
Generalized Rainbow Connectivity of Graphs�

Kei Uchizawa1, Takanori Aoki2, Takehiro Ito2, and Xiao Zhou2

1 Graduate School of Science and Engineering, Yamagata University,
Jonan 4-3-16, Yonezawa-shi, Yamagata 992-8510, Japan

uchizawa@yz.yamagata-u.ac.jp
2 Graduate School of Information Sciences, Tohoku University,

Aoba-yama 6-6-05, Sendai, Miyagi 980-8579, Japan
{takanori,takehiro,zhou}@ecei.tohoku.ac.jp

Abstract. Let C = {c1, c2, . . . , ck} be a set of k colors, and let � =
(�1, �2, . . . , �k) be a k-tuple of nonnegative integers �1, �2, . . . , �k. For a
graph G = (V,E), let f : E → C be an edge-coloring of G in which two
adjacent edges may have the same color. Then, the graph G edge-colored
by f is �-rainbow connected if every two vertices of G have a path P such
that the number of edges in P that are colored with cj is at most �j for
each index j ∈ {1, 2, . . . , k}. Given a k-tuple � and an edge-colored graph,
we study the problem of determining whether the edge-colored graph is
�-rainbow connected. In this paper, we characterize the computational
complexity of the problem with regards to certain graph classes: the
problem is NP-complete even for cacti, while is solvable in polynomial
time for trees. We then give an FPT algorithm for general graphs when
parameterized by both k and �max = max{�j | 1 ≤ j ≤ k}.

1 Introduction

Graph connectivity is one of the most fundamental graph-theoretic properties.
In the literature, several measures for graph connectivity have been studied, such
as requiring hamiltonicity, edge-disjoint spanning trees, or edge- or vertex-cuts
of sufficiently large size. Recently, there has been some interest in studying prob-
lems on colored graphs, due to their applications in areas such as computational
biology, transportation and telecommunications [9]. In this paper, we general-
ize an interesting concept of graph connectivity on colored graphs, called the
rainbow connectivity, which was introduced by Chartrand et al. [6] and has been
extensively studied in the literature [2, 4–8, 11, 12].

Let G = (V,E) be a graph with vertex set V and edge set E; we often
denote by V (G) the vertex set of G and by E(G) the edge set of G. Let C =
{c1, c2, . . . , ck} be a set of k colors, and let � = (�1, �2, . . . , �k) be a k-tuple of
nonnegative integers �1, �2, . . . , �k. Consider a mapping f : E → C, called an
edge-coloring of G. Note that f is not necessarily a proper edge-coloring, that is,
f may assign a same color to two adjacent edges. We denote by G(f) the graphG

� This work is partially supported by JSPS KAKENHI Grant Numbers 22700001,
23500001 and 23700003.

S.K. Ghosh and T. Tokuyama (Eds.): WALCOM 2013, LNCS 7748, pp. 233–244, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

234 K. Uchizawa et al.

c1

c1

c1 c1

c2

c2
c2

c3

c3

c3

Fig. 1. An �-rainbow connected graph, where � = (1, 3, 2)

edge-colored by f . Then, a path P in G(f) connecting two vertices u and v in V
is called an �-rainbow path between u and v if the number of edges in P that are
colored with cj is at most �j for every index j ∈ {1, 2, . . . , k}. The edge-colored
graph G(f) is �-rainbow connected if G(f) has an �-rainbow path between every
two vertices in V . Note that these �-rainbow paths are not necessarily edge-
disjoint for pairs of vertices. For example, the edge-colored graph G(f) in Fig. 1
is �-rainbow connected for � = (1, 3, 2).

The concept of �-rainbow connectivity was originally introduced by Chartrand
et al. [6] for the special case where � = (1, 1, . . . , 1). Chakraborty et al. [4] de-
fined the rainbow connectivity problem which asks whether a given edge-
colored graph is (1, 1, . . . , 1)-rainbow connected, and showed that the problem is
NP-complete in general. Then, Uchizawa et al. [12] characterized the computa-
tional complexity of the problem with regards to certain graph classes, and also
settled it with regards to graphdiameters. (Remember that the diameter of a graph
G is the maximum number of edges in a shortest path between any two vertices
in G.)

In this paper, we introduce and study the generalized problem, defined as fol-
lows: Given a k-tuple � and an edge-coloring f of a graph G, the generalized

rainbow connectivity problem is to determine whetherG(f) is �-rainbow con-
nected. Thus, (ordinary) rainbow connectivity is a specialization of gener-
alized rainbow connectivity. We first give precise complexity analyses for
generalized rainbow connectivitywith regards to certain graph classes.We
then give an FPT algorithm for the problem on general graphs when parameter-
ized by both k = |C| and �max = max{�j | 1 ≤ j ≤ k}. Below we explain our
results more precisely, together with comparisons with known results [12].

[Graph classes]
From the viewpoint of graph classes, we clarify a boundary on graph classes be-
tween tractability and NP-completeness: generalized rainbow connectiv-

ity is NP-complete even for cacti, while there is a polynomial-time algorithm
for trees. Note that trees and cacti are very close to each other in the following
sense: trees form a graph class which is a subclass of cacti, and the treewidth of
cacti is two [3]. It is remarkable that the boundary is different from the known
one for rainbow connectivity [12]: it is NP-complete for outerplanar graphs,
and is solvable in polynomial time for cacti. Therefore, the NP-complete proof
given by [12] does not imply our result. We also remark that our polynomial-time
algorithm for trees is always faster than a naive one, as discussed in Section 3.1.

Generalized Rainbow Connectivity of Graphs 235

[FPT algorithm]
In Section 3.2, we give an algorithm which solves generalized rainbow con-

nectivity for general graphs in time O(k2k�maxmn) usingO
(
kn2k�max log(�max+

1)
)
space, where n and m are the numbers of vertices and edges in a graph,

respectively. Therefore, the problem can be solved in polynomial time for the
following two cases: (a) k = O(log n) and �max is a fixed constant; and (b) k
is a fixed constant and �max = O(log n). We remark that our FPT algorithm
generalizes the known one [12]: the same running time and space complexity of
the known FPT algorithm for rainbow connectivity [12] can be obtained
from our result as the special case where �max = 1.

2 NP-Completeness for Cacti

A graphG is a cactus if every edge is part of at most one cycle in G [3]. (See Fig. 2
as an example of cacti.) The main result of this section is the following theorem.

Theorem 1. Generalized rainbow connectivity is NP-complete even for
cacti and � = (2, 2, . . . , 2).

Let G(f) be a given edge-colored graph. We can clearly cheek in polynomial
time whether a given path inG(f) is an �-rainbow path, and hence generalized
rainbow connectivity belongs to NP. We below show that the problem is NP-
hard even for cacti and � = (2, 2, . . . , 2) by a reduction from the 3-occurrence
3SAT problem defined as follows: Given a 3CNF formula φ such that each
variable appears at most three times in φ, determine whether φ is satisfiable.
3-occurrence 3SAT is known to be NP-complete [10].

Suppose that the formula φ consists of n variables x1, x2, . . . , xn and m clauses
C1, C2, . . . , Cm. Without loss of generality, we can assume that any literal of a
variable xi, 1 ≤ i ≤ n, appears at most twice in φ; otherwise, φ contains only
positive (or negative) literals of xi, and hence we can safely fix its assignment. In
what follows, we construct a cactus Gφ, an edge-coloring fφ of Gφ and a k-tuple
� = (2, 2, . . . , 2), as a corresponding instance. We then prove that φ is satisfiable
if and only if the edge-colored graph Gφ(fφ) is �-rainbow connected.

[Graph Gφ]
We first construct a gadget Gj for each clause Cj , 1 ≤ j ≤ m, as follows: Gj

is a cycle consisting of four vertices pj , uj, p
′
j , u

′
j embedded in clockwise order

Fig. 2. Cactus G

236 K. Uchizawa et al.

Fig. 3. (a) Gadget Gj for a clause Cj , (b) gadget Xi for a variable xi, and (c) gadget
Hj for the clause Cj = (x2 ∨ x3 ∨ x5)

on the plane. (See Fig. 3(a).) We then construct a gadget Xi for each variable
xi, 1 ≤ i ≤ n, as follows: Xi is a cycle consisting of four vertices qi, vi, q

′
i, v

′
i

embedded in clockwise order on the plane. (See Fig. 3(b).) We lastly construct
a gadget Hj for each clause Cj , 1 ≤ j ≤ m, as follows: (i) make a path of four
vertices rj,1, rj,2, rj,3, rj,4; (ii) add three vertices r′j,1, r

′
j,2, r

′
j,3; and (iii) connect

r′j,1 to both rj,1 and rj,2, connect r
′
j,2 to both rj,2 and rj,3, and connect r′j,3 to

both rj,3 and rj,4. (See Fig. 3(c).)
Using G1, G2, . . . , Gm, X1, X2, . . . , Xn and H1, H2, . . . , Hm given above, we

construct the corresponding graph Gφ as follows. (See Fig. 4.) We connect p′j to
pj+1 for every j ∈ {1, 2, . . . ,m − 1}, and connect p′m to q1. We then connect q′i
to qi+1 for every i ∈ {1, 2, . . . , n − 1}, and connect q′n to r1,1. We complete the
construction of Gφ by connecting rj,4 to rj+1,1 for every j ∈ {1, 2, . . . ,m − 1}.
Since each gadget consists of either a single cycle or consecutive three cycles, Gφ

is clearly a cactus.
Before constructing the edge-coloring fφ of Gφ, we define some terms. For

each gadget Gj , 1 ≤ j ≤ m, we call the path pjujp
′
j the j-th upper path, and

Fig. 4. Graph Gφ

Generalized Rainbow Connectivity of Graphs 237

call the path pju
′
jp

′
j the j-th lower path. For each gadget Xi, 1 ≤ i ≤ n, we call

the path qiviq
′
i the i-th positive path, and call the path qiv

′
iq

′
i the i-th negative

path; the i-th positive path corresponds to xi = 1, and the i-th negative path
corresponds to xi = 0. Let φ = ∧m

j=1(lj,1∨ lj,2 ∨ lj,3) be the given formula, where
lj,1, lj,2 and lj,3 are literals of x1, x2, . . . , xn contained in the clause Cj .

[Edge-coloring fφ of Gφ]
We construct fφ as in the following four steps (i)–(iv).

(i) Let a1, a2, . . . , am and a′1, a
′
2, . . . , a

′
m be 2m distinct colors. For each j ∈

{1, 2, . . . ,m}, we assign aj to (pj , uj), and a′j to (pj , u
′
j). (See Fig. 3(a).)

(ii) Let b1, b2, . . . , bn and b̄1, b̄2, . . . , b̄n be 2n distinct (new) colors. For each
i ∈ {1, 2, . . . , n}, we assign b̄i to both (qi, vi) and (vi, q

′
i), and bi to both

(qi, v
′
i) and (v′i, q

′
i). (See Fig. 3(b).)

(iii) For each clause Cj = lj,1 ∨ lj,2 ∨ lj,3, 1 ≤ j ≤ m, we assign some
of b1, b2, . . . , bn and b̄1, b̄2, . . . , b̄n to the edges (rj,1, rj,2), (rj,2, rj,3) and
(rj,3, rj,4) in the gadget Hj , as follows: For each k ∈ {1, 2, 3}, we assign bi
to (rj,k, rj,k+1) if the k-th literal lj,k is a positive literal of xi; and assign
b̄i to (rj,k, rj,k+1) if the k-th literal lj,k is a negative literal of xi. More-
over, we assign aj to both (rj,1, r

′
j,1) and (rj,2, r

′
j,2), and assign a′j to both

(r′j,2, rj,3) and (rj,3, r
′
j,3). (See Fig. 3(c).)

(iv) Let U be the set of the edges that are not assigned colors in (i)–(iii) above.
We assign a new distinct color for each edge in U . (See Figs. 3 and 4, where
the edges in U are depicted by thick lines.)

Remember that any literal of a variable xi, 1 ≤ i ≤ n, appears at most twice
in φ. Therefore, in the step (iii), each of the colors b1, b2, . . . , bn, b̄1, b̄2, . . . , b̄n is
assigned to at most two edges in H1, H2, . . . , Hm.

We finally set � = (2, 2, . . . , 2), and complete the construction of the corre-
sponding instance.

The following two lemmas for Gφ(fφ) clearly imply Theorem 1.

Lemma 1. Gφ(fφ) is �-rainbow connected if and only if Gφ(fφ) has an �-
rainbow path between p1 and rm,4.

Lemma 2. Gφ(fφ) has an �-rainbow path between p1 and rm,4 if and only if φ
is satisfiable.

In the rest of the section, we prove Lemmas 1 and 2.

[Proof of Lemma 1]
It is trivially true that, if Gφ(fφ) is �-rainbow connected, then Gφ(fφ) has an

�-rainbow path between p1 and rm,4. Below we prove that Gφ(fφ) is �-rainbow
connected if Gφ(fφ) has an �-rainbow path between p1 and rm,4.

Let s and t be an arbitrary pair of vertices in Gφ. We consider a partition
of the vertex set V (Gφ) into the following three groups: V 1 =

⋃m
j=1 V (Gj),

V 2 =
⋃n

i=1 V (Xi) and V 3 =
⋃m

j=1 V (Hj). In any subgraph induced by only one

of V 1, V 2 and V 3, every color is assigned to at most two edges in the subgraph.
Similarly, in the subgraph induced by V 1 and V 2, every color is assigned to at

238 K. Uchizawa et al.

most two edges; in the subgraph induced by V 2 and V 3, when we remove the
edges (rj,1, rj,2), (rj,2, rj,3), (rj,3, rj,4) for every j ∈ {1, 2, . . . ,m}, every color is
assigned to at most two edges. Thus, it suffices to verify the case where s ∈ V 1

and t ∈ V 3. Let P be the �-rainbow path between p1 and rm,4 in Gφ(fφ), and
let j1 and j2 be the indices satisfying s ∈ V (Gj1) and t ∈ V (Hj2). Then, we can
easily construct an �-rainbow path P ′ between s and t, as follows: P ′ consists
of a subpath of P between pj1 and rj2,4 together with some of the five edges
(uj1 , p

′
j1), (u

′
j1 , p

′
j1), (r

′
j2,1, rj2,2), (r

′
j2,2, rj2,3), (r

′
j2,3, rj2,4). ��

[Proof of Lemma 2]
Necessity: We prove that, if Gφ(fφ) has an �-rainbow path between p1 and rm,4,
then φ is satisfiable. Let P be an �-rainbow path in Gφ(fφ) between p1 and
rm,4. For each gadget Gj , 1 ≤ j ≤ m, we denote by P ∩ Gj the graph (path)
induced by E(P) ∩ E(Gj). Then, each subpath P ∩ Gj , 1 ≤ j ≤ m, is either
j-th upper path or j-th lower path. Similarly, for each gadget Xi, 1 ≤ i ≤ n,
we denote by P ∩ Xi the graph (path) induced by E(P) ∩ E(Xi). Then, each
subpath P ∩ Xi, 1 ≤ i ≤ n, is either i-th positive path or i-th negative path.
Consider the following truth assignment z = (z1, z2, . . . , zn) ∈ {0, 1}n: for each
index i ∈ {1, 2, . . . , n},

zi =

{
1 if P ∩Xi is the i-th positive path;
0 if P ∩Xi is the i-th negative path.

(1)

We now show that z is a satisfying truth assignment for φ. Clearly, any �-
rainbow path must go through either (pj , uj) with the color aj or (pj , u

′
j) with

the color a′j for each j ∈ {1, 2, . . . ,m}. Then, since � = (2, 2, . . . , 2), P must pass
through at least one of the edges (rj,1, rj,2), (rj,2, rj,3) and (rj,3, rj,4) in each
clause gadget Hj , 1 ≤ j ≤ m. Let (rj,k, rj,k+1) be such an edge. We show that
the literal lj,k corresponding to the edge (rj,k, rj,k+1) is true by z, and hence
the clause Cj is satisfied; consequently, z is satisfying, as required. Consider the
case where the edge (rj,k, rj,k+1) receives the color b̄i for some i, 1 ≤ i ≤ n.
(The proof is similar for the other case where (rj,k, rj,k+1) receives the color bi.)
Then, by the construction of fφ, the literal lj,k corresponding to (rj,k, rj,k+1) is
a negative literal of the variable xi. Since the color b̄i is assigned to each of the
two edges in the i-th positive path in Xi, P must go through the i-th negative
path in Xi. Consequently, by Eq. (1), we have zi = 0 in z, and hence the literal
lj,k is true by z.

Sufficiency: We prove that Gφ(fφ) has an �-rainbow path between p1 and rm,4

if φ is satisfiable. Let z = (z1, z2, . . . , zn) be a satisfying truth assignment for φ.
For each j ∈ {1, 2, . . . ,m}, we denote by lj,kj , 1 ≤ kj ≤ 3, a literal satisfied by
z in Cj .

Consider the following path PX from q1 to q′n: For each gadget Xi, 1 ≤ i ≤ n,
take the i-th positive path if zi = 1, and otherwise take the i-th negative path.
Clearly, for each i ∈ {1, 2, . . . , n}, both of the edges in PX ∩ E(Xi) receive b̄i if
zi = 1, and receive bi if zi = 0. Consider then the following path PH

j from rj,1 to
rj,4 for each j ∈ {1, 2, . . . ,m}: make a path consisting of (rj,kj , rj,kj+1) together

Generalized Rainbow Connectivity of Graphs 239

with the four edges (rj,α, r
′
j,α), (r

′
j,α, rj,α+1), (rj,β , r

′
j,β) and (r′j,β , rj,β+1), where

α, β ∈ {1, 2, 3}\{kj} and α < β. We obtain the path P from q1 to rm,4 by
connecting PX and PH

1 , PH
2 , . . . , PH

m in this order. Clearly, every color is assigned
to at most two edges in P . Moreover, for each j ∈ {1, 2, . . . ,m}, one of aj and a′j
is assigned to only one edge in P ; such a color is said to be available. Then, we
can obtain a path PG from p1 to p′m such that, for each j ∈ {1, 2, . . . ,m}, it takes
the j-th upper path if aj is available, and otherwise takes the j-th lower path.
Finally, we can obtain an �-rainbow path between p1 and rm,4 by connecting the
paths PG and P . ��

3 Algorithms

As we have shown in Theorem 1, generalized rainbow connectivity is
NP-complete even for cacti and hence it cannot be solved in polynomial time
unless P = NP. However, we give two algorithms in this section: in Section 3.1,
we give an efficient polynomial-time algorithm for trees; in Section 3.2, we give
an FPT algorithm for general graphs when parameterized by both k and �max.

3.1 Polynomial-Time Algorithm for Trees

The main result of this subsection is the following theorem.

Theorem 2. Generalized rainbow connectivity can be solved for a tree
T in time O(kn), where k = |C| and n is the number of vertices in T .

In the remainder of this subsection, we give an O(kn)-time algorithm as a
proof of Theorem 2. It is obvious that the problem is in P for trees, because a
naiveO(n3)-time algorithm exists: for each pair of vertices in a tree, it determines
whether the unique path between the pair is an �-rainbow path. We remark that
our O(kn)-time algorithm is always faster than the naive one; our algorithm runs
in linear time if k is a constant, and in time O(n2) even if k = O(n); notice that
k ≤ n− 1.

[Terms and ideas]
Let T = (V,E) be a given tree. One may assume without loss of generality

that T is a rooted tree with an arbitrarily chosen root r. Let u be a vertex of T ,
and we denote by d(u) the number of children of u. For each i ∈ {1, 2, . . . , d(u)},
let ui be a child of u ordered arbitrarily, and let ei be the edge joining u and ui,
as illustrated in Fig. 5. Let Tui be the subtree of T which is rooted at ui and is
induced by all descendants of ui in T . We denote by T i

u the subtree of T which
consists of the vertex u, the edges e1, e2, . . . , ei and the subtrees Tu1 , Tu2 , . . . , Tui .

In Fig. 5, T i
u is indicated by a dotted closed curve. Clearly Tu = T

d(u)
u . For the

sake of notational convenience, we denote by T 0
u the tree consisting of a single

vertex u.
Let C = {c1, c2, . . . , ck} be the color set, and let f : E → C be a given edge-

coloring of T . Note that any path P in T must be an �-rainbow path; otherwise

240 K. Uchizawa et al.

Tu1

Tu

Tui Tud(u)

u1

e1 e2

Tu2

u2 ui

u

ud(u)
ei

ed(u)

...

...

...

...

i

Fig. 5. Tree Tu

there is no �-rainbow path between the end-vertices of P . For a pair of vertices
v, w ∈ V (T) and an index j ∈ {1, 2, . . . , k}, we denote by tj(v, w) the number of
edges in the (unique) path between v and w that are colored with cj by f .

Consider the subtree T i
u for a vertex u of T and an integer i ∈ {0, 1, . . . , d(u)}.

We classify the paths in T i
u into two subclasses, and check whether every path

in T i
u is an �-rainbow path. For an index j ∈ {1, 2, . . . , k}, we define aj(T

i
u) as

follows:
aj(T

i
u) = max{tj(u,w) | w ∈ V (T i

u)}.
Therefore, by the values aj(T

i
u), 1 ≤ j ≤ k, we can check whether all paths

between the root u of T i
u and vertices of T i

u are �-rainbow paths; more specifically,
such paths are all �-rainbow paths if aj(T

i
u) ≤ �j for all indices j ∈ {1, 2, . . . , k}.

Similarly, for an index j ∈ {1, 2, . . . , k}, we define bj(T
i
u) as follows:

bj(T
i
u) = max{tj(v, w) | v, w ∈ V (T i

u)}.
Then, by the values bj(T

i
u), 1 ≤ j ≤ k, we can check whether all paths that do

not necessarily contain u are �-rainbow paths; indeed, T i
u is �-rainbow connected

if and only if bj(T
i
u) ≤ �j for all indices j ∈ {1, 2, . . . , k}.

Our algorithm computes aj(T
i
u) and bj(T

i
u) for each vertex u of T and all

indices i ∈ {0, 1, . . . , d(u)} and j ∈ {1, 2, . . . , k} from the leaves to the root r of
T by means of dynamic programming. Then, the edge-colored tree T (f) = Tr(f)
is �-rainbow connected if and only if bj(Tr) ≤ �j for all indices j ∈ {1, 2, . . . , k}.
[Algorithm]

We first compute aj(T
0
u) and bj(T

0
u) for each vertex u of T and all indices

j ∈ {1, 2, . . . , k}. Since T 0
u consists of a single vertex u, there is no edge in T 0

u .
Therefore, we clearly have aj(T

0
u) = 0 and bj(T

0
u) = 0.

We then compute aj(T
i
u) and bj(T

i
u), 1 ≤ i ≤ d(u), for each internal vertex

u of T from the counterparts of T i−1
u and Tui . (See Fig. 5.) Remember that

Tu = T
d(u)
u , and that T i

u is obtained from T i−1
u and Tui by joining u and ui. For

an edge e in T , let

hj(e) =

{
1 if f(e) = cj ;
0 otherwise.

We first compute aj(T
i
u), that is, check whether all paths between the root

u of T i
u and vertices of T i

u are �-rainbow paths. Consider an arbitrary path P
between u and some vertex v of T i

u. Then, there are the following two cases:

Generalized Rainbow Connectivity of Graphs 241

(i) v is in T i−1
u , and hence P is a path in T i−1

u ; and
(ii) v is in Tui , and hence P consists of ei and the path between ui and v.

Therefore, the value aj(T
i
u) can be computed as follows:

aj(T
i
u) = max{aj(T i−1

u), aj(Tui) + hj(ei)}. (2)

We then compute bj(T
i
u), that is, check whether all paths that do not neces-

sarily contain u are �-rainbow paths. Consider an arbitrary path P between two
vertices v and w in T i

u. Then, there are the following three cases:

(i) both v and w are in T i−1
u , and hence P is a path in T i−1

u ;
(ii) both v and w are in Tui , and hence P is a path in Tui ; and
(iii) one of v and w is in T i−1

u and the other is in Tui , and hence P is a path
starting from v, passing through u and ei, and ending with w.

Therefore, the value bj(T
i
u) can be computed as follows:

bj(T
i
u) = max{bj(T i−1

u), bj(Tui), aj(T
i−1
u) + hj(ei) + aj(Tui)}. (3)

[Proof of Theorem 2]
We now show that our algorithm above runs in time O(kn).
For each vertex u of T and all indices j ∈ {1, 2, . . . , k}, we can compute aj(T

0
u)

and bj(T
0
u) in time O(k). Therefore, the initialization can be done in time O(kn)

for all vertices in T and all indices j ∈ {1, 2, . . . , k}.
For an internal vertex u of T and all indices j ∈ {1, 2, . . . , k}, as described in

Eqs. (2) and (3), we can compute aj(T
i
u) and bj(T

i
u), i ≥ 1, from the counterparts

of T i−1
u and Tui in time O(k). Since there are n− 1 edges in T , the computation

occurs n− 1 times for each of aj(T
i
u) and bj(T

i
u). Therefore, for the root r of T ,

we can compute the values aj(Tr) and bj(Tr) for all indices j ∈ {1, 2, . . . , k} in
time O(kn).

Then, from the values bj(Tr), 1 ≤ j ≤ k, we can determine in time O(k)
whether the edge-colored tree T (f) is �-rainbow connected.

In this way, our algorithm solves generalized rainbow connectivity for
a tree in time O(kn) in total. This completes the proof of Theorem 2.

3.2 FPT Algorithm for General Graphs

In this subsection, we give an FPT algorithm for generalized rainbow con-

nectivity when parameterized by both k and �max.

Theorem 3. For a k-tuple � and an edge-coloring f of a graph G, one can
determine whether the edge-colored graph G(f) is �-rainbow connected in time
O(k2k�maxmn) using O

(
kn2k�max log(�max + 1)

)
space, where n and m are the

numbers of vertices and edges in G, respectively.

As a proof of Theorem 3, we give an algorithm to determine whether G(f) has
�-rainbow paths from a vertex s to all the other vertices. It suffices to design such
an algorithm which runs in time O(k2k�maxm) using O

(
kn2k�max log(�max + 1)

)

space. Then, Theorem 3 clearly holds.

242 K. Uchizawa et al.

[Terms and ideas]
We first introduce some terms. For a vertex v of a graph G = (V,E), we

denote by N(v) the set of all neighbors of v (which does not include v itself),
that is, N(v) = {w ∈ V | (v, w) ∈ E}. We remind the reader that a walk in a
graph is a sequence of adjacent vertices and edges, each of which may appear
more than once; while a path is a walk in which each vertex appears exactly once.
The length of a walk is defined as the number of edges in the walk. A walk W in
G(f) is called an �-rainbow walk if the number of edges in W that are colored
with cj is at most �j for every index j ∈ {1, 2, . . . , k}.

We extend ideas in [1, 12]. For a graph G = (V,E) and a color set C with
|C| = k, let f : E → C be a given edge-coloring of G. We choose an arbitrary
vertex s ∈ V . We indeed give an algorithm which determines whether the edge-
colored graph G(f) has an �-rainbow walk W from s to each vertex v ∈ V \ {s};
one can obtain an �-rainbow path between s and v, as the sub-walk of W . Since
|C| = k and �max = max{�j | 1 ≤ j ≤ k}, every �-rainbow walk is of length
at most k�max. Therefore, our algorithm is based on a dynamic programming
approach with respect to the lengths of walks from s: G(f) has an �-rainbow
walk from s to a vertex v with length exactly i if and only if there exists at least
one vertex w in N(v) such that G(f) has an �-rainbow walk from s to w with
length exactly i − 1 in which the color cj′ = f((w, v)) is assigned to at most
(�j′ − 1) edges.

Based on the idea above, for an integer i ∈ {1, 2, . . . , k�max} and a vertex
v ∈ V , we define a set Γs(i, v) of k-tuples �′ = (�′1, �

′
2, . . . , �

′
k) of nonnegative

integers �′1, �′2, . . . , �′k, as follows:

Γs(i, v) = {(�′1, �′2, . . . , �′k) | G(f) has an �-rainbow walk W between s and v

such that �′1 + �′2 + · · ·+ �′k = i and cj is assigned

to exactly �′j edges in W for all j ∈ {1, 2, . . . , k}}.
Note that Γs(i, v) = ∅ if G(f) has no �-rainbow walk between s and v of length
exactly i. Clearly, G(f) has an �-rainbow path from s to a vertex v ∈ V \ {s}
if and only if Γs(i, v) �= ∅ for some integer i ∈ {1, 2, . . . , k�max}. By a dynamic
programming approach, we compute the sets Γs(i, v) from i = 1 to k�max for
all vertices v ∈ V . Then, using the sets Γs(i, v), it can be determined in time
O(k�maxn) whether G(f) has �-rainbow paths from s to all vertices v ∈ V \ {s}.

[Algorithm]
We first compute the set Γs(1, v) for each vertex v ∈ V . Clearly, the walks

with length exactly 1 from s are only the edges (s, v) for the vertices v in N(s).
Therefore, if v ∈ N(s) and �j′ ≥ 1 where cj′ = f((s, v)), then we have

Γs(1, v) =
{
(�′1, �

′
2, . . . , �

′
k)
}
, (4)

where �′j′ = 1 and �′j = 0 for the other indices j ∈ {1, 2, . . . , k} \ {j′}; otherwise
Γs(1, v) = ∅. (5)

Generalized Rainbow Connectivity of Graphs 243

We then compute the set Γs(i, v) for an integer i ≥ 2 and each vertex v ∈ V .
Suppose that we have already computed Γs(i − 1, w) for all vertices w ∈ V .
Obviously, G(f) has an �-rainbow walk from s to a vertex v with length exactly
i if and only if, for some vertex w ∈ N(v), there exists a k-tuple (�′1, �

′
2, . . . , �

′
k) ∈

Γs(i − 1, w) such that �′j′ ≤ �j′ − 1 for the color cj′ = f((w, v)). Therefore, we
can compute Γs(i, v) for a vertex v ∈ V , as follows:

Γs(i, v) =
{
(�′1, . . . , �

′
j′−1, �

′
j′ + 1, �′j′+1, . . . , �

′
k) |

w ∈ N(v), (�′1, �′2, . . . , �′k) ∈ Γs(i− 1, w),

and �′j′ ≤ �j′ − 1 for the color cj′ = f((w, v))
}
. (6)

[Proof of Theorem 3]
Using Eqs. (4)–(6) one can correctly compute Γs(i, v), 1 ≤ i ≤ k�max, for all

vertices v ∈ V . Thus, we now show that our algorithm runs in time O(k2k�maxm)
and uses O

(
kn2k�max log(�max + 1)

)
space.

We first claim that |Γs(i, v)| ≤
(
k�max

i

)
for a vertex v in T and each integer

i ∈ {1, 2, . . . , k�max}. Consider an arbitrary k-tuple (�′1, �′2, . . . , �′k) ∈ Γs(i, v).
Then, 0 ≤ �′j ≤ �j ≤ �max holds for each index j ∈ {1, 2, . . . , k}, and i =
�′1 + �′2 + · · · + �′k ≤ k�max. Thus, the number of k-tuples in Γs(i, v) can be
bounded by the number of combinations which choose i elements from k�max

elements, and hence |Γs(i, v)| ≤
(
k�max

i

)
.

We now show that our algorithm uses O
(
kn2k�max log(�max + 1)

)
space. For

a vertex v and an integer i, each k-tuple �′ ∈ Γs(i, v) can be represented by
O(k · log(�max + 1)) bits, and hence the set Γs(i, v) can be represented by using
O
((

k�max

i

) · k log(�max + 1)
)
space. Therefore, we can represent the sets Γs(i, v)

for all vertices v ∈ V and all integers i ∈ {1, 2, . . . , k�max} using the space of

k�max∑

i=1

∑

v∈V

O

(
k ·

(
k�max

i

)
· log(�max + 1)

)
= O

(
kn2k�max log(�max + 1)

)
.

We finally estimate the running time of our algorithm. By Eqs. (4) and (5)
the sets Γs(1, v) can be computed in time O(kn) for all vertices v ∈ V . By Eq.
(6) the set Γs(i, v) for a vertex v and an integer i can be computed in time

O
(
|N(v)| · (k�max

i−1

) · k
)
, because |Γs(i − 1, w)| ≤ (

k�max

i−1

)
, the condition �′j′ ≤

�j′ − 1 for the color cj′ = f((w, v)) can be checked in time O(1), and O(k) time
is required to store the obtained k-tuple (�′1, . . . , �

′
j′−1, �

′
j′ + 1, �′j′+1, . . . , �

′
k) into

Γs(i, v). Therefore, the sets Γs(i, v) can be computed for all vertices v ∈ V and
all integers i ∈ {2, 3, . . . , k�max}, in time

k�max∑

i=2

∑

v∈V

O

(
k ·

(
k�max

i− 1

)
· |N(v)|

)
= O(k2k�maxm).

Using the sets Γs(i, v), 1 ≤ i ≤ k�max, it can be determined in time O(k�maxn)
whether G(f) has �-rainbow paths from s to all vertices v ∈ V \ {s}. Since G

244 K. Uchizawa et al.

can be assumed to be a connected graph, n − 1 ≤ m and hence our algorithm
takes time O(k2k�maxm) in total.

This completes the proof of Theorem 3. ��

4 Conclusion

In this paper, we introduced generalized rainbow connectivity. We proved
that the problem is NP-complete even for cacti, while is solvable in polynomial
time for trees. We also gave an FPT algorithm for general graphs when param-
eterized by both k and �max = max{�j | 1 ≤ j ≤ k}.

References

1. Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42, 844–856 (1996)
2. Ananth, P., Mande, M., Sarpatwar, K.: Rainbow connectivity: hardness and

tractability. In: Proc. of IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science, FSTTCS 2011, pp. 241–251 (2011)

3. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. Society for
Industrial and Applied Mathematics, Philadelphia (1999)

4. Chakraborty, S., Fischer, E., Matsliah, A., Yuster, R.: Hardness and algorithms
for rainbow connection. J. Combinatorial Optimization 21, 330–347 (2011)

5. Chandran, L.S., Das, A., Rajendraprasad, D., Varma, N.M.: Rainbow connection
number and connected dominating sets. J. Graph Theory 71, 206–218 (2012)

6. Chartrand, G., Johns, G.L., McKeon, K.A., Zhang, P.: Rainbow connection in
graphs. Mathematica Bohemica 133, 85–98 (2008)

7. Chartrand, C., Johns, G.L., McKeon, K.A., Zhang, P.: The rainbow connectivity
of a graph. Networks 54, 75–81 (2009)

8. Caro, Y., Lev, A., Roditty, Y., Tuza, Z., Yuster, R.: On rainbow connectivity. The
Electronic J. Combinatorics 15, R57 (2008)

9. Fellows, M.R., Guo, J., Kanj, I.: The parameterized complexity of some minimum
label problems. J. Computer and System Sciences 76, 727–740 (2010)

10. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, San Francisco (1979)

11. Krivelevich, M., Yuster, R.: The rainbow connection of a graph is (at most) recip-
rocal to its minimum degree. J. Graph Theory 63, 185–191 (2010)

12. Uchizawa, K., Aoki, T., Ito, T., Suzuki, A., Zhou, X.: On the rainbow connec-
tivity of graphs: complexity and FPT algorithms. To appear in Algorithmica,
doi:10.1007/s00453-012-9689-4

	Generalized Rainbow Connectivity of Graphs
	Introduction
	 NP-Completeness for Cacti
	Algorithms
	Polynomial-Time Algorithm for Trees
	FPT Algorithm for General Graphs

	Conclusion
	References

