulli random variables which are independent in
aggregate and independent of .Xjk/n

j;kD1 with success probability pn WD Pf"jk D
1g. Consider the matrix X."/ D 1p

npn
."jkXjk/n

j;kD1. Let �
."/
1 ; : : : ; �

."/
n denote the

(complex) eigenvalues of the matrix X."/ and denote by G
."/
n .x; y/ the empirical

spectral distribution function of the matrix X."/, i. e.

G."/
n .x; y/ WD 1

n

nX

j D1

IfRe f�."/
j g � x; Imf�."/

j g � yg: (30)

Theorem 4.2. Let Xjk be independent random variables with

EXjk D 0; EjXjkj2 D 1 and EjXjkj2'.Xjk/ � ~;

where '.x/ D .ln.1 C jxj//19C
 for some 
 > 0. Assume that p�1
n D O.n1�� / for

some 1 � � > 0. Then EG
."/
n .x; y/ converges weakly to the distribution function

G.x; y/ as n ! 1.

Remark 4.3. The crucial problem of the proofs of Theorems 4.1 and 4.2 is to
find bounds for the smallest singular values sn.z/ respectively s

."/
n .z/ of the shifted

matrices X�zI respectively X."/�zI. These bounds are based on the results obtained
by Rudelson and Vershynin in [32]. In the version of paper [25] we have used the
corresponding results of Rudelson [31] proving the circular law in the case of i.i.d.
sub-Gaussian random variables. In fact, the results in [25] actually imply the circular
law for i.i.d. random variables withEjXjkj4 � ~4 < 1 in view of the fact (explicitly
stated by Rudelson in [31]) that in his results the sub-Gaussian condition is needed
for the proof of PfkXk > Kg � C expf�cng only. This result was written by Pan
and Zhou in [30].

The strong circular law assuming moment condition of order larger than 2 and
comparable sparsity assumptions was proved by Tao and Vu in [33] based on their
results in [34] in connection with the multivariate Littlewood Offord problem. In
[35] Tao and Vu proved the circular law without sparsity assuming a moment
condition of order 2 only.

The investigation of the convergence of the spectral distribution functions of real
or complex (non-symmetric and non-Hermitian) random matrices with independent
entries has a long history. Ginibre in 1965, [14], studied the real, complex and
quaternion matrices with i. i. d. Gaussian entries. He derived the joint density
for the distribution of eigenvalues of matrix and determined the density of the
expected spectral distribution function of random matrix with Gaussian entries with
independent real and imaginary parts and deduced the circle law. Using the Ginibre
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results, Edelman in 1997, [12], proved the circular law for matrices with i. i. d.
Gaussian real entries. Girko in 1984, [15], investigated the circular law for general
matrices with independent entries assuming that the distributions of the entries have
densities. As pointed out by Bai [7], Girko’s proof had serious gaps. Bai in [7] gave a
proof of the circular law for random matrices with independent entries assuming that
the entries have bounded densities and finite sixth moments. It would be interesting
to consider the following generalization of the circular law.

4.2 Asymptotic Spectrum of the Product of Independent
Random Matrices

Let m � 1 be a fixed integer. For any n � 1 consider mutually independent
identically distributed (i.i.d.) omplex random variables X

.�/

jk ; 1 � j; k � n,

� D 1; : : : ; m; with EX
.�/

jk D 0 and EjX.�/

jk j2 D 1 defined on a common probability

space .�n;Fn;P/. Let X.�/ denote the n � n matrix with entries ŒX.�/�jk D 1p
n
X

.�/

jk ,

for 1 � j; k � n. Denote by �1; : : : ; �n the eigenvalues of the random matrix
W WD Qm

�D1 X.�/ and define its empirical spectral distribution function by

Fn.x; y/ WD F .m/
n .x; y/ D 1

n

nX

kD1

IfRe�k � x; Im�k � yg;

where IfBg denotes the indicator of an event B . We shall investigate the conver-
gence of the expected spectral distribution Fn.x; y/ D EFn.x; y/ to the distribution
function F.x; y/ corresponding to the m-th power of the uniform distribution on the
unit disc in the plane R2 with Lebesgue-density

f .x; y/ D 1

�m.x2 C y2/
m�1

m

Ifx2 C y2 � 1g:

We consider the Kolmogorov distance between the distributions Fn.x; y/ and
F.x; y/,

�n WD sup
x;y

jFn.x; y/ � F.x; y/j:

We have proved the following.

Theorem 4.4. Let EX
.�/

jk D 0, EjX.�/

jk j2 D 1. Then, for any fixed m � 1,

lim
n!1 �n D 0:

The result holds in the non-i.i.d. case as well.
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Theorem 4.5. Let EX
.�/

jk D 0, EjX.�/

jk j2 D 1, � D 1; : : : ; m, j; k D 1; : : : ; n.

Assume that the random variables X
.�/

jk have uniformly integrable second moments,
i. e.

max
�;j;k;n

EjX.�/

jk j2IfjX.�/

jk j > M g ! 0 as M ! 1: (31)

Then for any fixed m � 1,
lim

n!1 �n D 0:

Definition 4.6. Let 
n.�/ denote the empirical spectral measure of an n�n random
matrix X (uniform distribution on the eigenvalues of matrix X) and let 
.�/ denote
the uniform distribution on the unit disc in the complex plane C. We say that the
circular law holds for the random matrices X if E
n.�/ converges weakly to the
measure 
.�/ in the complex plane C.

Remark 4.7. For m D 1 we recover the well-known circular law for random
matrices [19, 35].

5 Bounds on Levy and Kolmogorov Distance in Terms
of Stieltjes Transform

One of the first bounds on the Kolmogorov distance between distribution functions
via their Stieltjes transforms was obtained by Girko in [17]. Bai in [5] proved a
new inequality bounding the Kolmogorov distance of distribution functions by their
Stieltjes transforms. The proofs of Theorems 2.1–3.3 are based on a smoothing
inequality for the Kolmogorov distance between distribution functions in terms of
their Stielties transform. Recall that the Stieltjes transform SF .z/ of a distribution
function F.x/ is defined by the equality

SF .z/ WD
Z

R

1

z � x
dF.x/;

for all z D u C iv with u 2 R and v > 0. For any distribution functions F and G

define the Levy distance as

L.F; G/ WD inffı > 0 W F.x � ı/ � ı � G.x/ � F.x C ı/ C ı; for all x 2 Rg:
(32)

In [13] the following result was proved.

Theorem 5.1. Let F and G be distribution functions. Given v > 0, let an interval
Œ˛; ˇ� � R be chosen to satisfy G.˛/ < v and 1 � G.ˇ/ < v. Then
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L.F; G/ � sup
x2Œ˛�2v;ˇC2v�

ˇ̌
ˇ
Z x

�1
.SF .x C iv/ � SG.x C iv//dx

ˇ̌
ˇ

C 4v C 50ImSG.x C iv/: (33)

The following corollaries are very important for applications.

Corollary 5.2 (Bobkov et al. [13]). Let F and G be arbitrary distribution func-
tions. With some universal constant c > 0, for any v1 > v0 > 0,

cL.F; G/ � v0 C v0 sup
x2R

ImSG.x C iv0/ C
Z

R

jSG.u C iv1/ � SF .u C iv1/jdu

C sup
x2Œ˛�2v;ˇC2v�

Z v1

v0

jSG.x C iv/ � SF .x C iv/jdv; (34)

where ˛ < ˇ are chosen to satisfy G.˛/ < v0, and 1 � G.ˇ/ < v0.

Corollary 5.3. If G is the distribution function of the standard semi-circular law,
and F is any distribution function, we have for all v1 > v0 > 0, up to some universal
constant c > 0,

ckF � Gk WD c sup
x2R

jF.x/ � G.x/j � v0 C
Z

R

jSG.u C iv1/ � SF .u C iv1/jdu

C sup
x2Œ˛�2v;ˇC2v�

Z v1

v0

jSG.x C iv/ � SF .x C iv/jdv (35)

This result improved a similar inequality (2.4) in [20]. The main idea of such type
of inequalities belongs to F. Götze. We consider the first integral in the right hand
side of (35) (“horizontal”) far from the real line. A distance from a real line in the
second integral (“vertical”) has an order O.n�1 log nb/ in one point only. To obtain
a bound of order O.n�1 log nb/ for �n we need some modification of the last result.
Let 	 D p

4 � x2.

Theorem 5.4. Let v > 0 and a and " > 0 be positive numbers such that

˛ D 1

�

Z

juj�a

1

u2 C 1
du D 3

4
; (36)

and
2va � "

p
	: (37)

If G denotes the distribution function of the standard semi-circular law, and F is
any distribution function, there exists some absolute constant c > 0, such that
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ckF � Gk �
Z 1

�1
jSF .u C iV / � SG.u C iV /jdu C v C "

3
2

C sup
x2Œ˛�2v;ˇC2v�

Z V

v0

jSF .x C iu/ � SG.x C iu/jdu; (38)

where ˛, ˇ are defined in Theorem 5.2 and v0 D v=
p

	 .

In the inequality (38) the right hand side is “sensitive” to the closeness of the point
x to the end points of the support of semi-circular distribution function.

6 Stein’s Method for Random Matrices

One of the more interesting direction of our joint work with F. Götze was a
development of Stein’s method for random matrices. This idea belongs exclusively
to F. Götze. The obtained results were published in several papers [22, 24, 25],
and we give a short review of them in this section. The goal of this review is to
illustrate the possibilities of Stein’s method for the investigation of the convergence
of the empirical spectral distribution function of random matrices. We consider
two ensembles of random matrices: real symmetric matrices and sample covariance
matrices of real observations. We give a simple characterization of both semicircle
and Marchenko-Pastur distributions via linear differential equations. Using con-
jugate differential operators, we give a simple criterion for convergence to these
distributions. We state also the general sufficient conditions for the convergence of
the expected spectral distribution functions of random matrices.

6.1 Real Symmetric Matrices

Let Xjk; 1 � j � k < 1, be a triangular array of random variables with EXjk D 0

and EX2
jk D �2

jk , and let Xkj D Xjk, for 1 � j < k < 1. For a fixed n � 1,
denote by �1 � : : : � �n the eigenvalues of a symmetric n � n matrix

Wn D .Wn.jk//n
j;kD1; Wn.jk/ D 1p

n
Xjk; for 1 � j � k � n; (39)

and define its empirical spectral distribution function by

Fn.x/ D 1

n

nX

j D1

If�j � xg: (40)
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We investigate the convergence of the expected spectral distribution function,
Fn.x/ WD EFn.x/, to the distribution function of Wigner’s semicircle law.

Let g.x/ and G.x/ denote the density and the distribution function of the
standard semicircle law, i.e.

g.x/ D 1

2�

p
4 � x2 Ifjxj � 2g: G.x/ D

Z x

�1
g.u/du: (41)

6.2 Stein’s Equation for the Semicircle Law

Introduce a class of functions

C
1
f�2;2g D ff W R ! R W f 2 C

1.R n f�2; 2g/I
limjyj!1jyf .y/j < 1I lim sup

y!˙2

j4 � y2jjf 0.y/j < C g:

By C.R/ we denote the class of continuous functions on R, by C
1.B/, B � R,

we denote the class of all functions f W R ! R differentiable on B with bounded
derivative on all compact subsets of B . We state the following

Lemma 6.1. Assume that a bounded function '.x/ without discontinuity of second
order satisfies the following conditions

'.x/ is continuous at the points x D ˙2 (42)

and Z 2

�2

'.u/
p

4 � u2du D 0: (43)

Then there exists a function f 2 C
1
f�2;2g such that, for any x ¤ ˙2,

.4 � x2/f 0.x/ � 3xf .x/ D '.x/: (44)

If '.˙2/ D 0 then there exists a continuous solution of (44).

As a simple implication of this Lemma we get

Proposition 6.2. The random variable � has distribution function G.x/ if and only
if the following equality holds, for any function f 2 C

1
f�2;2g,

E
�
.4 � �2/f 0.�/ � 3�f .�/

� D 0: (45)
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6.3 Stein Criterion for Random Matrices

Let W denote a symmetric random matrix with eigenvalues �1 � �2 � : : : � �n.
If W D U�1ƒU, where U is an orthogonal matrix and ƒ is a diagonal matrix, one
defines f .W/ D U�1f .ƒ/U, where f .ƒ/ D diag.f .�1/; : : : ; f .�n//.

We can now formulate the convergence to the semicircle law for the spectral
distribution function of random matrices.

Theorem 6.3. Let Wn denote a sequence of random matrices of order n � n such
that, for any function f 2 C

1
f�2;2g

1

n
ETr.4In � W2

n/f 0.Wn/ � 3

n
ETrWnf .Wn/ ! 0; as n ! 1: (46)

Then
�n WD sup

x

jEFn.x/ � G.x/j ! 0; as n ! 1: (47)

6.4 Resolvent Criterion for the Spectral Distribution Function
of a Random Matrix

We introduce the resolvent matrix for a symmetric matrix W and any non-real z,

R.z/ D .W � zI/�1; (48)

where I denotes the identity matrix of order n � n.

Proposition 6.4. Assume that, for any v ¤ 0,

Rn.W/.z/ WD 1

n
ETr.4I � W2/R2.z/ C 3

n
ETrWR.z/ ! 0; as n ! 1 (49)

uniformly on compact sets in CnR. Then

�n ! 0; as n ! 1: (50)

6.5 General Conditions of the Convergence of the Expected
Distribution Function of Random Matrices to the Semi
Circular Law

We shall assume that EXjl D 0 and �2
jl WD EX2

jl , for 1 � j � l � n. Introduce

�-algebras F jl D �fXkm W 1 � k � m � n; fk; mg ¤ fj; lgg, 1 � j � l � n, and
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F j D �fXkm W 1 � k � m � n; k ¤ j and m ¤ j g, 1 � j � n. We introduce as
well Lindeberg’s ratio for random matrices, that is for any � > 0,

Ln.�/ WD 1

n2

nX

j;lD1

EX2
jlIfjXjl j>�

p
ng: (51)

Theorem 6.5. Assume that the random variables Xjl ; 1 � j � l � n, n � 1

satisfy the following conditions

EfXjl jF jlg D 0; (52)

".1/
n WD 1

n2

X

1�j �l�n

EjEfX2
jl jF j g � �2

jl j ! 0 as n ! 1; (53)

there exists �2 > 0; such that

".2/
n WD 1

n2

X

1�j �l�n

j�2
jl � �2j ! 0 as n ! 1; (54)

and

for any fixed � > 0;

Ln.�/ ! 0 as n ! 1: (55)

Then
�n WD sup

x

jEFn.x/ � G.x��1/j ! 0 as n ! 1: (56)

Corollary 6.6. Let X
.n/

lj , 1 � l � j � n be distributed uniformly in the ball of the

radius
p

N in R
N with N D n.nC1/

2
, for any n � 1. Then

�n ! 0; as n ! 1: (57)

6.6 Sample Covariance Matrices

Let Xjk; 1 � j; k < 1, be random variables with EXjk D 0 and EX2
jk D �2

jk . For
fixed n � 1 and m � 1, we introduce a matrix n � m

X D
�
Xlj

�

1�l�n; 1�j �m
: (58)
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Denote by �1 � : : : � �n the eigenvalues of the symmetric n � n matrix

Wn D 1

p
XXT ; (59)

and define its empirical spectral distribution function by

Fn.x/ D 1

n

nX

j D1

If�j � xg: (60)

We investigate the convergence of the expected spectral distribution function
EFn.x/ to the distribution function of the Marchenko-Pastur law.

Let g˛.x/ and G˛.x/ denote the density and the distribution function of the
Marchenko-Pastur law with parameter ˛ 2 .0; 1/, that is

g˛.x/ D 1

x�

p
.x � a/.b � x/ Ifx2Œa;b�g; G˛.x/ D

Z x

�1
g˛.u/du; (61)

where a D .1 � p
˛/2, b D .1 C p

˛/2.

6.7 Stein’s Equation for the Marchenko-Pastur Law

Introduce a class of functions

C
1
fa;bg D ff W R ! R W f 2 C

1.R n fa; bg/I

limjyj!1jyf .y/j < 1I lim sup
y! a�b

2 ˙ aCb
2

j. .a � b/2

4
� .y � a C b

2
/2jjf 0.y/j < C g:

At first we state the following

Lemma 6.7. Let ˛ ¤ 1. Assume that a bounded function '.x/ without discontinu-
ity of second order satisfies the following conditions

'.x/ is continuous in the points x D a; x D b (62)

and Z b

a

'.u/g˛.u/du D 0: (63)

Then there exists a function f 2 C
1
fa;bg such that, for any x ¤ a or x ¤ b,
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.x � a/.b � x/xf 0.x/ � 3x.x � a C b

2
/f .x/ D '.x/: (64)

If '.a/ D 0 ('.b/ D 0) then there exists a continuous solution of the equation (64).

Proposition 6.8. The random variable � has distribution function G˛.x/ if and only
if the following equality holds, for any function f 2 C

1
fa;bg,

E

�
.� � a/.b � �/�f 0.�/ � 3�.� � a C b

2
/f .�/

�
D 0: (65)

6.8 Stein’s Criterion for Sample Covariance Matrices

Let W denote a sample covariance matrix with eigenvalues 0 � �1 � �2 � : : : �
�n. If W D U�1ƒU, where U is an orthogonal and ƒ a diagonal matrix, one defines
f .W/ D U�1f .ƒ/U, where f .ƒ/ D diag.f .�1/; : : : ; f .�n//.

We can now formulate the convergence to the Marchenko-Pastur law for the
spectral distribution function of random matrices.

Theorem 6.9. Let Wn denote a sequence of sample covariance matrices of order
n � n such that, for any function f 2 C

1
fa;bg

1

n
ETr.Wn � aIn/.bIn � Wn/Wnf 0.Wn/

� 3

n
ETrWn.Wn � a C b

2
In/f .Wn/ ! 0; as n ! 1:

(66)

Then
�n WD sup

x

jEFn.x/ � G˛.x/j ! 0; as n ! 1: (67)

6.9 Resolvent Criterion for Sample Covariance Matrices

Denote by R.z/ the resolvent matrix for the sample covariance matrix W.

Proposition 6.10. Assume that, for any v ¤ 0,

Rn.W/.z/ WD 1

n
ETrW.W � aI/.bI � W/R2.z/

C 3

n
ETr.W � a C b

2
I/WR.z/ ! 0; as n ! 1 (68)
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uniformly on compacts sets in CnR. Then

�n ! 0; as n ! 1: (69)

6.10 Convergence to the Marchenko-Pastur Distribution

We shall assume that EXjl D 0 and �2
jl WD EX2

jl , for 1 � j � n and 1 � l � m.

Introduce �-algebras F jl D �fXkq W 1 � k � n; 1 � q � m; fk; qg ¤ fj; lgg,
1 � j � n; 1 � l � m, and F l D �fXjs W 1 � j � n; 1 � s � m; s ¤ lg,
1 � l � m. We introduce as well Lindeberg’s ratio for random matrices, that is for
any � > 0,

Ln.�/ D 1

nm

nX

j D1

mX

lD1

EX2
jlIfjXjl j > �

p
ng; (70)

as well as the notation X
.�/

jl WD XjlIfjXjl j � �
p

ng�EXjlIfjXjl j � �
p

ng, �
.�/

jl WD
E

n
X

.�/

jl

ˇ̌
ˇF .j l/

o
. Introduce also the vectors X.�/

l D .X
.�/

1;l ; : : : ; X
.�/

n;l /T and ¸.�/

l D
.�

.�/

1;l ; : : : ; �
.�/

n;l /T .

Theorem 6.11. Let m D m.n/ depend on n, such that

m.n/

n
! ˛ 2 .0; 1/; as n ! 1: (71)

Assume that the random variables Xjl ; 1 � j � n; 1 � l � m,
n; m � 1 satisfy the following conditions

EfXjl jF jlg D 0; (72)

".1/
n WD 1

nm

nX

j D1

mX

lD1

EjEfX2
jl jF lg � �2

jl j ! 0 as n ! 1; (73)

there exists �2 > 0; such that

".2/
n WD 1

nm

nX

j D1

mX

lD1

j�2
jl � �2j ! 0; (74)

".3/
n WD 1

nm2

mX

lD1

nX

j;kD1

E

ˇ̌
ˇEf..X.�/

jl /2 � E.X
.�/

jl /2/..X
.�/

kl /2 � E.X
.�/

kl /2/
ˇ̌
ˇF lg

ˇ̌
ˇ ! 0;

(75)
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".4/
n WD 1

nm2

mX

lD1

X

1�j ¤k�n

E

ˇ̌
ˇ.Ef..�.�/

jl /2 � E.�
.�/

jl /2/

� ..�
.�/

kl /2 � E.�
.�/

kl /2/
ˇ̌
ˇF l g

ˇ̌
ˇ ! 0; as n ! 1; (76)

and
Ln.�/ ! 0; for any fixed � > 0; as n ! 1: (77)

Then
�n WD sup

x

jEFn.x/ � G˛.x��1/j ! 0 as n ! 1: (78)

Remark 6.12. Note that condition (74) implies that

lim
n!1

1

n
ETrWn D �2 < 1: (79)

Corollary 6.13. Assume (71). Let, for any n; m � 1, Xjl ,
1 � j � n; 1 � l � m, be independent and EXjl D 0, EX2

jl D �2. Suppose that,
for any fixed � > 0,

Ln.�/ ! 0; as n ! 1: (80)

Then the expected spectral distribution function of the sample covariance matrix W

converges to the Marchenko-Pastur distribution,

�n WD sup
x

jEFn.x/ � G˛.x��1/j ! 0; as n ! 1: (81)
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