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Preface

Mathematical developments and breakthroughs have in many of their most shining
examples been achieved by researchers who were fluid in the language of more
than one field of mathematics and able to translate ideas from one field to another
one. An outstanding example, almost a proof, for this claim is Friedrich Götze.
Over the past more than 30 years he obtained a series of beautiful results in both
probability theory and analytic number theory (among others), and, quite often, a
central idea of the proof of these results is to borrow a technique from another
field. This volume is dedicated to him. It consists of thirteen papers, the majority
of which are based on contributions to a workshop that took place from August 4
to 6, 2011 at Bielefeld University on the occasion of Friedrich’s sixtieth birthday.
This workshop was supported by CRC 701 “Spectral Structures and Topological
Methods in Mathematics”.

The scope of the articles in this collection is as broad as Friedrich’s interest. He
started out as a pure mathematician studying complex geometry and topology for
his diploma thesis with Friedrich Hirzebruch in Bonn. After that he changed his
field of research to statistics to do his Ph.D. with Johann Pfanzagl in Cologne. His
first papers analyze the speed of convergence and asymptotic expansions in central
limit theorems for various statistics. He soon became a worldwide acknowledged
expert for giving best-known or even optimal rates of convergence in limit theorems.
In the 1990s he broadened his spectrum by a series of articles on the geometry
of numbers. The choice of this particular subject was not a coincidence. Already
Friedrich’s analysis of the convergence rates in limit theorems for quadratic forms
led to questions in analytic number theory, in particular to the investigation of the
number of lattice points in an ellipsoid. These questions were first tackled by Hardy
and Littlewood, on the one hand, and Landau, on the other, in the 1920s, but it was
not until a series of fundamental papers by Friedrich and his coauthors that these
questions were ultimately solved with the help of probabilistic methods.

Apart from the two subjects mentioned above Friedrich has always been open for
new trends in probability, statistics, and many other fields. Over the past 2 decades
he made major contributions to the theory of random matrices and free probability,
the theory of resampling techniques, and log-Sobolev inequalities, among others.
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vi Preface

Many of Friedrich’s results were derived in collaboration with colleagues and
friends, many of whom presented talks on the occasion of his sixtieth birthday and
also contributed to this volume. In total, it collects 13 papers (all of which have been
peer-reviewed) by researchers in fields in which Friedrich has become famous for
his contributions, namely number theory, probability, statistics and combinatorics,
and the theory of random matrices. Many of these papers have been stimulated
by his work, either by the choice of subject or by his techniques. The articles
are prefixed by an interview by Willem van Zwet, which illuminates Friedrich’s
achievements in the context of his personal experiences.

We thus hope to be able to shed some light on Friedrich’s preeminent scientific
work.

Münster, Germany Matthias Löwe
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A Conversation with Friedrich Götze

Willem R. van Zwet

Friedrich Götze
Photo kindly provided by Friedrich Götze (2011)

Abstract Friedrich Götze has made signal contrbutions to mathematical statistics,
probability theory and related areas in mathematics. He also rendered many other
important services to the profession. His 60th birthday provides and excellent
opportunity for a conversation about his career and his views on various matters.

1 Early Days: A Talented Tinkerer

Interviewer: Friedrich, let us start at the beginning. You were born in 1951 in
Hameln and as a boy you must have shown great promise as a scientist. Can you tell
us about your scientific activities while you were in school?

W.R. van Zwet (�)
Department of Mathematics, Leiden University, P.O. Box 9512, 2300 RA Leiden,
The Netherlands
e-mail: vanzwet@math.leidenuniv.nl

P. Eichelsbacher et al. (eds.), Limit Theorems in Probability, Statistics and Number
Theory, Springer Proceedings in Mathematics & Statistics 42,
DOI 10.1007/978-3-642-36068-8 1, © Springer-Verlag Berlin Heidelberg 2013
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2 W.R. van Zwet

F.G.: Well, I grew up in a household where my father was a small grocer, and of
course his perspective for my future was taking over his grocery. After finishing
elementary school I wanted to go to the gymnasium. My father had something more
practical in mind, but the teacher convinced him that the gymnasium would be a
better choice. From there on, I did not show much interest in the grocery store, but
rather in the libraries of our town. After a while I had all kinds of interests, especially
in soldering together radios and some electronics that I was fascinated with at that
time.

Interviewer: We have a beautiful picture of you from those days. It appeared in the
local newspaper and shows you and a friend with some fantastic looking equipment
you put together.

Friedrich and his friend Friedrich Hupe with their computer.
The photo was published in the local newspaper of Hameln: DeWeZet

c� Deister- und Weserzeitung, Hameln, 22.05.1967

F.G.: Yes, there was the centennial celebration of the school, and on this occasion
each of the students should carry out a project, for instance some chemical or physics
experiment. I was fascinated by computers, which were not available for the general
public at the time, and I thought I would make a demonstration computer. And
because the necessary components were very expensive at that time, I went to some
of the so-called scrap-shops of the telecom companies where they were throwing
out their switchboards made of electromagnetic relays. Huge numbers, which you
could buy for a few Marks, just for the weight of them. I collected them and then
we soldered them together to make accumulators and for doing some basic binary
addition, and even multiplication which was a great thing. To wire these things up
to have something like a main switchboard that would do these things and display
the result, took us more than a year and I still remember that it was very difficult to
keep all of these wirings in mind. I had a pal who was better at soldering than I was,
and he did the soldering I told him to do. So we finally made it and had this thing
displayed at the centennial celebration of our school.
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Interviewer: It could actually multiply?

F.G.: Yes, it could actually multiply, but it took a while before you could see what
had happened. It was very slow.

Interviewer: So we should consider ourselves lucky that you didn’t go into
electrical engineering or computer science.

F.G.: Of course computer science was something interesting for young people.
But what you heard about it was not happening in Europe. It was happening in
the United States. The first things we heard of—and were very fond of—where
these programmable pocket calculators. But they were extremely expensive and cost
about a thousand Marks, which was about half of the salary of an assistant. Also, it
all happened in America, with Fairchild and later with Intel. To get into computer
science you would have to go to the US.

Interviewer: Let me return for a moment to your father. Was he ultimately
convinced that an academic career would suit you better than minding the store?

F.G.: Yes, sooner or later he recognized that the store was not my cup of tea and as
my grades in school got better and better, he said okay, if that is your future : : :

2 A Wander-Student

Interviewer: So you went to the gymnasium and obviously finished there, and then
went to Göttingen in 1970 to study physics and mathematics. There was probably
very little computer soldering going on there, so you must have prepared yourself
in some other way.

F.G.: Yes, I’m afraid that my computer would not have got me very far in
Göttingen. I already mentioned my interest in libraries that would lend me physics
and mathematics books for 2 or 3 weeks. During that time I copied what I thought
was important in little notebooks. There were no copying machines in those days,
so it all had to be done by hand.

Interviewer: So in fact you constructed your own private library. It is certainly a
good way to learn. It takes a lot of time but you never forget these things anymore.

F.G.: That is right. Even though the lectures at Göttingen were more rigorous,
I think I was quite well prepared.

Interviewer: So at Göttingen you basically studied physics with a second major in
mathematics.

F.G.: With my kind of interests I might have become an electrical engineer, but I
was not sure and felt that a general physics and mathematics education could not do
any harm. Also computer science was still part of mathematics at that time. Finally,
Göttingen was only 80 km from where I lived.
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Interviewer: During your 2 years at Göttingen you switched from physics to
mathematics as a first major, and passed your pre-diploma exam in mathematics.
What had happened?

F.G.: Well, I passed through the usual physics and mathematics curricula. The
lectures were all right, but in physics there were also these dreadful experimental
sessions. I had expected to see wonderful new laboratory equipment, but instead
we merely worked with traditional old instruments dating back to the 1920s. They
really belonged in a science museum. This may well be useful to develop your skills
with basic measurement devices, to trim them to higher precision and learn physics
that way, but it was not very exciting.

Interviewer: I also moved from physics to mathematics after similar experiences.
However, that was much earlier and you might have expected these lab classes
would have been modernized a bit in the meantime.

F.G.: Well, the 1920s were the great days of Göttingen physics and, as generations
of students before us, we were supposed to learn by using the same marvellous old
instruments to repeat the experiments of those days, the outcomes of which you
should of course know from your courses.

Interviewer: Another thing that turned me off was the way in which mathematics
was handled in some physics courses. Our mathematics teachers taught us to be
rigorous, but that didn’t seem to hold for experimental physicists.

F.G.: I took lectures in quantum mechanics and I started pestering the teacher
afterwards asking what the meaning of this measurement process was, because I
had heard there was a debate among physicists about what they were describing by
this. And then I got this nice reply: “Young man, first try to learn the trade and do
your exercises. Leave this type of question to the time when you get a Nobel Prize
and then you can do philosophy”.

Interviewer: So much for physics and physicists. Anything remarkable about the
mathematics courses?

F.G.: Well, there was certainly no lack of rigor there! Our first calculus course was
taught by Brieskorn who had his first position as a full professor in Göttingen and
later became a well-known geometer. He started his calculus course by teaching
logic first, and we were trained so thoroughly that it took us three or four semesters
before we could actually write our proofs in normal mathematical style again
without using seven or eight quantors.

Interviewer: You were treated the rough way!

F.G.: Yes, but it was good training.

Interviewer: Having survived all of this, you did get your pre-diploma in mathe-
matics at Göttingen in 1972.

F.G.: Yes, I did, even though there was a slight problem. I had completely forgotten
that linear algebra was also part of the exam, and I had done nothing to prepare
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myself for this. I discovered this shortly before the exam and literally worked day
and night to catch up. As a result I overslept on the day of the linear algebra part
of the exam. It was scheduled at 9 a.m. and I showed up at noon. Luckily they still
allowed me to take the exam.

Interviewer: But then you left Göttingen and went to Bonn to continue your
mathematics study. Why?

F.G.: I had a stipend from the Studienstiftung, a foundation supporting kids that
did well at school. Among other things they held nice meetings in the semester
break, organized by professors in various disciplines who were interested in young
people and, of course, were looking for talent. I attended one of those seminars in
Alpach in the Austrian Alps that was organized by Professor Hirzebruch from Bonn.
He impressed me by the way he could explain essentially complicated matters in a
simple way. It is rather common in Germany to change universities after your pre-
diploma, so I decided to go to Bonn and study complex geometry and topology with
Hirzebruch. I got my diploma under his guidance in 1975.

Hirzebruch had an interesting style. There was the Wednesday afternoon seminar.
Everybody in the geometry group was supposed to be there. If you missed a seminar,
he would say the next day: “I didn’t see you yesterday”. Then you knew that you’d
better be there next week.

Interviewer: Sounds like Jerzy Neyman. Any other interesting characters in Bonn
at the time?

F.G.: Definitely. There was Don Zagier. He was about my age and in those days
usually dressed in a formal suit. We thought this a bit strange, but we took into
account that he finished high school at age 13, received his master’s degree at M.I.T.
at age 16, and his Ph.D. with Hirzebruch in Bonn at age 20. He was about to finish
his Habilitation when we were attending his lectures. He had clearly been a child
prodigy, but without the difficult characteristics that often go with this. I attended his
lectures on modular forms and was tremendously impressed by the speed at which
he could do calculations on the blackboard. We used to say that he would be the
only guy who could go shopping at a shopping centre for 2 weeks of supplies, and
by looking at the numbers the cashier pushed, would know the grand total before she
did. But he was also very practical and owned one of the first computers to check
up on his number theory, and he was also interested in applied matters.

Interviewer: It is interesting to hear you say this. Many years ago I gave a lecture
in Bonn on a topic in probability theory which most of the pure mathematicians
present clearly considered a waste of their precious time. Afterwards Zagier took
me out to a very pleasant dinner where we had a very sensible discussion of some
probability problems. So apparently pure and applied mathematicians can get on
quite well, but we have to realize that Don and you and I may not be the prototypical
pure and applied types!

F.G.: At that time I also met another interesting person. For the work I did for
my diploma I had to read an original paper in Russian and took a Russian course



6 W.R. van Zwet

provided by the university. However, like many older papers, this one was written in
a verbal and descriptive style for which you need a better command of the language
than my elementary course had provided. More important, during the course I met
my future wife Irene. After I got my diploma in 1975, we got married in 1976.

Interviewer: After obtaining your diploma you were thinking of getting a Ph.D.
with Hirzebruch in Bonn.

F.G.: It was not so clear what to do. Hirzebruch was quite pleased with my diploma
thesis. However, it was also becoming clear that the expansion of the university
system in Germany was coming to a sudden end. The oil crisis had frightened
people, in particular the politicians who were no longer willing to finance further
expansion. I was thinking of having a family and it was becoming increasingly
doubtful that getting a Ph.D. in geometry would provide a stable basis for a family
income. So I thought that maybe something more practical would be better. I looked
around for advice and was told that a diploma is fine, but something more applied
would be even better for getting a job in industry or an insurance company. Also, if
you really want to have a decent career in industry in Germany it is an advantage to
have a Ph.D.

Interviewer: It seems to me that you ended up by getting the best of both worlds.
You did get a Ph.D. in an applied field and you did not end up in an insurance
company. So off to Pfanzagl in Köln because it was close?

F.G.: Not so fast. My wife was studying medicine in Bonn and she thought I could
perhaps be a medical doctor. This went as far as her taking me once to a dissection
course in anatomy. She thought it quite interesting and very fascinating. But when
I came into this large hall where a lot of students were around and people were
opening up skulls, my lunch was protesting and I had to leave immediately. I thought
this is not my cup of tea. So far for my taking up medical studies.

Interviewer: Yes, this sounds quite drastic. I believe that even for medical students,
this is a test of stamina. Fortunately, less extreme forms of medical studies also exist.

F.G.: In view of possibilities in finance and insurance companies, I thought of
brushing up the knowledge I acquired in Göttingen in courses on ergodic theory
and measure theory of Ulrich Krengel. I was pleasantly surprised that the institute
in Göttingen offered me a tutor position to complement my weekly allowance. It
also seemed to make sense for my new career plans to renew old acquaintances, so I
decided to return to Göttingen for a semester. Of course Krengel was there, together
with visitors like Ahlswede, an American named Lee Jones who was the life of the
party, and someone from Fribourg teaching rank tests in Hájek’s style.

Interviewer: Was that André Antille, by any chance?

F.G.: You are right: it was. Everyone was in a good mood, we used to sit around
posing problems to each other and I actually learned some statistics. Krengel was
of course doing ergodic theory and to me that looked very much like analysis, and
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rather than doing that, I might as well have stayed in geometry. I also turned down
an offer from Ahlswede to come to Bielefeld with him. I was interested in finding a
real statistician and someone told me there was someone named Pfanzagl in Köln,
close to Bonn where Irene was studying. So one day I went to Köln, it was late in the
evening, I didn’t really expect to find Pfanzagl there, I knocked on his office door and
said: “Hello. I’m a pure mathematician coming from Bonn, I have had some lectures
in probability and I want to study statistics”. This must have been something that
he didn’t expect and he was looking at me a little doubtfully. I handed him all my
certificates which didn’t look too bad, I would say. He was quite nice and willing to
give me a try, offered me a tutor position, and asked me to give some lectures and
seminars, which I did, and so I stayed there.

Interviewer: How long did you stay there until your Ph.D.?

F.G.: That must have been from 1976 to 1978 when I did my Ph.D. there. Of course
I learned a lot of things and I was also involved in Pfanzagl’s projects, correcting
and checking manuscripts, helping him out in seminars, etc. The work for my Ph.D.
thesis I did more or less on my own. Since Edgeworth expansions were a hot topic
at the time, I wrote about expansions in Banach spaces.

I consider myself fortunate that I learned statistics from Pfanzagl. He got his
Ph.D. with Hlawka in Vienna in number theory, worked in the statistical office of
Austria, obtained a chair in the social sciences faculty and then moved to mathemat-
ics. But he was not content to investigate the mathematical properties of standard
statistical procedures and recipes. He first wanted to discuss how appropriate such
a procedure was for a given application. He loved to do mathematics, but never
ignored his early history in applied statistics.

Interviewer: I have the same experience with my Ph.D. advisor Jan Hemelrijk,
and of course, this is what statistics is all about! Unfortunately, many of today’s
mathematical statisticians lack experience with genuine applications, and as a result
have little feeling for the validity of their models and procedures in practice.

F.G.: Pfanzagl had organized his life in an interesting way. He was at the university
2 days a week, when he had his appointments, taught his courses, attended seminars,
etc. The remainder of the week he spent at his very nice home in the countryside
on the other side of the Rhine, and during the semester breaks he was in Vienna
with his family. Of course as students we also liked this 2-day workweek, because it
gave us lots of time for research. If I would join my wife who had to be at the clinic
at 7 a.m., it was a quiet time for me too, because if you appear at a mathematics
department at 7 a.m., there is nobody there.

Interviewer: Friedrich, I think we have reached the end of your days as a student.
You said earlier in this interview that it is quite normal in Germany to study at two
universities. Now that we have seen that you moved from Göttingen to Bonn, then
back to Göttingen again and finally to Köln, you won’t mind that we call this section
of the interview “A wander-student”.
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3 To the USA and Back

Interviewer: After getting your Ph.D. in 1978 you remained with Pfanzagl in Köln
until you finished your Habilitation in 1983. However, in fact you spent quite a bit
of time elsewhere.

F.G.: In November 1977 I attended my first meeting in Oberwolfach. It was on
asymptotic methods of statistics organized by Pfanzagl and Witting. The meeting
was crucial for my further development because I met you and Peter Bickel, which
was the beginning of a long friendship and collaboration in various matters. At
one point Peter asked: “Why don’t you come and visit us in Berkeley?”. Irene
and I wanted to see the US anyhow, but it had to be cheap. So in 1978 we flew
Icelandic Airways and made a detour through Mexico where my wallet containing
my credit card was stolen in the underground of Mexico City. Via Atlanta we flew
to San Francisco. By that time our money was almost gone and we went to the Bank
of America where they advised us to let our bank send them a cheque for us. We
followed their advice but the cheque never showed up.

Interviewer: Well, you couldn’t have known that the European and American
banking systems together are unable to send ten cents across the ocean successfully.

F.G.: At that time I was still very shy and didn’t want to involve Peter who would
probably have helped us immediately. Finally we got the money wired in some way.
We went back via Princeton were we had friends, so apart from this one mishap, our
first visit to the US was very pleasant.

The next year I went back to Berkeley as a visiting assistant professor for the
academic year 1980–1981. When I told Pfanzagl about this plan, he looked a bit
dubious and obviously thought he’d never see me again. In Berkeley momentous
things had just happened. Neyman had died, and so had Kiefer who had just come
to Berkeley. When I started teaching I found this a bit different from what I was
used too. In a course for engineers you obviously have to follow the book, but I
sometimes tried to explain a few things on a slightly more advanced level. That
didn’t sit well with the students, so Betty Scott, who was the department chair at
the time, told me “Young man. You have to realize that we are teaching American
students. You are not in Germany”.

A fabulous occurrence during my stay was the Joint Statistical Meeting of ASA
and IMS in Las Vegas. Participants could get a suite in the MGM Grand hotel
for very much reduced prices, because the owners figured that statisticians who
always talk about coin tossing, would be fanatic gamblers. Their gambling losses
would easily make up for the reduced prices. When hardly anyone turned up at the
gambling tables, they obviously felt cheated.

When my year as a visitor in Berkeley ended, I was wondering whether I should
perhaps stay in the United States. However, at that time there were not very many
positions at my level and my stay at Berkeley had spoiled me for the rest of the US.
So I decided to go back to Köln and continue my career in Germany by getting my
Habilitation, which I did with Pfanzagl in 1983.
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4 Bielefeld

Interviewer: After your Habilitation in November 1983 you were appointed as an
associate professor at Bielefeld in March 1984. They were obviously eager for you
to finish your Habilitation.

F.G.: Yes, shortly before my Habilitation I was invited to apply for this position.
So I went there and gave a talk on asymptotic statistics. I don’t think that the pure
mathematicians had the slightest idea of what I was talking about, until I mentioned
that a variant of the Cramér-von Mises statistic was associated with a nice theta
function. You could almost hear a sigh of relief from the audience: at least this
person has heard of theta functions! So in early 1984 I was offered the position and
accepted.

You may not remember, but earlier I had applied for a job in Amsterdam.
Piet Groeneboom was at the CWI in Amsterdam at the time, but he was visiting
Seattle and had not applied for the job. However, while the selection procedure
was underway, Piet suddenly showed up and declared an interest in the position.
At that time I was still considered very theoretical and no match for Piet, who was
appointed.

Interviewer: So if Piet hadn’t suddenly shown up, you might have been in
Amsterdam.

F.G.: Yes, I was actually thinking that maybe I should learn a bit of Dutch and
bought a dictionary. Irene and I both went to Amsterdam and I gave a talk there. But
this idea didn’t last very long.

And then I accepted the offer from Bielefeld and Irene said: “Great! Now this
uncertainty over what is going to happen is past, and we go to Bielefeld”. But once
we came here and she saw the university building, she looked at me and said “You
don’t intend to stay here very long, do you?”.

Interviewer: Well, admittedly Bielefeld University is not exactly a shining exam-
ple of modern architecture. But there is some truth in what the Russians used to say
about the architecture of Stalin’s time: “It is best to be inside these buildings, where
you can’t see the outside”.

F.G.: Yes, and when I learned a bit more about Bielefeld and the department, I was
quite pleased and felt that I had landed at a quite good place.

They didn’t have these barriers between the different kinds of mathematics that
they had at many of the classical universities: an institute of pure mathematics
here, one for applied mathematics there, and perhaps one for stochastics somewhere
else, with each group tending its own little garden. In Bielefeld they had just one
mathematics department. That didn’t mean that they didn’t have problems with
allocation of funds or the hiring of new professors, but they knew they had to talk to
each other and reach a compromise.
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Interviewer: Even at the same institute people often didn’t talk to each other.
When I was appointed in Leiden, some of my colleagues thought it was ridiculous to
have a professor of statistics. What stabilized the situation was the common interest.
In my case people began to realize that in 20 years they might not have any students
if they only taught pure mathematics. I’m not saying that everybody liked everybody
else, but they could work together.

F.G.: Another pleasant thing about Bielefeld University was that you were
appointed as a professor of mathematics, rather than geometry or statistics. That
meant that you could change your field of research to another area of mathematics
as long as you taught your courses. It was also possible to take a double teaching
load in 1 year and be completely free for doing research the next year. Finally it was
a lively and scientifically excellent department.

Interviewer: I understand that the philosophy of Bielefeld was certainly favourable
for applied mathematics. Please tell us something about the concept of ‘Mathemati-
zation’ that was so typical for Bielefeld.

F.G.: The task of founding Bielefeld University in the nineteen-seventies was
carried out under the leadership of Schelsky, a single person rather than a committee.
Mathematics was one of the founding departments of the university because
Schelsky had the idea of ‘Mathematisierung’ in mind. He wanted to change
the social sciences and all other fields where people worked qualitatively into
quantitative sciences. For that he needed all kinds of mathematics, especially applied
mathematics. But not only a mathematics department, but also some bridging
institutes such as the one for mathematics and econometrics. Such an institute was
not permanent and would have to be reviewed every 8 years.

Schelsky was a conservative sociologist—I don’t know whether this species still
exists—and at that time universities were going wild. Especially the newly founded
ones like Bielefeld were very progressive, including some of the staff. Schelsky
found this a little bit too much, and left.

Interviewer: I suppose the mathematics staff also contained its share of progres-
sives.

F.G.: We had a number of people in the staff who were joining the student
demonstrations. There is one story of a young, energetic and leftist professor who
organized a large student demonstration and marched with the students. He had his
bicycle with him and after a while he looked at his watch and said: “Oh, I’m sorry.
You march on. I have something important to do”.

We had a very progressive institution here where all the members including
secretaries and non-scientific staff had considerable voting power in all affairs of
the university. This didn’t make life any easier.

Interviewer: We have had the same in the Netherlands. It wasn’t too bad because
in the end people were usually willing to listen.

F.G.: Yes, but an older colleague told me that once in a while they had to strike
a deal. They would tell the students: “We really want to appoint so-and-so as a
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professor, whether you like it or not. But the next appointment you can make.” Of
course this would never happen, even though there was a signed agreement which
is presumably well hidden by now.

Interviewer: I always have to explain to people why I stayed at the same university
throughout my career. So let me put the question to you too. Why are you still here?

F.G.: In 1987 I was offered a full professorship at Kaiserslautern which I turned
down. In 1989 I turned down a full professorship at the T.U. Berlin. The day Irene
and I spent in Berlin to discuss the matter happened to be November 9, 1989. In the
afternoon, with a small child in a stroller, we went to the wall to see people sitting on
the wall and dismantling it. Then in 1990 I accepted a full professorship in Bielefeld.
Finally in 2003 I turned down a full professorship at the Humboldt University in
Berlin. A complicating factor at that time was that now that our children were
growing up, Irene had just been licensed in Bielefeld as a doctor in residence, which
allowed her to resume her medical career. It was highly unlikely that she could be
licensed in Berlin, so moving there would have been a major sacrifice on her part.

Interviewer: From what you just told me, I think there is more to it than that.
You explained that in the department in Bielefeld there were no barriers between
different kinds of mathematics. People were appointed as professors of mathematics
rather than geometry or statistics and they could change their field if they felt like it.
Well, what could be a better place for someone who had difficulty deciding whether
to get a Ph.D. in geometry or statistics and actually worked in number theory later?
It seems to me that Bielefeld and you were made for each other, even though the
Bielefeld architecture is best forgotten.

F.G.: You may have a point there.

Interviewer: And after 1989 there were the Sonderforschungsbereiche (SFB’s)
in mathematics that made Bielefeld such an attractive place to be. People tell me
that you played an important role there, as a person who had the interests of all of
mathematics at heart.

F.G.: The first SFB in Bielefeld started in 1989 and was devoted to “Discrete
structures in mathematics”. It was a broad collaborative effort to combine discrete
methods used in combinatorics, information theory, but also (numerical linear)
algebra, number theory, topology and arithmetic algebraic geometry. Many of
the younger people in the department profited from the increased possibilities of
communicating with colleagues and visitors from other fields within this SFB.
Personally, I started out working on asymptotic approximations in mathematical
statistics, but slowly moved in the direction of more discrete objects in stochastic
algorithms and number theory related to this.

However, some of the senior members of the department who enjoyed a great
reputation in a particular area of the SFB were more interested in seeing their
leadership for the whole project acknowledged than in investing time and resources
into collaborations with others. I served as chairman of the SFB for a number of
years, and it was not always easy to balance the various views and keep the peace.
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After the end of this SFB in 2000 there was an interim phase when the Bielefeld
department went through a considerable generation change. My own interests in
between pure and applied mathematics found a home in a subsequent smaller
collaborative grant from the DFG, followed in 2005 by the current SFB on “Spectral
structures and topological methods in mathematics”. The explicitly stated aim of
this SFB is to study developments connecting these rather diverging classical areas
of mathematical research. Thanks to the efforts of all of the senior and junior
colleagues who joined me on this adventurous road through largely uncharted
terrain, this collaborative program has been quite successful in two 4-year periods
so far. In the last 3 years the department has also been successful in hiring new
younger staff members, who are eager to accompany us on the path we have chosen.
Perhaps mathematicians are becoming more adventurous.

Interviewer: Well Friedrich, it looks like you are in Bielefeld to stay.

5 Oberwolfach

Interviewer: Friedrich, you mentioned earlier that we first met in Oberwolfach in
1977 and I would almost say: “Where else?”. We have both spent a significant time
of our lives there, but you have also been involved in its organization. So let’s talk
about the Mathematisches Forschungsinstitut Oberwolfach.

F.G.: I was appointed to the Beirat around 1990 and stayed there for nearly a
decade. Then I became a member of the Executive Board of Oberwolfach, which
I still am today. So I can speak about Oberwolfach during the last 20 years.

The present institute was built in the late sixties and the seventies. In a very
courageous move, director Barner started the building procedure. Before the funding
contract with the VW foundation had actually appeared in writing, he already
ordered the construction companies to start and the bulldozers arrived. Well that was
the way you did business in those days. You could count on oral agreements without
fear of sudden budget cuts. So in 1968 they first constructed the building with the
rooms for participants, kitchen, dining room, wine cellar and office, together with
the bungalows. Then in the seventies they tore down the old villa and replaced it
with the new building with lecture rooms, library, etc. Of course this was a great
improvement, but at the time many people were sad to see the villa go. The institute
had started there three decades earlier, and it had become a symbol for Oberwolfach.

The next 20 years passed without major problems. The State of Baden-
Württemberg had no financial problems and Barner’s relationship with the
State administration was excellent. However, there was one inconsistency in the
financial set-up. The VW Foundation paid for erecting the buildings, but not for
their maintenance, and the State paid for the operational cost, also excluding
maintenance. So Barner agreed informally with the authorities to save a bit of
the operational cost to pay for maintenance. Again, such agreements were quite
common in those days.
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However, times changed. In the nineties the financial situation of Baden-
Württemberg deteriorated, budget cuts became necessary, and of course Oberwol-
fach suffered. Perhaps even more important was the generation change in the State
government. The old guard with whom Barner had such excellent relations went
out, and a new generation arrived that was more interested in budget cutting than in
longstanding relations. They insisted on new State rules of accounting superseding
the previous arrangement that allowed Oberwolfach to save funds for maintenance.

Interviewer: Of course this is the risk of being funded by a single organization.
I seem to remember that repeated efforts were made to be funded by the Federal
Government too. Wasn’t there a list of institutes funded by both the State and the
Federal Government, the so-called blue list. Did Oberwolfach ever get on this list?

F.G.: Barner’s successor Matthias Kreck (1994–2002) started to increase the
annual budget to a level necessary for running Oberwolfach by obtaining support
from individuals, industry and the European Union. Efforts were also made to get
Oberwolfach on the blue list. The role of the blue list itself had changed with time. It
was now called the Leibniz Foundation and also served the needs of institutes in the
former DDR. To get on the list was a very difficult project that advanced only slowly,
but we suddenly got help from an unexpected quarter, namely President Rau of the
Federal Republic of Germany. On a visit to Denmark, during a dinner at a meeting
on science and technology, Rau was seated next to our friend and colleague Ole
Barndorff-Nielsen. Ole was quite indignant about the way Oberwolfach was treated
by the German authorities and raised the topic with Rau. Rau listened carefully
and on his return to Germany he sent what he had heard down the bureaucratic
channels, and lo and behold, we received a call from the Federal Ministry of Science
and Technological Development inquiring whether Oberwolfach needed something.
Of course this was only the beginning of a long bureaucratic process, because
Oberwolfach is not a standard research institute, but in the end Oberwolfach joined
the Leibniz Foundation on January 1, 2005, and the foundation is now rather proud
of us. So Oberwolfach is now supported by the Local as well as the Federal Govern-
ment, and for a start, all buildings received a major overhaul to bring them up to date.

Interviewer: I’m really happy to hear this. Congratulations!

F.G.: There were also important changes in the scientific program of Oberwolfach.
There used to be annually returning meetings with very broad topics and organized
by the same small group of people. This doesn’t happen anymore.

After Kreck left, we were fortunate to find an excellent successor in Gerd Martin
Greuel. Greuel was able to increase the amount of additional grant money from
various sources considerably. He was also responsible for making Oberwolfach
a center for mathematical documents of various kinds. This was in line with
the application to the Leibniz Foundation where Oberwolfach was presented not
only as a meeting place, but also as a keeper of records, including those of its
own history because many important mathematical results were first presented
at Oberwolfach. Starting with the excellent library which has many books that
universities cannot afford because of budget constraints, Greuel added electronic
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records of the Oberwolfach meetings where one can find what was discussed at any
given meeting and who were present.

Interviewer: Yes, I have just taken a look at this on internet and I’m impressed. It
is a real service to the profession. You can also find out how often you have attended
Oberwolfach meetings yourself, which could become a new mathematical game like
comparing Erdös numbers. Let me add that I like Greuel very much.

F.G.: Everybody does, but he has turned 65 and will be retiring when we have
found a successor. We are hopeful to find a good person.

6 Relations with Eastern Europe

Interviewer: For many years you and I have both been heavily involved in
establishing relations with fellow scientists in Eastern Europe and the former Soviet
Union. It all started when a few major scientists like Hájek and Révész showed
up in places like Berkeley and Oberwolfach and we got to know each other. Next
the European Meetings of Statisticians came to be held in Eastern Europe with
some regularity: first in Budapest in 1972, next in Prague, Varna, East Berlin and
Wroclaw. At the same time Western participation in existing locally organized
meetings in Prague, Budapest and Vilnius increased sharply. In 1975 the Bernoulli
Society was founded partly to build bridges between Eastern Europe and the West
and in 1986 the World Meeting in Tashkent proved its success. At that time you had
attended quite a few of these meetings.

F.G.: Yes, it was often the only way to meet people from Eastern Europe and
the Soviet Union, because they would be allowed to attend meetings in the West
only rarely. After the collapse of the communist regimes this was still difficult for
financial reasons. The Tashkent World Meeting was the first statistics meeting in the
Soviet Union attended by a huge number of participants from all over the world, in
particular from the United States. For many of them, used to Cold War rhetoric, it
was an eye-opener to see the circumstances in the Soviet Union for the first time
and notice the natural anarchy that was present everywhere and made even getting
there an exciting adventure.

Interviewer: These meetings were always held as far away from Moscow as
possible to avoid official interference. In that respect Vilnius was good, but Tashkent
was even better!

F.G.: At that time we didn’t have many possibilities to invite colleagues from
Eastern Europe and the Soviet Union to visit us and take part in research projects.
That changed after the collapse of the Soviet Union. First the Soros Foundation
provided funds for this and then the European Union started a program named
INTAS for scientific collaboration with the former Soviet Union. Living conditions
of scientists in the former Soviet Union were desperate: salaries were not sufficient
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to cover basic needs, if they were paid at all. Many scientists were looking for
opportunities for leaving the country and finding a position in the West. The
INTAS program was aimed at joint research projects of participants in the former
Soviet Union and in the European Union. The former participants would receive a
supplement of their salaries, whereas the latter should apply for and administer the
research program, which turned out to consist of writing an endless series of reports
and solving problems with the Brussels bureaucracy and Russian banks. Most of the
people running INTAS had no previous involvement with the former Soviet Union,
which made it difficult for them to understand what goes on in the minds of the
many different peoples who made up the Soviet Union. We also learned quickly that
calling Brussels bureaucrats before 3 p.m. was useless because they were apparently
having a good lunch. The banks turned out to be a more difficult problem. The cost
of transferring money to participants was astronomical without any guarantee that
the money would actually arrive. I understand that in some cases the money was
actually brought to Moscow by a messenger who handed it out at the airport to
people showing a passport with the right name.

Before we had even heard of the existence of INTAS, you and I both received a
request from friends in Moscow to apply for an INTAS program for collaboration
with a large group of really excellent probabilists and statisticians in the former
Soviet Union. We did and proposed a program that needed a large number of
special skills that were well represented in the group of participants. The program
immediately got funded in the first round in 1993 and was extended for another
period each time it ran out, until INTAS stopped operations in 2006.

Interviewer: Until my secretary and I both retired in 1999 we did the administra-
tion of the program in Leiden. My secretary used to refer to this job as the INTAS
disaster, or words of similar meaning. After that the job went to you in Bielefeld, so
it is clear that we truly shared the load.

One final remark: There was no provision for travel in the INTAS grants because
the INTAS philosophy was clearly that everybody should stay where they were.
No mass emigration to the West! However, there was no rule against consultations
between different groups in the program, so of course quite a few people spent quite
some time in Bielefeld and Leiden.

F.G.: After INTAS stopped, the Deutsche Forschungsgemeinschaft (D.F.G.) pro-
vided new programs for joint research with scientists in the former Soviet Union,
which allowed them to spend time in Bielefeld. Other visitors were supported by
the Humboldt Foundation and by the Sonderforschungsbereiche that we have had in
Bielefeld.

Interviewer: Yes, there used to be an entire corridor in the institute in Bielefeld
that was jokingly referred to as Moscow Boulevard.

Let me raise a further point in this connection. I have the impression that in
probability and statistics we have had excellent relations with our colleagues in the
former Soviet Union much earlier than in any other branch of mathematics. This
may well be due to the fact that we always made contact on a personal rather than
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an institutional basis. When the idea of the World Meeting in Tashkent came up,
the Bernoulli Society, with much help from the members of its Russian branch,
discussed the matter at length with all of their Russian friends, until almost everyone
was confident it was a great idea that might be possible. Then after much lobbying
the Soviet Academy of Science decided not to oppose it and it went through. If
the Bernoulli Society had chosen the institutional way and wrote a letter to the
Academy, they would certainly have received a negative reply, if any at all.

F.G.: Yes, definitely. The relations we had with the former Soviets were based on
the fact that we attended all of these meetings together, got to know each other at
a very early stage and developed a mutual trust. I have never noticed this in other
branches of mathematics to this extent.

We should also not discount the role of the various nationalities in the Soviet
Union. To organize a scientific meeting in Vilnius with a large international
participation would be strongly supported by the local government, because it
would show that Lithuania was not merely a part of the Soviet Union but also
internationally recognized.

Interviewer: You are absolutely right.

7 German Reunification

Interviewer: Under the communist regimes, scientists basically had the same
problems everywhere in Eastern Europe and the Soviet Union. Still East Germany
was a somewhat special case. How did the German reunification affect East German
science and scientists?

F.G.: The situation in East Germany was indeed very special. Two neighboring
countries with the same language, the Eastern part watching Western television and
seeing the wonderful world of Western luxury, while they couldn’t buy bananas
in the supermarket. After 1989 the original idea was that the two countries would
remain separate for the time being, each with its own currency and a cheap-labor part
in East Germany, and then slowly evolve into a single country. But it quickly became
clear to the politicians that with the heavily guarded border gone, there was nothing
to stop people moving to the more prosperous part. So they had to act fast and the
East German parliament decided to join West Germany. It was not unification of
two states and of two political systems, but of East Germany becoming part of the
West German republic, with all of the legal and bureaucratic consequences that this
implied. Of course this was easy for the West Germans because they wouldn’t have
to change anything.

But this created a problem for the sciences, because in East Germany, like in most
Eastern European countries, scientific research was organized through the Academy
of Sciences, and the East German academy employed about 30,000 people under
the heading of scientific socialist production. Presumably these people did scientific
research to enhance socialist production. This was not a happy idea, because the
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people employed by the academy were not content to do purely applied work for
industry and mostly did their own thing, whereas industry wasn’t pleased to be told
to let these people interfere with production, socialist or not! Most of this would
have to go, because there was no way to employ 30,000 people at Western salaries,
as would be a legal obligation for all civil servants.

A similar problem existed at the universities where people below the rank of
professor also had permanent positions and would have to be paid Western salaries
if they remained. Finally there were people with Party or Stasi affiliations which
should not be retained. All of these problems would have to be solved before
everybody became civil servants under West German law.

As a first step all members of the scientific staff of the Academy and the
universities were dismissed. It was decided to follow the West German model where
research is performed at the universities and at a limited number of specialized
institutions with a far smaller staff than the former Academy institutes. Every
qualified person could apply for one of the available positions, which meant that
after being dismissed one could apply for one’s previous position or any other. At the
same time scientists from outside East Germany could also apply. At the universities
there were honors committees of East German members as well as external hiring
committees to reappoint people. This created uncomfortable situations where people
like you and me had to review senior East German colleagues competing for their
own jobs with young applicants from West Germany.

Interviewer: Yes, that’s what I really found shocking.

F.G.: Another question was how to fund the specialized research institutions. Max
Planck didn’t want them. Fraunhofer didn’t view these institutes as helpful for
applied research with industry. So the only place for these institutes was the blue
list of institutes financed jointly by the local State and the Federal Government that
I mentioned earlier when speaking about Oberwolfach. For this new role the blue
list was renamed Leibniz Foundation, which certainly sounds more dignified. When
discussing which of the institutes should go to Leibniz I heard the representatives
of the Federal Government make a promise that I never heard before or after. They
told us to decide which institutes were really of a very high level, and whatever you
find good, we’ll pay for. It was amazing!

Interviewer: And did they actually keep their promise?

F.G.: Yes. Well look at the West German deficit at that time.
Of course this gave many people a very bad time. They had permanent positions

and never expected to have to look for another job. But there was no other way. It all
had to be done in a few months, which was a hectic time for all of these committees
too. I was mainly involved with the Weierstrass Institute which was cut down from
200 to about 80 people.

So this was the reunification process, but then it was argued that this would have
been a unique time for a real unification, in the sense of also cutting out some of the
fat in the West German system. But as you can imagine with these time constraints
other people argued convincingly against this.
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Interviewer: Should things have been done differently or was there really no
alternative?

F.G.: Theoretically we could have gone to a new structure together. But the West
German institutions would not have been in a great hurry to submit plans and would
certainly have fought this.

8 Visiting Committees

Interviewer: Friedrich, we have both spent a considerable amount of time on
visiting committees that show up at mathematics departments of other universities
and report what we think of them. If this opinion is not fit to be printed, we typically
confuse the reader with a mountain of generalities.

F.G.: In Germany the visiting committee is a fairly recent phenomenon that was
introduced when the golden years of expansion were over and serious cutbacks
started in the eighties. Before that time all universities were supposed to have been
created equal and it was blasphemy to try and rank them.

Interviewer: I think that this was true in most other countries too, and if it was
done earlier, it was merely an intellectual exercise without serious consequences.

F.G.: By the end of the eighties the data collected by the visiting committees on
research and teaching began to play a role in the allocation of funds.

Interviewer: Still the effect has generally been pretty minimal. The mathematics
department at Leiden is usually declared to be the best in the country, but this
never brought us a penny. It does make us more popular with the president of the
university, though.

F.G.: Yes that is true in general. But at some smaller universities founded during
the time of university expansion the staff was roughly of the same age so there was
massive retirement 20–25 years later. In such a case it is probably not a good idea to
let these senior people decide on the direction the department should take, so outside
advice can be very useful.

Interviewer: Sure, such cases exist, but in most universities they are rare.

F.G.: Yes, but outside advice is becoming more and more common. A generation
change that I just mentioned is one thing, but it now happens regularly. There
is this excellence competition between universities, which forces them to choose
main areas of research. Anytime a number of positions in a department are
open for reappointment and a change of direction might be possible, the new
constitution gives the university the option to make such strategic decisions its own
responsibility. Of course they are also a bit at a loss what to do, so they call for
outside advice.
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Interviewer: I can imagine that you are concerned about this as it sounds really
rather extreme to me. Does this also exist in this extreme form in other countries? Of
course the president and rector are formally responsible for everything that goes on
in a university and there is much talk of departments choosing main research areas,
but in practice the department still decides whom to appoint in the Netherlands.
I suppose that this outside advice also leads to a new bureaucracy to handle this
advice and act on it?

F.G.: Exactly! The office of the president or the rector is acquiring a whole new
group of people who organize these reviews, help in formulating long-term policies
etc. So far these kinds of jobs seem to be more attractive to people with a background
in the humanities rather the natural sciences.

Interviewer: It sounds gruesome. I can see only one positive side to this, which is
that using visiting committees is certainly better than basing decisions on numbers
of publications and citations. Bureaucrats usually prefer these numbers assuming
that they provide “hard” evidence in contrast to peer review which is considered
“soft”.

9 Scientific Interests

Interviewer: During this interview we have repeatedly seen that your interest
in mathematics doesn’t stop with mathematical statistics and probability theory.
During the symposium held on the occasion of your sixtieth birthday, Professor
Hirzebruch who guided the work for your diploma in geometry, gave a lively
account of this work. Let us now talk about your recent work in number theory.

F.G.: Willem, as you well know I started out in mathematical statistics with
an interest in asymptotic expansions for the distributions of nonlinear statistical
procedures like goodness-of-fit procedures, such as the Cramér-von Mises test.
These may be viewed as expansions for the probabilities of ellipsoids in the Central
Limit Theorem (CLT) in function spaces. The methods I developed for obtaining
such expansions seemed to be interesting for a group of the Kolmogorov / Linnik
school in probability in Russia working on these questions since the sixties. In
the first SFB (1989–2000) in Bielefeld I originally worked on statistical problems
in Markov chain Monte-Carlo, image restoration, as well as resampling methods,
time-series and stochastic processes. But a number of researchers applied for and
received Humboldt-fellowships to work with me on Berry-Esseen type bounds
and asymptotic expansions for quadratic forms, U -statistics and Student statistics.
These were Bentkus, Bloznelis, Rachkauskas, Tikhomirov, Zalesky and Zaitsev. The
Humboldt-Foundation also helped to finance via Humboldt-Prizes the collaboration
with Rabi Bhattacharya, David Mason and you.

Of all of the remaining open probabilistic questions concerning the rate of
convergence in the high and infinite-dimensional CLT for regions defined by
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quadratic forms, I felt that one was particularly important. It was raised in the
seminal work by C.G. Esseen (1945) who proved that the error in the CLT for
balls in dimension d is O.n�d=.dC1//. He noted that for sums of random vectors
taking values in a lattice, his result is the equivalent in probability of classical
results in analytic number theory by Landau and his students in the 1920s. They
proved asymptotic rate bounds for the difference between the number of points of
the standard lattice in ellipsoids of fixed shape blown up by a large radius factor and
their corresponding Lebesgue-volume.

Interviewer: How did you approach these problems in number theory?

F.G.: In order to find the optimal rate in he CLT I started to study the old papers
of Landau, Hardy and Littlewood and related papers by Weyl on this topic. First of
all, I found out how rewarding it is to go back to the original sources concerning
a problem. There you see the full force of the original arguments, whereas later
publications often deal with refined versions of combinations of several methods of
often undisclosed origin, which makes understanding the basic ideas and the further
development much harder. It was very interesting to see a variety of methods that
were either similar to or different from the ones I had used for the probabilistic
questions. After intensive work I found ways to combine stochastic ideas with those
of the classical analytic number theory establishing in this way a firm link of both
worlds, where distributions on lattices turned out to provide the worst cases to be
dealt with in the CLT.

I finally succeeded together with V. Bentkus to show the optimal rates of order
n�1 for a sum of n vectors in the CLT, as well as in corresponding distributional
problems in number theory in dimension 9 and larger. The chain of arguments
started in number theory, improving Landau’s bounds by new ones of optimal order
and after that proceeding by representing distributional errors for sums by averages
over errors for multinomial distributions on randomly selected lattices.

Interviewer: What was the role of the dimension in this problem. Esseen did not
have any restriction in his bounds as far as I remember?

F.G.: It was clear by old results in number theory that dimensions 2–4 were
different, hence one could not expect the same rate of convergence O.n�1/ in the
CLT for this case. But it took nearly a decade to get from dimension 9 to the final
result for dimensions 5 and larger.

First this was done for ellipsoids in number theory in 2004, but the transfer
to probability needed results for indefinite forms in number theory, which were
obtained by means of quantitative equi-distribution results for orbits of 1-parameter
(unipotent) subgroups jointly with G. Margulis 5 years later. The final transfer of
these methods to the CLT in dimension 5 and larger with rate O.n�1/ (without any
logn factors) has been achieved last year jointly with A. Zaitsev. This closes the
circle back to the original problem of Esseen.

Interviewer: Friedrich, thank you very much for taking so much of your time to
tell us something about your career and the many activities that went with it.
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1 Introduction

Throughout the paper �A stands for the Lebesgue measure of a measurable set
A � R and dim B denotes the Hausdorff dimension ofB . Given W N ! .0C1/,
let L. / denote the set of x 2 R such that

ˇ
ˇ
ˇ
ˇ
x � p

q

ˇ
ˇ
ˇ
ˇ
<
 .q/

q
(1)

has infinitely many solutions .p; q/ 2 Z � N. We begin by recalling two classical
results in metric theory of Diophantine approximation.
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Khintchine’s theorem [35]. Let  W N ! .0;C1/ be monotonic and I be an
interval in R. Then

�.I \ L. // D
8

<

:

0; if
P1

qD1  .q/ < 1;

�.I /; if
P1

qD1  .q/ D 1:
(2)

Jarnı́k–Besicovitch theorem [25, 34]. Let v > 1 and for q 2 N let  v.q/ D q�v.
Then

dim L. v/ D 2

v C 1
:

The condition that  is monotonic can be omitted from the convergence case of
Khintchine’s theorem, though it is vital in the case of divergence—see [12, 33, 42]
for a further discussion. By the turn of the millennium the above theorems were
generalised in various directions. One important direction of research has been
Diophantine approximation by algebraic numbers and/or integral polynomials,
which has eventually grown into an area of number theory known as Diophantine
approximation on manifolds.

Given a polynomial P D anx
n C � � � C a1x C a0 2 ZŒx�, the number H D

H.P/ D max0�i�n jaj j will be called the (naive) height of P . Given n 2 N and an
approximation function‰ W N ! .0;C1/, let Ln.‰/ be the set of x 2 R such that

jP.x/j < ‰.H.P // (3)

for infinitely many P 2 ZŒx� n f0g with degP � n. Note that L1.‰/ is essentially
the same as the set L.‰/ introduced above. Thus, the following statement represents
an analogue of Khintchine’s theorem for the case of polynomials.

Theorem 1. Letn 2 Nand‰ W N ! .0;C1/be monotonic. Then for any intervalI

�.I \ Ln.‰// D
8

<

:

0; if
P1

hD1 hn�1‰.h/ < 1;

�.I /; if
P1

hD1 hn�1‰.h/ D 1:
(4)

The case of convergence of Theorem 1 was proved in [17], the case of divergence
was proved in [4]. The condition that ‰ is monotonic can be omitted from the
case of convergence as shown in [6]. Theorem 1 was generalised to the case of
approximation in the fields of complex and p-adic numbers [9,19], to simultaneous
approximations in R�C�Qp [22,26] and to various other settings. When‰ D ‰w is
given by ‰w.q/ D q�w Theorem 1 reduces to a famous problem of Mahler [37, 41]
solved by Sprindžuk. The versions of Theorem 1 for monic polynomials were
established in [27, 40]. For the more general case of Diophantine approximation
on manifolds see, for example, [5, 7, 10, 15, 18, 20, 36, 42].
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The more delicate Jarnı́k-Besicovitch theorem was also generalised to the case
of polynomials and reads as follows.

Theorem 2. Let w > n and ‰w.q/ D q�w. Then

dim Ln.‰w/ D nC 1

w C 1
: (5)

The lower bound dim Ln.‰w/ � nC1
wC1 was obtained by Baker and Schmidt [2]

who also conjectured (5). The conjecture was proved in full generality in [16]. It
is worth noting that the generalised Baker-Schmidt problem for manifolds remains
an open challenging problem in dimensions n � 3; the case of n D 2 was settled
by R.C. Baker [3], see also [1, 8] and [7, 11, 43] for its analogue for simultaneous
rational approximations.

The various techniques used to prove Theorems 1 and 2 make a substantial use
of the properties of discriminants and resultants of polynomials and to some extent
the distribution of algebraic numbers. The main substance of this paper will be to
overview some relevant recent developments and techniques in this area.

2 Distribution of Discriminants of Integral Polynomials

The discriminant of a polynomial is a vital characteristic that crops up in various
problems of number theory. For example, they play an important role in Diophantine
equations, Diophantine approximation and algebraic number theory [41].

Let
P.x/ D anx

n C an�1xn�1 C � � � C a1x C a0

be a polynomial of degree n and ˛1; ˛2; : : : ; ˛n be its roots. By definition, the
discriminant of P is given by

D.P/ D a2n�2
n

Y

1�i<j�n
.˛i � ˛j /2: (6)

The following matrix formula for D.P/ is well known:

D.P/ D .�1/n.n�1/=2

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

1 an�1 an�2 : : : a0 0 : : :

0 an an�1 : : : a1 a0 : : :

: : :

0 : : : 0 an : : : a1 a0

n .n� 1/an�1 .n � 2/an�2 : : : 0 0 : : :

0 nan .n � 1/an�1 : : : a1 0 : : :

: : :

0 : : : : : : 0 nan : : : a1

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

:
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Thus, the discriminant is an integer polynomial of the coefficients of P . Conse-
quently, whenever P has rational integer coefficients the discriminantD.P/ is also
an integer. Furthermore,

jD.P/j > 1 for any P 2 ZŒx� with degP � 1 andD.P/ ¤ 0: (7)

Clearly, by (6), D.P/ ¤ 0 if and only if P has no multiple roots.
Fix n 2 N. Let Q > Q0.n/, where Q0.n/ is a sufficiently large number.

Let Pn.Q/ denote the set of non-zero polynomials P 2 ZŒx� with degP � n

and H.P/ � Q. Throughout cj , j D 0; 1; : : : will stand for positive constants
depending on n only. When it is not essential for calculations we will denote these
constants as c.n/. Also we will use the Vinogradov symbols: A 	 B meaning that
A � c.n/B . The expression A 
 B will mean B 	 A 	 B . Finally #S means the
cardinality of a finite set S . In what follows we consider polynomials such that

c1Q < H.P / � Q; 0 < c1 < 1: (8)

Using the matrix representation for D.P/ one readily verifies that jD.P/j <
c.n/Q2n�2 for P 2 Pn.Q/. Thus, by (7), we have that

1 � jD.P/j < c.n/Q2n�2 (9)

for polynomialsP 2 Pn.Q/ with no multiple roots. Further, it is easily verified that

#Pn.Q/ < 22nC2QnC1:

The latter together with (9) shows that Œ1; c.n/Q2n�2� contains intervals of length
c.n/Qn�3 that are not hit by the values of D.P/ for any P 2 Pn.Q/ whatsoever.
For n > 4 these intervals can be arbitrarily large. Thus, the discriminantsD.P/ are
rather sparse in the interval Œ1; c.n/Q2n�2�.

In order to understand the distribution of the values of D.P/ as P varies within
Pn.Q/, for each given v � 0 we introduce the following subclass of Pn.Q/:

Pn.Q; v/ D fP 2 Pn.Q/ W jD.P/j < Q2n�2�2v and (8) holdsg: (10)

These subclasses are of course dependant on the choice of c1, but for the moment
let us think of c1 as a fixed constant.

We initially discuss some simple techniques utilizing the theory of continued
fractions that enable one to obtain non-trivial lower bounds for #Pn.Q; v/ in terms
of Q and v.

The first observation concerns shifts of the variable x by integers. More precisely,
if m 2 Z then D.P.x// D D.P.x � m//. The height of P.x � m/ changes as m
varies. It is a simple matter to see that imposing (8) on P.x � m/ restricts m to at
most c2 values. Furthermore, (8) ensures that polynomials of relatively small height
cannot be in Pn.Q; v/.
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By (6), the fact that P belongs to Pn.Q; v/ with v > 0 implies that P must
necessarily have at least two close roots. This gives rise to a natural path to
constructing polynomialsP in Pn.Q; v/—we have to make sure that they have close
roots. We now describe a very special procedure that enables one to do exactly this.

Take n best approximations (convergents) pj
qj

to the number
p
2 with k C 1 �

j � k C n for some k 2 N. Define the polynomial

Tp
2.x/ D

kCnY

jDkC1
.qj x � pj /

of degree n. Clearly the above mentioned best approximations to
p
2 are the roots

of T . Also note that the height of T is 	 an, where

an D
Y

kC1�i�kCn
qi :

From the theory of continued fractions we know that qj � 3qj�1. Thus an �
c.n/qnkC1. On the other hand, we also know that for i < j

ˇ
ˇ
ˇ
ˇ

pi

qi
� pj

qj

ˇ
ˇ
ˇ
ˇ

�
ˇ
ˇ
ˇ
ˇ

pi

qi
� piC1
qiC1

ˇ
ˇ
ˇ
ˇ

D 1

qiqiC1
<
1

q2i
:

Therefore, we can estimate the following product

…1 D
Y

kC1�i<j�kCn

ˇ
ˇ
ˇ
ˇ

pi

qi
� pj

qj

ˇ
ˇ
ˇ
ˇ

2

�
Y

kC1�i�kCn�1

�
1

q2i

�2.kCn�i /
	 q��

kC1;

where

� D 2

kCn�1X

iDkC1
2.k C n � i/ D 4

n�1X

`D1
` D 2n.n � 1/:

and see that

jD.Tp
2.x//j � a2n.n�1/

n …1 	 q
2n.n�1/
kC1 q��

kC1 D 1:

This way we construct a polynomial of degree n with arbitrarily large height and
discriminant as small as c.n/. However, to get quantitative bounds for #Pn.Q; v/
more needs to be done. The following lemmas underpin the construction.

Lemma 1. Let I be an interval, I � R, c3 and c4 be positive constants such that
maxfc3; c4g � 1. Given a sufficiently large Q, let L1;Q.c3; c4/ be the set of x 2 I

such that the system of inequalities
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(

jqx � pj < c3Q�1;
1 � q � c4Q;

(11)

has a solution in coprime .p; q/ 2 Z � N. Then for c3c4 < �, 0 < � < 1
3
, we have

�L1;Q.c3; c4/ < 3�jI j:

Lemma 2. Let Mn.Q/ denote the set of x 2 I such that the following n systems of
inequalities

8

<

:

Q�1

3i .nC1/i < jqix � pi j < Q�1

3i�1.nC1/i�1

3i�2.nC 1/i�2Q � qi � 3i�1.nC 1/i�1Q; 1 � i � n

have solutions in f.pi ; qi /gniD1. Then �Mn.Q/ >
jI j
nC1 .

Lemma 1 is proved by summing up the measures of intervals given by the first
inequality of (11). Lemma 2 is a corollary of Lemma 1 (which should be applied n
times) and Minkowski’s theorem for convex bodies. See [21] for details.

Now take any point x1 2 Mn.Q/ and define

T1.x/ D
nY

jD1
.qj x � pj / and Q D c.n/

nY

iD1
qi ;

where .pj ; qj / arise from Lemma 2. Estimating jD.T1/j gives

jD.T1/j 	 Q2n�2 Y

1�i<j�n

ˇ
ˇ
ˇ
ˇ

pi

qi
� pj

qj

ˇ
ˇ
ˇ
ˇ

	 1:

We now use the fact that Mn.Q/ is a fairly large subset of I to produce other
polynomials with this property. For this purpose we choose points x2; x3; : : : 2
Mn.Q/ that are well separated. As a result we obtain

Theorem 3 ([21]). For any sufficiently largeQ there are c.n/Q
2
n polynomialsP 2

Pn.Q/ such that 1 � jD.P/j � c.n/.

The above ideas can be generalised to give a similar bound for the number of
polynomials P 2 Pn.Q/ such that jD.P/j lies in a neighborhood of some K with
c.n/ < K < c.n/Q2n�2.

Theorem 4 ([21]). For any � , 0 � � � 2n � 2, there are at least c.n/Q2=n

polynomials P 2 Pn.Q/ with discriminants satisfying the inequalities

c5Q
� < jD.P/j < c6Q�:
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We proceed by describing a more sophisticated method from [23] that produces
lower bounds for #Pn.Q; v/. The main result is as follows.

Theorem 5 ([23]). Let v 2 Œ0; 1
2
�. Then there are at least c.n/QnC1�2v polynomials

P 2 Pn.Q/ with discriminants

jD.P/j < Q2n�2�2v: (12)

Establishing upper bounds for #Pn.Q; v/ is likely a more difficult task. We
expect that if we impose some reasonable conditions on polynomialsP from Pn.Q/
(for example excluding reducible polynomials) then the lower bound given by
Theorem 5 would become sharp. We now state this formally as the following

Problem 1. Find reasonable constrains on polynomials P that chop a subclass
P 0
n.Q/ off Pn.Q/ such that #P 0.Q/ 
 #Pn.Q/ and for v 2 Œ0; 1

2
�

#fP 2 P 0
n.Q/ W jD.P/j < Q2.n�1�v/g 
 QnC1�2v: (13)

Obtaining the estimates of this ilk for a larger range of v is another problem.
We wish to note that (13) is false for Pn.Q/—see [32] for precise upper and lower
bounds in the case v < 3=5 and n D 3.

Problem 2. For each n find the function fn.v/, if it exists at all, such that for all
sufficiently largeQ one has the estimates

#fP 2 Pn.Q/ W jD.P/j < Q2.n�1�v/g 
 QnC1�fn.v/: (14)

It was shown in [32] that f3.v/ D 5
3
v for 0 � v � 3=5.

2.1 Sketch of the Proof of Theorem 5

Underlying the proof of Theorem 5 is the following result, which essentially plays
the role of Lemma 1 in this more general context. In what follows, given an interval
I � Œ�1=2; 1=2�, let Ln.I;Q; v; c7; c8/ be the set of x 2 I such that

( jP.x/j < c7Q�nCv;

jP 0.x/j < c8Q1�v
(15)

holds for some P 2 Pn.Q/.

Theorem 6. Let Q denote a sufficiently large number, v 2 Œ0; 1
2
� and let c7 and c8

be positive constants such that c7c8 < n�12�n�12. Then

�Ln.I;Q; v; c7; c8/ <
jI j
4
:
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We now explain the role of Theorem 6 in establishing Theorem 5. Suppose that
P 2 ZŒx�, degP � n, janj > cH . If janj � cH then the polynomial can be
transformed into one with a large leading coefficient with the same discriminant—
see [41].

By Dirichlet’s pigeonhole principle, for any point x 2 I andQ > 1 the following
system

(

jP.x/j < Q�nCv;

jP 0.x/j < 8nQ1�v
(16)

holds for some polynomial P 2 Pn.Q/. Let � D n�22�n�15 and I D Œ�1=2; 1=2�.
Then, by Theorem 6, the set

B1 D I n Ln.I;Q; v; 1; �/[ Ln.I;Q; v; �; 8n/

satisfies �B1 > 1
2

for all sufficiently large Q. Hence for any x1 2 B1 the solution
P 2 Pn.Q/ to the system (16) must satisfy

(

�Q�nCv < jP.x1/j < Q�nCv;

�Q1�v < jP 0.x1/j < 8nQ1�v:
(17)

For all x in the interval jx � x1j < Q� 2
3 , the Mean Value Theorem gives

P 0.x/ D P 0.x1/C P 00.�1/.x � x1/ for some �1 2 Œx; x1�: (18)

The obvious estimate jP 00.�2/j < n3Q implies jP 00.�1/.x � x1/j < n3Q
1
3 . But

jP 0.x1/j � Q
1
2 for v � 1

2
and therefore, by (18) and the second inequality of (17),

for sufficiently largeQ we have that

�

2
Q1�v < 1

2
jP 0.x1/j < jP 0.x/j < 2jP 0.x1/j < 16nQ1�v:

There are four possible combinations for signs of P.x1/ and P 0.x1/. To illustrate
the ideas we consider the case when P1.x1/ < 0 and P 0

1.x1/ > 0—the others are
dealt with in a similar way. Our goal for now is to find a root of P close to x1. Once
again we appeal to the Mean Value Theorem:

P.x/ D P.x1/C P 0.�2/.x � x1/ for some �2 2 Œx1; x�: (19)

Write x D x1C	 and suppose that	 > 2��1Q�n�1C2v. IfP.x1/ < P.x1C	/ < 0
then the first inequality of (17) implies

0 < P.x1 C	/� P.x1/ < Q�nCv:
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On the other hand we have

jP 0.�2/	j > �

2
Q1�v2��1Q�n�1C2v D Q�nCv:

Thus in view of (19) we obtain a contradiction. This means that P1.x1 C 	/ > 0

and there is a real root ˛ of the polynomial P.x/ between x1 and x1 C 	. Once
again using the Mean Value Theorem and the estimates for P.x/ and P 0.˛/ we get

jx1 � ˛j < 2��1Q�n�1C2v D n2nC13Q�n�1C2v: (20)

Note that as well as ensuring that ˛, a root of P , is close to x1 inequalities (17)
keep ˛ sufficiently away from x1. We now explain this more formally. Again we
consider only one of the four possibilities: P.x1/ > 0, P 0.x1/ < 0. With x D
x1 C	1, by the Mean Value Theorem, we have

P.x/ D P.x1/C P 0.�3/	1; �3 2 Œx1; x�: (21)

If 	1 < 2�4n�1�Q�n�1C2v then in (21) the following holds: jP.x1/j > �Q�nCv

and jP 0.�3/	1j < �Q�nCv. It implies that the polynomial P.x/ cannot have any
root in the interval Œx1; x1 C	1� and therefore for any root ˛, we have

n�12�n�13Q�n�1C2v < jx � ˛j:
This time let ˛ be the root of P closest to x1. By the Mean Value Theorem,

P 0.˛/ D P 0.x1/C P 00.�4/.x1 � ˛/; �4 2 Œx; ˛�;
the estimate jP 00.�/j < n3Q and (20) for sufficiently largeQ we get

n�12�n�13Q1�v < jP 0.˛/j < 16nQ1�v:

The square of derivative is a factor of the discriminant of P . Taking into account
that for janj 
 H.P/ all roots of the polynomial are bounded, see [41]. Then we
can estimate the differences j˛i �˛j j, 2 � i < j � n, by a constant c.n/. This way
we obtain (12). Since �B1 � 1=2 and x1 is an arbitrary point in B1 we must have
� QnC1�2v different ˛’s that arise from (20). Since each polynomial P of degree
� n has at most n roots this gives � QnC1�2v polynomials in Pn.Q; v/ satisfying
(12)—see [13] for further details.

2.2 Sketch of the Proof of Theorem 6

The purpose of this section is to discuss the key ideas of the proof of Theorem 6
given in [13] as they may be useful in a variety of other tasks. We start by estimating
the measure of x such that the system
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(

jP.x/j < c11Q�nCv;

Q1�v1 < jP 0.x/j < c12Q1�v
(22)

is solvable for P 2 Pn.Q/, where v1 satisfies v < v1 � 1 and will be specified later.
We shall see that P 0.x/ can be replaced with P 0.˛/ in the second inequality

of (22), where ˛ denotes the root of P nearest to x. Indeed, using the Mean Value
Theorem gives

P 0.x/ D P 0.˛/C P 00.�1/.x � ˛/; �1 2 .˛; x/:

We apply the following inequality for jx � ˛j

jx � ˛j < n jP.x/j
jP 0.x/j ;

which was proved in [17, 41]. Then

jP 0.˛/j D jP 0.x/ � P 00.�5/.x � ˛/j; �5 2 .˛; x/:

As

jP 00.�1/.x � ˛/j � n3Qc11nQ
�n�1CvCv1 D c11n

4Q�nCvCv1

for sufficiently largeQ we obtain

3

4
Q1�v1 � 3

4
jP 0.x/j � jP 0.˛/j � 4

3
jP 0.x/j � 4

3
c12Q

1�v

and

3

4
jP 0.˛/j � jP 0.x/j � 4

3
jP 0.˛/j:

Therefore for sufficiently large Q inequality (22) implies

8

ˆ̂
<

ˆ̂
:

jP.x/j < c11Q�nCv

3
4
Q1�v1 < jP 0.˛/j < 4

3
c12Q

1�v

jaj j � Q:

(23)

Let L0
n.v/ denote the set of x, for which system (23) is solvable for P 2 Pn.Q/.

Now we are able to prove that �L0
n.v/ <

3
8
jI j.

Consider the intervals:

�1.P / D fx W jx � ˛j < 4

3
c11nQ

�nCvjP 0.˛/j�1g
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and

�2.P / D fx W jx � ˛j < c13Q�1CvjP 0.˛/j�1g:
The value of c13 will be specified below. Of course, each polynomial P has up to
n roots and potentially we have to consider all the different intervals �1.P / and
�2.P / that correspond to each P . However, this will only affect the constant in the
estimates. Thus, without loss of generality we confine ourselves to a single choice
of �1.P / and �2.P /. Obviously

j�1.P /j � 4
3
c11c

�1
13 nQ

�nC1j�2.P /j: (24)

Fix a vector b D .an; : : : ; a2/ of the coefficients of P . The polynomials P 2
Pn.Q/ with the same vector Nb form a subclass of Pn.Q/ which will be denoted by
P.b/.

The interval �2.P1/ with P1 2 P.b/ is called inessential if there is another
interval �2.P2/ with P2 2 P.b/ such that

j�2.P1/\ �2.P2/j > 1
2
j�2.P1/j:

Otherwise for any P2 2 P.b/ different from P1

j�2.P1/ \ �2.P2/j < 1
2
j�2.P1/j

and the interval �2.P2/ is called essential.

The case of essential intervals. In this case every point x 2 I belongs to at most
two essential intervals �2.P /. Hence for any vector b

X

P2P.b/
�2.P / is essential

j�2.P /j � 2jI j: (25)

The number of all possible vectors b is at most .2Q C 1/n�1 < 2nQn�1: Then,
by (24) and (25), we obtain

X

b

X

P2P.b/
�2.P / is essential

j�1.P /j < 4
3
c11c

�1
13 nQ

�nC12jI j2nQn�1 D n2nC2c11c�1
13 jI j:

Thus for c13 D n2nC5c11 the measure will be not larger than 1
8
jI j.

The case of inessential intervals. In this case we need to estimate the values of
jPj .x/j, j D 1; 2, for x 2 �2.P1/\ �2.P2/. By Taylor’s formula,

Pj .x/ D P 0
j .˛/.x � ˛/C 1

2
P 00
j .�6/.x � ˛/2 for some �6 2 .˛; x/;
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where ˛ is the root of either P1 or P2 as appropriate, and

P 0
j .x/ D P 0

j .˛/C P 00
j .�7/.x � ˛/ for some �7 2 .˛; x/:

The second summand is estimated by

jP 00.�6/.x � ˛/2j � 2n3c213Q
�3C2vC2v1 ;

while

jP 0.˛/.x � ˛/j < c13Q�1Cv:

As 2v1 < 2 � v for an appropriate choice of v1 < 3
4

we obtain

jPj .x/j � 7
6
c13Q

�1Cv; j D 1; 2: (26)

Similarly we obtain the following estimate for P 0
j .x/ when v1 � 2 � 2v :

jP 0
j .x/j � 4

3
c12Q

1�v; j D 1; 2: (27)

Let K.x/ D P2.x/ � P1.x/ 2 ZŒx�. Obviously K.x/ is non-zero and has the
formK.x/ D b1x C b0. By (26) and (27), we readily obtain that

jb1x C b0j < 8
3
c13Q

�1Cv (28)

and

jb1j D jK 0.x/j < 8
3
c12Q

1�v: (29)

Thus, the union of inessential intervals can be covered by intervals 	.b1; b0/ �
I given by (28). For fixed b0 and b1 the length of 	.b1; b0/ is bounded by
16
3
c13Q

�1Cvb�1
1 . Given that x 2 I and (28) is satisfied we conclude that b0 takes at

most jI jjb1j C 2 values. Then

X

b0

j	.b1; b0/j � 16
3
c13Q

�1Cvb�1
1 .jI jjb1j C 2/ < 6c13Q

�1CvjI j: (30)

Using (29) we further obtain that

X

b1

X

b0

j	.b1; b0/j � 25c12c13Q
1�v�1CvjI j D n2nC8c11c12jI j D 1

8
jI j

for we have that c11c12 < n�12�n�11. Finally, combining the estimates for essential
and inessential intervals we obtain 1

4
jI j as an upper bound for their total measure.

The case v � v1 can be deal with using methods described in [17] and [36].
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3 Divisibility of Discriminants by Prime Powers

Let p be a prime number. Throughout �p denotes the Haar measure on Qp

normalized to have �p.Zp/ D 1. In this section we consider the divisibility of
the discriminant D.P/, P 2 Pn.Q/ by prime powers pl . This natural arithmetical
question has usual interpretation in terms of Diophantine approximation in Qp, the
field of p-adic number. Indeed, pl jD.P/ if and only if jD.P/jp � p�l , where j � jp
stands for the p-adic norm. Thus, the question we outlined above becomes a p-adic
analogue of the problems we have considered in the previous section. Naturally, we
proceed with the following p-adic analogue of Theorem 5.

Theorem 7 ([24]). Let v 2 Œ0; 1
2
�. Then there are at least c.n/QnC1�2v polynomials

P 2 Pn.Q/ with

jD.P/jp < Q�2v: (31)

The proof of this result relies on the following p-adic version of Theorem 6.

Theorem 8 ([24]). LetQ denote a sufficiently large number and c14 and c15 denote
constants depending only on n. Also, let K be a disc in Qp. Assume that c14c15 <
2�n�11p�8 and v 2 Œ0; 1

2
�. If Mn;Q.c14; c15/ is the set of w 2 K � Qp such that the

system of inequalities
(

jP.w/jp < c14Q�n�1Cv;

jP 0.w/jp < c15Q�v

has solutions in polynomials P 2 Pn.Q/, then

�p.Mn;Q.c14; c15// <
1
4
�p.K/:

The techniques used in the proof of this theorem are essentially the p-adic
analogues of those used for establishing Theorem 6 and draw on the estimates
obtained in [39]—see [24] for more details. Skipping any explanation of the proof
of Theorem 8, we now show how it is used for establishing Theorem 7.

Let K be a disc in Qp, Mn;Q be the same as in Theorem 8, � D p�112�n�11 and

B D K n �Mn;Q.�; p
3/[Mn;Q.1; �/

�

:

Then, by Theorem 8, �p.B/ > 1
2
�p.K/. Take any w1 2 B . Then, using Dirichlet’s

pigeonhole principle we can find a polynomial P 2 Pn.Q/ such that jP.w1/jp <
Q�n�1Cv and jP 0.w1/jp < p3Q�v. Since w1 2 B we have that

(

�Q�n�1Cv � jP.w1/jp < Q�n�1Cv;

�Q�v � jP 0.w1/jp < p3Q�v:
(32)
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Let w 2 K1 D fw 2 Qp W jw � w1jp < Q� 3
4 g. By Taylor’s formula

P 0.w/ D P 0.w1/C
nX

iD2

P .i/.w1/.w � w1/i�1

.i � 1/Š :

Since

j.i � 1/Šj�1p jP .i/.w1/jpjw � w1ji�1p 	 Q� 3
4 ;

and

jP 0.w/jp > �Q�v � Q� 1
2 ;

for all w 2 K1 we obtain that jP 0.w/jp D jP 0.w1/jp . Let ˛ be the closest root of
P.w/ to the point w1. Then, using the Mean Value Theorem, we get that jw1�˛jp �
jP.w1/jpjP 0.w1/j�1p . By (32),

jw1 � ˛jp � ��1Q�n�1C2v: (33)

To estimate the distance between w1 and the root of the polynomial we can also
apply Hensel’s lemma. Since jP.w1/jp < jP 0.w1/j2p we obtain that the sequence

wnC1 D wn � P1.wn/
P 0

1 .wn/
converges to the root ˛1 of P that lies in Qp and satisfies the

inequality

jw1 � ˛1jp � jP.w1/jpjP 0.w1/j�2p � ��2Q�n�1C3v: (34)

Since 0 < � < 1 and v > 0 the right hand side of (33) is less than that of (34).
This implies that the root ˛ belongs to the disc with center w1 of radius less than the
radius for the disc defined for the root ˛1. By Hensel’s lemma, we find that ˛1 2 Qp

but estimate (33) does not guarantee that ˛ 2 Qp. Suppose that ˛ ¤ ˛1 and consider
the discriminant of the polynomial P 2 Pn.Q/

D.P / D a2n�2
n

Y

1�i<j�n
.˛i � ˛j /2: (35)

From j˛j jp 	 1 follows that j˛i � ˛j jp 	 1. The product in (35) contains the
difference .˛ � ˛1/ for some i ¤ j . We have D.P/ 2 Z and jD.P/j 	 Q2n�2.
Assume for the moment that D.P/ ¤ 0. Then jD.P/jp � jD.P/j�1 � Q�2nC2.
From (33) and (34) we further obtain that

j˛1 � ˛jp D j˛1 � w1 C w1 � ˛jp � maxfjw1 � ˛1jp; jw1 � ˛jpg � ��2Q�n�1C3v:

Therefore

Q�2nC2 	 jD.P/jp 	 j˛1 � ˛j2p < ��4Q�2n�2C6v: (36)

For v � 1
2

andQ > Q0 the inequalityQ�2nC2 	 ��4Q�2n�2C6v is a contradiction.
Hence, ˛1 D ˛. Thus, ˛ 2 Qp and jw1 � ˛jp satisfies condition (33).
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In the case when D.P/ D 0 one has to use the above argument with P replaced
by its factor, say QP . If ˛ and ˛1 are conjugate over Q one can take QP to be the
minimal polynomials (over Z) of ˛. Otherwise, QP is taken to be the product of the
minimal polynomials for ˛ and ˛1.

By Taylor’s formula,

P 0.˛/ D P 0.w1/C
nX

iD2
..i � 1/Š/�1P .i/.w1/.˛ � w1/

i�1: (37)

Observe that

j.i � 1/Šj�1p jP .i/.w1/jpj˛ � w1ji�1p 	 Q�n�1C2v:

Then, by (33), we obtain

jP 0.˛/jp D jP 0.w1/jp < p3Q�v:

Therefore

jD.P/jp D ja2n
nY

kD2
.˛1 � ˛k/

2jp ja2n�4
n

Y

2�i<j�n
.˛i � ˛j /2jp 	 jP 0.˛/j2p 	 Q�2v:

(38)

Inequality (33) implies that in the neighborhood of the point w1 2 B there exists a
root ˛ of the polynomial P with discriminant satisfying (38).

By (33), w1 lies in the disc K.˛; c.n/Q�n�1C2v/. Since w1 is an arbitrary
point of B and �p.B/ � 1

2
�p.K/, we must have � c.n/QnC1�2v�p.K/ discs

K.˛; c.n/Q�n�1C2v/ to cover B , where ˛ is a root of some P 2 Pn.Q/
satisfying (38). Since each polynomial P 2 Pn.Q/ has at most n roots we must
have � c.n/QnC1�2v different polynomialsP 2 Pn.Q/ satisfying (38), that is (31).

4 Close Conjugate Algebraic Numbers

Estimating the distance between conjugate algebraic numbers of degree n (in C) has
been investigated over the last 50 years. There are various upper and lower bounds
found. However, the exact answers are known in the case of degree 2 and 3 only.
Define 
n (respectively 
�

n ) to be the infimum of 
 such that the inequality

j˛1 � ˛2j > H.˛1/�


holds for arbitrary conjugate algebraic numbers (respectively algebraic integers)
˛1 6D ˛2 of degree n with sufficiently large height H.˛1/. Here and elsewhere
H.˛/ denotes the height of an algebraic number ˛, which is the absolute height of
the minimal polynomial of ˛ over Z. Clearly, 
�

n � 
n for all n.
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In 1964 Mahler [37] proved the upper bound 
n � n � 1, which is the best
estimate up to date. It can be easily shown that 
2 D 1 (see, e.g. [30]). Evertse [31]
proved that 
3 D 2. In the case of algebraic integers 
�

2 D 0 and 
�
3 � 3=2. The

latter has been proved by Bugeaud and Mignotte [30].
For n > 3 estimates for 
n are less satisfactory. At first Mignotte [38] showed that


n; 

�
n � n=4 for all n � 3. Subsequently Bugeaud and Mignotte [29, 30] proved

that

n � n=2 when n � 4 is even,


�
n � .n � 1/=2 when n � 4 is even,


n � .nC 2/=4 when n � 5 is odd,


�
n � .nC 2/=4 when n � 5 is odd.

In a recent paper Bugeaud and Dujella [28] have further shown that


n � n

2
C n � 2

4.n� 1/
: (39)

On taking an alternative route it has been shown in [14] that there are numerous
examples of close conjugate algebraic numbers:

Theorem 9 ([13, 14]). For any n � 2 we have that

minf
n; 
�
nC1g � nC 1

3
: (40)

There are at least c.n/Q
nC1
3 pairs of conjugate algebraic numbers of degree n .or

conjugate algebraic integers of degree nC 1/ ˛1 and ˛2 such that

j˛1 � ˛2j 
 H.˛1/
� nC1

3

The proof of Theorem 9 is based on solvability of system of Diophantine
inequalities for analytic functions [7] on the set of positive density on any interval
J � Œ� 1

2
; 1
2
�. The interval Œ� 1

2
; 1
2
� is taken to simplify the calculation of constants.

As above � will denote Lebesgue measure in R while � will be a non-negative
constant. Given an interval J � R, jJ j will denote the length of J . Also, B.x; �/
will denote the interval in R centered at x of radius �.

Let n � 2 be an integer, � � 0, 0 < � < 1 andQ > 1. Let An;�.Q; �/ be the set
of algebraic numbers ˛1 2 R of degree n and heightH.˛1/ satisfying

�Q � H.˛1/ � ��1Q (41)

and

� Q�� � j˛1 � ˛2j � ��1Q�� for some ˛2 2 R, conjugate to ˛1: (42)
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Theorem 10. For any n � 2 there is a constant � > 0 depending on n only with
the following property. For any � satisfying

0 < � � nC 1

3
(43)

and any interval J � Œ� 1
2
; 1
2
�, for all sufficiently large Q

�

0

@
[

˛12An;�.Q;�/
B.˛1;Q

�n�1C2�/\ J

1

A � 3
4
jJ j: (44)

Remark. The constant 3
4

in the right hand side of (44) can be replaced by any
positive number < 1.

Corollary 1. For any n � 2 there is a positive constant � depending on n only
such that for any � satisfying (43) and any interval J � Œ� 1

2
; 1
2
�, for all sufficiently

large Q
#
�

An;�.Q; �/\ J
� � 1

8
QnC1�2�jJ j: (45)

The deduction of the corollary is rather simple. Indeed, if we have that
B.˛1;Q

�n�1C2�/ \ 1
2
J 6D ¿ then ˛1 2 J provided that Q is sufficiently large.

Then, using (44) we obtain

#
�

An;�.Q; �/\ J
�

2Q�n�1C2� �

� �

0

@
[

˛12An;�.Q;�/
B.˛1;Q

�n�1C2�/\ 1
2
J

1

A
(44)� 1

4
jJ j;

whence (45) readily follows. Taking the largest possible value of � gives Theorem 9.
The key element of the proof of Theorem 10 is a far reaching generalisation of

the arguments around (17) shown earlier. The appropriate analogue of Theorem 6
is given by Theorem 5.8 from [7]. In order to give a formal statement we first
introduce some further notation. In what follows �0; : : : ; �n 2 R

C will be positive
real parameters satisfying the following conditions

�i 	 1 when 0 � i � m � 1;

�i � 1 when m � i � n;

�0 < "; �n > "
�1

(46)

for some 0 < m � n and " > 0, where the constants in the Vinogradov’s symbol 	
depend on n only. We will also assume that

nY

iD0
�i D 1: (47)
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Lemma 3. For every n � 2 there are positive constants ı0 and c0 depending on n
only with the following property. For any interval J � Œ� 1

2
; 1
2
� there is a sufficiently

small " D ".n; J / > 0 such that for any �0; : : : ; �n satisfying (46) and (47) there is
a measurable set GJ � J satisfying

�.GJ / � 3
4
jJ j (48)

such that for every x 2 GJ there are nC1 linearly independent primitive irreducible
polynomials P 2 ZŒx� of degree exactly n such that

ı0�i � jP .i/.x/j � c0�i for all i D 0; : : : ; n : (49)

We now reprocess the main steps of the proof of this statement. Let n � 2 and
let �0; : : : ; �n be given and satisfy (46) and (47) for some m and ". Let J � Œ� 1

2
; 1
2
�

be any interval and x 2 J . Consider the system of inequalities

jP .i/.x/j � �i when 0 � i � n ; (50)

where P.x/ D anx
n C � � � C a1x C a0. Let Bx be the set of .a0; : : : ; an/ 2 R

nC1
satisfying (50). Note that Bx is a convex body in R

nC1 symmetric about the origin.
By (47), the volume of Bx equals 2nC1Qn

iD1 i Š�1. Let �0 � �1 � � � � � �n be the
successive minima of Bx . By Minkowski’s theorem for successive minima,

2nC1

.nC 1/Š
� �0 : : : �n volBx � 2nC1:

Substituting the value of volBx gives �0 : : : �n � Qn
iD1 i Š, whence we get that

�n � ��n
0

nY

iD1
i Š: (51)

Further we define certain subsets of J that we will ‘avoid’. The avoidance will
alow us to find the polynomialsP of interest as well as to establish the lower bounds
in (49). LetE1.J; ı1/ be the set of x 2 J such that �0 D �0.x/ � ı1, where ı1 < 1.
By the definition of �0, there is a non-zero polynomial P 2 ZŒx�, degP � n

satisfying

jP .i/.x/j � ı1�i .0 � i � n/: (52)

Applying Lemma 3 from [7] gives

�.E1.J; ı1// 	
�

1C 1

ı˛J
max

�
ı1�0

ı1
;
1

�n

� ˛�

ı
˛

nC1

1 jJ j;
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where ıJ > 0 is a constant. By (46), maxf�0; ��1
n g < ". Therefore�.E1.J; ı1// 	

ı
˛=.nC1/
1 jJ j provided that " < ıJ . Then there is a sufficiently small ı1 depending on
n only such that

�.E1.J; ı1// � 1
4nC8 jJ j: (53)

By construction, for any x 2 J n E1.J; ı1/ we have that

�0 � ı1: (54)

Combining (51) and (54) gives

�n � c16 WD ı�n
1

nY

iD1
i Š; (55)

where c16 depends on n only. By the definition of �n, there are .n C 1/ linearly
independent integer points aj D .a0;j ; : : : ; an;j / .0 � j � n/ lying in the body
�nBx � c16Bx . In other words, the polynomials Pj .x/ D an;j x

n C � � � C a0;j
.0 � j � n/ satisfy the system of inequalities

jP .i/
j .x/j � c16�i .0 � i � n/: (56)

Let A D .ai;j /0�i;j�n be the integer matrix composed from the integer points aj
.0 � j � n/. Since all these points are contained in the body c16Bx , we have that
j det Aj 	 vol.Bx/ 	 1. That is j det Aj < c17 for some constant c17 depending on
n only. By Bertrand’s postulate, choose a prime number p satisfying

c17 � p � 2c17: (57)

Therefore, j det Aj < p. Since a0; : : : ; an are linearly independent and integer,
j det Aj � 1. Therefore, det A 6� 0 .mod p/ and the following system

At � b .mod p/ (58)

has a unique non-zero integer solution t D t .t0; : : : ; tn/ 2 Œ0; p � 1�nC1, where
b WD t .0; : : : ; 0; 1/ and t denotes transposition. For l D 0; : : : ; n define rl D
t .1; : : : ; 1; 0; : : : ; 0/ 2 Z

nC1, where the number of zeros is l . Since det A 6� 0

.mod p/, for every l D 0; : : : ; n the following system

A� � �At � b
p

C rl .mod p/ (59)

has a unique non-zero integer solution � D �l 2 Œ0; p�1�nC1. Define 
l WD tCp�l
(0 � l � n). Consider the .nC 1/ polynomials of the form
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Pl.x/ D anx
n C � � � C a0 WD

nX

iD0

l;iPi .x/ 2 ZŒx�; (60)

where .
l;0; : : : ; 
l;n/ D 
l . Since r0; : : : ; rn are linearly independent modulo p, the

vectors �At�b
p

C rl (l D 0; : : : ; n) are linearly independent modulo p. Hence, by
(59), the vectors �0; : : : ; �n are linearly independent modulo p. Hence, �0; : : : ; �n
are linearly independent overZ. Since these vectors are integer, they are also linearly
independent over R. Therefore, the vectors 
l WD t C p�l (0 � l � n) are linearly
independent over R. Hence the polynomials given by (60) are linearly independent
and so are non-zero.

Let 
 D 
l . Observe that A
 is the column t .a0; : : : ; an/ of coefficients of P . By
construction, 
 � t .mod p/ and therefore 
 is also a solution of (58). Then, since
b D t .0; : : : ; 0; 1/ andA
 � b .mod p/, we have that an 6� 0 .mod p/ and ai � 0

.mod p/ for i D 0; : : : ; n � 1. Furthermore, by (59), we have that A
 � b C prl

.mod p2/. Then, on substituting the values of b and rl into this congruence one
readily verifies that a0 � p .mod p2/ and so a0 6� 0 .mod p2/. By Eisenstein’s
criterion, P is irreducible.

Since both t and �l lie in 2 Œ0; p � 1�nC1 and 
 D t Cp�l , it is readily seen that
j
i j � p2 for all i . Therefore, using (56) and (57) we obtain that

jP .i/.x/j � c0�i .0 � i � n/ (61)

with c0 D 4.n C 1/c16c
2
17. Without loss of generality we may assume that the

.n C 1/ linearly independent polynomials P constructed above are primitive (that
is the coefficients of P are coprime) as otherwise the coefficients of P can be
divided by their greatest common divisor. Thus, P 2 ZŒx� are primitive irreducible
polynomials of degree n which satisfy the right hand side of (49). The final part of
the proof is aimed at establishing the left hand side of (49).

Let ı0 > 0 be a sufficiently small parameter depending on n. For every j D 0; n

let Ej .J; ı0/ be the set of x 2 J such that there is a non-zero polynomialR 2 ZŒx�,
degR � n satisfying

jR.i/.x/j � ı
ıi;j
0 c

1�ıi;j
0 �i ; (62)

where ıi;j equals 1 if i D j and 0 otherwise. Let �i D ı
ıi;j
0 c

1�ıi;j
0 �i . Then

Ej .J; ı0/ � An.J I �0; : : : ; �n/. In view of (46) and (47), Lemma 3 from [7] is
applicable provided that " < minfc�1

0 ; c0ı0g. Then, by the same lemma,

�.Ej .J; ı0// 	
�

1C 1

ı˛J
max

�
c0�0

cn0 ı0
;

1

ı0c0�n

� ˛�

.ı0c
n
0 /
1=.nC1/jJ j ;

where ıJ > 0 is a constant. It is readily seen that the above maximum is � ıJ if
" < ıJ ı0c0. Then

�.Ej .J; ı0// � 1
4nC8 jJ j (63)
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provided that " < minfıJ ı0c0; c�1
0 ; c0ı0g and ı0 D ı0.n/ is sufficiently small. By

construction, for any x in the set GJ defined by

GJ WD J n
0

@

n[

jD0
Ej .J; ı0/ [E1.J; ı1/

1

A

we must necessarily have that jP .i/.x/j � ı0�i for all i D 0; : : : ; n, where P is
the same as in (61). Therefore, the left hand side of (49) holds for all i . Finally,
observe that

�.GJ / � jJ j �
nX

iD0
�.Ei .J; ı0//� �.E1.J; ı1//

(53) & (63)� jJ j � .nC 2/ 1
.4nC8/ jJ j D 3

4
jJ j:

The latter verifies (48) and completes the proof.
The following appropriate analogue of Lemma 3 for monic polynomials can be

obtained using the techniques of [27].

Lemma 4. For every n � 2 there are positive constants ı0 and c0 depending on n
only with the following property. For any interval J � Œ� 1

2
; 1
2
� there is a sufficiently

small " D ".n; J / > 0 such that for any positive �0; : : : ; �n satisfying (46) and (47)
there is a measurable set GJ � J satisfying

�.GJ / � 3
4
jJ j (64)

such that for every x 2 GJ there is an irreducible monic polynomials P 2 ZŒx� of
degree nC 1 satisfying (49).

5 On the Distribution of Resultants

In this section we discuss the distribution of the resultant R.P1; P2/ of polynomials
P1 and P2 from Pn.Q/. It is well known that

R.P1; P2/ D amn b
n
m

Y

1�i�n
1�j�m

.˛i � ˇj /; (65)

where ˛1; : : : ; ˛n are the roots of P1 and ˇ1; : : : ; ˇm are the roots of P2; an and bm
stand for the leading coefficients of P1 and P2 respectively, where n D degP1 and
m D degP2. The resultant R.P1; P2/ equals zero if and only if the polynomials
P1 and P2 have a common root. Since the resultant can be represented as the
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determinant of the Sylvester matrix of the coefficients of P1 and P2 it follows that
R is integer. Furthermore,

jR.P1; P2/j 	 Q2n (66)

for P1; P2 2 Pn.Q/. Akin to the already discussed results for the distribution of
determinants we now state their analogue for resultants.

Theorem 11 ([13]). Let m 2 Z with 0 � m < n. Then there exist � Q
2.nC1/

.mC1/.mC2/

pairs of different primitive irreducible polynomials .P1; P2/ from Pn.Q/ of degree
n such that

1 � jR.P1; P2/j 	 Q
2.n�m�1/
mC2 : (67)

Note that the left had side of (67) is obvious since P1 and P2 are primitive and
irreducible. There are a few interesting corollaries of the above theorem. Form D 0

we have at least c1QnC1 pairs .P1; P2/ that satisfy jR.P1; P2/j 	 Qn�1. For m D
n � 1 we have at least c2Q

2
n pairs .P1; P2/ that satisfy jR.P1; P2/j � c.n/.

To introduce the ideas of the proof we first consider the casem D 0. By Lemma 3
given in the previous section, for any x 2 GJ there are different irreducible
polynomials P1 and P2 of degree n and height 	 Q such that

ı0Q
�n < jPi.x1/j < c0Q�n; i D 1; 2

ı0Q < jP 0
i .x1/j < c0Q;

(68)

Denote by ˛1 the root of P1 closest to x, and by ˇ1 the root of P2 closest to x.
Using (68) and the Mean Value Theorem, one can easily find that

jx � ˛1j 	 Q�n�1; jx � ˇ1j 	 Q�n�1: (69)

By (69), we get j˛1 � ˇ1j 	 Q�n�1. This together with (65) gives

jR.P1; P2/j 	 Qn�1: (70)

For a fixed pair of .˛1; ˇ1/ inequalities (69) are satisfied only for a set of x of
measure 	 Q�n�1. Since �.GJ / � jJ j, we must have � QnC1 diffract pairs
.˛1; ˇ1/ with the above properties. Since each polynomial in Pn.Q/ has at most
n root, we must have � QnC1 pairs of different irreducible polynomials .P1; P2/
satisfying (70).

Now let 1 � m � n � 1. Let v0; : : : ; vm � �1 and v0 C v1 C � � � C vm D n �m.
By Lemma 3, for any x 2 GJ there exists a pair of irreducible polynomials P1,
P2 2 ZŒx� of degree � n such that for i D 1; 2 we have that

ı0Q
�v0 � jPi.x/j � c0Q

�v0 ;

ı0Q
�vj � jP .j /

i .x/j � c0Q
�vj ; 1 � j � m;

ı0Q � jP .j /
i .x/j � c0Q; mC 1 � j:

(71)
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Let d0; d1; : : : ; dmC1 be a non-increasing sequence of real numbers such that

dj D vj�1 � vj ; 1 � j � m; dmC1 D vm C 1: (72)

Order the roots ˛i with respect to x as follows:

jx � ˛1j � jx � ˛2j � : : : � jx � ˛nj:

We claim that the roots ˛j with 1 � j � m satisfy the following inequalities

jx � ˛j j 	 Q�vj�1Cvj ; .1 � j � m � 1/

jx � ˛mj 	 Q�vm�1:
(73)

The .j � 1/-th derivative of P.x/ D an.x � ˛1/ � � � .x � ˛n/ is

P .j�1/.x/ D .j � 1/Šan
� nY

iDj
.x � ˛i /C

X

ij

.x � ˛i1/ � � � � � .x � ˛in�j /
	

; (74)

where the sum
P

ij
involves all summands with factor .x � ˛ij /, where ij < j . If

for i < j there is a sufficiently large number s1 D c.n/ such that

jx � ˛j j < s1jx � ˛i j (75)

then (72) implies (73) for jx � ˛j j. Otherwise, (74) implies

jP .j�1/.x/j � jx � ˛j jjP .j /.x/j

because in this case the summand .x1 � ˛j /.x1 � ˛jC1/ � � � .x1 � ˛n/ in the above
expression for P .j�1/.x1/ dominates all the others. Now choose vj so that

v0 D .mC 1/vm Cm and v0 D .k C 1/vk � kvkC1 .1 � k � m � 1/: (76)

By the first equation of (76), we get

vm D v0 �m
mC 1

: (77)

By the other equalities of (76) we have that

vm�1 D 2v0 �mC 1

mC 1
; vk D .m � k C 1/v0 � k

mC 1
.1 � k � m � 2/: (78)
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Finally, by (77) and (78), we obtain

vj�1 � vj D vm C 1 D v0 C 1

mC 1
.0 � j � m/: (79)

Taking into account the condition

v0 C v1 C � � � C vm D n �m;

by (77) and (78), we have

v0 D 2n �m
mC 2

:

Thus roots ˛1; ˛2; : : : ; ˛m of P1 lie within 	 Q�.v0C1/.mC1/�1 of x. The same is
true for the roots ˇ1; ˇ2; : : : ; ˇm of P2. Hence

T .m/ D
Y

1�i;j�mC1
j˛i � ˇj j 	 Q� 2.nC1/.mC1/

mC2 :

Consequently

jR.P1; P2/j 	 Q
2.n�m�1/
mC2 : (80)

It remains to give a lower bound for the number of pairs of .P1; P2/ con-
structed above. Once again we use the fact that ˛1; : : : ; ˛m; ˇ1; ˇm lie within
	 Q�.v0C1/.mC1/�1 of x. In other worlds x lies in the interval

	.P1; P2/ D ˚

x W j max
i

fmaxf˛i � xj; jˇi � xjgg 	 Q�.v0C1/.mC1/�1
:

Since x is an arbitrary point of GJ and �.GJ / � jJ j, we must have �
Q.v0C1/.mC1/�1 different pairs .P1; P2/ to cover GJ with intervals 	.P1; P2/.
Substituting the value of v0 we conclude that the number of different pairs .P1; P2/

as above is at least c.n/Q
2.nC1/

.mC1/.mC2/ as required.
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Abstract We generalize classical results on the gap distribution (and other fine-
scale statistics) for the one-dimensional Farey sequence to arbitrary dimension. This
is achieved by exploiting the equidistribution of horospheres in the space of lattices,
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Denote by OZnC1 the set of integer vectors in R
nC1 with relatively prime

coefficients, i.e., OZnC1 D fm 2 Z
nC1 n f0g W gcd.m/ D 1g. The Farey points of

level Q 2 N are defined as the finite set

FQ D
�

p

q
2 Œ0; 1/n W .p; q/ 2 OZnC1; 0 < q � Q

�

: (1)

The number of Farey points of level Q is asymptotically, for large Q,

jFQj 
 �Q WD QnC1

.nC 1/ �.nC 1/
: (2)
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In fact, for any bounded set D � Œ0; 1/n with boundary of Lebesgue measure zero
and non-empty interior,

jFQ \ Dj 
 vol.D/ �Q; (3)

which means the Farey sequence is uniformly distributed in Œ0; 1/n.
The objective of the present paper is to understand the fine-scale statistical

properties of FQ. To this end, it will be convenient to identify Œ0; 1/n with the unit
torusTn D R

n=Zn via the bijection Œ0; 1/n ! T
n, x 7! xCZ

n. We will consider the
following two classical statistical measures of randomness of a deterministic point
process: Given k 2 Z�0 and two test sets D � T

n and A � R
n, both bounded, with

boundary of Lebesgue measure zero and non-empty interior, define

PQ.k;D;A/ D volfx 2 D W j.x C �
�1=n
Q A C Z

n/\ FQj D kg
vol.D/ (4)

and

P0;Q.k;D;A/ D jfr 2 FQ \ D W j.r C �
�1=n
Q A C Z

n/\ FQj D kgj
jFQ \ Dj : (5)

The scaling of the test set A by a factor ��1=n
Q ensures that the expectation value

EPQ.k;D;A/ WD
1X

kD0
kPQ.k;D;A/ (6)

is asymptotic to vol.A/ for largeQ. The quantityP0;Q.0;D;A/ is the natural higher
dimensional generalization of the gap distribution of sequences in one dimension,
which, in the case of the Farey sequence for A D Œ0; s� and D D T, was calculated
by Hall [6]. PQ.0;T; Œ0; s�/ corresponds in one dimension to the probability that the
distance between a random point on T and the nearest element of the sequence is at
least s=2. An elementary argument shows that in one dimension the density of this
distribution is equal to P0;Q.0;T; Œ0; s�/, see e.g. [11, Theorem 2.2] and (36) below.
The most comprehensive result in one dimension is due to Boca and Zaharescu [3],
who calculate the limiting n-point correlation measures. We refer the reader to the
survey article [4] for an overview of the relevant literature.

The results we will discuss here are valid in arbitrary dimension, and will also
extend to the distribution in several test sets A1; : : : ;As . To keep the notation
simple, we will restrict the discussion to one test set; the proofs are otherwise
identical, cf. [15, Sect. 6] for the necessary tools.

It is evident that the distribution of Farey sequences is intimately linked to the
distribution of directions of visible lattice points studied in [15, Sect. 2]. The only
difference is in the ordering of the sequence of primitive lattice points and the way
they are projected: In the Farey case we take all primitive lattice points in a blow-up
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of the polytope f.x; y/ 2 .0; 1�nC1 W xj � yg, draw a line from each lattice point
to the origin and record the intersection of these lines with the hyperplane f.x; 1/ W
x 2 R

ng. In the case of directions, we take all points in a fixed cone with arbitrary
cross-section projected radially onto the unit sphere. Since the cross section of the
cone is arbitrary, this yields (by a standard approximation argument) the statistics of
primitive lattice points in the blow-up of any star-shaped domain (with boundary of
measure zero), which are projected radially onto a suitably chosen hypersurface
of codimension one. The proof of a limit distribution for PQ.k;D;A/ for Farey
fractions is therefore a corollary of the results of [15].

If the points in FQ were independent, uniformly distributed random variables in
T
n, we would have, almost surely, convergence to the Poisson distribution:

lim
Q!1PQ.k;D;A/ D lim

Q!1P0;Q.k;D;A/ D vol.A/k
kŠ

e� vol.A/ a.s. (7)

The FQ are of course not Poisson distributed. But, as we will see, the limit
distributions exist, are independent of D, and are given by probability measures
on certain spaces of random lattices in R

nC1. The reason for this is as follows.
Define the matrices

h.x/ D
�
1n

t0

�x 1

�

; a.y/ D
�
y1=n1n

t0

0 y�1
�

(8)

and the cone

C.A/ D f.x; y/ 2 R
n � .0; 1� W x 2 ��1=n

1 yAg � R
nC1: (9)

Then, for any .p; q/ 2 R
nC1,

p

q
2 x C �

�1=n
Q A; 0 < q � Q; (10)

if and only if
.p; q/h.x/a.Q/ 2 C.A/: (11)

Thus, if Q is sufficiently large so that ��1=n
Q A � .0; 1�n, then

j.x C �
�1=n
Q A C Z

n/ \ FQj D j OZnC1h.x/a.Q/\ C.A/j: (12)

This observation reduces the question of the distribution of the Farey sequence
to a problem in the geometry of numbers. In particular, (4) and (5) can now be
expressed as

PQ.k;D;A/ D volfx 2 D W j OZnC1h.x/a.Q/\ C.A/j D kg
vol.D/ (13)
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and

P0;Q.k;D;A/ D jfr 2 FQ \ D W j OZnC1h.r/a.Q/\ C.A/j D kgj
jFQ \ Dj : (14)

Let G D SL.nC 1;R/ and � D SL.nC 1;Z/. The quotient �nG can be identified
with the space of lattices in R

nC1 of covolume one. We denote by � the unique
rightG-invariant probability measure on �nG. Let furthermore be �0 the right G0-
invariant probability measure on �0nG0, with G0 D SL.n;R/ and �0 D SL.n;Z/.

Define the subgroups

H D
�

M 2 G W .0; 1/M D .0; 1/

�

D
� �

A tb

0 1

�

W A 2 G0; b 2 R
n

�

(15)

and

�H D � \H D
� �

� tm

0 1

�

W � 2 �0; m 2 Z
n

�

: (16)

Note thatH and �H are isomorphic to ASL.n;R/ and ASL.n;Z/, respectively. We
normalize the Haar measure �H of H so that it becomes a probability measure on
�HnH . That is,

d�H.M/ D d�0.A/ db; M D
�

A tb

0 1

�

: (17)

The main ingredient in the proofs of the limit theorems for P0;Q.k;D;A/ and
PQ.k;D;A/ are the following two equidistribution theorems. The first is the classic
equidistribution theorem for closed horospheres of large volume (cf. [15, Sect. 5]
for background and references), the second the equidistribution of Farey points on
closed horospheres [13, Theorem 6]. In the latter, a key observation is that [13,
(3.53)]

�h.r/a.Q/ 2 �n�Ha.Q
q
/ ' �HnHa.Q

q
/: (18)

Theorem 1. For f W Tn � �nG ! R bounded continuous,

lim
Q!1

Z

Tn

f
�

x; h.x/a.Q/
�

dx D
Z

Tn��nG
f .x;M / dx d�.M/: (19)

Theorem 2. For f W Tn � �nG ! R bounded continuous,

lim
Q!1

1

jFQj
X

r2FQ

f
�

r; h.r/a.Q/
� D

Z 1

0

Z

Tn��H nH
f .x;Ma.�

� 1
nC1 // dx d�H .M/ d�:

(20)

Both theorems can be derived from the mixing property of the action of the
diagonal subgroup fa.y/gy2R>0 . The exponential decay of correlations of this
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action was exploited by H. Li to calculate explicit rates of convergence [9]. One
can furthermore generalize Theorem 2 to general lattices � in G and non-closed
horospheres [12]. Theorem 2 may also be interpreted as an equidistribution theorem
for periodic points of the return map of the horocycle flow (in the case n D 1) to the
section

�n�H fa.y/ W y 2 R>1g ' �HnH fa.y/ W y 2 R>1g (21)

which is discussed in [1]. The identification of (21) as an embedded submanifold,
which is transversal to closed horospheres of large volume, is central to the proof of
Theorem 2 in [13].

By standard probabilistic arguments, the statements of both theorems remain
valid if f is a characteristic function of a subset S � T

n � �nG whose boundary
has measure zero with respect to the limit measure dx d�.M/ or dx d�H.M/ d�,
respectively. The relevant set in our application is

S D D � fM 2 �nG W j OZnC1M \ C.A/j � kg: (22)

The fact that S has indeed boundary of measure zero with respect to dx d�.M/ is
proved in [15, Sect. 6]. We can therefore conclude:

Theorem 3. Let k 2 Z�0, and D � T
n, A � R

n bounded with boundary of
Lebesgue measure zero. Then

lim
Q!1PQ.k;D;A/ D P.k;A/ (23)

with
P.k;A/ D �.fM 2 �nG W j OZnC1M \ C.A/j D kg/; (24)

which is independent of the choice of D.

In the second case, we require that the set

fM 2 �HnH W j OZnC1M \ C�.A/j � kg; C�.A/ WD C.A/a.�
1

nC1 /; (25)

has boundary of measure zero with respect to �H , which follows from analogous
arguments. With this, we have:

Theorem 4. Let k 2 Z�0, and D � T
n, A � R

n bounded with boundary of
Lebesgue measure zero. Then

lim
Q!1P0;Q.k;D;A/ D P0.k;A/ D

Z 1

0

p0.k;C�.A// d�: (26)

where
p0.k;C/ D �H.fM 2 �HnH W j OZnC1M \ Cj D kg/; (27)

which is independent of the choice of D.
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In dimension n � 2, it is difficult to obtain a more explicit description of the limit
distributions P.k;A/ and P0.k;A/. It is however possible to provide asymptotic
estimates for large and small sets A when k D 0 and k D 1, see [2, 18] for general
results in this direction. The case of fixed A and large k is discussed in [10].

The geometry of �nG is significantly simpler in the case n D 1. This permits the
derivation of explicit formulas for the limit distributions in many instances, cf. [5,
14, 19]. For example, take A D .0; s�, and the cone C�.A/ becomes the triangle

	s;� D f.x1; x2/ 2 R
2 W 0 < x1 � �2

3
x2�s; 0 < x2 � ��1=2g; (28)

where we have used �1 D 1
2�.2/

D 3
�2

. Furthermore �HnH is simply the circle
T D R=Z, �H is the standard Lebesgue measure. Hence

p0.k;	s;�/ D meas.fx 2 T W jf.p; q/ 2 OZ2 W .p; px C q/ 2 	s;�gj D kg/: (29)

It is now a geometric exercise to work out the case k D 0: With the shorthand
y D �1=2 and a D .�

2

3
s/�1, we deduce

p0.0;	s;�/ D

8

ˆ̂
<

ˆ̂
:

1 if y � a

1 � 1
y

C a
y2

if a < y � a.1 � y/�1

0 y > a.1 � y/�1.
(30)

Solving for y, we have in the case 0 < a � 1
4

p0.0;	s;�/ D

8

ˆ̂
<

ˆ̂
:

1 if y 2 Œ0; a�
1 � 1

y
C a

y2
if y 2 Œa; 1

2
�
q

1
4

� a� [ Œ 1
2

C
q

1
4

� a; 1�

0 if y 2 Œ 1
2

�
q

1
4

� a; 1
2

C
q

1
4

� a�.

(31)

For 1
4
< a < 1, we have

p0.0;	s;�/ D
(

1 if y 2 Œ0; a�
1� 1

y
C a

y2
if y 2 Œa; 1�; (32)

and for a � 1, we have

p0.0;	s;�/ D 1; y 2 Œ0; 1�: (33)

The gap distribution P0.0; Œ0; s�/ is now an elementary integral (recall (26)), which
yields
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P0.0; Œ0; s�/ D

8

ˆ̂
<

ˆ̂
:

1 if a 2 Œ1;1/

�1C 2a � 2a loga if a 2 Œ 1
4
; 1�

�1C 2aC 2

q
1
4

� a � 4a log. 1
2

C
q

1
4

� a/ if a 2 Œ0; 1
4
�.
(34)

which reproduces Hall’s distribution [6]. The density of this distribution is

� d

ds
P0.0; Œ0; s�/ D �2

3
a2
d

da
P0.0; Œ0; s�/ D

8

ˆ̂
<

ˆ̂
:

0 if a 2 Œ1;1/

� 2�2

3 a
2 log a if a 2 Œ 14 ; 1�

� 4�2

3 a
2 log. 12 C

q
1
4 � a/ if a 2 Œ0; 14 �,

(35)
cf. [4, Theorem 2.1]. By [11, Theorem 2.2], we have

� d

ds
P.0; Œ0; s�/ D P0.0; Œ0; s�/; (36)

and hence formula (34) yields directly the density of the distribution of the distance
to the nearest element. Formula (34) was rediscovered in [8, Lemma 2.6].

Theorems 1 and 2 reduce in the case n D 1 to classic statements in the theory
of automorphic forms, with precise bounds on the rate of convergence. Sarnak [16]
proved Theorem 1 for test functions f 2 C1

0 (infinitely differentiable, compactly
supported) that are independent of the first coordinate x, and showed that the
optimal rate of convergence holds if and only if the Riemann Hypothesis is true (this
phenomenon was first pointed out by Zagier [20]). The reason for the appearance of
the Riemann zeros is that the only relevant harmonics in the problem are Eisenstein
series E2k.z; s/ of even weight 2k, whose poles are located at the poles of

1X

qD1

'.q/

q2s
D �.2s � 1/

�.2s/
: (37)

where '.s/ is Euler’s totient function and �.s/ the Riemann zeta function.
Under the Riemann Hypothesis, Sarnak’s rate is significantly better than what

one would expected from square-root cancellations—it is the square-root of that. If
the test function f depends on x (we assume again f is C1

0 ), the work of Hejhal [7]
and Strömbergsson [17] shows that the convergence rate slows to the square-root of
the horocycle length (or worse) as other terms in the harmonics dominate the error
coming from of the Riemann zeros. The object replacing the Eisenstein series in this
setting is the Poincaré series Pm;2k.z; s/ of weight 2k.

The proof Theorem 2 for n D 1 on the other hand quickly reduces to estimates
of sums of Kloosterman sums. To see this, note first of all that the statement of
Theorem 2 is equivalent to: For every bounded continuous function f W T��nH !
R (whereH is the complex upper half plane, on which� D SL.2;Z/ acts by Möbius
transformations) we have
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lim
Q!1

1

jFQj
Q
X

qD1

X

p2Z�

q

f

�
p

q
;
p

q
C i

Q2

q2

�

D
Z 1

0

Z 1

0

Z 1

0

f .x; u C iv/ dx du
dv

v2
:

(38)
Here Z

�
q denotes the multiplicative group of invertible residues mod q, and p is

the inverse of p mod q. One way of proving (38) is to expand f 2 C1
0 in its

harmonics (Fourier series in x and u and Mellin transform in v) which leads to
Selberg’s Kloosterman zeta function

Zm1;m2.s/ D
1X

qD1

K.m1;m2; q/

q2s
(39)

with the Kloosterman sum

K.m1;m2; q/ D
X

p2Z�

q

e2� i.m1pCm2p/=q: (40)

As in the case of the equidistribution of closed horocycles, where the asymptotics
was determined by the poles of the Eisenstein and Poincaré series, the poles of
Zm1;m2.s/ now determine the asymptotics of (38). Note that Z0;m2.s/ are precisely
the Fourier coefficients ofE0.z; s/ and, as already understood by Selberg,Zm1;m2.s/
is the m2-th Fourier coefficient of the Poincaré series Pm1;0.z; s/. Hence the
appearance of the Riemann hypothesis in the error term of Theorem 2 mirrors
exactly the situation in Theorem 1.
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17. A. Strömbergsson, On the uniform equidistribution of long closed horocycles. Duke Math. J.

123, 507–547 (2004)
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1 The Reversibility Problem for the Entropy Power
Inequality

Given a random vectorX in R
n with density f , introduce the entropy functional (or

Shannon’s entropy)

h.X/ D �
Z

Rn

f .x/ logf .x/ dx;

and the entropy power
H.X/ D e2h.X/=n;

provided that the integral exists in the Lebesgue sense. For example, if X is
uniformly distributed in a convex body A � R

n, we have

h.X/ D log jAj; H.X/ D jAj2=n;

where jAj stands for the n-dimensional volume of A.
The entropy power inequality due to Shannon and Stam indicates that

H.X C Y / � H.X/CH.Y /; (1)

for any two independent random vectors X and Y in R
n, for which the entropy is

defined ([27, 28], cf. also [14, 15, 29]). This is one of the fundamental results in
Information Theory, and it is of large interest to see how sharp (1) is.

The equality here is only achieved, whenX and Y have normal distributions with
proportional covariance matrices. Note that the right-hand side is unchanged when
X and Y are replaced with affine volume-preserving transformation, that is, with
random vectors

QX D T1.X/; QY D T2.Y / .jdet T1j D jdet T2j D 1/: (2)

On the other hand, the entropy powerH. QX C QY / essentially depends on the choice
of T1 and T2. Hence, it is reasonable to consider a formally improved variant of (1),

inf
T1;T2

H. QX C QY / � H.X/CH.Y /; (3)

where the infimum is running over all affine maps T1; T2 W Rn ! R
n subject to (2).

(Note that one of these maps may be taken to be the identity operator.) Now, equality
in (3) is achieved, whenever X and Y have normal distributions with arbitrary
positive definite covariance matrices.

A natural question arises: When are both the sides of (3) of a similar order? For
example, within a given class of probability distributions (ofX and Y ), one wonders
whether or not it is possible to reverse (3) to get

inf
T1;T2

H. QX C QY / � C.H.X/CH.Y // (4)

with some constant C .
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The question is highly non-trivial already for the class of uniform distributions
on convex bodies, when it becomes to be equivalent (with a different constant) to
the inverse Brunn-Minkowski inequality

inf
T1;T2

ˇ
ˇ QAC QBˇˇ1=n � C

�jAj1=n C jBj1=n� : (5)

Here QA C QB D fx C y W x 2 QA; y 2 QBg stands for the Minkowski sum of
the images QA D T1.A/, QB D T2.B/ of arbitrary convex bodies A and B in R

n.
To recover such an equivalence, one takes forX and Y independent random vectors
uniformly distributed in A andB . Although the distribution ofXCY is not uniform
in ACB , there is a general entropy-volume relation

1

4
jACBj2=n � H.X C Y / � jAC Bj2=n;

which may also be applied to the images QA; QB and QX , QY (cf. [3]).
The inverse Brunn-Minkowski inequality (5) is indeed true and represents a deep

result in Convex Geometry discovered by V. D. Milman in the mid 1980s (cf.
[21–24]). It has connections with high dimensional phenomena, and we refer an
interested reader to [1, 12, 16, 17]. The questions concerning possible description
of the maps T1 and T2 and related isotropic properties of the normalized Gaussian
measures are discussed in [6].

Based on (5), and involving Berwald’s inequality in the form of C. Borell [9], the
inverse entropy power inequality (4) has been established recently [2,3] for the class
of all probability distributions having log-concave densities. Involving additionally
a general submodularity property of entropy [19], it turned out also possible to
consider more general densities of the form

f .x/ D V.x/�ˇ; x 2 R
n; (6)

where V are positive convex functions on R
n and ˇ � n is a given parameter. More

precisely, the following statement can be found in [3].

Theorem 1.1. Let X and Y be independent random vectors in R
n with densities

of the form (6) with ˇ � 2n C 1, ˇ � ˇ0n .ˇ0 > 2/. There exist linear volume
preserving maps Ti W Rn ! R

n such that

H
� QX C QY � � Cˇ0 .H.X/CH.Y //; (7)

where QX D T1.X/, QY D T2.Y /, and where Cˇ0 is a constant, depending on ˇ0,
only.

The question of what maps T1 and T2 can be used in Theorem 1.1 is rather
interesting, but certainly the maps that put the distributions of X and Y in M -
position suffice (see [3] for terminology and discussion). In a more relaxed form, one
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needs to have in some sense “similar” positions for both distributions. For example,
when considering identically distributed random vectors, there is no need to appeal
in Theorem 1.1 to some (not very well understood) affine volume-preserving
transformations, since the distributions of X and Y have the same M -ellipsoid. In
other words, we have for X and Y drawn independently from the same distribution
(under the same assumption on form of density as Theorem 1.1) that

H.X C Y / � Cˇ0 .H.X/CH.Y // D 2Cˇ0 H.X/: (8)

Since the distributions of X and �Y also have the same M -ellipsoid, it is also true
that

H.X � Y / � Cˇ0 .H.X/CH.Y // D 2Cˇ0 H.X/: (9)

We strengthen this observation by providing a quantitative version with explicit
constants below (under, however, a convexity condition on the convolved measure).
Moreover, one can give a short and relatively elementary proof of it without
appealing to Theorem 1.1.

Theorem 1.2. Let X and Y be independent identically distributed random vectors
in R

n with finite entropy. Suppose that X � Y has a probability density function of
the form (6) with ˇ � maxfnC 1; ˇ0ng for some fixed ˇ0 > 1. Then

H.X � Y / � Dˇ0H.X/

and
H.X C Y / � D2

ˇ0
H.X/;

where Dˇ0 D exp. 2ˇ0
ˇ0�1 /.

In the special case of X and Y being log-concave, a similar quantitative result
was recently obtained by [18] using a different approach.

Let us return to Theorem 1.1 and the class of distributions involved there. For
growing ˇ, the families (6) shrink and converge in the limit as ˇ ! C1 to
the family of log-concave densities which correspond to the class of log-concave
probability measures. Through inequalities of the Brunn-Minkowski-type, the latter
class was introduced by A. Prékopa [25], while the general case ˇ � n was studied
by C. Borell [10, 11], cf. also [5, 13]. In [10, 11] it was shown that probability
measures� onRn with densities (6) (and only they, once� is absolutely continuous)
satisfy the geometric inequality

�
�

tAC .1 � t/B
� � �

t�.A/
 C .1 � t/�.B/
�1=
 (10)

for all t 2 .0; 1/ and for all Borel measurable sets A;B � R
n, with negative power


 D � 1

ˇ � n :
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Such �’s form the class of so-called 
-concave measures. In this hierarchy the limit
case ˇ D n corresponds to 
 D �1 and describes the largest class of measures on
R
n, called convex, in which case (10) turns into

�.tAC .1 � t/B/ � minf�.A/; �.B/g:

This inequality is often viewed as the weakest convexity hypothesis about a given
measure �.

One may naturally wonder whether or not it is possible to relax the assumption on
the range of ˇ in (7)–(9), or even to remove any convexity hypotheses. In this note
we show that this is impossible already for the class of all one-dimensional convex
probability distributions. Note that in dimension one there are only two admissible
linear transformations, QX D X and QX D �X , so that one just wants to estimate
H.X C Y / or H.X � Y / from above in terms of H.X/. As a result, the following
statement demonstrates that Theorem 1.1 and its particular cases (8)–(9) are false
over the full class of convex measures.

Theorem 1.3. For any constant C , there is a convex probability distribution � on
the real line with a finite entropy, such that

minfH.X C Y /;H.X � Y /g � C H.X/;

where X and Y are independent random variables, distributed according to �.

A main reason for H.X C Y / and H.X � Y / to be much larger than H.X/ is
that the distributions of the sumXCY and the differenceX�Y may lose convexity
properties, when the distribution � of X is not “sufficiently convex”. For example,
in terms of the convexity parameter 
 (instead of ˇ), the hypothesis of Theorem 1.1
is equivalent to


 � � 1

.ˇ0 � 1/n .ˇ0 > 2/; 
 � � 1

nC 1
:

That is, for growing dimension n we require that 
 be sufficiently close to zero (or
the distributions of X and Y should be close to the class of log-concave measures).
These conditions ensure that the convolution of � with the uniform distribution on a
proper (specific) ellipsoid remains to be convex, and its convexity parameter can be
controled in terms of ˇ0 (a fact used in the proof of Theorem 1.1). However, even if

 is close to zero, one cannot guarantee that X C Y or X � Y would have convex
distributions.

We prove Theorem 1.2 in Sect. 2 and Theorem 1.3 in Sect. 3, and then conclude
in Sect. 4 with remarks on the relationship between Theorem 1.3 and recent results
about Cramer’s characterization of the normal law.
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2 A “Difference Measure” Inequality for Convex Measures

Given two convex bodies A and B in R
n, introduce A� B D fx � y W x 2 A; y 2

Bg. In particular, A � A is called the “difference body” of A. Note it is always
symmetric about the origin.

The Rogers-Shephard inequality [26] states that, for any convex body A � R
n,

jA�Aj � Cn
2n jAj; (11)

where Ck
n D nŠ

kŠ.n�k/Š denote usual combinatorial coefficients. Observe that putting
the Brunn-Minkowski inequality and (11) together immediately yields that

2 � jA� Aj 1n
jAj 1n

� �

Cn
2n

� 1
n < 4;

which constrains severely the volume radius of the difference body of A relative to
that of A itself. In analogy to the Rogers-Shephard inequality, we ask the following
question for entropy of convex measures.

Question. LetX and Y be independent random vectors in R
n, which are identically

distributed with density V �ˇ , with V positive convex, andˇ � nC� . For what range
of � > 0 is it true that H.X � Y / � C�H.X/, for some constant C� depending
only on �?

Theorems 1.2 and 1.3 partially answer this question. To prove the former, we
need the following lemma about convex measures, proved in [4].

Lemma 2.1. Fix ˇ0 > 1. Assume a random vectorX in R
n has a density f D V �ˇ ,

where V is a positive convex function on the supporting set. If ˇ � n C 1 and
ˇ � ˇ0n, then

log kf k�11 � h.X/ � cˇ0nC log kf k�11 ; (12)

where one can take for the constant cˇ0 D ˇ0
ˇ0�1 .

In other words, for sufficiently convex probability measures, the entropy may be
related to the L1-norm kf k1 D supx f .x/ of the density f (which is necessarily
finite). Observe that the left inequality in (12) is general: It trivially holds without
any convexity assumption. On the other hand, the right inequality is an asymptotic
version of a result from [4] about extremal role of the multidimensional Pareto
distributions.

Now, let f denote the density of the random variableW DX�Y in Theorem 1.2.
It is symmetric (even) and thus maximized at zero, by the convexity hypothesis.
Hence, by Lemma 2.1,

h.W / � log kf k�11 C cˇ0n D logf .0/�1 C cˇ0n:
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But, if p is the density of X , then f .0/ D R

Rn
p.x/2 dx, and hence

logf .0/�1 D � log
Z

Rn

p.x/ � p.x/ dx �
Z

Rn

p.x/Œ� logp.x/� dx

by using Jensen’s inequality. Combining the above two displays immediately yields
the first part of Theorem 1.2.

To obtain the second part, we need the following lemma on the submodularity of
the entropy of sums proved in [19].

Lemma 2.2. Given independent random vectors X; Y;Z in R
n with absolutely

continuous distributions, we have

h.X C Y CZ/C h.Z/ � h.X CZ/C h.Y CZ/;

provided that all entropies are well-defined and finite.

TakingX , Y and �Z to be identically distributed, and using the monotonicity of
entropy (after adding an independent summand), we obtain

h.X C Y /C h.Z/ � h.X C Y CZ/C h.Z/ � h.X CZ/C h.Y CZ/

and hence

h.X C Y /C h.X/ � 2h.X � Y /:

Combining this bound with the first part of Theorem 1.2 immediately gives the
second part.

It would be more natural to state Theorem 1.2 under a shape condition on the
distribution of X rather than on that of X � Y , but for this we need to have
better understanding of the convexity parameter of the convolution of two 
-concave
measures when 
 < 0.

Observe that in the log-concave case of Theorem 1.2 (which is the case of ˇ !
1, but can easily be directly derived in the same way without taking a limit), one
can impose only a condition on the distribution ofX (rather than that ofX�Y ) since
closedness under convolution is guaranteed by the Prékopa-Leindler inequality.

Corollary 2.3. Let X and Y be independent random vectors in R
n with log-

concave densities. Then

h.X � Y / � h.X/C n;

h.X C Y / � h.X/C 2n:

In particular, observe that putting the entropy power inequality (1) and
Corollary 2.3 together immediately yields that
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2 � H.X � Y /

H.X/
� e2;

which constrains severely the entropy power of the “difference measure” of �
relative to that of � itself.

A result similar to Corollary 2.3 (but with different constants) was recently
obtained in [18] using a different approach.

3 Proof of Theorem 1.3

Given a (large) parameter b > 1, let a random variable Xb have a truncated Pareto
distribution �, namely, with the density

f .x/ D 1

x log b
1f1<x<bg.x/:

By the construction, � is supported on a bounded interval .1; b/ and is convex.
First we are going to test the inequality

H.Xb C Yb/ � CH.Xb/ (13)

for growing b, where Yb is an independent copy of Xb. Note that

h.Xb/ D
Z b

1

f .x/ log.x log b/ dx

D log log b C 1

log b

Z b

1

logx

x
dx D log log b C 1

2
log b;

so H.Xb/ D b log2 b.
Now, let us compute the convolution of f with itself. The sum Xb C Yb takes

values in the interval .2; 2b/. Given 2 < x < 2b, we have

g.x/ D .f � f /.x/ D
Z C1

�1
f .x � y/f .y/ dy D 1

log2 b

Z ˇ

˛

dy

.x � y/y
;

where the limits of integration are determined to satisfy the constraints 1 < y < b,
1 < x � y < b. So,

˛ D max.1; x � b/; ˇ D min.b; x � 1/;

and using 1
.x�y/y D 1

x
. 1
y

C 1
x�y /, we find that
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g.x/ D 1

x log2 b

�

log.y/ � log.x � y/
ˇ
ˇ
ˇ

xD˛ D 1

x log2 b
log

y

x � y
ˇ
ˇ
ˇ
ˇ

ˇ

xD˛

D 1

x log2 b

�

log
ˇ

x � ˇ � log
˛

x � ˛

�

:

Note that x � ˛ D x � max.1; x � b/ D min.b; x � 1/ D ˇ. Hence,

g.x/ D 2

x log2 b
log

ˇ

˛
D 2

x log2 b
log

min.b; x � 1/
max.1; x � b/

:

Equivalently,

g.x/ D 2

x log2 b
log.x � 1/; for 2 < x < b C 1;

g.x/ D 2

x log2 b
log

b

x � b
; for b C 1 < x < 2b:

Now, on the second interval b C 1 < x < 2b, we have

g.x/ � 2

x log2 b
log b D 2

x log b
<

2

.b C 1/ log b
< 1;

where the last bound holds for b � e, for example. Similarly, on the first interval
2 < x < b C 1, using log.x � 1/ < log b, we get

g.x/ � 2

x log b
<

1

log b
� 1:

Thus, as soon as b � e, we have g � 1 on the support interval. From this,

h.Xb C Yb/ D
Z 2b

2

g.x/ log.1=g.x// dx �
Z b

2

g.x/ log.1=g.x// dx:

Next, using on the first interval the bound g.x/ � 2
x log b � 1

x
, valid for b � e2, we

get for such values of b that

h.Xb C Yb/ �
Z b

2

g.x/ log x dx D 2

log2 b

Z b

2

log.x � 1/ logx

x
dx:

To further simplify, we may write x � 1 � x
2

, which gives
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Z b

2

log.x � 1/ logx

x
dx �

Z b

2

log2 x

x
dx � log 2

Z b

2

logx

x
dx

D 1

3

�

log3 b � log3 2
�� log 2

2

�

log2 b � log2 2
�

>
1

3
log3 b � log 2

2
log2 b:

Hence, h.Xb C Yb/ >
2
3

log b � log 2; and so

H.Xb C Yb/ >
1

4
b4=3 .b � e2/:

In particular,

H.Xb C Yb/

H.Xb/
>

b1=3

4 log2 b
! C1; as b ! C1:

Hence, the inequality (13) may not hold for large b with any prescribed value of C .
To test the second bound

H.Xb � Yb/ � CH.Xb/; (14)

one may use the previous construction. The random variable Xb � Yb can take any
value in the interval jxj < b � 1, where it is described by the density

h.x/ D
Z C1

�1
f .x C y/f .y/ dy D 1

log2 b

Z ˇ

˛

dy

.x C y/y
:

Here the limits of integration are determined to satisfy 1 < y < b and 1 < xC y <

b. So, assuming for simplicity that 0 < x < b � 1, the limits are

˛ D 1; ˇ D b � x:

Writing 1
.xCy/y D 1

x
. 1
y

� 1
xCy /, we find that

h.x/ D 1

x log2 b

�

log.y/� log.x C y/
ˇ
ˇ
ˇ

xD˛ D 1

x log2 b
log

.b � x/.x C 1/

b
:

It should also be clear that

h.0/ D 1

log2 b

Z b

1

dy

y2
D 1 � 1

b

log2 b
:
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Using log .b�x/.xC1/
b

< log.x C 1/ < x, we obtain that h.x/ < 1

log2 b
� 1, for

b � e2.
In this range, since .b�x/.xC1/

b
< b, we also have that h.x/ � 1

x log b � 1
x

. Hence,
in view of the symmetry of the distribution of Xb � Yb,

h.Xb � Yb/ D 2

Z b�1

0

h.x/ log.1=h.x// dx

� 2

Z b=2

0

h.x/ log x dx

D 2

log2 b

Z b=2

2

logx

x
log

.b � x/.x C 1/

b
dx:

But for 0 < x < b=2,

log
.b � x/.x C 1/

b
> log

x C 1

2
> logx � log 2;

so

h.Xb � Yb/ > 2

log2 b

Z b=2

2

log2 x � log 2 logx

x
dx

D 2

log2 b

�
1

3
.log3.b=2/� log3 2/� log 2

2
.log2.b=2/� log2 2/

�

>
2

log2 b

�
1

3
log3.b=2/� 1

2
log2.b=2/

�


 2

3
log b:

Therefore, like on the previous step, H.Xb � Yb/ is bounded from below by a
function, which is equivalent to b4=3. Thus, for large b, the inequality (14) may
not hold either.

Theorem 1.3 is proved.

4 Remarks

For a random variable X having a density, consider the entropic distance from the
distribution of X to normality

D.X/ D h.Z/ � h.X/;
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where Z is a normal random variable with parameters EZ D EX , Var.Z/ D
Var.X/. This functional is well-defined for the class of all probability distributions
on the line with finite second moment, and in general 0 � D.X/ � C1.

The entropy power inequality implies that

D.X C Y / � �21
�21 C �22

D.X/C �22
�21 C �22

D.X/

� max.D.X/;D.Y //; (15)

where �21 D Var.X/, �22 D Var.Y /.
In turn, ifX and Y are identically distributed, then Theorem 1.3 reads as follows:

For any positive constant c, there exists a convex probability measure � on R with
X; Y independently distributed according to �, with

D.X ˙ Y / � D.X/ � c:

This may be viewed as a strengthened variant of (15). That is, in Theorem 1.3 we
needed to show that both D.X C Y / and D.X � Y / may be much smaller than
D.X/ in the additive sense. In particular,D.X/ has to be very large when c is large.
For example, in our construction of the previous section

EXb D b � 1
log b

; EX2
b D b2 � 1

2 logb
;

which yields

D.Xb/ 
 3

2
log b; D.Xb C Yb/ 
 4

3
log b;

as b ! C1.
In [7, 8] a slightly different question, raised by M. Kac and H. P. McKean [20]

(with the desire to quantify in terms of entropy the Cramer characterization of the
normal law), has been answered. Namely, it was shown that D.X C Y / may be
as small as we wish, while D.X/ is separated from zero. In the examples of [8],
D.X/ is of order 1, while for Theorem 1.3 it was necessary to use large values
for D.X/, arbitrarily close to infinity. In addition, the distributions in [7, 8] are not
convex.
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On Probability Measures with Unbounded
Angular Ratio

G.P. Chistyakov

Dedicated to Friedrich Götze on the occasion of his sixtieth
birthday

Abstract The angular ratio is an important characteristic of probability measures
on Z in the theory of ergodic dynamical systems. Answering the J. Rosenblatt
question, we describe probability measures whose spectrum is not inside some Stolz
region at 1, i.e., which have unbounded angular ratio.

Keywords Angular ratio • Characteristic functions • Ergodic dynamical system

2010 Mathematics Subject Classification. Primary 37-XX, 60E10; secondary
60A10.

1 Introduction

Given an ergodic dynamical system .X;B; m; �/ and a probability measure �
on the integers, define �f .x/ D P1

kD�1 �.k/f .�kx/ for all f 2 L1.X/. The
almost everywhere (a.e.) convergence of the convolution powers �nf .x/ depends
on properties of �. Bellow et al. [2] showed that if � hasm2.�/ D P1

kD�1 k2�.k/

finite and m1.�/ D P1
kD�1 k�.k/ D 0, then for all f 2 Lp.X/; 1 < p < 1,

limn!1 f .x/ exists for a.e. x. However, if m2.�/ is finite and m1.�/ ¤ 0,
then there exists E 2 B such that lim supn!1 �n1E.x/ D 1 a.e. and
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lim infn!1�n1E.x/ D 0 a.e. In the case when m2.�/ is infinite and m1.�/ D 0,
Bellow et al. [2] gave as well examples of � for which we have divergence and other
examples which show that convergence is possible. In this problem boundedness
and unboundedness of the angular ratio of the probability measure � plays an
important role.

Let � be a probability measure on Z and O�.�/ WD P1
kD�1 �k�.k/; � 2

C; j�j D 1, be its characteristic function. A probability measure � on Z has a
bounded angular ratio, if � is strictly aperiodic (i.e., j O�.�/j < 1 if � 2 C; j�j D
1; � ¤ 1) and there exist " > 0; K < 1 such that if � 2 C; j�j D 1; � ¤ 1; j� �
1j < ", then j O�.�/�1j

1�j O�.�/j � K . That is, if � is strictly aperiodic, then � has a bounded

angular ratio if and only if supj�jD1; �¤1
j O�.�/�1j
1�j O�.�/j < 1. Another characterization is

that � has a bounded angular ratio if and only if O�.f� 2 C W j�j D 1g/ is contained
in some Stolz region (see Bellow et al. [1]).

Bellow et al. [2] proved that if � is strictly aperiodic probability measure on Z

such that m1.�/ exists and if m1.�/ ¤ 0, then � has a unbounded angular ratio. If
m2.�/ < 1, then� has a bounded angular ratio if and only ifm1.�/ D 0. However,
if m2.�/ D 1, � can be strictly aperiodic, m1.�/ can exist and m1.�/ D 0, but �
fails to have a bounded angular ratio.

Moreover Bellow et al. [2] largely used probability measures on Z such
that lim�!1

j O�.�/�1j
1�j O�.�/j D 1. In this paper we study the problem of describ-

ing of probability measures with such property and with the weaker property
lim sup�!1

j O�.�/�1j
1�j O�.�/j D 1.

2 Results

Let X be a random variable on a probability space .�;B; P / with a distribution
function F and the characteristic function '.t/ WD EeitX ; t 2 R. Consider the
function

R'.t; ˛/ D jIm'.t/j=.1 � Re'.t//˛; t 2 R;

where the parameter ˛ 2 Œ1=2; 1�. The inequality j'.t/j2 � 1; t 2 R, implies the
simple estimate

jIm'.t/j �
p

2.1 � Re'.t//; t 2 R;

and we have the upper bound R'.t; 1=2/ � p
2; t 2 R. But the function R'.t; ˛/

can be unbounded as t ! 0 for ˛ 2 .1=2; 1�.
Bellow et al. [2] largely used distribution functions F such that

R'.t; 1/ ! 1; t ! 0: (1)

Note that if EX2 < 1, the Taylor formula easily implies that (1) holds if and
only if EX ¤ 0. Bellow et al. [2] proved that (1) holds if EjX j < 1 and



On Probability Measures with Unbounded Angular Ratio 77

EX ¤ 0 and they constructed an example of X such that EX D 0 and (1) holds.
I. V. Ostrovskii proved (oral communication) that there exists a random variable X
such that EjX jˇ < 1 with some ˇ 2 .1; 2/, EX D 0, and

lim sup
t!0

R'.t; 1/ D 1:

He conjectured that random variablesX such that EjX jˇ < 1 with some ˇ 2 .1; 2/
and EX D 0 satisfy the relation

lim inf
t!0

R'.t; 1/ < 1: (2)

In this note we give necessary and sufficient conditions in order that (1) holds. In
particular, our result implies the Ostrovskii conjecture.

Let X be a random variable such that EjX jˇ < 1 for some ˇ 2 .1; 2/ or for all
ˇ 2 .1; 2/. Assume that EX D 0. We construct random variables X such that the
relation lim supt!0 R'.t; 1/ D 1 holds and try to describe the sets, where R'.t; 1/
tends to 1 when t ! 0.

In order to formulate our first result, we introduce the following notations:

WF .x/ D 1 � F.x C 0/CF.�x/; VF .x/ D 1 � F.x C 0/� F.�x/; x � 0I

UkF .x/ D
Z

Œ�x;x�
uk dF.u/; x � 0; k D 1; 2; : : : :

Theorem 2.1. Let WF .x/ > 0; x > 0, and ˛ 2 .1=2; 1�. The relation

lim
t!0

R'.t; ˛/ D 1 (3)

holds if and only if

AF .x; ˛/ WD jU1F .x/j
xWF .x/˛

! 1; x ! C1; (4)

BF .x; ˛/ WD x2˛�1jU1F .x/j
U2F .x/˛

! 1; x ! C1: (5)

Remark 2.2. The relation (4) is equivalent to the following one

ˇ
ˇ
R x

0
VF .u/ du

ˇ
ˇ

xWF .x/˛
! 1; x ! C1: (6)

Indeed, integrating by parts, we can write

U1F .x/ D
Z x

0

VF .u/ du � xVF .x/:
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Using this formula we easily obtain the equivalence of the relations (4) and (6).

Now we discuss consequences of Theorem 2.1.

Corollary 2.3. Let ˛ 2 .1=2; 1/. The relation (3) holds if and only if

xWF .x/
˛ ! 0; x1�2˛U2F .x/˛ ! 0 as x ! C1 (7)

and EX ¤ 0.

Let us establish the form of Theorem 2.1 in the case ˛ D 1 under different
assumptions with respect to the random variable X . We assume in the next
corollaries that the relation (3) holds for ˛ D 1.

Corollary 2.4. Let there exist ˇ 2 .1; 2� such that EjX jˇ < C1. The relation (3)
holds if and only if EX ¤ 0.

Ostrovskii’s conjecture (2) immediately follows from this corollary.

Corollary 2.5. Let X be a random variable such that EjX j < 1 and let EX ¤ 0.
Then (3) holds.

This corollary is one of the above Bellow et al. results [2].
Denote

OU1F .T / D
Z

jxj>T
jxj dF.x/; T > 0:

Corollary 2.6. Assume thatWF .x/ > 0; x > 0. Let EX D 0 and let (3) hold, then
the function OU1F .T / is slowly varying as T ! 1.

Remark 2.7. We easily conclude from Corollary 2.6 that, for the random variables
X such that EX D 0 and (3) is valid, the following estimate holds

WF .x/ � cF h.x/=.x C 1/; x > 0; (8)

where cF is a positive constant and h.x/ is a slowly varying functions as x ! 1.

Corollary 2.8. Assume that WF .x/ > 0; x > 0. Let EX D 0 and let the relation

lim inf
T!C1

jU1F .T /j
OU1F .T /

> 0 (9)

hold. In order that (3) holds it is necessary and sufficient that the function OU1F .T /
should be slowly varying as T ! 1.

Remark 2.9. The relation (9) holds for random variables X such that X � a a.e.
with some a 2 R.

Corollary 2.10. Let EjX j D 1. If the relation (3) holds, then the function
Q1F .T / D R T

�T jxj dF.x/; T > 0, is slowly varying as T ! 1.
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Remark 2.11. From Corollary 2.10 and from the relation (4) of Theorem 2.1 we
conclude that, for the distribution function of a random variableX such that EjX j D
1 and (3) holds, the inequality (8) is valid.

Corollary 2.12. Let EjX j D 1. Let the assumption

lim inf
T!1

jU1F .T /j
Q1F .T /

> 0 (10)

hold. The relation (3) is valid if and only if Q1F .T / is a slowly varying function as
T ! 1.

Remark 2.13. Random variables X such that X � a a.e., where a 2 R, satisfy
the assumption (10).

Now we give the examples of random variablesX such that EjX j < 1; EX D 0

and random variablesX such thatEjX j D 1 with characteristic functions satisfying
(3), where ˛ D 1.

Let F0.x/ D F.x; 1; ˇ; �; c/ be a stable distribution function with the character-
istic function of the form

'0.t/ D exp
n

i� t � cjt j.1 � i
2

�
ˇ
t

jt j log jt j/
o

; t 2 R; (11)

where � 2 R, c > 0 and �1 � ˇ � 1; ˇ ¤ 0. It is easy to see that R'0.t; 1/ ! 1
as t ! 0.

Proposition 2.14. The characteristic function of a distribution function F from the
domain of attraction of the stable distribution function F0 satisfies the relation (3)
with ˛ D 1.

In order to construct the examples of desired random variables X it remains to
recall the following well-known result (see [4], p. 76):

In order that a distribution function F.x/ belongs to the domain of attraction of
the stable distribution function F0, it is necessary and sufficient that, as jxj ! 1,

F.x/ D c1 C o.1/

�x h.�x/; x < 0; 1 � F.x/ D 1 � c2 C o.1/

x
h.x/; x > 0;

where the function h.x/ is slowly varying as x ! C1 and c1 and c2 are constants
with c1; c2 � 0; c1 ¤ c2.

Now let us discuss another problem connected with Theorem 2.1 in the case
˛ D 1.

LetX be a random variable such that EjX jˇ < 1 with some ˇ 2 .1; 2/. Assume
that EX D 0. Then, by Corollary 2.4, lim inft!0 R'.t; 1/ < 1. Our nearest aim
is to construct random variables X such that the relation lim supt!0 R'.t; 1/ D 1
holds and to try to describe the sets, where R'.t; 1/ tends to 1 when t ! 0.
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Bellow et al. [2] raised the following question. Let '.t/ be the characteristic
function of a random variable X such that EjX jˇ < 1 for all ˇ 2 .0; 2/ and
EX D 0. Does there exist a sequence of intervals .˛k; ˇk/,

ˇ1 > ˛1 > ˇ2 > ˛2 > � � � > ˇk > ˛k # 0;

such that

lim
k!1

j arg'.ˇk/� arg'.˛k/j
1 � mint2.˛k;ˇk/ j'.t/j D 1 ‹

What may we say about the numbers ˛k and ˇk?
In order to answer this question we introduce the following notations. Let

L.x/ > 0, x � 1, be a slowly varying function at infinity and L.x/ ! 1 as
x ! 1. Let fxkg1

kD1 be a sequence of positive numbers such that xk " 1 and

Dk WD L.xkC1/
Pk

mD1 L.xm/
! 1; k ! 1: (12)

From the representation for slowly varying functions (see [3], p. 282), we note that
xkC1=xk � D

1="

k for any fixed " > 0 and k � k0."/, and therefore from the
assumption (12) it follows xkC1=xk ! 1 as k ! 1.

Let '.t/ have the form

'.t/ D p1e
�i t C p2

1X

kD1

L.xk/

x2k
eixk t ; t 2 R; (13)

where

p1 WD p2

1X

kD1

L.xk/

x2k
and p2 WD

� 1X

kD1

L.xk/

xk
C

1X

kD1

L.xk/

x2k

	�1
:

We see that '.t/ is the characteristic function of a random variable X such that
EjX jˇ < 1 for all 0 < ˇ < 2; EX2 D 1 and EX D 0. Denote ˛k WD 10x�1

kC1 and
ˇk WD Rkx

�1
kC1, where Rk > 10 and Mk1 WD minfRk;Dk=Rkg ! 1 as k ! 1.

Note that ˛k < ˇk < ˛k�1 for all large k 2 N.

Theorem 2.15. Let '.t/ be the characteristic function of the form (13). Then we
have, for considered above ˛k and ˇk and for all sufficiently large k 2 N,

j arg'.ˇk/ � arg'.˛k/j
1 � mint2.˛k;ˇk/ j'.t/j � 1

11
Mk1: (14)

In particular, if L.x/ D log2 x, then choosing xk D 22
k log2 k , we have Dk D

e1= log 2k.1 C o.1//, ˛k D 10 � 2�2.kC1/ log2.kC1/
and ˇk D Rk˛k , where Rk ! C1

and Rk D o.k/.
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In the case when there exists ˇ 2 .1; 2/ such that EjX jˇ0

< 1 for all
ˇ0 < ˇ; EjX jˇ D 1 and EX D 0 we have the following result. Let fxkg1

kD1
be a sequence of positive numbers such that x1 D 10, xk " 1 and xkC1=xk ! 1.
Let '.t/ have the form

'.t/ D p3e
�i t C p4

1X

kD1
x

�ˇ
k eixk t ; t 2 R; (15)

where

p3 WD p4

1X

kD1
x
1�ˇ
k and p4 WD

� 1X

kD1
x
1�ˇ
k C

1X

kD1
x

�ˇ
k

	�1
:

Denote ˛k WD 10x�1
kC1 and ˇk WD N�1

k x�1
k , where Nk.xk=xkC1/ˇ�1 ! C1 and

Nkxk=xkC1 ! 0 as k ! 1. Note that ˛k < ˇk < ˛k�1 for all large k 2 N.
Denote Mk2 WD minfN�1

k .xkC1=xk/;Nk.xk=xkC1/ˇ�1g. It is clear that Mk2 ! 1
as k ! 1.

Theorem 2.16. Let '.t/ be the characteristic function of the form (15). Then we
have, for considered above ˛k and ˇk and for all sufficiently large k 2 N,

j arg'.ˇk/� arg'.˛k/j
1 � mint2.˛k;ˇk/ j'.t/j � 1

13
Mk2: (16)

Thus, we answered the Bellow, Jones and Rosenblatt question.

3 Proof of Theorem 2.1

In the first step we shall prove the sufficiency of the conditions (4) and (5). First we
estimate from below jIm'.t/j. We assume that t > 0 and use the notation T D 1=t .
Write the formula

Im'.t/ D
Z

Œ��T;�T �
sin.tx/ dF.x/C

Z

jxj>�T
sin.tx/ dF.x/

D
1X

kD0

.�1/kt2kC1

.2k C 1/Š
U2kC1;F .�T /C

Z

jxj>�T
sin.tx/ dF.x/: (17)

From this formula we obtain the desired lower bound

jIm'.t/j � t jU1F .�T /j � �e� t2U2F .�T /�WF .�T /: (18)

Using the inequality sin2 u � u2; u 2 R, we deduce the upper bound



82 G.P. Chistyakov

1 � Re'.t/ � 1

2
t2U2F .�T /C 2WF .�T /:

By the inequality .aC b/˛ � a˛ C b˛; a; b � 0; 0 < ˛ � 1, this estimate implies

.1 � Re'.t//˛ �
�1

2

	˛

t2˛U ˛
2F .�T /C 2˛W ˛

F .�T /: (19)

We conclude from the estimates (18) and (19) that, for small t > 0,

R'.t; ˛/ �
� 2˛

�AF .�T; ˛/
C �2˛�1

2˛BF .�T; ˛/

	�1 � 2�e� � 1

2˛
(20)

and, by (4) and (5) we get from (20) that R'.t; ˛/ ! 1 as t ! 0. Thus we have
proved the sufficiency of the assumptions of Theorem 2.1.

Let us prove the necessity of the assumptions (4) and (5). First we prove the
necessity of the assumptions (4) and (5) in the case ˛ D 1. We will use the relations
(3), (4) and (5) for ˛ D 1 until a special remark.

By (3), the function Im'.t/ does not vanish for sufficiently small t > 0. Let for
definiteness Im '.t/ > 0 (otherwise we consider '.t/). Then, by l’Hôpital’s rule,
we have

1
t

R t

0 Im'.u/ du

1 � 1
t

R t

0
Re'.u/ du

! 1; t ! 0:

This means that the characteristic function g.t/ D 1
t

R t

0
'.u/ du; t 2 R, satisfies the

relation (3) as well. The function g.t/ is the characteristic function of a unimodal
distribution function G.x/ with the mode 0, i.e., G.x/ is convex in x < 0 and
concave in x > 0. Therefore the function G.x/ is absolutely continuous and its
density pG.x/ is non-decreasing in .�1; 0/ and is non-increasing in .0;C1/. It is
well-known (see [5]) that

F.x/ D G.x/ � xpG.x/; x 2 R n f0g; (21)

and xpG.x/ ! 0 as x ! 0.
First we shall prove that the relations (4) and (5) hold for the functionsAG.1=t; 1/

and BG.1=t; 1/. Then, using these relations we deduce (4) and (5) for the functions
AF .1=t; 1/ and BF .1=t; 1/.

Lemma 3.1. The following lower bound holds

Z

jxj>�T
sin2.tx=2/ dG.x/ � 1

8
WG.�T /; t > 0:

Proof. Let

E1 D .�T; 5�T=3�[�[1
kD1Œ.2kC1=3/�T; .2kC2�1=3/�T ��; E2 D .�T;1/nE1:
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Since the function pG.x/; x > 0, is non-increasing, by the choice ofE1 andE2, we
have Z

E1

pG.x/ dx �
Z

E2

pG.x/ dx:

Since sin2.tx=2/ � 1=4 for x 2 E1, we easily obtain the estimate

Z

x>�T

sin2.tx=2/ dG.x/ �
Z

E1

sin2.tx=2/ dG.x/

� 1

4

Z

E1

dG.x/ � 1

8

Z

x>�T

dG.x/ D 1

8
.1�G.�T //:

We carry out the estimate of the integral over the set fx < ��T g in the same way.
The lemma is proved. ut

Let us find a upper bound of jIm g.t/j. Write the formula (17) for Im g.t/. We
obtain from this formula

jImg.t/j � t jU1G.�T /j C �e�t2U2G.�T /CWG.�T /; t > 0: (22)

With the help of the inequality sin2 u � .2u=�/2; 0 � u � �=2, and Lemma 3.1 we
deduce the lower bound

1 � Reg.t/ � 2

�2
t2U2G.�T /C 1

4
WG.�T /; t > 0: (23)

The inequalities (22) and (23) imply

Rg.t; 1/ �
� 1

4�

1

AG.�T; 1/
C 2

�

1

BG.�T; 1/

	�1 C 1

2
�3e� C 4:

Since Rg.t; 1/ ! 1 as t ! 0, we obtain the following relations

AG.1=t; 1/ ! 1; t ! 0; (24)

BG.1=t; 1/ ! 1; t ! 0: (25)

Let us show that (24) and (25) imply (4) and (5).
By Remark 2.2, the relation (24) is equivalent to the following one

t
ˇ
ˇ
R T

0
VG.x/ dx

ˇ
ˇ

WG.T /
! 1; t ! 0: (26)

In the sequel we need an analog of some well-known result (see [3], Ch. VIII, 9).

Lemma 3.2. If the relation (26) holds for the distribution function G.x/, then the
function U �

G.T / WD R T

0
VG.x/ dx is slowly varying as T ! C1.
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Remark 3.3. The definition of a slowly varying function includes the assumption of
positivity of this function for large T > 0. In this paper we say that a function is
slowly varying, if its modulus is slowly varying.

Proof. By (26), the functionU �
G.T / does not change the sign for large T . Let a > 1

be a constant. The following formula holds

log
U �
G.aT /

U �
G.T /

D T

Z a

1

VG.sT /

U �
G.sT /

ds:

Since jVG.w/j � WG.w/; w 2 R, we obtain from the last formula the inequality

ˇ
ˇ
ˇ log

U �
G.aT /

U �
G.T /

ˇ
ˇ
ˇ �

Z a

1

sT WG.sT /

jU �
G.sT /j

ds

s
: (27)

By (26), the integrand on the right-hand side of the inequality (27) is bounded for
large T and tends to 0 as T ! C1. By Lebesgue’s theorem, we conclude that
U �
G.aT /=U

�
G.T / ! 1 as T ! C1, as was to be proved. ut

By Lemma 3.2, the functionU �
G.T / is slowly varying as T ! C1. The function

U �
F .T / safes the sign for large T and is slowly varying. This follows from the

following formula, which we obtain with the help of (21),

U �
F .T / D

Z T

0

VG.x/ dx C
Z T

�T
x dG.x/ D 2U �

G.T / � T VG.T /; (28)

and the relation (26). In the sequel we assume for definiteness that U �
F .T / > 0 and

therefore U �
G.T / > 0 (otherwise we would use the function �U �

F .T /). Write with
the help of (21)

WF .T / D WG.T /C T .pG.T /C pG.�T //:

Since the function QpG.x/ WD pG.x/C pG.�x/; x > 0, is non-increasing, we have

WF .T / � WG.T /C 2WG.T=2/ � 3WG.T=2/: (29)

In view of (28), (29) and (26), for large T , we obtain the relation

U �
F .T /

WF .T /

 U �

F .T=2/

WF .T /
� U �

F .T=2/

3WG.T=2/
D 2U �

G.T=2/� VG.T=2/T=2

3WG.T=2/
� U �

G.T=2/

3WG.T=2/

from which, by (26), (4) follows. Here we used the fact that the assumptions (4) and
(6) are equivalent. In addition here and in the sequel the sign 
 indicates that the
ratio of the two sides tends to 1.
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We now deduce the relation (5). Write with the help of (4) and (28), for large T ,

U1F .T / D U �
F .T /� T VF .T / 
 U �

F .T / D 2U �
G.T / � T VG.T / 
 2U �

G.T /I

U2F .T / � 2

Z T

0

xWF .x/ dx D 2

Z T

0

xWG.x/ dx C 2

Z T

�T
x2 dG.x/

� 3U2G.T /C T 2WG.T /: (30)

For large T , we obtain from these relations the following lower bound

T jU1F .T /j
U2F .T /

� 1

3

T jU �
G.T /j

U2G.T /C T 2WG.T /
:

By the relations (24) and (25) the assumption (5) holds.
Thus we have proved the necessity of the assumptions of Theorem 2.1 in the case

˛ D 1.
Let us prove the necessity of the assumptions of Theorem 2.1 in the case ˛ 2

.1=2; 1/. Now we consider the relations (3), (4)–(6) for ˛ 2 .1=2; 1/.
Remark 3.4. The assumption (4) implies that the functionU1T .T / is slowly varying
when T ! C1. Indeed, as it was noticed in Remark 2.2, (4) is equivalent to (6).
Then, by Lemma 3.2, we conclude that the functionU �

F .T / is slowly varying. Since
U1F .T / D U �

F .T / � T VF .T /, by (4) for ˛ D 1 the function U1F .T / is slowly
varying as well.

By l’Hôpital’s rule, we deduce from (3)

1
t

R t

0
jIm'.u/j1=˛ du

1
t

R t

0
.1 � Re'.u// du

! 1; t ! 0: (31)

In view of the inequality .a C b C c/1=˛ � 31=˛.a1=˛ C b1=˛ C c1=˛/; a; b; c � 0,
and applying (22) to Im'.u/, we get the upper bound

Z t

0

jIm'.u/j1=˛ du �
Z t

0

.ujU1F .�=u/j C �e�u2U2F .�=u/CWF .�=u//1=˛ du � I1 C I2 C I3

WD 31=˛
Z t

0

u1=˛jU1F .�=u/j1=˛ du C .3�e�/1=˛
Z t

0

u2=˛U2F .�=u/1=˛ du

C 31=˛
Z t

0

WF .�=u/1=˛ du: (32)

Since, as it is easy to see,

1 � Re'.u/ � 2

�2
u2U2F .�=u/; u > 0;
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we have, for small t > 0,

TI2 �
�3

2
�3e�

	1=˛

T

Z t

0

.1 � Re'.u//1=˛ du �
�3

2
�3e�

	1=˛

T

Z t

0

.1 � Re'.u// du

D
�3

2
�3e�

	1=˛

.1 � Reg.t//: (33)

The term I3 admits the following upper bound TI3 � 31=˛WF .�T /. On the
other hand, by the estimates (23) and (29), we have 1� Reg.2t/ � 1

4
WG.�T=2/ �

1
12
WF .�T /. Therefore we finally deduce, for small t > 0,

TI3 � 12 � 31=˛.1 � Reg.2t// � 48 � 31=˛.1 � Reg.t//: (34)

From (31), by (23), (32)–(34), we obtain the relation

T
R t

0
u1=˛jU1F .�=u/j1=˛

t2U2G.�T /CWG.�T /
! 1; t ! 0: (35)

Note that the relation (3) with ˛ 2 .1=2; 1/ implies (3) with ˛ D 1. Therefore,
by Remark 3.4, the function jU1F .�T /j is slowly varying as T ! C1. Now we
use the following well-known lemma [6]

Lemma 3.5. Let a function h.x/ be slowly varying as x ! C1. Then

lim
x!C1x1C�

Z 1

x

u�2�� h.u/
h.x/

du D 1

1C �
and lim

T!C1
1

T

Z T

0

h.x/

h.T /
dx D 1;

where the parameter � � 0.

Since the function jU1F .�T /j1=˛ is slowly varying as T ! C1, applying to it
Lemma 3.5 with � D 1=˛, we obtain the relation

T

Z t

0

u1=˛jU1F .�=u/j1=˛ du 
 .1C 1=˛/�1t1=˛jU1F .�T /j1=˛; t ! 0:

Therefore the relation (35) is equivalent to the following two relations

t1=˛ jU1F .�T /j1=˛
WG.�T /

! 1; t ! 0; (36)

t�2C1=˛ jU1F .�T /j1=˛
U2G.�T /

! 1; t ! 0: (37)

Since jU1F .�T=2/j1=˛ 
 jU1F .�T /j1=˛ as T ! 1, the assumption (4) follows
from (36) with the help of the inequality (29). The assumption (5) follows from
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(37) with the help of the estimates (29), (30) and the relation (36). Theorem 2.1 is
completely proved.

4 Discussion of Theorem 2.1

Proof of Corollary 2.3. It is obvious that the assertion of Corollary 2.3 holds in
the case WF .x/ D 0 for x > a > 0.

Let WF .x/ > 0 for all x > 0. Note that if the assumptions (7) hold and
E.X/ ¤ 0, then the relations (4) and (5) hold as well and, by Theorem 2.1, the
relation (3) is valid.

Let the relation (3) hold. By Theorem 2.1, the assumptions (4) and (5) hold. It
follows from (4) and Remark 3.4 that jU1F .x/j is slowly varying function. Therefore
we obtain from (4) the following upper bound, for sufficiently large x � x" > 0,

WF .x/ � x"�1=˛;

with some 0 < " < .1�˛/=.2˛/. This estimate implies that EjX j�2"C1=˛ < 1 and
therefore EjX j < 1. Let us show that EX ¤ 0. Assuming to the contrary EX D 0,
we would get

U1F .T / D �
Z

jxj>T
x dF.x/ (38)

and we would have the estimate

jU1F .T /j � t�1�2"C1=˛EjX j�2"C1=˛; t > 0:

It follows from this estimate that jU1F .x/j is not a slowly varying function (see [3],
p. 277), a contradiction. Thus, EX ¤ 0. But then the assumptions (7) follow from
the relations (4) and (5). Corollary 2.3 is completely proved. ut

Proof of Corollary 2.4. First consider the case where WF .x/ > 0 for all
x > 0. We verify the sufficiency of the assumption EX ¤ 0. Since EjX jˇ < 1,
we have WF .x/ � x�ˇ

EjX jˇ; x � 1, and then it is easy to see under the
assumption EX ¤ 0 that (4) holds. In addition, for considered random variables
X the inequality

U2F .T / � T 2�ˇEjX jˇ; T > 0;

holds, therefore (5) holds as well.
Now let us prove the necessity of the assumption EX ¤ 0. If EX D 0 then (38)

holds and the upper bound

jU1F .T /j � tˇ�1
EjX jˇ; t > 0; (39)
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is true. By Remark 3.4, the function U1F .T / is slowly varying as T ! C1. This
contradicts to the estimate (39). Hence the assumption EX D 0 is false.

The proof of the corollary in the case WF .x/ D 0 for jxj > a with some a > 0

easily follows from Taylor formula for the functions Im'.t/ and 1 � Re'.t/. ut
Proof of Corollary 2.5. Without loss of generality we assume that WF .x/ > 0,

x > 0. If EjX j < 1, we have WF .x/ D o.1=x/; x ! C1. Using this relation
and the assumption EX ¤ 0, it is easy to see that (4) holds. We have, for every fixed
N > 1,

U2F .T / D
Z

jxj<T=N
x2 dF.x/C

Z

T=N�jxj�T
x2 dF.x/ � TEjX j

N
CT

Z

jxj�T=N
jxj dF.x/:

Therefore tU2F .T / ! 0, as t ! 0, and (5) holds, if EX ¤ 0. Then, by
Theorem 2.1, the relation (3) holds. ut

Proof of Corollary 2.6. Let EX D 0 and let (3) hold. Then, by Theorem 2.1,
the relation (4) is true and we obtain the relation

t OU1F .T /=WF .T / ! 1; t ! 0:

Therefore the assertion of the corollary follows from the following well-known
result (see [3], p. 281).

Lemma 4.1. Let WF .x/ > 0; x > 0, and the following relation holds

xWF .x/=ZF .x/ ! 0; x ! C1; where ZF .x/ D
Z

u>x
WF .u/ du:

Then the function ZF .x/ is slowly varying for x ! C1.
ut

Proof of Corollary 2.8. The necessity of the assumption of the corollary follows
from Corollary 2.6. Let us prove the sufficiency of this assumption. Note that the
following formula

WF .T /

t OU1F .T /
D 1 � T

Z 1

T

1

x2

OU1F .x/
OU1F .T /

dx

holds. Since the function OU1F .x/ is slowly varying, the right hand-side of this
equality tends to zero as T ! C1. This follows from Lemma 3.5.

Taking into account the condition (9) we see that the relation (4) holds. In
addition we note that

jU1F .T /j
OU1F .T /

� 1

BF .t/
D
ˇ
ˇ
ˇ1 � t

Z T

0

OU1F .x/
OU1F .T /

dx
ˇ
ˇ
ˇ:
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The right hand-side of this equality tends to 0 as T ! C1, by Lemma 3.5.
Therefore, in view of (9), we obtain (4). Then, by Theorem 2.1, the property (3)
holds. ut

Proof of Corollary 2.10. Since EjX j D 1, we have WF .x/ > 0; x > 0. Let
(3) hold. Then, by Theorem 2.1, the relation (4) holds and therefore, by (10), the
relation

tQ1F .T /=WF .T / ! 1; t ! 0 (40)

is true as well. The assertion of the corollary follows immediately from the following
result (see [3], p. 281).

Lemma 4.2. Let X � 0 almost surely. If the relation (40) holds, the function
Q1F .T / is slowly varying for T ! C1. ut

ut
Proof of Corollary 2.12. One can obtain a proof of this corollary in the same

way as the proof of Corollary 2.8. Therefore we omit it. ut
Proof of Proposition 2.14. The assertion of Corollary 2.14 immediately follows

from the following Ibragimov and Linnik result [4], p. 85.

Theorem 4.3. In order that the distribution with characteristic function '.t/

belongs to the domain of attraction of the stable law whose characteristic function
has the form (11), it is necessary and sufficient that, in the neighborhood of the
origin,

'.t/ D exp
n

i�t � cjt j Qh.t/.1 � i 2
�
ˇ
t

jt j log jt j/
o

;

where Qh.t/ is slowly varying as t ! 0.
ut

5 Proof of Theorems 2.15 and 2.16

In order to prove Theorem 2.15 we need the following lemma.

Lemma 5.1. Let '.t/ be the characteristic function of the form (13) of a random
variable X with a distribution function F . Then the inequalities

R'.ˇk; 1/ �
� 2

�AF .�=ˇk; 1/
C �

2BF .�=ˇk; 1/

	�1 � 2�e� � 1

2
� 1

5
Mk1 � 3�e�

(41)
hold for ˇk from Theorem 2.15 and for all sufficiently large k 2 N.

Proof. The first of the inequalities (41) follows from (20) with ˛ D 1. By the
definition of F and the assumption (12), we easily obtain the following estimates
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Z 1

�=ˇk

x dF.x/ � p2L.xkC1/x�1
kC1; WF .�=ˇk/ � 2p2L.xkC1/x�2

kC1 and

ˇk

Z �=ˇk

�1
x2 dF.x/ � ˇkp2

kX

mD1
L.xm/C ˇk:

These bounds imply, for k � k0,

� 2

�AF .�=ˇk; 1/
C �

2BF .�=ˇk; 1/

	�1 D
R1
�=ˇk

x dF.x/

1
2
ˇk
R �=ˇk

�1 x2 dF.x/C 2
ˇk
WF .�=ˇk/

� p2
L.xkC1/x�1

kC1
1
2
p2ˇk

Pk
mD1 L.xm/C ˇk C 2

ˇk
2p2L.xkC1/x�2

kC1
� 1

5
Mk1;

as was to be proved. The lemma is proved. ut
Proof of Theorem 2.15. Let '.t/ be the characteristic function of the form (13)

of a random variable X with a distribution function F . Note that the relation

arg'.t/ D arctan
Im'.t/

Re'.t/
D Im'.t/

Re'.t/

1X

nD0

.�1/n
2nC 1

� Im'.t/

Re'.t/

	2n

holds for small t . Since

1 � min
t2.˛k;ˇk/

j'.t/j � 1 � min
t2.˛k;ˇk/

Re'.t/

and
Im'.t/

Re'.t/
D Im'.t/

�

1C .1 � Re'.t//C .1 � Re'.t//2 C : : :
�

;

we have j arg'.ˇk/� arg'.˛k/j
1 � mint2.˛k;ˇk/ j'.t/j � jIm'.ˇk/ � Im'.˛k/j

1 � mint2.˛k;ˇk / Re'.t/
� c; (42)

where c > 0 is an absolute constant. In the sequel we denote all such constants by
c. Now we note that

1� min
t2.˛k ;ˇk /

Re'.t/ D max
t2.˛k ;ˇk/

.1� Re'.t// � max
t2.˛k ;ˇk/

� t 2

2

Z �=t

�1

x2 dF.x/C 2.1� F.�=t//
	

� 1

2
ˇ2k

Z �=˛k

�1

x2 dF.x/C 2.1� F.�=ˇk//: (43)

With the help of the formula

Im'.ˇk/ � Im'.˛k/ D 2

Z 1

�1
sin
�ˇk � ˛k

2
x
	

cos
�ˇk C ˛k

2
x
	

dF.x/;
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we obtain the lower bound

jIm'.ˇk/� Im'.˛k/j D
ˇ
ˇ
ˇ2

Z
1

�1

sin
�ˇk � ˛k

2
x
	

dF.x/

� 4

Z
1

�1

sin2
�ˇk C ˛k

2
x
	

sin
�ˇk � ˛k

2
x
	

dF.x/

ˇ
ˇ
ˇ

� .ˇk � ˛k/

Z �=.ˇk�˛k/

�1

x dF.x/� c.ˇk � ˛k/
2

Z �=.ˇk�˛k/

�1

x2 dF.x/

� .ˇk C ˛k/
2

Z �=.ˇk�˛k/

�1

x2 dF.x/� 6.1� F.�=.ˇk � ˛k///: (44)

We deduce from (43) and (44) that

jIm'.ˇk/� Im'.˛k/j
1 � mint2.˛k;ˇk/ Re'.t/

� .ˇk � ˛k/
R1
�=.ˇk�˛k/ x dF.x/

1
2
ˇ2k
R �=˛k

�1 x2 dF.x/C 2.1� F.�=ˇk//
� c:
(45)

It is easy to see that, for the random variable X with a distribution function F
satisfying the assumptions of Theorem 2.15, the following relations hold

.ˇk � ˛k/
Z 1

�=.ˇk�˛k/
x dF.x/ � 1

2
ˇk

Z 1

�=ˇk

x dF.x/;

1

2
ˇ2k

Z �=˛k

�1
x2 dF.x/ D 1

2
ˇ2k

Z �=ˇk

�1
x2 dF.x/: (46)

Using (45) and (46), we finally obtain

jIm'.ˇk/� Im'.˛k/j
1 � mint2.˛k;ˇk/ Re '.t/

� 1

2

ˇk
R1
�=ˇk

x dF.x/

1
2
ˇ2k
R �=ˇk

�1 x2 dF.x/C 2.1� F.�=ˇk//
� c

D 1

2

� 2

�AF .�=ˇk; 1/
C �

2BF .�=ˇk; 1/

	�1 � c: (47)

The statement of the theorem follows from (41), (42) and (47). ut
Now we need the following lemma.

Lemma 5.2. Let '.t/ be the characteristic function of the form (15) of a random
variable X with a distribution function F . Then the inequalities

R'.ˇk; 1/ �
� 2

�AF .�=ˇk; 1/
C �

2BF .�=ˇk; 1/

	�1 � 2�e� � 1

2
� 1

6
Mk2 � 3�e�

(48)
hold for ˇk from Theorem 2.16 and for all sufficiently large k 2 N.



92 G.P. Chistyakov

Proof. Let us prove (48). The first of the inequalities (48) follows from the bound
(20) with ˛ D 1. By the definition of F , we easily obtain the following estimates

Z 1

�=ˇk

x dF.x/ � p4x
1�ˇ
kC1; WF .�=ˇk/ � 2p4x

�ˇ
kC1 and

ˇk

Z �=ˇk

�1
x2 dF.x/ � 2p4ˇkx

2�ˇ
k C p3ˇk:

These bounds imply

� 2

�AF .�=ˇk; 1/
C �

2BF .�=ˇk; 1/

	�1 D
R1
�=ˇk

x dF.x/

1
2
ˇk
R �=ˇk

�1 x2 dF.x/C 2
ˇk
WF .�=ˇk/

� p4
x
1�ˇ
kC1

p4ˇkx
2�ˇ
k C 1

2
p3ˇk C p4

4
ˇk
x

�ˇ
kC1

� 1

6
Mk2;

and we arrive at the assertion of the lemma. ut
Proof of Theorem 2.16. We prove this theorem, using Lemma 5.2 and repeating

the arguments of the proof of Theorem 2.15. ut
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CLT for Stationary Normal Markov Chains
via Generalized Coboundaries

Mikhail Gordin

Dedicated to Friedrich Götze on the occasion of his sixtieth
birthday

Abstract Let X D .Xn/n2Z be a stationary Markov chain with a stationary
probability distribution � on the state space of X and the transition operator
Q W L2.�/ ! L2.�/. Let f 2 L2.�/ be a function on the state space of X .
The solvability in L2.�/ of the Poisson equation f D g � Qg implies that the
stationary sequence .f .Xn//n2Z can be represented in the form

f .Xn/ D �

g.XnC1/ � .Qg/.Xn/
�C �

g.Xn/� g.XnC1/
� D 
n C �n .n 2 Z/:

Here 
 D .
n/n2Z is a stationary sequence of square integrable martingale
differences, and � D .�n/n2Z is an L2-coboundary that is a difference of two
consecutive elements of a stationary sequence of square integrable random vari-
ables. This representation reduces the Central Limit Theorem (CLT) question for
.f .Xn//n2Z to the well-studied case of martingale differences. However, in many
situations the martingale approximation as a tool in limit theorems works well,
though the above martingale-coboundary representation does not hold. In particular,
if the transition operator Q is normal in L2.�/, 1 is a simple eigenvalue of Q, and
the assumptions
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(1) �2f D R

D
1�jzj2
j1�zj2 �f d z < 1,

(2) limn!1 n� 1
2 jPn�1

kD0 Qkf j2 D 0

hold true for a real-valued function f 2 L2.�/, the Central Limit Theorem for
.f .Xn//n2Z was established via the martingale approximation.

In the present paper we show that under condition (1) .f .Xn//n2Z admits a
generalized form of the martingale-coboundary representation as the sum of a
square integrable stationary martingale difference and a generalized coboundary.
The latter is a stationary sequence of random variables which are increments of a
stationary sequence ofm-functions introduced in the paper. Furthermore, it turns out
that assumption (2) means exactly that the generalized coboundary can be neglected
in the limit. Connection with generalized solutions to the Poisson equation is also
studied.

Keywords Generalized coboundary • Limit theorems • Markov chain • Martin-
gale approximation • Normal transition operator • Poisson equation

2010 Mathematics Subject Classification. Primary 60F05, 60J05.

1 Introduction

Let 
 D .
n/n2Z be a stationary (in the strict sense) sequence of integrable random
variables. Assume also that 
 is a sequence of martingale differences that is for
every n

E.
nj
n�1; 
n�2; : : : / D 0:

Let, moreover, 
 be ergodic, real-valued and E
2n < 1. Then, according
to the classical results of Billingsley [1] and Ibragimov [11], the sequence 

satisfies the Central Limit Theorem (CLT). It is known that under the same
conditions also the Functional Central Limit Theorem (FCLT) and the Law of the
Iterated Logarithm (including its functional form due to Strassen) are valid. Under
appropriate assumptions some of these results extend to not necessarily stationary
sequences or arrays of martingale differences.

A natural idea is to use a certain approximation by martingales (that is the sums of
martingale differences) to establish limit theorems of the above-mentioned type for
the sums of dependent random variables more general than martingale differences.
More precisely, one needs to construct a martingale difference approximation of
the random sequence in question and represent the error of this approximation in a
form which allows us, under the appropriate normalization, to neglect by this error
in the limit. In the stationary setup an approach to this problem was proposed in [7]
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basing on the so-called martingale-coboundary representation. The latter means that
a stationary sequence � D .�n/n2Z admits the representation

�n D 
n C �n; n 2 Z; (1)

where 
 D .
n/n2Z is a stationary sequence of martingale differences, and � D
.�n/n2Z is a so-called coboundary which can be written as

�n D �n � �n�1; n 2 Z; (2)

with a certain stationary sequence � D .�n/n2Z. One says in this case that �
is a coboundary of � ; we speak of a B-coboundary if each of �n in the above
representation belongs to a certain Banach space B of random variables. It is
assumed that the random sequences �; 
; � in this representation are defined on a
common probability space so that they are jointly stationary. A convenient way to
formulate this type of interrelation between random sequences (which does not lead
to any loss of generality) is to assume that a probability preserving invertible map
T acts on the basic probability space so that

�nC1 D �n ı T; 
nC1 D 
n ı T; �nC1 D �n ı T .n 2 Z/:

As to the asymptotic distributions of the sums

n�1X

kD0
�k; n � 1; (3)

normalized by dividing by positive reals tending to 1, it is clear that one can neglect
by the contribution of the sequence � into these sums and extend to � D 
 C �

certain limit theorems originally known to hold for the martingale difference 
. To
deduce the martingale-coboundary representation for a stationary sequence �, some
conditions need to be imposed on �. These conditions are usually stated in terms
of a compatible filtration .Fn/n2Z (that is a family of sub-�-fields satisfying � � � �
Fn�1 � Fn � FnC1 � � � � and T �1Fn D FnC1) on the basic probability space.
Specifying such a filtration is a standard prerequisite to develop the martingale
approximation for stationary sequences. Given such a filtration .Fn/n2Z, we need
to distinguish between a general non-adapted sequence and an adapted sequence
� D .�n/ where �n is Fn-measurable for every n 2 Z. The latter case can be treated
easier and is equivalent to the study of functions of a stationary Markov chain with
a general measurable state space. Though only very special Markov chains emerge
in this context, and, on the other hand, both adapted and non-adapted cases can
be studied, basing on the martingale-coboundary representation and without any
reference to markovianity [7], it is the whole class of general Markov chains where
the application of the martingal-coboundary decomposition can be done in a very
natural, simple and elegant way in terms of a condition related to the so-called
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Poisson equation. More specifically, let X D .Xn/n2Z, � and Q W L2.�/ ! L2.�/

be, respectively, a stationary Markov chain, its stationary probability distribution
and its transition operator. Let f 2 L2.�/ be a function on the state space of X .
Then the solvability in g 2 L2 of the Poisson equation

f D g �Qg (4)

implies the applicability of the above mentioned martingale-coboundary representa-
tion to the stationary sequence .f .Xn//n2Z (see Abstract for an explanation; notice
that the converse is also true). Moreover, in this case 
 turns out to be an L2-
coboundary (that is a coboundary of a square integrable sequence �). In the context
of limit theorems this was independently observed in [13] (for the particular case of
Harris recurrent chains) and in [8] (for the general ergodic case).

Now we will explain the topic of the present paper. It was recognized during
the last three decades that the martingale approximation as a tool in limit theorems
is still effective in an area where the martingale-coboundary representation with
an L2-coboundary not always holds. This means that, under some assumptions,
� in representation (1) needs not be an L2-coboundary to make a contribution to
(3) which is, having being divided by

p
n, negligible in the limit. The first CLT

result of such kind was obtained for stationary Markov chains with normal transition
operators [2,9] (recall that a bounded operator in a Hilbert space is said to be normal
if it commutes with its adjoint). More specifically, let the chain .Xn/n2Z introduced
above have a normal transition operator Q in L2.�/ (we call such a chain normal,
too). Assuming that 1 is a simple eigenvalue of Q and, for an f 2 L2.�/, the
equation

f D .I �Q/1=2g (5)

(called the fractional Poisson equation of order 1=2 [3]) has a solution g 2 L2,
the CLT holds for .f .Xn//. Independently, under the same condition the CLT and
the FCLT for stationary Markov chains with selfadjoint transition operators were
established in [12]. Moreover, in the normal case the most general known condition
for the CLT to hold was proposed in [10]. This compound condition consists of two
assumptions which appear in Theorem 4.1 of the present paper as (1) and (2).

Later the CLT [14] and the FCLT [15] (see also [16] for an alternative proof)
were established for stationary Markov chains with not necessarily normal transition
operators under a ceratin hypothesis we call the Maxwell-Woodroofe condition. This
condition (which we just mention without further discussion in the present paper) is
stronger than the requirement that (5) is solvable inL2, but is less restrictive than the
assumption of theL2-solvability of (4). These results were achieved by means of the
martingale approximation based on relation (1). Obtaining bounds for the sequences
� and � in (1) is somewhat tricky, especially in proofs of the FCLT. This impressive
development, however, left open certain important questions, some part of which
will be touched in the present paper under the assumption of normality. In our
opinion, the key problem here is finding a suitable extension to a more general setup
of the known relation between the Poisson equation and the martingale-coboundary
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representation. This could clarify the structure of the sequence � and should be
helpful, in particular, when one needs to show that this sequence is negligible. One
may expect that the fractional Poisson equation (5) plays an important role in this
problem. However, some known facts show that the relation between the solvability
of (5) and the applicability of limit theorems is not so simple. For example, even for
selfadjoint transition operators a natural fractional modification of the martingale-
coboundary representation in general does not hold under the assumption that (5) is
solvable in L2 (see [4] for a counterexample). Further, as we mentioned above, for a
function f of a normal Markov chain to satisfy the CLT, a weaker condition than the
L2-solvability of (5) is known (see [10] and the present paper). Moreover, without
the assumption of normality the solvability of (5) in L2 does no longer imply that
the variances of sums (3) grow linearly in n [19].

These and other facts stimulate attempts to find a more precise substitute for
the Poisson condition in the context of the CLT and other limit theorems. In
this paper we analyze further the compound condition used in [10] to deduce the
CLT for normal Markov chains. To make shorter the discussion of our approach,
we only deal in this Introduction with those functions on the state space which
are completely nondeterministic. It is this class of functions to which the study of
the general case will be reduced at the cost of a certain additional assumption. We
generalize the known relation between the Poisson equation (of degree one) and
the martingale-coboundary representation. This is achieved by extending the class
of admissible solutions of the Poisson equation along with extending the class
of possible ingredients of the martingale-coboundary representation. Notice that
commonly in the first case we deal with functions defined on the state space of a
Markov chain, while in the second one we deal with functions on its path space
which forms our basic probability space. Correspondingly, we are led to two kinds
of extensions of the related L2-spaces. We call their elements t-functions and
m-functions, respectively (in general, they are not functions at all). We use the
martingale decomposition with respect to a given filtration to construct the space
of m-functions as an extension of the L2-space on the basic probability space.
To construct the space of t-functions we use a system of operators which can be
very loosely described as compressions of the system of conditional expectations
defined by the filtration mentioned above. In fact, the definition of this system
of operators involves, along with the powers of Q and Q�, the so-called defect
operators. This way we arrive at expressions which are well-known in the theory of
non-selfadjoint operators, in particular, in connection with dilations, characteristic
functions and functional models. In the context of limit theorems, we finally obtain
two conditions parallel to (1) and (2) in the abstract. The first of them requires, for
an L2-function on the state space, the solvability of the Poisson equation (of degree
one) in t-functions (under the assumption of normality ofQ this is exactly (1)). This
condition guarantees (and is equivalent to) the generalized martingale-coboundary
representation involvingm-function. The conditions for the applicability of the CLT
to a function f can be expressed in terms of the t-function solving the Poisson
equation with f in the right hand side. Finally we obtain conditions for the CLT to
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apply to a function f formulated entirely in terms of this function and the transition
operatorQ, without any reference to the path space of the Markov chain.

The main conclusion which can be done from the present paper is that in the nor-
mal case the (generalized) coboundary can be completely and explicitly restored in
a very simple way from the martingale difference part of the martingale-coboundary
representation. This martingale difference part (rather than the coboundary) seems
to be the most natural functional parameter in the situation of the present paper.

A natural framework for some part of our considerations is given by the
classical dilation theory of (not necessarily normal) contractions in Hilbert spaces
[17, 18]. However, there are some probabilistic aspects which can not be treated
in the framework of a purely Hilbert space theory (martingale difference nature
of wandering subspaces, limit theorems). As to our approach to constructing
extensions of Hilbert spaces in terms of filtrations, it can have some parallels
in the analytic function theory in the unit disk. Clarifying these connections and
considering the general non-normal case or other limit theorems require additional
study and will not be discussed here.

The author thanks Dr. Holger Kösters and the anonymous referee for careful
reading the first version of this paper and their suggestions which improved the
paper.

2 Contractions, Transition Operators and Markov Chains

2.1 Some Notation

Let .S;M/ and Q W S � M ! Œ0; 1� be a measurable space and a transition
probability (D Markov kernel) on it. Assume that for Q there exists a stationary
probability � on .S;M/ so that

R

S Q.s;A/�.ds/ D �.A/;A 2 M. By the same
symbol Q we will denote the transition (or Markov) operator defined on bounded
measurable functions f by the relation .Qf /.�/ D R

S f .s/Q.�; ds/. For every p 2
Œ1;1� the same formula defines in Lp.�/ an operator Q of norm 1 preserving
positivity and acting identically on constants.

For every n 2 Z denote by Sn a copy of S, and set � D Q

n2Z Sn. Assume
that X D .Xn/n2Z is a stationary homogeneous Markov chain which has � as the
one-dimensional distribution andQ as the transition operator. The latter means that

E.f .Xn/jXn�1; Xn�2; : : : / D .Qf /.Xn�1/

for every n 2 Z and every bounded measurable f . We assume that the chain
X is defined on a probability space .�;F ;P/ such a way that, for every n 2
Z, Xn.!/ D sn, the n-th entry of ! D .: : : ; s�1; s0; s1; : : : /, and also F D
�.Xn; n 2 Z/, the �-field generated by all Xn; n 2 Z. We denote by T the
P-preserving bi-measurable invertible self-map of � uniquely determined by the
relations Xn.T .�// D XnC1.�/; n 2 Z. Starting with .S;M/;Q and �, we can
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always construct such a chain and related objects whenever .S;M/ is a standard
Borel space. It is known that the transformation T of .�;F ;P/ is ergodic (that is
there is no A 2 F with T �1A D A and P.A/.1 � P.A// ¤ 0) if and only if 1 is a
simple eigenvalue of the transition operatorQ.

For sub-�-fields M0 � M and F 0 � F the standard notationsLp.S;M0; �/ and
Lp.�;F 0;P/ will be abbreviated to Lp.M0; �/ and Lp.F 0;P/, or even to Lp.�/
or Lp.P/ if M0 D M or F 0 D F .

The Markov chain X generates on the probability space .�;F ;P/ an increasing
filtration .Fn/n2Z and a decreasing filtration .Fn/n2Z where Fn D �.Xk; k � n/

and Fn D �.Xk; k � n/, n 2 Z. These filtrations are compatible with T in
the sense that T �1Fn D FnC1 � Fn and T �1Fn D FnC1 � Fn for n 2 Z.
The increasing filtration .Fn/n2Z can be completed to obtain .Fn/�1�n�1 by
setting F�1 D T

n2Z Fn and F1 D W

n2Z Fn. Analogously, .Fn/�1�n�1 is a
completion of .Fn/n2Z defined by setting F�1 D W

n2Z Fn and F1 D T

n2Z Fn.
The above filtrations give rise to the families .En/�1�n�1 and .En/�1�n�1 of
conditional expectations. Let U and I be a unitary operator defined by Uf D f ıT ,
f 2 L2.�/, and the identity operator, respectively. We denote by j � jp and jj � jjp the
Lp.�/-norm and the Lp.P/-norm, respectively. The symbols .�; �/ and jj � jj denote
the inner product in every Hilbert space and the norm in abstract Hilbert spaces.

Recall that a contraction is an operator in a Hilbert space whose norm is less than
or equal to one. The transition operator Q in the situation described above defines
a contraction in L2.�/. Since the measurable map X0 W � ! S transforms the

measure P to the measure �, the mapping L2.�/ 3 f 7! Qf defD f ı X0 2 L2.P/

is an isometric embedding of L2.�/ to L2.P/. We have to emphasize that in many
respects we just reproduce (or go in parallel to) well-known points from the dilation
theory of contractions in Hilbert spaces [17, 18].

2.2 Normal Contractions

A bounded operatorQ in a Hilbert spaceH satisfying the relationQQ� D Q�Q is
said to be normal. We are mostly interested in normal contractions. IfQ is a normal
contraction in H and f 2 H , there exists such a unique measure �f on the closed
unit disk D � C that

.Qmf;Qnf / D
Z

D

zm Nzn�f .d z/

for every m; n � 0. In particular, if � is a stationary probability measure for a
transition probabilityQ, the transition operator Q W L2.�/ ! L2.�/ has the norm
1, hence is a contraction. If, moreover, Q is normal, the above formula applies to
Q and every f 2 L2.�/. The spectral theory of normal operators allows us to
investigate the Poisson equation (4) for a normalQ in terms of �f . In particular, (4)
is solvable in L2.�/ for an f 2 L2.�/ if and only if
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Z

D

1

j1 � zj2 �f .d z/ < 1: (6)

Clearly, the latter condition implies that f is orthogonal to all fixed points of Q.

2.3 Unitary Part of a Transition Operator and Its Deterministic
� -Field

Let Q be a contraction in a Hilbert space H . It is known [17, 18] that the subspace
Hu � H defined by the relation

Hu D ff 2 H W � � � D jQ�2f j D jQ�f j D jf j D jQf j D jQ2f j D : : : g (7)

reduces the operatorQ so thatH D Hu ˚Hcnu, whereHu andHcnu are completely
Q-invariant (that is both Q- and Q�-invariant), QjHu is a unitary operator, and
Hu is the greatest subspace with such properties. The operators Qu D QjHu and
Qcnu D QjHcnu are called the unitary part and the completely non-unitary part of
Q, respectively. In this notation we have

Q D Qu ˚Qcnu:

In the case of a normal contraction Q this decomposition can be immediately
deduced by means of the projection-valued spectral measure PQ of the operatorQ.
We say that a projection-valued measure is concentrated on a Borel set A � C if it
vanishes on every Borel set disjoint with A; the restriction of such a measure P to a
Borel setA is another such a (uniquely defined) measure which is concentrated onA
and agrees with P on every Borel subset ofA; we denote this measure by PA. Using
this terminology and notation, PQ is concentrated on the closed unit disk D so that
PQ D PD

Q . Let K D fjzj 2 C W z D 1g and D0 D fz 2 C W jzj < 1g be the unit
circle and the open unit disk. Then Hu D PQ.K/H and Hcnu D PQ.D0/H . Let
PK
Q and PD0

Q be the restrictions of PQ to K and to D0, respectively. Then we have

PQ D PK
Q CPD0

Q . By abuse of notation, we also have PK
Q D PQu andPD0

Q D PQcnu

(here PQu and PQcnu are considered, due to the canonical inclusions ofHu andHcnu

in H , as measures with values in orthoprojections of H rather than of Hu or Hcnu).
For a normal contraction there exist simple criteria for the relations f 2 Hu and

f 2 Hcnu.

Proposition 2.1. Let Q W H ! H be a normal contraction, H D Hu ˚Hcnu the
orthogonal decomposition defined above, jj � jj the norm in H and f 2 H .

Then f 2 Hu if and only if at least one of the relations limn!1 jjQnf jj D jjf jj,
limn!1 jjQ�nf jj D jjf jj holds. In fact, in this case equalities in (7) take place.

Further, f 2 Hcnu if and only if at least one of the relations limn!1 jjQnf jj D
0, limn!1 jjQ�nf jj D 0 holds. If so, both of these relations hold simultaneously.



CLT for Stationary Normal Markov Chains via Generalized Coboundaries 101

Proof. Let f D fu C fcnu, where fu 2 Hu, fcnu 2 Hcnu, and let �f be the spectral
measure of f . Then we have

jjQnfujj2 D jjQ�nfujj2 D
Z

K

jzj2n�f .d z/ D �f .K/ D jjfujj2;

jjQnfcnujj2 D jjQ�nfcnujj2 D
Z

D0

jzj2n�f .d z/ #
n!1

0;

and
jjQnf jj2 D jjQ�nf jj2 D jjQnfujj2 C jjQnfcnujj2 #

n!1
jjfujj2:

These relations, along with the relation jjf jj2 D jjfujj2 C jjfcnujj2, imply the
assertions of the proposition. ut

Let now H D L2.�/ and Q be a transition operator with the stationary
probability �. Then, according to S. Foguel’s theorem [5, 6], the subspace Hu

is of the form L2.Mdet ; �/, where Mdet is a sub-�-field of M which we will
call deterministic. (Caution: sometimes this term is used for the �-fields related
to the one-sided analogues of the condition (7)). Moreover, QjL2.Mdet ; �/ defines
a �-preserving automorphism of Mdet , and Mdet is the largest sub-�-field of
M with this property. In the Markov chain context we will use denotations Hdet

and Hndet (from deterministic and nondeterministic) instead of Hu and Hcnu,
respectively. The orthogonal projection Pdet to Hdet D L2.Mdet ; �/ coincides
with the corresponding conditional expectation E

Mdet W L2.�/ ! L2.Mdet ; �/I
the range of the complementary projectionPndet D I�E

Mdet isHndet. In the normal
case the projection Pdet W L2.�/ ! L2.Mdet ; �/ is exactly the spectral projection
PQ.K/ of the operator Q while the complementary projection Pndet agrees with
PQ.D0/.

Remark 2.2. For an f 2 L2.�/ the orthogonal decomposition

f D fdet C fndet

with fdet D Pdet f and fndet D Pndetf leads to the decomposition of the
stationary random sequence .f .Xn//n2Z into the sum of the sequences
.fdet .Xn//n2Z and .fndet.Xn//n2Z, the second of them having zero conditional
expectation given the first one. Without additional assumptions the sequence
.fdet .Xn//n2Z may be an arbitrary stationary sequence of square-integrable
variables whose influence to the behavior of .f .Xn//n2Z is out of our control.
The sequence .fndet.Xn//n2Z, unlike .fdet .Xn//n2Z, admits some further analysis.
Under the assumption of normality of Q some problems (such as the Central Limit
Theorem) concerning .f .Xn//n2Z can be treated in terms of the spectral measures
of the functions f , fdet and fndet. Notice that �f D �fdet C �fndet , where �fdet and
�fndet are concentrated on K andD0, respectively.
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2.4 Defect Operators and Defect Spaces of a Contraction

We present here the definition and some properties of the defect operators and the
defect spaces of a contractionQ W H ! H (see [17] and [18] for proofs and more
details). The operators

DQ D .I �Q�Q/
1
2 ;DQ� D .I �QQ�/

1
2

are called the defect operators of Q. These operators are self-adjoint non-negative
(in the spectral sense) contractions, satisfying

QDQ D DQ�Q; DQQ
� D Q�DQ� :

The spaces
DQ D DQH; DQ� D DQ�H

are called defect spaces of Q. It follows from the above relations that

QDQ � DQ� ;Q�DQ� � DQ:

In the case of a normal contraction Q the corresponding defect operators agree,
and so are the defect subspaces. In this case the defect subspace is invariant with
respect to both Q and Q�, and the restriction DQjHcnu of the defect operator to the
completely non-unitary subspace is injective. Indeed, if f 2 Hcnu and DQf D 0

the spectral measure �f is concentrated on D0 by the first of these two relations,
while by the second relation .Qf;Qf / D .f; f /I the latter means that �f is
concentrated on K , implying �f D 0. Furthermore, it is easy to see from the
consideration of spectral measures that DQ D Hcnu if Q is a normal contraction.

Remark 2.3. When Q is a transition operator, its defect subspaces are in a natural
unitary correspondence with the spaces of the forward and the backward martingale
differences of the Markov chain X (see the next section of the paper; compare with
[18], Sect. 3.2). ut

3 Quasi-functions

3.1 Quasi-functions: m-Functions and t-Functions

Looking for a generalization of the martingale-coboundary representation and the
Poisson equation, we need some more general objects than the L2.P/-functions
of the form f .X0/ in the first case and L2.�/-functions in the second one. The
first problem is solved in terms of the filtration .Fn/n2Z determined by the Markov
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chain, while the second one is treated in terms of the transition operator and some
other auxiliary operators acting on L2.�/-functions. In both cases we obtain a
decomposition of an L2-function into a series. Removing the requirement that the
decomposition belongs to an L2-function, we arrive at a class of objects which
are given by their decompositions but, in general, are no longer functions. These
objects called quasi-functions will be considered as elements of certain Banach
spaces. These Banach spaces contain conventional L2-spaces as dense subspaces
such a way that every quasi-function can be represented in a canonical way as a limit
of L2-functions. Moreover, every operator we are interested in admits a canonical
extension from L2 to the appropriate Banach space. We will consider quasi-
functions of two kinds. Quasi-functions of the first kind generalize conventional
functions defined on the path space of the Markov chain under consideration
and will be called m-functions; quasi-functions of the second kind, generalizing
conventional functions defined on the state space of the Markov chain, will be called
t-functions. It turns out that some conventional functions on the path space can have
a martingale-coboundary representation in terms of m-functions; some of them are
conventional L2-functions, but some other are not. Also the Poisson equation for
an L2-function on the state space with no L2-solution may be sometimes solved in
t-functions.

As an introductory step, we start with considering the decompositions of
functions from L2-spaces.

3.2 Functions and m-Functions

For every g 2 L2.�/ we have the following martingale decomposition

Qg D
1X

nD0
.E�n � E�n�1/ Qg C E�1 Qg; (8)

converging in the norm of L2.P/. Rewriting the summands of (8) in terms of the
operatorsQ, U and the embedding g 7! Qg, we have

.E�n � E�n�1/ Qg
D U�n

E0U
n Qg � U�n�1

E0U
nC1 Qg D U�n

E0E
nU n Qg � U�n�1

E0E
nC1U nC1 Qg

D U�n
eQng � U�n�1BQnC1g

(9)
and, with the limits in the norm of L2.P/,
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E�1 Qg
D lim

n!1E�n Qg D lim
n!1U�n

E0U
n Qg D lim

n!1U�n
E0E

nU n Qg

D lim
n!1U

�n
eQng D lim

n!1U�n
BQngdet

D Qgdet :

(10)

Deriving (9) and (10), we used the fact that Qg isX0-measurable, along with some
standard properties of Markov chains. In (10) we also used the decomposition g D
gdet C gndet, the relation Qngndet !

n!1 0 and the identity U�1
AQgdet D egdet which

can be explained as follows. Since the map g ! Qg isometrically embeds L2.�/
to L2.P/, the subspace Hdet � L2.�/ is also embedded to L2.P/. Furthermore, it
can be easily verified that Hdet is a completely invariant subspace of the unitary U ,
and that U jHdet D QjHdet . Another way to express this is the relation U�1

AQgdet D
egdet used in (10). Moreover, this relation allows us to substitute Qg by Qgndet in the
right-hand side of (9). With (10) and properly modified (9), the identity (8) can be
rewritten as

Qg D
1X

nD0
.U�n

BQngndet � U�n�1DQnC1gndet/C Qgdet : (11)

Assuming now g 2 Hndet, we have the following martingale decomposition:

Qg D
1X

nD0
U�n.eQng � U�1BQnC1g/: (12)

Analyzing the right-hand side of (12), observe that all terms in this series are of
the form U�n.ern �U�1

eQrn/; rn 2 Hndet .n 2 Z/. Terms of such form are mutually
orthogonal for different n 2 Z. Set

Ln D fUn.Qr � U�1eQr/ W r 2 Hndetg .n 2 Z/

and denote by M the closed subspace of L2.P/ generated by all Ln; n 2 Z. In view
of the mutual orthogonality of Ln we have

M D ˚n2ZLn (13)

(we use ˚ both as a symbol of an exterior operation and also for the closed span of
some orthogonal subspaces of a certain Hilbert space). The spaceM is a completely
invariant subspace of the operatorU . The operatorU jM is unitarily equivalent to the
two-sided shift operator, and everyLn is a wandering subspace for U jM . From now
on we will write U instead of U jM . Denoting by

W
the linear span of some set of

liner subspaces, we also have
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M D
_

n2Z
UnHndet: (14)

Indeed, the left-hand side is contained in the right-hand one because of the
obvious relation Ln � UnHndet

W
Un�1Hndet .n 2 Z/; the opposite inclusion is

a consequence of (12) and the complete invariance ofM with respect to U . We will
also need the U�1-invariant spaces

Mn D ˚k�nLk
�

D
_

k�n
U kHndet

	

; n 2 Z:

Since
jj Qh� U�1

eQhjj2 D ..I �Q�Q/h; h/;

setting for every h 2 Hndet

l. Qh � U�1
eQh/ D .I �Q�Q/

1
2 h

defines a unitary map l W L0 ! DQ. As was observed in Sect. 2.4, for a normal
transition operator Q we have DQ D Hndet, and therefore l maps L0 to Hndet.
Then the spaceM0 is unitarily equivalent to the space of one-sided sequences of the
elements of Hndet via the correspondence

M0 3
X

n�0
U npn $ .: : : ; l.p�1/; l.p0// 2 Hndet ˝ l2.Z�/; (15)

where .pn/n�0 is a sequence of elements of L0 with
P

n�0 jjpnjj22 < 1 and
Hndet ˝ l2.Z�/ denotes the Hilbert space tensor product of Hilbert spaces. The
elements of Hndet ˝ l2.Z�/ are sequences .: : : ; a�1; a0/ with an 2 Hndet .n � 0/

and
P

n�0 janj22 < 1. By this unitary equivalence the one-sided shift � W
.: : : ; a�1; a0/ 7! .: : : ; a�1; a0; 0/ in the space Hndet ˝ l2.Z�/ corresponds to the
isometric operatorU�1jM0 , while the co-isometric inverse shift ��W.: : : ; a�1; a0/ 7!
.: : : ; a�2; a�1/ corresponds to .U�1jM0/

�. Furthermore, since Q acts on the space
Hndet, we can define its coordinatewise action on Hndet ˝ l2.Z�/ by

Q.: : : ; a�1; a0/ D .: : : ;Qa�1;Qa0/:

We set OQ D l�1Ql W L0 ! L0, and extend it (with the same notation
and in agreement with (15)) to OQ W M0 ! M0 by setting OQ.Pn�0 U npn/ D
P

n�0 U n OQpn.
We are in position now to give a description of those elements of M0 which are

martingale decompositions (12) of certain Qg with g 2 Hndet.

Proposition 3.1. The following conditions on the series
P

n�0 U npn 2 M0 are
equivalent:
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(1) the series
P

n�0 U npn represents a decomposition (12) of certain Qg with g 2
Hndet;

(2) there exists such p 2 L0 that
P

n�0 jj OQnpjj22 < 1 and p�n D OQnp for every
n � 0I

(3) there exists such r 2 Hndet that
P

n�0 jQnr j22 < 1 and for every n � 0

l.p�n/ D Qnr .

Proof. Conditions (2) and (3) are equivalent because l is a unitary operator and
OQ D l�1Ql . Let us show that (1) implies (3). According to (12), for the martingale

decomposition of an Qg with g 2 Hndet we have for n � 0 p�n D eQng�U�1BQnC1g,
so that l.p�n/ D Qn.I �Q�Q/12 g D Qnr , where r D .I �Q�Q/12 g. This follows
that

P

n�0 jQnr j22 D P

n�0..Q�Q/n.I � Q�Q/g; g/ D .g; g/ < 1. Conversely,
assuming (3), let h 2 Hndet is such that

P

n�0 jQnr j22 < 1. This is equivalent to

Z

D

1

1 � jzj2 �r .d z/ < 1;

which follows that there exists such g 2 Hndet that r D .I � Q�Q/12 g. Then in
the martingale decomposition Qg D P

n�0 U np0
n we have for n � 0 p0

n D AQ�ng �
U�1CQ�nC1g or l.p0

n/ D Q�n.I � Q�Q/12 g D Q�nr D l.pn/, and we conclude
p0
n D pn. ut

Let c0.Z�/ be the space of all complex sequences indexed by the elements of Z�
and tending to zero, c0.Z�/ being supplied with the sup-norm. Then the injective
tensor productHndet ˝� c0.Z�/ is the space of all sequences a D .: : : ; a�1; a0/ with
an 2 Hndet for n � 0, janj2 ! 0

n!�1 and with the norm of a D .: : : ; a�1; a0/ defined

as supn�0 janj2. The space Hndet ˝ l2.Z�/, represented as a space of sequences of
elements of Hndet, can be in a natural way continuously and injectively mapped
into Hndet ˝� c0.Z�/. Notice that the shift operators �n and ��

n can be extended to
Hndet ˝� c0.Z�/. Observe that ��na !

n!1 0 for every a 2 Hndet ˝� c0.Z�/. We can

transfer this extension, via correspondence (15), to a space containingM0. Elements
of M0 are sums

P

n�0 U npn, where pn 2 L0; n � 0, and
P

n�0 jjpnjj22 < 1. Then
the extended space denoted byM ext

0 and consisting of the formal sums
P

n�0 U npn
where pn 2 L0; n � 0, jjpnjj2 !

n!�1 0I the norm of
P

n�0 U npn is defined as

supn�0 jjpnjj2. The operators U�1jM0 and .U�1jM0/
� admit obvious extensions to

M ext
0 which we denote U�1jM ext

0
and .U�1jM ext

0
/�. Analogously, every space Mn

.n 2 Z/ can be extended to the space M ext
n . If we write the elements of M ext

n as
P

k�n U kpk with pk 2 L0.k � n/; we obtain a growing sequence of subspaces of
the space

M ext D f
X

n2Z
Unpn W pn 2 L0.n 2 Z/; jjpnjj2 !

jnj!1
0g:
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The space M ext is an extension ofM , and we will hold the notations U and U�1
for natural extensions of these operators fromM to M ext.

Definition 3.2. Elements of the Banach space M ext are called m-functions.

Remark 3.3. There are also other operators which can be naturally extended from
M to M ext. For example, so are the projections En W Pk2Z U kpk 7! P

k�n U kpk ,
n 2 Z. ut

3.3 Functions and t-Functions

The space of t-functions which we are going to define extends the space Hndet �
L2.�/. Functions fromHndet admit some decomposition; t-functions will be defined
in terms of a similar decomposition. The next problem to solve will be how to embed
the space of t-functions to the space of m-functions generalizing the embedding
g 7! g ı X0 of the space Hndet to L2.P/. This also will be done in terms of the
corresponding decompositions.

Taking in (11) the conditional expectation relative to X0 (which is, in particular,
the left inverse for the embedding g 7! g ıX0), we obtain

g D
1X

nD0
.Q�nQn �Q�.nC1/QnC1/gndet C gdet : (16)

Now we again assume that g 2 Hndet. Then we have

g D
1X

nD0
.Q�nQn �Q�.nC1/QnC1/g (17)

or

g D
1X

nD0
Q�n.I �Q�Q/Qng; (18)

where the series’ converge in the norm j � j2.
Since Q is normal, we have

.g; g/ D
1X

nD0
.Q�n.I �Q�Q/Qng; g/

D
1X

nD0
.Qn.I �Q�Q/

1
2 g;Qn.I �Q�Q/

1
2 g/:

(19)

Then, we have an isometric correspondence
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Hndet 3 g $ .: : : ;Q.I �Q�Q/12 g; .I �Q�Q/12 g/ 2 Hndet ˝ l2.Z�/ (20)

(the set Z� rather than ZC was chosen here for the future denotational convenience).
According to Proposition 3.1, another description of the image of Hndet in Hndet ˝
l2.Z�/ by the above correspondence is as follows:

f.: : : ;Qr; r/ W r 2 Hndet;
X

n�0
jQnr j22 < 1g:

We will identify this image with Hndet. The extension H ext
ndet � Hndet is then

defined by
H ext

ndet D f.: : : ;Qr; r/ W r 2 Hndetg
(we considerH ext

ndet as a subspace of Hndet ˝� c0.Z�/).

Definition 3.4. Elements of the Banach spaces H ext
ndet are called t-functions.

It is clear from this definition that every t-function is a sequence of functions
from Hndet with some additional properties; in case the corresponding series
converges in L2.�/ its sum gives an Hndet-representative of the corresponding
t-function; otherwise a t-function is a proper generalized function; anyway, a
t-function is a limit (in the sense of Hndet ˝� c0.Z�/) of functions from Hndet.

Let us turn now to the embedding of t-functions to m-functions. Reformulating
the mapping f 7! Qf D f ıX0, f 2 Hndet, in terms of decompositions, we obtain

Hndet 3 g $ .: : : ; .I �Q�Q/
1
2 g;Q.I �Q�Q/

1
2 g; .I �Q�Q/

1
2 g/

7!
X

n�0
U nl�1

�

Q�n.I �Q�Q/12 g
� D Qg 2 M0:

(21)

This embedding can be described differently as

.: : : ;Qr; r/ 7! E.: : : ;Qr; r/ D
X

n�0
U nl�1

�

Q�nr
�

; (22)

which makes sense both for Hndet ! AHndet � M0 and for H ext
ndet ! AH ext

ndet � M ext
0 .

Proposition 3.5. Let Q W L2.�/ ! L2.�/ be a normal transition operator for a
stationary Markov chain X and f 2 Hndet have the spectral measure �f . Then the
following conditions on the function f are equivalent:

(1) f D g �Qg with some g 2 H ext
ndet;

(2) Qf D hC Qg � U Qg with some g 2 H ext
ndet and h 2 M1 such that E0h D 0;

(3) r
defD .I �Q/�1.I �Q�Q/12 f 2 HndetI

(4) �2f
defD jr j2f D R

D
1�jzj2
j1�zj2 �f d z < 1.
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Moreover, deducing (2) from (1) or (3) we can always set h D U Qg � eQg; also,
we have jjhjj22 D jr j22 D �2f .

Proof. Let (1) holds true. Then Qg D P

n�0 U nl�1
�

Q�nr
�

for some r 2 Hndet, and

Qf D Qg � eQg D U Qg � eQg C Qg � U Qg D hC Qg � U Qg; (23)

where

h D U Qg � eQg D
X

n�0
U nC1l�1

�

Q�nr
��

X

n�0
U nl�1

�

Q�nC1r
� D U 1l�1

�

r
� 2 L1;

(24)
and (2) follows. To establish .2/ ! .1/, apply E0 to the relation (2), obtaining
Qf D Qg � E0U QgI then check E0U Qg D eQg by means of the represention Qg D
P

n�0 U nl�1
�

Q�nr
�

with some r 2 Hndet.
Let us show now that (1) and (3) are equivalent. The relation (1) holds if and only

if for some r 2 Hndet and every n � 0 QnQ.I �Q�Q/12 f D Qn.I �Q/r . But this
is equivalent to Q.I �Q�Q/12 f D .I �Q/r or to r D .I �Q/�1.I �Q�Q/12 f
which is equivalent to (3). Since f 2 Hndet andHndet is invariant with respect to Q,
such r 2 Hndet exists if and only if (4) holds. The last assertions follow from (23)
and (24). ut
Remark 3.6 (Unicity and reality). It is easy to see that the equation f D g � Qg

may have at most one solution g 2 H ext
ndet.

Functions we consider are in general complex-valued; so functions and quasi-
functions constitute Banach spaces over C. The involutive conjugation in these
spaces is well-defined, its fixed points are said to be real. The operatorsQ;Q�, their
spectral projections and conditional expectations En.n 2 Z/ preserve the reality
of functions and quasi-functions. In view of this, for example, in the orthogonal
decomposition f D fdet C fndet the summands fdet and fndet are real-valued
provided that so is f . These facts and the unicity imply that the solution of the
Poisson equation with a real right-hand side must be real; also for a real function
the ingredients of the martingale-coboundary representation must be real. Notice
that for the spectral measure �f of a real-valued function f with respect to the
operatorQ the real axis is the symmetry axis. ut

4 The CLT

In addition to assumptions of Sect. 2 (including the normality of the transition
operator) we assume that 1 is a simple eigenvalue of the operatorQ. It is known [10]
that this implies (and is equivalent to) the ergodicity of the shift transformation T .

We give now an alternative proof of a version of the Central Limit Theorem for
a stationary normal Markov chain (Thm. 7.1 in [10]). Let N.m; �2/ be the normal
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law with the mean valuem and the variance �2, degenerate if �2 D 0. As above,D
denotes the closed unit disk in C.

Theorem 4.1. Let .Xn/n2Z be a stationary homogeneous Markov chain which has
a probability measure � as the one-dimensional distribution and a normal operator
Q W L2.�/ ! L2.�/ as the transition operator. Assume that the eigenvalue 1 of
Q is simple. Let a real-valued function f 2 L2.�/ with the spectral measure �f
satisfy the conditions

(1) �2f D R

D
1�jzj2
j1�zj2 �f d z < 1,

(2) limn!1 n� 1
2

ˇ
ˇ
Pn�1

kD0 Qkf
ˇ
ˇ
2

D 0.

Then the random variables
�

n� 1
2
Pn�1

kD0 f .Xk/
�

n�1 converge in distribution to

the normal law N.0; �2f /. Moreover,

lim
n!1n�1

ˇ
ˇ
ˇ

ˇ
ˇ
ˇ

n�1X

kD0
f .Xk/

ˇ
ˇ
ˇ

ˇ
ˇ
ˇ

2

2
D �2f : (25)

Proof. Let us first reduce the proof to the case f 2 Hndet. Since the decomposition
L2.�/ D Hdet ˚ Hndet reduces the operator Q, the assumption (2) implies for
f D fdet C fndet .fdet 2Hdet ; fndet 2Hndet/ that

lim
n!1n� 1

2

ˇ
ˇ
ˇ

n�1X

kD0
Qkfdet

ˇ
ˇ
ˇ
2

D 0 (26)

and

lim
n!1n� 1

2

ˇ
ˇ
ˇ

n�1X

kD0
Qkfndet

ˇ
ˇ
ˇ
2

D 0: (27)

Since QjHdet is a unitary operator which agrees, after embedding eHdet to L2.P/,
with U , for every n � 1 we have

ˇ
ˇ
ˇ

n�1X

kD0
Qkfdet

ˇ
ˇ
ˇ
2

D
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ

n�1X

kD0
fdet .Xk/

ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
2
;

which follows

lim
n!1n� 1

2

ˇ
ˇ
ˇ

ˇ
ˇ
ˇ

n�1X

kD0
fdet .Xk/

ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
2

D 0: (28)

It is therefore clear that the random variables .n� 1
2
Pn�1

kD0 fdet .Xk/; n � 1/

converges to 0 both in probability and in the norm jj � jj2. By this reason we will
assume f 2 Hndet in the rest of the proof.
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In view of the assumption (1) and Proposition 3.5, f admits the representation
f D g �Qg with some g 2 H ext

ndet, and we have

n�1X

kD0
f .Xk/ D

n�1X

kD0
U k.U Qg � eQg/C Qg � Un Qg:

Here .U k.U Qg � eQg//k�0 is a stationary ergodic sequence of martingal differ-
ences whose variance is, by Proposition 3.5, �2f . Then, in view of the Billingsley-
Ibragimov theorem, we only need to show that

n�1jj Qg � Un Qgjj22 !
n!1 0: (29)

We have with an r 2 Hndet from (3) in Proposition 3.5

n�1jj Qg � Un Qgjj22 D n�1ˇˇ
ˇ

ˇ
ˇ
ˇ

X

k�0
U kl�1.Q�kr/ �

X

k�0
U nCkl�1.Q�kr/

ˇ
ˇ
ˇ

ˇ
ˇ
ˇ

2

2

D n�1ˇˇ
ˇ

ˇ
ˇ
ˇ

X

0�k�n�1
U n�kl�1.Qkr/

ˇ
ˇ
ˇ

ˇ
ˇ
ˇ

2

2
C n�1ˇˇ

ˇ

ˇ
ˇ
ˇ

X

k�0
U kl�1.Q�kr/�

X

k�0
U kl�1.Qn�kr/

ˇ
ˇ
ˇ

ˇ
ˇ
ˇ

2

2

D n�1
n�1
X

kD0
jQkr j22 C n�1ˇˇ

ˇ

ˇ
ˇ
ˇ

X

k�0
U kl�1.Q�kr/�

X

k�0
U kl�1.Qn�kr/

ˇ
ˇ
ˇ

ˇ
ˇ
ˇ

2

2

D n�1
n�1X

kD0
jQkr j22 C n�1jg �Qngj22 D n�1

n�1X

kD0
jQkr j22 C n�1ˇˇ

ˇ

n�1X

kD0
Qkf

ˇ
ˇ
ˇ

2

2
:

(30)

The summands of the last sum tend to zero: the first one because so does jQnr j2
and the second one by assumption (2) of the theorem. This completes the proof. ut
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1. P. Billingsley, The Lindeberg-Lévy theorem for martingales. Proc. Am. Math. Soc. 12, 788–
792 (1961)
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Abstract We address the question of a Berry-Esseen type theorem for the speed of
convergence in a multivariate free central limit theorem. For this, we estimate the
difference between the operator-valued Cauchy transforms of the normalized partial
sums in an operator-valued free central limit theorem and the Cauchy transform
of the limiting operator-valued semicircular element. Since we have to deal with
in general non-self-adjoint operators, we introduce the notion of matrix-valued
resolvent sets and study the behavior of Cauchy transforms on them.
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1 Introduction

In classical probability theory the famous Berry-Esseen theorem gives a quantitative
statement about the order of convergence in the central limit theorem. It states
in its simplest version: If .Xi/i2N is a sequence of independent and identically
distributed random variables with mean 0 and variance 1, then the distance between
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Sn WD 1p
n
.X1 C � � � CXn/ and a normal variable � of mean 0 and variance 1 can be

estimated in terms of the Kolmogorov distance 	 by

	.Sn; �/ � C
1p
n
�;

where C is a constant and � is the absolute third moment of the variables Xi . The
question for a free analogue of the Berry-Esseen estimate in the case of one random
variable was answered by Chistyakov and Götze in [2] (and independently, under
the more restrictive assumption of compact support of the Xi , by Kargin [10]): If
.Xi/i2N is a sequence of free and identically distributed variables with mean 0 and
variance 1, then the distance between Sn WD 1p

n
.X1 C � � � CXn/ and a semicircular

variable s of mean 0 and variance 1 can be estimated as

	.Sn; s/ � c
jm3j C p

m4p
n

;

where c > 0 is an absolute constant andm3 andm4 are the third and fourth moment,
respectively, of the Xi .

In this paper we want to present an approach to a multivariate version of a free
Berry-Esseen theorem. The general idea is the following: Since there is up to now
no suitable replacement of the Kolmorgorov metric in the multivariate case, we
will, in order to describe the speed of convergence of a d -tuple .S.1/n ; : : : ; S

.d/
n / of

partial sums to the limiting semicircular family .s1; : : : ; sd /, consider the speed of
convergence of p.S.1/n ; : : : ; S

.d/
n / to p.s1; : : : ; sd / for any self-adjoint polynomial

p in d non-commuting variables. By using the linearization trick of Haagerup and
Thorbjørnsen [5,6], we can reformulate this in an operator-valued setting, where we
will state an operator-valued free Berry-Esseen theorem. Because estimates for the
difference between scalar-valued Cauchy transforms translate by results of Bai [1]
to estimates with respect to the Kolmogorov distance, it is convenient to describe the
speed of convergence in terms of Cauchy transforms. On the level of deriving equa-
tions for the (operator-valued) Cauchy transforms we can follow ideas which are
used for dealing with speed of convergence questions for random matrices; here we
are inspired in particular by the work of Götze and Tikhomirov [4], but see also [1].

Since the transition from the multivariate to the operator-valued setting leads to
operators which are, even if we start from self-adjoint polynomialsp, in general not
self-adjoint, we have to deal with (operator-valued) Cauchy transforms defined on
domains different from the usual ones. Since most of the analytic tools fail in this
generality, we have to develop them along the way.

As a first step in this direction, the present paper (which is based on the
unpublished preprint [13]) leads finally to the proof of the following theorem:

Theorem 1.1. Let .C; �/ be a non-commutative C �-probability space with �

faithful and put A WD Mm.C/ ˝ C and E WD id ˝� . Let .Xi/i2N be a sequence of
non-zero elements in the operator-valued probability space .A; E/. We assume:
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• All Xi ’s have the same �-distribution with respect to E and their first moments
vanish, i.e. EŒXi � D 0.

• The Xi are �-free with amalgamation over Mm.C/ (which means that the
�-algebras Xi , generated by Mm.C/ and Xi , are free with respect to E).

• We have sup
i2N

kXik < 1.

Then the sequence .Sn/n2N defined by

Sn WD 1p
n

nX

iD1
Xi ; n 2 N

converges to an operator-valued semicircular element s. Moreover, we can find 
 >
0, c > 1, C > 0 and N 2 N such that

kGs.b/�GSn.b/k � C
1p
n

kbk for all b 2 � and n � N;

where
� WD

n

b 2 GLm.C/ j kb�1k < 
; kbk � kb�1k < c
o

and where Gs and GSn denote the operator-valued Cauchy transforms of s and of
Sn, respectively.

Applying this operator-valued statement to our multivariate problem gives the
following main result on a multivariate free Berry Esseen theorem.

Theorem 1.2. Let .x.k/i /dkD1, i 2 N, be free and identically distributed sets of d
self-adjoint non-zero random variables in some non-commutative C �-probability
space .C; �/, with � faithful, such that the conditions

�.x
.k/
i / D 0 for k D 1; : : : ; d and all i 2 N

and
sup
i2N

max
kD1;:::;d kx.k/i k < 1

are fulfilled. We denote by † D .�k;l /
d
k;lD1, where �k;l WD �.x

.k/
i x

.l/
i /, their joint

covariance matrix. Moreover, we put

S.k/n WD 1p
n

nX

iD1
x
.k/
i for k D 1; : : : ; d and all n 2 N:

Then .S.1/n ; : : : ; S
.d/
n / converges in distribution to a semicircular family .s1; : : : ; sd /

of covariance†. We can quantify the speed of convergence in the following way. Let
p be a (not necessarily self-adjoint) polynomial in d non-commutating variables
and put
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Pn WD p.S.1/n ; : : : ; S.d/n / and P WD p.s1; : : : ; sd /:

Then, there are constants C > 0, R > 0 andN 2 N (depending on the polynomial)
such that

jGP .z/ �GPn.z/j � C
1p
n

for all jzj > R and n � N;

where GP and GPn denote the scalar-valued Cauchy transform of P and of Pn,
respectively.

In the case of a self-adjoint polynomial p, we can consider the distribution
measures �n and � of the operators Pn and P from above, which are probability
measures on R. Moreover, let F�n and F� be their cumulative distribution functions.
In order to deduce estimates for the Kolmogorov distance

	.�n; �/ D sup
x2R

jF�n.x/ � F�.x/j

one has to transfer the estimate for the difference of the scalar-valued Cauchy
transforms of Pn and P from near infinity to a neighborhood of the real axis.
A partial solution to this problem was given in the appendix of [14], which we will
recall in Sect. 4. But this leads to the still unsolved question, whether p.s1; : : : ; sd /
has a continuous density. We conjecture that the latter is true for any self-adjoint
polynomial in free semicirculars, but at present we are not aware of a proof of that
statement.

The paper is organized as follows. In Sect. 2 we recall some basic facts about
holomorphic functions on domains in Banach spaces. The tools to deal with matrix-
valued Cauchy transform will be presented in Sect. 3. Section 4 is devoted to the
proof of Theorems 1.1 and 1.2.

2 Holomorphic Functions on Domains in Banach Spaces

For reader’s convenience, we briefly recall the definition of holomorphic functions
on domains in Banach spaces and we state the theorem of Earle-Hamilton, which
will play a major role in the subsequent sections.

Definition 2.1. Let .X; k � kX/, .Y; k � kY / be two complex Banach spaces and let
D � X be an open subset of X . A function f W D ! Y is called

• Strongly holomorphic, if for each x 2 D there exists a bounded linear mapping
Df.x/ W X ! Y such that

lim
y!0

kf .x C y/� f .x/ �Df.x/ykY
kykX D 0:
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• Weakly holomorphic, if it is locally bounded and the mapping

� 7! �.f .x C �y//

is holomorphic at � D 0 for each x 2 D, y 2 Y and all continuous linear
functionals � W Y ! C.

An important theorem due to Dunford says, that a function on a domain (i.e. an
open and connected subset) in a Banach space is strongly holomorphic if and only
if it is weakly holomorphic. Hence, we do not have to distinguish between both
definitions.

Definition 2.2. LetD be a nonempty domain in a complex Banach space .X; k � k/
and let f W D ! D be a holomorphic function. We say, that f .D/ lies strictly
inside D, if there is some � > 0 such that

B�.f .x// � D for all x 2 D

holds, whereby we denote by Br.y/ the open ball with radius r around y.

The remarkable fact, that strict holomorphic mappings are strict contractions in
the so-called Carathéodory-Riffen-Finsler metric, leads to the following theorem of
Earle-Hamilton (cf. [3]), which can be seen as a holomorphic version of Banach’s
contraction mapping theorem. For a proof of this theorem and variations of the
statement we refer to [7].

Theorem 2.3 (Earle-Hamilton, 1970). Let ; ¤ D � X be a domain in a Banach
space .X; k � k/ and let f W D ! D be a bounded holomorphic function. If f .D/
lies strictly inside D, then f has a unique fixed point in D.

3 Matrix-Valued Spectra and Cauchy Transforms

The statement of the following lemma is well-known and quite simple. But since it
turns out to be extremely helpful, it is convenient to recall it here.

Lemma 3.1. Let .A; k � k/ be a complex Banach-algebra with unit 1. If x 2 A is
invertible and y 2 A satisfies kx � yk < � 1

kx�1k for some 0 < � < 1, then y is
invertible as well and we have

ky�1k � 1

1 � �
kx�1k:

Proof. We can easily check that

1X

nD0

�

x�1.x � y/
�n
x�1
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is absolutely convergent in A and gives the inverse element of y. Moreover we get

ky�1k �
1X

nD0

�kx�1kkx � yk�nkx�1k < 1

1 � �
kx�1k;

which proves the stated estimate. ut
Let .C; �/ be a non-commutative C �-probability space, i.e., C is a unital C �-

algebra and � is a unital state (positive linear functional) on C; we will always
assume that � is faithful. For fixed m 2 N we define the operator-valued C �-
probability space A WD Mm.C/˝ C with conditional expectation

E WD idm ˝� W A ! Mm.C/; b ˝ c 7! �.c/b;

where we denote by Mm.C/ the C �-algebra of all m�mmatrices over the complex
numbers C. Under the canonical identification of Mm.C/˝C with Mm.C/ (matrices
with entries in C), the expectation E corresponds to applying the state � entrywise
in a matrix. We will also identify b 2 Mm.C/ with b ˝ 1 2 A.

Definition 3.2. For a 2 A D Mm.C/ we define the matrix-valued resolvent set

�m.a/ WD fb 2 Mm.C/ j b � a is invertible in Ag

and the matrix-valued spectrum

�m.a/ WD Mm.C/n�m.a/:

Since the set GL.A/ of all invertible elements in A is an open subset of A
(cf. Lemma 3.1), the continuity of the mapping

fa W Mm.C/ ! A; b 7! b � a

implies, that the matrix-valued resolvent set �m.a/ D f �1
a .GL.A// of an element

a 2 A is an open subset of Mm.C/. Hence, the matrix-valued spectrum �m.a/ is
always closed.

Although the behavior of this matrix-valued generalizations of the classical
resolvent set and spectrum seems to be quite similar to the classical case (which
is of course included in our definition for m D 1), the matrix valued spectrum is in
general not bounded and hence not a compact subset of Mm.C/. For example, we
have for all � 2 C, that

�m.�1/ D fb 2 Mm.C/ j � 2 �Mm.C/.b/g;

i.e. �m.�1/ consists of all matrices b 2 Mm.C/ for which � belongs to the spectrum
�Mm.C/.b/. Particularly, �m.�1/ is unbounded for m � 2.
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In the following, we denote by GLm.C/ WD GL.Mm.C// the set of all invertible
matrices in Mm.C/.

Lemma 3.3. Let a 2 A be given. Then for all b 2 GLm.C/ the following inclusion
holds:

˚

�b j � 2 �A.b
�1a/


 � �m.a/

Proof. Let � 2 �A.b
�1a/ be given. By definition of the usual resolvent set this

means that �1 � b�1a is invertible in A. It follows, that

�b � a D b
�

�1 � b�1a
�

is invertible as well, and we get, as desired, �b 2 �m.a/. ut
Lemma 3.4. For all 0 ¤ a 2 A we have

n

b 2 GLm.C/ j kb�1k < 1

kak
o

� �m.a/

and

�m.a/\ GLm.C/ �
n

b 2 GLm.C/ j kb�1k � 1

kak
o

:

Proof. Obviously, the second inclusion is a direct consequence of the first. Hence,
it suffices to show the first statement.

Let b 2 GLm.C/ with kb�1k < 1
kak be given. It follows, that h WD 1 � b�1a is

invertible, because

k1 � hk D kb�1ak � kb�1k � kak < 1:

Therefore, we can deduce, that also

b � a D b
�

1 � b�1a
�

(1)

is invertible, i.e. b 2 �m.a/. This proves the assertion. ut
The main reason to consider matrix-valued resolvent sets is, that they are the

natural domains for matrix-valued Cauchy transforms, which we will define now.

Definition 3.5. For a 2 A we call

Ga W �m.a/ ! Mm.C/; b 7! E
�

.b � a/�1
�

the matrix-valued Cauchy transform of a.

Note that Ga is a continuous function (and hence locally bounded) and induces
for all b0 2 �m.a/, b 2 Mm.C/ and bounded linear functionals � W A ! C a
function
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� 7! �
�

Ga.b0 C �b/
�

;

which is holomorphic in a neighborhood of � D 0. Hence, Ga is weakly
holomorphic and therefore (as we have seen in the previous section) strongly
holomorphic as well.

Because the structure of �m.a/ and therefore the behavior ofGa might in general
be quite complicated, we restrict our attention to a suitable restriction of Ga. In this
way, we will get some additional properties of Ga.

The first restriction enables us to control the norm of the matrix-valued Cauchy
transform on a sufficiently nice subset of the matrix-valued resolvent set.

Lemma 3.6. Let 0 ¤ a 2 A be given. For 0 < � < 1 the matrix valued Cauchy
transform Ga induces a mapping

Ga W
n

b 2 GLm.C/ j kb�1k < � � 1

kak
o

!
n

b 2 Mm.C/ j kbk < �

1 � �
� 1

kak
o

:

Proof. Lemma 3.4 (c) tells us, that the open set

U WD
n

b 2 GLm.C/ j kb�1k < � � 1

kak
o

is contained in �m.a/, i.e. Ga is well-defined on U . Moreover, we get from (1)

.b � a/�1 D �

1 � b�1a
��1
b�1 D

1X

nD0

�

b�1a
�n
b�1

and hence

kGa.b/k � k.b � a/�1k � kb�1k
1X

nD0

�kb�1kkak�n < �

1 � � � 1

kak (2)

for all b 2 U . This proves the claim. ut
To ensure, that the range of Ga is contained in GLm.C/, we have to shrink the

domain again.

Lemma 3.7. Let 0 ¤ a 2 A be given. For 0 < � < 1 and c > 1 we define

� WD
n

b 2 GLm.C/ j kb�1k < � � 1

kak ; kbk � kb�1k < c
o

and

�0 WD
n

b 2 GLm.C/ j kbk < �

1 � �
� 1

kak
o

:
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If the condition
�

1 � � <
�

c

is satisfied for some 0 < � < 1, then the matrix-valued Cauchy transform Ga
induces a mapping Ga W � ! �0 and we have the estimates

kGa.b/k � k.b � a/�1k < �

1 � � � 1

kak for all b 2 � (3)

and
kGa.b/�1k < 1

1 � � � kbk for all b 2 �: (4)

Proof. For all b 2 � we have

Ga.b/� b�1 D E
�

.b � a/�1 � b�1� D E
h 1X

nD1

�

b�1a
�n
b�1

i

;

which enables us to deduce

kGa.b/�b�1k � kb�1k
1X

nD1

�kb�1kkak�n � �

1 � � �kb�1k < �

1 � � � ckbk < � � 1kbk :

Using Lemma 3.1, this implies Ga.b/ 2 GLm.C/ and (4). Since we already know
from (2) in Lemma 3.6, that (3) holds, it follows Ga.b/ 2 �0 and the proof is
complete. ut
Remark 3.8. Since domains of our holomorphic functions should be connected it is
necessary to note, that for 
 > 0 and c > 1

� D ˚

b 2 GLm.C/ j kb�1k < 
; kbk � kb�1k < c


and for r > 0
�0 D ˚

b 2 GLm.C/ j kbk < r


are pathwise connected subsets of Mm.C/. Indeed, if b1; b2 2 GLm.C/ are given, we
consider their polar decomposition b1 D U1P1 and b2 D U2P2 with unitary matrices
U1; U2 2 GLm.C/ and positive-definite Hermitian matrices P1; P2 2 GLm.C/ and
define (using functional calculus for normal elements in the C �-algebra Mm.C/)

� W Œ0; 1� ! GLm.C/; t 7! U 1�t
1 P 1�t

1 U t
2P

t
2 :

Then � fulfills �.0/ D b1 and �.1/ D b2, and �.Œ0; 1�/ is contained in � and �0 if
b1; b2 are elements of � and �0, respectively.

Since the matrix-valued Cauchy transform is a solution of a special equation (cf.
[8, 12]), we will be interested in the following situation:
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Corollary 3.9. Let 
 W GLm.C/ ! Mm.C/ be a holomorphic function satisfying

k
.w/k � M kwk for all w 2 GLm.C/

for some M > 0. Moreover, we assume that

bGa.b/ D 1C 
.Ga.b//Ga.b/ for all b 2 �

holds. Let 0 < �; � < 1 and c > 1 be given with

�

1 � � < � min
n1

c
;

kak2
M

o

and let � and�0 be as in Lemma 3.7.
Then, for fixed b 2 �, the equation

bw D 1C 
.w/w; w 2 �0 (5)

has a unique solution, which is given by w D Ga.b/.

Proof. Let b 2 � be given. For all w 2 �0 we get

k
.w/k � M kwk � �

1 � �
� Mkak

and therefore

kb�1
.w/k � kb�1kk
.w/k � �

1 � � � M

kak2 � � < �� < 1:

This means, that 1 � b�1
.w/ and hence b � 
.w/ is invertible with

k.b � 
.w//�1k � kb�1kk.1 � b�1
.w//�1k

� kb�1k
1X

nD0
kb�1
.w/kn

<
�

1 � �� � 1

kak ;

and shows, that we have a well-defined and holomorphic mapping

F W �0 ! Mm.C/; w 7! .b � 
.w//�1
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with

kF.w/k D k.b � 
.w//�1k < �

1 � �� � 1

kak <
�

1 � � � 1

kak
and therefore F.w/ 2 �0.

Now, we want to show that F.�0/ lies strictly inside �0. We put

� WD min
n1

2
� 1

kbk C �kak ;
�

1 � 1� �

1 � ��

	

� �

1 � �
� 1

kak
o

> 0

and consider w 2 �0 and u 2 Mm.C/ with ku � F.w/k < �. At first, we get

kb � 
.w/k � kbk C k
.w/k � kbk C M

kak � �

1 � � � kbk C �kak

and thus

ku � .b � 
.w//�1k D ku � F.w/k < � � 1

2
� 1

kbk C �kak � 1

2
� 1

kb � 
.w/k ;

which shows u 2 GLm.C/, and secondly

kuk D ku � .b � 
.w//�1k C kF.w/k

< � C 1 � �
1 � �� � �

1 � �
� 1

kak

<
�

1 � � � 1

kak
which shows u 2 �0.

Let now w 2 �0 be a solution of (5). This implies that

w�1F.w/ D w�1.b � 
.w//�1 D �

bw � 
.w/w
��1 D 1;

and hence F.w/ D w. Since F W �0 ! �0 is holomorphic on the domain �0
and F.�0/ lies strictly inside �0, it follows by the Theorem of Earle-Hamilton,
Theorem 2.3, that F has exactly one fixed point. Because Ga.b/ (which is an
element of�0 by Lemma 3.7) solves (5) by assumption and hence is already a fixed
point of F , it follows w D Ga.b/ and we are done. ut
Remark 3.10. Let .A0; E 0/ be an arbitrary operator-valued C �-probability space
with conditional expectationE 0 W A0 ! Mm.C/. This provides us with a unital (and
continuous) �-embedding � W Mm.C/ ! A0. In this section, we only considered the
special embedding

� W Mm.C/ ! A; b 7! b ˝ 1;



124 T. Mai and R. Speicher

which is given by the special structure A D Mm.C/˝ C. But we can define matrix-
valued resolvent sets, spectra and Cauchy transforms also in this more general
framework. To be more precise, we put for all a 2 A0

�m.a/ WD fb 2 Mm.C/ j �.b/� a is invertible in A0g

and �m.a/ WD Mm.C/n�m.a/ and

Ga W �m.a/ ! Mm.C/; b 7! E 0�.�.b/� a/�1
�

:

We note, that all the results of this section stay valid in this general situation.

4 Multivariate Free Central Limit Theorem

4.1 Setting and First Observations

Let .Xi/i2N be a sequence in the operator-valued probability space .A; E/ with
A D Mm.C/ D Mm.C/˝ C and E D id ˝� , as defined in the previous section. We
assume:

• All Xi ’s have the same �-distribution with respect to E and their first moments
vanish, i.e. EŒXi � D 0.

• The Xi are �-free with amalgamation over Mm.C/ (which means that the
�-algebras Xi , generated by Mm.C/ and Xi , are free with respect to E).

• We have sup
i2N

kXik < 1.

If we define the linear (and hence holomorphic) mapping


 W Mm.C/ ! Mm.C/; b 7! EŒXibXi �;

we easily get from the continuity of E , that

k
.b/k �
�

sup
i2N

kXik
	2kbk for all b 2 Mm.C/

holds. Hence we can find M > 0 such that k
.b/k < M kbk holds for all b 2
Mm.C/. Moreover, we have for all k 2 N and all b1; : : : ; bk 2 Mm.C/

sup
i2N

kEŒXib1Xi : : : bkXi �k �
�

sup
i2N

kXik
	kC1kb1k � � � kbkk:

Since .Xi/i2N is a sequence of centered free non-commutative random variables,
Theorem 8.4 in [15] tells us that the sequence .Sn/n2N defined by
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Sn WD 1p
n

nX

iD1
Xi ; n 2 N

converges to an operator-valued semicircular element s. Moreover, we know from
Theorem 4.2.4 in [12] that the operator-valued Cauchy transformGs satisfies

bGs.b/ D 1C 
.Gs.b//Gs.b/ for all b 2 Ur;
where we put Ur WD fb 2 GLm.C/ j kb�1k < rg � �m.s/ for all suitably small
r > 0.

By Proposition 7.1 in [9], the boundedness of the sequence .Xi /i2N guarantees
boundedness of .Sn/n2N as well. In order to get estimates for the difference between
the Cauchy transforms Gs and GSn we will also need the fact, that .Sn/n2N is
bounded away from 0. The precise statement is part of the following lemma, which
also includes a similar statement for

SŒi�n WD Sn � 1p
n
Xi D 1p

n

nX

jD1
j 6Di

Xj for all n 2 N and 1 � i � n:

Lemma 4.1. In the situation described above, we have for all n 2 N and all 1 �
i � n

kSnk � k˛k 1
2 and kSŒi�n k �

r

1 � 1

n
k˛k 1

2 ;

where ˛ WD EŒX�
i Xi � 2 Mm.C/.

Proof. By the �-freeness of X1;X2; : : : , we have

EŒX�
i Xj � D EŒX�

i � �EŒXj � D 0; for i 6D j

and thus

kSnk2 D kS�
n Snk � kEŒS�

n Sn�k D 1

n










nX

i;jD1
EŒX�

i Xj �










D k˛k:

Similarly

kSŒi�n k2 D k.SŒi �n /�SŒi�n k
� kEŒ.SŒi �n /�SŒi�n �k

D








EŒS�

n Sn� �
1

n
EŒX�

i Xi �










D n � 1

n
k˛k;

which proves the statement. ut
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We define for n 2 N

Rn W �m.Sn/ ! A; b 7! �

b � Sn
��1

and for n 2 N and 1 � i � n

RŒi�n W �m.SŒi �n / ! A; b 7! �

b � SŒi�n
��1
:

Lemma 4.2. For all n 2 N and 1 � i � n we have

Rn.b/ D RŒi�n .b/C 1p
n
RŒi�n .b/XiR

Œi�
n .b/C 1

n
Rn.b/XiR

Œi�
n .b/XiR

Œi�
n .b/ (6)

and

Rn.b/ D RŒi�n .b/C 1p
n
RŒi�n .b/XiRn.b/ (7)

for all b 2 �m.Sn/\ �m.S
Œi �
n /.

Proof. We have

�

b � Sn
�

Rn.b/
�

b � SŒi�n
� D b � SŒi�n

D �

b � Sn
�C 1p

n

�

b � SŒi�n
�

RŒi�n .b/Xi

D �

b � Sn
�C 1p

n

�

b � Sn
�

RŒi�n .b/Xi C 1

n
XiR

Œi�
n .b/Xi ;

which leads, by multiplication with Rn.b/ D .b � Sn/
�1 from the left and with

R
Œi�
n .b/ D .b � S

Œi�
n /

�1 from the right, to (6).
Moreover, we have

�

b � SŒi�n
�

Rn.b/
�

b � Sn
� D b � SŒi�n D �

b � Sn
�C 1p

n
Xi ;

which leads, by multiplication with Rn.b/ D .b � Sn/
�1 from the right and with

R
Œi�
n .b/ D .b � S

Œi�
n /

�1 from the left, to equation (7). ut
Obviously, we have

Gn WD GSn D E ıRn and GŒi�
n WD G

S
Œi�
n

D E ıRŒi�n :
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4.2 Proof of the Main Theorem

During this subsection, let 0 < �; � < 1 and c > 1 be given, such that

�

1 � �
< � min

n1

c
;

k˛k
M

o

(8)

holds. For all n 2 N we define


n WD � min
n 1

ksk ;
1

kSnk ;
1

kSŒ1�n k
; : : : ;

1

kSŒn�n k
o

and
�n WD ˚

b 2 GLm.C/ j kb�1k < 
n; kbk � kb�1k < c
:
Lemma 3.4 shows, that �n is a subset of �m.Sn/.

Theorem 4.3. For all 2 � n 2 N the function Gn satisfies the following equation

ƒn.b/Gn.b/ D 1C 
.Gn.b//Gn.b/; b 2 �n;

where
ƒn W �n ! Mm.C/; b 7! b �‚n.b/Gn.b/

�1;

with a holomorphic function

‚n W �n ! Mm.C/

satisfying

sup
b2�n

k‚n.b/k � Cp
n

with a constant C > 0, independent of n.

Proof. (i) Let n 2 N and b 2 �m.Sn/ be given. Then we have

SnRn.b/ D bRn.b/ � .b � Sn/Rn.b/ D bRn.b/� 1

and hence
EŒSnRn.b/� D E

�

bRn.b/ � 1
� D bGn.b/� 1:

(ii) Let n 2 N be given. For all

b 2 �m;n WD �m.Sn/ \
n\

iD1
�m.S

Œi �
n /

we deduce from the formula in (6), that



128 T. Mai and R. Speicher

EŒSnRn.b/� D 1p
n

nX

iD1
EŒXiRn.b/�

D 1p
n

nX

iD1

�

E
�

XiR
Œi�
n .b/

�C 1p
n
E
�

XiR
Œi�
n .b/XiR

Œi�
n .b/

�

C 1

n
E
�

XiRn.b/XiR
Œi�
n .b/XiR

Œi�
n .b/

�
�

D 1

n

nX

iD1

�

E
�

XiR
Œi�
n .b/XiR

Œi�
n .b/

�C 1p
n
E
�

XiRn.b/XiR
Œi�
n .b/XiR

Œi�
n .b/

�
�

D 1

n

nX

iD1

�

E
�

XiG
Œi�
n .b/Xi

�

GŒi�
n .b/C 1p

n
E
�

XiRn.b/XiR
Œi�
n .b/XiR

Œi�
n .b/

�
�

D 1

n

nX

iD1

�


.GŒi�
n .b//G

Œi�
n .b/C r

Œi �
n;1.b/

	

;

where

r
Œi �
n;1 W �m.Sn/\�m.SŒi �n /! Mm.C/; b 7! 1p

n
E
�

XiRn.b/XiR
Œi�
n .b/XiR

Œi�
n .b/

�

:

There we used the fact, that, since the .Xj /j2N are free with respect to E , also

Xi is free from R
Œi�
n , and thus we have

E
�

XiR
Œi�
n .b/

� D EŒXi �E
�

RŒi�n .b/
� D 0

and
E
�

XiR
Œi�
n .b/XiR

Œi�
n .b/

� D E
�

XiE
�

RŒi�n .b/
�

Xi
�

E
�

RŒi�n .b/
�

:

(iii) Taking (7) into account, we get for all n 2 N and 1 � i � n

Gn.b/ D E
�

Rn.b/
� D E

�

R
Œi�
n .b/

�C 1p
n
E
�

R
Œi�
n .b/XiRn.b/

� D G
Œi�
n .b/� r

Œi �
n;2.b/

and therefore
GŒi�
n .b/ D Gn.b/C r

Œi �
n;2.b/

for all b 2 �m.Sn/ \ �m.SŒi �n /, where we put

r
Œi �
n;2 W �m.Sn/ \ �m.SŒi �n / ! Mm.C/; b 7! � 1p

n
E
�

RŒi�n .b/XiRn.b/
�

:
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(iv) The formula in (iii) enables us to replace GŒi�
n in (ii) by Gn. Indeed, we get

EŒSnRn.b/� D 1

n

nX

iD1

�


.GŒi�
n .b//G

Œi�
n .b/C r

Œi �
n;1.b/

	

D 1

n

nX

iD1

�



�

Gn.b/C r
Œi �
n;2.b/

��

Gn.b/C r
Œi �
n;2.b/

�C r
Œi �
n;1.b/

	

D 
.Gn.b//Gn.b/C 1

n

nX

iD1
r
Œi �
n;3.b/

for all b 2 �m;n, where the function

r
Œi �
n;3 W �m.Sn/\ �m.S

Œi �
n / ! Mm.C/

is defined by

r
Œi �
n;3.b/ WD 
.Gn.b//r

Œi �
n;2.b/C 
.r

Œi �
n;2.b//Gn.b/C 
.r

Œi �
n;2.b//r

Œi �
n;2.b/C r

Œi �
n;1.b/:

(v) Combining the results from (i) and (iv), it follows

bGn.b/ � 1 D EŒSnRn.b/� D 
.Gn.b//Gn.b/C‚n.b/;

where we define

‚n W �m;n ! Mm.C/; b 7! 1

n

nX

iD1
r
Œi �
n;3.b/:

Due to (8), Lemmas 3.4 and 3.7 show that �n � �m;n and Gn.b/ 2 GLm.C/
for b 2 �n. This gives

�

b �‚n.b/Gn.b/
�1�Gn.b/ D 1C 
.Gn.b//Gn.b/

and hence, as desired, for all b 2 �n

ƒn.b/Gn.b/ D 1C 
.Gn.b//Gn.b/:

(v) The definition of �n gives, by Lemma 3 and by Lemma 4.1, the following
estimates

kGn.b/k � kRn.b/k � �

1 � �
� 1

kSnk � �

1 � � � 1

k˛k 1
2

; b 2 �n
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and

kGŒi�
n .b/k � kRŒi�n .b/k � �

1 � �
� 1

kSŒi�n k
� �

1 � � � 1
q

1 � 1
n
k˛k 1

2

; b 2 �n:

Therefore, we have for all b 2 �n by (ii)

krŒi �n;1.b/k � 1p
n

kXik3kRn.b/kkRŒi�n .b/k2 � 1p
n

n

n � 1

� �

1 � �

1

k˛k 1
2

	3kXik3

and by (iii)

krŒi �n;2.b/k � 1p
n

kXikkRn.b/kkRŒi�n .b/k � 1p
n � 1

� �

1 � �

1

k˛k 1
2

	2kXik

and finally by (iv)

krŒi �n;3.b/k � 2M kGn.b/kkrŒi �n;2.b/k CM krŒi �n;2.b/k2 C krŒi �n;1.b/k

� 1p
n� 1

� �

1 � �
1

k˛k 1
2

	3kXik �
�

2M C 1p
n� 1

M
� �

1 � �
1

k˛k 1
2

	

kXik C
r

n

n � 1
kXik2

�

� Cp
n

for all b 2 �n, where C > 0 is a constant, which is independent of n. Hence,
it follows from (v) that

sup
b2�n

k‚n.b/k � Cp
n
:

ut
The definition of �n ensures, that

G WD Gs W �m.s/ ! Mm.C/

satisfies
bG.b/ D 1C 
.G.b//G.b/ for all b 2 �;

where

� WD
n

b 2 GLm.C/ j kb�1k < � � 1

ksk ; kbk � kb�1k < c
o

� �n:
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We choose

0 < � <
c � 1
c C 1

and 0 < �� < .1 � �/� (9)

(note, that 0 < � < 1) and we put c� WD c � .1 C c/� , which fulfills clearly
1 < c� < c. Since we have �� < � and c� < c, we see

��

1 � �� c
� <

�

1� �
c < �

and hence
��

1 � �� <
�

c� : (10)

Finally, we define


�
n WD �� min

n 1

ksk ;
1

kSnk ;
1

kSŒ1�n k
; : : : ;

1

kSŒn�n k
o

and
��
n WD

n

b 2 GLm.C/ j kb�1k < 
�
n ; kbk � kb�1k < c�o � �n:

Corollary 4.4. There exists N 2 N such that

ƒn.�
�
n/ � �n for all n � N:

Proof. Since we have by Theorem 4.3

sup
b2�n

k‚n.b/k � Cp
n

for all 2 � n 2 N, we can choose an N 2 N such that

sup
b2�n

k‚n.b/k � �

c� .1 � �/

holds for all n � N . Now, we get for all b 2 ��
n :

(i) ƒn.b/ is invertible: Since (4) gives

kGn.b/�1k � 1

1 � � kbk for all b 2 �n;

we immediately get

kƒn.b/� bk � k‚n.b/kkGn.b/�1k < � kbk
c� < �

1

kb�1k <
1

kb�1k
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(ii) We have kƒn.b/
�1k < 
n: Using Lemma 3.1, we get from (i) that

kƒn.b/
�1k � 1

1 � �
kb�1k < 
�

n

1 � �
< 
n:

iii) We have kƒn.b/kkƒn.b/
�1k < c: Using

kƒn.b/ � bk < � kbk
c�

from (i) and

kƒn.b/
�1k < 1

1 � �
kb�1k

from (ii), we get

kƒn.b/kkƒn.b/
�1k � �kbk C kƒn.b/� bk�kƒn.b/

�1k

<
�

1C �

c�
	 1

1 � �
� kbkkb�1k

<
c� C �

1 � �
< c:

Finally, this showsƒn.b/ 2 �n. ut
Corollary 4.5. For all n � N we have

Gn.b/ D G.ƒn.b// for all b 2 ��
n :

Proof. For all n 2 N we define

�0
n WD

n

b 2 GLm.C/ j kbk < 
n

1 � �

o

:

Let n � N and b 2 ��
n be given. We know, that

ƒn.b/G.ƒn.b// D 1C 
.G.ƒn.b///G.ƒn.b//

holds, i.e. w D G.ƒn.b// 2 �0
n is a solution of the equation

ƒn.b/w D 1C 
.w/w; w 2 �0
n:

Combining (8) with Lemma 4.1, we get

�

1 � �
< � min

n1

c
;

k˛k
M

o

� � min
n1

c
;

kSnk2
M

I n 2 N

o

:

Hence, the equation above has, by Theorem 3.9, the unique solution w D Gn.b/ 2
�0
n. This implies, as desired, Gn.b/ D G.ƒn.b//. ut
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Corollary 4.6. For all n � N we have

kG.b/�Gn.b/k � C 0 1p
n

kbk for all b 2 ��
n ;

where C 0 > 0 is a constant independent of n.

Proof. For all b 2 ��
n � �n � � we have

G.b/�Gn.b/ D G.b/�G.ƒn.b//

D E
�

.b � s/�1 � .ƒn.b/� s/�1
�

D E
�

.b � s/�1.ƒn.b/ � b/.ƒn.b/� s/�1
�

and therefore by (4), which gives

kGn.b/�1k � 1

1 � �
kbk for all b 2 ��

n ;

and (since ƒn.b/ 2 �n � �) by (3)

kG.b/�Gn.b/k � k.b � s/�1k � kƒn.b/� bk � k.ƒn.b/� s/�1k

�
� �

1� �
� 1

ksk
	2 � k‚n.b/k � kGn.b/�1k

� C 0 1p
n

kbk;

where

C 0 WD C

1 � �
� �

1 � � � 1

ksk
	2

> 0:

This proves the corollary. ut
We recall, that the sequence .Xi /i2N is bounded, which implies boundedness of

the sequence .Sn/n2N as well. This has the important consequence, that


�
n D �� min

n 1

ksk ;
1

kSnk ;
1

kSŒ1�n k
; : : : ;

1

kSŒn�n k
o

� 
�

for some 
� > 0. If we define

�� WD
n

b 2 GLm.C/ j kb�1k < 
�; kbk � kb�1k < c�o;
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we easily see �� � ��
n for all n 2 N. Hence, by renaming �� to � etc., we

have shown our main Theorem 1.1.

We conclude this section with the following remark about the geometric structure
of subsets of Mm.C/ like �.

Lemma 4.7. For 
 > 0 and c > 1 we consider

� WD
n

b 2 GLm.C/ j kb�1k < 
; kbk � kb�1k < c
o

:

For �;� 2 Cnf0g we define

ƒ.�;�/ WD

0

B
B
B
@

� 0 : : : 0

0 � : : : 0
:::
:::
: : :

:::

0 0 : : : �

1

C
C
C
A

2 GLm.C/:

If 1


< j�j holds, we have ƒ.�;�/ 2 � for all

max
n1



;

j�j
c

o

< j�j < cj�j: (11)

Particularly, we have for all j�j > 1



, that �1 2 �.

Proof. Let � 2 Cnf0g with 1


< j�j be given. For all � 2 Cnf0g, which satisfy

(11), we get

kƒ.�;�/�1k D kƒ.��1; ��1/k D max
˚j�j�1; j�j�1
 < 
:

and

kƒ.�;�/k � kƒ.�;�/�1k D max
˚j�j; j�j
 � max

˚j�j�1; j�j�1


D
(

j�jj�j�1; if j�j < j�j
j�jj�j�1; if j�j � j�j

< c;

which implies ƒ.�;�/ 2 �. In particular, for � 2 Cnf0g with j�j > 1



we see that
� D � fulfills (11) and it follows �1 D ƒ.�; �/ 2 �. ut
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4.3 Application to Multivariate Situation

4.3.1 Multivariate Free Central Limit Theorem

Let .x.k/i /dkD1, i 2 N, be free and identically distributed sets of d self-adjoint non-
zero random variables in some non-commutative C �-probability space .C; �/, with
� faithful, such that

�.x
.k/
i / D 0 for k D 1; : : : ; d and all i 2 N

and
sup
i2N

max
kD1;:::;d

kx.k/i k < 1: (12)

We denote by † D .�k;l /
d
k;lD1, where �k;l WD �.x

.k/
i x

.l/
i /, their joint covariance

matrix. Moreover, we put

S.k/n WD 1p
n

nX

iD1
x
.k/
i for k D 1; : : : ; d and all n 2 N:

We know (cf. [11]), that .S.1/n ; : : : ; S
.d/
n / converges in distribution as n ! 1

to a semicircular family .s1; : : : ; sd / of covariance †. For notational convenience
we will assume that s1; : : : ; sd live also in .C; �/; this can always be achieved by
enlarging .C; �/.

Using Proposition 2.1 and Proposition 2.3 in [6], for each polynomialp of degree
g in d non-commuting variables vanishing in 0, we can findm 2 N and a1; : : : ; ad 2
Mm.C/ such that

�1 � p.S.1/n ; : : : ; S.d/n / and �1� p.s1; : : : ; sd /

are invertible in C if and only if

ƒ.�; 1/ � Sn and ƒ.�; 1/ � s;

respectively, are invertible in A D Mm.C/. The matrices ƒ.�; 1/ 2 Mm.C/ were
defined in Lemma 4.7, and Sn and s are defined as follows:

Sn WD
dX

kD1
ak ˝ S.k/n 2 A for all n 2 N

and

s WD
dX

kD1
ak ˝ sk 2 A:
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If we also put

Xi WD
dX

kD1
ak ˝ x

.k/
i 2 A for all i 2 N;

then we have

Sn D 1p
n

nX

iD1
Xi :

We note, that the sequence .Xi/i2N is �-free with respect to the conditional
expectation E W A D Mm.C/ ! Mm.C/ and that all the Xi ’s have the same
�-distribution with respect to E and that they satisfy EŒXi � D 0. In addition, (12)
implies supi2N kXik < 1. Hence, the conditions of Theorem 1.1 are fulfilled. But
before we apply it, we note that .Sn/n2N converges in distribution (with respect toE)
to s, which is an Mm.C/-valued semicircular element with covariance mapping


 W Mm.C/ ! Mm.C/; b 7! EŒsbs�;

which is given by


.b/ D EŒsbs� D
dX

k;lD1
id ˝�Œ.ak ˝ sk/.b ˝ 1/.al ˝ sl /� D

dX

k;lD1
akbal�k;l :

Now, we get from Theorem 1.1 constants 
� > 0, c� > 0 and C 0 > 0 and N 2 N

such that we have for the difference of the operator-valued Cauchy transforms

Gs.b/ WD EŒ.b � s/�1� and GSn.b/ WD EŒ.b � Sn/
�1�

the estimate

kGs.b/�GSn.b/k � C 0 1p
n

kbk for all b 2 �� and n � N;

where we put

�� WD
n

b 2 GLm.C/ j kb�1k < 
�; kbk � kb�1k < c�
o

:

Moreover, Proposition 2.3 in [6] tells us

�

�1� p.S.1/n ; : : : ; S.d/n /
��1 D .� ˝ idC/

�

.ƒ.�; 1/ � Sn/�1
�

and
�

�1 � p.s1; : : : ; sd /
��1 D .� ˝ idC0/

�

.ƒ.�; 1/ � s/�1�;
where � W Mm.C/ ! C is the mapping given by �..ai;j /i;jD1;:::;m/ WD a1;1. Since
� ı .� ˝ idC/ D � ı E , this implies a direct connection between the operator-
valued Cauchy transforms of Sn and s and the scalar-valued Cauchy transforms of
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Pn WD p.S
.1/
n ; : : : ; S

.d/
n / and P WD p.s1; : : : ; sd /, respectively. To be more precise,

we get
GPn.�/ WD �Œ.� � Pn/

�1� D �
�

GSn.ƒ.�; 1//
�

and
GP .�/ WD �Œ.� � P/�1� D �

�

Gs.ƒ.�; 1//
�

for all � 2 �C.Pn/ and � 2 �C.P /, respectively.
If we choose � 2 C such that j�j > 1


�

holds, it follows from Lemma 4.7, that
ƒ.�;�/ 2 �� is fulfilled for all � 2 A.�/, where A.�/ � C denotes the open set
of all � 2 C satisfying (11), i.e.

A.�/ WD
n

� 2 C j max
n 1


� ;
j�j
c�
o

< j�j < c�j�j
o

:

If we apply Propositions 2.1 and 2.2 in [6] to the polynomial 1
�g
p (which

corresponds to the operators 1
�
Sn and 1

�
S ), we easily deduce that

�1 � 1

�g�1 p.S
.1/
n ; : : : ; S.d/n / and �1� 1

�g�1 p.s1; : : : ; sd /

are invertible in C if and only if

ƒ.�;�/ � Sn and ƒ.�;�/ � Sn;

respectively, are invertible in A. Moreover, we have

�g�1GPn.��g�1/ D �
�

GSn.ƒ.�; �//
�

and
�g�1GP .��g�1/ D �

�

Gs.ƒ.�; �//
�

for all � 2 �C.
1

�g�1 Pn/ and � 2 �C.
1

�g�1 P /, respectively.

Particularly, for all � 2 A.�/we getƒ.�;�/ 2 �� and hence � 2 �C.
1

�g�1 Pn/\
�C.

1
�g�1 P / for all n � N . Therefore, Theorem 1.1 implies

j�jg�1jGP .��g�1/ �GPn.��g�1/j D ˇ
ˇ�
�

Gs.ƒ.�; �// �GSn.ƒ.�; �//
�ˇ
ˇ

� 


Gs.ƒ.�; �// �GSn.ƒ.�; �//






� C 0 1p
n

kƒ.�;�/k

� C 0 1p
n

maxfj�j; j�jg

� C 0c�j�j 1p
n
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and hence

jGP .��g�1/�GPn.��
g�1/j � C 0c� 1p

n
j��g�1j:

This means, that

jGP .z/�GPn.z/j � C 0c� 1p
n

jzj

holds for all z 2 C with z
�g�1 2 A.�/ and all n � N . By definition of A.�/, we

particularly get

jGP .z/ �GPn.z/j � C
1p
n

for all
1

c� j�jg < jzj < c�j�jg and n � N;

where we put C WD C 0.c�/2j�jg > 0. Since z 7! GP .z/ � GPn.z/ is holomorphic
on fz 2 C j jzj > Rg for R WD 1

c�

j�jg > 0 and extends holomorphically to 1, the
maximum modulus principle gives

jGP .z/ �GPn.z/j � C
1p
n

for all jzj > R and n � N:

This shows Theorem 1.2 in the case of a polynomial p vanishing in 0. For a general
polynomial p, we consider the polynomial Qp D p � p0 with p0 WD p.0; : : : ; 0/,
which leads to the operators QP D P � p01 and QPn D Pn � p01. Since we can
apply the result above to Qp and since the Cauchy transforms GP and GPn are just
translations of G QP and G QPn , respectively, the general statement follows easily.

4.3.2 Estimates in Terms of the Kolmogorov Distance

In the classical case, estimates between scalar-valued Cauchy transforms can be
established (for self-adjoint operators) in all of the upper complex plane and lead
then to estimates in terms of the Kolmogorov distance. In the case treated above,
we have a statement about the behavior of the difference between two Cauchy
transforms only near infinity. Even in the case, where our operators are self-adjoint,
we still have to transport estimates from infinity to the real line, and hence we can
not apply the results of Bai [1] directly. A partial solution to this problem was
given in the appendix of [14] with the following theorem, formulated in terms of
probability measures instead of operators. There we use the notation G� for the
Cauchy transform of the measure �, and put

DC
R WD fz 2 C j Im.z/ > 0; jzj > Rg:
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Theorem 4.8. Let � be a probability measure with compact support contained in
an interval Œ�A;A� such that the cumulative distribution function F� satisfies

jF�.x C t/ � F�.x/j � �jt j for all x; t 2 R

for some constant � > 0. Then for all R > 0 and ˇ 2 .0; 1/ we can find‚ > 0 and
m0 > 0 such that for any probability measure � with compact support contained in
Œ�A;A�, which satisfies

sup
z2DC

R

jG�.z/�G�.z/j � e�m

for some m > m0, the Kolmogorov distance 	.�; �/ WD sup
x2R

jF�.x/ � F�.x/j
fulfills

	.�; �/ � ‚
1

mˇ
:

Obviously, this leads to the following questions: First, the stated estimate for the
speed of convergence in terms of the Kolmogorov distance is far from the expected
one. We hope to improve this result in a future work. Furthermore, in order to apply
this theorem, we have to ensure that p.s1; : : : ; sd / has a continuous density. As
mentioned in the introduction, it is a still unsolved problem, whether this is always
true for any self-adjoint polynomials p.
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Abstract We establish asymptotic distribution results for self-normalized Lévy
processes at small and large times that are analogs of those of Chistyakov and Götze
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1 Introduction and Statements of Main Results

Let �; �1; �2; : : : ; be i.i.d. nondegenerate random variables with common distribution
function F: For each n � 1 let Sn D �1 C� � �C �n and Vn D �21 C� � �C �2n: Consider
the self-normalized sum

Tn WD Sn=
p

Vn: (1)
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(Here and elsewhere 0=0 WD 0.) Giné et al. [6] proved that Tn converges in
distribution to a standard normal rv Z if and only if F is in the domain of attraction
of a normal law, written F 2 D.N/, and E� D 0: (We write “rv” to mean “random
variable” throughout.) This verified part of a conjecture of Logan et al. [9]. (Later
Mason [13] provided an alternate proof.) Chistyakov and Götze [3] established the
rest of the Logan et al. conjecture by completely characterizing when Tn converges
in distribution to a non-degenerate rv Y such that P fjY j D 1g ¤ 1. A bit later, as
a by-product of the study of a seemingly unrelated problem, Mason and Zinn [14]
found a simple proof of the full Logan et al. conjecture assuming symmetry.

Theorem 1.1 of Chistyakov and Götze [3] implies the following: one has Tn
D�!

Y; where P.jY j D 1/ D 0, if and only if there exists a sequence of norming
constants bn > 0 such that either

b�1
n Sn

D�! Z; (2)

where Z is a standard normal rv, or for some 0 < ˛ < 2,

b�1
n Sn

D�! U˛; (3)

where U˛ is a strictly stable rv as defined in the Appendix. In case (2), Y
DD Z and

in case (3), Y
DD U˛=

p
V ˛ . The V ˛ rv arises in the distributional limit in (4), which

is implied by (3):
�

b�1
n Sn; b

�2
n Vn

� D�! .U ˛; V ˛/ : (4)

For details see the Appendix.
Our aim is to prove analogs of the Chistyakov and Götze [3] result for a Lévy

process Xt; t � 0; at small times (t & 0) and large times (t ! 1). To state
our results we must first fix notation. We abbreviate “infinitely divisible” to “inf.
div.” throughout. Let .�;F ; P / be a probability space carrying a real-valued Lévy
process .Xt/t�0 having nondegenerate inf. div. characteristic function

Eei�Xt D et‰.�/; � 2 R; (5)

where

‰.�/ D i�� � 1

2
�2�2 C

Z

Rnf0g
�

ei�x � 1 � i�x1fjxj�1g
�

….dx/; (6)

� 2 R, �2 � 0, and … is a measure on R n f0g with
R

Rnf0g.x2 ^ 1/….dx/ finite.

We say that Xt has canonical triplet .�; �2;…/ and X1 is inf. div. with triplet

.�; �2;…/. The tails ….x/ and…
˙
.x/ of … are defined by

…
�

.x/ D …f.�1;�x/g; …C

.x/ D …f.x;1/g; and ….x/ D …
C

.x/C…
�

.x/; x > 0:
(7)
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Assume throughout that �2 C ….0C/ > 0, otherwise X degenerates to a constant
drift.

Let .	Xt/t�0, with 	Xt D Xt � Xt�, X0� D 0, denote the jump process of X ,
and consider the Lévy process

Vt D �2t C
X

0<s�t
.	Xs/

2; t > 0: (8)

V is a subordinator with drift �2 and Lévy measure satisfying …V .x/ D ….
p
x/,

x > 0. By Theorem 2.1 of Maller and Mason [10] the joint characteristic function
of .Xt ; Vt / is given by

Eei.�1XtC�2Vt /

D exp

�

it
�

�1� C �2�
2
	

� t�21 �
2=2C t

Z

Rnf0g

�

ei.�1xC�2x2/� 1 � i�1x1fjxj�1g
	

….dx/

�

:

We shall say that .Xt ; Vt / has triplet .�; �2;…/.
Here is our small time (t & 0) analog of the Chistyakov and Götze [3] result.

Theorem 1.1. Let Xt ; t � 0, be a Lévy process satisfying ….0C/ D 1: Assume
that

Xt=
p

Vt
D�! Y , as t & 0; (9)

where Y is a finite rv with P.jY j D 1/ D 0. Then either Y is standard normal or

Y
DD U˛=

p
V ˛ , (10)

where .U ˛; V ˛/ is a strictly stable pair of index ˛ for some 0 < ˛ < 2, as in (4).

Here is our large time analog (t ! 1) of the Chistyakov and Götze [3] result.

Theorem 1.2. Let Xt; t � 0, be a Lévy process satisfying �2 C ….0C/ > 0. We
have

Xt=
p

Vt
D�! Y , as t ! 1; (11)

where P.jY j D 1/ D 0, if and only if either X1 has expectation 0 and is in the

domain of attraction of a normal law as t ! 1, in which case Y
DD Z, or X1 is in

the domain of attraction of a strictly stable law in the sense that for a sequence of
positive norming constants bn,

b�1
n

˚

X.1/ C � � � CX.n/



converges in distribution to a nondegenerate strictly stable law of index 0 < ˛ < 2,
where X.1/; X.2/; : : : ; are i.i.d. as X1, in which case Y is as in (10).
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Remark 1. Chistyakov and Götze [3] also show that Tn converges in distribution
to a non-degenerate rv Y such that P fjY j D 1g D 1 if and only if P fj�j > xg is
slowly varying at infinity. We do not have such a complete picture for Xt as t & 0:

Assuming ….0C/ D 1, the proof of Lemma 5.3 of Maller and Mason [12] shows

that if… is slowly varying at zero then jXt j =
p
Vt

D�! 1. However, we do not know
whether the converse is true, except in the case when Xt is symmetric. In this case,

Maller and Mason [10] prove that whenever ….0C/ D 1, Xt=
p
Vt

D�! Y , as
t & 0, where Y is equal to 1 or �1 with probability 1=2 each if and only if …
is slowly varying at zero. Further results are given in Theorem 3.4 of Maller and
Mason [12]. Analogous statements can be said about the case t ! 1.

1.1 Some Needed Technical Results

To prove Theorems 1.1 and 1.2 we shall need to establish a number of technical
results about Xt=

p
Vt , which are also of independent interest. To do this we must

introduce some more notation and definitions. We will use some truncated mean and
variance functions, defined for x > 0 by

�.x/ D ��
Z

x<jyj�1

y….dy/; V .x/ D �2C
Z

jyj�x

y2….dy/; and U.x/ D �2C2

Z x

0

y….y/dy:

(12)

These functions are finite for all x > 0 by virtue of the properties of the Lévy
measure…, which further imply that limx& 0 x

2….x/ D 0, and limx& 0 x�.x/ D 0.
By the relative compactness of a real-valued stochastic process .St /t�0, as t !

1, we will mean that it satisfies

lim
x!1 lim sup

t!1
P.jSt j > x/ D 0;

or, equivalently, every sequence tk ! 1 contains a subsequence tk0 ! 1 with Stk0

converging in distribution to an a.s. finite rv. If in addition each such subsequential
limit is not degenerate at a constant, we say that St is stochastically compact, as
t ! 1.

By the Feller class at 0 we will mean the class of Lévy processes which are
stochastically compact at 0 after norming and centering; that is, those for which
there are nonstochastic functions a.t/, b.t/ > 0 (where, throughout, b.t/ will be
assumed positive, but not, a priori, monotone), such that every sequence tk & 0

contains a subsequence tk0 & 0 with
�

Xtk0

� a.tk0/
�

=b.tk0/
D�! Y 0; as k0 ! 1; (13)

where Y 0 is a finite nondegenerate rv, a.s. (The prime on Y 0 denotes that in general it
will depend on the choice of subsequence tk0 .) We describe this kind of convergence
as “Xt 2 FC at 0”.
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It was shown in Maller and Mason [10] that when the relation (13) holds (with
Y 0 not degenerate at a constant) then it must be the case that Y 0 is an inf. div. rv, and
b.tk0/ ! 0 as tk0 & 0.

Closely related is the centered Feller class at 0. This is the class of Lévy
processes which are stochastically compact at 0, after norming, but with no
centering function needed; that is, those for which there is a nonstochastic function
b.t/ > 0 such that every sequence tk & 0 contains a subsequence tk0 & 0 with

Xtk0

=b.tk0/
D�! Y 0; as k0 ! 1; (14)

where Y 0 is a finite, nondegenerate, necessarily inf. div., rv, a.s. We describe this as
“Xt 2 FC0 at 0”.

The classes FC and FC0 “at infinity” are defined in exactly the same ways,
but with the subsequences tending to infinity rather than to 0. Maller and Mason
[11,12] have carried out a thorough study of FC and FC0 at 0 and infinity and have
obtained a number of useful analytic equivalences in terms of the Lévy measure …
of Xt .

The following propositions connect the self-normalized and compactness ideas,
and will be essential ingredients in the proofs of Theorems 1.1 and 1.2.

Proposition 1.1. Suppose Xt=
p
Vt is relatively compact as t & 0, ….0C/ D 1

and no subsequential limit has positive mass at ˙1. Then X 2 FC0 as t & 0, or,
equivalently, by Theorem 2.3 of Maller and Mason [12]

lim sup
x& 0

x2….x/C xj�.x/j
V.x/

< 1: (15)

Proposition 1.2. Suppose Xt=
p
Vt is relatively compact as t ! 1 and no

subsequential limit has positive mass at ˙1. Then X 2 FC0 as t ! 1, or,
equivalently, by Theorem 1 (ii) of Maller and Mason [11]

lim sup
x!1

x2….x/C xj�.x/j
V.x/

< 1: (16)

These two propositions will be proved in a separate section.

2 Proofs of Theorems

The proofs will require the following two limit theorems, which we state as
Lemmas 2.1 and 2.2. Recall that .Xt /t�0 is Lévy with canonical triplet .�; �2;…/.
Suppose that, for a sequence of integers nk ! 1 and positive constants B .nk/,

Xnk=B .nk/
D�! U; (17)
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where U is inf. div. with triplet .b; a;ƒ/, b 2 R and a � 0: Notice that necessarily
B .nk/ ! 1.

Each rv Xnk=B .nk/ is inf. div. with triplet
�

bnk ; ank ;ƒnk

�

, where

bnk D nk�=B .nk/ , ank D nk�
2=B2 .nk/ and ƒnk .dx/ D nk… .dx=B .nk// :

Moreover,
�

Xnk=B .nk/ ; Vnk=B
2 .nk/

�

has joint characteristic function

Eei.�1Xnk =B.nk /C�2Vnk =B
2.nk//

D exp

�

i
�

�1bnk C �2ank
�� �21 ank =2C

Z

Rnf0g

�

ei.�1xC�2x
2/ � 1� i�1x1

fjxj�1g

	

ƒnk .dx/

�

:

Lemma 2.1. Whenever (17) holds,

�

Xnk=B .nk/ ; Vnk=B
2 .nk/

� D�! .U;W / ; (18)

where .U;W / has joint characteristic function

Eei.�1UC�2W /

D exp

�

i .�1b C �2a/ � �21 a=2C
Z

Rnf0g

�

ei.�1xC�2x2/ � 1� i�1x1fjxj�1g
	

ƒ.dx/

�

:

(19)

Proof. For each h > 0 let

ah D a C
Z

0<jxj�h
x2ƒ .dx/ and bh D b �

Z

h<jxj�1
xƒ .dx/ ; (20)

and let ahnkand bhnk be defined as in (20) with ƒ replaced byƒnk , a by ank , and b by
bnk . According to Theorem 15.14 of Kallenberg [8], (17) happens if and only if

ƒnk converges vaguely to ƒ on R n f0g (21)

and for any h > 0 such that ƒfjxj D hg D 0,

ahnk ! ah and bhnk ! bh: (22)

By the vague convergence of ƒnk to ƒ, and since ahnk ! ah, we also have, for any
r > 2, Z

0<jxj�h
xrƒnk .dx/ !

Z

0<jxj�h
xrƒ .dx/ . (23)
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To verify (23), take r > 2 and 0 < ı < h, with ı and h continuity points of ƒ, and
write Z

0<jxj�ı
xrƒnk .dx/ � ır�2

Z

0<jxj�ı
x2ƒnk .dx/

� ır�2
�

ank C
Z

0<jxj�h
x2ƒnk .dx/

�

:

Thus

lim
ı&0

lim sup
k!1

Z

0<jxj�ı
xrƒnk .dx/ � lim

ı&0
ır�2ah D 0:

We also have by vague convergence of ƒnk to ƒ,

lim
k!1

Z

ı<jxj�h
xrƒnk .dx/ D

Z

ı<jxj�h
xrƒ .dx/ :

Write L D ƒıT �1, where T .x/ D �

x; x2
�

. Now on account of (21) we can readily

infer that ƒnk ı T �1 converges vaguely to L on R
2 n f.0; 0/g : Thus by using the

bivariate version of Theorem 15.14 of Kallenberg [8], we get after a little algebra
that (18) holds with .U;W / having characteristic function

exp

�

��21 a=2C i
�

bh�1 C a�2
�C

Z

Rnf0g

�

exp
�

i
�

�1x C �2x
2
�� � 1� i�1x1 fjxj � hg�ƒ.dx/

�

;

(24)
for any h > 0 such thatƒfjxj D hg D 0. Note that in applying the bivariate version
of Theorem 15.14 of Kallenberg [8], we get, using ahnk ! ah and (23), that

 

ahnk

R

0<jxj�h x
3ƒnk .dx/

R

0<jxj�h x
3ƒnk .dx/

R

0<jxj�h x
4ƒnk .dx/

!

!

 

ah
R

0<jxj�h x
3ƒ .dx/

R

0<jxj�h x
3ƒ .dx/

R

0<jxj�h x
4ƒ .dx/

!

and  

bhnk
ank C R

0<jxj�1 x
2ƒnk .dx/

!

!
 

bh

a C R

0<jxj�1 x
2ƒ .dx/

!

:

We see then that the resulting limiting infinitely divisible vector has in its defining

characteristic function the Lévy measure L D ƒ ı T �1 on R
2 n f.0; 0/g and the

matrix and constant vector, respectively,

�
a 0

0 0

�

and

 

b

a C R

0<jxj�1 x
2ƒ .dx/

!

:
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For very similar details see the proof of Lemma 4 of Giné and Mason [5]. Since

bh D b �
Z

h<jxj�1
xƒ .dx/ ;

we get that the characteristic function (24) is equal to (19). ut
As in Sect. 1, let �1; �2; : : : ; be i.i.d. nondegenerate random variables with

cumulative distribution function F , and for each integer n � 1 denote the sums
Sn D Pn

iD1 �i and Vn D Pn
iD1 �2i . Suppose that there exist a subsequence fnkg �

fng and norming constants B .nk/ such that

Snk =B .nk/
D�! U; (25)

where U is an inf. div. rv with triplet .b; a;ƒ/.

Lemma 2.2. Whenever (25) holds,

�

Snk =B .nk/ ;Vnk=B
2 .nk/

� D�! .U;W / ; (26)

where .U;W / has joint characteristic function (19).

Proof. By Corollary 15.16 of Kallenberg [8], (25) occurs if and only if

nkL .�=B .nk// converges vaguely to ƒ on R n f0g (27)

and for any h > 0 such that ƒfjxj D hg D 0

nkE
h

.�=B .nk//
2 1 fj�=B .nk/j � hg

i

! ah (28)

and
nkE Œ.�=B .nk// 1 fj�=B .nk/j � hg� ! bh;

where ah and bh are defined as in (22). Also, as in the proof of Lemma 2.1, for every
r > 2,

nkE Œ.�=B .nk//
r 1 fj�=B .nk/j � hg� !

Z

0<jxj�h
xrƒ .dx/ ;

and similarly as in the proof of Lemma 2.1, nkL
�

�=B .nk/ ; �
2=B2 .nk/

�

converges

vaguely to the measure L on R
2 n f.0; 0/g : ut

Remark 2. In the sequel we shall only need the special case of Lemma 2.2 when
�1; �2; : : : ; are i.i.d � D X1, where X1 is inf. div. with canonical triplet .�; �2;…/.
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2.1 Proof of Theorem 1.2

It is more efficient to prove Theorem 1.2 first. By Proposition 1.2, whenever

Xt=
p

Vt
D�! Y , as t ! 1;

where Y does not put positive mass ˙1, then Xt is centered stochastically compact
at infinity with a norming function bt . This implies by Lemmas 2.1 and 2.2 that if
�1; : : : ; �m are i.i.d. X1, there exists a positive norming bm such that

�

Xm=bm; Vm=b
2
m

�

and
�

Sm=bm;Vm=b
2
m

�

have the same nondegenerate subsequential distributional limits as m ! 1. Thus
both

Xm=
p

Vm and Sm=
p

Vm

converge in distribution to the same nondegenerate rv Y that does not put positive
mass on ˙1. The proof of Theorem 1.2 now follows from the Chistyakov and Götze
[3] result. ut

2.2 Proof of Theorem 1.1

Assume that (9) holds, where P fjY j D 1g D 0: We know by Proposition 1.1 that
this forcesXt to be centered stochastically compact at 0. Thus there exists a norming
function at such that every subsequence tk converging to zero contains a further
subsequence sn with

�

Xtsn=asn ; Vtsn=a
2
sn

�

t�0
D�! .Ut ;Wt /t�0, as n ! 1; (29)

where the Lévy process .U;W /, which may depend on the subsequence sn, has joint
characteristic function

Eei.�1UtC�2Wt /

D exp
�

it .�1b C �2a/ � t�21 a=2 C t

Z

Rnf0g

�

ei.�1xC�2x2/ � 1 � i�1x1fjxj�1g
	

ƒ.dx/
�

;

with b 2 R, a � 0 and ƒ being a Lévy measure on R n f0g. See [12] Theorem 2.3
for the functional convergence in (29).

We first claim that if U contains a normal component, i.e. a > 0, this forces Y
to be standard normal. This will be a consequence of the following lemma.
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Lemma 2.3. If U contains a normal component (a ¤ 0), then one can find a
subsequence t 0 & 0 such that

�

Xt 0=at 0 ; Vt 0=a
2
t 0

� D�! .aZ; a/; (30)

where Z is standard normal.

Proof. Using (29), we see that, for each fixed m > 1,

�

Xsn=m=
�

asn=
p
m
�

; Vsn=m=
�

a2sn=m
�� D�! .

p
mU1=m;mW1=m/, as n ! 1;

where .
p
mU1=m;mW1=m/ has characteristic function

D exp

�

i

�
�1bp
m

C �2a

�

� �21 a=2C 1

m

Z

Rnf0g

�

ei.
p

m�1xCm�2x
2/ � 1� i

p
m�1x1

fjxj�1g

	

ƒ.dx/

�

;

which as we will show converges as m ! 1 to exp
˚��21 a=2C i�2a




. Thus with
some abuse of notation we can extract a sequence snk =mk converging to 0 so that as
k ! 1;

�

Xsnk =mk=
�

asnk =
p
mk

	

; Vsnk =mk=
�

a2snk
=mk

		
D�! .aZ; a/; (31)

having characteristic function exp
˚��21 a=2C i�2a




. Actually to show (31) it
remains to prove that

lim
m!1

1

m

Z

Rnf0g

�

ei.
p
m�1xCm�2x2/ � 1 � i

p
m�1x1fjxj�1g

	

ƒ.dx/ D 0: (32)

To see why (32) is true notice that

lim sup
m!1

1

m

ˇ
ˇ
ˇ
ˇ
ˇ

Z

1=
p

m�jxj<1

�

ei.
p

m�1xCm�2x
2/ � 1

	

ƒ.dx/

ˇ
ˇ
ˇ
ˇ
ˇ

� lim sup
m!1

2

m
ƒ
�

1=
p
m � jxj < 1� D 0:

Also for all 0 < ı < 1

lim sup
m!1

1

m

ˇ
ˇ
ˇ
ˇ
ˇ

Z

1=
p

m�jxj�1
i
p
mx1

fjxj�1gƒ.dx/

ˇ
ˇ
ˇ
ˇ
ˇ

� lim sup
m!1

1p
m

Z

1=
p

m�jxj�ı

jxj 1
fjxj�1gƒ.dx/

C lim sup
m!1

1p
m

ˇ
ˇ
ˇ
ˇ

Z

ı�jxj�1
x1

fjxj�1gƒ.dx/

ˇ
ˇ
ˇ
ˇ

� lim sup
m!1

Z

1=
p

m�jxj�ı

x21
fjxj�1gƒ.dx/

D
Z

0<jxj�ı

x21
fjxj�1gƒ.dx/:
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Since ı > 0 can be made arbitrarily small we get

lim
m!1

1

m

ˇ
ˇ
ˇ
ˇ

Z

1=
p
m�jxj�1

i
p
mx1fjxj�1gƒ.dx/

ˇ
ˇ
ˇ
ˇ

D 0: (33)

Thus to complete the proof of (32) it suffices to show that

lim
m!1

1

m

Z

0<jxj�1=pm

�

ei.
p
m�1xCm�2x2/ � 1 � i

p
m�1x1fjxj�1g

	

ƒ.dx/ D 0: (34)

Now the LHS of (34) does not exceed

1

m

Z

0<jxj�1=pm

ˇ
ˇ
ˇei.

p
m�1xCm�2x2/ � 1 � i

�p
m�1x1fjxj�1g Cm�2x

2
�
ˇ
ˇ
ˇƒ.dx/

C
Z

0<jxj�1=pm

�2x
2ƒ.dx/;

and for some C > 0

1

m

Z

0<jxj�1=pm

ˇ
ˇ
ˇei.

p
m�1xCm�2x2/ � 1 � i

�p
m�1x1fjxj�1g Cm�2x

2
�
ˇ
ˇ
ˇƒ.dx/

� C

m

Z

0<jxj�1=pm

ˇ
ˇ
p
m�1x Cm�2x

2
ˇ
ˇ
2
ƒ.dx/;

which for some D > 0 depending on �1 and �2 is

� D

Z

0<jxj�1=pm

x2ƒ.dx/:

Since the limit of this asm ! 1 is 0, we have shown (34), which together with (33)
gives (32). ut

Hence if there exists a nonzero normal component in the characteristic function
of U in (29) for convergence of .Xt=at ; Vt=a2t / along a subsequence sn, then Y
must be standard normal. Since in this case for some subsequence t 0 we have

Xt 0=
p
Vt 0

D�! Z, as t 0 & 0 we get Y D Z in (9).
From now on we shall assume that Y is not standard normal, which means that

a D 0 in the characteristic function of the .U;W / appearing in (29) for convergence
of .Xt=at ; Vt=a2t / along a subsequence sn. Also note that .U;W / may be different
for different subsequences. However, in all cases, by assumption (9),
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Ut=
p

Wt
DD Y; for each t > 0:

Note that Theorem 2.1 (iii) of Maller and Mason [12] implies that P fW > 0g D 1.
Moreover, it can be shown that for any integerm � 1;

Ump
Wm

DD U.1/ C � � � C U.m/
p
W.1/ C � � � CW.m/

DD Y; (35)

where
�

U.1/;W.1/

�

, : : : ;
�

U.m/;W.m/

�

are i.i.d. .U1;W1/. To see this, observe that for
any fixed integerm � 1,

�

Xmsn=asn ; Vmsn=a
2
sn

� D�! �

U.1/ C � � � C U.m/;W.1/ C � � � CW.m/

� DD .Um; Vm/ :

We claim that
Ut=

p

Wt

D�! Y; as t ! 1. (36)

This follows from (35) combined with the facts that

WmC1 �Wm
DD W.1/ D Op.1/, W.1/ C � � � CW.mC1/

P�! 1

and
sup

m<t�mC1
jUt � Umj DD sup

0<t�1
jUt j D Op.1/;

which together imply that

sup
m<t�mC1

ˇ
ˇ
ˇUt=

p

Wt � Um=
p

Wm

ˇ
ˇ
ˇ

P�! 0:

Therefore we can apply Theorem 1.2 combined with the fact that Y is not standard
normal to conclude that U is in the domain of attraction of a strictly stable law of

index 0 < ˛ < 2; and thus Y
DD U˛=

p
V ˛ . ut

Remark 3. We do not have such a complete picture of the distributional limits of
Xt=

p
Vt as t & 0 as Chistyakov and Götze [3] obtained for self-normalized sums

in their Theorem 1.1. All we can say is that if

Xt=
p

Vt
D�! Y , as t & 0;

where Y does not place positive mass on any constant then either Y
DD Z or Y

DD
U˛=

p
V ˛. Only in the case when Y

DD Z do we know that this happens if and only
if for some norming function bt ,

Xt=bt
D�! Z, as t & 0:
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This was proved in Theorem 2.4 of [12]. The story for the case Y
DD U˛=

p
V ˛ is

not complete. Presently all that we can infer is that if for some 0 < ˛ < 2;

Xt=bt
D�! U˛ , as t & 0;

then
Xt=

p

Vt
D�! U˛=

p
V ˛, as t & 0:

However, right now, we cannot go the other way, except under the assumption of
symmetry. See [10].

3 Proofs of Propositions 1.1 and 1.2

3.1 Proof of Proposition 1.1

Suppose Xt=
p
Vt is relatively compact as t # 0 and no subsequential limit has

positive mass at ˙1. Then by Theorem 3.1 of [12] we have

lim sup
x # 0

xj�.x/j
U.x/

D lim sup
x # 0

xj�.x/j
x2….x/C V.x/

< 1; (37)

while by Proposition 5.5 of [12] we have

lim sup
x # 0

x2….x/

V.x/
< 1; (38)

since if (38) fails then there is a subsequential limit rv of Xt=
p
Vt (as t # 0) with

positive mass at ˙1. Now (37) and (38) imply

lim sup
x # 0

xj�.x/j
V.x/

< 1

which together with (38) gives (15). ut

3.2 Proof of Proposition 1.2

The proof of Proposition 1.2 will be a consequence of the following two propo-
sitions and theorem, which are the large time analogs of their small time versions
given in Propositions 5.1 and 5.5 and Theorem 3.1 of [12].
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Recall the definition of U.x/ given in (12). Note that, after integrating by parts,

U.x/ D V.x/C x2….x/; x > 0: (39)

The function U.x/ is continuous, in fact, differentiable, at each x > 0, with

d

dx

�
U.x/

x2

�

D �2 �U.x/ � x2….x/
�

x3
:

Further,

U.x/� x2….x/ D �2 C 2

Z x

0

y
�

….y/ �….x/� dy � 2

Z x

0

y
�

….y/ �….x/
�

dy:

The right-hand side here could be 0 only if ….y/ is constant on .0; x�, and since
….1/ D 0, as long as ….x/ > 0 for some x > 0, we see that x�2U.x/ is strictly
decreasing for large enough x, and x�2U.x/ ! 11f�2>0g C….0C/1f�2D0g > 0 as
x& 0, while x�2U.x/& 0 as x % 1.

In view of the monotonicity of x�2U.x/ just established, for each � > 0, once
t is large enough, depending on �, for x�2U.x/ < 11f�2>0g C….0C/1f�2D0g, the
function

b�.t/ WD inffx > 0 W x�2U.x/ � .�t/�1g
is finite, positive, is such that b�.t/ ! 1 as t ! 1, and is such that

tU.b�.t//

b2�.t/
D 1

�
: (40)

Further, x�2U.x/ has no intervals of constancy once x is large enough, because of
its strict monotonicity, so b�.t/ is continuous and strictly increasing for each � > 0,
for large enough t .

In the sequel we shall often use the following decomposition, or a variant of it
(see [15], Theorem 19.2, p. 120, or Eq. (6.1) of [4]):

Xt D t�.b/C �Zt CX
.S;b/
t CX

.B;b/
t ; t � 0; b > 0; (41)

where Zt is a standard Brownian motion,X.S;b/
t is the compensated sum of “small”

jumps, i.e.

X
.S;b/
t D a:s: lim

"# 0

 
X

0<s�t
	Xs1f"<j	Xs j�bg � t

Z

"<jxj�b
x….dx/

!

; t � 0;

and X.B;b/
t is the “big” jumps, i.e.,
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X
.B;b/
t D

X

0<s�t
	Xs1fj	Xs j>bg; t � 0:

Further, the processes .Zt /t�0, .X.S;b/
t /t�0 and .X.B;b/

t /t�0 are all independent.

Theorem 3.1. We have that

Xtp
Vt

is relatively compact as t ! 1 if and only if lim sup
x!1

xj�.x/j
U.x/

< 1: (42)

We will deduce Theorem 3.1 from the following analogue of Theorem 2 of [7]
and Corollary 3.1 is immediate from it.

Proposition 3.1. There is a nonstochastic function a.t/ such that

.Xt � a .t//=
p

Vt is relatively compact as t ! 1 (43)

if and only if

lim sup
t!1

jt�.b�.t// � a.t/j
b�.t/

< 1; (44)

for all small, and hence, all, � > 0.

Corollary 3.1 (Corollary to Proposition 3.1).

(i) .Xt � t�.b�.t//=
p
Vt is always relatively compact as t ! 1, for any � > 0.

(ii) If Xt is symmetric, then Xt=
p
Vt is always relatively compact as t ! 1.

Proof of Proposition 3.1.

(i) First suppose EX2
1 < 1. From (40) we see that b�.t/ 
 p

t as t ! 1. The
convergences

Xt � tEX1p
tVarX1

D�! N.0; 1/

and
Vt=t

P�! EX2
1 ;

as t ! 1 can be found in [2, 15] or see [4]. So (43) holds with a.t/ D tEX1,
and with this choice,

t j�.b�.t// � a.t/j
b�.t/

D
ˇ
ˇ
ˇt
R

jyj>b�.t/ y….dy/
ˇ
ˇ
ˇ

b�.t/

� t
R

jyj>0 y
2….dy/

b2�.t/
D O.1/:

So Proposition 3.1 is true when EX2
1 < 1.
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(ii) Next supposeEX2
1 D 1. In particular, this means….x/ > 0 for all x > 0. Fix

� > 0 and then take t > 0 big enough, depending on �, for b�.t/ > 1.

From (41) with b D 1 we have, for t > 0,

Xt D t�.1/C �Zt CX
.S;1/
t CX

.B;1/
t

D t� CX
.B;1/
t COP .

p
t /; as t ! 1;

because X.S;1/
t is a mean 0, finite variance Lévy process. Also

Vt D �2t C
X

0<s�t
.	Xs/

21fj	Xs j�1g C
X

0<s�t
.	Xs/

21fj	Xs j>1g

DW �2t C V
.S;1/
t C V

.B;1/
t

D V
.B;1/
t COP .t/; as t ! 1:

This is true because V .S;1/
t is a Lévy process with finite mean, so V .S;1/

t =t D OP .1/

as t ! 1 by the weak law of large numbers. But V .B;1/
t =t

P�! 1 as t ! 1 since

EX2
1 D 1, so Vt=V

.B;1/
t

P�! 1 as t ! 1, and thus from

X
.B;1/
t C t� � a.t/
q

V
.B;1/
t

D Xt � a.t/p
Vt

s

Vt

V
.B;1/
t

COP

 s

t

V
.B;1/
t

!

D Xt � a.t/p
Vt

.1C oP .1//C oP .1/; as t ! 1; (45)

we see that (43) holds if and only if

�

X
.B;1/
t �ea.t/

	

=

q

V
.B;1/
t is relatively compact as t ! 1;

for someea.t/ D a.t/ � t� . So we can ignore small jumps in X and assume X is
compound Poisson with no drift, no Brownian component, and all jumps exceeding
1 in magnitude.

Thus in (12) we take � D �2 D 0, and can write

Xt D
NtX

iD1
Ji ; (46)

and

Vt D
X

0<s�t
.	Xs/

21fj	Xs j>1g D
NtX

iD1
J 2i ; (47)
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for .Ji /iD1;2;::: i.i.d. and distributed as ….dx/1fjxj>1g=….1/, and .Nt/t�0 indepen-
dently distributed as a Poisson process with rate ….1/.

We decomposeXt as
Xt D Tt.�/CRt.�/; (48)

where

Tt .�/ WD
NtX

iD1
Ji1fjJi j�b�.t/g D

NtX

iD1
Ji1f1<jJi j�b�.t/g;

and

Rt.�/ WD
NtX

iD1
Ji1fjJi j>b�.t/g: (49)

Then we can calculate

E.Tt .�// D t….1/

Z

1<jxj�b�.t/
x….dx/=….1/ D t�.b�.t//;

and

Var.Tt .�// D t

Z

1<jxj�b�.t/
x2….dx/ � tU.b�.t//:

We can thus write, for any L > 0,

P
�jt�.b�.t// � a.t/j > 3L2b�.t/

�

� P
�jTt .�/� ETt.�/j > L2b�.t/

�C P
�jTt.�/ � a.t/j > 2L2b�.t/

�

; (50)

and we proceed by estimating the quantities on the right-hand side of (50).
By Chebyshev’s inequality, for any L > 0, K > 0,

P .jTt.�/� ETt.�/j > LKb�.t// � Var.Tt .�//

L2K2b2�.t/

� tU.b�.t//

L2K2b2�.t/
D 1

L2K2�
: (51)

WithK D L this gives a bound for the first term on the right-hand side of (50). The
second term on the right-hand side of (50) does not exceed

P
�

jTt.�/� a.t/j > 2L2b�.t/; Lb�.t/ �
p

Vt

	

C P
�

Lb�.t/ <
p

Vt

	

: (52)

Let

Ut.�/ WD
NtX

iD1
J 2i ^ b2�.t/: (53)
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It’s not hard to check that

E .Ut.�// D ��1b2�.t/ � tV .1/: (54)

On the event fmax1�i�Nt jJi j � b�.t/g we have Vt D Ut.�/, so

P
�p

Vt > Lb�.t/
	

� P

�

Vt > L
2b2�.t/; max

1�i�Nt
jJi j � b�.t/

�

C 1 � P
�

max
1�i�Nt

jJi j � b�.t/

�

� P
�

Ut.�/ > L
2b2�.t/

�C 1 �
X

n�0
P n.jJ1j � b�.t//P.Nt D n/

� E.Ut.�//

L2b2�.t/
C 1�

X

n�0
e�t….1/.t….1/P.jJ1j � b�.t///

n=nŠ

D
�

��1b2�.t/ � tV .1/�

L2b2�.t/
C 1 � e�t….1/P.jJ1j>b�.t//

� ��1L�2 C 1 � e�t….b�.t// � ��1L�2 C 1 � e���1

: (55)

(In the last inequality, recall that x2….x/ � U.x/, so t….b�.t// � 1=�.) (55) gives
a bound for the second term in (52).

Next, to estimate Rt.�/ in (49), put

St .�/ WD
NtX

iD1
1fjJi j>b�.t/g:

Then by Cauchy-Schwarz,

jRt.�/j2 �
 

NtX

iD1
J 2i

! 
NtX

iD1
1fjJi j>b�.t/g

!

D VtSt .�/:

Thus, for L > 0,

P
�

jRt.�/j > L
p

Vt

	

� P.St .�/ > L
2/ � L�2E.St.�//

D L�2.t….1//….b�.t//=….1/ � L�2��1: (56)

So (cf. (48)) we see that the first term in (52) does not exceed
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P
�

jTt.�/ � a.t/j > 2L
p

Vt

	

� P
�

jXt � a.t/j > L
p

Vt

	

C P.jRt.�/j > L
p

Vt /

� P
�

jXt � a.t/j > L
p

Vt

	

C L�2��1; (57)

by (56). Going back to (50), we put together (52) with K D L, and the bounds
in (55) and (57), to deduce that

P
�jt�.b�.t// � a.t/j > 3L2b�.t/

� D 1fjt�.b�.t//�a.t/j>3L2b�.t/g

� ��1L�4 C ��1L�2 C 1� e���1 C P
�

jXt � a.t/j > L
p

Vt

	

C L�2��1:

Choose L so large that ��1L�4 C 2L�2��1 < e���1
=2. Then

1fjt�.b�.t//�a.t/j>3L2b�.t/g � P.jXt � a.t/j > L
p

Vt /C 1 � e���1

=2:

Now assume (43), i.e., that jXt � a.t/j=pVt is relatively compact as t ! 1.
Letting t ! 1 then L ! 1 gives

lim
L!1 lim sup

t!1
1fjt�.b�.t//�a.t/j>3L2b�.t/g � 1 � e���1

=2 < 1:

So, for L � some L0.�/ > 0, and t � some t0.L; �/ > 0, we have
1fjt�.b�.t//�a.t/j>3L2b�.t/g < 1, hence jt�.b�.t// � a.t/j � 3L2b�.t/. Thus for
t � t0.L0; �/, jt�.b�.t// � a.t/j

b�.t/
� 3L20;

which implies (44).
For the converse, suppose (44) holds for all sufficiently small � > 0. Fix such a

� 2 .0; 1/. Therefore by (44) we can find a t� > 0 such that

c.�/ WD sup
t�t�

jt�.b�.t// � a.t/j
b�.t/

< 1: (58)

Then for all t � t� and any L > 0

P
�

jXt � a.t/j > 3L
p

Vt

	

� P
�

jXt � t�.b�.t//j > 3L
p

Vt � c.�/b�.t/
	

� P
�

jXt � t�.b�.t//j > 2L
p

Vt

	

C P
�

L
p

Vt � c.�/b�.t//
	

: (59)

To deal with the first term on the right-hand side, take K 2 .0; ��1=2/, and
suppose t > 0 is so large that tV .1/ < .��1 � K2/b2�.t/. This is possible since
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b2�.t/=t D�U.b�.t// ! 1 as t ! 1. Recall that Xt D Tt.�/ C Rt.�/ by (48),
where ETt .�/ D t�.b�.t//, and argue as follows:

P
�

jXt � t�.b�.t//j > 2L
p

Vt

	

� P
�

jTt.�/� t�.b�.t//j > L
p

Vt

	

C P
�

jRt.�/j > L
p

Vt

	

� P .jTt.�/� t�.b�.t//j > LKb�.t//C P
�p

Vt � Kb�.t/
	

C P
�

jRt.�/j > L
p

Vt

	

� 1

L2K2�
C P

�p

Vt � Kb�.t/
	

C 1

�L2
.by (51) and (56)/: (60)

Recall (53) and note that Vt � Ut.�/, so for t > 0

P
�p

Vt > Kb�.t/
	

� P
�

Ut.�/ > K
2b2�.t/

�

:

Using a second moment version of Wald’s lemma we see that

Var .Ut .�// � t….1/E
�

J 41 ^ b4� .t/
�

D tb4� .t/… .b� .t//C t

Z

1�jyj�b�.t/
y4… .dy/

� tb2� .t/

�

b2� .t/… .b� .t//C
Z

1�jyj�b�.t/
y2… .dy/

�

� tb2� .t/ U .b� .t// D ��1b4� .t/ :

Recall that we keep K2 < ��1 and tV .1/ < .��1 �K2/b2�.t/. There is a one-sided
Chebyshev inequality of the form P.Y � EY < x/ � x2=.x2 C VarY /, for any
rv Y and x > 0 (e.g., [1], p. 70). Apply this with Y D �Ut.�/, recalling that
E.Ut.�// D ��1b2�.t/ � tV .1/, by (54), to get

P.
p

Vt > Kb�.t// � P
�

Ut.�/ > K
2b2�.t/

�

D P
��Ut.�/C E.Ut.�// < .�

�1 �K2/b2�.t/ � tV .1/�

�
�

.��1 �K2/b2�.t/ � tV .1/
�2

�

.��1 �K2/b2�.t/ � tV .1/�2 C Var.Ut.�//

� .1�K2�/2b4�.t/ � 2t�.1 �K2�/b2�.t/V .1/

b4�.t/.1C �/C t2�2V 2.1/
: (61)
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For the second term on the right-hand side of (59), use (61) with K replaced by
K� WD c.�/L�1, with L > c.�/

p
�, so K� < �

�1=2. Thus, finally,

P.jXt � a.t/j > 3L
p

Vt /

� 1

�L2K2
C
�

1 � .1 �K2�/2b4�.t/ � 2t�.1 �K2�/b2�.t/V .1/

b4�.t/.1C �/C t2�2V 2.1/

�

C
�

1 � .1 �K2
��/

2b4�.t/ � 2t�.1 �K2
��/b

2
�.t/V .1/

b4�.t/.1C �/C t2�2V 2.1/

�

C 1

�L2
:

Let t ! 1, recalling that t D o.b2�.t//, then L ! 1, noting that K� D
c.�/L�1 ! 0, then let K # 0, to see that

lim
L!1 lim sup

t!1
P.jXt � a .t/ j > 3L

p

Vt / � 2�

1C �
:

Then let �# 0 to get (43). ut
Proof of Theorem 3.1. Suppose Xt=

p
Vt is relatively compact but there is a

sequence xk ! 1 such that

xk j�.xk/j
U.xk/

! 1; as k ! 1:

Let tk D x2k=U.xk/, so xk D b1.tk/, in the notation of (40). Then

tkj�.b1.tk//j
b1.tk/

D tkj�.xk/j
xk

D xk j�.xk/j
U.xk/

! 1;

which contradicts (44) with a.t/ D 0 and � D 1.
Conversely, suppose lim supx!1 xj�.x/j=U.x/ < c < 1. Then with a.t/ � 0

we have

lim sup
t!1

ja.t/ � t�.b�.t//j
b�.t/

D lim sup
t!1

b�.t/j�.b�.t//j
�U.b�.t//

� c

�
;

so (44) holds with a.t/ D 0, and Xt=
p
Vt is relatively compact as t ! 1, by

Proposition 3.1. ut
Proposition 3.2. Suppose Tt WD Xt=

p
Vt is relatively compact as t ! 1, and

also that
lim sup
x!1

x2….x/=V.x/ D 1:

Then there is a sequence tk ! 1 such that

lim
ı # 0

lim sup
tk!1

P.jjTtk j � 1j � ı/ > 0: (62)
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Proof of Proposition 3.2: Assume that Tt is relatively compact as t ! 1 and let

R.x/ WD x2….x/=V.x/: (63)

Suppose lim supx!1R.x/ D 1. This implies that EX2
1 D 1, thus by (45) again

we need only deal with the big jump process. So we take X and V as in (46)
and (47), and set � D �2 D 0 in (12).

We first show the existence of a sequence �k ! 1 such that

lim
k!1 inf

0<�1����2
R.��k/ D 1; for each 0 < �1 < 1 < �2 < 1: (64)

To this end, fix 0 < �1 < 1 < �2 < 1, choose cn " 1 such that R.cn/ " 1, let
n1 D minfm � 1 W cm > 2; andR.cm/ > 23g, and then for k D 1; 2; : : :, set

nkC1 D minfm > nk W cm=2kC1 > 2�kcnk C k C 1; andR.cm/ > 2
3.kC1/g:

Then put �k D 2�kcnk , so that �k ! 1 as k " 1. Note that R.x/=x2 is
nonincreasing on .0;1/. Choose � 2 Œ1; �2� and k such that 2k � �2. Then � � 2k

and

R.��k/

�2
D �2kR.��k/

.��k/2
� �2kR.2

k�k/

.2k�k/2
D 2�2kR.2k�k/ D 2�2kR.cnk / � 2k;

so inf1����2 R.��k/ � 2k ! 1. Thus R.�k/ � 2k ! 1, and for � 2 Œ�1; 1�,
�21R.�k/ � �2R.�k/ � R.��k/, so inf�1���1 R.��k/ ! 1. Hence (64) holds.

Recall that U.x/ � x2….x/ for all x > 0, so for � > 0,

0 � 1 � .��k/
2….��k/

U.��k/
D V.��k/

U.��k/
� V.��k/

.��k/2….��k/
D 1

R.��k/
! 0; (65)

uniformly in � 2 Œ�1; �2�, where 0 < �1 < 1 < �2 < 1. Now

Z �2

�1

.s�k/
2….s�k/

U.s�k/

ds

s
D 1

2

Z �2�k

�1�k

dU.s/

U.s/
D 1

2
log

�
U.�2�k/

U.�1�k/

�

(66)

(recall that U.x/ is continuous at each x > 0). The left-hand side of the last
expression tends to

R �2
�1

ds=s D log.�2=�1/, so we have U.�2�k/=U.�1�k/ !
.�2=�1/

2. Then by (65),….�2�k/=….�1�k/ ! 1, and so we deduce

lim
k!1 sup

0<�1����2

ˇ
ˇ
ˇ
ˇ
ˇ

….��k/

….�k/
� 1

ˇ
ˇ
ˇ
ˇ
ˇ

D 0; for each 0 < �1 < �2: (67)
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Recall the representation ofXt in (46) and the definition of the Ji . Let J .1/Nt
be any Ji

which is largest in modulus among J1; : : : ; JNt , and let J .2/Nt
denote any term among

J1; : : : ; JNt of second largest modulus.
Define

.1/eXt WD Xt � J .1/Nt
D

NtX

iD1
Ji � J .1/Nt

and
.1/Vt WD Vt � jJ .1/Nt

j2:
Put tk WD 1=….�k/, so that tk ! 1. For ı > 0 and 0 < �1 < �2, define the events

Ak WD
n

jJ .2/Ntk
j � �1�k < �2�k < jJ .1/Ntk

j
o

;

Bk.ı/ WD
n

j.1/eXtk j > ıjJ .1/Ntk
j
o

;

and
Ck.ı/ WD

n
.1/Vtk > ı

2jJ .1/Ntk
j2
o

:

In the following, we will keep �1�k > 1. A straightforward calculation gives

P.Ak/ D tk….�2�k/e
�tk….�1�k/ DW �k.�1; �2/; say: (68)

Also, on Ak , we have

Bk.ı/ �
8

<

:

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

NtkX

iD1
Ji1fjJi j��1�kg

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

> ı�2�k

9

=

;
D
8

<

:

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

NtkX

iD1
J ki

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

> ı�2�k

9

=

;
; (69)

where J ki WD Ji1fjJi j��1�kg. Note that

E.J k1 / D
Z

1<jxj��1�k
x….dx/=….1/;

and E.Ntk / D tk….1/, so we can write

NtkX

iD1
J ki D

NtkX

iD1

�

J ki � E.J k1 /
�C �

Ntk �E.Ntk /
�

E.J k1 /C tk

Z

1<jxj��1�k
x….dx/:

(70)
Now since Tt is assumed relatively compact, we have by (42)

xj�.x/j � M.x2….x/C V.x//;
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for x � some x0, for some M 2 .0;1/. Further, by (65), we have V.��k/ �
.��k/

2….��k/, for k large, uniformly in � 2 Œ�1; �2�. Thus for k large, firstly,

ˇ
ˇ
ˇ
ˇ
tk

Z

1<jxj��1�k
x….dx/

ˇ
ˇ
ˇ
ˇ

D tk j�.�1�k/j .recall � D 0 in (12)/

� 2Mtk.�1�k/….�1�k/

� 4M�1�k .by (67); and tk D 1=….�k//

� .ı=2/�2�k;

for �2 > �1 large enough. Secondly,

Var

0

@

NtkX

iD1

�

J ki � E.J k1 /
�

1

A D E.Ntk /Var.J k1 /

� tk….1/

Z

1<jxj��1�k
x2….dx/=….1/

� tkV .�1�k/:

Third, using Cauchy-Schwarz,

Var
��

Ntk �E.Ntk /
�

E.J k1 /
� D tk….1/

�Z

1<jxj��1�k
x….dx/=….1/

�2

� tk

Z

1<jxj��1�k
x2….dx/

� tkV .�1�k/:

Putting the three estimates into (70) and using Chebyshev’s inequality, we find that
for ı1 > 0 and �1 > �2 large enough

P.Bk.ı1/\ Ak/

� P

0

@

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

NtkX

iD1

�

J ki �E.J k1 /
�C �

Ntk � E.Ntk /
�

E.J k1 /

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

> .ı1=2/�2�k

1

A

� 8tkV .�1�k/

.ı1�2�k/2
:

By a similar argument as in (69) and Markov’s inequality we get for ı2 > 0
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P.Ck.ı2/\ Ak/ � P

0

@

NtkX

iD1
jJ ki j2 > .ı2�2�k/2

1

A

� E.Ntk /E.J
k
1 /

2

.ı2�2�k/2
� tkV .�1�k/

.ı2�2�k/2
:

Putting these together gives

P .fBk.ı2/\ Akg [ fCk.ı1/ \Akg/ �
�
1

ı21
C 1

ı22

�
8tkV .�1�k/

.�2�k/2
(71)

DW 
k.ı1; ı2/; say:

Now, since Vt D .1/Vt C jJ .1/Nt
j2 � jJ .1/Nt

j2, we can write, for ı > 0,

P

 ˇ
ˇ
ˇ
ˇ
ˇ

jXtk j
p

Vtk
� 1

ˇ
ˇ
ˇ
ˇ
ˇ
> ı

!

D P
�ˇ
ˇ
ˇjXtk j �p

Vtk

ˇ
ˇ
ˇ > ı

p

Vtk

	

� P
�nˇ
ˇ
ˇjXtk j �p

Vtk

ˇ
ˇ
ˇ > ıjJ .1/Ntk

j; .1/Vtk � .ı=2/2jJ .1/Ntk
j2
o

[
n
.1/Vtk > .ı=2/

2jJ .1/Ntk
j2
o	

:

The latter does not exceed

P
�nˇ
ˇ
ˇXtk � J

.1/
Ntk

ˇ
ˇ
ˇ > ıjJ .1/Ntk

j=2
o

[
n
.1/Vtk > .ı=2/

2jJ .1/Nt
j2
o	

I (72)

because,
p
.1/Vtk � .ı=2/jJ .1/Ntk

j, thus jpVtk � jJ .1/Ntk
jj � .ı=2/jJ .1/Ntk

j, together with

ˇ
ˇ
ˇjXtk j �p

Vtk

ˇ
ˇ
ˇ > ıjJ .1/Ntk

j >
ˇ
ˇ
ˇ

p

Vtk � jJ .1/Ntk
j
ˇ
ˇ
ˇ ;

imply

ˇ
ˇ
ˇXtk � J .1/Ntk

ˇ
ˇ
ˇ

�
ˇ
ˇ
ˇjXtk j � jJ .1/Ntk

j
ˇ
ˇ
ˇ �

ˇ
ˇ
ˇ

ˇ
ˇ
ˇjXtk j �p

Vtk

ˇ
ˇ
ˇ �

ˇ
ˇ
ˇ

p

Vtk � jJ .1/Ntk
j
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇjXtk j �p

Vtk

ˇ
ˇ
ˇ�

ˇ
ˇ
ˇ

p

Vtk � jJ .1/Ntk
j
ˇ
ˇ
ˇ

� .ı � ı=2/jJ .1/Ntk
j D ıjJ .1/Nt

j=2:
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Observe that (72) does not exceed P.Bk.ı=2/ [ Ck.ı=2//. Argue that, by (71)
and (68),

P.Bk.ı1/[ Ck.ı2// � P .fBk.ı1/\ Akg [ fCk.ı2//\ Akg/
C 1 � P.Ak/

� 
k.ı1; ı2/C 1 � �k.�1; �2/:

Thus by (72)

P

 ˇ
ˇ
ˇ
ˇ
ˇ

jXtk j
p

Vtk
� 1

ˇ
ˇ
ˇ
ˇ
ˇ
> ı

!

� 
k.ı=2; ı=2/C 1 � �k.�1; �2/: (73)

Now by (65) and (67)

tkV .�1�k/ D o
�

tk�
2
k….�1�k/

� D o.�2k/;

so 
k.ı1; ı2/ ! 0 as k ! 1, while, by (67), �k.�1; �2/ ! e�1 as k ! 1. Letting
k ! 1 in (73) gives

lim sup
tk!1

P

 ˇ
ˇ
ˇ
ˇ
ˇ

jXtk j
p

Vtk
� 1

ˇ
ˇ
ˇ
ˇ
ˇ
> ı

!

� 1 � e�1 < 1;

so (62) holds. ut
We are now ready to complete the proof of Proposition 1.2. Suppose Xt=

p
Vt is

relatively compact as t ! 1 and no subsequential limit has positive mass at ˙1.
Then by Theorem 3.1 we have

lim sup
x!1

xj�.x/j
U.x/

D lim sup
x!1

xj�.x/j
x2….x/C V.x/

< 1; (74)

while by Proposition 3.2 we have

lim sup
x!1

x2….x/

V.x/
< 1; (75)

since if (75) fails then there is a subsequential limit rv ofXt=
p
Vt with positive mass

at ˙1. Now (74) and (75) imply

lim sup
x!1

xj�.x/j
V.x/

< 1; (76)

which together with (75) gives (16). ut
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3.2.1 Comments on Proofs of Propositions 3.1 and 3.2

The proofs of Propositions 3.1 and 3.2 parallel very closely, after notational changes,
those of Propositions 5.1 and 5.5 of [12], which are their small time versions.
Therefore for the sake of brevity, but at the sacrifice of readability, we could have
replaced the foregoing proofs by the following road maps:

For the proof of Proposition 3.1 proceed exactly as it is given above until right
before equation (50), and then continue on as in the proof of Proposition 5.1
of [12] starting at its equation (5.8) with the role of " suppressed, i.e. Tt ."; �/,
Rt ."; �/ ; St ."; �/, Nt ."; �/, Ut ."; �/, Vt ."/ ; V ."/ and Xt ."/, are replaced by
Tt .�/, Rt .�/ ; St .�/, Nt .�/, Ut .�/, Vt ; V .1/ and Xt , respectively. Also replace
t� ."/ by 0 and ˛t ."; �/ by Tt .�/, and use the definition of c.�/ given in (58).

From (65) the proof of Proposition 3.2 goes exactly as that of Proposition 5.5 of
[12] beginning from its equation (5.38) with the role of " suppressed in the notation
analogously as it was done in the proof of Proposition 1.1 and with tk & 0 changed
to tk ! 1, tk� .tk/ to 0 and " < �1�k to 1 < �1�k:

4 Appendix: Strictly Stable Bivariate Laws

Theorem 1.1 of [3] says that Tn
D�! Y , where P fjY j D 1g D 0, if and only there

exists a sequence of norming constants bn such that either b�1
n Sn

D�! Z or � is
in the domain of attraction of a stable law of index 0 < ˛ < 2: Moreover, in the
normal case E� D 0, in the case 1 < ˛ < 2, E� D 0 and in the case ˛ D 1, � is in
the domain of attraction of Cauchy’s law and Feller’s condition holds, that is,

lim
n!1E sin.�=bn/ exists and is finite:

This means in the stable law of index 0 < ˛ < 2 case that necessarily for some
function L slowly varying at infinity,

1 � F .x/ WD P fj�j > xg D x�˛L .x/ , for x > 0,

and some 0 � p � 1, as x ! 1,

P f� > xg =P fj�j > xg ! p and P f� < �xg =P fj�j > xg ! 1 � p. (77)

By applying Theorem 15.14 of [8] much as we did in the proofs of Lemmas 2.1
and 2.2, we can show that with a norming sequence bn of the form

bn 
 F�1 .1=n/ D n1=˛L� .1=n/ ,
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with L� slowly varying at zero, one has
�

b�1
n Sn; b

�2
n Vn

� D�! .U ˛; V ˛/, where U˛

has characteristic function with Lévy measureƒ on R n f0g of the form:

ƒ.y/ D ƒ
C
.y/Cƒ

�
.y/ WD c1y

�˛ C c2y
�˛ , y > 0;

for some c1 � 0 and c2 � 0, with at least one non zero and c1= .c1 C c2/ D p as
in (77). Moreover, .U ˛; V ˛/ has joint characteristic function

'˛ .s; t/ D E exp .isU ˛ C itV ˛/ ;

of the following form with

Kr;l .y/ D
8

<

:

r; y > 0

0, y D 0

l; y < 0

;

where r D c1˛ and l D c2˛ W
Case 1: 0 < ˛ < 1

'˛ .s; t/ D exp

�Z 1

�1
�

exp
�

isy C ity2
� � 1� Kr;l .y/

jyj1C˛ dy

�

:

Case 2: ˛ D 1

'1 .s; t/ D exp

�Z 1

�1
�

exp
�

ity2
�

cos .sy/ � 1
� 1

y2
dy

�

:

Case 3: 1 < ˛ < 2

'˛ .s; t/ D exp

�Z 1

�1
�

exp
�

isy C ity2
� � 1 � isy

� Kr;l .y/

jyj1C˛ dy

�

:

An easy calculation verifies that for all n � 1 and 0 < ˛ < 2

'n˛
�

s=n1=˛; t=n2=˛
� D '˛ .s; t/ .

Thus if
�

U˛
1 ; V

˛
1

�

; : : : ;
�

U˛
n ; V

˛
n

�

are i.i.d. .U ˛; V ˛/ then for all n � 1

 

n�1=˛
nX

iD1
U ˛
i ; n

�2=˛
nX

iD1
V ˛
i

!

DD .U ˛; V ˛/ :

This says that .U ˛; V ˛/ is a strictly bivariate stable random vector and in the stable

0 < ˛ < 2 case Sn=
p
Vn

D�! Y , where Y
DD U˛=

p
V ˛:
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infinity. J. Theor. Probab. 15, 751–792 (2002)
5. E. Giné, D.M. Mason, On the LIL for self-normalized sums of IID random variables. J. Theor.

Probab.11, 351–370 (1998)
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Abstract An expository account of the recent theory of nonparametric inference
on manifolds is presented here, with outlines of proofs and examples. Much of the
theory centers around Fréchet means; but functional estimation and classification
methods using nonparametric Bayes theory are also indicated. Applications in
paleomagnetism, morphometrics and medical diagnostics illustrate the theory.
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1 Introduction

Statistical inference on manifolds such as circles and spheres has a long history,
dating back at least to early twentieth century. But a great deal of activity was
inspired by the seminal 1953 paper of R.A. Fisher on the shifts of the earth’s
magnetic poles over geological time scales. Statistical inference on landmarks based
shape manifolds, which are of special interest in this article, came later and owes
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much of its development to the pioneering work of Kendall [32–34], providing the
appropriate geometric foundation for these spaces, and to Bookstein [13–15], who
in a somewhat different vein created methodologies for applications of statistics of
shapes to biology and medical imaging. We must also mention the work of Karcher
[31] on the uniqueness of Fréchet means of probability measures on Riemannian
manifolds, and the work of Ziezold [46] on the almost sure convergence properties
of Fréchet mean sets on metric spaces. Parametric inference for these spaces grew
quite rapidly during the past two decades or so. In addition to the work already
mentioned, important contributions were made by many authors, such as Kent
[36, 37], Goodall [26], Dryden and Mardia [18], Prentice and Mardia [43], and
others. A comprehensive account of this theory with extensive references to original
work until 1998 may be found in the book by Dryden and Mardia [19].

In the present article we provide an expository account of the recent
nonparametric theory on general manifolds, with special emphasis on shape
manifolds. This theory is largely based on the notion of the Fréchet mean of a
probability measure Q, namely, the minimizer, if unique, of the expected squared
distance from a point on the manifold. If the distance on the manifold M is the
geodesic distance with respect to a Riemannian metric, the Fréchet mean is said to
be intrinsic. If the distance is the Euclidean distance inherited from an embedding
of M in a Euclidean space, then the Fréchet mean is called extrinsic. Hendriks
and Landsman [27, 28], provided asymptotics of the extrinsic mean on regular
submanifolds of Euclidean spaces, with the embedding given by the inclusion
map. Independently of this, a theory of extrinsic inference for Fréchet means on
general manifolds originated in the 1998 dissertation of Patrangenaru, and further
developed in [10, 11]. The latter articles also provided a general theory of intrinsic
inference. While the emphasis in applications in the latter articles are to the sphere
Sd and Kendall’s planar shape spaces, embeddings of projective shape spaces
and 3D shape spaces and inference for Fréchet means on them are developed in
[2,3,8,9,39]. Further progress in both intrinsic and extrinsic inference may be found
in [4, 5] and in the monograph Bhattacharya and Bhattacharya [6]. Our goal here is
to present the core of this emerging field in a reasonably accessible manner.

Because references to Bhattacharya and Patrangenaru and Bhattacharya and
Bhattacharya occur frequently, we would henceforth refer to them as BP and BB,
respectively.

Here is an outline of the contents of the paper. In Sect. 2, basic properties
of Fréchet means on metric spaces are established, including consistency
(Theorem 2.1), and a general result on the asymptotic distribution of sample Fréchet
means on manifolds (Theorem 2.5). The latter turns out to be crucial for intrinsic
inference developed in later sections. Consistency and asymptotic distribution of
extrinsic sample means are established in Sect. 3 (Theorems 3.1, 3.3), while Sect. 4
provides the corresponding results for intrinsic sample means (Theorem 4.1). The
groundwork for statistical inference on general manifolds is laid in Sect. 5, including
the construction of confidence regions and two-sample and match pair tests, based
on the asymptotic Normal and chisquare distributions derived in earlier sections.
Section 6 describes the geometries of landmarks based shape spaces. Here an
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observation, called a k-ad, consists of k landmarks, chosen with expert help,
on an object of interest such as a brain scan, or some other digital image. The
goal may be medical diagnosis, classifying biological species and subspecies, or
computer vision/robotics. Because of differences in equipments used and/or their
positioning relative to the object while recording images, etc., one considers for
analysis the k-ad modulo an appropriate Lie group of transformations. In particular,
the similarity shape of a k-ad is its orbit (or maximal invariant) under Euclidean
rigid motions of translation and rotation, as well as scaling. The space of such
shapes of k-ads in R

m is Kendall’s shape space †km.k > m/. For m D 2, it
is more convenient for analytical and computational purposes to represent the k
points of the k-ad in R

2 as points in the complex plane. The planar shape space
†k2 can then be identified with the complex projective space CPk�2, which is a
manifold of considerable interest in differential geometry. Its natural Riemannian
structure is described in Sect. 6.1.1. Sect. 6.1.2 considers the intrinsic geometry
of †km in dimensions m > 2. Unfortunately, here the Lie group action is not
free, resulting in orbits of different dimensions in different regions of †km. If one
removes the regions of singularity, the manifold is no longer complete in the
Riemannian metric, and its curvature grows unboundedly as one approaches the
singular sets, making inference difficult. For some recent progress in overcoming
this in extending principal components analysis to Riemannian manifolds, see
[29]. Sub-section 6.1.2 is devoted to the extrinsic geometry of †k2 under the
so-called Veronese-Whitney embedding, which is equivariant under the unitary
group SU.k � 1/.

As a matter of notation, a k-ad x in R
m is represented as an m � k matrix, with

the k points appearing as k column vectors in R
m. The transpose of a matrix A is

expressed as At .
Section 6.2 defines the so-called reflection similarity shape r�.x/ of a k-ad x in

R
m, identified with the orbit of the centered and scaled k-ad z under the group

O.m/ of all orthogonal transformations. When restricted to the non-singular
part of †km using only k-ads each of which is of full rank m, the reflection-
similarity shape space R†km is a manifold, although not complete. But its
extrinsic analysis is facilitated by the embedding r�.x/ ! zt z into the space
S.k;R/ of all symmetric k � k matrices, or into S.k � 1;R/ if one reduces
the k-ad to a .k � 1/-ad by Helmertization to remove translation. Here z is the
preshape of x obtained by scaling (to norm 1) the translated, or Helmertized
k-ad. This new shape space and its embedding were originally introduced by
Bandulasiri and Patrangenaru [8], and also arrived at independently by Dryden
et al. [20]. The geometry and extrinsic inference for it was further developed
in [2, 3, 6, 9]. This is a significant step in the analysis of 3D shapes. In the
remaining two Sects. 6.3 and 6.4 we introduce affine and projective shapes.
These are of much importance in problems of scene recognition and machine
vision.
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A proper extrinsic analysis requires a good equivariant embedding, whereby a
reasonably large isometric group action on a Riemannian manifold M is replicated
on its image (in anN -dimensional Euclidean spaceEN ), by the action of a subgroup
of the general linear groupGL.N;R/, via a group homomorphism. Often this latter
is also a group of isometries on the image ofM under the embedding when endowed
with the metric tensor induced from EN . This helps preserve much of the geometry
of M . In view of this, in most examples of data analysis the results of extrinsic and
intrinsic inference turn out to be nearly identical although they are based on different
methodologies. The embeddings of the shape spaces considered in this article are
equivariant under appropriately large group actions.

To illustrate the general theory, in Sect. 7 we develop in some detail intrinsic
and extrinsic inference procedures on two specific manifolds—the sphere Sd and
the planar shape space †k2 . Section 8 provides a brief introduction to density
estimation and classification using the nonparametric Bayes theory. Finally, Sect. 9
provides three examples of data analysis using the nonparametric theory presented
in this article, and contrasts these, where possible, with results of parametric
inference carried out in the literature. As is well recognized, nonparametric methods
provide inference whose validity is model independent, while parametric models
may be miss-specified and lead to conclusions not quite right. However, this
advantage is often accompanied by larger confidence regions and smaller powers
of tests. It, therefore, comes as a pleasant surprise that in most examples where
data are available and for which parametric inference has been carried out,
the model-independent procedures for shape spaces described in this article yield
sharper inference-narrower confidence regions and much smaller p-values -than
their parametric counterparts.

Finally, mention should also be made of the work of Ellingson et al. [21] for the
estimation of the extrinsic mean of distributions of planar contours representing
continuous planar shapes, via an infinite dimensional version of the Veronese-
Whitney embedding of †k2 .

We conclude this section with a sketch of the estimation of the extrinsic mean
on M D Sd . Here the embedding J is the inclusion map of Sd into R

dC1. The
extrinsic mean �E of Q on Sd is given by �E D �J =j�J j, where �J is the mean
ofQ viewed as a measure on R

dC1. We assume �J ¤ 0, which is the necessary and
sufficient condition for the uniqueness of the extrinsic mean on Sd . The extrinsic
sample mean of i.i.d. observations X1; � � � ; Xn is, similarly, O�E D NX=j NX j, where
NX D .X1 C � � � C Xn/=n. It is easy to check that when O�E and �E are viewed as

vectors in R
dC1, O�E is asymptotically Normal N.�E;†=n/, where the .d C 1/ �

.d C 1/ matrix † is singular, since O�E lies nearly on T�E .S
d /-the tangent space

of Sd at �E . The tangential component of O�E , expressed in d coordinates with
respect to a chosen orthonormal basis of T�E .S

d /, has the asymptotic distribution
N.0;†1=n). Here†1 is a d�d matrix which is nonsingular if the covariance matrix
of Q (on RdC1 ) is nonsingular. One may use this result for estimation and testing
on Sd . For details of this and for intrinsic inference on Sd see Example 7.1.
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2 Asymptotic Distribution Theory for Fréchet Means

Let .M; �/ be a metric space and Q a probability measure on the Borel sigma-field
of M . Consider a Fréchet function of Q defined by

F.x/ D
Z

�˛.x; y/Q.dy/; x 2 M; (1)

for some ˛ � 1. We will be mostly concerned with the case ˛ D 2: Assume that
F is finite at least for one x. A minimizer of F , if unique, serves as a measure of
location ofQ. In general, the set CQ of minimizers of F is called the Fréchet mean
set of Q. In the case the minimizer is unique, one says that the Fréchet mean exists
and refers to it as the Fréchet mean of Q. If X1; � � � ; Xn are i.i.d observations with
common distributionQ, the Fréchet mean set and the Fréchet mean of the empirical
Qn D 1=n

P

1�j�n ıXj are named the sample Fréchet mean set and the sample
Fréchet mean, respectively. For a reason which will be clear from the result below,
in the case the Fréchet mean of Q exists, a (every) measurable selection from CQn

is taken to be a sample Fréchet mean.
The following is a general result on Fréchet mean sets CQ and CQn ofQ andQn

and consistency of the sample Fréchet mean.

Theorem 2.1 (Ziezold [46], BP [10], BB [6]). Let M be a metric space such that
every closed and bounded subset of M is compact. Suppose ˛ � 1 in (1) and F.x/
is finite for some x. Then .a/ the Fréchet mean set CQ is nonempty and compact,
and (b) given any � > 0, there exists a positive integer valued random variable
N D N.!; �/ and a P -null set �.�/ such that

CQn � C �
Q D fx 2 M W �.x; CQ/ < �g 8n � N;8! 2 .�.�//c : (2)

.c/ In particular, if the Fréchet mean of Q exists then the sample Fréchet mean,
taken as a measurable selection from CQn , converges almost surely to it.

Remark 2.2. Unfortunately, it does not seem possible in general to estimate the
Fréchet mean set CQ consistently by CQn , that is, the Hausdorff distance between
the two does not necessarily go to zero with probability one, as n goes to infinity.
Consider, for example, the simple case of M D Sd , with � as the chord distance
and ˛ D 2. Take an absolutely continuous Q for which CQ is not a singleton, as
would be the case for the uniform distribution in particular. It is easy to see that the
sample Fréchet mean set CQn is, with probability one, a singleton.

Unless stated otherwise, we will assume in this article that the manifold M is
connected and satisfies the property that its closed bounded subsets are compact.
Obviously this is true if M is compact. The assumption also holds for all Riemannian
manifolds which are complete under the geodesic distance, by the Hopf-Rinow
theorem (see [17], pp. 146–147).
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Remark 2.3. It has been shown by Karcher [31] for the case ˛ D 2 in (1) that, if the
Fréchet function ofQ is finite, then on a Riemannian manifoldM with non-positive
sectional curvature the Fréchet mean always exists as a unique minimizer.

We give a proof of Theorem 2.1 for a compact metric M , which is the case in
many of the applications of interest here. Part (a) is then trivially true. For part (b),
for each � > 0, write


 D inffF.x/ W x 2 M g � F.q/ 8 q 2 CQ;

C ı.�/ D inffF.x/ W x 2 MnC �

Qg: (3)

If C �
Q D M , then (2) trivially holds. Consider the case C �

Q ¤ M , so that
ı.�/ > 0.

Let Fn.x/ be the Fréchet function ofQn, namely,

Fn.x/ D 1

n

X

1�j�n
�˛.x;Xj /:

Now use the elementary inequality,

j�˛.x; y/ � �˛.x0; y/j � ˛�.x; x0/Œ�˛�1.x; y/C �˛�1.x0; y/� � c˛�.x; x0/;

with c D 2maxf�˛�1.x; y/; x; y 2 M g, to obtain

jF.x/ � F.x0/j � c˛�.x; x0/; jFn.x/ � Fn.x
0/j � c˛�.x; x0/; 8x; x0: (4)

For each x 2 MnC �
Q find r D r.x; �/ > 0 such that c˛�.x; x0/ < ı.�/=4 8x0

within a distance r from x. Letm D m.�/ of these balls with centers x1; � � � ; xm (in
MnC �

Q) cover MnC �
Q. By the SLLN, there exist integers Ni D Ni.!/ such that,

outside a P -null set �i.�/, jFn.xi / � F.xi /j < ı.�/=4 8 n � Ni.i D 1; � � � ; m/.
Let N 0 D maxfNi W i D 1; � � � ; mg. If n > N 0, then for every i and all x in the ball
with center xi and radius r.xi ; �/,

Fn.x/ > Fn.xi /� ı.�/=4 > F.xi / � ı.�/=4 � ı.�/=4
� 
C ı.�/� ı.�/=2 D 
C ı.�/=2:

Next choose a point q 2 CQ and find N 00 D N 00.!/, again by the SLLN, such
that, if n � N 00 then jFn.q/ � F.q/j < ı.�/=4 and, consequently, Fn.q/ < 
 C
ı.�/=4, outside of a P -Null set �00.�/. Hence (2) follows with N D maxfN 0; N 00g
and �.�/ D f[�i.�/ W i D 1; � � � ; mg [ �00.�/. Part (c) is an immediate
consequence of part (b).
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Remark 2.4. For a compact metric space M , the conclusions of Theorem 2.1
hold for a generalized Fréchet function F by letting the integrand in (1) be an
arbitrary continuous function f .x; y/ onM �M instead of �˛.x; y/. Only a slight
modification of the above proof is required for this.

For noncompactM , the proof of Theorem 2.1 is a little more elaborate and may
be found in [6] or, for the case ˛ D 2, in [10].

We now proceed to derive the asymptotic distribution of sample Fréchet means
on a d -dimensional differentiable manifold M . Let Q be a probability measure on
M such that Q.U / D 1 for some open subset U of M which is C2 diffeomorphic
to an open set V of Rd .

Consider a generalized Fréchet function F on U :

F.p/ D
Z

U

f .p; p0/Q.dp0/; p 2 U; (5)

where f W U � U ! R, and the integral is finite for all p in U . Assume that
F is twice differentiable in a neighborhood of the minimizer � of F , assumed
unique, and let �n be a consistent Fréchet sample mean. Let � W U ! V be a C2

diffeomorphism. Write h.x; y/ D f .��1x; ��1y/ for x; y 2 V . Then � D �.�/

and �n D �.�n/ are the Fréchet minimizers ofQ ı ��1 andQn ı ��1, respectively,
of the Fréchet functions

H.x/ D
Z

V

h.x; y/Q ı ��1.dy/; (6)

Hn.x/ D
Z

V

h.x; y/Qn ı ��1.dy/ D 1

n

nX

jD1
h.x; Yj /; x 2 V;

where Yj D �.Xj /. Write  r.x; y/ D Drh.x; y/ D .@=@xr/h.x; y/ (r D
1; � � � ; d ) and and let D stand for the gradient. For example, D r.x; y/ is the
vector .D1 

r .x; y/; � � � ;Dd 
r .x; y//: By assumption, H is twice differentiable

in a neighborhood of �.�/ and a Taylor expansion yields

0 D 1p
n

X

1�j�n
 r.�n; Yj /

D 1p
n

X

1�j�n
 r.�;Yj /C

2

4
1

n

X

1�j�n
D r.�; Yj /C �n;r

3

5 � p
n.�n � �/; (7)

where � denotes inner product in R
d and, for some �n;r lying on the line segment

joining �n and �,

�n;r D 1

n

X

1�j�n
D r.�n;r ; Yj / � 1

n

X

1�j�n
D r.�; Yj /:
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The following result, which is a slight extension of Theorem 2.1 in [11], now
follows from (7).

Theorem 2.5. Let Q be a probability measure on a d -dimensional manifold M .
Assume that

(i) there exists an open subset U of M such that Q.U / D 1,
(ii) for a given function f on U � U , the generalized Fréchet function F of Q in

(5) is finite and has a unique minimizer � in U , and there is a neighborhood
of � on which p ! f .p; p0/ is twice continuously differentiable for every p0,

(iii) there exists a C2-diffeomorphism � W U ! V where V is an open subset of Rd

such that for the function  r.x; y/ D Drh.x; y/ D .@=@xr /f .�
�1x; ��1y/

on V � V one has E. r .�; Y1//2 < 1 8 r D 1; � � � ; d , with � D �.�/ and
Y1 having the distributionQ ı ��1,

(iv) supfEjD r.�; Y1/ �D r.y; Y1/j W jy � �j � �g ! 0, as � # 0, and, finally,
(v) the d � d matrix ^ D ..EDs 

r.�; Yj /// � ..EDsDrh.�; Yj /// is
nonsingular.

Then �n D �.�n/ has the asymptotic distribution given by

p
n.�n � �/ ! N.0;^�1†^/ in distribution as n ! 1; (8)

where † is the covariance matrix of . r .�; Yj /; r D 1; � � � ; d /.
Remark 2.6. Suppose M is a Riemannian manifold and Q a probability on M .
If q 2 M and C.q/ is the cut locus of q (see Sect. 4 for definition), and if
Q.MnC.q// D 1, then one may take U in Theorem 2.5 to beMnC.q/. The inverse
exponential map onMnC.q/may be taken to be the required diffeomorphism � on
U D MnC.q/ onto its image V in the tangent space TqM:

Note that Q.MnC.q// D 1 if Q is absolutely continuous with respect to a
volume measure on M (see [24], p. 141).

Remark 2.7. On a Riemannian manifold M the Fréchet mean of Q for the case
f .p; p0/ D �2.p; p0/ with geodesic distance � is called the intrinsic mean of Q.
For manifoldsM of nonnegative curvature, a recent criterion due to Afsari [1] under
whichQ is known to have an intrinsic mean is that the support ofQ lie in a geodesic
ball of radius r�=2 where r� D minfinj.M/; �=

p NC g, inj.M/ being the injectivity
radius of M (see Sect. 4), and NC the least upper bound of sectional curvatures of
M (see [31, 38]). Hence one may take U in Theorem 2.5 to be this geodesic ball in
this case. For manifolds of non-positive curvature, the intrinsic mean always exists
provided the Fréchet function is finite [31].

Remark 2.8. On a general differentiable manifold M , it is often useful and
convenient to consider the extrinsic mean of Q which is the minimizer, if unique,
with respect to the Euclidean distance � induced by an appropriate equivariant
embedding of M in a Euclidean space EN . For the case ˛ D 2 in (1), a broad
verifiable necessary and sufficient condition for the existence of a unique minimizer
is often available (see the next section). If the assumptions of Theorem 2.5 hold then
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one may still apply it to the extrinsic sample mean, as would be the case, e.g., of
the sphere Sd D fx 2 R

dC1 W jxj2 D 1g with the embedding given by the inclusion
map in R

dC1, if one takes � to be the inverse exponential map on Sdnf�p0g for a
suitable point p0. But a more broadly applicable CLT for the sample Fréchet mean
is provided in the next section (see Theorem 3.3).

3 Asymptotic Distribution of the Extrinsic Sample Mean
on a Manifold

Let M be a d -dimensional differentiable manifold and Q a probability measure
on it. Consider an embedding J W M ! EN , where EN is an N -dimensional
real vector space, which we may identify with R

N . The extrinsic distance �E on
M with respect to the embedding is given by the induced Euclidean distance on
J.M/ W �E.p; q/ D jJ.p/ � J.q/j, where j:j denotes the norm on EN and <;>
denotes the inner product. Letting QJ D Q ı J�1 denote the induced distribution
on EN , and �J its mean, the Fréchet function on the image J.M/ ofM is given by

F J .x/ D
Z

jx � yj2QJ .dy/ D
Z

jx � �J � .y � �J /j2QJ .dy/ (9)

D jx��J j2 C
Z

jy � �J j2QJ .dy/C 2 < x � �J ;

Z

.y � �J /QJ .dy/ >

D jx � �J j2 C
Z

jy � �J j2QJ .dy/; .x 2 J.M//

the integration being over EN . The last sum is minimized (over J.M/) by taking
x as the orthogonal projection P.�J / of �J on J.M/, i.e., the point in J.M/, if
unique, which is at the minimum Euclidean distance from �J . Hence we have the
following useful result.

Theorem 3.1 (Patrangenaru [40], Hendriks and Landsman [28], BP [10]).
Assume that the projection P.�J / is unique. Then the extrinsic mean of Q is
�E D J�1P.�J /.

Remark 3.2. It is known that the set of points x of non-uniqueness of the projection
x ! P.x/ on EN (onto J.M/) has Lebesgue measure zero [10]. As an example,
consider the caseM D Sd , and the embedding in R

dC1 given by the inclusion map.
Then the only point of non-uniqueness of the projection map P is the origin 0 in
R
dC1, in which case the extrinsic mean set is all of Sd . The projection P in this

case is defined by P.x/ D x=jxj for x ¤ 0. Thus the extrinsic mean of Q on the
sphere is �E D �J =j�J j, which exists if and only if the Euclidean mean �J of the
induced distributionQJ on EN is nonzero.
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We now derive the asymptotic distribution of the extrinsic sample mean O�E . Let
Yi D J.Xi /, where Xi .i D 1; � � � ; n/ are i.i.d. observations from the distribution
Q on M . The mean of the probability QJ

n D 1
n

Pn
iD1 ıYi induced on EN by the

empirical Qn D 1
n

Pn
iD1 ıXi on M is Y D 1

n
.Y1 C � � � C Yn/ D R

yQJ
n .dy/. Then

J.b�E/ D P.Y /. By calculus, and the CLT,

n1=2
�

P. NY / � P.�J /� D n1=2Œ.Jacob P/�J .Y � �J /�C op.1/ ! N.0; C /; (10)

in distribution as n ! 1. Here (Jacob P/x is the N � N Jacobian matrix
of P (at x) considered as a transformation on R

N � EN into R
N , and C D

.Jacob P/�J †.JacobP/t
�J

, † being the N � N covariance matrix of Y1. Since

P maps a neighborhood V of �J into the image manifold J.M/ of dimension d
(smaller than N ), the rank of .Jacob P/�J is d , and the asymptotic distribution
in (10) is singular. For purposes of inference it is therefore important to consider
the differential d�J P of P at �J as a map on the N -dimensional tangent space
T�J .R

N / � R
N into the d -dimensional tangent space TP.�J /.J.M// of the

manifold J.M/ at P.�J /, rather than as a map on T�J .R
N / into TP.�J /.R

N / as
considered in (10). Consider a standard basis, or frame, fei W i D 1; � � � ; N g
of EN � R

N (in which Y 0
j s are expressed) and an orthonormal basis (frame)

fF1.y/; � � � ; Fd .y/g of the tangent space Ty.J.M// for y in a neighborhood of
P.�J / in J.M/.

Theorem 3.3 (BP [11], BB [6]). Assume that the extrinsic mean is unique and the
projection operator P is continuously differentiable in a neighborhood of �J . Then
one has

n1=2.d�J P /.Y � �J / ! N.0; �/ in distribution, (11)

with � D B†Bt , and

n1=2.d NY P /.Y � �J / ! N.0; �/ in distribution. (12)

Here B D B.�J / D ..bij .�
J /// is the d �N matrix of d�J P with respect to an

orthonormal basis fei W i D 1; � � � ; N g of T�J E
N � R

N and a smooth orthonormal
basis fF1.P.�J //; � � � ; Fd .P.�J //g of TP.�J /.J.M//, i.e., for y in a neighborhood
of P.�J / in J.M/; .dxP /ei D P

j bj i .P.x//Fj .P.x//.

Note that (12) follows from (11) using a Slutsky type argument.

Remark 3.4. If, for z 2 J.M/, one views Tz.J.M// as a subspace of Tz.E
N /

spanned by fei W i D 1; � � � ; N g, then B.P.y// D F.P.y//.Jacob P/y , where
the d � N matrix F.P.y// has row vectors F1.P.y//; � � � ; Fd .P.y// which form
an orthonormal basis of TP.y/.J.M//.

Remark 3.5. The matrix � in (11) is nonsingular if the support of the distribution of
.d�J P /.Yi ��J / does not lie in a subspace of TP.�J /.J.M// (of dimension smaller
than d ). In particular, this is the case if Q has an absolutely continuous component
with respect to the volume measure on M .
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Example 3.1. Consider the sphere Sd D fx 2 R
dC1 W jxj2 D 1g and the inclusion

map as the embedding J . Then P.x/ D x=jxj .x ¤ 0/. It is not difficult to check
that the Jacobian matrix of the projection, considered as a map on R

dC1 into R
dC1,

is given by
.Jacob P/x D jxj�1ŒIdC1 � jxj�2.xxt /�; .x ¤ 0/: (13)

Let A.x/ be a d � .d C 1/ matrix whose rows form an orthonormal basis
of Tx.Sd / D fv 2 R

dC1 W xtv D 0g. Then the differential of P.x/, as a
map on R

dC1 into Sd , is expressed in coordinates of this basis as .dxP /u D
A.x/.Jacob P/xu.u 2 R

dC1/. The left sides of (11) and (12) are then obtained
by letting x D �J and X , respectively, and u D Y � �J . For d D 2, and
x D .x1; x2; x3/t ¤ .0; 0;˙1/t , and x3 ¤ 0, one may choose the two rows of
A.x/ as .�x2; x1; 0/=p.x2/2 C .x1/2 and ..x1; x2;�..x2/2C.x1/2/=x3/=c; where
c normalizes the second vector to unity. For x D .0; 0;˙1/, one may simply take
the basis vectors of Tx.S2/ as (1,0,0), and (0,1,0). If x3 D 0 and x1 ¤ 0; x2 ¤ 0,
then the second vector in the basis may be taken as (0,0,1). Permuting the indices,
all cases are now covered.

4 Asymptotic Distribution of the Intrinsic Sample Mean
and the Role of Curvature

In this section we apply Theorem 2.5 to the intrinsic mean �I on a Riemannian
manifold M with metric tensor g. That is, �I is the Fréchet mean with respect to
the geodesic distance � D �g (with ˛ D 2 in (1)).

On the tangent space Tp.M/ at p of a complete Riemannian manifold M , one
defines the exponential map Expp W Tp.M/ ! M , by letting Expp.v/ be the point
q D �.jvj/ reached at time t D jvj by the unit speed geodesic �.t/ D �.t Ip; v/
with �.0/ D p and initial speed P�.0/ D v=jvj if v ¤ 0, and Expp.0/ D p. For each
unit vector v in Tp.M/, let t0 D t0.p; v/ be the supremum of all t such that the unit
speed geodesic �.:Ip; v/ is length minimizing on Œ0; t �. Then �.t0Ip; v/ is called a
cut point of p and the set of all cut points of p (as v varies over all unit vectors
in Tp.M/ ) is called the cut locus of p and denoted by C.p). For q 2 MnC.p/,
the inverse Exp�1

p .q/ of the exponential map is defined as v D v.q/ 2 Tp.M/

such that Expp.v/ D q. It is known that Exp�1
p is a diffeomorphism on MnC.p/

onto its image in Tp.M/, which is homeomorphic to an open ball in Tp.M/ with
center 0 (p. 271) [17]. The quantity inj.M/ D inff�g.p; C.p//Ip 2 M g is called
the injectivity radius of M . The inverse exponential map Exp�1

p .q/ gives rise to the
so-called normal coordinates of q (with pole p), q 2 MnC.p/, when expressed in
terms of an orthonormal basis of Tp.M/.

Let Q be a probability with support contained in a geodesic ball Br.p/ of
radius r centered at p. If a unique minimizer of the Fréchet function F.q/ D
R

�2g.q; q
0/Q.dq0/, q 2 Br.p/, exists (in Br.p//, it is called a local intrinsic mean
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of Q in Br.p/. We will denote by NC the least upper bound of sectional curvatures
of M; if this l.u.b. is positive, and zero if the l.u.b is negative or zero. Part (a) of the
following theorem, which is an extension of Theorem 2.2 in [11], and Theorem 4.2
in [4], now follows from Theorem 2.5. Part (b) is derived in [5]. For its notation we
use the order A � B for symmetric d � d matrices A,B to mean that A � B is
nononegative definite. The function f appearing in (16) is defined as

f .x/ D

8

ˆ̂
<

ˆ̂
:

1 if NC D 0p NCx cos.
p NCx/= sin.

p NCx/ if NC > 0p NCx cosh.
p NCx/= sinh.

p NCx/ if NC < 0

(14)

with NC , as defined earlier, the l.u.b. of the sectional curvatures of M if positive,
or zero otherwise. Theorem 2.5 is a CLT for the local intrinsic sample mean �n
around the local intrinsic mean �I of a probability Q, based on i.i.d. observations
X1; � � � ; Xn with common distribution Q. Actually we look at vector valued Yi D
�.Xi/, where � is the inverse exponential map Exp�1

p on an appropriate open subset
of Tp.M/, and derive a CLT for �n D �.�n/ around � D �.�I /. Estimation of �I
is then achieved via ��1.

Theorem 4.1. Let Q have support in a geodesic ball Br.p/ with Br.p/ �
MnC.p/.

Assume the following conditions (A1)–(A5):

(A1) The local intrinsic mean �I exists in Br.p/.
(A2) Let � denote the inverse exponential map Exp�1

p , h.z; y/ D �2g.�
�1z; ��1y/,

with z; y 2 V D Exp�1
p .Br.p// expressed in normal coordinates with respect

to an orthonormal basis of Tp.M/; then z ! h.z; y/ is twice continuously
differentiable for all y.

(A3) With  .r/.z; y/ � Drh.z; y/ D .@=@zr /d 2g .�
�1z; ��1y/, one has

E. .r/.�; Y1//
2 < 1 8r D 1; � � � ; d; where � D Exp�1

p .�I / and Y1 has
the distribution Q ı ��1.

(A4) One has supfEjD. .r/.y; Y1/�D. .r/.�; Y1/j W jy � �j � �g ! 0 as � # 0.
(A5) ƒ D ..EDs 

.r/.�; Y1/// � ..fEDsDrh.z; Y1/gzDv// is nonsingular.

Then,

(a) Denoting by �n the local intrinsic sample mean, �.�n/ has the asymptotic
distribution given by

p
n Œ�.�n/ � �.�I /� ! N

�

0;ƒ�1 Q†ƒ�1� (15)

in distribution as n ! 1, where Q† D Cov.f .r/.�; Y1/ W r D 1; � � � ; d g/:
(b) If one takes p D �I , then � D 0, and

(i)  .r/.0; y/ D �2yr
(ii) E.Y1/ D R

yQ ı ��1.dy/ D 0,



A Nonparametric Theory of Statistics on Manifolds 185

(iii) Q† D 4Cov.Y1/ D 4E.Y1Y
t
1 /,

(iv) The matrix ƒ D ..ƒrs//1�r;s�d satisfies the order relation

ƒ � ..2E..Œ1� f .jY1j/�=jY1j2/Y r1 Y s1 C f .jY1j/ırs///1�r;s�d ; (16)

with equality in (16) in the case of constant sectional curvature.

Remark 4.2. If Q has a density component with respect to the volume measure on
M , then Q† is nonsingular.

Remark 4.3. It has been proved by W.S. Kendall [35] that if the support of Q
is contained in Br�=2.p/ where r� D minfinj.M/; �=

p NC g, then a local Fréchet
mean �I of Q exists in Br�=2.p/. The result of Afsari [1] shows that this �I is the
global minimizer onM . If, in addition, the support ofQ is contained in Br�=2.�I /,
then all the assumptions of Theorem 4.1 are satisfied [5, 6]. For manifolds with
nonpositive curvature, the central limit theorem (15) holds for all Q, provided the
Fréchet function of Q is finite and EjY1j2 < 1 (see [11], Remark 2.2)

Example 4.1. The sphere Sd D fx 2 R
dC1 W jxj2 D 1g is a compact Riemannian

manifold under the metric induced by the inclusion map. Its geodesics are the
big circles, the geodesic starting at p with an initial velocity v being given by
�.t Ip; v/ D .cos t jvj/pC.sin t jvj/v=jvj, with v 2 Tp.Sd / D fv 2 R

dC1 W ptv D 0g.
The cut locus of p is C.p/ D f�pg. The exponential map and its inverse are
given by

Expp.0/ D p;Expp.v/ D cos.jvj/p C sin.jvj/v=jvj; v ¤ 0; .v 2 Tp.Sd //I (17)

Exp�1
p .p/ D 0; Exp�1

p .q/ D arccos.ptq/=.1� .pt q/2/1=2Œq � .pt q/p�; .q ¤ p;�p/:

The geodesic distance between p and q is �g.p; q/ D arccos.ptq/ 2 Œ0; ��,
so that the injectivity radius is inj.Sd / D � . Because of isotropy, the sectional
curvature is the same for every section of Tp.Sd /, for all p, and the unit sphere has
therefore the constant curvature 1. Thus the quantity r� appearing in Remark 4.3
has the value � , so that the conclusions of Theorem 4.1 hold if the support of Q is
contained in B�=2.p/ as well as in B�=2.�I /. Here the function f in (14) is f .u/ D
u.cos u/=.sin u/. The normal coordinates y1; � � � ; yd at �I of x D Exp�I .y/,
where y is expressed as y D y1v1 C � � � C ydvd with respect to an orthonormal
basis fvr W r D 1; � � � ; d g of T�I .S

d /, are now given by (see (17)):

yr D arccos.�tI x/=.1 � .�tI x/
2/1=2xtvr ; .r D 1; � � � ; d /; x 2 Sd : (18)

Nowƒr;s is computed from its definition in (A5), with Y1r given by the right hand
side of (18) obtained by substituting X1 (with distribution Q) for x, and, similarly,
Y1s is obtained by changing r to s.
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5 Nonparametric Inference on General Manifolds

Theorems 2.5 and 3.3 allow us to construct nonparametric confidence regions for
intrinsic and extrinsic means of probability measures Q on a manifold M , and to
carry out nonparametric two-sample tests for the equality of such means of two
distributions Q1 and Q2 on M . The latter tests are really meant to distinguish Q1

from Q2. On high dimensional spaces, such as the shape spaces of main interest
here, the means are generally good indices for this purpose, as the data examples in
Sect. 9 show.

For the construction of an extrinsic confidence region for the extrinsic mean
�E of Q one may use the corresponding region for �J using (11) or (12) and
then transform by J�1. In general (12) is simpler to use. The following asymptotic
chisquare distribution is an easy consequence:

n
�

.d NY P /. NY � �J /�t . OB O† OBt/�1
�

.d NY P /. NY � �J /
� ! �2d in distribution, (19)

where �2d is the chisquare distribution with d degrees of freedom. Here OB D B. NY /
estimates B D B.�J /, and O† is the sample covariance matrix of Y1; � � � ; Yn.
The statistic does not depend on the choice of the orthonormal basis of T NY .J.M//

for computing OB. The relation (19) may be used to construct a confidence region for
the extrinsic mean �E . Bootstrapping, which leads to a smaller order of coverage
error in the case of an absolutely continuous Q; may not always be feasible if N
is large and the sample size n is not sufficiently large to ensure that, with high
probability, the bootstrap sample is not degenerate.

Turning to the (local) intrinsic mean �I of Q, (15) leads to the asymptotic
chisquare distribution

nŒ�.�n/� �.�I /�
t Oƒ OQ†�1 OƒŒ�.�n/� �.�I /� ! �2.d/ (20)

in distribution as n ! 1, where O denotes an estimate with Q replaced by the
empirical Qn; that is, the distribution Q ı ��1 of Y1 is replaced by Qn ı ��1 D
n�1P

1�i�n ıYi . This leads to a confidence region for �I . One arbitrariness here
is the choice of the point p in computing �. It seems reasonable to take p close
to �n. Another idea is to use p D �I , in which case �.�I / D 0. To use (20) in
this case to obtain a confidence region would be computationally more intensive.
It would involve finding those values p such that, with � D Exp�1

p , the left side
in (20) (with �.�I / D 0) is smaller than �2d .1 � ˛/, the .1 � ˛/-th quantile of
�2d . This requires computing the quantities in (20), including �.�n/, for each p.
But, unlike the case of the extrinsic mean where the ambient vector space EN has
generally a large dimension and the bootstrap estimate of the covariance matrix †
tends to be singular, Q† in (20) is a d � d matrix. If Q is absolutely continuous,
which is a reasonable assumption in most shape data, the bootstrap construction
of the confidence region will tend to have a smaller coverage error than the one
using �2d .
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We next consider the the two-sample problem of distinguishing two distributions
Q1 and Q2 on M , based on two independent samples of sizes n1 and n2,
respectively: fYj1 D J.Xj1/ W j D 1; � � � ; n1g; fYj2 D J.Xj2/ W j D 1; � � � ; n2g.
Hence the proper null hypothesis is H0 W Q1 D Q2: For high dimensional M
it is often sufficient to test if the two Fréchet means are equal. For the extrinsic
procedure, again consider an embedding J into EN . Write �i for �Ji for the
population means and NYi for the corresponding sample means onEN (i D 1; 2/. Let
n D n1Cn2, and assume n1=n ! p1, n2=n ! p2 D 1�p1, 0 < pi < 1.i D 1; 2/,
as n ! 1. If �1 ¤ �2 thenQ1 ¤ Q2. One may then test H0 W �1 D �2.D �,say).
Since N is generally quite large compared to d , the direct test for H0 W �1 D �2
based on NY1 � NY2 is generally not a good test. Instead, we compare the two extrinsic
means �E1 and �E2 of Q1 and Q2 and test for their equality. This is equivalent to
testing if P.�1/ D P.�2/. Then, by (12), assumingH0,

n1=2d NY P. NY1 � NY2/ ! N.0;B.p1†1 C p2†2/B
t / (21)

in distribution, as n ! 1.
Here NY D p1 NY1 C p2 NY2 is the pooled estimate of the common mean �1 D �2 D

�, say, B D B.�) (see (11)), and †1, †2 are the covariance matrices of Yj1 and
Yj2. This leads to the asymptotic chisquare statistic below:

nŒd NY P. NY1 � NY2/�t Œ OB.p1 O†1 C p2 O†2/ OBt ��1Œd NY P. NY1 � NY2/� ! �2d (22)

in distribution, as n ! 1.
Here OB D B. NY /, O†i is the sample covariance matrix of Yj i . One rejects the null

hypothesis H0 at a level of significance 1 � ˛ if and only if the observed value of
the left side of (22) exceeds �2d .1 � ˛/:

For the two-sample intrinsic test, let �I1, �I2 denote the intrinsic means of Q1

and Q2 and consider H0 W �I1 D �I2. Denoting by �n1, �n2 the intrinsic sample
means, (15) implies that, underH0,

n1=2Œ�.�n1/ � �.�n2/� ! N.0; p1ƒ
�1
1

Q†1ƒ�1
1 C p2ƒ

�1
2

Q†2ƒ�1
2 / (23)

in distribution,
where � D Exp�1

p for some convenient p in M , and ƒi , Q†i are as in
Theorem 4.1 with the empirical Qni in place of Qi.i D 1; 2/. For p choose �n
on the geodesic from �n1 to �n2 with Pg.�n; �n1/ D p2Pg.�n1; �n2/, and with this
choice we write O� for �. The test then rejects H0 W Q1 D Q2, if

nŒ O�.�n1/� O�.�n2/�t Œp1 Oƒ�1
1

OQ†1 Oƒ�1
1 C p2 Oƒ�1

2
OQ†2 Oƒ�1

2 ��1Œ O�.�n1/ � O�.�n2/� > �2d .1� ˛/:

(24)
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Finally, consider a match pair problem with i.i.d. observations .Xj1; Xj2/ having
the distribution Q on the product manifold M � M . If J is an embedding of M
into EN , then QJ .x; y/ D .J.x/; J.y// is an embedding of M � M into EN �
EN . Let �E1, �E2 be the extrinsic means of the (marginal) distributions Q1 and
Q2 of Xj1 and Xj2, respectively. Once again, we are interested in testing H0 W
Q1 D Q2 by checking if �E1 D �E2. Note that the extrinsic mean of Q is Q�E D
.�E1; �E2/. If NY1, NY2 are the sample means of Yj1 D J.Xj1/, Yj2 D J.Xj2/, j D
1; � � � ; n, on EN with E.Yj1/ D �1 and E.Yj2/ D �2, and NQY D . NY1; NY2/, then the
extrinsic sample mean in the image space QJ .M �M/ is .P. NY1/; P. NY2//. Also, write
NY D . NY1 C NY2/=2. UnderH0, �1 D �2 D �, say, and one has

n1=2d NY .P. NY1/ � P. NY2// ! N.0;†11 C†22 �†12 �†21/: (25)

On the right,†11 and†22 are the d �d covariance matrices of .d�P /.Yj1��1/ and
.d�P /.Yj2��2/, while†12 is the d�d cross covariance matrix of .d�P /.Yj1��1/
and .d�P /.Yj2 � �2/, and †21 D †t12. As above, one derives a chisquare test for
H0, using (25) and sample estimates of the covariance matrices.

6 Geometry of Shape Spaces and Equivariant Embeddings

The manifolds of main interest to us are shape spaces of landmarks based k-ads.
A k-ad is a set of k labeled landmarks, k > m, not all the same, measured on an
object or scene of interest. In general, the k-ad .x1; � � � ; xk/ is a k-tuple of points
in R

m, represented as an m � k matrix, although only m D 2 and 3 are of practical
interest for the most part. The shape of a k-ad is the k-ad modulo a Lie group of
transformations or, equivalently, it is the maximal invariant, or orbit, of the k-ad
under this group. The appropriate Lie group depends on the particular statistical
goal and the way the measurement of a k-ad may vary, for example, because of
differences in equipment, the position and angle from which the observations are
taken or recorded, etc.

6.1 Kendall’s Similarity Shape Space †k
m

The similarity shape of a k-ad x D .x1; � � � ; xk/ in R
m, not all points the same, is

its orbit under the group generated by translations, scaling and rotations. Writing
Nx D .x1 C � � � C xk/=k, < Nx >D . Nx; � � � ; Nx/, the effect of translation is removed
by looking at .x1 � Nx; � � � ; xk � Nx/ D x� < Nx >, which lies in the mk � m

dimensional hyperplaneL of Rmk made up of m� k matrices with the m row sums
all equal to zero. To get rid of scale, one looks at u D .x� < Nx >/=jx� < Nx > j,
where j:j is the usual norm in R

mk . This translated and scaled k-ad is called the
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preshape of the k-ad. It lies on the unit sphere in L, and is isomorphic to Sm.k�1/�1.
An alternative representation of the preshape is obtained as p D xH=jxH j, where
H is the k � .k � 1/ Helmert matrix comprising k � 1 column vectors forming
an orthonormal basis of 1?, namely, the subspace of Rk orthogonal to .1; � � � ; 1/t .
A standard H has the j -th column given by .a.j /; � � � ; a.j /;�ja.j /; 0; � � � ; 0/t ,
where a.j / D Œj.j C 1/��1=2 .j D 1; � � � ; k � 1/. Then p is anm� .k � 1/ matrix
of norm one. The shape �.x/ D �.p/ of x is then identified with the orbit of p
under all rotations:

�.x/ D �.p/ D fAp W A 2 SO.m/g; (26)

ŒSO.m/ D fA W AAt D Im; det.A/ D 1g�:

SO.m/ is called the special orthogonal group acting on R
m. The set of all shapes

�.x/ is Kendall’s similarity shape space †km;R > m.

6.1.1 Intrinsic Geometry of †k
2

For the case m D 2, it is convenient to regard a k-ad x D ..x1; y1/; � � � ; .xk; yk//
as a k-tuple z D .z1; � � � ; zk/ of numbers z1 D x1 C iy1; � � � ; zk D xk C iyk in the
complex plane C, and let p D .z� < Nz >/=jz� < Nz > j. Then the shape of x, or z,
is identified with the orbit Op,

�.z/ D �.p/ D fei�p W � 2 .��; ��g D Op: (27)

One may equivalently, consider the shape as the orbit f�..z� < Nz >/ W � 2 Cg.
That is, the shape of x, or z, is identified with a complex line passing through the
origin in the subspace of Ck of complex dimension k � 1 defined by QL D fq D
.q1; � � � ; qk/ 2 C

knf0g W q1 C � � � C qk D 0g � C
k�1nf0g. The shape space is then

identified with the complex projective space CPk�2, of (real) dimension 2k � 4.
Note that fei� W � 2 .��; ��g is a 1-dimensional compact group G.�S1/

of isometries of the preshape sphere CSk�1 D fq D .q1; � � � ; qk/ W jqj D 1;

q1 C � � � C qk D 0g. By Helmertization, we will use the representation of CSk�1
as fp D .p1; � � � ; pk�1/ 2 C

k�1 W jpj D 1g, which is isomorphic to S2k�3,
and †k2 D CSk�1=G. Recall that the metric tensor on S2k�3 � CSk�1 is that
inherited from the inclusion map into R

2.k�1/ D f.x1; y1; x2; y2; � � � ; xk�1; yk�1/ W
.xj ; yj / 2 R

2 8j g � C
k�1 D f.z1; z2; � � � ; zk�1/ W zj D xj C iyj 2 C 8j g,

namely, hv;wi D Re.vw�/, when v,w are expressed as complex 1 � .k � 1/

matrices (row vectors) in CSk�1. The projection map is then � W p ! �.p/.
The vertical subspace Vp is obtained by differentiating the curve � ! ei�p, say
at � D 0, yielding ip. That is, Vp D fcip W c 2 Rg. Thus the horizontal subspace
is Hp D fQv W Re.pQv�/ D 0;Re..ip/Qv�/ D 0g D fQv W pQv� D 0g. The geodesics
�.t I �.p/; v/ for v D .dp�/Qv (for Qv in Hp), and the exponential map Exp�.p/ on
†k2 are specified by this isometry between T�.p/.†k2/ and Hp for all shapes �.p/
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(see Example 4.1). Thus, identifying vectors v in Hp with vectors v in T�.p/.†k2/,
one obtains

T�.p/.†
k
2/ D fv D .dp�/Qv W 8v such that pQv� D 0g (28)

Exp�.p/0 D �.p/; Exp�.p/v D �.cos.jQvj/p C sin.jQvj/Qv=jQvj/ .v ¤ 0; pQv� D 0/I
�.t I �.p/; v/ D �..cos t/p C .sin t/Qv=jQvj/; .t 2 R; pQv� D 0/; v ¤ 0:

Denoting by �gs and �g the geodesic distances on CSk�1 and †k2 , respectively,
and recalling that (see Example 4.1) �gs.p; q/ D arccos.Repq�/, one has

�g.�.p/; �.q// D inff�gs.p0; q0/ W p0 2 Op; q0 2 Oqg (29)

D inffarccos.Reei�pq�/ W � 2 Œ0; 2�/g
D arccos.jpq�j/ 2 Œ0; �=2�:

It follows that the geodesics are periodic with period � , and the cut locus of �.p/
is f�.q/ W all q such that arccos.jpq�j/ D �=2g, and that the injectivity radius of
†k2 is �=2. The inverse exponential map is given by Exp�1

�.p/.�.q// D v, where

v D .dp�/Qv .Qv 2 Hp/, and Qv satisfies (Use (17) with the representation of S2k�3 as
CSk�1)

Qv D Exp�1
p .qe

i� / (30)

D Œarccos.Re.pq�e�i� /�.1 � ŒRe.pq�e�i� /�2/�1=2qei� � .pq�e�i� /p;

where � is so chosen as to minimize �gs.p; qei� / D arccos.Re.pq�e�i� //. That
is, .pq�e�i� / D jpq�j, or ei� D pq�=jpq�j ( for pq� ¤ 0, i.e., for �.q/ not in
C.�.p//.

Hence, writing � D .arccos/�g.�.p/; �.q//, � ¤ 0, one has

Qv D Œarccos.jpq�j/�.1 � jpq�j2/�1=2f.pq�=jpq�j/q � jpq�jpg (31)

D Œ�= sin ��fqei� � .cos�/pg .ei� D pq�= cos�/:

This horizontal vector Qv(2 Hp) represents Exp�1
�.p/.�.q// D v.

The sectional curvature of †k2 at a section generated by two orthonormal vector
fields QW1 and QW2 is 1 C 3 cos2 � where cos� D hU1; iU2i, U1 and U2 being the
horizontal lifts of QW1 and QW2 (see [17]).
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6.1.2 Extrinsic Geometry of †k
2

Induced by an Equivariant Embedding

One problem with carrying out an intrinsic analysis of the Fréchet mean is that
no broad sufficient condition is known for its existence (i.e., of the uniqueness
of the minimizer of the corresponding Fréchet function). Also, often such an
analysis, assuming uniqueness, is computationally much more intensive than an
extrinsic analysis. However, for an extrinsic analysis to be very effective one should
choose a good embedding which retains as many geometrical features of the shape
manifold as possible without making it cumbersome. Let � be a Lie group acting
on a differentiable manifold M , and denote by GL.N;R) the linear group of
nonsingular transformations on a Euclidean space EN of dimension N onto itself.
An embedding J on M into EN is said to be �-equivariant if there exists a group
homomorphism ˆ W � ! �� of � into GL.N;R/ such that J.�p// D ��.Jp/

8p 2 M , � 2 � . Often, when there is a natural Riemannian structure on M , � is
a group of isometries ofM . Consider the so-called Veronese-Whitney embedding J
of †k2 into the (real) vector space S.k � 1;C/ of all .k � 1/ � .k � 1/ Hermitian
matrices B D B�, defined by

J�.p/ D p�p Œ�.p/ D fei�p; � 2 Œ0; 2�/; p 2 CSk�1�: (32)

The Euclidean inner product on S.k � 1;C/, considered as a real vector space,
is given by hB;C i D Re.Trace.BC �//. Let SU.k � 1/ denote the special unitary
group of all .k�1/�.k�1/ unitary matricesA (i.e.,A�A D I , det.A/ D 1) acting
on S.k � 1;C) by B ! A�BA. Then the embedding (32) is �-equivariant, with
� D f�A W A 2 SU.k�1/g and the group action on†k2 given by: �A�.p/ D �.pA/.
For J�.pA/ D A�p�pA D �.�A/.J�.p//, say, where the group homomorphism
on � onto SU.k � 1/ is given by �A ! �.�A/ W �.�A/B D A�BA: Note that
SU.k � 1/ is a group of isometries of S.k � 1;C/. If †k2 is given the metric tensor
inherited from S.k � 1;C/ by the embedding (32), then the embedding is isometric
as well as equivariant.

A size-and-shape similarity shape s�.z/ is defined for Helmertized k-ads
z D .z1; � � � ; zk�1/ as its orbit under SO.m/. An equivariant embedding for it
is s�.z/ ! z�z=jzj, on the size-and-shape-similarity shape space S†k2 into
S.k � 1;C/:

6.2 Reflection Similarity Shape Space R†k
m, m > 2

Form > 2, let QNSm.k�1/�1 be the subset of the centered preshape sphere Sm.k�1/�1
whose points p span R

m, i.e., which, as m � .k � 1/ matrices, are of full rank. We
define the reflection similarity shape of the k-ad as

r�.p/ D fAp W A 2 O.m/g .p 2 QNSm.k�1/�1/; (33)
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where O.m/ is the set of all m � m orthogonal matrices A W AAt D Im,
det.A/ D ˙1. The set fr�.p/ W p 2 QNSm.k�1/�1g is the reflection similarity shape
space R†km D QNSm.k�1/�1=O.m/. Since QNSm.k�1/�1 is an open subset of the
sphere Sm.k�1/�1, it is a Riemannian manifold. Also O.m/ is a compact Lie group
acting on it. Hence there is a unique Riemannian structure on R†km such that the
projection map p ! O.p/ is a Riemannian submersion.

We next consider a useful embedding of R†km into the vector space S.k � 1;R)
of all .k � 1/ � .k � 1/ real symmetric matrices (see [3, 8, 9, 20]). Define

J.r�.p// D ptp .p 2 QNSm.k�1/�1/; (34)

with p anm� .k�1/matrix with norm one. Note that the right side is a function of
r�.p/. Here the elements p of the preshape sphere are Helmertized. To see that this
is an embedding, we first show that J is one-to-one on R†km into S.k � 1;R/. For
this note that if J.r�.p// and J.r�.q// are the same, then the Euclidean distance
matrices ..jpi � pj j//1�i�j�k�1 and ..jqi � qj j//1�i�j�k�1 are equal. Since p and
q are centered, by geometry this implies that qi D Api.i D 1; � � � ; k � 1/ for some
A 2 O.m/, i.e., r�.p/ D r�.q/. We omit the proof that the differential dJ is
also one-to-one. It follows that the embedding is equivariant with respect to a group
action isomorphic to O.k � 1/.

For m > 2, a size-and-reflection shape sr�.z/ of a Helmertized k-ad z in R
m of

full rankm is given by its orbit under the groupO.m/. The space of all such shapes
is the size-and-reflection shape space SR†km. An O.k � 1/-equivariant embedding
of SR†km into S.k � 1;R/ is : J.sr�.z// D zt z=jzj.

6.3 Affine Shape Space A†k
m

Let k > m C 1. Consider the set of all k-ads in R
m, with full rank m as m � k

matrices. The affine shape of a k-ad x may be identified with its orbit under all
affine transformations:

�.x/ D fAx C c W A 2 GL.m;R/; c 2 R
mg: (35)

If the k-ad is centered as u D x� < Nx >, then the affine shape of x, or of u, is
given by

�.x/ D �.u/ D fAu W A 2 GL.m;R/g; .u centered k � ad of rank m/: (36)

The space of all such affine shapes is the affine shape space A†km. Note that two
Helmertized k-ads u and v (asm�.k�1/matrices of full rank) have the same shape
if and only if the rows of u and v span the same m-dimensional subspace of Rk�1.
Hence we can identifyA†km with the GrasmannianGm.k�1/, namely, the set of all
m-dimensional subspaces of Rk�1 (Sparr [45]. For the Grassmann manifold, refer to
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Boothby [16], pp. 63, 168, 362, 363). For extrinsic analysis on A†km � Gm.k � 1/,
consider the embedding of A†km into S.k � 1;R/ given by

J.�.u// D FF t ; (37)

where F D .f1 � � �fm/ is a .k � 1/ �m matrix and ff1; � � � ; fmg is an orthonormal
basis of them-dimensional subspaceL, say, of Rk�1 spanned by the rows of u. Note
that the .k � 1/� .k � 1/matrix FF t is idempotent and is the matrix of orthogonal
projection of Rk�1 onto L. It is independent of the orthonormal basis chosen. The
embedding is O.k � 1/-equivariant under the group action �.u/ ! �.uO/ .O 2
O.k � 1// on A†km, with O.k � 1/ acting on S.k � 1;R/ by A ! OAOt .

6.4 Projective Shape Space P†k
m

First, recall that the real projective space RPm is the space of all lines through the
origin in R

mC1. Its elements are Œp� D f�p W � 2 Rnf0gg for all p 2 R
mC1nfog. It is

also conveniently represented as the quotient Sm=G whereG is the two-point group
fe;�eg, e being the identity map and �ep D �p (p 2 Sm/. That is, a line through
p is identified with fp=jpj;�p=jpjg ( p 2 R

mC1nfog/. As a consequence, there is
a unique Riemannian metric tensor on RPm D Sm=G such that p ! fp;�pg is a
Riemannian submersion, with hu; viRPm D utv for all vectors u, v in TŒp�RPm. The
geodesic distance is given by �g.Œp�; Œq�/ D arccos.jptqj/ 2 Œ0; �=2�, and the cut
locus of Œp� is C.Œp�/ D fŒq� W cos.jptqj/ D �=2g, so that the injectivity radius of
RPm is �=2. Its sectional curvature is constant C1 (as it is of Sm). The exponential
map of TŒp�RPm (and its inverse on RPmn.C.Œp�// can be easily expressed in terms
of those for the sphere Sm. We will use [ ] for both representations.

The so-called Veronese-Whitney embedding of RPm into S.mC1;R/ is given by

J.Œp�/ D ppt ; .p D .p1; � � � ; pmC1/t 2 Sm/: (38)

It is clearly O.m C 1/-equivariant, with the group action on RPm as : AŒp� D
ŒAp� .A 2 O.mC 1//.

Turning to landmarks based projective shapes, assume k > m C 2.
A frame of RPm is a set of m C 2 ordered points .Œp1�; � � � ; ŒpmC2�/ such
that every subset of m C 1 of these points spans RPm, i.e., every subset of
m C 1 points of fp1; � � � ; pmC2g spans R

mC1. The standard frame of RPm is
.Œe1�; Œe2�; � � � ; ŒemC1�; Œe1 C e2 C � � � C emC1�/, where ei .2 R

mC1/ has 1 in the
ith position and zeros elsewhere. A k-ad y D .y1; � � � ; yk/ D .Œp1�; � � � ; Œpk�/ 2
.RPm/k is in general position if there exist i1 < i2 < � � � < imC2 such that
.yi1 ; � � � ; yimC2

/ is a frame of RPm. A projective transformation ˛ on RPm is
defined by

˛Œp� D ŒAp�; .p 2 R
mC1nf0g/ (39)
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whereA 2 GL.mC1;R/. The usual operation of matrix multiplication onGL.mC
1;R/ then leads to a corresponding group of projective transformations on RPm.
This is the projective group PGL.m/. Note that, for a given A in GL.m C 1;R),
cA determines the same element of PGL.m) for all c ¤ 0. The projective shape
of a k-ad y D .y1; � � � ; yk/ D .Œp1�; � � � ; Œpk�/ 2 .RPm/k in general position is its
orbit under PGL.m/:

�.y/ D f˛y � .˛Œp1�; � � � ; ˛Œpk�/ W ˛ 2 PGL.m/g ; (40)

.y D .Œp1�; � � � ; Œpk� in general position/:

The projective shape space PG†km is the set of all projective shapes of k-ads in
general position. Following Mardia and Patrangenaru [39] and Patrangenaru et al.
[41], we will consider a particular dense open subset of PG†km. Fix a set of mC 2

indices I D fij W j D 1; � � � ; m C 2g, 1 � i1 < i2 < � � � < imC2 � k. Define
PGI†

k
m as the set of shapes �.y/ in PG†km, y D .y1; � � � ; yk/ D .Œp1�; � � � ; Œpk�/;

such that every subset of mC 1 points of fŒpij �; j D 1; � � � ; mC 2g spans RPm.
The shape space PGI†km (with I D f1; 2; � � � ; m C 2g) may be identified with

.RPm/k�m�2 (see [39]). It has been shown in [12] that the full projective shape
space PG†km in a differentiable manifold.

7 Inference on Shape Spaces

In this section we indicate how Theorems 2.5, 3.3, 4.1 and the inference procedures
for general manifolds described in Sect. 5 may be applied to shape spaces, using the
sphere Sd and the planar shape space †k2 as illustrations.

For intrinsic analysis, consider the function h.z; y/ D �2g.Exppz; Exppy/
for z, y in TpM , with an appropriate choice of p. One first needs to express
explicitly the quantities Drh.z; y/, DrDsh.z; y/ in normal coordinates at p, i.e.,
at z D 0 � Exp�1

p p. (See Theorem 4.1.) For this let �.s/ be a geodesic starting
at p, and m 2 M . Define the parametric surface c.s; t/ D Expm.tExp

�1
m �.s//,

s 2 Œ0; �/, � > 0 small. Note that c.s; 0/ D m for all s, c.s; 1/ D �.s/, and that, for
all fixed s 2 Œ0; �/, t ! c.s; t/ is a geodesic starting atm and reaching �.s/ at t D 1.
Writing T .s; t/ D .@=@t/c.s; t/, S.s; t/ D .@=@s/c.s; t/, one then has S.s; 0/ D 0;

S.s; 1/ D P�.s/. Also, hT .s; t/; T .s; t/i does not depend on t and, therefore,

�2g.�.s/;m/ D
Z 1

0

hT .s; t/; T .s; t/idt: (41)

Differentiating this respect to s and recalling the symmetry .D=@s/T .s; t/ D
.D=@t/S.s; t) on a parametric surface (see [17, p. 68, Lemma 3.4]), and
.D=@t/T .s; t/ D 0, one has
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.d=ds/�2g.�.s/;m/ D 2

Z 1

0
h.D=@s/T .s; t/; T .s; t/idt (42)

D 2

Z 1

0
h.D=@t/S.s; t/; T .s; t/idt D 2

Z 1

0
.d=dt/hS.s; t/; T .s; t/idt

D 2hS.s; 1/; T .s; 1/i D �2h P�.s/;Exp�1
�.s/mi:

Setting s D 0 in (42) and letting P�.0/ D vr , with fvr W r D 1; � � � ; d g an
orthonormal basis of TpM , one shows that the normal coordinates yr of m (i.e., the
coordinates of y D Exp�1

p m with respect to fvr W r D 1; � � � ; d g/ satisfy

� 2yr � �2hExp�1
p m; vri D Œ.d=ds/�2g.�.s/;m/�sD0: (43)

From this one gets

Drh.0; y/ D �2yr.r D 1; � � � ; d /: (44)

IfQ.C.p// D 0, then writing QQ for the distribution induced fromQ by the map
Exp�1

p on TpM , the Fréchet function may be expressed as

F.q/ D
Z

�2g.q;m/Q.dm/ D
Z

h.z; y/ QQ.dy/ D QF .z/; .z D Exp�1
p q/: (45)

Since a (local) minimum of this is attained at q D �I , QF must satisfy a first order
condition Dr

QF .z/ D 0 at z D �. In particular, letting p D �I and, consequently,
� D 0, one has

R

Drh.0; y/ QQ.dy/ D 0, so that (44) yields

Z

yr QQ.dy/ D 0 .r D 1; � � � ; d /; . QQ D Q ı ��1; � D Exp�1
�I
/: (46)

Note that (44) and (46) are the relations stated in Theorem 4.1(b)(i),(ii).
By Theorem 4.1, the asymptotic distribution of the sample intrinsic mean �n is

that of ��1.�n/, where � D Exp�1
p , and (see (7))

p
n.�n � �/ ' ƒ�1Œ.1=

p
n/

X

1�j�n
Dh.�; Yj /�; .ƒrs D EDrDsh.�; Y1/; 1 � r; s � d/;

(47)
with Yj D �.Xj /, whereXj are i.i.d. with distributionQ. By (44), the right side of
(47) simplifies to ƒ�1Œ�2.1=pn/P1�j�n Yj �, if p D �I (and � D 0).

Example 7.1 (Confidence region for the intrinsic/extrinsic mean ofQ on the sphere
Sd ). Let �I be the intrinsic mean of Q on Sd . Given n i.i.d. observations
X1; � � � ; Xn on Sd with common distributionQ, let�n be the intrinsic sample mean.
Write � D Exp�1

�I
, and �p D Exp�1

p , so that ��I D �. By Theorem 4.1,
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p
nŒ�.�n/� �.�I // D p

n�.�n/ ! N.0;ƒ�1 Q†ƒ�1/ in distribution as n ! 1;

(48)
where the d � d matricesƒ and Q† are given by

Q† D 4Cov.�.X1//; (49)

ƒrs D 2EŒ.1� .Xt
1�I /

2/�1f1� .1� .Xt
1�I /

2/�1=2 � .Xt
1�I / arccos.Xt

1�I /g.Xt
1�r /.X

t
1�s/

C .1� .Xt
1�I /

2/�1=2 � .Xt
1�I /.arccos.Xt

1�I ///ırs �; 1 � r; s � d:

Here f�r W 1 � r � d g is an orthonormal basis of T�I S
d .

A confidence region for �I , of asymptotic level 1 � ˛, is then given by

fp 2 Sd W n�p.�n/t Oƒp
OQ†�1
p

Oƒp�p.�n/ � �2d .1 � ˛/g; (50)

whereƒp , Q†p are obtained by replacing �I by p in the expressions forƒ and Q† in
(49). The ‘hat’ (O) indicates that the expectations are computed under the empirical
Qn, rather than Q. As mentioned in Sect. 5, it would be computationally simpler to
choose a particular p D p0, say, and let � D Exp�1

p0
. Then (20) yields a simpler

confidence region:

fp 2 Sd W nŒ�.�n/ � �.p/�t Oƒp0
Q†�1
p0

Oƒp0 Œ�.�n//� �.�p/� � �2d .1 � ˛/g: (51)

We now turn to the distribution of the extrinsic mean NX=j NX j. The .dC1/�.dC1/
Jacobian matrix .Jacob/xP of the projection mapP W x ! x=jxj, viewed as a map
on R

dC1nf0g into R
dC1, is given by (13). Let B.x/ be the d � .d C 1/ matrix of

the differential dxP (on TxRdC1 into TP.x/Sd D fu 2 R
dC1 W P.x/tu D 0g) whose

d rows form an orthonormal basis of TP.x/Sd . Then the differential of the projection
map is

.dxP /u D ŒB.x/.Jacob/xP �u: (52)

If � D EX1 ¤ 0, then, by (19), a confidence region for the extrinsic mean �=j�j
is given by

fx=jxj 2 Sd W nŒ.d NXP /. NX � x/�t . OB O† OBt/�1Œ.d NXP /. NX � x/� � �2d .1� ˛/g: (53)

Here OB D B. NX/, † D Cov.X1/, and O† is obtained by replacing Q by Qn in
computing expectations.

Example 7.2 (Inference on the planar shape space †k2). To apply Theorem 4.1,
we use (47) where � D Exp�1

�.p/ and p is a suitable point in CSk�1. To derive a
computable expression for ƒ, write the geodesic � in the parametric surface c.s; t/
as � D � ı Q� , where Q� is a geodesic in CSk�1 starting at Q� 2 ��1f�I g. Then, with
QT .s; 1/ D .d�.s/�

�1/T .s; 1/,
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.d=ds/�2g.�.s/;m/ D 2 < T .s; 1/; P�.s/ >D 2 < QT .s; 1/; PQ�.s/ >; (54)

.d 2=ds2/�2g.�.s/;m/ D 2 < Ds
QT .s; 1/; PQ�.s/ > :

The final inner products are in TCSk�1, namely, hQv; Qwi D Re.Qv Qw�/. Note that
QT .s; 1/ D �Exp�1

Q�.s/q; q 2 ��1m, may be expressed by (30) and (31) as

QT .s; 1/ D �.�.s/= sin �.s//Œei�.s/q � .cos�.s// Q�.s/�; (55)

where �.s/ D �g.�.s/;m/ and ei�.s/ D .1= cos�.s// Q�.s/q�. The covariant deriva-
tive Ds

QT .s; 1/ is the projection of .d=ds/ QT .s; 1/ onto HQ�.s/. Since h Q�; PQ�.0/i D 0,
(54) then yields

Œ.d 2=ds2/�2g.�.s/;m/�sD0 D 2hŒ.d=ds/ QT .s; 1/�sD0; PQ�.0/i: (56)

Differentiating (55) one obtains

Œ.d=ds/ QT .s; 1/�sD0 D Œ.d=ds/.�.s/ cos �.s//= sin �.s//�sD0 Q� (57)

C Œ.�.s/cos�.s//=sin�.s//�sD0 PQ�.0/� Œ.d=ds/.�.s/=.cos �.s//.sin�.s//�sD0. Q�q�/q

� Œ�.s/=.cos �.s//.sin�.s//�sD0. PQ�.0/q�/q:

From (54), 2�.s/ P�.s/ D 2h QT .s; 1/; Q� 0.s/i, which along with (55) leads to

Œ.d=ds/�.s/�sD0 D �.1= sin r/h. Q�q�= cos r/q; PQ�.0/i; .r D �g.m;�I //: (58)

One then gets (see BB [5, 6])

hŒ.d=ds/ QT .s; 1/�sD0; PQ�.0/i D f.r cos r/=.sin r/gj PQ�.0/j2 (59)

� f.1= sin2 r/� .r cos r/= sin3 rg.Re.x//2 C r=..sin r/.cos r//.Im.x//2;

.x D ei�q PQ�.0/�; ei� D Q�q�= cos r/:

One can check that the right side of (59) depends only on �. Q�/ and not any
particular choice of Q� in ��1f�I g.

Now let f�1; � � � ; �k�2; i�1; � � � ; i�k�2g be an orthonormal basis of T�.p/†k2
where we identify†k2 with CPk�2, and choose the unit vectors �r D .�1r ; � � � ; �k�1

r /,
r D 1; � � � ; k�2, to have zero imaginary parts and satisfy the conditions p��r D 0;

�tr�s D 0 for r ¤ s:

Suppose now that �.p/ D �I , i.e., �.0/ D �I . If P�.0/ D v, then �.s/ D
Exp�I .sv/, so that �2g.�.s/;m/ D h.sv; y/ with y D Exp�1

�I
m. Then, expressing v

in terms of the orthonormal basis,

Œ.d 2=ds2/�2g.�.s/;m/�sD0 D Œ.d 2=ds2/h.sv; y/�sD0 D †vivjDiDj h.0; y/: (60)



198 R. Bhattacharya

Integrating with respect to Q now yields

X

vivjƒij D EŒ.d2=ds2/�2g.�.s/; X/�sD0; .X with distribution Q/: (61)

This identifies the matrix ƒ from the calculations (56) and (59). To be spe-
cific, consider independent observations X1; � � � ; Xn from Q, and let Yj D
Exp�1

�I
Xj .j D 1; � � � ; n/. In normal coordinates with respect to the above basis

of T�I†
k
2 , one has the following coordinates of Yj :

.Re.Y 1j /; � � � ; Re.Y k�2
j /; Im.Y 1j /; � � � ; Im.Y k�2

j // 2 R
2k�4: (62)

Writing

ƒ D
�
ƒ11 ƒ12

ƒ21 ƒ22

�

in blocks of .k � 2/ � .k � 2/ matrices, one arrives at the following expressions
of the elements of these matrices, using (59)–(62). Denote �2g.�I ;X1/ D h.0; Y1/

by �. Then

.ƒ11/rs D 2EŒ�.cot�/ırs � .1=�2/.1 � � cot �/.ReY r1 /.ReY
s
1 / (63)

C ��1.tan �/.ImY r1 /.ImY
s
1 /�I

.ƒ22/rs D 2EŒ�.cot�/ırs � .1=�2/.1 � � cot �/.ImY r1 /.ImY
s
1 /

C ��1.tan �/.ReY r1 /.ReY
s
1 /�I

.ƒ12/rs D 2EŒ�.cot�/ırs � .1=�2/.1 � � cot �/.ReY r1 /.ImY
s
1 /

C ��1.tan �/.ImY r1 /.ReY
s
1 /�I

.ƒ21/rs D .ƒ12/sr :.r; s D 1; � � � ; k � 2/:

One now arrives at the CLT for the intrinsic sample mean �n by Theorem 4.1, or
the relation (20). A two-sample test for H0 W Q1 D Q2, is then provided by (30).

We next turn to extrinsic analysis on †k2 , using the embedding (34). Let �J be
the mean of Q ı J�1 on S.k � 1;C/. To compute the projection P.�J /, let T be
a unitary matrix, T 2 SU.k � 1/ such that T�J T � D D D diag.�1; � � � ; �k�1/,
�1 � � � � � �k�2 � �k�1. For u 2 CSk�1, u�u 2 J.†k2/, write v D T u�. Then
T u�uT � D vv�, and

jju�u � �J jj2 D jjvv� �Djj2 D
X

i;j

jvivj � �j ıij j2 (64)

D
X

j

.jvj j2 C �2j � 2�j jvj j2/

D
X

j

�2j C 1 � 2
X

j

�j jvj j2;
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which is minimized on J.†k2 ) by v D .v1; � � � ; vk�1/ for which vj D 0 for j D
1; � � � ; k�2; and jvk�1j D 1. That is, the minimizing u� in (64) is a unit eigenvector
of�J with the largest eigenvalue�k�1, andP.�J / D u�u. This projection is unique
if and only if the largest eigenvalue of �J is simple, i.e., �k�2 < �k�1.

Assuming that the largest eigenvalue of �J is simple, one may now obtain
the asymptotic distribution of the sample extrinsic mean �n;E , namely, that of

J.�n;E/ D v�
nvn, where vn is a unit eigenvector of NQX D P QXj=n corresponding

to its largest eigenvalue. Here QXj D J.Xj /, for i.i.d observations X1; � � � ; Xn on
†k2 . For this purpose, a convenient orthonormal basis (frame) of TpS.k � 1;C/ �
S.k � 1;C/ is the following:

�a;b D 2�1=2.eaetb C ebe
t
a/ for a < b; �a;a D eae

t
aI (65)

wa;b D i2�1=2.eaetb � ebe
t
a/ for b < a .a; b D 1; � � � ; k � 1/;

where ea is the column vector with all entries zero other than the a-th, and the a-th
entry is 1. Let U1; � � � ; Uk�1 be orthonormal unit eigenvectors corresponding to the
eigenvalues �1 � � � � � �k�2 < �k�1. Then choosing T D .U1; � � � ; Uk�1/ 2
SU.k � 1/ T�J T � D D D diag.�1; � � � ; �k�1/, such that the columns of T �a;bT �
and Twa;bT � together constitute an orthonormal basis of S.k � 1;C/. It is not
difficult to check that the differential of the projection operator P satisfies

.d�J P /T va;bT
� D

(

0 if 1 � a � b < k � 1; or a D b D k � 1;

.�k�1 � �a/
�1T va;k�1T

� if 1 � a < k � 1; b D k � 1I
(66)

.d�J P /Twa;bT
� D

(

0 if 1 � a � b < k � 1;

.�k�1 � �a/
�1Twa;k�1T � if 1 � a < k � 1:

To check these, take the projection of a linear curve c.s) in S.k� 1;C/ such that
Pc.0/ is one of the basis elements va;b , or wa;b , and differentiate the projected curve
with respect to s. It follows that fT va;k�1T �; Twa;k�1T � W a D 1; � � � ; k � 2g form
an orthonotmal basis of TP.�J /J.†

k
2 ). Expressing QXj ��J in the orthonormal basis

of S.k�1;C), and d�J P. QXj ��J / with respect to the above basis of TP.�J /J.†
k
2 ),

one may now apply Theorem 3.3.
For a two-sample test for H0 W Q1 D Q2, one may use (22), as explained in

Sect. 5.
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8 Nonparameric Bayes for Density Estimation
and Classification on a Manifold

8.1 Density Estimation

Consider the problem of estimating the density q of a distribution Q on a
Riemannian manifold .M; g/ with respect to the volume measure � on M:

According to Ferguson [22], given a finite non-zero base measure ˛ on a measurable
space .X ; †/; a random probability P on the class P of all probability measures on
X has the Dirichlet distribution D˛ if for every measurable partition fB1; : : : ; Bkg
of X ; the D˛ - distribution of .P.B1/; : : : ; P.Bk// D .�1; : : : ; �k/; say, is Dirichlet
with parameters .˛.B1/; : : : ; ˛.Bk//: Sethuraman [44] gave a very convenient
“stick breaking” representation of the random P: To define it, let uj .j D 1; : : : /

be an i.i.d. sequence of beta.1; ˛.X // random variables, independent of a
sequence Yj .j D 1; : : : / having the distribution G D ˛

˛.X /
on X : Sethuraman’s

representation of the random probability with the Dirichlet prior distribution D˛ is

P �
X

wj ıYj ; (67)

where w1 D u1;wj D uj .1 � u1/ : : : .1 � uj�1/.j D 2; : : : /; and ıYj denotes the
Dirac measure at Yj : As this construction shows, the Dirichlet distribution assigns
probability one to the set of all discrete distributions on X ; and one cannot retrieve
a density estimate from it directly. The Dirichlet priors constitute a conjugate
family, i.e., the posterior distribution of a random P with distribution D˛; given
observations X1; : : : ; Xn from P is D˛CP1�i�n ıXi

. A general method for Bayesian
density estimation on a manifold .M; g/ may be outlined as follows. Suppose
that q is continuous and positive on M: First find a parametric family of densities
m ! K.mI�; �/ on M where � 2 M and � > 0 are “location” and “scale”
parameters, such that K is continuous in its arguments, K.�I�; �/d�.�/ converges
to ı� as � # 0; and the set of all “mixtures” of K.�I�; �/ by distributions on
M � .0;1/ is dense in the set C�.M/ of all continuous densities on M in the
supremum distance, or in L1.d�/: The density q may then be estimated by a
suitable mixture. To estimate the mixture, use a prior Dˇ with full support on the
set of all probabilities on the space M � .0;1/ of “parameters” .�; �/: A draw
from the prior may be expressed in the form (67), where uj are i.i.d. beta.1; b/
with b D ˇ.M � .0;1//; independent of Yj D .mj ; tj /; say, which are i.i.d. ˇ

b
on

M � .0;1/: The corresponding random density is then obtained by integrating the
kernelK with respect to this random mixture distribution,

X

wjK.mImj ; tj /: (68)
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Given M -valued (Q-distributed) observations X1; : : : Xn; the posterior
distribution of the mixture measure is DirichletDˇX , where ˇX D ˇCP

1�i�n ıZi ,
with Zi D .Xi ; 0/: A draw from the posterior distribution leads to the random
density in the form (68), where uj are i.i.d. beta.1; bC n/; independent of .mj ; tj /

which are i.i.d. ˇX
.bCn/ : One may also consider using a somewhat different type of

priors such as D˛ � � where D˛ is a Dirichlet prior on M; and � is a prior on
.0;1/; e.g., gamma or Weibull distribution.

Consistency of the posterior is generally established by checking full Kullback-
Liebler support of the prior Dˇ (see [25], pp. 137–139). Strong consistency has
been established for the planar shape spaces using the complex Watson family of
densities (with respect to the volume measure or the uniform distribution on †k2 )

of the form K.Œz�I�; �/ D c.�/exp
jz��j2
�

in [6, 7], where it has been shown, by
simulation from known distributions, that, based on a prior Dˇ � � chosen so as
to produce clusters close to the support of the observations, the Bayes estimates of
quantiles and other indices far outperform the kernel density estimates of Pelletier
[42], and also require much less computational time than the latter. In moderate
sample sizes, the nonparametric Bayes estimates perform much better than even the
MLE (computed under the true model specification)!

8.2 Classification

Classification of a random observation to one of several groups is one of the
most important problems in statistics. This is the objective in medical diagnostics,
classification of subspecies and, more generally, this is the target of most image
analysis. Suppose there are r groups or populations with a priori given relative sizes
or proportions �i .i D 1; : : : ; r/;

P
�i D 1; and densities qi .x/ (with respect

to some sigma-finite measure). Under 0 � 1 loss function, the average risk of
misclassification (i.e., the Bayes risk) is minimized by the rule: Given a random
observation X, classify it to belong to group j if
�j qj .X/ D maxf�iqi .X/ W i D 1; : : : ; rg. Generally, one uses sample

estimates of �i -s and qi -s, based on random samples from the r groups (training
data). Nonparametric Bayes estimates of qi -s on shapes spaces perform very well
in classification of shapes, and occasionally identify outliers and misclassified
observations (see, [6, 7]).

9 Examples

In this section we apply the theory to a number of data sets available in the literature.

Example 9.1 (Paleomagnetism). The first statistical confirmation of the shifting
of the earth’s magnetic poles over geological times, theorized by paleontologists



202 R. Bhattacharya

based on observed fossilised magnetic rock samples, came in a seminal paper by
R.A. Fisher [23]. Fisher analyzed two sets of data—one recent (1947–1948) and
another old (Quaternary period), using the so-called von Mises-Fisher model

f .xI�; �/ D c.�/ expf�xt�g.x 2 S2/; (69)

Here �.2 S2/, is the mean direction, extrinsic as well as intrinsic (� D �I D
�E/, and � > 0 is the concentration parameter. The maximum likelihood estimate
of � is O� D NX=j NX j, which is also our sample extrinsic mean. The value of the
MLE for the first data set of n D 9 observations turned out to be O� D O�E D
.:2984; :1346; :9449/, where (0,0,1) is the geographic north pole. Fisher’s 95%
confidence region for � is f� 2 S2 W �g. O�;�/ � 0:1536/g. The sample intrinsic
mean is O�I D .:2990; :1349; :9447/, which is very close to O�E .The nonparametric
confidence region based on O�I , as given by (50), and that based on the extrinsic
procedure (53), are nearly the same, and both are about 10% smaller in area than
Fisher’s region. (See [6], Chap. 2.)

The second data set based on n D 29 observations from the Quaternary period
that Fisher analyzed, using the same parametric model as above, had the MLE
O� D NX=j NX j D .:0172;�:2978;�:9545/, almost antipodal of that for the first data
set, and with a confidence region of geodesic radius .1475 around the MLE. Note
that the two confidence regions are not only disjoint, they also lie far away from
each other. This provided the first statistical confirmation of the hypothesis of shifts
in the earth’s magnetic poles, a result hailed by paleontologists (see [30]). Because
of difficulty in accessing the second data set, the nonparametric procedures could
not be applied to it. But the analysis of another data set dating from the Jurassic
period, with n D 33, once again yielded nonparametric intrinsic and extrinsic
confidence regions very close to each other, and each about 10% smaller than the
region obtained by Fisher’s parametric method (see [6], Chap. 5, for details).

Example 9.2 (Brain scan of schizophrenic and normal patients). We consider an
example from Bookstein [15] in which 13 landmarks were recorded on a midsagittal
two-dimensional slice from magnetic brain scans of each of 14 schizophrenic
patients and 14 normal patients. The object is to detect the deformation, if any,
in the shape of the k-ad due to the disease, and to use it for diagnostic purposes.
The shape space is †132 : The intrinsic two-sample test (22) has an observed value
95.4587 of the asymptotic chisquare statistic with 22 degrees of freedom, and a
p-value 3:97 � 10�11. The extrinsic test based on (24) has an observed value
95.5476 of the chisquare statistic and a p-value 3:8 � 10�11. The calculations
made use of the analytical computations carried out in Example 7.2. It is remarkable,
and reassuring, that completely different methodologies of intrinsic and extrinsic
inference essentially led to the same values of the corresponding asymptotic
chisquare statistics (a phenomenon observed in other examples as well). For details
of these calculations and others we refer to [6]. This may also be contrasted with the
results of parametric inference in the literature for the same data, as may be found in
[19], pp. 146, 162–165. Using a isotropic Normal model for the original landmarks
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data, and after removal of “nuisance” parameters for translation, size and rotation,
an F -test known as Goodall’s F -test (see [26]) gives a p-value .01. A Monte Carlo
test based permutation test obtained by 999 random assignments of the data into two
groups and computing Goodall’s F -statistic, gave a p-value .04. A Hotelling’s T 2

test in the tangent space of the pooled sample mean had a p-value .834. A likelihood
ratio test based on the isotropic offset Normal distribution on the shape space
has the value 43.124 of the chisquare statistic with 22 degrees of freedom, and a
p-value .005.

Example 9.3 (Glaucoma detection- a match pair problem in 3D). Our final
example is on the 3D reflection similarity shape space R†k3 . To detect shape
changes due to glaucoma, data were collected on twelve mature rhesus monkeys.

One of the eyes of each monkey was treated with a chemical agent to temporarily
increase the intraocular pressure (IOP). The increase in IOP is known to be a cause
of glaucoma. The other eye was left untreated. Measurements were made of five
landmarks in each eye, suggested by medical professionals. The data may be found
in [11]. The match pair test based on (25) yielded an observed value 36.29 of
the asymptotic chisquare statistic with degrees of freedom 8. The corresponding
p-value is 1:55 � 10�5 (see [6], Chap. 9). This provides a strong justification for
using shape change of the inner eye as a diagnostic tool to detect the onset of
glaucoma. An earlier computation using a different nonparametric procedure in [11]
provided a p-value .058. Also see [9] where a 95% confidence region is obtained
for the difference between the extrinsic size-and-shape reelection shapes between
the treated and untreated eyes.
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38. H. Le, Locating Fréchet means with application to shape spaces. Adv. Appl. Prob. 33, 324–338
(2001)

39. K.V. Mardia, V. Patrangenaru, Directions and projective shapes. Ann. Stat. 33, 1666–1699
(2005)

40. V. Patrangenaru, Asymptotic statistics on manifolds and their applications. Ph.D. Thesis,
Indiana University, Bloomington (1998)

41. V. Patrangenaru, X. Liu, S. Sugathadasa, Nonparametric 3D projective shape estimation from
pairs of 2D images-I, in memory of W.P.Dayawansa. J. Multivariate Anal. 101, 11–31 (2010)

42. B. Pelletier, Kernel density estimation on Riemannian manifolds. Stat. Probab. Lett. 73(3),
297–304 (2005)

43. M.J. Prentice, K.V. Mardia, Shape changes in the plane for landmark data. Ann. Stat. 23,
1960–1974 (1995)

44. J. Sethuraman, A constructive definition of Dirichlet priors. Stat. Sinica 4, 639–650 (1994)
45. G. Sparr, Depth computations from polyhedral images, in Proceedings of 2nd European

Conference on Computer Vision, ed. by G. Sandini (Springer, New York, 1994), pp. 378–386
46. H. Ziezold, On expected figures and a strong law of large numbers for random elements

in quasi-metric spaces, in Transactions of the Seventh Pragure Conference on Information
Theory, Statistical Functions, Random Processes and of the Eighth European Meeting of
Statisticians, vol. A. (Tech. Univ. Prague, Prague (1974), pp. 591–602, Reidel, Dordrecht, 1977



Proportion of Gaps and Fluctuations
of the Optimal Score in Random
Sequence Comparison
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1 Introduction

1.1 Preliminaries

Throughout this paper X1;X2; : : : and Y1; Y2; : : : are two independent sequences
of i.i.d. random variables drawn from a finite alphabet A and having the same
distribution. Since we mostly study the finite strings of length n, let X D
.X1;X2; : : : Xn/ and let Y D .Y1; Y2; : : : Yn/ be the corresponding n-dimensional
random vectors. We shall usually refer to X and Y as random sequences.

The problem of measuring the similarity of X and Y is central in many areas
of applications including computational molecular biology [4, 7, 18, 20, 24] and
computational linguistics [13, 16, 17, 25]. In this paper we adopt the same notation
as in [11], namely we consider a general scoring scheme, where S W A�A ! R

C is
a pairwise scoring function that assigns a score to each couple of letters from A. We
assume S to be symmetric, non-constant and we denote by F and E the largest and
the second largest possible score, respectively. Formally (recall that S is symmetric
and non-constant)

F WD max
.a;b/2A�A

S.a; b/; E WD max
.a;b/WS.a;b/¤F

S.a; b/:

An alignment is a pair .�; �/ where � D .�1; �2; : : : ; �k/ and � D
.�1; �2; : : : ; �k/ are two increasing sequences of natural numbers, i.e. 1 � �1 <

�2 < : : : < �k � n and 1 � �1 < �2 < : : : < �k � n: The integer k is the number
of aligned letters, n � k is the number of gaps in the alignment and the number

q.�; �/ WD n � k
n

2 Œ0; 1�

is the proportion of gaps of the alignment .�; �/. The average score of aligned
letters is defined by

t.�; �/ WD 1

k

kX

iD1
S.X�i ; Y�i /:

Note that our definition of gap slightly differs from the one that is commonly used
in the sequence alignment literature, where a gap consists of maximal number of
consecutive indels (insertion and deletion) in one side. Our gap actually corresponds
to a pair of indels, one in X -side and another in Y -side. Since we consider the
sequences of equal length, to every indel in X -side corresponds an indel in Y -side,
so considering them pairwise is justified. In other words, the number of gaps in
our sense is the number of indels in one sequence. We also consider a gap price ı.
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Given the pairwise scoring function S and the gap price ı, the score of the alignment
.�; �/ when aligningX and Y is defined by

U ı
.�;�/.X; Y / WD

kX

iD1
S.X�i ; Y�i /C ı.n� k/

which can be written down as the convex combination

U ı
.�;�/.X; Y / D n .t.�; �/.1 � q.�; �//C ıq.�; �// : (1)

In our general scoring scheme ı can also be positive, although usually ı � 0

penalizing the mismatch. For negative ı, the quantity �ı is usually called the gap
penalty. We naturally assume ı � F . The optimal alignment score of X and Y is
defined to be

Ln.ı/ WD max
.�;�/

U ı
.�;�/.X; Y /;

where the maximum above is taken over all possible alignments. The alignments
achieving the maximum are called optimal. For every ı 2 R, let us denote

Bn.ı/ WD Ln.ı/

n
: (2)

Note that to every alignment .�; �/ corresponds an unique pair .t.�; �/; q.�; �//,
but different alignments can have the same t.�; �/ and q.�; �/, thus from (1) we
get that

Bn.ı/ D max
.�;�/

�

t.�; �/.1 � q.�; �//C ıq.�; �/
� D max

.t;q/

�

t.1 � q/C ıq
�

; (3)

where in the right hand side the maximum is taken over all possible pairs .t; q/
corresponding to an alignment ofX and Y . In the following, we identify alignments
with pairs .t; q/, so a pair .t; q/ always corresponds to an alignment .�; �/ of X
and Y . Let On.ı/ denote the set of optimal pairs, i.e. .t; q/ 2 On.ı/ if and only if
t.1 � q/C ıq D Bn.ı/. Note that the set On.ı/ is not necessarily a singleton. Let
us denote

q
n
.ı/ WD minfq W .t; q/ 2 On.ı/g

qn.ı/ WD maxfq W .t; q/ 2 On.ı/g:

By Kingman’s subadditive ergodic theorem, for any ı there exists a constant b.ı/
so that

Bn.ı/ ! b.ı/; a.s.: (4)
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1.2 The Organization of the Paper and Main Results

In this paper, we use a novel approach regarding the quantities of interest like the
proportion of gaps, the rescaled scoreBn, etc., as functions of ı. In Sect. 2, we derive
some elementary but important properties of Bn.ı/ and we explore the relation
between the proportion of gaps of any optimal alignment and the derivatives of
Bn.ı/. In particular, we show (Claim 2.2) that for any n and ı,

B 0
n.ıC/ D qn.ı/; B 0

n.ı�/ D q
n
.ı/: (5)

In a sense these equalities, which almost trivially follow from the elementary
calculus, are the core for the rest of the analysis.

In Sect. 3, we show that when the limit score function b is differentiable at ı,
then a.s. qn.ı/ and q

n
.ı/ both converge to b0.ı/ (by using expression (5)) so that

b0.ı/ can be interpreted as the asymptotic proportion of gaps. The section ends with
an example showing that if b is not differentiable at ı, then the extremal proportions
qn.ı/ and q

n
.ı/ can still a.s. converge to the corresponding one-side derivatives,

namely q
n
.ı/ ! b0.ıC/ a.s. and qn.ı/ ! b0.ı�/ a.s.

Section 4 deals with large deviations bounds for the (optimal) proportion of gaps.
The main result of this section is Theorem 4.1, which states that for every " > 0

there exists a c > 0 such that for every n big enough the following large deviation
inequality holds

P
�

b0.ı�/ � " � q
n
.ı/ � qn.ı/ � b0.ıC/C "

� � 1 � 4 expŒ�c."/n�:

Combining this last inequality with the result on the speed of convergence proven
in [11], we obtain the confidence intervals for the in general unknown quantities
b0.ıC/ and b0.ı�/ in terms of Bn.ı/ (the inequalities (27) and (27), respectively).

In Sect. 5 we obtain results on the fluctuations of the score of optimal alignments,
namely we show that under some asymmetry assumption on the score function there
exists a c > 0 so that for n large enough VarŒLn.ı/� � cn provided that the gap
penalty �ı is big enough (Theorem 5.2). This result implies that VarŒLn.ı/� D
‚.n/, because as shown by Steele in [21], there exists another constant C such that
VarŒLn.ı/� � Cn. Our proof is based on the existence of the asymptotic proportion
of gaps and, therefore, differs from the previous proofs in the literature.

Finally, Sect. 6 is devoted to the problem of determining the sufficiently large gap
penalty ıo so that the conditions of Theorem 5.2 are fulfilled. We show that when
knowing the asymptotic upper bound t.ı/ of the average score of aligned letters,
then ıo can be easily found (Claim 6.1). Theorem 6.1 shows how the upper bound
t.ı/ can be found. The proof of Theorem 6.1 uses similar ideas that the ones used
in the proof of Theorem 5.2. The section ends with a practical example (Sect. 6.2).

It is important to notice that we could not find in the literature complete results on
the fluctuations of the score in random sequences comparison. Though, a particular
model for comparison of random sequences has had an interesting development in
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the past 4 decades: the longest common subsequence problem (abbreviated by LCS
problem). In our setting, the LCS problem corresponds to choose S.x; y/ D 1 if
x D y and S.x; y/ D �1 if x ¤ y. Already in 1975, Chvatal and Sankoff [5]
conjectured that the fluctuations of the length of the LCS is of order o.n2=3/. But in
1994, Waterman [23] conjectured that those fluctuations should be of order ‚.n/.
This last order had been proven by Matzinger et al. [2,8–10] in a series of relatively
recent papers treating extreme models with low entropy. In 2009, the Ph.D. thesis
of Torres [14, 15, 22] brought an improvement, proving that the length of the LCS
of sequences built by i.i.d. blocks has also fluctuations of order ‚.n/, turning it to
be the first time Waterman’s conjecture was proven for a model with relatively high
entropy. Unfortunately, the block-model of Torres does not have enough ergodicity
as to extend the result to the still open original Waterman’s conjecture. We believe
that the results on the fluctuations of the score of optimal alignments showed in the
present paper are an important source of new evidence that Waterman’s conjecture
might be true, even in more general models of sequence comparison than the LCS
problem, provided the score function does not have a certain symmetry.

Note that the LCS problem can be reformulated as a last passage percolation
problem with correlated weights [1]. For several last passage percolation models,
the order of the fluctuations has been proven to be power 2=3 of the order of
the expectation. But as the previous models and simulations have showed (for
simulations, see e.g. [3]), this order seem to be different as the order of the
fluctuations of the score in optimal alignments.

2 Basic Properties of Bn

We start by deriving some elementary properties of the function ı 7! Bn.ı/:

Claim 2.1. For every X and Y , the function ı 7! Bn.ı/ is non-decreasing,
piecewise linear and convex.

Proof. The non-decreasing and piecewise linear properties follow from the defini-
tion. For the convexity, with � 2 .0; 1/ let ı D �ı1 C .1� �/ı2 and .t; q/ 2 On.ı/.
Note that the pair .t; q/ is not necessarily optimal for the proportions ı1 and ı2, so
that from (3) it follows

Bn.�ı1 C .1 � �/ı2/ D t.1 � q/C .�ı1 C .1 � �/ı2/q

D �
�

t.1 � q/C ı1q
�C .1 � �/

�

t.1 � q/C ı2q
�

� �Bn.ı1/C .1 � �/Bn.ı2/:

ut
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Claim 2.2. For any ı 2 R we have

B 0
n.ı�/ WD lim

s&0

Bn.ı � s/ � Bn.ı/
s

D q
n
.ı/

B 0
n.ıC/ WD lim

s&0

Bn.ı C s/ � Bn.ı/
s

D qn.ı/:

Thus, On.ı/ is singleton if and only if Bn.ı/ is differentiable at ı.

Proof. Fix ı 2 R and s > 0. Let .t; q/ 2 On.ı/, thus

Bn.ı C s/ � t.1 � q/C q.ı C s/ D Bn.ı/C qs

Bn.ı � s/ � t.1 � q/C q.ı � s/ D Bn.ı/� qs:

Hence,
Bn.ı/� Bn.ı � s/

s
� q � Bn.ı C s/� Bn.ı/

s
:

The inequalities above hold for any optimal .t; q/ and for any s, so letting s & 0

we have
B 0
n.ı�/ � q

n
.ı/ � qn.ı/ � B 0

n.ıC/: (6)

Thus, if Bn is differentiable at ı, then q
n
.ı/ D qn.ı/ meaning that On.ı/ is a

singleton, say On.ı/ D .tn.ı/; qn.ı//. To prove thatB 0
n.ıC/ D qn.ı/, it is enough to

show that there exists a pair .t; q/ 2 On.ı/ such that B 0
n.ıC/ D q. Indeed, since Bn

is piecewise linear, for every " > 0 small enoughBn is differentiable at ıC" and the
derivative equals to B 0

n.ıC/. Hence, for every " > 0 small enough q WD qn.ıC"/ D
B 0
n.ıC/. Let t WD tn.ı C "/. Thus, for every " > 0 small enough there exists a pair

.t; q/ 2 On.ıC"/ such that q D B 0
n.ıC/. This means t.1�q/CqıCq� D Bn.ıC"/.

Since Bn is continuous, we see that lim"!0CBn.ı C "/ D Bn.ı/ D t.1 � q/C qı,
i.e. .t; q/ 2 On.ı/. With similar arguments one can show that q

n
.ı/ D B 0

n.ı�/: ut
Function Bn.ı/ for large ı. With fairly simple analysis, it is possible to determine
Bn.ı/ for large ı. Recall the definition of F . Clearly, when ı > F , the optimal
alignment only consists of gaps, namely ı � F ) Bn.ı/ D ı. If we decrease the
value of ı, say ı 2 .E; F /, the optimal alignment tries to align as many pairs of
letters which score F as possible, thus minimizing the number of gaps. Formally,
such optimal alignment can be obtained by defining a new score function

S1.a; b/ WD
�
F if S.a; b/ D F

0 if S.a; b/ < F

Let B1
n.ı/ be the corresponding expression (2) for the score function S1. If .t1n ; q

1
n/

is such that B1
n.0/ D t1n .1 � q1n/ C 0 � q1n, then t1n D F and 1 � q1n is the maximal

proportion of pairs that score F . Thus .t1n ; q
1
n/ is unique and, therefore, B1

n is
differentiable at 0. For the original Bn, if ı 2 ŒE; F �, then we have



Proportion of Gaps and Fluctuations of the Optimal Score in Random Sequence . . . 213

Bn.ı/ D F.1 � q1n/C ıq1n D B1
n.0/C ıq1n;

from where we have

Bn.F / D F D B1
n.0/C Fq1n: (7)

If ı is slightly smaller than E , then the candidate alignments to be optimal
alignments are obtained by aligning only those pair of letters that score E or F ;
amongst such alignments an optimal one will be the one having minimal number of
gaps. Formally, we consider the score function

S2.a; b/ D

8

<̂

:̂

F if S.a; b/ D F

E if S.a; b/ D E

0 otherwise

Let B2
n.ı/ be the corresponding expression (2) for the score function S2. Let .t2n ; q

2
n/

be such that B2
n.0/ D t2n.1 � q2n/C 0 � q2n with the additional property that q2n � q

for any other optimal pair .t; q/ for B2
n.0/. By Claim 2.2, q2n D .B2

n/
0.0�/. Hence,

if ı is slightly smaller than E , then Bn.ı/ D t2n .1 � q2n/C ıq2n D B2
n.0/C ıq2n.

Hence, we can write down

Bn.ı/ D

8

<̂

:̂

ı if ı � F

F.1 � q1n/C ıq1n if E � ı � F

t2n.1 � q2n/C ıq2n if E � " � ı � E

(8)

for a small " > 0 which depends on X; Y . Indeed, if ı is much smaller than E
but still above the value of the next score, then the optimal alignment .t; q/ might
align less F -valued letters for in order to achieve less gaps. In other words, the
optimal alignment .t; q/ can be such that t.1 � q/ < B2

n.0/. But it is not so
for ı D E and due to the piecewise linearity of Bn, the " > 0 described above
exists.

By Claim 2.2, for any n we have that

q
n
.F / D q1n; qn.F / D 1; q

n
.E/ D q2n; qn.E/ D q1n: (9)

Finally, note that by taking ı D E , we obtain that

Bn.E/ D B2
n.0/C Eq2n (10)

and

B1
n.0/� B2

n.0/ D E.q2n � q1n/: (11)
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3 The Asymptotic Proportion of Gaps

¿From the convergence in (4), we see that the limit function b.�/ inherits properties
from Bn.�/. More precisely, the (random) function Bn.�/ is convex and non-
decreasing, so the same holds for b.�/. Moreover, due to the monotonicity, the
convergence in (4) is uniform on ı, i.e.

sup
ı2R

jBn.ı/� b.ı/j ! 0 a.s. as n ! 1. (12)

But we need to be a bit more careful in deriving properties of the derivative b0 from
B 0
n, since the uniform convergence of convex functions implies the convergence of

one side derivatives at x only when the limit function is differentiable at x. Indeed,
let fn and f be convex functions that converge pointwise, i.e. fn.x/ ! f .x/ as
n ! 1, for every x. Then, in general [19] it holds

f 0.x�/ WD lim
s&0

lim
n!1

fn.x � s/� fn.x/

s
� lim inf

n!1 lim
s&0

fn.x � s/� fn.x/

s

� lim sup
n!1

lim
s&0

fn.x C s/� fn.x/
s

� lim
s&0

lim
n!1

fn.x C s/� fn.x/

s
D f 0.xC/;

and these inequalities can be strict. In our case these inequalities are

b0.ı�/ � lim inf
n

q
n
.ı/ � lim sup

n

qn.ı/ � b0.ıC/; a.s.: (13)

Lemma 3.1. Let b be differentiable at ı. Then

q
n
.ı/ ! b0.ı/ and qn.ı/ ! b0.ı/ a.s. as n ! 1: (14)

Remark 3.1. An interesting question is the following: If b is not differentiable at ı,
there exist q; q 2 .0; 1/ with q � b0.ı�/ and q � b0.ıC/ such that

q
n
.ı/ ! q and qn.ı/ ! q a.s. as n ! 1? (15)

Numerical simulations of the difference qn � q
n

as n ! 1 do not conclusively
show convergence nor boundedness, so perhaps such q; q do not exist.

Thus, if b is differentiable at ı, the random proportion of gaps of optimal alignments
tends to an unique number q.ı/ WD b0.ı/ that we can interpreted as the asymptotic
proportion of gaps at ı. If the function b is not differentiable at ı, then it is not
known whether the maximal or minimal proportion of gaps converge. However, as
we shall now see this might be the case.

Asymptotic proportion of gaps for large ı. In general, it seems hard to determine
where b is not differentiable and the asymptotic proportion of gaps does not exist.
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However, based on the elementary properties of Bn and b, we can say something
about the differentiability of b for large ı’s. Recall B1

n and B2
n , let b1 and b2 be

the corresponding limits. The following claim shows that the proportions qn.ı/ and
q
n
.ı/ might converge even if b is not differentiable at ı.

Claim 3.1. The following convergences hold as n ! 1:

1. qn.F / ! 1 D b0.FC/, a.s.

2. q
n
.F / ! F�b1.0/

F
D b0.F�/, a.s.

3. qn.E/ ! F�b1.0/
F

D b0.EC/, a.s.

4. q
n
.E/ ! b.E/�b2.0/

E
D b1.0/�b2.0/

E
C F�b1.0/

F
� b0.E�/, a.s..

If b2.0/ > b1.0/ > 0, then b is not differentiable at ı D E and ı D F .

Proof. We are going to use the fact that the convergence (12) does not depend on
the score function, so there exist constants b1.0/ and b2.0/ such thatB1

n.0/ ! b1.0/

and B2
n.0/ ! b2.0/ as n ! 1, a.s.. Hence, from (7)

q1n ! F � b1.0/

F
; a:s::

From (10), it follows that

q2n ! b.E/� b2.0/
E

D b1.0/� b2.0/
E

C F � b1.0/

F
� b0.E�/; a.s.; (16)

where the equality comes from (11) and the last inequality comes from (13). So that
from (9) the convergences (1)–(4) now follow.

Let us now compare the limits with corresponding derivatives. From (8), we
obtain

b.ı/ D
(

ı if ı � F

b1.0/C ı
F�b1.0/

F
if E � ı � F

(17)

Hence, b0.FC/ D 1, b0.F�/ D b0.EC/ D F�b1.0/
F

. If b1.0/ > 0, then b0.FC/ >
b0.F�/ so that b is not differentiable at F . When b2.0/ > b1.0/, then

b0.E�/ � b1.0/� b2.0/

E
C F � b1.0/

F
<
F � b1.0/

F
D b0.EC/;

so that b is not differentiable at E . ut
We conclude with an important example (see [14, 15, 22]) showing that the case
b2.0/ > b1.0/ > 0 is realistic.

Example 3.1. Let m > 0 be an integer, A D f1; : : : ; mg and S.a; b/ D a ^ b. Then
E D m � 1 and F D m. Let every letter in A having a positive probability. Since
S.a; b/ D m iff a D b D m, obviously b1.0/ D mP.Xi D m/ so that
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b0.F�/ D b0.EC/ D m � b1.0/
m

D 1 � P.X1 D m/ < 1 D b0.FC/:

Since B2
n.0/ is bigger than the score of the alignment obtained by aligning as many

m-s as possible, thus B1
n.0/, and aligning so many m � 1’s as possible without

disturbing already existing alignment of m’s, clearly b2.0/ > b1.0/.

4 Large Deviations

In this section, given ı 2 R, we derive large deviations principle for B 0
n.ıC/ resp.

B 0
n.ı�/ by using McDiarmid’s inequality. From there, we also derive confidence

bounds for b0.ıC/ resp. b0.ı�/. Recall that S is symmetric. Let

A WD max
x;y;z2A jS.x; y/ � S.x; z/j: (18)

For the sake of completeness, let us recall McDiarmid’s inequality:
Let Z1; : : : ; Z2m be independent random variables and f .Z1; : : : ; Z2m/ be a

function so that changing one variable changes the value at most K > 0. Then
for any � > 0 we have

P
�

f .Z1; : : : ; Z2m/ �Ef .Z1; : : : ; Z2m/ > �
	

� exp

�

� �2

mK2

�

: (19)

For the proof, we refer to [6]. Another inequality which will be useful later is the so
called Höffding’s inequality, which is the consequence of McDiarmid’s inequality
when f .Z1; : : : ; Zm/ D Pm

iD1 Zi , i.e. for any " > 0 we have

P

 

1

m

mX

iD1
Zi �EZ1 > "

!

D P

 
mX

iD1
Zi �E�

mX

iD1
Zi
�

> "m

!

� exp

�

� ."m/
2

K2m
2

�

D exp

�

�2"
2

K2
m

�

: (20)

In our case, for any ı 2 R changing the value of one of the 2n random variables
X1; : : : ; Xn; Y1; : : : ; Yn changes the value of Ln.ı/ at most A, hence for every " > 0
inequality (19) is translated into

P
�

Ln.ı/ �ELn.ı/ � "n
� � exp

�

� "2

A2
n

�

P
�

Ln.ı/ �ELn.ı/ � �"n� � exp

�

� "2

A2
n

�

: (21)
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Let us define bn.ı/ WD EBn.ı/. For every ı 2 R, by dominated convergence we
have bn.ı/ ! b.ı/ and by monotonicity the convergence is uniform, i.e.

sup
ı2R

jbn.ı/� b.ı/j ! 0 as n ! 1.

Theorem 4.1. Let ı 2 R. Then, for every " > 0 there exists N."/ < 1 and a
constant c."/ > 0 such that

P
�

b0.ı�/ � " � q
n
.ı/ � qn.ı/ � b0.ıC/C "

� � 1 � 4 expŒ�c."/n� (22)

for every n > N."/.

Proof. Given ı 2 R and ">0, we are looking for bounds on P
�

B 0
n.ıC/�

b0.ıC/ > "/. For any s > 0 and any function ' W R ! R let us define

	' WD '.ı C s/� '.ı/: (23)

Now, choose a small 1 > s > 0 depending on " such that

j	b
s

� b0.ıC/j � "

4

and take n large enough (also depending on ") such that

j	bn �	bj � s
"

4
:

Thus for those s and n chosen as before we have

	Bn

s
� b0.ıC/ D

�
	Bn

s
� 	bn

s

�

C
�
	bn

s
� 	b

s

�

C
�
	b

s
� b0.ıC/

�

�
�
	Bn

s
� 	bn

s

�

C "

2
: (24)

From (21), it follows

P
�

Bn.ı/ � bn.ı/ � �s "
4

	

� exp

�

� "2s2

16A2
n

�

D expŒ�c1."/n�

P
�

Bn.ı C s/� bn.ı C s/ � s
"

4

	

� expŒ�c1."/n� (25)

where c1."/ WD "2s2=.16A2/ is a positive constant depending on " (recall that our s
depends on "). Hence
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P

�
	Bn

s
� 	bn

s
� "

2

�

� P
�

Bn.ı/� bn.ı/ � �s "
4

	

C P
�

Bn.ı C s/� bn.ı C s/ � s
"

4

	

� 2 expŒ�c1."/n�: (26)

Since Bn is convex, it holds that B 0
n.ıC/ � 	Bn=s so that for " and s chosen as

before (24) and (26) yield

P
�

B 0
n.ıC/ � b0.ıC/ � "

� � P

�
	Bn

s
� b0.ıC/ � "

�

� 2 expŒ�c1."/n�: (27)

By similar arguments, there exists a positive constant c2."/ > 0 so that

P
�

B 0
n.ı�/ � b0.ı�/ � "/ � 2 expŒ�c2."/n�: (28)

for every n big enough. Finally, by taking c WD minfc1; c2g, the inequality (6)
implies the inequality (22). ut
Note that if b is differentiable at ı, the inequality (22) is satisfied for q.ı/ instead of
b0.ı�/ or b0.ıC/, namely

Corollary 4.1. Let b be differentiable at ı. Then, for every " > 0 there exists
N."/ < 1 and a constant c."/ > 0 such that

P
�

q.ı/� " � q
n
.ı/ � qn.ı/ � q.ı/C "

� � 1 � 4 expŒ�c."/n� (29)

for every n > N."/, where q.ı/ is the unique asymptotic proportion of gaps.

We now derive confidence bounds for b0.ıC/ resp. b0.ı�/. Recall the definition
bn.ı/ D EBn.ı/ D ELn.ı/=n and the notation (23). From [11] we have

bn.ı/ � b.ı/ � bn.ı/C v.n/

for n 2 N even, where

v.n/ WD A

r

2

n � 1
�nC 1

n� 1
C ln.n � 1/

	

C F

n � 1
;

so it follows
	b � v.n/ � 	bn � 	b C v.n/:

Suppose that k samples of Xi D Xi
1; : : : ; X

i
n and Y i D Y i1 ; : : : ; Y

i
n , i D 1; : : : ; k

are generated. Let Lin.ı/ be the score of the i -th sample. Let

NBn.ı/ WD 1

kn

nX

iD1
Lin.ı/:
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From (25) we have

P
�

	 NBn �	bn < �c� D P
� NBn.ı C s/� bn.ı C s/C bn.ı/� NBn.ı/ < �c�

� P
� NBn.ı C s/� bn.ı C s/ < � c

2

	

C P
�

bn.ı/� NBn.ı/ < � c
2

	

� 2 exp

�

� c2k

4A2
n

�

:

By convexity sb0.ıC/ � 	b for every s > 0, so from the last inequality it follows

P
�

	 NBn C c C v.n/ � sb0.ıC/� � P
�

	 NBn C c C v.n/ � 	b
� D P

�

	 NBn C c � 	b � v.n/
�

� P
�

	 NBn C c � 	bn
� D P

�

	 NBn �	bn � �c�

� 1� 2 exp

�

� c2k

4A2
n

�

;

from where we obtain that with probability 1 � "

b0.ıC/ � 1

s

� NBn.ı C s/ � NBn.ı/C 2A

r

ln.2="/

kn
C v.n/

	

: (30)

Since (30) holds for every s > 0, we have that with probability 1 � "

b0.ıC/ � min
s>0

1

s

� NBn.ı C s/� NBn.ı/C 2A

r

ln.2="/

kn
C v.n/

	

: (31)

Similarly, we have that with probability 1 � "

b0.ı�/ � max
s>0

1

s

� NBn.ı � s/ � NBn.ı/� 2A

r

ln.2="/

kn
� v.n/

	

: (32)

5 Fluctuations of the Score in Optimal Alignments

In this section we prove VarŒLn.ı/� D ‚.n/. The ‚.n/ notation means that there
exist two constants 0 < c < C < 1 such that cn � VarŒLn.ı/� � Cn for n large
enough. The upper bound follows from an Efron-Stein type of inequality proved by
Steele in [21], so we aim to provide conditions on the scoring function that guarantee
the existence of the lower bound. In this section we show that when ı < 0 and jıj is
large enough in the sense of Assumption 5.1 (see below), then there exists c > 0 so
that Var.Ln.ı// > cn for n large enough. In comparison with previous results, here
we solve—for the first time—the problem of the fluctuations of the score in optimal
alignments for rather realistic high entropy models.
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5.1 Order of the Variance

All above mentioned fluctuations results are based in the following strategy: the
inequality VarŒLn.ı/� � cn is satisfied as soon as we are able to establish that
changing at random one symbol in the sequences has a biased effect on the optimal
alignment score. In details, we choose two letters a; b 2 A and fix a realization of
X D X1 : : : Xn and Y D Y1 : : : Yn. Then among all the a’s in X and Y we choose
one at random (with equal probability). That chosen letter a is replaced by a letter
b. The new sequences thus obtained are denoted by QX and QY . The optimal score for
the strings QX and QY is denoted by

QLn.ı/ WD max
.�;�/

U ı
.�;�/.

QX; QY /:

The following important theorem postulates the mentioned strategy. In full general-
ity, it is proven in [12], for special case of two colors and S corresponding to LCS,
see Sect. 3 in [10]; for a special case of S.a; b/ D a^b and A D fm�1;m;mC1g,
see Theorem 2.1 in [14].

Theorem 5.1. Assume that there exist " > 0, d > 0 and n0 < 1 such that

P
�

EŒ QLn.ı/� Ln.ı/jX; Y � � "
� � 1 � e�dn (33)

for all n > n0. Then, there exists a constant c > 0 not depending on n such that
VarŒLn.ı/� � cn for every n large enough.

Now, our aim is to show that if ı is small enough and the scoring function
satisfies some asymmetry property, then there exist letters a; b 2 A so that the
condition (33) is fulfilled. Typically, to satisfy the assumptions, ı should be negative
so that the main result holds if the gap penalty jıj is large enough. Let us introduce
our asymmetry assumption on the scoring function:

Assumption 5.1. Suppose there exist letters a; b 2 A such that

X

c2A
P.X1 D c/

�

S.b; c/� S.a; c/
�

> 0: (34)

Remark 5.1. For the alphabet A D fa; bg, condition (34) says

�

S.b; a/� S.a; a/
�

P.X1 D a/C �

S.b; b/� S.b; a/
�

P.X1 D b/ > 0:

Since S is symmetric and one could exchange a and b, the condition (34) actually
means

�

S.b; a/� S.a; a/
�

P.X1 D a/C �

S.b; b/� S.b; a/�P.X1 D b/ ¤ 0:
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When S.b; b/ D S.a; a/, then Assumption 5.1 is satisfied if and only if P.X1 D
a/ ¤ P.X1 D b/. For, example when S.b; b/ D S.a; a/ > S.b; a/ (recall that S
is assumed to be symmetric and non-constant), then (34) holds if P.X1 D a/ ¤
P.X1 D b/.

In the present paper, the main result on the fluctuations of the score in optimal
alignments can be formulated as following:

Theorem 5.2. Suppose Assumption 5.1 holds. Then, there exist constants ı0 and
c > 0 not depending on n such that

VarŒLn.ı/� � cn

for all ı � ı0 and for n large enough.

Before proving the above-stated theorem, we need a preliminary lemma. Suppose
Assumption 5.1 holds, then take a; b 2 A satisfying (34) and define the functions
�x W A � A 7! R and �y W A � A 7! R in the following way:

�x.x; y/ D
�
S.b; y/� S.a; y/ if x D a

0 otherwise

�y.x; y/ D
�
S.x; b/� S.x; a/ if y D a

0 otherwise:

Note that S.x; y/ D S.y; x/ implies �y.x; y/ D �x.y; x/. We now define the
random variable Z by

Z WD �x.X1; Y1/C �y.X1; Y1/ D �x.X1; Y1/C �x.Y1; X1/: (35)

Note that (5.1) ensures that Z has strictly positive expectation:

� WD EZ D E
�

�x.X1; Y1/C �y.X1; Y1/
� D 2E�x.X1; Y1/

D 2EŒ�x.a; Y1/jX1 D a�P.X1 D a/ D 2
X

c2A
�x.a; c/P.Y1 D c/P.X1 D a/

D 2P.X1 D a/
X

c2A
.S.b; c/� S.a; c//P.X1 D c/ > 0:

Let ƒ� be the Legendre-Fenchel transform of the logarithmic moment generating
function of �Z, namely

ƒ�.c/ D sup
t2R

.ct � lnEŒexp.�Zt/�/ 8 c 2 R:

It is known that the supremum above can be taken over non-negative t’s and, for any
c > E.�Z/ D ��, it holdsƒ�.c/ > 0. Since � > 0, we have for c D 0
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ƒ�.0/ D � inf
t2R lnEŒexp.�tZ/� D � inf

t�0 lnEŒexp.�tZ/� D � ln inf
t�0EŒexp.�tZ/� > 0:

Let Z1; : : : ; Zk be i.i.d. random variables distributed as �Z, then for any c > ��
the following large deviation bound holds

P

 
kX

iD1
Zi > ck

!

� expŒ�ƒ�.c/k�: (36)

Finally, denote h.q/ the binary entropy function h.q/ WD �q ln q� .1�q/ ln.1�q/
and note that the inequality

2h.q/ < ƒ�.0/.1� q/

holds when q > 0 is small enough, since ƒ� and h are both continuous and
ƒ�.0/ > 0.

In what follows, let for any q 2 .0; 1/, An.q/ be the set of all alignments with no
more than qn gaps, i.e.

An.q/ WD f.�; �/ W q.�; �/ � qg:

We are interested in the event that the sequences X and Y are such that for every
alignment .�; �/ with no more than qn gaps we have a biased effect of the random
change of at least " > 0. Let Dn

q ."/ denote that event i.e.

Dn
q ."/ WD

\

.�;�/2An.q/

Dn
.�;�/."/ (37)

where

Dn
.�;�/."/ WD

(

E

"
kX

iD1

�

S. QX�i ; QY�i /� S.X�i ; Y�i /
�ˇ
ˇX; Y

#

� "

)

:

Now, we are ready to state the key lemma.

Lemma 5.1. Suppose Assumption 5.1 is fulfilled and take a; b 2 A satisfying (34).
Let q > 0 small enough such that

2h.q/ < ƒ�.0/.1 � q/: (38)

Then, there exist " > 0, ˛ > 0 and n2 < 1, all depending on q, such that

P
�

.Dn
q ."//

c
� � expŒ�˛n� (39)

for every n > n2.
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Proof. Let x D x1; : : : ; xn and respectively y D y1; : : : ; yn be fixed realizations
of X and Y , respectively. Let na be the number of a’s in both sequences. Let � D
.�1; �2; : : : ; �k/ and � D .�1; �2; : : : ; �k/ be a fixed alignment ofX and Y . Recall
that QX and QY are obtained by choosing at random one a among all the a’s in x and
y. Hence, such an a is chosen with probability 1=na. Our further analysis is based
on the following observation:

E

"
kX

iD1

�

S. QX�i ; QY�i / � S.X�i ; Y�i /
�ˇ
ˇX D x; Y D y

#

D 1

na

kX

iD1

�

�x.x�i ; y�i /C �y.x�i ; y�i /
�

:

Thus, it holds

P
�

.Dn
.�;�/."//

c
� D P

 

E

"
kX

iD1

�

S. QX�i ; QY�i /� S.X�i ; Y�i /
�
ˇ
ˇ
ˇX; Y

#

< "

!

D P

 
kX

iD1
Zi < Na"

!

; (40)

where Na is the (random) number of a’s in X and Y and the random variables
Z1; : : : ; Zk are defined as follows:

Zi WD �x.X�i ; Y�i /C �y.X�i ; Y�i / D �x.X�i ; Y�i /C �x.Y�i ; X�i /

for i D 1; : : : ; k: Let us mention again that the random variables Zi depend
on fixed alignment .�; �/ (which is omitted in the notation) and, since
X1; : : : ; Xn; Y1; : : : ; Yn are i.i.d., so are the random variables Z1; : : : ; Zk . Clearly,
Zi is distributed as Z defined in (35). Suppose now that the fixed alignment .�; �/
has the proportion of gaps less or equal than q, i.e. .�; �/ 2 An.q/. Then k

n
� 1� q

and, since obviouslyNa � 2n, we have

8

<

:

kX

iD1
Zi < "Na

9

=

;
�
8

<

:

kX

iD1
Zi < "2n

9

=

;
D
8

<

:

kX

iD1
Zi < k2"

n

k

9

=

;
�
8

<

:

kX

iD1
Zi < k

2"

.1� q/

9

=

;
:

(41)

Fix now q satisfying (38). Since ƒ� is continuous, there exists ", depending on the
chosen q so that the following two conditions are simultaneously satisfied

�2"
1 � q

> �� and � 2˛ WD 2h.q/�ƒ�
�

� 2"

1 � q

�

.1 � q/ < 0: (42)
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Using the large deviations bound (36) with c D �2"
1�q and the fact that k

n
� 1� q, we

have

P

 

�
kX

iD1
Zi > �k 2"

.1 � q/

!

� exp

�

�ƒ�
� �2"
1 � q

�

k

�

� exp

�

�ƒ�
�

� 2"

1 � q

�

.1 � q/n
�

: (43)

By (37), (40), (41) and (43), we obtain

P
�

.Dn
q ."//

c
� � jAn.q/j exp

�

�ƒ�
�

� 2"

1 � q

�

.1 � q/n
�

: (44)

In order to bound jAn.q/j, note that the number of different alignment with exactly
.n � k/ gaps is bounded above by

�
n
n�k
�2

so that for q � 0:5 we have

jAn.q/j �
X

i�qn

 

n

i

!2

�
X

i�qn

 

n

qn

!2

� qn

 

n

qn

!2

� expŒ2h.q/nC ln.qn/�; (45)

where h.q/ is the binary entropy function. In the second inequality the relation q �
0:5 was used, while the last inequality is based on the well-known relation

�
n
�n

� �
expŒh.�/n�, for any � 2 .0; 1/. Thus, from (42), (44) and (45) we have

P
�

.Dn
q ."//

c
� � exp

��

2h.q/�ƒ�
�

� 2"

1 � q

�

.1 � q/C ln.qn/

n

�

n

�

D exp
h

�
�

2˛ � ln.qn/

n

	

n
i

: (46)

This implies that there exists n2 big enough (recall nq � 1) such that (39) holds.
ut

Proof of Theorem 5.2. Let O.X; Y / denote the set of all optimal alignments of
.X; Y /, i.e.

.�; �/ 2 O.X; Y / , Ln.ı/ D U ı
.�;�/.X; Y / D

kX

iD1
S.X�i ; Y�i /C ıq.�; �/n:

Note that the difference QLn.ı/� Ln.ı/ is bounded from below by

QLn.ı/�Ln.ı/ � U ı
.�;�/.

QX; QY /�U ı
.�;�/.X; Y / D

kX

iD1

�

S. QX�i ; QY�i /� S.X�i ; Y�i /
�

:
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Thus, for every " > 0 we have

n

9.�; �/ 2 O.X; Y / W E
"

kX

iD1

�

S. QX�i ; QY�i /� S.X�i ; Y�i /
�
ˇ
ˇ
ˇX; Y

#

� "
o

�
n

EŒ QLn.ı/ �Ln.ı/jX; Y � � "
o

: (47)

Recall that the event Dn
q."/ means that every alignment .�; �/ with no more than

qn gaps has a biased effect of the random change at least ". Now, it is clear that
the right side of (47) holds if Dn

q ."/ holds and there exists an optimal alignment
contains no more than qn gaps, i.e. we have the inclusion

˚

O.X; Y / � An.q/

 \Dn

q ."/ �
n

EŒ QLn.ı/ �Ln.ı/jX; Y � � �
o

: (48)

Recall that b.ı/ is convex and increasing, b0.ı/ D 1 if ı is big enough and b0.ı/ D 0

if ı is small enough. Hence, for every q � 0 there exists ı so that b0.ıC/ < q. Let
ı be such and denote "1 WD q � b0.ıC/. Then by Theorem 4.1, there exist c."1/ and
n1."1/ such that

P
�

qn.ı/ � q
� � 1 � 2 expŒc."1/n� (49)

for every n > n1. Therefore we have

P
�

O.X; Y / � An.q/
� � 1 � 2 expŒc."1/n� (50)

for n > n1. From Lemma 5.1, it follows that if q > 0 is small enough to satisfy (38),
then there exist " > 0, ˛ > 0 and n2 < 1, all depending on q so that

P
�

.Dn
q ."//

c
� � expŒ�˛n� (51)

for every n > n2. To finalize the proof, let us take q satisfying (38) and ı0 be such
that b0.ı0C/ < q. Then, there exist " > 0, ˛ > 0 and n0 WD maxfn2; n1g so that (50)
and (51) hold. Thus, from (48) we have

P
�

EŒ QLn.ı/� Ln.ı/jX; Y � � �
	

� 1 � 2 expŒc."1/n� � expŒ�˛n�

for every n > n0. Hence, the assumptions of Theorem 5.1 are satisfied. ut
An alternative to Lemma 5.1. Recall that ı0 in Theorem 5.2 was chosen to be such
that b0.ı0C/ < q, where q satisfies assumptions of Lemma 5.1, namely (38). This
assumption comes from the large deviations bound (43). Although, asymptotically
it is a sharp inequality, the rate-function ƒ� might not always be easy to compute.
Clearly, the statement of Lemma 5.1 holds true for any other type of large deviations
inequality giving the same exponential decay. An alternative would be to use
Höffding’s inequality (20) to get a version of Lemma 5.1 which does not rely on
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the computation of ƒ�. The Höffding’s inequality gives smaller q, and, therefore,
larger ı0.

Lemma 5.2. Suppose Assumption 5.1 is fulfilled and take a; b satisfying (34). Let
q > 0 small enough such that

h.q/ <
.1 � q/�2
9A2

: (52)

Then there exist " > 0, ˛ > 0 and n2 < 1, all depending on q, such that

P
�

.Dn
q ."//

c
� � expŒ�˛n� (53)

for every n > n2.

Proof. Recall the definition of A from (18). Let q > 0 be small enough sat-
isfying (52). Then, there exists " > 0 small enough such that both conditions
simultaneously hold:

(1) 2" < .1 � q/�, which means that � WD � � 2"
.1�q/ > 0;

(2)

h.q/ � ..1 � q/� � 2"/2
9A2.1 � q/

DW �˛."/ < 0:

Hence, there exists n2 < 1 such that

h.q/ � ..1 � q/� � 2"/2

9A2.1 � q/ C ln.qn/

2n
� �˛

2
(54)

for every n > n2. Recall that k � .1 � q/n. To apply Höffding’s inequality, we
need to bound the random variable Z. Recall the definition of Z from (35). From
the definition, �x.x; y/ and �y.x; y/ are simultaneously non-zero if and only if x D
y D a, this means that the difference between the maximum and minimum value
of Zi is at most 3A. For instance, if S.b; a/ < S.a; a/ then �2A � 2.S.b; a/ �
S.a; a// � Zi � maxc¤a.S.b; c/ � S.a; c// � A. Then, by using (20), the large
deviations bound (43) can be written down as (recall (1))

P

 

�
kX

iD1

Zi > �k 2"

.1� q/

!

D P

 

1

k

kX

iD1

.�Zi/C � > �� 2"

.1� q/

!

� exp

�

� 2�2

.3A/2
k

�

� exp

�

�2�
2.1� q/

9A2
n

�

D exp

�

� 2..1� q/�� 2"/2

9A2.1� q/
n

�

:

Finally, the inequality (46) can be now written down as

P
�

Dnc
q ."/

� � exp
h

2
�

h.q/ � ..1 � q/� � 2"/2

9A2.1 � q/
C ln.qn/

2n

	

n
i

D expŒ�˛n�; (55)

where the result is proven by using (54). ut
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6 Determining ı

In the last section, we discuss how to determine ı0 in Theorem 5.2. Recall, once
again, the proof of that theorem: ı0 is so small that b0.ı0C/ < q, where q is small
enough to satisfy condition (38). This condition depends on ƒ�, but knowing the
distribution of X1, ƒ� can be found. When ƒ� is unknown, then condition (38) can
be substituted by (more restrictive) condition (52). The latter does not depend onƒ�
and can be also used when the distribution ofX1 is unknown. Hence finding q is not
a problem. The problem, however, is to determine the function b or its derivatives. In
Sect. 4, we found confidence upper bound for b0.ıC/ (31). That bound is random and
holds only with certain probability. In the following, we investigate deterministic
ways to estimate b0.ıC/.

Let .tn; qn/ 2 On.ı/ be an optimal pair: Bn D tn.1 � qn/C ıqn. Clearly, when
.t 0n; q0

n/ is another optimal pair and q0
n > qn, then t 0n > tn. Hence .tn; qn/ 2 On.ı/,

where tn D maxft W .t; q/ 2 On.ı/g: For every q 2 .0; 1/, let t .q/ be an asymptotic
upper bound for Ntn in the sense that if b0.ıC/ < q (i.e. lim supn qn.ı/ < q almost
surely) then

P.eventually t n � t.q// D 1:

Thus, q 7! t.q/ is non-decreasing. In what follows, let b be the lower bound of b.ı/
for every ı. Since the asymptotic proportion of gaps goes to zero as ı ! �1, b can
be taken as the limit of gapless alignments. This limit is obviously ES.X1; Y1/ DW
� . If the distribution of X1 is unknown, then b can be any lower bound for � .

Let now qo 2 .0; 1/ be fixed. We aim to find ıo WD ı.qo/ � 0 such that
b0.ıC/ < qo for every ı satisfying �ı > ıo. The following claim shows that ıo
can be computed as follows:

ıo D sup
q�qo

t.q/.1 � q/� b

q
: (56)

Claim 6.1. Let ı < 0 be such that �ı > ıo, where ıo is as in (56). Then
b0.ıC/ � qo.

Proof. Take ı � 0 so small that �ı � ıo. Without loss of generality, we can assume
that b is differentiable at ı. Thus b is differentiable at ı implies that qn ! b0.ı/ > 0
a.s. Let now " WD jıj � ıo and let q0 > b0.ı/ be such that

ˇ
ˇ
t .q0/.1 � q0/� b

q0 � t .q0/.1 � b0.ı//� b

b0.ı/
ˇ
ˇ < ":

Suppose b0.ı/ � qo. Then, q0 > qo and by definition of ıo

ı.qo/ � t .q0/.1 � q0/� �

q0
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so that

jıj D ıo C " >
t
�

q0�.1 � b0.ı//� b

b0.ı/
, t

�

q0�.1 � b0.ı//� jıjb0.ı/ < b:
(57)

Since b0.ı/ < q0, then eventually tn � t .q0/ a.s. By the convergence qn ! b0.ı/
from the r.h.s. of (57), follows then that eventually

Bn D t n.1 � qn/ � jıjqn < b

almost surely. We have a contradiction with the almost surely convergence Bn !
b.ı/ � b. ut
Remark 6.1. If t .q/ � t is constant, then (56) is

ı.qo/ WD t .1 � qo/ � b
qo

: (58)

6.1 Finding t.q/

For applying (56) the crucial step is to find t . Since the maximum value of the
scoring function is F , a trivial bound is t .q/ � F and ıo can be found from (58).
However, using the same ideas as in the proof of Theorem 5.2, we could obtain a
realistic bound for t .q/ as follows. In the following theorem, let ƒ� be Legendre-
Fenchel transform of ƒ.t/ WD lnE expŒtZ�, where Z WD S.X; Y /. Clearly Z is a
nonnegative random variableZ � F and EZ was denoted by � .

Theorem 6.1. Let q1 2 .0; 1/ and let t .q1/ satisfy one of the following conditions

2h.q1 ^ 0:5/
1 � q1

D ƒ�.t.q1//: (59)

or

t.q1/ D F

s

h.q1 ^ 0:5/
1 � q1

C �: (60)

Then for every ı such that b0.ıC/ < q1, the following holds

P
�

eventually tn.ı/ � t .q1/
� D 1:

Proof. Let q1 2 .0; 1/ be fixed. Let ı be such that b0.ıC/ < q1. Note that we can
find q such that b0.ıC/ < q and the following conditions both hold
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2h.q ^ 0:5/
1 � q

< ƒ�.t.q1//: (61)

and

t.q1/ > F

s

h.q ^ 0:5/
1� q

C �: (62)

Note that (62) implies

h.q ^ 0:5/ < .t.q1/� �/2

F 2
.1 � q/: (63)

Let .�1; : : : ; �k/ and .�1; : : : ; �k/ be a fixed alignment, and let Z1; : : : ; Zk be i.i.d.
random variables, where Zi D S.X�i ; Y�i /. Clearly Zi is distributed as Z defined
above. If the alignment .�; �/ is optimal, then

tn D 1

k

kX

iD1
Zi :

Recall that � D EZi . Sinceƒ�.�/ D 0, the conditions (59) and (60) both guarantee
t > � . Let us define

Dn
q .t.q1// WD

\

.�;�/2An.q/

(

1

k

kX

iD1
Zi � t .q1/

)

:

The event Dn
q .t.q1// states that the average score of aligned letters is smaller

than t .q1/ for every alignment with proportion of gaps at most q. If all optimal
alignments are so, then also tn.ı/ � t .q1/, namely

fO.X; Y / 2 An.q/g \Dn
q .t/ � ftn.ı/ � t.q1/g:

In order to bound P.Dn
q .t.q1///, we proceed as in Lemma 5.1. Using the large

deviations bound

P

 
kX

iD1
Zi > t.q1/k

!

� expŒ�ƒ�.t.q1//k� � expŒ�ƒ�.t .q1//.1 � q/n� (64)

we obtain the following estimate

P
�

.Dn
q .t//

c� � jAn.q/j expŒ�ƒ�.t .q1//.1 � q/n� (65)
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For q � 0:5, we estimate jAn.q/j as in Lemma 5.1 by

jAn.q/j � exp

��

2h.q/C ln.qn/

n

�

n

�

:

For q 2 .0:5; 1/ note that

jAn.q/j �
X

i�qn

 

n

i

!2

< qn

 

n
1
2
n

!2

� exp

��

2h.0:5/C ln.qn/

n

�

n

�

:

Hence

P
�

.Dn
q .t//

c� � exp

��

2h.q ^ 0:5/C ln.qn/

n
�ƒ�.t.q1//.1 � q/

�

n

�

: (66)

Since (61) holds, then just like in the proof of Theorem 5.2, there exists ˛ > 0 and
no, both depending on t .q1/, so that

P
�

t n.ı/ > t.q1/
� � expŒ�˛n�; 8n > no: (67)

Thus,by Borel-Cantelli we have

P
�

eventually tn.ı/ � t .q1/
� D 1:

With Höffding’s inequality the bounds (64) and (66) are

P

 
kX

iD1

Zi > t.q1/k

!

� exp
�

�2.t .q1/ � �/2
F 2

k

�

� exp
�

�2.t.q1/ � �/2

F 2
.1 � q/n

�

P
�

.Dn
q .t//

c� � exp

�

2
�

h.q ^ 0:5/C ln.qn/

2n
� .t .q1/ � �/2

F 2
.1 � q/

�

2n

�

:

respectively, and the existence of ˛ > 0 and no comes from (63). ut

6.2 Example

Consider a two letter alphabet A D fa; bg with probabilities P.Xi D b/ D P.Yi D
b/ D 0:7, P.Xi D a/ D P.Yi D a/ D 0:3. Let the scoring function S assign 1 to
identical letter pairs and 0 to unequal letters. Then the letters a; b satisfy (5.1). The
random variable Z as in (35) is distributed as follows:

P.Z D �2/ D .0:3/2 D 0:09; P.Z D 0/ D .0:7/2 D 0:49; P.Z D 1/ D 2 � 0:3 � 0:7 D 0:42:
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Hence EZ D � D 0:24 and

E expŒ�tZ� D .0:09/ expŒ2t �C 0:49C 0:42 expŒ�t �:

This function achieves its minimum at a t� that is the solution of the equation

.2 � 0:09/ expŒ2t � D expŒ�t �0:42

that is

t� D 1

3
ln
42

18
� 0:28:

Then
�ƒ�.0/ D ln

�

.3 � 0:09/ expŒ2t��C 0:49
� D �0:03564

so that q satisfies (38) if and only if q < qo WD 0:00255, because qo is a solution of
the equation

h.qo/ D ƒ�.0/
2

.1 � qo/ , h.qo/ D 0:01782.1� qo/:

Let us see, how much qo changes when we assume the stronger condition (52).
ClearlyA D 1, so to satisfy (52), the proportion of gaps should satisfy the inequality
q < qo WD 0:000784674, because qo is the solution of the inequality 9h.qo/ D
.1 � qo/.0:24/2 that is

h.qo/ D 0:0064.1� qo/:
Determining ı0. Let us find ı0 so that b0.ı0C/ � q0 D 0:00255: In this example
F D 1, � D .0:3/2 C .0:7/2 D 0:58. Taking t D 1, from (58) with qo D 0:00255,
we get

ıo WD .1 � qo/ � 0:58
qo

D .1 � 0:00255/� 0:58

0:00255
< 164:

The inequality (60) is

t.q/ D
s

h.q ^ 0:5/
1 � q

C �:

Thus, from (56), we get

ıo D sup
q�qo

t.q/.1 � q/ � �
q

D sup
q�qo

.
q

h.q^0:5/
1�q C �/.1 � q/ � �

q

D sup
q�qo

p

h.q ^ 0:5/.1� q/

q
� �:
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Since

q 7!
p

h.q ^ 0:5/.1 � q/
q

is decreasing, we get a much better bound

ıo D
p

h.qo/.1 � qo/

qo
� � D

p

h.0:00255/.1� 0:00255/
0:00255

� 0:58 < 52:

The random variable Z WD S.X1; Y1/ has Bernoulli distribution with parameter � ,
so it is well known that

ƒ�.t/ D t ln

�
t

�

�

C .1 � t/ ln

�
1 � t

1 � �
�

;

provided t > � . Therefore, the maximum value of ƒ�.t/ is achieved for t D 1 and
that is the solution of (59) for q1 D 0:0698. Hence, (59) has solution t .q1/ for every
q1 2 Œ0; 0:0698� and in the range Œ0; 0:0698� the function

q 7! t .q/.1� q/� �

q

is decreasing. This means that ıo can be taken as

ıo D t .qo/.1� qo/� �

qo
:

Since, t.0:00255/ D 0:709053, we thus get

ıo D t.0:00255/.1� 0:00255/� 0:58
0:00255

D 0:709053.1� 0:00255/� 0:58
0:00255

D 49:9 < 50:

Hence in this example, the bound (59) gives only a slight improvement over the
bound (60). The reason is that, for Bernoulli random variables with parameter close
to 0.5, the Höffding’s inequality is almost as good as the one given by the large
deviations principle.
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1 Quadratic Forms

All three gems in probability theory—the law of large numbers, the central limit
theorem and the law of the iterated logarithm—concern the asymptotic behavior of
the sums of random variables. It would be natural to extend the results to functionals
of the sums, in particular to quadratic forms. Moreover, in mathematical statistics
there are numerous asymptotic problems which can be formulated in terms of
quadratic or almost quadratic forms. In this article we review the corresponding
results with rates of convergence. Some of these results are optimal and could not
be further improved without additional conditions. The review does not pretend to
completely illuminate the present state of the area under consideration. It reflects
mainly the authors interests.

Let X;X1;X2; : : : be independent identically distributed random elements with
values in a real separable Hilbert spaceH . The dimension ofH , say dim.H/, could
be either infinite or finite. Let .x; y/ for x; y 2 H denote the inner product inH and
put jxj D .x; x/1=2. We assume that EjX1j2 < 1 and denote by V the covariance
operator of X1:

.Vx; y/ D E.X1 � EX1; x/.X1 � EX1; y/:

Let �21 � �22 � : : : be the eigenvalues of V and let e1; e2; : : : be the corresponding
eigenvectors which we assume to be orthonormal.

For any integer k > 0 we put

ck.V / D
kY

1

��1
i ; ck.V / D .

kY

1

��1
i /.k�1/=k: (1)

In what follows we use c and c.�/, with or without indices, to denote the absolute
constants and the constants depending on parameters in brackets. Except for ci .V /
and ci .V / the same symbol may be used for various constants.

We define

Sn D n�1=2��1
nX

iD1
.Xi � EXi/;

where �2 D EjX1 � EX1j2. Without loss of generality we may assume that
EX1 D 0 and EjX1j2 D 1. The general case can be reduced to this one considering
.Xi � EXi/=� instead of Xi , i D 1; 2; : : : . Let Y be H -valued Gaussian .0; V /
random element. We denote the distributions of Sn and Y by Pn andQ respectively.

The central limit theorem asserts that

Pn.B/ �Q.B/ ! 0

for any Borel set B in H provided Q.@B/ D 0, where @B is the boundary of B .
The estimate of the rate of convergence in the central limit theorem is an estimate
of the quantity supA jPn.A/ �Q.A/j for various classes A of measurable sets A.
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The most famous is the Berry-Esseen bound (see [5, 9]) when H D R, i.e.
dim.H/ D 1, and A D A1 D f.�1; x/; x 2 Rg:

sup
A1

jPn.A/�Q.A/j � c
EjX1j3p

n
: (2)

The bound is optimal with respect to dependence on n and moments of X1. The
lower bound for the constant c in (2) is known (see [11]):

c � 3C p
10

6
p
2�

D 0:40 : : :

The present upper bounds for c W c � 0:47 : : : (see [41, 43]) still differ from the
lower bound slightly.

In the multidimensional case whenH D Rd , i.e. dim.H/ D d > 1, it is possible
to extend the class A to the class of all convex Borel sets in H and to get a bound
(see e.g. [2, 33])

sup
A

jPn.A/�Q.A/j � c
p
d

EjX1j3
�3d

p
n
:

If we consider an infinite dimensional space H and take A as the class of all
half-spaces in H then one can show (see e.g. pp. 69–70 in [34]) that there exists a
distribution of X1 such that

sup
A

jPn.A/�Q.A/j � 1=2: (3)

Therefore, in the infinite dimensional case we can construct upper bound for
supA jPn.A/ � Q.A/j provided that A is a relatively narrow class, e.g. the class
of all balls B.a; x/ D fy W y 2 H and jy � aj2 � xg with fixed center a or the class
of all balls with fixed bounded radius

p
x. However, the good news are that the

numerous asymptotic problems in statistics can be reformulated in terms of these or
similar classes (see e.g. Sect. 2).

Put for any a 2 H
F.x/ D Pn.B.a; x//; F0.x/ D Q.B.a; x//; ın.a/ D sup

x

jF.x/ � F0.x/j:

According to (3) it is impossible to prove upper bound for supa ın.a/which tends
to 0 as jaj ! 1. The upper bound for ın.a/ should depend on a and becomes in
general bad as jaj grows.

The history of constructing bounds for ın.a/ in the infinite dimensional case can
be divided roughly into three phases: proving bounds with optimal

– Dependence on n;
– Moment conditions;
– Dependence on the eigenvalues of V .

The first phase started in the middle of 1960s in the twentieth century with
bounds of logarithmic order for ın.a/ (see [27]) and ended with the result:
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ın.a/ D O.n�1=2/;

due to Götze [12], which was based on a Weyl type symmetrization inequality (see
Lemma 3.37 (i) in [12]):

Let X; Y;Z be the independent random elements in H . Then

E expfi� jX C Y CZj2g � .E expf2i�.eX;eY //1=4; (4)

where eX is the symmetrization of X , i.e eX D X � X 0 with independent and
identically distributed X and X 0. The main point of the inequality is that it enables
us to reduce the initial problem with non-linear dependence on X in power of exp
to linear one. The inequality since then has been successfully applied and developed
by a number of the authors.

The second phase of the history finished with a paper by Yurinskii [48] who
proved

ın.a/ � c.V /p
n
.1C jaj3/ EjX1j3;

where c.V / denotes a constant depending on V only. The Yurinskii result has the
optimal dependence on n under minimal moment condition but dependence of c.V /
on characteristics of the operator V was still unsatisfactory.

At the end of the third phase it was proved (see [28, 36, 39])

ın.a/ � c c6.V /p
n

.1C jaj3/ EjX1j3; (5)

where c6.V / is defined in (1). It is known (see Example 3 in [38]) that for any
c0 > 0 and for any given eigenvalues �21 ; : : : ; �

2
6 > 0 of a covariance operator V

there exist a vector a 2 H D R7; jaj > c0; and a sequence X1;X2; : : : of i.i.d.
random elements in H D R7 with zero mean and covariance operator V such that

lim inf
n!1

p
n ın.a/ � c c6.V / .1C jaj3/ EjX1j3: (6)

Due to (6) the bound (5) is the best possible in case of the finite third moment of jX1j.
For further refinements see e.g. [40]. For the results for the case of non-identically
distributed random elements in H see [44].

At the same time better approximations for F.x/ are available when we use for
approximation an additional term, say F1.x/, of its asymptotic expansion. This term
F1.x/ is defined as the unique function satisfying F1.�1/ D 0 with the Fourier-
Stieltjes transform equal to

OF1.t/ D � 2t2

3
p
n

Eeft jY � aj2g �3.X; Y � a/jX j2

C2it.X; Y � a/3� : (7)

Here and in the following X and Y are independent and we write efxg D expfixg:
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In case dim.H/ < 1 the term F1.x/ can be defined in terms of the density
function of the normal distribution (see [6]). Let ' denote the standard normal
density in Rd . Then the density function p.y/ of the normal distribution Q is
defined by p.y/ D '.V �1=2y/=

p
detV ; y 2 Rd . We have

F1.x/ D 1

6
p
n
�.Ax/; Ax D fu 2 Rd W ju � aj2 � xg

with the signed measure

�.A/ D
Z

A

Ep
000

.y/X3 dy for the Borel sets A � Rd

and

p
000

.y/ u3 D p.y/.3.V �1u; u/.V �1y; u/ � .V �1y; u/3/

is the third Frechet derivative of p in the direction u.
Introduce the error

	n.a/ D sup
x

jF.x/ � F0.x/ � F1.x/j:

Note, that OF1.t/ D 0 and hence F1.x/ D 0 when a D 0 or X has a symmetric
distribution, i.e. when X and �X are identically distributed. Therefore, we get

	n.0/ D ın.0/:

Similar to the developments of the bounds for ın.a/ the first task consisted in
deriving the bounds for 	n.a/ with the optimal dependence on n. Starting with a
seminal paper by Esseen [10] for the finite dimensional spaces H D Rd ; d < 1;

who proved

	n.0/ D O.n�d=.dC1//; (8)

a comparable bound
	n.0/ D O.n�� /

with � D 1� " for any " > 0 was finally proved in [12,13], based on the Weyl type
inequalities mentioned above. Further refinements and generalizations in the case
a ¤ 0 and � < 1 are due to Nagaev and Chebotarev [29], Sazonov et al. [35].

Note however, that the results in the infinite dimensional case did not even
yield (8) as corollary when �dC1 D 0, i.e. dim.H/ D d . Only 50 years after
Esseen’s result the optimal bounds (in n) were finally established in [3]
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	n.0/ � c.9; V /

n
EjX1j4; (9)

	n.a/ � c.13; V /

n
.1C jaj6/ EjX1j4; (10)

where c.i; V / � expfc��2
i g; i D 9; 13; and in the case of the bound (9) it was

additionally assumed that the distribution of X1 is symmetric. In order to derive
these bound new techniques were developed, in particular the so-called multiplica-
tive inequality for the characteristic functions (see Lemma 3.2, Theorem 10.1 and
formulas (10.7)–(10.8) in [4]):

Let '.t/; t � 0; denote a continuous function such that 0 � ' � 1. Assume that

'.t/ '.t C �/ � �Md .�;N /

for all t � 0 and � > 0 with some � � 1 independent of t and � , where

M.t; n/ D 1=
p

jt jnC
p

jt j for jt j > 0:

Then for any 0 < B � 1 and N � 1

Z 1

B=
p
N

'.t/

t
dt � c.s/ � .N�1 C .B

p
N/�d=2/ for d > 8: (11)

The previous Weyl type inequality (4) gave the bounds for the integrals

Z

D.n;�/

Eeft jSn � aj2g
jt j dt

for the areas D.n; �/ D ft W n1=2 < jt j � n� g with � < 1 only, while (11) enables
to extend the areas of integration up to � D 1.

The bounds (9) and (10) are optimal with respect to the dependence on n [14]
and on the moments. The bound (9) improves as well Esseen’s result (8) for the
Euclidean spaces Rd with d > 8. However, the dependence on covariance operator
V in (9), (10) could be improved. Nagaev and Chebotarev [30] considered the case
a D 0 and got a bound of type (9) replacing c.9; V / by the following function c.V /:

c.V / D c
�

c13.V /C .c9.V //
4=9��6

9

�

;

where c13.V / and c9.V / are defined by (1). The general case a ¤ 0 was considered
in [31] (see their Theorem 1.2). The Nagaev and Chebotarev results improve the
dependence on the eigenvalues of V (compared to (10)) but still require that �13 > 0
instead of the weaker condition �9 > 0 in (9). However, it follows from Lemma 2.6
in [17] that for any given eigenvalues �21 ; : : : ; �

2
12 > 0 of a covariance operator V
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there exist a 2 H D R13; jaj > 1; and a sequence X1;X2; : : : of i.i.d. random
elements in H D R13 with zero mean and covariance operator V such that

lim inf
n!1 n 	n.a/ � c c12.V / .1C jaj6/ EjX1j4: (12)

The bound with dependence on 12 largest eigenvalues of the operator V was
obtained only in [46] (for the first version see Corollary 1.3 in [17]). Moreover,
in [46] the dependence on the eigenvalues is given in the bound in the explicit form
which coincides with the form given by the lower bound (12):

Theorem 1.1. There exists an absolute constant c such that for any a 2 H

	n.a/ � c

n
� c12.V / � �EjX1j4 C E.X1; a/4

�

��1C .Va; a/
�

; (13)

where c12.V / is defined in (1).

According to the lower bound (12) the estimate (13) is the best possible in the
following sense:

– It is impossible that 	n.a/ is of order O.n�1/ uniformly for all distributions of
X1 with arbitrary eigenvalues �21 ; �

2
2 ; : : :;

– The form of the dependence of the right-hand side in (13) on the eigenvalues of
V , on n and on EjX1j4 coincides with one given in the lower bound.

For earlier versions of this result on the optimality of 12 eigenvalues and a
detailed discussion of the connection of the rate problems in the central limit
theorem with classical lattice point problems in analytic number theory, see the
ICM-1998 Proceedings paper by Götze [14], and also Götze and Ulyanov [17].

Note however, that in the special ‘symmetric’ cases of the distribution of X1 or
of the center, say a, of the ball, the number of the eigenvalues which are necessary
for optimal bounds may well decrease below 12. For example, when E.X; b/3 D 0

for all b 2 H , by Corollary 2.7 in [17], for any given eigenvalues �21 ; : : : ; �
2
8 > 0

of a covariance operator V there exists a center a 2 H D R9; jaj > 1; and a
sequence X;X1;X2; : : : of i.i.d. random elements in H D R9 with zero mean and
the covariance operator V such that

lim inf
n!1 n 	n.a/ � c c8.V / .1C jaj4/ EjX1j4:

Hence, in this case an upper bound of order O.n�1/ for	n.a/ has to involve at least
the eight largest eigenvalues of V .

Furthermore, lower bounds for n	n.a/ in the case a D 0 are not available. A
conjecture, see [14], said that in that case the five first eigenvalues of V suffice.
That conjecture was confirmed in Theorem 1.1 in [19] with result 	n.0/ D O.n�1/
provided that �5 > 0 only. Note that for some centered ellipsoids in Rd with d � 5
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the bounds of order O.n�1/ were obtained in [18]. Moreover, it was proved recently
(see Corollary 2.4 in [20]) that even for a ¤ 0 we have 	n.a/ D O.n�1/ when
H D Rd ; 5 � d < 1; and the upper bound for 	n.a/ is written in the explicit
form and depends on the smallest eigenvalue �d (see Theorem 1.4 in [21] as well).
It is necessary to emphasize that (13) implies	n.a/ D O.n�1/ for general infinite
dimensional space H with dependence on the first twelve eigenvalues of V only.

The proofs of the recent results due to Götze, Ulyanov and Zaitsev are based on
the reduction of the original problem to lattice valued random vectors and on the
symmetrization techniques developed in a number of papers, see e.g. Götze [12],
Yurinskii [48], Sazonov et al. [35–37], Götze and Ulyanov [17], Bogatyrev et al.
[7]. In the proofs we use also the new inequalities obtained in Lemma 6.5 in [20]
and in [16] (see Lemma 8.2 in [20]). In fact, the bounds in [20] are constructed
for more general quadratic forms of the type .Qx; x/ with non-degenerate linear
symmetric bounded operator in Rd .

One of the basic lemma to prove (13) is the following (see Lemma 2.2 in [17]):
Let T > 0; b 2 R1; b ¤ 0, l be an integer, l � 1, Y D .Y1; : : : ; Y2l /

be a Gaussian random vector with values in R2l I Y1; : : : ; Y2l be independent and
EYi D 0, EY 2i D �2i for i D 1; 2; : : : ; 2l ; �21 � �22 � � � � � �22l > 0 and a 2 R2l .
Then there exists a positive constant c D c.l/ such that

ˇ
ˇ

Z T

�T
sl�1E expfisjY C aj2geibsds

ˇ
ˇ� c

2lY

jD1
��1
j :

For non-uniform bounds with 12 eigenvalues of covariance operator V see [7].
For estimates for the characteristic functions of polynomials (of order higher

than 2) of asymptotically normal random variables see [22], for related results see
also [23].

2 Applications in Statistics: Almost Quadratic Forms

In this section we consider the accuracy of approximations for the distributions of
sums of independent random elements in k � 1-dimensional Euclidian space. The
approximation is considered on the class of sets which are “similar” to ellipsoids. Its
appearance is motivated by the study of the asymptotic behavior of the goodness-
of-fit test statistics—power divergence family of statistics.

Consider a vector .Y1; : : : ; Yk/T with multinomial distributionMk.n; �/, i. e.

Pr.Y1 D n1; : : : ; Yk D nk/ D

8

ˆ̂
<

ˆ̂
:

nŠ
Qk
jD1.�

nj
j =nj Š/; nj D 0; 1; : : : ; n .j D 1; : : : ; k/

and
Pk
jD1 nj D n;

0; otherwise,
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where � D .�1; : : : ; �k/
T ; �j > 0;

Pk
jD1 �j D 1. From this point on,

we will assume the validity of the hypothesis H0W� D p. Since the sum of
ni equals n, we can express this multinomial distribution in terms of a vector
Y D .Y1; : : : ; Yk�1/ and denote its covariance matrix �. It is known that so defined
� equals .ıji pi � pipj / 2 R.k�1/�.k�1/. The main object of the current study is the
power divergence family of goodness-of-fit test statistics:

t�.Y / D 2

�.�C 1/

kX

jD1
Yj

2

4

 

Yj

npj

!�

� 1

3

5 ; � 2 R;

When � D 0;�1, this notation should be understood as a result of passage to the
limit.

These statistics were first introduced in [8] and [32]. Putting � D 1; � D �1=2
and � D 0 we can obtain the chi-squared statistic, the Freeman-Tukey statistic, and
the log-likelihood ratio statistic respectively.

We consider transformation

Xj D .Yj � npj /=
p
n; j D 1; : : : ; k; r D k � 1; X D .X1; : : : ; Xr/

T :

Herein the vector X is the vector taking values on the lattice,

LD
�

x D .x1; : : : ; xr /
T I x D m � npp

n
; p D .p1; : : : ; pr /

T ; m D .n1; : : : ; nr /
T

�

;

where nj are non-negative integers.
The statistic t�.Y / can be expressed as a function of X in the form

T�.X/ D 2n

�.�C 1/

2

4

kX

jD1
pj

 �

1C Xjp
npj

��C1
� 1

!3

5 ; (14)

and then, via the Taylor expansion, transformed to the form

T�.X/ D
kX

iD1

 

X2
i

pi
C .� � 1/X3

i

3
p

np2
i

C .� � 1/.� � 2/X4
i

12p3i n
CO

�

n�3=2�
!

:

As we see the statistics T�.X/ is “close” to quadratic form

T1.X/ D
kX

iD1

X2
i

pi
;

considered in Sect. 1.
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We call a set B � Rr an extended convex set, if for for all l D 1; : : : ; r it can be
expressed in the form:

B D fx D .x1; : : : ; xr /
T W�l.x�/ < xl < �l.x�/ and

x� D .x1; : : : ; xl�1; xlC1; : : : ; xr /T 2 Blg;

where Bl is some subset of Rr�1 and �l.x�/; �l .x�/ are continuous functions on
Rr�1. Additionally, we introduce the following notation

Œh.x/�
�l .x

�/

�l .x�/
D h.x1; : : : ; xl�1; �l .x�/; xlC1; : : : ; xr /

�h.x1; : : : ; xl�1; �l .x�/; xlC1; : : : ; xr /:

It is known that the distributions of all statistics in the family converge to chi-
squared distribution with k � 1 degrees of freedom (see e.g. [8], p. 443). However,
more intriguing is the problem to find the rate of convergence to the limiting
distribution.

For any bounded extended convex set B in [47] it was obtained an asymptotic
expansion, which in [42] was converted to

Pr.X 2 B/ D J1 C J2 CO.n�1/: (15)

with

J1 D
Z

� � �
Z

B

�.x/

�

1C 1p
n
h1.x/C 1

n
h2.x/

�

dx; where

h1.x/ D �1
2

kX

jD1

xj

pj
C 1

6

kX

jD1
xj

�
xj

pj

�2

;

h2.x/ D 1

2
h1.x/

2 C 1

12

0

@1 �
kX

jD1

1

pj

1

AC 1

4

kX

jD1

�
xj

pj

�2

� 1

12

kX

jD1
xj

�
xj

pj

�3

I

J2 D � 1p
n

Xr

lD1 n
�.r�l/=2X

xlC12LlC1

� � �
X

xr2Lr
�Z

� � �
Z

Bl

ŒS1.
p
nxl C npl/�.x/�

�l .x
�/

�l .x�/
dx1; � � � ; dxl�1

�

I (16)
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Lj D
�

xW xj D nj � npjp
n

; nj and pj defined as before

�

I

S1.x/ D x � bxc � 1=2; bxc is the integer part of xI

�.x/ D 1

.2�/r=2j�j1=2 exp

�

�1
2

xT��1x
�

:

In [47] it was shown that J2 D O.n�1=2/.
Using elementary transformations it can be easily shown that the determinant of

the matrix � equals
Qk
iD1 pi .

In [47] it was also examined the expansion for the most known power divergence
statistic, which is the chi-squared statistic. Put B� D fx j T�.x/ < cg. It is easy to
show thatB1 is an ellipsoid, which is a particular case of a bounded extended convex
set. Yarnold managed to simplify the item (16) in this simple case and converted the
expansion (15) to

Pr.X 2 B1/ D Gr.c/C .N 1 � nr=2V 1/e�c=2
.�

.2�n/r
Yk

jD1 pj
�1=2

CO.n�1/; (17)

where Gr.c/ is the chi-squared distribution function with r degrees of freedom;N1

is the number of points of the lattice L in B1; V 1 is the volume of B1. Using the
result from Esseen [10], Yarnold obtained an estimate of the second item in (17) in
the formO.n�.k�1/=k/. If we estimate the second term in (17) taking the result from
Götze [15] instead of Esseen’s one from Esseen [10] we get (see [18]) in the case of
the Pearson chi-squared statistics, i.e. when � D 1, that for r � 5

Pr.X 2 B1/ D Gr.c/CO.n�1/:

In [42] it was shown that, when � D 0; � D �1=2, we have

J1 D Gr.c/CO.n�1/

J2 D .N � � nr=2V �/ e�c=2ı
�

.2�n/r
Yk

jD1 pj
�1=2

C o.1/; (18)

V � D V 1 CO.n�1/:

These results were expanded by Read to the case � 2 R. In particular, Theorem 3.1
in [32] implies

Pr .T� < c/ D Pr
�

�2r < c
�C J2 CO

�

n�1� : (19)

This reduces the problem to the estimation of the order of J2.
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It is worth mentioning that in [42] and in [32] there is no estimate for the
residual in (18). Consequently, it is impossible to construct estimates of the rate
of convergence of the statistics T� to the limiting distribution, based on the simple
representation for J2 initially suggested by Yarnold.

In [45] and in [1] the rate of convergence for the residual in (18) was obtained
for any power divergence statistic. Then we constructed an estimate for J2 based on
the fundamental number theory results of Hlawka [25] and Huxley [26] about an
approximation of a number of the integer points in the convex sets (more general
than ellipsoids) by the Lebesgue measure of the set.

Therefore, one of the main point is to investigate the applicability of the afore-
mentioned theorems from number theory to the set B�.

In [45] it is shown that B� D fx j T�.x/ < cg is a bounded extended convex
(strictly convex) set. As it has been already mentioned, in accordance with the results
of Yarnold [47]

J2 D O
�

n�1=2� :

For the specific case of r D 2 this estimate has been considerably refined in [1]:

J2 D O
�

n�3=4C".logn/315=146
�

(20)

with " D 3=4�50=73 < 0; 0651. As it follows from (18), the rate of convergence of
J2 to 0 cannot be better than the results in the lattice point problem for the ellipsoids
in number theory, where for the case r D 2 we have the lower bound of the order
O
�

n�3=4 log logn
�

(see [24]). Therefore, the relation (20) gives for J2 the order that
is not far from the optimal one.

In [1] it was used the following theorem from Huxley [26]:

Theorem 2.2. Let D be a two-dimensional convex set with area A, bounded by a
simple closed curve C , divided into a finite number of pieces each of those being 3
times continuously differentiable in the following sense. Namely, on each piece Ci
the radius of curvature � is positive (and not infinite), continuous, and continuously
differentiable with respect to the angle of contingence  . Then in a set that is
obtained from D by translation and linear expansion of order M , the number of
integer points equals

N D AM2 CO
�

IMK.logM/ƒ
�

K D 46

73
; ƒ D 315

146
;

where I is a number depending only on the properties of the curve C , but not on the
parametersM or A.

In [45] the results from Asylbekov et al. [1] were generalized to any dimension.
The main reason why two cases when r D 2 and r � 3 are considered separately
consists in the fact that for r � 3 it is much more difficult than for r D 2 to check
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the applicability of the number theory results to B�. In [45] we used the following
result from Hlawka [25]:

Theorem 2.3. Let D be a compact convex set in Rm with the origin as its inner
point. We denote the volume of this set by A. Assume that the boundary C of this
set is an .m � 1/-dimensional surface of class C1, the Gaussian curvature being
non-zero and finite everywhere on the surface. Also assume that a specially defined
“canonical” map from the unit sphere to D is one-to-one and belongs to the class
C1. Then in the set that is obtained from the initial one by translation along an
arbitrary vector and by linear expansion with the factor M the number of integer
points is

N D AMm CO
�

IMm�2C 2
mC1

	

where the constant I is a number dependent only on the properties of the surface
C , but not on the parametersM or A.

Providing that m D 2, the statement of Theorem 2.3 is weaker than the result of
Huxley.

The above theorem is applicable in [45] with M D p
n. Therefore, for any fixed

� we have to deal not with a single set, but rather with a sequence of sets B�.n/

which are, however, “close” to the limiting set B1 for all sufficiently large n (see the
representation for T�.X/ after (14)). It is necessary to emphasize that the constant I
in our case, generally speaking, is I.n/, i.e. it depends on n. Only having ascertained
the fulfillment of the inequality

jI.n/j 6 C0;

whereC0 is an absolute constant, we are able to apply Theorem 2.3 without a change
of the overall order of the error with respect to n.

In [45] we prove the following estimate of J2 in the space of any fixed dimension
r > 3.

Theorem 2.4. For the term J2 from the decomposition (19) the following estimate
holds

J2 D O
�

n�r=.rC1/� ; r > 3;

The Theorem implies that for the statistics t�.Y / and T�.X/ (see formula (14))
it holds that

Pr.t�.Y / < c/ D Pr.T�.X/ < c/ D Gr.c/CO
�

n�1C 1
rC1

	

; r > 3:
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Abstract We establish a moderate deviations principle (MDP) for the log-
determinant log j det.Mn/j of a Wigner matrix Mn matching four moments with
either the GUE or GOE ensemble. Further we establish Cramér-type moderate
deviations and Berry-Esseen bounds for the log-determinant for the GUE and
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1 Introduction

In random matrix theory, the determinant is naturally an important functional.
The study of determinants of random matrices has a long history. The earlier papers
focused on the determinant detAn of a non-Hermitian iid matrix An, where the
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entries of the matrix were independent random variables with mean 0 and variance 1.
Szekeres and Turán [23] studied an extremal problem. Later, in a series of papers
moments of the determinants were computed, see [20] and [4] and references
therein. In [24], Tao and Vu proved for Bernoulli random matrices, that with
probability tending to one as n tends to infinity

p
nŠ exp.�cpn logn/ � j detAnj � p

nŠ !.n/ (1)

for any function !.n/ tending to infinity with n. This shows that almost surely,
log j detAnj is . 1

2
Co.1//n logn. In [11], Goodman considered the random Gaussian

case, where the entries of An are iid standard real Gaussian variables. Here the
square of the determinant can be expressed as a product of independent chi-square
variables and it was proved that

log.j detAnj/� 1
2

lognŠC 1
2

logn
q

1
2

logn
! N.0; 1/R; (2)

where N.0; 1/R denotes the real standard Gaussian (convergence in distribution).
A similar analysis also works for complex Gaussian matrices, in which the entries
remain jointly independent but now have the distribution of the complex Gaussian
N.0; 1/C. In this case a slightly different law holds true:

log.j detAnj/� 1
2

lognŠC 1
4

logn
q

1
4

logn
! N.0; 1/R: (3)

Girko [9] stated that (2) holds for real iid matrices under the assumption that the
fourth moment of the atom variables is 3. In [10] he claimed the same result under
the assumption that the atom variables have bounded .4C ı/-th moment. Recently,
Nguyen and Vu [19] gave a proof for (2) under an exponential decay hypothesis
on the entries. They also present an estimate for the rate of convergence, which is
that the Kolmogorov distance of the distribution of the left hand side of (2) and the
standard real Gaussian can be bounded by log� 1

3Co.1/ n. In our paper we will be able

to improve the bound to log� 1
2 n in the Gaussian case.

In the non-Hermitian iid model An it is a crucial fact that the rows of the matrix
are jointly independent. This independence no longer holds true for Hermitian
random matrices, which makes the analysis of determinants of Hermitian random
matrices more challenging. The analogue of (1) for Hermitian random matrices was
first proved in [25, Theorem 31] as a consequence of the famous Four Moment
Theorem. Even in the Gaussian case, it is not simple to prove an analogue of the
Central Limit Theorem (CLT) (3). The observations in [11] do not apply due to the
dependence between the rows. In [18] and in [15], the authors computed the moment
generating function of the log-determinant for the Gaussian unitary and Gaussian
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orthogonal ensembles, respectively, and discussed the central limit theorem via the
method of cumulants (see [15, (40) and Appendix D]): consider a Hermitian n � n
matrix Xn in which the atom distribution �ij are given by the complex Gaussian
N.0; 1/C for i < j and the real Gaussian N.0; 1/R for i D j (which is called
the Gaussian Unitary Ensemble (GUE)). The calculations in [15] should imply a
Central Limit Theorem (see Remark 2.4 in our paper):

log.j detXnj/� 1
2

lognŠC 1
4

logn
q

1
2

logn
! N.0; 1/R; (4)

Recently, Tao and Vu [26] presented a different approach to prove this result
approximating the log-determinant as a sum of weakly dependent terms, based
on analyzing a tridiagonal form of the GUE due to Trotter [27]. They have to
apply stochastic calculus and a martingale central limit theorem to get their result.
This method is quite different and also quite involved. More important for us, the
techniques due to Tao and Vu seem not to be applicable to get finer asymptotics like
Cramér-type moderate deviations, Berry-Esseen bounds and moderate deviations
principles. The reason for this is the quality of the approximation by a sum of weakly
dependent terms they have chosen is not sharp enough. Let us emphasize that Tao
and Vu proved the CLT (4) for certain Wigner matrices, generating a Four Moment
Theorem for determinants.

The aim of our paper is to use a closed formula for the moments of the
determinant of a GUE matrix, giving at the same time a closed formula for the
cumulant generating function of the log-determinant. We will be able to present
good bounds for all cumulants. As a consequence we will obtain Cramér-type
moderate deviations, Berry-Esseen bounds and moderate deviation principle (for
definitions see Sect. 2) for the log-determinant of the GUE, improving results in
[15] and [26]. Moreover we will obtain similar results for the GOE ensemble. Good
estimates on the cumulants imply such results. To do so we apply a celebrated
lemma of the theory of large deviations probabilities due to Rudzkis et al. [21, 22]
as well as results on moderate deviation principles via cumulants due to the authors
[6]. Applying the recent Four Moment theorem for determinants due to Tao and
Vu [26], we are able to prove the moderate deviation principle and Berry-Esseen
bounds for the log-determinant for Wigner matrices matching four moments with
either the GUE or GOE ensemble. Moreover we will be able to prove moderate
deviations results and will improve the Berry-Esseen type bounds in [19] in the cases
of non-symmetric and non-Hermitian Gaussian random matrices, called Ginibre
ensembles.

Remark that the first universal result of a moderate deviations principle was
proved in [7] and [8] for the number of eigenvalues of a Wigner matrix, based on fine
asymptotics of the variance of the eigenvalue counting function of GUE matrices,
on the Four Moment theorem and on localization results.
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2 Gaussian Ensembles and Wigner Matrices

Among the ensembles of n � n random matrices Xn, Gaussian orthogonal and
unitary ensembles have been studied extensively and are still being investigated.
Their probability densities are proportional to exp.� tr.X2

n//, where tr denotes the
trace. Matrices are real symmetric for the Gaussian orthogonal ensemble (GOE)
and Hermitian for the Gaussian unitary ensemble (GUE). The joint distributions of
eigenvalues for the Gaussian ensembles are ([1, Theorem 2.5.2], [17, Chap. 3])

Pn;ˇ.�1; : : : ; �n/ WD 1

Zn;ˇ
exp

�

�ˇ
4

nX

iD1
�2i

�
Y

1�j<k�n
j�j � �kjˇ; (5)

where ˇ D 1; 2 for the orthogonal and unitary ensembles, respectively, and Zn;ˇ
is the normalizing constant, sometimes called the Mehta integral (see [1, Theorem
2.5.2, formula (2.5.4), and Corollay 2.5.9, Selberg’s integral formula]).

Let us denote by Xˇ
n the random matrices of the two Gaussian ensembles. We

are interested in the moments of j detXˇ
n j for these ensembles, that is

Mn;ˇ.s/ WD hj detXˇ
n jsiˇ WD

Z

Rn

Pn;ˇ.�1; : : : ; �n/

nY

iD1
j�i js d�i :

All information about the distribution of log j detXˇ
n j can be obtained from the

generating function Mn;ˇ.s/. The moments of log j detXˇ
n j may be obtained from

the coefficients in the Taylor expansion of Mn;ˇ evaluated at s D 0,

Mn;ˇ.s/ D
X

j�0

h.log j detXˇ
n j/j iˇ

j Š
sj ;

the corresponding cumulants �j .n; ˇ/ WD .�i/j dj
dtj

logE
�

eit log j detXˇn j�ˇˇ
tD0 are

related to the Taylor coefficients of logMn;ˇ via

logMn;ˇ.s/ D
X

j�0

�j .n; ˇ/

j Š
sj :

In the literature the Mellin transform of the probability density of j detXˇ
n j was

calculated for the Gaussian ensembles, giving an explicit formula for Mn;ˇ.s/. To
be more precise, if gn;ˇ.�/ denotes the probability density of the determinant of a
GOE or a GUE matrix and gC

n;ˇ.y/ WD 1
2
.gn;ˇ.y/C gn;ˇ.�y// be the even part, the

Mellin transform of gC
n;ˇ is defined by
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Mn;ˇ.s/ WD
Z 1

0

ys�1gC
n;ˇ.y/dy:

For the GOE and GUE ensembles we obtain

Mn;ˇ.s/ D 1

2

Z 1

�1
� � �
Z 1

�1
Pn;ˇ.�1; : : : ; �n/j�1 � � ��njs�1d�1 � � �d�n

and an obvious consequence is the relation

Mn;ˇ.s/ D 2Mn;ˇ.s C 1/: (6)

It is quite involved to calculate the Mellin transform even for the Gaussian
ensembles. The case ˇ D 1 was calculated in [15, formulas (31), (19) and (26)]
(see also [17, Chap. 26.5]). Here the Mellin transform is a Pfaffian of an anti-
symmetric matrix applying the method of (skew) orthogonal polynomials. With (6),
for n D 2p C 1 one obtains

M2pC1;1.s/ D 4ns=2
nY

mD1

�. s
2

C 1
2

C b1m/

�. 1
2

C b1m/
(7)

with b1m WD 1
2
bm�1

2
c C 1

4
. If n D 2p one obtains

M2p;1.s/ D 2
.nC1/s

2 F

�
s C 1

2
;� s

2
I nC 1C s

2
I 1
2

�
�..s C 1/=2/�..nC 1/=2/

�. 1
2
/�..nC 1C s/=2/

p
Y

mD1

�.s CmC 1
2
/

�.mC 1
2
/

;

(8)

where F is the (Gauß) hypergeometric function

F.a; bI cI z/ WD
1X

mD0

.a/.m/.b/.m/

.c/.m/
zm

mŠ
(9)

with .x/.m/ WD x.xC 1/.xC 2/ � � � .xCm� 1/ denoting the Pochhammer symbol.
F is convergent for arbitrary a; b; c and for real �1 < z < 1. In [3], an alternative
derivation for (7) and (8) is presented using terminating hypergeometric series. The
case ˇ D 2 was calculated in [18, Sect. 2]. Here a knowledge of determinants and
orthogonal polynomials is needed. One obtains

Mn;2.s/ D 2ns=2
nY

mD1

�. s
2

C 1
2

C b2m/

�. 1
2

C b2m/
(10)

with b2m D bm
2

c. As a consequence of (10) we obtain the following results for the
cumulants �j .n; 2/ of log j detX2

n j:



258 H. Döring and P. Eichelsbacher

Lemma 2.1 (Bounds for the cumulants of log j detX2
n j, GUE). For the Gaussian

unitary ensemble ˇ D 2 we obtain

�1.n; 2/ D �n
2
.1C log 2/C n

2
log
�

2bn=2c�C const CO.1=n/

and

�22 WD �2.n; 2/ D 1

2
log
�

2bn=2c�C 1

2
.� C log 2C 1/CO.1=n/;

where � denotes the Euler-Mascheroni constant. Moreover for any j � 3 we have

ˇ
ˇ�j .n; 2/

ˇ
ˇ � const j Š: (11)

Proof. Let us remark that some of our calculations can be found in [15]. We work
out all the details to get good bounds on the cumulants, which is not the aim in [15].
With  .x/ WD d

dx
log�.x/ we denote the digamma function. From (10) we obtain

�1.n; 2/ D d

ds
logMn;2.s/

ˇ
ˇ
ˇ
ˇ
sD0

D n

2
log 2C 1

2

nX

iD1
 .1=2C b2i /: (12)

For any n D 2kC1 we obtain 1
2

Pn
iD1  .1=2Cb2i / D Pk

jD1  .1=2Cj /C 1
2
 . 1

2
/

and for n D 2k we have 1
2

Pn
iD1  .1=2C b2i / D Pk

jD1  .1=2C j /C 1
2
 .1=2/�

1
2
 .nC1

2
/. With �.1 C x/ D x�.x/ it follows that  .1 C x/ D  .x/ C 1

x
and

therefore recursively  .1=2C j / D  .1=2/C 2

�
Pj

lD1
1

2l�1

�

, see [14, Sect. 1.3,

(1.3.9)]. Using

2

kX

jD1

j
X

lD1

1

2l � 1 D 2.kC1/
kX

lD1

1

2l � 1
�

kX

lD1

2l

2l � 1 D .2kC1/
� 2kX

lD1

1

l
�

kX

lD1

1

2l

�

�k

we obtain
Pk

jD1  .1=2 C j / D k .1=2/ � k C .2k C 1/

�
P2k

lD1 1l � Pk
lD1 1

2l

�

.

Applying
nX

lD1

1

l
D � C lognC 1

2n
CO.

1

n2
/; (13)

it follows that .2k C 1/

�
P2k

lD1 1l � Pk
lD1 1

2l

�

D .2k C 1/ 1
2
.� C 2 log 2/

C .2k C 1/ 1
2

log k CO. 1
k
/. With  .1=2/ D �2 log 2 � � we have

kX

jD1
 .1=2C j /C 1

2
 .1=2/ D �k C .k C 1

2
/ log k CO.

1

k
/: (14)
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In the case n D 2k we have to consider in addition the term 1
2
 .1=2 C k/ D

1
2

log k CO. 1
k
/. Summarizing we obtain for every n:

�1.n; 2/ D �n
2

�

log 2C 1
�C n

2
log.2k/C const CO.1=n/:

From (10) and (12) we obtain for n D 2k C 1

�j .n; 2/ D dj

dsj
logMn;2.s/

ˇ
ˇ
ˇ
ˇ
sD0

D 1

2j
 .j�1/.1=2/C 1

2j�1
kX

iD1
 .j�1/.1=2C i/

(15)
with the polygamma function  .k/.x/ WD dk

dxk
log�.x/. For n D 2k one has to

subtract from the right hand side the term 1
2j
 .j�1/. nC1

2
/. We remind the repre-

sentation of �.x/�1 due to Weierstrass (see for example [14, Sect. 1.3, (1.3.17)]):
1

�.x/
D xe�x

Q1
kD1.1C x

k
/e� x

k . Differentiating � log�.x/ leads to

 .x/ D �� � 1

x
C

1X

kD1

�
1

k
� 1

x C k

�

D �� C
1X

nD0

�
1

nC 1
� 1

x C n

�

:

Therefore one obtains

 .k/.x/ D .�1/kC1 kŠ
1X

nD0

1

.x C n/kC1 : (16)

It follows that

kX

iD1
 .j�1/.1=2C i/ D .�1/j .j � 1/Š 2j

kX

iD1

1X

mDi

1

.2mC 1/j

D .�1/j .j � 1/Š 2j�1
�

2

kX

iD1

kX

mDi

1

.2mC 1/j
C 2

kX

iD1

1X

mDkC1

1

.2mC 1/j

�

DW T1 C T2:

With 2
Pk

iD1
Pk

mDi 1
.2mC1/j D Pk

mD1 1
.2mC1/j�1 �Pk

mD1 1
.2mC1/j we obtain

T1 D .�1/j .j � 1/Š 2j�1
kX

mD0

1

.2mC 1/j�1 � .�1/j .j � 1/Š 2j�1

�.�1/j .j � 1/Š 2j�1
kX

mD1

1

.2mC 1/j
:
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Further we get

T2 D .�1/j .j � 1/Š 2j�1 2k
1X

mDkC1

1

.2mC 1/j
:

Hence using (16) for  .j�1/ we obtain

kX

iD1
 .j�1/.1=2C i/ D .�1/j .j � 1/Š 2j�1

kX

mD0

1

.2mC 1/j�1 � 1

2
 .j�1/�1

2

�

C .�1/j .j � 1/Š 2j�1.2k C 1/

1X

mDkC1

1

.2mC 1/j
:

(17)

In particular for j D 2, we have

kX

iD1
 .1/.1=2C i/ D 2

�1

2
log.k/C 1

2
.� C 2 log.2//

�� 1

2
 .1/.1=2/

C1

2
.2k C 1/ .1/

�

k C 3

2

�

D log.k/C � C 2 log.2/� 1

2
 .1/.1=2/C 1CO

� 1

n

�

:

(18)

With (15) we obtain for n D 2k C 1 that

�j .n; 2/D .�1/j .j�1/Š
kX

mD0

1

.2mC 1/j�1C.�1/j .j�1/Š.2kC1/
1X

mDkC1

1

.2mC1/j :

The first term is �21�j .j � 1/ .j�2/. 1
2
/CO.1=k/. The second term is 2�j .2k C

1/ .j�1/. 1
2

CkC1/. For n D 2k we have to subtract 2�j .j�1/. 1
2

Ck/. Finally we
will apply some bounds for the polygamma functions .j /. Therefore we will apply
the following integral-representation (see for example [14, Sect. 1.4, (1.4.12)]):

 .x/ D log.x/ �
Z 1

0

e�tx
�

tf .t/C 1

2

�

dt with

f .t/ WD
�
1

2
� 1

t
C 1

et � 1
�
1

t
; t � 0: (19)
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Differentiating we see that for j � 1:

 .j /.x/ D .�1/j�1j Šx�j C .�1/j�1
Z 1

0

e�tx t j
�

tf .t/C 1

2

�

dt: (20)

Notice that 0 <
�

tf .t/C 1
2

�

< 1 for every t � 0; hence we obtain for every x � 0

and every j � 1:
j .j /.x/j � j Šx�j C j Šx�j�1: (21)

Let us consider the variance �22 D �2.n; 2/. With (21) we have j .1/.1=2C k/j �
. 1
2

C k/�1 C . 1
2

C k/�2. Hence we have �22 D 1
2

Pk
iD1  .1/.1=2C i/C 1

2
 .1=2/C

O.1=k/ and with (18) we obtain

�22 D 1

2
log k C 1

2
.� C 2 log 2C 1/CO.1=k/:

For j � 3 the cumulants can be bounded by: With (21) we obtain

j�j .n; 2/j �
ˇ
ˇ
ˇ
ˇ
21�j .j � 1/ .j�2/.1=2/

ˇ
ˇ
ˇ
ˇ
C
ˇ
ˇ
ˇ
ˇ
2�j .2k C 1/ .j�1/.1=2C k C 1/

ˇ
ˇ
ˇ
ˇ

C
ˇ
ˇ
ˇ
ˇ
2�j .j�1/.1=2C k/

ˇ
ˇ
ˇ
ˇ
CO.1=k/

� 6.j � 1/ŠC const

�
.j � 1/Š
2j�1

1

kj�2 C .j � 1/Š
2j�1

1

kj�1

�

� const.j � 1/Š:

Therefore the cumulants satisfy the stated bounds. ut
With some more technical effort we obtain similar results for the Gaussian

orthogonal ensembles:

Lemma 2.2 (Bounds for the cumulants of log j detX1
n j, GOE). For the orthogo-

nal Gaussian ensemble (ˇ D 1) we obtain

�1.n; 1/ D n

2
log
�

2bn=2c�� n

2
C const CO.1=n/

and

�21 WD �2.n; 1/ D log
�

2bn=2c�C �

2
C 1� 2K C �2

4
CO.1=n/;

where K denotes Catalan’s constantK D P1
mD0

.�1/m
.2mC1/2 , and for any j � 3

ˇ
ˇ�j .n; 1/

ˇ
ˇ � const j Š:
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Proof. For ˇ D 1 and n D 2k C 1, formula (7) for the Mellin transform implies

�1.n; 1/ D d

ds
logMn;s.s/

ˇ
ˇ
sD0 D n

2
log.4/C 1

2

nX

iD1
 
�1

2
C 1

2

� i � 1

2

˘C 1

4

�

D n log.2/C
k�1X

iD0
 
�3

4
C i

2

�C 1

2
 
�3

4
C k

2

�

D n log.2/C 1

2
 
�3

4

�C
kX

iD1

�
1

2
 
�3

4
C i � 1

2

�C 1

2
 
�3

4
C i

2

�
�

:

The last transformation is useful since we are now able to apply Legendre’s
duplication formula �.z/�.z C 1=2/ D 21�2zp��.2z/ (see for example [14,
Sect. 1.2]). This implies

1

2
 .z/C 1

2
 
�

z C 1

2

� D  .2z/ � log.2/: (22)

With z D 3=4C i=2� 1=2 we obtain

�1.n; 1/ D n log.2/C 1

2
 
�3

4

�C
kX

iD1
 
�

1=2C i
� � k log.2/: (23)

The summand 1
2
 
�
3
4

�

equals via the same identity 
�
1
2

��log.2/� 1
2
 
�
1
4

� D  
�
1
2

��
log.2/C �

4
C 3

2
log.2/C 1

2
� D �

4
� 3

2
log.2/ � 1

2
� . As in the GUE case, we have

Pk
iD1  

�

1=2C i
� D � 1

2
 
�
1
2

� � k C �

k C 1
2

�

log.k/C O
�
1
k

�

, see (14). Now (23)
implies that

�1.n; 1/ D n

2
log.n � 1/� n

2
C � C 2

4
CO

�1

n

�

:

The j th cumulant, j � 2, is given by

�j .n; 1/ D dj

dsj
logMn;s.s/

ˇ
ˇ
sD0 D 1

2j

nX

iD1
 .j�1/�1

2
C 1

2

� i � 1

2

˘C 1

4

�

D 1

2j�1
k�1X

iD0
 .j�1/�3

4
C i

2

�C 1

2j
 .j�1/�3

4
C k

2

�

:

Differentiating (22) implies  .j�1/.2z/ D 1
2j
 .j�1/.z/ C 1

2j
 .j�1/�z C 1

2

�

and
therefore
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�j .n; 1/ D 1

2j
 .j�1/�3

4

�C
kX

iD1
 .j�1/�1=2C i

�

(24)

hold. The duplicity formula for z D 1
4

implies 1
4
 .1/

�
3
4

� D  .1/
�
1
2

� � 1
4
 .1/

�
1
4

�

;

where  .1/
�
1
4

� D 16
P1

mD0 1
.4mC1/2 D 8

P1
mD0

�
1

.2mC1/2 C .�1/m
.2mC1/2

� D
2
P1

mD0 1

.mC 1
2 /
2

C 8
P1

mD0
.�1/

.2mC1/2 D 2 .1/
�
1
2

� C 8K with Catalan’s constant

K , resulting in 1
4
 .1/

�
3
4

� D �2

4
� 2K . With (24) and (18) we can conclude

�2.n; 1/ D 1

4
 .1/

�3

4

�C
kX

iD1
 .1/

�

1=2C i
�

D �2

4
� 2K C log.k/C �

2
C log.2/C 1CO

� 1

n

�

: (25)

For every j � 3, the first summand can be bounded using (21)

ˇ
ˇ
1

2j
 .j�1/�3

4

�ˇ
ˇ � .j � 1/Š

�2

3

�j�1 C .j � 1/Š2
�2

3

�j D .j � 1/Š
7

3

�2

3

�j�1
;

and the remaining sum in (24) is the same as in the GUE case: With (17) we have

kX

iD1
 .j�1/�1=2C i

�C 1

2
 .j�1/�1

2

�

D �2.j � 1/ .j�2/�1
2

�C .2k C 1/ .j�1/�1=2C k C 1
�CO

� 1

k

�

:

Applying (21) we obtain

ˇ
ˇ
ˇ
ˇ

Pk
iD1  .j�1/.1=2C i/C 1

2
 .j�1/� 1

2

�
ˇ
ˇ
ˇ
ˇ

� const.j � 1/Š;

which implies the bound for the j th cumulant, j � 3.
In the case of n D 2k even, we have to study the asymptotic behaviour of

the hypergeometric function (see (9)): F

�

sC1
2
;� s

2
I nC1Cs

2
I 1
2

�

WD 1 C P1
mD1 xm,

denoting

�
1Cs
2

�.m/�� s
2

�.m/

�
nC1Cs

2

�.m/

1

2mmŠ
by xm: Each xm is of order O.n�m/ and, for s 2

Œ0; 2/ and n large enough, the hypergeometric function takes values in the interval
.�1; 1/. Therefore we can study the power series of the logarithm and get

logF

�
s C 1

2
;� s
2

I nC 1C s

2
I 1
2

�

D log

�

1C
1X

mD1
xm

�

D
1X

mD1
xm C

1X

lD2
.�1/l 1

l

�
1X

mD1
xm
�l
:
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We differentiate each xm via the quotient rule and the product rule in the enumerator.
Setting s D 0, the only remaining term in the enumerator is the one where we
differentiate the factor � s

2
. Thus the square of the denominator cancels out. The

derivative of xm equals a constant times 1
2mmŠ

1
�
nC1
2

�.m/ . It follows that the sum over l

is of orderO.n�1/, too. Similarly we obtain that for every j � 1

dj

dsj
logF

�
s C 1

2
;� s
2

I nC 1C s

2
I 1
2

�ˇ
ˇ
ˇ
ˇ
sD0

D O
�

1=n
�

:

Thus with (8) and (14) it follows that

�1.n; 1/ D nC 1

2
log.2/C d

ds
logF

�
s C 1

2
;� s
2

I nC 1C s

2
I 1
2

�ˇ
ˇ
ˇ
ˇ
sD0

C1

2
 
�1

2

� � 1

2
 
�nC 1

2

�C
kX

mD1
 
�

1=2Cm
�

D nC 1

2
log.2/CO

� 1

n

�C 1

2
 
�1

2

� � 1

2
 
�nC 1

2

�

�1
2
 
�1

2

� � n

2
C nC 1

2
log
�n

2

�

D n

2
log.n/ � n

2
C 1

2
log.2/CO

�

1=n
�

and by (17)

�j .n; 1/ D dj

dsj
logF

�
s C 1

2
;� s
2

I nC 1C s

2
I 1
2

�ˇ
ˇ
ˇ
ˇ
sD0

C 1

2j
 .j�1/�1

2

�

� 1

2j
 .j�1/�nC 1

2

�C
kX

mD1
 .j�1/�1=2Cm

�

D 1

2j
 .j�1/�1

2

� � 1

2j
 .j�1/�nC 1

2

�C
kX

mD1
 .j�1/�1=2Cm

�CO
�

1=n
�

:

Note that the only difference to the case n D 2k C 1, see (24), is the summand
1
2j
 .j�1/�nC1

2

�

, which is of order O
�

1=n
�

. Therefore the second and higher
cumulant satisfy the stated bounds for all n. ut

Good estimates on cumulants imply asymptotic results for the log-determinant
of GUE and GOE ensembles, respectively. Before we state our results, we remind
the reader on Cramér-type moderate deviations and a moderate deviation principle.
The classical result due to Cramér is the following. For independent and identically
distributed random variablesX1; : : : ; Xn with E.X1/ D 0 and E.X2

1 / D 1 such that
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Eet0jX1j � c < 1 for some t0 > 0, the following expansion for tail probabilities
can be proved:

P.Wn > x/

1 �ˆ.x/ D 1CO.1/.1C x3/=
p
n

for 0 � x � n1=6 with Wn WD .X1 C � � � C Xn/=
p
n, ˆ the standard normal

distribution function, andO.1/ depends on c and t0. This result is sometimes called
a large deviations relation. Let us recall the definition of a large deviation principle
(LDP) due to Varadhan, see for example [5]. A sequence of probability measures
f.�n/; n 2 Ng on a topological space X equipped with a �-field B is said to satisfy
the LDP with speed sn % 1 and good rate function I.�/ if the level sets fx W I.x/ �
˛g are compact for all ˛ 2 Œ0;1/ and for all � 2 B the lower bound

lim inf
n!1

1

sn
log�n.�/ � � inf

x2int.�/
I.x/

and the upper bound

lim sup
n!1

1

sn
log�n.�/ � � inf

x2cl.�/
I.x/

hold. Here int.�/ and cl.�/ denote the interior and closure of � respectively.
We say a sequence of random variables satisfies the LDP when the sequence
of measures induced by these variables satisfies the LDP. Formally a moderate
deviation principle is nothing else but the LDP. However, we will speak about a
moderate deviation principle (MDP) for a sequence of random variables, whenever
the scaling of the corresponding random variables is between that of an ordinary
Law of Large Numbers and that of a Central Limit Theorem.

We consider

Wn;ˇ WD log j detXˇ
n j � �1.n; ˇ/

�ˇ
for ˇ D 1; 2 (26)

as well as

eW n;ˇ WD log j detXˇ
n j � n

2
lognC n

2
q

1
ˇ

logn
for ˇ D 1; 2: (27)

Theorem 2.3. For ˇ D 1; 2 we can prove:

(1) Cramér-type moderate deviations: There exist two constants C1 and C2
depending on ˇ, such that the following inequalities hold true:

ˇ
ˇ
ˇ
ˇ
log

P.Wn;ˇ � x/

1 �ˆ.x/

ˇ
ˇ
ˇ
ˇ

� C2
1C x3

�ˇ
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and ˇ
ˇ
ˇ
ˇ
log

P.Wn;ˇ � �x/
ˆ.�x/

ˇ
ˇ
ˇ
ˇ

� C2
1C x3

�ˇ

for all 0 � x � C1�ˇ . On all cases �ˇ is of order
p

logn.
(2) Berry-Esseen bounds: We obtain the following bounds:

sup
x2R

ˇ
ˇP.Wn;ˇ � x/ �ˆ.x/

ˇ
ˇ � C.ˇ/.logn/�1=2;

sup
x2R

ˇ
ˇP.eW n;ˇ � x/ �ˆ.x/

ˇ
ˇ � C.ˇ/.logn/�1=2:

(3) Moderate deviations principle: For any sequence .an/n of real numbers such
that 1 	 an 	 �ˇ the sequences

�
1
an
Wn;ˇ

�

n
and

�
1
an
eW n;ˇ

�

n
satisfy a MDP

with speed a2n and rate function I.x/ D x2

2
, respectively.

Remark 2.4. The Berry-Esseen bound implies the Central Limit Theorem stated
in (4). The statement of the central limit theorem in [15] was given differently. In
section 3, they considered a variance of order 2�2 D 1

ˇn
, meaning that the spectrum

of the GUE model is concentrated on a finite interval (the support of the semicircular
law). Then theD is the determinant of the rescaled (!) GUE model, given a n

2
lognC

n log 2 summand in addition to the expectation �n.1
2

C log 2/CO. 1
n
/ they stated in

[15, (43)]. This is actually the expectation in (4). Choosing the variance �2 D 1
4n

in
the case ˇ D 2 implies that we have to rescale each matrix-entry �ij by �ij =.2

p
n/

and hence the determinant of the rescaled matrix is 2nnn=2 times the determinant of
the matrix X2

n .

Proof. With the bound on the cumulants (11) we obtain that
ˇ
ˇ�j .Wn;2/

ˇ
ˇ � 7

j Š

�
j
2

.

With �22 � 1
2
.� C 2 log 2C 1/ we get

ˇ
ˇ�j .Wn;2/

ˇ
ˇ � j Š

1

�
j�2
2

7 � 2
.� C 2 log 2C 1/

� j Š
1

�
j�2
2

5 � j Š
� 5

�2

	j�2 � j Š

	j�2

with 	 D �2=5 for all n � 2. With Lemma 2.3 in [22] one obtains

P
�

Wn;2 � x
�

1 �ˆ.x/
D exp.L.x//

�

1C q1�.x/
x C 1

	1

�

and
P
�

Wn;2 � �x�

ˆ.�x/ D exp.L.�x//
�

1C q2�.x/
x C 1p
2	1

�

for 0 � x � 	1, where 	1 D p
2	=36,

�.x/ D 60
�

1C 10	2
1 exp

��.1 � x=	1/
p
	1

��

1 � x=	1

;
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q1; q2 are constants in the interval Œ�1; 1� and L is a function defined in [22, Lemma

2.3, (2.8)] satisfying
ˇ
ˇL.x/

ˇ
ˇ � jxj3

3	1
for all x with jxj � 	1. The Cramér-type

moderate deviations follow applying [7, Lemma 6.2]. The Berry-Esseen bound
follows from [22, Lemma 2.1] which is

sup
x2R

ˇ
ˇP
�

Wn;2 � x
� �ˆ.x/

ˇ
ˇ � 18

	1

D const
1

.logn/1=2
:

The same Berry-Esseen bound follows using the asymptotic behavior of the first
two moments. Finally the MDP follows from [6, Theorem 1.1] which is a MDP
for

�
1
an
Wn;2

�

n
for any sequence .an/n of real numbers growing to infinity slow

enough such that an=	 ! 0 as n ! 1. Moreover
�
1
an
Wn;2

�

n
and

�
1
an
eW n;2

�

n

are exponentially equivalent in the sense of [5, Definition 4.2.10]: with OWn;2 WD
log j detX2n j� n

2 log nC n
2

�2
we have that jWn;2 � OWn;2j ! 0 as n ! 1, and it follows

that
�
1
an

OWn;2

�

n
and

�
1
an
Wn;2

�

n
are exponentially equivalent. By Taylor we have

ˇ
ˇ 1
an
. OWn;2 � eW n;2/

ˇ
ˇ D o.1/ OWn;2 and hence the result follows with [5, Theorem

4.2.13]. ut
Next we will consider the following class of random matrices. Consider two

independent families of i.i.d. random variables .Zi;j /1�i<j (complex-valued) and
.Yi /1�i (real-valued), zero mean, such that EZ2

1;2 D 0;EjZ1;2j2 D 1 and EY 21 D 1.
Consider the (Hermitian) n�nmatrixMn with entriesM �

n .j; i/ D Mn.i; j / D Zi;j
for i < j andM �

n .i; i/ D Mn.i; i/ D Yi . Such a matrix is called Hermitian Wigner
matrix. The GUE matrices are the special case with complex Gaussian random
variables N.0; 1/C in the upper triangular and real Gaussian random variables
N.0; 1/R on the diagonal.

We say that a Wigner Hermitian matrix obeys Condition .C1/ for some constant
C if one has

EjZi;j jC � C1 and EjYi jC � C1 (28)

for some constant C1 independent on n. Two Wigner Hermitian matrices Mn D
.�i;j /1�i;j�n andM 0

n D .� 0
i;j /1�i;j�n match to orderm off the diagonal and to order

k on the diagonal if one has

E..Re.�i;j //a.Im.�i;j //b/ D E..Re.� 0
i;j //

a.Im.� 0
i;j //

b/

for all 1 � i � j � n and natural numbers a; b � 0 with a C b � m for i < j and
aC b � k for i D j .

Applying [26, Theorem 5], the Four Moment Theorem for the determinant,
we are able to prove an MDP for the log-determinant even for a class of Wigner
Hermitian matrices. For any Wigner Hermitian matrix Mn consider

Wn WD log j detMnj � 1
2

lognŠC 1
4

logn
q

1
2

logn
:
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Theorem 2.5 (Universal moderate deviations principle). Let Mn be a Wigner
Hermitian matrix whose atom distributions are independent of n, have real and
imaginary parts that are independent and match GUE to fourth order and obey
Condition .C1/, (28), for some sufficiently large C , then for any sequence .an/n of
real numbers such that 1 	 an 	 p

logn the sequence
�
1
an
Wn

�

n
satisfies a MDP

with speed a2n and rate function I.x/ D x2

2
. If Mn matches GOE instead of GUE,

then one instead has that
�
p

1
2 logn

an
p

log n
Wn

�

n
satisfies the MDP with same speed and rate

function.

Proof. LetMn be the Wigner Hermitian matrix whose entries satisfy the conditions
of the theorem and M 0

n denotes the GUE matrix. Then [26, Theorem 5] says that
there exists a small c0 > 0 such that for all G W R ! RC with

ˇ
ˇ d

j

dxj
G.x/

ˇ
ˇ D O.nc0 /

for j D 0; : : : ; 5, we have

ˇ
ˇE
�

G.log j det.Mn/j/
�� E

�

G.log j det.M 0
n/j/

�ˇ
ˇ � n�c0

We consider for any b; c 2 R the interval In WD Œbn; cn� with

bn WD b an

r

1

2
lognC1

2
lognŠ�1

4
logn and cn WD c an

r

1

2
lognC1

2
lognŠ�1

4
logn

With IC
n WD Œbn � n�c0=10; cn C n�c0=10� and I�

n WD Œbn C n�c0=10; cn � n�c0=10�
we construct a bump function Gn W R ! RC which is equal to one on
the smaller interval I�

n and vanishes outside the larger interval IC
n . It follows

that P.log j det.Mn/j 2 In/ � EGn.log j det.Mn/j/ and EGn.log j det.M 0
n/j/ �

P.log j det.M 0
n/j 2 IC

n /. One can choose Gn to satisfy the condition
ˇ
ˇ d

j

dxj
Gn.x/

ˇ
ˇ D

O.nc0/ for j D 0; : : : ; 5 and hence

P.log j det.Mn/j 2 In/ � P.log j det.M 0
n/j 2 IC

n /C n�c0 : (29)

By the same argument we get

P.log j det.M 0
n/j 2 I�

n / � n�c0 � P.log j det.Mn/j 2 In/: (30)

With P
�
1
an
Wn 2 Œb; c�

� D P
�

log j det.Mn/j 2 In
�

. With (29) and [5, Lemma
1.2.15] we see that

lim sup
n!1

1

a2n
logP

�

Wn=an 2 Œb; c��

� max

�

lim sup
n!1

1

a2n
logP.log j det.M 0

n/j 2 IC
n /I lim sup

n!1
1

a2n
logn�c0

�

:
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For the first object we have

lim sup
n!1

1

a2n
logP.log j det.M 0

n/j 2 IC
n /

D lim sup
n!1

1

a2n
logP

�
1

an
eW n;2 2 Œb � 
.n/; c C 
.n/�

�

with 
.n/ WD n�c0=10�an
q

1
2

logn
��1 ! 0 as n ! 1. Since c0 > 0 and

logn=a2n ! 1 for n ! 1 by assumption, applying Theorem 2.3 we have

lim sup
n!1

1

a2n
logP

�

Wn=an 2 Œb; c�� � � inf
x2Œb;c�

x2

2
:

Applying (30) we obtain in the same manner that

lim sup
n!1

1

a2n
logP

�

Wn=an 2 Œb; c�� � � inf
x2Œb;c�

x2

2
:

The conclusion follows applying [5, Theorem 4.1.11 and Lemma 1.2.18]. ut
Remark 2.6. The bump function Gn in the proof of Theorem 2.5 can be chosen to
fulfill

ˇ
ˇ d

j

dxj
Gn.x/

ˇ
ˇ D O.nc0 / for j D 0; : : : ; 5 uniformly in the endpoints of the

interval Œb; c�. Hence the Berry-Esseen bound in Theorem 2.3 can be obtained for
Wigner matrices considered in Theorem 2.5:

sup
x2R

ˇ
ˇP.Wn � x/ �ˆ.x/ˇˇ � const

�

.logn/�1=2 C n�c0�:

We omit the details.

3 Non-symmetric and Non-Hermitian Gaussian Random
Matrices

As already mentioned, recently Nguyen and Vu proved in [19], that for An be an
n � n matrix whose entries are independent real random variables with mean zero
and variance one, the Berry-Esseen bound

sup
x2R

ˇ
ˇP.Wn � x/ �ˆ.x/ˇˇ � log�1=3Co.1/ n

with
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Wn WD log.j detAnj/ � 1
2

log.n � 1/Š
q

1
2

logn
(31)

holds true. We will prove good bounds for the cumulants ofWn in the case where the
entries are Gaussian random variables. Therefore we will be able to prove Cramér-
type moderate deviations and an MDP as well as a Berry-Esseen bound of order
.logn/�1=2 (and it seems that one cannot have a rate of convergence better than
this). In the Gaussian case, again the calculation of the Mellin transform is the main
tool. Fortunately, the transform can be calculated much easier.

LetAn be an n�nmatrix whose entries are independent real or complex Gaussian
random variables with mean zero and variance one. Denote by A�n the transpose
or Hermitian conjugate of An according as An is real or complex. Then AnA

�
n is

positive semi-definite and its eigenvalues are real and non-negative. The positive
square roots of the eigenvalues of AnA

�
n are known as the singular values of An.

One has that
nY

iD1
�2i D det.AnA

�
n/ D j detAnj2 D

nY

iD1
jxi j2;

where �i are the singular values and xi are the eigenvalues of An. Now AnA
�
n is

called Wishart matrix. For the real case we consider independent N.0; 1/R dis-
tributed entries, for the complex case we assume that the real and imaginary parts are
independent and N.0; 1/R distributed entries. These ensembles are called Ginibre
ensembles. One obtains for the joint probability distribution of the eigenvalues of
AnA

�
n on R

nC the density

1

QZn;ˇ
exp

��ˇ
2

nX

iD1
yi
�

nY

iD1
y
ˇ=2�1
i

Y

i<j

jyi � yj jˇ

with ˇ D 1 for the real and ˇ D 2 for the complex case and QZn;ˇ being the
normalizing constant (see for example [2, Chap. 7]). As a result the Gaussian joint
probability density for the singular values �i gets transformed to

Qn;ˇ.�1; : : : ; �n/ WD 1

Zn;ˇ.n/
exp

��ˇ
2

nX

iD1
�2i
�

nY

iD1
�
ˇ�1
i

Y

i<j

j�2i � �2j jˇ

with

Zn;ˇ.p/ WD
Z

� � �
Z

exp
��ˇ
2

nX

iD1
�2i
�

nY

iD1
�
.p�n/Cˇ�1
i

Y

i<j

j�2i � �2j jˇ
nY

iD1
d�i (32)

Now the Mellin transform of the probability density of the determinant of An is
given by
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Mn;ˇ.s/D
Z 1

0

� � �
Z 1

0

j�1 � � ��njs�1Qn;ˇ.�1; : : : ; �n/

nY

iD1
d�i D Zn;ˇ.nC s � 1/

Zn;ˇ.n/
:

But using the Selberg identity of the Laguerre form, [17, formula 17.6.5], we obtain
for the moment generating functionMn;ˇ.s/ D Mn;ˇ.s � 1/:

Mn;ˇ.s/ D � 2

ˇ

�ns=2
nY

iD1

�
�

.s C i ˇ/=2
�

�
�

.i ˇ/=2
� : (33)

This formula makes even sense for ˇ D 4, where An is a quaternion matrix and A�n
denotes the dual of An (see [17, Sect. 15.4] for a discussion of the definition of a
determinant in this case). We will concentrate on the real case ˇ D 1. The results
of the following theorem can be stated and proved similarly in the two other cases
ˇ D 2; 4. We omit the details. We considerWn as in (31) and

eW n WD log j detAnj � E.log j detAnj/
V.log j detAnj/1=2 : (34)

Theorem 3.1. Let An be an n � n matrix whose entries are independent real
N.0; 1/R random variables. Then we have:

(1) Cramér-type moderate deviations: There exists two constants C1 and C2
depending on ˇ, such that the following inequalities hold true:

ˇ
ˇ
ˇ
ˇ
log

P.eW n � x/

1 �ˆ.x/

ˇ
ˇ
ˇ
ˇ

� C2
1C x3

�ˇ

and ˇ
ˇ
ˇ
ˇ
log

P.eW n � �x/
ˆ.�x/

ˇ
ˇ
ˇ
ˇ

� C2
1C x3

�ˇ

for all 0 � x � C1V.log j detAnj/1=2.
(2) Berry-Esseen bounds: We obtain the following bounds:

sup
x2R

ˇ
ˇP.Wn � x/ �ˆ.x/ˇˇ � C.ˇ/.logn/�1=2;

sup
x2R

ˇ
ˇP.eW n � x/ �ˆ.x/ˇˇ � C.ˇ/.logn/�1=2:

(3) Moderate deviations principle: For any sequence .an/n of real numbers such
that 1 	 an 	 �ˇ the sequences

�
1
an
Wn

�

n
and

�
1
an
eW n

�

n
satisfies a MDP with

speed a2n and rate function I.x/ D x2

2
, respectively.

Proof. With (33) we are able to estimate the cumulants �j .n/ of log j detAnj. The
calculations will benefit from a few results presented in the proofs of Lemmas 2.1
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and 2.2. Therefore we restrict ourselves to the major steps of the proof. We denote
by  the digamma function and by  .k/, k 2 N, the polygamma function (see
Lemma 2.1). With (33) we have

�1.n/ D n

2
lognC 1

2

nX

iD1
 .i=2/ and �j .n/ D 1

2j

nX

iD1
 .j�1/.i=2/ for j � 2:

For n D 2k C 1 we have 1
2

Pn
iD1  .i=2/ D 1

2

�Pk
iD0  .1=2 C i/ C Pk

iD1  .i/
�

.
Using (14) the first summand is equal to � k

2
C k

2
log k C 1

4
log k C 1

4
 .1=2/ C

O.1=k/. With  .1 C x/ D  .x/ C 1
x

(see Lemma 2.1) one obtains that  .i/ D
 .1/CPi�1

jD1 1j . Thus applying (13) we have 1
2

Pk
iD1  .i/ D k

2
log.k � 1/� k

2
C

const CO.1=k/. Summarizing we get

�1.2k C 1/ D �k C k log k C 1

4
logk C const CO.1=k/

D �n
2
.1C log 2/C n

2
log.n � 1/� 1

4
log.n� 1/C const CO.1=n/:

Therefore the leading term of the expectation of log j detAnj is log
�

.n� 1/Š�. In the
case n D 2k one obtains the same order. For �j .2k C 1/ with j � 2 we proceed as
following:

�j .2k C 1/ D 1

2j

2kC1X

iD1
 .j�1/.i=2/

D 1

2j

�

 .j�1/.1=2/C
kX

iD1
 .j�1/.1=2C i/C

kX

iD1
 .j�1/.i/

�

:

Take the representation (16) to see that  .j�1/.i/ D .�1/j .j � 1/ŠP1
mDi

1
mj

, such
that

kX

iD1
 .j�1/.i/ D .�1/j .j � 1/Š

� kX

mD1

1

mj�1 C k

1X

mDkC1

1

mj

�

D �.j � 1/ .j�2/.1/CO.1=k/C k .j�1/.k C 1/:

With the help of (17) we obtain for j � 3 that

�j .n/ D 1

2jC1 
.j�1/.1=2/� 1

2j
.j � 1/

�

 .j�2/.1=2/C  .j�2/.1/
�

C 1

2jC1 .2k C 1/ .j�1/.1=2C k C 1/C 1

2j
k  .j�1/.k C 1/CO.1=k/:
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With (21) we are able to bound the cumulants in a similar way as in the proof of
Lemma 2.1 and obtain j�j .n/j � const j Š. Moreover with (18) we obtain for the
variance

�2.n/ D 1

2
lognC 1

2

�

� C 1C �2

8

�CO.1=n/:

Therefore the leading term of the variance of log j detAnj is 1
2

logn. Now the
theorem follows exactly as in the proof of Theorem 2.3. ut
Remark 3.2. Let An be an n � n matrix whose entries are independent complex
and quaternion, respectively. Then Wn and eW n as defined before satisfy Cramér-
type moderate deviations, Berry-Esseen bounds and a moderate deviations principle.
This can easily be checked noting that, for ˇ D 1; 2; 4,

�
.ˇ/
j .n/ D n

2
log

� 2

ˇ

�

ıfjD1g C 1

2j

nX

iD1
 .j�1/

�
iˇ

2

�

is of order 1
2ˇ

log.n/: For ˇ D 2 we have already bounded these summands in the
proof above. In the case ˇ D 4 use (22) and its derivatives to see, that the cumulant
can be represented via sums of  .j�1/.i/ and  .j�1/.i C 1=2/.

Remark 3.3 (Trace-fixed ensembles). In [16], the authors considered fixed-trace
Gaussian random matrix ensembles (real-symmetric and Hermitian ones). Here the
trace of the matrix is kept constant with no other restriction on the matrix elements.
These ensembles are shown to be equivalent as far as finite moments of the matrix
elements are concerned. Especially, the Mellin transform of the fixed-trace Gaussian
matrices can be deduced from the Mellin transform of the Gaussian orthogonal
and unitary ensemble, respectively, see [16, formulas (17), (20) and (22)]. Hence
it is expected that the distribution of the log-determinant of these ensembles is
asymptotically Gaussian with a variance of order logn. We would be able to deduce
the results in Theorem 3.1 for the Gaussian trace-fixed ensembles by the same
technique. We omit the details. Remark, that universal limits for the eigenvalue
correlation functions in the bulk of the spectrum for fixed trace matrix ensembles
are considered in [12,13]. In this case, the class of matrices are of nondeterminantal
structure.
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and a theorem of Kac, Murdock, and Szegö. Adv. Math. 54(1), 67–82 (1984). MR 761763
(86c:60055)



The Semicircle Law for Matrices
with Dependent Entries

Olga Friesen and Matthias Löwe
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Abstract We investigate the spectral distribution of random matrix ensembles with
correlated entries. The matrices considered are symmetric, have real-valued entries
and stochastically independent diagonals. Along the diagonals the entries may be
correlated. We show that under sufficiently nice moment conditions and sufficiently
strong decay of correlations the empirical eigenvalue distribution converges almost
surely weakly to the semi-circle law. The present note improves an earlier result
(see [Friesen and Löwe, J. Theor. Probab., 2011]) by the authors using similar
techniques.
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1 Introduction

Large-dimensional random matrices were first considered in the context of appli-
cation in statistics and in theoretical physics, among others, in particular they
served as a model when studying the properties of atoms with heavy nuclei.
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However, nowadays the field of random matrices is considered to be interesting
in its own rights, since it gave rise to many interesting results, such as Wigner’s
semi-circle law for the limiting spectral distribution of a symmetric or Hermitian
random matrix or the Tracy-Widom distribution as the limiting distribution of the
(appropriately scaled) largest eigenvalue of a random Hermitian matrix. Moreover,
there are connections to many questions in pure mathematics as well as applications
in a multitude of areas outside of mathematics, e.g. telecommunications.

As indicated by the results mentioned above, one of the most interesting and best
studied problems, has been to investigate the properties of the eigenvalues of random
matrices. The most prominent example is Wigner’s semi-circle law. Wigner, in his
seminal paper [17] showed that the spectral distribution of symmetric Bernoulli
matrices under appropriate scaling converges to the semi-circle law. In [18] he
remarked that this result may be generalized to the spectral distribution of a wide
class of random matrices, among them symmetric or Hermitian random matrices
with independent Gaussian entries, otherwise.

A result in this spirit was proved by Arnold [3] in the situation of symmetric
or Hermitian random matrices filled with independent and identically distributed
(i.i.d.) random variables with sufficiently many moments. Other generalizations of
Wigner’s semi-circle law concern matrix ensembles with entries drawn according to
weighted Haar measures on classical (e.g., orthogonal, unitary, symplectic) groups.
Such results are particularly interesting, since such random matrices also play a
major role in non-commutative probability (see e.g. [10]); other applications are in
graph theory, combinatorics or algebra. For a broad overview the interested reader is
referred to Mehta’s classical textbook [14] or to the rather recent work by Anderson
et al. [2].

This note addresses a question that is much in the spirit of Arnold’s generalization
of the semi-circle law. Even though a couple of random matrix models include
situations with stochastically correlated entries (see especially [6], where the case
of random Toeplitz and Hankel matrices is treated), the dependencies are not very
natural from a stochastic point of view. A generic way to construct random matrices
with dependent entries could be to consider a two dimensional (stationary) random
field indexed by Z

2 with correlations that decay with the distance of the indices and
to take an n � n block as entries for a random n � n matrix.

This setup would, of course, be very general, and the present note is just a first
step to study the asymptotic eigenvalue distribution of such matrix ensembles. Here
we will deviate from the independence assumption by considering (real) random
fields with entries that may be dependent on each diagonal, but with stochastically
independent diagonals. For such matrices we will prove a semi-circle law under a
sufficiently fast decay of correlations along the diagonals. It should be noted, that
a similar result under an arbitrarily slow decay of correlations cannot be expected,
since in such a situation one should already get into the realm of Toeplitz matrices
as treated in [6].

The setup of the present note may look at first glance a bit more artificial than
a situation where the matrices are filled with row- or columnwise independent
random variables (e.g. with row- or columnwise independent Markov chains).
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Note, however, that in order to guarantee for real eigenvalues we will need to
restrict ourselves to symmetric random matrices. This would imply that a matrix
with rowwise independent entries above the diagonal has columnwise independent
entries below it. Not only is this a rather strange setup, also can one see from
simulations that their asymptotic eigenvalue distribution is probably not the semi-
circle law.

It should also be remarked that the conditions in this note are weaker than those
in earlier article (see [8]) and therefore the results are more general then our previous
ones. Example 4.3 below shows that these weaker assumptions extend the validity of
Theorem 2.2 to a set of rather natural examples that could not be treated by means of
the main theorem in [8]. Moreover, we also find an indication that the rather strong
moment conditions we impose (see (C1) below) may be relaxed. Theorem 2.4 below
is a first step into this direction.

It also should be mentioned that a similar situation has been studied by
Khorunzhy and Pastur in [12]. They consider the eigenvalue distribution of so called
deformed Wigner ensembles that consist of matrices which can be written as a sum
of Wigner matrix (a symmetric matrix with independent entries above the diagonal)
and a deterministic matrix. It is proven that in this situation the empirical eigenvalue
density converges in probability to a non-random limit. This setup, yet similar, is
different from ours.

The question, whether stochastically dependent entries could be allowed in order
for the semi-circle law to hold, is not new. For example, Bai [4] p. 626 raises the
question of whether Wigner’s theorem is still holding true when the independence
condition in the Wigner matrix is weakened. Also Götze and Tikhomirov [9],
Hofmann-Credner and Stolz [11], and Schenker and Schulz-Baldes [16] consider
a situation where the entries of a random matrix are in a natural way stochastically
dependent. However, their conditions do not cover our situation.

On the other hand, some extra conditions apart from a weak dependence structure
are necessary. Indeed, Anderson and Zeitouni [1] show that convergence to the
semicircle law does not hold in general under finite range of dependence.

The rest of the note is organized as follows. In the second section we will
formalize the situation we want to consider and state our main result. Section 3
is devoted to the proof, that is based on a moment method. These naturally lead
to some combinatorial problems, that need to be solved. Section 4 contains some
examples. In particular we consider Gaussian random fields as well as Markov
chains on a finite state space.

2 The Main Result

In this section we will state our main theorem, a semi-circle law for symmetric
random matrices with independent diagonals (for a precise formulation see Theo-
rem 2.2 below). These random matrices are constructed as follows:
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Let fan.p; q/; 1 � p � q < 1g be a real valued random field. For any n 2 N,
define the symmetric random n � n matrix Xn by

Xn.q; p/ D Xn.p; q/ D 1p
n
an.p; q/; 1 � p � q � n;

We will have to impose the conditions on Xn. To be able to formulate them introduce

mk WD sup
n2N

max
1�p�q�nE

h

jan.p; q/jk
i

k 2 N: (1)

We will assume the following.

(C1) E Œan.p; q/� D 0, E
�

an.p; q/
2
� D 1 and

mk < 1; 8k 2 N: (2)

(C2) The diagonals of Xn, i.e. the families fan.p; p C r/; p 2 Ng, r 2 N0, are
independent,

(C3) The covariance of two entries on the same diagonal can be bounded by some
constant depending only on their distance, i.e. for any � 2 N0 there is a
constant c.�/ � 0 such that

jCov.an.p; q/; an.p C �; q C �//j � c.�/; p; q 2 N;

(C4) The entries on the diagonals have a quickly decaying dependency structure,
which will be expressed in terms of the condition

lim
�!1 c.�/ �" D 0;

for some " > 0.

Remarks 2.1. (i) The choice of the first two moments in (C1) is just for
standardization, while (2) is a condition one might eventually want to relax.
This, however, not that easy in general. We will see that for a weaker form of
our main result the weaker condition

(C1’) E Œan.p; q/� D 0, E
�

an.p; q/
2
� D 1 and

m2 < 1 (3)

suffices.

(ii) Note that condition (C4) implies that
Pn

�D1 c.�/ D o.n/ since

1

n

nX

�D1
c.�/ � 1

n"

nX

�D1

c.�/ �"

�
! 0; as n ! 1:
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(iii) In particular (C4) is an improvement over the condition of summable
correlations 1X

�D0
jc.�/j < 1

we imposed in [8].

As noted, we will show that the empirical eigenvalue distribution of the (appro-
priately scaled) random matrices introduced above converges to a limit law �, the
so-called semi-circle distribution. We choose its density to be concentrated on the
interval Œ�2; 2�. Then its density is given by

d�

dx
D
�

1
2�

p
4 � x2 if � 2 � x � 2

0 otherwise.

To state our main theorems denote the ordered (real) eigenvalues of Xn by

�
.n/
1 � �

.n/
2 � : : : �.n/n :

Let �n be the empirical eigenvalue distribution, i.e.

�n D 1

n

nX

kD1
ı
�
.n/
k

:

With these notations we are able to formulate the central result of this note.

Theorem 2.2. Assume that the symmetric random matrix Xn as defined above
satisfies the conditions (C1), (C2), (C3), and (C4). Then, with probability 1, the
empirical spectral distribution of Xn converges weakly to the standard semi-circle
distribution, i.e.

�n ) � as n ! 1
both, in expectation and P � almost surely. Here “)” denotes weak convergence.

Remark 2.3. As stated in the introduction for the semi-circle law to hold, it is not
possible to renounce condition (C4) without any replacement. To understand this,
consider for example a Toeplitz matrix, that is a Hermitian matrix with identical
entries on each diagonal. If the variance of the entries is positive, we clearly have

c.�/ D O.1/:

Indeed, it was shown in [6] that the empirical distribution of a sequence of
Toeplitz matrices tends with probability 1 to a nonrandom probability measure with
unbounded support.

If we assume (C1’) instead of (C1) we still obtain a convergence result.
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Theorem 2.4. Assume that the symmetric random matrix Xn as defined above
satisfies the conditions (C1’), (C2), (C3), and (C4). Then, the empirical spectral
distribution of Xn converges weakly in probability to the semi-circle distribution.

3 Proof of Theorems 2.2 and 2.4

The basic tool in our proofs will be the method of moments. Naively, one could
expect an approach using Stieltjes transforms to work as well (and in this case one
would probably be able to work with weaker moment conditions than those imposed
in (C1)). This method is rather standard in random matrix theory (see e.g. Chap. 2.4
in [2]). However, if the entries of a random matrix are not independent, this method
seems to have serious technical difficulties.

The method of moments, on the other hand, also is traditional in the proof of
a semicircle law. Among others, Wigner used this method to derive the semicircle
distribution as the limiting spectral distribution for scaled Bernoulli matrices, see
[17]. Also Arnold’s generalization of the semicircle law [3] relies on the same
technique. A recent example for matrices with dependent entries is [16]. Our proof
is particularly inspired by the latter of these paper. An excellent reference to this
method is also provided by Bose and Sen, cf. [5].

A key observation for the following is that the techniques in [8] suffice to prove
Theorem 2.2 also under the weaker assumption (C4). For the reader’s convenience
we will give this proof next (following the lines in [8], of course).

To this end, let Y be distributed according to the semi-circle distribution. For
the proof of the theorem it will be important to notice that the moments of Y are
given by

E.Y k/ D
(

0; if k is odd;

C k
2
; if k is even;

(4)

where

Ck
2

D kŠ
k
2
Š
�
k
2

C 1
�

Š

denote the Catalan numbers. Note that these moments determine the semicircle
distribution uniquely.

This implies, that the weak convergence of the expected empirical distribution
will follow from the convergence of the empirical moments, i.e. from the relation

lim
n!1

1

n
E
�

tr
�

Xk
n

�� D
(

0; if k is odd;

C k
2
; if k is even,

where tr.�/ denotes the trace operator. The first part of the proof is to verify this
convergence.
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To start with, consider the set Tn.k/ of k-tuples of consistent pairs, that is
elements of the form .P1; : : : ; Pk/ with Pj D .pj ; qj / 2 f1; : : : ; ng2 satisfying
qj D pjC1 for any j D 1; : : : ; k, where k C 1 is identified with 1. Then, we have

1

n
E
�

tr
�

Xk
n

�� D 1

n1C k
2

X

.P1;:::;Pk /2Tn.k/

E Œan.P1/ � : : : � an.Pk/� :

Further, define P.k/ to be the set of all partitions � of f1; : : : ; kg. Any partition �
induces an equivalence relation 
� on f1; : : : ; kg by

i 
� j W” i and j belong to the same set of the partition �:

We say that an element .P1; : : : ; Pk/ 2 Tn.k/ is a �-consistent sequence if

jpi � qi j D ˇ
ˇpj � qj

ˇ
ˇ ” i 
� j:

At this stage, the independence of the diagonals enters crucially. Indeed, due to
condition (C2), this implies that an.Pi1 /; : : : ; an.Pil / are stochastically independent
if i1; : : : ; il belong to l different blocks of � . The set of all �-consistent sequences
.P1; : : : ; Pk/ 2 Tn.k/ is denoted by Sn.�/. Thus, we can write

1

n
E
�

tr
�

Xk
n

�� D 1

n1C k
2

X

�2P.k/

X

.P1;:::;Pk /2Sn.�/
E Œan.P1/ � : : : � an.Pk/� :

Now fix a k 2 N. For any � 2 P.k/ let #� denote the number of equivalence classes
of � .

We distinguish different cases. This will show that eventually only those �
satisfying #� D k

2
count.

First case: #� > k
2

.
Since � is a partition of f1; : : : ; kg, there is at least one equivalence class with a

single element l . Consequently, for any sequence .P1; : : : ; Pk/ 2 Sn.�/ we have

E Œan.P1/ � : : : � an.Pk/� D E

hY

i¤l
an.Pi /

i

� E Œan.Pl /� D 0;

due to the independence of elements in different equivalence classes.
Hence, we obtain

1

n
E
�

tr
�

Xk
n

�� D 1

n1C k
2

X

�2P.k/;
#��

k
2

X

.P1;:::;Pk /2Sn.�/
E Œan.P1/ � : : : � an.Pk/� :
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Second case: r WD #� < k
2

.
We need to calculate #Sn.�/. To fix an element .P1; : : : ; Pk/ 2 Sn.�/, we first

choose the pair P1 D .p1; q1/. There are at most n possibilities to assign a value to
p1 and another n possibilities for q1. To fix P2 D .p2; q2/, note that the consistency
of the pairs implies p2 D q1. If now 1 
� 2, the condition jp1 � q1j D jp2 � q2j
allows at most two choices for q2. Otherwise, if 1 6
� 2, we have at most n
possibilities. We now proceed sequentially to determine the remaining pairs. When
arriving at some index i , we check whether i is equivalent to any preceding index
1; : : : ; i�1. If this is the case, then we have at most two choices forPi and otherwise,
we have n. Since there are exactly r different equivalence classes, we can conclude
that

#Sn.�/ � n2 � nr�1 � 2k�r � C � nrC1
with a constant C D C.r; k/ depending on r and k.

Now the uniform boundedness of the moments and the Hölder inequality together
imply that for any sequence .P1; : : : ; Pk/,

jE Œan.P1/ � : : : � an.Pk/�j �
h

E jan.P1/jk
i 1
k � : : : �

h

E jan.Pk/jk
i 1
k � mk: (5)

Consequently, taking account of the relation r < k
2

, we get

1

n1C k
2

X

�2P.k/;
#�< k2

X

.P1;:::;Pk/2Sn.�/
jE Œan.P1/ � : : : � an.Pk/�j � C � 1

n1C k
2

� nrC1 D o.1/:

Combining the calculations in the first and the second case, we can conclude that

lim
n!1

1

n
E
�

tr
�

Xk
n

��

D lim
n!1

1

n1C k
2

X

�2P.k/;
#�D

k
2

X

.P1;:::;Pk/2Sn.�/
E Œan.P1/ � : : : � an.Pk/� ;

if the limits exist.
Now consider the case where k is odd. Since then the condition #� D k

2
cannot

be satisfied, the considerations above immediately yield

lim
n!1

1

n
E
�

tr
�

Xk
n

�� D 0:

It remains to cope with even k. Denote by PP.k/ � P.k/ the set of all
pair partitions of f1; : : : ; kg. In particular, #� D k

2
for any � 2 PP.k/. On

the other hand, if #� D k
2

but � … PP.k/, we can conclude that � has
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at least one equivalence class with a single element and hence, as in the first case,
the expectation corresponding to the �-consistent sequences will become zero.
Consequently,

lim
n!1

1

n
E
�

tr
�

Xk
n

��

D lim
n!1

1

n1C k
2

X

�2PP.k/

X

.P1;:::;Pk/2Sn.�/
E Œan.P1/ � : : : � an.Pk/� ;

if the limits exist. We have now reduced the original set P.k/ to the subset PP.k/.
Next we want to fix a � 2 PP.k/ and cope with the set Sn.�/.

Lemma 3.1 (cf. [6], Proposition 4.4.). Let S�
n .�/ � Sn.�/ denote the set of �-

consistent sequences .P1; : : : ; Pk/ satisfying

i 
� j H) qi � pi D pj � qj
for all i ¤ j . Then, we have

#
�

Sn.�/nS�
n .�/

� D o
�

n1C
k
2

	

:

Proof. We call a pair .Pi ; Pj /with i 
� j , i ¤ j , positive if qi�pi D qj �pj > 0
and negative if qi � pi D qj � pj < 0. Since

Pk
iD1 qi � pi D 0 by consistency,

the existence of a negative pair implies the existence of a positive one. Thus, we
can assume that any sequence .P1; : : : ; Pk/ 2 Sn.�/nS�

n .�/ contains a positive
pair .Pl ; Pm/. To fix such a sequence, we first determine the positions of l and m
and then, we fix the signs of the remaining differences qi � pi . The number of
possibilities to accomplish that depends only on k and not on n. Now we choose
one of n possible values for pl . In a next step, we fix the values of the differences
jqi � pi j for all Pi except for Pl and Pm. We have n

k
2 �1 possibilities for that, since

� is a pair partition and for any i 
� j it holds that jpi � qi j D jpj � qj j by
definition. Then,

Pk
iD1 qi � pi D 0 implies that

0 < 2.ql � pl/ D ql � pl C qm � pm D
kX

iD1;
i¤l;m

pi � qi :

Since we have already chosen the signs of the differences as well as their
absolute values, we know the value of the sum on the right hand side. Hence,
the difference ql � pl D qm � pm is fixed. We now have the index pl , all
differences jqi � pi j ; i 2 f1; : : : ; kg, and their signs. Thus, we can start at Pl and
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go systematically through the whole sequence .P1; : : : ; Pk/ to see that it is uniquely
determined. Consequently, our considerations lead to

#
�

Sn.�/nS�
n .�/

� � C � nk
2 D o

�

n1C
k
2

	

:

ut
As a consequence of Lemma 3.1 and relation (5), we obtain

lim
n!1

1

n
E
�

tr
�

Xk
n

��

D lim
n!1

1

n1C k
2

X

�2PP.k/

X

.P1;:::;Pk/2S�

n .�/

E Œan.P1/ � : : : � an.Pk/� ;

if the limits exist.
We call a pair partition � 2 PP.k/ crossing if there are indices i < j < l < m

with i 
� l and j 
� m. Otherwise, we call � non-crossing. The set of all non-
crossing pair partitions is denoted by NPP.k/.

Lemma 3.2. For any crossing � 2 PP.k/nNPP.k/, we have

X

.P1;:::;Pk /2S�

n .�/

E Œan.P1/ � : : : � an.Pk/� D o
�

n
k
2C1

	

:

Proof. Let � be crossing and consider a sequence .P1; : : : ; Pk/ 2 S�
n .�/. Note that

if there is an l 2 f1; : : : ; kg with l 
� l C 1, where k C 1 is identified with 1, we
immediately have

an.Pl/ D an.PlC1/;

since ql D plC1 by consistency and then pl D qlC1 by definition of S�
n .�/. In

particular,
E Œan.Pl/ � an.PlC1/� D 1:

The sequence .P1; : : : ; Pl�1; PlC2; : : : ; Pk/ is still consistent because of the relation
ql�1 D pl D qlC1 D plC2. Since there are at most n choices for ql D plC1, it
follows

#S�
n .�/ � n � #S�

n .�
.1//;

where �.1/ 2 PP.k � 2/nNPP.k � 2/ is the pair partition induced by � after
eliminating the indices l and l C 1. Let r denote the maximum number of pairs of
indices that can be eliminated in this way. Since � is crossing, there are at least two
pairs left and hence, r � k

2
� 2. By induction, we conclude that

#S�
n .�/ � nr � #S�

n .�
.r//;
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where now �.r/ 2 PP.k � 2r/nNPP.k � 2r/ is the still crossing pair partition
induced by � . Thus, we so far have

X

.P1;:::;Pk/2S�

n .�/

jE Œan.P1/ � : : : � an.Pk/�j

� nr
X

.P
.r/
1 ;:::;P

.r/
k�2r /2S�

n .�
.r//

ˇ
ˇ
ˇE

h

an.P
.r/
1 / � : : : � an.P .r/

k /
iˇ
ˇ
ˇ :

(6)

Choose i 
�.r/ i C j such that j is minimal. We want to count the number
of sequences .P .r/

1 ; : : : ; P
.r/

k�2r / 2 S�
n .�

.r// given that p.r/i and q.r/iCj are fixed.

Therefore, we start with choosing one of n possible values for q.r/i . But then, we
can also deduce the value of

p
.r/
iCj D q

.r/
i � p

.r/
i C q

.r/
iCj :

Since j is minimal, any element in fi C 1; : : : ; i C j � 1g is equivalent to some
element outside the set fi; : : : ; i C j g. There are n possibilities to fix P

.r/
iC1 as

p
.r/
iC1 D q

.r/
i is already fixed. Proceeding sequentially, we have n possibilities for

the choice of any pair P .r/

l with l 2 fi C 2; : : : ; i C j � 2g and there is only one

choice for P .r/
iCj�1 since q.r/iCj�1 D p

.r/
iCj is already chosen. For any other pair that

has not yet been fixed, there are at most n possibilities if it is not equivalent to one
pair that has already been chosen. Otherwise, there is only one possibility. Hence,
assuming that the elements p.r/i and q.r/iCj are fixed, we have at most

n � nj�2 � nk
2 �r�j D n

k
2 �r�1

possibilities to choose the rest of the sequence .P .r/
1 ; : : : ; P

.r/

k�2r / 2 S�
n .�

.r//.
Consequently, estimating the term in (6) further, we obtain

X

.P1;:::;Pk/2S�

n .�/

jE Œan.P1/ � : : : � an.Pk/�j

� nr
X

.P
.r/
1 ;:::;P

.r/

k�2r /2S�

n .�
.r//

ˇ
ˇ
ˇE

h

an.P
.r/
i / an.P

.r/
iCj /

iˇ
ˇ
ˇ

� n
k
2�1

nX

p
.r/
i ;q

.r/

iCj
D1
c.jq.r/iCj � p

.r/
i j/

� C � nk
2

n�1X

�D0
c.�/ D o

�

n1C
k
2

	

;
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since
Pn�1

�D0 c.�/ D o.n/ by condition (C4) and Remark 2.1 (ii). ut
Lemma 3.2 now guarantees that we need to consider only non-crossing pair

partitions, that is

lim
n!1

1

n
E
�

tr
�

Xk
n

��

D lim
n!1

1

n1C k
2

X

�2NPP.k/

X

.P1;:::;Pk/2S�

n .�/

E Œan.P1/ � : : : � an.Pk/� ;

if the limits exist.

Lemma 3.3. Let � 2 NPP.k/. For any .P1; : : : ; Pk/ 2 S�
n .�/, we have

E Œan.P1/ � : : : � an.Pk/� D 1:

Proof. Let l < m with m 
� l . Since � is non-crossing, the number l � m � 1

of elements between l and m must be even. In particular, there is l � i < j � m

with i 
� j and j D i C 1. By the properties of S�
n , we have an.Pi / D an.Pj /,

and the sequence .P1; : : : ; Pl ; : : : ; Pi�1; PiC2; : : : ; Pm; : : : ; Pk/ is still consistent.
Applying this argument successively, all pairs between l and m vanish and we see
that the sequence .P1; : : : ; Pl ; Pm; : : : ; Pk/ is consistent, that is ql D pm. Then, the
identity pl D qm also holds. In particular, an.Pl / D an.Pm/. Since l; m have been
chosen arbitrarily, we obtain

E Œan.P1/ � : : : � an.Pk/� D
Y

l<m

l	�m

E Œan.Pl/ � an.Pm/� D 1:

ut
It remains to verify

Lemma 3.4. For any � 2 NPP.k/, we have

lim
n!1

#S�
n .�/

n
k
2 C1 D 1:

Proof. To calculate the number of elements in S�
n .�/, first choose P1. There are

n2 possibilities for that choice. If 1 
� 2, then P2 is uniquely determined since
p2 D q1 and by definition of S�

n .�/, q2 D p1. If 1 6
� 2, then there are n � 1

possibilities to fix P2. Proceeding in the same way, we see that if i 2 f2; : : : ; kg
is equivalent to some element in f1; : : : ; i � 1g, there is always only one value Pi
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can take. Otherwise there are asymptotically n choices. The latter case will occur
exactly k

2
� 1 times. In conclusion,

#S�
n .�/ 
 n2 � nk

2 �1 D n1C
k
2 :

ut
Lemmas 3.3 and 3.4 now provide that

lim
n!1

1

n
E
�

tr
�

Xk
n

��

D lim
n!1

1

n1C k
2

X

�2NPP.k/

X

.P1;:::;Pk/2S�

n .�/

E Œan.P1/ � : : : � an.Pk/�

D lim
n!1

1

n1C k
2

X

�2NPP.k/
#S�

n .�/ D #NPP.k/:

Since the number of non-crossing pair partitions #NPP.k/ equals exactly
the Catalan number Ck

2
, we can conclude that the expected empirical spectral

distribution of Xn tends to the semi-circle law. This is the asserted convergence
in expectation.

It remains to deduce almost sure convergence. Therefore, we want to follow the
ideas of [6]. To this end, we need

Lemma 3.5. Suppose the conditions of Theorem 2.2 hold. Then, for any k; n 2 N,

E

h�

tr
�

Xk
n

� � E
�

tr
�

Xk
n

���4
i

� C � n2:

Proof. Fix k; n 2 N. Using the notation

P D .P1; : : : ; Pk/ D ..p1; q1/; : : : ; .pk; qk//; an.P / D an.P1/ � : : : � an.Pk/;

we have that

E

h�

tr
�

Xk
n

� � E
�

tr
�

Xk
n

���4
i

D 1

n2k

X

�.1/;:::;�.4/2P.k/

X

P .i/2Sn.�.i//;iD1;:::;4
E

h 4Y

jD1

�

an.P
.j //� E

�

an.P
.j //
�� i

: (7)

Now consider a partition � of f1; : : : ; 4kg. We say that a sequence
.P .1/; : : : ; P .4// is �-consistent if each P .i/; i D 1; : : : ; 4, is a consistent sequence
and
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ˇ
ˇq
.i/

l � p.i/l
ˇ
ˇ D ˇ

ˇq.j /m � p.j /m

ˇ
ˇ ” l C .i � 1/k 
� mC .j � 1/k:

Let Sn.�/ denote the set of �-consistent sequences with entries in f1; : : : ; ng. Then,
(7) becomes

E

h�

trXk
n � E

�

trXk
n

��4
i

D 1

n2k

X

�2P.4k/

X

.P .1/;:::;P .4//2Sn.�/

E

h 4Y

jD1

�

an.P
.j //� E

�

an.P
.j //
�� i

: (8)

We want to analyze the expectation on the right hand side. Therefore, fix a � 2
P.4k/. We call � a matched partition if

(i) Any equivalence class of � contains at least two elements and
(ii) For any i 2 f1; : : : ; 4g there is a j ¤ i and l; m 2 f1; : : : ; kg with

l C .i � 1/k 
� mC .j � 1/k:

In case � is not matched, we can conclude that

X

.P .1/;:::;P .4//2Sn.�/

E

h 4Y

jD1

�

an.P
.j //� E

�

an.P
.j //
�� i D 0:

Thus, we only have to consider matched partitions to evaluate the sum in (8).
Let � be such a partition and denote by r D #� the number of equivalence classes
of � . Note that condition .i/ implies r � 2k. To count all �-consistent sequences
.P .1/; : : : ; P .4//, we first choose one of at most nr possibilities to fix the r different
equivalence classes. Afterwards, we fix the elements p.1/1 ; : : : ; p

.4/
1 , which can be

done in n4 ways. Since now the differences jq.i/l � p.i/l j are uniquely determined by
the choice of the corresponding equivalence classes, we can proceed sequentially to
see that there are at most two choices left for any pair P .i/

l . To sum up, we have at
most

24k � n4 � nr D C � nrC4
possibilities to choose .P .1/; : : : ; P .4//. If now r � 2k � 2, we can conclude that

#Sn.�/ � C � n2kC2: (9)

Hence, it remains to consider the case where r D 2k � 1 and r D 2k, respectively.
To begin with, let r D 2k � 1. Then, we have either two equivalence classes

with three elements or one equivalence class with four. Since � is matched, there
must exist an i 2 f1; : : : ; 4g and an l 2 f1; : : : ; kg such that P .i/

l is not equivalent
to any other pair in the sequence P .i/. Without loss of generality, we can assume
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that i D 1. In contrast to the construction of .P .1/; : : : ; P .4// as above, we now alter
our procedure as follows: We fix all equivalence classes except of that P .1/

l belongs
to. There are nr�1 possibilities to accomplish that. Now we choose again one of
n4 possible values for p.1/1 ; : : : ; p

.4/
1 . Hereafter, we fix q.1/m , m D 1; : : : ; l � 1, and

then start from q
.1/

k D p
.1/
1 to go backwards and obtain the values of p.1/k ; : : : ; p

.1/

lC1.
Each of these steps leaves at most two choices to us, that is 2k�1 choices in total. But
now,P .1/

l is uniquely determined since p.1/l D q
.1/

l�1 and q.1/l D p
.1/

lC1 by consistency.
Thus, we had to make one choice less than before, implying (9).

Now, let r D 2k. In this case, each equivalence class has exactly two elements.
Since we consider a matched partition, we can find here as well an l 2 f1; : : : ; kg
such thatP .1/

l is not equivalent to any other pair in the sequenceP .1/. But in addition

to that, we also have an m 2 f1; : : : ; kg such that, possibly after relabeling, P .2/
m is

neither equivalent to any element in P .1/ nor to any other element in P .2/. Thus, we
can use the same argument as before to see that this time, we can reduce the number
of choices to at most C �nrC2 D C �n2kC2. In conclusion, (9) holds for any matched
partition �. To sum up our results, we obtain that

E

h�

trXk
n � E

�

trXk
n

��4
i

D 1

n2k

X

�2P.4k/;

� matched

X

.P .1/;:::;P .4//2Sn.�/

E

h 4Y

jD1

�

an.P
.j //� E

�

an.P
.j //

�� i

� C � n2;

which is the statement of Lemma 3.5. ut
From Lemma 3.5 and Chebyshev’s inequality, we can now conclude that for any

" > 0 and any k; n 2 N,

P

�ˇ
ˇ
ˇ
ˇ

1

n
trXk

n � E

�
1

n
trXk

n

�ˇ
ˇ
ˇ
ˇ
> "

�

� C

"4n2
:

Hence, the convergence in expectation part of Theorem 2.2 together with the Borel-
Cantelli lemma yield that

lim
n!1

1

n
trXk

n D E
�

Y k
�

almost surely;

where Y is distributed according to the standard semi-circle law. In particular, we
have that, with probability 1, the empirical spectral distribution of Xn converges
weakly to the semi-circle law. This finishes the proof of Theorem 2.2.

Theorem 2.4 can be proved along the lines of the proof of Theorem 2.1.21 in
[2]. Indeed, by a result of Hoffman and Wielandt for any two symmetric n � n
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matrices A and B and their ordered eigenvalues �A
1 � : : : � �A

n and �B
1 � : : : � �B

n ,
respectively, it holds

nX

iD1
j�A
i � �B

i j � tr.A � B/2:

Since for random matrices the right hand side just depends on the second moments
of the entries of A and B, this bound can be used to establish a truncation technique
and first show a semicircle law in probability for the truncated matrices (as above)
and then extend it to matrices satisfying (C1’). For details we refer to the proof of
Theorem 2.1.21 in [2].

4 Examples

4.1 Gaussian Processes

Let fa.p; p C r/; p 2 Ng, r 2 N0, be independent families of stationary
Gaussian Markov processes with mean 0 and variance 1. In addition to
this, we assume that the processes are non-degenerate in the sense that
E Œa.p; p C r/ja.q; q C r/; q � p � 1� ¤ a.p; p C r/. In this case, the conditions
of Theorem 2.2 are satisfied. Indeed, for fixed r 2 N0 and any p 2 N, we can
represent ap WD a.p; p C r/ as

ap D xp

p
X

jD1
yj �j ;

where
˚

�j



is a family of independent standard Gaussian variables and
xp; y1; : : : ; yp 2 Rn f0g. Then, we obtain

c.�/ WD jCov.ap; apC� /j D
ˇ
ˇ
ˇ
ˇ

xpC�
xp

ˇ
ˇ
ˇ
ˇ
;

implying c.�/ D c.1/� for any � 2 N0. By calculating the second moment of
a2 D x2y2�2 C Cov.a1; a2/a1, we can conclude that c.1/ < 1. Thus, condition (C4)
is satisfied for any " > 0.

4.2 Markov Chains with Finite State Space

We want to verify that condition (C4) holds for stationary N -state Markov chains
which are aperiodic and irreducible. Let fXk; k 2 Ng be such a Markov chain on the
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state space S D fs1; : : : ; sN g with mean 0 and variance 1. Denote by � its stationary
distribution. In [13], Theorem 4.9, it is stated that for some constantC > 0 and some
˛ 2 .0; 1/,

max
i;j2f1;:::;N g

jP.Xk D si j X1 D sj /� �.i/j � C˛k�1; k 2 N:

In particular, we obtain

jCov.Xk;X1/j D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

NX

i;jD1
si sj

�

P.Xk D si j X1 D sj /� �.i/
�

�.j /

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

� C˛k�1:

Thus Cov.Xk;X1/ decays exponentially to 0 as k ! 1 and condition (C4) is
satisfied.

4.3 Fractional Brownian Motion

We want to consider a stochastic process that exhibits long-range dependence but
satisfies condition (C4) nevertheless. To this end, consider fractional Brownian
motion .BH

t /t with Hurst parameter (or index) H . Recall that BH
t is a continuous

stochastic process, starting in 0, obeying EBH
t D 0 for all t and

Cov.BH
t ; B

H
s / D 1

2
.t2H C s2H � jt � sj2H /:

In particular,
V.BH

t / D t2H

implying that for Hurst parameter H D 1
2

the process is a Brownian motion. A
standard reference for fractional Brownian motion is the textbook by Samorodnitsky
and Taqqu [15], Chap. 7.

Now for each diagonal, we take independent fractional Brownian motions with
index H 2 .0; 1/ and for the entries fXk; k 2 Ng on a (fixed) diagonal, we take the
integer times of fractional Gaussian noise, i.e.Xk D BH

k �BH
k�1. Thus the fXk; k 2

Ng are stationary with mean zero and variance one. Using the above covariance
formula it can be further shown that forH ¤ 1=2,

Cov.XkC1; X1/ D 1

2

�

.k C 1/2H � 2k2H C .k � 1/2H � 
 H.2H � 1/k2H�2;

as k ! 1 (cf. [7], Proposition 3.1). Hence, condition (C4) is satisfied. In particular,
the sum

P1
kD0 jCov.XkC1; X1/j diverges if 1=2 < H < 1 implying that we have a

long-range dependence.
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Abstract This note gives a survey of some results on limit theorems for random
matrices that have been obtained during the last 10 years in the joint research of
the author and F. Götze. We consider the rate of convergence to the semi-circle law
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In this note we describe some results obtained jointly with F. Götze in the
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the rate of convergence to the semi-circular law and Marchenko–Pastur law for
the empirical spectral distribution function of Wigner matrices and of sample
covariance matrices, respectively. For Girko–Ginibre matrices and their powers
and products we discuss the results on convergence to the limit distributions. We
consider also random matrices with dependent entries and describe Stein’s method
for random matrices with some martingale structure of dependence of entries.

2 Wigner Matrices

LetXjk (1 � j � k � n) be independent random variables (possibly complex) with
EXjk D 0 and EjXjkj2 D 1, defined on the same probability space f�;M;Pg. We
define the Hermitian (symmetric in real case) matrix X with entries ŒX�jk D 1p

n
Xjk

for 1 � j � k � n. Consider the eigenvalues of the matrix X denoted in non-
increasing order by �1 � � � � � �n and define the empirical spectral distribution
function of this matrix as

Fn.x/ D 1

n

nX

jD1
If�j � xg;

where IfAg denotes indicator of the event A. Introduce also the expected spectral
distribution function Fn.x/ WD EFn.x/ of matrix X. Wigner [39] considered the
symmetric random matrix X with entries Xjk D ˙1 with probability 1

2
and proved

that
	n WD sup

x

jFn.x/ �G.x/j ! 0; as n ! 1; (1)

where G.x/ is the distribution function of the semi-circular law with the density
G0.x/ D 1

2�

p
4 � x2Ifjxj � 2g. This problem has been studied by several

authors. Wigner’s result [39] was extended later to different classes of distributions
of random variables Xjk. In particular, Wigner in [40] proved that (1) holds for
symmetric random matrices with sub-Gaussian entries. (A random variable � is
called subgaussian random variable if there exists a positive constant ˇ > 0 such
that Pfj�j > xg � expf�ˇx2g for any x > 0.) Later it was shown that the semi-
circular law (the statement (1)) holds under the assumption of Lindeberg condition
for the distributions of matrix entries, i e.,

Ln.�/ D 1

n2

nX

jD1

nX

kDj
EjXjkj2IfjXjkj � �

p
ng ! 0 as n ! 1; (2)

for any � > 0 (see, e.g., [16]). It was shown also that under the same assumptions

	�
n WD sup

x

jFn.x/ �G.x/j ! 0 in probability as n ! 1: (3)
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We have investigated the rate of convergence in (1) and (3). This problem has
been studied by several authors. In particular, Bai [5] proved that 	n D O.n� 1

4 /

assuming that sup1�j�k EjXjkj4 � M4 < 1. Later Bai et al. [9] under the condition

that sup1�j�k EjXjkj8 � M8 < 1 proved that 	n D O.n� 1
2 / and E	�

n D
O.n� 2

5 /. Girko [18] proved that 	n D O.n� 1
2 / assuming sup1�j�k EjXjkj4 �

M4 < 1. A very interesting result was obtained recently by Erdös et al. in [13]. It
follows from their results that for random matrices whose entries have distributions
with exponential tails, i.e., PfjXjkj > tg � A expf�t~g for some A; ~ > 0, the
following holds

P

n

	�
n � Cn�1.logn/C ln ln n

o

� 1 � C expf�.logn/c ln ln ng (4)

with some positive constants C and c depending on A; ~ only.
We state the results obtained jointly with F. Götze in several theorems below.

Theorem 2.1 (Götze and Tikhomirov [20]). Let EXjk D 0

and EjXjkj2 D 1. Let
sup
1�j�k

EjXjkj4 � M4 < 1: (5)

Then there exist a numerical constant C > 0 such that

	n � CM
1
2

4 n
� 1
2 : (6)

If in addition
sup
1�j�k

EjXjkj12 � M12 < 1;

then

E	�
n � CM

1
6

12n
� 1
2 : (7)

Assuming instead of (5) the condition (8) below, we have obtained the following
result.

Theorem 2.2 (Tikhomirov [37]). Let Xjk be independent random variables with
EXjk D 0 and EjXjkj2 D 1. Assume that for some 0 < ı � 2 the following relation
holds

sup
1�j�k

EjXjkj2Cı DW M2Cı < 1: (8)

Then there exists a numerical C > 0 such that

	n � C

0

@
M

ı
2Cı

2Cı
n

ı
2Cı

1

A

1� .1�ı/
C

2

;

where .1 � ı/C D maxf1 � ı; 0g.
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Under stronger assumptions on the distribution ofXjk we get bounds for	n of order

O.n� 1
2�� / with some positive � > 0. In particular, in the paper of Bobkov et al.

[13] we consider random variables Xjk with distributions satisfying a Poincaré-
type inequality. Let us recall that a probability measure � on R

d is said to satisfy
a Poincaré-type, PI.�2/, or a spectral gap inequality with constant �2 if for any
bounded smooth function g on R

d with gradient rg

Var.g/ � �2
Z

Rd

jrgj2d�; (9)

where Var.g/ D R

Rd
g2d��

� R

Rd
gd�

	2

.

Theorem 2.3 (Bobkov et al. [13]). If the distributions of Xjk’s satisfy the
Poincaré-type inequality PI (�2) on the real line, then

	n � Cn�2=3;

where the constant C depends on � only. Moreover,

E	�
n � Cn�2=3 log2.nC 1/:

For any positive constants ˛ > 0 and ~ > 0 define the quantities

ln;˛ WD logn .log logn/˛ and ˇn WD .ln;˛/
1
~ C 1

2 : (10)

The best known result for the rate of convergence in probability to the semi-circular
law is the following:

Theorem 2.4 (Götze and Tikhomirov [28]). Let EXjk D 0, EX2
jk D 1. Assume

that there exist constants A and ~ > 0 such that

PfjXjkj � tg � A expf�t~g; (11)

for any 1 � j � k � n and any t � 1. Then, for any positive ˛ > 0 there exist
positive constants C and c depending on A and ~ and ˛ only, such that

P

n

sup
x

jFn.x/�G.x/j > n�1ˇ2n
o

� C expf�c ln;˛g:

Remark 2.5. In the result of (4) [13] 	�
n D OP .n

�1.logn/O.log log n//. In our result
	�
n D OP .n

�1.logn/O.1//.

Remark 2.6. If X belongs to Gaussian Unitary Ensemble (GUE) [23] or Gaussian
Orthogonal Ensemble (GOE) [38] then there exists an absolute constantC > 0 such
that

	n � Cn�1: (12)
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3 Sample Covariance Matrices

In this section we consider the so called sample covariance matrices and their
generalization. Let X be rectangular matrices of order Œn � p� with independent
entries (possible complex) Xjk , j D 1; : : : ; nI k D 1 : : : ; p. We shall assume that
EXjk D 0 and EjXjkj2 D 1. Consider the matrix W D 1

p
XX�. Such matrices

are called sample covariance matrices and they were first considered in 1928 by
Wishart [41]. He obtained the joint distribution of entries of the matrix W as Xjk
are standard Gaussian random variables. We shall be interested in the asymptotic
distribution of the spectrum of the matrix W. Note that the matrix W is semi-positive
definite and its eigenvalues are non-negative. Denote the eigenvalues of the matrix
W in decreasing order by s21 � : : : � s2n � 0. (Note that the numbers s1; : : : ; sn
are called singular values of matrix 1p

p
X.) Define the empirical spectral distribution

function of the matrix W by the equality

Hn.x/ D 1

n

nX

jD1
Ifs2j � xg: (13)

Let Hy.x/ be the distribution function with the density

H 0
y.x/ D

p

.b � x/.x � a/

2�xy
C .1 � 1

y
/Cı0.x/; (14)

where a D .1 � p
y/2, b D .1C p

y/2, and ı0.x/ denotes Dirac ı-function, aC D
maxfa; 0g for any real a. This distribution is called Marchenko–Pastur distribution
with parameter y. Assuming that p D p.n/ where limn!1 n

p
D y, and assuming

the moment condition (5), Marchenko and Pastur [29] have shown that there exists

lim
n!1EHn.x/ D Hy.x/; (15)

The result of Marchenko–Pastur was improved by many authors. As a final result
we have the following Theorem.

Theorem 3.1. Let the random variables Xjk , 1 � j � n; 1 � k � p be
independent for any n � 1 and have zero mean and unit variance. Assume that
p D p.n/ such that limn!1 n

p
D y. Further suppose that the Lindeberg condition

holds, i.e.,

Ln.�/ D 1

n2

nX

jD1

p
X

kD1
EjXjkj2IfjXjkj � �

p
ng ! 0;

for any � > 0. Then

sup
x

jEHn.x/�Hy.x/j ! 0; as n ! 1:
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Moreover, Hn.x/ converges to the Marchenko–Pastur distribution in probability.

The proof of this result may be found in [8]. We have investigated the rate of
convergence of the expected and empirical spectral distribution function of sample
covariance matrix to the Marchenko–Pastur law. This question was considered also
in the papers of Bai [6], and in Bai and co-authors [10]. Bai et al. in [10] and
independently Götze and Tikhomirov in [21] established the bound of the rate of
convergence in Kolmogorov distance 	n D supx jEHn.x/ � Hy.x/j D O.n� 1

2 /,
assuming that

max
j;k�1EjXjkj8 � C (16)

for some positive constantC > 0 independent of n. Götze and and Tikhomirov [21]
proved as well that 	�

n D E supx jHn.x/ �Hy.x/j D O.n� 1
2 /, assuming

max
j;k�1EjXjkj12 � C (17)

for some positive constant C > 0 independent of n. Somewhat later these bounds
were improved in the paper of Götze and Tikhomirov [26] and in the paper of
Tikhomirov [36]. We formulate the following result.

Theorem 3.2. Let the random variables Xjk , 1 � j � n; 1 � k � p be
independent for any fixed n � 1 and have zero mean and unit variance. Assume
that p D p.n/, where n

p
D y � 1. Let for some 0 < ı � 2

M2Cı WD sup
j;k;n

EjXjkj2Cı < 1:

Then there exist a positive constant C D C.ı/, depending on ı only , such that

	n � CM
ı

2Cı

2Cı n
� ı
2Cı : (18)

The bound (18) for ı D 2 was obtained in [26], the bound for the case 0 < ı < 2 in
[36]. The question about optimality of the above mentioned bounds is still open.
But assuming that the random variables Xjk are independent standard complex
Gaussian random variables (so-called Laguerre unitary ensemble) the optimal bound
of the rate of convergence of the expected spectral distribution of the matrix W
was obtained. It turns out that 	n D O.n�1/, which was proved by Götze and
Tikhomirov [23]. Recall that the distribution of a random variable X has so-called
exponential tail means that there exist constants A > 0 and ~ > 0 such that

PfjX j � tg � A expf�t~g: (19)

Assuming that the entries of the matrix X have distribution with exponential tails,
Götze and Tikhomirov have proved in [27] that
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P

n

sup
x

jHn.x/ �Hy.x/j > n�1ˇ2n
o

� C expf�c ln;˛g; (20)

for any ˛ > 0. Here ˇn and ln;˛ were defined in (10). The constants C > 0 and
c > 0 depend on A; ~ and ˛ only. It would be interesting to extend the results
about sample covariance matrices to more general situations. First we consider the
singular values of powers of random matrices. And then we consider the asymptotic
distribution of singular values of products of independent random matrices.

3.1 Powers of Random Matrices

Let X D .Xjk/
n
j;kD1 be a square random matrix of order n with independent entries

such that EXjk D 0 and EjXjkj2 D 1. In this section we shall investigate the
asymptotic distribution of the singular values of the matrix W D n�m

2 Xm or the
eigenvalues of the matrix V D WW�. Form D 1 it is the case of sample covariance
matrix with parameter y D 1. Denote by s21 � : : : � s2n the eigenvalues of the
matrix V. (Note that s1 � : : : � sn are the singular values of the matrix W.) Let

H.m/
n .x/ D 1

n

mX

jD1
Ifs2j � xg (21)

denote the empirical spectral distribution function of the matrix V. Let FC.k;m/ D
1

mkC1
�
mkCk
k

�

denote the kth Fuss–Catalan number with parameter m, for k �
1. These numbers are the moments of some distribution which we denote by
H.m/.x/. It is well known that the Stieltjes transform of this distribution, s.m/.z/ D
R

1
x�zdH

.m/.x/, satisfies the equation

1C zs.m/.z/C .�1/mC1zmC1.s.m/.z//mC1 D 0;

In the joint papers of Alexeev et al. [2] and [1] the following was proved:

Theorem 3.3. Let random variables Xjk be independent for any fixed n � 1 and
for any 1 � j; k � n. Assume that EXjk D 0 and EjXjkj2 D 1 for any j; k � 1

and
sup
j;k�1

EjXjkj4 � C; (22)

for some positive constant C > 0. Assume also that for any � > 0

Ln.�/ D 1

n2

nX

j;kD1
EjXjkj4IfjXjkj � �

p
ng ! 0 as n ! 1: (23)

Then
lim
n!1 sup

x
jEH.m/

n .x/ �H.m/.x/j D 0: (24)
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For the proof of this result we use the method of moments, see [2]. The proof of
Theorem 3.2 by the method of Stieltjes transform is given in [4].

3.2 Product of Random Matrices

Let m � 1 be a fixed integer. For any n � 1 consider an .m C 1/-tuple of integers
.p0; : : : ; pm/ with p0 D n and p� D p�.n/ for � D 1; : : : ; m, such that

lim
n!1

n

p�.n/
D y� 2 .0; 1�: (25)

Furthermore, we consider an array of independent complex random variables
X
.�/

jk ; 1 � j � p��1; 1 � k � p� , � D 1; : : : ; m defined on a common probability

space f�n;Fn;Pg with EX
.�/

jk D 0 and EjX.�/

jk j2 D 1. Let X.�/ denote the p��1 �p�
matrix with entries ŒX.�/�jk D 1p

p�
X
.�/

jk , for 1 � j � p��1; 1 � k � p� . The

random variables X.�/

jk may depend on n but for simplicity we shall not make this
explicit in our notations. Denote by s1 � : : : � sn the singular values of the random
matrix W WD Qm

�D1 X.�/ and define the empirical distribution of its squared singular
values by

H.m/
n .x/ D 1

n

nX

kD1
Ifsk2 � xg:

We shall investigate the approximation of the expected spectral distribution
H
.m/
n .x/ D EH.m/

n .x/ by the distribution function Hy.x/ which is defined by its
Stieltjes transform sy.z/ in the following way:

1C zsy.z/ � sy.z/
mY

lD1
.1 � yl � zyl sy.z// D 0; (26)

where 0 � yl � 1.

Remark 3.4. In the case y1 D y2 D � � � D ym D 1 the distributionHy has moments
M.k;m/ D FC.k;m/: The Stieltjes transform of the distributionHy.x/ satisfies in
this case the equation

1C zs.z/C .�1/mC1zms.z/mC1 D 0:

The main result of this subsection.

Theorem 3.5. Assume that condition (25) holds. Let EX.�/

jk D 0, EjX.�/

jk j2 D 1.
Suppose that the Lindeberg condition holds, i.e.,
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Ln.�/ WD max
�D1;:::;m

1

p��1p�

p��1X

jD1

p�X

kD1
EjX.�/

jk j2IfjX.�/jk j��p
ng ! 0 as n ! 1; (27)

for any � > 0. Then

lim
n!1 sup

x

jH.m/
n .x/ �Hy.x/j D 0:

Remark 1. For m D 1 we get the well-known result of Marchenko-Pastur for
sample covariance matrices [29].

Remark 2. We see that the limit distribution for the distribution of singular values of
product of independent square random matrices is the same as for powers of random
matrices with independent entries, see [2].

The statement of Theorem 3.5 was published in [1] and a proof of this result is given
in [3].

4 Circular Law and Its Generalization

4.1 Circular Law

Let Xjk; 1 � j; k < 1, be complex random variables with EXjk D 0 and
EjXjkj2 D 1. For a fixed n � 1, denote by �1; : : : ; �n the eigenvalues of the n � n
matrix

X D .Xn.j; k//
n
j;kD1; Xn.j; k/ D 1p

n
Xjk for 1 � j; k � n; (28)

and define its empirical spectral distribution function by

Gn.x; y/ D 1

n

nX

jD1
IfRe f�j g � x; Imf�j g � yg: (29)

We investigate the convergence of the expected spectral distribution function
EGn.x; y/ to the distribution function G.x; y/ of the uniform distribution in the
unit disc in R

2.
The main results which was obtained in [19] is the following.

Theorem 4.1. Let Xjk be independent random variables with

EXjk D 0; EjXjkj2 D 1 and EjXjkj2'.Xjk/ � ~;



304 A. Tikhomirov

where '.x/ D .ln.1C jxj//19C
 for some 
 > 0. Then EGn.x; y/ converges weakly
to the distribution function G.x; y/ as n ! 1.

We shall prove the same result for the following class of sparse matrices. Let
"jk, j; k D 1; : : : ; n denote Bernoulli random variables which are independent in
aggregate and independent of .Xjk/nj;kD1 with success probability pn WD Pf"jk D
1g. Consider the matrix X."/ D 1p

npn
."jkXjk/

n
j;kD1. Let �."/1 ; : : : ; �

."/
n denote the

(complex) eigenvalues of the matrix X."/ and denote by G."/
n .x; y/ the empirical

spectral distribution function of the matrix X."/, i. e.

G."/
n .x; y/ WD 1

n

nX

jD1
IfRe f�."/j g � x; Imf�."/j g � yg: (30)

Theorem 4.2. Let Xjk be independent random variables with

EXjk D 0; EjXjkj2 D 1 and EjXjkj2'.Xjk/ � ~;

where '.x/ D .ln.1 C jxj//19C
 for some 
 > 0. Assume that p�1
n D O.n1�� / for

some 1 � � > 0. Then EG
."/
n .x; y/ converges weakly to the distribution function

G.x; y/ as n ! 1.

Remark 4.3. The crucial problem of the proofs of Theorems 4.1 and 4.2 is to
find bounds for the smallest singular values sn.z/ respectively s."/n .z/ of the shifted
matrices X�zI respectively X."/�zI. These bounds are based on the results obtained
by Rudelson and Vershynin in [32]. In the version of paper [25] we have used the
corresponding results of Rudelson [31] proving the circular law in the case of i.i.d.
sub-Gaussian random variables. In fact, the results in [25] actually imply the circular
law for i.i.d. random variables withEjXjkj4 � ~4 < 1 in view of the fact (explicitly
stated by Rudelson in [31]) that in his results the sub-Gaussian condition is needed
for the proof of PfkXk > Kg � C expf�cng only. This result was written by Pan
and Zhou in [30].

The strong circular law assuming moment condition of order larger than 2 and
comparable sparsity assumptions was proved by Tao and Vu in [33] based on their
results in [34] in connection with the multivariate Littlewood Offord problem. In
[35] Tao and Vu proved the circular law without sparsity assuming a moment
condition of order 2 only.

The investigation of the convergence of the spectral distribution functions of real
or complex (non-symmetric and non-Hermitian) random matrices with independent
entries has a long history. Ginibre in 1965, [14], studied the real, complex and
quaternion matrices with i. i. d. Gaussian entries. He derived the joint density
for the distribution of eigenvalues of matrix and determined the density of the
expected spectral distribution function of random matrix with Gaussian entries with
independent real and imaginary parts and deduced the circle law. Using the Ginibre
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results, Edelman in 1997, [12], proved the circular law for matrices with i. i. d.
Gaussian real entries. Girko in 1984, [15], investigated the circular law for general
matrices with independent entries assuming that the distributions of the entries have
densities. As pointed out by Bai [7], Girko’s proof had serious gaps. Bai in [7] gave a
proof of the circular law for random matrices with independent entries assuming that
the entries have bounded densities and finite sixth moments. It would be interesting
to consider the following generalization of the circular law.

4.2 Asymptotic Spectrum of the Product of Independent
Random Matrices

Let m � 1 be a fixed integer. For any n � 1 consider mutually independent
identically distributed (i.i.d.) omplex random variables X.�/

jk ; 1 � j; k � n,

� D 1; : : : ; m; with EX
.�/

jk D 0 and EjX.�/

jk j2 D 1 defined on a common probability

space .�n;Fn;P/. Let X.�/ denote the n�nmatrix with entries ŒX.�/�jk D 1p
n
X
.�/

jk ,

for 1 � j; k � n. Denote by �1; : : : ; �n the eigenvalues of the random matrix
W WD Qm

�D1 X.�/ and define its empirical spectral distribution function by

Fn.x; y/ WD F .m/
n .x; y/ D 1

n

nX

kD1
IfRe�k � x; Im�k � yg;

where IfBg denotes the indicator of an event B . We shall investigate the conver-
gence of the expected spectral distribution Fn.x; y/ D EFn.x; y/ to the distribution
functionF.x; y/ corresponding to them-th power of the uniform distribution on the
unit disc in the plane R2 with Lebesgue-density

f .x; y/ D 1

�m.x2 C y2/
m�1
m

Ifx2 C y2 � 1g:

We consider the Kolmogorov distance between the distributions Fn.x; y/ and
F.x; y/,

	n WD sup
x;y

jFn.x; y/ � F.x; y/j:

We have proved the following.

Theorem 4.4. Let EX.�/

jk D 0, EjX.�/

jk j2 D 1. Then, for any fixedm � 1,

lim
n!1	n D 0:

The result holds in the non-i.i.d. case as well.
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Theorem 4.5. Let EX.�/

jk D 0, EjX.�/

jk j2 D 1, � D 1; : : : ; m, j; k D 1; : : : ; n.

Assume that the random variablesX.�/

jk have uniformly integrable second moments,
i. e.

max
�;j;k;n

EjX.�/

jk j2IfjX.�/

jk j > M g ! 0 as M ! 1: (31)

Then for any fixedm � 1,
lim
n!1	n D 0:

Definition 4.6. Let �n.�/ denote the empirical spectral measure of an n�n random
matrix X (uniform distribution on the eigenvalues of matrix X) and let �.�/ denote
the uniform distribution on the unit disc in the complex plane C. We say that the
circular law holds for the random matrices X if E�n.�/ converges weakly to the
measure �.�/ in the complex plane C.

Remark 4.7. For m D 1 we recover the well-known circular law for random
matrices [19, 35].

5 Bounds on Levy and Kolmogorov Distance in Terms
of Stieltjes Transform

One of the first bounds on the Kolmogorov distance between distribution functions
via their Stieltjes transforms was obtained by Girko in [17]. Bai in [5] proved a
new inequality bounding the Kolmogorov distance of distribution functions by their
Stieltjes transforms. The proofs of Theorems 2.1–3.3 are based on a smoothing
inequality for the Kolmogorov distance between distribution functions in terms of
their Stielties transform. Recall that the Stieltjes transform SF .z/ of a distribution
function F.x/ is defined by the equality

SF .z/ WD
Z

R

1

z � x
dF.x/;

for all z D u C iv with u 2 R and v > 0. For any distribution functions F and G
define the Levy distance as

L.F;G/ WD inffı > 0 W F.x � ı/� ı � G.x/ � F.x C ı/C ı; for all x 2 Rg:
(32)

In [13] the following result was proved.

Theorem 5.1. Let F and G be distribution functions. Given v > 0, let an interval
Œ˛; ˇ� � R be chosen to satisfy G.˛/ < v and 1 �G.ˇ/ < v. Then
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L.F;G/ � sup
x2Œ˛�2v;ˇC2v�

ˇ
ˇ
ˇ

Z x

�1
.SF .x C iv/ � SG.x C iv//dx

ˇ
ˇ
ˇ

C 4v C 50ImSG.x C iv/: (33)

The following corollaries are very important for applications.

Corollary 5.2 (Bobkov et al. [13]). Let F and G be arbitrary distribution func-
tions. With some universal constant c > 0, for any v1 > v0 > 0,

cL.F;G/ � v0 C v0 sup
x2R

ImSG.x C iv0/C
Z

R

jSG.u C iv1/� SF .u C iv1/jdu

C sup
x2Œ˛�2v;ˇC2v�

Z v1

v0

jSG.x C iv/� SF .x C iv/jdv; (34)

where ˛ < ˇ are chosen to satisfy G.˛/ < v0, and 1 �G.ˇ/ < v0.

Corollary 5.3. If G is the distribution function of the standard semi-circular law,
andF is any distribution function, we have for all v1 > v0 > 0, up to some universal
constant c > 0,

ckF �Gk WD c sup
x2R

jF.x/ �G.x/j � v0 C
Z

R

jSG.u C iv1/ � SF .u C iv1/jdu

C sup
x2Œ˛�2v;ˇC2v�

Z v1

v0

jSG.x C iv/� SF .x C iv/jdv (35)

This result improved a similar inequality (2.4) in [20]. The main idea of such type
of inequalities belongs to F. Götze. We consider the first integral in the right hand
side of (35) (“horizontal”) far from the real line. A distance from a real line in the
second integral (“vertical”) has an order O.n�1 lognb/ in one point only. To obtain
a bound of orderO.n�1 lognb/ for	n we need some modification of the last result.
Let � D p

4 � x2.
Theorem 5.4. Let v > 0 and a and " > 0 be positive numbers such that

˛ D 1

�

Z

juj�a
1

u2 C 1
du D 3

4
; (36)

and
2va � "

p
�: (37)

If G denotes the distribution function of the standard semi-circular law, and F is
any distribution function, there exists some absolute constant c > 0, such that
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ckF �Gk �
Z 1

�1
jSF .u C iV / � SG.u C iV /jdu C v C "

3
2

C sup
x2Œ˛�2v;ˇC2v�

Z V

v0

jSF .x C iu/� SG.x C iu/jdu; (38)

where ˛, ˇ are defined in Theorem 5.2 and v0 D v=
p
� .

In the inequality (38) the right hand side is “sensitive” to the closeness of the point
x to the end points of the support of semi-circular distribution function.

6 Stein’s Method for Random Matrices

One of the more interesting direction of our joint work with F. Götze was a
development of Stein’s method for random matrices. This idea belongs exclusively
to F. Götze. The obtained results were published in several papers [22, 24, 25],
and we give a short review of them in this section. The goal of this review is to
illustrate the possibilities of Stein’s method for the investigation of the convergence
of the empirical spectral distribution function of random matrices. We consider
two ensembles of random matrices: real symmetric matrices and sample covariance
matrices of real observations. We give a simple characterization of both semicircle
and Marchenko-Pastur distributions via linear differential equations. Using con-
jugate differential operators, we give a simple criterion for convergence to these
distributions. We state also the general sufficient conditions for the convergence of
the expected spectral distribution functions of random matrices.

6.1 Real Symmetric Matrices

LetXjk; 1 � j � k < 1, be a triangular array of random variables with EXjk D 0

and EX2
jk D �2jk , and let Xkj D Xjk, for 1 � j < k < 1. For a fixed n � 1,

denote by �1 � : : : � �n the eigenvalues of a symmetric n � n matrix

Wn D .Wn.jk//
n
j;kD1; Wn.jk/ D 1p

n
Xjk; for 1 � j � k � n; (39)

and define its empirical spectral distribution function by

Fn.x/ D 1

n

nX

jD1
If�j � xg: (40)
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We investigate the convergence of the expected spectral distribution function,
Fn.x/ WD EFn.x/, to the distribution function of Wigner’s semicircle law.

Let g.x/ and G.x/ denote the density and the distribution function of the
standard semicircle law, i.e.

g.x/ D 1

2�

p
4 � x2 Ifjxj � 2g: G.x/ D

Z x

�1
g.u/du: (41)

6.2 Stein’s Equation for the Semicircle Law

Introduce a class of functions

C
1
f�2;2g D ff W R ! R W f 2 C

1.R n f�2; 2g/I
limjyj!1jyf .y/j < 1I lim sup

y!˙2
j4� y2jjf 0.y/j < C g:

By C.R/ we denote the class of continuous functions on R, by C
1.B/, B � R,

we denote the class of all functions f W R ! R differentiable on B with bounded
derivative on all compact subsets of B . We state the following

Lemma 6.1. Assume that a bounded function '.x/ without discontinuity of second
order satisfies the following conditions

'.x/ is continuous at the points x D ˙2 (42)

and Z 2

�2
'.u/

p
4 � u2du D 0: (43)

Then there exists a function f 2 C
1
f�2;2g such that, for any x ¤ ˙2,

.4 � x2/f 0.x/ � 3xf .x/ D '.x/: (44)

If '.˙2/ D 0 then there exists a continuous solution of (44).

As a simple implication of this Lemma we get

Proposition 6.2. The random variable � has distribution functionG.x/ if and only
if the following equality holds, for any function f 2 C

1
f�2;2g,

E
�

.4 � �2/f 0.�/ � 3�f .�/� D 0: (45)
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6.3 Stein Criterion for Random Matrices

Let W denote a symmetric random matrix with eigenvalues �1 � �2 � : : : � �n.
If W D U�1ƒU, where U is an orthogonal matrix and ƒ is a diagonal matrix, one
defines f .W/ D U�1f .ƒ/U, where f .ƒ/ D diag.f .�1/; : : : ; f .�n//.

We can now formulate the convergence to the semicircle law for the spectral
distribution function of random matrices.

Theorem 6.3. Let Wn denote a sequence of random matrices of order n � n such
that, for any function f 2 C

1
f�2;2g

1

n
ETr.4In � W2

n/f
0.Wn/ � 3

n
ETrWnf .Wn/ ! 0; as n ! 1: (46)

Then
	n WD sup

x

jEFn.x/ �G.x/j ! 0; as n ! 1: (47)

6.4 Resolvent Criterion for the Spectral Distribution Function
of a Random Matrix

We introduce the resolvent matrix for a symmetric matrix W and any non-real z,

R.z/ D .W � zI/�1; (48)

where I denotes the identity matrix of order n � n.

Proposition 6.4. Assume that, for any v ¤ 0,

Rn.W/.z/ WD 1

n
ETr.4I � W2/R2.z/C 3

n
ETrWR.z/ ! 0; as n ! 1 (49)

uniformly on compact sets in CnR. Then

	n ! 0; as n ! 1: (50)

6.5 General Conditions of the Convergence of the Expected
Distribution Function of Random Matrices to the Semi
Circular Law

We shall assume that EXjl D 0 and �2jl WD EX2
jl , for 1 � j � l � n. Introduce

�-algebras F jl D �fXkm W 1 � k � m � n; fk;mg ¤ fj; lgg, 1 � j � l � n, and
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F j D �fXkm W 1 � k � m � n; k ¤ j and m ¤ j g, 1 � j � n. We introduce as
well Lindeberg’s ratio for random matrices, that is for any � > 0,

Ln.�/ WD 1

n2

nX

j;lD1
EX2

jlIfjXjl j>�p
ng: (51)

Theorem 6.5. Assume that the random variables Xjl ; 1 � j � l � n, n � 1

satisfy the following conditions

EfXjl jF jlg D 0; (52)

".1/n WD 1

n2

X

1�j�l�n
EjEfX2

jl jF j g � �2jl j ! 0 as n ! 1; (53)

there exists �2 > 0; such that

".2/n WD 1

n2

X

1�j�l�n
j�2jl � �2j ! 0 as n ! 1; (54)

and

for any fixed � > 0;

Ln.�/ ! 0 as n ! 1: (55)

Then
	n WD sup

x

jEFn.x/ �G.x��1/j ! 0 as n ! 1: (56)

Corollary 6.6. Let X.n/

lj , 1 � l � j � n be distributed uniformly in the ball of the

radius
p
N in R

N with N D n.nC1/
2

, for any n � 1. Then

	n ! 0; as n ! 1: (57)

6.6 Sample Covariance Matrices

Let Xjk; 1 � j; k < 1, be random variables with EXjk D 0 and EX2
jk D �2jk . For

fixed n � 1 andm � 1, we introduce a matrix n �m

X D
�

Xlj

	

1�l�n; 1�j�m: (58)
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Denote by �1 � : : : � �n the eigenvalues of the symmetric n � n matrix

Wn D 1

p
XXT ; (59)

and define its empirical spectral distribution function by

Fn.x/ D 1

n

nX

jD1
If�j � xg: (60)

We investigate the convergence of the expected spectral distribution function
EFn.x/ to the distribution function of the Marchenko-Pastur law.

Let g˛.x/ and G˛.x/ denote the density and the distribution function of the
Marchenko-Pastur law with parameter ˛ 2 .0;1/, that is

g˛.x/ D 1

x�

p

.x � a/.b � x/ Ifx2Œa;b�g; G˛.x/ D
Z x

�1
g˛.u/du; (61)

where a D .1 � p
˛/2, b D .1C p

˛/2.

6.7 Stein’s Equation for the Marchenko-Pastur Law

Introduce a class of functions

C
1
fa;bg D ff W R ! R W f 2 C

1.R n fa; bg/I

limjyj!1jyf .y/j < 1I lim sup
y! a�b

2 ˙ aCb
2

j. .a � b/2

4
� .y � aC b

2
/2jjf 0.y/j < C g:

At first we state the following

Lemma 6.7. Let ˛ ¤ 1. Assume that a bounded function '.x/ without discontinu-
ity of second order satisfies the following conditions

'.x/ is continuous in the points x D a; x D b (62)

and
Z b

a

'.u/g˛.u/du D 0: (63)

Then there exists a function f 2 C
1
fa;bg such that, for any x ¤ a or x ¤ b,
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.x � a/.b � x/xf 0.x/� 3x.x � a C b

2
/f .x/ D '.x/: (64)

If '.a/ D 0 ('.b/ D 0) then there exists a continuous solution of the equation (64).

Proposition 6.8. The random variable � has distribution functionG˛.x/ if and only
if the following equality holds, for any function f 2 C

1
fa;bg,

E

�

.� � a/.b � �/�f 0.�/ � 3�.� � a C b

2
/f .�/

�

D 0: (65)

6.8 Stein’s Criterion for Sample Covariance Matrices

Let W denote a sample covariance matrix with eigenvalues 0 � �1 � �2 � : : : �
�n. If W D U�1ƒU, where U is an orthogonal and ƒ a diagonal matrix, one defines
f .W/ D U�1f .ƒ/U, where f .ƒ/ D diag.f .�1/; : : : ; f .�n//.

We can now formulate the convergence to the Marchenko-Pastur law for the
spectral distribution function of random matrices.

Theorem 6.9. Let Wn denote a sequence of sample covariance matrices of order
n � n such that, for any function f 2 C

1
fa;bg

1

n
ETr.Wn � aIn/.bIn � Wn/Wnf

0.Wn/

� 3

n
ETrWn.Wn � aC b

2
In/f .Wn/ ! 0; as n ! 1:

(66)

Then
	n WD sup

x

jEFn.x/ �G˛.x/j ! 0; as n ! 1: (67)

6.9 Resolvent Criterion for Sample Covariance Matrices

Denote by R.z/ the resolvent matrix for the sample covariance matrix W.

Proposition 6.10. Assume that, for any v ¤ 0,

Rn.W/.z/ WD 1

n
ETrW.W � aI/.bI � W/R2.z/

C 3

n
ETr.W � a C b

2
I/WR.z/ ! 0; as n ! 1 (68)
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uniformly on compacts sets in CnR. Then

	n ! 0; as n ! 1: (69)

6.10 Convergence to the Marchenko-Pastur Distribution

We shall assume that EXjl D 0 and �2jl WD EX2
jl , for 1 � j � n and 1 � l � m.

Introduce �-algebras F jl D �fXkq W 1 � k � n; 1 � q � m; fk; qg ¤ fj; lgg,
1 � j � n; 1 � l � m, and F l D �fXjs W 1 � j � n; 1 � s � m; s ¤ lg,
1 � l � m. We introduce as well Lindeberg’s ratio for random matrices, that is for
any � > 0,

Ln.�/ D 1

nm

nX

jD1

mX

lD1
EX2

jlIfjXjl j > �
p
ng; (70)

as well as the notationX.�/

jl WD XjlIfjXjl j � �
p
ng�EXjlIfjXjl j � �

p
ng, �.�/jl WD

E

n

X
.�/

jl

ˇ
ˇ
ˇF .j l/

o

. Introduce also the vectors X.�/

l D .X
.�/

1;l ; : : : ; X
.�/

n;l /
T and ¸.�/l D

.�
.�/

1;l ; : : : ; �
.�/

n;l /
T .

Theorem 6.11. Let m D m.n/ depend on n, such that

m.n/

n
! ˛ 2 .0; 1/; as n ! 1: (71)

Assume that the random variables Xjl ; 1 � j � n; 1 � l � m,
n;m � 1 satisfy the following conditions

EfXjl jF jlg D 0; (72)

".1/n WD 1

nm

nX

jD1

mX

lD1
EjEfX2

jl jF lg � �2jl j ! 0 as n ! 1; (73)

there exists �2 > 0; such that

".2/n WD 1

nm

nX

jD1

mX

lD1
j�2jl � �2j ! 0; (74)

".3/n WD 1

nm2

mX

lD1

nX

j;kD1
E

ˇ
ˇ
ˇEf..X.�/

jl /
2 � E.X

.�/

jl /
2/..X

.�/

kl /
2 � E.X

.�/

kl /
2/
ˇ
ˇ
ˇF lg

ˇ
ˇ
ˇ ! 0;

(75)
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".4/n WD 1

nm2

mX

lD1

X

1�j¤k�n
E

ˇ
ˇ
ˇ.Ef..�.�/jl /2 � E.�

.�/

jl /
2/

� ..�
.�/

kl /
2 � E.�

.�/

kl /
2/
ˇ
ˇ
ˇF lg

ˇ
ˇ
ˇ ! 0; as n ! 1; (76)

and
Ln.�/ ! 0; for any fixed � > 0; as n ! 1: (77)

Then
	n WD sup

x

jEFn.x/ �G˛.x�
�1/j ! 0 as n ! 1: (78)

Remark 6.12. Note that condition (74) implies that

lim
n!1

1

n
ETrWn D �2 < 1: (79)

Corollary 6.13. Assume (71). Let, for any n;m � 1, Xjl ,
1 � j � n; 1 � l � m, be independent and EXjl D 0, EX2

jl D �2. Suppose that,
for any fixed � > 0,

Ln.�/ ! 0; as n ! 1: (80)

Then the expected spectral distribution function of the sample covariance matrixW
converges to the Marchenko-Pastur distribution,

	n WD sup
x

jEFn.x/ �G˛.x��1/j ! 0; as n ! 1: (81)
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