

Lecture Notes in Computer Science 7748
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Subir Kumar Ghosh Takeshi Tokuyama (Eds.)

WALCOM: Algorithms
and Computation

7th International Workshop, WALCOM 2013
Kharagpur, India, February 14-16, 2013
Proceedings

13

Volume Editors

Subir Kumar Ghosh
Tata Institute of Fundamental Research
School of Technology and Computer Science
Homi Bhabha Road, Mumbai 400005, India
E-mail: ghosh@tifr.res.in

Takeshi Tokuyama
Tohoku University
Graduate School of Information Sciences (GSIS)
Aobayama Campus, GSIS Building, Sendai 980-8578, Japan
E-mail: tokuyama@dais.is.tohoku.ac.jp

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-36064-0 e-ISBN 978-3-642-36065-7
DOI 10.1007/978-3-642-36065-7
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012955562

CR Subject Classification (1998): F.2, G.2.1-2, G.4, I.1, I.3.5, E.1

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The 7th International Workshop on Algorithms and Computation (WALCOM
2013) was held during February 14–16, 2013, at the Indian Institute of Tech-
nology, Kharagpur, India, and was organized by the Department of Computer
Science and Engineering, Indian Institute of Technology, Kharagpur. The work-
shop covered a diverse range of topics on algorithms and computations including
computational geometry, approximation algorithms, graph algorithms, parallel
and distributed computing, graph drawing, and computational complexity.

This volume contains 29 contributed papers presented at WALCOM 2013.
The workshop received 86 submissions from 25 countries. Submissions were rigor-
ously refereed by the Program Committee members with the help of the external
reviewers. Abstracts of two invited talks delivered at WALCOM 2013 are also
included in the volume.

We would like to thank the authors for contributing high-quality research
papers to the workshop. We express our heartfelt thanks to the Program Com-
mittee members and the external referees for their active participation in re-
viewing the papers. We are grateful to Nicola Santro and Rina Panigrahy for
delivering excellent invited talks. We thank the Organizing Committee, chaired
by Partha Bhowmick and Sudebkumar Prasant Pal, for the smooth functioning
of the workshop. We thank Springer for publishing the proceedings in the re-
puted Lecture Notes in Computer Science series. We thank our sponsors for their
support. Finally, we remark that EasyChair conference management system was
very efficient for handling the reviewing process.

February 2013 Subir Kumar Ghosh
Takeshi Tokuyama

WALCOM 2013 Organization

Steering Committee

Kyung-Yong Chwa KAIST, Korea
Costas S. Iliopoulos King’s College London, UK
M. Kaykobad BUET, Bangladesh
Petra Mutzel Unversity of Dortmund, Germany
Shin-ichi Nakano Gunma University, Japan
Subhas Chandra Nandy Indian Statistical Institute, Kolkata, India
Takao Nishizeki Tohoku University, Japan
C. Pandu Rangan Indian Institute of Technology, Madras, India
Md. Saidur Rahman BUET, Bangladesh

Program Committee

Joseph Cheriyan University of Waterloo, Cannada
Sandip Das Indian Statistical Institute, Kolkata, India
Sumit Ganguly Indian Institute of Technology, Kanpur, India
Daya Gaur University of Lethbridge, Canada
Subir Kumar Ghosh (Co-Chair) Tata Institute of Fundamental Research, India
Sathish Govindarajan Indian Institute of Science, Bangalore, India
Soekhee Hong University of Sydney, Australia
Jesper Jansson Kyoto University, Japan
Matya Katz Ben-Gurion University of the Negev, Israel
Akinori Kawachi Tokyo Institute of Technology, Japan
Shuji Kijima Kyushu University, Japan
Andrzej Lingas Lund University, Sweden
Anil Maheshwari Carleton University, Canada
David Mount University of Maryland, USA
Krishnendu Mukhopadhyaya Indian Statistical Institute, Kolkata, India
Shin-Ichi Nakano Gunma University, Japan
N. S. Narayanaswamy Indian Institute of Technology, Madras, India
Janos Pach EPFL, Lausanne, Switzerland
Md Saidur Rahman BUET, Bangladesh
Sohel Rahman BUET, Bangladesh
Venkatesh Raman The Institute of Mathematical Sciences, India
Takeshi Tokuyama (Co-Chair) Tohoku University, Japan
Peter Widmayer ETH Zurich, Switzerland
Chee Yap New York University, USA
Xiao Zhou Tohoku University, Japan

VIII WALCOM 2013 Organization

Organizing Committee

Partha Bhowmick (Co-Chair) Indian Institute of Technology, Kharagpur
Arijit Bishnu Indian Statistical Institute, Kolkata
Arindam Biswas Bengal Engineering and Science University,

Shibpur
Partha Pratim Goswami Calcutta University, Kolkata
Shovonlal Kundu Jadavpur University, Kolkata
Sudebkumar P. Pal (Co-Chair) Indian Institute of Technology, Kharagpur
Sasanka Roy Chennai Mathmetical Institute, Chennai

Additional Reviewers

Abu-Affash, A. Karim
Anonymous, Anon
Anonymouse, Anon
Anup Joshi, Anup
Aschner, Rom
Augustine, John
Auluck, Nitin
Averbakh, Igor
Basavaraju, Manu
Beauquier, Joffroy
Benkoczi, Robert
Bishnu, Arijit
Carmi, Paz
Chakraborty, Sourav
CS, Rahul
Di Giacomo, Emilio
Dolev, Shlomi
Dujmovic, Vida
Durand de Gevigney, Olivier
Dutta, Kunal
Fekete, Sandor
Floderus, Peter
Fraser, Robert
Frati, Fabrizio
Fukasawa, R.
Gagarin, Andrei
Ghosh, Arijit
Ghosh, Sasthi Charan
Hasan, Masud
Hasan, Md. Mahbubul
Hossain, Shahadat
Hruz, Tomas

Imai, Tatsuya
Inkulu, R.
Iranmanesh, Ehsan
Ito, Takehiro
Izumi, Taisuke
Kamiyama, Naoyuki
Kar, Purushottam
Karim, Md. Rezaul
Klein, Karsten
Kolay, Sudeshna
Korwar, Arpita
Kusakari, Yoshiyuki
Levcopoulos, Christos
Levin, Asaf
Lundell, Eva-Marta
Mandal, Partha Sarathi
Manuch, Jan
Mihalak, Matus
Miura, Kazuyuki
Mizuki, Takaaki
Mondal, Debajyoti
Morgenstern, Gila
Mudgal, Apurva
Nandakumar, Satyadev
Nandy, Subhas
Narasimhan, Sadagopan
Nekrich, Yakov
Nilsson, Bengt J.
Nishat, Rahnuma Islam
Okamoto, Yoshio
Pajor, Thomas
Pal, Sudebkumar

WALCOM 2013 Organization IX

Penna, Paolo
Persson, Mia
Rajendraprasad, Deepak
Ramakrishna, Gadhamsetty
Ray, Saurabh
Roy, Sasanka
Satti, Srinivasa Rao
Sau, Buddhadeb
Saurabh, Saket
Schoengens, Marcel
Seto, Kazuhisa

Shibuya, Tetsuo
Sikdar, Somnath
Singla, Sahil
Sledneu, Dzmitry
Sur-Kolay, Susmita
Suzuki, Akira
Thachuk, Chris
Watanabe, Osamu
Yamamoto, Masaki
Yen, Hsu-Chun

Table of Contents

Invited Talks

Mobility and Computations: Some Open Research Directions
(Abstract) . 1

Nicola Santoro

Adversarial Prediction: Lossless Predictors and Fractal Like Adversaries
(Abstract) . 4

Rina Panigrahy

Computational Geometry

A Novel Efficient Approach for Solving the Art Gallery Problem 5
Alexander Kröller, Mahdi Moeini, and Christiane Schmidt

Fixed-Orientation Equilateral Triangle Matching of Point Sets 17
Jasine Babu, Ahmad Biniaz, Anil Maheshwari, and Michiel Smid

Online Exploration and Triangulation in Orthogonal Polygonal
Regions . 29

Sándor P. Fekete, Sophia Rex, and Christiane Schmidt

A Competitive Strategy for Distance-Aware Online Shape Allocation . . . 41
Sándor P. Fekete, Nils Schweer, and Jan-Marc Reinhardt

Base Location Problems for Base-Monotone Regions 53
Jinhee Chun, Takashi Horiyama, Takehiro Ito,
Natsuda Kaothanthong, Hirotaka Ono, Yota Otachi,
Takeshi Tokuyama, Ryuhei Uehara, and Takeaki Uno

Counting Maximal Points in a Query Orthogonal Rectangle 65
Ananda Swarup Das, Prosenjit Gupta, and Kannan Srinathan

Voronoi Game on Graphs . 77
Sayan Bandyapadhyay, Aritra Banik, Sandip Das, and Hirak Sarkar

Approximation and Randomized Algorithms

Approximation Schemes for Covering and Packing 89
Rom Aschner, Matthew J. Katz, Gila Morgenstern, and
Yelena Yuditsky

XII Table of Contents

A Randomised Approximation Algorithm for the Hitting Set
Problem . 101

Mourad El Ouali, Helena Fohlin, and Anand Srivastav

Exact and Approximation Algorithms for Densest k-Subgraph
(Extended Abstract) . 114

Nicolas Bourgeois, Aristotelis Giannakos, Giorgio Lucarelli,
Ioannis Milis, and Vangelis Th. Paschos

Linear-Time Constant-Ratio Approximation Algorithm and Tight
Bounds for the Contiguity of Cographs . 126

Christophe Crespelle and Philippe Gambette

Approximation Algorithms for the Partition Vertex Cover Problem 137
Suman Kalyan Bera, Shalmoli Gupta, Amit Kumar, and
Sambuddha Roy

Parallel and Distributed Computing

Daemon Conversions in Distributed Self-stabilizing Algorithms 146
Wayne Goddard and Pradip K. Srimani

Broadcasting in Conflict-Aware Multi-channel Networks 158
Francisco Claude, Reza Dorrigiv, Shahin Kamali,
Alejandro López-Ortiz, Pawe�l Pra�lat, Jazmı́n Romero,
Alejandro Salinger, and Diego Seco

Shared-Memory Parallel Frontier-Based Search . 170
Shogo Takeuchi, Jun Kawahara, Akihiro Kishimoto, and
Shin-ichi Minato

Graph Algorithms

Smoothed Analysis of Belief Propagation for Minimum-Cost Flow
and Matching . 182

Tobias Brunsch, Kamiel Cornelissen, Bodo Manthey, and
Heiko Röglin

Triangle-Partitioning Edges of Planar Graphs, Toroidal Graphs
and k-Planar Graphs . 194

Jiawei Gao, Ton Kloks, and Sheung-Hung Poon

Alliances and Bisection Width for Planar Graphs . 206
Martin Olsen and Morten Revsbæk

The Cyclical Scheduling Problem . 217
Binay Bhattacharya, Soudipta Chakraborty, Ehsan Iranmanesh, and
Ramesh Krishnamurti

Table of Contents XIII

Complexity and Bounds

Generalized Rainbow Connectivity of Graphs . 233
Kei Uchizawa, Takanori Aoki, Takehiro Ito, and Xiao Zhou

Fixed-Parameter Tractability of Error Correction in Graphical Linear
Systems . 245

Peter Damaschke, Ömer Eğecioğlu, and Leonid Molokov

Lower Bounds for Ramsey Numbers for Complete Bipartite
and 3-Uniform Tripartite Subgraphs . 257

Tapas Kumar Mishra and Sudebkumar Prasant Pal

Improved Fixed-Parameter Algorithm for the Minimum Weight 3-SAT
Problem . 265

Venkatesh Raman and Bal Sri Shankar

On Directed Tree Realizations of Degree Sets . 274
Prasun Kumar, Jayalal Sarma M.N., and Saurabh Sawlani

An FPT Algorithm for Tree Deletion Set . 286
Venkatesh Raman, Saket Saurabh, and Ondřej Suchý

Graph Drawing

Circular Graph Drawings with Large Crossing Angles 298
Hooman Reisi Dehkordi, Quan Nguyen, Peter Eades, and
Seok-Hee Hong

On Graphs That Are Not PCGs . 310
Stephane Durocher, Debajyoti Mondal, and Md. Saidur Rahman

On Embedding of Certain Recursive Trees and Stars into Hypercube . . . 322
Indhumathi Raman

Box-Rectangular Drawings of Planar Graphs (Extended Abstract) 334
Md. Manzurul Hasan, Md. Saidur Rahman, and Md. Rezaul Karim

Author Index . 347

Mobility and Computations:

Some Open Research Directions

(Abstract)

Nicola Santoro

School of Computer Science, Carleton University, Canada
santoro@scs.carleton.ca

Distributed computing is the study of the computational and complexity issues
arising in systems of autonomous computational entities interacting with each
other (e.g., to solve a problem, to perform a task). The focus is on the auton-
omy of the entities (i.e., absence of control(lers) external to the system) and
decentralization (i.e., absence of pre-defined controllers within the system). Tra-
ditionally the entities have been assumed to be stationary. However, there is
a large and varied class of distributed environments where the interacting en-
tities, autonomous and decentralized, are mobile. This class comprises of very
different environments, including for example: software mobile agents in commu-
nication networks, mobile sensors networks, robotic networks, etc. These systems
have been long the subject of intensive investigations in fields as diverse as AI,
robotics, and software engineering. In recent years, an increasing number of al-
gorithmic investigations in distributed computing have started to examine these
settings, creating the research area of distributed computing by mobile entities.

In the effort to understand the algorithmic limitations of distributed com-
puting by mobile entities (e.g, swarms of robots, systems of software agents,
mobile sensor networks), the theoretical research has focused on the minimal
what minimal hypotheses (e.g., capabilities of the entities, restrictions on the
environment) allow a given problem to be solved.

Starting from the obvious fact that mobility, to take place, needs a place, the
research has distinguished two basic settings for the spatial universe U in which
the autonomousmobile entities operate andmove. The first setting, called discrete
universe or graph world, is when U is a simple graph (e.g., mobile agents in commu-
nication networks). The second setting, called geometric or continuous universe,
is when U is a connected region of R2 or R3 (e.g., autonomous robots moving on
a terrain or in space). In both settings, the entities have computational capabili-
ties (i.e., storage and processing), can move in U (their movements are constrained
by the nature of U), exhibit the same behavior (i.e., execute the same protocol),
and are autonomous in their actions (e.g., they are not directed by an external
controller); depending on the context, the entities are also called agents or robots.

The two settings are clearly different with quite distinct applications; however,
although the different nature of the universes imposes the use of very different
mathematical tools (e.g., geometry and calculus in one, graph theory and com-
binatorics in the other), in my experience the algorithmic mind-frame required
is the same.

S.K. Ghosh and T. Tokuyama (Eds.): WALCOM 2013, LNCS 7748, pp. 1–3, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 N. Santoro

The problems range from electing a leader (a temporary coordinator), to
creating maps of the environment; from locating black holes (harmful hosts that
destroys incoming agents), to decontaminating a network being infected by a
mobile intruder (e.g. a virus); from gathering autonomous mobile vehicles (e.g.,
tanks) dispersed on a terrain, to scattering mobile sensors on a terrain so to
obtain a uniformly coverage of the space (e.g., for surveillance).

In spite of the differences, the same fundamental principles occur in all these
contexts. The discovery of these principles is a new important research challenge.
The research efforts within distributed computing has been rapidly increasing,
becoming intensive over the last decade; however, still little is known.

This talk highlights some open research directions (touching some of the ref-
erences below), which in my opinion are important, interesting, and intriguing.

References

1. Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for autonomous mobile
robots. SIAM J. Comput. 36(1), 56–82 (2006)

2. Balamohan, B., Dobrev, S., Flocchini, P., Santoro, N.: Asynchronous Exploration
of an Unknown Anonymous Dangerous Graph with O(1) Pebbles. In: Even, G.,
Halldórsson, M.M. (eds.) SIROCCO 2012. LNCS, vol. 7355, pp. 279–290. Springer,
Heidelberg (2012)

3. Barrière, L., Flocchini, P., Fomin, F.V., Fraigniaud, P., Nisse, N., Santoro, N., Thi-
likos,D.:Connectedgraphsearching. InformationandComputation (toappear,2012)

4. Barrière, L., Flocchini, P., Fraigniaud, P., Santoro, N.: Rendezvous and election of
mobile agents: Impact of sense of direction. Theory of Computing Systems 40(2),
143–162 (2007)

5. Cao, J., Das, S. (eds.): Mobile Agents in Networking and Distributed Computing.
Wiley (2012)

6. Casteigts, A., Flocchini, P., Mans, B., Santoro, N.: Measuring temporal lags in
delay-tolerant networks. IEEE Transactions on Computers (to appear, 2012)

7. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs
and dynamic networks. Int. Journal of Parallel, Emergent and Distributed Sys-
tems 27, 346–359 (2012)

8. Chalopin, J., Flocchini, P., Mans, B., Santoro, N.: Network Exploration by Silent
and Oblivious Robots. In: Thilikos, D.M. (ed.) WG 2010. LNCS, vol. 6410,
pp. 208–219. Springer, Heidelberg (2010)

9. Cielibak, M., Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by
mobile robots: Gathering. SIAM Journal on Computing (to appear, 2012)

10. Clementi, A.E.F., Silvestri, R., Trevisan, L.: Information spreading in dynamic
graph. In: 31st ACM Symposium on Principles of Distributed Computing, PODC,
pp. 37–46 (2012)

11. Cohen, R., Peleg, D.: Convergence of Autonomous Mobile Robots with Inaccurate
Sensors and Movements. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS,
vol. 3884, pp. 549–560. Springer, Heidelberg (2006)

12. Czyzowicz, J., Dobrev, S., Královič, R., Mikĺık, S., Pardubská, D.: Black Hole
Search in Directed Graphs. In: Kutten, S., Žerovnik, J. (eds.) SIROCCO 2009.
LNCS, vol. 5869, pp. 182–194. Springer, Heidelberg (2010)

13. Das, S., Flocchini, P., Kutten, S., Nayak, A., Santoro, N.: Map construction
of unknown graphs by multiple agents. Theoretical Computer Science 385(1-3),
34–48 (2007)

Mobility and Computations: Some Open Research Directions 3

14. Das, S., Flocchini, P., Prencipe, G., Santoro, N., Yamashita, M.: Synchronizing
asynchronous robots using visible bits. In: 32nd Int. Conf. Distributed Computing
Systems, ICDCS (2012)

15. Das, S., Flocchini, P., Santoro, N., Yamashita, M.: On the computational power
of oblivious robots: forming a series of geometric pattern. In: 29th ACM Symp. on
Principles of Distributed Computing, PODC, pp. 267–276 (2010)

16. Défago, X., Gradinariu, M., Messika, S., Raipin-Parvédy, P.: Fault-Tolerant and
Self-stabilizing Mobile Robots Gathering. In: Dolev, S. (ed.) DISC 2006. LNCS,
vol. 4167, pp. 46–60. Springer, Heidelberg (2006)

17. Dobrev, S., Flocchini, P., Kralovic, R., Santoro, N.: Exploring an unknown dan-
gerous graph using tokens. Theoretical Computer Science (to appear, 2012)

18. Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Searching for a black hole in
arbitrary networks: optimal mobile agents protocol. Distributed Computing 19(1),
1–19 (2006)

19. Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Mobile search for a black hole
in an anonymous ring. Algorithmica 48, 67–90 (2007)

20. Dobrev, S., Santoro, N., Shi, W.: Using scattered mobile agents to locate a black
hole in a unoriented ring with token. Int. J. Foundations of Computer Science 19(6),
1355–1372 (2008)

21. Flocchini, P., Mans, B., Santoro, N.: On the exploration of time-varying networks.
Theoretical Computer Science (to appear, 2012)

22. Flocchini, P., Prencipe, G., Santoro, N.: Self-deployment of mobile sensors on a
ring. Theoretical Computer Science 402(1), 67–80 (2008)

23. Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Oblivious Mo-
bile Robots. Morgan & Claypool (2012)

24. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Arbitrary pattern formation
by asynchronous oblivious robots. Theoretical Computer Science 407(1-3), 412–447
(2008)

25. Flocchini, P., Santoro: Distributed Security Algorithms for Mobile Agents. In: Cao,
J., Das, S. (eds.) Mobile Agents in Networking and Distributed Computing. Wiley
(2012)

26. Fraigniaud, P., Gasieniec, L., Kowalski, D., Pelc, A.: Collective tree exploration.
Networks 48, 166–177 (2006)

27. Fujinaga, N., Yamauchi, Y., Kijima, S., Yamashita, M.: Asynchronous Pattern
Formation by Anonymous Oblivious Mobile Robots. In: Aguilera, M.K. (ed.) DISC
2012. LNCS, vol. 7611, pp. 312–325. Springer, Heidelberg (2012)

28. Ilcinkas, D., Flocchini, P., Santoro, N.: Ping pong in dangerous graphs: optimal
black hole search with pebbles. Algorithmica 62(3-4), 1006–1033 (2012)

29. Izumi, T., Souissi, S., Katayama, Y., Inuzuka, N., Defago, X., Wada, K., Yamashita,
M.: The gathering problem for two oblivious robots with unreliable compasses.
SIAM J. Computing 41(1), 26–46 (2012)

30. Kuhn, F., Lynch, N., Oshman, R.: Distributed computation in dynamic networks.
In: 42nd Symposium on Theory of Computing, STOC, pp. 513–522 (2010)

31. Masuzawa, T., Tixeuil, S.: Quiescence of self-stabilizing gossiping among mobile
agents in graphs. Theoretical Computer Science 411(14-15), 1567–1582 (2010)

32. Sudo, Y., Baba, D., Nakamura, J., Ooshita, F., Kakugawa, H., Masuzawa, T.:
An agent exploration in unknown undirected graphs with whiteboards. In: 3rd
Workshop on Reliability, Availability, and Security, WRAS (2010)

33. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of
geometric patterns. SIAM Journal of Computing 28(4), 1347–1363 (1999)

Adversarial Prediction: Lossless Predictors

and Fractal Like Adversaries

(Abstract)

Rina Panigrahy

Microsoft, Mountain View, CA
rina@microsoft.com

Abstract. In this talk we will look at the classical prediction game
where the adversary (or nature) is producing a sequence of bits and a
prediction algorithm is trying to predict the future bit(s) from the past
bits. This is like gambling on the future bits which involves the risk of
making mistakes while shooting for profit from right predictions. Say
the algorithm gets a payoff of 1 on a right prediction and −1 on wrong
predictions (and is also make fractional bets c ≤ 1 in which case its payoff
is +c or −c). We will see an algorithm [1] that has a good performance
while almost never taking a risk of having a net loss where loss is said
to happen when the number of wrong predictions exceeds the number
of right predictions. Our algorithm gets no more than an exponentially

small loss e−Ω(ε2T) over T bits on any sequence (where ε is a constant
parameter). Further as compared to the payoff that would have been
achieved by predicting the majority bit (in hindsight) our algorithms
payoff is not lower by more than O(εT) (which is commonly known as
regret). We will also see experimental results on how these algorithms
perform on stock data. Our algorithms build upon several classical works
on the experts problem [2–4]

We will also see what kind of sequences are best from the adversary’s
perspective. We will show that under a certain formulation of predictive
payoff it is best for the adversary to generate a “fractal like” sequence [5].

References

1. Kapralov, M., Panigrahy, R.: Prediction strategies without loss. In: Proceedings of
NIPS (2011)

2. Even-Dar, E., Kearns, M., Mansour, Y., Wortman, J.: Regret to the best vs. regret
to the average. Machine Learning 72, 21–37 (2008)

3. Cover, T.: Behaviour of sequential predictors of binary sequences. In: Transactions
of the Fourth Prague Conference on Information Theory, Statistical Decision Func-
tions, Random Processes (1965)

4. Littlestone, N., Warmuth, M.: The weighted majority algorithm. In: FOCS (1989)
5. Poppat, P., Panigrahy, R.: Fractal structures in adversarial prediction (manuscript,

2012)

S.K. Ghosh and T. Tokuyama (Eds.): WALCOM 2013, LNCS 7748, p. 4, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Novel Efficient Approach for Solving

the Art Gallery Problem

Alexander Kröller�, Mahdi Moeini, and Christiane Schmidt

Braunschweig University of Technology, IBR, Algorithms Group,
Mühlenpfordtstr. 23, 38106 Braunschweig, Germany

{a.kroeller,m.moeini,c.schmidt}@tu-bs.de

Abstract. In this paper, we consider the Art Gallery Problem (AGP)
that asks for the minimum number of guards placed in a polygon to over-
see the whole polygon. The AGP is known to be NP-hard even for very
restricted special cases. This paper describes a primal-dual algorithm
based on continuous optimization techniques for solving large-scale in-
stances of the Art Gallery Problem. More precisely, the algorithm is a
combination of methods from computational geometry, linear program-
ming (LP), and Difference of Convex functions (DC) programming. The
structure of the algorithm permits to provide lower and upper bounds
on the minimum number of guards. In order to evaluate the algorithm,
we measure its performance by solving some standard test instances in-
cluding some non-orthogonal polygons with holes.

Keywords: Art Gallery Problem, Linear Programming, DC Program-
ming, Duality, Separation, Visibility.

1 Introduction

The classical Art Gallery Problem (AGP) is one of the most famous problems
in computational geometry. It asks for the minimum number of guards, G(P),
placed inside of a polygon P , that are sufficient to cover the entire polygon.
The problem has been studied for several classes of polygons and variants on
the placement of guards and it has been shown to be NP-hard (see for example
Lee and Lin [9]). Not only theoretical interest in the algorithmic challenges, but
numerous applications of the Art Gallery Problem (such as robotics, telecom-
munications, etc.) motivate the development of efficient methods for solving it.

The problem originated from a question posed by Klee. The first result was
given by Chvátal [3] who proved that for a polygon P of n vertices �n3 � guards
are sometimes neccessary and always sufficient to monitor the entire polygon.
In other words, g(n) ≤ �n3 �, where g(n) is the maximum G(P) over all polygons
of n vertices. Later a simpler proof for this statement was provided by Fisk
[8]. For orthogonal polygons Kahn et al. [12] showed g(n) ≤ �n4 �. These results
refer to polygons without holes. Similar results can be found for polygons with

� Corresponding author.

S.K. Ghosh and T. Tokuyama (Eds.): WALCOM 2013, LNCS 7748, pp. 5–16, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

6 A. Kröller, M. Moeini, and C. Schmidt

holes. Particularly, �n+h
3 � guards are always sufficient and sometimes necessary

for polygon with h holes, see[14].
Variants have been studied that allow for vertex guards, edge guards or di-

agonal guards (guards restricted to be located on vertices, edges or diagonals,
respectively). For an overview we refer to the textbook by O’Rourke [14].

While the above results refer to the number of guards that is always sufficient
and sometimes neccessary to cover any polygon with n vertices, i.e., g(n), we are
interested in the minimum number of guards, G(P), for a particular polygon P .
Eidenbenz et al. [17] gave a lower bound of Ω(log n) for the achievable approxi-
mation ratio for polygons with holes. Previous works on bounds mostly proposed
heuristics [1] or studied restricted special cases of the Art Gallery Problem (see
[2] and [5–7]). In this paper, we are interested in finding good upper bounds on
the number of guards for the General Art Gallery Problem: the polygon may
contain holes and there is no restriction on the guards’ location. In particu-
lar, we are interested in solving the problem when the size of the polygon (i.e.,
the number of vertices n) is large. In a predecessor paper. [13], we developed a
primal-dual approach for the general art gallery problem. Our method computes
a sequence of lower and upper bounds on the optimal number of guards until—in
case of convergence and integrality—eventually an optimal solution is reached.
The algorithm solves the problem using a cutting plane and column generation
approach. The computational time and integrality of the solutions provided by
this approach are the main issues. In this paper, we propose a new approach
by improving the method of [13] in order to find integer solutions more often
and in shorter time. The key point is the use of Difference of Convex function
(DC) programming techniques (see [10, 11, 15, 16] and references therein) and
DC Algorithms (DCA) that are used to solve the DC programming problems.
The choice of DC programming and DCA is based on their efficiency in solving
large-scale binary programming problems.

The rest of the paper is organized as follows. In the following Section 2, we
provide notations. In Section 3, we describe the mathematical formulation of
the art gallery problem using linear programming. Section 4 is dedicated to
a short introduction to Difference of Convex function (DC) programming; in
fact, we use the DC programming techniques for developing our algorithm. We
present our algorithm in Section 5. Section 6 discusses implementation aspects
and the performance evaluation of our algorithm. Finally, Section 7 contains
some concluding remarks and future research plans.

2 Definitions and Notations

We consider a polygon P that may contain holes. The set of all points of P that
are visible from a point p ∈ P is the visibility polygon V(p) (it is star-shaped).

The original Art Gallery Problem (AGP) is defined as follows: a guard set
G ⊆ P covers P iff ∪g∈GV(g) = P . We ask for a set G of minimum cardinality.
Note that visibility is symmetric, i.e., p ∈ V(q) ⇐⇒ q ∈ V(p) and the inverse
V(·) simply denotes the set of points that can see a given point.

A Novel Efficient Approach for Solving the Art Gallery Problem 7

Points of P are used for two purposes: we select points to place guards on
them, we denote these points as guard positions. In addition, each point of the
polygon must be located in the visibility polygon of at least one guatrd. Thus,
an uncovered points certifies that the current solution is not feasible, it “wit-
nesses” this state. Hence, we refer to points that we monitor for being covered
as witnesses.

The separation problem for an instance of a linear programming problem,
e.g., max{cTx|Ax ≤ b}, asks for a point y whether y belongs to the polyhe-
dron {x|Ax ≤ b} or not, and in the latter case, for a violated constraint. The
separation problem for the primal and dual problem is refered to as the primal
separation problem or dual separation problem, respectively.

3 The Art Gallery Problem: Mathematical Programming
Formulation and LP-Based Solution Procedure

AGP can be formulated as an integer linear program with infinitely (actually
uncountably) many binary variables and inequalities:

min
∑
g∈P

xg (1)

s.t.
∑

g∈V(w)

xg ≥ 1 ∀w ∈ P (2)

xg ∈ {0, 1} ∀g ∈ P (3)

Since the size of the above formulation is infinite, it is impossible to solve the
problem directly. Instead, we restrict the guard positions to be from a finite set
G ⊂ P , and only require a finite set W ⊂ P of “witnesses” to be covered. We
denote this problem by AGP(G,W):

min
∑
g∈G

xg (4)

s.t.
∑

g∈G∩V(w)

xg ≥ 1 ∀w ∈W (5)

xg ∈ {0, 1} ∀g ∈ G (6)

When the number of elements in G and W increases, it becomes quite difficult
to solve this problem. Instead of solving this problem directly, we consider the
LP relaxation AGR(G,W). It is obtained by relaxing the integrality constraint
(6) to read

0 ≤ xg ≤ 1 ∀g ∈ G (7)

instead. Therefore, AGR(P, P) is the LP relaxation of AGP, and AGR(G,W)
is a relaxation of AGR(P, P). In a predecessor paper [13], we have shown that
AGR(P, P), can be solved efficiently for many problem instances. The procedure
uses primal and dual separation (i.e., cutting planes and column generation) to

8 A. Kröller, M. Moeini, and C. Schmidt

connect AGR(G,W) and AGR(P, P). We start with restricted sets G and W ,
and solve AGR(G,W) using the simplex method. This produces an optimal
primal solution x∗ and dual solution y∗ with objective value z∗. Now there are
three cases:

1. If there exists a point w ∈ P \W with x∗(G∩V(w)) < 1, then w corresponds
to an inequality of AGR(P, P) that is violated by x∗. The new witness w is
added to W and the LP is re-solved. If such a w cannot be found, then x∗

is optimal for AGR(G,P), and z∗ is an upper bound for AGR(P, P).
2. If there exists a point g ∈ P \G with y∗(W ∩V(g)) > 1, then it corresponds

to a violated dual inequality of AGR(P, P). We create the LP column for g
and re-solve the LP. If such a g does not exist, y∗ is an optimal dual solution
for AGR(P,W) and z∗ is a lower bound for AGR(P, P).

3. If neither of the previous cases produces a new point, then x∗ is optimal for
AGR(P, P). The algorithm terminates.

The first two cases above reflect the two separation problems, asking for the exis-
tence of a w (primal) resp. g (dual). We have shown how to solve these efficiently,
using the geometric interpretation. Consider the overlay of the visibility polygons
of all points g ∈ G with x∗g > 0. This decomposes P into a planar arrangement of
bounded complexity. The coverage function c(p) :=

∑
g∈G∩V(p) x

∗(p) is constant
over every face and edge of the arrangement. Consequently, an algorithm for
the primal separation problem simply has to iterate over all faces, edges, and
vertices of the arrangement to identify one point where the coverage value is less
than 1. Due to the symmetry of visibility, the dual separation problem can be
solved in the same manner as the primal (looking for coverage higher than 1).

4 DC Programming: A Short Introduction

In this section, we review some of the main definitions and properties of DC
programming and DC Algorithms (DCA); where, “DC” stands for “difference of
convex functions”.

Consider the following primal DC program

(Pdc) βp := inf{F (x) := g(x)− h(x) : x ∈ IRn},
where g and h are convex and differentiable functions. F is a DC function, g and
h are DC components of F , and g − h is called a DC decomposition of F .

Let C be a nonempty closed convex set and χC be the indicator function of
C, i.e., χC(x) = 0 if x ∈ C and +∞ otherwise. Then, by using χC , one can
transform the constrained problem

inf{g(x)− h(x) : x ∈ C}, (8)

into the following unconstrained DC program

inf{f(x) := φ(x) − h(x) : x ∈ IRn}, (9)

A Novel Efficient Approach for Solving the Art Gallery Problem 9

where φ(x) is a convex function defined by φ(x) := g(x) + χC(x).
Hence, without loss of generality, we can suppose that the primal DC program

is unconstrained and in the form of (Pdc).
For any convex function g, its conjugate is defined by g∗(y) := sup{〈x, y〉 −

g(x) : x ∈ IRn} and the dual program of (Pdc) is defined as follows

(Ddc) βd := inf{h∗(y)− g∗(y) : y ∈ IRn}. (10)

One can prove that βp = βd [16].
For a convex function θ and x0 ∈ dom θ := {x ∈ IRn|θ(x0) < +∞}, the

subdifferential of θ at x0 is denoted by ∂θ(x0) and is defined by

∂θ(x0) := {y ∈ IRn : θ(x) ≥ θ(x0) + 〈x− x0, y〉, ∀x ∈ IRn}. (11)

We note that ∂θ(x0) is a closed convex set in IRn and is a generalization of the
concept of derivative.

For the primal DC program (Pdc) and x
∗ ∈ IRn, the necessary local optimality

condition is described as follows

∂h(x∗) ⊂ ∂g(x∗). (12)

This condition is also sufficient for many important classes of DC programs, for
example, for the polyhedral DC programs [15] (in order to have a polyhedral DC
program, at least one of the functions g and h must be a polyhedral convex
function; i.e., the point-wise supremum of a finite collection of affine functions).

We are now ready to present the main scheme of the DC Algorithms (DCA)
[15, 16] that are used for solving the DC programming problems. The DC Al-
gorithms (DCA) are based on local optimality conditions and duality in DC
programming, and consist of constructing two sequences {xl} and {yl}. The el-
ements of these sequences are trial solutions for the primal and dual programs,
respectively. In fact, xl+1 and yl+1 are solutions of the following convex primal
program (Pl) and dual program (Dl+1), respectively:

(Pl) inf{g(x)− h(xl)− 〈x− xl, yl〉 : x ∈ IRn}, (13)

(Dl+1) inf{h∗(y)− g∗(yl)− 〈y − yl, xl+1〉 : y ∈ IRn}. (14)

One must note that, (Pl) and (Dl+1) are convexifications of (Pdc) and (Ddc),
respectively, in which h and g∗ are replaced by their corresponding affine mi-
norizations. By using this approach, the solution sets of (Pdc) and (Ddc) are
∂g∗(yl) and ∂h(xl+1), respectively. To sum up, in an iterative scheme, DCA
takes the following simple form

yl ∈ ∂h(xl); xl+1 ∈ ∂g∗(yl). (15)

One can prove that the sequences {g(xl) − h(xl)} and {h∗(yl) − g∗(yl)} are
decreasing, and {xl} (respectively, {yl}) converges to a primal feasible solution
(respectively, a dual feasible solution) satisfying the local optimality conditions.
More details, on convergence properties and theoretical basis of the DCA, can
be found in [15, 16].

10 A. Kröller, M. Moeini, and C. Schmidt

5 DC Programming for Solving the Art Gallery Problem

Our previously published LP-based procedure [13], as described in Section 3,
focuses on finding good lower bounds. It may find upper bounds, corresponding
to feasible (i.e., integer) solutions of AGP(G,W). At each iteration, we solve
continuous linear programs using IBM CPLEX, and find integer solutions only
by chance. Due to this fact, there is no guarantee to get integer solutions.

To overcome this problem, one may use an integer program (IP) solver such as
the IP solver of IBM CPLEX. Although this approach provides integer solutions
and, consequently, upper bounds for the AGP, it is not an efficient way for solving
the AGP for polygons with large number of vertices. Indeed, by increasing the
number of integer variables (in other words, the number of elements in G and
W) the integer programming problem becomes more and more difficult to solve,
and it may become computationally expensive to solve such a problem.

Since using IP solvers for finding global solutions can be computationally
expensive, we propose an alternative to integer solvers. It is able to find good
integer solutions in short time. To this aim, we use DC programming techniques.
Starting from the fractional solution, the objective is to find good local integer
solutions. In this way, we expect to find high quality solutions in short time to
cover the same set of witnesses by the same set of guards as the relaxed LP
problem. Such a method is quite suitable to apply to large-scale AGP problems.

Algorithm 1 shows the resulting algorithm. Note that it is equal to the previous
approach, with the exception of the new DC technique in Step 2.

Algorithm 1. LP-DC procedure

Step 0. Generate initial G ⊂ P , W ⊂ P .
Step 1. Solve relaxed AGR(G,W), get optimal solution x∗, dual y∗, and ob-

jective value z∗;
Step 2. If x∗ is fractional, call DC Algorithm to find an integer solution;

Step 2.1. Verify the quality of the integer solution, if it is an improving
solution, update the upper bound.

Step 3. Run primal separation
Step 3.1. If primal separation produces a point w, then W ←W ∪ {w},
Step 3.2. else

– Output “z∗ is an upper bound to relaxed AGR(P, P)”,
– if x∗ is integral then Output “x∗ is feasible for AGP, z∗ is an upper

bound for AGP”.
Step 4. Run dual separation

Step 4.1. If dual separation produces a point g, then G← G ∪ {g},
Step 4.2. else

– Output “z∗ is a lower bound to the relaxed AGR(P, P) and to AGP”.
Step 4. If both primal and dual separation failed or lower and upper bounds

meet, stop, otherwise go to Step 1.

A Novel Efficient Approach for Solving the Art Gallery Problem 11

In the following, we describe the details of Step 2.
At each iteration of Algorithm 1 the relaxed problem AGR(G,W) is solved

for G ⊂ P , W ⊂ P . If the optimal solution x∗ is integral then it is feasible for
AGP (G,W), but this is rarely the case and in general x∗ is a fractional solution.
In order to overcome this problem and to find integer solutions for AGP (G,W),
we use DC programming techniques. First, let us define the following penalty
function

α(x) =
∑
g∈G

xg(1− xg),

and set C ⊂ IRn as the set of all vectors satisfying the constraints (5) and (7).
α(x) is a concave function that is nonnegative on C; according to an exact penalty
result presented in [10], there is a sufficiently large positive number θ0 such that
for all θ ≥ θ0 the following program is equivalent to AGP (G,W)

min
∑
g∈G

xg + θ
∑
g∈G

xg(1 − xg) (16)

s.t. ∑
g∈G∩V(w)

xg ≥ 1 : ∀w ∈W, (17)

0 ≤ xg ≤ 1 : ∀g ∈ G. (18)

We denote this program by AGPDC(G,W). As AGP (G,W) and AGPDC(G,W)
are equivalent, one can solve AGPDC(G,W) in place of AGP (G,W).
AGPDC(G,W) is a continuous optimization problem. Since (16) is a concave
function, it is a DC function and we can write AGPDC(G,W) as follows

min

⎧⎨
⎩F (x) :=

∑
g∈G

xg − θ
∑
g∈G

xg(xg − 1) + χC : x ∈ IR|G|

⎫⎬
⎭ .

In other words,AGPDC(G,W) is a DC program and a natural DC decomposition
of F (x) is

F (x) = f1(x) − f2(x),

where
f1(x) :=

∑
g∈G

xg + χC ,

and
f2(x) := θ

∑
g∈G

xg(xg − 1).

Needless to say that f1(x) and f2(x) are convex functions.
The DC Algorithm for solving AGPDC(G,W), will construct two sequences

{xk} and {uk} such that
uk ∈ ∂f2(x

k),

and
xk+1 ∈ ∂f∗

1 (u
k).

12 A. Kröller, M. Moeini, and C. Schmidt

To this aim, we compute uk by using the following formula:

ukg = θ(2xkg − 1) : ∀g ∈ G, (19)

and in order to compute xk+1, it is sufficient to solve the following linear program

min

⎧⎨
⎩∑

g∈G

(1− ukg)xg : x ∈ C
⎫⎬
⎭ . (20)

Any standard LP solver, such as IBM CPLEX, can solve (20) efficiently.
We are now ready to present the DC Algorithm for solving AGPDC(G,W):

Algorithm 2. DC Algorithm (DCA) for solving AGPDC(G,W)

Step 1. (Initialization) Set ε > 0 as the expected precision of the solutions. Set
k = 0 and choose x∗ (the fractional solution of AGR(G,W)) as the starting
point (i.e., x0) for DCA (see Step 2. of the Algorithm 1).

Step 2. Compute the vector uk by means of (19).
Step 3. Solve (20) to obtain xk+1.
Step 4. If ‖xk+1 − xk‖ ≤ ε, stop and take xk+1 as the optimal solution, other-

wise set k ←− k + 1 and go to Step 2.

As AGPDC(G,W) is equivalent to AGP (G,W) and any deviation of xg from 0
and 1 is penalized by a factor of θ (see the objective function of AGPDC(G,W)),
Algorithm 2 will seek for optimal binary solutions that minimize the objective
function of AGP (G,W). Since the starting point of the algorithm is the global
solution ofAGR(G,W), we expect to find a good integer solution forAGP (G,W)
in a short time.

In a similar way to the papers [15, 16], one can prove that

Theorem 1. (Convergence properties of Algorithm 2)

(i) Algorithm 2 generates a sequence {xk} that is contained in the vertex set of
C, in a way that the sequence {F (xk)} is decreasing.

(ii) The sequence {xk} converges to x∗, after a finite number of iterations, where
x∗ is a critical point of AGPDC(G,W).

(iii) There is a nonnegative number θ1 such that for every θ > θ1 the se-
quence {α(xk)} is decreasing. In particular, if xr is a feasible solution of
the AGP (G,W), so is xk, for k > r.

(iv) x∗ is almost always a local minimizer of AGPDC(G,W).

6 Experimental Results

In this section, we describe implementation aspects and numerical results of our
algorithms.

A Novel Efficient Approach for Solving the Art Gallery Problem 13

We implemented the algorithms in C++. The standard solver IBM CPLEX
has been used to solve the LP problems generated at each iteration of the LP-
based and LP-DC procedures. Furthermore, we employ the Computational Ge-
ometry Algorithms Library [4] for visibility queries and the separation problems.
We make heavy use of the Arrangement 2 package for both.

We tested our implementation on a variety of different classes of polygons,
including randomly generated non-orthogonal polygons, von Koch polygons, and
Spike polygons (see Figure 1), compare [13] for a more detailed description of the
polygons used. In this section, we analyze how the LP-DC procedure performs
on these instances and we compare it with the LP-based procedures using an
LP/IP solver.

Fig. 1. Examples of randomly generated non-orthogonal, von Koch, and Spike polygons

The tolerance ε for the DCA is set to 10−6. We use a time limit of 10 minutes
on the run time of the algorithms. The parameter θ0 is an input to the DCA. In
general, it is not evident to compute an exact value of θ0. In practice, we choose
a sufficiently large value of θ0 to make sure that for any θ ≥ θ0, the DC program
(AGPDC(G,W)) is equivalent to the optimization problem (AGP(G,W)). For
this purpose, we take θ0 such that the solution provided by DCA is integer,
i.e., it is feasible for the problem AGP (G,W). Thus, according to the Theorem
of exact penalty in [10], we have the equivalence between AGPDC(G,W) and
AGP(G,W). In our computational experiments, we set θ = 2n where n is the
dimension of x∗ (starting point of the DCA).

Numerical Results. The results of our experiments are shown in Table 1. The per-
formance of the LP-DC procedure versus purely LP-based procedures is shown.
We give results for LP-based procedures using both an LP solver and an IP
solver. The tests have been carried out on polygons with different number of
vertices: 200, 500, and 1000 vertices. We compare the performance of the differ-
ent algorithms using

– the best upper bound. This bound represents the best integer solutions found
by each procedure. They are reported in the column Best UB.

14 A. Kröller, M. Moeini, and C. Schmidt

Table 1. Results of the experiments carried out over randomly generated polygons

LP solver IP solver LP-DC

Instance Vertices Best UB CPU Best UB CPU Best UB CPU

1 200 30 578.519221 30 573.369291 29 3.239406
2 200 — 592.544785 28 578.832172 26 5.018052
3 200 26 594.126563 26 6.314784 26 6.838053
4 200 7 6.902821 7 6.014137 7 6.408391
5 200 7 8.059715 7 7.861637 7 6.390596

6 500 — 599.462758 75 594.722171 72 19.499690
7 500 — 596.492954 75 597.166775 73 23.046765
8 500 — 594.190658 71 589.272784 68 19.259176
9 500 11 598.982780 10 74.281563 10 69.564039
10 500 10 269.002230 10 203.192250 10 139.007263

11 1000 175 592.929514 154 595.962218 153 566.239325
12 1000 — 596.982976 127 594.172367 127 563.889150
13 1000 — 597.497764 135 597.285079 134 563.891582
14 1000 — 590.638740 — 2192.976454 14 558.789729
15 1000 — 593.640413 — 2433.750670 12 507.200717

– the run time (in seconds) of each algorithm (column CPU). For some of the
large instances, we relaxed the time limit for the IP solver from 10 up to
40 minutes, hoping to find some integer solutions. This relaxation on time
limit was not used for the two other procedures.

Integer Solutions. The LP-based procedure fails to find integer solutions (con-
sequently, upper bounds) for most of the instances. This is not surprising be-
cause the procedure gives no guarantee on finding integer solutions (i.e., upper
bounds). In particular, we observe this for polygons with a large number of
vertices.

When we replace the LP solver by an IP solver, integer solutions are found
more frequently. The drawback of this option being the decline of the perfor-
mance of any IP solver when we try to solve the AGP for polygons with large
number of vertices. In particular, we see that, in a similar way to the LP solver,
the IP solver fails to find integer solutions for instances number 14 and 15.
Even after a relaxation of the time limit up to 40 minutes, the IP solver fails to
provide integer solutions. This fact is not surprising, because it is computation-
ally expensive to an exact (Branch-and-Bound) method to solve a large-scale IP
problem.

According to our experiments, the LP-DC procedure has a good performance
in solving the AGP. Apart a few number of instances, we could solve the AGP
problem by using the LP-DC procedure until global optimality and the LP-DC
procedure provides integer solutions for all of the tested instances. As the LP-DC
procedure provides good integer solutions and consequently good upper bounds,
the procedure converges to the global solution in a shorter time than the other
procedures (i.e., LP-based procedures with LP/IP solver).

A Novel Efficient Approach for Solving the Art Gallery Problem 15

The LP-DC procedure improves on the integer solution quality and the run
time of the LP-based procedure using an IP solver. In particular, this is true
for the test instances number 14 and 15 for which the IP solver fails to provide
integer solutions.

No matter the class of polygons, the running time of the algorithms increases
with problem size. A particular observation concerns the Spike polygons for
which, a huge amount of computational time is needed for geometric evaluations
(such as computing visibility polygons, etc.) and the time limit is over after a
few number of iterations.

7 Conclusion

In this paper, we presented a novel approach, based on linear programming
and DC programming techniques, for solving the Art Gallery Problem (AGP).
In order to evaluate the proposed algorithm, we measured its performance by
solving some standard test instances. According to the numerical results, we
could solve the AGP for a majority of the test instances and for the remain of
them, we could provide some integer bounds. This work improved our previous
work [13] by providing upper bounds and solving some of the unsolved instances.
For future work, we have a plan to do more experiments on different classes of
polygons, particularly we are interested in examining our approach for solving
the AGP for polygons with larger number of vertices.

Acknowledgments. This work was supported by the Deutsche Forschungs-
gemeinschaft (DFG) under contract number KR 3133/1-1 (Kunst!).

References

1. Amit, Y., Mitchell, J.S.B., Packer, E.: Locating Guards for Visibility Coverage of
Polygons. In: ALENEX, pp. 120–134 (2007)

2. Bottino, A., Laurentini, A.: A nearly optimal sensor placement algorithm for
boundary coverage. Pattern Recognition 41(11), 3343–3355 (2008)

3. Chvátal, V.: A Combinatorial Theorem in Plane Geometry. Journal of Combina-
torial Theory (B) 18, 39–41 (1975)

4. Computational Geometry Algorithms Library, http://www.cgal.org
5. Couto, M.C., de Rezende, P.J., de Souza, C.C.: An Exact and Efficient Algorithm

for the Orthogonal Art Gallery Problem. In: SIBGRAPI 2007: Proceedings of the
XX Brazilian Symposium on Computer Graphics and Image Processing, pp. 87–94.
IEEE Computer Society, Washington, DC (2007)

6. Couto, M.C., de Souza, C.C., de Rezende, P.J.: Experimental Evaluation of an
Exact Algorithm for the Orthogonal Art Gallery Problem. In: McGeoch, C.C.
(ed.) WEA 2008. LNCS, vol. 5038, pp. 101–113. Springer, Heidelberg (2008)

7. Couto, M.C., de Rezende, P.J., de Souza, C.C.: An Exact Algorithm for an Art
Gallery Problem. Technical report, Institute of Computing, University of Campinas
(November 2009)

http://www.cgal.org

16 A. Kröller, M. Moeini, and C. Schmidt

8. Fisk, S.: A Short Proof of Chvátal’s Watchman Theorem. Journal of Combinatorial
Theory (B) 24, 374–375 (1978)

9. Lee, D.T., Lin, A.K.: Computational Complexity of art gallery problems. IEEE
Transactions on Information Theory 32(2), 276–282 (1986)

10. Le Thi, H.A., Pham Dinh, T., Muu, L.D.: Exact penalty in DC programming.
Vietnam Journal of Mathematics 27, 169–178 (1999)

11. Le Thi, H.A., Moeini, M., Pham Dinh, T.: Portfolio Selection under Downside
Risk Measures and Cardinality Constraints based on DC Programming and DCA.
Computational Management Science 6(4), 477–501 (2009)

12. Klawe, M., Kleitman, D.: Traditional art galleries require fewer watchmen. SIAM
Journal on Algebraic and Discrete Methods 4(2), 194–206 (1983)

13. Kröller, A., Baumgartner, T., Fekete, S., Schmidt, C.: Exact Solutions and
Bounds for General Art Gallery Problems. To appear in Journal of Experimental
Algorithms

14. O’Rourke, J.: Art Gallery Theorems and Algorithms. Oxford University Press,
New York (1987)

15. Pham Dinh, T., Le Thi, H.A.: Convex analysis approach to d.c. programming:
Theory, Algorithms and Applications. Acta Mathematica Vietnamica. Dedicated
to Professor Hoang Tuy on the Occasion of his 70th Birthday 22(1), 289–355 (1997)

16. Pham Dinh, T., Le Thi, H.A.: DC optimization algorithms for solving the trust
region subproblem. SIAM Journal on Optimization 8, 476–505 (1998)

17. Eidenbenz, S., Stamm, C., Widmayer, P.: Inapproximability results for guarding
polygons and terrains. Algorithmica 31, 79–113 (2001)

Fixed-Orientation Equilateral Triangle Matching

of Point Sets

Jasine Babu1, Ahmad Biniaz2, Anil Maheshwari2, and Michiel Smid2

1 Department of Computer Science and Automation,
Indian Institute of Science, Bangalore, India

2 School of Computer Science, Carleton University, Ottawa, Canada
jasine@csa.iisc.ernet.in, ahmad.biniaz@gmail.com,

{anil,michiel}@scs.carleton.ca

Abstract. Given a point set P and a class C of geometric objects, GC(P)
is a geometric graph with vertex set P such that any two vertices p and
q are adjacent if and only if there is some C ∈ C containing both p and
q but no other points from P . We study G�(P) graphs where � is the
class of downward equilateral triangles (ie. equilateral triangles with one
of their sides parallel to the x-axis and the corner opposite to this side
below that side). For point sets in general position, these graphs have
been shown to be equivalent to half-Θ6 graphs and TD-Delaunay graphs.

The main result in our paper is that for point sets P in general posi-
tion, G�(P) always contains a matching of size at least

⌈
n−2
3

⌉
and this

bound cannot be improved above
⌈
n−1
3

⌉
.

We also give some structural properties of G�(P) graphs, where � is
the class which contains both upward and downward equilateral trian-
gles. We show that for point sets in general position, the block cut point
graph of G�(P) is simply a path. Through the equivalence of G�(P)
graphs with Θ6 graphs, we also deduce that any Θ6 graph can have at
most 5n− 11 edges, for point sets in general position.

Keywords: Geometric graphs, Delaunay graphs, Matchings.

1 Introduction

In this work, we study the structural properties of some special geometric graphs
defined on a set P of n points on the plane. An equilateral triangle with one side
parallel to the x-axis and the corner opposite to this side below (resp. above)
that side as in � (resp. �) will be called a down (resp. up)-triangle. A point set
P is said to be in general position, if the line passing through any two points
from P does not make angles 0◦, 60◦ or 120◦ with the horizontal [4,13]. In this
paper, we consider only point sets that are in general position and our results
assume this pre-condition.

Given a point set P , G�(P) (resp. G�(P)) is defined as the graph whose
vertex set is P and that has an edge between any two vertices p and q if and
only if there is a down-(resp. up-)triangle containing both points p and q but no

S.K. Ghosh and T. Tokuyama (Eds.): WALCOM 2013, LNCS 7748, pp. 17–28, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

18 J. Babu et al.

other points from P . (See Fig. 1.) We also define another graph G�(P) as the
graph whose vertex set is P and that has an edge between any two vertices p
and q if and only if there is a down-triangle or an up-triangle containing both
points p and q but no other points from P . In Section 2 we will see that, for any
point set P in general position, its G�(P) graph is the same as the well known
Triangle Distance Delaunay (TD-Delaunay) graph of P and the half-Θ6 graph
of P on so-called negative cones. Moreover, G�(P) is the same as the Θ6 graph
of P [4,6].

Given a point set P and a class C of geometric objects, the maximum C-
matching problem is to compute a subclass C′ of C of maximum cardinality such
that no point from P belongs to more than one element of C′ and for each C ∈ C′,
there are exactly two points from P which lie inside C. Dillencourt [9] proved
that every point set admits a perfect circle-matching. Ábrego et al. [1] studied
the isothetic square matching problem. Bereg et al. concentrated on matching
points using axis-aligned squares and rectangles [3].

A matching in a graph G is a subset M of the edge set of G such that no
two edges in M share a common end-point. A matching of maximum cardinality
is called a maximum matching in G. If all vertices of G appear as end-points
of some edge in the matching, then it is called a perfect matching. It is not
difficult to see that for a class C of geometric objects, computing the maximum
C-matching of a point set P is equivalent to computing the maximum matching
in the graph GC(P) [1].

The maximum �-matching problem, which is the same as the maximum
matching problem on G�(P), was previously studied by Panahi et al. [13]. It
was claimed that, for any point set P of n points in general position, any max-
imum matching of G�(P) (and G�(P)) will match at least � 2n3 � vertices. But
we found that their proof of Lemma 7, which is very crucial for their result,
has gaps. By a completely different approach, we show that for any point set
P in general position, G�(P) (and by symmetric arguments, G�(P)) will have
a maximum matching of size at least �n−2

3 �; i.e, at least 2(�n−2
3 �) vertices are

matched. We also give examples where our bound is tight, in all cases except
when |P | is one less than a multiple of three.

We also prove some structural and geometric properties of the graphs G�(P)
(and by symmetric arguments, G�(P)) and G�(P). It will follow that for point
sets in general position, Θ6 graphs can have at most 5n − 11 edges and their
block cut point graph is a simple path.

2 Preliminaries

Our notations are similar to those in [4], with minor modifications. A cone is
the region in the plane between two rays that emanate from the same point, its
apex. Consider the rays obtained by a counter-clockwise rotation of the positive
x-axis by angles of iπ

3 with i = 1, . . . , 6 around a point p. Each pair of successive

rays, (i−1)π
3 and iπ

3 , defines a cone, denoted by Ai(p), whose apex is p. For
i ∈ {1, . . . , 6}, when i is odd, we denote Ai(p) using C i+1

2
(p) and the cone

Fixed-Orientation Equilateral Triangle Matching of Point Sets 19

opposite to Ci(p) using Ci(p). We call Ci(p) a positive cone around p and Ci(p)
a negative cone around p. For each cone Ci(p) (resp. Ci(p)), let �Ci(p)

(resp.

�Ci(p)) be its bisector. If p
′ ∈ Ci(p), then let ci(p, p

′) denote the distance between
p and the orthogonal projection of p′ onto �Ci(p)

. Similarly, if p′ ∈ Ci(p), then

let ci(p, p
′) denote the distance between p and the orthogonal projection of p′

onto �Ci(p). For 1 ≤ i ≤ 3, let Vi(p) = {p′ ∈ P | p′ ∈ Ci(p), p
′ �= p} and

Vi(p) = {p′ ∈ P | p′ ∈ Ci(p), p
′ �= p}. For any two points p and q, the smallest

down-triangle containing p and q is denoted by �pq and the smallest up-triangle
containing p and q is denoted by �pq. If G1 and G2 are graphs on the same
vertex set, G1 ∩ G2 (resp. G1 ∪ G2) denotes the graph on the same vertex set
whose edge set is the intersection (resp. union) of the edge sets of G1 and G2.

The class of down-triangles (and up-triangles) admits a shrinkability property
[1]: each triangle object in this class that contains two points p and q, can be
shrunk such that p and q lie on its boundary. It is also clear that we can continue
the shrinking process—from the edge that does not contain neither p or q—until
at least one of the points, p or q, becomes a triangle vertex and the other point
lies on the edge opposite to this vertex. After this, if we shrink the triangle
further, it cannot contain p and q together. Therefore, for any pair of points p
and q, �pq (�pq) has one of the points p or q at a vertex of �pq (�pq) and
the other point lies on the edge opposite to this vertex (see Fig. 1, triangles
are shown after shrinking) By the shrinkability property, for the �-matching
problem, it is enough to consider the smallest down-triangle for every pair of
points (p, q) from P . Thus, G�(P) is equivalent to the graph whose vertex set
is P and that has an edge between any two vertices p and q if and only if �pq
contains no other points from P . Notice that if �pq has p as one of its vertices,
then q ∈ C1(p) ∪ C2(p) ∪ C3(p). The following two properties are simple, but
useful. Their proofs are easy and is included in the full version [2].

Fig. 1. A point set P and its (a) G�(P) and (b) G�(P)

20 J. Babu et al.

Property 1. Let p and p′ be two points in the plane. Let i ∈ {1, 2, 3}. The point
p is in the cone Ci(p

′) if and only if the point p′ is in the cone Ci(p). Moreover,
if p is in the cone Ci(p

′), then ci(p
′, p) = ci(p, p

′).

Property 2. Let P be a point set, p ∈ P and i ∈ {1, 2, 3}. If V i(p) is non-empty,
then, in G�(P), the vertex p′ corresponding to the point in V i(p) with the
minimum value of ci(p, p

′) is the unique neighbour of vertex p in V i(p).

Consider a point set P and let p, q ∈ P be two distinct points. By Property
1, ∃i ∈ {1, 2, 3} such that p ∈ Ci(q) or q ∈ Ci(p); by the general position
assumption, both conditions cannot hold simultaneously. Since �pq has either
p or q as a vertex, Property 2 implies that we can construct G�(P) as follows.
For every point p ∈ P , and for each of the three cones, Ci, for i ∈ {1, 2, 3}, add
an edge from p to the point p′ in Vi(p) with the minimum value of ci(p, p

′), if
Vi(p) �= ∅. This definition of G�(P) is the same as the definition of the half-
Θ6-graph on negative cones (Ci), given by Bonichon et al. [4]. We can similarly
define the graph G�(P) using the cones Ci instead of Ci, for i ∈ {1, 2, 3}, and
show that it is equivalent to the half-Θ6 graph on positive cones (Ci), given
by Bonichon et al. [4]. In Bonichon et al. [4], it was shown that for point sets
in general position, the half-Θ6-graph, the triangular distance-Delaunay graph
(TD-Del) [6], which are 2-spanners, and the geodesic embedding of P , are all
equivalent.

The Θk-graphs discovered by Clarkson [7] and Keil [10] in the late 80’s, are
also used as spanners [11]. In these graphs, adjacency is defined as follows: the
space around each point p is decomposed into k � 2 regular cones, each with
apex p, and a point q of a given cone C is linked to p if, from p, the orthogonal
projection of q onto C’s bisector is the nearest point in C. In Bonichon et al. [4],
it was shown that every Θ6-graph is the union of two half-Θ6-graphs, defined
by Ci and Ci cones. In our notation this is same as the graph G�(P) ∪G�(P),
which by definition, is equivalent to G�(P). Thus, for a point set in general
position, Θ6(P) = G�(P).

Proofs of the following easy properties of G�(P) can be found in the full
version [2].

Property 3. Let p ∈ P with Vi(p) �= ∅, Vj(p) = ∅, Vk(p) = ∅ for distinct i, j, k ∈
{1, 2, 3}. Then, in the graph G�(P), p has at least one neighbour in Vi(p).

Property 4. Let p ∈ P with Vi(p) �= ∅ and Vi(p) �= ∅ for some i ∈ {1, 2, 3}. Then
the vertex corresponding to p has degree at least two in G�(P).

Property 5. Let p ∈ P be such that the vertex corresponding to p is of degree
one in G�(p). Suppose ∃i, j ∈ {1, 2, 3}, i �= j, such that Vi(p) �= ∅ and Vj(p) �= ∅.
Let k be the element in {1, 2, 3} \ {i, j}. Then, Vk(p) �= ∅.

3 Some Properties of G�(P)

Planarity: Planarity of G�(P) was proven in [5,6]. We have included a direct
proof of the following lemma in the full version [2]. We use G�(P) to represent
both the abstract graph and its planar embedding described in Lemma 1.

Fixed-Orientation Equilateral Triangle Matching of Point Sets 21

Lemma 1. For a point set P , its G�(P) is a plane graph, where its edges are
straight line segments between the corresponding end-points.

Connectivity: As stated in the following lemma, between every pair of vertices,
there exist a path with a special structure. See the full version [2] for the proof.

Lemma 2. Let P be a point set with p, q ∈ P . Then, in G�(P), there is a path
between p and q which lies fully in �pq and hence G�(P) is connected.

Number of Degree-One Vertices: The following fact is important for our
proof of the lower bound of the cardinality of a maximum matching in G�(P).

Lemma 3. For a point set P , its G�(P) has at most three degree-one vertices.

Proof. (By contradiction.) Let p1, p2, p3 and p4 be four points such that the
vertices corresponding to them are of degree one in G�(p). Since the points are
in general position, without loss of generality, we can assume that these points
are given in the bottom to top order of their y co-ordinates. We analyse different
relative positionings of p2 and p3 with respect to p1 and prove that in none
of these cases, we can properly place all the four points consistently. Since p1
is below p2 and p3, the relative positioning of p2 and p3 should be one of the
following : (1) p2 ∈ V3(p1), (2) p2 /∈ V3(p1) but p3 ∈ V3(p1), (3) p2, p3 ∈ V1(p1)
or p2, p3 ∈ V2(p1), (4) p2 ∈ V1(p1), p3 ∈ V2(p1) or p2 ∈ V2(p1), p3 ∈ V1(p1).

Case 1. Since p2 ∈ V3(p1), we have p1 ∈ V3(p2). Since p2 is of degree one, by
Property 4, V3(p2) = ∅. Since p3 and p4 are above p2, and p4 is above p3, we have
only the following sub-cases to consider: (1a) p3, p4 ∈ Vi(p2) and p4 ∈ Vi(p3),
where i ∈ {1, 2}, (1b) p3, p4 ∈ Vi(p2), where i ∈ {1, 2}, and p4 ∈ V3(p3), (1c)
p3, p4 ∈ Vi(p2) and p4 ∈ Vj(p3), where i, j ∈ {1, 2} and i �= j, (1d) p3 ∈ Vi(p2),
p4 ∈ Vj(p2), where i, j ∈ {1, 2}, i �= j. (See Fig. 2.) Without loss of generality,
assume that i = 2 and j = 1.
Case 1a : We have p3, p4 ∈ V2(p2), implying that p2 ∈ V2(p3) and p2 ∈ V2(p4).
Since p4 ∈ V2(p3) and p2 ∈ V2(p3), by Property 4, the degree of p3 is at least
two. This is a contradiction.
Case 1b : We have p3, p4 ∈ V2(p2). This implies that p2 ∈ V2(p3) and p2 ∈ V2(p4).
Since p4 ∈ V3(p3) and p2 ∈ V2(p3), by Property 2, the degree of p3 is at least
two. This is a contradiction.
Case 1c : We have p3, p4 ∈ V2(p2) . This implies that p2 ∈ V2(p3) and p2 ∈ V2(p4).
Since p4 ∈ V1(p3), we have p3 ∈ V1(p4). Since we already had p2 ∈ V2(p4), by
Property 2, the degree of p4 is at least two, which is a contradiction.
Case 1d : Since p3 ∈ V2(p2) and p4 ∈ V1(p2), by Property 5, we get V3(p2) �= ∅.
This contradicts the property V3(p2) = ∅, that we observed at the beginning of
the analysis of Case 1.

Cases 2, 3 and 4 also lead to similar contradictions. (See the full version [2]
for details.) ��

22 J. Babu et al.

p1

p2

p3

p4

p1

p2

p3

p4

p1

p2

p3
p4

p1

p2

p3
p4

Fig. 2. Sub-cases of Case 1

Internal Triangulation: It can be shown that for a point set P , the plane
graph G�(P) is internally triangulated. This property will be used in Section 4
to derive the lower bound for the cardinality of maximum matchings in G�(P).
The proof of the following lemma is included in the full version [2].

Lemma 4. For a point set P , all the internal faces of G�(P) are triangles and
hence all the cut vertices of G�(P) lie on its outer face.

4 Maximum Matching in G�(P)

In this section, we show that for any point set P of n points, G�(P) contains a
matching of size �n−2

3 �; i.e, at least 2(�n−2
3 �) vertices are matched. Consider a

point set P containing n points. If we have only two points in P , then the graph
contains a perfect matching. Hence, we assume that |P | ≥ 3.

We construct a graph G′ such that it is a 2-connected planar graph of mini-
mum degree at least 3 and then make use of the following theorem of Nishizeki
[12] to get a lower bound on the size of a maximum matching of G′. Using this,
we will then derive a lower bound on the size of a maximum matching of G�(P).

Theorem 1 ([12]). Let G be a connected planar graph with n vertices having
minimum degree at least 3 and let M be a maximum matching in G. Then,

|M | ≥
⎧⎨
⎩
�n+2

3 � when n ≥ 10 and G is not 2-connected
�n+4

3 � when n ≥ 14 and G is 2-connected
�n2 � otherwise

Fixed-Orientation Equilateral Triangle Matching of Point Sets 23

Initialize G′ to be the same as G�(P). Consider a simple closed curve C in the
plane such that (1) the entire graph G�(P) (all vertices and edges) lies inside
the bounded region enclosed by C, (2) the vertices of G�(P) which lie on C are
precisely the degree-one vertices of G�(P), (3) except for the end points, every
edge of G�(P) lies in the interior of the bounded region enclosed by C.

Let the degree-one vertices of G�(P) be denoted by p0, p1, . . . , pk−1. In the
previous section, we proved that k ≤ 3.

If k ≥ 2, the region of the outer face of G�(P) bounded by the curve C can
be divided into k regions R0, . . . , Rk−1 where Ri is the region bounded by the
edge at pi, the edge at p(i+1) mod k, the boundary of the outer face of G�(P)
and the curve C. See Fig. 3. (Here onwards, in this section we assume that
indices of vertices and regions are taken modulo k.) Notice that every vertex on
the outer-face of G�(P) lies on at least one of these regions and pi lies on the
regions Ri and Ri−1, for 0 ≤ i ≤ k − 1. We insert k new vertices x0, . . . , xk−1

into G′. (To visualize the abstract graph G′, vertex xi may be assumed to lie on
the boundary of the region Ri, a point distinct from pi and pi+1.) New edges
are added between xi and xi+1, for 0 ≤ i ≤ k − 1. We also insert new edges
into G′ between each xi and all the vertices of G�(P) which lie on the region
Ri, for 0 ≤ i ≤ k − 1. This transformation maintains planarity. (Edges between
new vertices and old vertices can be drawn inside the corresponding region Ri.
The edges among the new vertices can be drawn outside these regions, except
at their end points.) Each degree-one vertex pi, 0 ≤ i ≤ k− 1, of G�(P) lies on

p1

p2

p0

R1

R2

R0

x1

x2

x0

Fig. 3. Regions on the outer face of G�(P)

two regions Ri and Ri−1, in G′ it gets two new edges; one to xi and the other
to xi−1. Thus the degree of pi becomes 3. All other vertices on the outer face
of G�(P) were of degree at least two. Since they belong to at least one of the
regions R0, . . . , Rk−1, they get at least one new edge in G′ and their degree is
at least three in G′. Since G�(P) is an internally triangulated planar graph, we
know that all vertices except those on the outer face had degree at least 3. These
vertices maintain the same degrees in G′ as in G. The degree of xi, 0 ≤ i ≤ k−1,
is also at least 3 in G′, because it is adjacent to pi, pi+1 and at least one more
vertex on the outer face of G�(P). Thus, G′ has minimum degree at least three.

24 J. Babu et al.

If k = 0 or 1, the modification of G′ is similar. We insert a new vertex x in
the outer face of G′ and add edges between x and all other vertices in the outer
face of G�(P). This transformation maintains planarity. As earlier, all vertices
in G′ except the vertex p0 (present only when k = 1) have degree ≥ 3.

If k = 1, the degree of p0 has become two in G′ at this stage. In this case,
let f be a face of the current graph G′ which contains p0 and x. Modify G′ by
inserting a new vertex y inside f and adding edges from this new vertex to all
other vertices belonging to f . As earlier, this transformation maintains planarity.
Now, the degree of p0 becomes 3.

Claim 1. G′ is 2-connected in all the above cases.

Proof. See the full version [2].

Thus, the graph G′ is a 2-connected planar graph of minimum degree at least
3, having at most n + 3 vertices. Let n′ = n + k be the number of vertices of
G′. By Theorem 1, the cardinality of a maximum matching M ′ in G′ is at least⌈
n′+4
3

⌉
when n′ ≥ 14 and |M ′| ≥ �n2 �, otherwise. Since G�(P) is an induced

subgraph of G′, if we delete the edges in M ′ which have at least one end point
which is not in P , we get a matching M of G�(P). We have |M | ≥ |M ′| − k,
where k = n′ − n with k ∈ {0, 1, 2, 3}. From this, we get,

|M | ≥
{⌈

n+4−2k
3

⌉
when n ≥ 14− k⌊

n−k
2

⌋
otherwise

Whenever n ≥ 7, from the above inequality, we get |M | ≥ ⌈
n−2
3

⌉ ≥ 2. When
n ≥ 5, Lemma 3 implies that G�(P) is not a star with n − 1 leaves and hence
|M | ≥ 2. When n > 1, since G�(P) is connected, we get |M | ≥ 1. From this
discussion, we can conclude that, in all cases, |M | ≥ ⌈

n−2
3

⌉
.

Theorem 2. For any point set P of n points in general position, G�(P) con-
tains a matching of size �n−2

3 �.
Our bound is tight in all cases except when n is one less than a multiple of
three. To find some examples, see the full version [2]. From this, it is clear that
no bound better than

⌈
n−1
3

⌉
is possible. However, it remains open whether our

bound can be improved to
⌈
n−1
3

⌉
.

3-Connected Down Triangle Graphs without Perfect Matching: The
example given by Panahi et al. [13], for a point set P for which G�(P) has a
maximum matching of size

⌈
n−2
3

⌉
, contained many cut vertices. However, for

general planar graphs, we get a better lower bound for the size of a maximum
matching, when the connectivity of the graph increases. By Theorem 1, we know
that any 3-connected planar graph on n vertices has a matching of size

⌈
n+4
3

⌉
,

if n ≥ 14 and has a matching of size
⌊
n
2

⌋
if n < 14 or it is 4-connected. Hence, it

was interesting to see whether there exist a point set P in general position, with
an even number of points, such that G�(P) is 3-connected but does not contain
a perfect matching. The answer is positive. In the full version [2], we have given

Fixed-Orientation Equilateral Triangle Matching of Point Sets 25

examples of 3-connected down triangle graphs corresponding to point sets in
general position, for which the size of their maximum matching is only

⌈
n+5
3

⌉
.

Since the known lower bound for the size of maximum matching in 3-connected
planar graphs is

⌈
n+4
3

⌉
, it remains open whether the bound for 3-connected down

triangle graphs can be improved to
⌈
n+5
3

⌉
.

5 Some Properties of G�(P)

In this section, we prove that for a point set P , the 2-connectivity structure of
G�(P) is simple and G�(P) can have at most 5n− 11 edges.

Block Cut Point Graph: Let G(V,E) be a graph. A block of G is a maximal
connected subgraph having no cut vertex. The block cut point graph of G is a
bipartite graph B(G) whose vertices are cut-vertices of G and blocks of G, with
a cut-vertex x adjacent to a block X if x is a vertex of block X . The block cut
point graph of G gives information about the 2-connectivity structure of G.

SinceG�(P) is the union of two connected graphsG�(P) andG�(P) (Lemma
2), it is connected and hence its block-cut point graph is a tree [8]. We will show
that the block cut point graph of G�(P) is a simple path. We use the following
lemma in our proof.

Lemma 5. Let P be a point set and p ∈ P be a cut vertex of G�(P). Then, there

exists an i ∈ {1, 2, 3} such that Vi(p) �= ∅, Vi(p) �= ∅ and for all j ∈ {1, 2, 3} \
{i}, Vj(p) = ∅ and Vj(p) = ∅. Moreover, G�(P) \ p has exactly two connected
components, one containing all vertices in Vi(p) and the other containing all
vertices of Vi(p).

Proof. Since p is a cut vertex of G�(P), we know that there exist v1, v2 ∈ P that
are in different components of G�(P) \ p. We will show that v1 and v2 should
be in opposite cones with reference to the apex point p.

Without loss of generality, assume that v1 ∈ A1(p)∩P \ {p}. If v2 ∈ (A1(p)∪
A2(p) ∪ A6(p)) ∩ (P \ {p}), then, p /∈ �v1v2 and hence by Lemma 2, there is a
path in G�(P) between v1 and v2 that does not pass through p, which is not
possible. Similarly, if v2 ∈ (A3(p)∪A5(p))∩ (P \{p}), then, p /∈ �v1v2 and there
is a path in G�(P) between v1 and v2 that does not pass through p, which is
not possible. Therefore, v2 ∈ A4(p), the cone which is opposite to A1(p) which
contains v1. Thus any two points v1 and v2 which are in different connected
components of G�(P) \ p, are in opposite cones around p.

Let C1 and C2 be two connected components of G�(P) \ p with v1 ∈ C1 and

v2 ∈ C2. Without loss of generality, assume that such v1 ∈ V1(p) and v2 ∈ V1(p).
From the paragraph above, we know that every vertex of G�(P)\p which is not

in C1 is in V1(p) and every vertex of G�(P) \ p which is not in C2 is in V1(p).

This implies that for all j ∈ {2, 3}, Vj(p) = ∅ and Vj(p) = ∅. This proves the
first part of our lemma.

For any v1, v2 ∈ Vi(p), we have p /∈ �v1v2 and hence by Lemma 2, there is a
path in G�(P) between v1 and v2 that does not pass through p. Similarly, for any

26 J. Babu et al.

v1, v2 ∈ Vi(p), p /∈ �v1v2 and there is a path in G�(P) between v1 and v2 that
does not pass through p. Therefore, there are exactly two connected components
in G�(P) \ p, one containing all vertices in Vi(p) and the other containing all

vertices of Vi(p). ��

Theorem 3. Let P be a point set in general position and let k be the num-
ber of blocks of G�(P). Then, the blocks of G�(P) can be arranged linearly as
B1, B2, . . . Bk such that, for i > j, Bi∩Bj contains a single (cut) vertex pi when
j = i+ 1 and Bi ∩Bj is an empty graph otherwise. That is, the block cut point
graph of G�(P) is a path.

Proof. Since G�(P) is a connected graph, its block cut point graph is a tree.
Any two blocks can have at most one vertex in common and the common vertex
is a cut vertex. If the node corresponding to block Bi is a leaf node in the block
cut point graph of G�(P), then Bi is adjacent to only one another block and
they share a single (cut) vertex.

If the node corresponding to the block Bi is not a leaf node of the block
cut point graph of G�(P), then using Lemma 5, we can show that exactly two
vertices in Bi are cut vertices of G�(P). Since no three blocks can share a
common vertex by Lemma 5, we are done. A detailed proof is given in the full
version [2]. ��

Number of Edges of G�(P): Since G�(P) and G�(P) are planar graphs and
G�(P) = G�(P)∪G�(P), it is obvious that G�(P) has at most 2× (3n− 6) =
6n− 12 edges, where n = |P | [8]. In this section, we show that for any point set
P , its G�(P) has a spanning tree of a special structure, which will imply that
G�(P) can have at most 5n− 11 edges.

Lemma 6. For a point set P , the intersection of G�(P) and G�(P) is a con-
nected graph.

Proof. We will prove this algorithmically. At any point of execution of this al-
gorithm, we maintain a partition of P into two sets S and P \ S such that the
induced subgraph of G�(P) ∩ G�(P) on S is connected. When the algorithm
terminates, we will have S = P , which will prove the lemma.

We start by adding any arbitrary point p1 ∈ P to S. The induced subgraph
of G�(P) ∩G�(P) on S is trivially connected now.

At any intermediate step of the algorithm, let S = {p1, p2, . . . , pk} �= P , such
that the invariant is true. We will show that we can add a point pk+1 from P \S
into S, and still maintain the invariant.

For any point p ∈ S, let d1(p) = min
i∈{1,2,3},p′∈Vi(p)∩P\S

ci(p, p
′), d2(p) =

min
i∈{1,2,3},p′∈Vi(p)∩P\S

ci(p, p
′) and d(p) = min(d1(p), d2(p)). Since |P \ S| ≥ 1,

d(p) <∞. Let d = min
p∈S

d(p).

Consider p ∈ S such that d(p) = d. By definition of d, such a point ex-
ists. Consider the area enclosed by the hexagon around p which is defined by

Fixed-Orientation Equilateral Triangle Matching of Point Sets 27

Hp =

3⋃
i=1

{p′ ∈ Ci(p) | ci(p, p′) ≤ d} ∪
3⋃

i=1

{p′ ∈ Ci(p) | ci(p, p′) ≤ d}. (See Fig. 4

(a).) We know that there exists a point q ∈ P \S such that q is on the boundary
of Hp. We claim that pq is an edge in G�(P) ∩G�(P).

p

q

d

d

d

p

q

d

d

d

d

d

d

Fig. 4. (a) Closest point to p. (b) Hexagons around closest pairs.

Let Hq =

3⋃
i=1

{p′ ∈ Ci(q) | ci(q, p′) ≤ d} ∪
3⋃

i=1

{p′ ∈ Ci(q) | ci(q, p′) ≤ d},
which is a hexagonal area around q. (See Fig. 4 (b).) Without loss of generality,
assume that q ∈ C1(p). Note that, by Property 1, c1(p, q) = c1(q, p) = d and
hence, �pq ∪�pq ⊆ Hp ∩Hq.

If there exists a point q′ ∈ (P \ {q}) \ S such that q′ lies in the interior
of Hp, then d(p) < d, which is a contradiction. Similarly, if there exists a point
p′ ∈ (P \{p})∩S such that p′ lies in the interior of Hq, then d(p) < d. This is also
a contradiction. Therefore,Hp∩Hq∩(P \{p, q}) = ∅. Since,�pq∪�pq ⊆ Hp∩Hq,
this implies that �pq ∩ (P \ {p, q}) = ∅ and �pq ∩ (P \ {p, q}) = ∅. This implies
that pq is an edge in G�(P) as well as in G�(P).

Since pq is an edge in G�(P)∩G�(P), we can add pk+1 = q to the set S, thus
increasing the cardinality of S by one, and still maintaining the invariant that
the induced subgraph of G�(P) ∩G�(P) on S is connected. Since we can keep
on doing this until S = P , we conclude that G�(P) ∩G�(P) is connected. ��
Theorem 4. For a set P of n points in general position, G�(P) has at most
5n− 11 edges and hence its average degree is less than 10.

Proof. Since G�(P) and G�(P) are both planar graphs we know that each
of them can have at most 3n − 6 edges. From Lemma 6, we know that the
intersection of G�(P) and G�(P) contains a spanning tree and hence they have
at least n−1 edges in common. From this, we conclude that the number of edges
in G�(P) = G�(P)∪G�(P) is at most (3n− 6)+ (3n− 6)− (n− 1) = 5n− 11.
Hence,the average degree of G�(P) is less than 10. ��
Corollary 1. For a set P of n points in general position, its Θ6 graph has at
most 5n− 11 edges.

28 J. Babu et al.

6 Conclusions

We have shown that for any set P of n points in general position, any maximum
� (resp.�) matching of P will match at least 2

(⌈
n−2
3

⌉)
points. This also implies

that any half-Θ6 graph for point sets in general position has a matching of size
at least

⌈
n−2
3

⌉
. This bound is tight except when |P | is one less than a multiple

of three. We also proved that when P is in general position, the block cut point
graph of its Θ6 graph is a simple path and that the Θ6 graph has at most 5n−11
edges. It is an interesting question to see whether for every point set in general
position, its Θ6 graph contains a matching of size

⌊
n
2

⌋
. So far, we were not able

to get any counter examples for this claim and hence we conjecture the following.

Conjecture 1. For every set of n points in general position, its Θ6 graph contains
a matching of size

⌊
n
2

⌋
.

References

1. Ábrego, B.M., Arkin, E., Fernández-Merchant, S., Hurtado, F., Kano, M., Mitchell,
J., Urrutia, J.: Matching points with squares. Discrete and Computational Geom-
etry 41, 77–95 (2009)

2. Babu, J., Biniaz, A., Maheshwari, A., Smid, M.: Fixed-orientation equilateral tri-
angle matching of point sets. CoRR abs/1211.2734 (2012),
http://arxiv.org/abs/1211.2734

3. Bereg, S., Mutsanas, N., Wolff, A.: Matching points with rectangles and squares.
Comput. Geom. Theory Appl. 42(2), 93–108 (2009)

4. Bonichon, N., Gavoille, C., Hanusse, N., Ilcinkas, D.: Connections between Theta-
Graphs, Delaunay Triangulations, and Orthogonal Surfaces. In: Thilikos, D.M.
(ed.) WG 2010. LNCS, vol. 6410, pp. 266–278. Springer, Heidelberg (2010)

5. Bose, P., Carmi, P., Collette, S., Smid, M.: On the stretch factor of convex Delaunay
graphs. Journal of Computational Geometry 1, 41–56 (2010)

6. Chew, L.P.: There are planar graphs almost as good as the complete graph. Journal
of Computer and System Sciences 39(2), 205–219 (1989)

7. Clarkson, K.: Approximation algorithms for shortest path motion planning. In:
Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing,
STOC 1987, pp. 56–65. ACM (1987)

8. Diestel, R.: Graph Theory, 4th edn. Springer (2010)
9. Dillencourt, M.: Toughness and Delaunay triangulations. In: Proceedings of the

Third Annual Symposium on Computational Geometry, SCG 1987, pp. 186–194.
ACM (1987)

10. Keil, J.M.: Approximating the Complete Euclidean Graph. In: Karlsson, R., Lingas,
A. (eds.) SWAT 1988. LNCS, vol. 318, pp. 208–213. Springer, Heidelberg (1988)

11. Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University
Press (2007)

12. Nishizeki, T.: Lower bounds on the cardinality of the maximum matchings of planar
graphs. Discrete Mathematics 28, 255–267 (1979)

13. Panahi, F., Mohades, A., Davoodi, M., Eskandari, M.: Weak matching points with
triangles. In: Proceedings of the 23rd Annual Canadian Conference on Computa-
tional Geometry (2011)

http://arxiv.org/abs/1211.2734

Online Exploration and Triangulation

in Orthogonal Polygonal Regions

Sándor P. Fekete, Sophia Rex, and Christiane Schmidt

Department of Computer Science, TU Braunschweig,
D–38116 Braunschweig, Germany

{s.fekete,c.schmidt}@tu-bs.de, mail.s.rex@gmail.com

Abstract. We consider the problem of exploring and triangulating a
region with a swarm of robots with limited vision and communication
range. For an unknown polygonal region P , the Online Minimum Relay
Triangulation Problem (OMRTP) asks for an exploration strategy that
maintains a triangulation with limited edge length and achieves a min-
imum number of robots (relays), such that the triangulation covers P ;
for a given number n of robots, the Online Maximum Area Triangula-
tion Problem (OMATP) asks for maximizing the triangulated area. Both
problems have been studied before, with a competitive factor of 3 for the
OMRTP in general polygons, and an unbounded competitive factor for
the OMATP; the latter holds for polygons with very narrow corridors.

In this paper, we study the OMRTP for polygons without such bottle-
necks: polyominoes, i.e., orthogonal polygons with integer edge lengths.
Based on optimal solutions for small squares, we establish a competitive

factor of 17
√

3

16+
√

3
≈ 1.661 for polyominoes with and 19

√
3

20+
√

3
≈ 1.514 for

polyominoes without holes. We also give a lower bound of 38
37

≈ 1.027
for any deterministic strategy for the OMRTP in polyominoes. For the
OMATP, we establish a competitive factor of 2

3
√

3
≈ 0.3849, and argue

that this is asymptotically optimal.

1 Introduction

Consider a swarm of robots that has to explore a region P . Each robot has
limited capabilities: both vision and communication are restricted in range. In-
crementally, the swarm has to build a rigid, stable formation that covers all of
P . This gives rise to the Minimum Relay Triangulation Problem (MRTP): find
a triangulation T with limited edge length, such that P is fully covered by T
and the number of relays is minimized. In the online version of this problem
(OMRTP), the polygon is unknown in advance. Closely related is the Maximum
Area Triangulation Problem (MATP), and its online version OMATP, in which
the number n of available robots is fixed, and the enclosed area needs to be
maximized. Note that considering the problem as a domain decomposition we
give solutions for mesh generation with triangle elements with a bounded edge
length, such that the number of Steiner points is minimized.

S.K. Ghosh and T. Tokuyama (Eds.): WALCOM 2013, LNCS 7748, pp. 29–40, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

30 S.P. Fekete, S. Rex, and C. Schmidt

Both of these problems have been considered before for the case of arbitrary
polygonal regions that need to be explored. As Fekete et al. [6] showed, there
is a 3-competitive strategy for the OMRTP, while the OMATP does not allow
any constant competitive factor. Limiting factors for both of these results are
sharp turns along the boundary, as well as tight bottlenecks; however, when
exploring buildings, we are typically faced with orthogonal walls, as well as
corridors of reasonable dimensions that are multiples of some underlying size.
This makes it natural to consider orthogonal polygons with integer dimensions,
i.e., polyominoes. In this paper, we provide a number of refined results for this
class of environments. Our results are as follows.

– We give a strategy with a competitive factor of 17
√
3

16+
√
3
≈ 1.661 for polyomi-

noes with holes.
– We give a strategy with a competitive factor of 7

8

√
3 ≈ 1.516 and sketch one

of 19
√
3

20+
√
3
≈ 1.514 for polyominoes without holes.

– We establish a lower bound of 38
37 ≈ 1.027 for any deterministic algorithm

for the OMRTP in polyominoes.
– We show that the OMATP in polyominoes does allow a constant competitive

ratio of 2
3
√
3
≈ 0.3849.

– We argue that the value of 2
3
√
3
≈ 0.3849 is asymptotically optimal.

Related Work. There exists a broad spectrum of work on triangulations, both
in theory and in practical applications. Here we just mention the work by Bern
and Eppstein [1], who investigated triangulations with certain characteristics,
e.g., Steiner points, bounds on angles, and even minimizing the sum of edge
lengths. For online robot exploration, Hoffman et al. [11] presented a 26.5-
competitive algorithm for exploring a simple polygon with a single robot with
continuous vision. For discrete vision, the problem was studied by Fekete and
Schmidt [9]. Another variant with discrete vision and limited visibily range was
investigated by Fekete, Mitchell and Schmidt [8]. A related problem on polyomi-
noes was considered by Icking et al. [13].

Strongly related to exploration problems is the task of deploying a robot
swarm into an unknown environment. Hsiang et al. [12] studied the prob-
lem for polyominoes, but they placed one robot per unit square instead of tri-
angulating the area. Practical aspects of deploying strategies were investigated
by McLurkin and Smith [15]. Brunner et al. [3] examined the minimum set of
abilities a robot needs to perform a certain task, see also Suri et al. [17] for
exploration and triangulation algorithms with such robots.

Offline relay placement has also been studied, especially in the context of
network properties. Bredin et al. [2] considered deploying a minimal number of
sensors with limited communication range in an outdoor area such that they
form a network with k-connectivity. Differences to our scenario include the ab-
sence of defined boundary and holes as well as the requirement that sensors need

Online Exploration and Triangulation 31

to stay connected during deployment. Moreover, their aim is to guarantee the
connectivity and not to form a triangulation, so some faces of the final network
graph may not be triangles. They also considered adding sensors to an existing
network with lower connectivity in order to achieve k-connectivity. Kashyap et
al. [14] studied the problem for k = 2 in higher dimensions. For k = 1 and two
dimensions, a similar problem was studied by Degener et al. [4] with the added
difficulty of finding shortest paths from the entry point to the final locations of
the robots carrying the sensors. Moreover, the robots only perceive their current
environment and have to make decisions based on this local information without
knowing the global situation. Another variant studied by Efrat et al. [5] is to
equip sensors with short-range communication devices and then place a minimum
number of relays with long-range communication devices in the sensor network
to establish connectivity.

The MRTP and OMRTP discussed in this paper were first considered by
Fekete et al. [7] and a competitive ratio of 6 on polygons was achieved for the
OMRTP. The results were refined by Schmidt [16] and Fekete et al. [6]; they
include an NP-hardness proof and a PTAS for the MRTP and the MATP, as
well as a lower bound of 1.2 and a 3-competitive algorithm for the OMRTP on
polygons. Moreover, they showed that no competitive online algorithm for the
online MATP can exist.

Finally, Friedman [10] has applied results similar to our optimality results for
unit squares and two-by-two squares in his proofs of lower bounds on packing
unit squares into squares. However, their optimality was neither mentioned nor
proved. Note, however, that these (offline) packing problems are notoriously
difficult, and there are still major gaps in what is known.

2 Preliminaries

A triangulation T is a set of relays and edges that subdivide a given polygon P
into triangles. All edges must lie in P , i.e., they must not cross the boundary.
All edges and relays of the triangulation must belong to triangles. The most
common form of triangulation places relays of T on all vertices of P only. A unit
triangulation is a triangulation in which all edges have at most length one. In
order to achieve a unit triangulation, it is usually necessary to place relays in
the interior and on boundary edges of P in addition to the vertices placed on
P ’s vertices. These extra relays are called Steiner points.

For the Minimum Relay Triangulation Problem (MRTP), we are given a poly-
gon P with vertex set V and a point z ∈ P . We want to compute a set, R (with
z ∈ R and V ⊂ R), of relays within P such that there exists a (Steiner) tri-
angulation of P whose vertex set is exactly the set R and whose edges have
length at most 1, i.e., a unit triangulation, that covers P . For the Maximum
Area Triangulation Problem (MATP), we are given a polygon P , a point z ∈ P ,
and a number n of available relays. We want to compute a set, R (with z ∈ R),

32 S.P. Fekete, S. Rex, and C. Schmidt

of n relays within P such that there exists a (Steiner) unit triangulation of P
whose vertex set is exactly the set R, such that the total area of all triangles is
maximized.

For the online version of the MRTP, the polygon P is unknown in advance.
We want to compute a set R as for the MRTP. Here, the relays move into the
polygon, starting from z. A relay extending the yet established subset R′ ⊂ R
must stay within a distance of 1 to at least one relay r ∈ R′. Once it fixed its
position it will not move again. The OMATP is defined analogously. For this
paper P is an unknown polyomino, so we consider the online versions of MRTP
and MATP. A strategy needs to place relays one by one, such that at any time
there are at most two edges and two relays that are not part of a triangle.

We now state several useful lemmas that are related to triangulations.

Lemma 1. The number of relays n in any triangulation of a polygon P with
h holes is equal to 1

2 (t+ b) + 1 − h, where t is the number of triangles and b
the number of relays on the boundary. (The boundary of the holes is part of the
polygon’s boundary.)

Proof. For any triangulation of P , let t denote the number of triangles, e the
number of edges and n the number of relays, of which b are on the boundary of the
polygon P . Counting the triangle-edge incidences we find that every triangle has
three edges and every edge belongs to two triangles if it is inside the polygon P , or
one triangle if it is on the boundary of P . The number of boundary edges is equal
to b, the number of boundary relays. This yields 3t = 2e−b. Not counting the one
face outside the Polygon, Euler’s formula gives n+ t+h = e+1 or e = n+ t− 1.
Substituting this into the previous equation yields 3t = 2n + 2t − 2 + 2h − b,
which can now be solved for n = 1

2 (t+ b) + 1− h. ��
In this work, we consider unit triangulations. We therefore state a simple lower
bound for the number of relays in such a triangulation.

Lemma 2. Let A be the area, h the number of holes and B be the length of
the boundary of the polygon P . Then the minimum number of relays in a unit

triangulation of P is nOPT ≥ 1
2

(
4A√
3
+B

)
+ 1− h.

Proof. We use the formula n = 1
2 (t+ b) + 1 − h from Lemma 1. b ≥ B and

t ≥ 4A√
3
must hold for any triangulation, because the maximum side length in

each triangle of the triangulation is 1, so the maximum area of a triangle is
√
3
4 ,

and we have to cover the whole area and boundary of the Polygon P . We get

nOPT ≥ 1
2

(
4A√
3
+B

)
+ 1− h for the optimal solution. ��

3 Solutions for Squares

We briefly sketch some results for the case in which P is a square of limited size.
These results serve as stepping stones for the following online strategies.

Online Exploration and Triangulation 33

Lemma 3. The optimal solution of the MRTP is five for a unit square, twelve
for a 2× 2-square, and 21 for a 3× 3-square.

In addition, Fig. 1, left, shows the best solution we could find for a 4× 4-square.
It places the minimum number of 16 relays on the boundary. The relays of the
second layer are placed greedily towards the middle. The four center relays are
rotationally symmetric. Note that our solution for a 4×4-square can be enhanced
into four optimal 2× 2-solutions, or 16 optimal 1× 1-solutions, by adding relays
on the unit grid positions inside the square. This construction, which is shown
in Fig. 1, plays a key role in our online algorithm.

Fig. 1. Decomposition of our best solution for side length four into four optimal solu-
tions of side length two and 16 optimal solutions for unit squares

4 Minimum Relay Triangulation in Polyominoes

4.1 A Strategy Using Optimal 1 × 1-Squares

Our first strategy is to apply the optimal solution for a unit square for each grid
square of the polyomino, as shown in Fig. 2. Algorithm 4.1 picks a square, places
the center relay, connects it to all existing grid point relays, places and connects
the remaining grid point relays and moves on to the next square.

1

Fig. 2. Example of a triangulation as a result of Algorithm 4.1

Lemma 4. Algorithm 4.1 achieves a competitive ratio of
√
3 for the OMRTP

on any polyomino P .

34 S.P. Fekete, S. Rex, and C. Schmidt

Algorithm 4.1. Deploying relays with the optimal unit square strategy

Input : Starting point on integer coordinates on the boundary of a yet
unknown polyomino P

Output: Triangulation of P with at most OPT·√3 relays
while P is not completely triangulated do

pick an empty grid square bordering the triangulated area;
place one relay in its center;
connect it to all existing relays on grid vertices in range;
while the grid square is not completely triangulated do

place one relay on an empty vertex of the grid square;
connect it with the existing relays in range;

end

end

Proof. We apply Lemma 1. Our algorithm uses triangles with an area of 1
4 , thus

t = 4A, and places all boundary relays with the maximum distance of one to their
neighbors, thus b = B. Overall the algorithm places nALG = 1

2 (t+ b) + 1− h =
1
2 (4A+B)+ 1−h relays. According to Lemma 2, the optimal solution needs at

least nOPT ≥ 1
2

(
4A√
3
+B

)
+ 1− h relays.

The smallest hole in the polyomino P must itself be a polyomino and thus
have a boundary length of at least 4. Therefore, h < 1

4B and, in particular,
B + 2− 2h ≥ 0. Thus, the competitive ratio is

nALG

nOPT
≤

1
2 (4A+B) + 1− h

1
2

(
4A√
3
+B

)
+ 1− h

=
4A+B + 2− 2h
4A√
3
+B + 2− 2h

≤ √
3. ��

4.2 A Strategy Using Optimal 2 × 2-Squares

Now we refine the previous strategy. The basic idea is to introduce an imaginary
grid of width two and place the optimal solutions for squares of side length two
according to this new grid, see Fig. 3, left. If such a 2× 2 grid square turns out
to be intersected by the boundary (because one of its unit squares is missing),
an additional relay is placed in its middle and the strategy locally reverts to the
1 × 1-strategy. See Fig. 3 for an illustration; a detailed description is given by
Algorithm 4.2.

We exploit the following properties of polyominoes.

Lemma 5. In a polyomino without holes, r = c − 4, where r is the number of
reflex vertices and c is the number of convex vertices.

Lemma 6. In a polyomino with A > 1 and h = 0, Algorithm 4.2 places at most
u ≤ B − 4 unit squares.

Lemma 7. In a polyomino with A > 1 and h ≥ 0, Algorithm 4.2 places at most
u ≤ B + 4h− 4 unit squares.

Online Exploration and Triangulation 35

s0

(0, 1)

(0, 0)(1, 0)

(1, 1)

(0, 0)

(0, 1)(1, 1)

(1, 0)(1, 0)

(1, 1)(0, 1)

(0, 0)

(1, 1)

(1, 0)(0, 0)

(0, 1)

Fig. 3. A polyomino with its natural unit grid and the gray grid of side length two
determined by the unit grid and the starting point. In this case, only one optimal
2× 2-square will be placed, even though one could place two.

Algorithm 4.2. Deploying relays with the 2× 2-square strategy

Input : Starting point on integer coordinates on the boundary of a yet
unknown polyomino P

Output: Triangulation of polyomino P with at most OPT·1.661 relays
while P is not completely triangulated do

pick a grid square adjacent to the triangulated area;
place one relay inside, according to the rules in Fig. 3;
if there is boundary at the square’s (1,1) vertex then

connect the relay to all grid relays in range;
while the grid square is not completely triangulated do

place one relay on the vertex of the grid square closest to the
existing triangulation;
connect it with the existing relays in range;

end

else
connect the relay to all relays in range, without crossing existing
connections;
while (0,0) or (0,1) or (1,0) does not have a relay do

place one relay on the vertex of the grid square closest to the
existing triangulation except (1,1);
connect it with the existing relays in range;

end

end

end

From these lemmas we gain u ≤ B and a new bound on the competitive ratio.

Theorem 8. Algorithm 4.2 achieves a competitive ratio of 7
8

√
3 ≈ 1.516 for the

OMRTP in polyominoes with h = 0, A > 1.

Proof. Lemma 1 yields nALG = 1
2 (

1
2u+

7
2A+B)+ 1. In order to compare nALG

with the lower bound for the optimal solution nOPT , we have to eliminate u:
u ≤ A, because we cannot have more unit squares than area. Lemma 6 yields
u ≤ B. We proceed by another case-by-case analysis.

36 S.P. Fekete, S. Rex, and C. Schmidt

Case A ≤ B: In this case, we use u ≤ A and obtain

nALG =
1

2
(
1

2
u+

7

2
A+B)+1 ≤ 1

2
(4A+B)+1⇒ nALG

nOPT
≤

1
2 (4A+B) + 1

1
2

(
4A√
3
+B

)
+ 1

.

We observe that the ratio increases if the area is large in comparison to the
boundary length. Because we have A ≤ B, we can obtain

nALG

nOPT
≤

1
2 (4A+B) + 1

1
2

(
4A√
3
+B

)
+ 1

≤
1
2 (5B) + 1

1
2

(
4B√
3
+B

)
+ 1

≤ 5
4√
3
+ 1

<
7

8

√
3 ≈ 1.516

Case A ≥ B: In this case, we use u ≤ B and obtain

nALG =
1

2
(
1

2
u+

7

2
A+ B) + 1 ≤ 1

2
(
7

2
A+

3

2
B) + 1.

Thus,

nALG

nOPT
≤

7
4A+ 3

4B
2√
3
A+ 1

2B
≤

7
4A+ 7

8B
2√
3
A+ 1

2B
≤

7
4A+ 7

8B
2√
3
A+ 1√

3
B

=
7

8

√
3 ≈ 1.516.

A similar analysis provides the following result for polyominoes with holes. A
detailed proof is omitted due to space constraints.

Theorem 9. Algorithm 4.2 achieves a competitive ratio of 17
√
3

16+
√
3
≈ 1.661 for

the OMRTP in polyominoes with holes.

4.3 A Strategy Using Good Solutions for 4 × 4-Squares

We now proceed to give a slight improvement for the case of polyominoes without
holes. As described in Section 3 and illustrated by Fig. 1, our best solution for
the 4× 4-square can be divided into smaller optimal solutions by placing relays
on the grid points inside the 4× 4-square. see Fig. 1. As in the 2× 2-approach,
our 4× 4-solution can be adjusted when boundary pixels are encountered before
a 4× 4-solution is encountered. An example is shown in Fig. 4.

Fig. 4. A 4×4-square is cut by a polyomino’s boundary. Adjustments are only necessary
on the new boundary: adjusted edges are shown in bold, while the edges and relays of
the original 4× 4-solution are indicated in gray.

Online Exploration and Triangulation 37

Our algorithm places the 4 × 4-solution on a grid of width four, starting at
the entry point s0, and adds boundary relays if necessary. That is, only if we
cannot place the complete 4×4-square, as the boundary interesects this module,
we switch to 2 × 2-squares and 1 × 1-squares. The layout of the 4 × 4-solution
allows to do so with the limit on the vision range. The algorithm triangulates as
much of each 4 × 4-grid square as possible before moving on to the next 4 × 4-
square. Inside the 4× 4-square, the inner unit squares are treated only after all
boundary unit squares around them have been processed. This specified order of
triangulation ensures that at most two relays are not part of the triangulation.
Correctness is provided by Lemma 10.

Lemma 10. At all times during the execution of the algorithm using 4 × 4-
squares, at most two relays and edges are not part of the triangulation.

For the competitive ratio estimate of this algorithm, we assume that a 4 × 4-
square intersected by boundary is divided into four 2×2-squares and each 2×2-
square intersected by boundary is divided into four unit squares, as in Section 4.2.
The result is that if we place any additional relay at all, we will automatically
assume that the additional relays at (1, 2), (2, 1), (2, 2), (2, 3), and (3, 2) have
also been placed. Having assumed these extra relays, we can reuse some of the
analysis techniques from Section 4.2.

For the case of polyominoes without holes, we can improve upon the result of
Section 4.2. Proof details are omitted due to space constraints.

Theorem 11. The algorithm using 4 × 4-squares achieves a competitive ratio

of 19
√
3

20+
√
3
≈ 1.514 for the OMRTP in polyominoes with h = 0 and A > 1.

For polyominoes with holes, we achieve the same result as in Section 4.2.

4.4 Lower Bound

Theorem 12. For deterministic online algorithms, a lower bound on the com-
petitive ratio for the OMRTP on polyominoes is 38

37 ≈ 1.027.

n=37

n=38

s0

s0

a)

b)

12

Fig. 5. The adversary’s relay placement for a strip of length 12

38 S.P. Fekete, S. Rex, and C. Schmidt

Proof. We consider a unit strip with starting point at the lower left corner;
details are due to space constraints. As shown in Fig. 5, it is possible to save a
relay compared to a unit-square solution for a strip of length 12; however, if an
algorithm tries this approach, an adversary can choose a shorter strip, for which
the unit-square solution is still better.

5 Online Maximum Area Triangulation in Polyominoes

In the Online Maximum Area Triangulation Problem (OMATP) we are given
a fixed number of relays, n, and our goal is to triangulate as much area as
possible. As mentioned in the introduction, no competitive algorithm can exist
for arbitrary polygons. However, for polyominoes we can achieve a factor of 2

3
√
3
.

We use Algorithm 4.1, because it guarantees triangles of size 1
4 .

Theorem 13. With n ≥ 5 relays, Algorithm 4.1 achieves a competitive factor of
2

3
√
3
, which is asymptotically best possible for any deterministic online algorithm.

Proof. We assess the number of triangles using Lemma 1: n = 1
2 (t+b)+1−h⇒

t = 2n − 2 + 2h − b. Note that the boundary edges and holes are those of the
triangulation and not of the polyomino. With n ≥ 4, the optimal triangulation
must have at least four outside boundary edges, because placing the fourth relay
inside an already formed triangle cannot be optimal. Moreover, each hole must
have more than two boundary edges, so b ≥ 2h + 4 and 2h + 4 − b ≤ 0 so
t = 2n− 2+ 2h− b ≤ 2n− 6 = 2(n− 3). Since the maximal size of each triangle

is
√
3
4 we obtain AOPT =

√
3
2 (n− 3) for the area covered by an optimal strategy.

For n ≥ 5, Algorithm 4.1 fills at least one unit square, plus one unit square
for at least every three additional relays, plus at least 1

4 for each relay in the
last, not completely triangulated unit square. Therefore AALG ≥ 1+ 1 · �n−5

3 �+
1
4

(
n−5
3 − �n−5

3 �) ≥ n−4
3 + 1

2 ≥ n−3
3 (the penultimate inequality is derived by a

case distinction for different remainders by the division by 3 and the resulting
relay placements).

For the lower bound, see Figure 6. ��

Fig. 6. An online algorithm will fail to find the large polygonal region, where the offline
optimum can places a large number of unit triangles. Thus, an online algorithm uses
triangles of area 1

4
, while the optimum uses only an asymptotically small fraction of

them, with the bulk being unit triangles.

Online Exploration and Triangulation 39

6 Conclusion

We have given a number of competitive strategies for the OMRTP in orthogo-
nal integral polygons. Our refined algorithms rely on optimal solutions for sub-
squares of limited size. A possible improvement could arise from a refined analysis
of the algorithm using 4 × 4-square, where we do overestimate the number of
placed relays. A further interesting extension could be an optimality proof for
the 4 × 4-square; studying triangulations of general k × k-squares is interesting
in itself, but can be expected to serious difficulties even for moderate values of
k, as it is similar in nature to the notoriously difficult problem of packing and
covering with unit disks. For the OMRTP, it may be possible to raise the general
lower bound; for the offline problem, the complexity is open, but we believe it
to be NP-hard. Other possible extensions ask for a biconnected network when
deploying the relays for the OMRTP in addition to the property that every relay
and edge is part of a triangle.

There are also some open problems for the case of general polygons, where
it may not only be possible to improve on the competitive factor of 3 for the
OMRTP, but also achieve finite bounds for the OMATP, assuming bounded
feature size.

References

1. Bern, M., Eppstein, D.: Mesh Generation and Optimal Triangulation. Computing
in Euclidean Geometry 1, 23–90 (1992)

2. Bredin, J., Demaine, E., Hajiaghayi, M., Rus, D.: Deploying Sensor Net-
works with Guaranteed Fault Tolerance. IEEE/ACM Transactions on Networking
(TON) 18(1), 216–228 (2010)

3. Brunner, J., Mihalák, M., Suri, S., Vicari, E., Widmayer, P.: Simple Robots in
Polygonal Environments: A Hierarchy. In: Fekete, S.P. (ed.) ALGOSENSORS 2008.
LNCS, vol. 5389, pp. 111–124. Springer, Heidelberg (2008)

4. Degener, B., Fekete, S., Kempkes, B., Meyer auf der Heide, F.: A Survey on Re-
lay Placement with Runtime and Approximation Guarantees. Computer Science
Review 5(1), 57–68 (2011)

5. Efrat, A., Fekete, S.P., Gaddehosur, P.R., Mitchell, J.S.B., Polishchuk, V., Suomela,
J.: Improved Approximation Algorithms for Relay Placement. In: Halperin, D.,
Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 356–367. Springer, Heidelberg
(2008)

6. Fekete, S.P., Kamphans, T., Kröller, A., Mitchell, J.S.B., Schmidt, C.: Exploring
and Triangulating a Region by a Swarm of Robots. In: Goldberg, L.A., Jansen, K.,
Ravi, R., Rolim, J.D.P. (eds.) APPROX/RANDOM 2011. LNCS, vol. 6845, pp.
206–217. Springer, Heidelberg (2011)

7. Fekete, S.P., Kamphans, T., Kröller, A., Schmidt, C.: Robot Swarms for Explo-
ration and Triangulation of Unknown Environments. In: Proceedings of the 25th
European Workshop on Computational Geometry, pp. 153–156 (2010)

8. Fekete, S.P., Mitchell, J., Schmidt, C.: Minimum Covering with Travel Cost. Jour-
nal of Combinatorial Optimization, 393–402 (2010)

9. Fekete, S.P., Schmidt, C.: Polygon Exploration with Time-Discrete Vision. Com-
putational Geometry 43(2), 148–168 (2010)

40 S.P. Fekete, S. Rex, and C. Schmidt

10. Friedman, E.: Packing Unit Squares in Squares: A Survey and New Results. The
Electronic Journal of Combinatorics (2009)

11. Hoffmann, F., Icking, C., Klein, R., Kriegel, K.: The Polygon Exploration Problem.
SIAM Journal on Computing 31(2), 577–600 (2002)

12. Hsiang, T., Arkin, E., Bender, M., Fekete, S., Mitchell, J.: Algorithms for Rapidly
Dispersing Robot Swarms in Unknown Environments. In: Algorithmic Foundations
of Robotics V, pp. 77–94 (2004)

13. Icking, C., Kamphans, T., Klein, R., Langetepe, E.: Exploring Simple Grid Poly-
gons. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 524–533. Springer,
Heidelberg (2005)

14. Kashyap, A., Khuller, S., Shayman, M.: Relay Placement for Fault Tolerance in
Wireless Networks in Higher Dimensions. Comp. Geom. 44(4), 206–215 (2011)

15. McLurkin, J., Smith, J.: Distributed Algorithms for Dispersion in Indoor Environ-
ments using a Swarm of Autonomous Mobile Robots. In: Distributed Autonomous
Robotic Systems 6, pp. 399–408 (2007)

16. Schmidt, C.: Algorithms for Mobile Agents with Limited Capabilities. Ph.d. thesis,
Braunschweig Institute of Technology (2011)

17. Suri, S., Vicari, E., Widmayer, P.: Simple Robots with Minimal Sensing: From
Local Visibility to Global Geometry. The International Journal of Robotics Re-
search 27(9), 1055–1067 (2008)

A Competitive Strategy

for Distance-Aware Online Shape Allocation

Sándor P. Fekete, Nils Schweer, and Jan-Marc Reinhardt

Department of Computer Science, TU Braunschweig, Germany
{s.fekete,n.schweer,j-m.reinhardt}@tu-bs.de

Abstract. We consider the following online allocation problem: Given a
unit square S, and a sequence of numbers ni ∈ {0, 1} with

∑i
j=0 nj ≤ 1;

at each step i, select a region Ci of previously unassigned area ni in
S. The objective is to make these regions compact in a distance-aware
sense: minimize the maximum (normalized) average Manhattan distance
between points from the same set Ci. Related location problems have
received a considerable amount of attention; in particular, the problem
of determining the “optimal shape of a city”, i.e., allocating a single
ni has been studied, both in a continuous and a discrete setting. We
present an online strategy, based on an analysis of space-filling curves;
for continuous shapes, we prove a factor of 1.8092, and 1.7848 for discrete
point sets.

Keywords: Clustering, average distance, online problems, optimal shape
of a city, space-filling curves, competitive analysis.

1 Introduction

Many optimization problems deal with allocating point sets to a given envi-
ronment. Frequently, the problem is to find compact allocations, placing points
from the same set closely together. One well-established measure is the average
L1 distance between points. A practical example occurs in the context of grid
computing, where one needs to assign a sequence of jobs i, each requiring an
(appropriately normalized) number ni of processors, to a subset Ci of nodes of
a large square grid, such that the average communication delay between nodes
of the same job is minimized; this delay corresponds to the number of grid hops
[10], so the task amounts to finding subsets with a small average L1, i.e., Manhat-
tan distance. Karp et al. [7] studied the same problem in the context of memory
allocation.

Even in an offline setting without occupied nodes, finding an optimal alloca-
tion for one set of size ni is not an easy task; as shown in Fig. 1, the results are
typically “round” shapes. If a whole sequence of sets has to be allocated, packing
such shapes onto the grid will produce gaps, causing later sets to become discon-
nected, and thus leads to extremely bad average distances. Even restricting the
shapes to be rectangular is not a remedy, as the resulting problem of deciding
whether a set of squares (which are minimal with respect to L1 average distance

S.K. Ghosh and T. Tokuyama (Eds.): WALCOM 2013, LNCS 7748, pp. 41–52, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

42 S.P. Fekete, N. Schweer and J.-M. Reinhardt

among all rectangles) can be packed into a given square container is NP-hard [9];
moreover, disconnected allocations may still occur.

In this paper, we give a first algorithmic analysis for the online problem. Using
an allocation scheme based on a space-filling curve, we establish competitive
factors of 1.8092 and 1.7848 for minimizing the maximum average Manhattan
distance within an allocated set, and non-trivial lower bounds for these factors.

Related Work
Compact location problems have received a considerable amount of attention.
Krumke et al. [8] have considered the offline problem of choosing a set of n
vertices in a weighted graph, such that the average distance is minimized. They
showed that the problem is NP-hard (even to approximate); for the scenario in
which distances satisfy the triangle inequality, they gave algorithms that achieve
asymptotic approximation factors of 2. For points in two-dimensional space and
Manhattan distances, Bender et al. [2] gave a simple 1.75-approximation algo-
rithm, and a polynomial-time approximation scheme for any fixed dimension.

The problem of finding the “optimal shape of a city”, i.e., a shape of given area
that minimizes the average Manhattan distance, was first considered by Karp,
McKellar, and Wong [7]; independently, Bender, Bender, Demaine, and Fekete
[1] showed that this shape can be characterized by a differential equation for
which no closed form is known. For the case of a finite set of n points that needs
to be allocated to a grid, Demaine et al. [5] showed that there is an O(n7.5)
dynamic-programming algorithm, which allowed them to compute all optimal
shapes up to n = 80. Note that all these results are strictly offline, even though
the original motivation (register or processor allocation) is online.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40

w
(x
)

x

w(x)
circle

Fig. 1. Finding optimal individual shapes. (Left) An optimal shape composed of n=72
grid cells, according to [5]. (Right) The optimal limit curve w(x), according to [2].

Space-filling curves for processor allocation with our objective function have
been used before, see Leung et al. [10]; however, no algorithmic results and no
competitive factor was proven. Wattenberg [15] proposed an allocation scheme
for purposes of minimizing the maximum Euclidean diameter of an allocated

A Competitive Strategy for Distance-Aware Online Shape Allocation 43

shape; this is a different measure than the one established by [10]. Like other
authors before (in particular, Niedermeier et al. [11] and Gotsman and Linden-
baum [6]), he considered c-locality: for a sequence 1, . . . , i, . . . , j, . . . of points on
a line, a space-filling mapping h(.) will guarantee L2(h(i), h(j)) < c

√|j − i|, for
a constant c that is

√
6 ≈ 2.449 for the Hilbert curve, and 2 for the so-called

H-curve. One can use c-locality for establishing a constant competitive factor
for our problems; however, given that their focus is on bounding the worst-case
distance ratio for an embedding instead of the average distance, it should come
as no surprise that the resulting values are significantly worse than ours. On a
different note, de Berg, Speckmann, and van der Weele [4] consider treemaps
with bounded aspect ratio. Other related work includes Dai and Su [3].

Our Results
We give a first competitive analysis for the online shape allocation problem
within a given bounding box, with the objective of minimizing the maximum
average Manhattan distance. In particular, we give the following results.

– We show that for the case of continuous shapes (in which numbers ni corre-
spond to area), a strategy based on a space-filling Hilbert curve achieves a
competitive ratio of 1.8092.

– For the case of discrete point sets (in which numbers indicate the number of
points that have to be chosen from an appropriate N ×N orthogonal grid),
we prove a competitive factor of 1.7848.

– We sketch how these factors may be further improved, but point out that a
Hilbert-based strategy is no better than a competitive factor of 1.3504, even
with an improved analysis.

– We establish a lower bound of 1.144866 for any online strategy in the case
of discrete point sets, and argue the existence of a lower bound for the
continuous case.

The rest of this paper is organized as follows. In Section 2, we give some basic
definitions and fundamental facts. In Section 3, we provide a brief description of
an allocation scheme based on a space-filling curve. Section 4 gives a mathemat-
ical study for the case of continuous allocations, proving that the analysis can be
reduced to a limited number of shapes, and establishes a competitive factor of
1.8092. Section 5 sketches a similar analysis for the case of discrete allocations;
as a result, we prove a competitive factor of 1.7848. Section 6 discusses lower
bounds for online strategies. Final conclusions are presented in Section 7.

2 Preliminaries

We examine the problem of selecting shapes from a square, such that the max-
imum average L1-distance of the shapes is minimized. We first formulate the
problem more precisely. This covers both the continuous and the discrete case;
the former arises as the limiting case of the latter, while the latter needs to be
considered for allocations within a grid of limited size.

44 S.P. Fekete, N. Schweer and J.-M. Reinhardt

Definition 1. A city is a (continuous) shape in the plane with fixed area. For
a city C of area n, we call

c(C) =
1

2

∫∫∫∫
(x,y),(u,v)∈C

(|x− u|+ |y − v|) dv du dy dx (1)

the total Manhattan distance between all pairs of points in C and

φ(C) =
2 c(C)

n5/2
(2)

the φ-value or average distance of C. An n-town T is a subset of n points in
the integer grid. Its normalized average Manhattan distance is

φ(T) =
2c(T)

n5/2
=

∑
s∈T

∑
t∈T ‖s− t‖1
n5/2

(3)

The normalization with n2.5 yields a dimensionless measure that remains un-
changed under scaling (so it depends only on the shape, not on the size), and
makes the continuous and the discrete case comparable; see [1].

Problem 2. In the continuous setting, we are given a sequence n1, n2, . . . , nk ∈
R+ with

∑k
i=1 ni ≤ 1. Cities C1, C2, . . . , Ck of size n1, n2, . . . , nk are to be chosen

from the unit square, such that max1≤i≤k φ(Ci) is minimized.
In the discrete setting, we are given a sequence n1, n2, . . . , nk ∈ N+ with∑k
i=1 ni ≤ N2. Towns C1, C2, . . . , Ck of size n1, n2, . . . , nk are to be chosen

from the N ×N grid, such that max1≤i≤k φ(Ci) is minimized.

Although it has not been formally proven, the offline problem is conjectured
to be NP-hard, see [13]; if we restrict city shapes to be rectangles, there is
an immediate reduction from deciding whether a set of squares can be packed
into a larger square [9]. (A special case arises from considering integers, which
corresponds to choosing grid locations.) Our approximation works online, i.e., we
choose the cities in a specified order, and no changes can be made to previously
allocated cities; clearly, this implies approximation factors for the corresponding
offline problems.

There are lower bounds for max1≤i≤k φ(Ci) that generally cannot be achieved
by any algorithm. One important result is the following theorem.

Theorem 3. Let C be any city. Then φ(C) ≥ 0.650245.

A proof can be found in [1]. For n1 = 1 any algorithm must select the whole unit
square, thus 2/3, the φ-value of a square, is a lower bound for the achievable
φ-value. We will discuss better lower bounds in the conclusions.

3 An Allocation Strategy

While long and narrow shapes tend to have large φ-values, shapes that fill large
parts of an enclosing rectangle with similar width and height usually have better

A Competitive Strategy for Distance-Aware Online Shape Allocation 45

average distances; however, one has to make sure that early choices with small
average distance do not leave narrow pieces with high average distance, or even
disconnected pieces, making the normalized φ-values potentially unbounded.

Our approach uses the recursive Hilbert family of curves in order to yield a
provably constant competitive factor. That family is based on a recursive con-
struction scheme and becomes space filling for infinite repetition of said scheme
[12]. For a finite number r of repetitions, the curve traverses all points of the
used grid. For 1 ≤ r ≤ 3, the curve is shown in Fig. 2. Thus, the Hilbert curve
provides an order for the cells of the grid, which is then used for allocation, as
illustrated in Fig. 3. More formal details of the recursive definition of the Hilbert
family (e.g. with text-rewriting rules, such as the ones in [14]) go beyond the
scope of this extended abstract.

Fig. 2. Hilbert curve with 1 ≤ r ≤ 3

Fig. 3. A sample allocation according to our strategy

More technically, the unit square is recursively subdivided into a grid consist-
ing of 2r × 2r grid cells, for an appropriate refinement level r > 0, as shown in
Fig. 2. For the sake of concise presentation within this short abstract, we as-
sume that every input ni is an integral multiple of c = 4−R, for an appropriately
large R > 0. (We will mention in the Conclusions how this assumption can be
removed, based on Lemma 6.) Similar to the recursive structure of quad-trees,
the actual subdivision can be performed in a self-refining manner, whenever a
grid cell is not completely filled. This means that during the course of the online
allocation, we may use different refinement levels in different parts of the layout;
however, this will not affect the overall analysis, as further refinement of the grid
does not change the quality of existing shapes.

Definition 4. For a given refinement level r, an r-pixel P is a grid square of
size 2−r × 2−r. For a given allocated shape Ci, a pixel is full if P ⊆ Ci; it is
fractional, if P ∩ Ci �= ∅ and P �⊂ Ci.

46 S.P. Fekete, N. Schweer and J.-M. Reinhardt

Now the description of the algorithm is simple: for every input ni, choose the
next set of ni/2

R R-pixels traversed by the Hilbert curve as the city Ci, starting
in the upper left corner of the grid. For an illustration, see Fig. 3.

The following lemma is a consequence of the recursive structure of the Hilbert
family. We use it in the following section for deriving upper bounds.

Lemma 5. Let C be a city generated by our strategy with area at most n ≤
l 4j 4−R for j ∈ {0, 1, . . . , R}, l ∈ N. Then at any refinement level r, C contains
at most two fractional r-pixels.

4 Analysis

For the analysis of our allocation scheme we will first make use of Lemma 5. As
noted in the following Lemma 6, filling in the two fractional pixels of an allocated
shape yields an estimate for the total distance at a coarser refinement level. In a
second step, this will be used to derive global bounds by computing the worst-
case bounds for shapes of at most refinement level 3. This reduces the task of
providing a general upper bound on the competitive factor to considering a finite
number of shapes of limited size. (As discussed in the Conclusions, carrying out
the computations on a lower or higher refinement level gives looser or tighter
results.)

In the following, Wn denotes the worst case among all cities of n pixels that
can be produced by our Hilbert strategy; because of the normalized nature of φ,
this is independent on the size of the pixels, and only the shape matters.

Lemma 6. Let C be a city generated by our strategy with area at most n ≤
l 4r 4−R for r ∈ {0, 1, . . . , R}, l ∈ N. Then we have c(C) ≤ c(Wl+1), where Wl+1

is a worst case among all cities produced by our allocation scheme that consists
of (l + 1) r-pixels.

Proof. By Lemma 5, we know that only the first and the last pixel of C may be
fractional. Therefore C cannot intersect more than l + 1 r-pixels. By replacing
the two fractional pixels by full pixels, we get a city W that consists of l + 1
full r-pixels, and c(C) ≤ c(W). By definition, c(W) ≤ c(Wl+1), and the claim
holds. ��
Therefore, we can give upper bounds for the worst case by considering the values
ofWn at some moderate refinement level. The Wn can be found by enumeration;
as described in the full version of the paper, a speed-up can be achieved by
making use of the recursive construction of the Wn. We determined the shapes
and φ-values of the Wn for n ≤ 65; by Lemma 6, this suffices to provide upper
bounds for all cities with area up to 64 ∗ 2−r, i.e., these computational results
give an estimate for the round-up error using refinement level 3. The full table of
average distances can be found in the full version of the paper; the worst cases
among the examined ones are W56 and W14, which have the same shape, shown
in Fig. 4.

A Competitive Strategy for Distance-Aware Online Shape Allocation 47

Fig. 4. Worst cases Wn for 12 ≤ n ≤ 17

Theorem 7. A Hilbert strategy guarantees max1≤n≤k φ(Cn) ≤ 1.1764.

Proof. Consider a city C of size n generated by our strategy. If n is sufficiently
small, i.e., smaller than an R − r-pixel, r ≥ 0, C consists of at most 4r cells
and its average distance can be bounded by the worst case for that particular
number of cells. In the case that C has a larger, more refined shape, an analysis
of a finite number of shapes is still sufficient:

We know that n > 4rc and we can assume that n ≤ 4r+1c (or else we use
the analysis on the less refined (R − (r + 1))-pixels). Thus, there must be an l
such that l4rc < n ≤ (l + 1)4rc with l = 1, . . . , 3. Yet, we can get closer to
n, as we know that an (R − r)-pixel consists of 4r cells. We get the inequality
l4r−k < n ≤ (l + 1)4r−kc, k ≤ r, l = 4k, . . . , 4k+1 − 1.

Hence, a city of arbitrary size n corresponds to at most (l+1) sub-squares of
a certain size (depending on the precision of the analysis), i.e., a city of size at
most (l + 1)4r−kc. Now we can use Lemma 5 to bound the average distance of
the city, yielding

φ(C) ≤ 2 c(W)

(l 4r−kc)5/2
=

φ(Wl+2)((l + 2) 4r−kc)5/2

(l 4r−kc)5/2
(4)

= φ(Wl+2)

(
1 +

2

l

)5/2

=: Φ(Wl). (5)

The resulting bound is max({φ(Wi) : 1 ≤ i ≤ 4r}∪{Φ(Wl) : 4
k ≤ l ≤ 4k+1−1}).

Note that the number of shapes considered is at most 4k+1.
We conducted the calculations for k = 2; as it turns out, the maximum is

attained for Φ(W16) = 1.1764. See the full version of the paper for details. ��
Corollary 8. Our strategy achieves a competitive factor of 1.8092.

Proof. According to Theorem 3, no algorithm can guarantee a better φ-value
than 0.650245. Our strategy yields an upper bound of 1.1764. This results in a
factor of 1.1764/0.650245≈ 1.8092. ��

5 Discrete Point Sets

Our above analysis relies on continuous weight distributions, which imply the
lower bound on φ-values stated in Theorem 1. This does not include the discrete

48 S.P. Fekete, N. Schweer and J.-M. Reinhardt

scenario, in which each value ni indicates the number of integer grid points that
have to be chosen from an appropriate N×N -grid. As discussed in the paper [5],
considering discrete weight distributions may allow lower average distances; e.g.,
a single point yields a φ-value of 0. As a consequence, towns (subsets of the
integer grid) have lower average distances than cities of the equivalent total
weight. However, we still get a competitive ratio for the case of online towns.

Theorem 9. For n-towns, a Hilbert-curve strategy guarantees a competitive fac-
tor of at most 1.7848 for the φ-value.

Proof. Lemma 5 still holds, so analogously to Theorem 7, we consider the values
up to n = 64, and show that the worst case is attained for n = 16, which yields
an upper bound of 1.123. See the full version for detailed numbers.

For a lower bound, the general value of 0.650245 for φ-values cannot be ap-
plied, as discrete point sets may have lower average distance. Instead, we verify
that the ratio ρ(n) of achieved φ to optimal φ, is less than 1.7848. This is the same
as c(Tn)/ctown(n) for n ≤ 64; see the full version of the paper. For 65 ≤ n ≤ 80,
the optimal values in [5] allow us to verify that φ ≥ 0.6292; see the full version
of the paper.

Thus, we have to establish a lower bound for φ for n ≥ 81. We make use
of equation (5), p. 89 of [5]; see Fig. 5: for a given number n of grid points,
the difference between the optimal total Manhattan distance ccity(n) for a city
consisting of n unit squares and the optimal total distance ctown(n) for a town

consisting of n grid points is equal to Λ(n) := 1
6

(∑
i c

2
i +

∑
j r

2
j

)
, where ci is

the number of grid points in column i, and rj is the number of grid points in

row j. Because
2ccity(n)

n2.5 is bounded from below by ψ = 0.650245, we get a lower

bound of ψ − 2Λ(n)
n2.5 ≤ 2ctown(n)

n2.5 for the φ-value of an n-town.

c1 = 5 c2 = 3 c3 = 2 c4 = 1 c5 = 0

2
√

n + 5

n
2
√

n+5

r5 = 1

r4 = 1

r3 = 2

r2 = 3

r1 = 4

Fig. 5. Establishing a lower bound for φ: Defining Λ(n); an arrangement that maxi-
mizes Λ(n)

A Competitive Strategy for Distance-Aware Online Shape Allocation 49

This leaves the task of providing an upper bound for 2Λ(n)/n2.5. According
to Lemma 5 of [5], the bounding box of an optimal n-town does not exceed
2
√
n+5. Therefore, we have ci ≤ 2

√
n+5; as

∑
i ci = n and the function

∑
i c

2
i

is superlinear in the ci, we conclude that
∑

i c
2
i is maximized by subdividing n

into n
2
√
n+5

columns of 2
√
n+5 points each, so

∑
i c

2
i ≤ n(2

√
n+5). Analogously,

we have
∑

j r
2
j ≤ n(2

√
n + 5), so 2Λ(n)/n2.5 ≤ 2

3 (
2
n + 5

n1.5). For n ≥ 81, this

implies 2Λ(n)/n2.5 ≤ 4
243 + 10

2187 = 0.0210333... or φ(n) ≥ 0.6292. This yields an
overall competitive ratio of not more than 1.123/0.6292, i.e., 1.7848. ��
A more refined analysis of Λ(n) considers maximizing

∑
i c

2
i +

∑
j r

2
j all at once,

instead of
∑

i c
2
i and

∑
j r

2
j separately, for a maximum value of n(2

√
n + 5) +

n2

2
√
n+5

. For n ≥ 81, this yields 2Λ(n)/n2.5 ≤ 2
243 + 5

2187 + 2
621 = 0.0137373...

As the resulting competitive ratio of 1.7643 is only very slightly better, we omit
further details from this extended abstract. If instead we rely on the unproven
conjecture in [5] that 2ctown

n2.5 ≈ ψ − 0.410
n , we get φ ≥ 0.6451, which corresponds

to experimental evidence; the resulting competitive factor is 1.7406.

6 Lower Bounds

We demonstrate that there are non-trivial lower bounds for a competitive factor.
We start by considering the discrete online scenario for towns.

Theorem 10. No online strategy can guarantee a competitive factor below 64√
5
5 =

1.144866....

Proof. Consider a 3 × 3 square, and let n1 = 4; see Fig. 6. If (a) the strategy
allocates a 2×2 square (for a total distance of 8), then n2 = 5, and the resulting L-
shape has a total distance of 20 and a φ-value of 40/52.5 = 0.715541... Allocating
(b) the first town with an L-shape of total distance 10 results in φ = 20/32 =
0.625, and the second with a total distance of 16, or φ = 32/52.5 = 0.572433...

If instead, (c) the first town is allocated different from a square, the total
distance is at least 10, and φ ≥ 20/32; then (d) n2 = n3 = n4 = n5 = n6 = 1,
and an optimal strategy can allocate the first town as a 2x2 square, with φ = 0.5.
This bounds the competitive ratio, as claimed. ��
For the case of continuous allocations, we claim the following.

Theorem 11. There is δ > 0, such that no online strategy can guarantee a
competitive factor 1 + δ.

Proof. Consider n1 = 1/2, in combination with the two possible scenarios

(a) n2 = 1/2;
(b) n2 = n3 = . . . = ε.

In scenario (a), an adversary can assign two (1 × 1/2)-rectangles, for a φ-value
of 0.707...; in scenario (b), an adversary can assign all shapes as squares, for a
φ-value of 0.666... If the player chooses a square of size

√
2/2 first, the adversary

50 S.P. Fekete, N. Schweer and J.-M. Reinhardt

(a) (b)

(c) (d)

Fig. 6. The four cases considered in Theorem 10; the left column shows the choices by
an algorithm, the right the corresponding optimal choices for the ensung sequence

(c)(a) (b)

Fig. 7. The scenarios considered in Theorem 11, and a possible choice for the player

can choose scenario (a), causing the second allocation to be in L-shape with
φ-value 2

3 (7 − 4
√
2) = 0.895431..., as opposed to the optimal value of 0.707... If

the player chooses a (1×1/2)-rectangle first, the adversary chooses scenario (b),
for a ratio of 1.06066... The existence of the claimed lower bound follows from
continuity, as the φ-value changes continuously with continuous deformation of
the involved shapes. ��
The precise value arising from the scenarios in Theorem 11 is complicated. It
can be obtained by computing the optimal intermediate value for the player that
allows him to protect against both scenarios at once. For example, optimizing
over the family of allocations shown in Figure 7 (c) yields a competitive ratio
that is better than 1.06; however, the player may do even better by using curved
boundaries. The involved computational effort for the resulting optimization
problem promises to be at least as complicated as computing the “optimal shapes
of a city”, for which no closed-form solution is known, see [7,1].

7 Conclusions

We have established a number of results for the online shape allocation problem.
In principle, further improvement could be achieved by replacing the computa-
tional results for level 3 (i.e., n = 16, . . . , 64) by level 4 (i.e., n = 65, . . . , 256).
(Conversely, a simplified analysis with level 2, i.e., n = 4, . . . , 16; yields a worse
factor of 3.6525.) However, the highest known optimal φ-values are for n = 80,
obtained by using the O(n7.5) algorithm of [5]. In any case, there is a threshold

A Competitive Strategy for Distance-Aware Online Shape Allocation 51

of 1.3504 for Hilbert-based strategies, which we believe to be tight: this is the
ratio between the upper bound of 0.8768 for n = 14 (and for n = 56, 224, . . .)
and the asymptotic lower bound of 0.650245; because asymptotically, continu-
ous and discrete case converge, this also applies to the discrete case. Other open
problems are to raise the lower bound of 1.144866 for the discrete case, and
establish definitive values for the continuous case.

As noted in Section 3, we can eliminate the assumption of all ni being multi-
ples of some 2−R, by making use of Lemma 6, and allocating a small round-off
fraction to a fractional pixel maintains the same bounds. However, the formal
aspects of describing the resulting allocation scheme become somewhat tedious
and would require more space than provided for this short abstract.

The offline problem is interesting in itself: for given ni, i = 0, . . . ,m, allocate
disjoint regions of area ni in a square, such that the maximum average Manhat-
tan distance for each shape is minimized. As mentioned, there is some indication
that this is an NP-hard problem; however, even relatively simple instances are
prohibitively tricky to solve to optimality, making it hard to give a formal proof.
Clearly, our online strategy provides a simple approximation algorithm; how-
ever, better factors should be possible by exploiting the a-priori information of
knowing all ni, e.g., by sorting them appropriately.

a=0.390629

b=0.057296

Fig. 8. A possible worst-case scenario for the offline problem

Another interesting open question for the offline scenario is the maximum
optimal φ-value for any set n1, . . . , nm. A simple lower bound is 2/3 = 0.666...,
as that is the average distance of the whole square. A better lower bound is
provided by dividing the square into two or three equal-sized parts. For the case
n1 = n2 = 1/2, we can use symmetry and convexity to argue that an optimum
can be obtained by a vertical split, yielding φ =

√
2/2 = 0.707. We believe the

global worst case is attained for n1 = n2 = n3 = 1/3. Unfortunately, it is no
longer possible to exploit only symmetry for arguing global optimality. Figure 8
shows an allocation with φ = 0.718736... for all three regions1. We conjecture
that this is the best solution for n1 = n2 = n3 = 1/3, as well as the worst case
for any optimal partition of the unit square.

1 More precisely, the involved values can be expressed as a = 1
108

(
55− 791

θ
+ θ

)
and φ =

(9602477−13416
√

585705)θ+(202679+204
√

585705)ψ2+82133θ3

77760
√

3θ
with θ :=(−16253 + 36

√
585705

)1/3
.

52 S.P. Fekete, N. Schweer and J.-M. Reinhardt

Acknowledgments. A short abstract based on preliminary results of this pa-
per appears in the informal, non-competitive Workshop EuroCG. (Standard dis-
claimer of that workshop: “This is an extended abstract of a presentation given
at EuroCG 2011. It has been made public for the benefit of the community
only and should be considered a preprint rather than a formally reviewed paper.
Thus, this work is expected to appear in a conference with formal proceedings
and/or in a journal.”)

We thank Bettina Speckmann for pointing out references [15] and [4], and
other colleagues for helpful hints to improve the presentation of this paper.

References

1. Bender, C.M., Bender, M.A., Demaine, E.D., Fekete, S.P.: What is the optimal
shape of a city? J. Physics A: Mathematical and General 37(1), 147–159 (2004)

2. Bender, M.A., Bunde, D.P., Demaine, E.D., Fekete, S.P., Leung, V.J., Meijer, H.,
Phillips, C.A.: Communication-Aware Processor Allocation for Supercomputers:
Finding Point Sets of Small Average Distance. Algorithmica 50(2), 279–298 (2008)

3. Dai, H.K., Su, H.C.: On the Locality Properties of Space-Filling Curves. In: Ibaraki,
T., Katoh, N., Ono, H. (eds.) ISAAC 2003. LNCS, vol. 2906, pp. 385–394. Springer,
Heidelberg (2003)

4. de Berg, M., Speckmann, B., van der Weele, V.: Treemaps with bounded aspect
ratio. CoRR, abs/1012.1749 (2010)

5. Demaine, E.D., Fekete, S.P., Rote, G., Schweer, N., Schymura, D., Zelke, M.: Inte-
ger point sets minimizing average pairwise L1 distance: What is the optimal shape
of a town? Comp. Geom. 40, 82–94 (2011)

6. Gotsman, C., Lindenbaum, M.: On the metric properties of discrete space-filling
curves. IEEE Transactions on Image Processing 5(5), 794–797 (1996)

7. Karp, R.M., McKellar, A.C., Wong, C.K.: Near-Optimal Solutions to a 2-
Dimensional Placement Problem. SIAM J. Computing 4(3), 271–286 (1975)

8. Krumke, S., Marathe, M., Noltemeier, H., Radhakrishnan, V., Ravi, S.,
Rosenkrantz, D.: Compact location problems. Theor. Comput. Sci. 181(2),
379–404 (1997)

9. Leung, J.Y.-T., Tam, T.W., Wing, C.S., Young, G.H., Chin, F.Y.: Packing squares
into a square. J. Parallel Distrib. Comput. 10(3), 271–275 (1990)

10. Leung, V.J., Arkin, E.M., Bender, M.A., Bunde, D.P., Johnston, J., Lal, A.,
Mitchell, J.S.B., Phillips, C.A., Seiden, S.S.: Processor Allocation on Cplant:
Achieving General Processor Locality Using One-Dimensional Allocation Strate-
gies. In: Proc. IEEE CLUSTER 2002, pp. 296–304 (2002)

11. Niedermeier, R., Reinhardt, K., Sanders, P.: Towards optimal locality in mesh-
indexings. Discrete Applied Mathematics 117(1-3), 211–237 (2002)

12. Sagan, H.: Space-Filling Curves. Springer, New York (1994)
13. Schweer, N.: Algorithms for Packing Problems. PhD thesis, Braunschweig (2010)
14. Siromoney, R., Subramanian, K.: Space-filling Curves and Infinite Graphs. In:

Ehrig, H., Nagl, M., Rozenberg, G. (eds.) Graph Grammars 1982. LNCS, vol. 153,
pp. 380–391. Springer, Heidelberg (1983)

15. Wattenberg, M.: A note on space-filling visualizations and space-filling curves. In:
Proceedings of the IEEE Symposium on Information Visualization, INFOVIS, pp.
181–186 (2005)

Base Location Problems

for Base-Monotone Regions

Jinhee Chun1, Takashi Horiyama2, Takehiro Ito1,
Natsuda Kaothanthong1, Hirotaka Ono3, Yota Otachi4,
Takeshi Tokuyama1, Ryuhei Uehara4, and Takeaki Uno5

1 Graduate School of Information Sciences, Tohoku University
Sendai 980-8579, Japan

{jinhee,natsuda,tokuyama}@dais.is.tohoku.ac.jp, takehiro@ecei.tohoku.ac.jp
2 Graduate School of Science and Engineering, Saitama University

Saitama 338-8570, Japan
horiyama@al.ics.saitama-u.ac.jp

3 Department of Economic Engineering, Kyushu University. 6-19-1 Hakozaki
Higashi-ku, Fukuoka 812-8581, Japan

hirotaka@en.kyushu-u.ac.jp
4 School of Information Science, Japan Advanced Institute of Science and

Technology. Asahidai 1-1, Nomi, Ishikawa 923-1292, Japan
{otachi,uehara}@jaist.ac.jp

5 National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku,
Tokyo, 101-8430, Japan

uno@nii.ac.jp

Abstract. The problem of decomposing a pixel grid into base-monotone
regions was first studied in the context of image segmentation. It is known
that for a given pixel grid and baselines, one can compute in polynomial
time a maximum-weight region that can be decomposed into disjoint
base-monotone regions [Chun et al. ISAAC 2009]. We continue this line
of research and show the NP-hardness of the problem of optimally locat-
ing k baselines in a given n×n pixel grid. We also present an O(n3)-time
2-approximation algorithm for this problem. We then study two related
problems, the k base-segment problem and the quad-decomposition prob-
lem, and present some complexity results for them.

1 Introduction

Let P be an n×n pixel grid. A pixel (i, j) of P is the unit square whose top-right
corner is the grid point (i, j) ∈ Z2. For example the bottom-left cell of P is (1, 1)
and the top-right cell is (n, n). Each pixel p = (i, j), where 1 ≤ i, j ≤ n, has its
weight w(p) ∈ Z. Now we define the following general problem.

Problem: Maximum Weight Region Problem (MWRP)
Instance: An n× n pixel grid P .
Objective: Find a region R ∈ F maximizing the weight w(R) =

∑
p∈R w(p),

where F ⊆ 2P be a fixed family of pixel regions.

S.K. Ghosh and T. Tokuyama (Eds.): WALCOM 2013, LNCS 7748, pp. 53–64, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

54 J. Chun et al.

Fig. 1. Image segmentation via k baseline MWRP. We first convert a picture to a gray
scale image. Next, with some suitable function, we construct a pixel grid in which each
dark pixel has positive weight and each light pixel has negative weight. Finally we solve
the k baseline MWRP to segment the back ground from the objects. In this example,
the edges of the picture is used as baselines (k = 4). For example, the red region in the
third figure (from left) uses the top edge as its baseline.

The general problem MWRP has been studied for several families F that are
related to practical problems. Observe that if F = 2P , then R can be arbitrarily
chosen, and thus the answer is the set of all positive cells. On the other hand, if
F is the family of connected regions (in the usual 4-neighbor topology), then the
problem becomes NP-hard [2]. For the complexity of MWRP for other families,
see the paper by Chun et al. [4] and the references therein.

Motivatedby the image segmentationproblem,Chunet al. [5] studiedmore com-
plicated family of pixel regions for MWRP (see Fig. 1). A baseline of an n×n pixel
grid P is a vertical line x = b or horizontal line y = b, where 0 ≤ b ≤ n. A pixel re-
gionR is a based x-monotone region if there is a horizontal baseline y = b such that
(i, j) ∈ R implies (i, j−1) ∈ R for j > b+1, and (i, j) ∈ R implies (i, j+1) ∈ R for
j < b (see Fig. 2).Based y-monotone regions are analogously defined. Based x- and
y-monotone regions are base-monotone regions. Given a set of k baselines, a region
R is base-monotone feasible if it can be decomposed into pairwise disjoint base-
monotone regions with respect to the baselines. The k baseline MWRP is MWRP
in which we are given k (vertical or horizontal) baselines, and we find a maximum-
weight base-monotone feasible region with respect to the baselines.

Chun et al. [5] observed that the complement of a maximum-weight base-
monotone feasible region represents an object in a picture nicely if the baselines
are located reasonably (see Figs. 1 and 3). They showed that the k baseline
MWRP can be solved in polynomial time. They also studied the k base-segment
MWRP, in which we are given k segments and find a region decomposable into
base-monotone regions with respect to the given base-segments. (We define this
problem more precisely in the next section.) They showed some partial results
on the complexity of this problem. For other approaches, see e.g. [6,9].

In the setting of the k baseline MWRP, we are given k baselines. Thus a
natural question would be “What if baselines are not given?” In other words,
“How can we divide the pixel grid into subgrids with vertical and horizontal
lines?” We study this problem and show that the problem of optimally locating
k baselines is NP-hard but can be approximated within factor 2. Next we study
the k base-segment MWRP and present sharp contrasts of its computational
complexity. Finally, we propose another way for dividing the pixel grid into
subgrids, and show that this variant can be solved in polynomial time.

Base Location Problems for Base-Monotone Regions 55

Fig. 2. A based x-monotone region (left) and a based y-monotone region (right)

Fig. 3. The complement of a base-monotone feasible region may represent an object
in a picture nicely. By additional baselines, the result may be improved.

2 Definitions of the Three Problems

2.1 Baseline Location

The first and main problem is defined as follows.

Problem: Baseline Location

Instance: An n× n pixel grid P and positive integers k and w.
Question: Are therekbaselines inP such that amaximum-weightbase-monotone

feasible region has weight at least w?

There are only
(
2n+2

k

)
possible allocations of k baselines. Thus Baseline Lo-

cation can be solved in O(2knk+3) time. However, this is impractical if k is
a part of the input. We want to solve this problem in O(poly(k + n)) time or
in O(f(k) · poly(n)) time, where f(k) is a computable function that depends
only on k. Unfortunately, the former, O(poly(k + n)) time, is very unlikely as
we prove the problem to be NP-hard if k is a part of the input. The latter,
O(f(k) · poly(n)) time, remains unsettled in this paper.

2.2 The k Base-Segment MWRP

Consider a segment s contained in a baseline �. If a base-monotone region R
with baseline � intersects � only in s, then R has s as its base-segment. Chun
et al. [5] also studied k base-segment MWRP, in which k base-segments are
given, and one wants to find a region that can be decomposed into disjoint
monotone regions with respect to the given base-segments. They also studied
two-directional version of this problem in which the region can be built only
on the right side of each vertical base-segment and on the upper side of each
horizontal base-segment. They showed the following results.

56 J. Chun et al.

Fig. 4. Quad decompositions of depth 1, 2, and 3

Theorem 2.1 ([5]). The k base-segment MWRP can be solved in O(nO(k))
time. The two-directional version can be solved in O(kO(k)n4) time.

It was not known whether the problem is NP-hard when k is a part of the input
and whether the two-directional version can be solved in polynomial time with
both n and k. We will present affirmative answers to these questions.

2.3 Quad Decomposition

Chun et al. [4] showed that solving the k baseline MWRP is equivalent to solving
the following problem for each subgrid obtained by the given baselines.

Problem: Room-Edge Problem

Instance: An m× n pixel grid P .
Objective: Find a maximum-weight base-monotone feasible region with the

four baselines x = 0, x = m, y = 0, and y = n.

They presented an O(mn2)-time algorithm for the problem above [4]. We solve
the Room-Edge Problem for each subgrid, and then answer their total weight
as one for the baseline MWRP. From this point of view, we propose another
problem Quad Decomposition. For an n ×m pixel grid P and a point p =
(i, j), we can divide P naturally into four subgrids: the bottom-left, bottom-
right, upper-left, and upper-right parts with respect to the point p. We call the
resultant set of subgrids the quad decomposition of P at p. If we recursively apply
this decomposition d times (at arbitrarily chosen points), then we will have 4d

subgrids of P (see Fig. 4) We call the resultant set of subgrids a depth d quad
decomposition of P . Now our problem is defined as follows.

Problem: Quad Decomposition

Instance: An n× n pixel grid P and positive integers d and w.
Objective: Find a depth d quad decomposition of P that maximizes the total

sum of the weight of the optimum solution of Room-Edge Problem for
the subgrids in the decomposition.

Note that we can assume d ≤ log2 n since otherwise the problem becomes trivial
(we can take all the positive cells). We will show that this problem can be solved
in polynomial time. In the context of image segmentation, we may expect that
quad decompositions work well compared to k baseline decompositions. This is
because, by using quad decompositions, we can place many bases in complicated
parts of the image.

Base Location Problems for Base-Monotone Regions 57

Fig. 5. A baseline forcer: forcing one baseline

3 NP-Hardness of Baseline Location

Here we prove the following theorem.

Theorem 3.1. Baseline Location is NP-complete in the strong sense.

The problem is clearly in NP. We prove its NP-hardness by reducing Indepen-

dent Set to this problem. An independent set of a graph is a set of pairwise
non-adjacent vertices. The following problem is known to be NP-complete [7].

Problem: Independent Set

Instance: A graph G and a positive integer s.
Question: Does G have an independent set of size at least s?

3.1 Gadgets

We first define two small gadgets for forcing baselines into restricted zones.
Throughout this paper, each red × in a pixel grid represents a huge (but poly-
nomially bounded) negative weight whose absolute value is equal to the sum of
all the positive weights in the grid. Also, each blue • represents a (not necessarily
large) positive weight. All the other cells have weight 0.

Our first gadget is the 3 × 3 grid depicted in Fig. 5. If we want to take the
positive cell at the center, we need one baseline as in the figure. Since we cannot
take any huge negative cell, the possible locations of the baselines are restricted
to the four positions in the figure. We call this gadget a baseline forcer. The
weight of a baseline forcer is the weight of the positive cell, and the position of
a baseline forcer is the position of its bottom-left cell.

Next we consider a similar gadget depicted in Fig. 6. To take all the positive
cells and not to take any negative cell, we need either one vertical baseline
or two horizontal baselines. Therefore, if we need to minimize the number of
baselines, then we have to use one vertical baseline. We call this gadget a vertical
baseline forcer. By rotating this gadget, we can also obtain a gadget for forcing
two vertical baselines or one horizontal baseline. We call it a horizontal baseline
forcer. Two positive cells in this gadget have the same weight, and their weight is
the weight of the vertical or horizontal baseline forcer. The position of a vertical
or horizontal baseline forcer is the position of its bottom-left cell.

Vertical and horizontal baseline forcers work even if we insert some space
between columns or rows as in Fig. 6. The location of the baseline is restricted
to the area depicted in the figure. We say that a vertical (horizontal) baseline
forcer intersects a vertical (horizontal resp.) baseline if the baseline is in the

58 J. Chun et al.

Fig. 6. (Left) A vertical baseline forcer: forcing one vertical baseline. (Right) Forced
baselines are restricted to the area indicated by double headed arrows.

restricted area; that is, a base monotone shape with the vertical or horizontal
baseline can contain the positive cells in the vertical or horizontal baseline forcer.
The number of the columns used by a vertical baseline forcer is its width, and the
number of rows used by a horizontal baseline forcer is its height. For example,
the original vertical baseline forcer in Fig. 6 is of width 3.

3.2 Reduction

Given an instance (G, s) of Independent Set, we construct an instance (P, k, w)
of Baseline Location as follows. It is easy to see that the reduction below can
be done in polynomial time, and the absolute values of the weights are bounded
by a polynomial of the input size.

In the following, we assume |V (G)| = |E(G)| for notational convenience. (It
is easy to see that Independent Set is NP-hard even if |V (G)| = |E(G)|.)
Let V (G) = {v1, . . . , vm} and E(G) = {e1, . . . , em}. We set the number of
baselines k = 2m and the required weight w = 8m3+8m2+ s. The grid P is the
(20m+ 20)× (20m+ 20) pixel grid with the following entries (see Fig. 7).

Vertex gadgets. For each vertex vi, we put a vertical baseline forcer of width
5 and weight 2m2 + m, denoted VF i, at the position (10i, 5i). We also put a
baseline forcer of weight 1, denoted BF i, at the position (10i− 1, 20m+ 15).

Edge gadgets. Let eh = {vi, vj} ∈ E(G) be an edge with i < j. We put a
horizontal baseline forcer of height 10 and weight 2m2+m, denoted HFh, at the
position (10m+5h, 5m+15h). Next we put two horizontal baseline forcers HFh,i

and HFh,j of height 3 and weight m at the positions (10i − 3, 5m + 15h − 1)
and (10j − 3, 5m + 15h + 8), respectively. Also, we put two baseline forcers
BF h,i and BF h,j of weight m at the positions (10i + 3, 5m + 15h + 2) and
(10j + 3, 5m+ 15h+ 5), respectively.

The weight of negative cells. We have the following positive cells in the grid:

– 4m cells of weight 2m2 +m,
– 6m cells of weight m, and
– m cells of weight 1.

Base Location Problems for Base-Monotone Regions 59

vi v j

eh = {vi, v j}

VFi

VF j

HFh

BFi BF j

BFh,i

BFh, j

HFh, j

HFh,i

Fig. 7. Gadgets for an edge {vi, vj}: black thick lines are the candidates of required
baselines, two vertical and one horizontal

The total weight of the positive cells is W = 4m(2m2 + n) + 6m2 + n = 8m3 +
10m2 + m. We set the weight of the negative cells to −W so that these cells
cannot be taken in any solution with a positive total weight.

Lemma 3.2. (G, s) is a yes-instance of IndependentSet if and only if (P, k, w)
is a yes-instance of Baseline Location.

Since the weight of each cell is polynomially bounded, the problem is NP-hard
in the strong sense.

4 A 2-Approximation Algorithm for Baseline Location

Our approximability result is based on the polynomial-time solvability of the
following problem.

Problem: Vertical Baseline Location

Instance: An n× n pixel grid P and a positive integer k.
Objective: Find k vertical baselines in P that maximize the weight of an opti-

mal base-monotone feasible region with respect to these baselines.

The problemHorizontal Baseline Location is defined analogously.We show
that these problems can be solved in O(n3) time.

60 J. Chun et al.

Theorem 4.1. Vertical Baseline Location and Horizontal Baseline

Location can be solved in O(n3) time.

We solve Vertical Baseline Location with k vertical baselines and Hori-

zontal Baseline Location with k horizontal baselines in O(n3) time, inde-
pendently. We output the better one of these solutions. We can show that the
output is a 2-approximation solution.

Theorem 4.2. There is an O(n3)-time 2-approximation algorithm for locating
k baselines to maximize the weight of optimum base-monotone feasible region.

5 The k Base-Segment MWRP

Here we extend the results of Chun et al. [5] (see Theorem 2.1). We first re-
duce the two-directional version to Weighted Independent Set in bipartite
graphs. We next reduce Independent Set in planar graphs to the original k
base-segment MWRP. The first reduction implies that the two-directional ver-
sion can be solved in polynomial time, and the second implies that the origi-
nal problem is NP-hard, since Independent Set can be solve in polynomial
time [11] for bipartite graphs, and is NP-hard for planar graphs [8].

5.1 Two-Directional Version

To prove the following theorem, we reduce the problem to Weighted Inde-

pendent Set for bipartite graphs.

Theorem 5.1. The two-directional k base-segment MWRP can be solved in
O(k3n6 log kn) time.

We first divide each base-segment of length � into � unit base-segments. This re-
finement does not change the optimum value. Now we have O(kn) base-segments
of length 1. We identify a base-segment s with (i, j) if s is the left or bottom
edge of a pixel (i, j).

For each vertical base-segment s = (i, j), we define its range as follows: if
there is no vertical base-segment s′ = (i′, j) with i′ > i, then the range of s
is [i, n]; otherwise the range of s is [i, i′ − 1], where i′ is the smallest index for
which such a segment exists (see Fig. 8). We define the range of a horizontal
base-segment analogously.

Let s = (i, j) be a vertical base-segment with range [i, i′]. Let as(0) = i − 1,
and for p ≥ 1, let as(p) be the minimum index h such that as(p−1) < h ≤ i′ and∑

as(p−1)<q≤h w(q, j) is positive. If there is no such index, then as(p) is undefined.

If as(p) is defined for some p ≥ 1, then let ws(p) =
∑

as(p−1)<q≤as(p)
w(q, j). See

Fig. 8. For each horizontal base-segment s′, we also define the sequence as′(·)
analogously.

Now we construct a bipartite graph G = (U, V ;E). Let s = (i, j) be a verti-
cal base-segment. Assume that r is the largest index such that as(r) is defined.

Base Location Problems for Base-Monotone Regions 61

s s′
range of s range of s′

s
5 0 −5 2 4 1 3 −1 0 −54 4 2 3 0 −5

as(1) as(2) as(3) as(4) as(5)

Fig. 8. (Left) The ranges of vertical base-segments s and s′. (Right) Example of as(p).
The corresponding weights ws(1), . . . , ws(5) = 5, 1, 1, 3, 3.

s′

as′(2)
us(1) us(2) us(3) us(4) us(5)

vs′(1) vs′(2) vs′(3) vs′(4)

s
as(1) as(2) as(3) as(4) as(5)

as′(3)

as′(4)

as′(1)

Fig. 9. The bipartite graph construction. The vertices corresponding to the crossing
ranges of two base-segments induce the disjoint union of an independent set and a
complete bipartite graph.

Now all as(0), . . . , as(r) are defined by the definition. If r = 0, then this seg-
ment s is useless and ignored. Otherwise, we put vertices us(p), 1 ≤ p ≤ r,
with weight ws(p) into U . For each horizontal base-segment s′ = (i′, j′), we put
vertices vs′(p

′) into V in the same way. Next we define the edge set E. Two ver-
tices us(p) ∈ U and vs′ (p

′) ∈ V are adjacent if and only if two base-monotone
regions with base-segments s and s′ have nonzero area intersection if they con-
tain (as(p), j) and (i′, as′(p′)), respectively. More precisely, this can be stated as:
i ≤ i′ ≤ as(p) and j′ ≤ j ≤ as′(p

′). See Fig. 9 for an example.

Lemma 5.2. An optimum solution of an instance of the two-directional k base-
segment MWRP has weight at least W if and only if the corresponding bipartite
graph G has an independent set of weight at least W .

5.2 NP-Hardness of the k Base-Segment MWRP

We now show the following theorem.

Theorem 5.3. The k base-segment MWRP is NP-complete in the strong sense.

The problem is clearly in NP, and thus it suffices to show the NP-hardness. We
reduce Independent Set for planar graphs to the k base-segment MWRP. A
graph is planar if it can be drawn in the plane without edge crossings. It is
known that Independent Set is NP-hard even for planar graphs [8].

Nice visibility representations. Aw×h grid is the subset {1, 2, . . . , w}×{1, 2, . . . , h}
of the plane. A visibility representation of a planar graphGmaps each vertex ofG

62 J. Chun et al.

a

b

c

d
z

a

bd

z

c

a

b
d

z

c

Fig. 10. A planar graph. Its visibility and nice visibility representations

to a horizontal segment with endpoints in a grid and each edge of G to a vertical
segment with endpoints in a grid such that

1. no segments of two distinct vertices intersect,
2. segments of two distinct edges intersect only at their endpoints, and
3. the segment of an edge {u, v} touches the segments of u and v.

See Fig. 10 for an example. Otten and van Wijk [12] showed that every planar
graph has a visibility representation. It is known that a visibility representation
of a planar graph in an O(n)×O(n) grid can be found in linear time (see [13]).
Additionally, we need the following conditions for representations:

4. no two vertical segments have the same x-coordinate,
5. no two horizontal segments have the same y-coordinate, and
6. no two endpoints of segments have the same position.

We call a visibility representation satisfying the three additional conditions a
nice visibility representation. Given a visibility representation of a planar graph,
we can obtain a nice visibility representation of the graph in polynomial time by
refining each cell of the grid to an O(n)×O(n) subgrid, slightly extending each
horizontal segment, and slightly shifting each vertical segment. Note that each
segment in this representation has length at least 2n.

Reduction. Let (G, s) be an instance of Independent Set, where G is a planar
graph with n vertices and m edges. Note that we do not assume n = m here.
We first construct a nice visibility representation R = (A,B) of G in polynomial
time, where A is the set of horizontal segments and B is the set of vertical
segments. We construct a pixel grid P from R as follows (see Fig. 11).

For each vertex u ∈ V with the corresponding horizontal segment au =
[x1, x2] × {y} ∈ A, we put a vertical base-segment (x1, y) and set the weight
1 to the cell (x2, y). For each edge e = {v, w} ∈ E with the corresponding verti-
cal segment bu = {x}× [y1, y2] ∈ B, we put horizontal base-segments (x, y1) and
(x, y2 + 1) and set the weight n to the cell (x, ye), where the y-coordinate ye is
not used by any vertical base-segment and y1 < ye < y2. Such a coordinate can
be chosen since each segment has length at least 2n. Note that the weight of a
cell is at most n and there is no negative-weight cell.

Equivalence. We now show that (G, s) is a yes-instance if and only if the optimum
value of k base-segment MWRP on P is at least mn + s. Since the weight of
each cell is polynomially bounded, the problem is NP-hard in the strong sense.

Base Location Problems for Base-Monotone Regions 63

Fig. 11. Each green thick segment is a base-segment. In the right figure S = {b, d}.

The three-directional version. In the reduction above, we may assume without
loss of generality that the region can be built only on the right side of each
vertical base-segment, on the upper sides of some horizontal base-segments, and
on the lower sides of the remaining horizontal base-segments. We call this version
the three-directional k base-segment MWRP.

Corollary 5.4. The three-directional k base-segment MWRP is NP-complete in
the strong sense.

6 Polynomial-Time Algorithm for Quad Decomposition

Recall that Quad Decomposition is the problem of finding a depth d quad
decomposition of P that maximizes the total sum of the weight of the optimum
solution of Room-Edge Problem for the subgrids in the decomposition.

A dynamic programming approach allows us to have the following result.

Theorem 6.1. Quad Decomposition can be solved in O(n7) time.

The bottleneck of the running time above is the first phase of solving Room-

Edge Problem for all the possible O(n4) subgrids. Using techniques developed
in the study of the all-pairs shortest path problem, we can slightly improve the
running time of the first phase.

Given s× t and t×r real matrices A = (ai,j) and B = (bi,j), the funny matrix
product A�B is the s× r matrix C = (ci,j) with ci,j = max1≤k≤n(ai,k + bk,j).
It is known that the computational complexity of funny matrix multiplication is
equivalent to that of all-pairs shortest path problem in weighted directed graphs
(see [1, Section 5.9]). We can show that the first phase involves funny matrix
multiplication. Using the current best algorithm for funny matrix multiplication
by Han and Takaoka [10], we have the following result.

Theorem 6.2. Quad Decomposition can be solved in O(n7 log logn/ log2 n)
time.

64 J. Chun et al.

7 Concluding Remarks

Baseline Location and related problems are studied as formulations of image
segmentation problems. However, in this paper, we focused on their theoretical
aspects and studied their computational complexity. We believe that these prob-
lems can arise in practical settings. Experimental results of k-baseline MWRP
and Quad Decomposition for image segmentation can be found in [3,4].

References

1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer
Algorithms. Addison-Wesley (1974)

2. Asano, T., Chen, D.Z., Katoh, N., Tokuyama, T.: Efficient algorithms for
optimization-based image segmentation. Internat. J. Comput. Geom. Appl. 11,
145–166 (2001)

3. Chun, J., Horiyama, T., Ito, T., Kaothanthong, N., Ono, H., Otachi, Y., Tokuyama,
T., Uehara, R., Uno, T.: Algorithms for computing optimal image segmentation
using quadtree decomposition. To appear in TJJCCGG 2012 (2012)

4. Chun, J., Kaothanthong, N., Kasai, R., Korman, M., Nöllenburg, M., Tokuyama,
T.: Algorithms for computing the maximum weight region decomposable into ele-
mentary shapes. Comput. Vis. Image Und. 116, 803–814 (2012)

5. Chun, J., Kasai, R., Korman, M., Tokuyama, T.: Algorithms for Computing the
MaximumWeight Region Decomposable into Elementary Shapes. In: Dong, Y., Du,
D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 1166–1174. Springer,
Heidelberg (2009)

6. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation.
Int. J. Comput. Vis. 59, 167–181 (2004)

7. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman (1979)

8. Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified NP-complete graph
problems. Theoret. Comput. Sci. 1, 237–267 (1976)

9. Gibson, M., Han, D., Sonka, M., Wu, X.: MaximumWeight Digital Regions Decom-
posable into Digital Star-Shaped Regions. In: Asano, T., Nakano, S.-I., Okamoto,
Y., Watanabe, O. (eds.) ISAAC 2011. LNCS, vol. 7074, pp. 724–733. Springer,
Heidelberg (2011)

10. Han, Y., Takaoka, T.: An O(n3 log log n/ log2 n) Time Algorithm for All Pairs
Shortest Paths. In: Fomin, F.V., Kaski, P. (eds.) SWAT 2012. LNCS, vol. 7357,
pp. 131–141. Springer, Heidelberg (2012)

11. Hochbaum, D.S.: Efficient bounds for the stable set, vertex cover and set packing
problems. Discrete Appl. Math. 6, 243–254 (1983)

12. Otten, R.H.J.M., van Wijk, J.G.: Graph representations in interactive layout de-
sign. In: IEEE Internat. Symp. on Circuits and Systems, pp. 914–918 (1978)

13. Wang, J.J., He, X.: Compact visibility representation of plane graphs. In: 28th
International Symposium on Theoretical Aspects of Computer Science, STACS
2011. LIPIcs, vol. 9, pp. 141–152 (2011)

Counting Maximal Points in a Query

Orthogonal Rectangle�

Ananda Swarup Das1, Prosenjit Gupta2, and Kannan Srinathan1

1 International Institute of Information Technology, Hyderabad, India
2 Heritage Institute of Technology, Kolkata, India

anandaswarup@gmail.com, prosenjit gupta@acm.org,

srinathan@iiit.ac.in

Abstract. In this work, we propose a solution with sub-logarithmic
query time for counting the number of maximal points in an axis parallel
query rectangle. The problem has been previously studied in [3] and [5].
To the best of our knowledge, this is the first sub-logarithmic query time
solution for the problem. Our model of computation is the word RAM
with word size of Θ(log n) bits.

1 Introduction

Range Searching is one of the most widely studied topics in computational ge-
ometry. An orthogonal range query is defined as: Given a set P of geometrical
objects (lines, points etc), efficiently report all the objects that are intersecting
the query rectangle q. However, in today’s world of information explosion, the
definition may itself be not sufficient. An end-user in today’s world is often more
willing to see the interesting (meaningful) results instead of the entire result set.
In literature, aggregate functions like sum of weights, count, maximum weight,
minimum weight, average weight, top k weighted points have been used to find
interesting results in a query rectangle. In this work, we use the notion of count-
ing skyline points as our aggregate function to find the interesting points. In
computational geometry, the skyline points are nothing but the set of maximal
points for a data set. A point p is said to be dominating point p′ if px ≥ p′x and
py ≥ p′y. Given a point set R, the set of maximal points R′ is the set of points
which are not dominated by any other points in the set R.

In this work, we study the problem of counting the number of maximal points
in a query rectangle. Our model of computation is the word-RAM (see [7,9])
with word size of Θ(log n) bits.

2 Problem Definition

In this work, we provide an efficient solution for the following problem.

� A preliminary version of the paper was accepted in Canadian Conference on Com-
putational Geometry 2012 but was not presented in the venue. Consequently, the
paper has been removed from the conference program and the official proceedings.

S.K. Ghosh and T. Tokuyama (Eds.): WALCOM 2013, LNCS 7748, pp. 65–76, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

66 A.S. Das, P. Gupta, and K. Srinathan

Problem 1. Given a set R of n points on an n×n grid, that is R = {(xi, yi)|xi ∈
{1, n}, yi ∈ {1, n}}, preprocess them into a data structure such that given an
orthogonal query rectangle q, the count of maximal points in q∩R can be reported
efficiently.

We assume all the points to have distinct x and y-coordinates. In the word RAM
model, Das et al. [3] presented a data structure for the above problem that

requires a storage space of O(n log2 n
log logn) and can be queried in time O(log

3
2 n

log logn).

In the comparison model, Kalavagattu et al. [5] gave a data structure for the
same problem that requires a storage space of O(n log n) and can be queried in
time O(log n). Efficient solutions for the reporting version of the problem have
been proposed in [1,3]. In this paper we manage to obtain the first solution with
sub-logarithmic query time counting algorithm for the problem.

Hereafter we denote by A[i, j], the elements of the array A from position i to
position j.

2.1 The Solution Sketch

Consider an instance of the two-level binary search tree of [6]. We denote the
tree as Tx. Given a query rectangle q = [a, b] × [c, d], the segment [a, b] can be
allocated to at most O(log n) canonical nodes of the tree Tx. These nodes can
be ordered in order of their position from right to left in the tree Tx. We visit
these canonical nodes from the right to the left. In the course of our visit, if we
can count in O(1) time, the number of maximal points in q coming from the
subtree rooted at the currently visited canonical node, then in O(log n) time, we
can count all the maximal points in q.

To achieve a sub-logarithmic query time counting algorithm, we increase the
internal degree of each internal node of Tx from two to

√
logn, thereby decreasing

the height of the tree to O(log n
log logn). Given a query rectangle [a, b]×[c, d], allocate

the segment [a, b] to a node μ ∈ Tx if int(μ) ⊆ [a, b] but int(parent(μ)) � [a, b].

As stated in [7], the set of all such canonical nodes can be grouped intoO(logn
log logn)

groups with each group containing some children vl . . . vk for some node v. We
call the node v, a group leader for the group g(i) and denote it as GL(i). Let
{GL(1) . . . , GL(O(logn

log logn))} be the set of group leaders arranged in order of
their positions from right to left in the modified tree Tx. If we visit each group
leader node GL(i) from right to left and in the process count in O(1) time the
number of maximal points in q coming from the nodes of the group g(i) for which
GL(i) is the group leader, we can count the maximal points in q in O(logn

log logn).
What follows next in the rest of the paper are the details of how to materialize
the idea.

3 Subproblems

In order to solve Problem 1, we will need solutions for the following subproblems.

Counting Maximal Points in a Query Orthogonal Rectangle 67

Problem 2. Given a set S of n points from a universe of [1, logρ n] × [1, n]
for 0 < ρ ≤ 1

2 , preprocess the points into a data structure such that given an
axis parallel rectangle q = [a, b] × [c, d] for (a, b) ∈ [1, logρ n] × [1, logρ n] and
(c, d) ∈ [1, n]× [1, n], we can efficiently count the number of maximal points in
S ∩ q.
In the complete solution, an efficient technique for the above problem will help
us to count in O(1) time the number of maximal points coming from the nodes
{vi . . . , vj} of the group g(i) in a given query rectangle.

Problem 3. Given a sorted array A which is a union of
√
logn distinct sorted

sub-arrays, each of size n
logn (that is A = A0 ∪ A1 ∪ A2 ∪ . . . ∪ A√

logn−1),

preprocess A into a data structure such that given two indices [i, j] for the array
A and two integer values a, b ∈ [0,

√
logn − 1], we can efficiently find the the

smallest value t such that a ≤ t ≤ b and At[1, |At|] ∩A[i, j] �= ∅.
The solution for the above problem will help us to effectively emulate fractional
cascading in the modified tree Tx with each internal node having a degree of
O(
√
logn).

3.1 Solution for Problem 2

Preprocessing
Let all n points have distinct y-coordinates. We sort the points in decreasing
order of their y-coordinates in an array A.

1. Construct a height-balanced binary search tree Ty whose leaf nodes store
the values in the array A and are at the same level. At each internal node
m ∈ Ty, store a key value ym which is the median of the points stored in the
subtree rooted at m.

2. For each pair of possible points (i1, i2) ∈ [1, logρ n] × [1, logρ n], form an
interval [i1, i2] (including i1 = i2).

3. For each value y2 ∈ A and for each possible interval [i1, i2], form 3-sided
anchored rectangles [i1, i2] × [y2,∞) and [i1, i2] × (−∞, y2]. Next, for the
interval [i1, i2] and the value y2, do the following:

(a) visit the ancestors of y2 in the tree Ty. At each ancestorm, find the value
ym stored as the key value.

(b) if ym < y2, form an axis-parallel rectangle R1 = [i1, i2]× [ym, y2].
i. For the points in S ∩ R1, compute the subset of points that are

not dominated by any other point. We call such a subset a maximal
chain. Next, we denote by pymax and pxmax respectively, the topmost
point and the bottommost point of the maximal chain.

ii. Count the number of maximal points in the chain pxmax to pymax.
We denote the value as |pxmax, pymax|. Store the value in a variable
denoted by countm(y2).

iii. Next, for the point pxmax, find the topmost point pnodom in [i1, i2]×
(−∞, ym] such that pnodom is not dominated by pxmax.

68 A.S. Das, P. Gupta, and K. Srinathan

iv. Create a tuple 〈countm(y2), pnodom〉 and store it with reference to
the rectangle R1 in a hash table. Here the suffix m denotes the index
for the node m ∈ Ty that is an ancestor of the leaf node storing the
value y2.

v. Special Cases

A. If no points are present in the rectangle R1, store 〈0, NULL〉.
B. If the point pnodom does not exist, store 〈countm(y2), NULL〉.

(c) On the other hand, if ym > y2, form a rectangleR2 = [i1, i2]×[y2, ym] and
then find the topmost point p′ymax and the bottommost point p′xmax in
the maximal chain for the points in S∩R2. Count the number of maximal
points in the chain from p′xmax to p′ymax that is count |p′xmax, p

′
ymax|.

Store it in a tuple 〈count′m(y1), p
′
xmax〉.

(d) Special Case

i. If there are no points in R2, store 〈0, NULL〉.
4. Maintain the data structure of [4] to find the least common ancestor for two

given leaf nodes of the tree Ty in O(1) time.

Lemma 1. The total storage space needed by the data structure is O(n log1+2ρ n)
words.

Query Algorithm

1. Given a query rectangle [a, b]× [c, d] such that (a, b) ∈ [1, logρ n]× [1, logρ n]
for 0 < ρ ≤ 1

2 and (c, d) ∈ [1, n]× [1, n], find the least common ancestor m
for the values d, c in the tree Ty. Let the key value stored at m be ym.

2. Consider the rectangle [a, b] × [ym, d] and the corresponding tuple
〈countm(d), pnodom〉. The suffix m has the same meaning as specified in step
3(b)iv of the preprocessing algorithm.

3. Let pnodom(y) be the y-coordinate of the point pnodom. If pnodom �= NULL
and c ≤ pnodom(y), we do the following:

(a) Consider the rectangle [a, b] × [pnodom(y), ym]. Choose the value
count′m(pnodom(y)) from the corresponding tuple for the rectangle [a, b]×
[pnodom(y), ym].

(b) For the rectangle [a, b]× [c, ym] choose the value count′m(c).

(c) Return count′m(c)− count′m(pnodom(y)) + 1 + countm(d).

4. If pnodom �= NULL but pnodom(y) < c, then

(a) Return the value countm(d).

5. Special Cases

(a) If count′m(c) = 0, return countm(d).

(b) If countm(d) = 0, return count′m(c).

(c) If count′m(c) �= 0 but pnodom = NULL, return countm(d).

Counting Maximal Points in a Query Orthogonal Rectangle 69

3.2 Analysis of the Query Algorithm

We divide the analysis of the query algorithm into three cases:

Case 1: pnodom �= NULL and c ≤ pnodom(y) < d.

Lemma 2. If count′m(c) �= 0, then the point pnodom belongs to the subtree rooted
at m ∈ Ty.

Proof. Since c ≤ pnodom(y) ≤ d and m is the least common ancestor of c and d
in Ty, the point pnodom belongs to the subtree rooted at m ∈ Ty. ��

Lemma 3. If count′m(c) �= 0, then the maximal chain in the rectangle [a, b] ×
[c, ym] will pass through the point pnodom.

Proof. As the point pnodom is the topmost point below ym and above c and is not
dominated by the point pxmax in [a, b]× [ym, d], the point cannot be dominated
by any other point in the rectangle in [a, b]× [c, ym]. Else, the point dominating
pnodom would have been the topmost point not dominated by pxmax. ��
Lemma 4. The number of maximal points inside the rectangle [a, b] × [c, d] is
equal to the number of maximal points in the rectangle [a, b]× [c, pnodom(y)] plus
the number of maximal points in [a, b]× [pxmax(y), d].

Proof. As the point pnodom is not dominated by pxmax, pnodom(x) > pxmax(x).
Here pnodom(x) and pxmax(x) are the x-coordinates of the points pnodom and
pxmax respectively. Any point in the maximal chain inside the rectangle [a, b]×
[c, pnodom(y)] must have an x- coordinate greater than pnodom(x), otherwise the
point will be dominated by pnodom. Also, it should be noted that any point in
the maximal chain in the rectangle [a, b]× [pxmax(y), d] is not dominated by any
other point in the rectangle [a, b]× [pxmax(y), d] or [a, b]× [c, pxmax(y)]. ��

Lemma 5. See Figure 1. Let p′xmax and p′ymax be respectively the two points with
maximum x and y-coordinates in the rectangle [a, b]× [c, ym]. Let |p′xmax, pnodom|
denote the number of maximal points between p′xmax and pnodom (including p′xmax

and pnodom) inside the the rectangle [a, b] × [c, ym]. Then |p′xmax, pnodom| =
|p′xmax, p

′
ymax| − |p′ymax, pnodom|+ 1.

Proof. By Lemma 3, the point pnodom is a point in the maximal chain from p′xmax

to p′ymax. As the rectangle [a, b]×[pnodom(y), ym] is contained in [a, b]×[c, ym], any
maximal point in [a, b]× [pnodom(y), ym] is also a maximal point in [a, b]× [c, ym].
Therefore, |p′xmax, pnodom| = |p′xmax, p

′
ymax| − |p′ymax, pnodom|+ 1. ��

Case 2: pnodom �= NULL but pnodom(y) < c.

Lemma 6. The number of maximal points inside the rectangle [a, b] × [c, d] is
equal to the number of maximal points in the rectangle [a, b]× [ym, d].

70 A.S. Das, P. Gupta, and K. Srinathan

p
ymax

p
nodom

p
xmax

p
xmax

/

p
/

ymax

(a, c)

y
m

(b,d)

Fig. 1. The rectangle [a, b]×[c, d] is split into two parts (a) [a, b]×[ym, d] and (b) [a, b]×
[c, ym]. The points pxmax, pymay (respectively p′xmax, p

′
ymay) are the bottommost and

the topmost points of the maximal chain in [a, b]× [ym, d] (respectively [a, b]× [c, ym]).
The point pnodom is the topmost point in the anchored rectangle [a, b] × (−∞, ym)
which is not dominated by pxmax.

Proof. As pnodom is the topmost point below ym and not dominated by pxmax,
the case of pnodom(y) < c is possible only if (a) there are no points in the rectangle
[a, b] × [c, ym] or (b) any point in the rectangle [a, b] × [c, ym] is dominated by
the point pxmax. In any case, no maximal point for the rectangle [a, b]× [c, d] is
contained in [a, b]× [c, ym]. ��
Case 3: Special Cases.

Lemma 7. If count′m(c) = 0, then there are no points in S ∩ [a, b]× [c, ym].

Lemma 8. If countm(d) = 0, then there are no points in S ∩ [a, b]× [ym, d].

Lemma 9. If count′m(c) �= 0 but pnodom = NULL, then any point below ym in
[a, b]× (−∞, ym] is dominated by pxmax.

Query Time

Lemma 10. The query algorithm takes O(1) time to count the number of max-
imal points in a query rectangle.

Proof. As all n points have distinct y-coordinates and the y-coordinates of the
points are in the range [1, n], the values c, d is present in array A. Thus, locating
the indices (as well as the leaf nodes) storing these two values can be done
in O(1) time. Finding the least common ancestor m can also be done in O(1)
time. Thus, we are left with is to find the respective tuples for the rectangles
[i1, i2]× [c, ym] and [i1, i2]× [ym, d] and then counting the maximal points in the
rectangle [i1, i2]× [c, d]. All these operations can be done in O(1) time. ��
By Lemmas 1 and 10, we conclude the following.

Theorem 1. Given a set S of n points from a universe of [1, logρ n] × [1, n]
for 0 < ρ ≤ 1

2 , we can preprocess the points into a data structure of size

O(n log1+2ρ n) words, such that given an axis parallel rectangle q = [a, b]× [c, d]
for (a, b) ∈ [1, logρ n] × [1, logρ n] and (c, d) ∈ [1, n] × [1, n], we can count the
number of maximal points in S ∩ q in O(1) time.

Counting Maximal Points in a Query Orthogonal Rectangle 71

3.3 Solution for Problem 3

The problem was also studied in [3]. However, the solution we present here is
much simpler compared to the previous solution.

Preprocessing

1. Given the array A, for an element y stored in the index i, i = 1, . . . , |A|,
create a 2-d point (i, k) if and only if y ∈ A ∩ Ak (note that all the arrays
are distinct).

2. Store these points in a linear-space data structure RS supporting range
successor queries (see [9]) of the form [x1, x2]× [y1,∞). Given a set S of 2-d
points on a grid of size n × n and a query q = [x1, x2] × [y1,∞), a range
successor query returns the point with the smallest y-coordinate in S ∩ q.
It is known from [9] that a range successor query can be answered in O(1)
time if the y-coordinates of the points are in the range [1, O(logn

(log log n)2)]. In

our case, the points (i, k) belong to a grid of size n×√logn.

Query Algorithm

1. On getting the two values a, b where (a, b) ∈ √logn × √logn and the two
indices i, j of the array A where (i, j) ∈ n× n, we search the data structure
RS with the query rectangle [i, j]× [a,∞) and in return, we get a value t in
O(1) time.

2. If t ≤ b, we return t, otherwise we return NULL.

Thus, we conclude the following.

Theorem 2. Given a sorted array A which is a union of
√
logn sorted sub-

arrays (that is A = A0 ∪ A1 . . . ∪ A√
logn−1) , we can preprocess A into a data

structure of size O(|A|) words such that given two indices i, j and two integer
values a, b ∈ [0,

√
logn − 1], we can find the smallest tag t such that a ≤ t ≤ b

and At[1, |At|] ∩ A[i, j] �= ∅ in O(1) time.

4 Solution for Problem 1

Preprocessing

1. Construct a tree Tx, the leaf nodes of which are at the same level (height).
The leaf nodes of the tree store the x-coordinates of the points in the set R
in non-decreasing order of their values.

2. Each internal node μ ∈ Tx has O(
√
logn) children, the left most child being

numbered as
√
logn − 1 while the right most child being numbered as 0.

Each internal node μ ∈ Tx is assigned an interval int(μ) which is equal to
the union of the discrete intervals induced on the x-axis by the values stored
at the leaf nodes of the subtree rooted at μ.

3. Next, the following arrangement has to be done for all the internal nodes of
the tree Tx except the root.

72 A.S. Das, P. Gupta, and K. Srinathan

(a) Each internal node μ has an auxiliary array Aμ which stores the y-
coordinates of the points, the x-coordinates of which are present in
the leaf nodes of the subtree rooted at μ. Thus, Aμ =

⋃
Ai : i =

0 . . .
√
logn − 1. Here, Ai is the auxiliary array for the node vi which

is a child μ. Aμ is sorted in non-increasing order of its values.
(b) Each element of Ai, i = 0, . . . ,

√
logn− 1 will point to its corresponding

position in the array Aμ.
(c) However, there will be no pointers from the elements of the array Aμ to

the elements in the arrays of its children. Rather, the array Aμ will be
preprocessed into a data structure Dμ(1) which is an instance of the data
structure of Theorem 2. While constructing the data structure Dμ(1), we
have to perform the following step:
i. For the value yj stored in Aμ[j], create a 2-d point (vi, yj) provided

the value yj belongs to the array Ai, the auxiliary array associated
with the child vi of the node μ. It should be noted that vi is a value
in the range [0,

√
logn−1]. Thus, we have a set of points from a grid

of [0,
√
log n− 1]× [1, n].

(d) Each child vi of μ maintains a binary string denoted by lookup of size
|Aμ|. The zth most significant bit of the string lookup is set to one if
the element stored in Aμ[z] belongs to the array Ai, the auxiliary array
associated with the node vi.

(e) The string lookup should support rank() and select() queries of [2]. A
similar binary string is also maintained in the data structure of [3].

(f) Maintain RMAμ, a range maxima data structure of [10] such that given
two indices i, j of the arrayAμ, we can return the maximum x-coordinate
for the points whose y-coordinates are stored between Aμ[i] to Aμ[j].

(g) For the values of the array Aμ, construct the following two auxiliary
trees at the node μ.
i. V Tμ which is an instance of the van Emde Boas tree [8].
ii. A height balanced binary search tree Tμ,y. Any node φ ∈ Tμ,y stores

the median of the values stored in the leaf nodes of its subtree.
4. For the root of Tx, we do the following

(a) Each index i of the auxiliary array Aroot will have 2
√
logn pointers of

which
√
logn pointers will be pointing to the smallest elements greater

than Aroot[i] in each of the arrays Aj , the auxiliary arrays associated
with the nodes vj which are the children of the root node.

(b) Similarly the other
√
logn pointers will be pointing to the largest ele-

ments greater than Aroot[i] in the arrays Aj .
(c) Construct a range maxima data structure RMAroot such that given two

indices i, j of Aroot, we can return the maximum x-coordinate among
the points whose y-coordinates are stored between Aroot[i] to Aroot[j].

5. Construct an instance of the data structure of Theorem 1 at each internal
node μ ∈ Tx for the points, the x-coordinates of which are in the subtree of
μ. This is done as follows:
(a) While considering a horizontal interval [i, j] (including i = j), we con-

sider all the points present in the subtrees rooted at the children vi, . . . , vj
of the node μ. Denote such a set as S′.

Counting Maximal Points in a Query Orthogonal Rectangle 73

(b) Next, for each element y ∈ Aμ and each value ym stored in the ancestors
for the value y in the tree Tμ,y at node μ (see step 3(g)ii), we form
a rectangle R1 = [i, j] × [y, ym], assuming ym > y (respectively R1 =
[i, j]× [ym, y], if ym < y).

(c) We then find
i. The topmost and the bottommost point of the maximal chain in
R1 ∩ S′ Denote these points as (ptop, pbottom)

ii. The count of the maximal points in R1 ∩ S′.
(d) This information is stored in a tuple TupleR1 = 〈ptop, pbottom, count〉 for

the rectangle R1.

Lemma 11. The total storage space needed by the data structure for the count-

ing problem is O(n log3 n
log logn).

Query Algorithm
Before considering our counting algorithm, let us take a look of the decomposi-
tion of the query rectangle.

Decomposition of the Rectangle

1. Given a query rectangle [a, b]× [c, d], the segment [a, b] is allocated to a node

μ ∈ Tx if int(μ) ⊆ [a, b] but int(parent(μ)) � [a, b]. There will be O(log
3
2 n

log logn)
such nodes. Denote the set of such nodes as V .

2. As stated in [7], the set of all such canonical nodes can be grouped into
O(log n

log logn) sets with each set g(i) containing some children vl . . . vk for

some node v. We will refer the node v as group leader GL(i). Let G =
{GL(1), . . . , GL(O(log n

log logn)} be the set of group leaders stored in order of
their positions from right to left in the tree Tx.

3. For counting the maximal points in the rectangle [a, b]× [c, d], we decompose
the rectangle into O(logn

log logn) smaller rectangles. The rightmost rectangle
is denoted as R1 while the leftmost rectangle is denoted by Rz for z =
O(log n

log logn). All these rectangles have the same height. However, the width
of the rectangles are defined as follows:

(a) Consider the set V of nodes to which the segment [a, b] is allocated. Let
vi ∈ V be the rightmost node in the tree Tx among all the nodes in V .
Then:
i. Consider the group leader GL(1) for which the node vi is a child.

Remember that the children of GL(1) to which [a, b] is allocated are
grouped in a set g(1).

ii. The horizontal interval for the rectangle R1 is equal to
⋃
int(vj)

provided
A. vj is a child of GL(1) and
B. int(vj) ⊂ [a, b]. In other words, vj ∈ g(1).

(b) Next, consider the reduced set V ′ = V − g(1) for which let vk be the
rightmost node. Consider the group leader GL(2) and the corresponding

74 A.S. Das, P. Gupta, and K. Srinathan

set g(2) for the node vk. The width of the rectangle R2 is the union of
the intervals of the nodes in g(2).

(c) Similarly, we can define the widths of all the rectangles.

Counting

1. Find the least common ancestor (lca) for the leaf nodes storing the values
a, b in the tree Tx. Visit the node lca and search the auxiliary array Alca to
find the indices i, j such that Alca[i] has the smallest value ≥ c and Alca[j]
has the largest value ≤ d. This can be done by searching the van Emde Boas
tree maintained at the node lca.

2. Let the leader node GL(1) be in the subtree rooted at the child node vm for
the node lca.

3. Consider the binary string lookup for the node vm. Then, compute the number
of ones present in the string lookup till (i−1)th most significant bit (msb). This
can be done by using the rank operation of [2]. Let there be t ones till (i−1)th

msb of the string lookup. Then, find the position z of the (t + 1)th one in the
string lookup by using select operation of [2]. The largest value smaller than d
in Avm is stored at the index z. In the similar fashion, we can find the largest
element y′2 ≤ d and the smallest element y′1 ≥ c in AGL(1).

4. For the node GL(1), let vi be its rightmost child to which the segment [a, b]
is allocated. Then, all the children of the node GL(1) starting from vi to
v√logn−1 are in the set g(1). This is because,

(a) the children of GL(1) are numbered from 0 to
√
logn−1 in order of their

positions from right to left and
(b) the least common ancestor lca is an ancestor for GL(1).

5. Next, we search the data structure DGL(1) which is an instance of the data
structure of Theorem 2 to find the smallest indexm ∈ [i,

√
logn−1] such that

the node vm has the rightmost maximal point in the rectangle [a, b]× [y′1, y′2].
To find the tag m, we run the range successor query for [i,∞)× [y′1, y

′
2]. As

i ∈ [0,
√
logn− 1], the range successor query can be performed in O(1) time

(See [9]).
6. We then, count the number of maximal points in the rectangle [m,

√
logn−

1] × [y′1, y
′
2] by searching the instance of the data structure of The-

orem 1 (see step 5 of preprocessing) at node GL(1). Also, we find
pymax = (pymax(x), pymax(y)), the point with the maximum y-coordinate
in [m,

√
logn − 1] × [y′1, y′2] (see step 5d of preprocessing). Store this count

in a variable Total1.
7. Next, we move to the leader node GL(2). Let the group g(2) be
{vw, vw+1, . . . , vq−1, vq}. Then, at the node GL(2), we will count the number
of maximal points in the rectangle [w, q] × [pymax(y), d]. Store the count in
a variable Total2.

8. It should be noticed that the node GL(2) will satisfy one of the following
three conditions.
(a) GL(2) is in the path from GL(1) to lca.
(b) GL(2) is in the path from GL(z) to lca.
(c) GL(2) is the lca.

Counting Maximal Points in a Query Orthogonal Rectangle 75

9. Let GL(2) be present in the path from GL(1) to lca. Notice that any element
in AGL(1) has a pointer to its corresponding position in the auxiliary array
attached to the parent of GL(1). Thus, finding y′2 ≤ d in AGL(2) can be
done easily by following pointers. Similarly, the first element greater than
pymax(y) can also be found in pymax(y).

10. If GL(2) is in the path from lca to GL(z), then, we first move to the node
lca by following pointers from GL(1) and then by using the techniques as
described in step 3, we descend to GL(2).

11. Finally, if GL(2) is the lca, we move to the node lca by following pointers
from GL(1).

12. We repeat similar steps until we have visited all the group leader nodes.
13. At the end of visiting all the group leader nodes, return Total =

∑
Totali :

i = 1, . . . , O(logn
log log n).

5 Query Time Analysis and Correctness Proof

Lemma 12. Our query algorithm correctly counts the number of maximal points
inside the query rectangle.

Proof. We decompose the query rectangle into O(logn
log log n) smaller rectangles.

The rightmost rectangle is R1 whereas the leftmost rectangle is Rz for z =
O(log n

log logn). We start our search from the rightmost rectangle R1 and then, se-

quentially visit the rectangles from right to left. Let pymax = (pymax(x), pymax(y))
be the topmost point of the rectangle R1. The point is sure to be in the maxi-
mal chain as all points in the rectangles R2 . . . Rz have x-coordinates less than
pymax(x). Thus, for the rectangle R2, while counting the number of maximal
points, we consider points with y-coordinates in the range [pymax(y), d]. The
process is continued till we visited all the rectangles. In each individual rectan-
gle Ri, the counting is equivalent to counting maximal points in a narrow query
rectangle [x1, x2]×[y1, y2], where (x1, x2) ∈ [

√
logn×√logn] and (y1, y2) ∈ n×n.

By Theorem 1, we can correctly count the number of maximal points in a query
rectangle [x1, x2] × [y1, y2] in O(1) time, if (x1, x2) ∈ [

√
logn × √logn] and

(y1, y2) ∈ n×n. We repeat similar steps until all the decomposed rectangles are
visited. The final answer that is returned is the sum of the counts of the maximal
points in each of the visited rectangles. ��
Lemma 13. The query algorithm takes O(logn

log logn) time to count the number of
maximal points in the query rectangle.

Proof. By Theorem 1, we know that counting the number of maximal points in
a query rectangle [i, j]× [c, d] for (i, j) ∈ [1, logρ n]× [1, logρ n] for ρ ≤ 1

2 can be
done in O(1) time. Thus, if we can show that all the group leaders can be visited
in O(logn

log log n) time, we are done. There are two possible scenarios. (a) The first
scenario is where the lca is not a group leader. We start our counting from the
node GL(1). The next node GL(2) will be either in the path from GL(1) to lca
or in the path from lca to GL(z) for z = O(log n

log logn). Let GL(2) be in the path

from GL(1) to lca. Once we have discovered the point pymax with maximum

76 A.S. Das, P. Gupta, and K. Srinathan

y-coordinate for the rectangle R1 at node G(1), finding the position of the ele-
ment pymax(y) in the arrayAGL(2) is easy as there are pointers from the elements
of the array AGL(1) to their corresponding positions at Aparent(GL(1))(step 9).

On the other hand, if GL(2) is in the path from lca to G(z) for z = O(logn
log logn),

finding the smallest value greater than or equal to pymax(y) could be done easily
by using step 10 at the nodes in the path. Thus, all the group nodes in the path
from GL(1) to lca as well as from lca to GL(z) for z = O(log n

log logn) can be vis-

ited in O(logn
log log n) time as the length of any path is O(logn

log log n); (b) The second

scenario is where lca is the group leader GL(2). In that case, we can move from
GL(1) to GL(2) by following the pointers. It should be noticed that no path
is visited more than once. If the lca is not a group leader, we carry out search
operations on the group leaders on the two paths. On the other hand, if the lca
is a group leader, we need to search one additional group leader along with the
ones on the two paths. The length of any path is O(logn

log log n). ��
By Lemmas 11 and 13, we conclude the following.

Theorem 3. Given a set S of n points from a universe of n× n where all the
points have distinct x and y-coordinates, we can preprocess the points into a data

structure of size O(n log3 n
log logn) words, such that given an axis parallel rectangle

q = [a, b] × [c, d], we can count the number of maximal points in S ∩ q in time
O(log n

log logn).

References

1. Brodal, G.S., Tsakalidis, K.: Dynamic Planar Range Maxima Queries. In: Aceto,
L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6755, pp. 256–267.
Springer, Heidelberg (2011)

2. Clark, D.R., Munro, J.I.: Efficient suffix trees on secondary storage (extended ab-
stract). In: SODA, pp. 383–391 (1996)

3. Das, A.S., Gupta, P., Kalavagattu, A.K., Agarwal, J., Srinathan, K., Kothapalli,
K.: Range Aggregate Maximal Points in the Plane. In: Rahman, M. S., Nakano, S.-
I. (eds.) WALCOM 2012. LNCS, vol. 7157, pp. 52–63. Springer, Heidelberg (2012)

4. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors.
SIAM J. Comput. 13(2), 338–355 (1984)

5. Kalavagattu, A.K., Agarwal, J., Das, A.S., Kothapalli, K.: On Counting Range
Maxima Points in Plane. In: Arumugam, S., Smyth, B. (eds.) IWOCA 2012. LNCS,
vol. 7643, pp. 263–273. Springer, Heidelberg (2012)

6. Kalavagattu, A.K., Das, A.S., Kothapalli, K., Srinathan, K.: On finding skyline
points for range queries in plane. In: CCCG (2011)

7. Nekrich, Y.: A linear space data structure for orthogonal range reporting and
emptiness queries. Int. J. Comput. Geometry Appl. 19(1), 1–15 (2009)

8. van Emde Boas, P.: Preserving order in a forest in less than logarithmic time. In:
FOCS, pp. 75–84 (1975)

9. Yu, C.C., Hon, W.K., Wang, B.F.: Improved data structures for the orthogonal
range successor problem. Comput. Geom. 44(3), 148–159 (2011)

10. Yuan, H., Atallah, M.J.: Data structures for range minimum queries in multidi-
mensional arrays. In: SODA, pp. 150–160 (2010)

Voronoi Game on Graphs

Sayan Bandyapadhyay, Aritra Banik, Sandip Das, and Hirak Sarkar

Indian Statistical Institute
Kolkata, India

{sayan.bandyapadhyay,aritrabanik,hiraksarkar.cs}@gmail.com,
sandipdas@isical.ac.in

Abstract. Voronoi game is a geometric model of competitive facility
location problem, where each market player comes up with a set of pos-
sible locations for placing their facilities. The objective of each player
is to maximize the region occupied on the underlying space. In this pa-
per we consider one round Voronoi game with two players. Here the
underlying space is a road network, which is modeled by a graph em-
bedded on R2. In this game each of the players places a set of facilities
and the underlying graph is subdivided according to the nearest neigh-
bor rule. The player which dominates the maximum region of the graph
wins. Given a placement of facilities by Player 1, we have characterized
the optimal placement by Player 2. At first we dealt with the case when
Player 2 places a constant number of facilities and provided an algorithm
for the same. Next we have proved that finding the optimal placement
of k facilities by Player 2 is NP-hard where k is given. Lastly we pre-
sented a 1.58 factor approximation algorithm for the above mentioned
problem.

1 Introduction

A situation often arises in market where the competitive service providers (Hotel
Chains, Supermarkets etc.) want to occupy a big area in a locality so that they
could attract as much customers as possible. The game-theoretic analogue of
competitive facility location problem is Voronoi Game which was proposed by
Ahn et al. [1]. In this game the main objective of a player is to cover maximum
area by placing its facilities on the underlying space. A point on the underlying
space is always served by its nearest facility. Different versions of this game can
be modeled by changing the underlying space like line segment, circular arc,
graph and 2D-plane.

Ahn et al. [1] have discussed the case where the game is restricted to 1-
dimensional continuous domain. Cheong et al. [3] and Fekete et al. [4] have dealt
with 2-dimensional case but for one round. Banik et al. [2] have discussed the
one round discrete version of this game on lines. Demaine et al. [8] have dealt
with the discrete version of the game on graphs where the users and facilities
are constrained to be located on vertices. A special case of this game when the
underlying space is a path have considered by Kiyomi et al. [7].

S.K. Ghosh and T. Tokuyama (Eds.): WALCOM 2013, LNCS 7748, pp. 77–88, 2013.
� Springer-Verlag Berlin Heidelberg 2013

78 S. Bandyapadhyay et al.

In this paper we consider a game where the underlying space is a road network,
described by a graph G(V,E). With each edge (u, v) ∈ E, a positive weight
w(u, v) is associated which can be considered as the length of the edge (u, v).
Throughout the paper we will assume that an embedding of G on R2 is given.
As any edge (u, v) is having a positive weight w(u, v), we can map it to a closed
interval [0, w(u, v)] of length w(u, v). Thus for any point p on this interval we
can define its distance to u as |p| and to v as w(u, v) − |p|. One thing to note
here is that, throughout the paper, by a point p on G we mean either p ∈ V
or p belongs to any edge (u, v). For any two points p and q in G, the distance
between p and q is considered as the shortest path distance between them and
is denoted by d(p, q). A weight wv is associated with each vertex v in G and the
total weight of G is defined as,

W =
∑

(u,v)∈E

w(u, v) +
∑
v∈V

wv

f1 f2

f3

v1

v2

v3

v4

v5

v6

p1 p2

Fig. 1. Service zone of f2

We refer to a portion of an edge as sub-edge. As we have defined earlier that
an edge e can be modeled as an interval of length w(e), a sub-edge may be
defined as a sub-interval of the interval with length defined accordingly. We
define a sub-graph G′ = (V ′, E′) of a Graph G, such that E′ is a finite subset
of edges and sub-edges of G. Hence V ′ can contain some vertices of V or some
points belong to edges of G. Weight of a sub-edge is same as the length of
the interval correspond to it. For any sub-graph G′ of G we define the weight
of G′, W (G′) as the sum of the weights of the edges, sub-edges and vertices
present in G′.

Like any other versions of Voronoi game, here facilities are modeled as points
in the underlying space. Given any set of facilities F on G, service zone GF (f)
of any facility f ∈ F is defined as the set of points in G that are closer to f than
any other facility f ′ ∈ F . In case if a point is equidistant to its nearest facilities
of P1 and P2, then it is included in the service zone of P2. Observe that for any
facility f , GF (f) is a connected sub-graph of G. It would be more appropriate

Voronoi Game on Graphs 79

to refer GF (f) as a subset of G, because GF (f) may contain portions of some
edges. For example in Figure 1, service zone of f2 (shown in bold) contains
the portions of the edges (v2, v4) and (v4, v6) where p1 be the point such that
d(f1, p1) = d(p1, f2) and for p2, d(f2, p2) = d(p2, f3). For a set of facilities F

′ ⊆ F
define the service zone of F ′, GF (F

′) = ∪f∈F ′GF (f).
In this paper we will consider the One-Round (m, k) Voronoi Game on Graphs.

The game consists of a weighted graph G(V,E) and two players P1 and P2 re-
spectively. Initially P1 placesm facilities, followed by which P2 places k facilities
in G. For any set of facilities F and S by P1 and P2 respectively, the payoff of
P1, Q1(F, S) is defined as W (GF∪S(F)) and the payoff of P2, Q2(F, S) is de-
fined as W −Q1(F, S). Let ν(F)=maxS Q2(F, S) where maximum is taken over
any placement of k facilities S by P2. The One-Round (m, k) Voronoi Game on
Graphs can be formally stated as follows.

One-Round (m, k) Voronoi Game on Graphs: Given a graph G = (V,E) and
two players P1 and P2 having m and k facilities respectively, P1 chooses a
set F ∗ ofm facility locations following which P2 chooses a set S∗ of k facility
locations disjoint from F ∗ in G, such that:

(i) maxS Q2(F
∗, S) is attained at S=S∗;

(ii) minF ν(F) is attained at F = F ∗, where the minimum is taken over all
possible set of facility locations F of P1.

The paper is organized as follows. In the next section, we give a lower bound on
optimal payoff of first player (P1) on trees. In section 3, we will characterize the
optimal strategy of P2 for One-Round Voronoi Game on Graphs and propose an
algorithm for finding an optimal placement of facilities by P2, where the number
of facilities placed by P2 is constant. In section 4, we will prove that the problem
of finding an optimal strategy of P2 on general graphs is NP-hard. Finally in
section 5, we will propose a 1.58 factor approximation algorithm for finding an
optimal strategy of P2 for One-Round Voronoi Game on Graphs.

2 Voronoi Game on Trees

In this section we will consider the game where the underlying space is a tree,
say T = (V,E). Denote the total weight of T by W . Let P = {p1, p2, . . . , pτ} be
any set of points on T . Observe that T \ P is a set of sub-trees of T . We refer
to those sub-trees as partitions of T . For example in Figure 2, four partitions of
an example tree with respect to the set of points {p1, p2, p3} has shown. Let us
denote T \P by T (P). Observe that for any set of m facilities in T placed by P1
partitions T into at least m+ 1 partitions. By placing one or more facility in a
partition, P2 can get only a portion of that partition. Now we have the following
lemma.

Lemma 2.1. For any tree T , there exists a set of points P = {p1, p2, . . . , pτ}
which partitions T into at least τ +1 sub-trees, such that weight of each sub-tree
Ti ∈ T (P) is at most W

τ+1 , where τ is any positive integer.

80 S. Bandyapadhyay et al.

v1

v2
v3

v4

v5

v6

v7

v8

v9

v10

v11
v12

v13

p1

p2

p3

(a)

v1

v2
v3

v4

v5

v6

v7

v8

v9

v10

v11
v12

v13

p1

p2

p3
p3p1

p2

(b)

Fig. 2. Example of partition of a tree: (a) Original Tree T and (b) Partitions of T

Proof. Observe that it is enough to prove that given any weighted tree T and a
positive integer τ there exist a point p̊, which partitions the tree into two or more
parts such thatweight of one part is less than or equal to τ∗W

τ+1 andweight of all other

parts are less than or equal to W
τ+1 . Choose an arbitrary vertex of tree as the root

of T . Define an extended weight functionwT from the vertices of T toR, such that,
weight of any leaf node v is its original weight wv and weight of any internal node
vi is equal to

∑
vj
(wvi +wT (vj)+w(vi, vj)), where vj is child of vi andw(vi, vj) be

the weight of the edge (vi, vj). Now observe that there will always be a node with
weight greater than or equal to W

τ+1 and all of its children are having weight less

than W
τ+1 . Denote that vertex by v̆. Let the children of v̆ be {v1, v2, . . . , vk}. Now

if for all 1 ≤ i ≤ k, wT (vi)+w(v̆, vi) is less than
W
τ+1 , then p̊ = v̆. Otherwise there

exist a child vj of v̆, such that, wT (vj) + w(v̆, vj) >
W
τ+1 , but wT (vj) <

W
τ+1 . But

in that case observe that there exists a point p on the edge (v̆, vj) which partitions
the tree into two parts, one having weight W

τ+1 and other having weight τ∗W
τ+1 . Thus

p̊ = p and the result follows. �

Corollary 1. There exists a placement strategy of P1 such that it always
achieves at least m−k+1

m+1 W as its payoff for One-Round (m,k) Voronoi Game
on Trees.

Proof. We prove this corollary by proposing an placement strategy of P1. By
Lemma 2.1 we know that there exists a set F ′ such that F ′ partition the tree T in
a manner such that each of the partition is having a weight at most W

m+1 , where|F ′|=m. Suppose P1 places its facilities on the points of F ′. As each partition
is bounded by some facility of P1, placing k facilities on such partitions limit
the optimal payoff of P2 to W

m+1k. Hence the payoff of P1 is at least m−k+1
m+1 W ,

which completes the proof of this corollary. ��
Now consider a restricted version of this game where k = 1, i.e P2 places only
one facility. Also consider the class of Star trees with m + 1 edges of equal
weight. For this case, an optimal strategy of P1 is to place a facility at the
central vertex and the remaining m− 1 to anywhere on the Star. On the other
hand P2 chooses a point as close as possible to the central vertex, on some edge,

Voronoi Game on Graphs 81

which doesn’t contain any facility of P1, as its optimal strategy. Thus service
zone of P2 is limited within an edge and payoff of P1 is m

m+1W . Hence the bound
of Observation 1 is tight.

3 Optimal Facility Locations of P2 on Graphs

Before we move on to the general problem on graph let us first consider a re-
stricted game. Let G(V,E) be any graph and F = {f1, f2, . . . fm} be a set of
facilities placed by P1. Now suppose P2 wants to place only one facility. Goal is
to find the optimal placement by P2 in G. Let V = {v1, v2, . . . , vn} and denote
the edge joining any two vertices vi and vj by eij . Define arc to be an edge or
a portion of an edge. An arc between two points u and v are denoted by 〈u, v〉.
For any vertex vi ∈ V denote the facility closest from vi among the facilities in
F by f(vi) and the distance between vi and f(vi) by di. Let Γ (vi) be the set of
points in G which are at a distance di from vi. Now observe that any edge can
contain at most two points from Γ (vi). Hence for any vertex vi, |Γ (vi)| contains
O(|E|) many points. Let Γ = ∪1≤i≤nΓ (vi). Thus Γ contains O(|V ||E|) many
points.

Let us assume for each arc 〈fi, vj〉, where fi ∈ F and vj ∈ V , there exists
a point p very close to fi such that distance between p and fi is small enough
to be considered as zero. We include all those points into Γ and we have the
following observation.

Observation 3.1. Number of points in Γ is bounded by O(|V ||E|).
Let s be any placement of a facility by P2 located on an arbitrary edge eij .
Consider any path λ between s and any facility fl ∈ F , such that half of the
points of λ are closer to fl than any other facility in F ∪ {s} and the rest of
the points are closer to s than any other facility in F . Denote all such paths by
π(s). For example in Figure 3 the path between s and f2 is in π(s), but the path
between s and f1 is not in π(s).

vk

30

f1

f2

s

10

30

Fig. 3. Example of facilities placed by P1 and P2

Observe that for any path λ ∈ π(s), λ contains at least one of vi or vj . Let
π1(s) be the set containing all those paths of π(s) which contain vi, but not vj
and π2(s) be the set containing all those paths of π(s) which contain vj , but

82 S. Bandyapadhyay et al.

not vi. For the paths λ ∈ π(s), such that λ contain both of vi and vj , include
λ in π1(s) if vi is preceded by vj in λ, otherwise include it in π2(s). Observe
that π1(s) ∩ π2(s) = ∅. Define the set B1(s) and B2(s) such that they contain
the midpoints of the paths in π1(s) and π2(s) respectively. We refer to those
midpoints as bisectors.

Observation 3.2. Each edge contains at most one point of B1(s) ∪B2(s).

Proof. Suppose there exists two paths λ1 and λ2 in π(s) such that the bisectors
of λ1 and λ2 belong to the same edge eab. Let b1 and b2 be the bisectors of λ1
and λ2 respectively. Without loss of generality assume the paths λ1 and λ2 start
at s and end at fk and fl respectively. Note that a path is a sequence of vertices.
Suppose along the path λ1, the vertex va precedes the vertex vb. Now there will
be two cases.

vi vjs

va vbb1 b2

fk fl

(a)

vi vjs

va vbb1 b2

fkfl

(b)

Fig. 4. Figure showing two cases for the proof of Observation 3.2

Case 1 : Along the path λ2, va precedes vb(see Figure 4(a)). Suppose distance of
b1 and fk is δ1 along λ1 and distance of b2 and fl is δ2 along λ2. Now there
are two possibilities, δ2 < δ1 or δ2 ≥ δ1. The first possibility contradicts
the fact that the arc 〈b1, b2〉 is served by P1 considering the path λ1. The
second possibility contradicts the fact that the arc 〈b1, b2〉 is served by P2
considering the path λ1.

Case 2 : Along the path λ2, vb precedes va(see Figure 4(b)). If we consider the
path λ1, then by definition of bisector the arc 〈b2, vb〉 will be served by P1.
But if we consider the path λ2, then by definition of bisector the arc 〈b2, vb〉
will be served by P2. Hence contradiction and the result follows. ��

vi s

δ

vj
ps

ms mp

δ/2

flp

Fig. 5. Positions of s, ps and fl

Let ps ∈ 〈s, vj〉 be the point closest to s, such that ps ∈ Γ ∪ V (see Figure 5).
Let λ ∈ π2(s) be a path between s and fl, where fl ∈ F and ms be the midpoint

Voronoi Game on Graphs 83

of λ. Let p be any point on the arc 〈s, ps〉. Suppose the distance between s and
ps along eij is equals to δ. Observe the length of the path is now reduced and
hence the mid point is shifted from ms to a new point mp. Now we have the
following observation.

Observation 3.3. Distance between ms and mp is equal to δ/2 along eαβ.

Observation 3.3 holds for any path λ ∈ π2(s). Similarly for any path λ′ ∈ π1(s)
consider the point p′s closest to s, such that p′s ∈ Γ ∪V . Observe that if the facility
of P2 is shifted from s to any point p ∈ 〈p′s, s〉 the midpoint of the path λ′ is moved
to a distance δ′/2, where δ′ is the distance between p and s along eij .

10

10

100

10

10

v1

v2

v3 v4

v5

v6

f1 f2

Fig. 6. Example of facilities placed by P1 and P2

One thing to note here is that there might be more than one optimal placement
by P2, even there might be infinitely many optimal placements by P2. In Figure
6 where P1 has placed two facilities at v3 and v4, any point on the edge joining
v3 and v4 is an optimal placement by P2. Now we have the following theorem.

Theorem 3.1. There exists an optimal strategy of P2 which belongs to Γ ∪ V .

Proof. Let s̊ be any optimal placement by P2 such that s̊ /∈ Γ ∪ V . Suppose
s̊ belongs to the edge eij . Let pl ∈ 〈vi, s̊〉 be the point closest to s̊, such that
pl ∈ Γ ∪ V . Similarly define pr ∈ 〈 s̊, vj〉 be the point closest to s̊, such that
pr ∈ Γ ∪ V (see Figure 7). Now observe that it is enough to show that either
P(F, s̊) ≤ P(F, pl) or P(F, s̊) ≤ P(F, pr).

δ1 δ2

s̊Vi Vj

f1

f2

f3

f4

f5

f6

pl prm1 m2
rm2

l

δ1/2 δ2/2

m2 m5
rm5

l

δ1/2 δ2/2

Fig. 7. Positions of s̊, pl and pr

Now suppose P(F, s̊) > P(F, pl) and P(F, s̊) > P(F, pr). Recall that for any
placement of facility s by P2, B1(s) and B2(s) are the sets of bisectors correspond

84 S. Bandyapadhyay et al.

to the set of paths π1(s) and π2(s). Now based on the emptiness of B1 (̊s) and
B2(̊s) two cases can arise.

Case 1: B1(̊s) = ∅ or B2(̊s) = ∅. Without loss of generality assume B2(̊s) = ∅.
Observe that as F �= ∅, B1(̊s) �= ∅. Now there is no path between s̊ and any
facility of P1 via vj . Thus P(F, s̊) ≤ P(F, pl), which contradicts our basic
assumption and hence the result follows.

Case 2: B1(̊s) �= ∅ and B2(̊s) �= ∅. Suppose distance between s̊ and pl be δ1
and distance between s̊ and pr be δ2(see Figure 7). Further let |B1(̊s)| = k1
and |B2(̊s)| = k2. Consider any path λ in π1 (̊s). Let m1 ∈ B1(̊s) be the
midpoint of λ. Observe that instead of placing the facility at s̊, if P2 would
have placed it at pl, the length of the path λ between two facilities is reduced
by δ1. From Observation 3.3 we know the new midpoint is at a distance δ1/2
from m1 along λ(see Figure 7). Now as |B1(̊s)| = k1, k1 many such paths
are there. Hence along all such paths the payoff of P2 will be decreased by
k1∗δ1

2 . Similarly along the paths in π2(s) the payoff will be increased by k2∗δ1
2 .

Hence,

P(F, pl) = P(F, s̊) + (k2 − k1) ∗ δ1/2 (1)

Similarly if P2 would have placed the facility at pr, the payoff of P2,

P(F, pr) = P(F, s̊) + (k1 − k2) ∗ δ2/2 (2)

Now as, P(F, s̊) > P(F, pl) and P(F, s̊) > P(F, pr), from Equation 1 and
2 we get, (k2 − k1) ∗ δ1/2 < 0 and (k1 − k2) ∗ δ2/2 < 0. As δ1, δ2 > 0, we
get (k1 − k2) < 0 and (k2 − k1) < 0, hence contradiction and the result
follows. ��

Now consider the general problem where P2 is interested in placing k(> 1)
facilities. Again the goal is to find the optimal placement by P2 on G. Consider
any set of placements S by P2. Let s ∈ S be any arbitrary facility location.
Without loss of generality we assume s is on the edge eij . We refine the definition
of π(s) by saying that π(s) is the set of paths between s and any facility of P1
such that for each path λ ∈ π(s), half of the points of λ are closer to some fi ∈ F
than any other facility point in F ∪ S and the rest of the points are closer to s
than any other facility point in F ∪ S. Similarly define π1(s) and π2(s) as the
disjoint subset of π(s), such that the paths in π1(s) and π2(s) contains vi and
vj respectively. Accordingly let B1(s) and B2(s) are the sets of midpoints of the
paths in π1(s) and π2(s) respectively. Next we present a theorem whose proof is
somewhat similar to the proof of theorem 4.1.

Theorem 3.2. For One-Round (m, k) Voronoi Game on Graphs there exists an
optimal strategy of P2 which belongs to Γ ∪ V .

Proof. Let S̊ be any optimal placement by P2. We show that there exists a
placement S′ ⊆ Γ ∪ V by P2 such that P(F, S̊) ≤ P(F, S′). Let there exists a
placement point s̊ ∈ S̊ such that s̊ /∈ Γ ∪ V . Without loss of generality assume

Voronoi Game on Graphs 85

s̊ belongs to the edge eij . Let pl ∈ 〈vi, s̊〉 be the point closest to s̊, such that
pl ∈ Γ ∪ V . Similarly define pr ∈ 〈 s̊, vj〉 be the point closest to s̊, such that
pr ∈ Γ ∪ V .

Instead of placing a facility at s̊ if P2 would have placed it at pl or pr, then
using a similar argument like in proof of theorem 4.1, we can prove that either
P(F, S̊) ≤ P(F, S̊ \ {̊s} ∪ pl) or P(F, S̊) ≤ P(F, S̊ \ {̊s} ∪ pr) .

By using this construction repeatedly we substitute each of such s̊ ∈ S̊, such
that s̊ /∈ Γ ∪ V , by a point in Γ ∪ V . We end up getting a set S′ ⊆ Γ ∪ V , such
that P(F, S̊) ≤ P(F, S′), which completes the proof of this theorem. ��
One thing here to note, that it is possible to design a simple algorithm, which
by checking all subsets of size k of the set Γ ∪ V , finds out the optimal strategy
of P2. But when k is not constant and considered as part of input, the running
time of this algorithm is exponential. In the next section we prove that when k
is considered as part of input, the problem is NP-hard.

4 Computational Complexity for Graphs

In this section we will prove that given a placement of m facilities by P1 de-
termining the optimal placement by P2 in One-Round (m, k) Voronoi Game on
Graphs is NP−hard. Let us call the problem of finding the optimal placement of
P2 in One-Round (m, k) Voronoi Game on Graphs as Maximum payoff problem.
Now consider the decision version of Maximum payoff problem. Given a graph
G = (V,E), a set of m facilities F by P1 in G, and a real number δ, we have to
decide whether there exists a set of k points S disjoint from F in G such that
the payoff of P2, Q2(F, S) ≥ δ or not. Clearly the problem is in NP as given
any placement of facility by P1 and P2 time it is possible to find out Q2(F, S)
in polynomial time. To prove that the problem is NP-hard we will reduce Max-
imum payoff problem from Minimum Dominating Set problem which is known
to be NP-hard[5]. But before that let us first define the Minimum Dominating
Set problem.

Minimum Dominating Set Problem: Given a graph G = (V,E) a dominating set
is a set of vertices S ⊆ V such that each vertex in graph G is either in S or
is a neighbor of at least one element of S. The problem asks to find such S
with minimum cardinality.

Given a graph G and an integer k, the decision version of Minimum Dominating
Set Problem asks whether there exist a dominating set of size k or not. Now we
have the following theorem.

Theorem 4.1. Decision version of Maximum Payoff Problem is NP-complete.

Proof. Let I=(G, k) be any valid instance of the minimum dominating set where
G is an un-weighted graph and k is an integer. We will construct a new weighted
graph G′ = (V ′, E′) from G by adding a pendant vertex to each of the vertices.
Figure 8 is showing the construction for an example graph. Let F̃ be the set

86 S. Bandyapadhyay et al.

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

G

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

G′

Fig. 8. Construction of G′ from an example graph G

of |V | new vertices. Now V ′ = V ∪ F̃ and E′ = E ∪ (vi, fi) ∀vi ∈ V . We will
assign weight we <

1
|V |+|E|+k to each edge and weight wv = 1 for each vertex

v ∈ V ′. Now consider the Maximum Payoff Problem on G′ where P1 has placed
its facilities at F̃ . Now we claim that there exists a dominating set of size k in
G if and only if there exists a set of k points S in G′ such that Q2(F̃ , S) ≥ |V |.

Let S be a set of k points in G′ such that Q2(F̃ , S) ≥ |V |. Now from Theorem
3.2 we know that there exists an optimal placement by P2 which belongs to
Γ ∪ V . Without loss of generality assume S ⊆ Γ ∪ V . Recall that we have
assumed for each edge (fi, vi) there exists a point pi very close to fi such that
distance between pi and fi is small enough to be considered as zero. Denote the
set of all such points as P . Now observe that as weight of each edge is same
Γ ⊆ V ∪ P . Hence S ⊆ P ∪ V . Now we will construct a new set of placements
of facilities S′ from S as follows. For all points si ∈ S such that si ∈ V add si
to S′. For all points si ∈ S such that si ∈ P if vj /∈ S where vj is adjacent to si
add vj to S′ else add any vertex v ∈ V such that v /∈ S (see Figure 9). Observe

S′ ⊂ V and Q2(F̃ , S
′) > Q2(F̃ , S) − k ∗ we. Now the payoff Q2(F̃ , S) can be

written as QE′ +QV where QE′ sum of the length of all the arcs those are served
by P2 and QV is the number of vertices in the service zone of P2. Observe now
QE′ ≤ (|V | + |E|) ∗ we. Hence QV ≥ Q2(F̃ , S)− k ∗ we − (|V |+ |E|) ∗ we. But
we <

1
|V |+|E|+k , that is we ∗ (|V |+ |E|+k) < 1, |V | and QV are integers. Further

Q2(F̃ , S) ≥ |V |. Therefore QV ≥ |V |. Now any vertex vi ∈ V will be served by
a facility sj ∈ S′ if and only if sj is neighbor of vi. Hence S

′ is a dominating set
for G of size k.

fj

si
vj

Fig. 9. Formation of S′ from S in proof of Theorem 4.1

Voronoi Game on Graphs 87

Now consider the case where the graph G has a dominating set D of size k. In
graphG′,D can be used for placements by P2. Every vertex in V is adjacent to one
of the vertices ofD. So the payoff by P2 is at least |V |. Hence the result follows. ��

5 Approximation Bound for Optimal Payoff of P2 on
Graphs

In this section we will provide an 1.58 factor approximation algorithm for the
problem of finding the optimal strategy of P2 on graphs. We reduce our problem
toWeighted Maximum Coverage Problem and will use the existing approximation
algorithm of Weighted Maximum Coverage Problem to derive an approximation
algorithm for our problem. But before that let us define the Weighted Maximum
Coverage Problem.

Weighted Maximum Coverage Problem: Given an universe X = {x1, x2 . . . xn},
a family S of subsets of X , an integer τ and a weight function wi associated
with each xi ∈ X the Weighted Maximum Coverage Problem is to find τ sets
such that total weight of the covered elements is maximized.

The Weighted Maximum Coverage Problem is NP-hard, and cannot be approx-
imated within e−1

e − o(1) ≈ 1.58 under standard assumptions [6]. There is a
greedy approximation algorithm for the Weighted Maximum Coverage Problem,
which at each stage chooses a set, which contains the maximum weighted un-
covered elements. Now we are having the following theorem.

Theorem 5.1. [6] The greedy algorithm for Weighted Maximum Coverage Prob-
lem achieves an approximation ratio of e−1

e .

s

f1

f2

p1

p2

p3

Fig. 10. Service zone of s

Now consider any instance of our problem. Let G = (V,E) be any graph and
F be any set of facilities placed by P1 in G. P2 wants to place k new facilities. For
the sake of simplicity we assume that the weight of each vertex is zero. But by a
simple modification our algorithm can be extended to handle the case when the
vertices are having non-zero weights. Now from Theorem 3.2 we know that there
exists an optimal placement by P2 which belong to Γ ∪ V . Now consider any

88 S. Bandyapadhyay et al.

placement of facility s ∈ Γ ∪ V by P2. Let Ωs be the set of bisectors correspond
to s. For example in Figure 10, P1 has placed two facilities f1 and f2 and P2
has placed the facility s. The service zone of P2 is shown with dotted lines. Here
the set Ωs will be equal to {p1, p2, p3}. Define

Ω = {∪s∈Γ∪VΩs} ∪ Γ

From Observation 3.2 it is implied that the cardinality of Ω is bounded by
O((Γ ∪ V)E), that is O((V + E)2). Now from G = (V,E) construct another
graph G′ = (V ′, E′) as follows. V ′ = V ∪ Ω ∪ F . For each edge eij ∈ E which
does not contains any point of Ω include that edge to E′. Any edge eij , which
contains one or more points of Ω, {ω1, ω2, . . . ωl} sorted along vi to vj , add the
edges (vi, ω1), (ω1, ω2) . . . (ωl−1, ωl) to E

′. Now observe that for any placement s
by P2, payoff of P2 will be equals to a set of edges Ẽ ⊂ E′ of G′. Now consider
the set system where X is equal to E′ and for each point pi ∈ Γ ∪ V define the
set Si ⊆ E′, such that, Si is the set of edges that is in service zone of the facility
of P2 at pi. For each edge ei ∈ E′ the weight of ei is equal to the length of ei.
Now run the greedy algorithm for the Weighted Maximum Coverage Problem on
this set system for τ = k. Now we have the following lemma which follows from
the construction.

Lemma 5.1. Any α factor approximation algorithm for the Weighted Maximum
Coverage Problem will produce an α factor approximation for our problem.

Now from Theorem 5.1 and Lemma 5.1 we have the following theorem.

Theorem 5.2. There exist an 1.58 factor approximation algorithm for Maxi-
mum Payoff Problem.

References

1. Ahn, H.-K., Cheng, S.-W., Cheong, O., Golin, M.J., van Oostrum, R.: Competitive
facility location: the voronoi game. Theor. Comput. Sci. 310(1-3), 457–467 (2004)

2. Banik, A., Bhattacharya, B.B., Das, S.: Optimal strategies for the one-round discrete
voronoi game on a line. Journal of Combinatorial Optimization, 1–15 (2012)

3. Cheong, O., Har-Peled, S., Linial, N., Matousek, J.: The one-round voronoi game.
Discrete & Computational Geometry 31(1), 125–138 (2004)

4. Fekete, S.P., Meijer, H.: The one-round voronoi game replayed. Comput.
Geom. 30(2), 81–94 (2005)

5. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman (1979)

6. Hochbaum, D.S.: Approximation algorithms for NP-Hard problems. PWS Publish-
ing Company (1996)

7. Kiyomi, M., Saitoh, T., Uehara, R.: Voronoi game on a path. IEICE Transactions 94-
D(6), 1185–1189 (2011)

8. Teramoto, S., Demaine, E.D., Uehara, R.: The voronoi game on graphs and its
complexity. J. Graph Algorithms Appl. 15(4), 485–501 (2011)

Approximation Schemes for Covering

and Packing�

Rom Aschner1, Matthew J. Katz1, Gila Morgenstern2, and Yelena Yuditsky1

1 Department of Computer Science, Ben-Gurion University
{romas,matya,yuditsky}@cs.bgu.ac.il

2 Caesarea Rothschild Institute, University of Haifa
gilamor@cri.haifa.ac.il

Abstract. The local search framework for obtaining PTASs for NP-
hard geometric optimization problems was introduced, independently,
by Chan and Har-Peled [6] and Mustafa and Ray [17]. In this paper, we
generalize the framework by extending its analysis to additional families
of graphs, beyond the family of planar graphs. We then present several
applications of the generalized framework, some of which are very differ-
ent from those presented to date (using the original framework). These
applications include PTASs for finding a maximum l-shallow set of a set
of fat objects, for finding a maximum triangle matching in an l-shallow
unit disk graph, and for vertex-guarding a (not-necessarily-simple) poly-
gon under an appropriate shallowness assumption.

We also present a PTAS (using the original framework) for the impor-
tant problemwhere one has to findaminimum-cardinality subset of a given
set of disks (of varying radii) that covers a given set of points, and apply it
to a class cover problem (studied in [3]) to obtain an improved solution.

1 Introduction

In their break-through papers, Chan and Har-Peled [6] and Mustafa and Ray [17]
showed, independently, how a simple local-search-based algorithm can be em-
ployed to obtain a PTAS for an NP-hard geometric optimization problem. Chan
and Har-Peled [6] used local search to obtain a PTAS for finding a maximum
independent set of pseudo disks, and Mustafa and Ray [17] used it to obtain a
PTAS for finding a minimum hitting set (from a given set of points) for half-
spaces in R3 and for r-admissible regions in R2. This technique turned out to
be very powerful, and since its publication, it was applied to a variety of addi-
tional problems. Gibson et al. [13] used it to obtain a PTAS for the 1.5D terrain

� Work by R. Aschner was partially supported by the Lynn and William Frankel
Center for Computer Sciences. Work by R. Aschner and M.J. Katz was partially
supported by the Israel Ministry of Industry, Trade and Labor (consortium COR-
NET). Work by M.J. Katz was partially supported by grant 1045/10 from the Israel
Science Foundation, and by grant 2010074 from the United States – Israel Bina-
tional Science Foundation. Work by G. Morgenstern was partially supported by the
Caesarea Rothschild Institute (CRI).

S.K. Ghosh and T. Tokuyama (Eds.): WALCOM 2013, LNCS 7748, pp. 89–100, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

90 R. Aschner et al.

guarding problem, and Gibson and Pirwani used it to obtain a PTAS for finding
a dominating set in disk graphs [14].

The local-search-based algorithm, as described in [6, 17], receives an integer
parameter k and proceeds as follows. It starts with any feasible solution and
performs a series of local improvements, where each such improvement involves
only O(k) objects. The analysis relies on the existence of a planar bipartite graph
G, whose vertices on one side correspond to the objects found by the local search
algorithm (“blue vertices”) and on the other side to the objects in an optimal
solution (“red vertices”), and whose (“blue-red”) edges satisfy an appropriate
locality property relating the two solutions. Chan & Har-Peled and Mustafa &
Ray showed that for the problems mentioned above such a planar graph G exists,
and applied the planar separator theorem to relate the size of the local search
solution with that of the optimal solution.

In this paper we generalize the local search technique by extending its analysis
to additional families of graphs. We show that one can achieve a PTAS even in
cases where the graph whose vertices are the elements of the two solutions and
which satisfies the locality property, is not planar, but belongs to a family of
graphs that has a separator property. It is well known that there are many such
families of graphs, e.g., graphs with forbidden minors [1] and various intersec-
tion graphs [10, 16, 18]. We also present several interesting applications of our
extended analysis, some of which are very different from those presented in the
past (using the original analysis).

These applications, which are presented in Section 3, include finding a maxi-
mum l-shallow set of a set of fat objects, finding a maximum triangle matching
in a unit disk graph, and guarding a polygon with limited range of sight. We
briefly discuss each of them.

Maximum l-shallow set. Let D be a set of n fat objects in R2 and let l > 0
be a constant. An l-shallow subset of D is a subset S of D, such that the depth
of the arrangement of S is at most l, i.e. every point in the plane is covered by
at most l objects of S. In the maximum l-shallow subset problem, one is asked
to find a maximum-cardinality l-shallow subset S of D. Notice that for l = 1,
S is a maximum independent subset of D. Chan [4] presented a PTAS for the
problem of finding a maximum independent subset of D. Later, as mentioned
above, Chan and Har-Peled [6] presented a local-search-based PTAS for finding
a maximum independent set of pseudo-disks (and also of D). Notice that a
maximum l-shallow set can be larger than the set that is obtained by repeatedly
finding a maximum independent set of the set of remaining objects. We show
that our generalized analysis enables us to obtain a PTAS for the maximum
l-shallow subset problem, and emphasize that it is essential whenever l > 1.

Maximum triangle matching. Given a graph G, one has to find a maximum-
cardinality collection of vertex-disjoint triangles in G. Baker [2] presented a
PTAS for the important case where G is planar. We give a PTAS for the case
where G is an l-shallow unit disk graph. This PTAS also holds in more general
settings, see below.

Approximation Schemes for Covering and Packing 91

Guarding. We apply our generalized analysis to several guarding problems.
Many guarding problems are known to be APX-hard (e.g., guarding a sim-
ple n-gon P with as few vertex guards as possible [9]), and as such do not
admit a PTAS. Ghosh [12] presented an O(log n)-approximation algorithm for
vertex-guarding a polygon. Subsequently, Efrat and Har-Peled [8] presented an
O(log |OPT |)-approximation algorithm for this problem. In contrast to these
results, we obtain a PTAS for this problem, under the assumption that each
vertex guard g has a limited range of sight rg, such that every point in P is
covered by at least one of the guards and the set of disks centered at the guards
is l-shallow. We also discuss several other versions, including guarding through
walls and guarding a 1.5D terrain with bounded range of sight.

Finally, in Section 4, we consider the important problem known as discrete
coverage of points by disks, for which we obtain a PTAS within the original local
search framework. Let P be a set of points in the plane and let D be a set of
disks that covers P . One needs to find a minimum-cardinality subset D′ ⊆ D
that covers P . Notice that the special case where D is a set of unit disks, is
the dual of the discrete hitting set problem for unit disks, for which Mustafa
and Ray [17] presented a PTAS (actually, for arbitrary disks). However, in the
general case, where D is a set of disks of varying radii, coverage and hitting are
not dual. We present a PTAS for the general case that is inspired by the work of
Gibson and Pirwani [14]. We also apply this result to the a class cover problem,
improving a result of Bereg et al. [3].

2 PTAS via Local Search

We begin by generalizing the local search technique to additional families of
graphs, beyond the family of planar graphs, such as intersection graphs and
graphs with forbidden minors. Actually, we describe the technique for any family
of graphs that has a separator property, similar to the separator property of
planar graphs.

Let F be a monotone family of graphs, i.e., all subgraphs of a graph G ∈ F are
also in F . Assume that F has a separator property, i.e., for any graph G = (V,E)
in F , one can partition the vertex set V , where |V | = n, into three sets A,B
and S, such that (i) |S| ≤ cn1−δ, where 0 < δ < 1 and c > 0 is a constant, (ii)
|A|, |B| ≤ αn, where 1/2 ≤ α < 1, and (iii) the sets A and B are disconnected,
i.e., there is no edge in E between a vertex of A and a vertex of B.

Frederickson [11] defined the notion of an r-division for planar graphs, and
showed how to obtain an r-division for a given planar graph G, by repeatedly
applying the planar separator algorithm. It is straight-forward to adapt Freder-
ickson’s construction and analysis to the family F . Essentially, one needs only
to replace the exponent 1/2 in the size of the separator by 1 − δ. Thus, F has
the following property. Let r be a parameter, 1 ≤ r ≤ n, then for any connected
graph G = (V,E) in F , one can find a collection of Θ(n/r) pairwise disjoint
subsets V1, V2, . . . of V , such that (i) |Vi| ≤ c2r, where c2 > 0 is a constant, (ii)
|Γ (Vi)| ≤ c3r

1−δ, where Γ (Vi) is the set of vertices in V \Vi that are adjacent to

92 R. Aschner et al.

a vertex in Vi and c3 > 0 is a constant, and (iii) ∪Γ (Vi) = S, where S = V \∪Vi;
in particular, Γ (Vi) ⊆ S, and, for any j �= i, Vi and Vj are disconnected. It
follows that |S| ≤ Θ(n/r) · c3r1−δ = c1

n
rδ , where c1 > 0 is a constant. Also, it is

easy to verify that

Claim 1. If r = k
c2+c3

, where k is a sufficiently large constant, then, for any
index i, |Vi|+ |Γ (Vi)| < k.

We distinguish between minimization problems and maximization problems.

2.1 Minimization Problems

Let us now recall the local search technique as it is used, e.g., in the context of
geometric piercing or covering. Assume that we are considering a minimization
problem P , that is, one needs to find a minimum-cardinality subset of a given set
X that is a solution for P . Let X0 ⊆ X be an initial not-necessarily-optimal so-
lution for P , and let k be a sufficiently large constant. The local search technique
checks whether there exists a subset X ′ ⊆ X0 of size k and a subset X ′′ ⊂ X
of size k − 1, such that (X0 \X ′) ∪ X ′′ is still a solution for P . If yes, then it
replaces X ′ by X ′′ (i.e., it performs this local improvement) and resumes the
search. Otherwise, it halts.

Let B and R be two solutions for P , where B was obtained by applying local
search, and assume that B ∩ R = ∅. (Otherwise, we can remove the elements
that belong to both B and R.) Moreover, let G = (V,E) be a graph, such that
(i) V = B ∪R, and (ii) for each object o that needs to be “solved”, there exists
an edge e ∈ E between a vertex b ∈ B and a vertex r ∈ R, where both b and r
“solve” o. This requirement is called the locality condition. We prove below that
if G belongs to some family F that has a separator property, then |B| is not much
greater than |R|. Parts of the proof appear already in [6, 17] and are included
here for completeness. We first construct an r-division of G, for r = k

c2+c3
, and

set Bi = B ∩ Vi and Ri = R ∩ Vi.
Claim 2. For any index i, the set (B \Bi) ∪ Γ (Bi) is also a solution for P.
Proof. Fix i and let o be an object that needs to be “solved”. If all vertices
of B that “solve” o belong to Bi, then, by the locality condition, there exists
r ∈ Γ (Bi) that “solves” o. Otherwise, there is a vertex b ∈ B \Bi that “solves”
o. We conclude that in both cases there is a vertex in (B \ Bi) ∪ Γ (Bi) that
“solves” o.

Claim 3. For any index i, |Bi| ≤ |Ri|+ |Γ (Vi)| < k.

Proof. Observe first that by arguments similar to those in the proof of Claim 2,
the set (B \ Bi) ∪ (Ri ∪ Γ (Vi)) is also a solution for P . Moreover, by Claim 1,
|Ri| + |Γ (Vi)| ≤ |Vi| + |Γ (Vi)| < k. So, if |Bi| > |Ri| + |Γ (Vi)|, then the local
search algorithm would have replaced Bi (or a subset of Bi of size k, if |Bi| > k)
by Ri ∪ Γ (Vi) before halting. Since it has not done so, we conclude that |Bi| ≤
|Ri|+ |Γ (Vi)|.

Approximation Schemes for Covering and Packing 93

Theorem 4. For any ε, 0 < ε < 1, one can choose a constant k, such that
|B| ≤ (1 + ε)|R|.

Proof. Set c′ = 2c1(c2 + c3)
δ, ε′ = ε

5 , k = c′1/δ

ε′1/δ , and recall that r = k
c2+c3

.
Then, |B| ≤ |S| + ∑

i |Bi| ≤ |S| +
∑

i |Ri| +
∑

i |Γ (Vi)| ≤ c1n
rδ

+ |R| + c1n
rδ

=

|R| + 2c1n
rδ

= |R| + |R|+|B|
kδ 2c1(c2 + c3)

δ = |R| + ε′(|R| + |B|). We thus have,

|B| ≤ |R| · 1+ε′
1−ε′ = |R|(1 + ε′)(1 + ε′ + ε′2 + . . .) ≤ |R|(1 + ε′)(1 + ε′ + ε′) =

|R|(1 + 3ε′ + 2ε′2) ≤ |R|(1 + 5ε′) = |R|(1 + ε).

2.2 Maximization Problems

Let us now recall the local search technique as it is used, e.g., in the context of
geometric packing. Assume that we are considering a maximization problem P ,
that is, one needs to find a maximum-cardinality subset of a given set X that is
a solution for P . Let X0 ⊆ X be an initial not-necessarily-optimal solution for
P , and let k be a sufficiently large constant. The local search technique checks
whether there exists a subset X ′ ⊆ X0 of size at most k−1 and a subset X ′′ ⊂ X
of size k, such that (X0 \X ′)∪X ′′ is still a solution for P . If yes, then it replaces
X ′ by X ′′ (i.e., it performs this local improvement) and resumes the search.
Otherwise, it halts.

Let B and R be two solutions for P , where B was obtained by applying local
search, and assume that B ∩ R = ∅. (Otherwise, we can remove the elements
that belong to both B and R.) Moreover, let G = (V,E) be a graph, such that
(i) V = B ∪ R, and (ii) there exists an edge e ∈ E between a vertex b ∈ B and
a vertex r ∈ R if and only if b and r intersect.

Theorem 7 below states that if G belongs to some family F that has a sep-
arator property, then |B| ≥ (1 − ε)|R|. The proof is similar to the one in Sec-
tion 2.1; we include it for completeness. We first construct an r-division of G,
for r = k

c2+c3
, and set Bi = B ∩ Vi and Ri = R ∩ Vi.

Claim 5. For any index i, the set (B \ (Bi ∪ Γ (Vi))) ∪ Ri is also a solution
for P.
Proof. Fix i, and let r ∈ Ri. By definition, r intersects only its neighbors in G,
i.e., only elements in (Bi ∪ Γ (Vi)) ∪ Ri. Thus, for each b ∈ B \ (Bi ∪ Γ (Vi))),
r ∩ b = ∅. Therefore, (B \ (Bi ∪ Γ (Vi))) ∪Ri is also a solution for P .
Claim 6. For any index i, |Ri| ≤ |Bi|+ |Γ (Vi)| < k.

Proof. By Claim 5, the set (B \ (Bi ∪ Γ (Vi))) ∪ Ri is also a solution for P .
Moreover, by Claim 1, |Bi ∪ Γ (Vi)| = |Bi| + |Γ (Vi)| ≤ |Vi| + |Γ (Vi)| < k. So,
if |Ri| > |Bi ∪ Γ (Vi)|, then the local search algorithm would have replaced
Bi ∪ Γ (Vi) by Ri (or a subset of Ri of size k, if |Ri| > k) before halting. Since
it has not done so, we conclude that |Ri| ≤ |Bi|+ |Γ (Vi)|.
Theorem 7. For any ε, 0 < ε < 1, one can choose a constant k, such that
|B| ≥ (1− ε)|R|.

94 R. Aschner et al.

Proof. Set c′ = 2c1(c2+c3)
δ, k = (c′(2ε −1))1/δ, and recall that r = k

c2+c3
. Then,

|R| ≤ |S|+
∑
i

|Ri| ≤ |S|+
∑
i

|Bi|+
∑
i

|Γ (Vi)| ≤ c1n

rδ
+ |B|+ c1n

rδ
= |B|+ 2c1n

rδ

= |B|+ |R|+ |B|
kδ

2c1(c2 + c3)
δ= |B|+ 1

2
ε
− 1

(|R|+ |B|)= |B|+ ε

2− ε
(|R|+ |B|) .

Rearranging, we get that |B| ≥ (1 − ε)|R|.

3 Applications

In this section we describe several original applications of our generalized local
search technique. The applications in Sections 3.1 and 3.2 use the maximization
version and the applications in Section 3.3 use the minimization version.

3.1 Maximum l-Shallow Set for Fat Objects

We consider the maximum l-shallow set problem for a set of fat objects. Let
D be a set of n fat objects and let l > 0 be a constant. An l-shallow set of D
is a subset S of D, such that the depth of the arrangement of S is at most l.
In the maximum l-shallow set problem, one has to find a maximum-cardinality
subset S of D, such that S is l-shallow. Notice that for l = 1, S is a maximum
independent set of D.

We show that our generalization of the local search technique enables us to
apply local search to find a (1 − ε)-approximation of a maximum l-shallow set
of D. Indeed, let B be the set of fat objects obtained by applying local search
and let R be an optimal set. (We may assume that B ∩R = ∅, since otherwise,
we can remove the objects that appear in both sets.) Notice that the analysis
of Chan and Har-Peled [6] does not immediately apply here (assuming l > 1),
since the intersection graph of B ∪ R is not necessarily planar (even if one
removes the “monochromatic” edges) However, this graph does have a separator
of size O(

√
n). This follows from results of Miller et al. [16] and Smith and

Wormald [18], who show that the intersection graph of a set of l-shallow fat
objects has a separator of size

√
ln.

Recall that the local search algorithm begins with the empty solution, and in
each iteration it improves the current solution by replacing a subset of size at
most k − 1 of the current solution with a larger subset of size at most k of D,
such that the resulting set is still a solution (i.e., it is still l-shallow). Since k is
a constant, each iteration can be performed in polynomial time, and therefore
the total running time of the local search algorithm is polynomial in n.

As for the size of B, since both B and R are l-shallow, the set B ∪ R is 2l-
shallow, and therefore the intersection graph of B ∪ R has a separator of size√
2ln = O(

√
n). Hence, by Theorem 7, we conclude that |B| ≥ (1− ε)|R|.

Finally, we note that Chan’s separator-based method [4] can be used to ob-
tain a (1− ε)-approximation of a maximum l-shallow set of D. However, as also

Approximation Schemes for Covering and Packing 95

mentioned in [6], the disadvantage of his method is that it explicitly applies an
algorithm for finding a separator, while we apply it only for analysis purposes.

3.2 Maximum Triangle Matching in Unit Disk Graphs

Next, we consider the maximum triangle matching problem in unit disk graphs.
Given a graph G = (V,E), find a maximum-cardinality collection of pairwise-
disjoint subsets V1, . . . , Vm of V , each consisting of exactly 3 vertices, such that
for each Vi = {ui, vi, wi}, 1 ≤ i ≤ m, the three edges (ui, vi), (vi, wi), (wi, ui)
belong to E. Baker [2] presented a PTAS for the important case where G is
planar. We give a PTAS for the case where G is an l-shallow unit disk graph.
This PTAS also holds in more general settings; see remark below.

Let S be a set of n points in the plane, and let UDG(S) be the graph over S,
in which there is an edge between u and v if and only if the Euclidean distance
between u and v is at most 1. Let D be the set of disks of radius 1/2 centered
at the points of S, and assume that the depth of the arrangement of D is at
most some constant l. Then, there is an edge between u and v if and only if
du ∩ dv �= ∅, where du, dv are the disks of D centered at u, v, respectively.

Our generalization of the local search technique enables us to apply local
search to find a (1 − ε)-approximation of a maximum triangle matching of
UDG(S). We begin with the empty set of triangles, and in each iteration we
replace a subset of at most k − 1 triangles of the current solution with a larger
subset of at most k triangles, such that the resulting set is still a solution (i.e.,
it is still a triangle matching).

Consider the set of triangles B obtained by applying local search, and the
set of triangles R of a maximum matching. (Each � ∈ B ∪ R is a triangle
� = {a, b, c}, where a, b, c are points in S and (a, b), (b, c), (c, a) are edges of
UDG(S).) For each triangle � in B (resp. in R), select an arbitrary unique
representative point p� that lies in the interior of �, and denote by B (resp. R)
the resulting set of representative points.

Now, consider the graph G = (B ∪ R,E), where (p, q) ∈ E if and only if
the Euclidean distance between p and q is at most 2. Notice that G satisfies
the following locality condition. For any two points b ∈ B and r ∈ R, whose
corresponding triangles are �ubvbwb and �urvrwr , respectively, and such that
{ub, vb, wb}∩{ur, vr, wr} �= ∅, the edge (b, r) belongs to E. This is true since the
distance from b (alt., r) to any of the its triangle corners is at most 1.

It remains to show that G has a separator. Let D′ be the set of unit disks
centered at the points of B ∪ R. Then, (p, q) ∈ E if and only if the disks of
D′ centered at p and q, respectively, intersect. It is easy to see that the depth
of the arrangement of D′ is at most some constant c = c(l). This follows from
the assumption that the depth of the arrangement of D is at most l. Therefore,
by Miller et al. [16], G has a separator of size O(

√
cn) = O(

√
n). Hence, by

Theorem 7, we conclude that |B| ≥ (1 − ε)|R|.
Remark. It is easy to see that one can replace “triangle” in the above result
with any connected graph (i.e., structure) H with a constant number of vertices,
and obtain a PTAS for maximum H-matching in unit disk graphs.

96 R. Aschner et al.

3.3 Guarding with Limited Visibility

We now demonstrate our generalization of the local search technique on a fam-
ily of covering problems, or, more precisely, on a family of guarding problems.
Throughout this section, G denotes a set of points, representing stationary
guards, where each guard g ∈ G has its own range of sight rg. Let Dg denote the
disk of radius rg centered at g, and set D = {Dg : g ∈ G}. We assume that the
depth of the arrangement of D is at most some constant l.

Guarding a polygon. Given a polygon P (possibly with holes) and a set G ⊆ P ,
a minimum guarding set for P (with respect to G) is a minimum-cardinality
subset G′ of G, such that every p ∈ P is guarded by G′, i.e., for every p ∈ P ,
there exists g ∈ G′, such that |gp| ≤ rg and the segment gp is contained in P .

Eidenbenz et al. [9] proved that finding a minimum guarding set for a polygon,
where the given set of guards is the polygon’s set of vertices, is APX-hard, even
if the polygon has no holes and there are no limits on the ranges. We show that
our generalization of the local search technique enables us to apply local search
to find a (1 + ε)-approximation of a minimum guarding set for P (with respect
to G), under the above assumption concerning the depth of the arrangement
of D.

For a guard g ∈ G, let VP g denote its visibility polygon and let VRg denote
its visible region, where VRg = VP g ∩ Dg. Notice that VRg is not necessarily
convex. For a subset X ⊆ G, let DX denote the set {Dg : g ∈ X} and let VRX

denote the set {VRg : g ∈ X}. Let B ⊆ G be the set of guards obtained by
applying local search (to the set VRG) and let R be an optimal set. (We may
assume that B ∩R = ∅, since otherwise, we can remove the guards that appear
in both sets.) Consider the graph G = (B ∪R,E), where (g, g′) ∈ E if and only
if VRg ∩ VRg′ �= ∅. We claim that G has a separator of size

√
ln = O(

√
n), since

any separator of the intersection graph of DB ∪DR is also a separator of G, and
the former graph has a separator of size

√
ln = O(

√
n), by a result of Miller et

al. [16]. Observe that the locality condition is satisfied, since for any p ∈ P , let
b ∈ B and r ∈ R be two guards that guard p, then VRb∩VRr �= ∅ and hence the
edge (b, r) is in G. Therefore, by Theorem 4, we conclude that |B| ≤ (1 + ε)|R|.
Theorem 8. There exists a PTAS for minimum guarding a (not necessarily
simple) polygon with respect to a given set of guards, assuming that the depth of
the corresponding arrangement of disks is bounded by a constant.

It is possible to consider other versions of the problem in which the visible region
of a guard g ∈ G is defined differently, as long as VRg ⊆ Dg. The approximation
analysis for these versions is the same as for the standard version. For example,
consider the problem of guarding a polygon P , where each guard can see through
at most some fixed number of walls (edges of the polygon P). Then, the visibility
polygon of a guard g ∈ G is different than its visibility polygon in the standard
version, but still its visible region is contained in Dg. For such problems, one
needs to modify the verification procedure of the local search algorithm (i.e.,
whether a given set of guards consists of a solution). We thus obtain, for example,
the following corollary.

Approximation Schemes for Covering and Packing 97

Corollary 1. There exists a PTAS for minimum guarding a polygon through
walls, assuming that the depth of the corresponding arrangement of disks is
bounded by a constant.

Terrain guarding with limited visibility. Let T be a 1.5D terrain (i.e., an x-
monotone polygonal chain), let G ⊆ T be a finite set of guards, and let X ⊆ T
be a finite set of points to be guarded. A guard g ∈ G sees a point x ∈ X if
gx does not cross any edge of T and |gx| ≤ rg. The goal is to find a minimum-
cardinality subset G′ ⊆ G, such that G′ sees X (i.e., for each point x ∈ X , there
exists a guard in G′ that sees x). Assuming unlimited visibility (i.e., rg = ∞,
for each g ∈ G), the problem is known to be NP-hard [7, 15], and there exists a
local-search-based PTAS for it [13]. This PTAS relies heavily on the, so called,
“order claim”, which states that for any four points a, b, c, d on T (listed from
left to right), if a sees c and b sees d then a also sees d. Unfortunately, this claim
is false in the limited visibility version. However, this version is a simple variant
of polygon guarding with limited visibility. Therefore, we have

Theorem 9. There exists a PTAS for terrain guarding, assuming that the depth
of the corresponding arrangement of disks is bounded by a constant.

Consider the guarding problems above, but now set rg = 1, for each g ∈ G,
and assume the requirement is to guard a finite set X of points in P (alt., on
T). Then, one may replace the assumption that the depth of the arrangement
of disks is bounded by a constant with the assumption that the points in X
are not too crowded, i.e., the distance between any two points in X is at least
some constant δ > 0. This assumption is sometimes more convenient. Under this
assumption, each guard sees at most some constant number c = c(δ) of points
of X , and it is likely therefore that there are many redundant guards. (A guard
is redundant if there exists another guard that sees the same subset of points of
X .) We thus remove redundant guards from G, one at a time, as long as there
are such guards in G. It is easy to see that the depth of the arrangement of
disks corresponding to the set of remaining guards is bounded by a constant.
We obtain, e.g., the following theorem.

Theorem 10. There exists a PTAS for minimum guarding a sparse set of points
X within a (not necessarily simple) polygon P with respect to a given set of
guards of unit visibility range.

4 Discrete Coverage of Points

We consider the following fundamental problem. Let P be a set of points in the
plane and let D be a set of disks that covers P . (We assume that the centers
of the disks in D are in general position.) Find a minimum-cardinality subset
D′ ⊆ D that covers P .

If D is a set of unit disks, then this is the dual version of the problem known
as discrete piercing of unit disks. Mustafa and Ray [17] presented a PTAS for

98 R. Aschner et al.

the latter problem (even for the case of varying radii). We present a local-search-
based PTAS for discrete coverage of points. Our proof is based on the framework
developed in [17] and in Section 2, and is inspired by the work of Gibson and
Pirwani [14].

Theorem 11. There exists a PTAS for discrete coverage of points by disks (alt.,
by axis-parallel squares).

Proof. We may assume that there do not exist two disks in D, such that one of
them is contained in the other, since, if two such disks do exist, we can always
prefer the larger one. Let B be the set of the centers of the disks returned
by the local search algorithm, and let R be the set of the centers of the disks
in an optimal solution. We may assume that B ∩ R = ∅ (since otherwise, we
can remove the centers that belong to both sets). For a center c ∈ B ∪ R, let
Dc ∈ D denote the corresponding disk and rc its radius. In order to prove that
|B| ≤ (1 + ε)|R|, we need to present a planar bipartite graph G = (B ∪ R,E)
satisfying the following locality condition: For each p ∈ P there exist b ∈ B and
r ∈ R, such that p ∈ Db, p ∈ Dr, and (b, r) ∈ E.

Consider the additively weighted Voronoi diagram of B ∪ R, constructed ac-
cording to the distance function δ(p, c) = d(p, c)− rc. Observe first that for any
center c ∈ B ∪R and point p ∈ R2, if δ(p, c) ≤ 0, then p ∈ Dc (and vice versa).
Now, let cell(c) denote the cell of the diagram corresponding to c ∈ B ∪R. It is
well known that for each c ∈ B ∪R, c ∈ cell(c) and cell(c) is connected.

Our planar bipartite graph is the dual graph of the weighted Voronoi di-
agram defined above, without the monochromatic edges. That is, there is an
edge between two centers c and c′ in B ∪ R, if and only if c ∈ B and c′ ∈ R,
or vice versa, and their cells are adjacent to each other. We denote this graph
by G = (R ∪ B,E). It is easy to see that G is planar. Indeed, by the dia-
gram’s properties, any edge (c, c′) ∈ E can be drawn such that it is contained in
cell(c) ∪ cell(c′), and within each cell cell(c), it is easy to ensure that the edges
do not cross each other.

We now show that G satisfies the locality condition. Let p ∈ P , and assume
w.l.o.g. that p ∈ cell(r), where r ∈ R. Let b ∈ B be the closest center to p
according to δ. That is, for any b′ ∈ B, δ(p, b) ≤ δ(p, b′). Notice that δ(p, b) ≤ 0,
since there exists a center b′ ∈ B whose disk covers p, and therefore, δ(p, b′) ≤ 0.
We conclude by the observation above that p ∈ Db. Consider the cells we visit
when walking along the line segment pb from p to b. Since p /∈ cell(b) and
b ∈ cell(b), we must at some point enter cell(b). Let c ∈ B ∪R be the center for
which cell(c) is the last cell that we visit before entering cell(b), and let q be the
point on pb, which is also on the boundaries of cell(c) and cell(b).

It remains to show that c ∈ R, implying that (b, c) ∈ E, and that p ∈ Dc.
Using the triangle inequality and since the centers of the disks are in general
position, we get that δ(p, c) = d(p, c)−rc < d(p, q)+d(q, c)−rc = d(p, q)+δ(q, c).
But, d(p, q) + δ(q, c) = d(p, q) + δ(q, b) = d(p, q) + d(q, b) − rb = d(p, b) − rb =
δ(p, b), so we get that δ(p, c) < δ(p, b). Now, since b is the closest center to
p among the centers in B, we conclude that c ∈ R, and since δ(p, b) ≤ 0,

Approximation Schemes for Covering and Packing 99

we conclude that p ∈ Dc. The axis-parallel version is obtained by replacing the
L2 metric by the L∞ metric.

4.1 Discrete Coverage of a Polygon

Consider now the following problem. Let Q be a polygon, and let D be a set of
disks (alt., a set of axis-parallel rectangles). Find a minimum-cardinality subset
of D that covers Q. The local search algorithm can be easily adapted to this
setting. At each iteration of the algorithm, instead of checking whether all points
are covered, one needs to check whether the entire polygon is covered. This can
be done in polynomial time. The analysis is essentially the same as for discrete
coverage of points, except that here p is any point in the polygon Q. We thus
conclude that

Theorem 12. There exists a PTAS for discrete coverage of a polygon by disks
(alt., by axis-parallel squares).

4.2 The Class Cover Problem

The class cover problem is defined as follows: Let B be a set of blue points and
let R be a set of red points and set n = |B| + |R|. Find a minimum-cardinality
set D of disks (alt., of axis-parallel squares) that covers the blue points, but does
not cover any of the red points. That is, find a minimum-cardinality set D, such
that B∩∪d∈Dd = B and R∩∪d∈Dd = ∅. Bereg et al. [3] study several versions of
the class cover problem with boxes. In particular, they prove that the class cover
problem with axis-parallel squares is NP-hard and give an O(1)-approximation
algorithm for this version. We show that the class cover problem with squares
(resp., disks) is essentially equivalent to discrete coverage of points by squares
(resp., disks), and therefore there exists a PTAS for both versions.

Indeed, consider any set D of disks that cover the points in B and does not
cover any point in R. It is easy to see that one can replace each disk d ∈ D with a
“legal” disk d′, such that B ∩d ⊆ B∩d′ and either there are three points on d′’s
boundary, or there are exactly two points on d′’s boundary and the line segment
between them is a diameter of d′. Therefore, we can transform the class cover
problem with disks to discrete coverage of points by disks, by first computing
all O(n3) disks defined by either triplets or pairs of points and then removing
those that are “illegal”. Similarly, we can transform the class cover problem with
squares to discrete coverage of points by squares. We thus obtain

Theorem 13. There exists a PTAS for the class cover problem with disks (alt.,
with axis-parallel squares).

Concluding Remark. Very recently it has been brought to our attention that
Chan and Grant [5] observe that the PTAS of Mustafa and Ray [17] for discrete
hitting set of half-spaces in R3 implies a PTAS for discrete coverage of points
by disks, by a lifting transformation that maps disks to lower half-spaces in R3

and by duality between points and half-spaces. However, our PTAS above for
discrete coverage of points by disks is direct and refrains from moving to R3.

100 R. Aschner et al.

References

1. Alon, N., Seymour, P., Thomas, R.: A separator theorem for graphs with an ex-
cluded minor and its applications. In: Proc. 22nd ACM Sympos. on Theory of
Computing, pp. 293–299 (1990)

2. Baker, B.S.: Approximation algorithms for NP-complete problems on planar
graphs. J. ACM 41(1), 153–180 (1994)

3. Bereg, S., Cabello, S., Dı́az-Báñez, J.M., Pérez-Lantero, P., Seara, C., Ventura, I.:
The class cover problem with boxes. Comput. Geom. Theory Appl. 45(7), 294–304
(2012)

4. Chan, T.M.: Polynomial-time approximation schemes for packing and piercing fat
objects. J. Algorithms 46(2), 178–189 (2003)

5. Chan, T.M., Grant, E.: Exact algorithms and APX-hardness results for geometric
packing and covering problems. Comput. Geom. Theory Appl. (in press, available
online)

6. Chan, T.M., Har-Peled, S.: Approximation algorithms for maximum independent
set of pseudo-disks. In: Proc. 25th ACM Sympos. on Computational Geometry, pp.
333–340 (2009)

7. Chen, D.Z., Estivill-Castro, V., Urrutia, J.: Optimal guarding of polygons and
monotone chains. In: Proc. 7th Canadian Conf. on Computational Geometry, pp.
133–138 (1995)

8. Efrat, A., Har-Peled, S.: Guarding galleries and terrains. Inf. Process. Lett. 100,
238–245 (2006)

9. Eidenbenz, S., Stamm, C., Widmayer, P.: Inapproximability results for guarding
polygons and terrains. Algorithmica 31(1), 79–113 (2001)

10. Fox, J., Pach, J.: Separator theorems and Turan-type results for planar intersection
graphs. In: Advances in Mathematics, vol. 219, pp. 1070–1080 (2009)

11. Frederickson, G.N.: Fast algorithms for shortest paths in planar graphs. SIAM
Journal on Computing 6, 1004–1022 (1987)

12. Ghosh, S.K.: Approximation algorithms for art gallery problems. In: Proc. Cana-
dian Inform. Process. Soc. Congress, pp. 429–434 (1987)

13. Gibson, M., Kanade, G., Krohn, E., Varadarajan, K.: An Approximation Scheme
for Terrain Guarding. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX
and RANDOM 2009. LNCS, vol. 5687, pp. 140–148. Springer, Heidelberg (2009)

14. Gibson, M., Pirwani, I.A.: Algorithms for Dominating Set in Disk Graphs: Breaking
the logn Barrier. In: de Berg, M., Meyer, U. (eds.) ESA 2010, Part I. LNCS,
vol. 6346, pp. 243–254. Springer, Heidelberg (2010)

15. King, J., Krohn, E.: Terrain guarding is NP-hard. In: Proc. 21st ACM-SIAM Sym-
pos. on Discrete Algorithms, pp. 1580–1593 (2010)

16. Miller, G.L., Teng, S.-H., Thurston, W.P., Vavasis, S.A.: Separators for sphere-
packings and nearest neighbor graphs. J. ACM 44(1), 1–29 (1997)

17. Mustafa, N.H., Ray, S.: Improved results on geometric hitting set problems. Dis-
crete & Computational Geometry 44(4), 883–895 (2010)

18. Smith, W.D., Wormald, N.C.: Geometric separator theorems & applications. In:
Proc. IEEE 39th Sympos. on Foundations of Computer Science, pp. 232–243 (1998)

A Randomised Approximation Algorithm

for the Hitting Set Problem

Mourad El Ouali1, Helena Fohlin2, and Anand Srivastav1

1 Departement of Computer Science. University of Kiel. Germany
{meo,asr}@informatik.uni-kiel.de

2 Department of Clinical and Experimental Medicine. Linköping University, Sweden
Helena.Fohlin@lio.se

Abstract. Let H = (V, E) be a hypergraph with vertex set V and edge
set E , where n := |V | and m := |E|. Let l be the maximum size of an edge
and Δ be the maximum vertex degree. A hitting set (or vertex cover) in
H is a set of vertices from V in which all edges are incident. The hitting
set problem is to find a hitting set of minimum cardinality. It is known
that an approximation ratio of l can be achieved easily. On the other side,
for constant l, an approximation ratio better than l cannot be achieved
in polynomial time under the unique games conjecture (Khot and Ragev
2008). Thus breaking the l-barrier for significant classes of hypergraphs
is a complexity-theoretic and algorithmically interesting problem, which
has been studied by several authors (Krivelevich (1997), Halperin (2000),
Okun (2005)). We propose a randomised algorithm of hybrid type for
the hitting set problem, which combines LP-based randomised round-
ing, graphs sparsening and greedy repairing and analyse it in different

environments. For hypergraphs with Δ = O(n
1
4) and l = O(

√
n) we

achieve an approximation ratio of l
(
1− c

Δ

)
, for some constant c > 0,

with constant probability. In the case of l-uniform hypergraphs, l and Δ
being constants, we prove by analysing the expected size of the hitting
set and using concentration inequalities, a ratio of l

(
1− l−1

4Δ

)
. Moreover,

for quasi-regularisable hypergraphs, we achieve an approximation ratio of
l
(
1− n

8m

)
. We show how and when our results improve over the results

of Krivelevich, Halperin and Okun.

Keywords: Approximation algorithms, probabilisticmethods, randomised
rounding, hitting set, vertex cover, greedy.

1 Introduction

A hypergraph H = (V, E) consists of a finite set V and a set E of subsets of V .
We call the elements of V vertices and the elements of E (hyper-)edges. Further
let n := |V | and m := |E|. A hitting set (or vertex cover) of a hypergraph H is a
set C of vertices such that for every E ∈ E there exists a vertex v ∈ E ∩C. The
hitting set problem in hypergraphs is the task of finding a hitting set of minimum
cardinality. A set S ⊆ E is called a set cover, if all vertices of H are contained
in edges of S, and the set cover problem is to find a set cover of minimum

S.K. Ghosh and T. Tokuyama (Eds.): WALCOM 2013, LNCS 7748, pp. 101–113, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

102 M. El Ouali, H. Fohlin, and A. Srivastav

cardinality. Note that the hitting set problem in hypergraphs is equivalent to
the set cover problem by changing the role of vertices and edges.

A number of inapproximability results are known. Lund and Yannakakis
[20] proved for the set cover problem that for any α < 1

4 , the existence of a
polynomial-time (α lnn)-ratio approximation algorithm would imply that NP
has a quasipolynomial, i.e., nO(poly(lnn)) deterministic algorithm. This result was
improved to (1 − o(1)) lnn by Feige [7]. A c · lnn-approximation under the as-
sumption that P �= NP was established by Safra and Raz [24], where c is a
constant. A similar result for larger values of c was proved by Alon, Moshkovitz
and Safra [1].

The hitting set problem remains hard for many hypergraph classes. Most
interesting are l-uniform hypergraphs with a constant l, because for them under
the unique games conjecture (UGC), it is NP-hard to approximate the problem
within a factor of l − ε, for any fixed ε > 0, see [17], while an approximation
ratio of l can be easily achieved by finding a maximal matching. Therefore,
the problem of breaking the l-barrier for significant and interesting classes of
hypergraphs received much attention.

Let us briefly give an overview of the known approximability results for the
problem. The earliest published approximation algorithms for the hitting set
problem achieve an approximation ratio of the order lnm+1 [6,16,19] by using a
greedy heuristic. For l-uniform hypergraphs, several authors achieved the ratio of
l using different techniques (see e.g. [3,11,13,14]). The first and important result
breaking the barrier of l for l-uniform hypergraphs, is due to Krivelevich [18]. He

proved an approximation ratio of l(1− cn
1−l
l), for some constant c > 0, using a

combination of the LP-based algorithm and the local ratio approach described by
Bar-Yehuda and Even [4]. Later, for l-uniform hypergraphs with l3 = o(ln lnn

ln ln lnn)
and Δ = O(nl−1), Halperin [12] presented a semidefinite programming based
algorithm with an approximation ratio of l − (1 − o(1)) l ln lnn

lnn . Note that this

condition enforces the doubly exponential bound, n ≥ 22
l2

, and already for l = 3
the hypergraph is very large and is hardly suitable for practical purposes.

A further important class consists of hypergraphs with Δ and l being con-
stants. In this case Krivelevich [18] gave an LP-based algorithm that provides

an approximation ratio of l(1 − cΔ
1

1−l) for some constant c > 0. An improved

approximation ratio of l− (1− o(1)) l(l−1) ln lnΔ
lnΔ was presented by Halperin [12],

provided that l3 = o(ln lnΔ
ln ln lnΔ). For hypergraphs which are not necessarily uni-

form, but with size of edges bounded from above by a constant l, an improvement
of the result of Krivelevich was given by Okun [23]. He proved an approximation

ratio of l(1− c(β, l)Δ− 1
βl) for β ∈ (0, 1) and a constant c(β, l) ∈ (0, 1) depending

on β and l, by a modification of the algorithm presented in [18].

Our Results. We consider hypergraphs with maximum edge size l and maxi-
mum vertex degreeΔ, at the moment not necessarily assumed to be constants. In
Section 3 we present a randomised algorithm, combining LP-based randomised
rounding, sparsening of the hypergraph and greedy repairing. Such a hybrid

A Randomised Approximation Algorithm for the Hitting Set Problem 103

approach is frequently used in practice and it has been analysed for many prob-
lems, e.g., maximum graph bisection [9], maximum graph partitioning problems
[8,15] and the vertex cover and partial vertex cover problem in graphs [11,12]. In

Section 4.1 we show that our algorithm achieves for l = O(
√
n) and Δ = O(n

1
4)

an approximation ratio of l
(
1− c

Δ

)
, for some constant c > 0, with constant

probability. In this case our result improves the result of Krivelevich, for any
function f(n) satisfying f(n) = O(n

1
4), since n

1
4 < n1− 1

l for l ≥ 2, and the
approximation is the better the smaller f(n) becomes. For Δ ≤ lnn

ln lnn we obtain
a better approximation than Halperin. In Section 5.1 we analyse the algorithm
for the class of uniform, quasi-regularisable hypergraphs, which are known and
useful in the combinatorics of hypergraphs (see Berge [5]). We prove an approx-

imation ratio of l
(
1− n

8m

)
provided that Δ = O(n

1
3). This result improves the

approximation ratio given by Krivelevich and Halperin for sparse hypergraphs
(roughly speaking sparseness means, m ≤ nα, α ≤ 2, see section 5.1, page 9
for details). In Section 5.2 we consider l-uniform hypergraphs, where l and Δ
are constants, and achieve a ratio of l

(
1− l−1

4Δ

)
. This improves over the result

of Krivelevich for Δ smaller than (l − 1)1+
1

l−2 and of Okun for Δ smaller than

(l − 1)1+
1

βl−1 , respectively.
The paper is organised as follows: In Section 2 we give definitions and prob-

abilistic tools. In Section 3 we present our randomised algorithm for the hitting
set problem. In Section 4 we analyse the approximation ratio for hypergraphs
with non-constant size of edges and non-constant vertex degree. In Section 5
we analyse the algorithm in a different way and prove an approximation ratio
for the subclass of uniform quasi-regularisable hypergraphs (Section 5.1) and
uniform hypergraphs with bounded vertex degree (Section 5.2). In Section 6 we
comment on some future works.

2 Preliminaries and Definitions

Graph-theoretical Notions. Let H = (V, E) be a hypergraph, with V and E its set
of vertices and edges. For v ∈ V we define d(v) = |{E ∈ E ; v ∈ E}| and Δ =
maxv∈V {d(v)}. Here d(v) is the vertex-degree of v and Δ is the maximum vertex
degree ofH. Further for a set X ⊆ V we denote by Γ (X) := {E ∈ E ; X∩E �= ∅}
the set of edges incident to the set X . Let l, Δ ∈ N be two given constants. We
call H l-uniform, if |E| = l for all E ∈ E , and with bounded degree Δ, if for
every v ∈ V it holds d(v) ≤ Δ. It is convenient to order the vertices and edges,
i.e., V = {v1, . . . , vn} and E = {E1, . . . , Em}, and to identify the vertices and
edges with their indices.

For an integer k ≥ 0, multiplying the edge Ei by k means replacing the edge
Ei in H by k identical copies of Ei. If k = 0, this operation is the deletion of
the edge Ei. A hypergraph H is called regularisable if a regular hypergraph can
be obtained from H by multiplying each edge Ei by an integer ki ≥ 1. Finally,
a hypergraph H is called quasi-regularisable if a regular hypergraph is obtained
by multiplying each edge Ei by an integer ki ≥ 0 where

∑m
i ki > 0. Regular

implies regularisable and this implies quasi-regularisable (see [5]). Note that

104 M. El Ouali, H. Fohlin, and A. Srivastav

quasi-regularisable hypergraphs play an important role in the study of matching
and covering in hypergraphs. e.g. [10].

Concentration Inequalities. For the one-sided deviation the following Chebychev-
Cantelli inequality will be frequently used:

Theorem 1 ([2]). Let X be a non-negative random variable with finite mean
E(X) and variance Var(X). Then for any a > 0 we have

Pr(X ≥ E(X) + a) ≤ Var(X)

Var(X) + a2
·

A further useful concentration result is the independent bounded differences
inequality theorem:

Theorem 2 (see [21]). Let X = (X1, X2, ..., Xn) be a family of independent
random variables with Xk taking values in a set Ak for each k. Suppose that
the real-valued function f defined on Πn

k=1Ak satisfies |f(x)− f(x′)| ≤ ck if the
vector x and x′ differ only in the k-th coordinate. Let E(X) be the expected value
of the random variable f(X). Then for any t > 0 it holds

Pr(f(X) ≤ E(f(X))− t) ≤ exp

(−2t2∑n
k=1 c

2
k

)
.

The following estimate on the variance of a sum of dependent random variables
can be proved as in the book of Alon and Spencer:

Lemma 1 (see [2]). Let X be the sum of finitely many 0/1 random variables,
i.e. X = X1 + . . . + Xn, and let pi = E(Xi) for all i = 1, . . . , n. For a pair
i, j ∈ {1, . . . , n} we write i ∼ j, if Xi and Xj are dependent. Let Γ be the
set of all unordered dependent pairs i, j, i.e. 2-element sets {i, j}, and let γ =∑

{i,j}∈Γ E(XiXj), then it holds: Var(X) ≤ E(X) + 2γ.

3 The Randomised Algorithm

An integer, linear programming formulation of the hitting set problem in a hy-
pergraph H is the following.

(ILP-VC) min
n∑

j=1

xj

∑
j∈E

xj ≥ 1 for all E ∈ E ,

xj ∈ {0, 1} for all j ∈ [n] := {1, . . . , n}.
Its linear programming relaxation, denoted by LP-VC, is given by relaxing the
integrality constraints to xj ∈ [0, 1] ∀j ∈ [n]. Let Opt and Opt∗ be the value of
an optimal solution to ILP-VC and LP-VC, respectively. Clearly, Opt∗ ≤ Opt.
Let x∗ be an optimal solution of LP-VC. Let ε ∈ [0, 1] be a parameter that will
be chosen based on the application, we set λ = l(1− ε).

A Randomised Approximation Algorithm for the Hitting Set Problem 105

Algorithm 1. VC-H
Input : A hypergraph H = (V, E)
Output: A hitting set C
1. Initialise C := ∅.
2. Solve the LP relaxation of ILP-VC
3. Set S0 := {j ∈ [n] | x∗

j = 0}, S1 := {j ∈ [n] | x∗
j = 1},

S≥ := {j ∈ [n] | 1 	= x∗
j ≥ 1

λ
} and S≤ := {j ∈ [n] | 0 	= x∗

j < 1
λ
}.

4. Delete the vertices in S0 from H, and set V :=V \ S0 and E :={E∩V |E∈E}.
5. Take all vertices of S1 and S≥ into the hitting set C.

Set V := V \ S1 and E := E \ Γ (S1).
6. (Randomised Rounding) For all vertices j ∈ S≤ include the vertex j

in the hitting set C, independently for all such j, with probability x∗
jλ.

7. (Repairing) Repair the Hitting Set C (if necessary) as follows:
a) If |{E ∈ E | E ∩ C 	= ∅}| = |E|, then return C.
b) If |{E ∈ E | E ∩ C 	= ∅}| < |E|, then pick arbitrary at most |E| − |C|

additional vertices from not covered edges in the hitting set.
8. Return the hitting set C of H

Let us briefly explain the ingredients of the algorithm. Usually, as in [8,9,11],
the LP or semidefinite program is solved and randomised rounding or random
hyperplane techniques are used followed by a repairing step. In our algorithm
we thin out the hypergraph by removing vertices and edges corresponding to
LP-variables with zero value, which will not be taken into the hitting set by
randomised rounding (Step 4), before entering randomised rounding and repair-
ing. This is an intuitively meaningful sparsening, and in fact will be necessary
in Section 5 where we estimate the expected size of the repaired hitting set (one
step analysis), while in Section 4 it is sufficient to analyse randomised rounding
and repairing separately.

4 Two-Step Analysis of the Algorithm VC-H
Let X1, ..., Xn be 0/1-random variables defined as follows: Xj is 1 if the vertex
vj was picked into the hitting set after the rounding step and 0 otherwise.
For all i ∈ [m] we define the 0/1- random variables Zi as follows: Zi is 1 if the
edge Ei is covered after the rounding step and 0 otherwise.
Then Y :=

∑n
j=1Xj is the cardinality of the hitting set after the randomised

rounding step in the algorithm and W =
∑m

j=1 Zj is the number of covered
edges after this step.

For the expected size of the hitting set we have the following upper bound:

E(|C|) ≤ E(Y) + E(m−W). (1)

For the computation of the expectation of W we need the following lemma (See
Lemma 2.2 [22]).

106 M. El Ouali, H. Fohlin, and A. Srivastav

Lemma 2. For all n ∈ N, λ > 0 and x1, · · · , xn, z ∈ [0, 1] with
∑n

i=1 xi ≥ z
and λxi < 1 for all i ∈ N, we have

∏n
i=1(1 − λxi) ≤ (1 − λ z

n)
n, and this bound

is the tight maximum.

Lemma 3. Let l and Δ be integers, not necessarily constant and let ε > 0.

(i) E(W) ≥ (1 − ε2)m.
(ii) Opt∗ ≥ m

Δ .
(iii) Let hypergraph H = (V, E) with x∗j > 0 for all j ∈ [n] it holds Opt∗ ≥ n

l ,
where l is the maximum size of a edge.

(iv) Opt∗ ≤ E(Y) ≤ λOpt∗.

Proof. (i) For this proof we consider an equivalent form of the LP relaxation of
the problem given in section 2.

(LP − 1) min

n∑
j=1

xj

n∑
j=1

aijxj ≥ zi for all i ∈ [m] := {1, . . . ,m}

m∑
i=1

zi ≥ m

xj , zi ∈ [0, 1] for all i ∈ [m], j ∈ [n].

It is easy to show that an optimal solution of LP-1 is an optimal solution of LP
and vice versa.

Let i ∈ [m], |Ei| = r and z∗i =
∑

j∈Ei
x∗j . If there is a j ∈ Ei with λxj ≥ 1

then Pr(Zi = 0) = 0, else we have

Pr(Zi = 0) =
∏
j∈Ei

(1− λx∗j) ≤
Lem 2

(
1− λz∗i

r

)r

≤
(
1− λz∗i

l

)r

= (1− (1− ε)z∗i)
r

≤ (1− (1 − ε)z∗i)
2 ≤ 1− z∗i (1− ε2)

and we get

E(W) =

m∑
i=1

Pr(Zi = 1) =

m∑
i=1

(1− Pr(Zi = 0))

≥
m∑
i=1

(1− (1 − z∗i (1− ε2)) =

m∑
i=1

z∗i (1− ε2) = (1− ε2)

m∑
i=1

z∗i

≥ (1− ε2)m.

(ii) Let d(vj) the degree of the vertex vj . With the ILP constraints we have

m ≤
m∑
i=1

z∗i ≤
m∑
i=1

∑
j∈Ei

x∗j =

n∑
j=1

d(vj)x
∗
j ≤ Δ

n∑
j=1

x∗j = Δ ·Opt∗

A Randomised Approximation Algorithm for the Hitting Set Problem 107

(iii) Let consider the LP problem dual to the hitting set LP problem

(D-VC) max
∑
j∈E

yj

∑
j∈E, i∈j

yj ≤ 1 for every i ∈ V,

yj ∈ [0, 1] for all j ∈ E .

Let (y∗j)j∈[m] resp. Opt∗(D) be an optimal solution of D-VC resp. the value of
the optimal solution, than the duality Theorem of Linear Programming applied
to the (LP-VC) and (D-VC) implies:

(a) Opt∗ = Opt∗(D)
(b) If x∗i > 0⇒∑

j∈E, i∈j yj = 1.

Therefore, we have
n =

∑
i∈V 1 =

∑
i∈V

∑
j∈E, i∈j y

∗
j =

∑
j∈E y

∗
j |j ∩ V | ≤ l

∑
j∈E y

∗
j =

(a)
lOpt∗.

(iv) By using the LP relaxation and the definition of the sets S1, S≥ and S≤,
and since λ ≥ 1, we get

Opt∗ ≤
=E(Y)︷ ︸︸ ︷

|S1|︸︷︷︸
Opt∗(S1)

+ |S≥|︸︷︷︸
≤λOpt∗(S≥)

+λOpt∗(S≤) ≤ λOpt∗.

�

4.1 Hypergraphs with Non-constant l,Δ

In this section we will analyse the algorithm for hypergraphs with maximum de-
gree and maximum edge size that are not constant but may be given as functions
of n. The main result in this section is:

Theorem 3. Let H be a hypergraph with maximum edge size l = O(
√
n) and

maximum vertex degree Δ = O(n
1
4). The algorithm VC-H returns a hitting set

C such that, |C| ≤ l
(
1−

√
2−1

4
√
2Δ

)
Opt with probability at least 3

5 .

Proof. Case 1 : S0 = ∅.
Let

ε :=
lOpt∗(1 + β)

4m
for β =

√
2l√
n
. (2)

We can assume that

ε ≤ 1 + β

4− η
, for all η ∈ (0, 1), (3)

108 M. El Ouali, H. Fohlin, and A. Srivastav

because otherwise it follows from the definition of ε in (2) that lOpt∗ ≥ 4m
4−η ,

hence l(1 − η
4)Opt∗ ≥ m. Since a hitting set of size m can be trivially found

by picking m arbitrary edges and taking one vertex from each of them pairwise
distinct, we can get a l(1 − η

4)-approximation —i.e. a constant factor strictly
better than l— in this case.
It is straightforward to check that (3) implies ε ≤ 2

3 , so λ = l(1− ε) >
l≥3

1.

Claim 1. Pr
(
W ≤ m(1− ε2)−√∑n

i=1 d
2(vi)

)
≤ 1

5 .

Proof of Claim 1. First we consider the function: f(X1, ..., Xn) =
∑m

j=1 Zj .

f satisfies: |f(X1, .., Xk, .., Xn)− f(X1, .., X
′
k, .., Xn)| ≤ d(vk), with X

′
k ∈ {0, 1}

and Xk �= X
′
k.

Since the X1, ..., Xn are chosen independently at random, by Theorem 2 we
get for any t > 0

Pr(f(X)− E(f(X)) ≤ −t) ≤ exp

(−2t2∑n
i=1 d

2(vi)

)
. (4)

Let us choose t =
√∑n

i=1 d
2(vi). By Lemma 3 (ii)

Pr

⎛
⎝W ≤ m(1 − ε2)−

√√√√ n∑
i=1

d2(vi)

⎞
⎠ ≤ Pr

⎛
⎝W ≤ E(W)−

√√√√ n∑
i=1

d2(vi)

⎞
⎠

≤
Ineq (4)

exp

(−2∑n
i=1 d

2(vi)∑n
i=1 d

2(vi)

)
<

1

5
.

This concludes the proof of Claim 1.

Claim 2. For β =
√
2l√
n

it holds that Pr (Y ≥ l ·Opt∗(1 − ε)(1 + β)) < 1
5 .

Proof of Claim 2. The random variables X1, ..., Xn in the rounding step are
independent. Moreover, since l ≤ √

2n we have β ∈ (0, 1). Thus the Angluin-
Valliant form of Chernoff bound ([21], Theorem 2.3, p. 200) shows

Pr (Y ≥ l(1− ε)(1 + β)Opt∗) ≤
Lem3(iv)

Pr (Y ≥ E(Y)(1+β)) ≤ exp

(
−β

2E(Y)

3

)
.

On the other hand we have: E(Y)β2

3 ≥
Lem3(iv)

Opt∗β2

3 ≥
Lem3(iii)

nβ2

3l ≥ 2l2n
3ln ≥

l≥3
2.

Finally we get: Pr (Y ≥ l(1− ε)(1 + β)Opt∗) ≤ exp (−2) < 1
5 .

This concludes the proof of Claim 2.

By Claims 1 and 2 we get with probability at least 1 − (15 + 1
5) ≥ 3

5 an upper
bound for the final hitting set:

|C| ≤ l(1− ε)(1 + β)Opt∗ +mε2︸ ︷︷ ︸
(∗)

+

√√√√ n∑
i=1

d2(vi)

︸ ︷︷ ︸
(∗∗)

.

A Randomised Approximation Algorithm for the Hitting Set Problem 109

By Lemma 3(iii) and the condition Δ ≤ 1
32n

1
4 it holds:

(∗∗)=
√√√√ n∑

i=1

d2(vi) ≤ Δ
√
n ≤

√
n

l

√
lΔ ≤ l

√
Opt∗

√
Opt∗

1

4
√
2Δ

≤ lOpt∗
1

4
√
2Δ

.

Furthermore we have

(∗) =
Eq (2)

l
(
(1 + β)(1 − ε) + lOpt∗(1+β)

16m

)
Opt∗ = l(1 + β)

(
1− 3lOpt∗(1+β)

16m

)
Opt∗

≤
Lem3(ii)

l(1 + β)
(
1− 3l(1+β)

16Δ

)
Opt∗ = l

(
1 + β − 3l(1+β)2

16Δ

)
Opt∗.

On the other hand we can easily check, that 3l(1+β)2

16Δ − β ≥ 1
4Δ ,

therefore

l(1− ε)(1 + β)Opt∗ +mε2 ≤ l

(
1− 1

4Δ

)
Opt∗.

Finally (∗) + (∗∗) ≤ l
(
1− 1

4Δ + 1
4
√
2Δ

)
Opt∗ ≤ l

(
1−

√
2−1

4
√
2Δ

)
Opt∗.

The randomised algorithm returns with probability at least 3
5 a hitting set C

with cardinality at most l
(
1− c

Δ

)
Opt∗, where c = 1

4 (1 − 1√
2
).

Case 2: If S0 is not empty, we can consider the sub-hypergraphH constructed in
step 4 of algorithm VC-H. Let Δ̃ resp. l̃ be the maximum vertex degree resp. the
maximum edge size of this sub-hypergraph. Now for this hypergraph we have
S0 = ∅ and with Case 1 we get a hitting set of cardinality at most l̃(1− c

Δ̃
)Opt.

Since l̃ ≤ l and Δ̃ ≤ Δ, the assertion of Theorem 3 holds. �

Remark 1. For hypergraphs addressed in Theorem 3 we have an improvement
over the result of Krivelevich [18], for any function f(n) satisfying f(n) = O(n

1
4),

since n
1
4 < n1− 1

l for l ≥ 2, and our approximation is the better the smaller f(n)

becomes. For Δ ≤ ln (n)
ln ln (n) we obtain a better approximation than Halperin [12].

5 One-Step Analysis of the Algorithm VC-H
Instead bounding the error probability of the randomised rounding step and the
repairing step separately as above, in this section we analyse the expected size
of the hitting set including repairing, and then use concentration inequalities.

For a set S ⊂ {1, ..., n} let Opt∗(S) :=
∑

j∈S x
∗
j . By (1) it holds

E(|C|) ≤ Opt∗(S1) + l(1− ε)(Opt∗(S≥) + Opt∗(S≤)) +mε2 (5)

Let us choose:

ε =
l(Opt∗ (S≥) + Opt∗(S≤))

2m
. (6)

110 M. El Ouali, H. Fohlin, and A. Srivastav

We can assume that
l(Opt∗(S≥)+Opt∗(S≤))

2m ∈ [0, 1]. Otherwise, if
l(Opt∗(S≥)+Opt∗(S≤))

2m > 1 then l
2Opt∗ ≥ l

2 ((Opt∗(S≥) + Opt∗(S≤)) > m.

Since any hitting set of cardinality m can be found trivially, this approximates
the optimum within a factor of l

2 < l.
Let Sf := S≥ ∪ S≤\{j ∈ [n]|x∗j = 0}. Plugging in ε from (6) into (5), we get

E(|C|) ≤ Opt∗(S1) + l

(
1− lOpt∗(Sf)

4m

)
Opt∗(Sf). (7)

We observe here that the LP-based sparsening of the instance becomes relevant.
At next we compute the variance of the size of the hitting set. We get,

Lemma 4. Let X1, . . . , Xn be the 0/1-random variables returned by algorithm
VC-H. Then we have Var(|C|) ≤ lΔE(|C|).
Proof. Let Γ and γ like in Lemma 1. Furthermore for every vi, vj ∈ V,Xi, Xj

are dependent iff they belong to the same edge. Thus, for a fixed vi, there are
at the most (l − 1)d(vi) random variables Xj depending on Xi. Furthermore it
holds for every vi, vj ∈ V :

E(XiXj) = Pr(Xi = 1 ∧Xj = 1) ≤ min{Pr(Xi = 1),Pr(Xj = 1)}

≤ Pr(Xi = 1) + Pr(Xj = 1)

2
.

Moreover γ =
∑

{vi,vj}∈Γ

E(XiXj) ≤
∑

{vi,vj}∈Γ

Pr(Xi = 1) + Pr(Xj = 1)

2

≤
n∑

i=1

(l − 1)d(vi)

2
Pr(Xi = 1) =

(l − 1)d(vi)

2
E(|C|)

by Lemma 1 we have: Var(|C|) ≤ E(|C|) + (l − 1)d(vi)E(|C|) ≤ lΔE(|C|). �

5.1 Quasi-Regularisable l-Uniform Hypergraphs

Recall that S1 is the set S1 = {j ∈ [n] | x∗j = 1}, containing those vertices for
which the LP-optimal solution is tight (see algorithm VC-H, step 3).
The next theorem is the main result of this section and it is proved using the
above stated estimation (7) of E(|C|) and the Chebychev-Cantelli inequality.

Theorem 4. Let H be a l-uniform, quasi-regularisable hypergraph with arbitrary
l and maximum vertex degree Δ = O(n

1
3), then the algorithm VC-H returns a

hitting set C such that, |C| ≤ l
(
1− n

8m

)
Opt∗ with probability at least 3

4 .

We need the following theorem of Berge [5].

Theorem 5. For an l-uniform hypergraph H, the following properties are
equivalent:

A Randomised Approximation Algorithm for the Hitting Set Problem 111

1. H is quasi-regularisable;
2. Opt∗ = n

l (i.e. the vector x∗ = (1l , ...,
1
l) is an optimal solution for the LP

relaxation and l is the size of the edges).

By this theorem, the condition S1 = ∅ becomes a graph-theoretical meaning.

Proof of Theorem 4. By (7) and Theorem 5 we get for quasi-regularisable l-
uniform hypergraphs with arbitrary l and bounded degree Δ the approximation

E(|C|) ≤ l
(
1− n

4m

)
Opt∗. (8)

Hence

Pr
(
|C| ≥ l

(
1− n

8m

)
Opt∗

)
≤

Ineq (8)
Pr

(
|C| ≥ E(|C|) + nlOpt∗

8m

)
≤

Th1

1

4
.

Namely for n ≥ 82Δ3 we get with a straightforward calculation that

(
lnOpt∗

8m

)2

Var(|C|) ≥
l ≥ 3. So we obtain a hitting set C of size at most l

(
1− n

8m

)
Opt∗ with proba-

bility at least 3
4 . �

Remark 2. In Theorem 4, we can assume that n < 8m, because otherwise we
have Opt∗ = n

l ≥ 8m
l thus m ≤ l

8Opt∗. By taking one vertex for each edge we

obtain a hitting set of cardinality l
8Opt∗, which gives already an approximation

ratio of l/8. For hypergraphs addressed in Theorem 4 we have an improvement

over the ratio of Krivelevich if m ≤ cn
2l−1

l and the ratio of Halperin if m ≤
(1−o(1))−1 ln (n)n

ln ln (n) .

5.2 l-Uniform Hypergraphs with Bounded Vertex Degree

In this section l and Δ are constants and H is an l-uniform hypergraph. Let
H̃ = (Ṽ , Ẽ) be the sub-hypergraph of H constructed in step 5 of the algorithm
VC-H with |Ṽ | = ñ and |Ẽ | = m̃. We denote by l̃ and Δ̃ the maximum size of all
edges and the maximum vertex degree in H̃. We consider the LP relaxation of
the ILP formulation of the hitting set problem in H̃ which we denote by LP(H̃).
By Opt∗(H̃) we denote the value of the optimal solution of LP(H̃). The optimal
LP solution for H is Opt∗. Then the following holds.

Lemma 5. Opt∗(H̃) = Opt∗ − |S1| and E(|C|) ≤ |S1|+ E(|C̃|).
Lemma 6. Let l and Δ be constants, and let H be a l-uniform hypergraph with
maximum vertex degree Δ. Then: E(|C|) ≤ l

(
1− l

4Δ

)
Opt∗.

Proof . Since there is no tight LP(H̃)-variable, because there are no 1’s in the
solution (x̃1, . . . , x̃ñ), we get using (5)

E(|C̃|) ≤ l̃

(
1− l̃Opt∗(H̃)

4m̃

)
Opt∗(H̃) ≤

Lem3(ii)
l̃

(
1− l̃

4Δ̃

)
Opt∗(H̃).

112 M. El Ouali, H. Fohlin, and A. Srivastav

Furthermore,

E(|C|) ≤ |S1|+ E(|C̃|) ≤ |S1|+ l̃

(
1− l̃

4Δ̃

)
Opt∗(H̃)

≤
λ≥1

l̃

(
1− l̃Opt∗(H̃)

4m̃

)
|S1|+ l̃

(
1− l̃

4Δ̃

)
Opt∗(H̃)

≤
Lem3(ii)

l̃

(
1− l̃

4Δ̃

)
(Opt∗(H̃) + |S1|) =

Lem5
l̃

(
1− l̃

4Δ̃

)
Opt∗.

and because H is uniform and Δ ≥ Δ̃ we have: E(|C|) ≤ l
(
1− l

4Δ

)
Opt∗ �

Lemma 6 and Lemma 4 imply the following theorem using the Chebyshev-
Cantelli inequality and standard calculations.

Theorem 6. Let H be an l-uniform hypergraph with bounded vertex degree, then
the algorithm VC-H returns a hitting set C such that, |C| ≤ l

(
1− l−1

4Δ

)
Opt∗ with

probability at least 3
4 .

Proof.Assuming thatm ≥ 16Δ5 the proof is similar to the proof of Theorem 4. �

This improves over the result of Krivelevich [18] for Δ smaller then (l− 1)1+
1

l−2

and of Okun [23] for Δ smaller then (l − 1)1+
1

βl−1 . The approximation ratio in
this result is little weaker than the ratio of Halperin [12]. But the advantage
here is that l and Δ are not coupled anymore, so a significantly larger class of
hypergraphs than in [12] is covered.

6 Further Work

We believe that the analysis presented in this paper can incorporate other hyper-
graph parameters in a natural way, like bounded VC-dimension, uncrowdned-
ness, or exclusion of subgraphs. We hope that this may lead to new and better
approximation results for the hitting set problem in such hypergraphs.

References

1. Alon, N., Moshkovitz, D., Safra, S.: Algorithmic construction of sets for k-
restrictions. ACM Trans. Algorithms (ACM) 2, 153–177 (2006)

2. Alon, N., Spencer, J.: The probabilistic method, 2nd edn. Wiley Interscience (2000)
3. Bar-Yehuda, R., Even, S.: A linear-time approximation algorithm for the weighted

vertex cover problem. Journal of Algorithms 2, 198–203 (1981)
4. Bar-Yehuda, R., Even, S.: A local ratio theorem for approximating weighted vertex

cover problem. In: Ausiello, G., Lucertini, M. (eds.) Analysis and Design of Algo-
rithms for Combinatorial Problems. Annals of Discrete Math., vol. 25, pp. 27–46.
Elsevier, Amsterdam (1985)

A Randomised Approximation Algorithm for the Hitting Set Problem 113

5. Berge, C.: Hypergraphs-combinatorics of finite sets. North Holland Mathematical
Library (1989)

6. Chvatal, V.: A greedy heuristic for the set covering problem. Math. Oper. Res. 4(3),
233–235 (1979)

7. Feige, U.: A treshold of lnn for approximating set cover. Journal of the ACM 45(4),
634–652 (1998)

8. Feige, U., Langberg, M.: Approximation algorithms for maximization problems
arising in graph partitioning. Journal of Algorithms 41(2), 174–201 (2001)

9. Frieze, A., Jerrum, M.: Improved approximation algorithms for max k-cut and max
bisection. Algorithmica 18, 67–81 (1997)

10. Füredi, Z.: Matchings and covers in hypergraphs. Graphs and Combinatorics 4(1),
115–206 (1988)

11. Gandhi, R., Khuller, S., Srinivasan, A.: Approximation Algorithms for Partial Cov-
ering Problems. J. Algorithms 53(1), 55–84 (2004)

12. Halperin, E.: Improved approximation algorithms for the vertex cover problem
in graphs and hypergraphs. In: ACM-SIAM Symposium on Discrete Algorithms,
vol. 11, pp. 329–337 (2000)

13. Hochbaum, D.S.: Approximation algorithms for the set covering and vertex cover
problems. SIAM J. Computation 11(3), 555–556 (1982)

14. Hall, N.G., Hochbaum, D.S.: A fast approximation for the multicovering problem.
Discrete Appl. Math. 15, 35–40 (1986)

15. Jäger, G., Srivastav, A.: Improved approximation algorithms for maximum graph
partitioning problems. Journal of Combinatorial Optimization 10(2), 133–167
(2005)

16. Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput.
System Sci. 9, 256–278 (1974)

17. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2-epsilon.
J. Comput. Syst. Sci. 74(3), 335–349 (2008)

18. Krivelevich, J.: Approximate set covering in uniform hypergraphs. J. Algo-
rithms 25(1), 118–143 (1997)

19. Lovász, L.: On the ratio of optimal integral and fractional covers. Discrete Math. 13,
383–390 (1975)

20. Lund, C., Yannakakis, M.: On the hardness of approximating minimization prob-
lems. J. Assoc. Comput. Mach. 41, 960–981 (1994)

21. McDiarmid, C.: Concentration. In: Habib, M., McDiarmid, C., Ramirez-Alfonsin,
J., Reed, B. (eds.) Probabilistic Methods for Algorithmic Discrete Mathematics,
pp. 195–248. Springer, Berlin (1998)

22. Peleg, D., Schechtman, G., Wool, A.: Randomized approximation of bounded mul-
ticovering problems. Algorithmica 18(1), 44–66 (1997)

23. Okun, M.: On approximation of the vertex cover problem in hypergraphs. Discrete
Optimization (DISOPT) 2(1), 101–111 (2005)

24. Raz, R., Safra, S.: A sub-constant error-probability low-degree test, and a sub-
constant error-probability PCP characterization of NP. In: Proc. 29th ACM Symp.
on Theory of Computing, pp. 475–484 (1997)

Exact and Approximation Algorithms

for Densest k-Subgraph�

(Extended Abstract)

Nicolas Bourgeois1, Aristotelis Giannakos2, Giorgio Lucarelli3,
Ioannis Milis4, and Vangelis Th. Paschos2,5

1 ESSEC, France
nbourgeo@phare.normalesup.org

2 PSL Research University, Université Paris-Dauphine, LAMSADE, CNRS UMR
7243, Paris, France

{giannako,paschos}@lamsade.dauphine.fr
3 Université Pierre et Marie Curie, LIP6, Paris, France

Giorgio.Lucarelli@lip6.fr
4 Athens University of Economics and Business, Dept. of Informatics, Athens, Greece

milis@aueb.gr
5 Institut Universitaire de France

Abstract. The densest k-subgraph problem is a generalization of the
maximum clique problem, in which we are given a graph G and a positive
integer k, and we search among the subsets of k vertices of G one induc-
ing a maximum number of edges. In this paper, we present algorithms
for finding exact solutions of densest k-subgraph improving the triv-
ial exponential time complexity of O∗(2n) and using polynomial space.
Two FPT algorithms are also proposed; the first considers as parameter
the treewidth of the input graph and uses exponential space, while the
second is parameterized by the size of the minimum vertex cover and uses
polynomial space. Finally, we propose several approximation algorithms
running in moderately exponential or parameterized time.

1 Introduction and Preliminaries

In the densest k-subgraph problem we are given a graph G = (V,E), |V | = n,
|E| = m, and an integer k ∈ N+, and we ask for a subset A ⊆ V of k vertices
such that the number of edges induced by A is maximized. This problem belongs
to a known class of problems, called fixed cardinality problems, most of which are
generalizations of well-known combinatorial optimization problems. For instance,
this is the case for densest k-subgraph with respect to the max clique

problem that is NP-hard [21]. Furthermore, it is NP-complete even to decide if
there is a solution with at least k1+ε edges, for any ε > 0 [2].

In this paper, we present (sub)exponential and parameterized algorithms
that compute optimal or approximate solutions for the densest k-subgraph

� Research supported by the French Agency for Research under the DEFIS program
TODO, ANR-09-EMER-010.

S.K. Ghosh and T. Tokuyama (Eds.): WALCOM 2013, LNCS 7748, pp. 114–125, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Exact and Approximation Algorithms for Densest k-Subgraph 115

problem. In Section 2 we propose exact algorithms for finding an optimal solu-
tion to densest k-subgraph. These algorithms improve the trivial complex-
ity O∗(2n) for the problem (throughout the paper we use notation O∗(·) that
ignores polynomial factors in the complexity expressions). In contrast to the
algorithm presented in [12], they need only polynomial space. In this direc-
tion, we first present a general decomposition schema which, depending on the
way the graph is decomposed, leads to different time complexities for finding
an optimal solution. Let us note that this schema is quite general and can be
applied to solve a lot of graph-problems, in particular problems whose feasi-
ble solutions are subsets of the vertex-set of the input graph. The interesting
algorithmic point of this technique is that it can avoid a complete enumera-
tion of k-element vertex subsets, when it can be restricted to subsets of the
vertex-set whose complement induces a graph of maximum degree at most 2.
Next, in Section 2.2, we propose a branch-and-cut algorithm and we analyze
its complexity using the “measure and conquer” and the “bottom-up” tech-
niques. An interesting point in this section is that we initiate a kind of multi-
variate analysis within moderately exponential algorithms, by getting running
time upper-bounds depending not only on the order of the input graph but
also on the maximum degree, or the chromatic number or the diameter of the
graph, or . . . This kind of analysis gives complexity expressions that represent
more “tightly” the running time of an algorithm. In Section 3, we present algo-
rithms of parameterized complexity for densest k-subgraph. We first propose
an algorithm of complexity exponential in the treewidth tw of the input graph,
supposing that a tree decomposition is given. However, this algorithm uses ex-
ponential space. In order to fix this, we show that densest k-subgraph is FPT
with respect to the size τ of a minimum vertex cover of the input graph. Note
that tw � τ , but the later algorithm uses polynomial space. In Section 4, we
first present two XP-approximation schemata for densest k-subgraph whose
approximation ratios depend on their complexity (see [17] for a formal defini-
tion of the problem-class XP). We also give approximation algorithms that run
in moderately exponential or parameterized time. The omitted proofs can be
found in [10].

In what follows, we denote by δ(G), Δ(G) and Δ̄(G) (or simply δ, Δ and Δ̄)
the minimum, maximum and average degree, respectively, of a graph G. The
diameter D(G) of a graph G is the length of the largest shortest path between
any two vertices of the graph. For a graph G, we denote by tw(G) and χ(G)
its treewidth and chromatic number, respectively. Given two sets of vertices
A,B ⊆ V , G[A] denotes the subgraph induced by A, E(A) the set of edges
induced by G[A] and E(A,B) the set of edges with their one endpoint in A and
the other in B.

The approximability of densest k-subgraph has been studied in several
papers. For instance, an approximation algorithm achieving ratio 8k

9n has been

proposed in [4]. In [19], three procedures are used in order to obtain a O(n−1/3)-
approximation ratio, while the best known approximation algorithm achieves a
ratio of O(n−(1/4+ε)) within nO(1/ε) time, for any ε > 0 [3]. From a negative

116 N. Bourgeois et al.

point of view, it is known that densest k-subgraph in general graphs does not
admit a PTAS [22].

densest k-subgraph can be solved in time O∗(knω�k/3�+1+k mod 3) where
ω < 2.376, by the exact algorithm proposed in [12]. Notice, however, that this
algorithm requires exponential space.

A problem is fixed-parameter tractable (FPT) with respect to a parameter t
if it can be solved (to optimality) with time-complexity O(f(t)p(n)) where f is a
function that depends on the parameter t and p is a polynomial in the size n of
the instance. Cai in [12] proved that densest k-subgraph is W[1]-hard, with
respect to k even for regular graphs. This result immediately implies also that
densest k-subgraph is W[1]-hard with respect to the size � of the solution,
as any solution cannot contain more than k(k − 1)/2 edges.

2 Exact Algorithms

2.1 A Decomposition Technique

A general idea for finding an exact solution for the densest k-subgraph prob-
lem in a graph G = (V,E) is to split the vertex set V into two subsets V1 and V2.
Then, for each j, 0 � j � k, and each subset A1 ⊆ V1 with |A1| = j, we search
for a subset A2 ⊆ V2, |A2| = k− j, such that the number of edges in G[A1 ∪A2]
is maximized. Clearly, the complexity of this algorithm depends on:

– the size of set V1, as we create all subsets of V1;
– the complexity of determining, given the set A1, the appropriate set A2 ⊆ V2.

Hence, it is required for V2 = V \ V1 to be of non-trivial size and to have some
specific property that allows A2 to be determined in polynomial time. We will
show that the property Δ(G[V2]) � 2 is an application of this idea.

This general idea can be applied to many problems especially to those where
feasible solutions are subsets of V satisfying some specific property. As we will see
in what follows, this method provides also a general framework for the complexity
analysis of several algorithms (depending on the way V1 is chosen and on its size),
and uses polynomial space. Therefore, it allows to achieve non-trivial bounds
to running time (using polynomial space), in particular for problems where no
bounds better than O∗(2n) are known.

Generic(V1, V2) is a procedure that takes as input a partition of the vertex set
(V1, V2) and returns an optimal densest k-subgraph in G through exhaustive
search.

Whenever Δ(G[V2]) � 2, the following proposition states that A2 is found in
polynomial time.

Proposition 1. Consider a graph G = (V,E), some partition of the vertex
set V into two subsets V1 and V2 such that Δ(G[V2]) � 2, and a subset A1 ⊆ V1,
|A1| � k. A solution A = A1 ∪ A2 for the densest k-subgraph problem in G
such that A2 ⊆ V2, |A2| = k − |A1|, and |E(A)| is maximized, can be found in
O(nk2) time.

Exact and Approximation Algorithms for Densest k-Subgraph 117

Generic(V1, V2)

1: for j = 0 to k do
2: for any subset A1 ⊆ V1, |A1| = j do
3: find a solution A = A1 ∪A2 for the densest k-subgraph problem in G such

that A2 ⊆ V2, |A2| = k − j, and |E(A)| is maximized;
4: return the best among the solutions found in Line 3;

Note that, if Δ(G[V2]) = 0, i.e., V2 is an independent set, then the set A2 can be
found in O(n log k) time, by selecting the k− |A1| vertices of V2 with the largest
degree to A1.

Proposition 2. Generic(V1, V2) returns an optimal densest k-subgraph-
solution on G[V1 ∪V2] in O∗ (2|V1|) time, whenever A2 ⊆ V2 can be computed in
polynomial time.

Note that, if k � |V1|
2 then the term O∗

((|V1|
k

))
is a better expression for the

complexity.
The following theorem handles four decompositions (V1, V2) of G, each one

determined by the way V1 is obtained. Other decompositions based on specific
structural properties of the set V1 can be also used to obtain different complex-
ities.

Theorem 1. Generic(V1, V2) leads to a polynomial space algorithm for den-

sest k-subgraph of time complexity: (i) O∗
(
2(1−(5/8)Δ−2)n

)
, if V1 is ob-

tained by repeated excavations of minimum dominating sets; (ii) O∗
(
2

χ−1
χ n

)
or O∗

(
2

Δ−1
Δ n

)
, if V1 is a minimum vertex cover; (iii) O∗

(
2

Δ−2
Δ−1n

)
, for any

Δ � 3, if V1 is obtained by repeated excavations of minimum independent dom-
inating sets; (iv) O∗ (2n−D(G)

)
, for any Δ � 3, if V1 is the complement of the

vertices of a longest path of the graph.

We prove here Items (ii) and (iii). The whole proof of the theorem can be found
in [10].

Proof of Item (ii). Consider Algorithm 1. A minimum vertex cover B, can be
found in time O∗ (1.2738τ) [14]. The set V \ B is a maximum independent set
of size at least n

χ , since the vertex set of the input graph can be partitioned

into χ independent sets. Hence, by Proposition 2 the first part of Item (ii) of the
theorem holds. If the input graph is a clique or an odd cycle then the densest

Algorithm 1. Decomposition by Minimum Vertex Cover

1: find a minimum vertex cover B, of G;
2: return Generic(B,V \ B);

118 N. Bourgeois et al.

k-subgraph problem is polynomial. Otherwise, χ � Δ and the second part of
Item (ii) of the theorem holds.

Proof of Item (iii). Consider Algorithm 2. Note that, if there exits a Di such
that |Di| � n

Δ−1 , then by Line 5 of the algorithm we have that |D| � n− n
Δ−1 =

Δ−2
Δ−1n. Otherwise, for each i, 3 � i � Δ, it holds that |Di| � n

Δ−1 , and hence,
|D| � (Δ−2) n

Δ−1 . Since in both cases G[V \D] is a graph of maximum degree 2,
we can apply Proposition 2, completing the proof of Item (iii). �

Algorithm 2. Decomposition by Minimum Independent Dominating Set

1: VΔ = V ; D = ∅;
2: for i = Δ to 3 do
3: find an independent dominating set Di on G[Vi];
4: if |Di| � n

Δ−1
then

5: D = V \Di; Go to Line 8;
6: else
7: D = D ∪Di; Vi−1 = Vi \Di;
8: return Generic(D,V \D);

The complexity for optimally solving densest k-subgraph in bipartite graphs
can be further improved. Observe that, given a bipartite graph G = (U ∪ V,E),

we can apply Generic(U, V) getting an algorithm with running time O∗
((

n/2
k

))
(or 2n/2 if k � n/2). We now show how to improve this result, by considering the
balance of the vertices among the two independent sets in an optimal solution. In
what follows, we define φ(k, n) to be the worst-case complexity of our algorithm
running on general instances of densest k-subgraph.

We now show that densest k-subgraph can be solved on bipartite graphs
in time O∗(φ(k, n)), where the behavior of φ(k, n) for different ratios k/n is
illustrated in the next table.

k/n 1/100 1/20 1/10 1/6 1/4 1/3
φ(k, n) 1.029n 1.105n 1.177n 1.253n 1.325n 1.375n∑
i�k

(
n/2
i

)
1.051n 1.177n 1.285n 1.375n

√
2
n √

2
n

Indeed, w.l.o.g., assume that |U | � n/2 and let λ = |U |/n � 1/2.Generic(U, V)
solves densest k-subgraph in O∗(φ(k, λn)) time, while Generic(V, U) solves
it in time O∗(φ(k, (1 − λ)n)). We fix some scalar ν(λ) � 1/2. Notice that ei-
ther V contains at most νk vertices from an optimal solution, or U contains
less than (1 − ν)k of them. Hence, we only need to consider small subsets:
T (n) � maxλ minν{φ(νk, (1 − λ)n) + φ((1 − ν)k, λn)}. Since the second term
in the previous expression involves an increasing and a decreasing function, it is
easy to find the solution of this minimization problem for a given set of param-
eters (k, n). However, it would be very tedious to try to give an exact formula,
especially considering all the specific cases when k is close to n. As a consequence,
we prefer to give a sample of values for the function φ.

Exact and Approximation Algorithms for Densest k-Subgraph 119

2.2 Branch-and-Cut Algorithms

In this section we propose two slightly different branching algorithms for den-
sest k-subgraph and we prove upper bounds on their time complexity. For the
analysis of the first algorithm we use the well known technique of measure and
conquer introduced in [20]. For the analysis of the second algorithm we use the
bottom-up technique which has been developed in [8] as a technique for finely
measuring the progression of a branching algorithm. This method has led to the
best known worst-case complexity for the independent set problem [8], and it
has been also used in [9].

Let us first consider a simple branch-and-cut algorithm that branches on a
vertex of maximum degree. The branching tree is pruned whenever the remaining
graph is of maximum degree 2. In this case, a solution for the whole graph can be
obtained by extending the solution implied by the particular path of the search
tree as stated in Proposition 1.

Theorem 2. Using measure and conquer, the basic branching algorithm solves

densest k-subgraph in time O∗
(
2

Δ−1
Δ+1n

)
.

We now slightly modify the previous basic branching algorithm by proceeding
to search tree cutting whenever the remaining graph has average degree three.
The analysis of this modified branching algorithm is based on the bottom-up
method. The following Lemma 1 settles the case where the average degree of
the graph is at most 3, while Lemma 2 handles the complexity of finding a den-

sest k-subgraph on graphs with average degree at least d− 1, given that the
complexity of finding a densest k-subgraph for graphs with average degree at
most d− 1 is known.

Lemma 1. densest k-subgraph can be solved on graphs of average degree
Δ̄ � 3 with running time O∗(221n/46).

Lemma 2. Assume densest k-subgraph can be computed in graphs with av-
erage degree at most d − 1, in time O∗(2αdn) for a given αd � 1/2, d ∈ N.
Then, its computation time in graphs with average degree at least d − 1 is

O∗(2αdn+βd(m−(d−1)n/2)), where βd = 2(1−αd)
d+1 . Furthermore, in graphs with av-

erage degree at most d, this time is O∗(2αd+1n), where αd+1 = dαd+1
d+1 .

Theorem 3. densest k-subgraph can be solved on graphs of average degree

Δ̄ � d with running time O∗(2
d−27/23

d+1
n), for any d ∈ N, d � 3.

Proof. For d = 3 the result follows by Lemma 1. Assume that it is true for
Δ̄ � d− 1. Then, by Lemma 2, we can find a solution when Δ̄ � d with running

time O∗(2αd+1n), where αd+1 = dαd+1
d+1 =

d d−1−27/23
d +1

d+1 = d−27/23
d+1 . Thus, the

statement holds by induction on d. ��

120 N. Bourgeois et al.

3 Parameterized Algorithms

Given a graph G = (V,E), a tree decomposition is a pair (X,T), where X =
{X1, X2, . . . , X|X|}, Xi ⊆ V , and T = (X,F) is a tree such that: (i)

⋃
Xi =

V , (ii) for each e = (u, v) ∈ E there is a Xi where u, v ∈ Xi, and (iii) for
each Xi, Xj , Xl such that Xj appears on the path between Xi and Xl it holds
that Xi ∩ Xl ⊆ Xj . The treewidth, tw, of such a decomposition is defined as
tw = max{|Xi|, 1 � i � |X |}− 1. It is known that finding a minimum treewidth
decomposition of a given graph is NP-hard [1]. However, deciding whether there
is a tree decomposition of a graph of a fixed treewidth is polynomial [6]. A
similar approach to that of [25] for max k-cover, can be used for densest

k-subgraph, deriving the following result.

Theorem 4. There exist an algorithm for densest k-subgraph that runs in
time O∗(2tw · k · (tw2 + k) · |X |) and uses space exponential in tw. Consequently,
densest k-subgraph parameterized by the treewidth of the input graph is FPT.

Let us note that the graph G[V2] in Proposition 1 has bounded treewidth. How-
ever, observe that, although the completion of A1 is done by vertices of V2, the
densest k-subgraph problem itself is not solved in G[V2]. So, Proposition 1
cannot be substituted by Theorem 4.

For the size of the minimum vertex cover τ of the input graph it holds that
tw � τ . So, Theorem 4 implies that densest k-subgraph is FPT with respect
to τ too. In what follows, we present another application of Generic and we
restate Item (ii) of Theorem 1 in order to obtain the following parameterized
result, which implies only polynomial space. The proof of the following theorem
follows directly from the proof of Theorem 1, Item (ii) given earlier.

Theorem 5. There exists an O∗(2τ)-time algorithm for densest k-subgraph
that uses polynomial space.

We now improve the analysis of Theorem 5 and prove that, informally, the
instances of densest k-subgraph that are not fixed-parameter tractable (with
respect to k) are those solved with running time better than O∗(2τ).

Theorem 6. densest k-subgraph can be solved in O∗(max{γτ , ck}), for two
related constants γ < 2 and c > 4, and with polynomial space.

Proof. Note that by the proof of Theorem 5 the running time of Generic is
O∗(

∑k
i=1

(
τ
i

)
). If τ � k, it follows that densest k-subgraph can be solved in

O∗(2τ) = O∗(2k) time. Hence, we can assume that k < τ .
We will prove that, for any 0 < λ < 1/2, we can determine constants γ =

γ(λ) < 2 and c = c(λ) > 4 such that densest k-subgraph can be solved in
time O∗(max{γτ , ck}). We distinguish the following two cases: τ > k � λτ and
k < λτ .

If k � λτ , then using the fact that k < k/λ
2 and Stirling’s formula we get∑k

i=1

(
τ
i

)
� k

(
k/λ
k

) ∼ k

(
(λ−1)λ

−1

(λ−1−1)(λ−1−1)

)k

= O∗ (ck), for some constant c that

depends on λ.

Exact and Approximation Algorithms for Densest k-Subgraph 121

If k < λτ , then k < τ/2 and hence
∑k

i=1

(
τ
i

)
� k

(
τ
k

)
� k

(
1

λλ(1−λ)(1−λ)

)τ

=

O∗ (γτ), for some constant γ < 2 that depends on λ. ��
The table below contains the values of c and γ for some values of λ.

λ 0.01 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.40 0.45 0.49

c =

1

λ
1
λ

(1
λ
−1)(

1
λ

−1)
270.47 53.00 25.81 16.74 12.21 9.48 7.66 6.36 5.38 4.61 4.11

γ = 1
λλ(1−λ)1−λ 1.06 1.22 1.38 1.53 1.65 1.75 1.84 1.91 1.96 1.99 1.9996

4 Approximation Algorithms

Up to now no constant factor approximation algorithm for densest k-sub-
graph that runs in polynomial time is known. In this section, by relaxing the
demand of polynomiality, we present approximation algorithms that run in time
exponential, but faster than the time needed for computing an exact solution.
This approach has already been considered for several other paradigmatic prob-
lems such as minimum set cover [15], min coloring [5], max independent

set and min vertex cover [7], min bandwidth [16], etc. Note that, the
O(n−(1/4+ε))-approximation algorithm with complexity nO(1/ε) presented in [3],
can be considered as an approximation algorithm in this context, since when-
ever ε is chosen to be of the form logn c, where c is a constant, a constant factor
approximation ratio is achieved in subexponential time. Note finally that similar
issues arise in the field of FPT algorithms, where approximation notions have
been introduced, for instance, in [11,13,18,24].

For better readability, we partition the results of this section into two parts.
In the first part, we give approximation algorithms with complexity of the
form O∗(nck), with 0 < c � 1. In the second part, we present approxima-
tion algorithms either with complexity of the form O∗(cn), with 1 < c � 2, or
parameterized complexity.

4.1 XP-Approximation Algorithms

A general idea for the design of an exponential time approximation algorithm is
to construct a “good” subgraph of ρk vertices in exponential time and select the
remaining (1−ρ)k vertices in a greedy way. In this vein, the following proposition
gives a property of such a good subgraph.

Proposition 3. For an optimal solution A∗ for densest k-subgraph and a
rational ρ such that 0 < ρ � 1, there exists a partition of the vertices of A∗

into two subsets A∗
1, |A∗

1| = ρk, and A∗
2, |A∗

2| = (1 − ρ)k, such that |E(A∗
1)| �

ρ
1−ρ · |E(A∗

2)|.

Theorem 7. For any ρ, 0 < ρ � 1, Algorithm 3 achieves a ρ-approximation
ratio in O∗(nρk) time.

122 N. Bourgeois et al.

Algorithm 3. Create all subsets

1: for each of the
(
n
ρk

)
subsets of vertices A1 ⊆ V , |A1| = ρk, do

2: find the set of vertices A2 ∈ V \ A1, |A2| = (1 − ρ)k, which have the highest
degree to A1;

3: return the maximum solution A1 ∪A2 found;

Another way to construct a good subgraph of ρk vertices is to run an exact
algorithm for densest ρk-subgraph and to complete the solution with (1−ρ)k
arbitrary selected vertices. The following lemma deals with the density of an
induced subgraph and will be used to count the number of edges induced by
such an optimal densest ρk-subgraph.

Lemma 3. Consider a graph G = (V,E) of density � = 2|E|/|V |(|V | − 1). For
any p, 2 � p � |V |, there exists a set of vertices Vp ⊆ V , |Vp| = p, such that the
induced subgraph Gp(Vp, E(Vp)) has density at most �.

In the following theorem, we assume that an algorithm of complexity φ(k, t) is
known for finding a densest k-subgraph, where t is some parameter of the
instance, e.g., t = Δ, τ, �, n. This algorithm is used in order to obtain an optimal
solution of size ρk for the problem, where 0 < ρ � 1.

Theorem 8. Let A be an exact algorithm of complexity φ(k, t) for finding a
densest k-subgraph, where t is a parameter of the instance. For any ρ such
that 0 < ρ � 1, it is possible to find a ρ2-approximation for densest k-sub-
graph in G with running time O∗(φ(ρk, t)).

In Theorem 8, we count only the edges induced by the densest (�ρk� + 1)-
subgraph, as the remaining vertices are selected arbitrarily. In Algorithm 4,
we replace this greedy step by searching for successive densest (�ρk� + 1)-
subgraphs.

Algorithm 4. Approximate subsets

1: A = ∅; i = 1; Gi = G;
2: while |A| < k do
3: compute a densest (�ρk�+ 1)-subgraph in Gi;
4: let Ai be the set of vertices of this subgraph;
5: if |A ∪Ai| � k then
6: create the graph Gi+1 by removing from Gi the edges of E(Ai);
7: A = A ∪Ai;
8: if the vertices of Gi+1 induce an independent set then
9: arbitrarily complete A with vertices in V \A such that |A| = k;
10: else
11: arbitrarily complete A with vertices in V \A such that |A| = k;
12: return A;
13: i = i+ 1;
14: return A;

Exact and Approximation Algorithms for Densest k-Subgraph 123

Theorem 9. Let A be an exact algorithm of complexity φ(k, t) for finding a
densest k-subgraph. For any ρ such that 0 < ρ � 1, Algorithm 4 achieves a
ρ(1 − 3ρ/2)-approximation for densest k-subgraph in G with running time
O∗(φ(ρk, t)).

Proof. Let λ be the number of iterations of Algorithm 4. As at the beginning
of each iteration there exists at least one edge in Gi, there exists also a vertex
v ∈ Ai such that v �∈ A. Moreover, in each iteration at most ρk new vertices are
added in the solution. Thus, it holds that 1/ρ � λ � k(1 − ρ). Therefore, the
running time of the algorithm is bounded by O∗(φ(ρk, t)).

At the beginning of iteration i + 1, i � 1, the current graph Gi+1 contains
|E(A∗)|−|Ei| edges, where |Ei| =

∑i
j=1 |E(Aj)| and A∗ is an optimal solution for

the densest k-subgraph problem. Thus, there exists a subgraph of Gi+1 with
size ρk that contains at least ρ2(|E(A∗)|−|Ei|) edges. We prove by induction on i

that |Ei| � ρ2
(
i− i(i−1)

2 ρ2
)
|E(A∗)|. For i = 1, by Theorem 8 the inequality

holds. Assume that it is true for i− 1. Then:

|Ei| � ρ2|E(A∗)|+ (1− ρ2)|Ei−1|
� ρ2

(
1 + (1− ρ2)

(
i− 1− (i− 1)(i− 2)

2
ρ2

))
|E(A∗)|

� ρ2
(
i− i(i− 1)

2
ρ2

)
|E(A∗)|

Let E(A) be the set of edges of the final solution obtained by the algorithm. As
Algorithm 4 iterates at least (1ρ − 1) times, we have

|E(A)| � ρ2
(
(1ρ − 1)− (1

ρ−1)(1
ρ−2)

2 ρ2
)
|E(A∗)| � ρ

(
1− 3ρ

2

) |E (A∗)|. ��

In general, Algorithm 4 performs better than Algorithm 3 for small values of ρ,
since in that case ρ(1 − 3ρ/2) is close to ρ and A runs faster than exhaustive
enumeration. Algorithm 3 outperforms Algorithm 4 whenever ρ is close to 1.

4.2 Parameterized and Moderately Exponential Approximation

As already mentioned, densest k-subgraph is not fixed parameter tractable
with respect to k [12], and hence, neither with respect to the size of the solution �.
However, in this section we show that there is an approximation algorithm for
densest k-subgraph achieving non-trivial approximation ratios (though non-
constants) unattainable in polynomial time, with complexity parameterized by k
(and hence by �).

Theorem 10. densest k-subgraph is approximable within any ratio R(n),
where R is any strictly increasing function, in parameterized time w.r.t. k.

Proof. If k � R(n), then we arbitrarily select k/2 edges. In this case, the solution
consists of the vertices incident to these edges, while we arbitrarily add some
vertices if necessary in order to have size exactly k. In general, it holds that

124 N. Bourgeois et al.

� � k(k − 1)/2 and hence � � R(n)(k − 1)/2. Therefore, the algorithm achieves
R(n)-approximation ratio in polynomial time.

If k > R(n), then let R−1 be the inverse function of R. We consider all possible
subgraphs of size k and return the densest one. In this case, the algorithm finds
an exact solution with running time O∗(2n) = O∗(2R

−1(k)). ��
In the two last algorithms, we use again the idea of splitting the vertex set.

Algorithm 5. Decomposition by Vertex Cover

1: find a minimum vertex cover V ∗ (|V ∗| = τ);
2: consider a partition of V into V1 and V2 s.t. V1 ⊆ V ∗ and |V1| = |V2 ∩ V ∗| = τ/2;
3: solve densest k-subgraph on G[V1] (let A1 be the solution);
4: solve densest k-subgraph on G[V2] (let A2 be the solution);
5: solve densest k-subgraph on the bipartite graph B = (V1, V2;E

′) obtained by
removing the edges in E(V1) and E(V2) (let A3 be the solution);

6: return the best of A1, A2 and A3;

Theorem 11. Algorithm 5 achieves a 1/3-approximation ratio for densest k-
subgraph in time O∗(2τ/2).

Proof. By construction E = E(V1)∪E(V2)∪E′. Thus, the approximation ratio
of Algorithm 5 is 1/3, since optimal densest k-subgraphs are built for G[V1],
G[V2] and B, and one of them contains at least one third times the optimum
number of edges. In Line 1, a minimum vertex cover can be computed as in [14].
As |V1| = τ/2, Line 3 runs in O∗(2τ/2). In Line 4, use Generic(V2 ∩ V ∗, V \
V ∗) which, by Proposition 2, runs in O∗(2τ/2), since |V2 ∩ V ∗| = τ/2 and V \
V ∗ is an independent set. Finally, as B is a bipartite graph, Line 5 runs in
O∗(2min{|V1|,|V2}) = O∗(2|V1|) = O∗(2τ/2). ��
Using similar arguments as in the proof of Theorem 11, the following theorem
can be proved.

Theorem 12. densest k-subgraph is approximable within ratio 1/2 in time
O∗(2n/2).

References

1. Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings
in a k-tree. SIAM Journal on Algebraic and Discrete Methods 8, 277–284 (1987)

2. Asahiro, Y., Hassin, R., Iwama, K.: Complexity of finding dense subgraphs. Dis-
crete Applied Mathematics 121, 15–26 (2002)

3. Bhaskara, A., Charikar, M., Chlamtac, E., Feige, U., Vijayaraghavan, A.: Detecting
high log-densities: An O(n1/4) approximation for densest k-subgraph. In: STOC
2010, pp. 201–210 (2010)

4. Billionnet, A., Roupin, F.: A deterministic approximation algorithm for the densest
k-subgraph problem. International Journal of Operational Research 3, 301–314
(2008)

Exact and Approximation Algorithms for Densest k-Subgraph 125

5. Björklund, A., Husfeldt, T., Koivisto, M.: Set partitioning via inclusion-exclusion.
SIAM Journal of Computing 39(2), 546–563 (2009)

6. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM Journal on Computing 25, 1305–1317 (1996)

7. Bourgeois, N., Escoffier, B., Paschos, V.T.: Approximation of max independent

set, min vertex cover and related problems by moderately exponential algo-
rithms. Discrete Applied Mathematics 159(17), 1954–1970 (2011)

8. Bourgeois, N., Escoffier, B., Paschos, V.T., van Rooij, J.M.M.: Fast algorithms for
max independent set. Algorithmica 62, 382–415 (2012)

9. Bourgeois, N., Giannakos, A., Lucarelli, G., Milis, I., Paschos, V.T., Pottié, O.:
The max quasi-independent set problem. Journal of Combinatorial Optimiza-
tion 23, 94–117 (2012)

10. Bourgeois, N., Giannakos, A., Lucarelli, G., Milis, I., Paschos, V.T.: The Exact
and approximation algorithms for densest k-subgraph. Cahiers du LAMSADE
(324) (2012)

11. Brankovic, L., Fernau, H.: Combining Two Worlds: Parameterised Approximation
for Vertex Cover. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010, Part
I. LNCS, vol. 6506, pp. 390–402. Springer, Heidelberg (2010)

12. Cai, L.: Parameterized complexity of cardinality constrained optimization prob-
lems. The Computer Journal 51, 102–121 (2007)

13. Cai, L., Huang, X.: Fixed-Parameter Approximation: Conceptual Framework and
Approximability Results. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC
2006. LNCS, vol. 4169, pp. 96–108. Springer, Heidelberg (2006)

14. Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theoretical
Computer Science 411, 3736–3756 (2010)

15. Cygan, M., Kowalik, L., Wykurz, M.: Exponential-time approximation of weighted
set cover. Information Processing Letters 109(16), 957–961 (2009)

16. Cygan, M., Pilipczuk, M.: Exact and approximate bandwidth. Theoretical Com-
puter Science 411(40-42), 3701–3713 (2010)

17. Downey, R.G., Fellows, M.R.: Parameterized complexity. Monographs in Computer
Science. Springer, New York (1999)

18. Downey, R.G., Fellows, M.R., McCartin, C.: Parameterized Approximation Prob-
lems. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169,
pp. 121–129. Springer, Heidelberg (2006)

19. Feige, U., Kortsarz, G., Peleg, D.: The dense k-subgraph problem. Algorithmica 29,
410–421 (2001)

20. Fomin, F.V., Grandoni, F., Kratsch, D.: A measure & conquer approach for the
analysis of exact algorithms. Journal of the ACM 56 (2009)

21. Garey, M.R., Johnson, D.S.: Computers and intractability: A guide to the theory
of NP-completeness. Freeman, San Francisco (1979)

22. Khot, S.: Ruling out PTAS for graph min-bisection, densest subgraph and bipartite
clique. In: FOCS 2004, pp. 136–145 (2004)

23. Kloks, T.: Treewidth. LNCS, vol. 842. Springer, Heidelberg (1994)
24. Marx, D.: Parameterized complexity and approximation algorithms. The Computer

Journal 51(1), 60–78 (2008)
25. Moser, H.: Exact algorithms for generalizations of vertex cover. PhD thesis,

Friedrich-Schiller-Universität Jena (2005)

Linear-Time Constant-Ratio Approximation

Algorithm and Tight Bounds for the Contiguity
of Cographs

Christophe Crespelle1 and Philippe Gambette2

1 Université Claude Bernard Lyon 1, DNET/INRIA, LIP UMR CNRS 5668, ENS de
Lyon, Université de Lyon

christophe.crespelle@inria.fr
2 Université Paris-Est, LIGM UMR CNRS 8049, Université Paris-Est

Marne-la-Vallée, 5 boulevard Descartes, 77420 Champs-sur-Marne, France
philippe.gambette@univ-mlv.fr

Abstract. In this paper we consider a graph parameter called contigu-
ity which aims at encoding a graph by a linear ordering of its vertices.
We prove that the contiguity of cographs is unbounded but is always
dominated by O(log n), where n is the number of vertices of the graph.
And we prove that this bound is tight in the sense that there exists a
family of cographs on n vertices whose contiguity is Ω(logn). In addi-
tion to these results on the worst-case contiguity of cographs, we design
a linear-time constant-ratio approximation algorithm for computing the
contiguity of an arbitrary cograph, which constitutes our main result.
As a by-product of our proofs, we obtain a min-max theorem, which is
worth of interest in itself, stating equality between the rank of a tree and
the minimum height its path partitions.

Introduction

In many contexts, such as genomics, biology, physics, linguistics, computer sci-
ence and transportation for examples, industrials and academics are led to algo-
rithmically treat large dataset organised in the form of networks or graphs. The
algorithms used to do so generally make extensive use of neighborhood queries,
which, given a vertex x of a graph G, ask for the list of neighbors of x in G.
Therefore, as pointed out by [1], due to the huge size of the graphs considered,
finding compact representations of a graph providing optimal-time neighborhood
queries is a crucial issue in practice.

One possible way to achieve this goal is to find an order σ on the vertices
of G such that the neighborhood of each vertex x of G is an interval in σ. In
this way, one can store the list of vertices of the graph in the order defined by
σ and assign two pointers to each vertex: one toward its first neighbor in σ and
one toward its last neighbor in σ. Therefore, one can answer adjacency queries
on vertex x simply by listing the vertices appearing in σ between its first and
last pointer. It must be clear that such an order on the vertices of G does not

S.K. Ghosh and T. Tokuyama (Eds.): WALCOM 2013, LNCS 7748, pp. 126–136, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Approximation Algorithm for the Contiguity of Cographs 127

exist for all graphs G. Nevertheless, this idea turns out to be quite efficient in
practice and some compression techniques are precisely based on it [2,3]: they
try to find orders of the vertices that group the neighborhoods together, as much
as possible.

When one relaxes the constraints of the initial problem by rather asking for
the minimum k such that there exists an order σ on the vertices of G where
the neighborhood of each vertex is split in at most k intervals, this gives rise
to a graph parameter called the contiguity of G [4]. This parameter was orig-
inally introduced in the broader context of binary matrices under the name
k-consecutive-ones property [5]. It is worth to note that there are two variants
of the parameter, respectively called open contiguity and closed contiguity, de-
pending on whether one considers open neighborhoods (excluding the vertex
itself) or closed neighborhoods (always containing the considered vertex). But
this distinction is not fundamental as the two parameters always differ by at
most one.

Here, we are interested in determining what is the worst-case contiguity for
the cographs on n vertices, which are the graphs having no induced P4 (path
on 4 vertices). We also design an approximation algorithm that computes the
contiguity of any cograph up to a constant ratio, in linear time with regard to
the size of the input.

Related Works. Only very little is known about the contiguity of graphs. Only
the class of graphs having open contiguity 1 and the class of graphs having closed
contiguity 1 have been characterized: the former are biconvex graphs [6] and the
latter are proper interval graphs [7]. But the classes of graphs having contiguity
at most k, where k is an integer greater than 1, have not been characterized, even
for k = 2. Actually, closed contiguity has initially been studied in the context of
0− 1 matrices and [5,8,9] showed that deciding whether an arbitrary graph has
closed contiguity at most k is NP-complete for any fixed k ≥ 2. For arbitrary
graphs again, [10] (Corollary 3.4) gave an upper bound on the value of closed
contiguity which is n/4 + O(

√
n logn), whose interest lies in the constant 1/4

since it is clear that the contiguity of a graph is always less than n/2 (where n
is the number of vertices of the graph). Finally, let us mention that [4] showed
that the contiguity is unbounded for interval graphs as well as for permutation
graphs, and that it can be up to Ω(log n/ log logn).

Our Results. In this paper, we show that even for cographs, the contiguity
is unbounded, but dominated by O(log n) for a cograph on n vertices. To this
purpose, we show in Section 4 that the contiguity of a cograph G is mathemat-
ically equivalent the maximum height of a complete binary tree included (as a
minor) in the cotree of G. This also allows us to exhibit a family of cographs
(Gn)n∈N on n vertices whose asymptotic contiguity is Ω(log n), which implies
that our O(log n) bound is tight. We give in Section 5 a constant-ratio approx-
imation algorithm that computes the contiguity of an arbitrary cograph (up to
a multiplicative constant) in linear time wrt. the size of the input, that is O(n)

128 C. Crespelle and P. Gambette

time provided that the input cograph is given by its cotree (see Section 1 for
a definition). In addition, our algorithm can also provide a linear ordering σ of
the vertices of G, together with the pointers from each vertex to the at most k
intervals partitioning its neighborhood, where k is in a constant ratio from the
optimal one, i.e. the contiguity of G. In this case, the complexity of our algorithm
is linear wrt. the size of the output, that is O(kn) time.

As a by-product of our proofs, we also establish in Section 2 a min-max
theorem which is worth of interest in itself: the maximum height of a complete
binary tree included (as a minor) in a tree T (known as the rank of tree T [11,12])
is equal to the minimum height of a partition of T into vertex-disjoint paths.

1 Preliminaries

All graphs considered here are finite, undirected, simple and loopless. In the
following, G denotes a graph, V (or V (G) to avoid ambiguity) denotes its vertex
set and E (or E(G)) its edge set. We use the notation G = (V,E) and we denote
|V | = n. The set of subsets of V is denoted by 2V . An edge between vertices x
and y will be arbitrarily denoted by xy or yx. The (open) neighborhood of x is
denoted by N(x) (or NG(x) to avoid ambiguity) and its closed neighborhood by
N [x] = N(x)∪{x}. The subgraph of G induced by the subset of vertices X ⊆ V
is denoted by G[X] = (X, {xy ∈ E | x, y ∈ X}).

Cographs are the graphs that do not have any P4 (path on 4 vertices) as
induced subgraph. They are also known to be the graphs G admitting a cotree,
i.e. a rooted tree T whose leaves are the vertices of G, and whose internal nodes
are labelled series or parallel with the following property: any two vertices x
and y of G are adjacent iff the least common ancestor u of leaves x and y in T
is a series node. Otherwise, if u is a parallel node, x and y are not adjacent.

For a rooted tree T and a node u ∈ T , the depth of u in T is the number of
edges in the path from the root to u (the root has depth 0). The height of T ,
denoted by height(T) or simply h(T), is the greatest depth of its leaves. For a
rooted tree T , the subtree of T rooted at u, denoted by Tu, is the tree induced
by node u and all its descendants in T . We now give a simplified definition of
minors of rooted trees, which is a special case of minors of graphs (see e.g. [13]).

Definition 1.1. The contraction of edge uv in a rooted tree T , where u is the
parent of v, consists in removing v from T and assigning its children (if any) to
node u.

A rooted tree T ′ is a minor of a rooted tree T if it can be obtained from T by
a sequence of edge contractions.

Let us now formally define the contiguity of a graph.

Definition 1.2. A closed p-interval-model (resp. open p-interval-model) of a
graph G = (V,E) is a linear order σ on V such that ∀v ∈ V, ∃(I1, . . . , Ip) ∈
(2V)p such that ∀i ∈ �1, p�, Ii is an interval of σ and N [v] =

⋃
1≤i≤p Ii (resp.

N(v) =
⋃

1≤i≤p Ii).

Approximation Algorithm for the Contiguity of Cographs 129

The closed contiguity (resp. open contiguity) of G, denoted by cc(G) (resp.
oc(G)), is the minimum integer p such that there exists a closed p-interval-model
(resp. open p-interval-model) of G.

It is worth to note that the closed and open contiguity never differ by more than
one. Indeed, given a closed k-interval model of a graph G, we directly get an
open k+1-interval model for G by simply splitting, for each vertex x, the interval
containing x into (at most) two intervals. Conversely, adding (at most) one trivial
interval {x} for each vertex x in an open k-interval-model results in a closed (k+
1)-interval model. Therefore, from now on, we only consider closed contiguity, but
all our results also hold for open contiguity. We will abusively extend the notion
of contiguity to cotrees referring to the contiguity of the associated cograph.

2 Some General Results on the Rank of Trees

In this section, we give two general results on trees which will play a key role
in the rest of the paper. The first result links the rank of a tree T with the
minimum height of a partition of vertices of T into paths.

The rank [11,12] of a tree T is the maximal height of a complete binary
tree obtained from T by edge contractions, that is: rank(T) = max{h(T ′) |
T ′ complete binary tree, minor of T }. A path partition of a tree T is a partition
{P1, . . . , Pk} of V (T) such that for any i, the subgraph T [Pi] of T induced by
Pi is a path, as shown in Fig. 1(a). The partition tree of a path partition P ,
denoted by Tp(P), is the tree whose nodes are Pi’s and where the node of Tp(P)
corresponding to Pi is the parent of the node corresponding to Pj iff some node
of Pi is the parent in T of the root of Pj (see Fig. 1(b)). The height of a path
partition P of a tree T , denoted by h(P), is the height h(Tp(P)) of its partition
tree. The path-height of T , ph(T), is the minimal height of the path partitions
of T .

(a) (b)

Fig. 1. A tree T , a path partition P = {P1, P2, P3, P4, P5, P6} of T (a), as well as the
partition tree of P (b)

Theorem 2.1. For any rooted tree T , rank(T) = ph(T).

Sketch of Proof. It is not difficult to show that the path-height of a tree T
is at least the path-height of any tree T ′ included in T as a minor. On the
other hand, a simple recursion on the height of a complete binary tree shows

130 C. Crespelle and P. Gambette

that its path-height is at least its height. It follows that the path-height of any
tree T is at least the maximum height of a complete binary tree T ′ included
as a minor in T , that is ph(T) ≥ rank(T). The converse inequality, namely
ph(T) ≤ rank(T), can be shown by induction on rank(T). Indeed, consider a
tree T such that rank(T) = k+1. The nodes u of T such that rank(Tu) = k+1
form a path P containing the root of T . By definition, any node v �∈ P is such
that rank(Tv) ≤ k. Then, by the induction hypothesis, ph(Tv) ≤ rank(Tv) ≤ k.
And it follows that ph(T) ≤ maxv �∈P ph(Tv) + 1 ≤ k + 1 = rank(T). �

We now consider bicolored trees, i.e. trees whose nodes are colored either black or
white. We define the black rank (resp. white rank), denoted rB(T) (resp. rW (t)),
of a bicolored tree T as the maximum height of an entirely black (resp. entirely
white) complete binary tree being a minor of T .

Theorem 2.2. For any bicolored complete binary tree T , rB(T) + rW (T) ≥
h(T)− 1.

Sketch of Proof. The proof is by induction on h(T). Consider a complete bi-
nary bicolored tree T of height k + 1, whose root is colored black wlog. and
has two children denoted by u1 and u2. If rB(Tu1) = rB(Tu2), then rB(T) =
rB(Tu1) + 1. And since rW (T) ≥ rW (Tu1), by the induction hypothesis, we
obtain rB(T) + rW (T) ≥ h(Tu1) + 1 − 1 = h(T) − 1. On the other hand, if
rB(Tu1) �= rB(Tu2), then assume wlog. that rB(Tu1) > rB(Tu2). Then, we have
rB(T) + rW (T) ≥ rB(Tu1) + rW (Tu2) ≥ rB(Tu2) + 1 + rW (Tu2), and by the
induction hypothesis, we obtain the desired inequality for T . �

3 An Upper Bound for the Contiguity of Cographs

We now prove that the contiguity of any cograph is linearly bounded by the rank
of its cotree T (Theorem 3.1 below) by using a path partition of T of minimal
height h. Our proof is by induction on h and Lemma 3.1 below constitutes the
recursive encoding step of our proof.

In a path partition of T , the path containing the root naturally induces a
partition of the leaves of T , i.e. the vertices of the corresponding cograph G, as
described in the following definition. A root-path decomposition (see Fig. 2) of
a rooted tree T is a set {T1, . . . , Tp} of disjoint subtrees of T , with p ≥ 2, such
that every leaf of T belongs to some Ti, with i ∈ [1..p], and the sets of parents
in T of the roots of Ti’s is a path containing the root of T .

Lemma 3.1 (Caterpillar Composition Lemma). Given a cograph G =
(V,E) and a root-path decomposition {Ti}1≤i≤p of its cotree, where Xi is the
set of leaves of Ti, cc(G) ≤ 2 + max

i∈[1..p]
cc(G[Xi]).

Sketch of Proof. It is straightforward to check that for any i ∈ [1..p] and for
any vertex x ∈ Xi, the neighbors of x that are not in Xi are split in at most two
intervals in the order σ given on Fig. 3. Therefore, by choosing for σ an order

Approximation Algorithm for the Contiguity of Cographs 131

Fig. 2. The root-path decomposition {T1, . . . , Tp} of a rooted tree T

on each Xi that realizes the contiguity of G[Xi], we obtain that in σ, the neigh-
borhood of any vertex x ∈ Xi of G is split in at most 2 + cc(G[Xi]) intervals,
which proves the lemma. �

Fig. 3. The general structure of the order σ used in Lemma 3.1 for the root-path
decomposition of Fig 2

From this, we deduce an upper bound on the contiguity of a cograph depending
on the rank of its cotree.

Theorem 3.1. For any cograph G with cotree T , cc(G) ≤ 2 rank(T) + 1.

Sketch of Proof. The proof is by induction on rank(T). The inequality holds
for rank(T) = 0. Consider a cograph G whose cotree T is of rank k + 1, with
k ≥ 0. The nodes u of T such that rank(Tu) = k + 1 form a path containing
only internal nodes of T and containing its root. Therefore, this path induces
a root-path decomposition {T1, . . . , Tp} of T as shown on Fig. 2. By defini-
tion, this root-path decomposition is such that for any i ∈ [1..p], tree Ti is of
rank at most k. Then, by the induction hypothesis, cc(G[Xi]) ≤ 2 rank(Ti) + 1.
From Lemma 3.1, we have that cc(G) ≤ 2+maxi∈[1..p] cc(G[Xi]). It follows that
cc(G) ≤ 2 +maxi∈[1..p]{2 rank(Ti) + 1} ≤ 2+ 2k+ 1 = 2(k+1)+ 1, which ends
the induction and the proof of Theorem 3.1. �

As the rank of a tree T is bounded by the logarithm of its number of leaves, we
directly obtain the following corollary.

Theorem 3.2. If G = (V,E) is a cograph, then cc(G) ≤ 2 log2 |V |+ 1.

132 C. Crespelle and P. Gambette

4 A Lower Bound for the Contiguity of Cographs

In this section, we show that the rank of a cotree also provides a lower bound on
the contiguity of its associated cograph. Together with the result of the previous
section, this give that the contiguity of a cograph and the rank of its cotree are
mathematicaly equivalent functions, which is at the core of the approximation
algorithm we present in next section. We also use the lower bound to exhibit a
family of cographs on n vertices whose contiguity is at least Ω(log n), showing
that the upper bound of the previous section is tight.

Lemma 4.1. Let Gk be the underlying undirected graph of the transitive closure
of the directed rooted complete ternary tree T k of depth k ≥ 0. Then, we have
cc(Gk) ≥ k + 1.

Proof: We prove it by induction on k. We obviously have cc(G0) ≥ 1.
Now, suppose that cc(Gk) ≥ k + 1 for some k ≥ 0, and let us show that

cc(Gk+1) ≥ k+2. Consider a cc(Gk+1)-interval-model of Gk+1, and denote by σ
the corresponding order on the vertices of G. We denote by r the root of T k+1,
and by v1, v2 and v3 its three children in T k+1. Since there are at most two
vertices of T k+1 that are next to r in σ, then there exists i ∈ �1, 3� such that no
vertex of T k+1

vi is next to r in σ. Denoting by Gvi the subgraph of Gk+1 induced
by the vertices of T k+1

vi , the induction hypothesis gives that cc(Gvi) ≥ k + 1. In
particular, this implies that in the restriction of σ to the vertices of Gvi , there
exists some v ∈ Gvi such that its neighborhood in Gvi is split into at least k+1
intervals. Since r is adjacent to v in Gk+1, and since the at most two vertices
next to r in σ are not in the neighborhood of v, it follows that the neighborhood
of v requires one more interval for r in σ. Thus, cc(Gk+1) ≥ k + 2. �

Note that Gk is a cograph whose cotree can be recursively built as follows. The
cotree of G1 (the claw graph) is made of one series root having two children: a
leaf and a parallel node having three leaf children. Replacing these three leaves by
three copies of the cotree of Gk, for any k ≥ 1, results in the cotree of Gk+1. From
now on, in order to use the result of Theorem 2.2, we consider cotrees bicolored
as explained in the following definition. The bicolored cotree of a cograph G is
its cotree where the parallel nodes are colored black and the series nodes are
colored white.

Lemma 4.2. For any cograph G, whose bicolored cotree has a white root and
black rank at least 2k, we have cc(G) ≥ k + 1.

Sketch of Proof. We prove by induction on k that G contains Gk as an in-
duced subgraph, which has contiguity at least k + 1 from Lemma 4.1. Since G
has black rank at least 2k, its cotree T contains, as a minor, an entirely black
complete binary tree T ′. Consider the two nodes at depth 1 in T ′, they have at
least four different children in T . For three of them u1, u2 and u3, take one leaf
of their subcotree in T : since the nodes of T ′ are all black (i.e. parallel), this
gives three independent vertices denoted by x1, x2 and x3. Now recall that the
root of T is white (i.e. series) and must have a child which is not an ancestor of

Approximation Algorithm for the Contiguity of Cographs 133

the root of T ′. Take a leaf y being a descendant of this child: y, x1, x2 and x3
induce the claw graph, i.e. the graph G1 of Lemma 4.1. Finally, note that for any
u ∈ {u1, u2, u3}, u is necessarily white (as a parallel node of a cotree has only
series, or leaf, children) and the cotree Tu has black rank at least 2k − 2. Then,
from the induction hypothesis, the cograph associated to Tu contains Gk−1 as an
induced subgraph. And from the recursive construction of the cotree of Gk that
precedes Lemma 4.2, we conclude that G contains Gk as an induced subgraph. �

Theorem 4.1. For any cograph G and its cotree T , cc(G) ≥ (rank(T)− 7)/4.

Proof: Consider the bicolored cotree T of G. Then, from Lemma 2.2,
rB(T) + rW (T) ≥ rank(T)− 1, so either rB(T) ≥ (rank(T)− 1)/2, or rW (T) ≥
(rank(T)− 1)/2.

In the first case, rB(T) ≥ 2((rank(T)− 3)/4) + 1, so T has a black complete
binary tree of height 2((rank(T) − 3)/4), below a white node, as a minor, so
Lemma 4.2 implies that cc(G) ≥ (rank(T)− 3)/4 + 1 ≥ (rank(T)− 7)/4.

In the second case, the bicolored cotree TḠ of the complement of G is simply
the bicolored cotree of G where series and parallel nodes, and so black and white
nodes, have been exchanged. Then, we have rB(TḠ) = rW (T) ≥ (rank(T)−1)/2.
Lemma 4.2 implies similarly as above that cc(Ḡ) ≥ (rank(T)− 3)/4+1. We can
easily check that cc(Ḡ) ≤ cc(G) + 2 (the closed neighborhood of any vertex x
in Ḡ is composed by at most cc(G) + 1 intervals surrounding the intervals of
the closed neighborhood of x in G, plus possibly one interval for vertex x), so
cc(G) ≥ (rank(T)− 3)/4 + 1− 2 = (rank(T)− 7)/4. �

From Theorem 4.1 we obtain that the contiguity of cographs is unbounded.
Moreover, since the rank of a complete binary tree is, by definition, its height,
it follows that the family of cographs having a complete binary cotree reaches
the O(log n) upper bound of Theorem 3.2, showing that this bound is tight.

Corollary 4.1. For any cograph G whose cotree is a complete binary tree,
cc(G) = Ω(log n).

As a direct consequence of Theorems 4.1 and 3.1, we obtain the equivalence
between the contiguity of a cograph and the rank of its cotree, which is at the
core of the approximation algorithm presented in next section.

Corollary 4.2. For any cograph G with cotree T , cc(G) = Ω(rank(T)).

5 An Approximation Algorithm for the Contiguity of
Cographs

We now provide an algorithm that outputs an integer k and a k-interval-model
of the cograph G given as input, such that k is in a constant ratio from the
contiguity of G. Our algorithm takes as input a cograph G given by its cotree,
which takes O(n) space, and outputs a k-interval model of G in O(kn) time, i.e.
linear wrt. the size of the output. Alternatively, if only the value of k is needed,
the algorithm runs in O(n) time, which is linear wrt. the size of the input.

134 C. Crespelle and P. Gambette

First Step: Approximation of the Contiguity of G. The first step of our
algorithm computes an integer k which is in a constant ratio from the contiguity
of G. To this purpose, we simply compute recursively the rank of Tu for any
node u ∈ T by a bottom-up process: for a node u we have either i) rank(Tu) =
maxv child of urank(Tv) if this maximum is reached by only one child of u, or ii)
rank(Tu) = 1 +maxv child of urank(Tv) otherwise. Then, our algorithm outputs
the value k = 2 rank(Tr) + 1, where r is the root of T , and so rank(Tr) =
rank(T). This clearly takes O(n) time.

Furthermore, the approximation ratio ρ of this algorithm is constant. Using
Theorem 4.1 and the fact that cc(G) ≥ 1, we deduce that ρ = (2 rank(T) +
1)/cc(G) ≤ (2 rank(T) + 1)/max(1, (rank(T) − 7)/4). This function reaches
its maximum of 23 for rank(T) = 11, and then the algorithm performs a 23-
approximation of the closed contiguity.

Second Step: Building a k-Interval Model of G. We follow the construc-
tion provided by Theorem 3.1 and Lemma 3.1 (see Fig. 3) in order to output a
k-interval-model of G, where k = 2 rank(T) + 1. During this process, we build
the order σ on the vertices as well as a table Neighborhoods of n tables of 2k
pointers to the bounds of the intervals of each vertex in order σ. To this purpose,
we call the recursively defined routine Build(u), where u is a node of T , on the
root r of T . Build(u) outputs an order σu on the subset Xu of vertices of G
being the leaves of Tu and table Neighborhoodsu containing the pointers of the
vertices of Xu toward σu. Routine Build(u) proceeds in three steps as follows.

i) thanks to the ranks computed in the first step of the algorithm, Build(u) finds
the subset Pu of nodes ũ of Tu such that rank(Tũ) = rank(Tu), and the subset
Cu of children in T of nodes ũ ∈ Pu.
ii) Build(u) recursively calls Build(v) for all nodes v ∈ Cu.
iii) Build(u) builds σu by concatenating all the orders σv returned by the re-
cursive calls as shown on Fig. 3, and builds Neighborhoodsu by merging all the
tables Neighborhoodsv returned by the recursive calls. Then, for each v ∈ Cu

and for each vertex x ∈ Xv, we add to Neighborhoodsu the pointers of x toward
the at most two intervals of σu formed by its neighbors that are not in Xv, as
explained in the proof of Lemma 3.1.

The terminal case of Routine Build(u) is when u is a leaf of T , for which the com-
putation of σu and Neighborhoodsu is trivial and takes constant time. The fact
that a call to Build(r) indeed gives the desired k-interval model of G comes from
the fact that the routine follows the constructive proof of Theorem 3.1. Let us an-
alyze its complexity. Step i), Step ii) and the construction of σu in Step iii) take
O(|Cu|+ |Pu|), that isO(n) for the whole process on tree T . In Step iii), the merge
of table Neighborhoods and the addition of the pointers to the two new intervals
of each vertex take O(Xu) time. It turns out that, during the whole process on T ,
a vertex x will be involved in at most h different sets Xu, where h is the height of
the path partition of T defined by the set of paths Pu computed along the process.
From Theorem 3.1, h = rank(T) = (k − 1)/2. Thus, the total computation time
of the k-interval model output by our algorithm is O(kn) time.

Approximation Algorithm for the Contiguity of Cographs 135

Conclusion

We showed that the contiguity of a cograph is equivalent to the maximum height
of a complete binary tree contained in its cotree as a minor. From this, we
obtained a tight O(log n) upper bound on the maximum contiguity of a cograph
on n vertices. Even more interesting, this allowed us to design a linear time
algorithm that does not only compute an approximation of the contiguity of
a cograph G but also provides a k-interval model realizing a k which is in a
constant-ratio to the optimal one, i.e. the contiguity ofG. Then, the first question
raised by our work is whether it is possible to compute efficiently the exact value
of the contiguity of a cograph and to provide a model realizing this optimal value.
Another key perspective is to extend our results to larger classes of graphs,
such as permutation graphs (which are a proper generalization of cographs)
and interval graphs. Does the O(log n) upper bound still hold for those graphs?
Is it possible to compute efficiently an exact or approximated value of their
contiguity?

Acknowledgments. The authors thank Pierre Charbit and Stéphan Thomassé
for useful discussions on the subject, as well as George Oreste Manoussakis for
proofreading a draft of this article. This work was partially supported by the
PEPS-C1P CNRS project.

References

1. Turan, G.: On the succinct representation of graphs. Discr. Appl. Math. 8, 289–294
(1984)

2. Boldi, P., Vigna, S.: The webgraph framework I: compression techniques. In: WWW
2004, pp. 595–602. ACM (2004)

3. Boldi, P., Vigna, S.: Codes for the world wide web. Internet Mathematics 2(4),
407–429 (2005)

4. Crespelle, C., Gambette, P.: Efficient Neighborhood Encoding for Interval Graphs
and Permutation Graphs and O(n) Breadth-First Search. In: Fiala, J., Kratochv́ıl,
J., Miller, M. (eds.) IWOCA 2009. LNCS, vol. 5874, pp. 146–157. Springer,
Heidelberg (2009)

5. Goldberg, P., Golumbic, M., Kaplan, H., Shamir, R.: Four strikes against physical
mapping of DNA. Journal of Computational Biology 2(1), 139–152 (1995)

6. Brandstädt, A., Le, V., Spinrad, J.: Graph Classes: a Survey. SIAM Monographs
on Discrete Mathematics and Applications (1999)

7. Roberts, F.: Representations of indifference relations, Ph.D. thesis, Stanford Uni-
versity (1968)

8. Johnson, D., Krishnan, S., Chhugani, J., Kumar, S., Venkatasubramanian, S.: Com-
pressing large boolean matrices using reordering techniques. In: Proceedings of the
Thirtieth International Conference on Very Large Data Bases, VLDB 2004, vol. 30,
pp. 13–23 (2004)

9. Wang, R., Lau, F., Zhao, Y.: Hamiltonicity of regular graphs and blocks of
consecutive ones in symmetric matrices. Discr. Appl. Math. 155(17), 2312–2320
(2007)

136 C. Crespelle and P. Gambette

10. Gavoille, C., Peleg, D.: The compactness of interval routing. SIAM Journal on
Discrete Mathematics 12(4), 459–473 (1999)

11. Ehrenfeucht, D.H.A.: Learning decision trees from random examples. Information
and Computation 82(3), 231–246 (1989)

12. Gavaldà, R., Thérien, D.: Algebraic Characterizations of Small Classes of Boolean
Functions. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 331–342.
Springer, Heidelberg (2003)

13. Lováz, L.: Graph minor theory. Bulletin of the American Mathematical Soci-
ety 43(1), 75–86 (2006)

Approximation Algorithms for the Partition

Vertex Cover Problem

Suman Kalyan Bera1, Shalmoli Gupta2, Amit Kumar3, and Sambuddha Roy1

1 IBM India Research Lab, New Delhi, India
2 University of Illinois at Urbana-Champaign, USA

3 Indian Institute of Technology Delhi, India

Abstract. We consider a natural generalization of the Partial Vertex

Cover problem. Here an instance consists of a graph G = (V, E), a cost
function c : V → Z+, a partition P1, . . . , Pr of the edge set E, and a
parameter ki for each partition Pi. The goal is to find a minimum cost
set of vertices which cover at least ki edges from the partition Pi. We
call this the Partition-VC problem. In this paper, we give matching
upper and lower bound on the approximability of this problem. Our
algorithm is based on a novel LP relaxation for this problem. This LP
relaxation is obtained by adding knapsack cover inequalities to a natural
LP relaxation of the problem. We show that this LP has integrality gap
of O(log r), where r is the number of sets in the partition of the edge set.
We also extend our result to more general settings.

1 Introduction

The Vertex Cover problem is one of the most fundamental NP-hard problems
and has been widely studied in the context of approximation algorithms [1, 2]. In
this problem, we are given an undirected graph G = (V,E) and a cost function
c : V → Z+. The goal is to find a minimum cost set of vertices which cover all
the edges in E : a set of vertices S covers an edge e if S contains at least one
of the end-points of e. Several 2-approximation algorithms are known for this
problem [3, 4]. The Partial Vertex Cover problem is a generalization of the
Vertex Cover problem, where we are also given a parameter k. The goal is to
find a minimum cost set of vertices which cover at least k edges. This problem
was proposed by Bshouty and Burroughs [5], and they gave a 2-approximation
for this problem using LP-rounding. Since then, many different techniques have
been shown to give 2-approximation algorithm for this problem ([6, 7, 8]).

In this paper, we consider a natural generalization of the Partial Vertex

Cover problem. Here an instance consists of a graph G = (V,E), a cost function
c : V → Z+, a partition P1, . . . , Pr of the edge set E, and a parameter ki for each
partition Pi. The goal is to find a minimum cost set of vertices which cover at least
ki edges from the partition Pi. We call this the Partition-VC problem. In this
paper, we give matching upper and lower bound on the approximability of this
problem. We give an O(log r)-approximation algorithm for the Partition-VC

problem, and show that unless P=NP, we cannot do better. Recall that r denotes

S.K. Ghosh and T. Tokuyama (Eds.): WALCOM 2013, LNCS 7748, pp. 137–145, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

138 S.K. Bera et al.

the number of sets in the partition of the edge set E. Note that for constant
number of partitions this gives a constant approximation. Our results also extend
to the slightly more general problem where edges have weights, and we would
like to pick a minimum cost set of vertices which cover edges of total weight
at least Πi for each partition Pi. We call this the Knapsack Partition Vertex

Cover problem.

Our Techniques: The hardness result for the Partition-VC problem follows
by an approximation preserving reduction from the Set Cover problem. The ap-
proximation algorithm uses a novel LP relaxation – this is the main contribution
of the paper, and we expect this idea to have more applications. The natural
LP relaxation for even the Partial Vertex Cover turns out to be unbounded.
Indeed, consider the following example : the graph is a star – there is a vertex
v of degree D and all its neighbors are leaves. All vertex costs are 1, and the
parameter k = 1. Clearly, any optimal solution must cost at least 1 unit. But a
fractional solution will pick the vertex v to an extent of 1

D , and hence will cover
all the D edges fractionally to an extent of 1

D . So, the fractional solution pays
only 1

D . One way of getting around this problem is to augment the LP with more
information. Here, we can guess the most expensive vertex an optimal solution
will pick, and can remove all vertices with cost more than the cost of this vertex.
Further, the cost of this vertex is also a lower bound on the optimal value. This
idea was used by [8] to give a 2-approximation for the Partial Vertex Cover

problem. However, applying such an idea to the Partition-VC problem turns
out to be non-trivial. We cannot guess the most expensive vertex in each of the
partitions – this will take time exponential in r. Our approach is to strengthen
the natural LP relaxation such that no guesswork is required. We show how to do
this using knapsack cover inequalities [9]. Armed with this stronger relaxation,
we show that one can carefully use randomized rounding based techniques to get
the approximation algorithm.

Related Work: There has been recent work on partial covering versions of
several covering problems. For the set cover problem, the partial covering version
namely the partial set cover problem was first studied by Kearns [10], who proved
that the approximation ratio of the greedy algorithm is at most 2H(n)+3, where
n is the size of the ground set and H(n) is the nth harmonic number. Later
Slav́ık [11] showed that it is actually bounded by H(k) where k is the number
of elements to be covered. This natural greedy approach when extended for the
Partition-VC problem gives only a H(|V |)-approximation, which is much worse
than the lower bound of O(log r) that we have proved for this problem.

The partial vertex cover problem has also been widely studied in the liter-
ature. Bshouty and Burroughs [5] were the first to give a polynomial time 2-
approximation algorithm for it. Subsequently, several other algorithms based on
Lagrangian Relaxation, local-ratio, primal-dual techniques with the same approx-
imation guarantee were proposed [6, 7, 8, 12]. Mestre’s [12] primal-dual technique
can also be used to get a 2-approximation for a more general version of the prob-
lem, the partial capacitated vertex cover problem. Bar-Yehuda et al. [13] gave

Approximation Algorithms for the Partition Vertex Cover Problem 139

constant factor approximation algorithms for several variants of this problem
using the local-ratio technique. Partial versions have also been studied for the
Facility Location problem and its variants. Charikar et al. [14] explored the out-
lier or robust version of the uncapacitated facility location problem and k-center
problem where only a fraction of the clients need to be serviced. For both the
problems they gave constant approximation algorithms. Apart from these there
are several other partial covering problems: e.g. k-median with outliers [15], k-
MST problem [16] and k-multicut problem [17]. However, these approaches do
not seem to work for the Partition-VC problem.

The set of partitions of the edge set in the Partition-VC problem are a special
case of matroids. There has been significant work on maximizing a submodular
function under matroid constraints [18, 19], but none of these results apply to
the Partition-VC problem.

The rest of the paper is organized as follows. We present the hardness of the
Partition-VC problem in Section 2. Our rounding algorithm and its analysis is
presented in Section 3. Finally concluding remarks are made in Section 4.

2 Hardness of the Partition-VC Problem

In this section, we prove that it is NP-hard to get better than O(log r)-
approximation for the Partition-VC problem. We give a reduction from the
Set Cover problem. Recall that an instance I of the set cover problem con-
sists of a set X containing r elements, and a set S of subsets S1, . . . , Sm of
X . The goal is to find minimum number of sets in S such that their union is
X . This problem is known to be NP-hard, and in fact, it is known that unless
NP ⊂ DTIME(nO(log log n)), any polynomial time algorithm for the Set Cover

problem must have approximation ratio of Ω(log r) [20].
We now describe the reduction in detail. Let I be an instance of the Set

Cover problem as described above. We now construct an instance I ′ of the
Partition-VC problem. The graph G′ in I ′ is a bipartite graph. The vertices
on left side, V ′

L are defined as follows : for each set Si ∈ S, we add a vertex s′i
to V ′

L. All these vertices have unit cost. The vertices on the right side, V ′
R are

as follows : for every element u ∈ X , we have a corresponding vertex u′ ∈ V ′
R.

Each of these vertices has infinite cost. Now, we define the set of edges E′ and
the partition P1, . . . , Pr (note that the number of sets in the partition is same
as the size of the set X in I). For a vertex s′i ∈ V ′

L and u′ ∈ V ′
R, we have an

edge between them in E′ iff u ∈ Si in the instance I. We partition the set E′

as follows : for every u′ ∈ V ′
R, define Pu′ as the set of edges incident to u′. The

partition of E′ is {Pu′ : u′ ∈ V ′
R}. Further, the quantities ku′ , which tell how

many of the edges in the set Pu′ need to be covered, are 1. This completes the
description of the instance I ′. The following lemma is now easy to see.

Lemma 1. There is a solution to I of cost C iff there is a solution to I ′ of cost
C. Hence, unless P=NP, any polynomial time algorithm for the Partition-VC

problem must have approximation ratio of Ω(log r).

140 S.K. Bera et al.

Proof. Any solution to I picks a some subsets Si1 , . . . , Sil in S. Then we can
have a solution of the same cost for I ′ in which we pick the corresponding
vertices in V ′

L. Similarly, consider a solution to I ′. None of the vertices picked
by this solution can be in V ′

R (because of infinite cost). Thus, we can look at the
corresponding subsets in S, and these subsets will form a set cover in I. ��

3 Approximation Algorithm for the Partition-VC

Problem

In this section, we give an O(log r)-approximation algorithm for this problem.
We begin with the natural LP relaxation, and then strengthen it by adding
knapsack cover inequalities. Fix an instance I consisting of a graph G = (V,E),
partition P1, . . . , Pr of E, and parameters k1, . . . , kr. The natural LP relaxation
is described below. For every vertex v ∈ V , we have a variable xv which should
be 1 if we pick this vertex, and 0 otherwise. For an edge e, we have a variable
ye, which should be 1 if e gets covered by the solution, 0 otherwise.

min
∑
v∈V

cvxv (LP1)

xu + xv ≥ ye for all edges e = (u, v) ∈ E∑
e∈Pi

ye ≥ ki for every partition Pi

0 ≤ xv ≤ 1 for all vertices v ∈ V

0 ≤ ye ≤ 1 for all edges e ∈ E

As explained in the introduction, the integrality gap of this LP relaxation is
unbounded even for the Partial Vertex Cover problem.

To improve the integrality gap, we add knapsack cover inequalities as follows.
Consider a subset of vertices A. Suppose we select all the vertices in A. Now,
A will cover some of the edges in each of the partitions Pi. Define ki(A) as
the number of edges we still need to cover from Pi (after having picked A). So,
we must choose enough vertices from V \ A such that the remaining covering
constraint in every partition is met. In other words, the following conditions
must be satisfied

xu + xv ≥ ye ∀e = (u, v) ∈ E and u, v /∈ A∑
e=(u,v)∈Pi

u,v/∈A

ye ≥ ki(A) for every partition Pi

If we replace the variable ye in the second inequality above by using the first
inequality, we get that for every partition Pi,

Approximation Algorithms for the Partition Vertex Cover Problem 141

∑
e=(u,v)∈Pi

u,v/∈A

(xu + xv) ≥ ki(A)

i.e.,
∑
v/∈A

degi(v,A)xv ≥ ki(A),

where degi(v,A) denotes the degree of v in the subgraph of G considering edges
in Pi only and removing the vertices of A. Since xv have value lying the range
[0, 1], we can further strengthen the above by truncating the values degi(v,A) to
min(degi(v,A), ki(A)). Thus we get the following strengthened LP relaxation:

min
∑
v∈V

cvxv (PVC-LP)

∑
v/∈A

min(ki(A), degi(v,A))xv ≥ ki(A) for all partitions Pi, subsets A ⊆ V

(1)

0 ≤ xv ≤ 1 for all vertices v ∈ V

We shall show that the integrality gap of the above LP relaxation is O(log r).
We first present the rounding algorithm, and then we will discuss how to solve
this LP. So assume that we have a solution x� to the LP above. The rounding
algorithm is described below.

Algorithm 1. Rounding a solution to the PVC-LP

Given a solution x�.
Let x̂ be the integral solution that we will build. Initially, x̂v = 0 for all v.
for ∀v ∈ V do

if x�
v ≥ 1/6 then

Set x̂v ← 1
else

Set x̂v ← 1 with probability 6x�
v.

end if
end for
Pick the set of vertices v in the solution for which x̂v = 1

Analysis of the Rounding Algorithm
We begin by showing that the solution constructed above is good for any parti-
tion Pi with constant probability.

Theorem 1. For any partition Pi, the solution x̂ covers at least ki edges of Pi

with probability at least 5/8.

142 S.K. Bera et al.

Proof. Define A to be the set {v ∈ V : x∗v ≥ 1/6}. Note that our algorithm picks
all the vertices in A. Therefore, we just need to show that the vertices picked
from V \A cover at least ki(A) edges from Pi after we remove the vertices in A.

Let βi(v,A) denote
min(degi(v,A),ki(A))

ki(A) . Then the constraint (1) applied to this

particular set A implies that ∑
v/∈A

βi(v,A)x
∗
v ≥ 1. (2)

Lemma 2. For any partition Pi,∑
v/∈A

βi(v,A)x̂v < 2,

happens with probability at most 3/8.

Proof. The proof is a simple application of Chebychev’s inequality and uses the
fact that the quantities βi(v,A) are at most 1. For a vertex v /∈ A, let Yv be an
indicator random variable which is 1 if v is included in the solution (i.e., x̂v = 1),
0 otherwise. Let Zi denote

∑
v/∈A

βi(v,A)Yv . The expected value E[Zi] can be
expressed as

E[Zi] =
∑
v/∈A

6βi(v,A)x
�
v ≥ 6,

using the inequality (2). We now bound the variance V ar(Zi) of Zi.

V ar[Zi] =
∑
v/∈A

βi(v,A)
2V ar(Yv)

=
∑
v/∈A

βi(v,A)
2 · 6x�v(1− 6x�v)

≤ 6
∑
v/∈A

βi(v,A)x
�
v because βi(v,A) ≤ 1

The claim now follows from Chebychev’s inequality. Indeed, we want to bound
the probability Pr[Zi < 2]. This can be done as follows :

Pr[Zi < 2] ≤ Pr[Zi < E[Zi]/3] ≤ Pr[|Zi − E[Zi]| ≥ 2E[Zi]

3
]

≤ 9

4
· V ar[Zi]

E[Zi]2

≤ 9

4
· 6

∑
v/∈A

βi(v,A)x
�
v(∑

v/∈A
6βi(v,A)x�v

)2 ≤ 3

8
,

where the last inequality uses (2). ��
Now, suppose the solution x̂ does not cover at least ki edges of Pi. Then, re-
stricted to the sub-graph of G where we include edges in Pi only, and remove all

Approximation Algorithms for the Partition Vertex Cover Problem 143

vertices in A, the total degree of the vertices picked by our algorithm (in V \A)
will be less than 2ki(A). In other words,∑

v/∈A

βi(v,A)x̂v < 2.

But lemma 2 shows that the probability of this event is at most 3/8. This proves
the theorem. ��
Thus, in expectation, more than half of the partitions get satisfied. To satisfy
all the partitions, we just repeat our algorithm O(log r) times. So, our final
algorithm is : repeat Algorithm 1 c log r times, where c is a large constant. We
output the union of all the vertices chosen in each such round. The following
theorem now shows that our algorithm is an O(log r)-approximation algorithm.

Theorem 2. With high probability, the algorithm outputs a feasible solution and
its cost is O(log r) ·∑v∈V cvx

�
v.

Proof. Lemma 2 shows that in any particular round, we cover at least ki edges
of Pi with probability at least 5/8. So, the probability that we do not satisfy the
constraint for Pi in any of the rounds is at most 1/rc

′
for some large constant c′,

and hence, by union bound, our algorithm outputs a feasible solution with high
probability. Also, the expected cost of each round is at most 6

∑
v∈V cvx

�
v. This

proves the theorem. ��
Solving the LP Relaxation. Finally, we show how we can get a solution x�

for the PVC-LP. We first guess the value of the optimal solution – call it Δ (we
can always do this up to any constant precision by binary search). We convert
the LP to a feasibility LP by removing the objective function, and adding a
constraint ∑

v

cvxv ≤ Δ.

Now, we use the ellipsoid method to solve the LP. Given a candidate solution
x, we first check if it satisfies the above constraint – if not, we can just return
this violated constraint. Otherwise, we define A = {v : xv ≥ 1/6}. We check the
constraint (1) for this set A, and again, if this is not satisfied, we can return this
as a violated constraint. Now, notice that our rounding algorithm just requires
the solution x� to satisfy these two inequalities, and we need not even check all
the (exponentially many) constraints (1).

3.1 Extensions

We now show that our result can be extended to more general settings.

The Knapsack Partition Vertex Cover Problem : Recall that in this prob-
lem, we have weights we associated with each edge e. Again given a partition
P1, . . . , Pr, and parameters Πi, we would like to pick a minimum cost subset of

144 S.K. Bera et al.

vertices such that they cover edges of cost at least Πi from the set Pi for each
i. Our algorithm and analysis extend in straightforward way to this setting as
well.

The Sets Pi Need Not Be Disjoint : Our analysis does not require these sets
to be disjoint. The same algorithm works here as well. Note that our hardness
results holds in the stronger setting where we want these sets to be disjoint.

4 Conclusion

We have presented algorithms for the Partition-VC problem. For this problem
using primal-dual schema similar to the one described by Tim Carnes & David
Shmoys [21] we can obtain an O(f)-approximation algorithm, where f is the
maximum number of edges in a partition Pi. The proof is quite straight forward.
This result is analogous to the f -approximation result for the Set Cover prob-
lem [22, 3]. It will be interesting to extend our techniques to partition versions of
other partial covering problems. One natural related problem is the Partition

Set Cover problem. The Partition Set Cover problem can be seen as a gen-
eralization of the Partial Set Cover problem where P1, . . . , Pr forms partition
of the element set, and the goal is to find a minimum cost sub-collection of sets
such that atleast ki elements are covered from partition Pi. For that we can get
a H(

∑
Pi
ki)-approximation by directly extending Slav́ık’s [11] greedy approach,

and unless P=NP we cannot do any better.

References

[1] Vazirani, V.V.: Approximation algorithms. Springer-Verlag New York, Inc., New
York (2001)

[2] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms. Cam-
bridge University Press (2010)

[3] Bar-Yehuda, R., Even, S.: A linear time approximation algorithm for approximat-
ing the weighted vertex cover (1981)

[4] Hochbaum, D.S. (ed.): Approximation algorithms for NP-hard problems. PWS
Publishing Co., Boston (1997)

[5] Bshouty, N.H., Burroughs, L.: Massaging a Linear Programming Solution to Give
a 2-Approximation for a Generalization of the Vertex Cover Problem. In: Meinel,
C., Morvan, M. (eds.) STACS 1998. LNCS, vol. 1373, pp. 298–308. Springer, Hei-
delberg (1998)

[6] Hochbaum, D.S.: The t-Vertex Cover Problem: Extending the Half Integrality
Framework with Budget Constraints. In: Jansen, K., Rolim, J.D.P. (eds.) AP-
PROX 1998. LNCS, vol. 1444, pp. 111–122. Springer, Heidelberg (1998)

[7] Bar-Yehuda, R.: Using homogenous weights for approximating the partial cover
problem. In: Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 1999, pp. 71–75. Society for Industrial and Applied Mathemat-
ics, Philadelphia (1999)

[8] Gandhi, R., Khuller, S., Srinivasan, A.: Approximation algorithms for partial cov-
ering problems. J. Algorithms 53(1), 55–84 (2004)

Approximation Algorithms for the Partition Vertex Cover Problem 145

[9] Carr, R.D., Fleischer, L.K., Leung, V.J., Phillips, C.A.: Strengthening integrality
gaps for capacitated network design and covering problems. In: Proceedings of the
Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2000,
pp. 106–115. Society for Industrial and Applied Mathematics, Philadelphia (2000)

[10] Kearns, M.J.: The computational complexity of machine learning (1990)
[11] Slav́ık, P.: Improved performance of the greedy algorithm for partial cover. Inf.

Process. Lett. 64(5), 251–254 (1997)
[12] Mestre, J.: A primal-dual approximation algorithm for partial vertex cover: Mak-

ing educated guesses. Algorithmica 55(1), 227–239 (2009)
[13] Bar-Yehuda, R., Flysher, G., Mestre, J., Rawitz, D.: Approximation of Partial

Capacitated Vertex Cover. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007.
LNCS, vol. 4698, pp. 335–346. Springer, Heidelberg (2007)

[14] Charikar, M., Khuller, S., Mount, D.M., Narasimhan, G.: Algorithms for facility
location problems with outliers. In: Proceedings of the Twelfth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2001, pp. 642–651. Society for
Industrial and Applied Mathematics, Philadelphia (2001)

[15] Chen, K.: A constant factor approximation algorithm for k-median clustering with
outliers. In: Proceedings of the Nineteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2008, pp. 826–835. Society for Industrial and Applied
Mathematics, Philadelphia (2008)

[16] Garg, N.: Saving an epsilon: a 2-approximation for the k-mst problem in graphs.
In: Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory of
Computing, STOC 2005, pp. 396–402. ACM, New York (2005)

[17] Golovin, D., Nagarajan, V., Singh, M.: Approximating the k-multicut problem.
In: Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete
Algorithm, SODA 2006, pp. 621–630. ACM, New York (2006)

[18] Vondrák, J., Chekuri, C., Zenklusen, R.: Submodular function maximization
via the multilinear relaxation and contention resolution schemes. In: STOC,
pp. 783–792 (2011)

[19] Călinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a monotone submod-
ular function subject to a matroid constraint. SIAM J. Comput. 40(6), 1740–1766
(2011)

[20] Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45(4), 634–652
(1998)

[21] Carnes, T., Shmoys, D.: Primal-Dual Schema for Capacitated Covering Problems.
In: Lodi, A., Panconesi, A., Rinaldi, G. (eds.) IPCO 2008. LNCS, vol. 5035, pp.
288–302. Springer, Heidelberg (2008)

[22] Hochbaum, D.S.: Approximation algorithm for the weighted set covering and node
cover problems (1980) (unpublished manuscript)

Daemon Conversions in Distributed

Self-stabilizing Algorithms

Wayne Goddard and Pradip K. Srimani

School of Computing, Clemson University, Clemson, SC 29634–0974

Abstract. We consider protocols to transform a self-stabilizing algo-
rithm for one daemon to one that can run under a different daemon. In
the literature, there are several daemons, and several possible attributes
of those daemons, and it is customary to detail the choice of daemon one
is using in designing a specific self-stabilizing algorithm. The choice of
daemon plays an important role in designing self-stabilizing algorithm
in terms of correctness and convergence time analysis; techniques and
complexity vary widely with the type of daemons used. In order to sim-
plify algorithm development in a systematic way, it would be useful to
have to consider only one “canonical” daemon and then to use a rela-
tively mechanical procedure to convert the algorithm to any other dae-
mon when needed. We give the first (full) proof that, provided there are
IDs, any algorithm that self-stabilizes only under a fair central daemon
can be converted to one that self-stabilizes under an unfair read/write
daemon.

1 Introduction

A self-stabilizing algorithm is a distributed algorithm that is designed to con-
verge to a desired state without coordination or initialization [1]. Each node
participates in the distributed algorithm based on local knowledge: its own state
and the states of its immediate neighbors. The objective is to achieve some global
objective – a predicate defined on the local states of all the nodes in the network
– based on local actions where individual nodes have no global knowledge about
the network. In order to analyze the correctness of the algorithm and its time
complexity, a daemon is assumed: the daemon plays the role of both scheduler
and adversary. In the literature, there are several daemons, and several possible
attributes of those daemons, and it is customary to detail the choice of daemon
one is using in designing a specific self-stabilizing algorithm. Indeed, the choice of
daemon plays an important role in designing self-stabilizing algorithm in terms
of correctness and convergence time analysis; techniques and complexity vary
widely with the type of daemons used.

In order to simplify algorithm development in a systematic way, it would be
useful to have to consider only one “canonical” daemon and then to use a rel-
atively mechanical procedure to convert the algorithm to any other daemon if
need be. One of the goals of this paper is to show that, for a price (either slow-
down of the convergence time or additional storage requirement at the nodes),

S.K. Ghosh and T. Tokuyama (Eds.): WALCOM 2013, LNCS 7748, pp. 146–157, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Daemon Conversions in Distributed Self-stabilizing Algorithms 147

one can restrict one’s attention to a specific daemon, at least when the nodes
in the network are assigned unique IDs. In general, we consider the problem of
converting self-stabilizing algorithms that run under one daemon to work under
another daemon; these are called transforms [2–5]. Our purpose in this paper
is to do a systematic investigation of all possible transforms between different
daemons. We provide new transforms and improve upon some of the existing
schemes. We give the first (full) proof that, provided there are IDs, any algo-
rithm that self-stabilizes only under a fair central daemon can be converted to
one that self-stabilizes under an unfair read/write daemon.

1.1 Definitions and Terminology

For this paper, we work in the shared-variable or state-reading model in
which a node can directly read its neighbors’ variables. We restrict attention to
undirected, bidirectional links. All computation is deterministic unless otherwise
stated. One can look at [6, 7] for a general overview of the paradigm of self-
stabilization and its requirements.

A self-stabilizing algorithm is usually written as a collection of production
rules at each node: each rule specifies a condition and an action. The condition
is a boolean predicate on the state of the node and the states of its neighbors;
the action or move is a change in the state of the node executing the action. A
node is privileged at a particular time if the condition of one or more of its rules
is satisfied. Note that a node might stop being privileged if a neighbor moves.

The central daemon (sometimes called a serial daemon) chooses or taps
exactly one privileged node to move at each step. In contrast, the distributed
daemon taps a nonempty subset of the privileged nodes to move at each step.
These daemons are considered adversarial. A special case of the distributed dae-
mon is the synchronous daemon : under this scheduler, at every step every
privileged node moves.

One can also consider the granularity of the computation at a node. In the
coarse daemon, all computation by a node is completed in one atomic step. This
is the most common assumption in self-stabilization. Dolev et al. [8] proposed
a self-stabilizing version of read/write atomicity . In this, a node’s action is
broken down into two atomic steps: (i) reading the state of all its neighbors, and
(ii) updating its state. That is, each rule executes in a two-phase fashion: the read
phase and the write phase. Whenever a node is tapped by the daemon, it reads
the states of its neighbors and remembers the information; when it is tapped
for the second time it executes the rule and changes its own variables. Since
the daemon can choose an arbitrary gap between the read- and write-steps, the
update might be made on stale information. The read/write daemon is defined
to be a distributed daemon with read/write atomicity. See, e.g. [9] or [8].

In another direction, there is the concept of a fair and unfair daemon. For
a (weakly) fair daemon , every node that is continuously privileged is tapped
eventually. For an unfair daemon, there is no such restriction. See [6] for details.
An algorithm running under fair daemon is thus expected to converge faster than

148 W. Goddard and P.K. Srimani

when running under an unfair daemon: an unfair daemon represents a worst-
case analysis of the algorithm. While it is to some extent a theoretical device,
an unfair daemon does cover a situation where some node is “frozen” because of
conditions external to the program.

In yet another direction of classification of the daemons, one may assume that
the nodes in the network have unique IDs. If this is not assumed we say that the
algorithm is anonymous. Note that in case of anonymous algorithms, no node
can explicitly use any node ID to make any decision or to take any action; we
use node identifiers for reference purpose only. A self-stabilizing algorithm is said
to be silent if it terminates; that is, it is guaranteed to reach a state where no
node is privileged. See [10]. Some problems such as token circulation and clock
synchronization are inherently not silent. Other problems such as leader election
and maximal independent set may be silent, though some of the solutions to
leader election are not (e.g., [11]).

We measure the running times of the algorithms in terms of the maximum
number of steps needed for the algorithm to converge to a stable legitimate
state in the worst case. Another notion used is that of round : this is a minimal
interval during which every continuously privileged node is tapped.

2 Main Results

In this section we lay out the results of the paper. The proofs are provided in
Section 3. We consider first the case that IDs are not available. Randomness
can clearly be used to create IDs (see for example [12]) – and most daemon-
conversion results assume IDs or create them. However, IDs require Ω(log n)
space, where n denotes the number of nodes. We have previously shown [13]
that that one can convert a central-daemon algorithm to a distributed-daemon
algorithm using only O(1) extra storage per node:

Theorem 1. [13] Any algorithm that self-stabilizes under an unfair central dae-
mon can be converted to a randomized one that self-stabilizes under an unfair
distributed daemon, using constant extra space, without IDs, and with at most
O(n3) expected slowdown, while preserving silentness.

We provide a simple algorithm for the subproblem of ensuring fairness. As
a consequence we have a simpler proof of the following result which can be
extracted from the work of Beauquier et al. [14]:

Theorem 2. [14] Any algorithm that self-stabilizes only under a fair central
daemon can be converted to one that self-stabilizes under an unfair central dae-
mon, without using IDs.

This algorithm uses bounded memory, provided an upper bound on the size of
the network is known. A significant open question is whether one can achieve
this transform in bounded memory in an anonymous network without any
assumptions. We give our alternative proof of Theorem 2 in Section 3.2.

Daemon Conversions in Distributed Self-stabilizing Algorithms 149

It is essentially known, though to our knowledge not explicitly proven in
the literature, that any algorithm that self-stabilizes under the central daemon
using coarse atomicity can be converted to one that stabilizes under a read/write
daemon provided there is symmetry breaking such as IDs or randomness. (See
the next subsection for a discussion of the literature.) The problem that remains
is to determine the price one pays in terms of slowdown in convergence time
and/or additional storage need at the nodes. Our first result in this regard is
that the price for conversion from central to distributed daemon is small.

Theorem 3. Provided there are IDs, any algorithm that self-stabilizes under an
unfair central daemon can be converted to one that self-stabilizes under an unfair
distributed daemon, preserving silentness. For the general distributed daemon,
the slowdown is linear (in the number of nodes). For the synchronous daemon,
the slowdown is constant.

Thus, for example, one immediately obtains linear-move synchronous algorithms
for several problems like maximal matching and maximal independent set; linear-
move algorithms under the central daemon are given in [15]. We prove Theorem 3
in Section 3.3. Our next result provides a conversion from central to read/write
daemon, but the price seems higher.

Theorem 4. Provided there are IDs, any algorithm that self-stabilizes under an
unfair central daemon can be converted to one that self-stabilizes under an unfair
read/write daemon, while preserving silentness.

The cross-over composition idea of Beauquier et al. [16] is more powerful
and general, but the resulting scheduling/synchronizing algorithm is not silent.
Theorem 4 is proved in Section 3.4. Putting Theorems 2 and 4 together, we
immediately obtain the most general result:

Theorem 5. Provided there are IDs, any algorithm that self-stabilizes only un-
der a fair central daemon can be converted to one that self-stabilizes under an
unfair read/write daemon.

2.1 Related Work

The concept of daemon can be thought of as two parts: The central daemon
promises exclusivity, while the fair daemon promises each processor gets its turn.
So to solve the problem of daemon conversion, one must show how to ensure (1)
that no two adjacent nodes are ever simultaneously enabled for the original
algorithm, and (2) that any node gets its turn after a while. The first of these is
called local mutual exclusion, and the second is called fairness.

One solution to mutual exclusion is given by Lamport [17] (the bakery paper),
and the ULME algorithm of [14] is largely the natural extension to general net-
works. Most of the papers on self-stabilizing mutual exclusion (see for example [9]
or [6]) are essentially token-passing algorithms.

150 W. Goddard and P.K. Srimani

Fairness can also be thought of as a clock synchronization problem, and as
such was investigated by Awerbuch et al. [18] and others. Their results hold
in an anonymous network. If the processors have no global knowledge of the
network, then these results use unbounded memory. If the processors have global
knowledge (e.g. a bound on the order n or diameter d), then Awerbuch et al.
provide a time-optimal (meaning O(d) rounds given a fair daemon) if one also
has IDs. Karaata [19] discusses ways of fairness enhancement.

There are several important related daemon-conversion results which address
both fairness and mutual exclusion. Indeed, several of these results are deeper
and more powerful than ours, but do not quite answer the questions we consider
here. These include:

– Gouda and Haddix [20] provided an alternator which can be used to convert
a central daemon algorithm to run under an unfair distributed daemon using
IDs.

– Mizuno and Kakugawa [21] provided tools to convert a central daemon algo-
rithm to run in a real distributed environment. They later reported on case
studies [22]

– Beauquier et al. [14] provided a solution to local mutual exclusion which
uses IDs and which also handles fairness, provided the initial algorithm can
already handle a read/write daemon.

– Nesterenko and Arora [23] provided several results about conversion from
one daemon to another, provided the daemon is fair. These results built on
their solution to the dining philosophers problem.

– In the book [6], Dolev provides a conversion from central to read/write dae-
mon, provided the daemon is fair and there is a distinguished processor.

Shukla et al. [24] provided a method using randomness that can be used to
convert some central daemon algorithms to run under a distributed daemon.

3 The Transforms

We now prove Theorems 1–4. In each case we provide a transform from an
algorithm S to an algorithm S ′. The algorithms are presented as the code for a
node i. We define the boolean predicate

pS(i)
def
=

{
1 node i is privileged for algorithm S in a given system state
0 otherwise.

The notation N(i) denotes the set of neighbors of node i.

3.1 Central to Distributed without IDs

It has been shown [13] that randomization can be used to ensure local mutual
exclusion between neighboring nodes, and so to convert a central daemon self-
stabilizing algorithm to its distributed daemon equivalent. We briefly describe
the algorithm and the result for the sake of completeness.

Daemon Conversions in Distributed Self-stabilizing Algorithms 151

Let S be a self-stabilizing algorithm that works for an unfair, central, coarse
daemon, but does not use IDs. In order to design the new algorithm S ′ to work
for a distributed daemon, we add to each node i a boolean flag b(i) in addition to
the S-variables. This flag is designed to be true if the node is privileged for the
underlying algorithm S and if the node is the only node in its neighborhood that
has its flag set. When two adjacent nodes are simultaneously S-privileged and
have their flag bits set, the nodes randomly determine a new value of their flag
bits. A node can only execute the underlying algorithm if it is indeed privileged
for S and is the only node in its neighborhood that has its flag set. The new
algorithm S ′ is shown as Algorithm 1.

Algorithm 1. Using randomness for exclusivity

Variables: binary b(i) (and variables needed for S)
BitClear: if b(i) = 1 and not pS(i)

then set b(i) = 0
BitSet: if pS(i) and b(i) = 0 and ∀j ∈ N(i) : b(j) = 0

then set b(i) = 1
BitToss: if pS(i) and b(i) = 1 and ∃j ∈ N(i) with b(j) = 1

then set b(i) = Random (toss a fair coin to determine the new value of b(i))
Step: if pS(i) and b(i) = 1 and ∀j ∈ N(i) : b(j) = 0

then execute one step of S at i

Under a distributed daemon, Algorithm 1 (i) achieves local exclusivity for S,
i.e., no two adjacent nodes execute the underlying algorithm S concurrently; (ii)
cannot terminate while there is an S-privileged node.

3.2 Fair to Unfair Central Daemon

Beauquier et al. [14] showed how to enforce fairness using bounded variables,
provided the nodes know a bound on the number of nodes in the graph. We
give an alternative algorithm. Our result achieves fairness without having to
wait for a period of stabilization: it is immediately self-stable. As in [14], the
resulting algorithm is not silent. The algorithm is also similar to the alternator
of Gouda and Haddix [20]. However, Algorithm 2 does not use IDs and achieves
only fairness.

Given a self-stabilizing algorithm S that works for a fair central daemon, we
define a new algorithm S ′ as follows. Each node maintains an additional counter
variable c(i) in the range 0 . . . n with wrap around (where n is the number of
nodes in the network). All arithmetic is modulo n + 1. We define the Boolean
predicate pS(i) as before. A node is privileged for algorithm S ′ provided there
does not exist a neighbor with a counter with the next higher value. If it is
tapped, then a node executes S if S-privileged, and in any event, it increments
its counter. The new algorithm S ′ is shown as Algorithm 2.

152 W. Goddard and P.K. Srimani

Algorithm 2. Bounded counters for fairness

Variables: counter c(i) in the range 0 . . . n inclusive (and variables needed for S)
Update: if 	 ∃j ∈ N(i) with c(j) = c(i) + 1

then (a) if pS(i) then execute one step of S at i; and

(b) in any event, c(i) ++ (modulo n+ 1)

Lemma 1. Algorithm 2 is always live and ensures fairness for S.

Proof. Suppose the algorithm terminates. Consider any node i; say c(i) = 0. It
must have a neighbor, say j, with counter c(j) = 1. That node in turn must
have a neighbor, say k, with counter c(k) = 2. And so on. But this implies
n+ 1 different values of the counters, and hence n+ 1 different nodes, which is
impossible. Thus, at every step there exists at least one node that is privileged
for Algorithm 2.

As for fairness, consider a period of time when a node’s counter goes from
0 to 0. There cannot be a neighbor that has not moved in that period, since
each move precludes a neighbor with the next higher value. Indeed, if Mi(t)
denotes the number of moves of node i up until time t, then it always holds that
|Mi(t)−Mj(t)| ≤ n for any pair i and j of adjacent nodes. Overall, there can be
at most O(n2) other moves between two consecutive moves of the same node.
Thus, as long as a node is S-privileged, it will get to move in at most O(n2)
steps.

This establishes Theorem 2:

Theorem 2. [14] Any algorithm that self-stabilizes only under a fair central
daemon can be converted to one that self-stabilizes under an unfair central dae-
mon, without using IDs, with at most O(n2) slowdown.

Actually, nowhere in the proof did we use the fact that the daemon was central.
So one can use this to ensure fairness for other daemons such as the distributed
daemon. By combining the conversions of this subsection and the previous sub-
section, one can obtain a new local mutual exclusion algorithm; we omit the
details.

3.3 Central to Distributed with IDs

We next consider the conversion to distributed daemon without introducing
randomness. Note that we do not require fairness. The central daemon as a
scheduler enforces that neighboring nodes do not move concurrently, that is,
local mutual exclusion. So it suffices for us to achieve this under the distributed
daemon. We use the standard idea of interpreting the IDs as priorities such as
in work on philosopher problems or the MIS algorithm of Kakugawa et al. [21].

Let S be a self-stabilizing algorithm that works for an unfair, central, coarse
daemon. We define a new algorithm S ′ as follows. We add to each node i a

Daemon Conversions in Distributed Self-stabilizing Algorithms 153

Algorithm 3. Using IDs for exclusivity

Variables: binary b(i) (and variables needed for S)
BitUpdate: if b(i) 	= pS(i)

then b(i) = pS(i)
Step: if b(i) = 1 and pS(i) and 	 ∃ j ∈ N(i) with b(j) = 1 and j < i

then execute one step of S at i, and set b(i) = 0

boolean flag b(i). Algorithm 3 assumes that nodes are assigned unique IDs and
has two rules as shown below.

The effect of Rule BitUpdate is that b(i) contains the correct value of pS(i).
The effect of Rule Step is that a node i can enter execution of S only if its bit
b(i) is set and its ID is a local minimum amongst those neighbors which have
their respective bits set.

Lemma 2. Algorithm 3 under a distributed daemon achieves exclusivity for S,
i.e., no two adjacent nodes execute the underlying algorithm S concurrently.

Proof. Consider two adjacent nodes i and j with i < j. For a node i to be able
to execute Rule Step when it is tapped by the distributed daemon, at the point
it reads the variables, it must have its b-bit set, and none of its smaller neighbors
can have their b-bit set. Thus if node i is privileged for Algorithm 3 for Rule Step
in a given system state, since j > i, the neighbor j, cannot be privileged for
Algorithm 3 for Rule Step. Thus two adjacent nodes cannot execute Rule Step
simultaneously.

Lemma 3. If S ′ (Algorithm 3) terminates, then no node is privileged for S.
Proof. Assume that Algorithm 3 terminates. Then no node is privileged for
Rule BitUpdate. So the bit b(i) = pS(i) for each node i. The fact that no node
is privileged for Rule Step then means that no node is S-privileged (consider
the smallest S-privileged node; it must be privileged by Rule Step). Thus S has
finished executing.

Lemma 4. Algorithm 3 achieves progress in the original algorithm S. In par-
ticular, the slowdown under the general distributed daemon is O(n), and under
the synchronous daemon is constant.

Proof. Consider first the distributed daemon. The first rule can execute at most
once per node between executions of Rule Step. Hence the slowdown is at most
linear.

For the synchronous daemon, there cannot be two successive steps without
Rule Step being executed. Hence the slowdown is at most constant. Thus,

Theorem 3. Provided there are IDs, any algorithm that self-stabilizes under an
unfair central daemon can be converted to one that self-stabilizes under an unfair
distributed daemon, preserving silentness. For the general distributed daemon,
the slowdown is at most O(n). For the synchronous daemon, the slowdown is
constant.

154 W. Goddard and P.K. Srimani

3.4 Central to Read/Write with IDs

Algorithm 3 does not quite work for read/write atomicity, but we can modify
the idea to handle read/write atomicity. In the worst case, this transform might
lead to quadratic slowdown.

As before, let S be a self-stabilizing algorithm that works for an unfair, central,
coarse daemon. In order to design the new algorithm S ′ to work for a read/write
daemon, we add to each node i a boolean flag b(i). This flag is designed to be
true if the node is privileged for the underlying algorithm S and has higher
priority (lower ID) than its waiting S-privileged neighbors. The node can only
execute the underlying algorithm if it is indeed privileged for S and is the only
node in its neighborhood that has its flag set. The new algorithm S ′ is shown as
Algorithm 4.

Algorithm 4. Using IDs for exclusivity under read/write

Variables: binary b(i) (and variables for S)
Withdraw: if b(i) = 1 and not pS(i)

then set b(i) = 0
Concede: if b(i) = 1 and ∃j ∈ N(i) with b(j) = 1 and j < i

then set b(i) = 0
Assert: if pS(i) and b(i) = 0 and ∀j ∈ N(i) : b(j) = 0

then set b(i) = 1
Step: if pS(i) and b(i) = 1 and ∀j ∈ N(i) : b(j) = 0

then execute one step of S at i

Remark 1. The daemon can tap a node to execute Rule Step immediately after
Rule Assert, but we need the operation in two steps for coping with the read/write
atomicity. Essentially, at the read-tap of the Rule Step, the node double-checks
that every neighbor has bit clear. Even if one is in the process of setting its
flag (write-tap for Rule Assert), that neighbor has to double-check (read-tap of
Rule Step) before it executes write-phase of Rule Step and will be blocked.

Lemma 5. If Algorithm 4 terminates, then no node is privileged for S.
Proof. Suppose at termination of Algorithm 4 there is a node i with b(i) = 1.
Since node i is not privileged for Rule Withdraw, it is S-privileged. Further, since
no node is privileged for Rule Concede, all neighbors of i have b-bits zero (if there
is a node j, j > i and b(j) = 1, node j must be privileged by Rule Concede). Then
node i is S-privileged and all its neighbors have their b-bits zero; hence node i is
privileged for Rule Step, a contradiction. Hence, at termination of Algorithm 4,
each node i has b(i) = 0.

Since no node is privileged for Rule Assert, it follows that there is no S-
privileged node. That is, if S ′ terminates, then S has also terminated.

Daemon Conversions in Distributed Self-stabilizing Algorithms 155

Lemma 6. Algorithm 4 achieves local mutual exclusion among neighbor nodes
and faithfully executes the original algorithm S.
Proof. Consider a node i that executes Rule Step. We claim that between the
read- and the write-steps for this move, no neighbor can start or finish Rule Step.

When node i performs the read-phase for Rule Step, it must have that b(i) = 1
and for all j ∈ N(i), b(j) = 0; i.e., no neighbor j is currently executing Rule Step.
Also, until node i completes the write-phase of Rule Step, the flag b(i) remains
set at 1 and hence no neighbor j of node i can be privileged for Rule Step. This
also means that the step of S made by node i is based on correct (current) data.

Lemma 7. Algorithm 4 achieves progress in the original algorithm S; when S
stabilizes, Algorithm 4 also stabilizes.

Proof. Consider an interval T (series of moves made by Algorithm 4) during
which the write-phase of Rule Step is not executed. Then the S-variables at
each node i remain constant during this interval T , and so whether a node is S-
privileged remains constant. (Predicate pS(i) for each node i remains constant
but b(i) may change since some node(s) may still have stale read-data from
before T started.)

We observe that during this interval T , each node i can execute either
Rule Withdraw or Rule Assert at most once (since pS(i) does not change); thus,
there can be at most n moves during this interval T without any node executing
Rule Concede. When a node i executes Rule Concede, the node i cannot execute
Rule Concede again until the b-bit of node i or any of its neighbors is changed
by execution of Rule Withdraw or Rule Assert. Also, when a node i executes
Rule Concede, and no node changes its b-bit, none of the neighbors of node i
can execute Rule Concede. Thus, when neither Rule Withdraw nor Rule Assert
is executed by any node, the maximum number of times Rule Concede can be
executed during the interval T is at most the size of the maximum independent
set of the network graph; that is at most n, the number of nodes.

Hence, the maximum number of moves possible during the interval T is O(n2).
Hence, if Rule Step is not executed—meaning the underlying algorithm S has
stabilized—then the algorithm S ′ will eventually terminate.

The above three lemmas establish Theorem 4:

Theorem 4. Provided there are IDs, any algorithm that self-stabilizes under an
unfair central daemon can be converted to one that self-stabilizes under an unfair
read/write daemon, while preserving silentness.

4 Conclusion

The results in this paper reaffirm that in the deterministic ID-based shared-
variable model, all daemons are equally powerful. An alternative to the shared-
variable model is link registers where each pair of adjacent nodes have a register
to pass messages. If the nodes have IDs, then link-registers can be trivially

156 W. Goddard and P.K. Srimani

simulated in general memory—a node writes the contents of each link-register
next to each neighbor’s ID. Thus link-registers and shared-variable are equivalent
in ID-based networks. It follows that all daemons are equally powerful in this
model too.

An interesting question is of comparing the powers of different daemons in
deterministic anonymous networks. Link-registers and a distinguished node
or root allow one to form a breadth-first-search spanning tree and hence assign
IDs; see e.g. [8]. Thus all daemons are equally powerful in this case. However,
without a root, the results of [9, 25] and others on rings show that the distributed
and central daemon have different powers. That is, there are some problems
which have a solution under a central daemon but do not have a solution under
a distributed daemon. This difference holds in both the link-register and shared-
variable case. One way to proceed might be to determine exactly which problems
have solutions. Angluin’s well-known arguments [26] about symmetry-breaking
provide several limits on what problems can be solved, but are these essentially
the only limits?

Acknowledgement. The work was partially supported by NSF Awards CCF
0832582 and DBI-0960586.

References

1. Dijkstra, E.W.: Self stabilizing systems in spite of distributed control. Comm.
ACM 17, 643–644 (1974)

2. Herman, T.: Models of Self-Stabilization and Sensor Networks. In: Das, S.R., Das,
S.K. (eds.) IWDC 2003. LNCS, vol. 2918, pp. 205–214. Springer, Heidelberg (2003)

3. Dubois, S., Tixeuil, S.: A taxonomy of daemons in self-stabilization. CoRR,
abs/1110.0334 (2011)

4. Korman, A., Kutten, S., Masuzawa, T.: Fast and compact self stabilizing verifi-
cation, computation, and fault detection of an mst. In: Proceedings of the 30th
Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Com-
puting, PODC 2011, pp. 311–320. ACM, New York (2011)

5. Beauquier, J., Delaët, S., Haddad, S.: A 1-Strong Self-stabilizing Transformer.
In: Datta, A.K., Gradinariu, M. (eds.) SSS 2006. LNCS, vol. 4280, pp. 95–109.
Springer, Heidelberg (2006)

6. Dolev, S.: Self-Stabilization. MIT Press (2000)
7. Tel, G.: Introduction to Distributed Algorithms. Cambridge University Press

(1994)
8. Dolev, S., Israeli, A., Moran, S.: Self-stabilization of dynamic systems assuming

only read/write atomicity. Distrib. Comput. 7, 3–16 (1993)
9. Israeli, A., Jalfon, M.: Uniform self-stabilizing ring orientation. Inform. Com-

put. 104, 175–196 (1993)
10. Dolev, S., Gouda, M.G., Schneider, M.: Memory requirements for silent stabiliza-

tion. In: PODC 1996 Proceedings of the Fifteenth Annual ACM Symposium on
Principles of Distributed Computing, pp. 27–34 (1996)

11. Itkis, G., Lin, C., Simon, J.: Deterministic, Constant Space, Self-Stabilizing Leader
Election on Uniform Rings. In: Helary, J.-M., Raynal, M. (eds.) WDAG 1995.
LNCS, vol. 972, pp. 288–302. Springer, Heidelberg (1995)

Daemon Conversions in Distributed Self-stabilizing Algorithms 157

12. Gradinariu, M., Johnen, C.: Self-stabilizing Neighborhood Unique Naming under
Unfair Scheduler. In: Sakellariou, R., Keane, J.A., Gurd, J.R., Freeman, L. (eds.)
Euro-Par 2001. LNCS, vol. 2150, pp. 458–465. Springer, Heidelberg (2001)

13. Goddard, W., Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K.: Anonymous Daemon
Conversion in Self-stabilizing Algorithms by Randomization in Constant Space.
In: Rao, S., Chatterjee, M., Jayanti, P., Murthy, C.S.R., Saha, S.K. (eds.) ICDCN
2008. LNCS, vol. 4904, pp. 182–190. Springer, Heidelberg (2008)

14. Beauquier, J., Datta, A.K., Gradinariu, M., Magniette, F.: Self-Stabilizing Local
Mutual Exclusion and Daemon Refinement. In: Herlihy, M.P. (ed.) DISC 2000.
LNCS, vol. 1914, pp. 223–237. Springer, Heidelberg (2000)

15. Hsu, S.C., Huang, S.T.: A self-stabilizing algorithm for maximal matching. Inform.
Process. Lett. 43, 77–81 (1992)

16. Beauquier, J., Gradinariu, M., Johnen, C.: Cross-Over Composition - Enforcement
of Fairness under Unfair Adversary. In: Datta, A.K., Herman, T. (eds.) WSS 2001.
LNCS, vol. 2194, pp. 19–34. Springer, Heidelberg (2001)

17. Lamport, L.: A new solution of Dijkstra’s concurrent programming problem. Com-
munications of the ACM 17, 453–455 (1974)

18. Awerbuch, B., Kutten, S., Mansour, Y., Patt-Shamir, B., Varghese, G.: Time opti-
mal self-stabilizing synchronization. In: STOC 1993 Proceedings of the 25th Annual
ACM Symposium on Theory of Computing, pp. 652–661 (1993)

19. Karaata, M.H.: Self-stabilizing strong fairness under weak fairness. IEEE Trans.
Parallel Distrib. Systems 12, 337–345 (2001)

20. Gouda, M.G., Haddix, F.: The alternator. In: Proceedings of the Fourth Workshop
on Self-Stabilizing Systems (published in association with ICDCS 1999), pp. 48–53.
IEEE Computer Society (1999)

21. Mizuno, M., Kakugawa, H.: A Timestamp Based Transformation of Self-Stabilizing
Programs for Distributed Computing Environments. In: Babaoğlu, Ö., Marzullo,
K. (eds.) WDAG 1996. LNCS, vol. 1151, pp. 304–321. Springer, Heidelberg (1996)

22. Kakugawa, H., Mizuno, M., Nesterenko, M.: Development of self-stabilizing dis-
tributed algorithms using transformation: case studies. In: Proceedings of the Third
Workshop on Self-Stabilizing Systems, pp. 16–30. Carleton University Press (1997)

23. Nesterenko, M., Arora, A.: Stabilization-preserving atomicity refinement. J. Par-
allel Distrib. Comput. 62(5), 766–791 (2002)

24. Shukla, S., Rosenkrantz, D., Ravi, S.: Developing self-stabilizing coloring algo-
rithms via systematic randomization. In: Proceedings of the International Work-
shop on Parallel Processing, pp. 668–673 (1994)

25. Hoepman, J.H.: Uniform Deterministic Self-Stabilizing Ring-Orientation on Odd-
Length Rings. In: Tel, G., Vitányi, P.M.B. (eds.) WDAG 1994. LNCS, vol. 857,
pp. 265–279. Springer, Heidelberg (1994)

26. Angluin, D.: Global and local properties in networks of processors. In: Proc. 12th
Symposium on the Theory of Computing, pp. 82–93 (1980)

Broadcasting in Conflict-Aware Multi-channel

Networks

Francisco Claude1, Reza Dorrigiv2, Shahin Kamali1, Alejandro López-Ortiz1,
Pawe�l Pra�lat3, Jazmı́n Romero1, Alejandro Salinger1, and Diego Seco4

1 David R. Cheriton School of Computer Science, University of Waterloo, Canada
2 Faculty of Computer Science, Dalhousie University, Canada

3 Department of Mathematics, Ryerson University, Toronto, Canada
4 Database Laboratory, University of A Coruña, Spain

Abstract. The broadcasting problem asks for the fastest way of trans-
mitting a message to all nodes of a communication network. We consider
the problem in conflict-aware multi-channel networks. These networks
can be modeled as undirected graphs in which each edge is labeled with
a set of available channels to transmit data between its endpoints. Each
node can send and receive data through any channel on its incident edges,
with the restriction that it cannot successfully receive through a channel
when multiple neighbors send data via that channel simultaneously.

We present efficient algorithms as well as hardness results for the
broadcasting problem on various network topologies. We propose poly-
nomial time algorithms for optimal broadcasting in grids, and also for
trees when there is only one channel on each edge. Nevertheless, we
show that the problem is NP-hard for trees in general, as well as for
complete graphs. In addition, we consider balanced complete graphs and
propose a policy for assigning channels to these graphs. This policy, to-
gether with its embedded broadcasting schemes, result in fault-tolerant
networks which have optimal broadcasting time.

1 Introduction

Multi-channel networks constitute a class of networks in which communication is
achieved via a set of orthogonal channels. Two nodes of a multi-channel network
can directly communicate if they share at least one common channel. Chan-
nels may represent different frequencies in Multi-radio Wireless Networks [9,12],
different wavelengths in Free Space Optical Networks (FSON) [1], or different
communication buffers in parallel computers [13].

A multi-channel network can be modeled as an undirected graph with multiple
labels on edges, where vertices represent nodes in the network and labels rep-
resent available channels between connected nodes. Communication is assumed
to occur in discrete rounds in which a node can transmit data through one of
its channels. For a node u and channel c, we say that a conflict occurs when
two or more neighbors of u send data to u through channel c in the same round,
in which case u does not receive data through this channel. This definition of

S.K. Ghosh and T. Tokuyama (Eds.): WALCOM 2013, LNCS 7748, pp. 158–169, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Broadcasting in Conflict-Aware Multi-channel Networks 159

conflict arises in many practical scenarios; for example, in wireless networks,
conflicts represent the interference of radio waves with the same frequency.

Multi-channel networks have been already studied in the context of wireless
networks, in which the underlying network is modeled as a geometric graph in
Euclidean metric space (e.g., [7,15]). However, geometric graphs are not good
representatives of all types of wireless networks. For example, in the case of
indoor networks in which walls can block transmissions between pairs of nodes,
the underlying network can form any graph topology [14]. There are also several
works that provide heuristics for information dissemination in the wireless multi-
channel networks, mostly assuming that conflicts do not occur (e.g., [5,6,8]).

In this paper, we present the conflict-aware multi-channel model, a compre-
hensive model that captures several aspects of multi-channel networks that are
tied to existing network technologies, in particular conflict awareness and the ad-
vantage of simultaneous communication through one channel. Theoretical anal-
ysis of this model can provide insights into the capabilities of multi-channel
networks for future technology advances, particularly because the model repre-
sents a broad spectrum of network technologies such as wireless mesh networks,
FSONs, and parallel computers.

The focus of this work is on the Broadcasting Problem in multi-channel net-
works, in which the goal is to transmit one message from a given source node
to all other nodes in the minimum number of rounds. In the classical model
of broadcasting, each node can send data to at most one of its neighbors via a
telephone call (hence the model is called telephone model). In contrast, in multi-
channel networks, when a node u transmits through one channel c, all the nodes
connected to u via channel c will receive the message (if no conflicts occur).
Note that the telephone model can be considered as a restricted version of the
multi-channel model in which there is a single and unique channel associated
with each edge.

Channel Assignment is another problem that has been studied for multi-
channel wireless networks [9,10]. We consider the channel assignment problem
in complete graphs, in which the goal is to assign channels in a way to perform
broadcasting in minimum time. In particular, it is desirable that such channel
assignment enables broadcasting of multiple messages in parallel.

Summary of Results. In Section 2, we describe the conflict-aware multi-
channel model. In general, it is assumed that there can be any number of channels
between a pair of nodes, however in some occasions we consider the case when
there is only one channel on each edge of the graph. In Section 3, we show that
the broadcasting problem is NP-hard for trees in the general case, while we de-
scribe a polynomial time algorithm when there is only one channel on each edge
of the tree. We also provide a polynomial time algorithm for optimal broadcast-
ing in grids (in the general case). In Section 4, we show that the broadcasting
problem is NP-hard for complete graphs, even if restricted to graphs with only
one channel on each edge.

In Section 5, we focus on the special case of complete graphs when there is
only one channel on each edge and the channel assignment is balanced, i.e., each

160 F. Claude et al.

node is connected to approximately same number of nodes with each channel. We
refer to these graphs as balanced complete graphs, and show that broadcasting
in these networks requires at least three rounds, when the number of different
channels does not grow too fast with the size of the network (which is the case in
practical settings). On the positive side, we introduce a channel assignment pol-
icy that yields a balanced complete network for which broadcasting can always
be completed in two rounds. This channel assignment also enables broadcasting
of k messages simultaneously in three rounds, where k is the number of channels
in the network.

2 Conflict-Aware Multi-channel Model

A multi-channel network is modeled as an undirected graph G = (V,E) where
V is the set of nodes and E the set of edges. Each edge e ∈ E has a set of labels
C(e) ⊆ {c1, c2, . . . , ck} that denotes its set of available channels.

The communication of messages through the network occurs in discrete rounds
and is governed by the following assumptions and restrictions. In any given
round, a node may be involved in receiving and/or transmitting (sending) mes-
sages through the channels on its incident edges. If a node u transmits through
a channel c, it cannot transmit through any other channel in the same round,
and also cannot receive through channel c. When u sends a message through
channel c, the message is simultaneously transmitted through all incident edges
of u that have channel c in their set of labels. A key restriction is that a node
cannot successfully receive any data through a channel when more than one of
its neighbors send data through that channel. More precisely, a node v can only
receive a message through channel c in round r if exactly one of the nodes that
are adjacent to it with edges labeled with channel c is transmitting through
channel c in round r. Otherwise we say there is a conflict at node v on channel
c. A node will successfully receive the message if it is transmitted by any of its
neighbors through a channel without conflict.

The transmission of a message on any edge completes in one round: if in round
r node u transmits a message through channel c, then every node v such that
e = (u, v) ∈ E and c ∈ C(e) will receive the message during this round, provided
that there is no conflict at v on channel c. In this case we say that u informs v
during round r, and node v is ready to transmit in round r + 1 if desired. For
any round r during the execution of the broadcast, we say that a node is active
if it is transmitting the message in round r and inactive otherwise.

Given a network represented by a graph G, the broadcasting problem is de-
fined as follows. At the beginning, a single node, called the source, has a message.
In each round, those vertices that have the message can transmit through one
channel to inform some uninformed vertices. The broadcasting completes when
all vertices successfully receive the message. The broadcasting problem asks for
a scheme that completes this procedure in minimum time. We are interested
in centralized broadcasting schemes, i.e., we assume the broadcasting algorithm
can be determined in advance and with full knowledge of the network topology.

Broadcasting in Conflict-Aware Multi-channel Networks 161

3 Basic Topologies

3.1 Trees

In this section, we show that the broadcasting problem in the general case is
NP-hard even if the network topology is a tree. On the positive side, we show
that when there is a single channel on each edge of the tree, there is an algorithm
that finds the optimal broadcasting scheme in polynomial time.

Theorem 1. The broadcasting problem in the conflict-aware multi-channel model
is NP-hard for trees.

Proof. We use a reduction from the set cover problem, which is NP-hard [4].
Recall that an instance of set cover includes a collection of subsets of a universe
U , and the goal is to find the minimum number of subsets that cover the universe.
Given an instance I of set cover, we create an instance of the broadcasting
problem in a tree as follows. We create a tree T with a root node and u children,
where u = |U | is the size of the universe. Each child of the root is a leaf of the
tree and represents a member of the universe (hence T is a star). Each subset
S in I is assigned a label that represents a channel in the broadcast instance.
For each member of S, the label of S is added to the edge that connects the
root with that member. For example, if S = {x, y}, the label of S is added to
the edges that connect the root to the leaves x and y. It is not hard to see that
there is a set cover of size k if and only if the broadcast finishes in k rounds:
assume there is a set cover of size k, then if the root sends the message through
the k channels associated with the k subsets (in any order), after k rounds all
the nodes of T are informed. This is because there are no conflicts (one channel
is used at each round), and all the nodes are covered by k channels. Similarly, if
there is a broadcasting scheme that completes in k rounds, the subsets associated
with the k channels used by the root cover the universe. ��
The problem becomes easy when there is a single channel on each edge. Consider
a tree of n nodes with only one channel on each edge. The optimal broadcasting
scheme can be obtained in O(n logn) time with a simple recursive algorithm.
Given a root node v, we compute the cost (number of rounds) of broadcasting
from each of v’s children recursively, and associate with each outgoing channel of
v the cost of the most expensive child connected to v with that channel. We then
sort these channels in decreasing order of associated cost and transmit through
each one following this order. It is not hard to see that this strategy is optimal.
Note as well that there are no conflicts in this topology. A simple implementation
of the algorithm runs in O(n log n) time.

3.2 Grids

Unlike trees, the broadcasting problem can be solved in polynomial time for
grids, even if there are multiple channels on edges. In what follows, we describe
a scheme for optimal broadcasting in a grid of size n×m.

162 F. Claude et al.

n

m

(1, 1)

(m, 1)

(1, n)

(m,n)

(i, j)

Q1 Q2

Q3Q4

(a)

n

m

(1, 1)

(m, 1)

(1, n)

(m,n)

(b)

Fig. 1. (a) Quadrants defined by the source (i, j) in a grid of size m× n. (b) Example
of a broadcast from a source in the center of the grid. The source is a horizontal
splitter and there are two splitters in row i, depicted by black discs. Arrows indicate
the route of the message to any node; in particular black arrows show the first direction
of transmission from each node on the critical path of the scheme. Note that splitters
have two black arrows. The broadcasting completes in optimal (n+m− 2)/2 rounds.

Consider first the simple case when the source is one of the corner nodes.
W.l.o.g., assume the source is on the upper-leftmost node. A simple scheme is to
send the message to the nodes in the first row: after receiving the message, each
node transmits to its right neighbor through any one of the available channels.
This takes n − 1 rounds. Then, in parallel, the message is transmitted in each
column downwards, again through any available channel. The broadcast finishes
in m + n − 2 rounds, which matches a trivial lower bound determined by the
diameter of the grid. Note that conflicts do not arise in this strategy.

Combinations of small variations of the strategy described above will serve
for the general case in which the source is any node (i, j) in the grid. Consider
the set of nodes N = {(k, �)|k = i, � �= j or � = j, k �= i}, i.e., nodes in the same
row or column as the source node, not including the source. Let Qi denote the
i-th quadrant defined by N in G (See Figure 1 (a)). We say that a node u ∈ N is
a splitter if it is connected to neighbors in two different quadrants with at least
one channel in common. Similarly, we say that the source is a vertical (resp.
horizontal) splitter if it is connected to neighbors above and below (resp. to the
left and right) with at least one common channel.

Broadcasting schemes may differ depending on the availability of splitters
and the relative sizes of the quadrants. If there are no splitters or the sizes of all
the quadrants are different, then optimal strategies for broadcasting in grids in
the telephone model [3] apply to our model as well. For other cases, we derive
optimal strategies by taking advantage of the splitters (See Figure 1 (b) for an
example), thus proving the following theorem. The proof requires a tedious case
analysis, and a sketch of it appears in the full version of this paper [2].

Theorem 2. Given an m× n grid G with k channels and a source node (i, j),
where 1 ≤ i ≤ m, 1 ≤ j ≤ n, an optimal broadcasting scheme can be computed
in O((n+m)k) time.

Broadcasting in Conflict-Aware Multi-channel Networks 163

4 Complete Graphs

In this section we show that the broadcasting problem in multi-channel networks
is NP-hard for complete bipartite graphs and complete graphs. Through this
section, we assume there is a single channel on each edge of concerned graphs.
Using a reduction from the exact cover problem, we show that the broadcasting
problem is NP-hard for complete bipartite graphs; then we show a reduction from
the broadcasting problem in complete bipartite graphs to the same problem in
complete graphs. The proof of the following lemma appears in the full version
of this paper.

Lemma 1. The broadcasting problem is NP-hard for complete bipartite graphs
in the conflict-aware multi-channel model (assuming there is a single channel on
each edge), even in the special case when there are a total of 2 channels and the
source is connected to all its neighbors with the same channel.

To reduce from broadcasting in complete bipartite graphs to complete graphs,
we use ladder bipartite graphs which we define as follows:

Definition 1. A ladder bipartite graph with channels i, j is a balanced complete
bipartite graph with n vertices on each side. There is a one-to-one mapping
between the vertices of two sides such that the edge connecting a vertex u to
its mapped vertex u′ has channel j and all the other edges incident to u have
channel i.

The proof of the following lemma appears in the full version of the paper.

Lemma 2. Assume all vertices on one side of a ladder bipartite graph with
channels i, j have received the message. If these vertices need to inform the ver-
tices on the other side in one round, all the vertices should be active in that
round, i.e., they need to transmit the message either through channel i or j.

Theorem 3. The broadcasting problem in the conflict-aware multi-channel model
is NP-hard for complete graphs, when there are at least 8 channels in the network
(assuming there is a single channel on each edge).

Proof. Given an instance (G, r0) of the broadcasting problem in a complete bi-
partite graph in which there are two channels and the edges adjacent to the
source r0 are labeled with the same channel, we create an instance of the broad-
casting problem in a complete graph in which there are 8 channels. Let L and
R denote the two partitions of the vertices of G so that r0 ∈ R. We create a
complete graph H as follows (See Figure 2). We take two copies of L and three
copies of R − {r0} (r0 is the source in the original instance). Call these compo-
nents L1, L2, and R1, R2, R3, respectively, and also add a new vertex r as the
new source. The channels of edges connecting vertices in L1 and L2 to any of R1,
R2, R3 are copied from the original bipartite graph G. Let vertex r be connected
to the 5 components via 5 different channels so that the edges connecting r to
the vertices in the same component have the same channel.

164 F. Claude et al.

L R

2,1

1

1

1

0r

(a) An instance of the
problem in a complete
bipartite graph G.

1L

2L

2R

1R

3R

r

2,1

2,1

2,1

2,1

2,1

2,1

(b) The resulting instance in the
complete graph H .

Fig. 2. The broadcasting problem in complete bipartite graphs (with one channel on
the edges incident to the source) reduces to the broadcasting problem in complete
graphs. Here, a number i on the solid edge connecting two components indicate that
all edges between the vertices of the two components are labeled with channel i. The
channels of the edges between two components connected by curved blue edges are
copied from the reduced bipartite graph. Solid and dashed paired lines indicate that
the components form a ladder bipartite graph.

Moreover, we assign the channels to the edges connecting vertices in R1 to
vertices in R2 in a way that these edges form a ladder bipartite graph with
channels 3, 4. Similarly, we set the edges between R2 and R3 to form a ladder
graph with channels 5, 6, and between R1 and R3 to form a ladder with channels
7, 8. The edges connecting vertices in L1 and L2 get channel 3 and all other
edges (the edges inside components) get arbitrary channels. We claim that there
is a broadcasting scheme for the instance (G, r0) that completes in 2 rounds if
and only if there is a broadcasting scheme for (H, r) that also takes 2 rounds.

Assume there is a broadcasting scheme for (G, r0) that completes in 2 rounds.
In the first round r0 informs the vertices of L via its single channel, so in the
new instance r can inform the vertices of L1 via the single channel that connects
them (channel 1 in Figure 2). In the second round of the broadcast in (G, r0), a
subset of L informs all vertices of R. In the new instance the same subset can
inform all vertices of R1, R2, R3 (via the same edges used in the first instance),
while r informs L2 via the unique connecting channel (channel 2 in Figure 2).
Hence, the broadcast completes in 2 rounds.

Now assume that there is a broadcasting scheme for (H, r) that completes in 2
rounds. First, we show that r cannot inform any of R1, R2, R3 in the first round.
For the sake of contradiction, suppose r informs R1 in the first round (the same
reasoning holds for R2 and R3); in the second round r cannot inform both L1

and L2. Thus, at least one vertex in R1 should use channels 1 or 2 to inform
some vertices of L1 and L2. Since the edges between R1 and R2 form a ladder
bipartite graph and at least one vertex of R1 is busy informing vertices of L1

and L2, by Lemma 2, R1 cannot inform all vertices of R2. Thus, some vertices of

Broadcasting in Conflict-Aware Multi-channel Networks 165

R2 are to be informed by the source. Similarly, some vertices of R3 are also left
for the source to inform them. However, the source is connected to R2 and R3

with two different channels, thus it cannot inform both in a single round. Hence,
the broadcast cannot be completed in 2 rounds and we get a contradiction. As
a result, we may assume that in the first round r informs either L1 or L2.

Assume r informs L1 in the first round (the same reasoning holds for L2).
Since in the second round r can inform at most one of the Ri’s, the other two
should be informed via L1, which implies a subset of vertices in L1 can inform
all vertices in two Ri’s. The same subset can be used for the instance (G, r0) to
inform all the vertices on the right in the second round. Therefore, there is a
broadcasting scheme for (G, r0) that completes in 2 rounds. ��

5 Balanced Complete Graphs

As the broadcasting problem is NP-hard for complete graphs, we consider a
particular case of complete graphs in which there is a single channel on each
edge, and every node is connected to n−1

k nodes through edges with the same
channel. Thus, all the nodes use k different channels. We refer to this subset of
complete graphs as balanced complete graphs. Since this would restrict us from
considering networks where n is not congruent to one modulo k, we relax the
condition slightly in order to include almost balanced assignments. For a given
ε ≥ 0, we require that for every node v and every channel i, the number of
nodes connected to v using channel i is at least (1 − ε)(n − 1)/k and at most
(1 + ε)(n− 1)/k. We call this family of graphs ε-balanced complete graphs.

In this setting, k corresponds to a trivial upper bound on the broadcast time.
It suffices that the source transmits once through each channel and, since the
graph is complete, the broadcasting is done. If we ignore all possible conflicts,
it is easy to obtain a simple lower bound on the transmission time. Consider a
graph where at any round a node can transmit to at most (1+ ε)(n−1)/k nodes
without conflicts. It is clear then that after the first round, we have at most
(1 + ε)(n − 1)/k + 1 nodes informed. The general formula for an upper bound
for the number of nodes that have been informed after i rounds is ((1 + ε)(n−
1)/k + 1)i, and thus we get a lower bound for the total number of rounds to
inform all nodes.

Lemma 3. Let ε ≥ 0. For ε-balanced complete graphs, at least �logn/ log((1 +
ε)(n− 1)/k + 1)� rounds are required to complete a broadcast.

When k = n − 1 and ε < 1 (i.e., each node is connected to exactly one node
using each channel) a simple greedy algorithm finds the optimal broadcasting
scheme and it takes �log2 n� rounds. This is because there are no conflicts when
receiving the message, since all channels are different. The solution matches the
lower bound in Lemma 3. This example shows that there are some cases where
the broadcast time is not as bad as the trivial upper bound of k. When aiming
at practical applications, a more interesting scenario is one in which the number
of channels is relatively small compared to the number of nodes. Note that for

166 F. Claude et al.

k ≤ (1 + ε)(n − 1)/(
√
n − 1) = O(

√
n) the lower bound in Lemma 3 asserts

that the broadcast requires at least 2 rounds. Therefore, it would be desirable
to have the property that there exists a constant C > 0 such that for every ε-
balanced complete graph G with at most C

√
n channels, a broadcast can always

be completed in 2 rounds. Unfortunately, we can show that this is not true by
constructing a counterexample using a random assignment of channels.

For given natural numbers n and k, let G(n, k) be a complete graph with node
set [n] = {1, 2, . . . , n} in which two nodes are connected via channel c ∈ [k] with
probability 1/k, independently for each such pair. As is typical in random graph
theory, we shall consider only asymptotic properties of G(n, k) as n→∞, where
k may and usually does depend on n. We say that an event in a probability
space holds asymptotically almost surely (a.a.s.) if its probability tends to one
as n goes to infinity. The following theorem implies that there are ε-balanced
complete graphs for which the broadcast requires 3 rounds.

Theorem 4. Let ε > 0, c0 = 1 − 1/e , f = f(n) be any function tending to
infinity together with n, k′ = k′(M) = log1/c0 n − 3 log1/c0 logn − M , k′′ =

log1/c0 n + f , and k′′′ =
√
n/(2 logn). Then, there exists a sufficiently large

constant M such that the following holds a.a.s.:
- G(n, k) is an ε-balanced complete graph for any k such that 2 ≤ k ≤ k′′′,
- Broadcasting in G(n, k) requires at least 3 rounds for any k such that 3 ≤ k ≤
k′(M),
- Broadcasting in G(n, k) requires 2 rounds for any k such that k′′ ≤ k ≤ k′′′.

The proof appears in the full version of the paper. Since there are ε-balanced
complete graphs with bounded number of channels (k = O(1)) in which broad-
casting requires at least 3 rounds, it is interesting to design ε-balanced complete
graphs (or even, balanced complete graphs) that can be broadcasted in 2 rounds.
Since the topology is fixed (a complete graph), such design is equivalent to a
promising channel assignment. Our channel assignment algorithm relies on the
following known result for edge coloring.

Lemma 4. [11, problem 16.5, p. 133] The minimum number of colors required
for an edge coloring of a complete graph Kn is n−1 if n is even, and n otherwise.

A constructive proof of this lemma leads to the following edge-coloring algorithm.
When n is odd, assign the color ((i + j) mod n) + 1 to each edge e = (vi, vj)
with vi, vj ∈ V = {v1, v2, . . . , vn} (an edge-coloring for K3 is shown in Figure
3(b)). We say that a node vi uses a color c if there is an edge (vi, vj), i �= j
colored with c. For even values of n, the graph Kn−1 is colored using the above
method, any edge e = (vi, vn) incident to the remaining vertex vn is colored
with the color not used by vi (See Figure 3(a)). Note that coloring an edge e
and assigning a channel to e are assumed to be equivalent terms.

Relying on this result, we obtain the following theorem (our construction
algorithm follows immediately from its constructive proof).

Theorem 5. Given an odd number of channels k and a positive integer t, it is
possible to construct a balanced complete graph with kt+ 1 nodes (i.e., Kkt+1).

Broadcasting in Conflict-Aware Multi-channel Networks 167

(a) Base case:
GB = K4.

(b) Inductive
step: GI = K3.

(c) First two itera-
tions (t = 2) of the
construction.

Fig. 3. Construction example using K4 as base case and K3 in the inductive step

Proof. We use induction on t to prove a stronger statement as follows. For given
values of k and t, there is a complete graph with kt+ 1 nodes that satisfies the
following properties: (i) the vertices of the graph can be classified in k classes
with t vertices in each class (and one root vertex in no class), (ii) vertices in the
same class are all connected with one channel, and are connected to the root
with the same channel, and (iii) for each pair of classes, all edges connecting
vertices in the two classes are connected with the same channel. It is not hard
to see that proving this statement proves the theorem.

Let GB = Kk+1 be the base case. As we define k to be odd, GB is a complete
graph with an even number of nodes. Hence, we can assign k different channels
to GB in such a way that no two edges adjacent to the same node use the same
channel (by Lemma 4). Note that each node in GB uses a different channel to
connect with the other k nodes. Define the last node added by the coloring given
by Lemma 4 as the root. We assign each non-root node to a class defined by
the channel that connects it to the root. In Figure 3(a), the root is the center
node, and we name each non-root node with one of the 3 channels (black, gray,
and dashed). For the inductive step, assume Gt is a complete graph with kt+ 1
nodes satisfying the desired properties. We add k new nodes to Gt to form Gt+1.
For this sake, we connect all vertices of Gt to the vertices of a complete graph
GI = Kk. Thus Gt+1 is a complete graph with kt+1+ k = k(t+1)+1 vertices.
Since k is odd, we can assign k different channels to GI in such a way that no
two edges adjacent to the same node use the same channel (by Lemma 4). By
construction, each node in GI uses k−1 different channels. We assign each node
to the class corresponding to the channel it does not use. Consequently, Gt+1

satisfies (i).
Let class(c) be the set of nodes in Gt+1 that belong to the class corresponding

to channel c. We assign channel c to each edge (u, v) such that u, v ∈ class(c),
and also to each edge (u, root), ∀u ∈ class(c). Thus Gt+1 satisfies (ii), and all the
nodes in the same class are interconnected and connected with the root using the
channel that defines the class. The remaining step is to assign channels to edges
with end-points in different classes. Consider two classes c1 and c2. By property
(iii) all edges in Gt connecting nodes in these classes are labeled with the same
channel. We assign this channel to all edges (u, v) such that u ∈ class(c1) and
v ∈ class(c2), with u ∈ GI and v ∈ Gt. This step is repeated for all pairs of

168 F. Claude et al.

classes. Finally, since the color assignment for GB given by Lemma 4 builds on
the assignment for GI , for any pair of classes, edges connecting vertices in these
classes have the same colors in both GB and GI . Thus for all pairs of classes c1
and c2, the edge (u, v) with u, v ∈ GI and u ∈ class(c1) and v ∈ class(c2) has
the same color of the edges in Gt connecting vertices in class(c1) to vertices in
class(c2). Hence Gt+1 satisfies (iii), which completes the proof. ��
Figure 3 shows an example of the construction algorithm with k = 3 channels
(thus, a balanced complete graph with 3t+1 nodes). K4 with 3 different channels
is used as the base case in the inductive construction. The graph used in the
inductive steps is a K3 designed using a channel assignment with 3 different
channels. The algorithm iteratively adds K3 at each step. Figure 3(c) shows how
the construction algorithm connects GI and GB to obtain the final graph.

Theorem 6. Let G be a complete graph with k channels and at least k2−2k+1
nodes constructed according to the inductive algorithm described in Theorem 5.
Then, a broadcast in G from any node can be completed in 2 rounds.

The proof of this theorem appears in the full version of the paper. In fact, the
claimed broadcasting scheme follows directly from the construction in the proof
of Theorem 5. Notice that the broadcasting scheme together with the channel
assignment constitute a fault-tolerant system. The network may be much larger
than k2 − 2k+1 nodes, and this broadcasting scheme will still work when some
of the nodes fail. More precisely, if the root and k− 2 nodes in each class do not
fail, a message can still be broadcasted to all functioning nodes in 2 rounds.

The described channel assignment is also efficient when several messages need
to be broadcasted from different sources at the same time. Specifically, up to k
messages can be broadcasted simultaneously, and all the broadcasts complete in 3
rounds. The fault-tolerance property that holds for the broadcast of one message
holds as well for this scheme. We formalize this in the following theorem, the
proof appears in the full version of the paper.

Theorem 7. Let G be a complete graph with k channels and at least k2−2k+1
nodes constructed according to the inductive algorithm described in Theorem 5.
Then, broadcasting k messages from any k different nodes in G can be completed
in 3 rounds.

6 Conclusions

We studied the broadcasting problem in conflict-aware multi-channel networks,
and presented positive and negative results for various network topologies. These
include polynomial time algorithms that give optimal broadcasting schemes for
grids, and also for trees when there is a single channel on each edge. We proved
that the problem is NP-hard for trees in general case, and also for complete
graphs even in the restricted case with only one channel on each edge. We studied
the balanced complete graphs as a subclass of complete graphs in which each

Broadcasting in Conflict-Aware Multi-channel Networks 169

node is connected to roughly the same number of nodes with each channel.
In this setting, we proposed a channel assignment that results in broadcasting
schemes that complete in two rounds, which is optimal for non-trivial networks.
Besides, we proved that broadcasting in some balanced complete graphs requires
at least three rounds, thus justifying the significance of our construction. The
construction results in fault-tolerant networks that enable efficient broadcasting
of multiple messages at the same time.

References

1. Bloom, S., Korevaar, E., Schuster, J., Willebrand, H.: Understanding the perfor-
mance of free-space optics. Journal of Optical Networking 2(6), 178–200 (2003)

2. Claude, F., Dorrigiv, R., Kamali, S., López-Ortiz, A., Pra�lat, P., Romero, J.,
Salinger, A., Seco, D.: Broadcasting in conflict-aware multi-channel networks. Tech.
Rep. CS-2012-22, School of Computer Science, University of Waterloo

3. Farley, A.M., Hedetniemi, S.T.: Broadcasting in grid graphs. In: Proc. 9th S-E
Conf. Combinatorics, Graph Theory, and Computing, pp. 275–288 (1978)

4. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1990)

5. Kondareddy, Y., Agrawal, P.: Selective broadcasting in multi-hop cognitive radio
networks. In: IEEE Sarnoff Symposium, pp. 1–5 (2008)

6. Li, L., Qin, B., Zhang, C., Li, H.: Efficient Broadcasting in Multi-radio Multi-
channel and Multi-hop Wireless Networks Based on Self-pruning. In: Perrott, R.,
Chapman, B.M., Subhlok, J., de Mello, R.F., Yang, L.T. (eds.) HPCC 2007. LNCS,
vol. 4782, pp. 484–495. Springer, Heidelberg (2007)

7. Mahjourian, R., Chen, F., Tiwari, R., Thai, M., Zhai, H., Fang, Y.: An approxima-
tion algorithm for conflict-aware broadcast scheduling in wireless ad hoc networks.
In: Proceedings of the 9th ACM International Symposium on Mobile Ad Hoc Net-
working and Computing, MobiHoc 2008, pp. 331–340 (2008)

8. Qadir, J., Chou, C.T., Misra, A., Lim, J.G.: Localized minimum-latency broad-
casting in multi-radio multi-rate wireless mesh networks. In: WOWMOM 2008,
pp. 1–12 (2008)

9. Ramachandran, K.N., Belding, E.M., Almeroth, K.C., Buddhikot, M.M.:
Interference-aware channel assignment in multi-radio wireless mesh networks. In:
INFOCOM 2006, pp. 1–12 (2006)

10. Raniwala, A., Gopalan, K., Cker Chiueh, T.: Centralized channel assignment and
routing algorithms for multi-channel wireless mesh networks. Mobile Computing
and Communications Review 8(2), 50–65 (2004)

11. Soifer, A.: The Mathematical Coloring Book. Springer (2009)
12. Subramanian, A., Buddhikot, M., Miller, S.: Interference aware routing in multi-

radio wireless mesh networks. In: WiMesh 2006, pp. 55–63 (2006)
13. Wilkinson, B., Allen, M.: Parallel Programming: Techniques and Applications Us-

ing Networked Workstations and Parallel Computers. Prentice Hall (2005)
14. Zagalj, M., Hubaux, J.P., Enz, C.C.: Minimum-energy broadcast in all-

wireless networks: NP-completeness and distribution issues. In: MOBICOM 2002,
pp. 172–182 (2002)

15. Zhang, X., Shin, K.G.: Chorus: collision resolution for efficient wireless broadcast.
In: Proceedings of the 29th Conference on Information Communications, INFO-
COM 2010, pp. 1747–1755 (2010)

Shared-Memory Parallel Frontier-Based Search

Shogo Takeuchi1, Jun Kawahara1, Akihiro Kishimoto2, and Shin-ichi Minato3,1

1 JST ERATO Minato Discrete Structure Manipulation System Project, Japan
2 Department of Mathematical and Computing Sciences, Graduate School of
Information Science and Engineering, Tokyo Institute of Technology, Japan

3 Graduate School of Information Science and Technology, Hokkaido University

Abstract. Knuth’sSimpathalgorithm is an efficient algorithmenumerat-
ing all paths between two locations. This paper presents three approaches
to parallelizing frontier-based search in Simpath in shared-memory envi-
ronments: node-based, range-based and edge-based approaches. Our results
on solving grid graphs show that the lock-free edge-based approach per-
forms best and achieves seven-fold speedup with 32 CPU cores, while the
others suffer from severe synchronization overhead due to locks, resulting
in performance saturation with more than 12 cores.

Keywords: graph algorithm, enumeration, Simpath, and parallelization.

1 Introduction

Enumerating all solutions efficiently has been a subject of algorithm research for
decades. In particular, computing all the paths between two locations has been a
fundamental research topic due to many real-world applications such as network
reliability analysis [4], solving and generating puzzle instances [16] and finding
configurations minimizing the loss of energy in the electric power network [5].

Given two vertices s and t in graph G, Knuth’s Simpath algorithm presented
in the latest volume of “The Art of Computer Programming” (exercise 225 in
Section 7.1.4, [8]) computes all the loop-free paths from s to t with a compact
representation of Zero-suppressed Binary Decision Diagram (ZDD) [10], a variant
of Binary Decision Diagram (BDD) [2].

Simpath performs breadth-first search called frontier-based search (FBS) to
build a binary decision graph by marking edge ei in G as selected or unselected
and by checking whether selecting/not selecting ei leads to a dead-end or an
actual s-t path. When FBS generates two nodes n1 and n2 with the identical set
of frontier vertices S used to enumerate all possible connections among S and t,
n1 and n2 are merged into one node to avoid duplicate search effort. FBS contin-
ues this procedure until considering all the combinations of edges. Simpath then
reduces the binary decision graph to a ZDD. To our best knowledge, Simpath is
so far the most efficient algorithm that is difficult to achieve further performance
improvement. However, enumerating paths is still a computationally intensive,
difficult task, because its computational complexity is #P-complete.

Parallel computing is one way for achieving speedups and has become impor-
tant due to the wider availability of multi-core CPUs. Moreover, since the speed

S.K. Ghosh and T. Tokuyama (Eds.): WALCOM 2013, LNCS 7748, pp. 170–181, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Shared-Memory Parallel Frontier-Based Search 171

of the individual CPU core has been less rapidly improved recently, parallelizing
algorithms will become the only way to obtain benefits from the hardware soon.

Efficient parallelization of Simpath is a non-trivial issue. For example, serial
FBS uses the hash table to check if two nodes are merged. In shared-memory
parallel FBS, if duplicate nodes are allocated to various threads, the hash table
must be shared among the threads for duplicate detection. That is, parallel
Simpath may incur the synchronization overhead (idle time) caused by mutual
exclusion (mutex) lock on shared data, which never arises in serial FBS. Not
merging duplicates is not a choice of parallel Simpath, since it would result in
an exponential increase of searching extra nodes explored only by parallel search.

This paper presents the first attempt to parallelize FBS of Simpath. The ad-
vantage of our work is that the speed of FBS is improved for free, once parallel
FBS is implemented and when new techniques for increasing the number of cores
are developed from the hardware perspective. We develop three shared-memory
parallel algorithms: node-based, range-based and edge-based approaches. These
approaches guarantee that two nodes with the same set of frontier vertices are
always detected as a duplicate. The node-based approach uses a shared task
queue among threads. However, non-negligible overhead caused by mutex lock
operations is incurred for managing the task queue. Although the range-based
approach alleviates the overhead of the node-based approach by exploiting lo-
cality of task allocation, it still suffers from the overhead regarding locks. In
contrast, the edge-based approach uses a different work distribution strategy
based on the levelized structure of the binary decision graph. This approach can
access the hash tables and task queues with no locks. Although one drawback
is that the edge-based approach requires larger hash tables, they fit into mem-
ory of modern PCs in our experiments. Although Simpath has a procedure of
reducing nodes to build a ZDD, parallelizing this procedure currently remains
future work.

We ran experiments to measure the performance of the above algorithms using
up to 32 CPU cores on grid graphs, a representative domain used to investigate
ideas for many real-world applications including geographical information pro-
cessing and network reliability analysis. Our results show that the edge-based
approach performed best and yielded about seven-fold speedups on 32 cores.

2 Sequential Simpath

This section first deals with a naive approach to path enumeration and briefly
introduces ZDD. It then describes the sequential Simpath algorithm.

2.1 Naive Approach and ZDD

Let {e1, e2, · · · , em} be a set of edges and {s, v1, v2, · · · , v�, t} be a set of ver-
tices of graph G. Vertices s and t are respectively the source and destination.
Edges e1, · · · , em are ordered in a breadth-first manner starting at s. The task
of Simpath is to calculate all the paths from s to t without forming any cycles.

172 S. Takeuchi et al.

e1
e2

e3

e4

s

t

e4

0 0 0 0 0 0 10 0 1 0 0 0 0 0 0

e3

e2

e1

1

(a) (c)

e2 e2 e2
e1

e3e3e3

e4 e4 e4 e4 e4 e4 e4 e4

e3 e3

0

(b)
1

(d)

e2
e1

e4

e3

0

Fig. 1. Binary decision tree, Simpath’s DAG and ZDD

A naive approach to solve this problem is first to assign either 0 or 1 to each
variable ei which indicates that edge ei is respectively unselected or selected and
then to check if the set of selected edges constructs an s-t path. This can be seen
as a process of building a binary decision tree that represents a Boolean function.
Figure 1 (b) illustrates an example of the binary decision tree representing all
the s-t paths of a graph shown in Figure 1 (a). The outgoing dotted and solid
lines (called 0-arc and 1-arc, respectively1) from circle ei (called a node) indicate
respectively values 0 and 1 are set to ei. A Boolean value inside a square (called
a terminal node) indicates whether or not an s-t path is formed with a full
assignment to e1, e2, · · · , em. For example, since selecting edges e1 and e4 forms
an s-t path, the outcome for assignment {e1 = 1, e2 = 0, e3 = 0, e4 = 1} is 1.

The binary decision tree requires 2m+1−1 nodes to represent all the paths for
the graph with m edges. In contrast, Simpath leverages ZDD that compresses
the set of paths as a directed acyclic graph (DAG) by removing all nodes without
which the equivalent set of paths can be represented. In building a ZDD, if node
n whose 1-arc directly points the terminal node with the value of 0 (called the 0-
terminal node), n is removed from the current DAG and the subgraph pointed by
n’s 0-arc is directly connected to n’s parents p with the arc that used to connect
n and p. A unique form of ZDD is obtained until no node can be removed with
this reduction rule (see [10] for details). Figure 1 (d) illustrates the ZDD with
an equivalent representation to Figure 1 (b). In case of e1 = e2 = 0, no s-t path
can be generated irrespective of the value assignment of e3 and e4. The nodes
with assigning values to e3 and e4 do not therefore exist in the ZDD.

2.2 The Simpath Algorithm

As in [4,13], instead of first building a binary decision tree and then transform-
ing it to its corresponding ZDD, Simpath directly constructs a DAG that is
later efficiently reduced to the ZDD for the sake of time and space efficiency.

1 Although they are usually called “edges” in the BDD research community, we call
them arcs to avoid the confusion with edges in the graph.

Shared-Memory Parallel Frontier-Based Search 173

1s t
2

3

4

5
6

7

8

9

10

11

12
e1 e10

1s
2

3

4

5
6

7

8

9

10

11

12
e1 e10

t

frontier frontier

e11 e11

Fig. 2. An Example of nodes considered to be identical

Algorithm 1. Frontier-Based Search

1: N1 ← {nroot} // nroot is the root node labeled by e1.
2: Ni ← ∅ for i = 2, . . . ,m+ 1.
3: for i = 1 to m do
4: for each n ∈ Ni do
5: for each x ∈ {0, 1} do // Assign ei = x.
6: n′ ← CheckTerminal(n, i, x) // Returns 0-terminal, 1-terminal or nil.
7: if n′ = nil then // n′ is not 0/1-terminal.
8: Create a new node n′ and set it to n′

9: if there exists n′′ ∈ Ni s.t. n
′′ is equivalent to n′ then

10: n′ ← n′′

11: else
12: Ni+1 ← Ni+1 ∪ {n′}
13: end if
14: end if
15: Create x-arc to connect n and n′.
16: end for
17: end for
18: end for

For example, Simpath directly builds the DAG shown in Figure 1 (c) for the
graph in Figure 1 (a) and then transforms it to ZDD in Figure 1 (d). An expla-
nation of the algorithm reducing the constructed DAG to ZDD is omitted here
(see [8, pp 216–218]), since parallel reduction is currently beyond the scope of
the paper.

To build a DAG, Simpath performs breadth-first search in a top-down man-
ner from s, which we call frontier-based search (FBS). During the breadth-first
search, FBS prunes out combinations of edge selections that generate no s-t path.
For example, if node n with the partial assignment of {e1 = val1, · · · , ek = valk}
forms either a cyclic path or a spanning branch connected to s or t, no s-t path
can be formed irrespective of the remaining value assignment. Therefore, n is
connected to the 0-terminal node with the arc of value valk.

The heart of the enhancement to FBS is to merge nodes that always return the
identical binary outcomes with assignments for the remaining variables. Figure 2
illustrates two nodes that are merged into one. Assume that the binary values are

174 S. Takeuchi et al.

already assigned to variables e1, e2, · · · , e10 and that FBS is about to assign either
0 or 1 to variable e11. In both diagrams vertices 1, 6, 7 and 8 are the tip vertices
of two partial paths. This indicates that vertices 6, 7 and 8 called frontier vertices
must be passed through in building an s-t path with the remaining assignment.
That is, irrespective of e1, e2, · · · , e10, if a partial assignment A for the remaining
variables contributes to generating an s-t path in the left diagram, it also holds
for the right diagram. Analogously, if A forms no s-t path in the left diagram, it
does not yield a path in the right diagram either. As a result, FBS safely regards
these nodes to be the “same” to process the unprocessed edges. The “mate”
structure is used to efficiently detect frontier vertices and cyclic paths (see [8]
for details). The hash table is used to check whether two nodes are equivalent
or not in terms of their frontier vertices. The hash keys are computed based on
the mate information of the nodes.

Algorithm 1 shows the pseudo-code of FBS. CheckTerminal checks if a node
n with an assignment of ei = x generates the terminal node (i.e. an s-t path or
a dead-end). Duplicate node detection is performed in lines 9-13.

3 Parallel Frontier-Based Algorithms

This section presents our new shared-memory parallel frontier-based algorithms.

3.1 Node-Based Approach

Let a node of variable ei be a node with level i and Ni be a set of nodes with level
i. The node-based approach (NBA) starts processing the nodes in Ni+1 after all
the nodes in Ni are expanded and all the possible nodes generated from the
nodes in Ni are saved in Ni+1. This indicates that the synchronization overhead
is incurred whenever NBA switches to processing nodes in the next level.

Assume that NBA is about to process Ni to generate the successor nodes that
are saved in Ni+1. NBA uses two shared first-in-first-out (FIFO) task queues to
represent Ni and Ni+1, respectively, and one shared hash table for duplicate
node detection. In this paper we assume that the hash table is implemented as
chaining. Each thread dequeues one node n from Ni with a mutex lock opera-
tion. The lock is released when the thread obtains n from Ni. The thread then
generates two nodes n1 and n2 by respectively assigning variable ei to 0 and 1
and checks the shared hash table to check whether n1 and n2 are duplicates or
not. If n1 (or n2) is a new node, it is saved in the shared hash table with a lock
operation2. The thread next stores n1 (or n2) in Ni+1 with a lock operation.

NBA is the simplest strategy that tries to evenly distribute work to threads.
However, since Ni and Ni+1 are accessed very frequently by all the threads, the
synchronization overhead caused by the contention for Ni and Ni+1 limits the
performance improvement especially with a large number of threads.

2 If read operations to the hash table are lock-free, some other threads may have saved
n1 or n2 in the hash table after the first duplicate check. Therefore, the duplicate
check procedure must be performed again.

Shared-Memory Parallel Frontier-Based Search 175

3.2 Range-Based Approach

The range-based approach (RBA) is an improvement to NBA. When threads deal
with nodes in Ni, RBA alleviates the synchronization overhead by eliminating
the mutex lock operations on Ni in NBA. More specifically, when RBA starts
to proceed to level i, Ni is partitioned into disjoint sets so that each thread
can locally deal with the nodes with no locks. The FIFO queue for Ni+1 is
shared among the threads as in NBA. The lock operation is therefore required
to consistently manage Ni+1, which still incurs the synchronization overhead.
Additionally, locks are required for accesses to the shared hash table.

3.3 Edge-Based Approach

The edge-based approach (EBA) is a completely lock-free approach by modifying
the way of managing nodes. Let k be the number of threads and j be imod k (1 ≤
i ≤ m) where m is the number of edges. In EBA, thread j must hold Ni. Each of
Ni is represented as a FIFO queue. When thread j dequeues node n in Ni and
generates n1 and n2 by assigning variable ei to 0 and 1, respectively, n1 and n2

are moved to thread l where l is (i+1) mod k. The duplication check of n1 and
n2 is performed by thread l by using thread l’s local hash table that requires no
lock operations to read/write information there.

At a first sight, locks are apparently required in case of enqueueing from and
dequeueing to Ni a node, because Ni is accessed by two threads. However, at
the price of occasionally increasing the synchronization overhead, Ni can be
represented as a lock-free structure by leveraging the property that there is only
one writer thread and one reader thread to access Ni. More specifically, assume
that the FIFO queue is implemented as an array and two indexes are prepared:
one pointing a node to dequeue and the other indicating the place to enqueue a
node. Then, the writer increments the index of Ni after it stores a node in Ni.
When the writer’s index is not incremented yet but the node is already in Ni,
the reader might consider that no node exists in Ni. In this case, the reader tries
to find work in another Nn or waits until the writer increments its index for Ni.

In a way, EBA behaves like a depth-first search except the fact that when
successor nodes are generated, they must be moved to a different thread. When
each thread has enough amount of work, EBA starts initiating parallelism.

EBA assumes that m is much larger than k. This assumption holds for many
practical domains including [4,16,5]. In our test domain explained in Section 4,
m ranges between 456 and 480 and k is at most 32.

Unlike NBA and RBA, EBA processes nodes with different levels in parallel.
This indicates that EBA must preserve nodes previously stored in the hash table
during FBS. In contrast, as described in [8], if NBA and RBA start processing
Ni, the information on Ni−1 can be safely discarded from the hash table by
outputting Ni−1 to a file that is later used to reduce the nodes to build a ZDD.
This indicates that the amount of memory required for EBA is larger than the
others. However, Knuth’s node reduction approach using the file is a sequential
algorithm. If the node reduction approach is parallelized, the nodes removed from

176 S. Takeuchi et al.

memory must be most likely to be preserved in memory, which implies that both
NBA and RBA would require the same amount of hash tables as EBA.

Because the order of node expansion in each level in EBA is identical to that
in sequential FBS, both algorithms construct the same DAG. In contrast, NBA
and RBA might construct a different DAG with the same size. However, the
node reduction algorithm reduces these different DAGs to the same ZDD.

4 Experiments

4.1 Experimental Setting

We performed experiments on a machine that consists of eight quad-core 3.1
GHz AMD Opteron 8393 SE processors (i.e, 32 CPU cores in total) and 512 GB
DDR2 memory shared among cores. Each implementation used at most 10 GB
memory that fits into the memory size of modern PCs. All the algorithms were
implemented in C++ with Boost C++ (version 1.46.1) and Standard Template
Libraries and were compiled with the version 4.1.2 of the GNU C/C++ compiler.
To avoid high overhead for locks, we used not only the atomic function offered
by GNU C++ but also a highly efficient spin lock implementation in the Open
Shogi Library3, which uses the “xchgl” assembly operation.

Due to inconsistent executions in parallel algorithms, we ran each method
three times in solving problems and calculated the average runtime.

4.2 Experimental Results Using a Complete Grid Graph

We prepared the 16× 16 complete grid graph consisting of 256 vertices and 480
edges to perform thorough empirical analysis of each algorithm. Since there are
many paths leading to the same vertex, grid graphs are a difficult domain to
enumerate paths, often resulting in an astronomically large number of paths.
Knuth also used this domain to test Simpath.

The original search space of this problem is 3.12×10144 and the number of solu-
tion is 2,266,745,568,862,672,746,374,567,396,713,098,934,866,324,885,408,
319,028. Such solutions are represented as a ZDD with 464,004,180 nodes and
sequential FBS’ DAG contains 883,640,712 nodes.

Figure 3 shows the execution time and speedups of NBA, RBA and EBA when
the number of CPU cores (shown as “#Threads”) is varied. The horizontal solid
line indicates sequential baseline FBS.

Although all the approaches with more than four cores solved the problem
more quickly than sequential FBS, our results show that EBA clearly outper-
formed NBA and RBA. RBA performed better than NBA. However, if the num-
ber of cores is increased to more than 12, the speedups of both NBA and RBA
saturated and resulted in only 1.59 and 2.27 fold with 32 cores, respectively. In
contrast, EBA scaled well up to 24 cores. Although the speedup improvement

3 http://gps.tanaka.ecc.u-tokyo.ac.jp/gpsshogi/pukiwiki.php?OpenShogiLib

Shared-Memory Parallel Frontier-Based Search 177

(a) Execution time (b) Speedup

Fig. 3. Performance graphs on solving the 16× 16 complete grid graph. We measured
the cases of using 2, 4, 6, 8, 12, 16, 24 and 32 cores.

between 24 and 32 cores was small, which might imply the performance satu-
ration with additional cores, EBA achieved a 6.98-fold speedup with 32 cores,
indicating the importance of the lock-free approach. With 32 cores, the execution
time was reduced from 539 seconds to 77 seconds.

In EBA, since each thread used about 300 MB memory for its own hash
table to detect duplicate nodes, it used about a total of 10 GB memory with
32 cores. In contrast, the other approaches used only 300 MB memory for the
hash table shared among cores. Although the additional memory consumption
is a drawback of EBA, the size of 10 GB memory fits into the physical memory
of recent standard PCs. Additionally, as discussed in Section 3, when parallel
algorithms to reduce nodes are developed in the future, this memory overhead
might also become a price to pay for NBA and RBA.

There are several reasons parallel efficiency was degraded in each approach.
The start-up overhead indicates the overhead incurred to start up a parallel
algorithm such as thread creation and allocation of the additional structures
used only by the parallel algorithm. The synchronization overhead refers to the
overhead of idle time starving for work and accessing shared data by using
locks. The termination overhead is the overhead incurred when the threads are
terminated and their additional data structures are de-allocated.

We easily measured the start-up and termination overheads. However, we could
not measure the synchronization overhead because lock acquisitions/releases oc-
curred very frequently and the duration regarding each lock operation was very
short. We therefore approximated the synchronization overhead as follows:

Synchronization overhead =
(Tpar − Tstart − Tterm)− Tseq

k

Tpar
× 100 (%)

where Tpar and Tseq are respectively the execution time of parallel and sequential
algorithms, Tstart and Tterm are respectively the runtimes related to the start-up
and termination overheads, and k is the number of cores.

178 S. Takeuchi et al.

Fig. 4. Synchronization overhead on the complete grid graph

Figure 4 shows the synchronization overhead (SO). As the number of cores in-
creases, SO of all the approaches increased. In particular, although RBA slightly
reduced SO, both NBA and RBA had significantly high SO. Even in RBA, 92.8
% of the execution time with 32 cores was related to SO, which was a major
reason why it achieved only a 2.27-fold speedup. In contrast, EBA’s lock-free ap-
proach reduced SO to 69 %, resulting in a better speedup value than NBA and
RBA. However, because EBA still suffered from non-negligible SO, reducing this
overhead remains a challenge to maximize the efficiency of parallel algorithms.

Compared to Tpar, Tstart+Tterm for NBA and RBA was very small (the ratio
of 0.05 % to Tpar with 32 cores). However, this number was larger for EBA (the
ratio of 8.82 % to 32 cores). This might be related to the fact that EBA had to
allocate/de-allocate larger hash tables than NBA and RBA.

Load balance refers to how evenly the work is distributed among the threads
and is defined as the ratio of the maximal number of nodes allocated to a core
to the average number of nodes allocated to each core. With 32 cores, the load
balance of all approaches ranged 1.02–1.05, which was reasonably effective.

4.3 Experimental Results Using Incomplete Grid Graphs

We prepared ten 16×16 grid graphs with some edges removed as a more practical
test suite (called incomplete grid graphs) to calculate the average runtime per
problem. In constructing each grid graph, we randomly removed 24 edges from
the complete grid graph. Each algorithm performed FBS to enumerate all the
paths from the top-left corner to the bottom-right corner in the graphs.

Figure 5 shows the execution time and speedups of all the approaches. Again,
EBA significantly outperformed NBA and RBA. However, EBA’s speedup value
was lower than that of the complete grid graph. EBA suffered from performance
degradation when the number of cores was increased from 24 to 32. This is not
surprising, not only because sequential FBS solved each incomplete grid graph
more quickly compared to the case of the complete grid graph, but also because
the number of nodes in each level varied significantly in incomplete grid graphs
(see Figure 6), which made EBA harder to evenly distribute work.

Shared-Memory Parallel Frontier-Based Search 179

(a) Execution time (b) Speedup

Fig. 5. Performance graphs on 16× 16 incomplete grid graphs

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 50 100 150 200 250 300 350 400 450 500

#N
od

es

Level

complete
 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 50 100 150 200 250 300 350 400 450 500

#N
od

es

Level

complete
problem 1
problem 2
problem 3
problem 4
problem 5
problem 6
problem 7
problem 8
problem 9

problem 10

(a) Complete grid graph (b) Incomplete grid graphs

Fig. 6. The number of nodes generated at each level

5 Related Work

No prior work exists on parallelizing Simpath. We therefore review the related
literature on parallelizing other algorithms.

Kumar et al. presented two parallel A* search algorithms [9]. In their central-
ized strategy, the open list, which corresponds to the task queue of Ni in FBS, is
shared among processors. In this sense, their approach is similar to NBA. How-
ever, while NBA’s task queue is FIFO, their open list is a priority queue that
incurs a higher operational overhead. Additionally, while their parallel A* must
place generated successors back to the shared open list, NBA places them to
Ni+1, which is different than Ni. Their parallel A* would therefore suffer from
severer synchronization overhead than NBA. In contrast, in their distributed
strategy, the open list is partitioned over processors as in RBA. While this ap-
proach exchanges nodes in the local open lists among processors to achieve load
balancing, RBA does so with no communications. The most essential difference
between our work and Kumar et al.’s is that their search space is not a DAG

180 S. Takeuchi et al.

but a tree. That is, because of no requirement for detecting duplicates, their
closed list can be easily implemented. In contrast, our approaches must consider
effective duplication detection techniques using the hash tables.

Despite a number of existing parallel BDD construction algorithms, many of
them intend to work well on specific hardware such as vector machines where
data structures must be vectorized [11] and distributed-memory machines where
identical BDD nodes must be detected efficiently in the presence of much higher
communication overhead than shared-memory machines (e.g., [1,14]). Chen and
Banerjee’s shared-memory parallel algorithms use depth-first search with very
different work distribution schemes that are not easily applicable to FBS [3].

In Ranjan et al.’s breadth-first BDD construction on a PC cluster, each PC
manages several levels of BDD nodes to use a vast amount of memory [12], while
EBA splits nodes per level. However, their algorithm was not parallelized.

Yang and O’Hallaron’s parallel BDD construction algorithm [15] performs
node expansions in both breadth-first and depth-first manners. Both EBA and
their approach manage nodes in a breadth-first manner but they are often ex-
panded in a depth-first manner. However, while their approach controls the
amount of depth-first node expansions based on the threshold, EBA automati-
cally controls the right balance between depth-first and breadth-first search.

Karp and Zhang presented a random work allocation strategy in which gen-
erated successors are sent to randomly selected processors [6,7]. While this ap-
proach achieves load balancing, their search space is not a DAG but a tree. Their
algorithms must be combined with an effective duplication detection scheme,
which remains a challenge as future work. In contrast, EBA not only balances
the workload effectively but also efficiently detects duplicates with no locks.

6 Conclusions and Future Work

We have developed three shared-memory parallel FBS algorithms: NBA, RBA,
and EBA. By eliminating the overhead on locks, EBA outperformed RBA and
NBA in solving grid graphs which are an abstract domain for real-world geo-
graphical information processing and network reliability analysis. As a result,
EBA yielded a 7-fold speedup using 32 cores in the best case. Considering the
fact that this paper is the first attempt to parallelize FBS, this is an encouraging
result. Additionally, once the presented approaches are implemented, the speed
of FBS will be automatically improved with advances in multi-core CPUs.

There are a number of possible extensions to our work. First of all, we are cur-
rently trying to parallelize the node reduction algorithm to develop a completely
parallel Simpath algorithm in shared-memory environments. Next, investigat-
ing ideas to improve the performance of presented approaches is of importance.
Particularly, reducing the synchronization overhead is a key feature to obtain
better speedups. Finally, developing parallel Simpath in distributed-memory en-
vironments will be challenging since it is notoriously hard to achieve satisfactory
speedups there due to the communication overhead.

Shared-Memory Parallel Frontier-Based Search 181

References

1. Bianchi, F., Corno, F., Rebaudengo, M., Reorda, M.S., Ansaloni, R.: Boolean
Function Manipulation on a Parallel System Using BDDs. In: Hertzberger, B.,
Sloot, P.M.A. (eds.) HPCN-Europe 1997. LNCS, vol. 1225, pp. 916–928. Springer,
Heidelberg (1997)

2. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers C-35(8), 677–691 (1986)

3. Chen, J.-S., Banerjee, P.: Parallel constuction algorithms for BDDs. In: Proceedings
of the 1999 IEEE International Symposium on Circuits and Systems, ISCAS 1999,
vol. 1, pp. 318–322 (1999)

4. Hardy, G., Lucet, C., Limnios, N.: K-terminal network reliability measures with
binary decision diagrams. IEEE Transactions on Reliability 56(3), 506–515 (2007)

5. Inoue, T., Takano, K., Watanabe, T., Kawahara, J., Yoshinaka, R., Kishimoto, A.,
Tsuda, K., Minato, S., Hayashi, Y.: Finding all configurations satisfying opera-
tional constraints in delivery networks by ZDDs. In: Proceedings of the Institute
of Electrical Engineers of Japan National Conference (2012) (in Japanese)

6. Karp, R., Zhang, Y.: A randomized parallel branch-and-bound procedure. In:
Proceedings of the 20th ACM Symposium on Theory of Computing, STOC,
pp. 290–300 (1988)

7. Karp, R., Zhang, Y.: Randomized parallel algorithms for backtrack search and
branch-and-bound computation. Journal of the Association for Computing Ma-
chinery 40(3), 765–789 (1993)

8. Knuth, D.E.: The Art of Computer Programming, 1st edn. Combinatorial Algo-
rithms, Part 1, vol. 4A. Addison-Wesley Professional (March 2011)

9. Kumar, V., Ramesh, K., Rao, V.N.: Parallel best-first search of state-space graphs:
A summary of results. In: Proceedings of the 10th National Conference Artificial
Intelligence, AAAI, pp. 122–127. Press (1988)

10. Minato, S.: Zero-suppressed BDDs for set manipulation in combinatorial prob-
lems. In: Proceedings of the 30th ACM/IEEE Design Automation Conference,
pp. 272–277 (1993)

11. Ochi, H., Yasuoka, K., Yajima, S.: Breadth-first manipulation of SBDD of boolean
functions for vector processing. In: Procedings of the 28th ACM/IEEE Design
Automation Conference, pp. 413–416 (1991)

12. Ranjan, R.K., Sanghavi, J.V., Brayton, R.K., Sangiovanni-Vincentelli, A.: Binary
decision diagrams on network of workstations. In: IEEE International Conference
on Computer Design: VLSI in Computers and Processors, ICCD 1996, pp. 358–364
(1996)

13. Sekine, K., Imai, H., Tani, S.: Computing the Tutte Polynomial of a Graph of
Moderate Size. In: Staples, J., Katoh, N., Eades, P., Moffat, A. (eds.) ISAAC
1995. LNCS, vol. 1004, pp. 224–233. Springer, Heidelberg (1995)

14. Stornetta, T., Brewer, F.: Implementation of an efficient parallel BDD package. In:
Proceedings of the 33rd Annual Design Automation Conference, DAC 1996, pp.
641–644. ACM, New York (1996)

15. Yang, B., O’Hallaron, D.R.: Parallel breadth-first BDD construction. In: Proceed-
ings of the 9th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pp. 145–156. ACM Press (1997)

16. Yoshinaka, R., Saitoh, T., Kawahara, J., Tsuruma, K., Iwashita, H., Minato, S.:
Finding all solutions and instances of numberlink and slitherlink by ZDDs. Algo-
rithms 5(2), 176–213 (2012)

Smoothed Analysis of Belief Propagation

for Minimum-Cost Flow and Matching�

Tobias Brunsch1, Kamiel Cornelissen2, Bodo Manthey2, and Heiko Röglin1

1 University of Bonn
brunsch@cs.uni-bonn.de, heiko@roeglin.org

2 University of Twente
{k.cornelissen,b.manthey}@utwente.nl

Abstract. Belief propagation (BP) is a message-passing heuristic for
statistical inference in graphical models such as Bayesian networks and
Markov random fields. BP is used to compute marginal distributions
or maximum likelihood assignments and has applications in many ar-
eas, including machine learning, image processing, and computer vision.
However, the theoretical understanding of the performance of BP is un-
satisfactory. Recently, BP has been applied to combinatorial optimization
problems. It has been proved that BP can be used to compute maximum-
weight matchings and minimum-cost flows for instances with a unique
optimum. The number of iterations needed for this is pseudo-polynomial
and hence BP is not efficient in general.

We study belief propagation in the framework of smoothed analysis
and prove that with high probability the number of iterations needed to
compute maximum-weight matchings and minimum-cost flows is bounded
by a polynomial if the weights/costs of the edges are randomly perturbed.
To prove our upper bounds, we use an isolation lemma by Beier and
Vöcking (SIAM J. Comput., 2006) for matching and generalize an isola-
tion lemma for min-cost flow by Gamarnik, Shah, and Wei (Oper. Res.,
2012). We also prove almost matching lower tail bounds for the number
of iterations that BP needs to converge.

1 Belief Propagation

Belief propagation (BP) is a message-passing algorithm that is used for solving
probabilistic inference problems on graphical models. It has been introduced by
Pearl in 1988 [8]. Typical graphical models to which BP is applied are Bayesian
networks and Markov random fields. There are two variants of the BP algorithm.
The sum-product variant is used to compute marginal probabilities. The max-
product or min-sum variant is used to compute maximum a posteriori (MAP)
probability estimates.

Recently, BP has experienced great popularity. It has been applied in a large
number of fields, such as machine learning, image processing, computer vision,
and statistics. For an introduction to BP and several applications, we refer to

� This research was supported by ERC Starting Grant 306465 (BeyondWorstCase) and
NWO grant 613.001.023 (Smoothed Analysis of Belief Propagation). A full version
of this paper is available at http://arxiv.org/abs/1211.3299.

S.K. Ghosh and T. Tokuyama (Eds.): WALCOM 2013, LNCS 7748, pp. 182–193, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Smoothed Analysis of Belief Propagation 183

Yedidia et al. [14]. There are basically two main reasons for the popularity of BP.
First of all, it is generally applicable and easy to implement because of its simple
and iterative message-passing nature. In addition, it performs well in practice in
numerous applications.

If the graphical model is tree-structured, BP computes exact marginals/MAP
estimates. In case the graphical model contains cycles, convergence and cor-
rectness of BP have been shown only for specific classes of graphical models.
To improve the general understanding of BP and to gain new insights about
it, the performance of BP as either a heuristic or an exact algorithm for sev-
eral combinatorial optimization problems has been studied. Amongst others it
has been applied to the maximum-weight matching (MWM) problem, the min-
imum spanning tree problem [3], the minimum-cost flow (MCF) problem, and
the maximum-weight independent set problem [11].

Bayati et al. [4] have shown that max-product BP correctly computes the
MWM in bipartite graphs in pseudo-polynomial time if it is unique. Gamarnik
et al. [6] have shown that max-product BP computes the MCF in pseudo-
polynomial time if it is unique.

1.1 Belief Propagation for Matching and Flow Problems

Bayati et al. [4] have shown that the max-product BP algorithm correctly com-
putes the maximum-weight matching in bipartite graphs if it is unique. Conver-
gence of BP takes pseudo-polynomial time and depends linearly on the weight
of the heaviest edge and on 1/δ, where δ is the difference in weight between the
best and second-best matching. In Section 2 we describe BP for MWM in detail.

Belief propagation has also been applied to finding maximum-weight per-
fect matchings in arbitrary graphs and to finding maximum-weight perfect b-
matchings [2, 10], where a perfect b-matching is a set of edges such that every
vertex is incident to exactly b edges in the set. For arbitrary graphs the BP al-
gorithm for MWM does not necessarily converge [10]. However, Bayati et al. [2]
and Sanghavi et al. [10] have shown that the BP algorithm converges to the
optimal matching if the relaxation of the corresponding linear program has an
optimal solution that is unique and integral. The number of iterations needed
until convergence depends again linearly on the reciprocal of the parameter δ.
Bayati et al. [2] have also shown that the same result holds for the problem of
finding maximum-weight b-matchings that do not need to be perfect.

It turns out that BP can, to some extent, solve the relaxation of the cor-
responding linear program for matching, even if it has a non-integral optimal
solution. Bayati et al. [2] have shown that it is possible to solve the LP relax-
ation by considering so-called graph covers, in which they compute a bipartite
matching. In case of an optimum that is unique and integral, the optimal solu-
tion in the graph cover corresponds to the optimal solution. In case of a unique
but fractional optimal solution, the average of the estimates of two consecutive
iterations (both of which are perfect matchings in the graph cover) yield a value
of 0, 1/2, or 1 for any edge, which then equals its value in the optimal solution of
the relaxed LP. Sanghavi et al. [10] have shown that BP remains uninformative

184 T. Brunsch et al.

for some edges (and outputs “?” for those), but computes the correct values for
all edges that have a fixed integral value in all optimal solutions.

Gamarnik et al. [6] have shown that BP can be used to find a minimum-cost
flow, provided that the instance has a unique optimal solution. The number of
iterations until convergence is pseudo-polynomial and depends again linearly on
the reciprocal of the difference in cost between the best and second-best integer
flow. In addition, they have proved a discrete isolation lemma [6, Theorem 8.1]
that shows that the edge costs can be slightly randomly perturbed to ensure
that, with probability at least 1/2, the perturbed MCF instance has a unique
optimal solution. Using this result, they have constructed an FPRAS for MCF
using BP.

1.2 Smoothed Analysis

Smoothed analysis has been introduced by Spielman and Teng [12] in order to
explain the performance of the simplex method for linear programming. It is
a hybrid of worst-case and average-case analysis and an alternative to both:
An adversary specifies an instance, and this instance is then slightly randomly
perturbed. The perturbation can, for instance, model noise from measurement.
Since its invention in 2001, smoothed analysis has been applied in a variety of
contexts. We refer to two recent surveys [7, 13] for a broader picture.

We apply smoothed analysis to BP for min-cost flow and maximum-weight
matching. To do this, we consider the following general probabilistic model.

– The adversary specifies the graph G = (V,E) and, in case of min-cost flow,
the integer capacities of the edges and the integer budgets (both are not
required to be polynomially bounded). Additionally the adversary specifies
a probability density function fe : [0, 1]→ [0, φ] for every edge e.

– The costs (for min-cost flow) or weights (for matching) of the edges are then
drawn independently according to their respective density function.

The parameter φ controls the adversary’s power: If φ = 1, then we have the
average case. The larger φ, the more powerful the adversary. The role of φ is the
same as the role of 1/σ in the classic model of smoothed analysis, where instances
are perturbed by independent Gaussian noise with standard deviation σ. In that
model the maximum density φ is proportional to 1/σ.

1.3 Our Results

We prove upper and lower tail bounds for the number of iterations that BP needs
to solve maximum-weight matching problems and min-cost flow problems. Our
bounds match up to a small polynomial factor.

In Sections 3 and 4 we prove that the probability that BP needs more than t it-
erations is bounded by O(n2mφ/t) for the min-cost flow problem and O(nmφ/t)
for various matching problems, where n and m are the number of nodes and
edges of the input graph, respectively. The upper bound for matching problems

Smoothed Analysis of Belief Propagation 185

holds for the variants of BP for the maximum-weight matching problem in bipar-
tite graphs [4] as well as for the maximum-weight (perfect) b-matching problem
in general graphs [2, 10]. For the latter it is required that the polytope corre-
sponding to the relaxation of the matching LP is integral. If this is not the case,
we can still solve the relaxation of the matching LP with a slightly modified BP
algorithm [2] using graph covers (see the comments at the end of Section 4.1). To
prove the upper tail bound for BP for MCF we use a continuous isolation lemma
that is similar to the discrete isolation lemma by Gamarnik et al. [6, Theorem
8.1]. We need the continuous version since we do not only want to have a unique
optimal solution, but we also need to quantify the gap between the best and the
second-best solution.

These upper tail bounds are not strong enough to yield any bound on the
expected number of iterations. Indeed, in Section 5 we show that this expectation
is not finite by providing a lower tail bound of Ω(nφ/t) for the probability that t
iterations do not suffice to find a maximum-weight matching in bipartite graphs.
This lower bound even holds in the average case, i.e., if φ = 1, and it carries over
to the variants of BP for the min-cost flow problem and the minimum/maximum-
weight (perfect) b-matching problem in general graphs mentioned above [2, 4, 6,
10]. The lower bound matches the upper bound up to a factor of O(m) for
matching and up to a factor of O(nm) for min-cost flow. The smoothed lower
bound even holds for complete (i.e., non-adversarial) bipartite graphs.

Finally, let us remark that, for the min-cost flow problem, we bound only the
number of iterations that BP needs until convergence. The messages might be
super-polynomially long. For all matching problems, however, the size of each
message is polynomial in the input size and linear in the number of iterations.

2 Definitions and Problem Statement

2.1 Maximum-Weight Matching and Minimum-Cost Flow

First we define the maximum-weight matching problem on bipartite graphs.
Consider an undirected weighted bipartite graph G = (U ∪ V,E) with U =
{u1, . . . , un}, V = {v1, . . . , vn}, and E ⊆ {(ui, vj) = eij , 1 ≤ i, j ≤ n}. Each
edge eij has weight wij ∈ R+. A collection of edges M ⊆ E is called a matching
if each node of G is incident to at most one edge in M . We define the weight
of a matching M by w(M) =

∑
eij∈M wij . The maximum-weight matching M�

of G is defined as M� = argmax{w(M) |M is a matching of G}.
A b-matching M ⊆ E in an arbitrary graph G = (V,E) is a set of edges such

that every node from V is incident to at most b edges from M . A b-matching is
called perfect if every node from V is incident to exactly b edges from M . Also
for these problems we assume that each edge e ∈ E has a certain weight we and
we define the weight of a b-matching M accordingly.

In the min-cost flow problem (MCF), the goal is to find a cheapest flow that
satisfies all capacity and budget constraints. We are given a graph G = (V,E)
with V = {v1, . . . , vn}. In principle we allow multiple edges between a pair of
nodes, but for ease of notation we consider simple directed graphs. Each node v

186 T. Brunsch et al.

has a budget bv ∈ Z. Each directed edge e = eij from vi to vj has capacity
ue ∈ N0 and cost ce ∈ R+. For each node v ∈ V , we define Ev as the set of edges
incident to v. For each edge e ∈ Ev we define Δ(v, e) = 1 if e is an out-going
edge of v and Δ(v, e) = −1 if e is an in-going edge of v. In the MCF one needs to
assign a flow fe to each edge e such that the total cost

∑
e∈E cefe is minimized

and the flow constraints 0 ≤ fe ≤ ue for all e ∈ E, and budget constraints∑
e∈Ev

Δ(v, e)fe = bv for all v ∈ V are satisfied. We refer to Ahuja et al. [1]
for more details.

Let us remark that we could have allowed also rational values for the budgets
and capacities. As our results do not depend on these values, they are not affected
by scaling all capacities and budgets by the smallest common denominator.

Note that finding a perfect minimum-weight matching in a bipartite graph
G = (U ∪ V,E) is a special case of the min-cost flow problem [1].

2.2 Belief Propagation

For convenience, we describe the BP algorithm used by Bayati et al. [4]. For the
details of the other versions of BP for the (perfect) maximum-weight b-matching
problem and the min-cost flow problem we refer to the original works [2, 6, 10].
When necessary, we discuss the differences between the different versions of BP
in Sections 4 and 5.

The BP algorithm used by Bayati et al. [4] is an iterative message-passing
algorithm for computing maximum-weight matchings (MWM). Bayati et al. de-
fine their algorithm for complete bipartite graphs G = (U ∪ V,E) with |U | =
|V | = n. In each iteration t, each node ui sends a message vector �M t

ij =
[�mt

ij(1), �m
t
ij(2), . . . , �m

t
ij(n)] to each of its neighbors vj . The messages can be

interpreted as how ‘likely’ the sending node thinks it is that the receiving node
should be matched to a particular node in the MWM. The greater the value of
the message �mt

ij(r), the more likely it is according to node ui in iteration t that
node vj should be matched to node ur. Similarly, each node vj sends a message

vector �M
t

ji to each of its neighbors ui. The messages are initialized as

�m0
ij(r) =

{
wij if r = i,

0 otherwise
and �m0

ji(r) =

{
wij if r = j,

0 otherwise.

The messages in iterations t ≥ 1 are computed from the messages in the previous
iteration as follows:

�mt
ij(r) =

{
wij +

∑
k �=j �mt−1

ki (j) if r = i,

maxq �=j

[
wiq +

∑
k �=j �mt−1

ki (q)
]

otherwise, and

�mt
ji(r) =

{
wij +

∑
k �=i �m

t−1
kj (i) if r = j,

maxq �=i

[
wqj +

∑
k �=i �m

t−1
kj (q)

]
otherwise.

The beliefs of nodes ui and vj in iteration t are defined as btui
(r) = wir +∑

k �mt
ki(r) and btvj (r) = wrj +

∑
k �m

t
kj(r). The beliefs can be interpreted as

Smoothed Analysis of Belief Propagation 187

the ‘likelihood’ that a node should be matched to a particular neighbor. The
greater the value of btui

(j), the more likely it is that node ui should be matched

to node vj . We denote the estimated MWM in iteration t by M̃ t. The estimated

matching M̃ t matches each node ui to node vj , where j = argmax1≤r≤n{btui
(r)}.

Note that M̃ t does not always define a matching, since multiple nodes may be
matched to the same node. However, Bayati et al. [4] have shown that if the
MWM is unique, then for t large enough, M̃ t is a matching and equal to the
MWM.

3 Isolation Lemma

3.1 Maximum-Weight Matchings

Beier and Vöcking [5] have considered a general scenario in which an arbitrary
set S ⊆ {0, 1}m of feasible solutions is given and to every x = (x1, . . . , xm) ∈ S
a weight w · x = w1x1 + . . . + wmxm is assigned by a linear objective func-
tion. As in our model they assume that every coefficient wi is drawn indepen-
dently according to an adversarial density function fi : [0, 1] → [0, φ] and they
define δ as the difference in weight between the best and the second-best fea-
sible solution from S, i.e., δ = w · x� − w · x̂ where x� = argmaxx∈S w · x
and x̂ = argmaxx∈S\{x�} w ·x. They prove a strong isolation lemma that, regard-
less of the adversarial choices of S and the density functions fi, the probability
of the event δ ≤ ε is bounded from above by 2εφm for any ε ≥ 0.

If we choose S as the set of incidence vectors of all matchings or (perfect)
b-matchings in a given graph, Beier and Vöcking’s results yield for every ε ≥ 0
an upper bound on the probability that the difference in weight δ between the
best and second-best matching or the best and second-best (perfect) b-matching
is at most ε. Combined with the results in Section 1 on the number of iterations
needed by BP in terms of δ, this can immediately be used to obtain an upper
tail bound on the number of iterations of the BP algorithm for these problems.

3.2 Min-Cost Flows

The situation for the min-cost flow problem is significantly more difficult because
the set S of feasible integer flows cannot naturally be expressed with binary
variables. If one introduces a variable for each edge corresponding to the flow
on that edge, then S ⊆ {0, 1, 2, . . . , umax}m where umax = maxe∈E ue. Röglin
and Vöcking [9] have extended the isolation lemma to the setting of integer,
instead of binary, vectors. However, their result is not strong enough for our
purposes as it bounds the probability of the event δ ≤ ε by εφm(umax + 1)2

from above for any ε ≥ 0. As this bound depends on umax it would only lead
to a pseudo-polynomial upper tail bound on the number of iterations of the BP
algorithm when combined with the results of [6]. Our goal is, however, to obtain
a polynomial tail bound that does not depend on the capacities. In the remainder
of this section, we prove that the isolation lemma for integer programs [9] can

188 T. Brunsch et al.

be significantly strengthened when structural properties of the min-cost flow
problem are exploited.

In the following we consider the residual network for a flow f [1]. For each edge
eij in the original network that has less flow than its capacity uij , we include
an edge eij with capacity uij − fij in the residual network. Similarly, for each
edge eij that has flow greater than zero, we include the backwards edge eji with
capacity fij in the residual network.

As all capacities and budgets are integers, there is always a min-cost flow
that is integral. An additional property of our probabilistic model is that with
probability one there do not exist two different integer flows with exactly the
same costs. This follows directly from the fact that all costs are continuous
random variables. Hence, without loss of generality we restrict our presentation
in the following to the situation that the min-cost flow is unique.

In fact, Gamarnik et al. [6] have not used δ, the difference in cost between
the best and second-best integer flow, to bound the number of iterations needed
for BP to find the unique optimal solution of MCF, but they have used another
quantity Δ. They have defined Δ as the length of the cheapest cycle in the
residual network of the min-cost flow f�. Note that Δ is always non-negative.
Otherwise, we could send one unit of flow along a cheapest cycle. This would
result in a feasible integral flow with lower cost. With the same argument we
can argue that Δ must be at least as large as δ because sending one unit of flow
along a cheapest cycle results in a feasible integral flow different from f� whose
costs exceed the costs of f� by exactly Δ. Hence any lower bound for δ is also a
lower bound for Δ and so it suffices for our purposes to bound the probability
of the event δ ≤ ε from above.

The isolation lemma we prove is based on ideas that Gamarnik et al. [6,
Theorem 8.1] have developed to prove that the optimal solution of a min-cost
flow problem is unique with high probability if the costs are randomly drawn
integers from a sufficiently large set. We provide a continuous counterpart of
this lemma, where we bound the probability that the second-best integer flow is
close in cost to the optimal integer flow.

Lemma 1. The probability that the cost of the optimal and the second-best in-
teger flow differs by at most ε ≥ 0 is bounded from above by 2εφm.

The isolation lemma (Lemma 1) together with the discussion about the relation
between δ, the difference in cost between the best and second-best integer flow,
and Δ, the length of the cheapest cycle in the residual network of the min-cost
flow f�, immediately imply the following result.

Corollary 2. For any ε > 0, we have P(Δ ≤ ε) ≤ 2εφm.

4 Upper Tail Bounds

4.1 Maximum-Weight Matching

We first consider the BP algorithm of Bayati et al. [4], which computes maxi-
mum-weight matchings in complete bipartite graphs G in O(nw�/δ) iterations

Smoothed Analysis of Belief Propagation 189

on all instances with a unique optimum. Here w� denotes the weight of the
heaviest edge and δ denotes the difference in weight between the best and the
second-best matching. Even though it is assumed that G is a complete bipartite
graph, this is not strictly necessary. If a non-complete graph is given, missing
edges can just be interpreted as edges of weight 0.

With Beier and Vöcking’s isolation lemma (see Section 3) we obtain the fol-
lowing tail bound for the number of iterations needed until convergence when
computing maximum-weight perfect matchings in bipartite graphs using BP.

Theorem 3. Let τ be the number of iterations until Bayati et al.’s BP [4]
for maximum-weight perfect bipartite matching converges. Then P(τ ≥ t) =
O(nmφ/t).

This tail bound is not strong enough to yield any bound on the expected running-
time of BP for bipartite matchings. But it is strong enough to show that BP
has smoothed polynomial running-time with respect to the relaxed definition
adapted from average-case complexity [5], where it is required that the expec-
tation of the running-time to some power α > 0 is at most linear. However, a
bound on the expected number of iterations is impossible, and the tail bound
proved above is tight up to a factor of O(m) (see Section 5).

As discussed in Section 1, BP has also been applied to finding maximum-
weight (perfect) b-matchings in arbitrary graphs [2, 10]. The result is basically
that BP converges to the optimal matching if the optimal solution of the relax-
ation of the corresponding linear program is unique and integral. The number
of iterations needed until convergence depends again on “how unique” the op-
timal solution is. For Bayati et al.’s variant [2], the number of iterations until
convergence depends on 1/δ, where δ is again the difference in weight between
the best and the second-best matching. For Sanghavi et al.’s variant [10], the
number of iterations until convergence depends on 1/c, where c is the smallest
rate by which the objective value will decrease if we move away from the optimal
solution.

However, the technical problem in transferring the upper bound for bipartite
graphs to arbitrary graphs is that the adversary can achieve that, with high
probability or even with a probability of 1 (for larger φ), the optimal solution
of the LP relaxation is not integral. Already in the average-case, i.e., for φ = 1,
where the adversary has no power at all, the optimal solution of the LP relaxation
has some fractional variables with high probability.

Still, we can transfer the results for bipartite matching to both algorithms for
arbitrary matching if we restrict the input graphs to be bipartite, since in this
case the constraint matrix of the associated LP is totally unimodular.

Theorem 4. Let τ be the number of iterations until Bayati et al.’s [2] or Sang-
havi et al.’s [10] BP for general matching, restricted to bipartite graphs as input,
converges. Then P(τ ≥ t) = O(nmφ/t).

Bayati et al. [2] and Sanghavi et al. [10] have also shown how to compute b-
matchings with BP. If b is even, then the unique optimum to the LP relaxation

190 T. Brunsch et al.

is integral. Thus, we circumvent the problem that the optimal solution might be
fractional. Hence, following the same reasoning as above, the probability that
BP for b-matching for even b runs for more than t iterations until convergence
is also bounded by O(mnφ/t).

Furthermore, Bayati et al. [2, Section 4] have shown how to compute the
optimal solution of the relaxation of the matching LP with graph covers. They
obtain the same O(n/δ) bound for the number of iterations until convergence
as for ordinary matching. However, since we are no longer talking about integer
solutions, we cannot directly apply the isolation lemma of Beier and Vöcking [5].
To see that δ is still unlikely to be small in the same way (with a slightly worse
constant), we can apply the isolation lemma of Röglin and Vöcking [9] since the
matching polytope is half-integral. Thus, if we scale the right-hand side with a
factor of 2, then we obtain a 0/1/2 integer program. Because of this, we obtain
the same O(mnφ/t) tail bound for the probability that the number of iterations
until convergence exceeds t.

4.2 Min-Cost Flow

The bound for the probability that Δ is small (Corollary 2) together with the
pseudo-polynomial bound of Gamarnik [6] yield a tail bound for the number of
iterations that BP needs until convergence.

Theorem 5. Let τ be the number of iterations until BP for min-cost flow [6]
converges. Then P(τ ≥ t) = O(n2mφ/t).

5 Lower Tail Bounds

We show that the expected number of iterations necessary for convergence of BP
for maximum-weight matching (MWM) is unbounded. To do this, we prove a
lower tail bound on the number of iterations that matches the upper tail bound
from Section 4 with respect to t. The lower bound holds even for a two by two
complete bipartite graph with edge weights drawn independently and uniformly
from the interval [0, 1]. In the following analysis, we consider the BP variant
introduced by Bayati et al [4]. Our results can be extended to other versions of
BP for matching and min-cost flow [2,6,10] in a straightforward way. We discuss
these extensions at the end of this section.

5.1 Computation Tree

For proving the lower bounds, we need the notion of a computation tree, which
we define analogously to Bayati et al. [4].

Let G = (U ∪ V,E) be a bipartite graph with U = {u1, . . . , un} and V =
{v1, . . . , vn}. We denote the level-k computation tree with the root labeled x ∈
U ∪ V by T k(x). The tree T k(x) is a weighted rooted tree of height k + 1. The
root node in T 0(x) has label x, its degree is the degree of x in G, and its children

Smoothed Analysis of Belief Propagation 191

are labeled with the adjacent nodes of x in G. T k+1(x) is obtained recursively
from T k(x) by attaching children to every leaf node in T k(x). Each child of a
former leaf node labeled y is assigned one vertex adjacent to y in G as a label,
but the label of the former leaf node’s parent is not used. (Thus, the number
of children is the degree of y minus 1.) Edges between nodes with label ui and
label vj in the computation tree have a weight of wij .

We call a collection Λ of edges in the computation tree T k(x) a T -matching if
no two edges of Λ are adjacent in T k(x) and each non-leaf node of T k(x) is the
endpoint of exactly one edge from Λ. Leaves can be the endpoint of either one or
zero edges from Λ. Let tk(ui; r) be the weight of a maximum weight T -matching
in T k(ui) that uses the edge (ui, vr) at the root.

5.2 Average-Case Analysis

Consider the undirected weighted complete bipartite graph K2,2 = (U ∪ V,E),
where U = {u1, u2}, V = {v1, v2}, and (ui, vj) ∈ E for 1 ≤ i, j ≤ 2. Each edge
(ui, vj) = eij has weight wij drawn independently and uniformly from [0, 1]. We
define the event Eε for 0 < ε ≤ 1

8 as the event that w11 ∈
[
7
8 , 1

]
, w12 ∈

(
1
2 ,

5
8

]
,

w21 ∈
(
5
8 ,

3
4

]
, and w22 ∈ [w12 + w21 − w11 − ε, w12 + w21 − w11). Consider the

two possible matchings M1 = {e11, e22} and M2 = {e12, e21}. If event Eε occurs,
then the weight of M2 is greater than the weight of M1 and the weight differs
by at most ε. In addition, w11 is greater than w12 and the weight differs by at
least 1/4. See Figure 1 for a graphical illustration.

u1

u2

v1

v2

w11 ∈ [
7
8
, 1
]

w12 ∈ (
1
2
, 5
8

]
w21 ∈ (

5
8
, 3
4

]

w22 ∈ [w12 +w21 − w11 − ε, w12 + w21 − w11)

Fig. 1. If Eε occurs, then the weight of the dashed matching M2 = {e12, e21} is greater
than the weight of the solid matching M1 = {e11, e22} and the weight difference is at
most ε. In addition w11 is greater than w12 and the weight difference is at least 1

4
.

Lemma 6. The probability of event Eε is ε/83.

Lemma 7. If event Eε occurs, then the belief of node u1 of K2,2 at the end of
the 4k-th iteration is incorrect for all integers k ≤ 1

8ε − 1.

By Lemma 6 and Lemma 7, we have a lower tail bound for the number of
iterations that BP for MWM needs to converge for K2,2.

192 T. Brunsch et al.

Theorem 8. The probability that BP for MWM needs at least t iterations to
converge for K2,2 with edge weights drawn independently and uniformly from
[0, 1] is at least 1

ct for some constant c > 0.

By using copies of K2,2 we can extend the result of Theorem 8 to larger graphs.

Corollary 9. There exist bipartite graphs on n ≥ 4 nodes, where n is a multiple
of 4, with edge weights drawn independently and uniformly from [0, 1], for which
the probability that BP for MWM needs at least t iterations to converge is Ω

(
n
t

)
for t ≥ n/c′ for some constant c′ > 0.

5.3 Smoothed Analysis

In this section, we consider complete bipartite graphs Kn,n in the smoothed
setting. We denote by X ∼ U [a, b] that the random variable X is uniformly
distributed on interval [a, b]. In the following we assume that φ ≥ 26 and n ≥ 2
and even. Similarly to the average case, we define the event Eφ

ε for K2,2 and
for 0 < ε ≤ 1/φ as the event that w11 ∈

[
1 − 1

φ , 1
]
, w12 ∈

(
23
26 ,

23
26 + 1

φ

]
, w21 ∈(

23
26 ,

23
26 +

1
φ

]
, and w22 ∈ [w12+w21−w11− ε, w12+w21−w11). Consider the two

possible matchings M1 = {e11, e22} and M2 = {e12, e21}. If event Eφ
ε occurs,

then the weight of M2 is greater than the weight of M1 and the weight difference
is at most ε. In addition w11 is greater than w12 and the weight difference is
at least 3

26 − 2
φ . On this K2,2, BP needs at least t rounds with a probability of

Ω(φ/t).
By taking n/2 copies of this K2,2 and connecting all nodes in different parts of

the bipartite graph by edges whose weights are drawn independently according
to U [0, 1

φ], we obtain a Kn,n on which BP requires at least t rounds with a

probability of Ω(φn/t).

Theorem 10. There exist probability distributions on [0, 1] for the weights of
the edges, whose densities are bounded by φ, such that the probability that BP
for MWM needs at least t iterations to converge for Kn,n is Ω(nφ/t) for t ≥ nφ/c
for some constant c > 0.

5.4 Other Versions of BP

The results of this section also hold for other versions of belief propagation for
minimum/maximum-weight (perfect) b-matching and min-cost flow [2,6,10] ap-
plied to the matching problem on bipartite graphs. The difference in the number
of iterations until convergence differs no more than a constant factor. We omit
the technical details but provide some comments on how the proofs need to be
adjusted.

Some of the versions of BP consider minimum-weight perfect matching [2] or
min-cost flow [6] instead of maximum-weight perfect matching. For these versions
we get the same results if we have edge weights w̃e = 1− we for all edges e.

Smoothed Analysis of Belief Propagation 193

For some of the versions of BP [6, 10] the root of the computation tree is an
edge instead of a node . If we choose the root of this tree suitably, then we have
that the difference in weight between the two matchingsM1 andM2 of at most ε
not only has to ‘compensate’ the weight difference Δw(e1, e2) between an edge
e1 in M1 and an edge e2 in M2, but the entire weight we of an edge e in M1 or
M2. However, the probability distributions for the edge weights in Section 5 are
chosen such that Δw(e1, e2) and we do not differ more than a constant factor.

References

1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network flows: theory, algorithms, and
applications. Prentice-Hall (1993)

2. Bayati, M., Borgs, C., Chayes, J., Zecchina, R.: Belief-propagation for weighted
b-matching on arbitrary graphs and its relation to linear programs with integer
solutions. SIAM Journal on Discrete Mathematics 25(2), 989–1011 (2011)

3. Bayati, M., Braunstein, A., Zecchina, R.: A rigorous analysis of the cavity equations
for the minimum spanning tree. Journal of Mathematical Physics 49(12), 125206
(2008)

4. Bayati, M., Shah, D., Sharma, M.: Max-product for maximum weight matching:
Convergence, correctness, and LP duality. IEEE Transactions on Information The-
ory 54(3), 1241–1251 (2008)

5. Beier, R., Vöcking, B.: Typical properties of winners and losers in discrete opti-
mization. SIAM Journal in Computing 35(4), 855–881 (2006)

6. Gamarnik, D., Shah, D., Wei, Y.: Belief propagation for min-cost network flow:
Convergence & correctness. Operations Research 60(2), 410–428 (2012)

7. Manthey, B., Röglin, H.: Smoothed analysis: Analysis of algorithms beyond worst
case. IT – Information Technology 53(6), 280–286 (2011)

8. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann (1988)

9. Röglin, H., Vöcking, B.: Smoothed analysis of integer programming. Mathematical
Programming 110(1), 21–56 (2007)

10. Sanghavi, S., Malioutov, D.M., Willsky, A.S.: Belief propagation and LP relax-
ation for weighted matching in general graphs. IEEE Transactions on Information
Theory 57(4), 2203–2212 (2011)

11. Sanghavi, S., Shah, D., Willsky, A.S.: Message passing for maximum weight inde-
pendent set. IEEE Transactions on Information Theory 55(11), 4822–4834 (2009)

12. Spielman, D.A., Teng, S.-H.: Smoothed analysis of algorithms: Why the simplex
algorithm usually takes polynomial time. Journal of the ACM 51(3), 385–463 (2004)

13. Spielman, D.A., Teng, S.-H.: Smoothed analysis: An attempt to explain the behav-
ior of algorithms in practice. Communications of the ACM 52(10), 76–84 (2009)

14. Yedidia, J.S., Freeman, W.T., Weiss, Y.: Understanding belief propagation and its
generalizations. In: Lakemeyer, G., Nebel, B. (eds.) Exploring Artificial Intelligence
in the New Millennium, ch. 8, pp. 239–269. Morgan Kaufmann (2003)

Triangle-Partitioning Edges of Planar Graphs,

Toroidal Graphs and k-Planar Graphs

Jiawei Gao1,�, Ton Kloks��, and Sheung-Hung Poon2,���

1 Software School, Fudan University, 220 Handan Rd., Shanghai, China
gaojw76@gmail.com

2 Dept. of Computer Science & Inst. of Information Systems and Applications
National Tsing Hua University, No. 101, Sec. 2, Kuang Fu Rd., Hsinchu, Taiwan

spoon@cs.nthu.edu.tw

Abstract. We consider the question whether the edges of a graph can
be partitioned into a set of triangles. We propose a linear-time algorithm
to partition the edges of a planar graph into triangles. We also obtain
a polynomial-time algorithm for toroidal graphs. On the other hand, we
show that it is NP-complete for k-planar graphs, where k ≥ 8.

1 Introduction

To partition the edges into a minimal number of cliques, and to cover them with
a minimal number of cliques, are problems that receive a lot of attention lately.
Both problems are NP-complete. Covering the edges with a minimal number
of cliques remains NP-complete for planar graphs and for graphs with maximal
degree at most six [5,12]. The problem is polynomial for graphs with maximal
degree at most five. Also for linegraphs the problem can be solved in polyno-
mial time [19,20]. Approximating the minimum number of cliques to cover the
edges within a constant factor smaller than two remains NP-complete [14]. Ap-
proximations with polynomial factors are obtained eg in [1]. A result of Gyárfás
implies that the problem of covering the edges with k cliques can be reduced to
a kernel with O(2k) vertices [9,10]. Recently, it was shown that, under assump-
tion of the exponential time hypothesis, there is no polynomial algorithm which
reduces the problem to a kernel of size O(2o(k)) [6]. This contrasts the problem
of partitioning the edges into cliques. A result of De Bruijn and Erdös implies
that there are only two ways to partition the edges of a clique [4]. Actually, the
only clique Kn that has a nontrivial partition of the edges into triangles is K7.
Mujuni and Rosamond exploit this fact to derive a fixed-parameter algorithm

� Supported in part by grants from the NSFC (no. 60973026), the Shanghai Leading
Academic Discipline Project (no. B114), and the Shanghai Committee of Science
and Technology (nos. 08DZ2271800 and 09DZ2272800) in China.

�� Supported in part by grants from the NSC (nos. 100-2218-E-007-007 and 101-2218-
E-007-001) in Taiwan.

��� Supported in part by grants from the NSC (nos. 100-2218-E-007-007, 101-2218-E-
007-001 and 100-2628-E-007-020-MY3) in Taiwan.

S.K. Ghosh and T. Tokuyama (Eds.): WALCOM 2013, LNCS 7748, pp. 194–205, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Triangle-Partitioning Edges of Planar Graphs 195

which reduces the problem to partition the edges into cliques to a kernel of size
O(k2). Fleischer and Wu obtain linear kernels for K4-free graphs and for pla-
nar graphs [7]. Partitioning the edges of a graph into |E|/3 triangles remains
NP-complete for K4-free graphs [11,21].

In this paper, we show that the problem can be solved in linear time for
planar graphs. Considering that the triangle covering problem for planar graphs
is NP-complete [5], this is a very surprising result. Moreover, we also show that
the problem for toroidal graphs can be solved in polynomial time. However, we
find that the problem is NP-complete for k-planar graphs.

2 Partitioning Planar Graphs

We say that a graph has a partition if its edges can be partitioned into triangles.
We assume that the planar graph G is given together with a plane embedding,
i.e., G is a plane graph. We remark here that if the original planar graph G
has a partition, our following algorithm will always find a solution in any given
embedding of G on the plane. In this section, our goal is to show the following
theorem.

Theorem 1. There is a linear-time algorithm to check if the edges of a planar
graph can be partitioned into triangles, and find a partition if it exists.

First, we need the following definitions.

Definition 1. Let G be a plane graph. Let T be a triangle in G. The triangle
divides the plane into one closed region and one open region. We refer to the
closed region and the open region as the inside and outside of T , respectively. If
both regions contains vertices of the graph G− T then T is separating.

Definition 2. Let T be a separating triangle in G and let v ∈ T . The inside
degree of v is the number of edges that contain v and of which the other endpoint
is inside T . A separating triangle is even if the inside degrees of its three vertices
are all even.

Definition 3. A separating triangle is outermost if it has no vertices inside any
other separating triangle.

2.1 The Dual Graph

Let H be the dual of plane graph G. First the following observation is obvious.

Lemma 1. When G has a partition then every edge is contained in a triangle.
Furthermore, if an edge of G is contained in only one triangle, say with edges e1,
e2 and e3, then G has a partition if and only if G− {e1, e2, e3} has a partition.

196 J. Gao, T. Kloks, and S.-H. Poon

Disconnnected components of a graph can be edge-partitioned separately. A
connected graph can be divided into several biconnected components, each of
which again can be handled separately. Thus we may assume from now on that
G is biconnected. Furthermore, since an edge contained in two triangles has both
its endpoints being of degree at least three, then by Lemma 1, we can see that
an incident edge of a vertex of degree two belongs to at most one triangle in G.
Thus in the following, we may also assume that G has no vertices of degree two.

Lemma 2. If G has a partition, then H is bipartite.

Proof. Consider a partition of G. Let C be a cycle in H . There is a one-to-one
correspondence between the edges of G and H . The edges of C correspond with
a cut set in G. Every triangle of the triangle partition has either all vertices on
one side of the cut or it has two vertices on one side, and one vertex on the other
side. Thus the cut has an even number of edges. This proves that every cycle of
H is even, and so H is a bipartite multigraph. It is easy to check that H has no
loops or multiple edges, since G has a partition and no vertex of degree two. ��

2.2 Triangle Partitioning Algorithm

A graph with some odd-degree vertex does not have a triangle partition. By
Lemma 2, we also see that a plane graph with non-bipartite dual does not have
a triangle partition. Thus from now on, we assume that the given plane graph
G satisfying the following conditions:

1. G is biconnected,
2. the dual H of G is bipartite,
3. every vertex in G has even degree at least four, and
4. every edge of G is in at least two triangles.

We consider two cases, namely, the graph G has separating triangles or not in
the following subsections.

Graphs without Separating Triangles. First, we consider the case where G
has no separating triangle. That is, every triangle is a face. Since every edge is
in two faces, it follows that every edge is in exactly two facial triangles and that
every face is a triangle.

Lemma 3. Assume that G has no separating triangle. Then G has a partition
if and only if every vertex of one color class H1 of the dual H has degree three.

Proof. Assume that all vertices in one color class H1 of H have degree three.
Since H is bipartite, H1 forms a vertex cover of H . All dual faces of vertices in
H1 are triangles and so each vertex of H represents one triangle of G. Therefore,
the color class H1 of H forms a partition of the edges of G into triangles.

Assume that G has a partition. The dual vertices of the triangles in the
partition are degree-three vertices in H . Between any two of them, the distance
is even, and so they form a color class of H . ��

Triangle-Partitioning Edges of Planar Graphs 197

Graphs with Separating Triangles. Consider a partition P of the edges of
G into triangles. We distinguish three types of separating triangles.

Definition 4. A separating triangle S = {x, y, z} is one of the following three
types.

Type 1: Either S ∈ P or the three edges {x, y}, {x, z} and {y, z} are in trian-
gles of P with the third vertex inside S.

Type 2: The three edges {x, y}, {x, z} and {y, z} are in triangles of P of which
the third vertex is outside S.

Type 3: Some of the edges of {x, y}, {x, z} and {y, z} are in triangles of P
with the third vertex inside S and some of them are in triangles with the
third vertex outside S.

The following lemma shows that a separating triangle of Type 3 cannot be a
single triangle in any partition.

Lemma 4. If a separating triangle S is even, then it is of Type 1 or 2 in any
partition. If S is not even, then it is of Type 3 in any partition.

Proof. Let P be a partition and let S = {x, y, z} be a separating triangle. Con-
sider the graph G′ induced by the vertices inside S, including S. First assume
that S ∈ P . Then S is even, otherwise there is no partition of the edges in G′.

Assume that S /∈ P . Assume that {x, y} is in a triangle of P with the third
vertex outside S. Assume that the other two edges of S are in triangles of P with
the third vertex inside S. Thus S is of Type 3. Remove the edge {x, y} from the
graph G′. There is a partition of the edges of G′ −{x, y} which implies that the
degree of x and y is even. Then S is not even in G, a contradiction.

The other cases are similar. This proves that S is even if and only if S is of
Type 1 or Type 2 with respect to P . ��
We suppose that all even separating triangles have been identified. (In later
subsection 2.3, we in fact design a linear-time algorithm to compute them.) Our
main algorithm traverses G starting from its outer boundary, and search for all
outermost even separating triangles. Our search stops at those outermost even
separating triangles when they are reached. Thus the interior of any outermost
even separating triangle is considered as being removed since our algorithm does
not go into it at the current step. The interior subgraph of each outermost, even,
separating, triangle will be dealt with in a later recursive step.

Removing the interiors of even, separating triangles, turns these outmost even
separating triangles into triangular faces. Let’s denote this new graph asG′. Then
G′ has no more even separating triangles. We call a face of G′, which corresponds
to an outermost even separating triangle in G, a region.

Remark 1. Lemma 4 generalizes to the regions and faces of G′. Any even region
or face is one two types.

Type 1: The region or face is a triangle in the partition P of G′.

198 J. Gao, T. Kloks, and S.-H. Poon

Type 2: All the edges of the boundary are in triangles of P with the third
vertex outside the region.

Notice that even, separating triangles in G that are of Type 1 correspond to
regions of G′ that are Type 1. Similarly, even, separating triangles in G of Type 2
correspond to regions in G′ of Type 2. Of course, faces ofG′ that are not triangles
are automatically Type 2. In the next lemma, we show that the two color classes
of the dual of G′ correspond with the two types.

Lemma 5. Assume that G′ has a partition and let H ′ be its dual. Let H1 and
H2 be the two color classes of H ′. Then all the vertices of H1 are of one of the
two Types 1 or 2 and all the vertices of H2 are of the opposite type.

Proof. Notice that the vertices of H ′ along any path alternate between the two
types and, since H ′ is connected, this proves the theorem. ��
We use Lemma 5 to partition G′, and we can see that there are at most two ways
to partition G′. Then we proceed to process a recursive step for the subgraph
inside an outmost even separating triangle S of G. If triangle S is labeled Type
1 in G′, then the related subgraph inside S to be processed in this recursive
step includes S; if triangle S is labeled Type 2, the interior subgraph of S to be
processed does not include S. Since all recursive steps are processed on separate
subgraphs of G, it is clear that the whole recursive procedure runs in linear time.
Thus the last remaining task for us is to find all even separating triangles of G
in linear time, which will be done in next subsection.

2.3 Finding Even Separating Triangles

Definition 5. Let G = (V,E) be a plane graph. A level decomposition partitions
the vertices into levels L1, L2, . . . defined as follows.

(a) L1 is the outerface of G and,
(b) for i > 1, Li is the outerface of

G−
i−1⋃
j=1

Lj .

Given a plane graph G, a level decomposition can be obtained in linear time [16]
(see also [2,17]). Notice that any consecutive sequence of k levels induces a k-
outerplanar graph. It is well-known that k-outerplanar graphs have treewidth
at most 3k + 1 (see eg [3]) and therefore they have O(k3n) triangles. Each level
induces an outerplanar graph. A graph is outerplanar if and only if each of its
biconnected components is formed by a set of cycles connecting together as a
tree structure such that neighboring cycles in the tree structure have one edge in
common and each edge is contained in at most two of these cycles (see eg [13]).
Next, we show how to find all even separating triangles of G using the level
decomposition in linear time.

Triangle-Partitioning Edges of Planar Graphs 199

Lemma 6. All even separating triangles of a plane graph G can be found in
linear time.

Proof. Consider a level decomposition. The outerface L1 is outerplanar. Each
biconnected component of L1 induces a tree of cycles. Assume there is a cycle
in this tree of cycles which is a triangle T . Assume that L1 �= T and that the
inside of T is nonempty. Then T is a separating triangle. Using the clockwise
orientation of each neighborhood we can determine if it is even.

Consider a cycle C of L1. Assume that the inside of C is nonempty. Then it
contains a component of L2. First create a list of triangles that have at least one
vertex of C and at least one vertex of the part of L2 which is inside C. Since
this graph has treewidth at most 7 we can make a list of these triangles in linear
time. Check which triangles are even and have a nonempty interior using the
clockwise orientation of the neighborhoods.

When all even, separating triangles are determined that contain at least one
vertex of L1, then the vertices of L1 are deleted, and the algorithm continues
with the remaining graph in a similar manner as described above.

Using some suitable data structures this algorithm can be implemented to run
in linear time. This proves the lemma. ��
With the triangle partition algorithm in Section 2.2 and Lemma 6, we thus have
a linear-time algorithm to partition the edges of plane graph G into triangles.
This completes the proof of Theorem 1.

3 Partitioning Toroidal Graphs

A graph is toroidal if it can be embedded on the torus. Toroidal graphs [22] gen-
eralize planar graphs in many ways dramatically. For example, cliques with up
to seven vertices are toroidal. By the graph minor theorem toroidal graphs are
characterized by a finite collection of forbidden minors or topological obstruc-
tions. By Kuratowski’s or Wagner’s theorem, for planar graphs this obstruction
set has only two elements. For toroidal graphs these obstructions are still not
completely known. One has identified 16,629 forbidden minors and 239,322 for-
bidden topological obstruction [8].

It is convenient to consider drawings of toroidal maps using a rectangular or a
square piece of paper. Opposite edges of the paper are point-by-point identified
(in the same direction); an edge of the graph which runs out on the right edge of
the square, comes back in on the left edge of the square, and similarly edges wrap
around on the top- and bottom-edge of the square. As an example one may have
a look at the embedding of K7 on a torus, ie, a representation of Császár’s, or
Szilassi’s polyhedron. Let G be a toroidal embedding of a graph. We distinguish
the following types of cycles in G.

Contractible Cycles. These are the boundaries of areas homeomorphic to
open discs, or faces.

200 J. Gao, T. Kloks, and S.-H. Poon

Noncontractible and Nonseparating Cycles. Consider the drawing of the
graph on a square piece of paper. These cycles consist of a path connecting
the top- and bottom-edge (with identified edges), or the left- and right-edge
(with identified edges). The removal of these cycles reduces the graph to a
planar graph, drawn on a cylinder.

Noncontractable, Separating Cycles. These are the cycles whose removal
separate the graph into an inside component and an outside component, just
as in the planar case.

Lemma 7. Let G be a toroidal embedding of a graph. Assume that G has a
partition P. Assume that all triangles are contractible. Then the dual is bipartite.
Furthermore, the triangles of P consist of one color class of the dual.

Proof. All triangles of G are faces. Since every edge is in exactly one triangle,
any path in the dual alternates between faces that are in P and faces that are
not in P . Thus all cycles of the dual are even. Furthermore, every path between
two faces of P has even length, so P consists of exactly the faces of one color
class of the dual. ��
Consider representation of G on a rectangular planar region. Consider a left
to right ordering of the nonseparating triangles that wrap around the top- and
bottom-end of the region. Let T1 and T2 be two triangles with T1 left of T2 in
this order. Possibly T1 and T2 have some vertices in common, but we assume
that T1 �= T2. The piece G(T1, T2) consists of the vertices and edges that are in
the region between T1 and T2.

Definition 6. Consider a piece G(T1, T2). A bridge is either an edge or a path
of length two between two vertices, on in T1 \ T2 and the other in T2 \ T1, which
wraps around the right- and left edge of the plane region.

Consider two vertices x ∈ T1 \ T2 and y ∈ T2 \ T1. Assume that x and y are
adjacent such that the edge {x, y} is embedded in G(T1, T2). A bridge between
x and y of length two, together with the edge {x, y} creates a nonseparating
triangle. Similarly, a path of length two from x to y embedded in the piece
G(T1, T2) together with a bridge which is an edge, is a nonseparating triangle.

Theorem 2. There is a polynomial-time algorithm to check if the edges of a
toroidal graph can be partitioned into triangles.

Proof (Sketch). Separating triangles are treated in exactly the same manner as
in the planar case or, alternatively, via dynamic programming using Tarjan’s
decomposition tree [23]. Tarjan describes an O(nm) algorithm to find a binary
decomposition tree which decomposes a graph using clique separators. Using
dynamic programming on this decomposition tree we can obtain, for each even
separating triangle T , a table with boolean entries which tells us whether the
graph GT induced by the triangle and the inside has a partition P with

(a) T ∈ P , and
(b) all the edges of T are in triangles of P with some vertex outside T .

Triangle-Partitioning Edges of Planar Graphs 201

The algorithm determines the feasible partitions of pieces G(T1, T2) by dynamic
programming. For each Ti it has a boolean value which indicates if there is a
partition with Ti as a triangle, and for each edge in Ti whether there is a partition
with the edge in a triangle with a third vertex inside the piece or outside the
piece.

Consider a piece G(T1, T2). The table also needs to keep track of the triangles
in partitions that use some vertex of T1 and some vertex of T2 are a bridge. For
any two vertices x ∈ T1 \ T2 and y ∈ T2 \ T1, for which there is a triangle which
uses a bridge, there are at most n such triangles. Furthermore, at most one of
them can be an element of a partition. The algorithm builds a table which lists
all partitions of the edges of the piece into triangles. For each pair of vertices x
and y an entry of the table contains the information whether a triangle is used
in the partition that uses a bridge of length one or two from x to y. Triangles
that use bridges cut the piece into parts.

The pieces are processed as follows. The triangles that use a bridge cut the
piece into smaller strips. Each strip is bounded on the top and bottom by paths
of length one or two. The table for the piece is computed using dynamic pro-
gramming on the strips. For each edge in the border of the strip, the information
is kept whether the border is a triangle in the partition, or which edges are in
triangles with the third vertex inside or outside the piece.

By dynamic programming the algorithm computes a table for all pieces in
order of increasing size. To write down the dynamic programming algorithm is
a standard technique. Its details is omitted due to lack of space. ��

4 NP-Completeness for k-Planar Graphs

A graph is k-planar if it has an embedding in the plane such that every edge
crosses at most k other edges. Note that 0-planar graphs are simply planar
graphs. In this section, we show that the partition problem for k-planar graphs
is NP-complete for all k ≥ 8.

Theorem 3. The triangle partition problem for k-planar graphs is NP-complete,
where k = 8.

First we show that the problem is in NP. Suppose we are given a triangle partition
of the edges of the given graph G. We can easily verify that whether the given
partition is a triangle partition of the edges of G.

Next we show that the triangle partition problem is NP-hard for k-planar
graphs. We reduce the planar one-in-three 3SAT problem [15] to this problem.
We reduce from the 3SAT problem. The input instance for the planar one-
in-three 3SAT problem is a set {x1, x2, . . . , xn} of n variables, and a Boolean
formula F = c1∧ c2∧ . . .∧ cm of m clauses, where each clause consists of exactly
three literals, such that the variable clause graph of the input instance is planar.
The planar one-in-three 3SAT problem asks for whether there exists a truth
assignment to the variables so that each clause in given formula F has exactly
one true literal and exactly two false literals. In the following, we will describe the

202 J. Gao, T. Kloks, and S.-H. Poon

construction of variable gadgets, literal gadgets, and clause gadgets, respectively,
for our polynomial-time reduction. In the construction, we repeatedly use the
following construction unit, called an ω-tube. An ω-tube of length � and of width
ω is a graph consisting of an integer grid of vertices {(x, y)} with 0 ≤ x < �
and 0 ≤ y < ω for some positive integers � and ω. The edge set of the ω-tube is
formed by performing the following steps: (Note that the plus operations relating
to y indices here are all modulo ω.)

1. Connect an edge between (x, y) and (x, y + 1) for 0 ≤ x < � and 0 ≤ y < ω;
2. Connect an edge between (x, y) and (x+1, y) for 0 ≤ x < �−1 and 0 ≤ y < ω;

and
3. Connect an edge between (x, y) and (x + 1, y + 1) for 0 ≤ x < � − 1 and

0 ≤ y < ω.

(0, 0) (1, 0) (2, 0) (3, 0) (4, 0)

(0, 1) (1, 1) (2, 1) (3, 1) (4, 1)

(0, 2) (1, 2) (2, 2) (3, 2) (4, 2)

Fig. 1. A variable gadget, which is a
3-tube

to variable
gadget

Connects

Connects
to clause
gadget

Fig. 2. A literal gadget, which is a 6-
tube

See Figure 1 for an example of a 3-tube. The polygons {(0, 0), (0, 1), . . . , (0, ω −
1)} and {(� − 1, 0), (�− 1, 1), . . . , (� − 1, ω − 1)} at the both ends of the ω-tube
are called the end polygons of the tube.

4.1 Variable Gadget

A variable gadget is a 3-tube of length N . See Figure 1 as an example. First we
show in the following lemma that a variable gadget has exactly two partitions.

Lemma 8. A variable gadget has exactly two partitions.

Proof. A 3-tube has only 3 types of triangles:

1. α-triangle: {(x, y), (x, y + 1), (x+ 1, y + 1)},
2. β-triangle: {(x, y), (x+ 1, y), (x+ 1, y + 1)}, and
3. γ-triangle: {(x, 0), (x, 1), (x, 2)}.
A triangle partition of a variable gadget must contain at least one α-triangle,
or one β-triangle, because γ-triangles do not contain any ((x, y), (x + 1, y +
1)) edge. If a partition contains an α-triangle, then the partition nearly only

Triangle-Partitioning Edges of Planar Graphs 203

contains α-triangles, except for one end γ-triangle {(0, 0), (0, 1), (0, 2)}. If a par-
tition contains a β-triangle, then the partition nearly only contains β-triangles,
except for one end γ-triangle {(N − 1, 0), (N − 1, 1), (N − 1, 2)}. ��

The former partition corresponds to the true value for the variable, and thus is
called the true partition; the latter partition corresponds to the false value for
the variable, and thus is called the false partition.

Later on, if variable v appears as a literal v in clause c, we plan to delete an
α-triangle in the variable gadget of v and a hexagonal hole is thus formed. Such
a hole will identify with an end-hexagon of a literal gadget later on. If variable
v appears as a literal v̄ in clause c, we plan to delete a β-triangle to create a
hexagonal hole for connecting a literal gadget later on.

4.2 Literal Gadget

A literal gadget is a subgraph that connects a variable gadget to a clause gadget.
We form a literal gadget as a 6-tube of lengthM . See Figure 2 for an example. It
serves the function of propagating a partition from one of its ends to the other.

Of the two end-hexagons of the literal gadget, one end merges with a hexagonal
hole of a variable gadget as mentioned previously, the other will connect to a
clause gadget later on. In one partition of the literal gadget, it contains all α-
triangles of the literal gadget; however, in such a so-called partition, the edges of
the clause-end hexagon has not been included in any triangle of this partition.
This corresponds to the false value of this literal, and thus such a partition is
called the false partition of the literal gadget. In the other partition of the literal
gadget, it contains all β-triangles of the literal gadget; however, in such a so-call
partition, the edges of the variable-end hexagon has not been included in any
triangle of this partition. This corresponds to the true value of this literal, and
thus such a partition is called the true partition of the literal gadget.

4.3 Clause Gadget

A clause gadget for a clause c is formed by simply identifying the clause-end
hexagons of the three corresponding literal gadgets. See Figure 4.3 for an exam-
ple. Because the clause end-hexagons of the three literal gadgets of clause gadget
are identified as one hexagon H , the edges of H lies in the triangle partition of
exactly one literal gadget among the three literal gadgets for clause c, but not in
partitions of the other two literal gadgets. This means that one literal gadget has
the true partition and the other two have false partitions. That is to say, exactly
one of the three literals is true and the other two literals are false. Moreover,
if variable v has the true value, the variable gadget is partitioned as the true
partition. For clauses with literal v, the literal gadget is partitioned as the true
partition, and the hexagon of the clause gadget is partitioned in the partition of
the literal gadget of v whereas the variable-end hexagon of this literal gadget is
partitioned in the partition of the variable gadget of v. For clauses with literal

204 J. Gao, T. Kloks, and S.-H. Poon

Literal 1 Literal 2 Literal 3

Clause gadget

Fig. 3. The structure of a clause gadget

v̄, the literal gadget is partitioned as the false partition, and the clause gadget
hexagon is not partitioned by current literal gadget whereas the variable-end
hexagon of this literal gadget is partitioned in the partition of this literal gad-
get. If variable v have the false value, the variable gadget is partitioned as the
false partition. For clauses with literal v̄, the literal gadget is partitioned as the
true partition and the hexagon of the clause gadget is partitioned in the partition
of the literal gadget of v̄ whereas the variable-end hexagon of this literal gadget
is partitioned in the partition of the variable gadget of v. For clauses with v, the
literal gadget is partitioned as the false partition, and the clause gadget hexagon
is not partitioned by current literal gadget whereas the variable-end hexagon of
this literal gadget is partitioned in the partition of this literal gadget. Hence,
the whole constructed graph has a triangle partition if and only if there is a
truth assignment for all variables so that for any clause in formula F , exactly
one literal is true and the other two literals are false. Therefore, the planar 1-
in-3 3SAT problem has a solution if and only if the constructed graph has a
triangle partition. This completes our reduction proof. However, we still need to
obtain the constant k for the k-planarity of the constructed graph, which is the
following lemma. Its proof is omitted due to lack of space.

Lemma 9. The graph constructed above is 8-planar.

References

1. Ausiello, G., Creszensi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A.,
Protasi, M.: Complexity and Approximation: Combinatorial optimization problems
and their approximability properties. Springer (1999)

2. Baker, B.: Approximation algorithms for NP-complete problems. Journal of the
ACM 41, 153–180 (1994)

Triangle-Partitioning Edges of Planar Graphs 205

3. Bodlaender, H.: A partial k-arboretum of graphs of bounded treewidth. Theoretical
Computer Science 209, 1–45 (1998)

4. de Bruijn, N., Erdös, P.: On a combinatorial problem. Indagationes Mathemati-
cae 10, 421–423 (1948)

5. Chang, M.-S., Müller, H.: On the Tree-Degree of Graphs. In: Brandstädt, A., Le,
V.B. (eds.) WG 2001. LNCS, vol. 2204, pp. 44–54. Springer, Heidelberg (2001)

6. Cygan, M., Pilipczuk, M., Pilipczuk, M.: Known algorithms for edge clique cover
are probably optimal. Manuscript ArXiV: 1203.1754v1 (2012)

7. Fleischer, R., Wu, X.: Edge Clique Partition of K4-Free and Planar Graphs. In:
Akiyama, J., Bo, J., Kano, M., Tan, X. (eds.) CGGA 2010. LNCS, vol. 7033, pp.
84–95. Springer, Heidelberg (2011)

8. Gagarin, A., Myrvold, W., Chambers, J.: The obstructions for toroidal graphs with
no K3,3’s. Discrete Mathematics 309, 513–520 (2009)

9. Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Data reduction, exact, and
heuristic algorithms for clique cover. In: Proceedings ALENEX, pp. 86–94. SIAM
(2006)

10. Gyárfás, A.: A simple lowerbound on edge clique covering by cliques. Discrete
Mathematics 85, 103–104 (1990)

11. Holyer, I.: The NP-completeness of some edge-partition problems. SIAM J. Com-
put. 10, 713–717 (1981)

12. Hoover, D.: Complexity of graph covering problems for graphs of low degree.
JCMCC 11, 187–208 (1992)

13. Kloks, T.: Treewidth. LNCS, vol. 842. Springer, Heidelberg (1994)
14. Kou, L., Stockmeyer, L., Wong, C.: Covering edges by cliques with regard to key-

word conflicts and intersection graphs. Comm. ACM 21, 135–139 (1978)
15. Laroche, P.: Planar 1-in-3 satisfiability is NP-complete. Comptes Rendus de

l’Acade’mie des Sciences, Se’rie 1, Mathe’matique 316(4), 389–392 (1993)
16. Lipton, R., Tarjan, R.: A separator theorem for planar graphs. SIAM Journal on

Applied Mathematics 36, 177–189 (1979)
17. Lipton, R., Tarjan, R.: Applications of a planar separator theorem. SIAM Journal

on Computing 9, 615–627 (1980)
18. Mujuni, E., Rosamond, F.: Parameterized complexity of the clique partition prob-

lem. In: Proceedings CATS, vol. 77, pp. 75–78. Australian Computer Society (2008)
19. Orlin, J.: Contentment in graph theory: covering graphs with cliques. Proceedings

of the Nederlandse Academie van Wetenschappen, Amsterdam. Series A 80, 406–
424 (1977)

20. Pullman, N.: Clique covering of graphs IV . Algorithms. SIAM Journal on Com-
puting 13, 57–75 (1984)

21. Shaohan, M., Wallis, W., Lin, W.: The complexity of the clique partition number
problem. In: Nineteenth Southeastern Conference on Combinatorics, Graph Theory
and Computing, Congr. Numer., vol. 67, pp. 59–66 (1988)

22. Surhone, L., Tennoe, M., Henssonow, S. (eds.): Toroidal graph. Betascript Pub-
lishing (2010)

23. Tarjan, R.: Decomposition by clique separators. Discrete Mathematics 55, 221–232
(1985)

24. Valiant, L.: The complexity of computing the permanent. Theoretical Computer
Science 8, 189–201 (1979)

Alliances and Bisection Width for Planar Graphs

Martin Olsen1 and Morten Revsbæk2

1 AU Herning
Aarhus University, Denmark

martino@hih.au.dk
2 MADALGO�, Department of Computer Science

Aarhus University, Denmark
mrevs@madalgo.au.dk

Abstract. An alliance in a graph is a set of vertices (allies) such that
each vertex in the alliance has at least as many allies (counting the
vertex itself) as non-allies in its neighborhood of the graph. We show
that any planar graph with minimum degree at least 4 can be split into
two alliances in polynomial time. We base this on a proof of an upper
bound of n on the bisection width for 4-connected planar graphs with
an odd number of vertices. This improves a recently published n + 1
upper bound on the bisection width of planar graphs without separating
triangles and supports the folklore conjecture that a general upper bound
of n exists for the bisection width of planar graphs.

1 Introduction

An alliance is a set of vertices (allies) such that any vertex in the alliance has at
least as many allies (including the vertex itself) as non-allies in its neighborhood
of the graph. The alliance is said to be strong if this holds even without including
the vertex itself among the allies. Alliances of vertices in graphs were introduced
by Kristiansen et al. [11] to model among other things alliances of individuals or
nations but appear many places in the literature under different names: Flake
et al. [8] refer to a strong alliance as a community and base their work on the
assumption that web pages related to each other form communities in the web
graph. Gerber and Kobler [10] look at what they refer to as the Satisfactory
Graph Partition Problem where the objective is to partition a graph into two
strong alliances. A partition of a graph into strong alliances can also be viewed as
a so called Nash stable partition of an Additive Hedonic Game [13]. As mentioned
above, alliances have been used to model scenarios that might be planar of
nature, so in this paper we focus on the problem of partitioning a planar graph
into two alliances. In Section 2 we show how to compute such a partition in
polynomial time for any planar graph with minimum degree at least 4. To prove
this, we need an upper bound of n on the bisection width of 4-connected planar
graphs with an odd number of vertices. We prove this upper bound in Section 3.

� Center for Massive Data Algorithmics, a center of the Danish National Research
Foundation.

S.K. Ghosh and T. Tokuyama (Eds.): WALCOM 2013, LNCS 7748, pp. 206–216, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Alliances and Bisection Width for Planar Graphs 207

This tight upper bound is an improvement over the recently published [7] n+ 1
upper bound for planar graphs without separating triangles, and it supports the
folklore conjecture [7], that a general upper bound of n exists for the bisection
width of planar graphs.

1.1 Preliminaries

Consider the connected graph G with vertex set V and edge set E where |V | = n
and |E| = m. The degree d(v) of a vertex v in G is the number of edges incident
to v in G. Similarly, for a subset X ⊆ V we define the degree dX(v) of a vertex v
in the subgraph of G induced by X ∪{v} as dX(v) = |{u ∈ X : {v, u} ∈ E}|. We
denote the minimum degree of the vertices in G as δ. A graph G is k-connected
when at least k vertices are required to be removed in order to disconnect G.
A clique is a fully connected graph and a maximal planar graph is a planar
graph with the property that the addition of any new edge destroys planarity.
An alliance in G is a non empty set A ⊆ V such that ∀u ∈ A : dA(u) +
1 ≥ dV −A(u). Throughout this paper when considering a planar graph, we will
implicitly consider an embedding of the graph. A separating triangle in a planar
graph is a triangle where both the interior and the exterior are non-empty. This
definition can be tightened giving the notion of a strong alliance which is a non
empty set A ⊆ V such that ∀u ∈ A : dA(u) ≥ dV −A(u). A partition of G is a

collection of non-empty disjoint subsets V1 . . . Vl of V such that
⋃l

i=1 Vi = V .
For a partition of G into two subsets V1 and V2 we will denote the set of edges
crossing this partition as e(V1, V2) = {{u, v} ∈ E : u ∈ V1 ∧ v ∈ V2}. A bisection
of G is a partition of G into V1 and V2 such that ||V1|−|V2|| ≤ 1 and the bisection
width of G is defined as the minimum |e(V1, V2)| over all bisections.

1.2 Related Work

The problem of partitioning a graph into two strong alliances is NP-hard if we
put no restrictions on the graph [2]. There are however classes of graphs for which
we can decide whether a partition into strong alliances exists and compute it in
polynomial time. Examples of such classes are graphs with maximum degree at
most 4 and graphs with girth at least 5 and minimum degree at least 3 [2,3].

For a general graph G, the computational complexity of partitioning G into
two alliances is an open problem [4]. Fricke et al. [9] show that any graph G
contains an efficiently computable alliance with no more than

⌈
n
2

⌉
vertices,

while the problem of deciding whether an alliance with less than k members
exists in G is NP-complete if k is part of the input. This even holds if G is
planar [6].

Fan et al. [7] prove an upper bound of n + 1 for the bisection width for
planar graphs without a separating triangle and an upper bound on n − 2 for
the bisection width for any triangle-free planar graph. The latter upper bound
has subsequently been strengthened by Li et al. [12].

208 M. Olsen and M. Revsbæk

2 Alliances in Planar Graphs

In this section we show that for planar graphs with minimum degree at least 4
there exists a partition of the vertices into two alliances and that this partition
can be computed in polynomial time. This is trivially also true for planar graphs
with minimum degree 1 (let one alliance consist of a single vertex with degree
1), while for planar graphs with minimum degree 2 and 3 it is easy to find
examples which show that not all such graphs can be partitioned into alliances.
See Figure 1.

(a) (b)

Fig. 1. Examples of planar graphs that can not be partitioned into alliances

In Lemma 1 we characterize a group of general graph partitions that can be
refined into an alliance partition using a polynomial time algorithm. In the proof
of Theorem 1 we then show how to construct such a partition for planar graphs
with minimum degree 4 in polynomial time. Lemma 1 is a precise formulation
of the well known principle [4,9] that a partition into two sets of vertices forms
a good starting point for obtaining a partition into alliances if the number of
crossing edges is relatively small compared to the cardinality of the smallest set
of vertices.

Lemma 1. A graph G can be partitioned into two alliances if there exists a
partition V1, V2 of G such that

|e(V1, V2)| − 2min(|V1|, |V2|) < δ − 2 . (1)

The alliances can be computed in polynomial time if V1 and V2 can be obtained
in polynomial time.

Proof. Let V1, V2 be a partition of G satisfying (1). We now run the following
simple algorithm:

1. Let A1 = V1 and A2 = V2.
2. If A1 and A2 both are alliances or if one of them is empty we stop. Otherwise

we go to step 3.
3. Assume that A1 is not an alliance (otherwise we process A2 similarly). There

must be a u ∈ A1 with dA1(u) + 1 < dA2(u). We now move u from A1 to A2

and go to step 2.

Alliances and Bisection Width for Planar Graphs 209

The number of crossing edges |e(A1, A2)| decreases with 2 or more every time
step 3 is executed so the algorithmmust stop after no more than m

2 steps. Assume
that the algorithm stops because A1 is empty and let u be the last vertex to
leave A1. We now consider the point in time where A1 = {u}:

dV (u) = |e(A1, A2)| ≤ |e(V1, V2)| − 2(min(|V1|, |V2|)− 1) .

We obtain a contradiction since (1) implies that the right hand side is less than
δ. We conclude that the algorithm can not stop emptying A1 or A2. It has to
stop with A1 and A2 being alliances. ��
Theorem 1. Any planar graph with δ ≥ 4 can be partitioned into two alliances
in polynomial time.

Proof. We start by expanding the graph by adding edges until it is a maximal
planar graph which can be done in polynomial time. We now consider two cases:

The expanded graph has a separating triangle: A separating triangle has vertices
both inside and outside of the triangle. Let V1 be the vertices on the side of the
triangle containing the fewest vertices and let V2 = V \V1. There can be no more
than one vertex in V1 having edges to all three vertices in the separating triangle
so |e(V1, V2)| ≤ 2|V1|+ 1. This inequality also holds in the original graph so we
can now use Lemma 1. The detection and processing of the separating triangle
case is easily done in polynomial time.

The expanded graph does not have a separating triangle: In this case the graph
is 4-connected since all maximal planar graphs without a separating triangle
are 4-connected [5] and thus contains a hamiltonian cycle computable in linear
time [1]. Fan et al. [7] show how to efficiently compute a bisection V1, V2 of
V with |e(V1, V2)| ≤ n + 1 for such a graph. This makes it possible for us to
apply Lemma 1 in the case where n is even but for n odd an upper bound on
n for the bisection width is needed to make inequality (1) hold. In Section 3
we prove Theorem 2 stating the existence of an efficiently computable bisection
V1, V2 with |e(V1, V2)| ≤ n for any 4-connected planar graph G(V,E) with an
odd number of vertices. We now use Lemma 1 in the case where n is odd. ��
As mentioned above, Fricke et al. [9] have shown that any graph contains an
alliance with no more than

⌈
n
2

⌉
members. We can now improve this upper bound

for planar graphs with δ ≥ 4:

Corollary 1. Any planar graph with δ ≥ 4 contains an alliance with no more
than

⌊
n
2

⌋
members.

3 An Upper Bound for the Bisection Width

We now show that a bisection V1, V2 with |e(V1, V2)| ≤ n can be computed
in polynomial time for any 4-connected planar graph with an odd number of

210 M. Olsen and M. Revsbæk

vertices. Some of the techniques used are similar to the techniques used by Fan
et al. [7] but we also use other techniques and the analysis is considerably more
complicated compared to the analysis of Fan et al.. Since the bisection width
never increases when removing edges from a graph, it is sufficient to only consider
maximal 4-connected planar graphs with an odd number of vertices.

Lemma 2. A maximal 4-connected planar graph with an odd number of vertices
has a vertex u with d(u) ≥ 5 such that G− u is Hamiltonian. The vertex u and
the hamiltonian cycle of G− u can be found in polynomial time.

Proof. Consider a maximal 4-connected planar graph G with an odd number
of vertices. There is at least one node u in G with d(u) ≥ 5 since otherwise
we would have

∑
v∈V d(v) = 2m = 2(3n − 6) ≤ 4n that could only happen

if n ≤ 5 which would contradict 4-connectedness. The graph G is 4-connected
so the graph G − u has a Hamiltonian cycle computable in polynomial time as
showed by Thomas and Yu [14]. ��

(a)

u

v

t

(b)

uL

W

(c)

u

L

W

(d)

u

Fig. 2. Illustrations of a configuration. Figure (a) shows the hamiltonian cycle with its
k hamiltonian bisections (the dotted lines) and the cycle length of edge {v, t}. Figure
(b) shows a single hamiltonian bisection where the vertices are colored according to
which side of the bisection they belong to. Also, it shows L and W for the configuration.
Figure (c) shows a compacted neighbor configuration with L and W . Figure (d) shows
a heavy compacted neighbor configuration where the dotted edges are the inner edges
of the configuration and the dashed edges are the outer edges of the configuration.

Let G be a maximal 4-connected graph with an odd number of vertices and
let u be a vertex in G with d(u) ≥ 5 and C a Hamiltonian cycle in G − u. We
will say that the tuple (G, u,C) represents a configuration of G. For any such
configuration, there are essentially k =

⌊
n
2

⌋
different ways to split C into two

connected and equally sized parts. From these parts, we construct a hamiltonian
bisection V1, V2 of G by adding u to the part where it has the most neighbors i.e.
the part that minimizes |e(V1, V2)| (ties are broken arbitrarily). Refer to Figure
2(a) and 2(b). In the following we let T (G, u,C) denote the sum of |e(V1, V2)|
over the k possible hamiltonian bisections of (G, u,C). We will sometimes omit

Alliances and Bisection Width for Planar Graphs 211

the arguments if they are clear from the context. The cycle length of an edge
{v, t} in G − u is the minimum distance between v and t in the graph induced
by the cycle. The contribution to T (G, u,C) of an edge in G− u is precisely the
cycle length of the edge. Refer to Figure 2(a). We let L denote the length of
the longest path along C starting and ending at a neighbor from u but visiting
no other neighbors of u and let W denote the length of the second longest such
path. Refer to Figure 2(b).

We refer to the configuration (G, u,C) as a compacted neighbor configuration

if the neighbors of u can be divided into two subsets N1 and N2 of size
⌊
d(u)
2

⌋
and

⌈
d(u)
2

⌉
respectively such that each subset occupies a connected subpath of

the hamiltonian cycle C. Refer to Figure 2(c). The inner edges are the edges on
the same side of C as u. The inner edges that are not incident to u are naturally
grouped into (at most) two groups in a compacted neighbor configuration. A
compacted neighbor configuration is called heavy if the edges from both these
groups have cycle lengths 2, 3, 4, . . . , k, k− 1, k− 2, k− 3, . . . (for both groups we
start the sequence from the left) and if the set of outer edges has two edges of
length 2, two edges of length 3, . . . , two edges of length k − 1 and one edge of
length k. Refer to Figure 2(d).

In what follows, we will show that T (G, u,C) < k(n+1) for any configuration
(G, u,C) of a maximal 4-connected planar graph with an odd number of vertices.
Since T (G, u,C) is the sum of bisection sizes for the k hamiltonian bisections
this implies that there exists at least one hamiltonian bisection V1, V2 such that
|e(V1, V2)| ≤ n which then gives us the upper bound on the bisection width.
To prove T (G, u,C) < k(n + 1) we will first show that the heavy compacted
neighbor configurations can be considered as a set of worst case configurations
such that for any configuration (G, u,C) there exists a heavy compacted neighbor
configuration (G′, u′, C′) where T (G, u,C) ≤ T (G′, u′, C′). We then exploit that
the heavy compacted neighbor configurations are reasonably simple such that
T (G′, u′, C′) < k(n+ 1) can be shown for this set of configurations.

u′u

L

W

Ŵ

L̂

Fig. 3. In the configuration (G,u, C) to the left, the hamiltonian bisections where edges
incident to u contribute with �d(u)/2� are shown with dotted lines. Similarly, in the
configuration (Ĝ, u′, C) to the right, the hamitonian bisections where edges incident to
u′ contribute with �d(u′)/2� are shown with dotted lines.

212 M. Olsen and M. Revsbæk

(a)

L

u u′

L̂

(b)

L

u u′

L̂

Fig. 4. In (a) we show those hamiltonian bisections which fully contain the vertices
on the cycle path corresponding to L in (G,u, C) (to the left) and in (Ĝ, u′, C) (to the
right). In (b) we show those hamiltonian bisections which does not fully contain the
vertices in (G, u,C) (to the left) and in (Ĝ, u′, C) (to the right).

Lemma 3. If (G, u,C) is a configuration then it is possible to construct a heavy
compacted neighbor configuration (G′, u′, C) where G and G′ have the same num-
ber of vertices and d(u) = d(u′) such that T (G, u,C) ≤ T (G′, u′, C).

Proof. Let (G, u,C) represent an arbitrary configuration. We now remove those
edges in G that are not on C and not incident to u. We then replace u (and the
edges incident to u) with a vertex u′ with d(u) = d(u′) such that the resulting
configuration (Ĝ, u′, C) is a compacted neighbor configuration. Finally, we put in
edges to create the graph G′ such that (G′, u′, C) is a heavy compacted neighbor
configuration. Below, we first argue that the contribution to T of edges incident
to u in G is not higher than the contribution to T of edges incident to u′ in G′.
Secondly, we argue that the contribution to T of edges in G − u is not higher
than the contribution to T of edges in G′ − u′.

Edges incident to u′: We separate our analysis into a case analysis based on
the value of L in G. The values of L and W in Ĝ are denoted by L̂ and Ŵ
respectively.

Case 1: L ≤ k: We consider the following subcases:

• If 2L + d(u) − 2 ≤ 2k we build the compacted neighbor configuration
(Ĝ, u′, C) such that L̂ − Ŵ is minimized (0 or 1). Refer to Figure 3.

The contribution to T of edges incident to u′ is k
⌊
d(u)
2

⌋
which is the

maximum obtainable value since u′ always chooses to join the partition
which contributes the least to T . Refer to Figure 3. The condition 2L+

d(u)−2 ≤ 2k makes it possible for us to obtain the k
⌊
d(u)
2

⌋
contribution

to T from edges incident to u′ and at the same time obtain L̂ ≥ L and
Ŵ ≥ W that is important when we consider the contribution from the
other edges.

• If 2L + d(u) − 2 > 2k we build the compacted neighbor configuration
(Ĝ, u′, C) such that L = L̂ and such that the nodes forming the long
paths along C with no neighbors of u of u′ respectively are the same.
Refer to Figure 4. For each of the k hamiltonian bisections in (Ĝ, u′, C)

Alliances and Bisection Width for Planar Graphs 213

we now show that the number of crossing edges incident to u′ has not
decreased compared to the corresponding (same partition of C) hamil-
tonian bisection in (G, u,C).
- We first consider a bisection V1, V2 where the vertices on the path
along C of length L = L̂ is fully contained within either V1 or V2
– say V1. In this case, u′ must choose to join V2. The number of
neighbors of u′ in V1 is at least as high as the number of neighbors
of u in V1 in G so the number of crossing edges for such a bisection
has not decreased. Refer to Figure 4(a).

- We now consider a bisection where the vertices on the path along
C of length L = L̂ are not fully contained within either side of the
bisection. When u′ has chosen a side of the bisection u′ has only
crossing edges to members of either N1 or N2 (the two groups of

neighbors of u′). If u′ has
⌊
d(u′)
2

⌋
crossing edges the case is clear.

Otherwise, the number crossing edges has not dropped since every
node on the other side of the cut and not on the long path is a
neighbor to u′. Refer to Figure 4(b).

Case 2: L > k: We build the compacted neighbor configuration (Ĝ, u′, C)
with L = L̂. Consider a bisection V1, V2 of (Ĝ, u

′, C). When u′ chooses side of
the bisection u′ can not have crossing edges to both N1 and N2. If there are
no crossing edges the same would be the case for the corresponding bisection
of the original configuration. Refer to Figure 5(a). If there are crossing edges
then the number of neighbors on the other side can not have decreased. Refer
to Figure 5(b)

Edges not incident to u′: Since C is in both G and G′ the edges on C obviously
contribute with the same to T . We now consider the edges in G not incident to
u and not on C and the edges of G′ not incident to u′ and not on C. Fan et
al. [7] show how to eliminate any triangle of such edges and obtain a new set of
edges with higher cycle lengths by replacing some of the edges and Fan et al. also
argue that repeated elimination of triangles will produce a heavy configuration
– we refer to [7] for more details. The fact that L̂ ≥ L and Ŵ ≥ W makes it
possible to use this technique and obtain a one-to-one correspondence between
the two sets of edges considered such that any edge in the G-set is matched
with an edge in the G′-set with the same cycle length or a bigger cycle length.
The contribution to T of these edges can consequently not decrease during the
transformation. ��

Lemma 4. Let (G, u,C) be a heavy compacted neighbor configuration with d(u)
even. The contribution to T (G, u,C) of the edges incident to u is

d(u)2

4
+W

d(u)

2
− d(u)

2
.

Proof. We group the edges incident to u into pairs such that a pair of edges
cuts C into two pieces with the same number of neighbors of u. For a given

214 M. Olsen and M. Revsbæk

(b)(a)

L
u

L̂

u′
Lu L̂u′

Fig. 5. In (a) we illustrate the case where there are no crossing edges for a hamiltonian
bisection in G and the corresponding bisection of Ĝ. In (b) we show the bisections
where there are crossing edges in which case the number of crossing edges can not have
decreased in Ĝ.

hamiltonian bisection the contribution to T (G, u,C) of a pair is 1 if the endpoints

of the edges are separated and 0 otherwise. There areW+ d(u)
2 −1 bisections that

separate each pair so it is now easy to compute the contribution to T (G, u,C)
of the edges incident to u:

d(u)

2
(W +

d(u)

2
− 1) .

��
Lemma 5. If (G, u,C) is a heavy compacted neighbor configuration then we
have the following:

T (G, u,C) < k(n+ 1) .

Proof. We divide the proof into three cases.

Assume that L ≥ k − 1 and that d(u) is even: We compute T in the following
way:

T = 2k+

(
k + 2

k−1∑
i=2

i

)
+

⎛
⎝k + 2

k−1∑
i=2

i−
d(u)−3∑
i=1

(W + i)

⎞
⎠+

(
d(u)2

4
+W

d(u)

2
− d(u)

2

)
.

The first term is the sum of cycle lengths from the edges on the cycle, the
second term is the sum of cycle lengths for the outer edges, the third term is
the sum of cycle lengths for the inner edges not incident to u, and the fourth
term is the contribution from edges incident to u given by Lemma 4. We now

use
∑k−1

i=2 i =
(

(k−1)k
2 − 1

)
and n = 2k + 1:

T − k(n+ 1) =

(
d(u)2

4
+W

d(u)

2
− d(u)

2

)
−

d(u)−3∑
i=1

(W + i)− 4 .

We now work on a part of this sum multiplied by 4 in order to exclusively have
integers in the computation:

4

⎛
⎝(

d(u)2

4
+W

d(u)

2
− d(u)

2

)
−

d(u)−3∑
i=1

(W + i)

⎞
⎠

Alliances and Bisection Width for Planar Graphs 215

= (d(u)− 2)d(u) + 2Wd(u)− 4(d(u)− 3)W − 2(d(u)− 3)(d(u)− 2)

= −d(u)2+8d(u)−12+12W−2Wd(u) = −(d(u)−6)(d(u)−2)+12W−2Wd(u)

= −d(u)2 + 8d(u)− 12 + 12W − 2Wd(u) = −(d(u)− 6)(d(u)− 2 + 2W) ,

and finally we get

T − k(n+ 1) = − (d(u)− 6)(d(u)− 2 + 2W)

4
− 4 < 0 , (2)

where we have used that the degree of u is at least 6.

Now assume that L ≤ k − 2 and that d(u) is even: In this case we get

T =
L∑

i=2

i+
W∑
i=2

i+
d(u)2

4
+W

d(u)

2
− d(u)

2
+ 2k + k2 − 2

=
L(L+ 1)

2
− 1 +

W (W + 1)

2
− 1 +

d(u)2

4
+W

d(u)

2
− d(u)

2
+ 2k + k2 − 2

implying

4T−4k(2k+2)=2L(L+1)−8+2W (W+1)+d(u)2+2Wd(u)−2d(u)+8k+4k2−8−4k(2k+2)

= 2L(L + 1) + 2W (W + 1) + d(u)(d(u) + 2W − 2)− 4k2 − 16 .

We now use W + L− 2 + d(u) = 2k:

4T−4k(2k+2) = 2L(L+1)+2W (W+1)+(2k+2−W−L)(2k+W−L)−4k2−16

= 3L2 +W 2 − 4kL+ 4W + 4k − 16. (3)

We now use L ≥W in (3):

4T − 4k(2k + 2) ≤ 4L2 + (4− 4k)L+ 4k − 16

= 4((L− 1)(L− k + 2)− 2) .

implying

T − k(n+ 1) ≤ (L − 1)(L− k + 2)− 2 < 0 for L ∈ {1, 2, . . . , k − 2} .

Now assume that d(u) is odd: We remove the edge of u from the group with⌈
d(u)
2

⌉
edges that is closest to the path along the cycle corresponding to W . It

is not hard to see that the contribution to T of the edges of u is unchanged after
the removal of this edge. For d(u) > 5 there is consequently a heavy compacted
neighbor configuration considered above with a higher value of T compared to
the original graph. If d(u) = 5 we can use (2) with d(u) = 4 and W replaced
by W + 1 if we subtract W + 1 (when the edge of u is removed as described
above we insert an edge with cycle length W +1 and obtain a heavy compacted
neighbor configuration with d(u) = 4):

T − k(n+ 1) = − (4− 6)(4− 2 + 2(W + 1))

4
− 4− (W + 1) = −3 < 0 .

��

216 M. Olsen and M. Revsbæk

Theorem 2. A bisection V1, V2 exists with |e(V1, V2)| ≤ n for any 4-connected
planar graph G(V,E) with an odd number of vertices and such a bisection can
be obtained in polynomial time.

Proof. Let G(V,E) be a 4-connected planar graph with an odd number of ver-
tices. As noted earlier, we can assume that G is a maximal planar graph without
loss of generality. Lemma 2 assures that we can efficiently obtain a configura-
tion (G, u, c). We now examine all the k hamiltonian bisections of the config-
uration. By using Lemma 3 and Lemma 5 we know that at least one of the
hamiltonian bisections satisfies |e(V1, V2)| ≤ n. ��

References

1. Asano, T., Kikuchi, S., Saito, N.: A linear algorithm for finding hamiltonian cycles
in 4-connected maximal planar graphs. Discrete Applied Mathematics 7(1), 1–15
(1984)

2. Bazgan, C., Tuza, Z., Vanderpooten, D.: The satisfactory partition problem. Dis-
crete Appl. Math. 154, 1236–1245 (2006)

3. Bazgan, C., Tuza, Z., Vanderpooten, D.: Efficient algorithms for decomposing
graphs under degree constraints. Discrete Appl. Math. 155(8), 979–988 (2007)

4. Bazgan, C., Tuza, Z., Vanderpooten, D.: Satisfactory graph partition, variants, and
generalizations. European Journal of Operational Research 206(2), 271–280 (2010)

5. Chen, C.: Any maximal planar graph with only one separating triangle is hamil-
tonian. J. Comb. Optim. 7(1), 79–86 (2003)

6. Enciso, R.I.: Alliances in graphs: parameterized algorithms and on partitioning
series-parallel graphs. PhD thesis, University of Central Florida (2009)

7. Fan, G., Xu, B., Yu, X., Zhou, C.: Upper bounds on minimum balanced biparti-
tions. Discrete Mathematics 312(6), 1077–1083 (2012)

8. Flake, G., Lawrence, S., Lee Giles, C.: Efficient identification of web communities.
In: Proc. 6th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 150–160. ACM Press (2000)

9. Fricke, G.H., Lawson, L.M., Haynes, T.W., Hedetniemi, S.M., Hedetniemi, S.T.: A
note on defensive alliances in graphs. Bulletin ICA 38, 37–41 (2003)

10. Gerber, M.U., Kobler, D.: Classes of graphs that can be partitioned to satisfy all
their vertices. Australasian Journal of Combinatorics 29, 201–214 (2004)

11. Kristiansen, P., Hedetniemi, S.M., Hedetniemi, S.T.: Alliances in graphs. Journal
of Combinatorial Mathematics and Combinatorial Computing 48, 157–177 (2004)

12. Li, H., Liang, Y., Liu, M., Xu, B.: On minimum balanced bipartitions of triangle-
free graphs. Journal of Combinatorial Optimization, 1–10 (2012)

13. Sung, S.C., Dimitrov, D.: Computational complexity in additive hedonic games.
European Journal of Operational Research 203, 635–639 (2010)

14. Thomas, R., Yu, X.X.: 4-connected projective-planar graphs are hamiltonian. Jour-
nal of Combinatorial Theory, Series B 62(1), 114–132 (1994)

The Cyclical Scheduling Problem

Binay Bhattacharya1, Soudipta Chakraborty2,
Ehsan Iranmanesh1, and Ramesh Krishnamurti1

1 Simon Fraser University, Canada
{binay,iranmanesh,ramesh}@sfu.ca

2 Indian Institute of Technology, Kharagpur, India
soudipta.c@gmail.com

Abstract. We consider the (n−2, n) cyclical scheduling problem which
assigns a shift of n− 2 consecutive periods among a total of n periods to
workers. We solve this problem by solving a series of b-matching problems
on a cycle of n vertices. Each vertex has a capacity, and edges have costs
associated with them. The objective is to maximize the total cost of the
matching. The best known algorithm for this problem uses network flow,
which runs in O(n2 log n) on a cycle. We provide an O(n log n) algorithm
for this problem. Using this, we provide anO(n log n log nbmax) algorithm
for the (n−2, n) cyclical scheduling problem, where bmax is the maximum
capacity on a vertex.

1 Introduction

The cyclical scheduling problem is used to schedule shifts for workers in a factory.
Given a set of n work periods, each worker is assigned a shift where he works for
n−2 consecutive periods, and takes off the remaining 2 periods. Thus, for n = 7,
a typical shift may be to work from Monday to Friday and take off Saturday
and Sunday. Another shift may be to work from Friday to Tuesday and take off
Wednesday and Thursday (there are 7 such shifts in a week). Each shift may
also have a cost associated with it. In addition, the factory requires that a given
number of workers be available each period (this requirement may vary from
period to period). The objective is to assign a shift to each worker such that the
daily requirement is fulfilled and the total cost of the shifts is minimized. We
solve the cyclical scheduling problem by solving a series of b-matching problems.

Tibrewala et. al (1972) [7] provide an integer programming formulation for
the problem when all shift costs are equal. They also provide a simple algorithm
to solve the problem optimally. Bartholdi and Ratliff (1978) [3] solve the cyclical
scheduling problem by considering the complementary problem where given the
number of workers w in the factory, they maximize the number of workers who
are off for two consecutive periods. There is an upper bound on the number of
workers who are off during each period. The number of workers they start out
with, w, is adequate if the objective function value is at least as much as w. A
binary search procedure is used to find the minimum value for w such that w is
adequate.

S.K. Ghosh and T. Tokuyama (Eds.): WALCOM 2013, LNCS 7748, pp. 217–232, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

218 B. Bhattacharya et al.

Bartholdi et. al (1980) [4] extend this approach to the general (k, n) cyclic
scheduling problem, where there is a total of n periods, and each worker is
assigned a shift of k consecutive periods to work (and is off for the remaining
(n−k) periods). There is a cost associated with each shift, and the objective is to
minimize the total cost of shifts assigned to workers. They provide a parametric
solution to this general problem by solving a series of network flow problems, one
for each guess for the workforce size. In addition, they also provide a solution
using linear programming and roundoff. Using the above notation, we address
the (n−2, n) cyclic scheduling problem in this paper. Alfares (1998) [1] provides
computational results using linear programming for the (5, 7) cyclic scheduling
problem. Alfares (2003) [2] proposes an integer programming formulation for
the cyclic scheduling problem where each worker gets 3 days off each week, with
additional constraints, such as having at least 2 of the 3 off days consecutive. In a
more recent paper, Hochbaum and Levin (2006) [6] provide a quadratic algorithm
when all shift costs are equal. Hochbaum and Levin (2006) [5] generalize the
cyclical scheduling problem where each worker is assigned multiple shifts, where
each shift is a sequence of consecutive work periods followed by a sequence of off
periods. They show that this problem is NP-hard when there are two or more
such shifts, and propose approximation algorithms for the problem.

2 The b-Matching Formulation

We provide the formulation for the cyclical scheduling problem with n periods,
with each shift comprising n − 2 consecutive work periods and 2 off periods.
Shift si assigns off periods i and (i + 1) mod n and the remaining as working
periods. xi denotes the number of workers assigned to shift si and ci denotes
its cost. bi denotes the number of workers required to work during period i.
The total cost of the assignment is given by

∑n−1
i=0 cixi. The left hand side of

each constraint is the number of workers working on shift si, and is given by
x(i+2) mod n + x(i+3) mod n + · · · + x(i−1) mod n. This should be no less than
the requirement bi. Without loss of generality, we assume all index arithmetic is
done mod n in the formulations for Problem I and Problem II that follow:

Problem I

⎡
⎢⎢⎢⎢⎣
Minimize S =

n−1∑
i=0

cixi

s.t.
xi+2 + xi+3 + · · ·+ xi−1 ≥ bi ∀i, 0 ≤ i ≤ n− 1
xi ≥ 0 and integer ∀i, 0 ≤ i ≤ n− 1

The above can be reformulated as a b-matching problem. If w denotes the total
number of workers, the number of workers working on shift si during period i is
given by w − xi−1 − xi. Letting di = w − bi, each of the above inequalities can
be rewritten as xi−1 +xi ≤ di, where di denotes the number of workers that are
off during period i. We thus obtain the formulation for Problem II below, given
by Bartholdi and Ratliff (1978) [3]:

The Cyclical Scheduling Problem 219

Problem II

⎡
⎢⎢⎢⎢⎣
Maximize S =

n−1∑
i=0

cixi

s.t.
xi−1 + xi ≤ di ∀i, 0 ≤ i ≤ n− 1
xi ≥ 0 and integer ∀i, 0 ≤ i ≤ n− 1

The above formulation for Problem II can be visualised as a graph G = (V,E)
with vertex set V = {v0, v1, . . . , vn−1} and edge set E = {e0, e1, . . . , en−1},
where e0 = (v0, v1), e1 = (v1, v2), . . . , en−1 = (vn−1, v0), We associate capacities
d0, d1, . . . , dn−1 with the vertices v0, v1, . . . , vn−1 respectively.

We describe in this paper an algorithm based on augmenting paths to solve
the above problem. We start with an estimate for w, the total number of workers.
If w̄ =

∑n−1
i=0 xi < w, where w̄ is the optimal solution to Problem II, and w is

our estimate of the number of workers, then we revise this estimate upward. As
observed by Bartholdi and Ratliff (1978) [3], a binary search may be performed
to find the smallest value of w for which w̄ ≥ w. By solving Problem II for this
value of w, we obtain the optimal assignment of shifts to workers.

If w∗ is the optimal value of w returned by the binary search procedure, then
bmax ≤ w∗ ≤ min(

∑
bi, nbmax), where bmax = maxi{bi}. Bartholdi and Ratliff

(1978) [3] also prove the following inequalities for a particular value w = w′ and
its corresponding solution {xi}:

n−1∑
i=0

xi < w′ iff w′ < w∗ (1)

n−1∑
i=0

xi ≥ w′ iff w∗ ≤ w′ (2)

They then provide the following simple algorithm to find w∗.

Step 1. Restrict w∗ within the interval bmax ≤ w∗ ≤ min(
∑

bi, nbmax) where
w∗ is an integer.

Step 2. Perform binary search through this interval to locate w∗. At each itera-
tion w is fixed at a value w′, and the corresponding version of Problem
II is solved; then the optimal objective function value

∑
xi is compared

to w′ and checked using inequalities (1) and (2) to further restrict the
location of w∗ to w′ < w∗ or w∗ ≤ w′.

For the rest of the paper, we focus on an efficient solution to Problem II, the
b-matching problem. We provide an O(n log n) algorithm to solve the b-matching
problem. The solution to the b-matching problem may be used in conjunction
with the binary search procedure above to obtain a solution to the cyclical
scheduling problem (Problem I) in O(n(log n)(lognbmax)) time.

To describe the algorithm for the b-matching problem, we first define saturated
vertices, unsaturated vertices, alternating paths, and augmenting paths. All the
above definitions are with respect to a feasible solution x = {x0, x1, . . . , xn−1}.

220 B. Bhattacharya et al.

3 Definitions

Without loss of generality, all index arithmetic in the definitions below are done
mod n.

Definition 1. A vertex vi is saturated if xi−1 + xi = di. It is unsaturated
otherwise.

Definition 2. A path is a sequence of vertices and edges vi, ei = (vi, vi+1),
vi+1, . . . , ej−1 = (vj−1, vj), vj, where no vertex or edge is repeated. The length
of a path is the number of edges in it. Alternatively, the above path can also be
described as the reversed sequence of vertices and edges vj , ej−1 = (vj−1, vj),
. . . , vi+1, ei = (vi, vi+1), vi.

Definition 3. Alternating Path of Type I: The path from vi to vj (from vj
to vi) is an alternating path of Type I if the feasible solution x assigns a strictly
positive value to edges that occur at even positions, namely edges ei+1, ei+3, etc
(ej−2, ej−4, etc).

Definition 4. Alternating Path of Type II: The path from vi to vj (from
vj to vi) is an alternating path of Type II if the feasible solution x assigns a
strictly positive value to edges that occur at odd positions, namely edges ei, ei+2,
etc (ej−1, ej−3, etc).

Definition 5. Augmenting Path of Type I: An alternating path of Type I
from vi to vj (from vj to vi) is augmenting if it is of odd length, vertices vi and vj
are unsaturated, intermediate vertices are saturated, and

∑
e at odd position ce >∑

e at even position ce. An alternating path of Type I is augmenting if it is of even
length, vertex vi is unsaturated, vertices vi+1, vi+2, . . . , vj−1 are saturated, and∑

e at odd position ce >
∑

e at even position ce.

Definition 6. Augmenting Path of Type II: An alternating path of Type
II from vi to vj (from vj to vi) is augmenting if it is of odd length, all inter-
mediate vertices vi+1, vi+2, . . . , vj−1 are saturated, and

∑
e at even position ce >∑

e at odd position ce. An alternating path of Type II from vi to vj is augmenting if
it is of even length, all intermediate vertices vi+1, vi+2, . . . , vj−1 are saturated,
vertex vj is unsaturated, and

∑
e at even position ce >

∑
e at odd position ce.

We note that an even length augmenting path of Type I from vertex vi to vj
is also an even length augmenting path of Type II from vertex vj to vertex vi.
Also, an even length alternating path of Type I (Type II) may be augmenting
if it is considered from vi to vj , but may not be augmenting if it is considered
from vj to vi.

4 A Simple Augmentation Algorithm

In this section, we outline a simple augmentation algorithm to find the optimal
solution to the b-matching problem. The correctness of the algorithm may be

The Cyclical Scheduling Problem 221

shown by showing that the non-existence of an augmenting path (of either type)
with respect to a solution implies that the solution is optimal. We start with a
description of this simple algorithm that terminates when there are no augment-
ing paths. The description below does not specify how an augmenting path is
obtained, or what type of augmenting path is obtained.

Algorithm 1. Algorithm Simple Augmentation

1: Initialize xi = 0 for i = 0, 1, . . . , n− 1.
2: while there is an augmenting path do
3: Obtain an augmenting path p from vi to vj . For odd (even) length aug-

menting path of Type I, let δ = min{xe|e is even edge, di − xi, dj − xj}
(δ = min{xe|e is even edge, di − xi}). Augment solution by adding δ to
each odd edge, and subtracting δ from each even edge. For odd (even)
length augmenting path of Type II, let δ = min{xe|e is odd edge} (δ =
min{xe|e is odd edge, dj − xj}). Augment solution by subtracting δ from each
odd edge, and adding δ to each even edge.

4: end while

We now prove the correctness of the algorithm by showing that if there are
no augmenting paths with respect to a feasible solution x, then cx is the optimal
solution value.

Theorem 1. If there are no augmenting paths with respect to a feasible solution
x, then cx is maximum.

Proof. We prove by contradiction. Assume that cx is not optimal. Let x∗ be the
optimal solution. Let ei be an edge such that xi < x∗i (such an edge must exist).
We consider the following three cases:

Case 1: Vertices vi and vi+1 are not saturated with respect to x. This implies
the existence of an augmenting path (of Type I), which is a contradiction.

Case II: Either vertex vi or vertex vi+1 is saturated (the other is unsaturated).
Without loss of generality, let vi+1 be saturated (and vi be unsaturated). xi < x∗i
implies that xi+1 > x∗i+1. We now construct an even length augmenting path
of Type I which starts at unsaturated vertex vi goes through vertex vi+1, and
ends at vertex vi+2, leading to a contradiction. In other words, we can use this
augmenting path to construct a solution vector which is closer to the optimal
solution vector.

Case III: Both vertex vi and vertex vi+1 are saturated. xi < x∗i implies that
xi+1 > x∗i+1 and xi−1 > x∗i−1. In this case, we construct an odd length augment-
ing path of Type II which starts at vertex vi−1, goes through vertices vi and
vi+1, and ends at vertex vi+2. Again this leads to a contradiction.

To derive an efficient algorithm for the b-matching problem, we next derive
some properties of augmenting paths. In the next section, we present a modified
algorithm for the b-matching problem. This algorithm chooses at each stage an
augmenting path of largest cost. We show that such an augmenting path is an
odd length augmenting path of Type I.

222 B. Bhattacharya et al.

5 Properties of Augmenting Paths

Given any augmenting path p of Type I from vertex vi to vertex vj , edges at
odd position are called plus edges, and edges at even positions are called minus
edges. Similarly, given any augmenting path p of Type II from vertex vi to vertex
vj , edges at even position are called plus edges, and edges at odd positions are
called minus edges. The cost of an augmenting path p, denoted c(p) is given by∑

e is a plus edge ce −
∑

e is a minus edge ce. Note that our objective is to maximize
the total cost of the matching, and therefore using an augmenting path p with
cost c(p) to modify the matching increases the objective function value by c(p).
We now describe a modified algorithm which at each stage chooses only an
augmenting path which has the largest cost.

Algorithm 2. Algorithm Large-cost Augmentation

1: Initialize xi = 0 for i = 0, 1, . . . , n− 1.
2: while there is an augmenting path do
3: Search for an augmenting path p with the largest cost. Let path p start at vertex

vi and end at vertex vj . p is an odd length augmenting path of Type I. Let
δ = min{xe|e is odd edge, di − xi, dj − xj}. Augment solution by adding δ to
each odd edge, and subtracting δ from each even edge.

4: end while

We will now show that an augmenting path of largest cost is always an odd
length augmenting path of Type I. In Lemma 1 below, we show that at any
stage of Algorithm Large-cost Augmentation, an augmenting path of largest
cost cannot be an even length augmenting path (either of Type I or of Type II).

Lemma 1. At any stage of Algorithm Large-cost Augmentation, an even length
augmenting path (either of Type I or of Type II) cannot have the largest cost.

Proof. We provide a proof by induction.

Base Case:
We show by contradiction that a path of length 2 cannot have the largest cost.
Without loss of generality, let the path start at vertex vi and end at vertex
vi+2, and go through vertex vi+1. Also, let ci > ci+1. Its existence implies that
xi+1 > 0. Since vertex vi+1 is saturated, the edge ei+1 must have been augmented
in an earlier iteration, which is a contradiction given that edge ei has higher cost
and would have been augmented before edge ei+1 gets augmented. Also, the even
length augmenting path would not exist because edge ei would get augmented
until either vertex vi or vertex vi+1 get saturated.

Induction Hypothesis:
There are no even length augmenting paths of length at most k.

Induction Step:
Consider an even length augmenting path p of Type I with length k + 1 from
vertex vi to vertex vj . Path p arose because an odd length augmenting path p1 of

The Cyclical Scheduling Problem 223

Type I from vertex vj to an intermediate vertex vl was augmented in an earlier
iteration. In addition, the cost of odd length path p2 from vertex vi to vertex vl
exceeds the cost of path p1 from vertex vl to vertex vj (otherwise the composite
path p cannot be augmenting). This is a contradiction since path p2 from vertex
vi to vertex vl would get augmented until either vi or vl get saturated, or a
minus edge in path p2 gets empty. In each of the above cases, the even length
path p would not exist.

In Lemma 2 below, we show that at any stage of Algorithm Large-cost Augmen-
tation, an augmenting path of largest cost cannot be an odd length augmenting
path of Type II.

Lemma 2. At any stage of Algorithm Large-cost Augmentation, an odd length
augmenting path of Type II cannot have the largest cost.

Proof. We provide a proof by induction.

Base Case:
We show by contradiction that an odd length augmenting path of Type II with
length 3 cannot have the largest cost. Without loss of generality, let the path
start at vertex vi and end at vertex vi+3, and go through vertices vi+1 and
vi+2. Also, let ci+1 > ci + ci+2. Its existence implies that xi > 0 and xi+2 > 0.
Since vertices vi and vi+3 are saturated, the edges ei and ei+2 must have been
augmented in earlier iterations, which is a contradiction given that edge ei+1

has higher cost and would have been augmented before edges ei and ei+2 get
augmented. Also, the odd length augmenting path would not exist because edge
ei+1 would get augmented until either one or both of vertices vi+1 and vi+2 get
saturated. If vi+1 gets saturated, then xi = 0 and if vi+3 gets saturated, then
xi+2 = 0. In either case, the odd length augmenting path of Type II from vertex
vi to vi+2 would not exist.

Induction Hypothesis:
There are no odd length augmenting paths of Type II of length k or less.

Induction Step:
Consider an odd length augmenting path p of Type II with length k+1. Without
loss of generality, let the path start at vertex vi and end at vertex vl. Its existence
implies that odd length subpaths p1 of Type I from vi to an intermediate vertex
vj and p3 from vertex vl to an intermediate vertex vk were augmented in earlier
iterations. In addition, the cost of subpath p2 from intermediate vertex vj to
intermediate vertex vk exceeds the costs of subpaths p1 and p3. Thus, subpath
p2 would get augmented before subpaths p1 and p3. Also, subpath p2 would get
augmented until either one or both of vertices vj and vk get saturated, or a
minus edge gets empty. If vertex vj gets saturated, then subpath p1 would not
get augmented and if vertex vk gets saturated, then subpath p3 would not get
augmented. In either of these two cases, or in the case when a minus edge gets
empty, the odd length augmenting path of Type II from vertex vi to vertex vl
would not exist.

224 B. Bhattacharya et al.

We are now ready to show that the total number of augmentations is O(n).
Intuitively, each time an augmentation occurs, either one or both of the end
vertices get saturated (and stay saturated after that), or one or more even edges
(between saturated vertices) get empty. These even edges participate as minus
edges in the augmentation. These edges either stay empty for the duration of
the algorithm, or participate at least once as an odd edge (as a plus edge) after
getting empty. However, to participate as a plus edge, the augmenting path has
to get longer, which implies that at least one of the end vertices of the earlier
augmenting path is saturated. In either case, we either run out of vertices, or
run out of edges.

Theorem 2. The total number of augmentations is O(n).

Proof. We keep a count of the number of saturated vertices in the graph in
saturatedv. We also count the number of augmentations which empty one or
more edges in an augmenting path in emptye.

Note that because we use odd length augmenting paths of Type I, once a
vertex gets saturated, it stays saturated for the duration of the algorithm. These
vertices are intermediate vertices in an augmenting path, and continue to be sat-
urated after the augmentation. Thus the variable saturatedv is a monotonically
increasing integer in the range [0, n]. (n is the total number of vertices.)

The variable emptye keeps a count of the number of augmentations that empty
one or more edges in a path. Each time the empty edge (or edges) in an augment-
ing path p1 get augmented as a plus edge (plus edges) in a later augmentation,
the variable emptye gets decremented. But this must be preceded by at least one
of the two unsaturated vertices in the earlier augmentation p1 getting saturated
(and staying saturated for the duration of the algorithm).

It is easy to see that the variable emptye is bounded from above by m (the
number of edges) because if all edges (between saturated vertices) get empty
then there can be no augmenting paths. Also, the net decrease in counte is
no more than n because each decrease results in an increase in countv, whose
upper bound is n. From this it follows that the total number of augmentations
is O(m + n) = O(2n) = O(n).

We are now ready to present the main result of the paper. We will show in the
next section that a max-heap data structure, as well as a balanced binary tree
may be used to extract the largest cost augmenting path, as well as construct
the solution in O(log n) time at each stage. We also show that there are at most
O(n) stages for the algorithm. This gives us an O(n log n) algorithm for the
b-matching problem.

6 An Efficient Algorithm

We now show that we can extract the augmenting path of largest cost by main-
taining all even and odd length augmenting paths of Type I in a max-heap data

The Cyclical Scheduling Problem 225

structure (however the largest cost ones will only be odd length augmenting
paths of Type I). After extracting such a path, we use a balanced binary tree
to determine the extent to which we can augment the path, as well as maintain
the solution. Both these operations can be done in O(log n) time. We provide
an informal description of the algorithm below.

6.1 Informal Description

The algorithm starts with an initial solution xi = 0, i = 1, 2, . . . n − 1. Corre-
sponding to this solution, there are at most n augmenting paths of Type I. Note
that each augmenting path is between successive pairs of unsaturated vertices.
We insert these paths into a max-heap. Each path is represented as an interval
(li, ri) where li is the left unsaturated vertex, and ri is the right unsaturated
vertex (in the clockwise direction). Also associated with each interval is its cost
(the key), and two pointers or indices (left and right neighbor pointers): one
an index to the location of its left adjacent neighbor interval (left with respect
to the actual cyclic graph) and the other an index to its right adjacent neigh-
bor interval. We start by storing each interval in the heap-array in the order
they occur in the instance. We then call heapify to maintain the heap struc-
ture. Each time an interval is placed in the proper position in the heap-array
during heapify, we go to its left (right) neighbor pointer (using the index to
reach the left adjacent interval in the heap-array) and modify the index of its
right (left) neighbor pointer, reflecting the current position of the interval in the
heap-array. This takes at most O(n log n) time. The above procedure is called
Heap-Build.

As long as an augmenting path exists, Algorithm Efficient Large-cost Aug-
mentation picks the augmenting path of largest cost from the max-heap using
procedure Heap-Extract. This takes O(1) time. Heap-Extract returns (li, ri), the
interval corresponding to the largest augmenting path. This interval is given as
input to Algorithm Augment-Interval. Algorithm Augment-Interval keeps track
of the saturated and unsaturated vertices, as well as the current solution. Algo-
rithm Augment-Interval returns an integer corresponding to the extent to which
the path (li, ri) can be augmented, as well as a vector of three elements, denoting
which of the following (not necessarily exclusive) events occur on augmentation:
left vertex gets saturated, right vertex gets saturated, one or more edges in the
even position gets empty. Algorithm Augment-Interval runs in O(log n) time
each time it is called. This is discussed in Section 7.

Next, we call procedure Heap-Adjust with the output of Algorithm Augment-
Interval as its input. If the output of Algorithm Augment-Interval denotes that
the left interval is saturated after augmentation, then the interval (li, ri) as
well as its left adjacent interval (li−1, ri−1) (note that li = ri−1) are removed
from the heap-array, and a new interval (li−1, ri) is inserted into the heap-array.
Note that the above operation corresponds to a merging of the two intervals.
Similarly, if the output of Algorithm Augment-Interval denotes that the right
interval is saturated after augmentation, then the interval (li, ri) as well as its

226 B. Bhattacharya et al.

right adjacent interval (li+1, ri+1) (note that ri = li+1) are removed from the
heap-array, and a new interval (li, ri+1) is inserted into the heap-array. If both
the left and the right intervals are saturated, then interval (li, ri) as well its left
and right adjacent interval are removed from the heap-array, and a new interval
(li−1, ri+1) corresponding to a merging of all three intervals is inserted. Finally,
if one or more edges get empty, then the newly inserted interval is removed from
the heap-array and inserted into the bottom of the heap-array. The left and
right neighbor pointers of its adjacent intervals, as well as its own left and right
neighbor pointers are also suitably updated to reflect its new position. All this
takes O(log n) time.

The pseudocode for Algorithm Efficient Large-cost Augmentation is given in
the Appendix.

6.2 Running Time of Algorithm Efficient Large-Cost Augmentation

We now show that the running time of Algorithm Efficient Large-cost Augmen-
tation is O(n logn).

Theorem 3. Algorithm Efficient Large-cost Augmentation runs in time
O(n log n).

Proof. The initialization for Algorithm Efficient Large-cost Augmentation takes
time at most O(n logn), determined by Heap-Build in Statement 8. Initializing
capacity-tree for Algorithm Augment-Interval takes O(n) time. Algorithm Ef-
ficient Large-cost Augmentation executes Statement 10 through Statement 33
repeatedly until a maximum cost augmenting path has cost 0 (until there is
no augmenting path). From Theorem 2, it follows that there are at most O(n)
augmentations. We will now determine the time for each statement in this loop
which runs O(n) times. Statement 10 takes O(1) time. Statement 10 calls Al-
gorithm Augment-Interval which takes O(log n) time (Lemma 3). Statements
12 through 23 perform Heap-Extract which takes O(log n) time. Statements 24
through 28 perform Heap-Insert which takes (O logn) time. Thus, Algorithm
Efficient Large-cost Augmentation runs in O(n logn) time.

7 Details of Algorithm Augment-Interval

In the next subsection we provide an informal description of Algorithm Augment-
Interval. Recall that the input to Algorithm Augment-Interval is an interval, and
its output is the vector (left vertex, right vertex, edge empty, cost zero).

7.1 Informal Description

We construct a balanced binary tree where the leaf nodes represent the edges.
Any internal node u represents an interval [vi, vj] and the edges it spans are either

The Cyclical Scheduling Problem 227

{(vi, vi+1), (vi+1, vi+2), ...(vj−1, vj)} or {(vi, vi−1), (vi−1, vi−2), . . . (vj+1, vj)}.
Initially, every leaf edge e is assigned the capacity 0. This corresponds to the
initial solution of Algorithm Efficient Large-cost Augmentation. Every internal
node, such as u, stores a 3-tuple {meven(u),modd(u), offset}. meven(u) is the
bottleneck when the leftmost edge in subtree Tu is an even edge, modd(u) is the
bottleneck when the leftmost edge in subtree Tu is an odd edge , and the offset
keeps how much we add or subtract to the leftmost edge of Tu in each augmen-
tation. Obviously each leaf has a value only for modd and offset (corresponding
to a path of length 1). Before we consider the effect of any augmenting path on
the capacities assigned to the edges, note that the initial information stored at
each internal node can be computed in O(n) time.

Moreover, any query range [vk, vk′] can be represented by the union of O(log n)
sub-ranges where each sub-range is represented by a subtree of the balanced
binary tree built on the edges. The subranges are called canonical subranges of
[vk, vk′] and the subtrees are call canonical subtrees. For any canonical subtree
Tu spanning [vi, vj], the first leaf edge is an odd edge. Consider what happens
when Algorithm Augment-Interval is called with an augmenting path P from vk
to vk′ . We need to find the minimum capacity assigned to the even edges of P .
We denote this value by te(P). This can be found in O(log n) time as follows:
modd(u) (meven(u)) is with respect to the edges of Tu where the leftmost edge
is considered to be an odd (even) edge. However, with respect to P , the first
edge of Tu could be an even edge. We need to find for each canonical subtree
Tu whether the first edge is an odd edge or an even edge with respect to P.
After that the minimum of the capacities of all the even edges needs to be
computed.

We also need to find the amount by which the first edge and the last edge
may be augmented. These are denoted by tf (P) and tl(P) respectively. Let t(P)
be the minimum of te(P), tf (P), tl(P). Our updating step must decrease the
capacity assigned to each of the even edges by t(P) and increase the capacity
assigned to each of the odd edges by t(P). We update the values stored at the
root node ui (the root of Ti) for each subtree Ti, i = 1, 2, ...,m. We also up-
date the values of the nodes along the path from the root node ui of Ti for
each i, to the root node of the entire tree. The updating steps can be imple-
mented in O(log n) time. After the updates, each internal node maintains the
correct minimum capacity information of the edges in its subtrees. For each
subtree Ti, if its leftmost edge is an even edge of the augmenting path P , we
add −t(p) to the offset value stored at its root. But if its leftmost edge is an
odd edge of augmenting path P , we add t(p) to the offset value stored at its
root.

Consider another augmenting path P ′ = [va, vb] and a canonical subtree Tu′

of [va, vb]. Suppose that Tu′ is contained in Tui , a canonical subtree of [vk, vk′].
In order to determine t(P ′), we need to compute the minimum capacity of the
edges in Tu′ that takes into consideration the increase/decrease of the capacity
due to P . This is easily done by traversing the path from u′ to the root of the
tree. When visiting ui, which lies along the path, t(P) is increased or decreased

228 B. Bhattacharya et al.

depending on whether the minimum edge is an odd or an even edge of P ′.
This way we can compute t(P ′) in O(log n) time also. After that we update the
O(log n) canonical subtrees contained by the interval [va, vb] in a similar fashion
as described before. The value t(P) is either added to (or subtracted from) the
current offset of u′. Therefore, we can handle each augmenting path in O(log n)
time.

Lemma 3. For each augmenting path, the algorithm Augment-Interval takes
O(log n) time.

Proof. Since any augmenting path [vi, vj] can be represented by the union of
O(log n) canonical subtrees, te([vi, vj]) can be obtained in O(log n) (taking the
minimum of O(log n) values corresponding to each canonical subtree). To com-
pute tf ([vi, vj]) and tl([vi, vj]), we have to start from a leaf and traverse the tree
to the root which is also O(log n). Then, the entire process takes
O(log n).

The pseudocode for Algorithm Augment-Interval, as well as an example to illus-
trate its details are provided in the Appendix.

8 Conclusion

We provide an O(n log n) algorithm for the b-matching problem on a cycle. The
solution to this problem may be used to solve the (n − 2, n) cyclic scheduling
problem in O(n(log n)(lognbmax) time. An interesting open problem would be
to provide a strongly polynomial algorithm for the (n − 3, n) cyclic scheduling
problem, or more generally, the (k, n) cyclic scheduling problem efficiently. One
way to accomplish this is to adapt Megiddos parametric search for the b-matching
problem on a hypergraph.

Acknowledgments. The authors would like to thank the anonymous reviewers
for their useful comments and suggestions.

References

1. Alfares, H.K.: An efficient two-phase algorithm for cyclic days-off scheduling. Com-
puters and Operations Research 25, 913–923 (1998)

2. Alfares, H.K.: Flexible 4-day workweek scheduling with weekend work frequency
constraints. Computers and Industrial Engineering 44, 325–338 (2003)

3. Bartholdi III, J.J., Ratliff, H.D.: Unnetworks with applications to idle time schedul-
ing. Management Science 24(8), 850–858 (1978)

4. Bartholdi, J.J., Orlin, J.B., Ratliff, H.D.: Cyclic scheduling via integer programs
with circular ones. Operations Research 28(5), 1074–1085 (1980)

5. Hochbaum, D.S., Levin, A.: Cyclical scheduling and multi-shift scheduling: com-
plexity and approximation algorithms. Discrete Optimization 3, 327–340 (2006)

The Cyclical Scheduling Problem 229

6. Hochbaum, D.S., Levin, A.: Optimizing over Consecutive 1’s and Circular 1’s Con-
straints. SIAM Journal on Optimization 17(2), 311–330 (2006)

7. Tibrewala, R., Phillippe, D., Browne, J.: Optimal scheduling of two consecutive idle
periods. Management Science 19(1), 71–75 (1972)

A Appendix

A.1 Pseudocode and Example for Algorithm Efficient Large-Cost
and Algorithm Augment-Interval

Example 1. We provide an example for Algorithm Augment-Interval when n =
7. We show how the values in the leaves and internal nodes change after each
augmentation. The vector of capacities for vertices is {v0, v1, v2, v3, v4, v5, v6} =
{2, 5, 3, 9, 10, 14, 5}. Figure 1 shows the initial values of each node in the tree.
The first augmenting path is {v4, v5} and the the leaf corresponding to the edge
e4 is the only subtree of this augmenting path. Here, we only have to consider the
values for tf ({v4, v5}) and tl({v4, v5}) which are 10 and 14 respectively. There-
fore, 10 is the bottleneck for this path. We also add 10 to the current offset value
in the leaf corresponding to e4 and increase the modd value by 10. All the nodes
along the path from the leaf to the root node of the entire tree are also updated
(Figure 2). {v6, v0}, {v5, v6}, and {v1, v2} are the next 3 augmenting paths. Find-
ing their bottlenecks and performing the updating is similar to {v4, v5}. Figures
3,4,5 show the tree after each augmentation. The next augmenting path which
is depicted in Figure 6 is {v1, v0, v6, v5}. The subtrees for this path are T1, T2.
The leftmost edge in subtree T1, namely e6, is an even edge with respect to this
path, so meven = 2 is selected in this subtree. Then we have te = 2 , tf = 2 , and
tl = 1. Therefore the bottleneck is 1 for this path. We have to decrease 1 from
meven in both T1 and T2 (here only T1 since there is no such value for leaves in
the tree) and add 1 to modd. Since we decrease from the leftmost edge in subtree
T1, its offset value is decreased by one. The offset value in subtree T2 is increased
by 1 as we add to its leftmost edge . The next path is {v1, v0, v6, v5, v4, v3}. The
bottleneck for this path is 1 (Figure 7).

(0, 0, 0)

(0, 0, 0)

(0, 0, 0)

(∗,0,0)
e0

(∗,0,0)
e1

(0, 0, 0)

(∗,0,0)
e2

(∗,0,0)
e3

(0, 0, 0)

(0, 0, 0)

(∗,0,0)
e4

(∗,0,0)
e5

(0, 0, 0)

(∗,0,0)
e6

(∗,0,0)
e0

Fig. 1. initial state

(0, 0, 0)

(0, 0, 0)

(0, 0, 0)

(∗,0,0)
e0

(∗,0,0)
e1

(0, 0, 0)

(∗,0,0)
e2

(∗,0,0)
e3

(0, 0, 0)

(0, 10, 0)

(∗,10,10)
e4

(∗,0,0)
e5

(0, 0, 0)

(∗,0,0)
e6

(∗,0,0)
e0

Fig. 2. path e4 = {v4, v5}

230 B. Bhattacharya et al.

(0, 0, 0)

(0, 0, 0)

(0, 0, 0)

(∗,0,0)
e0

(∗,0,0)
e1

(0, 0, 0)

(∗,0,0)
e2

(∗,0,0)
e3

(0, 0, 0)

(0, 10, 0)

(∗,10,10)
e4

(∗,0,0)
e5

(0, 2, 0)

(∗,2,2)
e6

(∗,0,0)
e0

Fig. 3. path e6 = {v6, v0}

(0, 0, 0)

(0, 0, 0)

(0, 0, 0)

(∗,0,0)
e0

(∗,0,0)
e1

(0, 0, 0)

(∗,0,0)
e2

(∗,0,0)
e3

(0, 2, 0)

(3, 10, 0)

(∗,10,10)
e4

(∗,3,3)
e5

(0, 2, 0)

(∗,2,2)
e6

(∗,0,0)
e0

Fig. 4. path e5 = {v5, v6}

(0, 0, 0)

(0, 0, 0)

(3, 0, 0)

(∗,0,0)
e0

(∗,3,0)
e1

(0, 0, 0)

(∗,0,0)
e2

(∗,0,0)
e3

(0, 2, 0)

(3, 10, 0)

(∗,10,10)
e4

(∗,3,3)
e5

(0, 2, 0)

(∗,2,2)
e6

(∗,0,0)
e0

Fig. 5. path e1 = {v1, v2}

(0, 0, 0)

(0, 0, 0)

(3, 0, 0)

(∗,0,0)
e0

(∗,3,0)
e1

(0, 0, 0)

(∗,0,0)
e2

(∗,0,0)
e3

(1, 1, 0)

(4, 10, 0)

(∗,10,10)
e4

(T2)(∗,4,4)
e5

(1, 1,−1)(T1)

(∗,2,2)
e6

(∗,0,0)
e0

Fig. 6. path {e0, e6, e5} = {v1, v0, v6, v5}

(0, 0, 0)

(1, 0, 0)

(3, 0, 0)

(∗,0,0)
e0

(∗,3,0)
e1

(1, 0, 0)

(∗,0,0)
e2

(∗,1,1)
e3

(0, 2,−1)

(4, 10, 0)

(∗,10,10)
e4

(∗,4,4)
e5

(1, 1,−1)

(∗,2,2)
e6

(∗,0,0)
e0

Fig. 7. path {e0, e6, e5, e4, e3} = {v1, v0, v6, v5, v4, v3}

The Cyclical Scheduling Problem 231

Algorithm 3. Algorithm Efficient Large-cost Augmentation
1: Initialize xi = 0 for i = 0, 1, . . . , n − 1 {the solution is initialized}
2: for i = 0 to n do

3: heap − array[i].int = (vi−1, vi)

4: heap − array[i].cost = ci
5: heap − array[i].left = (vi−2, vi−1)

6: heap − array[i].right = (vi, vi+1)

7: end for

{heap-array is initialized}
8: Heap-Build(heap-array)

{heap-array is sorted in decreasing order of cost of intervals. when an interval is moved during

the sorting, the right and left pointers of its left and right intervals are changed to reflect its

new position.}
9: Initialize capacity-tree {capacity-tree is a balanced binary tree used by Algorithm Augment-

Interval}
10: max cost int = max(heap-array)

{the maximum cost interval is returned and stored in max cost int}
11: (left vertex,right vertex,edge empty,cost zero) = Augment-Interval(max cost int)

{Algorithm Augment-Interval augments the path by the maximum extent possible Algorithm

Augment-Interval also modifies the solution and returns whether the left end vertex and or the

right end vertex get saturated and or one or more minus edges get empty}
12: if l = true then

13: left int = Heap-Extract(max cost int(left))

14: int = merge(left int, max cost int)

{the left interval of max cost int is removed from heap-array and merged with interval

max cost int}
15: cost = left int.cost + max cost int.cost

{cost of new interval is computed}
16: else

17: int = max cost int;

{if l = false, int is max cost int}
18: end if

19: if r = true then

20: right int = Heap-Extract(max cost int(right))

21: int = merge(right int, int)

{the right interval of max cost int is removed from heap-array and merged with interval

max cost int}
22: cost = right int.cost + int.cost

{cost of new interval is computed}
23: end if

24: if e = true then

25: interval int is placed at the bottom of heap-array

{interval int is inserted into the bottom of heap-array}
26: else

27: Heap-Insert(int)

{or in sorted order in both cases, the left and right pointers of its left and right intervals are

adjusted to reflect its current position}
28: end if

29: if cost zero = true then

30: stop

31: else

32: go to step 9

33: end if

{If Algorithm Augment-Interval returns cost of interval is zero then stop else continue }

232 B. Bhattacharya et al.

Algorithm 4. Algorithm Augment-Interval

1: Input: A path [vi, vj]
2: left vertex, right vertex, edge empty = false
3: Find all the canonical subtrees T1, T2, ..., Tm of path [vi, vj]
4: for i ← 1 to m do
5: check if the leftmost edge in Ti is located in even or odd position with respect

to path [vi, vj]
6: if the leftmost edge in Ti is located in even position then
7: minimum even edge[i] ← meven(i)
8: else
9: minimum even edge[i] ← modd(i)
10: end if
11: end for
12: te([vi, vj]) ← min(minimum even edge)
13: tf ([vi, vj]) ← maximum amount that can be added to the leftmost edge

{ We start from the leaf nodes corresponding to (vi−1, vi) and (vi, vi+1), traverse
the tree to the root and update the amounts according to the offsets stored on the
nodes along the paths}

14: tl([vi, vj]) ← maximum amount that can be added to the rightmost edge
{similar to tf procedure}

15: bottleneck ← min(te([vi, vj]), tf ([vi, vj]), tl([vi, vj]))
16: Update the offset value for each T1, T2, ..., Tm

{if the leftmost edge in Tu is in even position according to the path (vi, vj), subtract
the bottleneck from the offset in Tu, otherwise add the bottleneck to the offset}

17: Update the values {meven(u),modd(u)} for each T1, T2, ..., Tm and also update these
values in each node along the path from root node ui of Ti to the root of the entire
tree for each subtree
{if the leftmost edge in subtree Tu is in even position according to path (vi, vj),
subtract the bottleneck from meven(u) and add the bottleneck to modd(u), but
if the leftmost edge in subtree Tu is in odd position , subtract the bottleneck from
modd(u) and add the bottleneck to meven(u) }

18: if bottleneck = te([vi, vj]) then
19: edge empty = true
20: end if
21: if bottleneck = tf ([vi, vj]) then
22: left vertex = true
23: end if
24: if bottleneck = tl([vi, vj]) then
25: right vertex = true
26: end if
27: Output: {left vertex, right vertex, edge empty, bottleneck}

Generalized Rainbow Connectivity of Graphs�

Kei Uchizawa1, Takanori Aoki2, Takehiro Ito2, and Xiao Zhou2

1 Graduate School of Science and Engineering, Yamagata University,
Jonan 4-3-16, Yonezawa-shi, Yamagata 992-8510, Japan

uchizawa@yz.yamagata-u.ac.jp
2 Graduate School of Information Sciences, Tohoku University,

Aoba-yama 6-6-05, Sendai, Miyagi 980-8579, Japan
{takanori,takehiro,zhou}@ecei.tohoku.ac.jp

Abstract. Let C = {c1, c2, . . . , ck} be a set of k colors, and let � =
(�1, �2, . . . , �k) be a k-tuple of nonnegative integers �1, �2, . . . , �k. For a
graph G = (V,E), let f : E → C be an edge-coloring of G in which two
adjacent edges may have the same color. Then, the graph G edge-colored
by f is �-rainbow connected if every two vertices of G have a path P such
that the number of edges in P that are colored with cj is at most �j for
each index j ∈ {1, 2, . . . , k}. Given a k-tuple � and an edge-colored graph,
we study the problem of determining whether the edge-colored graph is
�-rainbow connected. In this paper, we characterize the computational
complexity of the problem with regards to certain graph classes: the
problem is NP-complete even for cacti, while is solvable in polynomial
time for trees. We then give an FPT algorithm for general graphs when
parameterized by both k and �max = max{�j | 1 ≤ j ≤ k}.

1 Introduction

Graph connectivity is one of the most fundamental graph-theoretic properties.
In the literature, several measures for graph connectivity have been studied, such
as requiring hamiltonicity, edge-disjoint spanning trees, or edge- or vertex-cuts
of sufficiently large size. Recently, there has been some interest in studying prob-
lems on colored graphs, due to their applications in areas such as computational
biology, transportation and telecommunications [9]. In this paper, we general-
ize an interesting concept of graph connectivity on colored graphs, called the
rainbow connectivity, which was introduced by Chartrand et al. [6] and has been
extensively studied in the literature [2, 4–8, 11, 12].

Let G = (V,E) be a graph with vertex set V and edge set E; we often
denote by V (G) the vertex set of G and by E(G) the edge set of G. Let C =
{c1, c2, . . . , ck} be a set of k colors, and let � = (�1, �2, . . . , �k) be a k-tuple of
nonnegative integers �1, �2, . . . , �k. Consider a mapping f : E → C, called an
edge-coloring of G. Note that f is not necessarily a proper edge-coloring, that is,
f may assign a same color to two adjacent edges. We denote by G(f) the graphG

� This work is partially supported by JSPS KAKENHI Grant Numbers 22700001,
23500001 and 23700003.

S.K. Ghosh and T. Tokuyama (Eds.): WALCOM 2013, LNCS 7748, pp. 233–244, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

234 K. Uchizawa et al.

c1

c1

c1 c1

c2

c2
c2

c3

c3

c3

Fig. 1. An �-rainbow connected graph, where � = (1, 3, 2)

edge-colored by f . Then, a path P in G(f) connecting two vertices u and v in V
is called an �-rainbow path between u and v if the number of edges in P that are
colored with cj is at most �j for every index j ∈ {1, 2, . . . , k}. The edge-colored
graph G(f) is �-rainbow connected if G(f) has an �-rainbow path between every
two vertices in V . Note that these �-rainbow paths are not necessarily edge-
disjoint for pairs of vertices. For example, the edge-colored graph G(f) in Fig. 1
is �-rainbow connected for � = (1, 3, 2).

The concept of �-rainbow connectivity was originally introduced by Chartrand
et al. [6] for the special case where � = (1, 1, . . . , 1). Chakraborty et al. [4] de-
fined the rainbow connectivity problem which asks whether a given edge-
colored graph is (1, 1, . . . , 1)-rainbow connected, and showed that the problem is
NP-complete in general. Then, Uchizawa et al. [12] characterized the computa-
tional complexity of the problem with regards to certain graph classes, and also
settled it with regards to graphdiameters. (Remember that the diameter of a graph
G is the maximum number of edges in a shortest path between any two vertices
in G.)

In this paper, we introduce and study the generalized problem, defined as fol-
lows: Given a k-tuple � and an edge-coloring f of a graph G, the generalized

rainbow connectivity problem is to determine whetherG(f) is �-rainbow con-
nected. Thus, (ordinary) rainbow connectivity is a specialization of gener-
alized rainbow connectivity. We first give precise complexity analyses for
generalized rainbow connectivitywith regards to certain graph classes.We
then give an FPT algorithm for the problem on general graphs when parameter-
ized by both k = |C| and �max = max{�j | 1 ≤ j ≤ k}. Below we explain our
results more precisely, together with comparisons with known results [12].

[Graph classes]
From the viewpoint of graph classes, we clarify a boundary on graph classes be-
tween tractability and NP-completeness: generalized rainbow connectiv-

ity is NP-complete even for cacti, while there is a polynomial-time algorithm
for trees. Note that trees and cacti are very close to each other in the following
sense: trees form a graph class which is a subclass of cacti, and the treewidth of
cacti is two [3]. It is remarkable that the boundary is different from the known
one for rainbow connectivity [12]: it is NP-complete for outerplanar graphs,
and is solvable in polynomial time for cacti. Therefore, the NP-complete proof
given by [12] does not imply our result. We also remark that our polynomial-time
algorithm for trees is always faster than a naive one, as discussed in Section 3.1.

Generalized Rainbow Connectivity of Graphs 235

[FPT algorithm]
In Section 3.2, we give an algorithm which solves generalized rainbow con-

nectivity for general graphs in time O(k2k�maxmn) usingO
(
kn2k�max log(�max+

1)
)
space, where n and m are the numbers of vertices and edges in a graph,

respectively. Therefore, the problem can be solved in polynomial time for the
following two cases: (a) k = O(log n) and �max is a fixed constant; and (b) k
is a fixed constant and �max = O(log n). We remark that our FPT algorithm
generalizes the known one [12]: the same running time and space complexity of
the known FPT algorithm for rainbow connectivity [12] can be obtained
from our result as the special case where �max = 1.

2 NP-Completeness for Cacti

A graphG is a cactus if every edge is part of at most one cycle in G [3]. (See Fig. 2
as an example of cacti.) The main result of this section is the following theorem.

Theorem 1. Generalized rainbow connectivity is NP-complete even for
cacti and � = (2, 2, . . . , 2).

Let G(f) be a given edge-colored graph. We can clearly cheek in polynomial
time whether a given path inG(f) is an �-rainbow path, and hence generalized
rainbow connectivity belongs to NP. We below show that the problem is NP-
hard even for cacti and � = (2, 2, . . . , 2) by a reduction from the 3-occurrence
3SAT problem defined as follows: Given a 3CNF formula φ such that each
variable appears at most three times in φ, determine whether φ is satisfiable.
3-occurrence 3SAT is known to be NP-complete [10].

Suppose that the formula φ consists of n variables x1, x2, . . . , xn andm clauses
C1, C2, . . . , Cm. Without loss of generality, we can assume that any literal of a
variable xi, 1 ≤ i ≤ n, appears at most twice in φ; otherwise, φ contains only
positive (or negative) literals of xi, and hence we can safely fix its assignment. In
what follows, we construct a cactus Gφ, an edge-coloring fφ of Gφ and a k-tuple
� = (2, 2, . . . , 2), as a corresponding instance. We then prove that φ is satisfiable
if and only if the edge-colored graph Gφ(fφ) is �-rainbow connected.

[Graph Gφ]
We first construct a gadget Gj for each clause Cj , 1 ≤ j ≤ m, as follows: Gj

is a cycle consisting of four vertices pj , uj, p
′
j , u

′
j embedded in clockwise order

Fig. 2. Cactus G

236 K. Uchizawa et al.

Fig. 3. (a) Gadget Gj for a clause Cj , (b) gadget Xi for a variable xi, and (c) gadget
Hj for the clause Cj = (x2 ∨ x3 ∨ x5)

on the plane. (See Fig. 3(a).) We then construct a gadget Xi for each variable
xi, 1 ≤ i ≤ n, as follows: Xi is a cycle consisting of four vertices qi, vi, q

′
i, v

′
i

embedded in clockwise order on the plane. (See Fig. 3(b).) We lastly construct
a gadget Hj for each clause Cj , 1 ≤ j ≤ m, as follows: (i) make a path of four
vertices rj,1, rj,2, rj,3, rj,4; (ii) add three vertices r′j,1, r

′
j,2, r

′
j,3; and (iii) connect

r′j,1 to both rj,1 and rj,2, connect r
′
j,2 to both rj,2 and rj,3, and connect r′j,3 to

both rj,3 and rj,4. (See Fig. 3(c).)
Using G1, G2, . . . , Gm, X1, X2, . . . , Xn and H1, H2, . . . , Hm given above, we

construct the corresponding graph Gφ as follows. (See Fig. 4.) We connect p′j to
pj+1 for every j ∈ {1, 2, . . . ,m − 1}, and connect p′m to q1. We then connect q′i
to qi+1 for every i ∈ {1, 2, . . . , n − 1}, and connect q′n to r1,1. We complete the
construction of Gφ by connecting rj,4 to rj+1,1 for every j ∈ {1, 2, . . . ,m − 1}.
Since each gadget consists of either a single cycle or consecutive three cycles, Gφ

is clearly a cactus.
Before constructing the edge-coloring fφ of Gφ, we define some terms. For

each gadget Gj , 1 ≤ j ≤ m, we call the path pjujp
′
j the j-th upper path, and

Fig. 4. Graph Gφ

Generalized Rainbow Connectivity of Graphs 237

call the path pju
′
jp

′
j the j-th lower path. For each gadget Xi, 1 ≤ i ≤ n, we call

the path qiviq
′
i the i-th positive path, and call the path qiv

′
iq

′
i the i-th negative

path; the i-th positive path corresponds to xi = 1, and the i-th negative path
corresponds to xi = 0. Let φ = ∧m

j=1(lj,1∨ lj,2 ∨ lj,3) be the given formula, where
lj,1, lj,2 and lj,3 are literals of x1, x2, . . . , xn contained in the clause Cj .

[Edge-coloring fφ of Gφ]
We construct fφ as in the following four steps (i)–(iv).

(i) Let a1, a2, . . . , am and a′1, a
′
2, . . . , a

′
m be 2m distinct colors. For each j ∈

{1, 2, . . . ,m}, we assign aj to (pj , uj), and a′j to (pj , u
′
j). (See Fig. 3(a).)

(ii) Let b1, b2, . . . , bn and b̄1, b̄2, . . . , b̄n be 2n distinct (new) colors. For each
i ∈ {1, 2, . . . , n}, we assign b̄i to both (qi, vi) and (vi, q

′
i), and bi to both

(qi, v
′
i) and (v′i, q

′
i). (See Fig. 3(b).)

(iii) For each clause Cj = lj,1 ∨ lj,2 ∨ lj,3, 1 ≤ j ≤ m, we assign some
of b1, b2, . . . , bn and b̄1, b̄2, . . . , b̄n to the edges (rj,1, rj,2), (rj,2, rj,3) and
(rj,3, rj,4) in the gadget Hj , as follows: For each k ∈ {1, 2, 3}, we assign bi
to (rj,k, rj,k+1) if the k-th literal lj,k is a positive literal of xi; and assign
b̄i to (rj,k, rj,k+1) if the k-th literal lj,k is a negative literal of xi. More-
over, we assign aj to both (rj,1, r

′
j,1) and (rj,2, r

′
j,2), and assign a′j to both

(r′j,2, rj,3) and (rj,3, r
′
j,3). (See Fig. 3(c).)

(iv) Let U be the set of the edges that are not assigned colors in (i)–(iii) above.
We assign a new distinct color for each edge in U . (See Figs. 3 and 4, where
the edges in U are depicted by thick lines.)

Remember that any literal of a variable xi, 1 ≤ i ≤ n, appears at most twice
in φ. Therefore, in the step (iii), each of the colors b1, b2, . . . , bn, b̄1, b̄2, . . . , b̄n is
assigned to at most two edges in H1, H2, . . . , Hm.

We finally set � = (2, 2, . . . , 2), and complete the construction of the corre-
sponding instance.

The following two lemmas for Gφ(fφ) clearly imply Theorem 1.

Lemma 1. Gφ(fφ) is �-rainbow connected if and only if Gφ(fφ) has an �-
rainbow path between p1 and rm,4.

Lemma 2. Gφ(fφ) has an �-rainbow path between p1 and rm,4 if and only if φ
is satisfiable.

In the rest of the section, we prove Lemmas 1 and 2.

[Proof of Lemma 1]
It is trivially true that, if Gφ(fφ) is �-rainbow connected, then Gφ(fφ) has an

�-rainbow path between p1 and rm,4. Below we prove that Gφ(fφ) is �-rainbow
connected if Gφ(fφ) has an �-rainbow path between p1 and rm,4.

Let s and t be an arbitrary pair of vertices in Gφ. We consider a partition
of the vertex set V (Gφ) into the following three groups: V 1 =

⋃m
j=1 V (Gj),

V 2 =
⋃n

i=1 V (Xi) and V 3 =
⋃m

j=1 V (Hj). In any subgraph induced by only one

of V 1, V 2 and V 3, every color is assigned to at most two edges in the subgraph.
Similarly, in the subgraph induced by V 1 and V 2, every color is assigned to at

238 K. Uchizawa et al.

most two edges; in the subgraph induced by V 2 and V 3, when we remove the
edges (rj,1, rj,2), (rj,2, rj,3), (rj,3, rj,4) for every j ∈ {1, 2, . . . ,m}, every color is
assigned to at most two edges. Thus, it suffices to verify the case where s ∈ V 1

and t ∈ V 3. Let P be the �-rainbow path between p1 and rm,4 in Gφ(fφ), and
let j1 and j2 be the indices satisfying s ∈ V (Gj1) and t ∈ V (Hj2). Then, we can
easily construct an �-rainbow path P ′ between s and t, as follows: P ′ consists
of a subpath of P between pj1 and rj2,4 together with some of the five edges
(uj1 , p

′
j1), (u

′
j1 , p

′
j1), (r

′
j2,1, rj2,2), (r

′
j2,2, rj2,3), (r

′
j2,3, rj2,4). ��

[Proof of Lemma 2]
Necessity: We prove that, if Gφ(fφ) has an �-rainbow path between p1 and rm,4,
then φ is satisfiable. Let P be an �-rainbow path in Gφ(fφ) between p1 and
rm,4. For each gadget Gj , 1 ≤ j ≤ m, we denote by P ∩ Gj the graph (path)
induced by E(P) ∩ E(Gj). Then, each subpath P ∩ Gj , 1 ≤ j ≤ m, is either
j-th upper path or j-th lower path. Similarly, for each gadget Xi, 1 ≤ i ≤ n,
we denote by P ∩ Xi the graph (path) induced by E(P) ∩ E(Xi). Then, each
subpath P ∩ Xi, 1 ≤ i ≤ n, is either i-th positive path or i-th negative path.
Consider the following truth assignment z = (z1, z2, . . . , zn) ∈ {0, 1}n: for each
index i ∈ {1, 2, . . . , n},

zi =

{
1 if P ∩Xi is the i-th positive path;
0 if P ∩Xi is the i-th negative path.

(1)

We now show that z is a satisfying truth assignment for φ. Clearly, any �-
rainbow path must go through either (pj , uj) with the color aj or (pj , u

′
j) with

the color a′j for each j ∈ {1, 2, . . . ,m}. Then, since � = (2, 2, . . . , 2), P must pass
through at least one of the edges (rj,1, rj,2), (rj,2, rj,3) and (rj,3, rj,4) in each
clause gadget Hj , 1 ≤ j ≤ m. Let (rj,k, rj,k+1) be such an edge. We show that
the literal lj,k corresponding to the edge (rj,k, rj,k+1) is true by z, and hence
the clause Cj is satisfied; consequently, z is satisfying, as required. Consider the
case where the edge (rj,k, rj,k+1) receives the color b̄i for some i, 1 ≤ i ≤ n.
(The proof is similar for the other case where (rj,k, rj,k+1) receives the color bi.)
Then, by the construction of fφ, the literal lj,k corresponding to (rj,k, rj,k+1) is
a negative literal of the variable xi. Since the color b̄i is assigned to each of the
two edges in the i-th positive path in Xi, P must go through the i-th negative
path in Xi. Consequently, by Eq. (1), we have zi = 0 in z, and hence the literal
lj,k is true by z.

Sufficiency: We prove that Gφ(fφ) has an �-rainbow path between p1 and rm,4

if φ is satisfiable. Let z = (z1, z2, . . . , zn) be a satisfying truth assignment for φ.
For each j ∈ {1, 2, . . . ,m}, we denote by lj,kj , 1 ≤ kj ≤ 3, a literal satisfied by
z in Cj .

Consider the following path PX from q1 to q′n: For each gadget Xi, 1 ≤ i ≤ n,
take the i-th positive path if zi = 1, and otherwise take the i-th negative path.
Clearly, for each i ∈ {1, 2, . . . , n}, both of the edges in PX ∩ E(Xi) receive b̄i if
zi = 1, and receive bi if zi = 0. Consider then the following path PH

j from rj,1 to
rj,4 for each j ∈ {1, 2, . . . ,m}: make a path consisting of (rj,kj , rj,kj+1) together

Generalized Rainbow Connectivity of Graphs 239

with the four edges (rj,α, r
′
j,α), (r

′
j,α, rj,α+1), (rj,β , r

′
j,β) and (r′j,β , rj,β+1), where

α, β ∈ {1, 2, 3}\{kj} and α < β. We obtain the path P from q1 to rm,4 by
connecting PX and PH

1 , PH
2 , . . . , PH

m in this order. Clearly, every color is assigned
to at most two edges in P . Moreover, for each j ∈ {1, 2, . . . ,m}, one of aj and a′j
is assigned to only one edge in P ; such a color is said to be available. Then, we
can obtain a path PG from p1 to p

′
m such that, for each j ∈ {1, 2, . . . ,m}, it takes

the j-th upper path if aj is available, and otherwise takes the j-th lower path.
Finally, we can obtain an �-rainbow path between p1 and rm,4 by connecting the
paths PG and P . ��

3 Algorithms

As we have shown in Theorem 1, generalized rainbow connectivity is
NP-complete even for cacti and hence it cannot be solved in polynomial time
unless P = NP. However, we give two algorithms in this section: in Section 3.1,
we give an efficient polynomial-time algorithm for trees; in Section 3.2, we give
an FPT algorithm for general graphs when parameterized by both k and �max.

3.1 Polynomial-Time Algorithm for Trees

The main result of this subsection is the following theorem.

Theorem 2. Generalized rainbow connectivity can be solved for a tree
T in time O(kn), where k = |C| and n is the number of vertices in T .

In the remainder of this subsection, we give an O(kn)-time algorithm as a
proof of Theorem 2. It is obvious that the problem is in P for trees, because a
naiveO(n3)-time algorithm exists: for each pair of vertices in a tree, it determines
whether the unique path between the pair is an �-rainbow path. We remark that
our O(kn)-time algorithm is always faster than the naive one; our algorithm runs
in linear time if k is a constant, and in time O(n2) even if k = O(n); notice that
k ≤ n− 1.

[Terms and ideas]
Let T = (V,E) be a given tree. One may assume without loss of generality

that T is a rooted tree with an arbitrarily chosen root r. Let u be a vertex of T ,
and we denote by d(u) the number of children of u. For each i ∈ {1, 2, . . . , d(u)},
let ui be a child of u ordered arbitrarily, and let ei be the edge joining u and ui,
as illustrated in Fig. 5. Let Tui be the subtree of T which is rooted at ui and is
induced by all descendants of ui in T . We denote by T i

u the subtree of T which
consists of the vertex u, the edges e1, e2, . . . , ei and the subtrees Tu1 , Tu2 , . . . , Tui .

In Fig. 5, T i
u is indicated by a dotted closed curve. Clearly Tu = T

d(u)
u . For the

sake of notational convenience, we denote by T 0
u the tree consisting of a single

vertex u.
Let C = {c1, c2, . . . , ck} be the color set, and let f : E → C be a given edge-

coloring of T . Note that any path P in T must be an �-rainbow path; otherwise

240 K. Uchizawa et al.

Tu1

Tu

Tui Tud(u)

u1

e1 e2

Tu2

u2 ui

u

ud(u)
ei

ed(u)

...

...

...

...

i

Fig. 5. Tree Tu

there is no �-rainbow path between the end-vertices of P . For a pair of vertices
v, w ∈ V (T) and an index j ∈ {1, 2, . . . , k}, we denote by tj(v, w) the number of
edges in the (unique) path between v and w that are colored with cj by f .

Consider the subtree T i
u for a vertex u of T and an integer i ∈ {0, 1, . . . , d(u)}.

We classify the paths in T i
u into two subclasses, and check whether every path

in T i
u is an �-rainbow path. For an index j ∈ {1, 2, . . . , k}, we define aj(T

i
u) as

follows:
aj(T

i
u) = max{tj(u,w) | w ∈ V (T i

u)}.
Therefore, by the values aj(T

i
u), 1 ≤ j ≤ k, we can check whether all paths

between the root u of T i
u and vertices of T i

u are �-rainbow paths; more specifically,
such paths are all �-rainbow paths if aj(T

i
u) ≤ �j for all indices j ∈ {1, 2, . . . , k}.

Similarly, for an index j ∈ {1, 2, . . . , k}, we define bj(T
i
u) as follows:

bj(T
i
u) = max{tj(v, w) | v, w ∈ V (T i

u)}.
Then, by the values bj(T

i
u), 1 ≤ j ≤ k, we can check whether all paths that do

not necessarily contain u are �-rainbow paths; indeed, T i
u is �-rainbow connected

if and only if bj(T
i
u) ≤ �j for all indices j ∈ {1, 2, . . . , k}.

Our algorithm computes aj(T
i
u) and bj(T

i
u) for each vertex u of T and all

indices i ∈ {0, 1, . . . , d(u)} and j ∈ {1, 2, . . . , k} from the leaves to the root r of
T by means of dynamic programming. Then, the edge-colored tree T (f) = Tr(f)
is �-rainbow connected if and only if bj(Tr) ≤ �j for all indices j ∈ {1, 2, . . . , k}.
[Algorithm]

We first compute aj(T
0
u) and bj(T

0
u) for each vertex u of T and all indices

j ∈ {1, 2, . . . , k}. Since T 0
u consists of a single vertex u, there is no edge in T 0

u .
Therefore, we clearly have aj(T

0
u) = 0 and bj(T

0
u) = 0.

We then compute aj(T
i
u) and bj(T

i
u), 1 ≤ i ≤ d(u), for each internal vertex

u of T from the counterparts of T i−1
u and Tui . (See Fig. 5.) Remember that

Tu = T
d(u)
u , and that T i

u is obtained from T i−1
u and Tui by joining u and ui. For

an edge e in T , let

hj(e) =

{
1 if f(e) = cj ;
0 otherwise.

We first compute aj(T
i
u), that is, check whether all paths between the root

u of T i
u and vertices of T i

u are �-rainbow paths. Consider an arbitrary path P
between u and some vertex v of T i

u. Then, there are the following two cases:

Generalized Rainbow Connectivity of Graphs 241

(i) v is in T i−1
u , and hence P is a path in T i−1

u ; and
(ii) v is in Tui , and hence P consists of ei and the path between ui and v.

Therefore, the value aj(T
i
u) can be computed as follows:

aj(T
i
u) = max{aj(T i−1

u), aj(Tui) + hj(ei)}. (2)

We then compute bj(T
i
u), that is, check whether all paths that do not neces-

sarily contain u are �-rainbow paths. Consider an arbitrary path P between two
vertices v and w in T i

u. Then, there are the following three cases:

(i) both v and w are in T i−1
u , and hence P is a path in T i−1

u ;
(ii) both v and w are in Tui , and hence P is a path in Tui ; and
(iii) one of v and w is in T i−1

u and the other is in Tui , and hence P is a path
starting from v, passing through u and ei, and ending with w.

Therefore, the value bj(T
i
u) can be computed as follows:

bj(T
i
u) = max{bj(T i−1

u), bj(Tui), aj(T
i−1
u) + hj(ei) + aj(Tui)}. (3)

[Proof of Theorem 2]
We now show that our algorithm above runs in time O(kn).
For each vertex u of T and all indices j ∈ {1, 2, . . . , k}, we can compute aj(T

0
u)

and bj(T
0
u) in time O(k). Therefore, the initialization can be done in time O(kn)

for all vertices in T and all indices j ∈ {1, 2, . . . , k}.
For an internal vertex u of T and all indices j ∈ {1, 2, . . . , k}, as described in

Eqs. (2) and (3), we can compute aj(T
i
u) and bj(T

i
u), i ≥ 1, from the counterparts

of T i−1
u and Tui in time O(k). Since there are n− 1 edges in T , the computation

occurs n− 1 times for each of aj(T
i
u) and bj(T

i
u). Therefore, for the root r of T ,

we can compute the values aj(Tr) and bj(Tr) for all indices j ∈ {1, 2, . . . , k} in
time O(kn).

Then, from the values bj(Tr), 1 ≤ j ≤ k, we can determine in time O(k)
whether the edge-colored tree T (f) is �-rainbow connected.

In this way, our algorithm solves generalized rainbow connectivity for
a tree in time O(kn) in total. This completes the proof of Theorem 2.

3.2 FPT Algorithm for General Graphs

In this subsection, we give an FPT algorithm for generalized rainbow con-

nectivity when parameterized by both k and �max.

Theorem 3. For a k-tuple � and an edge-coloring f of a graph G, one can
determine whether the edge-colored graph G(f) is �-rainbow connected in time
O(k2k�maxmn) using O

(
kn2k�max log(�max + 1)

)
space, where n and m are the

numbers of vertices and edges in G, respectively.

As a proof of Theorem 3, we give an algorithm to determine whether G(f) has
�-rainbow paths from a vertex s to all the other vertices. It suffices to design such
an algorithm which runs in time O(k2k�maxm) using O

(
kn2k�max log(�max + 1)

)
space. Then, Theorem 3 clearly holds.

242 K. Uchizawa et al.

[Terms and ideas]
We first introduce some terms. For a vertex v of a graph G = (V,E), we

denote by N(v) the set of all neighbors of v (which does not include v itself),
that is, N(v) = {w ∈ V | (v, w) ∈ E}. We remind the reader that a walk in a
graph is a sequence of adjacent vertices and edges, each of which may appear
more than once; while a path is a walk in which each vertex appears exactly once.
The length of a walk is defined as the number of edges in the walk. A walk W in
G(f) is called an �-rainbow walk if the number of edges in W that are colored
with cj is at most �j for every index j ∈ {1, 2, . . . , k}.

We extend ideas in [1, 12]. For a graph G = (V,E) and a color set C with
|C| = k, let f : E → C be a given edge-coloring of G. We choose an arbitrary
vertex s ∈ V . We indeed give an algorithm which determines whether the edge-
colored graph G(f) has an �-rainbow walk W from s to each vertex v ∈ V \ {s};
one can obtain an �-rainbow path between s and v, as the sub-walk of W . Since
|C| = k and �max = max{�j | 1 ≤ j ≤ k}, every �-rainbow walk is of length
at most k�max. Therefore, our algorithm is based on a dynamic programming
approach with respect to the lengths of walks from s: G(f) has an �-rainbow
walk from s to a vertex v with length exactly i if and only if there exists at least
one vertex w in N(v) such that G(f) has an �-rainbow walk from s to w with
length exactly i − 1 in which the color cj′ = f((w, v)) is assigned to at most
(�j′ − 1) edges.

Based on the idea above, for an integer i ∈ {1, 2, . . . , k�max} and a vertex
v ∈ V , we define a set Γs(i, v) of k-tuples �′ = (�′1, �

′
2, . . . , �

′
k) of nonnegative

integers �′1, �′2, . . . , �′k, as follows:

Γs(i, v) = {(�′1, �′2, . . . , �′k) | G(f) has an �-rainbow walk W between s and v

such that �′1 + �′2 + · · ·+ �′k = i and cj is assigned

to exactly �′j edges in W for all j ∈ {1, 2, . . . , k}}.
Note that Γs(i, v) = ∅ if G(f) has no �-rainbow walk between s and v of length
exactly i. Clearly, G(f) has an �-rainbow path from s to a vertex v ∈ V \ {s}
if and only if Γs(i, v) �= ∅ for some integer i ∈ {1, 2, . . . , k�max}. By a dynamic
programming approach, we compute the sets Γs(i, v) from i = 1 to k�max for
all vertices v ∈ V . Then, using the sets Γs(i, v), it can be determined in time
O(k�maxn) whether G(f) has �-rainbow paths from s to all vertices v ∈ V \ {s}.

[Algorithm]
We first compute the set Γs(1, v) for each vertex v ∈ V . Clearly, the walks

with length exactly 1 from s are only the edges (s, v) for the vertices v in N(s).
Therefore, if v ∈ N(s) and �j′ ≥ 1 where cj′ = f((s, v)), then we have

Γs(1, v) =
{
(�′1, �

′
2, . . . , �

′
k)
}
, (4)

where �′j′ = 1 and �′j = 0 for the other indices j ∈ {1, 2, . . . , k} \ {j′}; otherwise
Γs(1, v) = ∅. (5)

Generalized Rainbow Connectivity of Graphs 243

We then compute the set Γs(i, v) for an integer i ≥ 2 and each vertex v ∈ V .
Suppose that we have already computed Γs(i − 1, w) for all vertices w ∈ V .
Obviously, G(f) has an �-rainbow walk from s to a vertex v with length exactly
i if and only if, for some vertex w ∈ N(v), there exists a k-tuple (�′1, �

′
2, . . . , �

′
k) ∈

Γs(i − 1, w) such that �′j′ ≤ �j′ − 1 for the color cj′ = f((w, v)). Therefore, we
can compute Γs(i, v) for a vertex v ∈ V , as follows:

Γs(i, v) =
{
(�′1, . . . , �

′
j′−1, �

′
j′ + 1, �′j′+1, . . . , �

′
k) |

w ∈ N(v), (�′1, �′2, . . . , �′k) ∈ Γs(i− 1, w),

and �′j′ ≤ �j′ − 1 for the color cj′ = f((w, v))
}
. (6)

[Proof of Theorem 3]
Using Eqs. (4)–(6) one can correctly compute Γs(i, v), 1 ≤ i ≤ k�max, for all

vertices v ∈ V . Thus, we now show that our algorithm runs in time O(k2k�maxm)
and uses O

(
kn2k�max log(�max + 1)

)
space.

We first claim that |Γs(i, v)| ≤
(
k�max

i

)
for a vertex v in T and each integer

i ∈ {1, 2, . . . , k�max}. Consider an arbitrary k-tuple (�′1, �′2, . . . , �′k) ∈ Γs(i, v).
Then, 0 ≤ �′j ≤ �j ≤ �max holds for each index j ∈ {1, 2, . . . , k}, and i =
�′1 + �′2 + · · · + �′k ≤ k�max. Thus, the number of k-tuples in Γs(i, v) can be
bounded by the number of combinations which choose i elements from k�max

elements, and hence |Γs(i, v)| ≤
(
k�max

i

)
.

We now show that our algorithm uses O
(
kn2k�max log(�max + 1)

)
space. For

a vertex v and an integer i, each k-tuple �′ ∈ Γs(i, v) can be represented by
O(k · log(�max + 1)) bits, and hence the set Γs(i, v) can be represented by using
O
((

k�max

i

) · k log(�max + 1)
)
space. Therefore, we can represent the sets Γs(i, v)

for all vertices v ∈ V and all integers i ∈ {1, 2, . . . , k�max} using the space of

k�max∑
i=1

∑
v∈V

O

(
k ·

(
k�max

i

)
· log(�max + 1)

)
= O

(
kn2k�max log(�max + 1)

)
.

We finally estimate the running time of our algorithm. By Eqs. (4) and (5)
the sets Γs(1, v) can be computed in time O(kn) for all vertices v ∈ V . By Eq.
(6) the set Γs(i, v) for a vertex v and an integer i can be computed in time

O
(
|N(v)| · (k�max

i−1

) · k), because |Γs(i − 1, w)| ≤ (
k�max

i−1

)
, the condition �′j′ ≤

�j′ − 1 for the color cj′ = f((w, v)) can be checked in time O(1), and O(k) time
is required to store the obtained k-tuple (�′1, . . . , �

′
j′−1, �

′
j′ + 1, �′j′+1, . . . , �

′
k) into

Γs(i, v). Therefore, the sets Γs(i, v) can be computed for all vertices v ∈ V and
all integers i ∈ {2, 3, . . . , k�max}, in time

k�max∑
i=2

∑
v∈V

O

(
k ·

(
k�max

i− 1

)
· |N(v)|

)
= O(k2k�maxm).

Using the sets Γs(i, v), 1 ≤ i ≤ k�max, it can be determined in time O(k�maxn)
whether G(f) has �-rainbow paths from s to all vertices v ∈ V \ {s}. Since G

244 K. Uchizawa et al.

can be assumed to be a connected graph, n − 1 ≤ m and hence our algorithm
takes time O(k2k�maxm) in total.

This completes the proof of Theorem 3. ��

4 Conclusion

In this paper, we introduced generalized rainbow connectivity. We proved
that the problem is NP-complete even for cacti, while is solvable in polynomial
time for trees. We also gave an FPT algorithm for general graphs when param-
eterized by both k and �max = max{�j | 1 ≤ j ≤ k}.

References

1. Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42, 844–856 (1996)
2. Ananth, P., Mande, M., Sarpatwar, K.: Rainbow connectivity: hardness and

tractability. In: Proc. of IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science, FSTTCS 2011, pp. 241–251 (2011)

3. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. Society for
Industrial and Applied Mathematics, Philadelphia (1999)

4. Chakraborty, S., Fischer, E., Matsliah, A., Yuster, R.: Hardness and algorithms
for rainbow connection. J. Combinatorial Optimization 21, 330–347 (2011)

5. Chandran, L.S., Das, A., Rajendraprasad, D., Varma, N.M.: Rainbow connection
number and connected dominating sets. J. Graph Theory 71, 206–218 (2012)

6. Chartrand, G., Johns, G.L., McKeon, K.A., Zhang, P.: Rainbow connection in
graphs. Mathematica Bohemica 133, 85–98 (2008)

7. Chartrand, C., Johns, G.L., McKeon, K.A., Zhang, P.: The rainbow connectivity
of a graph. Networks 54, 75–81 (2009)

8. Caro, Y., Lev, A., Roditty, Y., Tuza, Z., Yuster, R.: On rainbow connectivity. The
Electronic J. Combinatorics 15, R57 (2008)

9. Fellows, M.R., Guo, J., Kanj, I.: The parameterized complexity of some minimum
label problems. J. Computer and System Sciences 76, 727–740 (2010)

10. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, San Francisco (1979)

11. Krivelevich, M., Yuster, R.: The rainbow connection of a graph is (at most) recip-
rocal to its minimum degree. J. Graph Theory 63, 185–191 (2010)

12. Uchizawa, K., Aoki, T., Ito, T., Suzuki, A., Zhou, X.: On the rainbow connec-
tivity of graphs: complexity and FPT algorithms. To appear in Algorithmica,
doi:10.1007/s00453-012-9689-4

Fixed-Parameter Tractability of Error

Correction in Graphical Linear Systems

Peter Damaschke1, Ömer Eğecioğlu2, and Leonid Molokov1

1 Department of Computer Science and Engineering,
Chalmers University, 41296 Göteborg, Sweden

{ptr,molokov}@chalmers.se
2 Department of Computer Science, University of California,

Santa Barbara, CA 93106-5110
omer@cs.ucsb.edu

Abstract. In an overdetermined and feasible system of linear equations
Ax = b, let vector b be corrupted, in the way that at most k entries are
off their true values. Assume that we can check in the restricted system
given by any minimal dependent set of rows, the correctness of all corre-
sponding values in b. Furthermore, A has only coefficients 0 and 1, with
at most two 1s in each row. We wish to recover the correct values in b
and x as much as possible. The problem arises in a certain chemical mix-
ture inference application in molecular biology, where every observable
reaction product stems from at most two candidate substances. After
formalization we prove that the problem is NP-hard but fixed-parameter
tractable in k. The FPT result relies on the small girth of certain graphs.

Keywords: sparse system of linear equations, error correction, girth,
even cycle matroid, parameterized algorithm.

1 Introduction

Let Ax = b be a system of m linear equations in n variables, over the real
numbers. Suppose that Ax = b was obtained from some feasible linear system
Ax = b′ by changing at most k of the coefficients in the vector b′. That is, b
differs from the unknown true vector b′ in at most k positions, but we are not
told which. The maximum number k of errors may or may not be known. Our
goal is to recover the correct values in b (and x) as far as possible, using a certain
correctness criterion for entries of b that will be introduced below.

We were led to the problem by an application where we wish to infer the
amounts of chemical compounds in an unknown mixture. We can only measure
amounts of products of chemical split reactions each of which can stem from one
or more candidate substances. This is modelled by a system of linear equations
Ax = b. Each row (equation) corresponds to a measured substance, and each
column of A (resp. variable of x) corresponds to a candidate compound. A with
entries aij is the incidence matrix, that is, aij = 1 if split product i appears in
compound j, and aij = 0 else. The aij are known, and bi is the measured amount
of product i. Typically every split product is contained in very few candidate

S.K. Ghosh and T. Tokuyama (Eds.): WALCOM 2013, LNCS 7748, pp. 245–256, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

246 P. Damaschke, Ö. Eğecioğlu, and L. Molokov

compounds, hence the rows of A contain very few 1s. We are particularly in-
terested in the reconstruction of protein mixtures after enzymatic digestion into
peptides which can be identified and measured. Most peptides come from only
one or two candidate proteins, and simulated protein digestion data suggest that
already equations with at most two variables suffice to infer most of the protein
amounts, provided that all measurements are correct [2]. A practical issue is
that, as a result of experimental errors, some of the measured values in b may
be corrupted. Without errors we would merely have to solve the linear system,
which is even overdetermined. But in the presence of errors it is clear that any
inference algorithm needs some assumptions about the number or the nature of
errors, as well as the manner by which they can be detected. Here we will adopt
what we call the independent errors assumption; see below.

For any set R of rows, let A[R] be the matrix A restricted to R, and let
b[R] be the vector b restricted to the corresponding entries, in the rows of R.
Our systems are overdetermined. Consider any subset C of rows that is linearly
dependent and minimal with this property, that is, every proper subset of C is
linearly independent. Following the terminology of matroid theory we call such C
a circuit. (Note that circuits can be of any size up to rank(A)+1.) Every row of
a circuit C is a unique linear combination of the other rows of C. It follows that,
if b[C] has exactly one false entry, then the system A[C]x = b[C] is not feasible.
However, if b[C] has several false entries, these errors are unlikely to cancel
out each other such that A[C]x = b[C] remains feasible by chance. Since the
false entries in b result from independent measurement errors, deviations follow
some continuous probability distribution and are uncorrelated. Hence errors in
a circuit lead almost surely to infeasibility. This motivates the following

Independent Errors Assumption:Whenever C is a circuit and A[C]x = b[C]
is feasible (we also call the circuit C balanced), then all values in b[C] are true.

Note that minimality of C is essential here. The assumption trivially extends
to unions of circuits, but not to arbitrary dependent sets. If some row in a
dependent set D is not contained in any circuit with other rows of D, the row is
independent of the rest of D, and then arbitrary changes of the corresponding
entry of vector b will keep the system feasible. Our assumption is of similar spirit
as the very common “general position” assumptions in computational geometry
(e.g., no three points are on the same line, no three lines intersect in a point). The
setting also resembles the combinatorial group testing problem where elements
of a set can be faulty or clean, and one can test pools of elements, with the
result that either the entire pool is clean, or some faults are present. But when
faults are present, the test does not tell us what the faulty elements are. In
our variant however, pools are restricted to circuits of some matroid. For ease
of presentation we assume an idealized computational model with precise real
numbers, in practice we must allow small tolerances when we check two numbers
for equality. Our problem is now preliminarily stated as follows:

Balanced Circuits Recovery: Given a linear system Ax = b where some
unknown subset of the entries in b are faulty, identify all entries of vector b that
can be confirmed true under the independent errors assumption.

Fixed-Parameter Tractability of Error Correction 247

After that, it only remains to solve the linear system restricted to the rows
with confirmed entries of b. Two questions arise: Which entries of b can we
recover, if we can recover any at all, and how difficult is this algorithmically?

We focus on the case where all coefficients in A are 0 or 1, and every row of
A contains at most two entries that are 1. This problem is not as limited and
specialized as it might seem. The restriction to 0, 1-matrices with sparse rows
is immediately motivated by applications as above, and the independent errors
assumption is not restrictive at all; loosely speaking it just says that random
errors will not collectively appear correct by pure chance.

Organization of the Paper: First we have to put some work into the formal
problem statement and terminology. In Section 2 we characterize the entries in
b that are recoverable under the independent errors assumption. In the case of
two variables per equation, our problem can be formalized as a graph labeling
problem where the entries of x and b are turned into vertices and edges, respec-
tively. We introduce some notions and facts about matroids from graphs, which
are needed in the following (see also [11]). The graph formulation is essential
for our algorithm. In Section 3 we prove NP-hardness of Balanced Circuits

Recovery in graphs. Section 4 gives a preparation for an FPT algorithm, with
the number k of faulty edges as the parameter: we show that, after some pre-
processing, we always find a circuit of logarithmic size. This extends the known
fact that graphs of constant minimum degree have logarithmic girth, but since
circuits and cycles are different objects, the matter requires some care. What we
have here is the even cycle matroid of the associated graph, for which the circuits
are different than the cycles of the ordinary cycle matroid. Based on the girth we
give our FPT result in Section 5, by constructing a kernel of O(k log k) vertices.
In Section 6 we obtain an O∗((log k)k) time bound. Section 7 lists some open
questions. Due to space limitations some proofs and straightworward algorithm
details are omitted.

Related Literature: In [2] we considered an error model where all bi are
changed by at most some small ε, and we gave graph-theoretic and LP methods
for controlling the error in the solution vector x. The motivation for the present
study is that, besides general measurement inaccuracies, a number k of mea-
sured amounts may be totally wrong and should be detected first. Only for ease
of presentation we assume here that all non-faulty bi are accurate. If they are
slightly disturbed, then unbalanced circuits remain unbalanced, and “nearly”
balanced circuits within some tolerance have to be considered as balanced.

Approximability and parameterized complexity of finding maximal feasible
subsystems of linear systems is studied, e.g., in [4,5]. Like ours, this problem is of
special interest in the case of graphs (e.g., for some models in statistical physics),
and it can be generalized to so-called gain graphs where vertices and edges are
labeled with elements of a group. The minimum number of unsatisfied edges
is known as the frustration index, and its computation is NP-hard already in
special cases. We refer to the extensive annotated bibliography in [15]. However,
Balanced Circuits Recovery differs from this suite of problems in that

248 P. Damaschke, Ö. Eğecioğlu, and L. Molokov

we made an additional mild assumption on the confirmation of correct edge
labels. Next, the matroid circuits we have to deal with are even cycles and
connected pairs of odd cycles (see details in Section 2), which loosely relates
our problem to both feedback set problems [12,7,3] and odd cycle transversals
(OCT) [13,7,9] whose parameterized complexity is well investigated. Remarkably,
[8] uses matroids for kernelization, too. LP techniques as applied to OCT and
other problems in [10] do not seem to be immediately applicable to our problem.
In [1] we enumerated solutions with minimal support in linear systems with a
constant number of nonzeros per row, however in an error-free setting.

2 Characterizations and Formalization

Remember that our input is a linear system Ax = b, where some entries of the
observed b are faulty but obey the independent errors assumption.

Definition 1. A row i is correct if bi has its true value, otherwise it is faulty.
A set of rows is correct if every row in that set is correct. A row i is recoverable
if a unique value bi is consistent with the independent errors assumption.

Note that we cannot directly “see” which rows are correct, rather, we learn them
only by checking circuits for being balanced. Row i being recoverable means in-
formally that we could infer the true bi, given enough computation time. Clearly,
rows in balanced circuits are recoverable, and an obvious question is whether
there exist more recoverable rows.

Definition 2. We inductively define reachable rows as follows. A row in a bal-
anced circuit is reachable; a single row in a circuit where all other rows are
reachable is reachable, too; and no other rows are reachable.

As mentioned, all rows in balanced circuits are recoverable. Next, any row i that
appears in some circuit C where all other rows are recoverable, is recoverable, too.
This follows from the fact that row i of matrix A is a unique linear combination
of the other rows of C: since the true values in b[C], perhaps except bi, can be
determined, we can finally determine the true bi as well, thereby even ignoring
the given value. In summary, all reachable rows are recoverable. The converse is
also true, but due to space limitations we skip the proof.

Theorem 1. The recoverable rows are exactly the reachable rows. ��
From now on we deal with the announced “graphical” case.

Definition 3. Let Ax = b be a system of m linear equations in n variables, with
at most two variables per equation, that appear with coefficient 1. We represent
it as a graph with n vertices and m edges as follows. Its vertices are the variables
in x. For every equation (row) xu + xv = bi, the graph has an edge uv with edge
label buv := bi. For every trivial equation 2xu = bi with only one variable, the
graph has a loop with edge label buu := bi. Variable xv is also called the vertex
label of v. The graph may comprise parallel edges and also several loops at the
same vertex, since the given matrix A may have identical rows.

Fixed-Parameter Tractability of Error Correction 249

We have multiplied the trivial equations by 2 (and doubled bi) to give all equa-
tions the same form. Despite possible parallel edges the notation buv will not
cause confusion, as it will be clear from context which edge we refer to.

Due to the correspondence established in the Definitions and Theorem 1 we
can use the terms row and edge interchangeably and speak of recoverable (reach-
able) edges. Moreover we can state the following graph problem, whose complex-
ity with respect to parameter k will be studied here.

Balanced Circuits Recovery in graphs: Given a graph G = (V,E), possibly
with parallel edges and loops, and an edge labeling b, identify all reachable edges.
As for the parameter k, the following is assumed: There exists a labeling b′ that
differs from b on at most k edges called the faulty edges; G with labeling b′ has
only balanced circuits; and in G with labeling b, no circuit containing faulty
edges is balanced.

Of course, it is essential to know which edge sets in the graph correspond to the
circuits, i.e., minimal dependent sets of rows in the linear system.

Definition 4. A path or cycle in a graph is simple if it does not cross itself,
that is, every vertex appears at most once on it. The length of a path or cycle
is the number of edges. We consider a loop as a simple odd cycle of length 1. A
bow tie is either a pair of vertex-disjoint simple odd cycles connected by a simple
path whose inner vertices do not appear in any of the two cycles, or a pair of
simple odd cycles with exactly one common vertex.

The following is implicit in earlier literature [14,6]. (In [6] one can also find an
interesting treatment of the algebra of the even cycle matroid.)

Theorem 2. The circuits are exactly the simple even cycles and bow ties. ��
The two types of circuits behave differently when it comes to the vertex labels.
In a bow tie, the vertex labels are uniquely determined. This is because the
incidence matrix of a simple odd cycle has a nonzero determinant. As opposed
to this, the incidence matrix of a simple even cycle has determinant zero, and the
possible vectors of vertex labels form a 1-dimensional space: We can alternatingly
add/subtract some free value to/from the vertex labels.

For our algorithm we will need some “technical” generalization of graphs
(which is well established in matroid theory, cf. signed graphs and gain graphs).

Definition 5. A signed graph is a graph where every edge also has a sign,
besides the edge label. A sign is even or odd. Signs can be added modulo 2 where
even=0 and odd=1. Vertex and edge labels are related as follows. The label buv
of an odd edge uv satisfies buv = xu + xv; note that buv = bvu. The label duv
of an even edge uv satisfies duv = xu − xv. Note that duv = −dvu, that is, the
orientation of an even edge matters.

The operation of merging edges in a signed graph works as follows. Let w be
some vertex of degree 2 with neighbors u and v, where possibly u = v. We replace
w and edges wu and wv with a new edge uv whose sign is the sum of signs of
wu and wv. The label of uv is built according to these rules:

250 P. Damaschke, Ö. Eğecioğlu, and L. Molokov

If both wu and wv are odd, then uv is even, and
duv = xu − xv = buw − xw + xw − bvw = buw − bwv.
If both wu and wv are even, then uv is even, and
duv = xu − xv = duw + xw − xw − dvw = duw + dwv.
If wu is odd and wv is even, then uv is odd, and
buv = xu + xv = buw − xw + xw + dvw = buw − dwv.
If wu is even and wv is odd, then uv is odd, and
buv = xu + xv = bvw − xw + xw + duw = bvw − dwu.

Note that:

(1) In terms of the linear system, merging just means to eliminate the variable
xw by combining the equations for the labels of wu and wv.

(2) We can consider the original graph as a signed graph where all signs are
odd. After a sequence of mergings, an odd (even) edge can represent a path
of odd (even) length with inner vertices of degree 2 in the original graph. It is
straightforward to prove associativity: The label of an edge does not depend on
the order the merge steps are applied to consecutive edges in a path. Also the
notions of circuit and balanced circuit can now be lifted to signed graphs in a
straightforward way. In particular we have:

Corollary 1. The circuits in signed graphs are exactly the simple even cycles
and bow ties, with the modification that the sign of a cycle (odd or even) is now
the sum of signs of its edges. ��

3 NP-Hardness of Determining the Recoverable Edges

Theorem 3. Balanced Circuits Recovery in graphs is NP-hard.

Proof. We will demonstrate that the following decision problem is NP-complete:
Given a graph with edge signs and edge labels and a specific edge, is this edge
recoverable? Then the Theorem follows, because even edges are only used as a
shorthand for a path of two odd edges. (An instance of Balanced Circuits

Recovery has odd edges only.)
The well-known NP-complete Subset Sum takes as input n+1 real numbers

a1, . . . , an; s and asks whether
∑

i∈A ai = s holds for some subset A ⊆ {1, . . . , n}.
Given an instance of Subset Sum, we construct in linear time an instance of
Balanced Circuit Recovery as follows (consult Fig.1 for an example of the
reduction graph):

Create two vertices u and v, each with a loop with odd sign. The loop at u
gets label 0, and the loop at v gets label 2s. For i = 1 create vertices u1, v1
and two edges uu1 and uv1. For each item ai, i > 1, from the sequence, create
two vertices ui, vi and four edges ui−1ui, ui−1vi, vi−1ui, vi−1vi. Also create two
edges unv, vnv. All these non-loop edges are even. Edges get the following labels.
Every edge uiui+1 and viui+1 gets label 0, and every edge uivi+1 and vivi+1 gets
label −ai+1. Similarly, edge uu1 gets label 0, and edge uv1 gets label −a1. Both
unv and vnv get label 0.

Fixed-Parameter Tractability of Error Correction 251

The idea is that every even edge, so to speak, shifts the vertex label by either
ai+1 or 0 when we proceed from u to v. Based on this, we will show the following
equivalence (remember what recoverable means, from Definition 1).

Claim. The two loops are recoverable if and only if the Subset Sum instance is
a Yes instance.

Proof of Claim. Trivially, the graph without the loops at u and v contains only
even cycles. Due to Theorem 2, the circuits containing a loop are exactly the bow
ties connecting the loops at u and v by a simple path. That is, the two loops can
only appear together in circuits. By the inductive definition of reachable edges
(rows) and Theorem 1, we can only infer edge labels in balanced circuits, and one
further true edge label at a time, in a circuit where all other edges are already
recovered. But we cannot infer two new edge labels in a circuit simultaneously.
Hence the loops are recoverable if and only if they appear in a balanced circuit.

The 2n shortest simple paths from u to v go through the vertices ui or vi
strictly in the order of indices i = 1, . . . , n. On a simple path from u to v we may
also go from index i+1 back to index i, but then we have to return immediately
to i+1, to avoid repeated visits of a vertex. Any such zig zag path of three edges
can be replaced with the one edge between its end vertices with indices i and
i+1. The shift of labels on the zig zag path and the single edge is the same; this
is easy to verify by our choice of even edge labels and their effect on the vertex
labels. (Note that the direct edge is the result of merging the three edges in the
zig zag path.) Hence it suffices to consider only bow ties with shortest paths
from u to v. Now, going through vi means to add ai to the solution A, and going
through ui means not to add ai to A. Since the loop at v has label 2s = s + s,
the total shift must be exactly s, and the claimed equivalence is established. ��

Fig. 1. The reduction graph (Theorem 3) for 3 items. The dashed lines show a zig zag
path that may be replaced with the bold edge in a bow tie.

252 P. Damaschke, Ö. Eğecioğlu, and L. Molokov

4 Girth of Reduced Signed Graphs

In view of the NP-hardness result in Theorem 3 it is natural to study the pa-
rameterized version of Balanced Circuits Recovery in graphs, with the
maximum number k of faulty edges as the parameter. The following is a build-
ing block of our parameterized algorithm.

Given any signed graph with real-valued edge labels we construct the reduced
signed graph by repeatedly applying the following steps as long as possible:

0-rule: If vertex w has a single loop with odd sign, and w is not adjacent with
further edges, delete w and the loop.
1-rule: If w is a vertex of degree 1 with neighbor u, delete w and the edge wu.
2-rule: If w is a vertex of degree 2 with neighbors u and v (where possibly
u = v), merge the edges wu and wv.

It is easy to establish that these rules can be applied in any order and yield a
uniquely determined reduced signed graph. We also need:

Lemma 1. In a signed graph G with n vertices and minimum degree d ≥ 3 we
find a circuit with at most 4 logd−1 n+2 edges in polynomial time. Consequently,
in a reduced signed graph with n vertices we find a circuit with at most 4 log2 n+2
edges in polynomial time.

Proof. We only sketch the construction, details are omitted due to space limita-
tions. By breadth-first search we easily find a cycle C of logarithmic length. If
C is even, we are done. If C is odd, we shrink C to a super vertex and run BFS
again, to find another cycle and a path connecting it to C, both of logarithmic
length. Finally note Corollary 1. ��

5 Parameterized Algorithm for the Recoverable Edges

Suppose that we have identified a balanced circuit C. Then the edges in C
are recovered, due to the independent errors assumption. Furthermore we can
contract C by successively contracting its edges.

Edge Contraction: Once an edge uv is recognized as correct, we can contract
it and obtain an equivalent smaller problem instance. The principle is simply to
eliminate one of the variables, say xv, which is possible since we know that the
edge label is correct. For clarity we discuss all details as needed later.

If the considered edge is a loop (u = v), we have the following cases. If the
loop is even, then duu = 0 (otherwise the loop would not be correct), and we can
simply delete the loop. If the loop is odd, then xu = buu/2 is enforced, thus we
keep the loop as an indicator that the xu has been determined. In the following
we suppose u �= v and discuss the real edge contraction. We keep vertex u and
eliminate v; this choice is arbitrary. Let w denote any further vertex. When we
contract uv, all edges uw (w �= v) are unchanged. We merge uv with every edge
vw (w �= v) exactly as described earlier in Section 2. Note that at least one such
edge exists, since otherwise uv is in no circuit (by Theorem 2), hence it would

Fixed-Parameter Tractability of Error Correction 253

never be confirmed as correct. It remains to consider odd loops at v (whereas
even loops are meaningless, as seen before). Any odd loop at v, with label bvv,
is transformed into an odd loop at u with the following label buu.

If uv is odd, then buu = 2xu = 2buv − 2xv = 2buv − bvv.
If uv is even, then buu = 2xu = 2duv + 2xv = 2duv + bvv.

It may be helpful to notice what the final result of contracting a balanced circuit
C is. If C is a simple even cycle, there remains one vertex without loop, that
is, the label of that vertex is not “internally” determined by C, corresponding
to the 1-dimensional solution space of a simple even cycle. If C is a bow tie,
we eventually get one vertex with two odd loops attached, however they have
equal edge labels as C is balanced, hence one of them is redundant. – We are
ready to give a high-level description of our algorithm for Balanced Circuits

Recovery in graphs.

Preprocessing: In the following we work with signed graphs. Initially, every
edge gets an odd sign. First we apply the 1-rule as long as possible. From Theo-
rem 1 and Corollary 1 we get: The removed edges do not appear in any circuit,
hence they are not recoverable nor can they contribute to recovery of other edge
labels. Clearly, we can ignore them henceforth. Next we also apply the 2-rule
and 0-rule as long as possible, hence we obtain the reduced signed graph.

Main Loop of the Algorithm: We apply Lemma 1 to find a circuit C with at
most 4 log2 n+O(1) edges. We check whether C is balanced, by testing whether
the linear system induced by the edges in C is feasible.

If C is balanced, we contract C. Contraction does not alter the degrees of
vertices outside C, only some edges incident with C may get new end vertices
and adjusted labels. (Remember that parallel edges are allowed, they are not
removed from our graphs. While contraction of edges may render other edges
parallel, these edges are still kept, hence the degrees of vertices outside C are
not diminished.) In particular, the graph is still a reduced signed graph after
contraction, hence no merging takes places among the remaining edges.

If C is not balanced, clearly C contains some faulty edge, but it is important
to notice that we do not know which edges are faulty. Therefore, in this case we
delete all edges of C (but not their vertices) from the graph, and then we reduce
the remaining graph again, by exhaustively applying the three rules.

We iterate the process of circuit detection, contraction, deletion and reduction,
until the remaining graph has some constant size O(1).

Re-inserting Edges: As said in the beginning of this section, contraction only
yields equivalent problem instances, and vertices eliminated during the contrac-
tion of balanced circuits have labels uniquely determined by the labels of the
vertices we keep, hence we need not consider them any more. Roughly speaking,
no information gets lost by contraction.

The situation is different for faulty circuits. Since we have removed edges
that are only “potentially” faulty, we must eventually re-insert them one by
one to guarantee an equivalent problem instance. The details of this step need

254 P. Damaschke, Ö. Eğecioğlu, and L. Molokov

some more discussion. In the following, G denotes the input graph after initial
exhaustive application of the 1-rule (hence G has minimum degree 2), and H
denotes the graph obtained by our processing so far. Let e = uv be some edge
that we want to put back next. Recall that any vertex of H may stand for a
vertex of G or represent a subset of original vertices of G identified due to edge
contractions. Similarly, any edge of H may stand for an original edge of G or a
path of merged edges from G. Thus, any end of e, say u, may lie in a vertex of
H or on an edge of H , or u may even lie outside H , because the edges adjacent
to u have been removed as well (e.g., by the 1-rule). If e is already on a path
represented by an edge of H , clearly we need not re-insert e.

Now we treat the other cases. If u is in a vertex of H , we simply attach e to
this vertex in the obvious sense. If u is on an edge f of H , we insert vertex u
in H and subdivide f . If u is not in H , then due to minimum degree 2 another
path in G different from edge uv starts in u and ends somewhere in H , or in v.
We also re-insert such a path, but then exhaustively apply the 2-rule again. A
few simple case inspections show that, in either case regarding the ends u and v
of e, re-insertion of an edge e adds at most 2 vertices and 2 further edges to H .
With at most k faulty edges, the size of H thus increases by O(k logn) in total,
due to Lemma 1. (After each re-insertion we can also update the edge labels in
H straightforwardly, since the original edge labels from G are still known.)

Analysis: By the last observation we can reduce a graph with n vertices to a
kernel of k log n vertices (with some fixed logarithm base) in polynomial time.
Thus an upper bound n on the kernel size is implicitly given by n = k logn. In
order to bound n in terms of k only, observe that n = k log n implies k > logn
(for large enough n). Therefore n = k logn = k(log k + log logn) = O(k log k).

Work on the Kernel: The above procedure has computed, in polynomial
time, a kernel of O(k log k) vertices, with the property that every edge outside
the kernel is already recovered or not recoverable at all. Thus it only remains to
solve the problem on the kernel. Even if we naively enumerate all circuits in the
kernel, test them, and get the other recoverable edges inductively (Theorem 1),
the time depends only on k. Thus we have finally shown:

Theorem 4. Balanced Circuits Recovery in graphs parameterized by the
number of faulty edges is in FPT. ��

6 Branching Strategies

Theorem 4 establishes our FPT result, however exhaustive enumeration of all
circuits in the kernel would be wasteful. We consider more efficient strategies
for this last phase separately. Before we solve the remaining problem on the
kernel, we reduce this graph once more: Isolated odd loops removed by the
0-rule and edges removed by the 1-rule are not recoverable anyhow, and in
every path P of edges merged by the 2-rule, either all or none of the edges
in P are recoverable, such that we need not distinguish them. Also remember
that contracting balanced circuits only removes edges that are already recovered

Fixed-Parameter Tractability of Error Correction 255

(since the independent errors assumption holds, and edges that became parallel
are kept in the graph). In parameterized time bounds we use the O∗ notation
that omits polynomial factors, and log means the logarithm with a suitable base.

Theorem 5. Balanced Circuits Recovery in graphs with n vertices and m
edges, at most k of them faulty, is solvable within the minimum of the following
time bounds: O∗(2m); O∗(mk/k!); and O∗((logn)k).

Proof. We may guess the subset of faulty edges and delete them. Clearly, these
are at most 2m and at mostmk/k! subsets. In every branch we run the algorithm
from Section 5, with the difference that we abort it when a faulty circuit is
detected. Every branch needs polynomial time.

Alternatively, we may run the algorithm from Section 5, now with the differ-
ence that, when a faulty circuit C is detected, we branch on C, thereby guessing
only one faulty edge and deleting it. Due to Lemma 1, C has logn edges. Since
we can apply this step at most k times, we obtain a bounded search tree of
size (logn)k. Clearly, if some branch is successful, we have found all recoverable
edges, otherwise we report that more than k faulty edges were present.

A side remark is that the reachable edges that are not in balanced circuits (see
the definition of reachable rows/edges and Theorem 1) are eventually detected,
as they are linearly dependent from already recovered edges. ��
Since we haven=O(k log k) as said above, we obtainO∗((logn)k)=O∗((log k)k)=
O∗(ck log log k) for some constant c > 1. Hence the latter method is faster unless
m = O(k log log k).

Corollary 2. Balanced Circuits Recovery in graphs with at most k faulty
edges is solvable in O∗((log k)k) time. ��

7 Conclusions

We proved NP-hardness and gave an FPT algorithm for the problem of recover-
ing the entries of vector b in a linear system Ax = b, where A is a 0,1-matrix with
at most two 1s per row, assuming that b has at most k errors which are uncorre-
lated in a sense. The problem is motivated by the inference of chemical mixtures
under measurement errors, and can be rephrased as a graph problem. Already
membership in FPT is not trivial. Some obvious open questions are: Can we
improve the FPT time bound, possibly by using stronger relations between edge
number and girth? What about matrices with general nonzero coefficients, and
with some more than two nonzeros per row? (Do the resulting hypergraph prob-
lems inherit some of the useful graph structure?) Can we generalize the FPT
approach to gain graphs [15], provided that there exist natural applications?
The complexity of approximation might be interesting, too, but this was not the
scope of this paper. Finally, it would be worthwhile to apply the algorithms to
real protein quantitation data and validate the error assumptions made in the
parameterization.

256 P. Damaschke, Ö. Eğecioğlu, and L. Molokov

Acknowledgment. This work has been supported by the Swedish Research
Council (Vetenskapsr̊adet), grant no. 2010-4661, “Generalized and fast search
strategies for parameterized problems”. Early stages of the third author’s work
have also been supported by Devdatt Dubhashi through a Chalmers Bioscience
Initiative grant. The work was done while the second author was visiting Chalmers
during his sabbatical 2011–2012.

References

1. Damaschke, P.: Sparse Solutions of Sparse Linear Systems: Fixed-Parameter
Tractability and an Application of Complex Group Testing. In: Marx, D., Ross-
manith, P. (eds.) IPEC 2011. LNCS, vol. 7112, pp. 94–105. Springer, Heidelberg
(2012); Extended version to appear in Theor. Comp. Sci.

2. Damaschke, P., Molokov, L.: Error Propagation in Sparse Linear Systems with
Peptide-Protein Incidence Matrices. In: Bleris, L., Măndoiu, I., Schwartz, R., Wang,
J. (eds.) ISBRA 2012. LNCS, vol. 7292, pp. 72–83. Springer, Heidelberg (2012)

3. Dehne, F.K., Fellows, M.R., Langston, M.A., Rosamond, F.A., Stevens, K.: An
O(2O(k)n3) FPT Algorithm for the Undirected Feedback Vertex Set Problem. The-
ory Comput. Syst. 41, 479–492 (2007)

4. Feige, U., Reichman, D.: On the Hardness of Approximating Max-Satisfy. Info.
Proc. Lett. 97, 31–35 (2006)

5. Giannopoulos, P., Knauer, C., Rote, G.: The Parameterized Complexity of Some
Geometric Problems in Unbounded Dimension. In: Chen, J., Fomin, F.V. (eds.)
IWPEC 2009. LNCS, vol. 5917, pp. 198–209. Springer, Heidelberg (2009)

6. Grossman, J.W., Kulkarni, D.M., Schochetman, I.E.: Algebraic Graph Theory
Without Orientation. Lin. Algebra and its Appl. 212/213, 289–307 (1994)

7. Guo, J., Gramm, J., Hüffner, F., Niedermeier, R., Wernicke, S.: Compression-Based
Fixed-Parameter Algorithms for Feedback Vertex Set and Edge Bipartization. J.
Comput. Syst. Sci. 72, 1386–1396 (2006)

8. Kratsch, S., Wahlström, M.: Compression via Matroids: A Randomized Polynomial
Kernel for Odd Cycle Transversal. In: Rabani, Y. (ed.) SODA 2012, pp. 94–103.
SIAM (2012)

9. Lokshtanov, D., Saurabh, S., Sikdar, S.: Simpler Parameterized Algorithm for
OCT. In: Fiala, J., Kratochv́ıl, J., Miller, M. (eds.) IWOCA 2009. LNCS, vol. 5874,
pp. 380–384. Springer, Heidelberg (2009)

10. Narayanaswamy, N.S., Raman, V., Ramanujan, M.S., Saurabh, S.: LP can be a
Cure for Parameterized Problems. In: Dürr, C., Wilke, T. (eds.) STACS 2012.
LIPIcs, vol. 14, pp. 338–349 (2012)

11. Oxley, J.: Matroid Theory, 2nd edn. Oxford Univ. Press (2011)
12. Raman, V., Saurabh, S., Subramanian, C.R.: Faster Fixed Parameter Tractable

Algorithms for Finding Feedback Vertex Sets. ACMTrans. Algor. 2, 403–415 (2006)
13. Reed, B.A., Smith, K., Vetta, A.: Finding Odd Cycle Transversals. Oper. Res.

Lett. 32, 299–301 (2004)
14. Tutte, W.T.: On Chain-Groups and the Factors of Graphs. Coll. Math. Societatis

János Bolyai 25 (Algebraic Methods in Graph Theory, Szeged), 793–818 (1978)
15. Zaslavsky, T.: A Mathematical Bibliography of Signed and Gain Graphs and Allied

Areas. Electron. J. Comb., Dynamic Surveys in Combinatorics, no. DS8 (1999)

Lower Bounds for Ramsey Numbers for Complete
Bipartite and 3-Uniform Tripartite Subgraphs

Tapas Kumar Mishra and Sudebkumar Prasant Pal�

Department of Computer Science and Engineering
Indian Institute of Technology Kharagpur, 721302, India

tap1cse@gmail.com, spp@cse.iitkgp.ernet.in

Abstract. In this paper we establish lower bounds of the number R′(a, b) so
that any bicoloring of the edges of the complete undirected graph Kn with n ≥
R′(a, b) vertices, always admits a monochromatic complete bipartite subgraph
Ka,b, where a and b are natural numbers. We show that R′(2, b) > 2b + 1 for
b ≥ 4. We establish a lower bound for R′(a, b) using the probabilistic method
that improves the lower bound given by Chung and Graham [4]. Further, we also
use Lovász’ local lemma to derive a better lower bound for R′(a, b). We define
R′(a, b, c) be the minimum number n such that any n-vertex 3-uniform hyper-
graph G(V, E), or its complement G′(V, Ec) contains a Ka,b,c. Here, Ka,b,c is
defined as the complete tripartite 3-uniform hypergraph with vertex set A∪B∪C,
where the A, B and C have a, b and c vertices respectively, and Ka,b,c has abc
3-uniform hyperedges {u, v, w}, u ∈ A, v ∈ B and w ∈ C. We derive lower
bounds for R′(a, b, c) using probabilistic methods.

Keywords: Ramsey number, biparite graph, local lemma, probabilistic
method, r-uniform hypergraph.

1 Introduction

We define R′(a, b) as the minimum number n of vertices so that any n-vertex simple
undirected graph G or its complement G′ must contain the complete bipartite graph
Ka,b. Equivalently, R′(a, b) is the minimum number n of vertices such that any bi-
coloring of the edges of the n-vertex complete undirected graph Kn would contain a
monochromatic Ka,b. The significance of such a number is that it gives us the minimum
number of vertices needed in a graph so that two mutually disjoint subsets of vertices
with cardinalities a and b can be guaranteed to have the complete bipartite connectivity
property as mentioned. In the analysis of social networks it may be worthwhile know-
ing whether all persons in some subset of a persons share b friends, or none of the a
persons of some other subset share friendship with some set of b persons. This can also
be helpful in the analysis of dependencies, where there are many entities in one partite
set, which are all dependent on entities in the other partite sets; we need to achieve
consistencies that either all dependencies exist between a pair of partite sets, or none
of the dependencies exist between possibly another pair of partite sets. These Ramsey
numbers are different from the usual Ramsey numbers R(a, b), where R(a, b) is the

� Corresponding author.

S.K. Ghosh and T. Tokuyama (Eds.): WALCOM 2013, LNCS 7748, pp. 257–264, 2013.
© Springer-Verlag Berlin Heidelberg 2013

258 T.K. Mishra and S.P. Pal

smallest number such that any undirected graph G with n or more vertices contains
either a Ka or an independent set of size b. We know that R(3, 3) = 6, R(3, 4) = 9,
R(3, 8) = 28 and R(3, 9) = 36, R(4, 4) = 18, R(4, 5) = 25 (see [11,12]).

1.1 Existing Results

From the definition of R′(a, b), it is clear that R′(1, 1)=2 and R′(1, 2)=3. To see that
R′(1, 3) ≥ 6, observe that we need at least 4 vertices and neither a 4-cycle nor its com-
plement has a K1,3. Further, observe that neither a 5-cycle in K5, nor its complement
(also a 5-cycle) has a K1,3. The numbers R′(1, b) are however known exactly, and are
given by Burr and Roberts [2] as R′(1, b) = 2b − 1 for even b, and 2b, otherwise. Chvá-
tal and Harary [3] were the first to show that R(C4, C4) = 6, where C4 is a cordless
cycle of four vertices. We use R(G1, G2) to denote the minimum number such that for
every undirected graph G with R(G1, G2) or more vertices, either (i) G contains G1
as subgraph, or (ii) the complement graph G′ of G contains G2 as subgraph. As K2,2
is identical to C4, R′(2, 2) = 6. Note that R′(2, 3) = 10 [1], R′(2, 4) = 14 [6], and
R′(2, 5) = 18 [6]. There are many such results for R′(a, b) for various values of a and
b in [11]. Harary [7] proved that R(K1,n, K1,m) = n + m − x, where x = 1 if both n
and m are even and x = 0 otherwise.

1.2 Our Contribution

In the next section we establish a lower bound of 2b + 1 for R′(2, b) for all b ≥ 2.
We provide an explicit construction and use combinatorial arguments. Note that Lortz
and Mengersen [8] conjectured that R′(2, b) ≥ 4b − 3, for all b ≥ 2. Exoo et al. [6]
proved that R′(2, b) ≤ 4b − 2 for all b ≥ 2, where the equality holds if and only
if a strongly regular (4b − 3, 2b − 2, b − 2, b − 1)-graph exists. A k-regular graph
G with n vertices is called strongly regular (n, k, p, q)-graph if every pair of adjacent
vertices share exactly p neighbours and every non-adjacent pair of vertices share exactly
q neighbours. In Section 3, we consider Ramsey numbers R′(a, b) for integers a and b
and establish lower bounds using probabilitic methods. In Section 4 we extend similar
methods for 3-uniform tripartite hypergraphs, deriving lower bounds for the Ramsey
numbers R′(a, b, c); we are unaware of any literature concerning such lower bounds
for such hypergraphs. Here, R′(a, b, c) is the minimum number n such that any n-
vertex 3-uniform hypergraph G(V, E), or its complement G′(V, Ec) contains a Ka,b,c.
Here, Ka,b,c is defined as the complete tripartite 3-uniform hypergraph with vertex set
A ∪ B ∪ C, where the A, B and C have a, b and c vertices respectively, and Ka,b,c

has abc 3-uniform hyperedges {u, v, w}, u ∈ A, v ∈ B and w ∈ C. In Section 5 we
conclude with a few remarks and future research directions.

2 A Constructive Lower Bound for R′(2, b)

The following lower bound for R′(2, b) involves an explicit construction as follows.
We are not aware of better lower bounds for R′(2, b) in the literature, to the best of our
knowledge.

Theorem 1. R′(2, b) > 2b + 1, for all integers b ≥ 2.

Lower Bounds for Ramsey Numbers for Bipartite and Tripartite Subgraphs 259

v1

v2

vb+1

v2b−1

v2b

v2b+1
B1 B2

vb

B1 B2

v1

v2

v3

vb−1
vb

v2b

v2b−2

vb+2

vb+1

v2b−1
v1

v2

v3

vb−1
vb

vb+1

vb+2

v2b−2

v2b−1

v2b

v2b+1

B1 B2

Fig. 1. Construction of G(left two): generation of B1, B2 and addition of edges. Resulting
G′(rightmost): In G′, B1 and B2 become Kb, and B1 and B2 have a perfect matching.

Proof. For b ≥ 4, we show that with 2b + 1 vertices, there always exist a graph G
such that both G and its complement G′ do not contain K2,b. The entire construction is
illustrated in Figure 1. Let the vertices be labelled v1, v2, ..., v2b+1. Connect v2b+1 to
every other vertex. In order to avoid K2,b, no other vertex out of v1, v2, ..., v2b should be
connected to b or more vertices in the set v1, v2, ..., v2b. So, any of these 2b vertices can
have a maximum of b − 1 neighbours other than v2b+1. We distribute these 2b vertices
into two groups, keeping v1, v2, ..., vb in one group B1, and vb + 1, vb + 2, ..., v2b in the
other group B2. Now every vertex from B1 can be connected to at most b − 1 vertices
from B2 such that we can still avoid K2,b. There are

(
b

b−1
)

= b such distinct groups
of size b − 1 in B2. Now each vertex of B1 is connected to one such distinct group
of size b − 1 from B2. We claim the degree of every vertex except v2b+1 is b. Firstly,
every vertex of B1 is connected to b − 1 vertices of B2, and the single vertex v2b+1.
Secondly, every vertex of B2 (i) is connected to v2b+1, and (ii) also present in exactly
b − 1 separate groups, where each group is connected to exactly one vertex of B1. So,
every vertex of B1 ∪ B2 has degree b. Therefore G is K2,b-free.

Now consider G′. Since v2b+1 is connected to every other vertex in G, it is isolated in
G′. So, the number of possible neighbours for vertices v1, v2, ..., v2b+1 becomes 2b−1.
Since each vertex in G is connected to b − 1 vertices other than v2b+1, the number of
possible neighbours for each vertex is restricted to (2b − 1) − (b − 1) = b, as illustrated
in Figure 1. Now we argue that such neighbouring sets of b vertices of any two vertices
differ in at least one vertex. Observe that in G′, B1 and B2 include complete graphs Kb,
and the edges between B1 and B2 form a perfect matching. As a result the neighbouring
sets of any two vertices differ by at least one vertex in G. Since the number of common
neighbours between any two vertices is no more than b − 1, G′ is also K2,b-free. �

3 Probabilistic Lower Bounds for R′(a, b)

In the first Section 3.1 we use the probabilistic method that Erdós applied to prove
lower bounds on the original Ramsey numbers [5]. In the Section 3.2, we demonstrate
improved lower bounds using the Loväsz’ local lemma.

260 T.K. Mishra and S.P. Pal

3.1 Application of the Probabilistic Method

The best known lower bound on R′(a, b) due to Chung and Graham [4] is

R′(a, b) >
(

2π
√

ab
)(1

a+b) (
a + b

e2

)
2

ab−1
a+b (1)

Table 1. Lower bounds for R′(a, b) from Inequality 3.1(left), Theorem 2 (middle) and Theorem
3 (right)

b 4 5 6 7 8 14 15 16
a
1 2,3,4 3,4,5 3,5,6 3,5,7 3,6,8 5,10,17 5,11,18 6,12,19
2 3,5,6 4,6,7 5,7,9 5,8,10 6,9,12 9,17,23 10,18,24 10, 19, 26
3 5,7,8 6,8,9 7,10,12 8,12,14 9,14,16 16,26,32 17,29,35 18,31,37
4 6,9,10 8,11,12 10,14,15 12,16,18 14,19,22 26,41,46 28,45,50 30,49,55
5 11,14,16 13,18,20 16,22,24 19,27,29 40,60,65 43,67,72 47,74,80
6 17,23,25 21,29,31 26,35,38 59,87,93 66,98,104 72,109,116
7 27,37,39 34,46,48 86,123,129 96,139,147 106,156,165
8 43,58,61 119,168,178 136,193,204 152,219,232
14 556,755,820 678,922,1005 817,1113,1219
15 836,1136,1246 1019,1385,1525
16 1254,1704,1886

We derive a tighter lower bound using the probabilistic method as follows.

Theorem 2. For natural numbers a and b, R′(a, b) >
(aabb2π

√
ab)(

1
a+b)2(

ab−1
a+b)

e .

Proof. First we find the probability p of existence of a particular monochromatic Ka,b

and then sum that probability over all possible distinct Ka,b to get the probability of
existence of some monochromatic Ka,b. To get a lower bound on R′(a, b), we choose
the largest value of n, keeping the probability p stictly less than unity. This would
ensure the existence of some graph G with n vertices such that both G and G′ are free
from any monochromatic Ka,b. Let n be the number of vertices of graph G. Then the
total number of distinct Ka,b’s possible is

(
n
a

)(
n−a

b

)
. Each Ka,b has exactly ab edges.

Each edge can be either of two colors with equal probability. The probability that a

particular Ka,b will have all ab edges of a specific color is
(1

2
)ab

. So, the probability

that a particular Ka,b is monochromatic is 2
(1

2
)ab = 21−ab. The probability p that

some Ka,b is monochromatic is
(

n
a

)(
n−a

b

)
21−ab. Our objective is to choose as large n as

possible with p < 1. So, choosing n as in Theorem 2 and using Stirling’s approximation

(replacing a! by
√

2π aa+ 1
2

ea and b! by
√

2π bb+ 1
2

eb), we get p < 1. The details of the
derivation shown in [9] are omitted in this version. This guarantees the existence of an
n-vertex graph for which some edge bicoloring would not result in any monochromatic
Ka,b. �

Lower Bounds for Ramsey Numbers for Bipartite and Tripartite Subgraphs 261

See Table 1 for the first two lower bounds for R′(a, b) for each pair (a, b), due to
Inequality 3.1 and Theorem 2, respectively. The ratio of our lower bound in Inequality
2 and that of Chung and Graham’s as in Inequality 3.1 is close to 1.359 for values of a
close to b, and close to Euler’s number e for values of a very small compared to b. So
our lower bound gives an improvement that varies between 1.35 to e depending upon
the values of a and b.

3.2 A Lower Bound for R′(a, b) Using Lovász’ Local Lemma

We are interested in the question of existence of a monochromatic Ka,b in any bi-
colouring of the edges of Kn. Since the same edge may be present in many distinct
Ka,b’s, the colouring of any particular edge may effect the monochromaticity in many
Ka,b’s. This gives the motivation of use of Lovász’ local lemma (see [10]) in this con-
text. We use the following Corollary 1 of Lovász’s local lemma to account for such
dependencies.

Corollary 1. If every event Ei, 1 ≤ i ≤ m is dependent on at most d other events and
P r [Ei] ≤ p, and if ep(d + 1) ≤ 1, then P r

[⋂n
i=1 Ei

]
> 0.

Theorem 3. If e
(
21−ab

) (
ab

(
n−2

a+b−2
)(

a+b−2
b−1

)
+ 1

)
≤ 1 then R′(a, b) > n.

Proof. We consider a random bicolouring of the complete graph Kn in which each edge
is independently coloured red or blue with equal probability. Let S be the set of edges
of an arbitrary Ka,b, and let ES be the event that all edges in this Ka,b are coloured
monochromatically. For each such S, the probability of ES is P (ES) = 21−ab. We
enumerate the sets of edges of all possible Ka,b’s as S1,S2,...,Sm, where m =

(
n
a

)(
n−a

b

)

and each Si is the set of all the edges of the ith Ka,b. Clearly, each event ESi is mutually
independent of all the events ESj from the set {ESj : |Si ∩ Sj| = 0}. For each ESi ,
the number of events outside this set satisfies the inequality |{ESj : |Si ∩ Sj | ≥ 1}| ≤
ab

(
n−2

a+b−2
)(

a+b−2
b−1

)
; every Sj in this set shares at least one edge with Si, and therefore

such an Sj shares at least two vertices with Si. We can choose the rest of the a + b − 2
vertices of Sj from the remaining n−2 vertices of Kn, out of which we can choose b−1
for one partite of Sj , and the remaining a − 1 to form the second partite of Sj , yielding
a Ka,b that shares at least one edge with Si. We apply Corollary 1 to the set of events
ES1 ,ES2 ,...,ESm , with p = 21−ab and d = ab

(
n−2

a+b−2
)(

a+b−2
b−1

)
, enforcing the premise

ep(d + 1) ≤ 1, resulting in the lower bound for n, so that P r
[⋂m

i=1 ESi

]
> 0. This

non-zero probability (of none of the events ESi occuring, for 1 ≤ i ≤ m) implies the
existence of some bicoloring of the edges of Kn with no monochromatic Ka,b, thereby
establishing the theorem. �	
Solving the inequality in the statement of Theorem 3, we can compute lower bounds for
R′(a, b), for natural numbers a and b. Such lower bounds for some larger values of a
and b show significant improvements over the bounds computed using Theorem 2 (see
Table 1).

262 T.K. Mishra and S.P. Pal

4 Lower Bounds for Ramsey Numbers for Complete
Tripartite 3-Uniform Subgraphs

Let R′(a, b, c) be the minimum number n such that any n-vertex 3-uniform hypergraph
G(V, E), or its complement G′(V, E) contains a Ka,b,c. An r-uniform hypergraph is a
hypergraph where every hyperedge has exactly r vertices. (Hyperedges of a hypergraph
are subsets of the vertex set. So, usual graphs are 2-uniform hypergraphs.) Here, Ka,b,c

is defined as the complete tripartite 3-uniform hypergraph with vertex set A ∪ B ∪ C,
where the A, B and C have a, b and c vertices respectively, and Ka,b,c has abc 3-uniform
hyperedges {u, v, w}, u ∈ A, v ∈ B and w ∈ C. It is easy to see that R′(1, 1, 1) = 3;
with 3 vertices, there is one possible 3-uniform hyperedge which either is present or
absent in G.

Theorem 4. R′(1, 1, 2) = 4.

Proof. Consider the complete 3-uniform hypergraph with vertex set V = {1, 2, 3, 4}
and set of exactly four hyperedges H = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}}. Since
vertex 1 is present in 3 hyperedges, any (empty or non-empty) subset S of H , or its
complement H \ S must contain at least two hyperedges containing the vertex 1. Ob-
serve that any such set of two hyperedges must have a K1,1,2 as subset. �

We have checked the facts that R′(1, 1, 3) = 5 and R′(1, 1, 4) = 6 by exhaustive search;
the codes for these programs are available on request from the authors. Determining
such Ramsey numbers for higher parameters by exhaustive searching using computer
programs is computationally very expensive in terms or running time. We state our
conjecture for R′(1, 1, b) as follows.

Conjecture 1. R′(1, 1, b) = b + 2.

Table 2. Lower bounds for R′(a, a, a) by Theorem 5 (left) and Theorem 6 (right)

a 3 4 5 6 7 8
R′(a, a, a) 14,19 84,138 800,1765 11773,35167 269569,1073543 9650620,50616072

Table 3. Lower bounds for R′(a, b, c) by Theorem 5 (left) and Theorem 6 (right)

a=2 a=3 a=3 a=3 a=4 a=4 a=5 a=6 a=6 a=6 a=6
c 5 3 4 5 4 5 5 2 3 4 5
b
2 9,13 8,11 11,16 16,22 18,25 26,36 40,58 11,16 21,29 36,52 59,87
3 16,22 14,19 23,32 35,50 41,61 68,107 124,208 50,74 107,175 209,371
4 26,36 41,61 68,107 84,138 159,281 334,653 277,521 643,1354
5 40,58 124,208 334,653 800,1765 1740,4194

Lower Bounds for Ramsey Numbers for Bipartite and Tripartite Subgraphs 263

4.1 Probabilistic Lower Bound for R′(a, b, c)

Theorem 5. R′(a, b, c) >

(
aabbcc

√
(2π)3abc

)(1
a+b+c)2(

abc−1
a+b+c)

e .

Proof. Consider the probability of existence of a particular Ka,b,c in G or G′, where G
is a 3-uniform hypergraph and G′ is its complement. The sum p of such probabilities
over all possible distinct Ka,b,c’s is an upper bound on the probability that some Ka,b,c

exists in G or G′. Let n be the number of vertices of hypergraph G. As in the proof of
Theorem 2, we observe that the number of Ka,b,c’s is no more than

(
n
a

)(
n−a

b

)(
n−a−b

c

)
.

Each Ka,b,c has exactly abc hyperedges. Each hyperedge can be present in G or G′

with equal probability. So, the probability that all hyperedges of a particular Ka,b,c are

in G is
(1

2
)abc

. Therefore, the probability that a particular Ka,b,c is present in either G

or G′ is 2
(1

2
)abc = 21−abc. So, the probability p that some Ka,b,c is either in G or in

G′, is
(

n
a

)(
n−a

b

)(
n−a−b

c

)
21−abc. Using the lower bound from Theorem 5 for R′(a, b, c)

as the value for the number n of vertices, we can verify that p < 1. This establishes the
theorem since p < 1 implies the existence of a hypergraph G of n vertices such that
neither G nor G′ has a Ka,b,c. For details, see [9]. �

See Tables 2 and 3 for some computed lower bounds based on Theorem 5.

4.2 A Lower Bound for R′(a, b, c) Using Lovász’ Local Lemma

Theorem 6. If e
(
21−abc

) (
abc

(
n−3

a+b+c−3
)(

a+b+c−3
b−1

)(
a+c−2

c−1
)

+ 1
)

≤ 1 then

R′(a, b, c) > n.

Proof. Here we perform analysis as done earlier in Section 3.2. Consider a random
bicoloring of the hyperedges of the complete 3-uniform hypergraph of n vertices, in
which each hyperedge is independently colored red or blue with equal probability.
Let S be the set of hyperedges of an arbitrary Ka,b,c, and let ES be the event that
the Ka,b,c is coloured monochromatically. For each such S, P (ES) = 21−abc. If
we enumerate all possible Ka,b,c’s as S1,S2,...,Sm, where m =

(
n
a

)(
n−a

b

)(
n−a−b

c

)

and each Si is the set of all the hyperedges of the ith Ka,b,c, each event ESi is mu-
tually independent of all the events from the set {ESj : |Si ∩ Sj | = 0}. For each
ESi , the number of events outside this set satisfies the inequality {ESj : |Si ∩ Sj | ≥
1} ≤ abc

(
n−3

a+b+c−3
)(

a+b+c−3
b−1

)(
a+c−2

c−1
)
, as every Sj in this set shares at least one of

the abc hyperedges of Si, and therefore Sj shares at least three vertices with Si. We
can choose the rest of the a + b + c − 3 vertices of Sj from the remaining n − 3
vertices, out of which we can choose b − 1 for the second partite of Sj , and the
remaining c − 1 for the third partite of Sj , thereby yielding a Ka,b,c which shares
at least one hyperedge edge with Si. We can apply Corollary 1 to the set of events
ES1 ,ES2 ,...,ESm , with p = 21−abc, d = abc

(
n−3

a+b+c−3
)(

a+b+c−3
b−1

)(
a+c−2

c−1
)

, yielding

ep(d + 1) ≤ 1 => P r
[⋂m

i=1 ESi

]
> 0. Since no event ESi occurs for some random

bicoloring of the hyperedges, no monochromatic Ka,b,c exists in that bicoloring. This
establishes the theorem. �	

264 T.K. Mishra and S.P. Pal

See Tables 2 and 3 for some computed lower bounds based on Theorem 6; the values
based on Theorem 6 to the right in each cell of these tables are much better than those
based on Theorem 5, to the left in the respective cells.

5 Concluding Remarks

The probabilistic method is useful in establishing lower bounds for Ramsey numbers.
It is worthwhile studying the application of Lovász’ local lemma, possibly more ef-
fectively and accurately, so that higher lower bounds may be determined. In our work
we have considered the bicoloring of Kn and the existence of a monochromatic Ka,b

in arbitrary bicolorings of the edges of Kn; some authors consider complete bipartite
graphs Kn,n instead of complete graphs like Kn and derive bounds for corresponding
Ramsey numbers. If one uses four parameters, a, b, c and d, then one can consider the
existence of a monochromatic Ka,b or a monochromatic Kc,d, in the bicolorings of the
edges of Kn (or Kn,n). For values and bounds on such Ramsey numbers see [11]. For
computing the lower bounds in Tables 1, 2 and 3, we have used computer programs.
The code for these programs are available from the authors on request. As the sizes of
the complete bipartite graphs (tripartite 3-uniform hypergraphs) grow, the computation
time required for computing the lower bounds becomes prohibitive.

References

1. Burr, S.A.: Diagonal Ramsey Numbers for Small Graphs. Journal of Graph Theory 7, 57–69
(1983)

2. Burr, S.A., Roberts, J.A.: On Ramsey numbers for stars. Utilitas Mathematica 4, 217–220
(1973)

3. Chvátal, V., Harary, F.: Generalized Ramsey Theory for Graphs, II. Small Diagonal Numbers.
Proceedings of the American Mathematical Society 32, 389–394 (1972)

4. Chung, F.R.K., Graham, R.L.: On Multicolor Ramsey Numbers for Complete Bipartite
Graphs. Journal of Combinatorial Theory (B) 18, 164–169 (1975)

5. Erdős, P., Spencer, J.: Paul Erdős: The Art of Counting. The MIT Press (1973)
6. Exoo, G., Harborth, H., Mengersen, I.: On Ramsey Number of K2,n. In: Alavi, Y., Chung,

F.R.K., Graham, R.L., Hsueds, D.F. (eds.) Graph Theory, Combinatorics, Algorithms, and
Applications, pp. 207–211. SIAM, Philadelphia (1989)

7. Harary, F.: Recent Results on Generalized Ramsey Theory for Graphs. In: Alavi, Y., et al.
(eds.) Graph Theory and Applications, pp. 125–138. Springer, Berlin (1972)

8. Lortz, R., Mengersen, I.: Bounds on Ramsey Numbers of Certain Complete Bipartite Graphs.
Results in Mathematics 41, 140–149 (2002)

9. Mishra, T.K., Pal, S.P.: Lower bounds for Ramsey numbers for complete bipartite and 3-
uniform tripartite subgraphs (manuscript, 2012)

10. Motwani, R., Raghavan, P.: Randomized Algorithms, pp. 115–120. Cambridge University
Press, New York (1995)

11. Radziszowski, S.P.: Small Ramsey Numbers. The Electronic Journal on Combinatorics
(2011)

12. West, D.B.: Introduction to Graph Theory, 2nd edn. Pearson Prentice Hall (2006)

Improved Fixed-Parameter Algorithm

for the Minimum Weight 3-SAT Problem

Venkatesh Raman and Bal Sri Shankar

The Institute of Mathematical Sciences, Chennai 600113, India
{vraman,balsri}@imsc.res.in

Abstract. The problem of finding a satisfying assignment for a CNF
formula that minimizes the weight (the number of variables that are
set to 1) is NP-complete even if the formula is a 2-CNF formula. It
generalizes the well-studied problem of finding the smallest hitting set
for a family of sets, which can be modeled using a CNF formula with no
negative literals. The natural parameterized version of the problem asks
for a satisfying assignment of weight at most k.

It is known that when the input instance is a 2-CNF formula, the
problem actually is equivalent (in terms of parameterized and exact com-
plexity) to the vertex cover (or 2-hitting set) problem. In this paper, we
present the first non-trivial fixed-parameter algorithm for the problem
when the given input is a 3-CNF formula.

We give an 2.85knO(1) algorithm for determining whether a given 3-
CNF formula on n variables has a satisfying assignment with weight at
most k. This improves the trivial 3knO(1) time algorithm for the prob-
lem and answers a question asked in an earlier paper. This implies that
within the same time, we can test whether a given 3-CNF formula has
a weak backdoor on k variables, to a 0-valid formula – i.e. whether there
are k variables such that there exists an assignment to these variables
that results in a 0-valid formula (formulas that are satisfiable by an
all 0 assignment). This improves the naive 6knO(1) algorithm for the
problem.

1 Introduction and Motivation

Satisfiability is a fundamental problem that encodes several computational prob-
lems. Variations of the problem appear as canonical complete problems for sev-
eral complexity classes. While it is well known that the satisfiability of a formula
in CNF form is a canonical NP-complete problem, testing whether a CNF for-
mula has a satisfying assignment with weight1 at least k is a canonical complete
problem for the parameterized complexity class W [2] [2]. If the number of vari-
ables in each clause is bounded, it is a canonical W [1]-complete problem [2].
These results imply that it is unlikely that these problems are fixed parameter
tractable (FPT). In other words, it is unlikely that they have an algorithm with
running time O(f(k)nO(1)) on input formulas of size n.

1 The weight of an assignment is the number of variables assigned 1 by the assignment.

S.K. Ghosh and T. Tokuyama (Eds.): WALCOM 2013, LNCS 7748, pp. 265–273, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

266 V. Raman and B.S. Shankar

On the other hand, if the question is whether a d-CNF formula (for a fixed
d) has a satisfying assignment with weight at most k, then this generalizes the
well-studied d-hitting set problem and independently, turns out to be fixed pa-
rameter tractable with the weight as a parameter ([7,5], cf. Section 2). When we
restrict our attention to 2-CNF formulas (minones 2-SAT) this problem gener-
alizes the well-studied vertex cover problem. For, given a graph G = (V,E),
a satisfying assignment of weight at most k on the formula ∧(u ∨ v), where the
∧ runs over all edges (u, v) in E, where u and v are variables corresponding to
vertices u and v of G, corresponds to a vertex cover of size at most k in G. How-
ever, notice that we do not require negated literals to encode vertex cover

using 2-CNF formulas, and thus it appears that minones 2-SAT is a more gen-
eral version of the vertex cover problem. In [6], the authors give a polynomial
time parameter preserving reduction from minones 2-SAT to vertex cover

thereby showing that the parameterized and exact optimization versions of mi-
nones 2-SAT problem can be solved in the same time (with a polynomial time
overhead) as the corresponding versions of vertex cover. They ask, in general,
whether finding a weight at most k satisfying assignment can be done in better
than O∗(ck)2 time for a c-SAT formula. We answer the question affirmatively in
this paper when c = 3.

A natural question, due to the equivalence between minimum weight 2 hit-
ting set problem and minimum weight 2 CNF SAT is whether this equiva-
lence continues for higher valus of c. One evidence in the negative, has been
shown in [4] where the authors show that when the input instance is a 3
CNF formula, the problem of finding a weight k satisfying assignment is un-
likely to have a polynomial (in k) kernel (see Section 2 for the definitions).
This is in contrast to the fact that 3-hitting set has a kernel on O(k2) ele-
ments [1]. But this does not rule out equivalence (between 3-hitting set and
weight k 3 CNF SAT) in terms of fixed-parameter tractable algorithms. While
O∗(2.27k) algorithms exist [8] for 3-hitting set (and hence for weight k satisfying
assignment in monotone 3-CNF formulae), ours is the first step in beating the
3knO(1) algorithm for finding weight k satisfying assignment in general 3-CNF
formula.

Another motivation for studying this problem stems from the need to un-
derstand the role of ‘backdoors’ to a formula. Given a boolean formula F , a
weak backdoor [3] to a family F of boolean CNF formulae is a subset S of
variables of the formula such that there exists an assignment to the variables
of S, that after simplification in F , results in a formula that is in F and is
satisfiable. If F has a k sized weak backdoor, and if satisfiability of a for-
mula in F is testable in polynomial time, then the satisfiability of the entire
formula can be checked in O∗(2k) time. Our result implies that one can test
whethere a given 3 CNF formula has a k-sized weak backdoor to the family
of what are called 0-valid formulae (formulae which are satisfiable by setting
all variables to 0), in O∗(2.85k) time improving on the earlier known bound
of O∗(6k) [3].

2 O∗ notation ignores polynomial factors.

Improved Fixed-Parameter Algorithm 267

2 Preliminaries

A parameterized problem is denoted by a pair (Q, k) ⊆ Σ∗ × N. The first com-
ponent Q is a classical language, and the number k is called the parameter.
Such a problem is fixed–parameter tractable (FPT) if there exists an algorithm
that decides it in time O(f(k)nO(1)) on instances of size n. A kernelization al-
gorithm takes an instance (x, k) of the parameterized problem as input, and in
time polynomial in |x| and k, produces an equivalent instance (x′, k′) such that
|x′| is a function purely of k. The output x′ is called the kernel of the problem
and its size is |x′|. We refer the reader to [2,7] for more details on the notion of
fixed-parameter tractability.

Let P be an arbitrary set, whose elements we shall refer to as variables. A
literal is either a variable or its negation. An assignment for P is a function
t : P → {0, 1}. Sometimes, we also refer to an assignment setting (mapping) a
variable to ‘true’ or ‘false’ when we mean to say 1 or 0 respectively.

A formula is in conjunctive normal form (CNF) if it is a conjunction of
clauses, where a clause is a disjunction of literals. A c-SAT formula has at
most c literals in any clause. We assume that no clause is repeated and all
variables in a clause are distinct. The weight of an assignment is the number
of variables that are set to one by that assignment. We refer to the problem of
finding a smallest weight satisfying assignment for c-SAT formulae as minones
c-SAT.

The main algorithm we give is a ‘branching algorithm’. By this, the algo-
rithm at any point performs one of several choices of partial assignments, and
then at that branch recursively checks for an assignment with fewer weight (fewer
by the number of variables already set to 1 in that branch). A branching vec-
tor (b1, b2, ...bl) for an l-way branch means that the step has set respectively
b1, b2, ...bl variables to 1. And the runtime of the branching step is the one ob-
tained by solving the recursive equation T (k, n) ≤ ∑l

i=1 T (k − bi, n) at that
step. The solution for the recursive equations we obtain can be solved using an
appropriate generating function (see [7]) and can be verified using induction or
any symbolic algebra package (for example, Mathematica).

Simple FPT algorithm for weight at most k assignments. The natural parame-
terized version of minones c-SAT is FPT for any fixed c, when parameterized
by the weight: pick a clause that contains only positive literals (as long as one
exists) and branch by setting each of the variables to 1. This results in a c-way
branch of depth at most k. If at any leaf every clause has at least one negated
literal, then the assignment that sets all the remaining variables to 0 satisfies
all such clauses. Otherwise (if all leaves have at least one clause containing all
positive literals), then we return the answer that there is no assignment with
weight at most k. This results in an O(ckm) algorithm where m is the number
of clauses in the formula.

268 V. Raman and B.S. Shankar

3 Improved Algorithm

3.1 The Algorithm

The following branching algorithm solves the problem in time O∗(2.85k).

Step 1.1. Consider the formula and find a pair of clauses of the form (a∨ b∨c)
and (a∨ d∨ e), where a, b, c, d and e are variables, all distinct from
each other.
Branch as follows :

Branch1 Set a = 1
Branch2 Set a = 0, b = 1, d = 1
Branch3 Set a = 0, c = 1, d = 1
Branch4 Set a = 0, c = 1, e = 1
Branch5 Set a = 0, b = 1, e = 1

The branching vector of this step is (1, 2, 2, 2, 2) resulting in a run-
time of O∗(2.6k).

Step 1.2. Consider the formula and find a pair of clauses of the form (a∨ b∨c)
and (a ∨ b ∨ e), where a, b, c, and e are variables, all distinct from
each other.
Branch as follows :

Branch1 Set a = 1
Branch2 Set a = 0, b = 1
Branch3 Set a = 0, b = 0, c = 1, e = 1

The branching vector of this step is (1, 1, 2) resulting in a runtime
of O∗(2.414k).
We branch as above as long as any pair of clauses as mentioned can
be found.

Step 2. Find in the formula a pair of clauses of the form (a ∨ b ∨ c) and
(¬a∨d∨e), where b, c, d and e are variables, not necessarily distinct,
but they are all distinct from a. Branch as follows :

Branch1 Set a = 0, b = 1
Branch2 Set a = 0 and c = 1
Branch3 Set a = 1 and d = 1
Branch4 Set a = 1 and e = 1

The branching vector is (1, 1, 2, 2) with time O∗(2.731k). Branch as
above as long as any pair of clauses as mentioned can be found.

Step 3. Find in the formula, a triplet of clauses of the form (a∨ b∨ c), (¬a∨
¬d ∨ e) and (d ∨ f ∨ g), where a, b, c, d, e, f and g are variables, not
necessarily distinct. Note, however that as we have already branched
based on Step 1, a, b and c are distinct from d, f and g. Also, within
a clause, all variables are distinct. Now, we branch as follows:

Branch1 Set a = 0 and b = 1
Branch2 Set a = 0 and c = 1
Branch3 Set a = 1, d = 0 and f = 1
Branch4 Set a = 1, d = 0 and g = 1
Branch5 Set a = 1, d = 1 and e = 1

Improved Fixed-Parameter Algorithm 269

The branching vector is (1, 1, 2, 2, 3) with a time complexity of
O∗(2.84k). Branch as above as long as any pair of clauses as mentioned
can be found.

Step 4. Find in the formula, a set of clauses of the form {(a1∨a2∨a3), (¬a1∨
¬a4 ∨¬a5), (a4 ∨a6∨a7), (a5∨a8∨a9)}, {(¬a2∨¬a10∨¬a11), (a10∨
a12∨a13), (a11∨a14∨a15)}, {(¬a3∨¬a16∨¬a17), (a16∨a18∨a19) and
(a17 ∨a20∨a21)}, where ai, i = 1 to 21 are variables, not necessarily
distinct. Branch as follows:

Branch1 Set a1 = 1, a4 = 0, and a6 = 1
Branch2 Set a1 = 1, a4 = 0 and a7 = 1
Branch3 Set a1 = 1, a4 = 1, a5 = 0 and a8 = 1
Branch4 Set a1 = 1, a4 = 1, a5 = 0 and a9 = 1

Branches 5 to 8 Same as branches 1 to 4 except that the variable a1 is replaced
by a2 and variables ai is replaced respectively by the variables
ai+6 for i = 4 to 9.

Branches 9 to 12 Same as branches 1 to 4 except that the variable a1 is replaced
by a3 and variables ai is replaced respectively by the variables
ai+12 for i = 4 to 9.

The branching vector of the step is (2, 2, 3, 3, 2, 2, 3, 3, 2, 2, 3, 3) hav-
ing time O∗(2.85k). We branch as above as long as any set of clauses
as mentioned can be found.

Step 5. If in the formula no set of clauses as mentioned in the steps 1 to 4
can be found, then :
if the number of clauses of the form (a ∨ b ∨ c) where a, b and c are
variables is ≤ k, then return yes otherwise return no.

3.2 Proof of Correctness

It is clear that the branches in Steps 1 to 4 are exhaustive and exclusive and
cover all satisfying assignments of the set of clauses found in that branch.

The running time is dominated by the runtime in Step 4 and is O∗(2.85k) as
claimed.

To complete the proof of correctness, we essentially have to prove the correct-
ness of the last step. In order to do this, it is sufficient to prove the following
two claims:

Claim 1. Given a formula F ′ in 3-CNF that results after application of the
branching steps 1 to 4 repeatedly until none of those steps can be applied, the
original formula F has a satisfying assignment with weight ≤ k if and only if
the formula F ′ has a satisfying assignment with weight ≤ k′. Here k′ is the value
of the parameter, passed as an argument along with F ′ after applications of the
repeated application of the branching steps.

Claim 2. The (above mentioned) formula F ′ obtained after repeated applica-
tions of Steps 1 to 4 (until these steps are no longer applicable) has a satisfying
assignment of weight ≤ k′ if and only if this formula contains ≤ k′ clauses of the
form (a ∨ b ∨ c), where a, b, and c are variables.

These claims are proved below.

270 V. Raman and B.S. Shankar

Proof of Claim 1. Claim1 is clearly true if the branching has been made using
the first 3 branching steps. For the 4th branching step, if a set of clauses as
mentioned is found in the formula, then any satisfying assignment must set all
of these clauses to the value 1. Now in order for the first clause (a1 ∨ a2 ∨ a3) to
be satisfied, at least one among a1, a2 and a3 must be set to 1.

Now, a1 = 1 =⇒ a4 = 0 or (a4 = 1 and a5 = 0) (in order to satisfy the
clause (¬a1 ∨ ¬a4 ∨ ¬a5)).

Also, a4 = 0 =⇒ (a6 = 1 or a7 = 1) (in order to satisfy the clause
(a4 ∨ a6 ∨ a7)),

and a4 = 1 and a5 = 0 =⇒ (a8 = 1 or a9 = 1) (in order to satisfy the clause
(a5 ∨ a8 ∨ a9)).

These implications give the branches 1 to 4 of this step. Similar implications
obtained by replacement of the variables a1 by a2, and ai by ai+6 for i = 4 to 9
give the branches 5 to 8, and, replacing a1 by a3 and ai by ai+12 for i = 4 to 9
give the branches 9 to 12 of this step.

Proof of Claim 2. First, let F ′ have a satisfying assignment A of weight ≤ k′.
Now suppose that F ′ contains > k′ clauses of the form (a ∨ b ∨ c). Since the
assignment A satisfies F ′, hence it must satisfy each of these > k′ clauses. This
implies that these clauses contain at least one pair of the form (a ∨ b ∨ c) and
(a∨d∨e), where the variables b, c, d and e are not necessarily distinct. However,
such a pair can not exist, as it must have been eliminated during branching in
step 1, thus contradicting our supposition.

Now, let F ′ contain ≤ k′ clauses of the form (a ∨ b ∨ c), where a, b and c are
variables. We first construct an assignment A′ as follows :

1. For any clause of the form (a ∨ b ∨ c) in F ′, where a, b and c are variables
such that none amongst a, b and c (denoted by v) occurs in F ′ in any set of
clauses of the form (¬v ∨¬d∨¬e), (d∨ f ∨ g) and (e∨h∨ i), the assignment
A′ arbitrarily sets one variable amongst a, b and c to 1.

2. For any clause of the form (a∨b∨c) in F ′, where a, b and c are variables such
that there exists a set of clauses in F ′ of the form (¬a∨¬d∨¬e), (d∨f ∨g),
and (e∨ h∨ i), one variable amongst b and c is chosen which does not occur
in any such set of clauses. This chosen variable is assigned the value 1 by the
assignment A′. One such variable must exist, as if both b and c also occur
in similar sets, then the entire set of 9 clauses would have been eliminated
in the branching step 3.

3. After all clauses having all positive variables have been thus eliminated, the
assignment sets all variables occuring in the remaining clauses to 0.

By construction, the weight of the assignment A′ is ≤ the number of clauses in
F ′ of the form (a ∨ b ∨ c), and is thus ≤ k′.

We now prove that the assignment A′ satisfies F ′. This is proved as follows:
Consider any clause C present in the formula F ′. This clause must be of one of
the following forms:

Improved Fixed-Parameter Algorithm 271

– C = (a∨b∨c), where a, b and c are variables. Such a clause must be satisfied
by A′, as by definition, it sets atleast one amongst the variables a, b and c
to 1.

– C = (¬a ∨ b ∨ c), where a, b and c are variables. Now the variable a cannot
occur in any clause of the form (a ∨ d ∨ e) in F ′, as any such pair of clauses
would have been eliminated during branching Step 2. Thus a must be as-
signed the value 0 by the assignment A′,and hence the clause C is satisfied
by it.

– C = (¬a ∨ ¬b ∨ c), where a, b and c are variables. Here, the variables a and
b can not both occur in clauses of the form (¬a ∨ d ∨ e) and (¬b ∨ f ∨ g)
in the formula F ′, as any such triplet of clauses would have been eliminated
during branching Step 3. Hence, at least one of the 2 variables a and b must
be assigned the value 0 by A′. This shows that A′ must satisfy the clause C.

– C = (¬a ∨ ¬b ∨ ¬c), where a, b and c are variables. Now if the variables a, b
and c all occur in clauses that contain only positive literals, i.e. in clauses of
the form (a∨d∨e), (b∨f∨g) and (c∨h∨i), then during the construction of the
assignment A′, atleast one of the variables amongst a, b and c must be set to
0 (during Step 3 of the construction). This is because depending upon which
clause amongst the 3 mentioned clauses is encountered first during Step 2
of the construction, this clause will be eliminated by setting a variable other
than a, b or c occuring in this clause to 1. Now since this variable amongst
a, b and c cannot occur in any other clause with all positive literals, it will
be eventually set to 0 in Step 3.

Hence this clause C is satisfied by the assignment A′.

Thus we have

Theorem 1. Given a 3-CNF formula, and an integer k, we can determine in
O∗(2.85k) time, whethere it has a satisfying assignment with weight at most k.

3.3 Applications to Weak Backdoor

A family F of boolean CNF formulae is called 0-valid if for each formula in the
family, the assignment that sets all variables to 0 satisfies it. Given a boolean
formula F , a weak backdoor to the family of 0-valid formulae is a subset S of
variables of F such that there is an assignment A to the variables of S such that
F with the partial assignment A simplifies to a 0 valid formula.

The following branching idea gives an easy O∗(6k) algorithm (see [3]) to
determine whether there is a weak backdoor on k variables in the given formula
to a 0-valid formula. For each clause, branch by choosing each of the three
variables to be in the backdoor and try either of the two setting for the chosen
variable. At the leaf level, we simply check whether the given formula is 0-valid.
We osberve below that Theorem 1 gives an improved algorithm.

Notice that our algorithm in trying to determine whether there is a weight
at most k satisfying assignment to the formula finds a weight at most k partial
assignment that results in a formula with every clause containing at least one
negative literal, i.e. a formula which is 0-valid. I.e. it finds a weak backdoor set
of at most k variables.

272 V. Raman and B.S. Shankar

Conversely suppose that there is a weak backdoor set S to 0-valid formulae,
with at most k variables, and the partial assignment A to the variables (that
reduces the formula to a 0-valid formula) sets some variable v to 0. We claim
that S−v is still a weak backdoor set to 0-valid formula with at most k−1 vari-
ables. Suppose the formula resulting after administering the partial assignment
(dictated by A) to the variables of S − v is not 0-valid. As F with the partial
assignment A to the variables of S is 0-valid, this means that some clause con-
taining variable v is not satisfied by setting any of the variables in the clause to
0. But this is a contradiction as v was part of the weak backdoor in which the
satisfying assignment set v to 0.

Essentially, we have argued that to obtain a resulting formula that is 0-valid, a
weak backdoor need not set any variable to 0. I.e. there exists a weak backdoor
to 0-valid with at most k variables if and only if there is a weight at most k
satisfying assignment. Thus, from Theorem 1, we have

Corollary 1. Given a 3-CNF formula F , we can determine in O∗(2.85k) time
whether there is a weak backdoor on at most k variables, to 0-valid formulae.

4 Conclusions and Open Problems

We have given the first algorithm that beats the trivial O∗(3k) algorithm to
determine whether a given 3-CNF formula has a satisfying assignment with
weight at most k. This also implies that one can test in the same time whether
a given 3-CNF formula has a weak backdoor to a 0-valid formula.

It would be interesting to determine whether such an algorithm exists for de-
termining whether a given 3-CNF formula has a weak backdoor to a null formula.
The problem here is to determine whether a given 3-CNF formula has at most k
variables such that some assignment to them results in a satisfying assignment
to the formula. This also has a trivial O∗(6k) algorithm, and improving this is
an interesting open problem.

Another open problem is to improve our bound further. As our main aim
was to beat the O∗(3k) bound, we developed a simple branching algorithm. We
believe that with a few involved branching steps, one should be able to improve
the running time bound. Obtaining better than O∗(ck) algorithm for c-CNF
formula for c > 3 is another interesting open problem.

Acknowledgement. The first author acknowledges fruitful discussions with
Neeldhara Misra. We also thank the anonymous referees for helpful comments
that improved the presentation.

References

1. Abu-Khzam, F.N.: A kernelization algorithm for d-hitting set. J. Comput. Syst.
Sci. 76, 524–531 (2010)

2. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer (November 1999)

Improved Fixed-Parameter Algorithm 273

3. Gaspers, S., Szeider, S.: Backdoors to Satisfaction. In: Bodlaender, H.L., Downey,
R., Fomin, F.V., Marx, D. (eds.) Fellows Festschrift 2012. LNCS, vol. 7370, pp.
287–317. Springer, Heidelberg (2012)

4. Kratsch, S., Wahlström, M.: Two Edge Modification Problems without Polynomial
Kernels. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 264–
275. Springer, Heidelberg (2009)

5. Mahajan, M., Raman, V.: Parameterizing above guaranteed values: Maxsat and
maxcut. J. Algorithms 31, 335–354 (1999)

6. Misra, N., Narayanaswamy, N.S., Raman, V., Shankar, B.S.: Solving minones-2-sat

as Fast as vertex cover. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS,
vol. 6281, pp. 549–555. Springer, Heidelberg (2010)

7. Niedermeier, R.: Invitation to Fixed Parameter Algorithms. Oxford Lecture Series
in Mathematics and Its Applications. Oxford University Press, USA (2006)

8. Niedermeier, R., Rossmanith, P.: An efficient fixed-parameter algorithm for 3-hitting
set. J. Discrete Algorithms 1, 89–102 (2003)

On Directed Tree Realizations of Degree Sets

Prasun Kumar1, M.N. Jayalal Sarma1, and Saurabh Sawlani2

1 Department of Computer Science and Engineering, IIT Madras, Chennai, India
2 Department of Electrical Engineering, IIT Madras, Chennai, India

Abstract. Given a degree set D = {a1 < a2 < . . . < an} of non-
negative integers, the minimum number of vertices in any tree realizing
the set D is known[11]. In this paper, we study the number of vertices
and multiplicity of distinct degrees as parameters of tree realizations of
degree sets. We explore this in the context of both directed and undi-
rected trees and asymmetric directed graphs. We show a tight lower
bound on the maximum multiplicity needed for any tree realization of a
degree set. For the directed trees, we study two natural notions of real-
izability by directed graphs and show tight lower bounds on the number
of vertices needed to realize any degree set. For asymmetric graphs, if
μA(D) denotes the minimum number of vertices needed to realize any
degree set, we show that a1 + an + 1 ≤ μA(D) ≤ an−1 + an + 1. We
also derive sufficiency conditions on ai’s under which the lower bound is
achieved.

We study the following related algorithmic questions. (1) Given a
degree set D and a non-negative integer r (as 1r), test whether the set
D can be realized by a tree of exactly μT (D) + r number of vertices. We
show that the problem is fixed parameter tractable under two natural
parameterizations of |D| and r. We also study the variant of the problem :
(2) Given a tree T , and a non-negative integer r (in unary), test whether
there exists another tree T ′ such that T ′ has exactly r more vertices
than T and has the same degree set as T . We study the complexity of
the problem in the case of directed trees as well.

1 Introduction

Representation of graphs is an important theme in various algorithmic tasks re-
lated to graphs. The standard methods used are adjacency matrix and adjacency
list representations. Since many applications require more succinct representa-
tion, degree sets and degree sequences have been considered where the unique-
ness of the graph being represented can be traded off for succinctness. There
is a host of computational [1] and combinatorial problems [11,9,10,3] associated
with these representations themselves.

In this context, we study tree realizations1 of degree sets D = {a1 < a2 <
. . . < an}. It is known[11] that the minimum number of vertices necessary and
sufficient for a graph to realize any degree set D is exactly an + 1. If the graph

1 See Section 2 for formal definitions.

S.K. Ghosh and T. Tokuyama (Eds.): WALCOM 2013, LNCS 7748, pp. 274–285, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

On Directed Tree Realizations of Degree Sets 275

is restricted to be a tree, this is known [11] to be exactly (
∑n

i=1(ai − 1)) + 2 if
and only if a1 = 1.

We study the tree-realizability of degree sets under multiplicity constraints on
each degree. That is, realizations where the multiplicity of each vertex is upper
bounded by a number m. The realization that achieves the minimum number
of vertices has exactly one vertex of each degree except for the degree 1. Hence
the degree distribution is skewed. Can the degree set be realized by a tree with
smaller maximum multiplicity if we are allowed to use more vertices? We answer
this in the negative by arguing that the standard construction is indeed optimal
in terms of maximum multiplicity.

Theorem 1. The minimum multiplicity of pendant vertices in any tree realiza-
tion for the degree set D = {1 = a1 < a2 < . . . < an} is

∑n
i=1 ai − 2n+ 3.

We define the notion of degree multiset where each element repeats atleast m
times. We also generalize the above theorem to the case of degree multiset.

We turn to degree set realizations using directed graphs. We study some
natural variants. In the first variant, the degree set is said to be realized if there
is a directed graph such that every vertex has either the in-degree or the out-
degree from the set, and every number in the degree set appears as the in-degree
of some vertex or as the out-degree of some vertex in the graph. We call this
the ∨-realization of D. We observe a connection between this variant and the
undirected graph realizations of degree sets in the case of bipartite graphs (in
particular trees) and hence derive the minimum multiplicities in this case.

In the second variant, which we call the ∧-realization of D, the degree set
is to be realized by a directed graph such that every vertex has the in-degree
and the out-degree from the set and every element in the set appears as the
in-degree of some vertex and as the out-degree of some vertex. We prove the
following theorem for directed tree ∧-realizations.
Theorem 2. The minimum order of any directed tree ∧-realizing a degree set
D is 2(

∑n
i=2(ai − 1) + 1).

Relaxing the tree constraints, we study the ∧ realizability of D in the context of
asymmetric directed graphs2. These are classes of directed graphs where there
are no cycles of length 2. We prove the following:

Theorem 3. For any degree set D = {a1 < a2 < . . . < an}, let μA(D) be the
minimum number of vertices of any asymmetric directed graph realizing D, then:

a1 + an + 1 ≤ μA(D) ≤ an−1 + an + 1

We also give sufficient conditions among the ai’s under which the lower bound
is achieved.

2 In [2], Chartrand et al studied directed asymmetric graph realizations of degree sets
D. However, their definition of realization is only with respect to out-degree which
differs from our definition.

276 P. Kumar, M.N. Jayalal Sarma, and S. Sawlani

Turning to algorithmic questions : we consider the followingTree Extension

Problem : Given a degree set D and a number r, test whether there is an
undirected tree T that realizes the degree setD such that T has exactly μT (D)+r
vertices. Here μT (D) denotes the minimum order of any tree realizing D.

From a known characterization of the realizability ofD with a given number of
vertices using the well-studied Frobenius problem[8], we show that the problem
is polynomial-time many-one equivalent to Integer Knapsack Problem.

We study parametrized versions of the problem, with respect to two parame-
ters - |D|, r. We show the following results.

Theorem 4. Tree Extension Problem is fixed parameter tractable with re-
spect to the parameters |D| and r, when r is presented in unary.

We study the following variant of the computational question. Given a tree T
and a non-negative integer r, test whether there is another tree T ′ with the same
degree set but now having exactly |T |+ r number of vertices. We show that this
problem can be solved in log-space and hence in polynomial time.

The analogous problems for directed trees turn out to be surprisingly easier.
We prove the following characterization. For a degree set D, let μ∧(D) (μ∨(D))
denote the minimum number of vertices required to ∧-realize (∨-realize) the
degree set D using a directed tree.

Theorem 5. Given a set D and a value r, the degree set can always be ∧-realized
(resp. ∨-realized) using a directed tree of μ∧(D) + r (resp.μ∨(D) + r vertices.)

2 Preliminaries

Let G = (V,E) be a graph3. For v ∈ V , by d(v) we denote the degree of the
vertex v in G. A degree-set of a graph G (first studied by [11]) is a subset of N4

defined as follows: D(G) = {d(v) : v ∈ G}. A set D ⊂ N is said to be realizable
if and only if there is a graph G such that D(G) = D.

The degree-sequence of the graph G is the sequence of numbers : d(G) =
(d(v) : v ∈ G). A sequence D with elements from N is said to be realizable if
there is a graph whose degree sequence (up to the ordering) is d(G). Several
results are known about characterizing realizability of degree sequences using
graphs and various subclasses of graphs[3,10,9].

Let μ(D) denote the minimum number of vertices that must be present in any
realization of D. Let μT (D) denote the minimum number of vertices that must
be present in any realization of D when the graph is restricted to be a tree.

In directed graphs, for a vertex v we denote by d+(v) and d−(v), the outdegree
and indegree respectively. We write the outdegree and indegree for a vertex vi as
an ordered pair (ai, bi) which means d+(vi) = ai, d

−(vi) = bi. A directed graph
is said to be asymmetric if it does not have cycles of length two. Let μA(D) denote

3 All graphs being considered in this paper are simple.
4 N includes 0.

On Directed Tree Realizations of Degree Sets 277

the minimum number of vertices that any asymmetric directed graph realizing
D must have. If it is clear from the context, we drop the notation for type of
realizability.

An intermediate case between degree sets and degree sequences is that of
multiplicity-constrained degree sets, where we restrict the number of times that
a term in the degree set appears in the realization. A natural restriction to
study is when the multiplicity is bounded from above, given that the degree
distribution in the realization ofD with trees is highly skew. We also consider the
complementary variant, where the multiplicity is bounded from below. In these
cases, we can denote the degrees with a multi-set Dm = {am1

1 , am2
2 , . . . , amn

n }
where ami

i denotes that ai is appearing at least mi times in the multiset and
mis are positive integers. We now focus on a very special case of the degree
multiset when a1 = 1,m1 = 1, which we need later in our construction. Under
this assumption, Dm = {1, am2

2 , . . . , amn
n }. Since 1 ∈ Dm, there exists a tree

realization for Dm, we obtain the lower bound for any tree realizing Dm. We
state the following proposition. The proof of this is an easy generalization of the
argument in [11] which assumes each mi = 1.

Proposition 1. The minimum order of a tree realizing Dm = {1, am2
2 , . . . , amn

n }
is

∑n
i=2mi(ai − 1) + 2.

We briefly introduce the basics of parametrized complexity that we need in the
paper. We refer the reader to a standard textbook[6] for details. A parametrized
computational problem instance is denoted by (I, k) where k is the parameter.
A problem is fixed parameter tractable (FPT) with respect to the parameter k if
there is an algorithm solving the problem in time f(k).nO(1) where n is the size
of the instance. In general, the choice of the parameter k is not unique. That is,
it is possible to parametrize a problem in more than one way and using more
than one parameter.

3 Multiplicity Lower Bounds in Tree-Realizations

In this section, we prove lower bounds for the multiplicities of the pendant
vertices (vertices of degree 1) in any realization of a degree set D using trees.
We prove Theorem 1.

Theorem 6. The minimum multiplicity of pendant vertices in any tree realiza-
tion for the degree set D = {1 = a1 < a2 < . . . < an} is

∑n
i=1 ai − 2n+ 3.

Proof. The set D = {1 = a1 < a2 < . . . < an} can be realized by a tree[11].
Minimum order of such a tree is

∑n
i=1(ai − 1) + 2. In minimum order tree

construction, each ai is connected with exactly ai − 2 pendant vertices for i =
3, 4, . . . , n − 1 and for i = 2 and n, ai’s are connected with ai − 1 pendant
vertices and then ai is connected with ai+1 for i = 2, . . . , n − 1. Let mi be the
multiplicity of ai in a tree realization T . Then, (1m1 , am2

2 , . . . , amn
n) will be the

degree sequence of T.

278 P. Kumar, M.N. Jayalal Sarma, and S. Sawlani

Case 1 : when a2 ≥ 3. We recall that, if degree sequence d = (d1 ≥ d2 ≥ . . . ≥
dn) is being realized by a tree then number of pendant vertices in any tree

realization [1] of d is
∑k

i=1(di− 2)+ 2 where k is the largest index such that
dk ≥ 3. Hence, m1 = 2 + (a2 − 2)m2 + (a3 − 2)m3 + . . . + (an − 2)mn, ∀i
mi ≥ 1. m1 will be minimum if mi = 1 for each i = 2, 3, . . . , n and the tree
construction described above meets exactly this requirement. So minimum
value m1 = 2+ (a2 − 2) + (a3 − 2) + . . .+ (an − 2) =

∑n
i=1 ai − 2(n− 1) + 1

=
∑n

i=1 ai − 2n+ 3

Case 2 : when a2 = 2. We first construct the tree for the degree set D1 = {1 =
a1 < a3 < . . . < an} in the way mentioned above and then introduce a vertex
v. Now make v adjacent to any one pendant vertex,say u,so that v becomes
the new pendant vertex and d(u) = 2. Degree set of this modified tree is
D and number of pendant vertices is same as that in the tree realization
of D1 which is same as m1 = 2 + (a3 − 2) + (a4 − 2) + . . . + (an − 2 =
2+(a2−2)+(a3−2)+. . .+(an−2) =

∑n
i=1 ai−2(n−1)+1 =

∑n
i=1 ai−2n+3

��

The above lemma can be generalized to the case of multisets and the proofs are
quite similar.

Theorem 7. The minimum multiplicity of pendant vertices in any tree realiza-
tion for the degree multiset Dm = {1, am2

2 , . . . , amn
n } is

∑n
i=2mi(ai − 2) + 2.

4 Minimum-Order Realizability of Directed Trees

In this section we explicitly compute the minimum number of vertices needed to
∧-realize (resp. ∨-realize) the given degree set D using directed trees.

We describe ∨-realizability first. We prove the following general upper bound
for μ∨(D). Let μB(D) denote the minimum number of vertices for any undirected
bipartite graph realizing the degree sequence D. Given any undirected bipartite
realization of a degree set by a graph G = (U, V,E) we assign directions from
U to V . This gives a ∨-realization of the same graph using a directed bipartite
graph. Thus, we have the following proposition.

Proposition 2. μ∨(D) ≤ μB(D)

Indeed, this proposition holds for directed trees as well since the underlying
undirected graph is bipartite. We now argue that this upper bound is tight for
trees and show the following theorem.

Theorem 8. For the degree set D = {1 = a1 < a2 . . . < an}, minimum order
of a directed tree T (V,E) so that ∀v ∈ V, d+(v) ∈ D or d−(v) ∈ D, and for each
ai ∈ D there is a vertex u ∈ V such that d+(u) = ai or d

−(u) = ai, is same as
the minimum order undirected tree realizing D,i.e.

∑n
i=1(ai − 1) + 2.

On Directed Tree Realizations of Degree Sets 279

Proof. The upper bound follows from the above proposition through the undi-
rected tree-realization of D with optimal number of vertices.

Now we need to prove a lower bound on the order of a directed tree satisfying
the given constraints and then give a realization which meets this bound.

For each i, ai ∈ D will appear as both (ai, aj) and (ak, ai) at least once,
where aj , ak ∈ D. Thus, 1 ≤ ai+ aj ≤ 2an. Let T (V,E) be a directed tree for D
satisfying the constraints. We have,

∑
v∈V

(d−(v) + d+(v)) = 2|E| = 2(V − 1) ≥
n∑

i=1

ai + (V − n)

This implies the lower bound |V | ≥ 2 +
∑n

i=1(ai − 1). ��
Now we turn to ∧-realizability of D using directed trees. It can be noted that
a necessary condition is 0 ∈ D since the tree has to contain leaf nodes whose
in-degree or out-degree has to be 0.

Theorem 9. For the degree set D = {0 < 1 < a2 < . . . < an}, the minimum
order of a directed tree which ∧-realizes the degree set D, is 2 (

∑n
i=1(ai − 1))+2.

Proof. We prove the upper bound by constructing the directed tree. Construct
a path with 2(n− 1) number of vertices, say u1, u2, . . . , u2n−2. Now add (a2− 1)
pendant vertices to u1. For each 2 ≤ i ≤ 2n− 1, add a� i

2 �+1− 2 pendant vertices
to ui. Add an − 1 pendant vertices to the u2n−2.

In this tree, first 2 vertices are having degree a2, next 2 vertices are having
degree a3 and so on. Now we assign directions. Start with the first vertex u1 in
the path. Direct all edges connected with u1 towards u1. For the next vertex in
the path u2 assign directions to all adjacent edges away from u2. Repeat this
process to assign direction to all edges. Since each ai, for i = 2, 3, . . . , n, appears
exactly twice and because of the way we are assigning directions to edges, ai
once appears as (ai, 0) and once as (0, ai) in final directed tree. For pendant
vertices in undirected graph, indegree and outdegree pair occurs as either (1, 0)
or (0, 1).

To prove the minimality, we first observe that the number of vertices in the
above construction is |V | = ∑n

i=2 2(ai− 1)+2. Now, consider the corresponding
degree multiset {1, a22, a23, . . . , a2n}. Applying proposition 1 with mi = 2∀i gives
a matching lower bound on |V |. ��

5 Minimum Order ∧-Realizability of Asymmetric Graphs

In this section we study ∧ realizations of degree sets with asymmetric directed
graphs. We introduce a notation for convenience in this section. For a directed
graph G, let AG denote the set that is ∧-realized by G. Since the realizability
is fixed, we drop it from the notation. Recall that μA(D) denotes the minimum
order of any asymmetric directed graph realizing D. We start with a simple case
which is similar to the starting point in [2].

280 P. Kumar, M.N. Jayalal Sarma, and S. Sawlani

Lemma 1. If D = {a} where a is a non-negative integer, then μA(D) = 2a+1.

Proof. This case is similar to [2]. When a = 0 the graph is an isolated vertex. For
a ≥ 1, all vertices in a directed graph with AG = {a} must have both indegree
and outdegree equal to a. Consider a vertex v, since the graph is asymmetric,
v is connected to 2a distinct vertices. Accounting for these vertices and v, we
have 2a+1 vertices. Hence, μA(D) ≥ 2a+1. To complete the proof, we need to
prove that μA(D) ≤ 2a+ 1. To do this, we will come up with a construction of
a directed graph with AG = {a} and order 2a+ 1.

We define G to be the directed graph with the vertex set {v1, v2, . . . , v2a+1}.
The edges are as follows: {(vi, vj)|1 ≤ i ≤ 2a+ 1 and i+ 1 ≤ j ≤ i+ a} (where
subscripts are modulo 2a+ 1). Clearly, G is asymmetric and has 2a+ 1 vertices
with AG = {a}. Hence the proof. ��
Theorem 10. If D = {a1 < a2 < . . . < an}, n ≥ 2 is a set of positive integers
then

a1 + an + 1 ≤ μA(D) ≤ an−1 + an + 1.

Proof. We know that there is at least one vertex v of G with either indegree or
outdegree equal to an. Without loss of generality, let us assume that d+(v) = an.
Now, we know that d−(v) ≥ a1. Therefore, d

+(v) + d−(v) ≥ an + a1. Since G is
also asymmetric, it implies that the order of G is at least a1 + an + 1.

To prove that μA(S) ≤ an−1 + an + 1, we proceed by induction. By Lemma
1, we know that μA({a1}) = 2a1 + 1. Let the graph representing this be G1.
Divide G1 into three components, Cx, Cy - each containing a1 vertices, and Cz

- containing the remaining vertex. From G1, we obtain G2, by adding a new
component C1 containing a2 − a1 vertices and adding the following edge set
E = {(vx, v1)|vx ∈ Cx ∧ v1 ∈ C1} ∪ {(v1, vy)|v1 ∈ C1 ∧ vy ∈ Cy}. Thus, we have
an asymmetric directed graph for the degree set {a1 < a2} with order a1+a2+1.

Now consider that there exists an asymmetric directed graph Gn0 with AG =
{a1 < a2 < . . . < an0}, with order an0−1 + an0 + 1. Gn0 contains a total of 2n0

components :

– Cn0−1, containing an0 −an0−1 vertices with outdegree and indegree equal to
a1.

– Ci, for i from 1 to n0 − 2, each containing ai+1 − ai vertices with outdegree
a1 and indegree an0−1−i.

– C′
j , for j from 1 to n0− 2, each containing aj+1− aj vertices with outdegree

an0−1−j and indegree a1.
– Cx, containing a1 vertices with outdegree an0 and indegree an0−1.
– Cy, containing a1 vertices with outdegree an0−1 and indegree an0 .
– Cz , containing 1 vertex with outdegree and indegree a1.

From Gn0 , we obtain Gn0+1, by adding two new components - Cn0 containing
an0+1− an0 vertices, and C′

n0−1 containing an0 − an0−1 vertices, and adding the
edge set E = E1 ∪ E2 ∪ E3, where

– E1 = {(vx, vn0)|vx ∈ Cx ∧ vn0 ∈ Cn0} ∪ {(vn0 , vy)|vn0 ∈ Cn0 ∧ vy ∈ Cy}

On Directed Tree Realizations of Degree Sets 281

– E2 = {(vy, vn0−1)|vy ∈ Cy ∧ vn0−1 ∈ C′
n0−1} ∪ {(vn0−1, vx)|vn0−1 ∈ C′

n0−1 ∧
vx ∈ Cx}

– E3 = {(vi, v′i)|vi ∈ Ci ∧ v′i ∈ C′
n0−1−i}, where i ∈ {1, 2, . . . , n0 − 2}

We can observe that Gn0+1 resembles Gn0 if n0 is replaced with n0 + 1. Thus,
through this construction, we have proved that there always exists a asymmetric
directed graph G with AG = (a1 < a2 < . . . < an), of order an−1 + an + 1.
Hence, the minimum order μA(D) ≤ an−1 + an + 1. ��
We now identify a condition that is sufficient in order to achieve the lower bound
in theorem 10.

Lemma 2. If D = {a1 < a2 < . . . < an}, n ≥ 2 is a set of positive integers
which satisfies the following condition: ai + an+1−i = aj + an+1−j∀i < j then,
μA(D) = a1 + an + 1.

Proof. From Theorem 10, we know that μA(D) ≥ a1 + an + 1. So, we only
have to show that, if the given condition is satisfied, μA(D) ≤ a1 + an + 1.
To do this, we will come up with a construction of a directed graph G with
AG = {a1 < a2 < . . . < an} and order a1 + an + 1.
D satisfies the given condition. We shall construct a directed graph with order

a1 + an + 1 by induction on n.
For n = 2, a1 + an + 1 = an−1 + an + 1. Therefore, by Theorem 10, we can

always construct a directed graph for n = 2 with order a1 + a2 + 1.
Now take n = 3, define G to be the directed graph with vertex set V (G) =

{v1, v2, . . . , va1+a3+1} and E(G) = {(v1, vj)|2 ≤ j ≤ a1 + 1} ∪ {(vj , v1)|a1 + 2 ≤
j ≤ a1 + a3 + 1} ∪ {(va1+a3+1, vj)|2 ≤ j ≤ a3} ∪ {(vj , va1+a3+1)|a3 + 1 ≤ j ≤
a1 + a3}. G has a1 + a3− 1 vertices of indegree and outdegree 1. Since we know
that the given condition is satisfied, a1+a3 = 2a2 and a1+a3−1 = 2(a2−1)+1.
From Lemma 1 1, we can construct a directed graph G1 of order a1+a3−1 with
AG1 = {a2− 1}. Superimposing G1 on the vertices with outdegree and indegree
1 in G, we get a directed graph for n = 3 with order a1 + a3 + 1.

Now, let us assume that such a construction is possible for n = m. We will
try to construct a graph of order a1 + an + 1 for n = m+ 2. Define G to be the
directed graph with V (G) = {v1, v2, . . . , va1+an+1} and E(G) = {(v1, vj)|2 ≤
j ≤ a1 + 1} ∪ {(vj , v1)|a1 + 2 ≤ j ≤ a1 + an + 1} ∪ {(va1+an+1, vj)|2 ≤ j ≤
an} ∪ {(vj , va1+an+1)|an + 1 ≤ j ≤ a1 + an}. G has a1 + an − 1 vertices of
indegree and outdegree 1. Since we know that the required condition is satisfied,
a1 + an = a2 + an−1 and a1 + an − 1 = (a2 − 1) + (an−1 − 1) + 1.

From our induction assumption, we can construct a graph G1 of order a1 +
an − 1 with AG1 = {a2 − 1, a3 − 1, . . . , an−1 − 1} (because G1 has m number of
vertices. Superimposing G1 on the vertices with outdegree and indegree 1 in G,
we get the desired graph for n = m + 2. This completes the construction and
the proof. ��
We are able to prove exact bounds for a special case of the degree set.

Lemma 3. If D = {0, a2}, then μA(D) = 2a2.

282 P. Kumar, M.N. Jayalal Sarma, and S. Sawlani

Proof. Consider a directed asymmetric graph G for which AG = {0, a2}. We
know that G has at least one vertex, say v1, with outdegree equal to a2. Its
indegree can be equal to either 0 or a2. Consider the case in which its indegree
is a2. Since the graph is asymmetric, v1 connects to 2a2 distinct points. Thus
the order of G in this case would be at least 2a2 + 1. Now, consider the case
where d−(v1) = 0. Here, v1 connects to a2 vertices (say v2, v3, . . . , va2+1), whose
indegrees now cannot be equal to 0, and so are all equal to a2. So, v2 has edges
coming in from a2 − 1 vertices apart from v1. If any of these vertices are one
of v2, v3, . . . , va2+1, then that particular vertex would have both indegree and
outdegree equal to a2, realizing our earlier case and thus making the order of
G at least 2a2 + 1. However, if v2 does not connect to any of v2, v3, . . . , va2+1,
then it connects to a2 − 1 new vertices (va2+2, va2+3, . . . , v2a2). Thus the order
of G would be at least 2a2. From the above cases, we can see that the order of
the directed graph must be at least 2a2, i.e. μA({0, a2}) ≥ 2a2. To complete the
proof, we need to prove that μA({0, a2}) ≤ 2a2. To do this, we will come up
with a construction of a directed graph with AG = {0, a2} and order 2a2.

Define G to be the directed graph with V (G) = {v1, v2, . . . , v2a2} and E(G) =
{(vi, vj)|1 ≤ i ≤ a2 and a2 + 1 ≤ j ≤ 2a2}. Then G is asymmetric with order
2a2 and AG = {0, a2}. Hence, the proof. ��

6 Complexity Results on Tree Extension Problem

We argue complexity results on the following algorithmic problems related to
degree set realizations of trees. We define the problems formally first.
Tree Extension Problem(TEP) : Given a degree set D and an integer r,
test if there is a tree having μT (D) + r vertices that realizes the degree set D.
Unary Tree Extension Problem (UTEP) : Given a tree T on � vertices
and a string 1r, test if there is another tree T ′ having exactly �+ r vertices and
the degree set same as that of T .

One important ingredient of our arguments about complexity of the above
stated problems is the following combinatorial connection first proved by Gupta
et al[7] between realizability and the well-studied Frobenius problem. We state
it differently here, but the proof can be derived from the proof of Theorem 3
in [7]. However, we also give an alternative proof for the forward direction.

Lemma 4 ([7]). If the degree set D = {a1 = 1 < a2 < . . . < an} is realized
by a tree T (V,E) then we can get another tree realization T1 = (V1, E1) where
|V1| = |V | + r,r is a positive integer, if and only if r is a linear combination of
(ai − 1), i.e.

r =

n∑
i=2

ki(ai − 1) (1)

where ki’s are non-negative integers.

On Directed Tree Realizations of Degree Sets 283

Proof. Without loss of generality, we fix T (V,E) as the tree with minimum
order realizing D. Let mi be the multiplicity of vertices with degree ai in T .
Hence, mi = 1, for each 2 ≤ i ≤ n and m1 =

∑n
i=1 ai − 2n + 3 which is also

the minimum multiplicity of pendant vertices in any tree realization. Now we
add r vertices so that exactly ki vertices are produced with degree ai, where
ki’s are non-negative integers, to get T1 = (V1, E1) and hence r =

∑n
i=1 ki.

So {1
∑n

i=1 ai−2n+3+k1 , a1+k2
2 , . . . , a1+ki

i , . . . , a1+kn
n } is the degree sequence of T1

. Consider two following cases:

Case 1 : a2 ≥ 3. By the bounds from [1],
∑n

i=1 ai − 2n+ 3 + k1 =
∑n

i=2(ki +
1)(ai − 2) From this we get k1 =

∑n
i=2 ki(ai − 2). Hence r =

∑n
i=1 ki =∑n

i=1 ki(ai − 1).
Case 2 : a2 = 2. Since (a2−2) = 0 so

∑n
i=3(ki+1)(ai−2) =

∑n
i=2(ki+1)(ai−2).

Hence we will get the same result.This completes the proof.
��

Using the above Lemma, we show the following theorem:

Theorem 11. Unary Tree Extension Problem can be solved in log-space.

Proof. We prove the theorem by reducing the problem to unary subset sum
problem which can be solved in log-space. The unary subset sum problem is
defined as follows. Given a (multi)-set S of m integers b1, b2, . . . bm and a value
c (all inputs in unary) test if there is a subset S′ of these integers such that∑

i∈S′ bi = c. The reduction runs in log-space as follows. For 1 < i ≤ n, let
ti = � r

ai−1�. Given a tree T and r in unary, write down the following set S and
r in unary, choose c = r and define:

S =

i=n,j=ti⋃
i=2,j=1

{(ai − 1)j}

Indeed, if there is a subset of S that sums up to r, then it is clear that this choice
of the j’s satisfies equation 1. Any solution for the ki’s in equation 1, it must be
that ki ≤ ti for all i. Hence the corresponding terms ki(ai − 1) will appear in
the set S as well. Choosing these terms in S′ ensures

∑
i∈S′ bi = r = c. To argue

the complexity of the reduction, notice that we can compute ai’s each time on
the fly by enumerating the degree up to the maximum degree. This can be done
in log-space. ��
The idea in the above proof can be adapted to argue that Tree Extension

Problem is equivalent to Integer Knapsack Problem(IKP) which can be
stated as follows : Given non-negative integers c1, . . . , ck, and a value d - the prob-
lem asks if there are non-negative integers d1, d2, . . . , dk such that

∑
i cidi = d.

Given a degree setD, consider the IKP instance with k = |D|−1 and ci = ai+1−1
for all 1 ≤ i ≤ k. Choose d = r. In the reverse direction, given non-negative in-
tegers c1, . . . , ck, and a value d, consider the degree set D = {1, c1, . . . , ck} and
r = d. The correctness of the reductions follow from Lemma 4 directly. This
discussion gives us the following proposition.

284 P. Kumar, M.N. Jayalal Sarma, and S. Sawlani

Proposition 3. Tree Extension Problem is equivalent to Integer Knap-

sack Problem.

We consider two natural parameterizations of the unary version of the Tree

Extension Problem and argue theorem 4.

Parameterizing with Respect to |D| When r Is Given in Unary : In this
setting, we give a reduction to Variety Subset Sum Problem. The variety
subset-sum problem : given a multiset A, and a target sum b, the problem asks
if there is a sub(multi)set of A that adds up to exactly b. To do the reduction,
we will list down the number (ai − 1) where ai ∈ A, exactly r number of times
in the subset. Since r is given in unary we can, in polynomial time, write out
these numbers. There will be exactly nr of them. The correctness and resource
bounds of the reduction follow easily. The Variety Subset Sum Problem is
known[4] to be fixed-parameter tractable with respect to the number of distinct
elements in A as the parameter. As we can see in the above case, this is precisely
|D|−1. Hence Tree Realizability problem is fixed-parameter tractable with
respect to |D| as the parameter.

Parameterizing with Respect to r as the Parameter, When r Is Given
in Unary : We first notice that Variety Subset Sum Problem reduces
to Maximum Knapsack Problem. We define the problem first. Given a set
{x1, x2, . . . xn} with sizes s1, s2, . . . sn and profits p1, p2, . . . pn respectively, and
two values knapsack capacity b and profit threshold k - test if there exists a
subset S ⊆ [n] such that : Σi∈Ssi ≤ b and Σi∈Spi ≥ b. To reduce Variety

Subset Sum Problem, given A = {a1, a2, . . . an} and target sum t, produce
xi’s such that si = pi = ai and b = p = t. The inequalities ensures that the Max-
imum Knapsack Problem has a solution if and only if there is a subset A′ ⊆ A
which adds up to exactly t. Fernau[5] has shown that the Maximum Knapsack

Problem is fixed parameter tractable with respect to the parameter b. Since
our reduction maps the parameter t to exactly p, this shows that the Tree Ex-

tension problem is fixed parameter tractable with respect to the parameter r
when r is given in unary.

6.1 Tree Extension Problem for Directed Trees

In this section we address similar computational problem for directed trees under
the ∧-realizability and the ∨-realizability. Surprisingly in both cases, it turns out
to be the case that for every non-negative integer r, there are directed trees with
�+ r vertices ∧-realizing and ∨-realizing (where � takes appropriate values from
Theorem 8 and Theorem 9 respectively). We prove these two results now.

Theorem 12. For the degree set D = {0, 1, a2, . . . , an} if we have a directed tree
realization Td(Vd, Ed) then we can have another tree realization5 Td1 = (Vd1 , Ed1)
where |Vd1 | = |Vd|+ r for each non-negative integer r.

5 For ∨-realizability, we do not require 0 to be in D.

On Directed Tree Realizations of Degree Sets 285

Proof. Without loss of generality, we fix Td(Vd, Ed) as the directed tree with
minimum order realizingD. We now consider two cases depending on the number
of pendant vertices, say Vp, in Td:

Case 1: when r ≤ Vp
Add r number of pendant vertices to any r number of already existing pen-
dant vertices in Td so that if d−(p) = 1, make p adjacent to newly added
vertex by an outgoing edge and similarly if d+(p) = 1, make p adjacent to
newly added vertex by an incoming edge. Since 0, 1 ∈ D, degree set remains
unchanged and we get another tree Td1 with k vertices more than Td.

Case 2 : when r ≥ Vp, let r = l ∗ Vp + r0 where l is a positive integer ≥ 1 and
r0 is another non-negative integer ≤ Vp − 1.
First add Vp number of pendant vertices to Td in the way described in case 1
and repeat the same procedure (l−1) times more with directed tree obtained
from the previous iteration and in the process degree set also does not change
as explained above. In last iteration, we will do the same for remaining r
vertices. This completes the proof.

��

References

1. Arikati, R., Srinavasa, Maheshwari, A.: Realizing degrees sequences in parallel.
SIAM Journal of Discrete Mathematics 9, 317–338 (1996)

2. Chartrand, G., Lesniak, L., Roberts, J.: Degree sets for digraphs. Periodica Math-
ematica Hungarica 7, 77–85 (1976)

3. Erdös, P., Gallai, T.: Graphs wiyh prescribed degrees of vertices. Mat. Lapok 11,
264–274 (1960)

4. Fellows, M.R., Gaspers, S., Rosamond, F.A.: Parameterizing by the Number of
Numbers. In: Raman, V., Saurabh, S. (eds.) IPEC 2010. LNCS, vol. 6478, pp.
123–134. Springer, Heidelberg (2010)

5. Fernau, H.: Parameterized algorithms: A graph-theoretic approach. Technical re-
port, Universität Tübingen, Tübingen, Germany (2005)

6. Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Com-
puter Science. An EATCS Series. Springer-Verlag New York, Inc., Secaucus (2006)

7. Gupta, G., Joshi, P., Tripathi, A.: Graphic sequences of trees and a problem of
frobenius. Czechoslovak Mathematical Journal 57, 49–52 (2007)

8. Guy, R.K.: Unsolved Problems in Number Theory, Unsolved Problems in Intuitive
Mathematics, 3rd edn., vol. I. Springer, New York (2004)

9. Louis Hakimi, S.: On realizability of a set of integers as degrees of the vertices of
a linear graph i. SIAM Journal of Discrete Mathematics 10, 496–506 (1962)

10. Havel, V.: Eine bemerkung über die existenz der endlichen graphen. Ĉasopis Pêst.
Mat. 80, 477–480 (1955)

11. Kapoor, S.F., Polimeni, A.D., Wall, C.E.: Degree sets for graphs. Fundamental
Mathematics 95, 189–194 (1977)

An FPT Algorithm for Tree Deletion Set

Venkatesh Raman1, Saket Saurabh1, and Ondřej Suchý2,�

1 The Institute of Mathematical Sciences, Chennai, India
{vraman,saket}@imsc.res.in

2 Faculty of Information Technology, Czech Technical University
Prague, Czech Republic

ondrej.suchy@fit.cvut.cz

Abstract. We give a 5knO(1) fixed-parameter algorithm for determining
whether a given undirected graph on n vertices has a subset of at most k
vertices whose deletion results in a tree. Such a subset is a restricted form
of a feedback vertex set. While parameterized complexity of feedback
vertex set problem and several of its variations have been well studied,
to the best of our knowledge, this is the first fixed-parameter algorithm
for this version of feedback vertex set.

1 Introduction

The goal of parameterized complexity is to find ways of solving NP-hard prob-
lems more efficiently than brute force: our aim is to restrict the combinatorial
explosion to a parameter that is hopefully much smaller than the input size.
Formally, a parameterization of a problem is assigning an integer k to each input
instance and we say that a parameterized problem is fixed-parameter tractable
(FPT) if there is an algorithm that solves the problem in time f(k) ·nO(1), where
n is the size of the input and f is an arbitrary computable function depending
on the parameter k only. There is a long list of NP-hard problems that are FPT
under various parameterizations: finding a vertex cover of size k, finding a cycle
of length k, finding a maximum independent set in a graph of treewidth at most
k, etc. For more background, the reader is referred to the monographs [6,7,19].

One of the most well studied direction in parameterized complexity is to
“delete vertices of the input graph such that the resulting graph satisfies some
interesting properties”. More precisely, a natural optimization problem associ-
ated with a graph class G is the following: given a graph G, what is the minimum
number of vertices to be deleted from G to obtain a graph in G? For example,
when G is the class of empty graphs, forests or bipartite graphs, the correspond-
ing problems are Vertex Cover, Feedback Vertex Set and Odd Cycle

Transversal, respectively. In the parameterized setting, the parameter for

� Part of the work was done while with the Universität des Saarlandes, Saarbrücken,
supported by the DFG Cluster of Excellence on Multimodal Computing and Inter-
action (MMCI) and DFG project DARE (GU 1023/1-2), and while visiting IMSc
Chennai, supported by the Indo-German Max Planck Center for Computer Science
(IMPECS).

S.K. Ghosh and T. Tokuyama (Eds.): WALCOM 2013, LNCS 7748, pp. 286–297, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

An FPT Algorithm for Tree Deletion Set 287

vertex-deletion problems is the solution size, that is, the number of vertices to
be deleted so that the resulting graph belongs to the given graph class. This line
of research has been at the forefront of research in parameterized complexity and
various new results have been obtained in the last few years. For examples, an
improved algorithm for Odd Cycle Transversal [13,18], meta theorems for
class of deletion problems [9,12], Proper Interval Vertex Deletion [21],
Directed/Undirected Subset Feedback Vertex Set [4,5].

In this paper we consider the following variant of the classical Feedback
Vertex Set problem in the realm of parameterized complexity:

Weighted Tree Deletion Set (WTDS)

Input: An undirected graph G = (V,E), a weight function w : V → N+

on vertices, and an integer k ∈ N.
Parameter: k
Question: Is there a set S ⊆ V of total weight

∑
v∈S w(v) at most k, such

that G[V \ S] is a tree?

If w(v) = 1 for every v ∈ V , then we speak simply about Tree Deletion Set

(TDS). We also refer the subset S as a tree deletion set .
TDS is a special case of WTDS, but on the other hand, if k = nO(1), where

n = |V |, then WTDS is polynomial time reducible to TDS, by adding to each
vertex v of the graph min{k, w(v) − 1} pendant vertices. Clearly the resulting
unweighted graph has a TDS of size at most k if and only if the original graph
has a WTDS of weight at most k. This is because if an original vertex is in the
tree deletion set, then all the pendant vertices adjacent to it must also be in
that set.

If we simply want to find a subset S of vertices such that G[V \S] is a forest,
then S is a feedback vertex set. Finding a (size at most k or minimum) feedback
vertex set is a well known NP-complete problem and has been well studied in
the paradigms of parameterized complexity [2,3,20], approximation [1] and exact
algorithms [8]. As a tree deletion set is also a feedback vertex set, it is clear that
the size of the minimum tree deletion set is at least the size of the minimum
feedback vertex set. However the minimum tree deletion set can be arbitrar-
ily large compared to the size of the minimum feedback vertex set. Consider
a graph which simply has a cycle on three vertices, with each vertex attached
to a large number of pendant vertices. Any of the vertices of the cycle forms a
feedback vertex set (of size 1), but the minimum tree deletion set must contain
all the pendant vertices attached to that vertex. Furthermore, standard prepro-
cessing rules like deleting degree one vertices and ‘short circuiting’ degree two
vertices no longer work for tree deletion sets. We would like to point out that
Tree Deletion Set has been considered before in the realm of approximation
algorithm and has been shown to be hard to approximate within O(n1−ε) for any

288 V. Raman, S. Saurabh, and O. Suchý

ε > 0 unless P=NP [22]. This is in sharp contrast to the fact that Feedback

Vertex Set has a factor 2-approximation algorithm [1].
Variations of Feedback Vertex Set and several other problems like Dom-

inating Set, Vertex Cover, when S is required to induce an independent
set or a connected graph or some other hereditary properties have also been
well studied [15,16,17,14]. To the best of our knowledge, this is the first paper
that studies the variation of a problem where the demand of connectivity is on
G[V \ S] rather than the solution. That is, in our problem we want G[V \ S] to
induce a connected graph (i.e. it is a tree).

We first show that the problem in NP-complete, and then show that it is
fixed-parameter tractable when parameterized by k, the solution size by giving
an O∗(5k) time1 fixed-parameter tractable algorithm. This is in contrast to, and
comes reasonably close to the O∗(3.83k) bound known for the general feedback
vertex set problem [2].

The next section proves the problem NP-complete. Section 3 is the main
section that gives the fixed-parameter algorithm for the problem. Finally in
Section 4, we conclude with open problems.

2 NP-Completeness

Proposition 1. Tree Deletion Set is NP-complete.

Proof. The problem is obviously in NP. For the hardness we reduce Vertex

Cover (VC), which is well known to be NP-complete [11]. An instance of VC
consists of a graph G and a positive integer k and the question is whether there
is a set S of at most k vertices (vertex cover) such that G \S contains no edges.
Given an instance (G, k) of VC we obtain an equivalent instance (G′, k) of TDS
as follows. G′ is obtained from G by introducing a new universal vertex u (i.e.
u is adjacent to all vertices of G) and attaching k + 1 new pendant vertices to
it. Now if S is a vertex cover in G, then G \ S is a star. On the other hand, if
S is a tree deletion set in G′, then u /∈ S, as otherwise there would be at least
two of the newly added pendant vertices left in G \ S and they would become
disconnected. But then, as u is adjacent to all vertices of G, there must be no
edge in G \ S in order for G′ \ S to be a tree, which implies that S is a vertex
cover for G. ��

3 FPT Algorithm

The main result of this section is the following:

Theorem 1. Weighted Tree Deletion Set can be solved in time O∗(5k).

The rest of this section is devoted to the proof of this theorem.

1 O∗ notation ignores polynomial factors

An FPT Algorithm for Tree Deletion Set 289

3.1 Reduction Rules

We begin with some reduction rules which simplify the input instance. These
rules modify the graph G, the weight function w, and the parameter k. For the
purpose of the analysis, we denote the original value of the parameter k given
on input by k0. We say that a reduction rule is safe if the instance obtained by
application of the rule is a yes-instance if and only if the original instance was.
The following two rules formalize obvious constraints to the solvability of the
instance.

Reduction Rule 1. If k < 0, then answer NO.

Reduction Rule 2. Let N ′ be the set of vertices which have weight more than
k. If G[N ′] contains a cycle, then answer NO.

Lemma 1. Reduction Rule 2 is safe.

Proof. As no vertex of weight more than k can be included in any set of total
weight at most k, no set of total weight at most k forms a tree deletion set. ��

While the structure of the vertices of weight more than k is fixed, the following
rule helps to simplify the neighborhood of such vertices.

Reduction Rule 3. Let N ′ be the set of vertices which have weight more than
k. If there is a vertex v in V (G) \ N ′ which has two neighbors in the same
connected component of G[N ′] then delete v and decrease k by w(v).

Lemma 2. Reduction Rule 3 is safe.

Proof. The vertex v must be included in any tree deletion set of total weight
at most k, as otherwise it would form a cycle together with the vertices in a
connected component of N ′. ��

The following rule helps us to deal with isolated vertices and the case when the
graph is disconnected.

Reduction Rule 4. If the input graph is disconnected, then delete all vertices
in connected components of weight less than

(∑
v∈V w(v)

)−k and decrease k by
the weight of the deleted vertices.

Lemma 3. Reduction Rule 4 is safe.

Proof. If the vertices of this connected component were not taken into the
constructed tree deletion set, then all vertices outside this connected compo-
nent have to be taken, as the resulting graph must have only one component.
But this would mean that the constructed tree deletion set would contain ver-
tices of total weight more than

(∑
v∈V w(v)

) − [(∑
v∈V w(v)

) − k
]
= k — a

contradiction. ��

290 V. Raman, S. Saurabh, and O. Suchý

Remark 1. If
(∑

v∈V w(v)
)
> 2k or there is a vertex of weight more than k, then

after the application of Reduction Rule 4 the graph has at most one connected
component.

The following rule deals with vertices of degree 1 in the graph.

Reduction Rule 5. If v is of degree 1 and u is its only neighbor, then delete
v and set w(u) = w(u) + w(v).

Lemma 4. Reduction Rule 5 is safe.

Proof. Let G,w, k be the instance before the application of the rule and G′, w′, k
the instance after the application of the rule. Let us first assume, that S is a tree
deletion set in G with w(S) ≤ k. If S does not contain u, then S \ {v} is also a
tree deletion set for G of lower total weight and it is also a tree deletion set in
G′ of the same weight. If S contains u, but not v, then v is the only vertex not
in S, S \ {u} is also a tree deletion set for G of lower total weight and it is also
a tree deletion set in G′ of the same weight. Finally, if S contains both u and v,
then S \ {v} is a tree deletion set in G′ of the same weight.

Assume now that S′ is a tree deletion set in G′. If S′ does not contain u,
then S′ is also a tree deletion set in G of the same weight. If S′ contains u, then
S′ ∪ {v} is a tree deletion set in G of the same weight. ��

Finally, the following rule is aimed on reducing the number of degree two vertices
by shortening of long paths.

Reduction Rule 6. If v0, v1, . . . , vl, vl+1 is a path in the input graph, such that
l ≥ 3 and deg(vi) = 2 for every i ∈ {1, . . . , l}, then (a) replace the vertices
v1, . . . , vl by two vertices u1 and u2 with edges {v0, u1}, {u1, u2}, and {u2, vl+1}
and with w(u1) = min{w(vi) | 1 ≤ i ≤ l} and w(u2) =

(∑l
i=1 w(vi)

)
− w(u1).

Moreover, if l ≥ 2 and w(v0) > k or w(vl+1) > k, then apply (a) and then (b)
delete u2 and connect u1 directly to vl+1.

Lemma 5. Reduction Rule 6 is safe.

Proof. Let G,w, k be the instance before the application of the rule and G′, w′, k
the instance after the application of the rule. Let us first assume, that S is a
tree deletion set in G with w(S) ≤ k. We show that there is a tree deletion set
S′ for G′ with w′(S′) ≤ w(S). We distinguish three cases.

– S contains both v0 and vl+1.Note that this can only happen when only the re-
duction (a) was applied. In this case v1 is disconnected fromG\{v0, . . . , vl+1}
and, therefore, either {v1, . . . , vl} ⊆ S or (V (G) \ {v1, . . . , vl}) ⊆ S. In the
former case S′ = (S \{v1, . . . , vl})∪{u1, u2} is a tree deletion set for G′ with
w′(S′) = w(S) while in the latter case, for S′ = S and we have G \ S′ is a
path and w′(S′) = w(S).

An FPT Algorithm for Tree Deletion Set 291

– S contains exactly one of v0 and vl+1. As the situation is symmetric, we can
assume that vl+1 is in S. As {v1, . . . , vl} induces a path in G, {v1, . . . , vl}\S
induces a path in G\S and G\(S∪{v1, . . . , vl}) is also a tree. Attaching at a
node of this tree a path, we obtain again a tree. Hence, S′ = S \ {v1, . . . , vl}
is also a tree deletion set in G. Since G \ (S ∪ {v1, . . . , vl}) = G′ \ (S ∪
{v1, . . . , vl}), it follows that S′ is also a tree deletion set in G′ with w′(S′) =
w(S′) ≤ w(S). This is true both in case (a) and (b).

– S contains none of v0 and vl+1. If S ∩ {v1, . . . , vl} = ∅, then S is also a tree
deletion set in G′. Otherwise, {v1, . . . , vl}\S induces two paths each attached
to two different nodes in the tree G \ S. Assume that we have w(vr) =
min{w(vi) | 1 ≤ i ≤ l}. We first show that S′ = (S \ {v1, . . . , vl}) ∪ {vr} is
also a tree deletion set for G. This is true, as attaching the two pending paths
v1, . . . , vr−1 and vr+1, . . . , vl to the tree G \ (S ∪ {v1, . . . , vl}) = G′ \ (S ∪
{v1, . . . , vl}) again creates a tree. By the same reason S′′ = (S′ \{vr})∪{u1}
is a tree deletion set in G′. Also w(S′) ≤ w(S) as vr is the vertex of the
minimum weight and w′(S′′) = w(S′).

Now assume that S′ is a tree deletion set in G′ and we have w(vr) = min{w(vi) |
1 ≤ i ≤ l}. First observe, that if u2 ∈ S′ and v0 ∈ S′, then also u1 in S′ or u1
is the only vertex of G′ \ S′, as otherwise the graph would be disconnected. If
u2 ∈ S′ but v0 /∈ S′ then G′ \ ((S′ \ {u2}) ∪ {u1}) is also a tree. Since we have
w′(u2) > w′(u1) as l ≥ 3, we can assume that whenever u2 is in S′, then also u1
is in S′.

Now let us distinguish, which of the vertices u1, u2 the set S′ contains. If
S′ contains neither u1 neither u2, then S′ is also a tree deletion set in G and
w(S′) = w′(S′).

If only the part (a) was applied, and S′ contains u1 but not u2 then we also
distinguish, which of the vertices v0, vl+1 is contained in S′. If S′ contains v0,
then S = S′ \ {u1} is also tree deletion set in G′ and also in G. If S′ contains
vl+1 then it must also contain v0 as otherwise u2 would be disconnected from
v0, and the previous case applies. Finally, if S′ contains neither v0 nor vl+1, then
we let S = (S′ \ {u1})∪ {vr}). Then, G \ S is a tree, as {v1, . . . , vl} induces two
pending paths v1, . . . , vr−1 and vr+1, . . . , vl in it. We also have w(S) = w′(S′),
as w(vr) = w′(u1).

If also part (b) was applied and S′ contains u1, then we distinguish two cases.
Note that S′ contains at most one of v0, vl+1. If it contains exactly one of them,
then S = S′ \ {u1} is also tree deletion set in G′ and also in G. If S′ contains
neither v0 nor vl+1, then S = (S′ \ {u1}) ∪ {vr}) is a tree deletion set in G of
the same weight.

Finally, if S′ contains both u2 and u1 then we let S = (S′ \ {u1, u2}) ∪
{v1, . . . , vl}. We have w(S) = w′(S′), G \S = G′ \S′ and, hence, it is a tree. ��

3.2 Branching Steps

Our FPT algorithm is based on a branching strategy similar to the one applied
in [15]. First we use the algorithm of Cao et al. [2] to determine whether G has a

292 V. Raman, S. Saurabh, and O. Suchý

feedback vertex set of size at most k in O∗(3.83k) time. As a tree deletion set of
weight at most k is also a feedback vertex set of size at most k, if the algorithm
answers NO, we can also answer NO. Otherwise let F be the feedback vertex set
for G found by the algorithm.

Our algorithm now branches into several cases and it returns YES if and
only if at least one of the branches answers YES. In a search for a tree deletion
set X we first guess its intersection Y with the known feedback vertex set F .
This means that we branch into 2|F | branches, each corresponding to one subset
Y ⊆ F . From now on, we assume that our guess was correct and therefore limit
our search to the tree deletion sets X with X ∩ F = Y .

As the vertices of Y are included in the tree deletion set constructed, we
remove them and decrease k by

∑
v∈Y w(v). Since the guess was correct, we

know that none of the vertices in N = F \ Y takes part in the sought tree
deletion set. Thus we assign them weight k+ 1. We also know that G \ (Y ∪N)
is a forest, as F = (Y ∪N).

Now we are ready to describe the branching part of the algorithm. It modifies
G,w, k and N . In between any two branching we apply Reduction Rules 1 to 5
and we only apply Reduction Rule 6 if none of {v1, . . . , vl−1} is in N . We always
assume that the graph is reduced with respect to these reduction rules.

Let H = V \N . Our branching step picks a vertex v from H , and branches by
picking v into the tree deletion set or by not picking it (and hence adding it to N)
and recursively solving the resulting problem. When we pick v into the solution,
k drops by 1. The key observation in [3] for undirected feedback vertex set was
that if v is adjacent to two connected components of N , then when v is added to
N , the number of connected components of N decreases by at least one resulting
in some progress. However, unlike in the undirected feedback vertex case, we are
not guaranteed such vertices (as we couldn’t apply the standard preprocessing
rules for undirected feedback vertex set) here.

Let us call a vertex useful if it is in H , have exactly two neighbors in G and
both these neighbors are in N . To bound the depth of the recursion, we use a
measure μ = k + c− u where

k is the budget - the weight of the vertices we can still add to the tree deletion
set being constructed. Initially, we have k ≤ k0 −

∑
v∈Y w(Y).

c is the number of components in G[N]. Initially, we have N = F \ Y and
therefore c ≤ k − |Y |.

u is the number of useful vertices in H .

First we show that the reduction rules do not increase the measure. Note also
that none of the rules introduces a cycle to G[H] and therefore G[H] is still a
forest.

Lemma 6. No reduction rule increases μ.

Proof. None of the rules increases k. The only reduction rule which could po-
tentially increase the number of components of G[N] is Reduction Rule 3, but
then the deleted vertex must be in N , have a weight more than k and the branch

An FPT Algorithm for Tree Deletion Set 293

can be rejected by Reduction Rule 2. While Reduction rules 3 and 4 delete some
useful vertices, in such cases, k is decreased by the weight of the deleted vertices
and therefore by at least the number of deleted useful vertices. ��
After applying the reduction rules, we distinguish three cases. If μ is negative,
we return NO, which is justified by the lemma below.

Lemma 7. If the measure μ becomes negative, then there is no tree deletion set
for the current branch.

Proof. Suppose there is a tree deletion set X of total weight at most k for the
graph G and that U ′ is the set of useful vertices deleted by this tree deletion
set. Consider the subgraph of G induced by N and the set U of remaining useful
vertices and contract each connected components of G[N] to a single vertex. Let
us call the set of vertices created this way Ñ . This does not create parallel edges,
because the graph is reduced with respect to Reduction Rule 3. Moreover, the
subgraph G′ induced by Ñ ∪U is still a tree, because contracting edges of a tree
cannot make it disconnected or create a cycle. Therefore, G′ has |Ñ | + |U | − 1
edges. On the other hand, each vertex in U has exactly two neighbors in Ñ and
therefore the graph has 2|U | edges. It follows that |U | = |Ñ | − 1. Since c = |Ñ |,
u = |U |+ |U ′| and |U ′| ≤ k, we have μ = k+ c−u ≥ k+ |Ñ | − (|Ñ | − 1+ k) = 1
— a contradiction. ��
If μ is nonnegative, and if there is a vertex v in H which satisfies at least one of
the following conditions:

(i) it has total degree at least three in G and at least two neighbors in N ;
(ii) it has a neighbor in N and a neighbor which is a leaf in G[H]; or
(iii) it has at least two neighbors in H , which are both leaves in G[H];

then we branch on this vertex v. More precisely, for such a vertex v we consider
two cases:

– v is a part of the tree deletion set constructed — then we delete v from the
graph and decrease k by w(v);

– v is not in the sought tree deletion set— then we set the weight of v to k+1
and add v to N .

In both cases the procedure is called recursively on the modified G,w, k,N and
the procedure returns YES if in at least one of the branches the recursive call
returns YES. If there are several vertices satisfying the conditions, then we select
a vertex which satisfies condition (i) if such a vertex is available. We only select
other vertices if there is no vertex satisfying the condition (i).

In this ‘two way branch’ we show that in each such recursive call, the value
of μ is at least one less than that in the current call.

Lemma 8. If the vertex we branch on satisfies at least one of the conditions (i)
to (iii), then the measure decreases by at least one in each branch.

294 V. Raman, S. Saurabh, and O. Suchý

Proof. Let us first consider the case that we delete the vertex we branch on. Since
it is not in N , deleting it cannot increase the number of connected components
in G[N]. Moreover, since it has degree at least three in case (i) and neighbors
in H in cases (ii) and (iii), it is not a useful vertex and therefore the number
of useful vertices remains the same. Since k is decreased by the weight of the
vertex deleted, the measure drops by at least one.

Consider now the case that we add the vertex v to N and suppose it satisfies
the condition (i). Then it has at least two neighbors in N and since the graph
is reduced with respect to Reduction Rule 3, these neighbors are in different
connected components of G[N]. Therefore c is decreased, k remains the same
and u is not decreased, which means that the measure drops.

If the vertex satisfies the condition (ii), then adding it to N does not increase
the number of components in G[N] as it already has a neighbor in N . On the
other hand, its neighbor in H is a leaf in G[H] and since it does not satisfy
condition (i), it has exactly one other neighbor, which is in N . Hence, it becomes
useful and the measure is decreased as k remains the same.

Finally, if the vertex satisfies condition (iii), then adding it to N may increase
the number of components in G[N] by one, but both its neighbors, which are
leaves in G[H] and do not satisfy condition (i) become useful. Therefore the
measure decreases also in this case. ��

Finally, if μ is nonnegative, but there is no vertex in H satisfying the conditions,
then either N is empty or every vertex in H is useful as we argue below.

Lemma 9. If no vertex satisfies any of the conditions (i) to (iii) and N is
nonempty, then every vertex in H is useful.

Proof. We show that if there is a vertex v′ ∈ H which is not useful, then there
is a vertex in H which satisfies some of the conditions (i) to (iii).

If v′ is isolated in G[H], then it must have at least three neighbors in N , as
the graph is reduced with respect to Reduction Rules 4, 5, and 3, v′ is not useful,
and there are no isolated vertices by Remark 1 as N is nonempty. But then it
satisfies condition (i).

Recall that G[H] is a forest. If v′ is non-isolated in G[H], then consider a leaf
v in the same connected component of G[H], which is the furthest apart from
v′. We know, that v has degree at least two in G, as the graph is reduced with
respect to Reduction Rule 5. If it has degree at least three, then it satisfies the
condition (i). Otherwise consider its neighbor u in H . Since the graph is reduced
with respect to Reduction Rule 6, u has degree at least three in G. If it has a
neighbor in N , then it satisfies the condition (ii).

If u has degree three in G[H], then consider a neighbor w of u which is not
on the unique path between v and v′ in G[H]. If w is a leaf in G[H] then it
either satisfies the condition (i), or has degree two in G and therefore u satisfies
condition (iii). If w is not a leaf in G[H] then any leaf in the subtree of G[H]
rooted in w which does not contain u is further apart from v′ than v, which
contradicts the way we selected v. ��

An FPT Algorithm for Tree Deletion Set 295

If all vertices in H are useful vertices, we proceed as follows. Note that the
graph is formed by the vertices in N and useful vertices adjacent to them. We
contract each connected component of G[N] to a single vertex. Let us again call
the set of vertices created this way Ñ . Recall that there is no cycle in G[N] as
the graph is reduced with respect to Reduction Rule 2. As we only search for a
tree deletion set X among vertices in H , it is easy to verify that X ⊆ H is a tree
deletion set in the graph after contraction if and only if it was a tree deletion
set in the original graph. Note that this does not create parallel edges, because
the graph is reduced with respect to Reduction Rule 3 and, hence, there is no
vertex in H with both its neighbors in the same connected component of G[N].

Now if there are two vertices in H with the same neighbors in Ñ , then we
delete the one with the lower weight and decrease k by its weight. Clearly at least
one of them must be in the constructed tree deletion set and if only one of them
is in the tree deletion set, then we can assume it is the one with lower weight.
Next we construct an auxiliary graph G with vertex set Ñ and a weighted edge
between a pair of vertices if there is a vertex v in H with this pair of vertices as
its neighbors in G. The weight of the edge equals the weight of v. It is easy to see,
that a minimum tree deletion set in G corresponds to the edge complement of a
maximum spanning tree in G and vice versa. More precisely if T = (Ñ , E′) is a
spanning tree, then the setX of vertices v of H such that the edge corresponding
to N(v) in G is not in E′ is a tree deletion set for G. Similarly, if X ⊆ H is a
tree deletion set in G, then T = (Ñ , S), where S = {N(v) | v ∈ H \ X} is a
spanning tree of G. The weight of S is always

∑
v∈H\X w(v)

Hence, we use the standard algorithm [10] to find a maximum spanning tree
T = (Ñ , S) of G, and answer YES if and only if (

∑
v∈H w(v))−w′(S) is at most

k, where w′(S) denotes the weight of the tree T .
If N is empty, then the graph consists of isolated vertices, since G[H] is a

forest and it is reduced with respect to Reduction Rule 5. Therefore it is enough
to delete all vertices but the one with the largest weight and answer YES if and
only if the weight of the deleted vertices is at most k. This finishes the description
of the algorithm.

The correctness of the algorithm has been already argued within its descrip-
tion, here we argue about the running time of the algorithm. First note that an
application of any of the reduction rules can be recognized as well as applied
in linear time. Since the Reduction Rules 1 and 2 only apply once, while the
Reduction Rules 3–6 reduce the number of vertices, the rules can be exhaus-
tively applied in O(nm) time. To check the value of the measure and to find a
vertex to branch on takes a linear time. Finally, one can contract the connected
components in G[N] in O(mn) time and find the maximum spanning tree in G
in O(m) time. Hence the time spent in each node of the search tree is O(mn).

It remains to count the number of nodes in the search tree. We first branch
into at most 2|F | branches, each corresponding to one subset Y of the feedback
vertex set F . Then we keep branching into two branches, each time reducing
the measure μ by at least one. Since at the beginning we have μ = k + c− u ≤
2k0− 2|Y |, this part of the search tree has at most 2 · 22k0−2|Y | nodes. Summing

296 V. Raman, S. Saurabh, and O. Suchý

this according to y = |Y |, we have that the total number of nodes in the search

tree is at most
∑k0

y=0

(
k0

y

)
2 · 22k0−2y = 2 · (1 + 4)k0 = 2 · 5k0 . Recall that the first

step in our algorithm is to determine whether G has a feedback vertex set of size
at most k. This step is done in O∗(3.83k) time using the algorithm of Cao et
al. [2]. Therefore the whole algorithm runs in O∗(5k) time. This completes the
proof.

4 Conclusions and Open Problems

We have shown that the Weighted Tree Deletion Set problem is fixed-
parameter tractable. Improving the running time of our algorithm is a natural
open problem. Another direction, which has attracted a lot of attention in pa-
rameterized complexity recently, is to study the kernelization complexity of the
problem. Our fixed-parameter algorithm immediately implies an exponential ker-
nel for the problem, but the natural open question is whether the problem has a
polynomial size kernel.That is, is there a polynomial time algorithm that reduces
the given input (G, k) to an equivalent graph with polynomial in k many vertices
and edges? While the related feedback vertex set problem has an O(k2) sized
kernel [20], we conjecture that the Tree Deletion Set problem does not admit
a polynomial sized kernel under standard complexity theoretic assumptions.

References

1. Bafna, V., Berman, P., Fujito, T.: A 2-approximation algorithm for the undirected
feedback vertex set problem. SIAM J. Discrete Math. 12, 289–297 (1999)

2. Cao, Y., Chen, J., Liu, Y.: On Feedback Vertex Set New Measure and New Struc-
tures. In: Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 93–104. Springer,
Heidelberg (2010)

3. Chen, J., Fomin, F.V., Liu, Y., Lu, S., Villanger, Y.: Improved algorithms for
feedback vertex set problems. J. Comput. Syst. Sci. 74, 1188–1198 (2008)

4. Chitnis, R., Cygan, M., Hajiaghayi, M., Marx, D.: Directed Subset Feedback Vertex
Set Is Fixed-Parameter Tractable. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wat-
tenhofer, R. (eds.) ICALP 2012, Part I. LNCS, vol. 7391, pp. 230–241. Springer,
Heidelberg (2012)

5. Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: Subset Feedback Ver-
tex Set Is Fixed-Parameter Tractable. In: Aceto, L., Henzinger, M., Sgall, J. (eds.)
ICALP 2011, Part I. LNCS, vol. 6755, pp. 449–461. Springer, Heidelberg (2011)

6. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Com-
puter Science. Springer, New York (1999)

7. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Berlin (2006)

8. Fomin, F.V., Gaspers, S., Pyatkin, A.V., Razgon, I.: On the minimum feedback
vertex set problem: Exact and enumeration algorithms. Algorithmica 52, 293–307
(2008)

9. Fomin, F.V., Lokshtanov, D., Misra, N., Saurabh, S.: Planar F-deletion: Approxi-
mation, kernelization and optimal fpt algorithms. To appear in FOCS 2012 (2012)

An FPT Algorithm for Tree Deletion Set 297

10. Fredman, M.L., Willard, D.E.: Trans-dichotomous algorithms for minimum span-
ning trees and shortest paths. Journal of Computer and System Sciences 48,
533–551 (1994)

11. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman and Company (1979)

12. Kim, E.J., Langer, A., Paul, C., Reidl, F., Rossmanith, P., Sau, I., Sikdar, S.:
Linear kernels and single-exponential algorithms via protrusion decompositions.
CoRR, abs/1207.0835 (2012)

13. Lokshtanov, D., Narayanaswamy, N.S., Raman, V., Ramanujan, M.S., Saurabh, S.:
Faster parameterized algorithms using linear programming. CoRR, abs/1203.0833
(2012)

14. Marx, D., O’Sullivan, B., Razgon, I.: Treewidth reduction for constrained separa-
tion and bipartization problems. In: Marion, J.-Y., Schwentick, T. (eds.) STACS.
LIPIcs, vol. 5, pp. 561–572. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik
(2010)

15. Misra, N., Philip, G., Raman, V., Saurabh, S.: On Parameterized Independent
Feedback Vertex Set. In: Fu, B., Du, D.-Z. (eds.) COCOON 2011. LNCS, vol. 6842,
pp. 98–109. Springer, Heidelberg (2011)

16. Misra, N., Philip, G., Raman, V., Saurabh, S., Sikdar, S.: FPT algorithms for
connected feedback vertex set. J. Comb. Optim. 24, 131–146 (2012)

17. Mölle, D., Richter, S., Rossmanith, P.: Enumerate and expand: Improved al-
gorithms for connected vertex cover and tree cover. Theory Comput. Syst. 43,
234–253 (2008)

18. Narayanaswamy, N.S., Raman, V., Ramanujan, M.S., Saurabh, S.: LP can be a
cure for parameterized problems. In: STACS, pp. 338–349 (2012)

19. Niedermeier, R.: Invitation to Fixed Parameter Algorithms. Oxford Lecture Series
in Mathematics and Its Applications. Oxford University Press, USA (2006)

20. Thomassé, S.: A 4k2 kernel for feedback vertex set. ACM Transactions on Algo-
rithms 6 (2010)

21. Villanger, Y.: Proper Interval Vertex Deletion. In: Raman, V., Saurabh, S. (eds.)
IPEC 2010. LNCS, vol. 6478, pp. 228–238. Springer, Heidelberg (2010)

22. Yannakakis, M.: The effect of a connectivity requirement on the complexity of
maximum subgraph problems. J. ACM 26, 618–630 (1979)

Circular Graph Drawings

with Large Crossing Angles

Hooman Reisi Dehkordi, Quan Nguyen, Peter Eades, and Seok-Hee Hong

School of Information Technologies, University of Sydney
{hooman.dehkordi,quan.nguyen,peter.eades,seokhee.hong}@sydney.edu.au

Abstract. This paper is motivated by empirical research that has shown
that increasing the angle of edge crossings reduces the negative effect of
crossings on human readability. We investigate circular graph drawings
(where each vertex lies on a circle) with large crossing angles. In partic-
ular, we consider the case of right angle crossing (RAC) drawings, where
each crossing angle is π/2.

We characterize circular RAC graphs that admit a circular RAC draw-
ing, and present a linear-time algorithm for constructing such a draw-
ing, if it exists. We also describe a quadratic programming approach to
construct circular drawings that maximise crossing angles. This method
significantly increases crossing angles compared to the traditional equal-
spacing algorithm.

Keywords: Graph drawing, Right Angle Crossing (RAC) drawing, Large
Angle Crossing (LAC) drawing, Circular graph drawing.

1 Introduction

Since the late 1970s, researchers have studied automatic Graph Drawing, that is,
algorithms to find “good” drawings of graphs. This research is motivated by the
need to visualize biological networks, social networks, computer networks, and
large software structures. One of the most popular graph drawings is a circular
drawing: all the vertices are located on a circle and edges are drawn as straight-
lines. Consequently, many commercial graph drawing softwares (for example,
TomSawyer software and yworks) produce circular drawings.

Purchase et al. [13] show that human understanding is negatively correlated
to the number of crossings in a drawing. This motivates a large number of algo-
rithms to draw graphs with a small number of crossings. For example, Bauer and
Brandes [3] presented methods for reducing the number of crossings in circular
drawings by computing a good ordering of the vertices on the circle.

Huang et al. [11] show that human understanding is enhanced if angles at
which edges cross is large. A number of investigations on the combinatorics and
algorithmics of drawing graphs with large crossing angles followed Huang’s work;
see, for example, [2,7,8,10]. These papers have concentrated on properties of right
angle crossing (RAC) graph drawings, where each crossing angle is π

2 .

S.K. Ghosh and T. Tokuyama (Eds.): WALCOM 2013, LNCS 7748, pp. 298–309, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Circular Graph Drawings with Large Crossing Angles 299

In this paper, we study circular drawings with large crossing angles. In par-
ticular, we concentrate on the right angle crossing case. To construct a circular
graph drawing, we need two steps: (1) order the vertices around the circle to
reduce the number of crossings, and (2) choose locations for the vertices to in-
crease the crossing angles. For the first step, we can use existing methods such
as the Bauer-Brandes [3] algorithm. This paper is concerned with the second
step.

We characterize circular RAC graphs that admit a circular RAC drawing,
and present a linear-time algorithm for constructing such a drawing, if it exists.
The input of the algorithms described in this paper is the clockwise sequence S
of the vertices around the circle as well as the sequence of edges incident with
each vertex u, in clockwise order around u. Once such an input is provided, it is
straightforward to maintain data structures so that we can test in constant time
whether two edges cross each other. Further, we can easily identify and safely
ignore edges between consecutive vertices around the circle.

Note that not every topological graph admits a circular RAC drawing. We
thus study the problem of circular LAC drawings, i.e., circular drawing with
large crossing angles. We present a quadratic programming approach to con-
struct circular drawings that maximise crossing angles. Experimental results
suggest that this method significantly increases crossing angles compared to the
traditional equal-spacing drawings.

The next Section defines some useful terminology. Section 3 gives a combina-
torial characterization of circular RAC graphs, and Section 4 gives a linear-time
algorithm to compute a circular RAC drawing. Section 5 presents a quadratic
programming approach to construct circular drawings that maximise crossing
angles. Section 6 concludes with an open problem.

2 Terminology

We start by reviewing the basic terminology of graph drawing. For further back-
ground, see [5].

A drawing of a simple graph G = (V,E) is a representation D of G in the
plane, where each vertex is a point and each edge is a closed Jordan arc between
the points representing its endpoints.

Two edges cross, if they share a point other than their endpoints. A crossing
X = {(a, b), (c, d)} is a set of two distinct edges (a, b) and (c, d) such that (a, b)
crosses (c, d). We define the crossing point x of the crossing X to be the shared
point of (a, b) and (c, d).

In this paper, we assume that graph drawings are not degenerate, in that they
satisfy the following conditions: (1) an edge does not contain a vertex other than
its endpoints; (2) no edge crosses itself; (3) edges must not meet tangentially,
that is, they must either properly cross or not cross at all; and (4) no three edges
share a crossing point.

A topological embedding of a graph G is an equivalence class of drawings of
G under homeomorphism. A topological graph G is an outer topological graph,

300 H. Reisi Dehkordi et al.

if and only if all of its vertices are on the same face; we normally assume this
face to be the outer face.

A straight-line drawing of a graph G is a drawing of G in which each edge is
represented by a straight-line segment. A straight-line drawing of a graph G is a
right angle crossing (RAC) drawing, if edges cross each other at an angle of π

2 .
A RAC drawing of a graph G is called a circular RAC drawing, if each vertex of
G lies on a circle. We define a circular RAC graph G to be a topological graph
that admits a circular RAC drawing.

The crossing graph Gc of topological graph G is a graph where each vertex of
Gc corresponds to an edge of G and two vertices of Gc are adjacent if and only
if their corresponding edges in G cross each other.

Two crossings X1 = {(a, b), (c, d)} and X2 = {(u, v), (w, x)} are edge disjoint
if and only if X1 ∩ X2 = ∅. Two edge disjoint crossings X1 and X2 cross each
other if an edge of X1 crosses an edge of X2.

In a connected outer topological graph, vertex v follows vertex u, if and only if
u and v are two consecutive vertices in the sequence of the vertices on the outer
face. We denote such a relation with u ∼ v or v ∼ u. We use u ∼+ v (respectively,
u ∼− v) to denote that u is followed by v in the clockwise (respectively, counter
clockwise) order.

Let a and b be two vertices on a cycle C such that the edge (a, b) is a chord of
C. Let u and v be two vertices of the cycle other than a and b. Then we define u
and v to be on same side of (a, b), if and only if it is possible to reach v from u by
traversing the vertices of C in order without passing through a or b. Otherwise,
we say that u and v are on different sides of (a, b).

In this paper, in order to distinguish between the two sides of an edge e, we
shall call them the left-hand side and the right-hand side of e. For example, if u
and v are on different sides of an edge e and u is on the left-hand side of it, then
v is on the right-hand side of that edge.

We define an edge e′ = (a, b) to be at one side (left-hand side or the right-
hand side) of another edge e = (u, v), if and only if the two endpoints of it, a and
b, are at the same side of e. Similarly, we define a crossing X1 = {(a, b), (c, d)}
to be at one side (left-hand side or the right-hand side) of an edge e = (u, v), if
and only if its edges, (a, b) and (c, d), are at the same side of e.

Suppose that a and b are two points on a circle with center o. Then
�

ab denotes
the clockwise angle ∠aob.

3 A Characterization of Circular RAC Graphs

We now state the main Theorem of this paper.

Theorem 1. An outer topological graph G is a circular RAC graph, if and only
if (1) its corresponding crossing graph is bipartite; and (2) any two edge-disjoint
crossings in G cross each other.

An immediate consequence of Theorem 1 is that the crossing graph of a circular
RAC graph has only one non-trivial connected component. Since the bipartition

Circular Graph Drawings with Large Crossing Angles 301

of a connected bipartite is unique, we can deduce the following two important
Corollaries of Theorem 1.

Corollary 1. A circular RAC drawing can be rotated such that the crossed edges
are either vertical or horizontal.

For the remainder of this paper, we assume that the blue edges are horizontal
and the green edges are vertical.

Corollary 2. Each vertex in a circular RAC graph drawing is incident to at
most two crossed edges. If two crossed edges share an endpoint, then they are
perpendicular to each other.

The next two subsections prove the necessity and sufficiency of the two conditions
in Theorem 1.

3.1 Necessity

The necessity of condition (1) of Theorem 1 follows from fundamental results on
RAC graphs in [6].

For condition (2) of Theorem 1, consider Fig. 1. Intuitively, as the minimum
crossing angles at x1 and x2 increase toward π

2 , a becomes close to a′ and d
becomes closer to d′; if both crossing angles are precisely π

2 , then either (a, c)
crosses (a′, c′), or (b, d) crosses (b′, d′). For a formal proof, see [14].

c

x1

d′

a a′

d

b b′

c′

x2

Fig. 1. Crossing X1 does not cross crossing X2

3.2 Sufficiency

Throughout this section, G = (V,E) denotes an outer topological graph with
a bipartite crossing graph such that any two edge-disjoint crossings in G cross
each other. We shall prove that any graph with such properties has a circular
RAC drawing and hence is a circular RAC graph.

Following [9], we can color the edges of G as follows. An edge is red if it is
not crossed by any other edges. The bipartition of the remaining edges allows to

302 H. Reisi Dehkordi et al.

color them blue and green, such that a blue edge is only crossed by green edges
and a green edge is only crossed by blue edges. We denote the sets of red, green
and blue edges of graph G by Er, Eg and Eb respectively.

We first show that the red edges can be eliminated from consideration.

Lemma 1. Suppose that G = (V,E) is an outer topological graph with a bi-
partite crossing graph such that any two edge-disjoint crossings in G cross each
other. Let Er be the set of the red edges of G, and let Vr denote the set of vertices
that for which all incident edges are red. If there exists a circular RAC drawing
D′ of G′ = (V \ Vr , E \ Er), then there exists a circular RAC drawing D of G.

Proof. The proof of this Lemma is straightforward (see [14]).

From Lemma 1, we now assume that every edge is either blue or green.
We define two isochromatic edges e1 = (u1, v1) and e2 = (u2, v2) of graph G

to be adjoining, if and only if u1 ∼ u2 and v1 ∼ v2 on the outer face of G (see
Figure 2a). We define a blue edge (b, b′) and a green edge (g, g′) to be adjoining,
if and only if g ∼− b and g ∼+ b′ (see Figure 2b) or g′ ∼− b′ and g′ ∼+ b (see
Figure 2c).

v1

u1u2

v2

(a)

b b′
g

g′
(b)

g

b′b g′
(c)

Fig. 2. (a) Two adjoining green edges (u1, v1) and (u2, v2), (b) A blue edge (b, b′)
which is adjoining to a green edge (g, g′) at vertex g and (c) A blue edge (b, b′) which
is adjoining to a green edge (g, g′) at vertex g′

The most important part of the proof of sufficiency in Theorem 1 is the
existence of “major” edges. A major green edge of a circular RAC graph drawing
is a green edge which is crossed by all the blue edges. Similarly, we define a major
blue edge. The next Lemma proves the existence of such edges.

Lemma 2. Suppose that G = (V,E) is an outer topological graph with a
nonempty bipartite crossing graph such that any two edge-disjoint crossings in
G cross each other. Then G contains a major green edge and a major blue edge.

Proof. Let g1 be a green edge with a maximum number of crossings; we show
that g1 crosses every blue edge. On the contrary let b1 be a blue edge that does
not cross g1. But as b1 is blue, it is crossed by a green edge g2 with g2 �= g1. As
g1 has at least as many crossings as g2, there is a blue edge b2 that crosses g1 but

Circular Graph Drawings with Large Crossing Angles 303

does not cross g2. Therefore there are two edge-disjoint crossings X1 = {g1, b2}
and X2 = {g2, b1} that do not cross each other; this contradicts our assumption.
The Lemma follows. ��
The next Lemma exploits the existence of the major green edge and provides a
fundamental base of the drawing algorithm presented later in this section.

Lemma 3. Let eg be a major green edge of G. Then there exists either a blue
edge adjoining to eg or a green edge adjoining to eg.

Proof. See [14].

In a circular RAC drawing D, we define a divider to be the diameter of the outer
circle such that it is parallel to the green edges. The next Theorem provides a
recursive algorithm to construct a circular RAC drawing of G.

Note that the drawing algorithm preserves the given ordering of its vertices on
the outer face. The input of the drawing algorithm also includes a major edge.
An algorithm to find a major edge will be presented in the next Section.

Theorem 2. Let eg be a major green edge of G. Then there exists two different
circular RAC drawings D and D′ of G such that:

– D and D′ differ only by the location of eg; that is, if we delete eg from both
D and D′, then D is the same as D′.

– eg is located on the left side of the divider in D, and on the right side of the
divider in D′.

– eg is the closest green edge to the center o of the circle Σ in both D and D′

(o is the origin of the coordinate system).

Proof. This proof is by induction on the number of crossing edges of G. Suppose
that G has only one green edge eg and one blue edge eb. Then it is easy to
construct D and D′ such that eg is located on the left side of the divider in D
and on the right side of it in D′.

Now suppose that G has k+1 crossing edges. By Lemma 3, there exists either
a blue edge eb adjoining to the major edge eg, or a green edge e′g adjoining to
eg. We have the following two cases.

Case 1. There exists a blue edge eb = (b1, b2) adjoining to eg = (g1, g2).
Let G− = (V \ {b1, b2}, E \ {eb}) be the graph induced by removing eb and
its endpoints from G. First we show that G− has the necessary properties of
circular RAC graphs, and it does not contain any red edges. Since G has a
bipartite crossing graph, G− has a bipartite subgraph. As eb was adjoining to
eg, after removing eb, all the edges of G− are still either green or blue. Also,
note that since all the crossings in G cross each other, any two crossings in G−

cross each other as well. Therefore, G− has the necessary properties of circular
RAC graphs, and it does not contain any red edges.

Now by induction hypothesis, there exist two circular RAC drawings D−

and D−′
of G− such that all the vertices of G− are located on circle Σ, and

304 H. Reisi Dehkordi et al.

eg = (g1, g2) is the closest green (vertical) edge to o from the left in D− and

from the right in D−′
. Since eg is the closest edge to o in both drawings, g1

and g2 have the biggest and smallest y−coordinates among the endpoints of the
green edges. Hence it is easy to add the blue edge eb such that it is adjoining to
eg, and it crosses no other green edge. See Figure 3.

g1

g2

(a)

g1

g2

eb

(b)

Fig. 3. (a) G− without the blue edge (b) G after adding the blue edge

Case 2. There exists a green edge e′g = (g3, g4) adjoining to eg.
Let G− = (V \ {g1, g2}, E \ {eg}) be the graph obtained by removing eg and
its endpoints from G. Since we have handled the blue edges adjoining to eg in
Case 1, we now assume that no more blue edges are adjoining to eg. Therefore,
by the removing green edge eg, all the edges of G− are still colored in blue or
green. Also by an argument similar to Case 1, G− has a bipartite crossing graph
and all the crossings in G− cross each other. Therefore, it satisfies the necessary
conditions of circular RAC graphs, and it does not contain any red edges.

Now by the induction hypothesis, the Theorem holds for G− with k crossed
edges. That is, G− has two circular RAC drawing D− and D−′

, such that all
the vertices of G− are located on a circle Σ and e′g = (g3, g4) is the closest green

(vertical) edge to o from the left in D− and from the right in D−′
. Next we shall

show how to add eg to D− on the right side of e′g or to D−′
on the left side of

e′g, to construct a circular RAC drawing of G.
Without loss of generality, suppose that e′g is located on the left side of eg

in G. That is, we shall add eg to D− on the right side of e′g to construct two
drawings D and D′ of G. Let e′g be located at x = 0 − ε− in D−, where ε− is
a positive value smaller than the radius of circle Σ. We add eg to D− at two
x-coordinates x1 and x2 in order to construct D and D′ respectively, such that
0 − ε− < x1 < 0 and 0 < x2 < 0 + ε−. That is, eg is located on the left side of
the divider in D and on the right side of the divider in D′, such that it is closer
to o than e′g and hence any other green edge of the two drawings.

Since e′g is the closest green edge to o in D− and all the horizontal blue edges
in D− cross e′g, no vertex has an x−coordinate between 0− ε− and 0+ ε−. Now
since e′g is located on the left side of the divider in D−, by adding eg at an
x-coordinate between 0− ε′ and 0 + ε′, we can ensure that g3 ∼ g1 and g2 ∼ g4.
Therefore, we construct D and D′ such that in both drawings, eg is located on
the right side of e′g.

Circular Graph Drawings with Large Crossing Angles 305

As eg is closer to o than any other green edges, the y-coordinate of its upper
endpoint is bigger than the y-coordinate of the upper endpoints of the other
green edges, and the y-coordinate of its lower endpoint is smaller than the y-
coordinate of all the other lower endpoints of other green edge. Hence, it crosses
all the existing blue edges.

Note that in both cases, we construct D and D′, by adding eb and eg to

D− and D−′
, such that they are adjoining to eg and e′g respectively. Therefore,

we preserve the ordering of the vertices on the outer face of G. The Theorem
follows. ��
The algorithm described in the proof of Theorem 2 runs in linear time, since by
Corollary 2, there are at most a linear number of blue and green edges in G.
Next Section describes how to find a major edge in linear time.

4 A Linear-Time Circular RAC Drawing Algorithm

In the previous Section, we prove that any outer topological graph G is a circular
RAC graph, if and only if it has a bipartite crossing graph and any two edge-
disjoint crossings in G cross each other. Although the proof is constructive, it
requires a major edge as an input of the algorithm. In this Section, we complete
the drawing algorithm by providing a linear-time algorithm to find a major edge.

Theorem 3. There is a linear-time algorithm that tests circular RAC graphs
and constructs a circular RAC drawings if it exists.

Using a double-ended stack, we can eliminate red edges in linear time; for details,
see [14]. Henceforth, we assume that the graph has no red edges.

To complete the proof of the Theorem, we need to show that the major edges
can be found in linear time. We shall assume that G is a circular RAC graph
without any red edges.

To find a major edge, we first find an edge e, which is crossed a small number
of times. Then we search for a major edge among the edges crossing e. We define
a green side edge of a circular RAC graph G to be a green edge of G such
that it has only one green adjoining edge. Similarly, we define a blue side edge.
Intuitively, a green (respectively, blue) side edge is an edge where it has no other
green (respectively, blue) edges on at least one side of it. Figure 4a shows the
side edges of a circular RAC graph.

We also define an edge e′ to be parallel with an edge e, if and only if e and e′

do not cross each other. That is, in a circular RAC graph G, e′ is parallel to e,
if both of the endpoints of e′ are on the same side of e.

It is useful to note that we can test whether two edges cross or are parallel in
constant time, just by checking the indices of their endpoints in the sequence of
the vertices on the outer face. The next Lemma shows how to find side edges in
linear time.

Lemma 4. Let G be a circular RAC graph with no red edges. Given a sequence
of vertices on the boundary of G, there is a linear-time algorithm to find a side
edge e of G.

306 H. Reisi Dehkordi et al.

(a) (b)

Fig. 4. (a)The dashed edges indicate the side edges, (b) the traversal path to find a
side edge.

Proof. In order to find a side edge in linear time, we sweep the parallel edges of
graph G such that no edge is visited twice. Suppose that during the sweep, we
encounter the parallel edges in the following order, e1, e2, . . . , ek. If, for each i,
the i-th edge is on the left-hand side (or right-hand side) of the (i− 1)-th edge,
then no edge is visited twice. We describe this sweeping process more rigourously
next.

Choose a direction d to be either clockwise or counter clockwise. Pick an
arbitrary vertex u to initiate the sweep. Follow the crossed edge e1 incident to
u, in order to reach its other endpoint u′. Traverse the circular boundary from
u′ in direction d, until we reach a vertex v of an edge e2, that is parallel to
edge e1 (the new edge might not be of the same color of the first one). Then
start searching for the next parallel edge by traversing the circle from the other
endpoint of e2, namely v′, in a direction d′, opposite to d. Repeat this process,
until we reach an edge ek such that there are no more parallel edges on one side
of it. This sweeping process is shown in Figure 4b.

The “clockwise/counter clockwise” alternation in the algorithm is to make
sure that we are advancing towards one side of the cycle. Hence, no vertex is
visited more than once, and therefore it guarantees that the algorithm runs in
linear time. ��
Now we have found a side edge. Next, we describe an algorithm for finding a
major edge. From Lemma 2, there is a major edge that crosses the side edge.
Further note that all the edges crossing the side edge are isochromatic.

Lemma 5. Let G be a circular RAC graph with no red edges. Given a sequence
S of vertices on the outer face of G and a side edge (u, v) as input, there exists
a linear-time algorithm to find a major edge m of G.

Proof. Without loss of generality, let (u, v) be a green edge. Since (u, v) is a
side edge, there are no parallel edges on one side of it. Let u′ be the consecutive
vertex to u on that side of (u, v), where there are no parallel edges. Similarly,
let u′′ be the consecutive vertex to v on that side of (u, v), where there are no
parallel edges (see Figure 5a). Name the other endpoints of the edges incident
to u′ and u′′ as v′ and v′′ correspondingly. Obviously, (u′, v′) and (u′′, v′′) are

Circular Graph Drawings with Large Crossing Angles 307

blue edges. Let d be the direction of which we traverse S to reach u′ from u. We
start traversing the cycle from v′ in the opposite direction of d, until we reach
v′′ or two endpoints m and n of an edge (m,n), such that (m,n) is not among
the set E of the edges crossing (u, v).

Then we have the following three cases:

1. We reach v′′ and there is a vertex m (but not a vertex n) between v′ and v′′,
such that m does not belong to any of the edges in E : Then, either (u′, v′)
or (u′′, v′′) is a major edge.

2. We reach v′′ and all the vertices between v′ and v′′ are incident to edges of
E : Then, all of these edges are major edges.

3. We reach n: Then, those edges of E which cross (m,n) are major edges.

Case 1. We reach v′′ and there is a vertex m (but not a vertex n)
between v′ and v′′ (see Figure 5b).
Suppose that m is a vertex between v′ and v′′, which is not an endpoint of the
edges in E . Let us call the other endpoint of the edge incident to m as n. Since n
is not between v′ and v′′ on S, it is either located between v′′ and v or between u
and v′ in the clockwise order. Without loss of generality assume that n is located
between u and v′, and hence it crosses (u′, v′). Now, note that no green edge e is
incident to two vertices between m and v (or between n and u), since otherwise
no blue edge can cross e, (u, v) and (m,n) simultaneously, which contradicts
Lemma 2. Hence, (u′, v′) crosses all the blue edges and is a major edge.

u

v

u′

u′′

v′

v′′

(a)

n
v′
m

v′′

u
u′

u′′

v

(b)

v′′
n
w
m
v′

u
u′

x

u′′

v

(c)

Fig. 5. The traversal path to find a major edge

Case 2. We reach v′′ and all the vertices between v′ and v′′ are incident
to edges of E.
Clearly, by Lemma 2, at least one of the edges in E is a major edge. Since there
exists no vertex m or n between the endpoints of these edges, none of them has
more crossings than the others. Hence, all of them are major edges.

Case 3. We reach n (see Figure 5c).
Obviously, the major edges ofG cross both edges (u, v) and (m,n). Since no vertex
is located between the endpoints of the edges crossing (u, v) and (m,n), none of
them have more crossings than the others. Hence, all of them are major edges.

The Lemma follows. ��

308 H. Reisi Dehkordi et al.

Lemma 5 completes the proof of Theorem 3.
The overall drawing algorithm can be described as follows:

1. Identify and delete the red edges.
2. Find a side edge, using the algorithm in the proof of Lemma 4
3. Find a major edge, using the algorithm in the proof of Lemma 5.
4. Using the recursive algorithm in the proof of Theorem 2, draw the blue and

green edges.
5. Draw the red edges.

5 Circular Drawings with Large Angle Crossings

The results of the previous Sections are useful when a RAC drawing is possible.
However, in many cases, such a drawing is not possible. In this Section, we
describe a practical quadratic programming approach for increasing crossing
angles in a circular drawing.

Again, we assume that the ordering (u0, u2, . . . , un−1) of the vertices around
the circle is computed by a crossing reduction algorithm in [3]. The quadratic
programming approach was first reported in [12] as a poster.

As noted in Section 4, red edges can be eliminated. The partition of the
remaining edges into blue and green is straightforward using the circular ordering
given in the input.

We assume that the vertices are drawn on a unit circle, centered at the origin.
The next step is to find, for each i, the angle θi that the line from the origin to
ui makes with the x axis. We assume that θ0 = 0.

Suppose that edge e = (ui, uj) crosses edge e′ = (ui′ , uj′), where θi < θj
and θi′ < θj′ . Then the crossing angle α(e, e′) between e and e′ can be written
as a linear function of θi, θj , θi′ and θj′ . The sum of squares error in crossing
angles is:

F =
∑

(e,e′)∈Ω

(
α(e,e′) − π

2

)2

, (1)

where Ω denote the set of pairs of crossing edges.
The ordering of vertices around the circle induces a set of linear constraints

for the θi. In practice, we need further constraints. The vertex resolution of
a drawing is the minimum distance between two vertices, given a fixed size
enclosing rectangle for the drawing. To ensure reasonable vertex resolution, we
enforce an angular gap g between vertices, that is, θi + g < θi+1 for i < n − 1
and θn−1 ≤ 2π. We can minimise the function F in equation (1) subject to these
gap constraints using standard quadratic programming methods.

Using the Rome data set [1], CPLEX, and a relatively old CPU, we tested this
method. The execution time varied around 10ms, which is very little overhead on
the Bauer-Brandes algorithm. We found a significant improvement in crossing
angles over the simple approach of equally spacing vertices around the circle. T
he improvement varied, depending on the chosen value of the gap g, but averaged
around 60%.

Circular Graph Drawings with Large Crossing Angles 309

6 Conclusion

In this paper, we have characterized circular RAC graphs and provided a linear-
time algorithm to construct a circular RAC drawing. We also presented a prac-
tical quadratic programming approach for crossing angle maximisation.

In future, we would like to extend our work to find a characterization of
outer RAC graphs, that is, graphs which have a RAC drawing in which every
vertex appears on the outside face. Further preliminary work toward this goal is
presented in [4].

References

1. The Rome graphs (2010), http://www.graphdrawing.org/data/index.html
2. Argyriou, E.N., Bekos, M.A., Symvonis, A.: The Straight-Line RAC Drawing

Problem Is NP-Hard. In: Černá, I., Gyimóthy, T., Hromkovič, J., Jefferey, K.,
Králović, R., Vukolić, M., Wolf, S. (eds.) SOFSEM 2011. LNCS, vol. 6543, pp.
74–85. Springer, Heidelberg (2011)

3. Baur, M., Brandes, U.: Crossing Reduction in Circular Layouts. In: Hromkovič, J.,
Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 332–343. Springer,
Heidelberg (2004)

4. Reisi Dehkordi, H., Eades, P.: Every outer-1-plane graph has a right angle crossing
drawing. International Journal of Computational Geometry and Applications (to
appear, 2012)

5. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice Hall (July 1998)

6. Didimo, W., Eades, P., Liotta, G.: Drawing Graphs with Right Angle Crossings.
In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS,
vol. 5664, pp. 206–217. Springer, Heidelberg (2009)

7. Didimo, W., Eades, P., Liotta, G.: Drawing graphs with right angle crossings.
Theoretical Computer Science 412(39), 5156–5166 (2011)

8. Dujmovic, V., Gudmundsson, J., Morin, P., Wolle, T.: Notes on large angle crossing
graphs. In: Computing: The Australasian Theory Symposium (2010)

9. Eades, P., Liotta, G.: Right Angle Crossing Graphs and 1-Planarity. In: van Krev-
eld, M., Speckmann, B. (eds.) GD 2011. LNCS, vol. 7034, pp. 148–153. Springer,
Heidelberg (2012)

10. Di Giacomo, E., Didimo, W., Eades, P., Liotta, G.: 2-Layer Right Angle Crossing
Drawings. In: Iliopoulos, C.S., Smyth, W.F. (eds.) IWOCA 2011. LNCS, vol. 7056,
pp. 156–169. Springer, Heidelberg (2011)

11. Huang, W., Hong, S.H., Eades, P.: Effects of crossing angles. In: Proceedings of
PacificVis, pp. 41–46 (2008)

12. Nguyen, Q., Eades, P., Hong, S.-H., Huang, W.: Large Crossing Angles in Cir-
cular Layouts. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502,
pp. 397–399. Springer, Heidelberg (2011)

13. Purchase, H.C., Cohen, R.F., James, M.: Validating Graph Drawing Aesthetics.
In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 435–446. Springer,
Heidelberg (1996)

14. Reisi Dehkordi, H., Nguyen, Q., Eades, P., Hong, S.H.: Circular graph drawings
with large crossing angles. Technical Report TR691, School of Information Tech-
nologies, University of Sydney

http://www.graphdrawing.org/data/index.html

On Graphs That Are Not PCGs

Stephane Durocher1,�, Debajyoti Mondal1,��, and Md. Saidur Rahman2,���

1 Department of Computer Science, University of Manitoba
2 Department of Computer Science and Engineering,

Graph Drawing & Information Visualization Laboratory,
Bangladesh University of Engineering and Technology

{durocher,jyoti}@cs.umanitoba.ca, saidurrahman@cse.buet.ac.bd

Abstract. Let T be an edge weighted tree and let dmin, dmax be two
nonnegative real numbers. Then the pairwise compatibility graph (PCG)
of T is a graph G such that each vertex of G corresponds to a distinct leaf
of T and two vertices are adjacent inG if and only if the weighted distance
between their corresponding leaves in T is in the interval [dmin, dmax].
Similarly, a given graph G is a PCG if there exist suitable T, dmin, dmax,
such that G is a PCG of T . Yanhaona, Bayzid and Rahman proved
that there exists a graph with 15 vertices that is not a PCG. On the
other hand, Calamoneri, Frascaria and Sinaimeri proved that every graph
with at most seven vertices is a PCG. In this paper we construct a
graph of eight vertices that is not a PCG, which strengthens the result
of Yanhaona, Bayzid and Rahman, and implies optimality of the result of
Calamoneri, Frascaria and Sinaimeri. We then construct a planar graph
with sixteen vertices that is not a PCG. Finally, we prove a variant of
the PCG recognition problem to be NP-complete.

1 Introduction

Let T be an edge weighted tree and let dmin, dmax be two nonnegative real
numbers. Then the pairwise compatibility graph (PCG) of T is a graph G such
that each vertex of G corresponds to a distinct leaf of T and two vertices are
adjacent in G if and only if the weighted distance between their corresponding
leaves in T is in the interval [dmin, dmax]. Similarly, a given graph G is a PCG
if there exist suitable T, dmin, dmax, such that G is a PCG of T . Figure 1(a)
illustrates an edge weighted tree T , and Figure 1(b) shows the corresponding
PCG G, where dmin = 2 and dmax = 3.5. Figure 1(c) shows another edge
weighted tree T ′ such that G is a PCG of T ′ when dmin = 1.5 and dmax = 2.

In 2003, Kearney et al. [7] introduced the concept of PCG and showed how to
use them to model evolutionary relationships among a set of organisms. More-
over, they proved that the problem of finding a maximal clique can be solved

� Work of the author is supported in part by the Natural Sciences and Engineering
Research Council of Canada (NSERC).

�� Work of the author is supported in part by a University of Manitoba Graduate
Fellowship.

��� Work of the author is supported in part by the Ministry of Science and Information
& Communication Technology, Government of Bangladesh.

S.K. Ghosh and T. Tokuyama (Eds.): WALCOM 2013, LNCS 7748, pp. 310–321, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

On Graphs That Are Not PCGs 311

da
e

0.5
2

1
0.2

2

a cb d e b c

(a) (b)

2.2 0.5

0.5

1

0.5

0.3
0.2

1.5 ed

ba

c

(c)

Fig. 1. (a) An edge weighted tree T . (b) A PCG G of T , where dmin = 2, dmax = 3.5. (c)
Another edge weighted tree T ′ such that G is a PCG of T ′ when dmin = 1.5, dmax = 2.

in polynomial time for pairwise compatibility graphs if one can find their corre-
sponding edge weighted trees in polynomial time. They hoped that every graph
is a PCG, but later, Yanhaona et al. [12] constructed a 15-vertex graph that is
not a PCG. Several researchers have attempted to characterize pairwise com-
patibility graphs. Yanhaona et al. [13] proved that graphs having cycles as its
maximal biconnected components are PCGs. Salma and Rahman [10] proved
that every triangle free maximum degree three outerplanar graph is a PCG.
Calamoneri et al. [5] gave some sufficient conditions for a split matrogenic graph
to be a PCG, and examined the graph classes that arise from using the intervals
[0, dmax] (LPG) and [dmin,∞] (mLPG). They proved that the intersection of
these classes is not empty, and neither of them is contained in the other. The
graph classes LPG, mLPG and PCG are similar to the leaf powers and their
variants, which have been extensively studied in the literature [1–3, 6, 8, 9]. For
example, the complement of PCG and the graph class LPG are closely related
to the exact k-leaf powers, (k, l)-leaf powers and k-leaf powers, respectively.

Finding a pairwise compatibility tree of a given graph appeared to be difficult,
even for graphs with few vertices. Kearney et al. [7] showed that every graph
with at most five vertices is a PCG. The smallest graph known not to be a PCG
is a 15-vertex graph constructed by Yanhaona et al. [12]. This is a bipartite
graph with partite sets A and B, where |A| = 5 and |B| = 10, and each subset
of three vertices of A is adjacent to a distinct vertex of B. Recently, Calamoneri
et al. [4] proved that every graph with at most seven vertices is a PCG.

In this paper we construct a graph of eight vertices that is not a PCG, which
strengthens the result of Yanhaona et al. [12], and implies optimality of the result
of Calamoneri et al. [4]. We then construct a planar graph with sixteen vertices
that is not a PCG; this is the first planar graph known not to be a PCG. Finally,
we prove a variant of the PCG recognition problem to be NP-complete.

2 Preliminaries

In this section we introduce some definitions and review some relevant results.
Let G = (V,E) be a graph with vertex set V and edge set E. The complement

graph G of G is the graph with vertex set V and edge set E, where E consists
of the edges that are determined by the non-adjacent pairs of vertices of G.

312 S. Durocher, D. Mondal, and M.S. Rahman

Let T be an edge weighted tree. Let u and v two leaves of T . By Puv we denote
the unique path between u and v in T . By dT (u, v) we denote the weighted
distance between u and v, i.e., the sum of the weights of the edges on Puv.
Let dmin, dmax be two nonnegative real numbers. Then by PCG(T, dmin, dmax)
we denote the PCG of T that respects the interval [dmin, dmax]. By Tx1x2...xt

we denote the subgraph of T induced by the paths Pxixj , where 1 ≤ i, j ≤ t.
Figures 2(a)–(b) illustrate an example of such a subgraph.

Lemma 1 (Yanhaona et al. [12]). Let T be an edge weighted tree, and let u, v
and w be three leaves of T such that Puv is the longest path in Tuvw. Let x be a leaf
of T other than u, v and w. Then dT (w, x) ≤ dT (u, x), or dT (w, x) ≤ dT (v, x).

Let G = PCG(T, dmin, dmax). Then by u′ we denote the vertex of G that corre-
sponds to the leaf u of T . The following lemma illustrates a relationship between
a PCG and its corresponding edge weighted tree, which holds based on the proof
of [12, Lemma 3.3].

Lemma 2. Let G = PCG(T, dmin, dmax). Let a, b, c, d, e be five leaves of T and
a′, b′, c′, d′, e′ be the corresponding vertices of G, respectively. Let Pae and Pbd be
the longest path in Tabcde and Tbcd, respectively. Then any vertex x′ in G that is
adjacent to a′, c′, e′ must be adjacent to b′ or d′.

The rest of the paper is organized as follows. In Section 3 we construct a graph
G1 with nine vertices that is not a PCG. In Section 4 we prove that the graph
obtained by deleting a vertex of degree three from G1 is not a PCG. In Section 5
we construct a planar graph that is not a PCG. In Section 6 we prove the NP-
hardness result. Finally, Section 7 concludes the paper.

3 Not All 9-Vertex Graphs Are PCGs

In this section we construct a graph G1 of nine vertices that is not a PCG. Here
we describe an outline of the construction.

We use three lemmas to construct G1. In Lemma 3 we prove that for a cycle
a′, b′, c′, d′ of four vertices, dT (a, c) and dT (b, d) cannot be both greater than
dmax. We then construct a graph H with six vertices a′, b′, c′, d′, i′, j′ such that
each pair of vertices in H are adjacent except the pairs (a′, c′), (b′, d′), (i′, d′),
(j′, b′), (i′, j′), as shown in Figure 2(c). Using Lemma 3 we prove in Lemma 4
that at least one of dT (a, c), dT (b, d), dT (i, d), dT (j, b), dT (i, j) must be greater
than dmax. In Lemma 5 we prove that any PCG that contains H as an induced
subgraph must satisfy the inequality dT (a, c) < dmin, where a

′ and c′ are the
only vertices of degree four inH . We add three vertices k′, u′, v′ toH to construct
G1, as shown in Figure 2(d). In Theorem 1 we show that for every non-adjacent
pair (x′, y′) in H , the graph G1 contains an induced subgraph isomorphic to H
that contains x′ and y′ as its degree four vertices. By Lemma 5, dT (x, y) < dmin.
Observe that this contradicts Lemma 4. Consequently, G cannot be a PCG.

The following lemma proves that for a cycle a′, b′, c′, d′ of four vertices, dT (a, c)
and dT (b, d) cannot be both greater than dmax. We omit its proof due to space
constraints.

On Graphs That Are Not PCGs 313

a ci

k

u v

d

a c

d

b

ji j
0.5

a

12

eb

22

0.2

2.2

1

2
1

2

f

b c d e

(d)

b

(a) (b) (c)

0.5

a

0.2

Fig. 2. (a) An edge weighted tree T . (b) Tabe. (c) Illustration for H . (d) G1.

Lemma 3. Let G = PCG(T, dmin, dmax), which is a cycle a′, b′, c′, d′ of four
vertices. Let a, b, c, d be the leaves of T that correspond to the vertices a′, b′, c′, d′

of G, respectively. Then dT (a, c) and dT (b, d) cannot be both greater than dmax.

We now construct a graph H with six vertices a′, b′, c′, d′, i′, j′ such that
each pair of vertices in H are adjacent except the pairs (a′, c′), (b′, d′), (i′, d′),
(j′, b′), (i′, j′), as shown in Figure 2(c). The following lemma proves that at least
one of dT (a, c), dT (b, d), dT (i, d), dT (j, b), dT (i, j) must be greater than dmax.

Lemma 4. Let H = PCG(T, dmin, dmax). Let a, b, c, d, i, j be the leaves of T
that correspond to the vertices a′, b′, c′, d′, i′, j′ of H. Then at least one of dT (a, c),
dT (b, d), dT (i, d), dT (j, b), dT (i, j) must be greater than dmax.

Proof. For each pair (x′, y′) ∈ {(a′, c′), (b′, d′), (i′, d′), (j′, b′), (i′, j′)}, x′ and y′

are non-adjacent in H . Therefore, either dT (x, y) < dmin or dT (x, y) > dmax.
If one of dT (a, c), dT (b, d), dT (i, d), dT (j, b) is greater than dmax, then the

lemma holds irrespective of whether dT (i, j) < dmin or dT (i, j) > dmax. We
thus assume that each of dT (a, c), dT (b, d), dT (i, d), dT (j, b) is less than dmin,
and then prove that dT (i, j) must be greater than dmax.

Suppose for a contradiction that dT (i, j) < dmin. Recall that we assumed
dT (j, b) < dmin. Consequently, since i

′ and b′ are adjacent in H , the path Pib

must be the longest path Tijb. By Lemma 1, dT (j, d) ≤ dT (i, d) or dT (j, d) ≤
dT (b, d). Since we assumed that dT (i, d) < dmin and dT (b, d) < dmin, the in-
equality dT (j, d) < dmin holds. But this contradicts that j′, d′ are adjacent in G.
Therefore, dT (i, j) must be greater than dmax. ��
In the following lemma we prove that any PCG that contains H as an induced
subgraph must satisfy the inequality dT (a, c) < dmin, where a

′ and c′ are the
only vertices of degree four in H .

Lemma 5. Let G = PCG(T, dmin, dmax) be a graph that contains an induced
subgraph G′ isomorphic to H. Let a, b, c, d, i, j be the leaves of T that correspond
to the vertices a′, b′, c′, d′, i′, j′ of G′. Let a′ and c′ be the vertices of degree four
in G′. Then dT (a, c) must be less than dmin.

Proof. Since a′, c′ are non-adjacent in G′, either dT (a, c) < dmin or dT (a, c) >
dmax. Suppose for a contradiction that dT (a, c) > dmax.

314 S. Durocher, D. Mondal, and M.S. Rahman

Since the subgraph induced by a′, b′, c′, d′ is a cycle, by Lemma 3, dT (b
′, d′) <

dmin. Again, since the subgraph induced by a′, i′, c′, d′ is a cycle, by Lemma 3,
dT (i

′, d′) < dmin. Consequently,Pbi is the longest path in Tibd. Observe that we as-
sumed dT (a, c) > dmax. On the other hand, for each pair (x′, y′) ∈ {(a′, b′), (a′, d′),
(a′, i′), (b′, d′), (b′, c′), (b′, i′), (c′, d′), (c′, i′), (d′, i′)}, dT (x, y) ≤ dmax. Therefore,
Pac is the longest path in Tabcdi. By Lemma 2, any vertex j′ in G′ that is adjacent
to a′, c′, d′ must be adjacent to i′ or b′. Although j′ is adjacent to a′, c′, d′ in G,
neither i′ nor b′ is adjacent to j′, a contradiction. ��
We now add three vertices k′, u′, v′ to H to construct G1, as shown in Fig-
ures 3(a)–(b). In the following theorem we show that G1 is not a PCG.

Theorem 1. G1 is not a PCG.

Proof. For every non-adjacent pair (x′, y′) in H , the graph G1 contains an in-
duced subgraph isomorphic to H that contains x′ and y′ as its degree four
vertices, as shown in Figures 3(c)–(g). By Lemma 5, dT (x, y) < dmin. This con-
tradicts Lemma 4 that says there exists a non-adjacent pair (x′, y′) in H such
that dT (x, y) > dmax. Consequently, G cannot be a PCG. ��

a ci

k

u v

d

j
a c

d

b

ji
a c

d

b

i b d

a

k v

b vdv

(e)

a

c

i u
v

(g)

a

ji

c

u

(f)

j

a

c

u

(a) (b)

b

(d)(c)

c

u

Fig. 3. (a) H . (b) G1. (c)–(g) Five induced subgraphs of G, when (c) dT (a, c) > dmax,
(d) dT (b, d) > dmax, (e) dT (i, d) > dmax, (f) dT (j, b) > dmax, (g) dT (i, j) > dmax.

4 Not All 8-Vertex Graphs Are PCGs

In this section we analyze the structure of the graph G1, and modify it to obtain
a graph of eight vertices that is not a PCG.

We refer the reader to Figure 3. Observe that G1 has only one vertex of degree
three, i.e., vertex k′. The proof of Theorem 1 refers to vertex k′ only in the case
when dT (a, c) > dmax, as shown in Figure 3(c). This observation inspired us to

On Graphs That Are Not PCGs 315

examine whether the graph G1 \ k′ is a PCG or not. In this section we denote
the graph G1 \ k′, shown in Figure 4(a), by G2 and prove that G2 is not a PCG.
The following lemma will be useful to prove the main result.

Lemma 6. Let G = PCG(T, dmin, dmax) be a graph of four vertices a′, b′, c′, d′

and two edges (a′, b′) and (c′d′). Let a, b, c, d be the leaves of T that correspond to
the vertices a′, b′, c′, d′ of G, respectively. Then at least one of dT (a, d), dT (b, d),
dT (b, c), dT (a, c) must be greater than dmax.

Proof. Since every pair of vertices among (a′, d′), (b′, d′), (b′, c′), (a′, c′) are non-
adjacent in G, each of dT (a, d), dT (b, d), dT (b, c), dT (a, c) is either greater than
dmax or less than dmin. Suppose for a contradiction that dT (a, d), dT (b, d), dT (b, c),
dT (a, c) are less than dmin.

Since a′ and b′ are adjacent and dT (a, c), dT (b, c) are less than dmin, Pab

must be the longest path in Tabc. By Lemma 1, dT (c, d) ≤ dT (a, d) or dT (c, d) ≤
dT (b, d). By assumption, both dT (a, d) and dT (b, d) are less than dmin. Therefore,
dT (c, d) < dmin, which contradicts that c′ and d′ are adjacent in G. ��
We now use Lemma 6 to obtain the following corollary.

Corollary 1. Let G2 = PCG(T, dmin, dmax) and let a, b, c, d, i, j, u, v be the
leaves of T that correspond to the vertices a′, b′, c′, d′, i′, j′, u′, v′ of G2. Then
(a) at least one of dT (u, v), dT (a, v), dT (a, c), dT (u, c) must be greater than dmax,
and (b) at least one of dT (b, j), dT (b, d), dT (i, d), dT (i, j) must be greater than
dmax.

a ciu v

d

j

b a b iu

v d jc

a b iu

v d jc

b

v j

(a) (b) (c) (d)

u

Fig. 4. (a) G2. (b) Another drawing of G2. (c) Illustration for ((w′, x′), (y′, z′)),
where (w′, x′) and (y′, z′) are shown in dashed lines and dotted lines, respectively.
(d) ((w′, x′), (y′, z′)) = ((u′, v′), (b′, j′)).

Theorem 2. G2 is not a PCG.

Proof. Suppose for a contradiction that G2 = PCG(T, dmin, dmax), where a, b, c,
d, i, j, u, v are the leaves of T that correspond to the vertices a′, b′, c′, d′, i′, j′, u′, v′

of G2. Observe that for any ((w′, x′), (y′, z′)), where (w′, x′) ∈ {(u′, v′), (a′, v′),
(a′, c′), (u′, c′)} and (y′, z′) ∈ {(b′, j′), (b′, d′), (i′, d′), (i′, j′)}, the vertices {w′, x′,
y′, z′} induce a cycle C such that w′, x′ and y′, z′ are non-adjacent in C. Fig-
ures 4(b)–(d) illustrate this scenario. By Corollary 1, for some ((w′, x′), (y′, z′)),
both dT (w, x) and dT (y, z) are greater than dmax. This contradicts Lemma 3
since the vertices {w′, x′, y′, z′} induce a cycle. ��

316 S. Durocher, D. Mondal, and M.S. Rahman

5 Not All Planar Graphs Are PCGs

In this section we prove that the planar graph Gp, shown in Figure 5(a), is not
a PCG.

a b

c d

hg i k m
o p

q
s t

e

a b

c d

f hg i j k m
p

q t
e

snl
r

o
f lj n r

(b)(a)

Fig. 5. (a) Gp. (b) Illustration for the proof of Theorem 3. The graphs isomorphic to
H are shown in bold lines (dT (b, c) > dmax), regular dashed lines (dT (a, c) > dmax),
regular dotted lines (dT (b, d) > dmax) and irregular dashed lines (dT (a, d) > dmax).

Theorem 3. Gp is not a PCG.

Proof. Suppose for a contradiction that Gp = PCG(T, dmin, dmax), where a, b,
. . . , s, t are the leaves of T that correspond to the vertices a′, b′, . . . , s′, t′ of Gp.

Since the subgraph induced by a′, b′, c′, d′ consists of exactly two edges (a′, b′)
and (c′, d′), by Lemma 6, at least one of dT (a, d), dT (b, d), dT (b, c), dT (a, c) must
be greater than dmax. For any pair (x′, y′) ∈ {(a′, d′), (b′, d′), (b′, c′), (a′, c′)},
there exists an induced subgraph in Gp that is isomorphic to H (i.e., the graph
of Figure 3(c)) that contains x′ and y′ as its degree four vertices. By Lemma 5,
dT (x, y) < dmin, which contradicts that at least one of dT (a, d), dT (b, d), dT (b, c),
dT (a, c) must be greater than dmax. Consequently, Gp cannot be a PCG. ��
Observe that Gp has twenty vertices. However, the proof of Theorem 3 holds
even for the planar graph obtained from Gp by merging the pair of vertices
(e′, t′), (h′, i′), (l′,m′), (p′, q′) and then removing the resulting multi-edges. There-
fore, there exists a planar graph with sixteen vertices that is not a PCG. We
omit the details due to space constraints.

6 NP-Hardness

In this section we examine a generalized PCG recognition problem that given a
graph G and a set S ⊆ E1, asks to determine a PCG G′ = (T, dmin, dmax) that
contains G as a subgraph2 but does not contain any edge of S. Observe that if

1 E is the set of edges of the complement graph of G.
2 Not necessarily an induced subgraph.

On Graphs That Are Not PCGs 317

S = E, then the problem asks to decide whether G is a PCG. We prove that
the generalized PCG recognition problem is NP-hard if we require the maximum
number of edges of S to have weighted tree distance greater than dmax between
their corresponding leaves. A decision version of the problem is as follows.

Problem : Max-Generalized-PCG-Recognition

Instance : A graph G, a subset S of the edges of its complement graph, and
a positive integer k.
Question : Is there a PCG G′ = PCG(T, dmin, dmax) such that G′ contains
G as a subgraph2, but does not contain any edge of S; and at least k edges of
S have distance greater than dmax between their corresponding leaves in T ?

We prove the NP-hardness of Max-Generalized-PCG-Recognition by re-
duction form Monotone-One-In-Three-3-SAT [11].

Problem : Monotone-One-In-Three-3-SAT
Instance : A set U of variables and a collection C of clauses over U such that
each clause consists of exactly three non-negated literals.
Question : Is there a satisfying truth assignment for U such that each clause
in C contains exactly one true literal?

Given an instance I(U,C) of Monotone-One-In-Three-3-SAT, we construct
an instance I(G,S, k) of Max-Generalized-PCG-Recognition such that
I(U,C) has an affirmative answer if and only if I(G,S, k) has an affirmative
answer. The idea of the reduction is as follows. Given an edge weighted tree T
with n leaves, dmin = 0 and dmax = +∞, the corresponding PCG is a com-
plete graph Kn of n vertices. Observe that as the interval [dmin, dmax] begins to
shrink, more and more edges of Kn disappear. Some edges disappear due to the
increase of dmin and some other edges disappear due to the decrease of dmax.
We use these two events to set the truth values of the literals.

Let Gnot be the graph of Figure 6(a). The following lemma shows how to use
this graph as a NOT gate.

Lemma 7. Assume that Gnot = PCG(T, dmin, dmax), where a, b, . . . , q are the
leaves of T that correspond to the vertices a′, b′, . . . , q′ of Gnot. Then dT (a, b) <
dmin if and only if dT (c, d) > dmax.

Proof. By Lemma 6, one of dT (e, g), dT (e, h), dT (f, g), dT (f, h) must be greater
than dmax. Observe that for any pair (x, y) ∈ {(e′, g′), (e′, h′), (f ′, g′), (f ′, h′)},
the vertices b′, x′, d′, y′ form an induced cycle. Therefore, by Lemma 3, dT (b, d) <
dmin. Similarly, we can prove that dT (a, q) < dmin and dT (c, q) < dmin. Since
a′, c′, b′, q′, d′ induce a cycle of five vertices, one of dT (a, b), dT (c, d), dT (a, q),
dT (c, q), dT (b, d) is greater than dmax [5, Lemma 2]. Since dT (a, q), dT (c, q),
dT (b, d) are less than dmin, one of or both dT (a, b) and dT (c, d) are greater
than dmax.

Without loss of generality assume that dT (a, b) > dmax. Then by Lemma 1,
dT (c, d) ≤ dT (a, d) or dT (c, d) ≤ dT (b, d). Since dT (a, d) ≤ dmax and dT (b, d) <

318 S. Durocher, D. Mondal, and M.S. Rahman

2
1 1 1 1

4 4 4 4
44

4 4

4 444

1 1

2

2

2

2 2 2

2 2 22

2 2 2

4
2

2

4

2

j k li f g h

nm

c

d

a

i l b

e

p mj k o nf

h
 g

q

c
d

a b a

d

b

d

e

(b)

po

(c)(a)

a
b

q
c

q
c

Fig. 6. (a) Gnot, and its hypothetical representation. (b) Gnot = PCG(T, 7, 11). (c)
Simplified representation of T .

dmin ≤ dmax, dT (c, d) must be less than dmin. Similarly, we can prove that if
dT (c, d) > dmax, then dT (a, b) < dmin. ��
Properties of Gnot. The vertices a, b and c, d play the role of the input and
output of a NOT gate, respectively. Figure 6(b) illustrates a pairwise compat-
ibility tree T , where Gnot = PCG(T, 7, 11) and dT (a, b) > dmax. Observe that
once we construct the tree Tabqcd, it becomes straightforward to add the trees
Tefgh, Tijkl and Tmnop. Therefore, in the rest of this section we only consider the
simplified representation for T , as shown in Figure 6(c). We can cascade several
NOT gates to duplicate or invert the input, but we omit the details due to space
constraints.

In the reduction, all the edges of Gnot will belong to S. Every Gnot has 101
non-adjacent pairs, and by construction, in any pairwise compatibility tree T ′ of
Gnot, dT ′(a, q), dT ′(c, q), dT ′ (b, d) and one of dT ′(a, b), dT ′(c, d) must be less than
dmin. Therefore, at most 97 edges of Gnot can have distance greater than dmax

between their corresponding leaves in T ′. Since the tree T , shown in Figure 6(b),
determines 97 such edges, it maximizes the number of edges of Gnot that have
distance greater than dmax between their corresponding leaves.

Gadget. Each literal gadget consists of a pair of non-adjacent vertices. Every
edge determined by these two vertices, belongs to S. We say that a literal (or,
any non-adjacent pair of vertices) (a′, b′) is true if and only if dT (a, b) > dmax;
otherwise, it is false.

Every clause gadget Gclause, as shown in Figure 7(a), corresponds to a logic
circuit L that is consistent if and only if at most one of its three inputs is true.
The three pairs of vertices (a′, b′), (c′, d′), and (e′, f ′) of Gclause play the role of
the inputs. For each pair of inputs, e.g., ((a′, b′), (c′, d′)), Gclause contains a Gnot

such that the ports o′1, o
′
2 of Gnot form a cycle with a′, b′, and the ports o′3, o

′
4

of Gnot form a cycle with c′, d′. In the following we show that L is consistent if
and only if at most one input is true.

Suppose for a contradiction that at least two of the three inputs, without
loss of generality (a′, b′) and (c′, d′), are true. Since (a′, b′) is true, by Lemma 3,

On Graphs That Are Not PCGs 319

tsr

tsr

tsr

tsr
1 1

1 1

1

11

1 1

1 1
2

4

2

2
2

4 4

2

2

2

4
2

2

4
2

4

2

2

2 2

2

2

2

42 2

2
4 2

4 42

2

4

2

2
2

2

24
2

b

q
2

a

9o

11o

10o

12o

(d)

e
f

e

dc

f

6o

8o

5o

7o
q

3

(e)

e f

a

d

b

c

(b)

o2o1 o3 o4 o5 o6 o7 o8 o9 o10 o11 o12

a b c d e f

3o 4o

2o

q
1

b

d

1oa

(a)

(c)

c

Fig. 7. (a) A clause gadget Gclause. (b) Simplified representation of a pairwise com-
patibility tree T that determines the truth values of its literals. Here, (a′, b′), (c′, d′)
and (e′, f ′) correspond to the values true, false and false, respectively. (c)–(e) Subtrees
of T that correspond to a Gnot and its associated literal gadgets.

(o′1, o
′
2) must be false. Consequently, (o′3, o

′
4) must be true. Since c′, o′3, d

′, o′4
induce a cycle, by Lemma 3, (c′, d′) must be false, a contradiction.

Assume now that at most one of the three inputs is true. In this case, we
show how to construct a pairwise compatibility tree such that the corresponding
PCG G′

clause contains Gclause as a subgraph. Without loss of generality assume
that (a′, b′) is true. (The construction when when all the inputs are false are
similar.) Construct an edge weighted tree T as illustrated in Figure 7(b). Ob-
serve that dT (c, d)<dmin, dT (e, f)<dmin and dT (a, b)>dmax, which implies that
(c′, d′), (e′, f ′) are false and (a′, b′) is true. We call r, s, t the medial path of T .
Figure 7(c)–(e) illustrates how to add the subtrees (shown in thin lines) that
correspond to the Gnots to T . These trees not only realize the Gnots, but also
determine the cycles that are incident to the inputs of the clause gadget.

We now have the following theorem. We omit the details due to space con-
straints.

Theorem 4. Max-Generalized-PCG-Recognition is NP-hard.

Proof (Outline). Given an instance I(U,C) of Monotone-One-In-Three-3-
SAT, we construct a corresponding instance I(G,S, k) of Max-Generalized-

PCG-Recognition in polynomial time by constructing a clause gadget for each
clause, and duplicating the literals that occurs in multiple clauses by cascading
NOT gates, as illustrated in Figure 8(a). The set S consists of the edges of Gnots
and the edges that are determined by the literal gadgets. Let N and t′ be the
number of NOT gates and clauses, respectively. We set k = 97N + t′.

320 S. Durocher, D. Mondal, and M.S. Rahman

sr t

sr t sr t

r s t

g

h

i j

h

ji

g

m
n

g

h

ji
qq

1 1
1 1

4
5

4 4

5

4
4

2

2

2 2

2

2

2
2 2

2

4 4
4

4

4

4

2
2 2 2

2
2 2 2 2

2

2

4

2
24

2
2

4

2
24

2 2
2

2

a b c d e f g h k l i j

n
b

d

e fab

d

e fa

b

d

e fa

q

22 2

dq
dq

22 2 22 2

m

(a)

(g)(f)(e)

(b) (c)

c
k l

(d)

1 1 1

k l
c

1 1

1 1
1 1

k lcc c k l

m
n

m
n

Fig. 8. (a) The graph G that correspond to the instance I(U,C) = (x1∨x2∨x3)∧(x4∨
x2 ∨ x5), where x1, x2, x3, x4, x5 correspond to (a′, b′), (c′, d′), (e′, f ′), (g′, h′), (i′, j′),
respectively. (b)–(c) Compatibility trees for the clauses, where the literals except x1

and x2 are false. (d) Merging the medial paths. (e)–(f) Compatibility trees for Gnots
that propagate the truth value from (c′, d′) to (k′, l′). (g) A compatibility tree of G′. The
edges with weights 1, 2 and 4 are shown in dotted, dashed and solid lines, respectively.

Assume first that I(U,C) has an affirmative answer. For each clause, we con-
struct an edge weighted tree as shown in Figure 7(a). We then merge the medial
paths of these trees, as shown in Figures 8(b)–(d). Finally, we add the subtrees
that correspond to the Gnots that we used to duplicate (or, propagate) the input
values, as depicted in Figures 8(e)–(g). Let G′ be the PCG of the resulting tree.
G′ contains G as a subgraph since we constructed T using the trees for the basic
gadgets. G′ does not contain any edge of S since every redundant edge of G′

lie between different Gnots, or different literal gadgets, or between a Gnot and a
literal gadget. Finally, there are 97 edges in each Gnot that contribute to k, and
t′ true literals, one from each clause, that contribute to k.

Assume now that I(U,C) does not have any affirmative answer. Since each
Gnot can have at most 97 edges that contribute to k, at least t′ edges that
contribute to k must come from the literal gadgets. Since no two literal gadget
that lie in the same clause can be true, each clause must have at least one true
literal, which contradicts that I(U,C) does not have any affirmative answer. ��

On Graphs That Are Not PCGs 321

7 Conclusion

We have constructed a nonplanar graph with eight vertices that is not a PCG,
but the graph is not split matrogenic. Therefore, the question of Calamoneri et
al. [5] of whether every split matrogenic is a PCG remains open. We also con-
struct a planar graph that is not a PCG, but the graph is not outerplanar. Since
every triangle-free outerplanar graph with degree at most three is a PCG [10], an
interesting question is whether there exists any outerplanar graph that is not a
PCG. An important open problem that remains is to determine the complexity
of the (original, or generalized) PCG recognition problem.

References

1. Brandstädt, A., Hundt, C., Mancini, F., Wagner, P.: Rooted directed path graphs
are leaf powers. Discrete Mathematics 310(4), 897–910 (2010)

2. Brandstädt, A., Le, V.B., Rautenbach, D.: Exact leaf powers. Theoretical Com-
puter Science 411(31-33), 2968–2977 (2010)

3. Brandstädt, A., Wagner, P.: Characterising (k, l)-leaf powers. Discrete Applied
Mathematics 158(2), 110–122 (2010)

4. Calamoneri, T., Frascaria, D., Sinaimeri, B.: All graphs with at most seven ver-
tices are pairwise compatibility graphs. The Computer Journal (to appear, 2012),
http://arxiv.org/abs/1202.4631

5. Calamoneri, T., Petreschi, R., Sinaimeri, B.: On Relaxing the Constraints in Pair-
wise Compatibility Graphs. In: Rahman, M. S., Nakano, S.-I. (eds.) WALCOM
2012. LNCS, vol. 7157, pp. 124–135. Springer, Heidelberg (2012)

6. Fellows, M.R., Meister, D., Rosamond, F.A., Sritharan, R., Telle, J.A.: Leaf Powers
and Their Properties: Using the Trees. In: Hong, S.-H., Nagamochi, H., Fukunaga,
T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 402–413. Springer, Heidelberg (2008)

7. Kearney, P.E., Munro, J.I., Phillips, D.: Efficient Generation of Uniform Samples
from Phylogenetic Trees. In: Benson, G., Page, R.D.M. (eds.) WABI 2003. LNCS
(LNBI), vol. 2812, pp. 177–189. Springer, Heidelberg (2003)

8. Kennedy, W.S., Lin, G., Yan, G.: Strictly chordal graphs are leaf powers. Journal
of Discrete Algorithms 4(4), 511–525 (2006)

9. Nishimura, N., Ragde, P., Thilikos, D.M.: On graph powers for leaf-labeled trees.
Journal of Algorithms 42(1), 69–108 (2002)

10. Salma, S.A., Rahman, M.S.: Triangle-Free Outerplanar 3-Graphs Are Pairwise
Compatibility Graphs. In: Rahman, M. S., Nakano, S.-I. (eds.) WALCOM 2012.
LNCS, vol. 7157, pp. 112–123. Springer, Heidelberg (2012)

11. Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of Sym-
posium on Theory of Computing, STOC 1978, pp. 216–226 (1978)

12. Yanhaona, M.N., Bayzid, M.S., Rahman, M.S.: Discovering pairwise compatibility
graphs. Discrete Mathematics, Algorithms and Applications 2(4), 607–623 (2010)

13. Yanhaona, M.N., Hossain, K.S.M.T., Rahman, M.S.: Pairwise compatibility
graphs. Journal of Applied Mathematics and Computing 30(1-2), 479–503 (2009)

http://arxiv.org/abs/1202.4631

On Embedding of Certain Recursive Trees

and Stars into Hypercube

Indhumathi Raman

School of Information Technology and Engineering
VIT University, Vellore - 632014, India

indhumathi.r@vit.ac.in

Abstract. In this paper, a rooted binary tree Th of height h is called a
recursive tree if Th can be defined in terms of Th−k for certain values of
k, 1 ≤ k ≤ h. We prove that certain recursive trees are subtrees of the
hypercube graph whose dimension is close to optimal. We also embed
the stars K1,2n3m and K1,2n5m into hypercube with dilation n+2m and
n+ 3m respectively.

Keywords: Embedding, hypercube, recursive trees, stars.

1 Introduction

The processors in a parallel computer communicate by the exchange of mes-
sages. A key element in the design of a parallel computer is the interconnection
network of processors, which must be made to operate as efficient as possible.
An interconnection network N can be represented by a graph G(N) as follows:
Each vertex of G(N) represents a processor and each edge represents the link
between the two processors. On the other hand, the data processing by a parallel
algorithm A can be represented by a graph G(A) as follows: Each vertex of G(A)
represents a data allocated to the local memory of the processor and each edge
represents a computation between two data sets. An important goal of a parallel
algorithm designer is to map the algorithm graph G(A) into the corresponding
graph G(N) of the target machine’s interconnection network N . This goal leads
to the following definition.

Definition 1. An embedding f of a (guest) graph G = (VG, EG) into a (host)
graph H = (VH , EH) is an injection f : VG → VH (not necessarily onto) such
that every edge of G is mapped onto a path of H. ie., if (v1, v2) ∈ EG, then
f(v1) and f(v2) are connected by a path in H.

Some of the parameters used to measure the quality of an embedding f are
dilation and expansion.

1. Dilation(f) := max{dH(f(u), f(v)) : (u, v) ∈ EG} where dH(x, y) denotes
the length of a shortest path between x and y in H .

2. Expansion(f) := |VH |
|VG|

S.K. Ghosh and T. Tokuyama (Eds.): WALCOM 2013, LNCS 7748, pp. 322–333, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Embedding Recursive Trees and Stars into Hypercube 323

These parameters represent respectively the maximum time required to route
a message in the host graph (computation latency) and the relative number
of unutilized processors in the host graph. For most embedding problems, it
is very difficult to obtain an embedding that minimizes both the parameters
simultaneously. Therefore, some tradeoffs among these parameters must be made
(Leighton [8]). If dilation(f) = 1, then G is isomorphic to a subgraph of H and
we write as G ⊆ H .

Among various interconnection networks, the hypercube network simulates
many other network topologies like mesh, pyramids and tree-related networks
(Kemal efe [7]; Wu [10]). This important property of hypercube makes it more
popular in the topic of interconnection networks and hence is chosen as the host
graph of the embedding in this paper.

Definition 2. An n-dimension hypercube, Qn, has 2
n vertices each labelled with

a binary string of length n. Two vertices are adjacent iff their labels differ in
exactly one position. Figure 1 shows hypercubes of dimension 1, 2, 3 and 4.

0

1

Q1

00 01

10 11

Q2

100 101

110 111

000 001

010 011

Q3

0000

0100

0110

0010

0101

0001

0111

0011

1001

1101

1111

1011

1100

1000

1110

1010

Q4

Fig. 1. Hypercubes of dimension 1, 2, 3, 4: Q4 is constructed using two copies of Q3

The hypercube Qn also admits a recursive construction as follows.

Definition 3 (Recursive Construction). Q1 := K2 and for n ≥ 2, Qn is
recursively constructed by taking two copies of Qn−1, denoted by Q0

n−1 and Q1
n−1

and adding 2n−1 edges as follows: Let V (Q0
n−1) = {0U = 0u2u3 . . . un : ui =

0 or 1} and V (Q1
n−1) = {1V = 1v2v3 . . . vn : vi = 0 or 1}. A vertex 0U =

0u2 . . . un of Q0
n−1 is joined to a vertex 1V = 1v2 . . . vn of Q1

n−1 iff ui = vi for
every i, 2 ≤ i ≤ n.

Figure 1 shows a recursive construction of Q4 from two copies of Q3 by adding
the 2n−1 edges as defined above (shown in dashed lines).

In the above construction of Qn, if we delete the set of edges {(0U, 1V) : U ∈
V (Q0

n−1) and V ∈ V (Q1
n−1)}, then we get two disjoint copies Q0

n−1 and

324 Indhumathi R.

Q1
n−1 each isomorphic with Qn−1 from Qn. This process of obtaining two copies

of Qn−1 from Qn is called as the canonical decomposition of Qn and is
denoted by (Q0

n−1, Q
1
n−1).

One of the most interesting properties of the hypercube Qn is that it is a
vertex-symmetric, edge-symmetric and P3-symmetric graph. (Here, Pk is a path
on k vertices and a graph G is called a Pk-symmetric graph if for any two paths
(u1, u2, . . . uk) and (v1, v2, . . . vk), there exists an automorphism α of G such that
α(ui) = vi, for every i = 1, 2, . . . k. P1-symmetric and P2-symmetric graphs are
commonly called vertex- and edge-symmetric graphs.)

In an embedding of a graph G into Qn, it is important to minimize the size n
of the cube since in a parallel computer the most expensive parts are processor
nodes. So, a natural question is to ask for a hypercube with least number of
nodes so that G ⊆ Qn. This enquiry leads to the following definition.

Definition 4. If G is a graph such that 2n−1 < |V (G)| ≤ 2n, then Qn is called
the optimal hypercube of G, Qn+1 is called the next-to-optimal hypercube and n
is called the optimal dimension of G (denoted by dim(G)).

From a computing perspective, trees form an important class of computational
structures. They naturally arise in the design of parallel algorithms which re-
quire basic operations like merging, sorting and searching. Hence, there is a large
literature on embeddings of various kinds of trees into the graphs of interconnec-
tion networks. In particular, embeddings of binary trees into hypercubes have
received special attention since they naturally arise as the computational struc-
tures of parallel algorithms that employ divide and conquer paradigm. In 1985,
Bhatt et al. ([1]) have conjectured the following.

Conjecture (Bhatt et al [1]): Any binary tree can be embedded in its next-to-
optimal hypercube with dilation 1.

Several partial results have been proved supporting the conjecture (Bier et al [2];
Chen et al [3]; Wagner [9]). In this paper, we settle the conjecture in affirmative
for certain binary trees called recursive trees. Moreover, we prove that these
recursive trees are embeddable in a hypercube of dimension close to the optimal
(and hence less than next-to-optimal) dimension with dilation 1.

A natural reason to consider such a class of recursive trees is that the host
graph, hypercube also admits a recursive definition (see Definition 3). A triv-
ial technique for embedding a recursive tree T into hypercube is mathemat-
ical induction. In this technique, if the induction is applied on the height h
of T , then the dimension of the hypercube increases linearly with the increase
in h. However we aim at reducing the dimension of the hypercube. To over-
come the difficulty of the linear growth of the hypercube dimension, we do
some case-analysis in addition to mathematical induction. The case-analysis
depends on the difference in the height of T and its smaller (left and right)
trees.

Embedding Recursive Trees and Stars into Hypercube 325

2 Recursive Trees and Their Embeddings

Algorithms that solve decision problems usually have binary trees as their rep-
resentation. A rooted tree represents a data structure with a hierarchical rela-
tionship among its various elements. We call a rooted binary tree Th of height
h, a recursive tree if Th can be defined in terms of Th−k for certain values of
k, 1 ≤ k ≤ h. A trivial classical example of recursive trees is the complete bi-
nary tree CTh of height h since it can be defined using two copies of CTh−1. In
the following definitions, we define three classes of recursive trees.

Definition 5. Let X0 := K1. For every even h ≥ 2, Xh is obtained by taking
three copies of Xh−2 with roots r1, r2, r3 (say), two new vertices R,S and adding
the edges (R,S), (S, r1), (S, r2) and (R, r3). We designate R as the root of Xh;
see Figure 2(a).

Definition 6. Let Y0 := K1. For every h > 0 and h ≡ 0 (mod 3), Yh is obtained
by taking five copies of Yh−3 with roots r1, r2, r3, r4, r5 (say), four new vertices
P,Q,R, S and adding the edges (R,P), (R,Q), (P, S), (Q, r4), (Q, r5), (S, r1),
(S, r2) and (P, r3). We designate R as the root of Yh; see Figure 2(b).

Definition 7. Let T0, T1 ∈ {S1, S2, S3} where S1 := K1, S2 := K2, S3 = K1,2.
T0(T0, T1) := T0,T1(T0, T1) := T1. For every h ≥ 2, Th(T0, T1) is obtained by
taking a copy of Th−1(T0, T1), a copy of Th−2(T0, T1), a new vertex R and joining
R to the roots of Th−1(T0, T1) and Th−2(T0, T1).

Xh−2 Xh−2

Xh−2

S r3

r1
r2

R

(a) Structure of Xh

Yh−3 Yh−3

Yh−3

S r3

r1
r2

P

Yh−3 Yh−3

Q

r4
r5

R

(b) Structure of Yh

Fig. 2. Examples of recursive trees

One may observe that since T0, T1 ∈ {S1, S2, S3}, there are nine possibili-
ties for Th(T0, T1). They are (1) Th(S1, S1), (2) Th(S1, S2), (3) Th(S1, S3), (4)
Th(S2, S1), (5) Th(S2, S2), (6) Th(S2, S3), (7) Th(S3, S1), (8) Th(S3, S2), (9)
Th(S3, S3). In the next section, we present an embedding which embeds every
tree in each of the nine classes into the hypercube whose dimension is close to
the optimal dimension of the tree.

From Definitions 5, 6 and 7 we can easily deduce the following respective
observations on the number of vertices of the trees.

326 Indhumathi R.

S1 S2 S3

(a) Trees of height 0
and 1

Th−1(T0, T1)
Th−2(T0, T1)

Th(T0, T1)

R1 R2

R

(b) A recursive construction of Th(T0, T1) where
T0, T1 ∈ {S1, S2, S3}

Fig. 3. Structure of the recursive tree Th(T0, T1)

1. |V (Xh)| = 3|V (Xh−2)|+2 with |V (X0)| = 1. On solving this recurrence rela-

tion we have |V (Xh)| = 2(3)
h
2 − 1 and the optimal dimension of dim(Xh) =

�h2 log2 3�+ 1.
2. |V (Yh)| = 5|V (Yh−3)|+ 4 with |V (Y0)| = 1. On solving this recurrence rela-

tion we have |V (Yh)| = 2(5)
h
3 − 1 and the optimal dimension of dim(Xh) =

�h3 log2 5�+ 1.
3. |V (Th(T0, T1))| = |V (Th−1(T0, T1))| + |V (Th−2(T0, T1))| + 1. This recursive

formula is similar to the Fibonacci sequence f(n) = f(n− 1)+ f(n− 2) with
f(0) = 0 and f(1) = 1. If f(i) represents the ith Fibonacci number, then f(i)
is approximately 20.6932i. Using this fact, one can deduce that the optimal
dimension dim(Th(T0, T1)) = O(0.6932h).

The embeddings ofXh and Yh into the hypercube have been proved by Choudum
et al ([6]) and is stated in the following propositions for further reference. In this
paper, for every h ≥ 0 and every T0, T1 ∈ {S1, S2, S3}, we embed the trees
Th(T0, T1) into the hypercube of dimension dh = �0.25(3h+ a + b + 3)� where
a = |V (T0)| and b = |V (T1)|. The dimension of the hypercube in the embeddings,
though not optimal, is close to optimal.

In the above embeddings, we make use of a small extension in the structure
of T ∈ {Xh, Yh} to embed it into hypercube. We denote by T ∗ a supertree of T
whose root is R, formed by adding two new vertices A, B and two new edges
(A,B) and (B,R). We call T ∗ the auxiliary tree of T and call the path (A,B,R)
the auxiliary path of T ∗. An injective embedding Lh : Th(T0, T1) → Qdh

is a
labelling of the vertices of Th(T0, T1) with binary strings of length dh. Clearly,
Th(T0, T1) ⊆ Qdh

iff Lh(u) and Lh(v) differ in exactly one position whenever
(u, v) is an edge in Th(T0, T1). Figure 4(a) shows a labelling of T∗

4(S3, S3) using
binary strings of length 5 which proves that T∗

4(S3, S3) ⊆ Q5. This labelling
technique is widely used in the proof of embedding Th(T0, T1) into hypercube.
If A is a set of binary strings, we denote by 0A the set {0X : X ∈ A}, where 0X
refers to prefixing X by 0. Similarly A0 := {X0 : X ∈ A}.
Proposition 1. ([6]) For every even integer h ≥ 2, X∗

h ⊆ Qdh
where dh =

� 4h5 �+ 1. �

Embedding Recursive Trees and Stars into Hypercube 327

Proposition 2. ([6]) For every positive integer m ≥ 1, Y ∗
3m ⊆ Qdm where

dm = � 12m5 �+ 1. �
Theorem 1. Let T0, T1 ∈ {S1, S2, S3}. Let a = |V (T0)| and b = |V (T1)|. Then
for every h ≥ 0 and every T0, T1 ∈ {S1, S2, S3}, Th(T0, T1) is a subtree of Qdh

where dh = �0.25(3h+ a+ b+ 3)�.
Proof: For 0 ≤ h ≤ 3, one can easily and explicitly label Th(T0, T1) for each of
the nine possibilities. For h ≥ 4, we prove the following claim.

Claim : T∗
h(T0, T1) ⊆ Qdh

where dh = �0.25(3h + a + b + 3)� such that the
auxiliary path (Ah, Bh, Rh) of T∗

h(T0, T1) is labelled (0dh−211, 0dh−11, 0dh).
It is clear that if the claim holds, then the theorem holds. We call the condition

on the auxiliary path as the auxiliary condition. We prove the claim by induction
on h.

Proof of the claim: As a basic case, we explicitly label the vertices of T∗
h(T0, T1)

for every h, 4 ≤ h ≤ M where M =

{
a+ b+ 4 if a+ b ≤ 3

a+ b if a+ b > 3
and every

T0, T1 ∈ {S1, S2, S3} satisfying the auxiliary condition. For the sake of crispness
of the current paper, we present only the labellings of T∗

4(S3, S3), T∗
5(S3, S3)

and T∗
6(S3, S3) in Figures 4(a), 4(b) and 4(c) respectively. By such a labelling,

we note that T∗
4(S3, S3) ⊆ Qdh

; dh = �0.25(3 ∗ 4 + 3 + 3 + 3)� = 5. Similarly,
T∗
4(S3, S3) ⊆ Q6 and T∗

4(S3, S3) ⊆ Q6.
We proceed to the next step in the induction. For h > M , we assume that

the claim is true for T∗
k(T0, T1) for all M ≤ k ≤ h − 1 and we prove the the-

orem for T∗
h(T0, T1) in 3 cases. The following proof technique holds for every

T0, T1 ∈ {S1, S2, S3} and hence we use Th in analogous to Th(T0, T1).

Case 1: h ≡ a+ b+ 2 (mod 4) or h ≡ a+ b+ 3 (mod 4)
In this case, dh − dh−1 = 1 and dh − dh−2 = 2. By induction hypothesis, we are
given embeddings L1 : T∗

h−1 → Qdh−1
and L2 : T∗

h−2 → Qdh−2
satisfying the

auxiliary condition. For notational convenience, we denote L1(T∗
h−1) by T1

h−1

and L2(T∗
h−2) by T2

h−2. We extend these two labellings to a labelling Lh of
T∗
h by suffixing the labels of all the vertices of T1

h−1 by 0 and the labels of all
the vertices of T2

h−2 by 11; see Figure 5(a). By such a labelling, every label
of T∗

h is of length dh since dh − dh−1 = 1 and dh − dh−2 = 2. Clearly, Lh is
an injection and hence a required embedding. On applying the automorphism
ψ12 : V (Qdh

)→ V (Qdh
) defined by

ψ12(x1x2 . . . xdh
) = x1x2 . . . xdh−3xdh−1xdh

xdh−2

to the labelling Lh, we obtain a labelling of T∗
h satisfying the auxiliary condition.

Case 2: h ≡ a+ b+ 1 (mod 4)
In this case, dh − dh−1 = dh − dh−2 = 1.By induction hypothesis, we are given
embeddings L1 : T∗

h−1 → Qdh−1
and L2 : T∗

h−2 → Qdh−2
satisfying the auxiliary

condition. By applying the automorphism α : V (Qdh−2
) → V (Qdh−2

) to the
labels of L2(T∗

h−2) defined by

328 Indhumathi R.

02110

02102

05

104

10210
1031

11010

11011 1103

10120
10011 10101

1013 10100

0103

01202
01021

01012 120210130 01201

(a) T ∗
4 (S3, S3) ⊆ Q5

105

1204

120210
12031

13010

1
3
0
1
1

1
3
0
3

120120

1
2
0
2
1
2

1
2
0
1
0
1

1
2
0
1
3

1
2
0
1
0
0

10310

102110
101010

1
0
1
0
1
1

1
0
1
0
3

1
0
2
1
3

1
0
2
1
0
0

0411

051

06

010210

010110
011010

0
1
0
1
3

0
1
0
1
0
2

0
1
2
0
1
2

0
1
2
0
3 0
1
0
2
1
2

0
1
0
1
0
1

01031

0104

(b) T ∗
5 (S3, S3) ⊆ Q6

101021

13021

13012
1303

120212

1
2
0
0
1
0

1
2
0
3
1

1313

1
3
0
1
0

1
4
0
2

1
5
0

1
4
0
1

101012

1014
10312

1
3
1
0

1
0
4
1

1
0
1
3
0

1
0
1
2
0
1

105

102102

102120

120120
03120

1
2
0
1
3

1
2
0
1
0
2

0
3
1
3

0
3
1
0
2

1
0
2
1
3

1
2
0
1
0
1

102101

0411

051

06 021021

012021

012012
01203

010212

0
1
0
2
1
0

0
1
0
3
1

015

0
1
2
0
1
0

0
1
3
0
2

0
1
4
0

0
1
3
0
1

021012

0214
021010

0
4
1
0

0
2
1
0
3

0
2
1
3
0

0
2
1
2
0
1

(c) T ∗
6 (S3, S3) ⊆ Q6

Fig. 4. Labelling of T∗
h(S3, S3) for 4 ≤ h ≤ 6

Embedding Recursive Trees and Stars into Hypercube 329

α(x1x2 . . . xdh−2
) = x1x2 . . . xdh−2−2xdh−2

xdh−2−1

the labels of the auxiliary path (Ah−2, Bh−2, Rh−2) of T∗
h−2 is mapped to the

path (Rh−2, Bh−2, Ah−2). For notational convenience, we denote L1(T∗
h−1) by

T1
h−1 and α ◦L2(T∗

h−2) by αT
2
h−2. We extend these two labellings to a labelling

Lh of T∗
h by suffixing the labels of all the vertices of T1

h−1 by 0 and the labels of
all the vertices of αT2

h−2 by 1; see Figure 5(b). By such a labelling, every label
of T∗

h is of length dh since dh−dh−1 = dh−dh−2 = 1. Clearly, Lh is an injection
and hence a required embedding.

T1
h−10

T2
h−211

Rh−10 Rh−211
Bh−10

Ah−10

Bh−211

(a) Labelling of T∗
h for h ≡ a +

b+2 (mod 4) or h ≡ a+b+3
(mod 4)

T1
h−10

αT2
h−21

Bh−10 Ah−21

Bh−21

Rh−21

Rh−10

(b) Labelling of T∗
h for h ≡ a+b+1

(mod 4)

Fig. 5. Labelling of T∗
h for h ≡ a+ b+ k (mod 4), k ∈ {1, 2, 3}

On applying the automorphism α (defined above) to the labelling Lh, we ob-
tain a labelling of T∗

h satisfying the auxiliary condition.

Case 3: h ≡ a+ b (mod 4)
In this case, dh − dh−3 = 2 and dh − dh−4 = 3.
By induction hypothesis, we are given embeddings L3 : T∗

h−3 → Qdh−3
and L4

: T∗
h−4 → Qdh−4

satisfying the auxiliary condition. Let L3(T∗
h−3) be denoted

by T3
h−3 and L4(T∗

h−4) be denoted by T4
h−4. We note that on applying the

automorphism φ : V (Qdh−3
)→ V (Qdh−3

) to the labels of T3
h−3 defined by

φ(x1x2 . . . xdh−3
) = x1x2 . . . xdh−3−2xdh−3

xdh−3−1

the auxiliary path (Ah−3, Bh−3, Rh−3) of T∗
h−3 is mapped to the path (Rh−3, Bh−3,

Ah−3). Let φ(T3
h−3) be denoted by T5

h−3. We use T3
h−3, T

4
h−4, T

5
h−3 to obtain a

labelling Lh of T∗
h as shown in Figure 6.

On applying the automorphism ψ3 : V (Qdh
)→ V (Qdh

) defined by

ψ3(x1x2 . . . xdh
) = x1x2 . . . xdh−4xdh

xdh−2xdh−1xdh−3

330 Indhumathi R.

T3
h−3

T4
h−4 T5

h−3

Rh−300

Ah−301Rh−301

Rh−4011

Bh−301

T3
h−3

T4
h−4

Ah−310

Ah−300

Bh−300

Bh−310

Rh−310 Rh−4111

Fig. 6. Labelling of T∗
h for h ≡ a+ b (mod 4)

to the labelling Lh shown in Figure 6, we obtain a labelling of T∗
h satisfying the

auxiliary condition.
In each of the cases we have given a labelling (embedding) for T∗

h. Hence for
all h ≥ 0, T∗

h(T0, T1) ⊆ Qdh
where dh = �0.25(3h+ a+ b + 3)�. �

Remark 1. The tree Th(S1, S2) is isomorphic to the Fibonacci tree Fh considered
by Choudum et al ([5]). The result of Theorem 1 for Th(S1, S2) coincides with
the result of embedding of Fh into Qdh

([5], Theorem 4.1). Hence Theorem 1
is an extension of Theorem 4.1 of [5] and the proof technique presented in this
paper is much simpler. The simplicity is due to the presence of the auxiliary
path. �

Remark 2. All recursive trees considered in this paper are height-balanced trees
(A rooted binary tree T is said to be height-balanced if for every vertex v ∈ V (T),
the heights of the subtrees, rooted at the left and right child of v, differ by at
most one). �

3 Embedding of the Stars

As an application to Propositions 1 and 2, we embed the stars K1,2n3m and
K1,2n5m into the hypercube.

The star K1,d is a tree of diameter 2 with exactly one vertex of degree d
and exactly d vertices of degree 1. Clearly, K1,d ⊆ Qd. In particular, K1,2npm ⊆
Q2npm . Our focus is now to reduce the dimension 2npm. In this section, we
embed K1,2n3m into Q�1.6m�+n+1, however with dilation n+2m. In similar lines,
we also embed K1,2n5m into Q�2.4m�+n+1 with dilation n+ 3m. The dimensions
�1.6m�+n+1 and �2.4m�+n+1 are close to the optimal dimension of K1,2n3m

and K1,2n5m respectively.

3.1 Embedding of K1,2n3m

The proof of embedding K1,2n3m into Q�1.6m�+n+1 with dilation n+2m consists
of two steps. In the first step, we embed a tree Hh,m of height h whose structure

Embedding Recursive Trees and Stars into Hypercube 331

is shown in Figure into Qdh
where dh = �1.6m�+ h − 2m + 1 with dilation 1;

this is done in the following Theorem 2. In the second step, we embed K1,2n3m

into Hn+2m,m with dilation n+ 2m; this is done in Theorem 3. Combining the
two results, we get the required embedding.

We note that (1) the induced subgraph ofHh,m from level 0 to h− 2m is a com-
plete binary tree of height h−2m and (2) the induced subgraph ofHh,m from level
h−2m+1to h is the treeX2m of height 2m (refer to Definition 5). Hence,H2m,m '
X2m. The treeHh,m has (2h−2m+1)(3m)− 1 vertices and (2h−2m)(3m) leaves and
hence optimal dimension ofH(h,m) is log((2h−2m+1)(3m))'�1.585m�+h−2m+1.
We next embed Hh,m into Q�1.6m�+h−2m+1 with dilation 1.

L0

L1

Lh−2m

CTh−2m

. . .

X2m X2m X2m X2m

Fig. 7. Structure of Hh,m; X2m is shown in Figure 2(a)

Theorem 2. For every integer h, k ≥ 0, Hh,m ⊆ Q�1.6m�+h−2m+1.

Proof: Let �1.6m� + 1 = dm. Let v(t, i) be the ith vertex from left at level t,
0 ≤ t ≤ h− 2m, 1 ≤ i ≤ 2t of Hh,m and let Ft,i be the subtree of Hh,m rooted at
v(t, i). We note that Fh−2m,i ' X2m for all i, 1 ≤ i ≤ 2t. To prove the theorem,
we first prove that F ∗

h−2m−1,j ⊆ Qdm+1, for every j, 1 ≤ j ≤ 2h−2m−1.

Embedding F ∗
h−2m−1,j in Qdm+1: Let (A1, B1, R1 = v(h − 2m, 2j −

1)) and (A2, B2, R2 = v(h − 2m, 2j)) denote the auxiliary paths of
F ∗
h−2m,2j−1 and F ∗

h−2m,2j respectively. Consider a canonical decomposition

(Q0
dm
, Q1

dm
) of Qdm+1. Embed F ∗

h−2m,2j−1 ' X∗
2m in Q0

dm
and F ∗

h−2m,2j ' X∗
2m

in Q1
dm

(this is possible by Proposition 1). We next add the edges (A1, B2) and
(B1, R2). These edges exist in Qdm + 1 since we can map the edge (B2, R2)
onto the edge (A1, B1) using the edge-symmetric property of Q1

dm
. This gives

an embedding of F ∗
h−2m−1,j into Qdm+1 with (B2, A1, B1) as its auxiliary path;

see Figure 8.
By repeatedly applying the above procedure of embedding, we have F ∗

k,j ⊆
Qdm+h−2m−k, for every k, 0 ≤ k ≤ h− 2m− 2. In particular, for k = 0 we have
F ∗
0,1 ⊆ Qdm+h−2m. The theorem follows since Hh,m ⊂ H∗

h,m ' F ∗
0,1. �

In the next theorem, we embed K1,2n3m into Hh,m for h = n+ 2m.

Theorem 3. For every n ≥ 0 and every m ≥ 1, K1,2n3m is embeddable in
Hn+2m,m with dilation n+ 2m.

332 Indhumathi R.

Fh−2m,2j−1

R1

B1

A1

Fh−2m,2j

R2

B2

A2

Q0
dm Q1

dm

Fig. 8. Embedding of F ∗
h−2m−1,j in Qdm+1

Proof: The required embedding is given by explicitly defining a map φ as follows.
Let φ : V (K1,2n3m) → V (Hn+2m,m) be such that the leaves of K1,2n3m are
mapped to the leaves of Hn+2m,m (we note that Hn+2m,m has 2n3m leaves) and
the root of K1,2n3m is mapped to the root of Hn+2m,m. Clearly, dil(φ) is the
height of Hn+2m,m which is equal to n+ 2m. �
Combining Theorem 2 and Theorem 3, we have the following theorem.

Theorem 4. For every n ≥ 0 and every m ≥ 1, K1,2n3m is embeddable in the
hypercube of dimension �1.6m�+ n+ 1 with dilation n+ 2m. �

3.2 Embedding of K1,2n5m

We next proceed to embed the star K1,2n5m into the hypercube of dimension
�2.4m�+ n+ 1 with dilation n+ 3m. The proof is similar to the embedding of
K1,2n3m . However we use a different intermediate tree Gh,m (similar to Hh,m)
which is as follows: (1) the induced subgraph of Gh,m from level 0 to h− 3m is
a complete binary tree of height h− 3m and (2) the induced subgraph of Gh,m

from level h− 3m+ 1 to h is the tree Y3m of height 3m (refer to Definition 6).
Hence, G3m,m ' Y3m. The tree Gh,m has (2h−3m+1)(5m)− 1 vertices and hence
optimal dimension of Gh,m is log((2h−3m+1)(5m)) ' �2.323m� + h − 3m + 1.
Arguing in similar lines of Theorems 2, 3 and using Proposition 2, we have the
following theorem.

Theorem 5. For every h,m ≥ 0, Gh,m ⊆ Q�2.4m�+h−3m+1. �

Theorem 6. For every n ≥ 0 and every m ≥ 1, K1,2n5m is embeddable in
Gn+3m,m with dilation n+ 3m. �

Combining the above two theorems, we have the following.

Theorem 7. For every n ≥ 0 and every m ≥ 1, K1,2n5m is embeddable in the
hypercube of dimension �2.4m�+ n+ 1 with dilation n+ 3m. �

Remark 3. The embeddings of recursive trees Xh and Yh (stated in Propositions
1 and 2) find application in embedding other trees like Hh,m, Gh,m, K1,2n3m and
K1,2n5m into hypercube. �

Embedding Recursive Trees and Stars into Hypercube 333

Remark 4. The recursive trees considered in this paper are not exhaustive. That
is, there are recursive trees Hn as defined below, other than those considered in
this paper for embedding purpose. The tree Hn is obtained by taking (i) a copy
of CTn−1 and a copy of CTn−2 with roots R1 and R2; (ii) a new vertex R and
(iii) joining R to R1 and R2. Choudum et al ([4], Theorem 4.2, see Figure 11)
have proved that H∗

n ⊆ Qn+1. �

4 Conclusion

In this paper, we have embedded certain recursive trees in the hypercube with
unit dilation. The dimension of the hypercube is close to optimal dimension. The
embedding result settles a conjecture (stated in page 324) of Bhatt et al. ([1])
in affirmative for the recursive trees. We have also shown how these embedding
can be used to embed other trees like stars into hypercube.

In future, one can attempt to recognize more trees that are subgraphs of
hypercube or other hypercube-like graphs. One can also attempt to reduce the
dilation of embedding stars into hypercube.

References

1. Bhatt, S.N., Ipsen, I.I.F.: How to embed trees in hypercubes, Technical Report
YALEU/DCS/RR-443, Yale University (1985)

2. Bier, T., Loe, K.F.: Embedding of binary trees into hypercubes. Journal of Parallel
and Distributed Computing 6(3), 679–691 (1989)

3. Chen, W.K., Stallmann, M.F.M.: On Embedding Binary Trees into Hypercubes.
Journal of Parallel and Distributed Computing 24(2), 132–138 (1995)

4. Choudum, S.A., Indhumathi, R.: On embedding subclasses of height balanced trees
in hypercubes. Information Sciences 179, 1333–1347 (2009)

5. Choudum, S.A., Raman, I.: Embedding height balanced trees and Fibonacci trees
in hypercubes. Journal of Applied Mathematics and Computing 30(1-2), 39–52
(2009)

6. Choudum, S.A., Raman, I.: Embedding certain height-balanced trees and complete
pm-ary trees into hypercubes. Journal of Discrete Algorithms (accepted, under
revision)

7. Efe, K.: Embedding mesh of trees in the hypercube. Journal of Parallel and Dis-
tributed Computing 11(3), 222–230 (1991)

8. Leighton, F.T.: Introduction to Parallel Algorithms and Architectures: Arrays,
Trees, Hypercubes. Morgan Kauffmann, San Mateo (1992)

9. Wagner, A.S.: Embedding All Binary Trees in the Hypercube. Journal of Parallel
and Distributed Computing 18(1), 33–43 (1993)

10. Wu, A.Y.: Embedding of tree networks in hypercubes. Journal of Parallel and
Distributed Computing 2(3), 238–249 (1985)

Box-Rectangular Drawings of Planar Graphs

(Extended Abstract)

Md. Manzurul Hasan1,2, Md. Saidur Rahman2, and Md. Rezaul Karim3

1 Alternative Delivery Channel Division, Dutch-Bangla Bank Limited, Bangladesh
2 Department of Computer Science and Engineering,

Bangladesh University of Engineering and Technology (BUET), Bangladesh
3 Department of Computer Science and Engineering,

Univeristy of Dhaka, Bangladesh
manzurul@dbbl.com.bd, saidurrahman@cse.buet.ac.bd, rkarim@univdhaka.edu

Abstract. A plane graph is a planar graph with a fixed embedding in
the plane. In a box- rectangular drawing of a plane graph, every vertex is
drawn as a rectangle, called a box, each edge is drawn as either a horizon-
tal line segment or a vertical line segment, and the contour of each face
is drawn as a rectangle. A planar graph is said to have a box-rectangular
drawing if at least one of its plane embeddings has a box-rectangular
drawing. Rahman et al. [8] gave a necessary and sufficient condition for
a plane graph to have a box-rectangular drawing and developed a linear-
time algorithm to draw a box-rectangular drawing of a plane graph if
it exists. Since a planar graph G may have an exponential number of
embeddings, determining whether G has a box-rectangular drawing or
not using the algorithm of Rahman et al. [8] for each embedding of
G takes exponential time. Thus to develop an efficient algorithm to ex-
amine whether a planar graph has a box-rectangular drawing or not is
a non-trivial problem. In this paper we give a linear-time algorithm to
determine whether a planar graph G has a box-rectangular drawing or
not, and to find a box-rectangular drawing of G if it exists.

Keywords: Graph drawing, Planar graph, Box-rectangular drawing,
Rectangular drawing, Cyclically 4-edge connected graph.

1 Introduction

For the last two decades automatic drawings of graphs have created intense
interest due to their broad applications, and as a consequence, a number of
drawing styles and corresponding drawing algorithms have emerged [1,3,5,10]. A
plane graph is a planar graph with a fixed embedding in the plane. A rectangular
drawing of a plane graph G is a drawing of G, where each vertex is drawn as
a point, each edge is drawn as a horizontal or vertical line segment, and each
face is drawn as a rectangle. On the other hand a box-rectangular drawing of a
plane graph G is a drawing of G in which each vertex is drawn as a (possibly
degenerated) rectangle, called a box, each edge is drawn as a horizontal line
segment or a vertical line segment, and the contour of each face is drawn as a
rectangle. Figure 1(c) illustrates a box-rectangular drawing of the plane graph

S.K. Ghosh and T. Tokuyama (Eds.): WALCOM 2013, LNCS 7748, pp. 334–345, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Box-Rectangular Drawings of Planar Graphs 335

(a) (c)(b)

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

a

e

c

f

b

a

c

d

e f

d

e

a

b

b

f

c

d

Fig. 1. (a) A planar graph G, (b) a plane embedding Γ of G for which box-rectangular
drawing exists, and (c) box-rectangular drawing of the planar graph G

in Figure 1(b). Box-rectangular drawings have practical applications in VLSI
floorplanning [8,9] and architectural floorplanning [2,6,7].

All graphs do not have box-rectangular drawings. Rahman et al. [8] gave a nec-
essary and sufficient condition for a plane graph to have a box-rectangular draw-
ing and developed a linear-time algorithm to draw a box-rectangular
drawing of a plane graph if it exists. Xin He [4] did the same task for proper
box- rectangular drawings of plane graphs. A planar graph is said to have a box-
rectangular drawing if at least one of its plane embeddings has a box-rectangular
drawing. For the plane embedding in Fig. 1(a) of the planar graph G there is no
box-rectangular drawing. But the plane embedding of G in Fig. 1(b) has a box-
rectangular drawing as illustrated in Figure 1(c). Thus G has a box-rectangular
drawing. Since a planar graph G may have an exponential number of embed-
dings, determining whether G has a box-rectangular drawing or not using the
algorithm of Rahman et al. [8] for each embedding of G takes exponential time.
Thus to develop an efficient algorithm to examine whether a planar graph has
a box-rectangular drawing or not is a non-trivial problem. In this paper we
give a linear-time algorithm to determine whether a planar graph G has a box-
rectangular drawing or not, and to find a box-rectangular drawing of G if it
exists.

Our approach for finding a box-rectangular drawing of a planar graph is sim-
ilar to that of Rahman et al. [9] for finding a rectangular drawing of a planar
graph. However, our work is not a mere extension of the work of Rahman et al.
[9], and we had to face a lot of challenges. In this paper we show that all the
plane embeddings of a subdivision of planar 3-connected cubic graph G which is
cyclically 4-edge-connected, have box-rectangular drawings, whereas not every
such embedding has a rectangular drawing. We denote the maximum degree of
a graph G by Δ(G) or simply by Δ. Rahman et al. [9] deal with planar graphs
having Δ ≤ 3. But for box-rectangular drawing we deal with planar graphs of
the maximum degree 4 or more. We had to face enormous difficulties in dealing
with the graphs of maximum degree 4 or more. In [9] Rahman et al. showed that
at most four plane embeddings are needed to be checked to determine whether
a planar graph has a rectangular drawing. Whereas in case of box-rectangular
drawing we showed that at most 81 embeddings are needed to be checked.

336 M.M. Hasan, M.S. Rahman, and M.R. Karim

The rest of this paper is organized as follows. In section 2, we give some
basic terminologies, and some previous results. In Section 3, we describe a nec-
essary and sufficient condition for a planar graph G with Δ ≤ 3 to have a
box-rectangular drawing and find a drawing if it exists. Section 4 gives a nec-
essary and sufficient condition for a planar graph G with Δ ≥ 4 to have a box-
rectangular drawing and describes a linear-time algorithm for finding a drawing
if it exists. Finally Section 5 concludes the paper.

2 Preliminaries

In this section we give some definitions and present preliminary results.
Throughout the paper we assume that a graph G is so called a multigraph

which may have multiple edges, i.e., edges sharing both ends. If G has no mul-
tiple edges, then G is called a simple graph. Subdividing an edge (u, v) of a
graph G is the operation of deleting the edge (u, v) and adding a path u(=
w0), w1, w2, . . . , wk, v(= wk+1) passing through new vertices w1, w2, . . . , wk, k ≥
1, of degree 2. A graph G is called a subdivision of a graph G′ if G is obtained
from G′ by subdividing some of the edges of G′.

The connectivity κ(G) of a graph G is the minimum number of vertices whose
removal results in a disconnected graph or a single-vertex graphK1. We say that
G is k-connected if κ(G) ≥ k. A graph G is called cyclically 4-edge-connected if

1

(a)

2

F

F

C

C
C

F3

(b)

Fig. 2. (a) A cyclically 4-edge-connected graph, and (b) a graph which is not cyclically
4-edge-connected

the removal of any three or fewer edges leaves a graph such that exactly one of the
components has a cycle. The graph in Fig. 2(a) is cyclically 4-edge-connected.
On the other hand, the graph in Fig. 2(b) is not cyclically 4-edge-connected,
since the removal of the three edges drawn by thick dotted lines leaves a graph
with two connected components each of which has a cycle. We often use the
following operation on a planar graph G. Let v be a vertex of degree d in a plane
graph Γ of the planar graph G, let e1 = vw1, e2 = vw2, . . . , ed = vwd be the
edges incident to v, and assume that these edges e1, e2, . . . , ed appear clockwise
around v in this order. Replace v with a cycle v1, v1v2, v2, v2v3, . . . , vdv1, v1, and

Box-Rectangular Drawings of Planar Graphs 337

replace the edges vwi with viwi for i = 1, 2, . . . , d. We call the operation above
replacement of a vertex by a cycle. The cycle v1, v1v2, v2, v2v3, . . . , vdv1, v1 in the
resulting graph is called the replaced cycle corresponding to the vertex v of Γ .

Let G be a planar graph, and Γ be an arbitrary plane embedding of G. We
denote by Fo(Γ) the outer face of Γ . For a cycle C of Γ , we call the plane
subgraph of Γ inside C (including C) the inner subgraph ΓI(C) for C, and we
call the plane subgraph of Γ outside C (including C) the outer subgraph ΓO(C)
for C. An edge which is incident to exactly one vertex of a cycle C and located
outside C is called a leg of C. The vertex of C to which a leg is incident is called
a leg-vertex of C. A cycle C in Γ is called a k-legged cycle of Γ if C has exactly
k legs and there is no edge which joins two vertices on C and is located outside
C. In each of Figs. 2(a) and 2(b), a 3-legged cycle is drawn by thick solid lines.
We call a face F of Γ a peripheral face for a 3-legged cycle C in Γ if F is in
ΓO(C) and the contour of F contains an edge on C. Clearly there are exactly
three peripheral faces for any 3-legged cycle in Γ . In Fig. 2(b) F1, F2, F3 are
the three peripheral faces for the 3-legged cycle C drawn by thick solid lines.
A k-legged cycle C is called a minimal k-legged cycle if ΓI(C) does not contain
any other k-legged cycle of Γ . The 3-legged cycle C drawn by thick lines in Fig.
2(b) is not minimal, while the 3-legged facial cycle C′′ in Fig. 2(b) is minimal.
We say that cycles C and C′ in Γ are independent if ΓI(C) and ΓI(C

′) have no
common vertex. A set S of cycles is independent if any pair of cycles in S are
independent. A cycle C in Γ is called regular if the plane graph Γ − ΓI(C) has
a cycle. Similarly an edge of Γ which is incident to exactly one vertex of a cycle
C in Γ and located inside C is called a hand of C. The vertex of C to which
a hand is incident is called a hand-vertex of C. A cycle C is called a k-handed
cycle if C has exactly k hands in Γ and there is no edge which joins two vertices
on C and is located inside C. We call a k-handed cycle C a regular k-handed
cycle if Γ − ΓO(C) contains a cycle.

We now give some definitions regarding a box-rectangular drawing of a plane
graph Γ . We say that a vertex of graph Γ is drawn as a degenerated box in a
box-rectangular drawing D if the vertex is drawn as a point in D. We often call
a degenerated box in D a point and call a nondegenerated box a real box. We call
the rectangle corresponding to Fo(Γ) the outer rectangle, and we call a corner of
the outer rectangle simply a corner. A box in D containing at least one corner
is called a corner box. A corner box may be degenerated. If n = 1, that is, Γ has
exactly one vertex, then the box-rectangular drawing is trivial: the drawing is
just a degenerated box corresponding to the vertex. Thus in the paper, we can
assume that n ≥ 2.

Rahman at al. [8] gave a necessary and sufficient condition for a plane graph Γ
to have a box-rectangular drawing, and developed a linear algorithm for finding
a drawing of Γ if it exists, as stated in the following lemma.

Lemma 1. [8] Let G be a connected planar graph with Δ ≤ 3, and let Γ be a
plane embedding of G. Assume that Γ has neither a vertex of degree 1 nor a
1-legged cycle. Then Γ has a box-rectangular drawing if and only if Γ satisfies
the following two conditions:

338 M.M. Hasan, M.S. Rahman, and M.R. Karim

(br1) every 2- or 3- legged cycle in Γ contains an edge on Fo(Γ); and
(br2) 2c2 + c3 ≤ 4 for any independent set ξ of cycles in Γ , where c2 and c3 are

the numbers of 2- and 3- legged cycles in ξ respectively.

In the problem box-rectangular drawing of a plane graph Γ for Δ ≥ 4 Rahman
et al. [8] constructed a new plane graph Φ from Γ by replacing each vertex v of
degree four or more in Γ by a cycle. Thus Δ(Φ) ≤ 3. The following lemma is the
main result for Δ ≥ 4 .

Lemma 2. [8] Let Γ be a plane connected graph with Δ ≥ 4, and let Φ be the
graph transformed from Γ as above. Then Γ has a box-rectangular drawing if
and only if Φ has a box-rectangular drawing.

It is not difficult to derive a characterization of a connected planar graph to have
a box-rectangular drawing if we know a characterization of a biconnected planar
graph to have a box-rectangular drawing. Throughout this extended abstract we
thus consider the planar graph G is biconnected.

3 Box-Rectangular Drawings of Planar Graphs with
Δ ≤ 3

In this section we give a necessary and sufficient condition for a planar graph G
with Δ ≤ 3 to have a box-rectangular drawing. We first consider the case where
G is a subdivision of a planar 3-connected cubic graph. G has an O(n) number
of embeddings, one for each face chosen as outer face. Examining by the linear
algorithm in Lemma 1 whether the two conditions (br1) and (br2) hold for each of
the O(n) embeddings, one can examine in time O(n2) whether the planar graph
G has a box-rectangular drawing. However, we obtain the following necessary
and sufficient condition for G to have a box-rectangular drawing, which leads to
a linear-time algorithm to examine whether G has a box-rectangular drawing.
We also give a linear-time algorithm to find a drawing if it exists.

Theorem 1. Let G be a subdivision of a planar 3-connected cubic graph, and
let Γ be an arbitrary plane embedding of G.

(a) Suppose first that G is cyclically 4-edge-connected, that is, Γ has no regular
3-legged cycle. Then the planar graph G has a box-rectangular drawing.

(b) Suppose next that G is not cyclically 4-edge-connected, that is, Γ has a reg-
ular 3-legged cycle C. Let F1, F2, and F3 be the three peripheral faces for C,
and let Γ 1, Γ 2, and Γ 3 be the plane embeddings of G taking F1, F2, and F3

respectively as the outer face. Then the planar graph G has a box-rectangular
drawing if and only if at least one of the three embeddings Γ 1, Γ 2, and Γ 3

has a box-rectangular drawing.

We only prove here Theorem 1(a), the proof of Theorem 1(b) is similar to that
of Theorem 3.1(b) in [9]. Before giving a proof of Theorem 1(a), we need the
following Lemmas 3 and 4. Lemma 3 is needful to prove the Lemma 4.

Box-Rectangular Drawings of Planar Graphs 339

Lemma 3. Let G be a subdivision of planar 3-connected cubic graph, and Γ
be an arbitrary plane embedding of G. If G is cyclically 4-edge-connected, then
2c2 + c3 ≤ 2 for any independent set ξ of cycles in Γ , where c2 and c3 are the
numbers of 2- and 3-legged cycles in ξ, respectively.

Proof. Let G be a subdivision of planar 3-connected cubic graph, and Γ be an
arbitrary plane embedding of G. Assume that G is cyclically 4-edge-connected.
We first show that Γ does not have two or more independent 2-legged cycles.
Assume for a contradiction that Γ has two independent 2-legged cycles, C1 and
C2. Then removal of the two legs of either C1 or C2 leaves a graph with two
connected components, each of which has a cycle, contrary to the definition of a
cyclically 4-edge-connected graph. Similarly we can prove that Γ can not have
two independent 3-legged cycles. Similarly we can also prove that Γ can not
have two cycles, one is 2-legged, and another is 3-legged, which are independent.
That is, 2c2 + c3 ≤ 2 for any independent set ξ of cycles in Γ , where c2 and c3
are the numbers of 2- and 3-legged cycles in ξ, respectively. ��
Lemma 4. Let G be a subdivision of planar 3-connected cubic graph. If G is
cyclically 4-edge-connected, then all the plane embeddings of the planar graph G,
satisfy (br1) and (br2) of Lemma 1.

Proof. Let Γ be a plane embedding of G. We first show that Γ satisfies (br1)
in Lemma 1. Assume for a contradiction that a 2-legged or a 3-legged cycle
C has no edge on the outer face of Γ . Then the removal of the legs of C will
result in two connected components having cycles, and G would not be a cycli-
cally 4-edge connected graph, a contradiction. By Lemma 3, Γ satisfies (br2) of
Lemma 1. ��
Proof of Theorem 1(a). By Lemma 4, every plane embedding Γ of G satisfies
Conditions (br1) and (br2) of Lemma 1; and hence Γ has a box-rectangular
drawing by Lemma 1. Therefore the planar graph G has a box-rectangular
drawing. ��
We now consider the other case. It can be trivially shown that every biconnected
planar graph G having two vertices of degree 3 has a box-rectangular drawing.
We may thus assume that G has three or more vertices of degree 3. Then any
planar embedding Γ of G has a regular 2-legged cycle; otherwise, G would be
a subdivision of a 3-connected cubic graph. In this case we have the following
theorem.

Theorem 2. Let G be a planar biconnected graph with Δ ≤ 3 which is not a
subdivision of a planar 3-connected cubic graph. Let Γ be a planar embedding
of G such that every 2-legged cycle in Γ has leg-vertices on Fo(Γ), let Γ have
exactly two independent 2-legged cycles, and let C1 and C2 be the two minimal
2-legged cycles in Γ . Let Γ1(= Γ), Γ2, Γ3, and Γ4 be the four embeddings of G
obtained from Γ by flipping ΓI(C1) or ΓI(C2) around the the leg vertices of C1

and C2. Then G has a box-rectangular drawing if and only if at least one of the
four embeddings Γ1, Γ2, Γ3, and Γ4 has a box-rectangular drawing.

340 M.M. Hasan, M.S. Rahman, and M.R. Karim

Using a method similar to that used in the proof of Theorem 3.4 in [9], we can
prove Theorem 2. Note that G does not always have such an embedding Γ ; if G
has no such embedding, then G has no box-rectangular drawing. We omit the
detail in this extended abstract.

4 Box-Rectangular Drawings of Planar Graphs with
Δ ≥ 4

In this section we give a necessary and sufficient condition for a planar graph
G with Δ ≥ 4 to have a box-rectangular drawing. We also give a linear-time
algorithm to find a drawing if it exists. In Subsection 4.1 we consider the case
where G is a subdivision of a planar 3-connected graph with Δ ≥ 4 and in
Subsection 4.2 we consider the other cases.

4.1 Case for a Subdivision of a Planar 3-Connected Graph with
Δ ≥ 4

Let G be a subdivision of a planar 3-connected graph with Δ ≥ 4, and Γ be an
arbitrary plane embedding of G. We construct a new planar graph H from Γ by
replacing each vertex v of degree four or more in Γ by a cycle.

Figures 3(a), 3(b), and 3(c) illustrate G, Γ , and H respectively. A replaced
cycle corresponds to a real box in a box-rectangular drawing of G. We do not
replace a vertex of degree 2 or 3 by a cycle since a vertex of degree 3 may be
drawn as a point, and a vertex of degree 2 is always drawn as a point. Thus
Δ(H) ≤ 3. The following theorem is the main result of this subsection.

Theorem 3. Let G be a subdivision of a planar 3-connected graph with Δ ≥ 4,
and Γ be an arbitrary plane embedding of G. Let H be the graph transformed
from Γ as above. Then G has a box-rectangular drawing if and only if the planar
graph H has a box-rectangular drawing.

We only give a proof for sufficiency of Theorem 3 in this extended abstract; it
is rather easy to prove the necessity.

We give some definitions before proving the sufficiency. Figures 3(a) and 3(b)
illustrate G and Γ respectively. We replace the vertices of degree 4 or more in
Γ by cycles. Each vertex of degree 2 or 3 in Γ has a corresponding vertex of the
same degree in H , and we call such a vertex in H an original vertex. A vertex
on a replaced cycle is called a replaced vertex. Now each vertex in H is either a
replaced vertex or an original vertex.

Assume that, an arbitrary plane embedding Φ of the planar graph H has a
box-rectangular drawing DΦ. Therefore, Φ satisfies (br1) and (br2) of Lemma
1. We can easily transform DΦ to a box-rectangular drawing DΓ ′ for any plane
embedding Γ ′ of the planar graph G if only original vertices are drawn as cor-
ner boxes in DΦ, because then each replaced vertex is a point in DΦ, and each
replaced cycle in Φ is a rectangular face in DΦ, and hence DΦ can be trans-
formed to DΓ ′ by regarding each replaced cycle as a box. The problem is the

Box-Rectangular Drawings of Planar Graphs 341

(f)

(c)(b)(a)

(e)(d)

(g)
DDΦ*

Φ*

HΓG

(h)Γ

ΦΦ

����
����
����

����
����
����

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

���
���
���
���

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

���
���
���

���
���
���

����
����
����
����

g
d e

c

a
b

c

d

f

g

i

h

e

a b

d e

g

c

a
c

g

d e

f

h

b

i

a
c

b

d i e

h

f

g

a

b

c
d e

f

g

h

i
a

b

c
d

f

g
i

h

e

a
b c

g

ed

f

h

i

h

f
a b

f

h

ii
d e

d e

Fig. 3. Illustration for a box-rectangular drawing of a subdivision of a planar 3- con-
nected graph G with Δ ≥ 4

case where a replaced vertex is drawn as a corner box in DΦ. Because such a
drawing DΦ cannot always be transformed to a box-rectangular drawing DΓ ′

of Γ ′. However we show that a plane graph Φ∗ in Fig. 3(f) obtained from Φ in
Fig. 3(d) through an intermediate graph Φ′ in Fig. 3(e) with slight modification
has a particular box-rectangular drawing DΦ∗ which can be easily transformed
to a box-rectangular drawing of Γ ′ as illustrated in Fig. 3(h). Transformation
is also not possible when the outer face of Φ is a replaced cycle. However, we
are released from the problem by proving the following Lemmas 5 and 6 which
are on a planar graph with Δ ≥ 4. Lemma 5 is needful to prove the Lemma 6.
Proofs of the Lemmas 5 and 6 are omitted in this extended abstract.

Lemma 5. Let G be a planar graph with Δ ≥ 4, and Γ be an arbitrary plane
embedding of G. Let H be the transformed graph of Γ by replacing each vertex v
of degree four or more in Γ by a cycle, and Φ be an arbitrary plane embedding
of the planar graph H. Denote the total number of 2-legged and 3-legged cycles
in Γ by lΓ , and the total number of 2-handed and 3-handed cycles in Γ by hΓ .
Also denote the total number of 2-legged and 3-legged cycles in Φ by lφ, and the
total number of 2-handed and 3-handed cycles in Φ by hΦ. If pΓ = lΓ + hΓ , and
pΦ = lΦ + hΦ, then pΓ = pΦ.

Lemma 6. Let G be a planar graph with Δ ≥ 4, and Γ be an arbitrary plane
embedding of G. Let H be the transformed graph of Γ by replacing each vertex v
of degree four or more in Γ by a cycle. Let ΦR be any arbitrary plane embedding
of the planar graph H, such that Fo(ΦR) is a replaced cycle in H. Then G is
cyclically 4-edge-connected if and only if ΦR has a box-rectangular drawing.

We are now ready to prove the sufficiency of Theorem 3.

342 M.M. Hasan, M.S. Rahman, and M.R. Karim

Sufficiency of Theorem 3. Assume that H has a box-rectangular drawing.
Then H has a plane embedding Φ which has a box-rectangular drawing. We now
show that G has a plane embedding Γ ′ which has a box-rectangular drawing.
Before entering into the cases we give a definition. The replaced cycle on Fo(Φ)
corresponding to a vertex of degree 4 or more in G contains exactly one edge on
Fo(Φ). We call such an edge in Φ a green edge. We have two cases to consider.

Case 1. Φ does not contain a replaced cycle as outer face.
Assume that Φ as in Fig. 3(d) has a box-rectangular drawing. Let Φ′ be the
minimal graph homeomorphic to Φ as illustrated in Fig. 3(e); then Φ′ is a cubic
graph and satisfies Conditions (br1) and (br2) in Lemma 1. Using the similar
approach used in [8], we can designate four vertices as corner vertices after
slight modification in Φ′. Let Φ∗ be the resulting graph as illustrated in Fig.
3(f). Note that each of the four designated vertices in Φ∗ is either an original
vertex or a dummy vertex of degree 2 on a green edge of Φ′ [8]. Clearly, every
3-legged cycle in Φ∗ contains at least one designated vertex. Hence, Φ∗ has a
box-rectangular drawing DΦ

∗ with the four designated vertices as corner boxes,
as illustrated in Fig. 3(g). Inserting the removed vertices of degree 2 on some
vertical and horizontal line segments in DΦ

∗ and regarding the drawing of each
replaced cycle as a box, we immediately obtain a box-rectangular drawing DΓ ′

for a plane embedding Γ ′ of the planar graph G from DΦ
∗, as illustrated in

Fig. 3(h).

Case 2. Φ contains a replaced cycle as outer face.
In this case Φ = ΦR, as in Lemma 6. By Lemma 6, if ΦR has a box-rectangular
drawing, then H is cyclically 4-edge connected. Hence by Theorem 1(a), another
plane embedding Γ ′ of H , whose outer face is not a replaced cycle has also a
box-rectangular drawing D. Thus by using the method used in Case 1 we can
obtain a box-rectangular drawing of Γ ′. ��

4.2 The Other Case for a Planar Graph G with Δ ≥ 4

It can be trivially shown that every graph G with Δ ≥ 4 having two vertices has
a box-rectangular drawing. Note that in this case the graph G is a multigraph.

We may thus assume that G is a planar biconnected graph with Δ ≥ 4 but
not a subdivision of a planar 3-connected graph. In this case the following fact
holds.

Fact 7. Let G be a biconnected planar graph with Δ ≥ 4 but not a subdivision of
a planar 3-connected graph. Let Γ1 and Γ2 be the two arbitrary plane embeddings
of G. A minimal 3-legged cycle in Γ1 is a minimal 3-legged or a maximal 3-
handed cycle in Γ2, and a minimal 2-legged cycle in Γ1 is a minimal 2-legged or
a maximal 2-handed cycle in Γ2. Similarly a maximal 3-handed cycle in Γ1 is a
maximal 3-handed or a minimal 3-legged cycle in Γ2, and a maximal 2-handed
cycle in Γ1 is a maximal 2-handed or a minimal 2-legged cycle in Γ2.

Let G be a planar biconnected graph with Δ ≥ 4 but not a subdivision of
a planar 3-connected graph, and Γ be an arbitrary plane embedding of G.

Box-Rectangular Drawings of Planar Graphs 343

Let (x1, y1), (x2, y2), . . . , (xl, yl) be all pairs of vertices such that xi and yi,
1 ≤ i ≤ l, are the leg vertices of a regular 2-legged cycle or the hand-vertices
of a regular 2-handed cycle. If there is a plane embedding Γ ′ of G having a
box-rectangular drawing, then the outer face Fo(Γ

′) must contain all vertices
(x1, y1), (x2, y2), . . . , (xl, yl); otherwise, Γ

′ would have a 2-legged cycle contain-
ing no vertex on Fo(Γ

′), and Γ ′ would not have a box-rectangular drawing.
Because after replacing the vertices of degree 4 or more by cycles in Γ ′, ac-
cording to Lemma 5, 2-legged cycles will remain same and the total number of
2-legged cycles will also remain same. The graph is denoted by Φ after transfor-
mation from Γ ′. If Γ ′ has a 2-legged cycle containing no vertex on Fo(Γ

′), then
by Lemma 5, Φ also has a 2-legged cycle containing no vertex on Fo(Φ). Hence
by (br1) of Lemma 1, Φ does not have a box-rectangular drawing, and conse-
quently by Lemma 2, Γ ′ does not have a box-rectangular drawing. Similarly, if
Γ ′ has a box-rectangular drawing, then by Lemma 2, Φ has a box-rectangular
drawing and by [8] exactly two leg vertices of every minimal 3-legged cycle in Φ
are on the outer face of the box-rectangular drawing. Thus by Lemma 5, Fo(Γ

′)
contains exactly two leg vertices of every minimal 3-legged cycle in Γ ′. Hence
by Fact 7 exactly two leg vertices of every minimal 3-legged cycle, and exactly
two hand vertices of every maximal 3-handed cycle in Γ must be on the outer
face Fo(Γ

′).
Let p be the largest integer such that a number p of minimal 2-legged and

maximal 2-handed cycles in Γ are independent with each other, and q be the
largest integer such that a number q of minimal 3-legged and maximal 3-handed
cycles in Γ are independent with each other. If p > 2 or q > 4, then by
[8] Γ ′ does not have a box-rectangular drawing. Assume the worst case, that
is, p = 2 and q = 4 in Γ . Independent minimal 3-legged and maximal 3-
handed cycles in Γ are denoted by C1, C2, C3, and C4. Let {ak, bk, ck} be
the set of leg vertices or hand vertices in Ck, for k = 1, 2, 3, or 4. We can
choose two vertices from each C1, C2, C3, or C4 in 3 ways. The combina-
tions are {(ak, bk), (bk, ck), and (ck, ak)}, for k = 1, 2, 3 or 4. If we want to
choose eight vertices from the four cycles, C1, C2, C3, and C4, two vertices from
each Ck, for k = 1, 2, 3 and 4, we can choose in 3 x 3 x 3 x 3 = 81 number
of ways. The combinations are S1 = {(a1, b1), (a2, b2), (a3, b3), (a4, b4)}, S2 =
{(a1, b1), (a2, b2), (a3, b3), (b4, c4)}, S3 = {(a1, b1), (a2, b2), (a3, b3), (c4, a4)}, . . . ,
and S81 = {(c1, a1), (c2, a2), (c3, a3), (c4, a4)}.

Let G be a planar biconnected graph with maximum degree 4 or more but
not a subdivision of a planar 3-connected graph, and Γ be an arbitrary plane
embedding of G as in Fig. 4(a). Let (x1, y1), (x2, y2), . . . , (xl, yl) be all pairs of
vertices such that xi and yi, 1 ≤ i ≤ l, are the leg vertices of a regular 2-legged
cycle or the hand-vertices of a regular 2-handed cycle, and {ak, bk, ck} be the set
of leg vertices or hand vertices in Ck, for k = 1, 2, 3 and 4. A dummy vertex z is
added in the outer face of Γ . Construct a graph Γj

+, for any j = 1, 2, 3, . . . , or
81, by adding dummy edges (xi, z) and (yi, z) for all indices i, 1 ≤ i ≤ l, and by
adding eight dummy edges from z to all vertices in the set Sj . In this way we
can get 81 number of graphs Γj

+, for j = 1, 2, 3, . . ., and 81. Γ1
+ and Γ2

+ are

344 M.M. Hasan, M.S. Rahman, and M.R. Karim

(a) (c)

(d) (e)

(b)

h b m p

k w

v
x

y

j
l

c n q

e

t

g

d
f

a

ro

n

m

o
d

b

u

s

t

p

q

l

f c

axy

v

z

w

k gi

e

r

z

b

ad

m

n

p

q

s

u
v

x
w

gk i f c

h el j

y
o r t

Γ1
+ ΓandΓ2

+

h e

k

d

g

f

a

b m p
s

t
r u

qn

o

c

Γ

l j e

ad
v

g
c

o r
u

t

DΓ2P
* of Γ

2P
Box−rectangulat drawing

P2
+

2P
*

G and Γ

j

q

w

y

l

k

w

y

*

sph m

n

j h

u
s

i

v

x

i i

x

f

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

������
������
������
������
������

������
������
������
������
������

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

b

Fig. 4. Illustration for a box-rectangular drawing of a biconnected graph G with Δ ≥ 4
but not a subdivision of a 3-connected graph

two such kinds of graphs as illustrated in Fig. 4(b) and in Fig. 4(c) respectively.
G may have a box-rectangular drawing, only if, any one of the graphs Γj

+, for
j = 1, 2, 3, . . ., and 81, has a planar embedding such that z is embedded in the
outer face. Γ2P

+ in Fig. 4(c) is such a planar embedding of the graph Γ2
+,

but Γ1
+ in Fig. 4(b) has no such a planar embedding. That is why, the planar

graph G in Fig. 4(a) may have a box-rectangular drawing. Delete the dummy
vertex z from Γ2P

+. The graph is then called Γ2P
∗ as in Fig. 4(d). Lastly by

Lemma 2 and by the approach used in [8] we can test whether the plane graph
Γ2P

∗ has a box-rectangular drawing and find a drawing if it exists. DΓ2P
∗ is a

box rectangular of the plane graph Γ2P
∗ as well as of the planar graph G, as

illustrated in Fig. 4(e).
We thus have the following theorem.

Theorem 4. Let G be a planar biconnected graph with Δ ≥ 4 which is not a
subdivision of a planar 3-connected graph. Then one can determine whether G
has a box-rectangular drawing or not by checking at most 81 graphs constructed
from G as mentioned above. Furthermore, each of the 81 graphs can be checked
in linear time.

5 Conclusion

In this paper we addressed the problem for finding box-rectangular drawings of
planar graphs. We gave a necessary and sufficient condition for a planar graph to
have a box-rectangular drawing and developed a linear-time algorithm for finding
a drawing if it exists. In this paper we have shown that, at most 81 graphs are
required to be checked to take a decision whether a planar biconnected graph with
Δ ≥ 4 has a box-rectangular drawing or not. In future onemay try to minimize the
number of graphs required to be checked to take the decision whether the planar
biconnected graph with Δ ≥ 4 has a box-rectangular drawing or not.

Box-Rectangular Drawings of Planar Graphs 345

Acknowledgment. This work is done in Graph Drawing & Information Visu-
alization Laboratory of the Department of CSE, BUET, established under the
project “Facility Upgradation for Sustainable Research on Graph Drawing & In-
formation Visualization” supported by the Ministry of Science and Information
& Communication Technology, Government of Bangladesh.

References

1. Biedl, T.C.: Optimal Orthogonal Drawings of Triconnected Plane Graphs. In:
Karlsson, R., Lingas, A. (eds.) SWAT 1996. LNCS, vol. 1097, pp. 333–344. Springer,
Heidelberg (1996)

2. Buchbaum, A.L., Gansner, E.R., Procopiuc, C.M., Venkatasubramanian, S.: Rect-
angular layouts and contact graphs. ACM Transactions on Algorithms 4(1),
8.1–8.28 (2008)

3. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing. Prentice
Hall, Englewood Cliffs (1999)

4. He, X.: A simple linear time algorithm for proper box rectangular drawings of plane
graphs. Journal of Algorithms 40(1), 82–101 (2001)

5. Kant, G.: Drawing planar graphs using the canonical ordering. Algorithmica 16,
4–32 (1996)

6. Munemoto, S., Katoh, N., Imamura, G.: Finding an optimal floor layout based
on an orthogonal graph drawing algorithm. Journal of Architecture, Planning and
Environmental Engineering (Transactions of AIJ) 524, 279–286 (2000)

7. Nishizeki, T., Rahman, M.S.: Planar Graph Drawing. World Scientific, Singapore
(2004)

8. Rahman, M.S., Nakano, S., Nishizeki, T.: Box-rectangular drawings of plane
graphs. Journal of Algorithms 37, 363–398 (2000)

9. Rahman, M.S., Nishizeki, T., Ghosh, S.: Rectangular drawings of planar graphs.
Journal of Algorithms 50, 62–78 (2004)

10. Tamassia, R., Tollis, I.G., Vitter, J.S.: Lower bounds for planar orthogonal draw-
ings of graphs. Information Processing Letters 39, 35–40 (1991)

Author Index

Aoki, Takanori 233
Aschner, Rom 89

Babu, Jasine 17
Bandyapadhyay, Sayan 77
Banik, Aritra 77
Bera, Suman Kalyan 137
Bhattacharya, Binay 217
Biniaz, Ahmad 17
Bourgeois, Nicolas 114
Brunsch, Tobias 182

Chakraborty, Soudipta 217
Chun, Jinhee 53
Claude, Francisco 158
Cornelissen, Kamiel 182
Crespelle, Christophe 126

Damaschke, Peter 245
Das, Ananda Swarup 65
Das, Sandip 77
Dorrigiv, Reza 158
Durocher, Stephane 310

Eades, Peter 298
Eğecioğlu, Ömer 245
El Ouali, Mourad 101

Fekete, Sándor P. 29, 41
Fohlin, Helena 101

Gambette, Philippe 126
Gao, Jiawei 194
Giannakos, Aristotelis 114
Goddard, Wayne 146
Gupta, Prosenjit 65
Gupta, Shalmoli 137

Hasan, Md. Manzurul 334
Hong, Seok-Hee 298
Horiyama, Takashi 53

Iranmanesh, Ehsan 217
Ito, Takehiro 53, 233

Jayalal Sarma, M.N. 274

Kamali, Shahin 158
Kaothanthong, Natsuda 53
Karim, Md. Rezaul 334
Katz, Matthew J. 89
Kawahara, Jun 170
Kishimoto, Akihiro 170
Kloks, Ton 194
Krishnamurti, Ramesh 217
Kröller, Alexander 5
Kumar, Amit 137
Kumar, Prasun 274

López-Ortiz, Alejandro 158
Lucarelli, Giorgio 114

Maheshwari, Anil 17
Manthey, Bodo 182
Milis, Ioannis 114
Minato, Shin-ichi 170
Mishra, Tapas Kumar 257
Moeini, Mahdi 5
Molokov, Leonid 245
Mondal, Debajyoti 310
Morgenstern, Gila 89

Nguyen, Quan 298

Olsen, Martin 206
Ono, Hirotaka 53
Otachi, Yota 53

Pal, Sudebkumar Prasant 257
Panigrahy, Rina 4
Paschos, Vangelis Th. 114
Poon, Sheung-Hung 194
Pra�lat, Pawe�l 158

Rahman, Md. Saidur 310, 334
Raman, Indhumathi 322
Raman, Venkatesh 265, 286
Reinhardt, Jan-Marc 41
Reisi Dehkordi, Hooman 298
Revsbæk, Morten 206
Rex, Sophia 29
Röglin, Heiko 182

348 Author Index

Romero, Jazmı́n 158
Roy, Sambuddha 137

Salinger, Alejandro 158
Santoro, Nicola 1
Sarkar, Hirak 77
Saurabh, Saket 286
Sawlani, Saurabh 274
Schmidt, Christiane 5, 29
Schweer, Nils 41
Seco, Diego 158
Shankar, Bal Sri 265
Smid, Michiel 17
Srimani, Pradip K. 146

Srinathan, Kannan 65
Srivastav, Anand 101
Suchý, Ondřej 286

Takeuchi, Shogo 170
Tokuyama, Takeshi 53

Uchizawa, Kei 233
Uehara, Ryuhei 53
Uno, Takeaki 53

Yuditsky, Yelena 89

Zhou, Xiao 233

	Title

	Preface
	Organization
	Table of Contents
	Invited Talks

	Mobility and Computations:
Some Open Research Directions
	References

	Adversarial Prediction: Lossless Predictors
and Fractal Like Adversaries
	References

	Computational Geometry

	A Novel Efficient Approach for Solving
the Art Gallery Problem
	Introduction
	Definitions and Notations
	The Art Gallery Problem: Mathematical Programming Formulation and LP-Based Solution Procedure
	DC Programming: A Short Introduction
	DC Programming for Solving the Art Gallery Problem
	Experimental Results
	Conclusion
	References

	Fixed-Orientation Equilateral Triangle Matching
of Point Sets
	Introduction
	Preliminaries
	Some Properties of G(P)
	Maximum Matching in G(P)
	Some Properties of G67(P)
	Conclusions
	References

	Online Exploration and Triangulation
in Orthogonal Polygonal Regions
	Introduction
	Preliminaries
	Solutions for Squares
	Minimum Relay Triangulation in Polyominoes
	A Strategy Using Optimal 11-Squares
	A Strategy Using Optimal 22-Squares
	A Strategy Using Good Solutions for 44-Squares
	Lower Bound

	Online Maximum Area Triangulation in Polyominoes
	Conclusion
	References

	A Competitive Strategy
for Distance-Aware Online Shape Allocation
	Introduction
	Preliminaries
	An Allocation Strategy
	Analysis
	Discrete Point Sets
	Lower Bounds
	Conclusions
	References

	Base Location Problems
for Base-Monotone Regions
	Introduction
	Definitions of the Three Problems
	Baseline Location
	The k Base-Segment MWRP
	Quad Decomposition

	NP-Hardness of Baseline Location
	Gadgets
	Reduction

	A 2-Approximation Algorithm for Baseline Location
	The k Base-Segment MWRP
	Two-Directional Version
	NP-Hardness of the k Base-Segment MWRP

	Polynomial-Time Algorithm for Quad Decomposition
	Concluding Remarks
	References

	Counting Maximal Points in a Query
Orthogonal Rectangle
	Introduction
	Problem Definition
	The Solution Sketch

	Subproblems
	Solution for Problem 2
	Analysis of the Query Algorithm
	Solution for Problem 3

	Solution for Problem 1
	Query Time Analysis and Correctness Proof
	References

	Voronoi Game on Graphs
	Introduction
	Voronoi Game on Trees
	Optimal Facility Locations of P2 on Graphs
	Computational Complexity for Graphs
	Approximation Bound for Optimal Payoff of P2 on Graphs
	References

	Approximation and Randomized Algorithms

	Approximation Schemes for Covering
and Packing
	Introduction
	PTAS via Local Search
	Minimization Problems
	Maximization Problems

	Applications
	Maximum l-Shallow Set for Fat Objects
	Maximum Triangle Matching in Unit Disk Graphs
	Guarding with Limited Visibility

	Discrete Coverage of Points
	Discrete Coverage of a Polygon
	The Class Cover Problem

	References

	A Randomised Approximation Algorithm
for the Hitting Set Problem
	Introduction
	Preliminaries and Definitions
	The Randomised Algorithm
	Two-Step Analysis of the Algorithm VC-H
	Hypergraphs with Non-constant l,

	One-Step Analysis of the Algorithm VC-H
	Quasi-Regularisable l-Uniform Hypergraphs
	l-Uniform Hypergraphs with Bounded Vertex Degree

	Further Work
	References

	Exact and Approximation Algorithms
for Densest k-Subgraph
	Introduction and Preliminaries
	Exact Algorithms
	A Decomposition Technique
	Branch-and-Cut Algorithms

	Parameterized Algorithms
	Approximation Algorithms
	XP-Approximation Algorithms
	Parameterized and Moderately Exponential Approximation

	References

	Linear-Time Constant-Ratio Approximation Algorithm and Tight Bounds for the Contiguity
of Cographs
	Preliminaries
	Some General Results on the Rank of Trees
	An Upper Bound for the Contiguity of Cographs
	A Lower Bound for the Contiguity of Cographs
	An Approximation Algorithm for the Contiguity of Cographs
	References

	Approximation Algorithms for the Partition
Vertex Cover Problem
	Introduction
	Hardness of the Partition-VC Problem
	Approximation Algorithm for the Partition-VC Problem
	Extensions

	Conclusion
	References

	Parallel and Distributed Computing

	Daemon Conversions in Distributed
Self-stabilizing Algorithms
	Introduction
	Definitions and Terminology

	Main Results
	Related Work

	The Transforms
	Central to Distributed without IDs
	Fair to Unfair Central Daemon
	Central to Distributed with IDs
	Central to Read/Write with IDs

	Conclusion
	References

	Broadcasting in Conflict-Aware Multi-channel
Networks
	Introduction
	Conflict-Aware Multi-channel Model
	Basic Topologies
	Trees
	Grids

	Complete Graphs
	Balanced Complete Graphs
	Conclusions
	References

	Shared-Memory Parallel Frontier-Based Search
	Introduction
	Sequential Simpath
	Naive Approach and ZDD
	The Simpath Algorithm

	Parallel Frontier-Based Algorithms
	Node-Based Approach
	Range-Based Approach
	Edge-Based Approach

	Experiments
	Experimental Setting
	Experimental Results Using a Complete Grid Graph
	Experimental Results Using Incomplete Grid Graphs

	Related Work
	Conclusions and Future Work
	References

	Graph Algorithms

	Smoothed Analysis of Belief Propagation
for Minimum-Cost Flow and Matching
	Belief Propagation
	Belief Propagation for Matching and Flow Problems
	Smoothed Analysis
	Our Results

	Definitions and Problem Statement
	Maximum-Weight Matching and Minimum-Cost Flow
	Belief Propagation

	Isolation Lemma
	Maximum-Weight Matchings
	Min-Cost Flows

	Upper Tail Bounds
	Maximum-Weight Matching
	Min-Cost Flow

	Lower Tail Bounds
	Computation Tree
	Average-Case Analysis
	Smoothed Analysis
	Other Versions of BP

	References

	Triangle-Partitioning Edges of Planar Graphs,
Toroidal Graphs and k-Planar Graphs
	Introduction
	Partitioning Planar Graphs
	The Dual Graph
	Triangle Partitioning Algorithm
	Finding Even Separating Triangles

	Partitioning Toroidal Graphs
	NP-Completeness for k-Planar Graphs
	Variable Gadget
	Literal Gadget
	Clause Gadget

	References

	Alliances and Bisection Width for Planar Graphs
	Introduction
	Preliminaries
	Related Work

	Alliances in Planar Graphs
	An Upper Bound for the Bisection Width
	References

	The Cyclical Scheduling Problem
	Introduction
	The b-Matching Formulation
	Definitions
	A Simple Augmentation Algorithm
	Properties of Augmenting Paths
	An Efficient Algorithm
	Informal Description
	Running Time of Algorithm Efficient Large-Cost Augmentation

	Details of Algorithm Augment-Interval
	Informal Description

	Conclusion
	References

	Complexity and Bounds

	Generalized Rainbow Connectivity of Graphs
	Introduction
	 NP-Completeness for Cacti
	Algorithms
	Polynomial-Time Algorithm for Trees
	FPT Algorithm for General Graphs

	Conclusion
	References

	Fixed-Parameter Tractability of Error
Correction in Graphical Linear Systems
	Introduction
	Characterizations and Formalization
	NP-Hardness of Determining the Recoverable Edges
	Girth of Reduced Signed Graphs
	Parameterized Algorithm for the Recoverable Edges
	Branching Strategies
	Conclusions
	References

	Lower Bounds for Ramsey Numbers for Complete
Bipartite and 3-Uniform Tripartite Subgraphs
	Introduction
	Existing Results
	Our Contribution

	A Constructive Lower Bound for R'(2,b)
	Probabilistic Lower Bounds for
	Application of the Probabilistic Method
	A Lower Bound for Using Lovász' Local Lemma

	Lower Bounds for Ramsey Numbers for Complete Tripartite 3-Uniform Subgraphs
	Probabilistic Lower Bound for
	A Lower Bound for Using Lovász' Local Lemma

	Concluding Remarks
	References

	Improved Fixed-Parameter Algorithm
for the Minimum Weight 3-SAT Problem
	Introduction and Motivation
	Preliminaries
	Improved Algorithm
	The Algorithm
	Proof of Correctness
	Applications to Weak Backdoor

	Conclusions and Open Problems
	References

	On Directed Tree Realizations of Degree Sets
	Introduction
	Preliminaries
	Multiplicity Lower Bounds in Tree-Realizations
	Minimum-Order Realizability of Directed Trees
	Minimum Order -Realizability of Asymmetric Graphs
	Complexity Results on Tree Extension Problem
	Tree Extension Problem for Directed Trees

	References

	An FPT Algorithm for Tree Deletion Set
	Introduction
	NP-Completeness
	FPT Algorithm
	Reduction Rules
	Branching Steps

	Conclusions and Open Problems
	References

	Graph Drawing

	Circular Graph Drawings
with Large Crossing Angles
	Introduction
	Terminology
	A Characterization of Circular RAC Graphs
	Necessity
	Sufficiency

	A Linear-Time Circular RAC Drawing Algorithm
	Circular Drawings with Large Angle Crossings
	Conclusion
	References

	On Graphs That Are Not PCGs
	Introduction
	Preliminaries
	Not All 9-Vertex Graphs Are PCGs
	Not All 8-Vertex Graphs Are PCGs
	Not All Planar Graphs Are PCGs
	NP-Hardness
	Conclusion
	References

	On Embedding of Certain Recursive Trees
and Stars into Hypercube
	Introduction
	Recursive Trees and Their Embeddings
	Embedding of the Stars
	Embedding of K1,2n3m
	Embedding of K1, 2n5m

	Conclusion
	References

	Box-Rectangular Drawings of Planar Graphs
	Introduction
	Preliminaries
	Box-Rectangular Drawings of Planar Graphs with 3
	Box-Rectangular Drawings of Planar Graphs with 4
	Case for a Subdivision of a Planar 3-Connected Graph with 4
	The Other Case for a Planar Graph G with 4

	Conclusion
	References

	Author Index

