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World Computer Congress held in Paris the previous year. An umbrella organi-
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to support information processing within its member countries and to encourage
technology transfer to developing nations. As its mission statement clearly states,

IFIP’s mission is to be the leading, truly international, apolitical
organization which encourages and assists in the development, ex-
ploitation and application of information technology for the benefit
of all people.

IFIP is a non-profitmaking organization, run almost solely by 2500 volunteers. It
operates through a number of technical committees, which organize events and
publications. IFIP’s events range from an international congress to local seminars,
but the most important are:

• The IFIP World Computer Congress, held every second year;
• Open conferences;
• Working conferences.

The flagship event is the IFIP World Computer Congress, at which both invited
and contributed papers are presented. Contributed papers are rigorously refereed
and the rejection rate is high.

As with the Congress, participation in the open conferences is open to all and
papers may be invited or submitted. Again, submitted papers are stringently ref-
ereed.

The working conferences are structured differently. They are usually run by a
working group and attendance is small and by invitation only. Their purpose is
to create an atmosphere conducive to innovation and development. Refereeing is
also rigorous and papers are subjected to extensive group discussion.

Publications arising from IFIP events vary. The papers presented at the IFIP
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proceedings, while the results of the working conferences are often published as
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Any national society whose primary activity is about information processing may
apply to become a full member of IFIP, although full membership is restricted to
one society per country. Full members are entitled to vote at the annual General
Assembly, National societies preferring a less committed involvement may apply
for associate or corresponding membership. Associate members enjoy the same
benefits as full members, but without voting rights. Corresponding members are
not represented in IFIP bodies. Affiliated membership is open to non-national
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Preface

This volume contains selected papers presented at the 25th IFIP TC 7 Con-
ference held in Berlin, September 12–16, 2011, as part of a biennial conference
series. The preceding ones were held in Buenos Aires (2009), Cracow (2007), and
Turin (2005). The IFIP TC 7 conference series stands for a fairly unique scien-
tific orientation focusing on the links between research in abstract mathematical
optimization and control theory and on building a bridge to numerical methods
and applications in various fields. It also includes contributions to mathematical
modeling of applied problems. This unique flavor attracts a community of sci-
entists that can hardly be found together at other conferences on optimization
and control.

The active interplay between the different fields of optimization, mathemat-
ical modeling, and control theory was a characteristic feature of the scientific
program. It showed that modern key technologies influence the research in ap-
plied optimization and control theory and, in turn, these applications often give
rise to new and challenging questions of basic mathematical research. It became
obvious that modern optimization and control is a vivid area that has reached
a new scientific level.

All in all, the conference provided an excellent survey on the latest trends in
optimization and control theory and on the tremendous progress in widespread
applications in this field, and we hope you will agree after reading that the
selected papers reflect this.

We would like to thank our sponsors, the German Science Foundation (DFG)
and the European Science Foundation (ESF), the National Institute for Research
in Computer Science and Control in France (INRIA), the DFG Research Cen-
ter MATHEON, the Weierstrass Institute for Applied Analysis and Stochastics
(WIAS), and the European Patent Office for their financial support. We are
grateful to Technische Universität Berlin and the Institute of Mathematics for
their hospitality. Last but not least, we would like to acknowledge Anke Giese
(WIAS) and Frank Holzwarth of Springer for their support during the prepara-
tion of this volume.

November 2012 Dietmar Hömberg
Fredi Tröltzsch
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Second Order Conditions for L2 Local

Optimality in PDE Control�

Eduardo Casas

Departmento de Matemática Aplicada y Ciencias de la Computación
E.T.S.I. Industriales y de Telecomunicación

Universidad de Cantabria, Av. Los Castros s/n, 39005 Santander, Spain
eduardo.casas@unican.es

Abstract. In the second order analysis of infinite dimension optimiza-
tion problems, we have to deal with the so-called two-norm discrepancy.
As a consequence of this fact, the second order optimality conditions usu-
ally imply local optimality in the L∞ sense. However, we have observed
that the L2 local optimality can be proved for many control problems
of partial differential equations. This can be deduced from the stan-
dard second order conditions. To this end, we make some quite realistic
assumptions on the second derivative of the cost functional. These as-
sumptions do not hold if the control does not appear explicitly in the
cost functional. In this case, the optimal control is usually of bang-bang
type. For this type of problems we also formulate some new second order
optimality conditions that lead to the strict L2 local optimality of the
bang-bang controls.

Keywords: optimal control of partial differential equations, semilinear
partial differential equations, second order optimality conditions, bang-
bang controls.

1 Introduction

This paper is split into three parts. In the first part, we consider the following
infinite dimensional abstract optimization problem. Let U∞ and U2 be Banach
and Hilbert spaces, respectively, endowed with the norms ‖ · ‖∞ and ‖ · ‖2. We
assume that U∞ ⊂ U2 with continuous embedding; in particular, the choice
U∞ = U2 is possible. A nonempty convex subset K ⊂ U∞ is given, and A ⊂ U∞
is an open set covering K. Moreover, an objective function J : A −→ R is given.
We consider the abstract optimization problem

(P) min
u∈K

J(u),

where we assume that J is of class C2 with respect to the norm ‖ · ‖∞. In the
next section, we will impose some other assumptions on J so that the first order

� This work was partially supported by the Spanish Ministerio de Economı́a y
Competitividad under project MTM2011-22711.

D. Hömberg and F. Tröltzsch (Eds.): CSMO 2011, IFIP AICT 391, pp. 1–12, 2013.
c© IFIP International Federation for Information Processing 2013



2 E. Casas

optimality conditions and the inequality J ′′(ū)v2 > 0 for every v ∈ Cū \ {0}
imply that ū is a strict local minimum of (P) in the U2 sense. Here Cū denotes
the usual cone of critical directions that we will define later. This result is new
in the sense that the classical theory claims the local optimality only in the U∞
sense due to the non-differentiability of J in with respect to ‖ · ‖2. Moreover, a
stronger inequality J ′′(ū)v2 ≥ δ‖v‖22 is usually required.

In the second part of the paper, contained in §3, we prove that the abstract
assumptions are fulfilled by a typical Neumann control problem. The method
used for this control problem can be extended in an easy form to many other
control problems associated with elliptic or parabolic equations; see [8]. Finally,
the last part of the paper is considered in §4. There, we analyze the case of
bang-bang control problems, which do not satisfy the assumptions of §2. For
these problems we also give some second order conditions leading to the strict
L2 local optimality of the controls.

2 An Abstract Optimization Problem in Banach Spaces

The results presented in this section were obtained in collaboration with Fredi
Tröltzsch. The reader is referred to [8] for the proofs and details.

In this section, we study the abstract optimization problem (P) formulated
in the introduction. Besides the hypotheses established in §1 on U2 and U∞, we
require the following assumptions on (P).
(A1) The functional J : A −→ R is of class C2. Furthermore, for every u ∈ K
there exist continuous extensions

J ′(u) ∈ L(U2,R) and J ′′(u) ∈ B(U2,R), (2.1)

where L(U2,R) and B(U2,R) denote the spaces of continuous linear and bilinear
forms on U2, respectively.
(A2) For any sequence {(uk, vk)}∞k=1 ⊂ K × U2 with ‖uk − ū‖2 → 0 and vk ⇀ v
weakly in U2, the conditions

J ′(ū)v = lim
k→∞

J ′(uk)vk, (2.2)

J ′′(ū)v2 ≤ lim inf
k→∞

J ′′(uk)v
2
k, (2.3)

if v = 0, then Λ lim inf
k→∞

‖vk‖22 ≤ lim inf
k→∞

J ′′(uk)v
2
k, (2.4)

hold for some Λ > 0.
The reader might have the impression that Assumptions (A1) and (A2),

mainly (A2), are too strong. However, we will see in the next sections that
they are fulfilled by many optimal control problems.

Associated with ū, we define the sets

Sū = {v ∈ U∞ : v = λ(u− ū) for some λ > 0 and u ∈ K} ,
Cū = cl2(Sū) ∩ {v ∈ U2 : J ′(ū)v = 0}
Dū = {v ∈ Sū : J ′(ū)v = 0},

(2.5)
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where cl2(Sū) denotes the closure of Sū in U2. The set Sū is called the cone
of feasible directions and Cū is said to be the critical cone. It is obvious that
cl2(Dū) ⊂ Cū. However, the equality can fail. In fact, this equality is a regularity
condition equivalent to the notion of polyhedricity of K; see [2] or [1, §3.2]. This
property is enjoyed by control problems with pointwise control constraints.

Now, we formulate the necessary first and second order optimality conditions.
The second order conditions hold under the mentioned regularity assumption;
we refer to [1, §3.2] or [7] for the proof.

Theorem 2.1. Assume that (A1) holds and let ū be a local solution of (P)
in U∞, then J ′(ū)(u − ū) ≥ 0 ∀u ∈ K. Moreover, if the regularity condition
Cū = cl2(Dū) is satisfied, then J ′′(ū)v2 ≥ 0 holds for all v ∈ Cū.

Now, we state our result about sufficient sufficient second order optimality con-
ditions. As the reader may check, the gap between the necessary and sufficient
second order conditions is minimal, the same as in finite dimension.

Theorem 2.2. Suppose that assumptions (A1) and (A2) hold. Let ū ∈ K satisfy
the first order optimality condition as formulated in Theorem 2.1, and

J ′′(ū)v2 > 0 ∀v ∈ Cū \ {0}. (2.6)

Then, there exist ε > 0 and δ > 0 such that

J(ū) +
δ

2
‖u− ū‖22 ≤ J(u) ∀u ∈ K ∩B2(ū; ε). (2.7)

Above B2(ū; ε) denotes the ball of U2 with center at ū and radius ε.
This theorem can be proved arguing by contradiction. To this end, we assume

that for any positive integer k there exists uk ∈ K such that

‖uk − ū‖2 <
1

k
and J(ū) +

1

2k
‖uk − ū‖22 > J(uk). (2.8)

Setting ρk = ‖uk − ū‖2 and vk = (uk − ū)/ρk, we can assume that vk ⇀ v
in U2; if necessary, we select a subsequence. Then we prove that v ∈ Cū and
J ′′(ū)v2 = 0. Because of (2.6), this is only possible if v = 0. With the help of
(2.4) the contradiction is obtained from the identity ‖vk‖2 = 1; see [8] for the
details.

As a consequence of Theorem 2.2, we can not only prove that ū is the unique
local minimum in a certain U2 neighborhood. We are even able to show the non-
existence of other stationary points in such a neighborhood. Recall that ũ ∈ K
is said to be a stationary point if

J ′(ũ)(u− ũ) ≥ 0 for all u ∈ K. (2.9)
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Corollary 2.3. Under the assumptions of Theorem 2.2, there exists ε > 0 such
that there is no stationary point ũ ∈ B2(ū; ε) ∩ K different from ū.

Assumption (2.6) has another consequence that was known up to now only in
an U∞-neighborhood of ū. The result expresses some alternative formulation of
second-order sufficient conditions that is useful for applications in the numerical
analysis.

Theorem 2.4. Under the assumptions of Theorem 2.2, there exist numbers ε >
0, ν > 0 and τ > 0 such that

J ′′(u)v2 ≥ ν

2
‖v‖22 ∀ v ∈ Eτ

ū and ∀u ∈ K ∩B2(ū; ε), (2.10)

where Eτ
ū = {v ∈ cl2(Sū) : |J ′(ū)v| ≤ τ‖v‖2}.

3 Application. An Elliptic Neumann Control Problem

In this section we study the optimal control problem

(P1) min
u∈K

J(u),

where J(u) =

∫
Ω

L(x, yu(x)) dx +

∫
Γ

l(x, yu(x), u(x)) dσ(x), (3.1)

K = {u ∈ L∞(Γ ) : α ≤ u(x) ≤ β for a.a. x ∈ Γ},

σ denotes the Lebesgue surface measure, −∞ < α < β < +∞, and yu is the
solution of the following Neumann problem{

−Δy + f(y) = 0 in Ω,

∂νy = u on Γ.
(3.2)

We impose the following assumptions on the functions and parameters appearing
in the control problem (P1).

Assumption (N1): Ω is an open, bounded and connected subset of Rn, n ≥ 2,
with Lipschitz boundary Γ and f : R −→ R is a function of class C2 such that
f ′(t) ≥ co > 0 for all t ∈ R. The reader is referred to [5] for more general
non-linear terms in the state equation.

Assumption (N2): We assume that L : Ω × R −→ R and l : Γ × R × R −→ R

are Carathéodory functions of class C2 with respect to the second variable for
L and with respect to the second and third variables for l, with L(·, 0) ∈ L1(Ω),
l(·, 0, 0) ∈ L1(Γ ). For every M > 0 there exist functions ψM ∈ Lp̄(Ω), p̄ > n/2,
and φM ∈ Lq̄(Γ ), q̄ > n− 1, and a constant CM > 0 such that
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣∣∣∣∂jL∂yj
(x, y)

∣∣∣∣ ≤ ψM (x), with j = 1, 2,∣∣∣∣ ∂j l∂yj
(x, y, u)

∣∣∣∣ ≤ φM (x), with j = 1, 2,∣∣∣∣ ∂i+j l

∂ui∂yj
(x, y, u)

∣∣∣∣ ≤ CM , 1 ≤ i+ j ≤ 2 and i ≥ 1

are satisfied for a.a. x ∈ Ω and every u, y ∈ R, with |y| ≤M and |u| ≤M .
Moreover, for every ε > 0 there exists η > 0 such that for a.a. x ∈ Ω and all

ui, yi ∈ R, with i = 1, 2,⎧⎪⎨⎪⎩ |y2 − y1| ≤ η ⇒
∣∣∣∣∂2L

∂y2
(x, y2)−

∂2L

∂y2
(x, y1)

∣∣∣∣ ≤ ε,

|u2 − u1|+ |y2 − y1| ≤ η ⇒
∣∣∣D2

(y,u)l(x, y2, u2)−D2
(y,u)l(x, y1, u1)

∣∣∣ ≤ ε.

Here D2
(y,u)l(x, y, u) denotes the Hessian matrix of l with respect to the variables

(y, u). We also assume the Legendre-Clebsch type condition

∃Λ > 0 such that
∂2l

∂u2
(x, y, u) ≥ Λ for a.a. x ∈ Γ and ∀y, u ∈ R. (3.3)

It is obvious that the usual quadratic integrands L(x, y) = 1
2 (y − yLd(x))

2 and

l(x, y, u) = 1
2 (y − yld(x))

2 + Λ
2 u

2 satisfy Assumption (N2) if yLd ∈ Lp̄(Ω) and
yld ∈ Lq̄(Γ ).

The hypothesis (3.3) is crucial for satisfying the assumptions (2.3) and (2.4).
In §4 we will consider the case where (3.3) doe not hold.

On the state equation (2.1), the following result is known.

Theorem 3.1. Under the Assumption (N1), for every u ∈ Lq̄(Γ ) the equation
(3.2) has a unique solution yu ∈ H1(Ω) ∩ C(Ω̄). Furthermore, the mapping
G : Lq̄(Γ ) −→ H1(Ω)∩C(Ω̄), defined by G(u) = yu, is of class C

2. For elements
u, v, v1 and v2 of Lq̄(Γ ), the functions zv = G′(u)v and zv1v2 = G′′(u)(v1, v2)
are the solutions of the problems{

Az + f ′(yu)z = 0 in Ω,

∂νAz = v on Γ,
(3.4)

and {
Az + f ′(yu)z + f ′′(yu)zv1zv2 = 0 in Ω,

∂νAz = 0 on Γ,
(3.5)

respectively, where zvi = G′(u)vi, i = 1, 2.

The proof of existence and uniqueness of a solution yu in H1(Ω) ∩ L∞(Ω) is
standard; see, for instance, [3]. For the continuity of yu, the reader is referred to
[11] or [12]. As usual, the differentiability of G can be obtained from the implicit
function theorem.
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As a consequence of this theorem and the chain rule the next result follows.

Theorem 3.2. Assuming (N1) and (N2), then the mapping J : L∞(Γ ) −→ R,
defined by (3.1), is of class C2. For all u, v, v1 and v2 of L∞(Γ ) we have

J ′(u)v =

∫
Γ

(
ϕu +

∂l

∂u
(x, yu, u)

)
v dσ (3.6)

J ′′(u)(v1, v2) =

∫
Ω

(
∂2L

∂y2
(x, yu)− ϕuf

′′(yu)

)
zv1zv2 dx

+

∫
Γ

(
∂2l

∂y2
(x, yu, u)zv1zv2 +

∂2l

∂y∂u
(x, yu, u)(v1zv2 + v2zv1)

)
dσ

+

∫
Γ

∂2l

∂u2
(x, yu, u)v1v2 dσ, (3.7)

where zvi = G′(u)vi, i = 1, 2, and ϕu ∈ H1(Ω) ∩ C(Ω̄) is the solution of⎧⎪⎪⎨⎪⎪⎩
−Δϕ+ f ′(yu)ϕ =

∂L

∂y
(x, yu) in Ω,

∂νϕ =
∂l

∂y
(x, yu, u) on Γ.

(3.8)

From the above expressions for J ′(u) and J ′′(u) and Assumption (N2) we deduce
that J ′(u) and J ′′(u) can be extended to linear and bilinear forms, respectively,
on L2(Γ ). Even more, there exist two constants M1 > 0 and M2 > 0 such that
for every v, v1, v2 ∈ L2(Γ ) and u ∈ K

|J ′(u)v| ≤M1‖v‖L2(Γ ) and |J ′′(u)(v1, v2)| ≤M2‖v1‖L2(Γ )‖v2‖L2(Γ ). (3.9)

This shows that (2.1) holds with U2 = L2(Γ ) and U∞ = L∞(Γ ). The most
delicate issue in the proof of (2.2)-(2.4) is the verification of (2.3), which can be
done with the help of the following lemma.

Lemma 3.1 Let (X,Σ, μ) be a measure space with μ(X) < +∞. Suppose that
{gk}∞k=1 ⊂ L∞(X) and {vk}∞k=1 ⊂ L2(X) satisfy the assumptions

– gk ≥ 0 a.e. in X, {gk}∞k=1 is bounded in L∞(X) and gk → g in L1(X).

– vk ⇀ v in L2(X).

Then there holds the inequality∫
X

g(x)v2(x) dμ(x) ≤ lim inf
k→∞

∫
X

gk(x)v
2
k(x) dμ(x). (3.10)
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The proof of this lemma can be obtained by an application of Egorov’s theorem;
see [8]. To confirm (2.3) we apply Lemma 3.1 with X = Γ , μ = σ and

0 < Λ ≤ gk(x) =
∂2l

∂u2
(x, yuk

(x), uk(x))→ g(x) =
∂2l

∂u2
(x, yu(x), u(x)) in L1(Γ ).

Finally, we apply Theorems 2.1 and 2.2 to the problem (P1). Given ū ∈ K, we
see that the cone of critical directions Cū defined in §2 can be expressed for the
problem (P1) in the form

Cū = {v ∈ L2(Γ ) : v(x) =

⎧⎨⎩≥ 0 if ū(x) = α
≤ 0 if ū(x) = β
0 if d̄(x) = 0

a.e. in Γ},

where

d̄(x) = ϕ̄(x) +
∂l

∂u
(x, ȳ(x), ū(x))

and ȳ = yū and ϕ̄ = ϕū denote the state and adjoint state associated to ū,
respectively. It is not difficult to check that the regularity assumption stated in
Theorem 2.1 is fulfilled by Cū. Then we have the following corollaries.

Corollary 3.1 Let the Assumption (N1) be satisfied and suppose that ū is a
local minimum of (P1) in the L∞(Γ ) sense. Then there holds J ′(ū)(u − ū) ≥ 0
for all u ∈ K and J ′′(ū)v2 ≥ 0 ∀v ∈ Cū. Conversely, if ū ∈ K obeys

J ′(ū)(u − ū) ≥ 0 ∀u ∈ K, (3.11)

J ′′(ū)v2 > 0 ∀v ∈ Cū \ {0}, (3.12)

then there exist ε > 0 and δ > 0 such that

J(ū) +
δ

2
‖u− ū‖2L2(Γ ) ≤ J(u) ∀u ∈ K ∩B2(ū; ε). (3.13)

Let us underline that the mapping G is only differentiable in Lq(Γ ) for q > n−1.
Consequently, for all n ≥ 3, G is not differentiable in L2(Γ ). Moreover, the
general nonlinear cost functional J is only differentiable in L∞(Γ ). Hence, for
any dimension n, the classical theory of second order conditions would only
assure the local optimality of ū in the L∞(Γ ) sense. In contrast to this, our
result guarantees local optimality in the sense of L2(Γ ).

Corollary 3.2 Under the assumption (N1) and (N2), there exists a ball B2(ū; ε)
in L2(Γ ) such that there is no other stationary point in B2(ū; ε) ∩ K than ū.
Moreover, there exist numbers ν > 0 and τ > 0 such that

J ′′(u)v2 ≥ ν

2
‖v‖2L2(Γ ) ∀ v ∈ Cτ

ū and ∀u ∈ A ∩B2(ū; ε), (3.14)

where A is a bounded open subset of L∞(Γ ) containing K and
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Cτ
ū = {v ∈ L2(Γ ) : v(x) =

⎧⎨⎩≥ 0 if ū(x) = α
≤ 0 if ū(x) = β
0 if |d̄(x)| > τ

a.e. in Γ}.

In the above corollaries, B2(ū; ε) denotes the L2(Γ )-ball of radius ε centered
at ū.

Observe that the above coneCτ
ū is not equal to the coneEτ

ū defined in Theorem
2.4. However, if v ∈ Cτ

ū , then

|J ′(ū)v| =
∫
Γ

|d̄(x)v(x)| dx ≤ τ

∫
{x:|d̄(x)|≤τ}

|v(x)| dx ≤ τ
√
|Γ |‖v‖L2(Γ ).

Thus, we have that Cτ
ū ⊂ EτΓ

ū , with τΓ = τ
√
|Γ |. Hence, Theorem 2.4 can be

applied.

4 A Bang-Bang Control Problem

The reader is referred to [4] for proofs and extensions of the results stated below.
Let Ω be an open and bounded domain in Rn, n ≤ 3, with a Lipschitz boundary
Γ . In this domain, we consider the following control problem

(P2)

⎧⎪⎨⎪⎩min J(u) =

∫
Ω

L(x, yu(x)) dx

α ≤ u(x) ≤ β

where yu is the solution of the Dirichlet problem{
−Δy + f(y) = u in Ω,

y = 0 on Γ,
(4.1)

−∞ < α < β < +∞ and L and f satisfy the following assumptions.

Assumption (D1) The function f : R −→ R is of class C2 and f ′(t) ≥ 0 for every
t ∈ R.

Assumption (D2) The function L : Ω × R −→ R is measurable with respect to
the first variable and of class C2 with respect to the second. Moreover, L(·, 0) ∈
L1(Ω), and for all M > 0 there is a constant CL,M > 0 and a function ψM ∈
Lp̄(Ω) such that ∣∣∣∣∂L∂y (x, y)

∣∣∣∣ ≤ ψM (x),

∣∣∣∣∂2L

∂y2
(x, y)

∣∣∣∣ ≤ CL,M .

For every M > 0 and ε > 0 there exists δ > 0, depending on M and ε such that∣∣∣∣∂2L

∂y2
(x, y2)−

∂2L

∂y2
(x, y1)

∣∣∣∣ < ε if |y1|, |y2| ≤M, |y2 − y1| ≤ δ, for a.a. x ∈ Ω.
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Hereafter, we will denote

K = {u ∈ L∞(Ω) : α ≤ u(x) ≤ β for a.e. x ∈ Ω}.

For every u ∈ Lp(Ω), with p > n/2, the state equation (4.1) has a unique solution
yu ∈ H1

0 (Ω) ∩C(Ω̄). The proof of this result is a quite standard combination of
Schauder’s fixed point theorem and the L∞(Ω) estimates [12]. For the continuity
of the solution in Ω̄ see, for instance, [10, Theorem 8.30]. Moreover, the mapping
G : Lp(Ω) −→ H1

0 (Ω) ∩ C(Ω̄), with G(u) = yu, is of class C
2. In the sequel, we

will take p = 2 and we will denote by zv = G′(u)v the solution of{
−Δz + f ′(yu)z = v in Ω,

z = 0 on Γ,
(4.2)

where yu = G(u) is the state corresponding to u. As usual, we consider the
adjoint state equation associated with a control u⎧⎨⎩−Δϕ+ f ′(yu)ϕ =

∂L

∂y
(x, yu) in Ω,

ϕ = 0 on Γ,
(4.3)

denoted by ϕu. Because of the assumptions on L, we have that ϕ ∈ H1
0 (Ω) ∩

C(Ω̄). Moreover, there exists M > 0 such that

‖yu‖∞ + ‖ϕu‖∞ ≤M ∀u ∈ K. (4.4)

Under the above assumptions, the problem (P2) has at least one solution ū with
an associated state ȳ ∈ H1

0 (Ω) ∩ C(Ω̄). The cost functional J : L2(Ω) −→ R is
of class C2 and the first and second derivatives are given by

J ′(u)v =

∫
Ω

ϕu(x)v(x) dx, (4.5)

and

J ′′(u)(v1, v2) =

∫
Ω

(
∂2L

∂y2
(x, yu(x))− ϕu(x)f

′′(yu(x))

)
zv1(x)zv2 (x) dx, (4.6)

where zvi = G′(vi) are the solution of (4.2) for v = vi, i = 1, 2.
Any local solution ū satisfies the optimality system{

−Δȳ + f(ȳ) = ū in Ω,
ȳ = 0 on Γ,

(4.7)⎧⎨⎩−Δϕ̄+ f ′(ȳ)ϕ̄ =
∂L

∂y
(x, ȳ) in Ω,

ϕ̄ = 0 on Γ,
(4.8)

∫
Ω

ϕ̄(x)(u(x) − ū(x)) dx ≥ 0 ∀u ∈ K. (4.9)
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From the last condition, we deduce as usual for a.a. x ∈ Ω

ū(x)

{
= α if ϕ̄(x) > 0,
= β if ϕ̄(x) < 0,

and ϕ̄(x)

⎧⎨⎩
> 0 if ū(x) = α,
< 0 if ū(x) = β,
= 0 if α < ū(x) < β.

(4.10)

The cone of critical directions associated with ū is defined by

Cū = {v ∈ L2(Ω) : v(x)

⎧⎨⎩
≥ 0 if ū(x) = α
≤ 0 if ū(x) = β
= 0 if ϕ̄(x) = 0

}

Then, the necessary second order condition satisfied is written in the form

J ′′(ū)v2 ≥ 0 ∀v ∈ Cū. (4.11)

For the above results the reader is referred to [5] or [6], where similar cases were
studied. Let us remark that in the case where the set of zeros of ϕ̄ has a zero
Lebesgue measure, then ū(x) is either α or β for almost all points x ∈ Ω, i.e. ū is
a bang-bang control. Moreover, in this case, Cū = {0}, therefore (4.11) does not
provide any information. Consequently, it is unlikely that the sufficient second
order conditions could be based on the set Cū. To overcome this drawback we
are going to increase the set Cū. For every τ ≥ 0 we define

Cτ
ū = {v ∈ L2(Ω) : v(x)

⎧⎨⎩
≥ 0 if ū(x) = α
≤ 0 if ū(x) = β
= 0 if |ϕ̄(x)| > τ

}

It is obvious that C0
ū = Cū. An example due to Dunn [9] proves that, in general,

the second order condition based on the cone Cū is not sufficient for the local op-
timality. Before analyzing (P2), let us take a look on its Tikhonov regularization.
For any Λ > 0, let us consider the problem

(P2,Λ) min
u∈K

JΛ(u) =

∫
Ω

L(x, yu(x)) dx +
Λ

2

∫
Ω

u2(x) dx.

Then, we have

J ′
Λ(u)v =

∫
Ω

(ϕu + Λu)v dx

and

J ′′
Λ(u)(v1, v2) =

∫
Ω

(
∂2L

∂y2
(x, yu)− ϕu

∂2f

∂y2
(x, yu)

)
zv1zv2dx + Λ

∫
Ω

v1v2dx.

Now, we apply Theorem 2.2 to (P2,Λ) and we obtain the following result.

Theorem 4.1. Let ū ∈ K satisfy that

J ′
Λ(ū)(u− ū) ≥ 0 ∀u ∈ K and

J ′′
Λ(ū)v

2 > 0 ∀v ∈ Cū \ {0}.
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Then, there exists δ > 0 and ε > 0 such that

JΛ(ū) +
δ

2
‖u− ū‖2L2(Ω) ≤ JΛ(u) ∀u ∈ B2(ū; ε) ∩ K.

In the above theorem and hereafter, B2(ū; ε) denotes the L2(Ω)-ball of center
at ū and radius ε. Now, invoking Theorem 2.4 and observing that Cτ

ū ⊂ EτΩ
ū for

τΩ =
√
|Ω|τ , we get the following theorem.

Theorem 4.2. Let ū ∈ K satisfy J ′
Λ(ū)(u − ū) ≥ 0 for every u ∈ K. Then, the

following assumptions are equivalent

1. J ′′
Λ(ū)v

2 > 0 ∀v ∈ Cū \ {0}.
2. ∃ν > 0 and τ > 0 s.t. J ′′

Λ(ū)v
2 ≥ ν‖v‖2L2(Ω) ∀v ∈ Cτ

ū .

3. ∃ν > 0 and τ > 0 s.t. J ′′
Λ(ū)v

2 ≥ ν‖zv‖2L2(Ω) ∀v ∈ Cτ
ū ,

where zv = G′(ū)v.

In the case Λ = 0, Dunn’s example shows that 1 is not enough, in general, to
assure the local optimality of ū. We will see below that 2 does not hold for
Λ = 0. Then, it remains to analyze if the assumption 3 is enough for the local
optimality of ū when Λ = 0. The next theorem proves that it is sufficient.

Theorem 4.3. Let us assume that ū is a feasible control for problem (P2) sat-
isfying the first order optimality conditions (4.7)-(4.9) and suppose that there
exist δ > 0 and τ > 0 such that

J ′′(ū)v2 ≥ δ‖zv‖2L2(Ω) ∀v ∈ Cτ
ū , (4.12)

where zv = G′(ū)v is the solution of (4.2) for y = ȳ. Then, there exists ε > 0
such that

J(ū) +
δ

8
‖zu−ū‖2L2(Ω) ≤ J(u) ∀u ∈ B2(ū; ε) ∩ K, (4.13)

with zu−ū = G′(ū)(u − ū).

Corollary 4.1 Under the hypotheses of Theorem 4.3, there exists ε > 0 such
that

J(ū) +
δ

9
‖yu − ȳ‖2L2(Ω) ≤ J(u) ∀u ∈ B2(ū; ε) ∩ K. (4.14)

We finish by showing that the statement 2 of Theorem 4.2 does not hold for
Λ = 0. Indeed, let us assume that it holds. Then, a simple modification of the
proof of Theorem 4.3, see [4], leads to the inequality

J(ū) +
ν

2
‖u− ū‖2L2(Ω) ≤ J(u) ∀u ∈ B2(ū; ε) ∩ K, (4.15)

for some ν > 0 and ε > 0. Then, ū is a solution of the problem

(Pν) min
u∈B2(ū;ε)∩K

J(u)− ν

2

∫
Ω

(u− ū)2 dx.



12 E. Casas

The Hamiltonian of this control problem is given by

H(x, y, u, ϕ) = L(x, y) + ϕ(u− f(x, y))− ν

2
(u− ū(x))2.

From the Pontryagin’s principle we deduce

H(x, ȳ(x), ū(x), ϕ̄(x)) = min
t∈[α,β]

H(x, ȳ(x), t, ϕ̄(x)) for almost all x ∈ Ω.

However, invoking (4.10) we obtain that this is a contradiction to the following
facts that can be easily checked⎧⎪⎨⎪⎩

If 0 < ϕ̄(x) <
ν

2
(β − α) then H(x, ȳ(x), β, ϕ̄(x)) < H(x, ȳ(x), α, ϕ̄(x)),

If 0 > ϕ̄(x) >
ν

2
(α − β) then H(x, ȳ(x), α, ϕ̄(x)) < H(x, ȳ(x), β, ϕ̄(x)).
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Abstract. In order to achieve prescribed drug release kinetics over long
therapeutic periods, bi-phasic and possibly multi-phasic releases from
blends of biodegradable polymers are currently envisioned. The mod-
elling of drug release in the presence of degradation of the polymer
matrix and surface erosion is quite complex. Yet, simple reliable mathe-
matical models validated against experimental data are now available to
help in classifying neat polymers and in predicting the release dynamics
from polymer blends. In this paper, we survey a two-parameter quadratic
ODE model that has been validated against experimental data for the
release of paclitaxel from a broad range of biodegradable polymers and a
quadratic semi-permeable membrane PDE model that mimics the ODE
model and could readily be extended to drug eluding stents.

Keywords: Drug release models, biodegradable polymers, paclitaxel.

1 Introduction

Stents are used in interventional cardiology to keep a diseased vessel open after
angioplasty. This procedure is known to damage the endothelium at the insertion
site and thus to favour the occurrence of in-stent restenosis through the prolif-
eration of smooth muscle cells (SMC) within the vessel lumen. To control the
abnormal behaviour of SMC, stents are coated with polymers that slowly release
drug through diffusion into the vessel wall (drug-eluting stents or DES). These
drugs are designed to control the rate of mitosis of SMC until the regeneration
of the endothelium. The reader is referred to T. Kataoka et als [15] in 2002 and
Joner et als [14] in 2006 for a fairly well-documented account of DES for the
prevention of neointimal growth (see, for instance, [15, Figure 1, p. 1791]).

If endothelial cells do not recover to effectively control the proliferation of
SMC’s, a sustained dose will be required over the therapeutic period and even
forever. In order to achieve prescribed drug release kinetics the current design
strategies focus on bi-phasic and possibly multi-phasic releases from blends of
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c© IFIP International Federation for Information Processing 2013



14 M.C. Delfour and A. Garon

biodegrable polymers (see, for instance, Batycky et al [1] in 1997) to achieve
specific drug release kinetics profiles over long therapeutic windows.

Recently, Lao and Venkatraman [16] and Lao, Venkatraman, and Peppas [18]
have proposed a semi-empirical model to predict the release profile of paclitaxel
from three neat polymer matrices: PCL (Polycaprolactone), PLGA (dl-lactide-
co-glycolide) and PLGAPEG (PLGA with polyethylene glycol). They are repre-
sentative of a broad family of biodegradable polymers ranging from hydrophobic
to hydrophilic. In hydrophilic polymers the internal bounds between the chains
are weakened and this adds to the surface erosion phenomenon. The drug re-
lease mechanism within a polymer matrix depends on many factors such as the
affinity of the drug with the surrounding medium (water). Specifically, paclitaxel
is hydrophobic and this might explain the fact that some of the drug blended
into the polymer matrix is not released and cannot participate to the treatment
of the disease wall. This is a difficult subject. The main criticism expressed in
[18] of available models for drug release from eroding surfaces is that they fail
to faithfully reproduce experimental data for highly degradable polymers (the
S-curve behaviour). The reader is referred to the introduction of the paper of
Lao et als [18] for a comprehensive review of the literature.

A quick look at the paclitaxel release profiles suggests two types of release:
S-curve type and exponential type. S-curve behaviours are similar to the ones
encountered in the study of the logistic equation of populations. In [2] we in-
troduced a simple two-parameter Ordinary Differential Equation (ODE) model
that completely describes the paclitaxel release profiles from neat PCL, PLGA
PEG, and PLGA polymer matrices. This model describes with greater accuracy
the drug-release than the semi-empirical model of Lao et als [18] using 5 to 8
parameters.

The simplicity of our model for such a broad range of polymers indicates
that somehow the quadratic structure captures the complex microphysics and
chemistry of the release and degradation processes. Using a purely mathematical
intuition to modelling, we have introduced in [6] a time-space three dimensional
partial differential equation (PDE) model of the paclitaxel release that mimics
the ODE model. The film of neat polymer is modelled as a thin flat domain
whose polymer/medium interface is a quadratic semi-permeable membrane with
a concentration jump at the interface.

In this approach, the diffusion process through a semi-permeable membrane is
modelled as a diffusion through an interface with cracks (not to be confused with
holes) where the rate of transfer of the product is proportional to the size of the
concentration jump across the interface. Since the cracks have zero surface, their
size is measured in terms of the mathematical notion of capacity. What is very
nice about this approach is that it is based on a mathematically well documented
linear model coming from the study of the Neumann sieve by Damlamian [5]
in 1985. It provides a variational formulation and a mathematically tractable
approach to the asymptotic analysis of a punctured membrane as the size of the
holes goes to zero while preserving a strictly positive capacity that accounts for
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the diffusion of the drug through the cracks1 Adding the non-linearity captures
the effect of the internal degradation of the polymer by making the rate of mass
transfer proportional to the size of the concentration jump across the interface.

Our approach is different from others in the literature since it deals with the
nonlinearity through a quadratic condition at the interface between the polymer
and the surrounding medium instead of using a time-dependent or a nonlinear
diffusion. This model can be seen as a first step towards a three dimensional mod-
elling of the release of paclitaxel from drug eluding stents coated with biodegrad-
able polymers. It is capable of covering a wide range of biodegradable polymers
potentially including the ones for which an incomplete release is experimentally
observed (recall that the paclitaxel is hydrophobic).

To complete the experimental approach to this modelling, the next step would
be to set up an experimental benchmark to check if the model and the mathe-
matical assumptions on the coefficients of the model are realistic. The validation
of such a model would improve the modelling of the drug release part of the
global three-dimensional model of a blood vessel incorporating the lumen, the
blood, the aggregated wall, and the coated stent (cf. for instance, [8]) and the
subsequent studies of the effect of the pattern of the stent in [3] and the effect
of the pulsative nature of the blood in [7]. Such global studies are important to
determine the set of features in the modelling of the blood vessel and of the stent
that should be retained in the design of the stent and the drug release dynamics.

2 ODE Model and Gradient Flow Interpretation

In the previous paper [2] we have shown an excellent fit between experimental
release data [16] of paclitaxel from biodegradable neat polymers and a two-
parameter quadratic ODE model of the Riccati type. We briefly recall this model.

Given an initial mass M0 > 0 of drug uniformly impregnated into a polymeric
matrix, denote by M(t) > 0 the mass of drug released outside the polymer as a
function of the time t > 0. Denote by M∞, 0 ≤M∞ ≤M0, the asymptotic mass
of the drug released. The ODE model was chosen of the form

dM

dt
(t) = h(M(t)), t > 0, M(0) = 0, (2.1)

for some quadratic right-hand side

h(M)
def
= A1 (M∞ −M(t)) +A2 (M∞ −M(t))

2
(2.2)

such that M ′(0) = (A1 + A2M∞)M∞ > 0. By introducing the normalized
released mass

m(t)
def
= M(t)/M0, (2.3)

1 See also the more recent comprehensive paper [4, Theorem 5.5] using the very nice
theory of periodic unfolding.
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we get the following quadratic ODE model

dm

dt
(t) =

[
A1 +A2M0

(
M∞
M0

−m(t)

)] (
M∞
M0

−m(t)

)
, m(0) = 0. (2.4)

Assuming that the ratio 0 < M∞/M0 ≤ 1 is known, the model is completely
specified by the two parameters A1 and A2M∞. When A2 = 0, the model is
linear; when A2 = 0, the right-hand side is of the form

h(m)
def
= A2M0 (m2 −m)(m1 −m), m1

def
=

M∞
M0

, m2
def
=

A1 +A2M∞
A2M0

.

It was shown in [2] that the following four cases can occur under the conditions
m(0) = 0 and m′(0) = A1 +A2M∞ > 0:

Case 1) (True S type)

A1 > 0, A2 < 0, and −m1 <
1

2

A1

A2M0
(that is, −m1 < m2 < 0), (2.5)

with solution

m(t) = m1m2
1− e−A1 t

m2 −m1 e−A1 t

for which the point of inflexion occurs at time tc = −(log(−m2/m1))/A1 > 0;
Case 2) (S type)

A1 > 0, A2 < 0, and
1

2

A1

A2M0
≤ −m1 (that is, m2 ≤ −m1), (2.6)

with the solution and the point of inflexion

m(t) = m1m2
1− e−A1 t

m2 −m1 e−A1 t
, tc = −(log(−m2/m1))/A1 ≤ 0;

Case 3) (Exponential type)

A1 ≥ 0 and A2 > 0 (that is, m2 ≥ 1), (2.7)

with the solution and the blow up time⎧⎪⎪⎨⎪⎪⎩
m(t) = m1m2

1− e−A1 t

m2 −m1 e−A1 t
,

tc = − log(m2/m1)

A1
< 0,

for A1 > 0 since m2 > m1,

⎧⎪⎪⎨⎪⎪⎩
m(t) = m1

A2M∞ t

1 +A2M∞ t
,

tc = − 1

A2M∞
< 0,

for A1 = 0 since m2 = m1;

(2.8)
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Case 4) (True exponential) A1 > 0 and A2 = 0 with the solution

m(t) =
M∞
M0

(
1− e−A1 t

)
, tc = −∞.

The generic behaviours of the solution m(t) in the above cases are illustrated in
Figures 1 and 2 and the parameters tabulated in Table 1 of [6].

The ODE model has an interesting gradient flow interpretation by introducing
the function

E(m)
def
=

1

2
A1

(
M∞
M0

−m

)2

+
1

3
A2M0

(
M∞
M0

−m

)3

(2.9)

with gradient (derivative)

E′(m) = −A1

(
M∞
M0

−m

)
−A2M0

(
M∞
M0

−m

)2

(2.10)

and Hessian (second order derivative)

E′′(m) = A1 + 2A2M0

(
M∞
M0

−m

)
. (2.11)

The ODE can now be rewritten in the form of a gradient flow equation

dm

dt
(t) + E′(m(t)) = 0, m(0) = 0. (2.12)

This is the continuous version of a steepest descent method to minimize the
functional E. So, it is expected that starting from m(0) = 0 with m′(0) > 0 the
asymptotic value m1 of the solution of the ODE (2.12) would achieve a local
minimum of E(m). To do that, we compute the second derivative of E under
the assumption that A1 ≥ 0 and m′(0) > 0 which is equivalent to E′(0) =
−(M∞/M0)[A1 + A2M∞] < 0. It turns out that in all cases except the second
part of case 3), m1 is a local minimum of E(m). The exception corresponds to
a point of inflection that can be changed into a global minimum by modifying
the function E to E(m) = (A2M0/3) |M∞/M0 −m|3.

3 PDE Model of Quadratic Semi-permeable Membranes

3.1 Equations in the Polymer and the Surrounding Medium

The experimental benchmark of [16] is contained in a vial. The polymer film
is deposited flat at the bottom of the vial and the vial is filled with a fluid
that we shall call the surrounding medium (see Figure 1). The vial is closed
without circulation of the fluid. Denote by Ωp the open domain occupied by the
polymer and by Ωm the open domain occupied by the surrounding medium. Let
Γp and Γm be the respective boundaries of Ωp and Ωm. The polymer occupies
a thin square parallelepipedic region at the bottom of the vial. Its boundary is
made up of the interface Γint = Γp ∩ Γm between the polymer and the medium
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polymer film

Fig. 1. The polymer film and the surrounding fluid in the vial

(top boundary and lateral boundary of Ωp) and the bottom square boundary of
Ωp that we shall denote Γ0.

The vial is closed without circulation of the fluid filling the vial (the medium).
Within the (surrounding) medium only linear diffusion is expected with zero
Neumann boundary conditions at the boundary of the vial Γext = (Γp∪Γm)\Γint.

At time t, denote by cp(x, t) the concentration of the drug at the point x ∈ Ωp

and by cm(x, t) the concentration of the drug at point x ∈ Ωm. Assume linear
diffusion equations in the polymer and the surrounding medium

∂cp
∂t

= div (Dp∇cp) in Ωp (3.1)

∂cm
∂t

= div (Dm∇cm) in Ωm (3.2)

with constant diffusion constants Dp and Dm and initial conditions

cp(x, 0) = c0(x) = M0/|Ωp| in Ωp, cm(x, 0) = 0 in Ωm, (3.3)

where |Ωp| is the volume of Ωp. Assume that the experimental set up is closed:

Dp
∂cp
∂np

= 0eq.constriantΓp\Γint Dm
∂cm
∂nm

= 0 on Γm\Γint, (3.4)

where the unit normals np and nm are exterior to the respective domains Ωp and
Ωm. Assume that there is no loss of product : this yields the (affine) constraint

∀t ≥ 0, M0
def
=

∫
Ωp

c0(x) dx =

∫
Ωp

cp(x, t) dx +

∫
Ωm

cm(x, t) dx, (3.5)

where M0 is the total mass of product. By integrating (3.1) over Ωp and (3.2)
over Ωm and by using the constraint (3.5), we get

⇒ 0 =

∫
Ωp

∂cp
∂t

(x, t) dx +

∫
Ωm

∂cm
∂t

(x, t) dx

=

∫
Ωp

div (Dp∇cp)(x, t) dx +

∫
Ωm

div (Dm∇cm)(x, t) dx

=

∫
Γp

Dp
∂cp
∂np

(x, t) dΓ +

∫
Γm

Dm
∂cm
∂nm

(x, t) dΓ.

(3.6)
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Finally, by using the boundary conditions (3.4) we get∫
Γint

[
Dp

∂cp
∂np

(x, t) +Dm
∂cm
∂nm

(x, t)

]
dΓ = 0. (3.7)

It remains to specify the conditions at the interface Γint.

3.2 Conditions at the Interface

In order to incorporate the microphysics taking place in the thin film of polymer,
it is assumed that the interface behaves as a semi-permeable membrane with
micro fissures through which the drug diffuses into the surrounding medium.
Many empirical and theoretical models of such membranes have been studied in
the literature and in different contexts. One mathematically interesting model
of a semi-permeable membrane is to assume that the interface is a membrane
punctured with small holes whose size goes to zero while preserving a strictly
positive capacity2 in the limiting process. In other words the membrane is fissured
or cracked and the drug diffuses through the cracks. This problem has been
studied from the mathematical point of view under the name of the Neumann
sieve by A. Damlamian [5] in 1985. From the physical point of view, it can be
assimilated with a semi-permeable membrane.

In this section we consider an evolution equation of the form

∂c

∂t
(t) +A(c(t)) = 0, c(0) = M0/|Ωp|χΩp , (3.8)

where the operator A is now quadratic in c(t). Since the domain Ωp is thin, it
is reasonable to put the nonlinearity at the interface Γint rather than on Ωp via
a diffusion coefficient Dp(c) that depends on c:

− d

dt

∫
Ωp

cp(t) dx =
d

dt

∫
Ωm

cm(t) dx

=

∫
Γint

[
k1 + k2

|Ωp|
M0

|cp(t)− cm(t)|
]
(cp(t)− cm(t)) dΓ

(3.9)

for some constant k2. Note that we have introduced a scaling by the initial
concentration of product M0/|Ωp| of the drug so that k1 and k2 are parameters
of the same physical dimension.

Now consider the (cubic) functional

E(v)
def
=

1

2

∫
Ωp

Dp |∇vp|2 dx+
1

2

∫
Ωm

Dm |∇vm|2 dx

+

∫
Γint

1

2
k1 |vp − vm|2 +

1

3
k2
|Ωp|
M0

|vp − vm|3 dΓ
(3.10)

vp
def
= v|Ωp , vm

def
= v|Ωm (3.11)

2 The capacity of a set is a mathematical notion. For instance a finite segment in the
plane has zero area but finite capacity. Roughly speaking, the capacity is a “measure”
of the cracks.
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defined on the space H1(Ωp ∪ Ωm) with a crack Γint = Γp ∩ Γm in Ωp ∪ Ωm

along which the function v can have a jump discontinuity [v] = vm − vp. This
convex non quadratic variational formulation is similar to the T 4 radiation law
for the temperature T of a radiating body in free space (cf., for instance, [9]).

We do not impose the continuity of the concentrations at the interface. Taking
into account the constraint on the total mass of product, we look for a solution
c(t) at time t > 0 in the affine subspace

V pm
M0

def
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

{
c ∈ H1(Ωp ∪Ωm) :

∫
Ωp∪Ωm

c(x) dx = M0

}
, if k2 = 0, k1 > 0,⎧⎪⎨⎪⎩c ∈ H1(Ωp ∪Ωm) :

∫
Ωp∪Ωm

c(x) dx = M0

vp − vm ∈ L3(Γint)

⎫⎪⎬⎪⎭ , if k2 > 0,

of H1(Ωp ∪Ωm). In the first case[ ∫
Ωp

|∇vp|2 dx+

∫
Ωm

|∇vm|2 dx+

∫
Γint

|vp − vm|2 dΓ
]1/2

(3.12)

is an equivalent norm on V pm
M0

; in the second case[∫
Ωp

|∇vp|2 dx+

∫
Ωm

|∇vm|2 dx
]1/2

+

[∫
Γint

|vp − vm|3 dΓ
]1/3

(3.13)

is an equivalent norm on V pm
M0

(cf., for instance, [9] with the T 4 radiation law
for the temperature T in free space).

The directional derivative of E is

dE(u; v) =

∫
Ωp

Dp∇u · ∇v dx+

∫
Ωm

Dm∇u · ∇v dx

+

∫
Γint

k2
|Ωp|
M0

|up − um| (up − um) (vp − vm)

+ k1 (up − um) (vp − vm) dΓ

(3.14)

up
def
= u|Ωp , um

def
= u|Ωm , vp

def
= v|Ωp , vm

def
= v|Ωm . (3.15)

We are interested in the stationary points c = (cp, cm) ∈ VM0 of E that are the
solutions of the variational equation

∃c ∈ V pm
M0

, dE(c; v) = 0, ∀v ∈ V pm
0 , (3.16)

V pm
0

def
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

{
c ∈ H1(Ωp ∪Ωm) :

∫
Ωp∪Ωm

c(x) dx = 0

}
, if k2 = 0, k1 > 0,⎧⎪⎨⎪⎩c ∈ H1(Ωp ∪Ωm) :

∫
Ωp∪Ωm

c(x) dx = 0

vp − vm ∈ L3(Γint)

⎫⎪⎬⎪⎭ , if k2 > 0.

(3.17)
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Again dE(c; v) = 0 for all constant functions v and V pm
0 can be replaced by

H1(Ωp ∪Ωm):

∃c ∈ V pm
M0

, dE(c; v) = 0, ∀v ∈ H1(Ωp ∪Ωm).

It yields a complete set of conditions at the interface and the following system
of equations

div (Dp∇cp) = 0 in Ωp, div (Dp∇cm) = 0 in Ωm (3.18)

Dp
∂cp
∂np

+ k2
|Ωp|
M0

|cp − cm| (cp − cm) + k1 (cp − cm) = 0 on Γint (3.19)

Dm
∂cm
∂nm

−
[
k2
|Ωp|
M0

|cp − cm| (cp − cm) + k1 (cp − cm)

]
= 0 on Γint (3.20)

Dp
∂cp
∂np

= 0 on Γp\Γint, Dm
∂cm
∂nm

= 0 on Γm\Γint (3.21)∫
Ωp

cp dx+

∫
Ωm

cm dx = M0. (3.22)

From the mathematical viewpoint, the condition involving |cp − cm| (cp− cm) is
the analogue of the condition |T − Tm|3 (T − Tm) (usually written (T − Tm)4)
on the temperature of a radiating body (cf., for instance, [9]). The thin layer of
polymer behaves as a nonlinear semi-permeable membrane. The second order
directional derivative of E is

d2E(u; v;w) =

∫
Ωp

Dp∇w · ∇v dx+

∫
Ωm

Dm∇w · ∇v dx

+

∫
Γint

[
2 k2

|Ωp|
M0

|up − um|+ k1

]
(wp − wm) (vp − vm) dΓ

(3.23)

⇒ d2E(u; v; v) =

∫
Ωp

Dp|∇v|2 dx+

∫
Ωm

Dm|∇v|2 dx

+

∫
Γint

[
2 k2

|Ωp|
M0

|up − um|+ k1

]
|vp − vm|2 dΓ.

(3.24)

Since E is a cubic functional, local minima and local maxima can both occur
depending on the signs and magnitudes of the constants k1 and k2. A local
minimum u ∈ V pm

M0
is characterized by

∀v ∈ V pm
0 dE(u; v) = 0 and ∀0 = v ∈ V pm

0 d2E(u; v; v) > 0

and a local maximum u ∈ V pm
M0

by

∀v ∈ V pm
0 dE(u; v) = 0 and ∀0 = v ∈ V pm

0 d2E(u; v; v) < 0.
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Going back to the evolution equation (3.8) using the above conditions at the
interface, we get the following system of equations

∂cp
∂t

= div (Dp∇cp) in Ωp,
∂cm
∂t

= div (Dm∇cm) in Ωm

cp(x, 0) = M0/|Ωp|χΩp(x) in Ωp, cm(x, 0) = 0 in Ωm

Dp
∂cp
∂np

+ k2
|Ωp|
M0

|cp − cm| (cp − cm) + k1 (cp − cm) = 0 on Γint

Dm
∂cm
∂nm

−
[
k2
|Ωp|
M0

|cp − cm| (cp − cm) + k1 (cp − cm)

]
= 0 on Γint

Dp
∂cp
∂np

= 0 on Γp\Γint, Dm
∂cm
∂nm

= 0 on Γm\Γint∫
Ωp

cp dx+

∫
Ωm

cm dx = M0.

(3.25)

The nonlinear condition on Γint

Dm
∂cm
∂nm

= k2
|Ωp|
M0

|cp − cm| (cp − cm) + k1 (cp − cm)

=

(
k2
|Ωp|
M0

|cp − cm|+ k1

)
︸ ︷︷ ︸

k(c)

(cp − cm)

says that k(c) is an affine function of the size of the jump. This means that the
rate of transfer of the product across the interface is large when the absolute
value of the concentration jump is large. Assuming that k1 ≥ 0, when k2 > 0 it
decreases to k1 when the size of the jump goes to zero; when k2 < 0 it increases
to k1 when the size of the jump goes to zero.

Remark 1. When k2 > 0, it would not be appropriate to remove the absolute
value on cp − cm in the term k′ of the previous identity. This would give the
expression

Dm
∂cm
∂nm

=

(
k2
|Ωp|
M0

(cp − cm) + k1

)
︸ ︷︷ ︸

k′(c)

(cp − cm),

where, if the size of the jump is large, k′(c) > 0 is large, ∂cm/∂nm > 0 is large,
and the diffusion of product would be from the medium to the polymer even when
cp > cm, that is, when the concentration in the polymer is larger than the one
in the medium. However, it is interesting to note that various behaviours can
be modelled by replacing |cp − cm| by the plus [cp − cm]+ = max{0, cp − cm} or
the minus [cp− cm]− = max{0,−(cp− cm)} functions or introducing a threshold
θ > 0 max{|cp − cm| − τ, θ}.
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3.3 Relation between the PDE and the ODE Models

Since |Ωp| is much smaller than |Ωm|, this last equation is related to the quadratic
ODE model by making the same assumptions on the concentrations on Γint as
in the previous section:

cp(x, t) �
1

|Ωp|

∫
Ωp

cp(x, t) dx and cm(x, t) � 1

|Ωm|

∫
Ωm

cm(x, t) dx (3.26)

⇒ cp(x, t)− cm(x, t) � 1

|Ωp|
[M0 −Mm(t)] ,

where

Mm(t)
def
=

∫
Ωm

cm(x, t) dx (3.27)

is the mass released at time t in the medium and

dMm

dt
(t) =

|Γint|
|Ωp|

[
k1 +

k2
M0

|M0 −Mm(t)|
]
(M0 −Mm(t)) (3.28)

⇒ dmm

dt
(t) =

1

h
[k1 + k2 |1−mm(t)|] (1−mm(t)), mm(t)

def
=

Mm(t)

M0
, (3.29)

where h = |Ωp|/|Γint| is the thickness of the polymer. This would correspond
to A1 = k1/h and A2 = k2/h in the ODE model. The thickness h is an impor-
tant parameter : the thinner the polymer the faster the release. If k1 and k2 are
constants, mm can be normalized through the change of variable t �→ τ = t/h.
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Monte Carlo) Approximation of Solutions
to Chance Constrained Programs
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Abstract. The solution of chance constrained optimization problems
by means of empirical approximation of the underlying multivariate
distribution has recently become a popular alternative to conventional
methods due to the efficient application of appropriate mixed integer pro-
gramming techniques. As the complexity of required computations de-
pends on the sample size used for approximation, exponential estimates
for the precision of optimal solutions or optimal values have become a
key argument for controlling the sample size. However, these exponential
estimates may involve unknown constants such that the required sample
size to approximate the solution of a problem may become arbitrarily
large. We will illustrate this effect for Gaussian distributions.

Keywords: chance constrained programming, probabilistic constraints,
empirical approximation, sample average approximation, convergence of
solution sets, sample size.

1 Introduction

A chance constrained optimization problem has the general form

min{g(x)|P(h(x, ξ) ≥ 0) ≥ p, x ∈ C}, (1)

where x ∈ Rn is a decision vector, g : Rn → R is an objective function, ξ is
an s-dimensional random vector defined on some probability space (Ω,A,P),
h : Rn × Rs → Rm is a Borel measurable with respect to the second argument
mapping, C ⊆ Rn represents some abstract deterministic constraint and p ∈
[0, 1] is a fixed probability level. The random inequality system h(x, ξ) ≥ 0 may
reflect some technological constraints in engineering problems which are affected
by uncertainty. Since usually a decision x has to be taken before the uncertain
parameter ξ is observed, it has become a standard approach of robust modeling to
define x as feasible, whenever the probability of satisfying the random inequality
is at least p. This is expressed in the so-called chance constraint P(h(x, ξ) ≥ 0) ≥
p. For a standard introduction to chance constrained programming we refer to
the classical monograph [6] and to the more recent treatise in [7].
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Recent progress in mixed integer programming techniques tailored to chance
constraints has led to the idea of solving (1) by empirical approximation (or
sample average approximation) of the original random vector ξ (e.g., [4,5]). This
means that an i.i.d. sample ξ1, . . . , ξN of size N is drawn from the distribution
of ξ and that the law P◦ξ−1 of ξ in (1) is replaced by the empirical measure

N−1
N∑
i=1

δ(ξi),

where δ(z) is the Dirac measure centered on z. Doing so, the original chance
constraint P(h(x, ξ) ≥ 0) ≥ p turns into its empirical counterpart

#
{
i|h(x, ξi) ≥ 0

}
≥ pN.

Of course this change of constraint leads to another optimization problem whose
solution deviates from the solution of (1) and one has to answer two questions: do
the approximating solutions converge with N → ∞ and if so, how large should
N be chosen in order to guarantee a given precision of the solution obtained?
The first question is answered by the stability theory of chance constrained pro-
gramming mainly developed in [1,2] which applies to arbitrary approximations
of the original distribution and, in particular, to empirical ones. Under some ex-
plicitly verifiable conditions, not only qualitative convergence of approximating
solutions can be guaranteed but also rates for this convergence can be derived.
The latter allow us to obtain exponential bounds (in terms of sample size) for
the precision of solutions in case of empirical approximations. However, one has
to take into account that the exponential term involves apart from the sample
size N also some other constants which may depend on the conditioning of the
problem and may be hard to estimate. Thus, exponential estimates of solutions
do not exclude the need for a large sample size even in small dimension in or-
der to arrive at a reasonable precision of the solution. This situation occurs in
particuar if the law of the original random vector ξ has unbounded support. We
will illustrate and explain this effect for a multivariate Gaussian distribution (but
similar observations could be made for other classes of multivariate distributions
such as log-normal or t-). In order to keep the presentation as simple as possible
we restrict ourselves to the simplest yet meaningful instance of problem (1):

min{cTx | P(ξ ≤ x) ≥ p}.

This means that we consider just linear objective functions, we forget about ad-
ditional abstract deterministic constraints and we assume the chance constraint
being in elementary separated form. Recalling the definition of the distribution
function Fξ(x) := P(ξ ≤ x) of a random vector ξ, we may rewrite this problem as

min{cTx | Fξ(x) ≥ p} (Pc,ξ,p). (2)

In order to emphasize the dependence on the problem data c, ξ and p, we label
problem (2) as (Pc,ξ,p). Before coming back to the issue of empirical distributions
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discussed above, we derive in the next section our main result demonstrating
the difficulty of approximating a chance constrained program with unbounded
support of the underlying distribution by means of distributions with bounded
support. Note that, in particular, empirical measures have bounded support.

2 Main Result

We start by recalling the following well-known representation for partial deriva-
tives of Gaussian distribution functions. We make use of the familiar notation
ξ ∼ N (μ,Σ) to designate a Gaussian random vector with expectation μ and
covariance matrix Σ.

Theorem 1 ([6], p. 204). Let ξ ∼ N (μ,Σ) with some positive definite co-
variance matrix Σ = (σij) of order (s, s). Then, the distribution function Fξ is
continuously differentiable at any z ∈ Rs and

∂Fξ
∂zj

(z) = fξj (zj) · Fξ̃(zj) (z1, . . . , zj−1, zj+1 . . . , zs) (j = 1, . . . , s) .

Here, fξj denotes the one-dimensional Gaussian density of the component ξj,

ξ̃(zj) is an (s-1)-dimensional Gaussian random vector distributed according to

ξ̃(zj) ∼ N (μ̂, Σ̂), μ̂ results from the vector μ+σ−1
jj (zj − μj)σj by deleting com-

ponent j and Σ̂ results from the matrix Σ − σ−1
jj σjσ

T
j by deleting row j and

column j, where σj refers to column j of Σ.

Corollary 1. In the context of the previous Theorem, one has that

∂Fξ
∂zj

(z) > 0 ∀z ∈ R
s, ∀j ∈ {1, . . . , s} .

Proof. This follows immediately from the formula in Theorem 1 and the fact that
both the density and the distribution function of a regular Gaussian distribution
are strictly positive.

With each problem (Pc,ξ,p) in (2) we associate its (possibly empty) solution set

Ψc,ξ,p := argmin{cTx | P(ξ ≤ x) ≥ p}.

Lemma 1. For problem (Pc,ξ,p) in (2) assume that ci > 0 for i = 1, . . . , s.
Then,

Ψc,ξ,p ⊆ [a, b] := {x ∈ R
s | ai ≤ xi ≤ bi (i = 1, . . . , s)},

where, with ’supp’ denoting the support of a random vector,

ai := inf{zi|z ∈ supp ξ} bi := sup{zi|z ∈ supp ξ} (i = 1, . . . , s).
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Proof. Assume that there is some x∗ ∈ Ψc,ξ,p and some i such that x∗i > bi.
Then, bi <∞ and we may define x̄ by

x̄i := (x∗i + bi) /2, x̄j := x∗j (j = i) .

From x∗ being feasible for problem (Pc,ξ,p), we conclude that

p ≤ P(ξ ≤ x∗) = P(ξ ≤ x̄) + P(x̄i ≤ ξi ≤ x∗i , ξj ≤ x̄j (j = i)).

Now, since x̄i > bi, it follows that {x ∈ Rn | x̄i ≤ xi ≤ x∗i }∩ supp ξ = ∅ , whence

P(x̄i ≤ ξi ≤ x∗i , ξj ≤ x̄j (j = i)) = 0

and P(ξ ≤ x̄) ≥ p. Therefore, x̄ too is feasible for problem (Pc,ξ,p). On the other
hand, cT x̄ < cTx∗ due to ci > 0, x̄i < x∗i and x̄j = x∗j for j = i. This contradicts
the assumption x∗ ∈ Ψc,ξ,p. Consequently, x

∗ ≤ b for any x∗ ∈ Ψc,ξ,p. Similarly
one shows that x∗ ≥ a for any x∗ ∈ Ψc,ξ,p. It follows that Ψc,ξ,p ⊆ [a, b].

Now, we are in a position to state our main result:

Theorem 2. Let s > 1. Assume that ξ has a regular normal distribution accord-
ing to ξ ∼ N (μ,Σ) and that η is a random vector with compact support. Then,

for any p ∈ (0, 1) there exists a sequence c(n) ∈ Rn with c
(n)
i > 0 for i = 1, . . . , s

such that Ψc(n),ξ,p = ∅ and

inf{‖x− y‖ | x ∈ Ψc(n),ξ,p, y ∈ Ψc(n),η,p} > n ∀n ∈ N. (3)

Proof. Fix an arbitrary p ∈ (0, 1) and an arbitrary n ∈ N. Since supp η is
compact, we may apply Lemma 1 to η in order to derive the existence of some
compact(!) rectangle [a, b] such that

Ψc,η,p ⊆ [a, b] ∀c ∈ R
s : ci > 0 (i = 1, . . . , s). (4)

With [a, b] being compact, we may choose Ln > 0 such that

‖y − z‖ ≥ n ∀y ∈ [a, b], ∀z : ‖z‖ ≥ Ln. (5)

Since s > 1 by assumption, we may define the ratio

κ(z) :=
∂Fξ
∂z1

(z)

/
∂Fξ
∂z2

(z) (z ∈ R
s) . (6)

Note that the partial derivatives of Fξ are continuous (see Theorem 1) and
strictly positive (see Corollary 1), hence κ is correctly defined and continuous.
Consequently the quantity

κ̄ := sup {κ(z)|z ∈ B (0, Ln)} (7)
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is finite. Next, let qp be the p-quantile of the first marginal distribution of ξ,
i.e., of the distribution of the first component ξ1. Since ξ1 has a one-dimensional
normal distribution and p ∈ (0, 1), qp ∈ R is uniquely defined by P (ξ1 ≤ qp) = p.
We claim that for each k ∈ N there exists some tk ∈ R such that

Fξ
(
qp + k−1, tk, . . . , tk

)
= p. (8)

Indeed, for arbitrarily fixed k one has that

lim
τ→−∞

Fξ
(
qp + k−1, τ, . . . , τ

)
= 0

as a general property of distribution functions and that

p = P (ξ1 ≤ qp) < P
(
ξ1 ≤ qp + k−1

)
= lim

τ→∞
Fξ
(
qp + k−1, τ, . . . , τ

)
.

Now, the existence of tk with the desired property (8) follows from continuity
of Fξ and from p > 0. Next we claim that tk →k ∞. If there existed some
subsequence tkl

and some r ∈ R such that tkl
≤ r for all l ∈ N, then

Fξ
(
qp + k−1

l , r, . . . , r
)
≥ Fξ

(
qp + k−1

l , tkl
, . . . , tkl

)
= p ∀l ∈ N

which again by continuity of Fξ as a function of each of its components yields
the contradiction

p ≤ Fξ (qp, r, . . . , r) = P (ξ1 ≤ qp, ξ2 ≤ r, . . . , ξs ≤ r) < P (ξ1 ≤ qp) = p.

Here, the strict inequality relies on the fact that a regular Gaussian distribution
has a density which is strictly positive everywhere. Hence, we have shown that
tk →k ∞. Consider the sequence

z(k) :=
(
qp + k−1, tk, . . . , tk

)
(k ∈ N) .

Then, by (8),

Fξ

(
z(k)
)
= p (k ∈ N) . (9)

Moreover, Theorem 1 yields that

∂Fξ
∂z1

(z(k)) = fξ1(qp + k−1) · F
ξ̃
(
z
(k)
1

) (tk, . . . , tk) , (10)

where fξ1 denotes the one-dimensional Gaussian density of the component ξ1 and

ξ̃
(
z
(k)
1

)
is an (s-1)-dimensional Gaussian random vector distributed according

to ξ̃
(
z
(k)
1

)
∼ N (μ̂(k), Σ̂) where μ̂(k) and Σ̂ result from the original parameters

μ and Σ, respectively, of ξ as detailed in Theorem 1. In particular,

μ̂(k) = (μ2, . . . , μs) + σ−1
11

(
qp + k−1 − μ1

)
(σ21, . . . , σs1)
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and we observe that

μ̂(k) →k μ̂ := (μ2, . . . , μs) + σ−1
11 (qp − μ1) (σ21, . . . , σs1) . (11)

Note also that in contrast to μ̂(k), the covariance matrix Σ̂ does not depend on
the index k. Now we define the centered random vector

ξ̂ := ξ̃
(
z
(k)
1

)
− μ̂(k) ∼ N (0, Σ̂),

whose distribution does no longer depend on the index k. Exploiting the relation

F
ξ̃
(
z
(k)
1

) (tk, . . . , tk) = Fξ̂

(
tk − μ̂

(k)
1 , . . . , tk − μ̂

(k)
s−1

)
and noting that all components of the argument

(
tk − μ̂

(k)
1 , . . . , tk − μ̂

(k)
s−1

)
tend

to infinity due to (11) and tk →k ∞, we conclude that

Fξ̂

(
tk − μ̂

(k)
1 , . . . , tk − μ̂

(k)
s−1

)
→k 1

because the values of the (fixed) distribution function Fξ̂ tend to one if all its
components tend to infinity. This implies

F
ξ̃
(
z
(k)
1

) (tk, . . . , tk)→k 1,

whence (10) leads to
∂Fξ
∂z1

(z(k))→k fξ1(qp) > 0 (12)

by continuity and positivity of the density fξ1 . Similarly, the second partial
derivative of Fξ calculates from Theorem 1 as

∂Fξ
∂z2

(z(k)) = fξ2(tk) · Fξ̃
(
z
(k)
2

) (qp + k−1, tk, . . . , tk
)
, (13)

where fξ2 denotes the one-dimensional Gaussian density of the component ξ2 and

ξ̃
(
z
(k)
2

)
is a certain (s-1)-dimensional Gaussian random vector. From fξ2(tk)→k

0 (due to tk →k ∞) and from the fact that distribution functions are bounded
between zero and one, we infer that

∂Fξ
∂z2

(z(k))→k 0,

which along with (12) and (6) provides that κ(z(k))→k ∞. Therefore, with our
arbitrarily fixed number n ∈ N we may associate an index kn ∈ N such that
κ(z(kn)) > κ̄ where κ̄ is defined in (7). Now, we assign to n the cost vector
c(n) := ∇Fξ

(
z(kn)

)
for the linear objective function in problem (Pc(n),ξ,p) in (2).

Then, by Corollary 1, we have that c
(n)
i > 0 for i = 1, . . . , s as required in the
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statement of our theorem. Knowing that logFξ is a concave function (see [6]), the
problem (Pc(n),ξ,p) in (2) may be written equivalently as a convex optimization
problem

min{c(n)Tx | − logFξ(x) ≤ − log p}. (Pc(n),ξ,p) (14)

With c(n) = 0, a solution x∗ to this problem is equivalently characterized by the
conditions

− logFξ(x
∗) = − log p and c(n) + λ∇ (− logFξ) (x

∗) = 0 for some λ > 0.

Simplifying these leads to the equivalent conditions

Fξ(x
∗) = p and c(n) = λ∇ (Fξ) (x

∗) for some λ > 0. (15)

Now, since c(n) = ∇Fξ
(
z(kn)

)
and Fξ(z

(kn)) = p by (9), we conclude that z(kn) is
a solution to (Pc(n),ξ,p). This shows that Ψc(n),ξ,p = ∅ as asserted in our theorem.
Finally, we show that Ψc(n),ξ,p ∩ B (0, Ln) = ∅ with Ln defined in (5). Assume
the contrary and choose some x∗ ∈ Ψc(n),ξ,p with ‖x∗‖ ≤ Ln. From (6) and (15)
we derive

κ (x∗) =
∂Fξ
∂z1

(x∗)

/
∂Fξ
∂z2

(x∗) = c
(n)
1

/
c
(n)
2 =

∂Fξ
∂z1

(z(kn))

/
∂Fξ
∂z2

(z(kn))

= κ(z(kn)) > κ̄.

which is a contradiction with (7). Consequently, Ψc(n),ξ,p ∩ B (0, Ln) = ∅. Now,
select arbitrary x ∈ Ψc(n),ξ,p and y ∈ Ψc(n),η,p. Then, ‖x‖ > Ln. Since also
Ψc(n),η,p ⊆ [a, b] by (4), it follows from (5) that ‖x− y‖ ≥ n. Since x and y were
arbitrarily chosen, we end up at the final assertion (3) of our theorem.

Theorem 2 can be interpreted as follows in the context of empirical approxi-
mation upon observing that the support of empirical measures is finite, hence
compact: no matter how large the sample size N for the empirical approxima-
tion of the original random vector ξ is chosen, there is always an instance of
problem (2) (by choosing an appropriate cost vector c) such that the solutions
between the original problem and its empirical approximation are arbitrarily far
from each other. Note that relation (3) implies (and actually is much stronger
than) the Hausdorff distance between both solution sets being larger than any
prescribed n. Moreover, this effect of ill-conditioning is not caused by letting the
probability level tend to one, because the result of the theorem holds true for
any fixed p. In the following section we look at the same phenomenon from a
slightly different viewpoint.

3 Exponential Estimates with Ill-Conditioned Constants

The recent literature on empirical or sample average approximation on chance
constraints [4,5] compiles several convergence results for feasible sets, optimal
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values and solutions, most of them of qualitative nature (continuity, upper semi-
continuity), some of them providing exponential estimates (convergence of fea-
sible sets, lower bounds for optimal values). For the general stability theory of
chance constrained programming with arbitrary approximations (not just em-
pirical ones) and quantitative convergence results even for solution sets, we refer
to [1,2]. In this section we will appy these results to the special case of empirical
approximations in order to obtain an exponential bound for the convergence (in
the sense of Hausdorff distance!) of solution sets. Despite this positive result
we will show then, that the existence of exponential estimates does not exclude
the need for a possibly excessive sample size in the empirical approximation.
We start by citing the following stability result for chance constraints whch we
present here in a simplified form sufficient for our purposes

Theorem 3 ([2], Corollary 3). In problem (Pc,ξ,p) in (2) let p ∈ (0, 1) and
the following assumptions be satisfied:

1. logFξ is a strongly concave function.
2. Ψc,ξ,p is nonempty and compact.

Then, there exist L, δ > 0 such that

dH (Ψc,ξ,p, Ψc,η,p) ≤ L
√

sup
z∈Rs

|Fξ(z)− Fη(z)| ∀η : sup
z∈Rs

|Fξ(z)− Fη(z)| < δ.

(16)
Here, dH refers to the Hausdorff distance.

A prototype example for a problem (2) which automatically satisfies all assump-
tions of Theorem 3 is given by a random vector ξ having a standard Gaussian
distribution. As a preparation we show the following property which is of inde-
pendent interest:

Proposition 1. In problem (Pc,ξ,p) in (2) let p ∈ (0, 1), ci > 0 for i = 1, . . . , s
and ξ ∼ N (0, Is). Then, the problem has a solution.

Proof. Referring back to the proof of Theorem 2, a solution of problem (Pc,ξ,p)
is equivalently characterized by the conditions (15) applied to c rather than c(n).
The distribution assumption implies that for all z ∈ Rs and all i = 1, . . . , s,

Fξ (z) = Φ (z1) · · ·Φ (zs) ;
∂Fξ
∂zi

(z) = f (zi)Φ (z1) · · ·Φ (zi−1)Φ (zi+1) · · ·Φ (zs) ,

where f and Φ denote the one-dimensional standard normal density and distri-
bution function, respectively. From (15) we derive that x∗ is a solution to (Pc,ξ,p)
if there exists some λ > 0 such that

Φ(x∗1) · · ·Φ(x∗s) = p; λ
f(x∗i )

Φ(x∗i )
= ci (i = 1, . . . , s) . (17)
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(recall that Φ is strictly positive). Defining α := f/Φ, we observe that due to
ci > 0 the second relation of (17) amounts to the fact that α(x∗i )/ci is constant
for all i. We may assume, without loss of generality, that c1 is the largest of
the coefficients ci. Then, x

∗ is a solution to (Pc,ξ,p) if there exist coefficients
ρ1, . . . , ρs−1 ≥ 1 such that

Φ(x∗1) · · ·Φ(x∗s) = p; α(x∗1) = ρ1α(x
∗
2) = · · · = ρs−1α(x

∗
s). (18)

We recall from the properties of the one-dimensional standard normal density
and distribution function that α(t) → 0 for t → ∞. Consequently, given any
t ∈ R, there exist values βi(t) for i = 1, . . . , s− 1 such that βi(t) ≥ t and

α(t) = ρ1α(β1(t)) = · · · = ρs−1α(βs−1(t)). (19)

Taking into account that limt→−∞ Φ (t) = 0 and Φ (βi(t)) ≤ 1 on the one hand
and

lim
t→∞

Φ (t) = lim
t→∞

Φ (βi(t)) = 1

due to βi(t) ≥ t, on the other hand, we conclude that

lim
t→−∞(+∞)

Φ (t)Φ (β1(t)) · · ·Φ (βs−1(t)) = 0(1).

For continuity reasons, there exists some t∗ such that

Φ (t∗)Φ (β1(t
∗)) · · ·Φ (βs−1(t

∗)) = p.

Setting x∗1 := t∗and x∗i := βi−1(t
∗) for i = 2, . . . , s, one verifies via (19) that (18)

is satisfied and, hence, x∗ is a solution to (Pc,ξ,p).

Corollary 2. Under the assumptions of Proposition 1 the estimate (16) holds
true.

Proof. We have to check that the assumptions of Theorem 3 are satisfied. The
strong concavity of the log of Gaussian distribution functions with independent
components is easy to verify (see [2, Prop. 14]). As shown in Proposition 1, the
solution set Ψc,ξ,p is nonempty. On the other hand, there may not exist more
than one solution to problem (Pc,ξ,p) because in its equivalent description

min{cTx | − logFξ(x) ≤ − log p} (Pc,ξ,p)

the inequality constraint is strongly convex according to what we have mentioned
in the begining of this proof.

We emphasize that in the result of Theorem 3 the approximating random vector
η can be arbitrary. In the special case that η is an empirical approximation,
one may exploit exponential bounds from empirical process theory (e.g., [8]) to
further interpret the obtained stability result. In order to keep the presentation
simple, we refer here to a classical inequality by Kiefer [3] stating in any di-
mension s the existence of constants k1 and k2 < 2 (where k2 may be chosen
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arbitrarily close to 2) such that for all ε̃ > 0 and all ηN having an empirical
distribution of an i.i.d. sample of ξ with size N the following estimate applies:

P

(
sup
z∈Rs

|Fξ(z)− FηN (z)| ≥ ε̃

)
≤ k1 exp

(
−k2ε̃2N

)
. (20)

Since by (16) one has for all ε > 0 the implication

sup
z∈Rs

|Fξ(z)− Fη(z)| < min{δ, (ε/L)2} =⇒ dH (Ψc,ξ,p, Ψc,η,p) < ε,

it follows from (20) with ε̃ := min{δ, (ε/L)2} that

P
(
dH
(
Ψc,ξ,p, Ψc,ηN ,p

)
≥ ε
)
≤ k1 exp

(
−k2
(
min{δ, (ε/L)2}

)2
N

)
. (21)

This last relation establishes an exponential bound for the convergence of Haus-
dorff distance between the solution sets of the original problem and the problem
approximated by a sample of size N . Obviously, the quantity

k2

(
min{δ, (ε/L)2}

)2
determines the exponential decay of the required sample size. However, for prac-
tical use, one would have to know the values or at least estimates for δ and L
which is difficult or impossible in general. Then, the availability of an exponen-
tial convergence result does not exclude excessive sample sizes even in order to
give a sense to (21), i.e., to ensure that the right-hand side is smaller than one
as an upper probability estimate. Revisiting Theorem 3, one observes that the
couple (δ, L) in (16) is not uniquely determined. Therefore, let us define the best
possible coefficient of exponential decay by

ϑ (c, ξ, p, ε) := sup

{
k2

(
min{δ, (ε/L)2}

)2∣∣∣∣ (δ, L) satisfy (16) for (Pc,ξ,p)

}
.

Then, (21) can be formally improved to

P
(
dH
(
Ψc,ξ,p, Ψc,ηN ,p

)
≥ ε
)
≤ k1 exp (−ϑ (c, ξ, p, ε) ·N) .

The following result demonstrates that for a given significant problem class, this
coefficient of exponential decay may be arbitrarily close to zero, thus driving the
required sample size to infinity.

Theorem 4. In (2), let s > 1, ξ ∼ N (0, Is) and p ∈ (0, 1) be arbitrarily given.
Then, for any ε > 0 one has that

inf {ϑ (c, ξ, p, ε) |c � 0} = 0,

where ’c � 0’ means ci > 0 for i = 1, . . . , s.
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Proof. Denote by τ the infimum above and assume that τ > 0. Then, ϑ (c, ξ, p, ε)
≥ τ for all c � 0. By definition of ϑ (c, ξ, p, ε), we infer that

∀c � 0 ∃ (δ, L) : (δ, L) satisfy (16) for (Pc,ξ,p) and k2

(
min{δ, (ε/L)2}

)2
≥ τ/2.

The last relation entails that

δ ≥
√

τ

2k2
=: δ̄, L ≤ ε

4

√
2k2
τ

=: L̄.

Note that δ̄ and L̄ do not depend on c. Consequently, we have shown that there
exist δ̄ > 0 and L̄ such that

∀c � 0 ∃δ ≥ δ̄, L ≤ L̄ : (16) holds true for (Pc,ξ,p).

This statement can be evidently reduced to:

∀c � 0 : dH (Ψc,ξ,p, Ψc,η,p) ≤ L̄
√

sup
z∈Rs

|Fξ(z)− Fη(z)| (22)

∀η : sup
z∈Rs

|Fξ(z)− Fη(z)| < δ̄.

From (20) we infer that, for any N ,

P

(
sup
z∈Rs

|Fξ(z)− FηN (z)| < δ̄/2

)
≥ 1− k1 exp

(
−k2δ̄2N/4

)
,

where ηN has an empirical distribution of an i.i.d. sample of ξ with size N . For
N →∞, the right-hand side tends to one such that the probability on the left-
hand side is at least strictly positive. As a consequence, for some fixed N large
enough, there exists a discrete random vector ηN with N atoms such that

sup
z∈Rs

|Fξ(z)− FηN (z)| < δ̄/2.

Then, (22) implies that

∀c � 0 : dH
(
Ψc,ξ,p, Ψc,ηN ,p

)
≤ L̄
√
δ̄/2. (23)

Now, since supp ηN is compact, Theorem 2 yields the existence of some c̃ � 0
such that

inf{‖x− y‖ | x ∈ Ψc̃,ξ,p, y ∈ Ψc̃,ηN ,p} > L̄
√
δ̄/2.

This, however, is a contradiction with (23) because

dH (A,B) ≥ inf{‖x− y‖ | x ∈ A, y ∈ B}

for any closed sets A,B. Hence, τ = 0, as was to be shown.
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The effect of the previous theorem can already be illustrated in two dimensions:

Example 1. Consider the following 2-dimensional problem:

min{x1 + 10−4x2 | P(ξ1 ≤ x1, ξ2 ≤ x2) ≥ 0.99}, ξ ∼ N
(
(0, 0),

(
1 0
0 1

))
By independence of components, we may rewrite the chance constraint as

Φ(x1)Φ(x2) ≥ 0.99,

where Φ denotes the one-dimensional standard normal distribution function.
Referring to the optimality conditions as in (15), the solution of this problem
is equivalently characterized by the following three nonlinear equations in the
three variables x1, x2, λ:

Φ(x1)Φ(x2) = 0.99, ϕ(x)Φ(y) = λ, ϕ(y)Φ(x) = 10−4λ.

Here, ϕ is the density of the one-dimensional standard normal distribution. This
system is easily solved numerically, providing a unique optimal solution x∗1 =
2.33, x∗2 = 4.88.

Now, suppose that we want to approximate this solution empirically up to a
precision of ε = 0.1. Then, in particular, the second component of the solution to
the problem with empirical approximation has to exceed the value 4.78. Now, the
second components ξ12 , . . . , ξ

N
2 of an i.i.d. sample of ξ are i.i.d. standard normal.

Hence,
P( max

i=1,...,N
ξi2 ≤ t) = ΦN (t).

For instance, for N = 106 and t = 4.78, one has ΦN (t) ≈ 0.42. This means that
the probability of obtaining a one-digit precise solution by empirical approxima-
tion with a huge sample size like one million is less than 1− 0.42 = 0.58.

Certainly, the effect of the example relies on the highly unbalanced cost vector
c =
(
1, 10−4

)
. Making it more reasonably balanced like c = (1, 0.1), one would

still need a sample size of N ≈ 6.300 for estimating the solution of the problem
with a precision of 0.1 at a reasonably high probability of 0.99. Taking into
account that N corresponds to the number of binary variables required in the
discrete optimization problem, this is already a considerable quantity given the
trivial dimension s = 2 of the problem. Of course, things may be expected to
become much worse in larger dimension.
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modified version of Landweber iteration with a priori regularization pa-
rameter choice in a Banach space setting.
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An increasing number of inverse problems is nowadays posed in a Banach space
rather than a Hilbert space setting, cf., e.g., [2,6,13] and the references therein.

An Example of a model problem, where the use of non-Hilbert Banach spaces
is useful, is the identification of the space-dependent coefficient function c in the
elliptic boundary value problem

−Δu+ cu = f in Ω (1)

u = 0 on ∂Ω (2)

from measurements of u in Ω ⊆ Rd, d ∈ {1, 2, 3}, where f is assumed to be
known. Here e.g., the choices p = 1 for recovering sparse solutions, q = ∞ for
modelling uniformly bounded noise, or q = 1 for dealing with impulsive noise
are particulary promising, see, e.g., [3] and the numerical experiments in Section
7.3.3 of [13].

Motivated by this fact we consider nonlinear ill-posed operator equations

F (x) = y (3)

where F maps between Banach spaces X and Y .
In the example above, the forward operator F maps the coefficient function

c to the solution of the boundary value problem (1), (2), and is well-defined as
an operator

F : D(F ) ⊆ Lp(Ω)→ Lq(Ω) ,
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where D(F ) = {c ∈ X | ∃ ĉ ∈ L∞(Ω), ĉ ≥ 0 a.e. : ‖c− ĉ‖X ≤ r}, r sufficiently
small, for any

p, q ∈ [1,∞], f ∈ L1(Ω) if d ∈ {1, 2}
p ∈ [1,∞], q ∈ (d2 ,∞], f ∈ Ls(Ω), s > d

2 if d ≥ 3 ,

see Section 1.3 in [13].
Since the given data yδ are typically contaminated by noise, regularization

has to be applied. We are going to assume that the noise level δ in

‖y − yδ‖ ≤ δ (4)

is known and provide convergence results in the sense of regularization methods,
i.e., as δ tends to zero. In the following, x0 is some initial guess and we will
assume that a solution x† to (3) exists.

Variational methods in Banach space have been extensively studied in the
literature, see, e.g., [2,10,6] and the references therein.

Since these generalizations of Tikhonov regularization require computation of
a global minimizer, iterative methods are an attractive alternative especially for
large scale problems. After convergence results on iterative methods for nonlinear
ill-posed operator equations in Banach spaces had already been obtained in the
1990’s (cf. the references in [1]) in the special case X = Y , the general case
X = Y has only been treaten quite recently, see e.g. [5], [7], and [9] for an
analysis of gradient and Newton type iterations. While convergence rates have
already been established for the iteratively regularized Gauss-Newton iteration
in [7], the question of convergence rates remains challenging and will be tackled
in this paper; we refer to [14] for a different approach.

In order to formulate and later on analyze the method, we have to introduce
some basic notations and concepts.

Consider, for some q ∈ (1,∞), the duality mapping JXq (x) := ∂
{

1
q ‖x‖q

}
,

which maps from X to its dual X∗. To analyze convergence rates we employ the
Bregman distance

Djq (x̃, x) =
1

q
‖x̃‖q − 1

q
‖x‖q − 〈jXq (x), x̃ − x〉X∗.X

(where jXq (x) denotes a single valued selection of JXq (x)) or its shifted version

Dx0
q (x̃, x) := Djq (x̃ − x0, x− x0) .

Throughout this paper we will assume that X is smooth, which means that the
duality mapping is single-valued, and moreover, that X is q-convex, i.e.,

Djq (x, y) ≥ cq‖x− y‖q (5)

for some constant cq > 0. As a consequence, X is reflexive and we also have

Djq∗ (x
∗, y∗) ≤ Cq∗‖x∗ − y∗‖q

∗
, (6)
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for some Cq∗ . Here q
∗ denotes the dual index q∗ = q

q−1 . Moreover, the duality

mapping is bijective and J−1
q = JX

∗
q∗ , the latter denoting the (by q-convexity also

single-valued) duality mapping on X∗. We will also make use of the identities

Djq (x, y) = Djq (x, z) +Djq (z, y) + 〈JXq (z)− JXq (y), x− z〉X∗,X (7)

and
Djq (y, x) = Djq∗ (J

X
q (x), JXq (y)) . (8)

For more details on the geometry of Banach spaces we refer, e.g., to [12] and the
references therein.

We here consider the iteratively regularized Landweber iteration

JXq (xδn+1 − x0) = (1− αn)J
X
q (xδn − x0)− μnA

∗
nj

Y
p (F (xδn)− yδ) , (9)

xδn+1 = x0 + JX
∗

q∗ (JXq (xδn+1 − x0)) , n = 0, 1, . . .

where we abbreviate
An = F ′(xδn) ,

which, for an appropriate choice of the sequence {αn}n∈IN ∈ (0, 1], has been
shown to be convergent with rates under a source condition

x† − x0 ∈ R(F ′(x†)∗F ′(x†))ν/2), (10)

with ν = 1 in a Hilbert space setting in [11]. Since the linearized forward op-
erator F ′(x) typically has some smoothing property (reflecting the ill-posedness
of the inverse problems) condition (10) can often be interpreted as a regularity
assumption on the initial error x† − x0, which is stronger for larger ν.

In the Hilbert space case the proof of convergence rates for the plain Landwe-
ber iteration (i.e., (9) with αn = 0) under source conditions (10) relies on the
fact that the iteration errors xδn − x† remain in the range of (F ′(x†)∗F ′(x†))ν/2

and their preimages under (F ′(x†)∗F ′(x†))ν/2 form a bounded sequence (cf.,
Proposition 2.11 in [8]). Since carrying over this approach to the Banach space
setting would require more restrictive assumptions on the structure of the spaces
even in the special case ν = 1, we here consider the modified version with an
appropriate choice of {αn}n∈IN ∈ (0, 1].

In place of the Hilbert space source condition (10), we consider variational
inequalities

∃β > 0 ∀x ∈ BD
ρ (x†) :

|〈JXq (x† − x0), x− x†〉X∗×X | ≤ βDx0
q (x†, x)

1−ν
2 ‖F ′(x†)(x− x†)‖ν , (11)

cf., e.g., [4], where

BD
ρ (x†) = {x ∈ X |Dx0

q (x†, x) ≤ ρ2}

with ρ > 0 such that x0 ∈ BD
ρ (x†). Using the interpolation and the Cauchy-

Schwarz inequality, it is readily checked that in the Hilbert space case (10)
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implies (11). For more details on such variational inequalities we refer to Section
3.2.3 in [13] and the references therein.

The assumptions on the forward operator besides a condition on the domain

BD
ρ (x†) ⊆ D(F ) (12)

include a structural condition on its degree of nonlinearity (cf. [4]∥∥(F ′(x† + v)− F ′(x†))v
∥∥ ≤ K

∥∥F ′(x†)v
∥∥c1 Dx0

q (x†, v + x†)c2 ,

v ∈ X, x† + v ∈ BD
ρ (x†) , (13)

whose strength depends on the smoothness index in (11). Namely, we assume
that

c1 = 1 or c1 + c2p > 1 or (c1 + c2p ≥ 1 and K is sufficiently small) (14)

c1 + c2
2ν
ν+1 ≥ 1 , (15)

so that in case ν = 1, a Lipschitz condition on F ′, corresponding to (c1, c2) =
(0, 1) is sufficient.

Here F ′ denotes the Gateaux derivative of F , hence a Taylor remainder
estimate ∥∥F (xδn)− F (x†)− F ′(x†)(xδn − x†)

∥∥ (16)

=
∥∥g(1)− g(0)− F ′(x†)(xδn − x†)

∥∥
=

∥∥∥∥∫ 1

0

g′(t) dt− F ′(x†)(xδn − x†)

∥∥∥∥
=

∥∥∥∥∫ 1

0

F ′(x† + t(xδn − x†))(xδn − x†) dt− F ′(x†)(xδn − x†)

∥∥∥∥
≤ K

∥∥F ′(x†)(xδn − x†)
∥∥c1 Dx0

q (x†, xδn)
c2 (17)

where g : t �→ F (x† + t(xδn − x†)), follows from (13).
We will assume that in each step the step size μn > 0 in (9) is chosen such

that

μn
1− 3C(c1)K

3(1− C(c1)K)
‖F (xδn)− yδ‖p − 2q

∗+q−2Cq∗μ
q∗
n ‖A∗

nj
Y
p (F (xδn)− yδ)‖q∗ ≥ 0

(18)
where C(c1) = cc11 (1 − c1)

1−c1 , and c1, K are as in (13), which is possible, e.g.,

by a choice 0 < μn ≤ Cμ
‖F (xδ

n)−yδ‖
q−p
q−1

‖An‖q∗ =: μn with Cμ := 22−q∗−q

3
1−3C(c1)K

(1−C(c1)K)Cq∗
If

p ≥ q (19)

and F , F ′ are bounded on BD
ρ (x†), it is possible to bound μn away from zero

μn ≥ Cμ

(
sup

x∈BD
ρ (x†)

(‖F (x)− y‖+ δ)p−q‖F ′(x)‖q
)−1/(q−1)

=: μ (20)
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for δ ∈ [0, δ], provided the iterates remain in BD
ρ (x†) (which we will show by

induction in the proof of Theorem 1). Hence, there exist μ, μ > 0 independent
of n and δ such that we can choose

0 < μ ≤ μn ≤ μ , (21)

(e.g., by simply setting μn ≡ μ).
Moreover, we will use an a priori choice of the stopping index n∗ according to

n∗(δ) = min{n ∈ IN : α
ν+1

p(ν+1)−2ν
n ≤ τδ} , (22)

and of {αn}n∈IN such that(
αn+1

αn

) 2ν
p(ν+1)−2ν

+ 1
3αn − 1 ≥ cαn (23)

for some c ∈ (0, 13 ) independent of n, where ν ∈ [0, 1] is the exponent in the
variational inequality (11).

Remark 1. A possible choice of {αn}n∈IN satisfying (23) and smallness of αmax

is given by

αn =
α0

(n+ 1)x

with x ∈ (0, 1] such that 3xθ < α0 sufficiently small, since then with c :=
1
3 −

xθ
α0

> 0, using the abbreviation θ = 2ν
p(ν+1)−2ν ∈ [0, 1

p−1 ] we get by the Mean

Value Theorem(
αn+1

αn

)θ
+ (13 − c)αn − 1

=
αn
α0

{
α0(

1
3 − c)− (n+ 2)xθ − (n+ 1)xθ

(n+ 2)xθ
(n+ 1)x

}
=

αn
α0

{
α0(

1
3 − c)− xθ(n+ 1 + t)xθ−1

(n+ 2)xθ
(n+ 1)x

}
≥ αn

α0

{
α0(

1
3 − c)− xθ

(n+ 1)x

n+ 1 + t

}
≥ 0 ,

for some t ∈ [0, 1].

Theorem 1. Assume that X is smooth and q-convex, that x0 is sufficiently close
to x†, i.e., x0 ∈ BD

ρ (x†), (which by (5) implies that ‖x†−x0‖ is also small), that
a variational inequality (11) with ν ∈ (0, 1] and β sufficiently small is satisfied,
that F satisfies (13) with (14), (15), that F and F ′ are continuous and uniformly
bounded in BD

ρ (x†), that (12) holds and that

q∗ ≥ 2ν

p(ν + 1)− 2ν
+ 1 . (24)
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Let n∗(δ) be chosen according to (22) with τ sufficiently large. Moreover assume
that (19) holds and the sequence {μn}n∈IN is chosen such that (21) holds for
0 < μ < μ according to (20), and let the sequence {αn}n∈IN ⊆ [0, 1] be chosen
such that (23) holds, and αmax = maxn∈IN αn is sufficiently small.

Then, the iterates xδn+1 remain in BD
ρ (x†) for all n ≤ n∗(δ) − 1 with n∗

according to (22). Moreover, we obtain optimal convergence rates

Dx0
q (x†, xn∗) = O(δ

2ν
ν+1 ) , as δ → 0 (25)

as well as in the noise free case δ = 0

Dx0
q (x†, xn) = O

(
α

2ν
p(ν+1)−2ν
n

)
(26)

for all n ∈ IN.

Remark 2. Note that the rate exponent in (26) 2ν
p(ν+1)−2ν = 2ν

ν+1 (p −
2ν
ν+1 )

−1 ,

always lies in the interval [0, 1
p−1 ], since

2ν
ν+1 ∈ [0, 1].

Moreover, note that Theorem 1 provides a results on rates only, but no con-
vergence result without variational inequality. This corresponds to the situation
from [11] in a Hilbert space setting.

Proof. First of all, for xδn ∈ BD
ρ (x†), (13) allows us to estimate as follows (see

also (16)) in case c1 ∈ [0, 1):∥∥F (xδn)− F (x†)−A(xδn − x†)
∥∥

≤ K
∥∥A(xδn − x†)

∥∥c1 Dx0
q (x†, xδn)

c2

≤ C(c1)K
(∥∥A(xδn − x†)

∥∥+Dx0
q (x†, xδn)

c2
1−c1

)
, (27)

where we have used the abbreviation A = F ′(x†) and the elementary estimate

a1−λbλ ≤ C(λ)(a+ b) with C(λ) = λλ(1− λ)1−λ for a, b ≥ 0 , λ ∈ (0, 1) , (28)

and therewith, by the second triangle inequality,

∥∥A(xδn − x†)
∥∥ ≤ 1

1− C(c1)K

(∥∥F (xδn)− F (x†)
∥∥+ C(c1)KDx0

q (x†, xδn)
c2

1−c1

)
(29)

as well as analogously∥∥F (xδn)− F (x†)−An(x
δ
n − x†)

∥∥
≤ 2C(c1)K

(∥∥A(xδn − x†)
∥∥+Dx0

q (x†, xδn)
c2

1−c1

)
≤ 2C(c1)K

1− C(c1)K

(∥∥F (xδn)− F (x†)
∥∥+Dx0

q (x†, xδn)
c2

1−c1

)
. (30)
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For any n ≤ n∗ according to (22), by (7) we have

Dx0
q (x†, xδn+1)−Dx0

q (x†, xδn)

= Dx0
q (xδn, x

δ
n+1) + 〈JXq (xδn − x0)− JXq (xδn+1 − x0), x

† − xδn〉X∗×X

= Dx0
q (xδn, x

δ
n+1)− μn〈jYp (F (xδn)− yδ), An(x

δ
n − x†)〉Y ∗×Y

+αn〈JXq (x† − x0), x
† − xδn〉X∗×X

−αn〈JXq (x† − x0)− JXq (xδn − x0), x
† − xδn〉X∗×X (31)

where the terms on the right hand side can be estimated as follows.
By (6) and (8) we have

Dx0
q (xδ

n, x
δ
n+1) (32)

≤ Cq∗‖JX
q (xδ

n+1 − x0)− JX
q (xδ

n − x0)‖q
∗

= Cq∗‖αnJ
X
q (xδ

n − x0) + μnA
∗
nj

Y
p (F (xδ

n)− yδ)‖q
∗

≤ 2q
∗−1Cq∗

(
αq∗
n ‖xδ

n − x0‖q + μq∗
n ‖A∗

nj
Y
p (F (xδ

n)− yδ)‖q
∗)

≤ 2q
∗−1Cq∗

(
αq∗
n (2q−1(‖x† − x0‖q +

1

cq
Dx0

q (x†, xδ
n)) + μq∗

n ‖A∗
nj

Y
p (F (xδ

n)− yδ)‖q
∗
)
(33)

where we have used the triangle inequality in X∗ and X , the inequality

(a+ b)λ ≤ 2λ−1(aλ + bλ) for a, b ≥ 0 , λ ≥ 1 , (34)

and (5).
For the second term on the right hand side of (31) we get, using (30), (28),

(34),

〈jYp (F (xδn)− yδ), An(x
δ
n − x†)〉Y ∗×Y

= 〈jYp (F (xδn)− yδ), F (xδn)− yδ〉Y ∗×Y

−〈jYp (F (xδn)− yδ), F (xδn)− yδ −An(x
δ
n − x†)〉Y ∗×Y

≥ 1− 3C(c1)K

1− C(c1)K
‖F (xδn)− yδ‖p

−‖F (xδn)− yδ‖p−1

(
2C(c1)K

1− C(c1)K
Dx0
q (x†, xδn)

c2
1−c1 +

1 + C(c1)K

1− C(c1)K
δ

)
=

1− 3C(c1)K

1− C(c1)K
‖F (xδn)− yδ‖p

−
(

1− 3C(c1)K

3C(p−1
p )(1 − C(c1)K)

‖F (xδn)− yδ‖p
) p−1

p
(
(3C(p−1

p ))p−1

(1− C(c1)K)

) 1
p

(
2C(c1)KDx0

q (x†, xδn)
c2

1−c1 + (1 + C(c1)K)δ
)
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≥ 1− 3C(c1)K

1− C(c1)K
‖F (xδ

n)− yδ‖p − C( p−1
p

)

{
1− 3C(c1)K

3C( p−1
p

)(1− C(c1)K)
‖F (xδ

n)− yδ‖p

+
(3C( p−1

p
)p−1

(1− C(c1)K)
2p−1

(
(2C(c1)K)pDx0

q (x†, xδ
n)

c2p
1−c1 + (1 + C(c1)K)pδp

)}
.

(35)

Using the variational inequality (11), (29), and

(a+ b)λ ≤ (aλ + bλ) for a, b ≥ 0 , λ ∈ [0, 1] , (36)

we get

|αn〈JX
q (x† − x0), x

† − xδ
n〉X∗×X |

≤ βαnD
x0
q (x†, xδ

n)
1−ν
2 ‖F ′(x†)(xδ

n − x†)‖ν

≤ βαnD
x0
q (x†, xδ

n)
1−ν
2

1

(1− C(c1)K)ν

(∥∥∥F (xδ
n)− yδ

∥∥∥+ δ + C(c1)KDx0
q (x†, xδ

n)
c2

1−c1

)ν

≤ βαnD
x0
q (x†, xδ

n)
1−ν
2 ε−ν

(
ε

1

(1− C(c1)K)ν
(‖F (xδ

n)− yδ‖+ δ)

)ν

+βαn

(
C(c1)K

(1− C(c1)K)

)ν

Dx0
q (x†, xδ

n)
1−ν
2

+
νc2
1−c1

≤ C( ν
p
)

{(
βαnD

x0
q (x†, xδ

n)
1−ν
2 ε−ν

) p
p−ν

+

(
ε

1

(1− C(c1)K)ν
(‖F (xδ

n)− yδ‖+ δ)

)p}
+βαn

(
C(c1)K

(1− C(c1)K)

)ν

Dx0
q (x†, xδ

n)
1−ν
2

+
νc2
1−c1

= C(νp )

⎧⎪⎨⎪⎩(βε−ν)
p

p−ν (3C(νp )C(p(1−ν)
2(p−ν) ))

p(1−ν)
2(p−ν)α

p(1+ν)
2(p−ν)
n

⎛⎝ αnD
x0
q (x†, xδn)

3C(νp )C(p(1−ν)
2(p−ν) )

⎞⎠
p(1−ν)
2(p−ν)

⎫⎪⎬⎪⎭
+

(
ε

1

(1− C(c1)K)ν
(‖F (xδn)− yδ‖+ δ)

)p}
+βαn

(
C(c1)K

(1 − C(c1)K)

)ν
Dx0
q (x†, xδn)

1−ν−c1+νc1+2νc2
2(1−c1)

≤ C( ν
p
)

{
C( p(1−ν)

2(p−ν)
)

[(
βε−ν(3C( ν

p
)C( p(1−ν)

2(p−ν)
))

1−ν
2

) 2p
p(ν+1)−2ν

α
p(1+ν)

p(ν+1)−2ν
n

+

(
αnD

x0
q (x†, xδ

n)

3C( ν
p
)C( p(1−ν)

2(p−ν)
)

)]

+

(
ε

1

(1− C(c1)K)ν
(‖F (xδ

n)− yδ‖+ δ)

)p}
+
1

3
αnD

x0
q (x†, xδ

n)

(37)
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where we have used (28) two times and ε > 0 will be chosen as a sufficiently
small number below. Moreover, by (15), the exponent 1−ν−c1+νc1+2νc2

2(1−c1)
= 1 +

1+ν
2(1−c1)

(c1 +
2ν
ν+1c2 − 1) is larger or equal to one and β is sufficiently small so

that β
(

C(c1)K
(1−C(c1)K)

)ν
ρ

1−ν−c1+νc1+2νc2
2(1−c1)

−1
< 1

3 .

Finally, we have that

〈JXq (x† − x0)− JXq (xδn − x0), x
† − xδn〉X∗×X = Dx0

q (x†, xδn) +Dx0
q (xδn, x

†)

≥ Dx0
q (x†, xδn) (38)

Inserting estimates (32)-(38) with ε = 2p−1μ
1/p
n

(
1−3C(c1)K
3(1−C(c1)K)

)1/p
(1−C(c1)K)ν

C( ν
p )

into (31) and using boundedness away from zero of μn and the abbreviations

dn = Dx0
q (x†, xδn)

1/2

C0 = 6p−1C(p−1
p )p

(2C(c1)K)p

(1− C(c1)K)

C1 = 2q
∗+q−2Cq∗

cq

C2 = C(νp )C(p(1−ν)
2(p−ν) )

(
βε−ν(3C(νp )C(p(1−ν)

2(p−ν) )
1−ν
2

) 2p
p(ν+1)−2ν

C3 = 2q
∗+q−2Cq∗‖x† − x0‖q

C4 = 2p−1C(
ν

p
)ε

1

(1 − C(c1)K)ν
+ 6p−1C(p−1

p )p
(1 + C(c1)K)p

1− C(c1)K

ε = 2p−1μ1/p

(
1− 3C(c1)K

3(1− C(c1)K)

)1/p
(1− C(c1)K)ν

C(νp )

ε = 2p−1μ1/p

(
1− 3C(c1)K

3(1− C(c1)K)

)1/p
(1− C(c1)K)ν

C(νp )

we obtain

d2n+1 ≤ C0d
2c2p
1−c1
n + (1 − 1

3αn + C1α
q∗
n )d2n + C2α

p(1+ν)
p(ν+1)−2ν
n + C3α

q∗
n + C4δ

p

−
(
μn

1− 3C(c1)K

3(1− C(c1)K)
‖F (xδn)− yδ‖p − 2q

∗+q−2Cq∗μ
q∗
n ‖A∗

nj
Y
p (F (xδn)− yδ)‖q

∗
)
.

Here the last term is nonpositive due to the choice (18) of μn, so that we arrive
at

d2n+1 ≤ C0d
2c2p

1−c1
n + (1− 1

3αn + C1α
q∗
n )d2n + (C2 + C3 + C4τ

−p)︸ ︷︷ ︸
=:C5

α
p(1+ν)

p(ν+1)−2ν
n (39)

where we have used (24) and the stopping rule (22). Denoting

γn :=
d2n

α
2ν

p(ν+1)−2ν
n
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we get the following recursion

γn+1 ≤ C0

(
αn
αn+1

)θ
αθωn γωn +

(
αn
αn+1

)θ
(1− 1

3αn+C1α
q∗
n )γn+C5

(
αn
αn+1

)θ
αn

(40)
with

θ =
2ν

p(ν + 1)− 2ν
ω =

c2p

1− c1
,

where
ω ≥ 1

by (14) and

θω =
p

p− 2ν
ν+1

c2
2ν
ν+1

1− c1
≥ 1

due to assumption (15). Hence as sufficient conditions for uniform boundedness
of {γn}n≤n∗ by γ and for xδn+1 ∈ BD

ρ (x†) we get

γ ≤ ρ2 (41)

C0α
θω−1
n γω −

{(
αn+1

αn

)θ
+ 1

3αn − 1− C1α
q∗
n

}
α−1
n γ + C5 ≤ 0 , (42)

where by q∗ > 1, (15) the factors C0α
θω−1
n , C1α

q∗−1
n and C5 can be made small

for small αmax, β, ‖x† − x0‖ and large τ . We use this fact to achieve

C0α
θω−1
n ρω−1 + C1α

q∗−1
n ≤ c̃ < c

with c̃ independent of n, which together with (23) yields sufficiency of

C5

c− c̃
≤ γ ≤ ρ2

for (41), (42), which for any (even small) prescribed ρ is indeed enabled by
possibly decreasing β, ‖x† − x0‖, τ−1, and therewith C5.

In case c1 = 1, estimates (29), (30) simplify to∥∥A(xδn − x†)
∥∥ ≤ 1

1− ρ2c2K

∥∥F (xδn)− F (x†)
∥∥ (43)

and ∥∥F (xδn)− F (x†)−An(x
δ
n − x†)

∥∥ ≤ 2ρ2c2K

1− ρ2c2K

∥∥F (xδn)− F (x†)
∥∥ . (44)

Therewith, the terms containing Dx0
q (x†, xδn)

c2
1−c1 are removed and C(c1) is re-

placed by ρ2c2 in (32)-(38), so that we end up with a recursion of the form (40)
(with C0 replace by zero) as before. Hence the remainder of the proof of uniform
boundedness of γn can be done in the same way as in case c1 < 1.
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In case δ = 0, i.e., n∗ = ∞, uniform boundedness of {γn}n∈IN implies (26).
For δ > 0 we get (25) by using (22) in

Dx0
q (x†, xn∗) = γn∗α

2ν
p(ν+1)−2ν
n∗ ≤ γα

2ν
p(ν+1)−2ν
n∗ ≤ γ(τδ)

2ν
ν+1

Remark 3. In view of estimate (39), an optimal choice of αn would be one that
minimizes the right hand side. At least in the special case that the same power

of αn appears in the last two terms, i.e., p(1+ν)
p(ν+1)−2ν = q∗, elementary calculus

yields

(αoptn )
2ν

p(ν+1)−2ν =
Dx0
q (x†, xδn)

3q∗(C1D
x0
q (x†, xδn) + C5)

,

which shows that the obtained relation Dx0
q (x†, xδn) ∼ α

2ν
p(ν+1)−2ν
n is indeed rea-

sonable and probably even optimal.
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Abstract. In this paper we present a brief review of some important
results on weak compactness in the space of vector valued measures. We
also review some recent results of the author on weak compactness of
any set of operator valued measures. These results are then applied to
optimal structural feedback control for deterministic systems on infinite
dimensional spaces.
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erator valued measures, Weak compactness, Semigroups of bounded lin-
ear operators, Optimal Structural control.
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1 Introduction

Necessary and sufficient conditions for weak compactness in the space of vector
measures has been a subject of great interest over half a century. One of the sem-
inal results in this topic is the well known Bartle-Dunford-Schwartz theorem [1,
Theorem 5, p.105] for countably additive bounded vector measures with values
in Banach spaces satisfying, along with their duals, the Radon-Nikodym prop-
erty. This result was extended to finitely additive vector measures by Brooks [3]
and Brooks and Dinculeanu [1, Corollary 6, p.106]. We present in this section
some of the celebrated results on this topic. For vector measures see [1] and [2].
First we present the Bartle-Dunford-Schwartz theorem (BDS) [1, Theorem 5,
p.105].

Theorem 1.1(BDS). LetD be any set and Σ ≡ σ(D) denote the sigma algebra
of subsets of the set D, and X,X∗ a dual pair of B-spaces satisfying (Radon-
Nikodym Property) RNP. A set Γ ⊂Mca(Σ,X) is relatively weakly compact if,
and only if,

(i) Γ is bounded
(ii) {|μ|, μ ∈ Γ} is uniformly c.a
(iii) for each σ ∈ Σ the set {μ(σ), μ ∈ Γ} ⊂ X is weakly relatively compact.

This result was extended to finitely additive (f.a) vector measures by Brooks [3]
for reflexive Banach spaces X , and then by Brooks and Dinculeanu [1, Corollary
6, 106] for nonreflexive spaces.

We state here the later result.

D. Hömberg and F. Tröltzsch (Eds.): CSMO 2011, IFIP AICT 391, pp. 49–58, 2013.
c© IFIP International Federation for Information Processing 2013
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Theorem 1.2 (Brooks & Dinculeanu). Let Σ be an algebra of subsets of a
set D, Mba(Σ,X) the space of finitely additive vector measures with values in
X and {X,X∗} satisfy RNP. A set Γ ⊂Mba(Σ,X) is weakly relatively compact
if, and only if, the following three conditions are satisfied

(i) Γ is bounded
(ii) there exists a f.a nonnegative measure ν such that limν(σ)→0 |μ|(σ) = 0

uniformly w.r.t μ ∈ Γ.
(iii) for each σ ∈ Σ, the set {μ(σ), μ ∈ Γ} ⊂ X is relatively (conditionally)

weakly compact.

These results have been used by the author in the study of optimal control of
impulsive systems on Banach spaces [13].

Weak sequential compactness for regular vector measures have been studied
by Kuo [4, Theorem 1.6, Theorem 3.3] where he gives several results on weak
sequential compactness based on set-wise weak convergence.

In physical sciences and engineering, involving control theory and optimiza-
tion, one has the freedom to choose from a given class of vector or operator
valued measures the best one that minimizes or maximizes certain functionals
representing a measure of performance of the system. This is where compactness
is useful. These problems arise naturally in the area of optimization, optimal con-
trol, system identification, Kalman filtering, structural control etc [8,9,10,13,14].

2 Basic Properties of Operator Valued Measures

Let D be a compact Hausdorff space and Σ an algebra of subsets of D, {X,Y }
a pair of B-spaces and L(X,Y ) is the space of bounded linear operators from X
to Y. The function

B : Σ −→ L(X,Y )

is generally a finitely additive (f.a) set function with values in L(X,Y ) . This
class, denoted by Mba(Σ,L(X,Y )), is called the space of operator valued mea-
sures. Clearly, this is a B-space with respect to the topology induced by the
supremum of the operator norm on Σ.

Now we introduce the notion of countable additivity of operator valued mea-
sures. Unlike vector measures (Banach space valued), the notion of countable
additivity of operator valued measures depends on the topology used for the
space of bounded linear operators. Thus if we limit ourselves to the most popu-
lar topologies such as uniform, strong, weak operator topologies we have at least
three kinds of countable additivity. This is described below.

Definition 2.1 (ca − τuo) An element B ∈ Mba(Σ,L(X,Y )) is countably ad-
ditive in the uniform operator topology (ca− τuo) if for any family of pairwise
disjoint sets {σi} ∈ Σ, σi ⊂ D and ∪σi ∈ Σ,

lim
n→∞

‖ B(
⋃

σi)−
n∑
i=1

B(σi) ‖L(X,Y )= 0.
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Similarly we define countable additivity in the strong operator topology as
follows.

Definition 2.2 (ca−τso) An element B ∈Mba(Σ,L(X,Y )) is said to be count-
ably additive in the strong operator topology (ca− τso) if for any family of pair
wise disjoint sets {σi} ∈ Σ, σi ⊂ D, ∪σi ∈ Σ, and for every x ∈ X,

lim
n→∞

|B(
⋃

σi)x−
n∑
i=1

B(σi)x|Y = 0.

Note that if X = R then B reduces to an Y valued vector measure and the
countable additivity in the strong operator topology reduces to the usual (norm)
countable additivity. Similarly, if Y = R then B reduces to an X∗-valued vector
measure and the countable additivity in the strong operator topology reduces
to countable additivity in the weak star topology. One can also define count-
able additivity in the weak operator topology. Since we do not use it, it is not
necessary to include it here.

By Orlicz-Pettis Theorem [1,2], a vector measure is countably additive if and
only if it is weakly countably additive. Thus it follows from this result, that
ca− τso ∼= ca− τwo. That is, countable additivity in the strong operator topol-
ogy is equivalent to countable additivity in the weak operator topology. Next
we consider the question of variation. It is known that for Banach space val-
ued vector measures there are two notions of variation, strong variation usually
known as variation, and weak variation called semivariation. Again in the case
of operator valued measures there are as many possibilities of variations as there
are topologies.

For any set J ∈ Σ, let us denote the class of finite disjoint Σ measurable
partitions of J by ΠΣ(J).

Definition 2.3-τuo :(Variation in the τuo) For any B ∈ Mba(Σ,L(X,Y )) its
variation in the uniform operator topology on the set J is given by

|B|u(J) = sup
π∈ΠΣ(J)

∑
σ∈π

‖ B(σ) ‖L(X,Y ),

where the supremum is taken over ΠΣ(J).
Clearly, if X = R then the operator valued measure B reduces to an Y -valued

vector measure and the above expression gives the standard variation of vector
measures.

Definition 2.4-τso(Variation in the τso). The variation of B on J in the
strong operator topology is given by:

|B|s(J) = sup

{
|

n∑
i=1

B(σi)xi|Y , xi ∈ B1(X), {σi, 1 ≤ i ≤ n, } ∈ ΠΣ(J), n ∈ N

}
.

Again if X = R then B reduces to an Y valued vector measure and the above
expression gives the standard semivariation of vector measures. Similarly one
can define variation in the weak operator topology.
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The uniform, strong, and weak variations of B over D are given respectively
by

|B|u(D) ≡ sup{|B|u(σ), σ ∈ Σ}, |B|s(D) ≡ sup{|B|s(σ), σ ∈ Σ}, and

|B|w(D) ≡ sup{|B|w(σ), σ ∈ Σ}.

It is easy to verify that |B|w ≤ |B|s ≤ |B|u. Clearly, this result means that
an element B ∈ Mba(Σ,L(X,Y )) may have finite strong variation while it has
infinite uniform variation. That is , |B|s <∞ but |B|u =∞.

Let B∞(D,X) denote the vector space of bounded Σ-measurable X valued
functions which are uniform limits of Σ-measurable simple functions S(D,X).
Endowed with sup norm topology, B∞(D,X) is a B-Space. Let L1(X,Y ) de-
note the B-space of nuclear operators. It is well known that the Grothendieck
characterization of L ∈ L1(X,Y ) is given by

Lx ≡
∑

λix
∗
i (x)yi, x

∗
i ∈ ∂B1(X

∗), yi ∈ ∂B1(Y ),

with
∑
|λi| <∞, where {xi, x∗i } ∈ X×X∗, {yi, y∗i } ∈ Y ×Y ∗ are the normalized

bi-orthogonal basis of the spaces X and Y, respectively.

3 Weak Compactness

Now we can present some recent results on the characterization of conditionally
weakly compact sets in the space of operator valued measures. The first result
presented here involves Hilbert spaces and nuclear operator valued measures.

Theorem 3.1. Let {X,Y } be a pair of separable Hilbert spaces with complete
ortho-normal basis {xi, yi}. A set Γ ⊂Mba(Σ,L1(X,Y )) is conditionally weakly
compact if, and only if, the following conditions hold:

(c1): Γ is bounded,
(c2): for each σ ∈ Σ,

∑∞
i=1 |(M(σ)xi, yi)Y | is convergent uniformly with re-

spect to M ∈ Γ ,
(c3): for each i ∈ N , the set of scalar valued measures {μM (·) = (M(·)xi, yi),

M ∈ Γ} is a conditionally weakly compact subset of Mba(Σ).

Proof. [10, Theorem 3.2, PMD,(2010),p1-15]

This result was recently extended to more general spaces of operator valued
measures. Here we consider {X,Y } to be a pair of Banach spaces and replace
the space of nuclear operators by L(X,Y ), the space of bounded linear operators.
Let

Mcasbsv(Σ,L(X,Y )) ⊂Mba(Σ,L(X,Y ))

denote the space of operator valued measures countably additive in the strong
operator topology having bounded semivariations (variation in the strong opera-
tor topology). To proceed further, we need to consider the question of integration
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of vector valued functions with respect to operator valued measures. The most
general theory of integration was introduced by Dobrakov [5,6]. This generalizes
the theory of Lebesgue integral, Bochner integral, Bartle bilinear integral and
Dinculeanu integral etc.

For convenience of the reader we recall that a formal series
∑

xn, xn ∈ X, is
said to be unconditionally convergent if

∑
xπ(n) is convergent for every permu-

tation π : N → N. Orlicz-Pettis Theorem [1, Corollary 4, p.22] states that if
every subseries of the series is weakly convergent then the series is uncondition-
ally strongly convergent. This is the foundation of Dobrakov integral.

Dobrakov Integral: For any f ∈ B∞(D,X) and T ∈Mcasbsv(Σ,L(X,Y )) the
integral,

IT (f) ≡
∫
D

T (ds)f(s) ∈ Y,

is well defined in the sense of Dobrakov [5]. As usual the integral is first de-
fined for simple functions S(D,X) and then extended to B∞(D,X) by density
argument. The most important point is that the limit is taken in the sense
of unconditional convergence of the sum arising from the simple functions. This
limit is the Dobrakov integral. This is unlike the Lebesgue and Bochner integrals
which are based on absolute convergence. This is where the main difference is.

Now we can introduce the notion of Dobrakov semivariation as follows.

Definition 3.2. (Dobrakov semivariation) For any T ∈ Mcasbsv(Σ,L(X,Y ))
and σ ∈ Σ define the set function given by

T̂ (σ) ≡ sup

{
|
∫
σ

T (ds)f(s)|Y , f ∈ S(D,X), ‖ f ‖∞≤ 1

}
.

Then the Dobrakov semivariation of T over D is given by T̂ (D) ≡ sup{T̂ (σ),
σ ∈ Σ}.

The reader can easily verify that T̂ (D) = |T |s. In other words, Dobrakov semi
varition is the same as the variation in the strong operator topology.

We need few more concepts before we can return to the compactness issue.

Definition 3.3 (F-Space): A compact Hausdorff space D is said to be an
F -space if every pair of disjoint open Fσ set has disjoint closure, [4, Kuo].

Definition 3.4(Grothendieck Space): A Banach space X is said to be a
Grothendieck space if weak star convergence in its dual X∗ is equivalent to weak
convergence. In other words the X topology of X∗ is equivalent to the X∗∗

topology of X∗.
Well known examples of Grothendieck spaces are reflexive Banach space and

separable dual spaces. For more examples see Diestel & Uhl [1]. Another char-
acterization of Grothedieck space X is that, for every separable Banach space
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Y, every bounded linear operator from X to Y is weakly compact. If K is a
compact metric space then C(K), the space of continuous functions on K, is a
Grothendieck space. The space L∞(μ) is a Grothendieck space if μ is a positive
measure.

A General Result on Weak Compactness: Now we are prepared to present
a general result characterizing weakly compact sets in Mcasbsv(Σ,L(X,Y )). Let
Γ ⊂Mcasbsv(Σ,L(X,Y )) and f ∈ B∞(D,X). Define the set

Γ (f) ≡
{
μ ∈Mba(Σ, Y ) : μ(σ) =

∫
σ

T (ds)f(s), σ ∈ Σ, T ∈ Γ
}
.

It is easy to verify that Γ (f) ⊂Mca(Σ, Y ) ⊂Mba(Σ, Y ).

Theorem 3.5. Suppose D is a compact Hausdorff F -space, and {X,Y } is a
pair of B-spaces with Y being reflexive. Then a set Γ ⊂Mcasbsv(Σ,L(X,Y )) is
conditionally weakly compact if, and only if, the following conditions hold:

(i): Γ is bounded in the sense that sup{T̂ (D) ≡ |T |s, T ∈ Γ} <∞.
(ii): For each f ∈ B∞(D,X), the set {|μ|(·), μ ∈ Γ (f)} is uniformly c.a.

Proof. Detailed proof appears in Ahmed [[11], Theorem 1]. Here we present only
a brief outline. Since Γ is bounded, for each f ∈ B∞(D,X), the set Γ (f) is a
bounded subset of Mca(Σ, Y ). By hypothesis (ii), Γ (f) is uniformly countably
additive. Thus, since Y is reflexive, it follows from Brooks theorem [3, Main
Theorem, Cor.1, p284] that for each f ∈ B∞(D,X), the set Γ (f) is a condition-
ally weakly compact subset of Mca(Σ, Y ). Rest of the proof presents arguments
to demonstrate that this implies conditional weak compactness of Γ itself and
conversely. The tools used are: a result of Kuo [4] that asserts that if D is an
F -space and Y is reflexive then C(D,Y ∗) is a Grothedieck space. Thus w∗ and
weak convergence in Mca(Σ, Y ) are equivalent. Next we use Nikodym uniform
boundedness principle [1, Theorem 1, p14] and the classical uniform bounded-
ness principle for linear operators. Then we use the fact that any closed bounded
convex subset of L(X,Y ) is compact in the weak operator topology if and only
if Y is reflexive. We also use Hahn-Banach theorem to prove boundedness of
the semivariation of the limit of any convergent sequence from Γ. Finally to
prove countable additivity in the strong operator topology, we use Pettis theo-
rem which states that a weakly countably additive vector measure defined on a
sigma algebra is (strongly) countably additive. This completes the outline of our
proof.

Some Remarks and Open Problems

(R1): Note that we have characterized conditionally weakly compact sets in the
spaceMcasbsv(Σ,L(X,Y )).This is a subspace of the space of finitely additive oper-
ator valued measures having finite semivariations denoted byMfabsv(Σ, (X,Y )).
The author believes that following our approach one can obtain characterization of
conditional weak compactness in this space also. In any case it would be interesting
to characterize weakly compact sets in the two larger spaces:
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Mfabsv(Σ,L(X,Y )) ⊂Mba(Σ,L(X,Y )).

(R2): Another fact that we have used in the proof of the above theorem is that
the closed unit ball B1(L(X,Y )) is compact in the weak operator topology. This
means that Y is reflexive. In fact this is a necessary and sufficient condition
for weak compactness of B1(L(X,Y )). It would be interesting to extend our
result to cases where Y is not necessarily reflexive. In other words to improve
our result one must avoid using the compactness of B1(L(X,Y )) in the weak
operator topology.

(R3): One of the very important topic in vector measure theory is the repre-
sentation theory like the Riesz representation theorem. By virtue of Dobrakov
theory, every

T ∈Mcasbsv(Σ,L(X,Y ))

determines a linear operator LT ∈ L(B∞(D,X), Y ), the space of bounded linear
operators from B∞(D,X) to Y , satisfying ‖ LT ‖= |T |s, and so we have the
embedding

Mcasbsv(Σ,L(X,Y )) ↪→ L(B∞(D,X), Y ).

The question is: does every L ∈ L(B∞(D,X), Y ) have the integral representation
with some T ∈ Mcasbsv(Σ,L(X,Y )). The answer seems to be no. Note that
every T ∈ Mfabsv(Σ,L(X,Y )) determines a continuous linear operator LT on
B∞(D,X) to Y through the Dobrakov integral

LT (f) =

∫
D

T (ds)f(s).

This follows from the fact that

|LT (f)|Y = |
∫
D

T (ds)f(s)|Y ≤ |T |s ‖ f ‖B∞(D,X) .

This also shows that Mfabsv(Σ,L(X,Y )) ↪→ L(B∞(D,X), Y ). In fact we can
prove that

Mfabsv(Σ,L(X,Y )) ∼= L(B∞(D,X), Y ).

(R4): Since Y is a reflexive Banach space, every operator L ∈ L(B∞(D,X), Y ) is
weakly compact in the sense that it maps any bounded subset of B∞(D,X) into
a relatively weakly compact subset of Y. Also for the same reason the closed unit
ball B1(L(B∞(D,X), Y )) is compact in the weak operator topology. Thus every
net {Lα, α ∈ Λ} ∈ B1 has a subnet that converges in the weak operator topology
to some Lo ∈ B1(L(B∞(D,X), Y )). If the net {Lα, α ∈ Λ} were generated by
a net Bα ∈ Mcasbsv(Σ,L(X,Y )), the limit operator Lo may not be represented
by a measure Bo from Mcasbsv(Σ,L(X,Y )). In view of the isomorphism stated
above, the representing measure Bo corresponding to Lo may very well be an
element of Mfabsv(Σ,L(X,Y )).
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4 Applications to Optimal Feedback Control

In this section we present two applications of weak compactness to structural
control problems in infinite dimension involving deterministic systems. The re-
sult also applies to stochastic systems on Hilbert spaces.

Consider the structural control system on a real Banach space X

dx = Axdt +B(dt)y + f(x)dt, x(0) = ξ (1)

y = Lx+ η (output) (2)

over the time interval t ∈ [0, T ]. The state space X is a reflexive B-space and the
output space Y is any real Banach space. The operator L ∈ L(X,Y ) represents
the sensor and η is a deterministic bounded Y valued perturbation. The objective
functional is given by

J(B) ≡
∫ T

0

"(t, x(t))dt + |B|s, (3)

where |B|s denotes the semivariation of B over the set I. The admissible set of
structural controls is given by a set Γ ⊂Mcasbsv(ΣI ,L(Y,X)). The objective is
to find a control that minimizes this functional.

Let G0(M,ω) denote the class of infinitesimal generators {A} of C0-semigroups
of linear operators on X with stability parameters (M,ω) for M ≥ 1 and ω ∈ R.

Theorem 4.1. Suppose A ∈ G0(M,ω) generating the semigroup S(t), t ≥ 0,
compact for t > 0, Γ a weakly compact subset ofMcasbsv(ΣI ,L(Y,X)), f locally
Lipschitz with at most linear growth, L ∈ L(X,Y ), η ∈ B∞(I, Y ). There exists
ν ∈ M+

cabv(ΣI) such that |B|s(σ) ≤ ν(σ) for σ ∈ ΣI uniformly w.r.t B ∈ Γ.
The cost integrand " is measurable in t and lower semicontinuous in x on X and
there exists α ∈ L+

1 (I) and β ≥ 0 satisfying

|"(t, x)| ≤ α(t) + β|x|pX , for any p ∈ (0,∞).

Then, there exists a Bo ∈ Γ at which J attains its minimum.

Proof. For detailed proof see [11, Theorem 1]. We present a brief outline. For
existence and uniqueness of (mild) solutions of the system the reader may see [8,
Theorem 3.5, p106]. According to this theorem, the mild solutions are elements
of B∞(I,X). We concentrate on the question of existence of optimal controls.
For ξ ∈ X , and B ∈ Γ, let x(B)(·) ∈ B∞(I,X) denote the mild solution of
the system (1)(2). Under the given assumptions, it is easy to verify that there
exists a ball Br ⊂ X, r ∈ (0,∞), such that x(B)(t) ∈ Br for all t ∈ I and all
B ∈ Γ. Since the set Γ ⊂ Mcasbsv(ΣI ,L(Y,X)) is weakly compact, it suffices

to prove that B −→ J(B) is weakly lower semicontinuous. Let Bn
w−→ Bo in

Mcasbsv(ΣI ,L(Y,X)) and let {xn, xo} denote the corresponding mild solutions
of the output feedback system

dx = Axdt+B(dt)Lx+ f(x)dt+B(dt)η(t),

x(0) = ξ, (4)
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corresponding to B = Bn and B = Bo, respectively. Using compactness property
of the semigroup S(t), t > 0, and a generalized Gronwall type inequality [12]

relative to a nonnegative countably additive measure, we show that xn(t)
s−→

xo(t) in X for each t ∈ I. Then it follows from lower semicontinuity of " in the
second argument that

"(t, xo(t)) ≤ lim inf "(t, xn(t)) a.a t ∈ I.

By use of Hahn-Banach theorem and weak convergence of Bn to Bo in the
space Mcasbsv(ΣI ,L(Y,X)), one can verify without any difficulty that |Bo|s ≤
lim inf |Bn|s. By assumption on f and ", and {α, β, p}, we have "(·, xo(·)) ∈ L1(I)
implying J(B) > −∞ for all B ∈ Γ. Using these results and Fatou’s lemma, we
obtain

J(Bo) ≤ lim inf J(Bn).

This shows that B −→ J(B) is w.".s.c on Mcasbsv(ΣI ,L(Y,X)) and bounded
away from −∞. Since by assumption Γ is compact with respect to the weak
topology, J attains its minimum on Γ. •

Remark. Assumption on compactness of the semigroup S(t) can be relaxed
by imposing a stronger assumption on the admissible set Γ. For example, one
may assume that Γ is compact in the sense that any sequence Bn ∈ Γ has a
subsequence that converges in the strong operator topology set-wise on Σ to an
element of Γ. That is, there exists a Bo ∈ Γ such for each σ ∈ Σ, Bnk

(σ)
τso−→

Bo(σ) in L(X,Y ).

Time Optimal Control. Given the initial state ξ ∈ X and a nonempty closed
target set C ⊂ X not containing ξ, the problem is to find a control B ∈ Γ that
drives the system to C in minimum time. Since the solutions {xB, B ∈ Γ} are
elements of B∞(I,X), and so not necessarily continuous, we must formulate the
objective functional as follows:

J(B) ≡ inf{t ≥ 0 :

∫ t

0

IC(x
B(s)) ds > ε}, (5)

where IC(x) is the characteristic function of the set C taking value 1 for x ∈ C
and 0 outside C and ε ∈ (0, 1). Note that ε > 0 can chosen as small as necessary.
We use the convention that inf(∅) = +∞. The problem is to find Bo ∈ Γ so that
J(Bo) ≤ J(B) for all B ∈ Γ.

Theorem 4.2. Suppose the assumptions of Theorem 4.1 related to {A, f, L, η, Γ}
hold. Consider the output feedback system (4) and the time optimal control
problem as stated above with the target set C, a nonempty closed subset of X,
not containing ξ. Suppose there exists at least one B ∈ Γ for which the set
{t ≥ 0 :

∫ t
0 IC(x

B(s))ds > ε} = ∅. Then there exists a time optimal control.

Proof. For lack of space we can only present a brief outline. Since C is a closed
set the characteristic function IC is upper semicontinuous on X . Using this fact
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we prove that the map B −→ J(B) given by the expression (5) is weakly lower
semicontinuous on Γ and since this set is weakly compact J attains its minimum
on Γ. Thus time optimal control exists. •
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Abstract. We investigate adaptive methods for optimal control prob-
lems with finitely many control parameters. We analyze a-posteriori error
estimates based on verification of second-order sufficient optimality con-
ditions. Reliability and efficiency of the error estimator is shown. The
estimator is used in numerical tests to guide adaptive mesh refinement.
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1 Introduction

We study optimal control problems of the following type: Minimize the functional
J given by

J(y, u) = g(y) + j(u) (P)

over all (y, u) ∈ Y × U that satisfy the non-linear elliptic partial differential
equation

E(y, u) = 0

and the control constraints
u ∈ Uad.

Here, Y is a real Banach space, U = Rn. The set Uad ⊂ U is a non-empty, convex
and closed set given by Uad = {u ∈ U : ua ≤ u ≤ ub}, where the inequalities
are to be understood component-wise. Here, the cases ua = −∞ and ub = +∞
are allowed, such that problems with one-sided constraints or without control
constraints are included in the analysis as well. Examples that are covered by
this framework include parameter identification and optimization problems with
finitely many parameters, see for instance our previous work [1].

Adaptive mesh refinement remains a valuable tool in scientific computation.
The main objective of an adaptive procedure is to find a discrete solution to a
problem while maintaining as few as possible numbers of unknowns with respect
to a desired error estimate. As the solution and hence the error distributions on
the mesh are unknown a-priori, one has to rely on a-posteriori error estimates.
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A-posteriori error estimates for non-linear control and identification problems
can be found for instance in [2,5,6,9]. However, they depend on two crucial a-
priori assumptions: the first is that a second-order sufficient condition (SSC)
has to hold at the solution of the continuous problem. With this assumption,
error estimates of the type ‖ū − uh‖U ≤ c η + R can be derived, where η is
a computable error indicator and R is a second-order remainder term. Here,
the second a-priori assumption comes into play: one has to assume that R is
small enough, in order to guarantee that mesh refinement solely based on η is
meaningful. A different approach with respect to mesh refinement was followed
in [13]. There the residuals in the first-order necessary optimality condition were
used to derive an adaptive procedure. However, smallness of residuals does not
imply smallness of errors without any further assumption. Here again, SSC as
well as smallness of remainder terms is essential to draw this conclusion.

In our previous work [1], we applied a different strategy: There the sufficient
optimality condition as well as smallness of remainders is checked a-posteriori.
If both conditions are fulfilled, an error-estimator of the form

‖u− uh‖U ≤ 2

α
(ωyry + ωprp)

is available, see [1, Thm 3.22]. This error estimator is localizable if ry and rp are
localizable error estimates for the norm of the residual in the state and adjoint
equations, respectively. For earlier and related work on a special problem calls
with infinite-dimensional control space, we refer to [7,8].

In this article, we will prove a lower bound of the error estimator. For the
setting Y = H1

0 (Ω), we obtain

ry + rp ≤ c(‖u− uh‖U + ‖y − yh‖Y + ‖∇y − σh‖L2(Ω)

+ ‖p− ph‖Y + ‖∇p− τh‖L2(Ω) + õ),

where y, p and yh, ph are solutions of continuous and discrete state and adjoint
equations, respectively, and σh and τh are approximations of ∇yh and ∇ph in
H(div). The term õ is a higher-order oscillation term. In addition, we have lo-
calized lower bounds for the residuals in the state and adjoint equations, respec-
tively. This justifies the use of the a-posteriori estimator above in an adaptive
mesh-refinement procedure.

1.1 The Abstract Framework

Let Ω be a polygonal domain in Rm, m = 2, 3. The function space for the states
of the optimal control problem is chosen as Y := H1

0 (Ω). Let us now specify
assumptions on the abstract problem (P).

Assumption 1. The mapping E : Y × U → Y ∗, g : Y → R, and j : U →
R are twice continuously Fréchet-differentiable with locally Lipschitz continu-
ous second-derivatives. Furthermore, we assume that the mapping E is strongly
monotone with respect to the first variable at all points u ∈ Uad.
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The assumptions on E are met for instance for semilinear elliptic equations with
monotone nonlinearities. Under Assumption (1), the state equation E(y, u) = 0
is uniquely solvable for each admissible control u ∈ Uad, [12, Theorem 26.A, p.
557]. We remark that the differentiability assumption on E can be relaxed to
accomodate a more general class of problems, see [1, Remark 1.2], e.g. differen-
tiability of E from (Y ∩ L∞(Ω)) × U to Y ∗ is sufficient.

Let us define the Lagrange functional for the abstract problem:

L(u, y, p) := g(y) + j(u)− 〈E(y, u), p〉Y ∗,Y .

Let (ȳ, ū) be locally optimal for (P). Then the first-order necessary optimality
conditions can be expressed as L′

y(ȳ, ū, p̄) = 0 and Lu(ȳ, ū, p̄)(u − ū) ≥ 0 for all
u ∈ Uad, which is equivalent to

Ey(ū, ȳ)
∗p̄ = g′(ȳ)

〈j′(ū)− Eu(ū, ȳ)
∗p̄, u− ū〉U∗,U ≥ 0 ∀u ∈ Uad.

Since the problem (P) is in general non-convex, the fulfillment of these neces-
sary conditions does not imply optimality. In order to guarantee this, one needs
additional sufficient optimality conditions of the type: There exists α > 0 such
that

L′′(ū, ȳ, p̄)[(z, v)2] ≥ α‖v‖2U (1)

holds for all v = u− ū, u ∈ Uad, and z solves the linearized equation Ey(ū, ȳ)z+
Eu(ū, ȳ)v = 0. This condition can be weakened taking strongly active inequality
constraints into account, see e.g. [1,3]. For simplicity, we chose to work with
this stronger condition. The results of this article hold also under the weakened
sufficient condition.

Although, the sufficient condition is of high interest, it is difficult to check
numerically even when (ū, ȳ, p̄) are given, see e.g. [1,7,8]. The main difficulty
here is that the function z appearing in (1) is given as solution of a partial
differential equation, which cannot be solved explicitly. Any discretization of
this equation introduces another error that has to be analyzed.

1.2 Discretization

In order to solve (P) numerically, we discretize the problem. Let Yh be a finite-
dimensional subspace of Y . Here and in the following, the index h denotes a
discrete quantity. Then a discretization of the state equation can be obtained in
the following way: A function yh ∈ Yh is a solution of the discretized equation
for given u ∈ Uad if and only if

〈E(yh, u), φh〉Y ∗,Y = 0 ∀φh ∈ Yh. (2)

The discrete optimization problem is then given by: Minimize the functional
J(yh, uh) over all (yh, uh) ∈ Yh × Uad, where yh solves the discrete equation.
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Let (ȳh, ūh) be a local solution of the discrete problem. Then it fulfills the
discrete first-order necessary optimality condition, which is given as: there exists
a uniquely determined discrete adjoint state p̄h ∈ Yh such that it holds

〈Ey(ȳh, ūh)
∗p̄h, φh〉Y ∗,Y = 〈g′(ȳh), φh〉Y ∗,Y ∀φh ∈ Yh

〈j′(ūh)− Eu(ȳh, ūh)
∗p̄h, u− ūh〉U∗,U ≥ 0 ∀u ∈ Uad.

(3)

Throughout this work, we will assume that errors in discretizing the optimality
system are controllable in the following sense. We will not make any further
assumptions on the discretization, in particular, we do not assume a sufficient
fine discretization.

Assumption 2. For a fixed finite-dimensional subspace Yh, let (uh, yh, ph) be
approximations of the discrete optimal control and the corresponding state and
adjoint. There are positive constants ry , rp such that the following holds

‖E(yh, uh)‖Y ∗ ≤ ry, (4)

‖g′(yh)− Ey(yh, uh)
∗ph‖Y ∗ ≤ rp, (5)

〈j′(uh)− Eu(yh, uh)
∗ph, u− uh〉U∗,U ≥ 0 ∀u ∈ Uad. (6)

Here, ry and rp are dual norms of residuals in the state and adjoint equation,
respectively, and hence reflect the discretization error. We report on the compu-
tation of these residuals in Section 2.

As already mentioned, without any further assumption, smallness of the resid-
uals in (4)–(6) does not imply smallness of the error ‖u − uh‖U in the control.
In order to establish such a bound, it is essential to check that a second-order
sufficient optimality condition is satisfied.

Here it is important to recognize that sufficient optimality conditions for the
discrete problem alone are still not enough. The sufficient optimality condition
for the discrete problem is given by: There exists αh > 0 such that

L′′(ūh, ȳh, p̄h)[(zh, v)
2] ≥ αh‖v‖2U (7)

holds for all v = u− ū, u ∈ Uad, and zh solves the linearized discrete equation

〈Ey(ūh, ȳh)zh + Eu(ūh, ȳh)v, φh〉Y ∗,Y = 0 ∀φh ∈ Yh. (8)

This condition is equivalent to positive definiteness of a certain computable
matrix, see [1, Section 3.5]. Moreover we have the following estimate relating
the coercivity constants α and αh appearing in (1) and (7):

α ≥ αh − ‖E‖2,

where ‖E‖2 is the norm of an error matrix taking the discretization error in the
linearized equation Ey(ū, ȳ)z + Eu(ū, ȳ)v = 0 into account, see [1, Section 3.5]
for the details. If the computable lower bound αh − ‖E‖2 of α is positive, then
it follows that (1) is satisfied. Moreover, we have the following result:
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Theorem 1 (Upper bound of the error). Let Assumptions 1 and 2 be sat-
isfied. Let (yh, uh, ph) be a solution of the discrete optimal control problem. If
αh − ‖E‖2 > 0 holds and the residuals ry and rp are small enough, then there
exists a local solution ū of (P) that satisfies the error bound

‖ū− uh‖U ≤ 2

αh − ‖E‖2
(ωy ry + ωp rp) , (9)

where the weights ωy, ωp depend on the discrete solution (yh, uh, ph). If for differ-
ent discretizations the discrete solutions {(yh, uh, ph)}h>0 are uniformly bounded
in Y × U × Y then the weights ωy, ωp are bounded as well.

For the proof, we refer to [1, Thm. 3.22]. There, precise estimates of the weights
ωy, ωp are given. Moreover, a quantification of the smallness assumption on ry
and rp is given, which makes this assumption verifiable a-posteriori.

Corollary 1. Let the assumptions of Theorem 1 be satisfied. Let ȳ, p̄ denote the
solutions of the state and adjoint equations to ū, respectively. Then it holds

‖ȳ − yh‖Y ≤ υyu‖ū− uh‖U + δ−1ry,

‖p̄− ph‖Y ≤ υpu‖ū− uh‖U + δ−1rp + υpyry ,

with δ−1 being the global bound of ‖E−1
y (y, u)‖L(Y ∗,Y ), and weights υyu, υpu,

and υpy depending on (yh, uh, ph) in the same way as the weights ωy, ωp in
Theorem 1.

Proof. The result is a consequence of Theorem 1 and [1, Lemma 3.1, 3.3].

2 Lower Error Bounds

In this section, we assume that the general operatorE can be written asE(y, u) =
−Δy+ d(y, u) with d being a superposition operator induced by a smooth func-
tion d : R2 → R. We remark that the subsequent analysis can be easily extended
to operators in divergence form with bounded coefficients possibly depending on
u [1]. We will work with a classical finite-element discretization: The discrete
space Yh is the classical space of piecewise quadratic and continuous elements
(P2) on a given conforming triangulation Th of Ω. The diameter of an element
T ∈ Th is denoted by hT . We denote by Σh ⊂ H(div), a conforming Raviart-
Thomas (RT1) discretization of the space H(div).

Let us endow Y = H1
0 (Ω) with the norm ‖y‖2Y := ‖∇y‖2L2(Ω) + ‖y‖2L2(Ω). In

the sequel, let us denote the norm of the embedding H1
0 (Ω) ↪→ L2(Ω) by I2.

Now let us report on the computation of the residual ry in the state equation.
As required by Assumption 2, we are interested in constant-free error estimates,
i.e. all constants appearing in the a-posteriori error estimate must be computable.
Here, we apply the results of Vohraĺık [11].
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Theorem 2. Let yh ∈ Yh ⊂ H1
0 (Ω), uh ∈ Uad satisfy the discrete equation (2).

Let σh ∈ Σh ⊂ H(div) be given such that

(div σh, 1)L2(T ) = (d(yh, u), 1)L2(T ) for all cells T ∈ Th. (10)

Let us define the cell-wise indicator ηy,T , T ∈ Th,

ηy,T := 2‖∇yh − σh‖L2(T ) + π−1hT ‖d(yh, uh)− div σh‖L2(T ) (11)

Then it holds

‖−Δyh + d(yh, uh)‖2H−1(Ω) ≤ (1 − I22 )
−1
∑
K∈Th

η2y,T =: r2y. (12)

If moreover, Th is shape-regular, then it holds

ηy,T ≤ C‖∇(ỹ−yh)‖L2(T )+c‖∇ỹ−σh‖L2(T )+chT‖d(yh, uh)−Πhd(yh, uh)‖L2(T ),
(13)

where ỹ := Δ−1d(yh, uh) and Πh denotes the orthogonal L2-projection onto Yh.
The constants C, c depend only on the spatial dimension m and the shape regu-
larity of the triangulation.

Proof. The upper bound (12) is a consequence of [11, Thm. 6.8, 6.12] taking [11,
Remark 6.3] into account for σh satisfying (div σh, 1)L2(T ) = (d(yh, u), 1)L2(T ),
T ∈ Th. The lower bound (13) follows from [11, Thm. 6.16], see also [10, Lemma
7.6]. Since d(yh, u) is in general not in the discrete space Yh, we obtain the addi-
tional oscillation term hT ‖d(yh, u)− πhd(yh, u)‖L2(T ) by a standard argument.

Estimates of the residual in the adjoint equation can be obtained after obvious
modifications: for τh ∈ Σh satisfying

(div τh, 1)L2(T ) = (d′(yh, uh)ph − g′(yh), 1)L2(T ) for all cells T ∈ Th (14)

and with the local error indicators defined by

ηp,T := 2‖∇ph − τh‖L2(T ) + π−1hT ‖d′(yh, uh)ph − g′(yh)− div τh‖L2(T ) (15)

we obtain the upper bound

‖−Δph + d′(yh, uh)ph − g′(yh)‖2H−1(Ω) ≤ (1− I22 )
−1
∑
K∈Th

η2p,T =: r2p. (16)

as well as the lower bound

ηp,T ≤ C‖∇(p̃− ph)‖L2(T ) + c‖∇p̃− τh‖L2(T )

+ chT ‖(I −Πh)(d
′(yh, uh)ph − g′(yh))‖L2(T ), (17)

where p̃ := Δ−1(d′(yh, uh)ph − g′(yh)).
We remark that the upper bounds (12) and (16) are constant-free, making

them explicitly computable. In our computations, we computed the functions
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σh and τh as a minimizer of the right-hand side in (12) and (16), respectively,
using Raviart-Thomas elements for discretization of H(div). This shows that
the requirements of Assumption 2 on the computability of upper bounds on the
residuals can be fulfilled.

Now let us argue that under the assumptions of Theorem 1 we also obtain
lower bounds for the error, which proves efficiency of the error bound.

Theorem 3. Let the assumptions of Theorem 1 be fulfilled. Let ry and rp be
computed according to (12) and (16). Let (ȳ, ū, p̄) be the local solution of (P)
provided by Theorem 1. Then it holds∑

T∈Th

ry,T ≤ C
(
‖ū− uh‖U + ‖ȳ − yh‖Y

+ ‖∇ȳ − σh‖L2(Ω) + ‖hT (I −Πh)d(yh, uh)‖L2(Ω)

)
, (18)

∑
T∈Th

rp,T ≤ C
(
‖ū− uh‖U + ‖ȳ − yh‖Y + ‖p̄− ph‖Y

+ ‖∇p̄− τh‖L2(Ω) + ‖hT (I −Πh)(d
′(yh, uh)ph − g′(yh))‖L2(Ω)

)
, (19)

where C > 0 depends only on the spatial dimension m, the shape regularity
of the triangulation, and global bounds of derivatives dy, du, dyy, and dyu of
d : Y × U → Y ∗ near (yh, uh).

Proof. Let ỹ be given by ỹ := Δ−1d(yh, uh). Then we can estimate

‖∇(ỹ − yh)‖L2(Ω) + ‖∇ỹ − σh‖L2(Ω)

≤ 2‖∇(ỹ − ȳ)‖L2(Ω) + ‖∇(ȳ − yh)‖L2(Ω) + ‖∇ȳ − σh‖L2(Ω).

Using Lipschitz continuity of d, we find

‖∇(ỹ − ȳ)‖L2(Ω) ≤ C(‖ū− uh‖+ ‖ȳ − yh‖Y ),

with C depending on bounds of ‖d′‖L(Y×U,Y ∗) near (yh, uh). This together with
(13) proves (18). The estimate (19) can be obtained analogously.

These lower bounds together with (9) and the local lower bounds (13) and (17)
justify the use of the error indicators in an adaptive mesh-refinement procedure.

Remark 1. Another possibility of constant-free a-posteriori error estimators
based on H(div)-functions is described in [4]. There, fluxes across edges in a
dual mesh are prescribed instead of the integrals on elements as in (10) and
(14). In [4] it is proven that the resulting error estimate is reliable and efficient.
Moreover, the terms ‖∇yh−σh‖L2(Ω) and ‖∇ph− τh‖L2(Ω) do not appear in the
lower error bound when compared to (18) and (19), respectively.
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3 Adaptivity

We will compare the performance of adaptive mesh refinement using different
strategies to mark elements for refinement. The first one, referred to as ’verified
adaptive’, is implemented as follows: in each step the verification procedure of
[1] is carried out. If it confirms that the assumptions of Theorem 1 are satisfied,
then the error indicator ωyry + ωprp given by (9) is used to guide the mesh-
refinement. If the requirements of Theorem 1 cannot be verified, then a uniform
refinement step is carried out. Here, we expect that after a small number of uni-
form refinement steps the requirements of Theorem 1 are confirmed a-posteriori,
which coincides with the numerical experiments done in earlier work [1]. After
these initial uniform refinements steps, we expect that the method proceeds with
adaptive steps.

A second strategy, called ’fully adaptive’, omits the verification step, and sim-
ply uses ωyry + ωprp from (9) without checking the validity of this bound.

4 Numerical Results

Let us report about the outcome of the above described adaptive methods for a
selected example, taken from [1]. The functional J was chosen as

J(y, u) :=
1

2
‖y − yd‖2L2(Ω) +

κ

2
‖u‖2

Rn.

The nonlinear mapping E represents a semi-linear elliptic equation given by

E(y, u) := −Δy +
n∑

k=1

ukdk(y)− g, (20)

where the functions dk are chosen as d1(y) = 1, dj(y) = y|y|j−2 for j = 2 . . . n.
This example is motivated by parameter identification: given a state yd and
source term g, find the set of coefficients u such that the resulting solution y of
E(y, u) = 0 is as close as possible to yd.

In order to make the operator E strongly monotone, we require positivity of
the coefficients uk, i.e. we set Uad = {u ∈ Rn : uk ≥ 0 ∀k = 1 . . . n}. For the
computations we used the following data: the source term g = 10.0001 and

Ω = (0, 1)2, ua = 0, ub = 0.5, κ = 10−2, yd(x1, x2) = 0.5 sin(2πx1x2), n = 4.

Let us remark, that the function d3 is not of class C2 globally. Since g is non-
negative, every solution y of (20) to u ∈ Uad will be non-negative. For non-
negative functions y it holds d3(y) = y2, which is C2, so the assumptions on E
are satisfied. See also the discussion in [1, Section 4.3].

We employed a discretization scheme as described in Section 2. After the
resulting non-linear optimization problem is solved, the error indicators accord-
ing to the chosen strategy are computed. For an adaptive refinement, a subset
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T̃ ⊂ T of elements T with large local error contributions ηT were selected for
refinement that satisfies

∑
T∈T̃ η2T ≥ θ2

∑
T∈T η2T with θ = 0.8.

Let us report on the outcome of the different adaptive strategies as described
in Section 3. For all the methods, we compare the residual norms as given in
(11), i.e. with the notation of that section

εresidual := ωyry + ωprp.

Moreover, we employed the verification procedure of Theorem 1, see e.g. [1], and
report about the upper error bound

εbound :=
2

αh − ‖E‖2
(ωy ry + ωp rp) .

Fig. 1. (a) upper bound of residuals versus number of unknowns, (b) verified error
bound versus number of unknowns

As can be expected, the assumptions of Theorem 1 are only fulfilled on a
sufficiently fine discretization. This is reflected by our numerical results.

Plots of εresidual and εbound versus the number of degrees of freedom can be
seen in Figure 4. For reference, we provided the numerical values in Tables 1 and
2. In the tables, L refers to refinement level, where L = 0 is the initial mesh,
which is the same for all the different adaptive methods. Moreover, dof denotes
the number of degrees of freedom.

Let us comment on the observed behavior of the verified adaptive methods.
The conditions of Theorem 1 are fulfilled for the first time after three uniform
refinement steps. The fourth and all further refinement levels were reached by us-
ing adaptive refinement according to the error indicator based on (11). The fully
adaptive scheme, which refines according to the residuals in the optimality sys-
tem, obtains verified error bounds as of level 7. After the verified adaptive meth-
ods actually start adaptive refinement, they quickly reach the same ratio of error
bound versus number of degrees of freedom as the full adaptive method. That
means, the early (unverified) adaptive refinements of the full adaptive methods
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does not seem to give this method an advantage over the verified method. The
same observation also applies to the residual error versus number of degrees of
freedom ratio, as can be seen in Figure 4.

Table 1. Error bound estimates

fully uniform verified adaptive fully adaptive

L # dof εerror
0 441 −
1 1681 −
2 6561 −
3 25921 7.6226 · 10−3

4 103041 1.9183 · 10−3

L # dof εerror
1 1681 −
2 6561 −
3 25921 7.6226 · 10−3

4 31491 4.8745 · 10−3

5 55061 2.8728 · 10−3

L # dof εerror
5 6177 −
6 10341 −
7 18427 9.0724 · 10−3

8 27155 5.6376 · 10−3

9 46979 3.3167 · 10−3

Table 2. Residual error bound estimates

fully uniform verified adaptive fully adaptive

L #dof εresidual
1 1681 5.4976 · 10−4

2 6561 1.4181 · 10−4

3 25921 3.6666 · 10−5

4 103041 9.4714 · 10−6

L #dof εresidual
1 1681 5.4976 · 10−4

2 6561 1.4181 · 10−4

3 25921 3.6669 · 10−5

4 31491 2.3746 · 10−5

5 55061 1.4121 · 10−5

L #dof εresidual
2 1311 6.6336 · 10−4

5 6193 1.2537 · 10−4

7 18427 4.3361 · 10−5

8 27155 2.7370 · 10−5

9 46979 1.6271 · 10−5
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Abstract. We deal with initial-boundary value problems describing ver-
tical vibrations of viscoelastic von Kármán-Donnell shells with a rigid
inner obstacle. The short memory (Kelvin-Voigt) material is considered.
A weak formulation of the problem is in the form of the hyperbolic vari-
ational inequality. We solve the problem using the penalization method.

Keywords: Von Kármán-Donnell shell, unilateral dynamic contact,
viscoelasticity, solvability, penalty approximation.

1 Introduction

Contact problems represent an important but complex topic of applied math-
ematics. Its complexity profounds if the dynamic character of the problem is
respected. For elastic problems there is only a very limited amount of results
available (cf. [3] and there cited literature). Viscosity makes possible to prove
the existence of solutions for a broader set of problems for membranes, bodies
as well as for linear models of plates. The presented results extend the research
made in [2], where the problem for a viscoelastic short memory von Kármán
plate in a dynamic contact with a rigid obstacle was considered. Our results also
extend the research made for the quasistatic contact problems for viscoelastic
shells (cf. [1]). A thin isotropic shallow shell occupies the domain

G = {(x, z) ∈ R3 : x = (x1, x2) ∈ Ω, |z −Z| < h/2},

where h > 0 is the thickness of the shell, Ω ⊂ R2 is a bounded simply connected
domain in R with a sufficiently smooth boundary Γ . We set I ≡ (0, T ) a bounded
time interval, Q = I × Ω, S = I × Γ . The unit outer normal vector is denoted
by n = (n1, n2), τ = (−n2, n1) is the unit tangent vector. The displacement is
denoted by u ≡ (ui). The strain tensor is defined as

εij(u) =
1

2
(∂iuj + ∂jui + ∂iu3∂ju3)− kiju3 − x3∂iju3, i, j = 1, 2

D. Hömberg and F. Tröltzsch (Eds.): CSMO 2011, IFIP AICT 391, pp. 70–75, 2013.
c© IFIP International Federation for Information Processing 2013
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with k12 = k21 = 0 and the curvatures kii > 0, i = 1, 2.
Further, we set

[u, v] ≡ ∂11u∂22v + ∂22u∂11v − 2∂12u∂12v.

In the sequel, we denote by W k
p (M), k ≥ 0, p ∈ [1,∞] the Sobolev spaces defined

on a domain or an appropriate manifold M . By W̊ k
p (M) the spaces with zero

traces are denoted. If p = 2 we use the notation Hk(M), H̊k(M). The duals
to H̊k(M) are denoted by H−k(M). For the anisotropic spaces W k

p (M), k =
(k1, k2) ∈ R2

+, k1 is related with the time variable while k2 with the space
variables. We shall use also the Bochner-type spacesW k

p (I;X) for a time interval
I and a Banach space X . Let us remark that for k ∈ (0, 1) their norm is defined
by the relation

‖w‖p
Wk

p (I;X)
≡
∫
I

‖w(t)‖pXdt+
∫
I

∫
I

‖w(t)− w(s)‖pX
|s− t|1+kp

ds dt.

By C(M) we denote the spaces of continuous functions on a (possibly relatively)
compact manifold M . They are equipped with the max-norm. Analogously the
spaces C(M ;X), are introduced for a Banach space X . The following general-
ization of the Aubin’s compactness lemma verified in [4] Theorem 3.1 will be
essentially used:

Lemma 1. Let B0 ↪→↪→ B ↪→ B1 be Banach spaces, the first reflexive and
separable. Let 1 < p <∞, 1 ≤ r <∞. Then

W ≡ {v; v ∈ Lp(I;B0), v̇ ∈ Lr(I, B1)} ↪→↪→ Lp(I;B).

2 Short Memory Material

2.1 Problem Formulation

Employing the Einstein summation, the constitutional law has the form

σij(u) =
E1

1− μ2
∂t
(
(1−μ)εij(u)+μδijεkk(u)

)
+

E0

1− μ2

(
(1−μ)εij(u)+μδijεkk(u)

)
.

The constants E0, E1 > 0 are the Young modulus of elasticity and the modulus
of viscosity, respectively. We shall use the abbreviation b = h2/(12%(1 − μ2)),
where h > 0 is the shell thickness and % is the density of the material. We in-
volve the rotation inertia expressed by the term aΔü in the first equation of the

considered system with a = h2

12 . It will play the crucial role in the deriving a
strong convergence of the sequence of velocities {u̇m} in the appropriate space.
We assume the shell clamped on the boundary. We generalize the dynamic elas-
tic model due to the von Kármán-Donnell theory mentioned in [6]. The classical
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formulation for the deflection u3 ≡ u and the Airy stress function v is then the
initial-value problem

ü+ aΔü+ b(E1Δ
2u̇+ E0Δ

2u)− [u, v]−Δk ∗ v = f + g,

u− Ψ ≥ 0, g ≥ 0, (u− Ψ)g = 0,

Δ2v + E1∂t(
1
2 [u, u] + k11∂22u+ k22∂11u)

+E0(
1
2 [u, u] +Δku) = 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ on Q, (1)

u = ∂nu = v = ∂nv = 0 on S, (2)

u(0, ·) = u0, u̇(0, ·) = u1 on Ω. (3)

The obstacle function Ψ ∈ L∞(Ω) is fulfilling 0 < U0 ≤ u0 − Ψ in Ω and

Δku ≡ ∂11(k22u) + ∂22(k11u), (4)

Δ∗
kv ≡ k22∂11v + k11∂22v. (5)

We define the operators L : H2(Ω) → H̊2(Ω), Φ : H2(Ω) × H2(Ω) → H̊2(Ω)
by uniquely solved equations

(ΔLu,Δw) ≡ (Δku,w)∀w ∈ H̊2(Ω), (6)

(ΔΦ(u, v), Δw) ≡ ([u, v], w)∀w ∈ H̊2(Ω). (7)

with the inner product (·, ·) in the space L2(Ω). The operator L is linear and
compact. The bilinear operator Φ is symmetric and compact. Moreover due to
Lemma 1 from [5] Φ : H2(Ω)2 →W 2

p (Ω), 2 < p <∞ and

‖Φ(u, v)‖W 2
p (Ω) ≤ c‖u‖H2(Ω)‖v‖W 1

p (Ω) ∀u ∈ H2(Ω), v ∈ W 1
p (Ω). (8)

We have also L : H2(Ω) �→W 2
p (Ω), 2 < p <∞ and

‖Lu‖W 2
p (Ω) ≤ c‖u‖H2(Ω) ∀u ∈ H2(Ω). (9)

For u, y ∈ L2(I;H
2(Ω)) we define the bilinear form A by

A(u, y) := b
(
∂kku∂kky + μ(∂11u∂22y + ∂22u∂11y) + 2(1− μ)∂12u∂12y

)
.

We introduce shifted cone K by

K := {y ∈ H1,2(Q); ẏ ∈ L2(I, H̊
1(Ω); y ≥ Ψ}. (10)

Then the variational formulation of the problem (1-3) has the form of

Problem P . Find u ∈ K such that u̇ ∈ L2(I; H̊
2(Ω)) and∫

Q (E1A(u̇, y − u) + E0A(u, y − u)) dx dt

+
∫
Q[u,E1∂t(

1
2Φ(u, u) + Lu) + E0(

1
2Φ(u, u) + Lu)](y − u) dx dt

+
∫
Q
Δk

(
E1∂t(

1
2Φ(u, u) + Lu) + E0(

1
2Φ(u, u) + Lu)

)
(y − u) dx dt

−
∫
Q (a∇u̇ · ∇(ẏ − u̇) + u̇(ẏ − u̇)) dx dt

+
∫
Ω
(a∇u̇ · ∇(y − u) + u̇(y − u)) (T, ·) dx

≥
∫
Ω
(a∇u1 · ∇(y(0, ·)− u0) + u1(y(0, ·)− u0)) dx

+
∫
Q f(y1 − u) dx dt ∀y ∈ K.

(11)
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2.2 The Penalization

For any η > 0 we define the penalized problem
Problem Pη. Find u ∈ H1,2(Q) such that u̇ ∈ L2(I; H̊

2(Ω)), ü ∈ L2(I; H̊
1(Ω)),∫

Q

(
üz + a∇ü · ∇z + E1A(u̇, z) + E0A(u, z)

)
dx dt

+
∫
Q
[u,E1∂t(

1
2Φ(u, u) + Lu) + E0(

1
2Φ(u, u) + Lu)]z dx dt

+
∫
QΔk

(
E1∂t(

1
2Φ(u, u) + Lu) + E0(

1
2Φ(u, u) + Lu)

)
z dx dt

=
∫
Q
(f + η−1(u − Ψ)−)z dx dt ∀z ∈ L2(I;H

2(Ω))

(12)

and the conditions (3) remain valid.

Lemma 2. Let f ∈ L2(Q), u0 ∈ H̊2(Ω), and u1 ∈ H̊1(Ω). Then there exists a
solution u of the problem Pη.

Proof. Let us denote by {wi ∈ H̊2(Ω); i = 1, 2, ...} a basis of H̊2(Ω) orthonormal
in H1(Ω) with respect to the inner product

(u, v)a =

∫
Ω

(uv + a∇u · ∇v) dx, u, v ∈ H1(Ω).

We construct the Galerkin approximation um of a solution in a form

um(t) =
m∑
i=1

αi(t)wi, αi(t) ∈ R, i = 1, ...,m, m ∈ N, (13)

(üm(t), wi)a +
∫
Ω

(
E1A(u̇m(t), wi) + E0A(um(t), wi)

)
dx+∫

Ω
Δ
(
E1∂t(

1
2Φ(um, um) + Lum) + E0(

1
2Φ(um, um) + Lum)

)
×Δ(Φ(um, wi) + Lwi) dx
=
∫
Ω

(
f(t) + η−1(um(t)− Ψ)−

)
wi dx, i = 1, ...,m,

(14)

um(0) = u0m, u̇m(0) = u1m, u0m → u0 in H̊2(Ω), u1m → u1 in H̊1(Ω). (15)

After multiplying the equation (14) by α̇i(t), summing up with respect to i ,
taking in mind the definitions of the operators Φ,L and integrating we obtain
the a priori estimates not depending on m:

‖u̇m‖2L2(I;H̊2(Ω))
+ ‖u̇m‖2L∞(I;H̊1(Ω))

+ ‖um‖2L∞(I;H̊2(Ω))

+‖∂tΦ(um, um)‖2
L2(I;H̊2(Ω))

+ ‖∂tLum‖2L2(I;H̊2(Ω))

+η−1‖(um − Ψ)−‖L∞(I;L2(Ω)) ≤ c ≡ c(f, u0, u1).

(16)

Moreover the estimates (8), (9) imply

‖∂tΦ(um, um)‖L2(I;W 2
p (Ω)) + ‖∂tLum‖L2(I;W 2

p (Ω)) ≤ cp ∀ p > 2. (17)

After multiplying the equation (14) by α̈i(t), summing up and integrating we
obtain the estimate of üm

‖üm‖L2(I;H1(Ω)) ≤ cη, m ∈ N. (18)
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Applying the estimates (16)-(18), the compact imbedding theorem and the in-
terpolation, we obtain for any p ∈ [1,∞), a subsequence of {um} (denoted again
by {um}), a function u and the convergences

üm ⇀ ü in L2(I;H
1(Ω)),

u̇m ⇀∗ u̇ in L∞(I; H̊1(Ω)),

u̇m ⇀ u̇ in L2(I; H̊
2(Ω)),

u̇m → u̇ in Lp(I; H̊
(Ω)) ∩ L∞(I;H2−ε(Ω)) ∀ε > 0,

um → u in C(Ī;W 1
p (Ω),

∂t
(
1
2Φ(um, um) + Lum

)
→ ∂t

(
1
2Φ(u, u) + Lu

)
in L2(I;W

2
p (Ω))

(19)

implying that a function u fulfils the identity (12). The initial conditions (3)
follow due to (15) and the proof of the existence of a solution is complete.

2.3 Solving the Original Problem

We verify the existence theorem

Theorem 1. Let f ∈ L2(Q), ui ∈ H̊2(Ω), i = 0, 1, 0 < U0 ≤ u0 − Ψ. Then
there exists a solution of the Problem P.

Proof. We perform the limit process for η → 0. We write uη for the solution of
the problem P1,η. The a priori estimates (16) imply the estimates

‖u̇η‖2L2(I;H̊2(Ω))
+ ‖u̇η‖2L∞(I;H̊1(Ω))

+ ‖uη‖2L∞(I;H̊2(Ω))

+‖∂tΦ(uη, uη)‖2L2(I;W 2
p (Ω)) + ‖∂tLuη‖2L2(I;W 2

p (Ω))

+η−1‖(uη − Ψ)−‖L∞(I;L2(Ω)) ≤ cp, p > 2.

(20)

To get the crucial estimate for the penalty, we put z = u0 − uη(t, ·) in (12) and
obtain the estimate

0 ≤ U0

∫
Q
η−1(uη − Ψ)−dx dt ≤

∫
Q
‖η−1(uη − Ψ)−(u0 − Ψ)dx dt

≤
∫
Q ‖η−1(uη − Ψ)−(u0 − uη)dx dt

=
∫
Q

(
u̇2η + a|∇u̇η|2 +A( (E1∂tuη + E0uη), u0 − uη)

+E1∂t(Δ(Luη +
1
2Φ(uη, uη)))Δ(L(u0 − uη) + Φ(uη, u0 − uη))

+E0Δ(Luη +
1
2Φ(uη, uη))Δ(L(u0 − uη) + Φ(uη, u0 − uη))

)
dx dt

−
∫
Q
f(u0 − uη) dx dt +

∫
Ω

((
u̇η(u0 − uη) + a∇u̇η · ∇(u0 − uη)

)
(T, ·)

)
dx.

Applying the a priori estimates (20) we obtain

‖η−1u−η ‖L1(Q) ≤ c(f, u0, u1, Ψ). (21)

With respect to Dirichlet conditions we obtain from (12) and (21) the dual
estimate

‖ − aΔüη + üη‖L1(I;H−2(Ω)) ≤ c. (22)
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We take the sequence {uk} ≡ {uηk}, ηk → 0+.
After applying the Lemma 1 with the spaces

B0 = L2(Ω), B = H−1(Ω), B1 = H−2(Ω)

we obtain the relative compactness of the sequence {−aΔu̇k + u̇k} in
L2(I;H

−1(Ω) and with the help of the test function u̇k − u̇ the crucial strong
convergence

u̇k → u̇ in L2(I; H̊
1(Ω)). (23)

Simultaneously we have the convergences

u̇k ⇀ u̇ in L2(I; H̊
2(Ω)),

u̇k → u̇ in L2(I;W
1
p (Ω)),

1
2∂tΦ(uk, uk) + ∂tLuk ⇀

1
2∂tΦ(u, u) + ∂tLu in L2(I;W

2
p (Ω)).

(24)

It can be verified after inserting the test function z = y − uk in (12) for y ∈ K,
performing the integration by parts in the terms containing ü, applying the
convergences (23), (24), using the definitions of the operators L, Φ in (6), (7)
and the weak lower semicontinuity that the limit function u is a solution of the
original problem P .

Remark 1. The existence Theorem 1 can be after some modification verified also
for another types of boundary conditions.
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2. Bock, I., Jarušek, J.: Unilateral dynamic contact of viscoelastic von Kármán plates.
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1 Introduction

The goal of this paper is to show the existence and uniqueness results to a
family of distributed (see Sections 2 and 3) or Neumann boundary (see Section 4)
optimal control problems for each parameter h > 0, associated to the Newton law
(Robin boundary condition on a part of the boundary of the material domain),
and of another distributed optimal control problem associated to a Dirichlet
boundary condition. The system of these optimal control problems are governed
by free boundary problems (with Tresca boundary condition (see Sections 2 and
4) or of an obstacle type problem (see Section 3) through a parabolic variational
inequalities of the first (see Section 3) or second (see Sections 2 and 4) kind [2],
[6]. An optimal control problem for elliptic variational inequality of the second
kind is given in [9].

In order to prove the existence and uniqueness results we generalize for
parabolic variational inequalities of the second kind the Mignot’s inequality ob-
tained for elliptic variational inequalities [18], and then we obtain the strictly
convexity of a quadratic cost functional through the regularization method for
the non-differentiable term for each parameter h > 0.

We also prove, when h→ +∞, the strong convergence of the optimal controls
and states associated to this family of optimal control problems with the Newton
law to that of the optimal control problem associated to a Dirichlet boundary
condition.

We obtain these convergence without using the adjoint state which is a great
advantage with respect to the proof given previously for optimal control problems
governed by elliptic and parabolic variational equalities [3], [11], [12], [17].

These convergence when h→ +∞ are valid for the optimal control problems
given in Sections 2 and 3, and it is still an open problem for the Neumann
boundary optimal control problem given in Section 4.

2 Distributed Optimal Control Problems Governed
by Parabolic Variational Inequality of Second Kind

Let Ω a bounded open set in RN with smooth boundary ∂Ω = Γ1∪Γ2 such that
Γ1 ∩ Γ2 = ∅, and meas(Γ1) > 0. We set V = H1(Ω), V0 = {v ∈ V : v|Γ1

= 0},
H = L2(Ω), H = L2(0, T ;H), V = L2(0, T ;V ), and the closed convex set
Kb = {v ∈ V : v|Γ1

= b}. Let given

b ∈ L2(0, T ;H1/2(Γ1)), b > 0, g ∈ H, g ≥ 0,

q ∈ L2((0, T )× Γ2), q > 0, ub ∈ Kb. (1)

We consider the following variational problems [6]

Problem 1. Let given g, q, b and ub as in (1). Find u = ug ∈ C(0, T,H) ∩
L2(0, T ;Kb) with u̇ ∈ H, such that u(0) = ub, and solution of the parabolic
variational inequality of second kind:

< u̇, v − u > + a(u, v − u) + Φ(v) − Φ(u) ≥ (g, v − u), ∀v ∈ Kb, t ∈ (0, T ).
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Problem 2. Let given g, q, b and ub as in (1). For all h > 0, find u = uhg in
C(0, T,H) ∩ V with u̇ ∈ H, such that u(0) = ub, and solution of the parabolic
variational inequality of second kind

< u̇, v − u > + ah(u, v − u) + Φ(v) − Φ(u) ≥ (g, v − u)

+h

∫
Γ1

b(v − u)ds, ∀v ∈ V, t ∈ (0, T ).

Where u̇ = ut, <,> denotes the duality brackets between V ′ and V , a is a
symmetric, continuous and coercive bilinear form over V0, and Φ is given by

Φ(v) =

∫
Γ2

q|v|ds, (2)

and

a(u, v) =

∫
Ω

∇u∇vdx, ah(u, v) = a(u, v) + h

∫
Γ1

uvds, (g, v) =

∫
Ω

gvdx.

Moreover from [15], [20], [21] we have that:

∃λ1 > 0 such that λh‖v‖2V ≤ ah(v, v) ∀v ∈ V, with λh = λ1 min{1 , h}

that is, ah is also a bilinear continuous, symmetric and coercive form on V .
We remark that on Γ1 × (0, T ), Problem 1 is with the Dirichlet condition

u|Γ1
= b, while Problem 2 is with the Robin’s condition −∇u · n = h(u − b),

where n is the exterior unit vector normal to Γ . The functional Φ comes from
the Tresca condition on Γ2 [1], [4].
The existence and uniqueness of the solution to each of the above Problem 1 and
Problem 2, is well known see for example [7], [8], [10]. Therefore, it allows us to
consider g �→ ug as a function from H to C(0, T,H) ∩ V .

Let M > 0 be a constant and H+ = {g ∈ H : g ≥ 0}. We consider the
following distributed optimal control problems defined by:

Find gop ∈ H+ such that J(gop) = min
g∈H+

J(g), (3)

Find goph ∈ H+ such that J(goph) = min
g∈H+

Jh(g), (4)

where the cost functional J : H → R and Jh : H → R such that [16] (see also
[13], [14], [22])

J(g) =
1

2
‖ug‖2H +

M

2
‖g‖2H, and Jh(g) =

1

2
‖uhg‖2H +

M

2
‖g‖2H, (5)

being here ug, uhg the unique solutions of the parabolic variational Problem 1,
and Problem 2 respectively, and corresponding to the control g in H. In order
to prove the strict convexity of the cost functional J and Jh, we generalize for
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parabolic variational inequalities a main property [18] that : For any two control
gi ∈ H, i = 1 or i = 2, we have

uμg1+(1−μ)g2 ≤ μug1 + (1− μ)ug2 , ∀μ ∈ [0, 1],

uh(μg1+(1−μ)g2) ≤ μuhg1 + (1− μ)uhg2 , ∀μ ∈ [0, 1],

by using a regularization method for the non-differentiable functional Φ (see [6]).
Then we prove the following

Theorem 1. [6] Let uhgoph
, goph and ugop , gop be the states and the optimal

controls defined in Problem 1 and Problem 2 respectively. Then, we obtain the
following asymptotic behavior:

lim
h→+∞

‖uhgoph
− ugop‖V = 0, (6)

lim
h→+∞

‖goph − gop‖H = 0. (7)

3 Distributed Optimal Control Problems Governed
by Parabolic Variational Inequality of First Kind

We will examine in this section, some distributed optimal control problems,
for which the strong formulation can be linked to a free boundary problems
of complementarity type (Obstacle problems [19]), given for example by the
following conditions:

u ≥ 0, u(u̇−Δu− g) = 0, u̇−Δu− g ≥ 0 in Ω, (8)

u = b ≥ 0 on Γ1, −∂u

∂n
= f on Γ2, and u(0) = ub (9)

and

u ≥ 0, u(u̇−Δu− g) = 0, u̇−Δu− g ≥ 0 in Ω, (10)

−∂u

∂n
= h(u− b) on Γ1, −∂u

∂n
= f on Γ2, and u(0) = ub (11)

where Ω is a multidimentional regular domain whose boundary is ∂Ω = Γ1 ∪Γ2

with Γ1 ∩ Γ2 = ∅. Let consider the convex set Kb as in Section 2. It is classical
that, for a given positive b ∈ L2(0, T ;H

1
2 (Γ1)), f ∈ L2(0, T ;L2(Γ2)), and g ∈ H,

the variational formulations of Problems (8)-(9) and (10)-(11) are respectively
given by the following parabolic variational problems:

Problem 3. Let given g, b and ub as in (1) and f ∈ L2(0, T ;L2(Γ2)). Find
u = ug ∈ C(0, T,H) ∩ L2(0, T ;Kb) with u̇ ∈ H, such that u(0) = ub, and

< u̇, v − u > +a(u, u− v) ≥ (g, v − u)−
∫
Γ2

f(v − u)ds, ∀v ∈ Kb, ∀t ∈ (0, T ).
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Problem 4. Find u = uhg ∈ C(0, T,H)∩V with u̇ ∈ H, such that u(0) = ub, and

< u̇, v − u > +ah(u, u− v) ≥ (g, v − u) + h

∫
Γ1

b(v − u)ds

−
∫
Γ2

f(v − u)ds, ∀v ∈ V, ∀t ∈ (0, T ).

where a and ah are as in Section 2. Then the existence and uniqueness of the so-
lution to Problem 3 and Problem 4, is also well known see for example [7], [8], [10].
Then it allows us to consider g �→ ug as a function from H to C(0, T,H) ∩ V .
Let M > 0 be a constant. We consider the same family of distributed opti-
mal control problems (3)-(4) and we obtain the same results of the previous
Theorem 1.

Theorem 2. Let g, b, ub as in (1) and f ≤ 0 in Γ2 × (0, T ), we can obtain the
same results as in Section 2, for the corresponding distributed optimal control
problems (3)-(4) when g ≥ 0 is the control variable.

4 Neumann Boundary Optimal Control Problem
Governed by Parabolic Variational Inequalities
of Second Kind

We assume in this section that the boundary of a multidimensional regular do-
main Ω is decomposed in three parts ∂Ω = Γ1 ∪Γ2 ∪Γ3 with meas(Γ1) > 0 and
meas(Γ3) > 0.

We consider a Neumann boundary optimal control problem whose system is
governed by a free boundary problem with Tresca conditions on a portion Γ2 of
the boundary, with the flux f on Γ3 as the control variable, given by:

Problem 5.

u̇−Δu = g in Ω × (0, T ),∣∣∣∣∂u∂n
∣∣∣∣ < q ⇒ u = 0, on Γ2 × (0, T ),∣∣∣∣∂u∂n
∣∣∣∣ = q ⇒ ∃k > 0 : u = −k ∂u

∂n
, on Γ2 × (0, T ),

u = b on Γ1 × (0, T ),

−∂u

∂n
= f on Γ3 × (0, T ),

with the initial condition

u(0) = ub on Ω,

and the compatibility condition on Γ1 × (0, T )

ub = b on Γ1 × (0, T ),
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where q > 0 is the Tresca friction coefficient on Γ2 ([1], [4], [10]). We define the
space F = L2(0, T ;L2(Γ3)).

The variational formulation of Problem 5 leads to the following parabolic
variational problem:

Problem 6. Let given g, q, b and ub as in (1) and f ∈ F , f ≤ 0. Find u = uf in
C(0, T,H) ∩ L2(0, T ;Kb) with u̇ ∈ H, such that u(0) = ub, and for t ∈ (0, T )

< u̇, v − u > +a(u, u− v) + Φ(v) − Φ(u) ≥ (g, v − u)−
∫
Γ3

f(v − u)ds, ∀v ∈ Kb.

where a and Φ are defined as in Section 2.

We consider also the following problem where we change, in Problem 5, only
the Dirichlet condition on Γ1 × (0, T ) by the Newton law or a Robin boundary
condition.

Problem 7.

u̇−Δu = g in Ω × (0, T ),∣∣∣∣∂u∂n
∣∣∣∣ < q ⇒ u = 0, on Γ2 × (0, T ),∣∣∣∣∂u∂n
∣∣∣∣ = q ⇒ ∃k > 0 : u = −k ∂u

∂n
, on Γ2 × (0, T ),

−∂u

∂n
= h(u− b) on Γ1 × (0, T ),

−∂u

∂n
= f on Γ3 × (0, T ),

with the initial condition

u(0) = ub on Ω,

and the condition of compatibility on Γ1 × (0, T )

ub = b on Γ1 × (0, T ).

The variational formulation of the problem (7) leads to the the following
parabolic variational problem

Problem 8. Let given g, q, b, ub and f as in Problem 6. For all h > 0, find
u = uhf ∈ C(0, T,H) ∩ V with u̇ ∈ H, such that u(0) = ub, and for t ∈ (0, T )

< u̇, v − u > +ah(u, u− v) + Φ(v) − Φ(u) ≥ (g, v − u)−
∫
Γ3

f(v − u)ds

+h

∫
Γ1

b(v − u)ds, ∀v ∈ V,

where ah and Φ are defined as in Section 2.
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4.1 Neumann Boundary Optimal Control Problems

Let M > 0 be a constant and we define the space F− = {f ∈ F : f ≤ 0}.
We consider the new following Neumannn boundary optimal control problems
defined by:

Problem 9. Find the optimal control fop ∈ F− such that

J(fop) = min
f∈F−

J(f) (12)

where the cost functional J : F → R
+
0 is given by

J(f) =
1

2
‖uf‖2H +

M

2
‖f‖2F (M > 0) (13)

and uf is the unique solution of the Problem 6.

Problem 10. Find the optimal control foph ∈ F− such that

J(foph) = min
f∈F−

Jh(f) (14)

where the cost functional Jh : F → R
+
0 is given by

Jh(f) =
1

2
‖uhf‖2H +

M

2
‖f‖2F (M > 0, h > 0) (15)

and uhf is the unique solution of Problem 8.

Theorem 3. Under the assumptions given in Problem 6, we have the following
properties:

a) The cost functional J is strictly convex on F−,
b) There exists a unique optimal fop ∈ F− solution of the new Neumannn

boundary optimal control Problem 9.

Proof. We give some sketch of the proof.
i) We generalize for parabolic variational inequalities of the second kind the

estimates obtained for convex combination of solutions for elliptic variational
inequalities [5] that is, the estimate between

u4(μ) = uμf1+(1−μ)f2 , and u3(μ) = μuf1 + (1− μ)uf2 ,

for any two element f1 and f2 in F .
ii) The main difficulty, to prove this result comes from the fact that the func-

tional Φ is not differentiable. To overcome this difficulty, we use the regularization
method and consider for ε > 0 the following approach of Φ defined by:

Φε(v) =

∫
Γ2

q
√
ε2 + |v|2ds, ∀v ∈ V, (16)
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which is Gateaux differentiable, with

〈Φ′
ε(w) , v〉 =

∫
Γ2

qwv√
ε2 + |w|2

ds ∀(w, v) ∈ V 2.

We define uε as the unique solution of the corresponding parabolic variational
inequality for all ε > 0. We obtain that for all μ ∈ [0, 1] we have uε4(μ) ≤ uε3(μ)
for all ε > 0.

iii) When ε→ 0 we have that:

uεi → ui strongly in V ∩ L∞(0, T ;H) for i = 1, 2, 3, 4, (17)

for all μ ∈ [0, 1] and therefore we get:

0 ≤ u4(μ) ≤ u3(μ) in Ω × [0, T ], ∀μ ∈ [0, 1]. (18)

iv) For all μ ∈]0, 1[, and for all f1, f2 in F , and by using f3(μ) = μf1+(1−μ)f2
we obtain that:

μJ(f1) + (1− μ)J(f2)− J(f3(μ)) =
1

2

(
‖u3(μ)‖2H − ‖u4(μ)‖2H

)
+
1

2
μ(1 − μ)‖uf1 − uf2‖2H +

M

2
μ(1 − μ)‖f1 − f2‖2F . (19)

Then J is strictly convex functional on F− and therefore there exists a unique
optimal fop ∈ F− solution of the new Neumannn boundary optimal control
Problem 9.

Theorem 4. Under the assumptions given in Problem 6, we have the following
properties:

a) The cost functional Jh are strictly convex on F−, for all h > 0,
b) There exists a unique optimal foph ∈ F− solution of the new Neumannn

boundary optimal control Problem 10, for all h > 0.

Proof. We follow a similar method to the one developed in Theorem 3 for all
h > 0.

4.2 Open Problem

The convergence of the new Neumann boundary optimal control Problem 10 to
the new Neumann boundary optimal control Problem 9 when h→∞ is an open
problem.
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A Note on Linear Differential Variational

Inequalities in Hilbert Space
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Raumfahrttechnik, Universität der Bundeswehr München, 85577

Neubiberg/München, Germany

Abstract. Recently a new class of differential variational inequalities
has been introduced and investigated in finite dimensions as a new mod-
eling paradigm of variational analysis to treat many applied problems in
engineering, operations research, and physical sciences. This new subclass
of general differential inclusions unifies ordinary differential equations
with possibly discontinuous right-hand sides, differential algebraic sys-
tems with constraints, dynamic complementarity systems, and evolution-
ary variational systems. In this short note we lift this class of nonsmooth
dynamical systems to the level of a Hilbert space, but focus to linear
input/output systems. This covers in particular linear complementarity
systems where the underlying convex constraint set in the variational
inequality is specialized to an ordering cone.

The purpose of this note is two-fold. Firstly, we provide an existence
result based on maximal monotone operator theory. Secondly we are
concerned with stability of the solution set of linear differential varia-
tional inequalities. Here we present a novel upper set convergence result
with respect to perturbations in the data, including perturbations of the
associated linear maps and the constraint set.

1 Introduction

Recently Pang and Stewart [18] introduced and investigated a new class of differ-
ential variational inequalities in finite dimensions as a new modeling paradigm of
variational analysis to treat many applied problems in engineering, operations re-
search, and physical sciences. This new subclass of general differential inclusions
unifies ordinary differential equations with possibly discontinuous right-hand
sides, differential algebraic systems with constraints, dynamic complementarity
systems, and evolutionary variational systems.

Here we lift differential variational inequalities to the more general level of a
Hilbert space, but focus to the case of a linear input/output regime, where the
operators in the differential equation and in the additional constraint equation
are linear. This covers in particular linear complementarity systems, where the
underlying convex constraint set in the variational inequality is specialized to an
ordering cone. Linear complementarity systems are of much use in mechanical
end electrical engineering as well as in optimization [13, 20].
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In this note we provide an existence result that relies on maximal monotone
operator theory. Furthermore we are concerned with stability of the solution set
to differential variational inequalities. In this connection let us refer to [19], where
at first several sensitivity results are established for initial value problems of
ordinary differential equations with nonsmooth right hand sides and then applied
to treat differential variational inequalities. This has to be distinguished from
asymptotic Lyapunov stability that has been investigated in [1, 8, 9] for solutions
of evolution variational inequalities and nonsmooth dynamical systems. Here we
present a novel upper set convergence result with respect to perturbations in the
data, including perturbations of the associated linear maps and of the constraint
set.

2 Setting of Linear Differential Variational Inequalities

Let X,V be two real, separable Hilbert spaces that are endowed with norms
‖ · ‖X , ‖ · ‖V respectively and with scalar products denoted by 〈·, ·〉 , (·, ·) re-
spectively. Further let there be given T > 0, a convex closed subset K ⊂ V ,
some functions f, g on [0, T ] with values in X , respectively in V , and some fixed
x0 ∈ X . Then we consider the following problem: Find an X - valued function x
and an V - valued function u both defined on [0, T ] that satisfy for a.a. (almost
all) t ∈ [0, T ]

(LDVI)(A, f, g,K;x0)

⎧⎨⎩
(
ẋ(t)

q(t)

)
= A
(
x(t)

u(t)

)
+

(
f(t)

g(t)

)
u(t) ∈ K,

(
q(t), v − u(t)

)
≥ 0, ∀v ∈ K ,

(1)

complemented by the initial condition x(0) = x0. Here ẋ(t) denotes the time
derivative of x(t) and A : X × V → X × V is a given linear continuous operator
that is defined by

A =

(
A B
C D

)
with appropriate linear operators A,B,C,D.

For the closed convex subset K of V and for any w ∈ V , the tangent cone
(also support cone or contingent cone, see e.g. [3]) to K at w, denoted by TK(w),
is the closure of the convex cone

⋃{
λ(K − w) : λ > 0

}
. Then TK(w) is clearly

a closed convex cone with vertex 0 and is the smallest cone S whose translate
w + S has vertex w and contains K. Taking polars with respect to the scalar
product in V gives (TK(w))0 = (TK(w))− =: NK(w), the normal cone to K at
w, which is the subdifferential of the convex indicator function on K; for notions
of convex analysis see e.g. [14]. Thus the variational inequality in (1) writes as
the generalized equation −q(t) ∈ NK(u(t)).
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The fixed finite time interval [0, T ] gives rise to the Hilbert space L2(0, T ;V )
endowed with the scalar product

[u1, u2] :=

T∫
0

(
u1(t), u2(t)

)
dt, u1, u2 ∈ L2(0, T ;V ) .

Also we introduce the closed convex subset

K := L2(0, T ;K) := {w ∈ L2(0, T ;V ) | w(t) ∈ K, ∀a.a. t ∈ (0, T )} (2)

As in [18] we consider weak solutions of a LDVI in the sense of Caratheodory.
In particular, the X− valued function x has to be absolutely continuous with
derivative ẋ(t) defined almost everywhere. Moreover to define the initial condi-
tion, the trace x(0) is needed. Therefore (see [7], Theorem 1, p. 473) we are led
to the function space

W (0, T ;X) := {x | x ∈ L2(0, T ;X), ẋ ∈ L2(0, T ;X)} ,

a Hilbert space endowed with the scalar product

[x1, x2] + [ẋ1, ẋ2], x1, x2 ∈ W (0, T ;X) .

Note that W (0, T ;X) is continuously and densely embedded in the space
C[0, T ;X ] of X-valued continuous functions on [0, T ], where the latter space
is equipped with the norm of uniform convergence.

3 Solvability of Linear Differential Variational
Inequalities

In this section we provide an existence result for linear differential variational
inequalities based on maximal monotonicity theory [6, 16]. Here we assume that
the given function g is constant, so that shortly g ∈ V .

First we rewrite the variational inequality (LDV I)3 as −q ∈ NK(u). By
(LDV I)2, −Cx ∈ g+Du+NK(u) follows. Hence with the affine map Dg, Dgv =
g +Dv, we can insert u ∈ (Dg +NK)−1(−Cx) in (LDV I)1 and obtain

ẋ ∈ Ax+B(Dg +NK)−1(−Cx) + f. (3)

Now we adopt an argument due to Brogliato and Goeleven [5] from finite di-
mension to Hilbert space and assume there exists a coercive selfadjoint op-
erator P ∈ L(X,X) such that B = P C∗. Then P admits a square root
Q ∈ L(X,X), i.e. P = Q Q∗ with Q > 0 (coercive), hence invertible and
therefore Q∗ C∗ = Q−1 B. With x = −Qz (3) transforms to

ż ∈ Q−1AQ z −Q−1B(Dg +NK)−1(CQ z)−Q−1f. (4)
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Let us assume that D ≥ 0, i.e. (D v, v) ≥ 0. Then Dg+NK is maximal monotone
by [6, Proposition 2.4, Corollaire 2.7]. Clearly, also the inverse (Dg +NK)−1 is
maximal monotone.

Furthermore we use the notion of the relative interior denoted by rint and

assume the regularity condition 0 ∈ rint
[
im (C Q) − dom

(
(Dg + NK)−1

)]
.

Then by [17, Cor. 4.4], [21, Theorem 4], also Q−1B(Dg +NK)−1CQ is maximal
monotone in virtue of (C Q)∗ = Q−1B. Since Q−1AQ is a Lipschitz perturba-
tion, [6, Theorem 3.17; Corollaire 3.2], [16, Theorem 2.1, Remark 2.1] applies
to conclude the existence of a unique strong solution z ∈ W 1,∞(0, T ;X) to (4)
with z(0) = −Q−1x0, provided f ∈ W 1,1(0, T ;X) and z0 := −Q−1 x0 satisfies
CQz0 ∈ dom (Dg +NK)−1 = im (Dg +NK).

If moreover D > 0 with a coercivity constant δ > 0, then from the variational
inequality (LDV I)3 we get uniqueness of u and the estimate

‖u(s)− u(t)‖V ≤ ‖C‖
δ
‖x(s)− x(t)‖X s, t ∈ [0, T ] ,

that shows that u is W 1,∞ on (0, T ), too.
Thus we have proven the following existence result.

Theorem 1. Suppose D ≥ 0 and there exists P = P ∗ > 0 such that B = PC∗.

Moreover assume the regularity condition 0 ∈ rint
[
im (C Q) − dom

(
(D +

NK)−1
)]
, where P = Q Q∗. Then for any f ∈ W 1,1(0, T ;X), g ∈ V , and for

any x0 such that −Cx0 − g ∈ im (D + NK), (LDVI) is uniquely solvable with
x ∈ W 1,∞(0, T ;X) and x(0) = x0. - If moreover D > 0, then u is unique, too,
and u ∈W 1,∞(0, T ;V ).

Remark. Let M be a general maximal monotone map that replaces the above
normal cone map NK . Then by a similar reasoning as above we obtain an exis-
tence result for the multivalued Luré dynamical system{

ẋ(t) = Ax(t) +Bu(t) + f(t); x(0) = x0
u(t) ∈M

[
Cx(t) +Du(t)

]
.

Luré dynamical systems with M = ∂ϕ, ϕ a convex closed and proper function
have been recently studied by Brogliato and Goeleven [5] in finite dimensions
with applications in nonsmooth electronics.

4 Stability of Linear Differential Variational Inequalities

In this section we study stability of linear differential variational inequalities
formulated as LDVI and admit perturbations x0,n of x0 in the initial condi-
tion x(0) = x0, An = (An, Bn, Cn, Dn) of the linear map A = (A,B,C,D),
fn, gn of the functions f, g, and Kn of the convex closed subset K ⊂ V . Suppose
that (xn, un) solves (LDVI)(An, fn, gn,Kn;x0,n) and assume that (xn, un) →
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(x, u) with respect to an appropriate convergence for X-valued, respectively V -
valued functions on [0, T ]. Then we seek conditions on An → A, fn → f, gn →
g,Kn → K,x0,n → x0 that guarantee that (x, u) solves the limit problem
(LDVI)(A, f, g,K;x0). Such a stability result can be understood as a result of
upper set convergence for the solution set of the LDVI.

4.1 Preliminaries; Mosco Convergence of Sets

As the convergence of choice in variational analysis we employ Mosco set conver-
gence for a sequence {Kn} of closed convex subsets which is defined as follows.
A sequence {Kn} of closed convex subsets of the Hilbert space V is called Mosco

convergent to a closed convex subset K of V , written Kn
M−→ K, if and only if

σ − lim sup
n→∞

Kn ⊂ K ⊂ s− lim inf
n→∞

Kn.

Here the prefix σ means sequentially weak convergence in contrast to strong
convergence denoted by the prefix s; lim sup, respectively lim inf are in the
sense of Kuratowski upper, resp. lower limits of sequences of sets (see [2, 4] for
more information on Mosco convergence).

As a preliminary result we need that Mosco convergence of convex closed sets
Kn inherits to Mosco convergence of the associated sets Kn = L2(0, T ;Kn),
derived from Kn similar to (2).

Lemma 1. Let Kn
M−→ K. Then Kn

M−→ K in L2(0, T ;V ).

For the proof we refer to [10, 12].
As a further tool in our stability analysis we recall from [11] the following

technical result.

Lemma 2. Let H be a separable Hilbert space and let T > 0 be fixed. Then
for any sequence {zn}n∈N converging to some z in L1(0, T ;H) there exists a

subsequence {znk
}k∈N such that for some set N of zero measure, znk

(t)
s−→ z(t)

for all t ∈ [0, T ]\N .

4.2 The Stability Result

We need the following hypotheses on the convergence of the perturbations:

(H1) Convergence An → A holds in the operator norm topology. - All opera-
tors Dn are monotone, i.e. for any v ∈ V , (Dnv, v) ≥ 0 holds.

(H2) Convergence of the functions fn → f, gn → g holds in L2(0, T ;X),
respectively in L2(0, T ;V ).

Now we can state the following stability result.

Theorem 2. Let (xn, un) solve (LDVI)(An, fn, gn,Kn;x0,n). Suppose, An and
A satisfy (H1), and that fn, gn and f, g satisfy (H2). Let the convex closed sets

Kn Mosco-converge to K and let x0,n
s→ x0. Assume that xn

s→ x in W (0, T ;X)
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and that un ∈ L2(0, T ;V ) converges weakly to u pointwise in V for a.a. t ∈ (0, T )
with ‖un(t)‖V ≤ m(t), ∀ a.a. t ∈ (0, T ) for some m ∈ L2(0, T ). Then (x, u) is a
solution to (LDVI)(A, f, g,K;x0).

Proof.
The proof consists of three parts.

1. Feasibility: u ∈ K, x(0) = x0.
First we observe that for any w ∈ L2(0, T ;V ), in virtue of Lebesgue’s theorem

of dominated convergence,

[un, w] =

T∫
0

(
un(t), w(t)

)
dt → [u,w] .

Thus un
σ→ u and u ∈ L2(0, T ;V ). Moreover directly by Mosco convergence of

{Kn} or invoking lemma 1, u ∈ K follows. - Since by continuous embedding

xn
s→ x in C[0, T ;X ], we conclude xn(0) = x0,n

s→ x(0) = x0.
2. u solves the variational inequality in (LDVI)(A, f, g,K;x0):

Fix an arbitrary w ∈ K. Then by lemma 1, there exist wn ∈ Kn such that
wn s→ w in L2(0, T ;V ). Moreover, by extracting eventually a subsequence, we
have by lemma 2 that wn(t), gn(t) strongly converges to w(t), g(t),respectively,
for a.a. t ∈ (0, T ). For any measureable set A ⊂ (0, T ) we can define wn

A ∈
L2(0, T ;V ) by wn

A = wn on A, wn
A = un on (0, T ) \ A. Hence wn

A ∈ Kn and by
construction, ∫

A

(
qn(t), wn(t)− un(t)

)
dt ≥ 0 ,

where qn(t) = Cn xn(t) + Dn un(t) + gn(t). Hence a contradiction argument
shows that we have pointwise for a.a. t ∈ (0, T ),

(
qn(t), wn(t) − un(t)

)
≥ 0 . By

(H1), monotonicity entails
(
Cn xn(t) + Dn wn(t) + gn(t), u

n(t) − wn(t)
)
≤ 0 .

By (H1) and (H2), in the limit
(
C x(t) + D w(t) + g(t), u(t) − w(t)

)
≤ 0 . In

virtue of the linear growth of the linear operators we arrive at

[G(x,w), u − w] :=

T∫
0

(
C x(t) +D w(t) + g(t), u(t)− w(t)

)
dt ≤ 0, ∀w ∈ K .

Hence by a well-known argument in monotone operator theory (see e.g. [22]) we
obtain that u ∈ K satisfies the variational inequality

[G(x, u), w − u] ≥ 0, ∀w ∈ K .

3. (x, u) solves the limit problem (LDVI)(A, f, g,K;x0):
By Lemma 2 applied to {fn}, {xn}, and {ẋn}, we can extract a subsequence

such that fn(t) → f(t), xn(t) → x(t), and ẋn(t) → ẋ(t) strongly in X point-
wise for all t ∈ (0, T )\N0, where N0 is a null set. Fix t ∈ (0, T )\N0. Then by
assumption, for all n ∈ N we have ẋn(t) = An xn(t)+Bn un(t)+ fn(t). Then in
virtue of (H1) and (H2), ẋ(t) = A x(t) +B u(t) + f(t) follows and (x, u) solves
(LDVI)(A, f, g,K;x0).
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Abstract. We propose a model order reduction (MOR) approach for
networks containing simple and complex components. Simple compo-
nents are modeled by linear ODE (and/or DAE) systems, while complex
components are modeled by nonlinear PDE (and/or PDAE) systems.
These systems are coupled through the network topology using the Kirch-
hoff laws. As application we consider MOR for electrical networks, where
semiconductors form the complex components which are modeled by the
transient drift-diffusion equations (DDEs). We sketch how proper orthog-
onal decomposition (POD) combined with discrete empirical interpola-
tion (DEIM) and passivity-preserving balanced truncation methods for
electrical circuits (PABTEC) can be used to reduce the dimension of the
model. Furthermore we investigate residual-based sampling to construct
reduced order models which are valid over a certain parameter range.
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1 Introduction

In this paper we propose a simulation-based MOR approach for the reduction
of networks consisting of (many) simple and (only few) complex components.
We assume that the simple and complex components are modeled by systems
of linear ODEs (DAEs) and nonlinear PDEs (PDAEs), respectively, which are
coupled through the network topology using the Kirchhoff laws.

As application we consider electrical networks where the simple components
consist of resistors, capacitors, voltage sources, current sources, and inductors,
and the complex components are formed by e.g. semi-conductors, see Figure 1.
The overall system is then represented by a nonlinear partial differential algebraic
equation (PDAE) system, see e.g. [3,8]. In this paper we address the following
issues:

1. construction of reduced order models for the complex components;
2. reduction of the complete network while retaining the structure of a network;
3. parametric MOR for complex components.

D. Hömberg and F. Tröltzsch (Eds.): CSMO 2011, IFIP AICT 391, pp. 92–101, 2013.
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Fig. 1. Sketch of a coupled system with one semiconductor forming the complex
component

2 Example: Modeling of an Electrical Network

In electrical networks resistors, capacitors, and inductors form the simple com-
ponents which in general are modeled by linear ODEs. Complex components are
given by e.g. semiconductors which are modeled by PDAE systems, see below.
Considering additional voltage and current sources the overall network can be
modeled by a PDAE which is obtained as follows. First the network contain-
ing only the simple components is modeled by a differential algebraic equation
(DAE) which is obtained by a modified nodal analysis (MNA), including the
Ohmic contacts ΓO,k of the semiconductors as network nodes, see Figure 1. De-
noting by e the node potentials and by jL, jV , and jS the currents of inductive,
voltage source, and semiconductor branches, the DAE reads (see [8,12,19])

AC
d

dt
qC(A

�
Ce, t) +ARg(A

�
Re, t) +ALjL +AV jV +ASjS = −AI is(t), (1)

d

dt
φL(jL, t)−A�

Le = 0, (2)

A�
V e = vs(t). (3)

Here, the incidence matrix A = [AR, AC , AL, AV , AS , AI ] = (aij) represents the
network topology, e.g. at each non mass node i, aij = 1 if the branch j leaves
node i and aij = −1 if the branch j enters node i and aij = 0 elsewhere. The
indices R,C,L, V, S, I denote the capacitive, resistive, inductive, voltage source,
semiconductor, and current source branches, respectively. In particular the ma-
trix AS denotes the semiconductor incidence matrix. The vector valued func-
tions qC , g and φL are continuously differentiable defining the voltage-current
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relations of the network components. The continuous vector valued functions vs
and is are the voltage and current sources. For details we refer to [10].

In a second step the semiconductors are modeled by PDAE systems, which
are then coupled to the DAE of the network. Here we use the transient drift-
diffusion equations as a continuous model for semiconductors, see e.g. [1,3] and
the references cited there. Using the notation and scaling introduced there, we
obtain the following scaled system of PDEs for the electrostatic potential ψ(t, x),
the electron and hole concentrations n(t, x) and p(t, x) and the current densities
Jn(t, x) and Jp(t, x):

λΔψ = n− p− C, (4)

−∂tn+ νn div Jn = R(n, p), (5)

∂tp+ νp div Jp = −R(n, p), (6)

Jn = ∇n− n∇ψ, (7)

Jp = −∇p− p∇ψ. (8)

Here (t, x) ∈ [0, T ]×Ω and Ω ⊂ Rd. The nonlinear function R describes the rate
of electron/hole recombination, λ > 0 is the scaled Debye length, νn and νp are
the scaled mobilities of electrons and holes. The temperature is assumed to be
constant which leads to a constant thermal voltage UT . The function C is the
time independent doping profile.

This system is supplemented with the boundary conditions

ψ(t, x)=ψbi(x)+(A�
S e(t))k=UT log

(√
C(x)2 + 4n2

i+C(x)

2ni

)
+(A�

S e(t))k, (9)

n(t, x)=
1

2

(√
C(x)2 + 4n2

i + C(x)

)
, p(t, x)=

1

2

(√
C(x)2 + 4n2

i − C(x)

)
, (10)

for (t, x) ∈ [0, T ]×ΓO,k, where the potential of the nodes which are connected to a
semiconductor interface enter in the boundary conditions for ψ. Here, ψbi(x) de-
notes the build-in potential and ni the constant intrinsic concentration. All other
parts of the boundary are isolation boundaries ΓI := Γ \ ΓO, where ∇ψ · ν = 0,
Jn · ν = 0 and Jp · ν = 0 holds. The semiconductor model (4)-(8) is coupled to
the network through the semiconductor current vector jS with the components

jS,k =

∫
ΓO,k

(Jn + Jp − ε∂t∇ψ) · ν dσ, (11)

where ν denotes the unit outward normal to the interface ΓO,k. More details,
including a precise description of the coupling, are given in [10]. The analytical
and numerical analysis of PDAE systems of the presented form is subject to
current research, see [3,7,16,19].

3 Reduced Order Models for Complex Components

We assume that every complex component is modeled by a time-dependent PDE
or PDAE system which is amenable to a numerical treatment with Galerkin
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methods. After appropriate spatial discretization the method of lines then yields
a large, nonlinear ODE system representing the spatially discrete complex com-
ponent. This nonlinear ODE or DAE system now represents the complex com-
ponent in the network. The reduction of the complex components is based on
simulation-based MOR with POD. In this approach time snapshots of the com-
plex components are extracted from snapshots of the simulation of the complete
network. POD for the complex component then is performed using the extracted
parts of the snapshots. In combination with DEIM [5] this now delivers low di-
mensional, nonlinear surrogate models for the complex components, see [9] for
details.

Among other things it is an important feature of this reduction technique
that it delivers distinct reduced order models for the same complex component
at different locations in the network.

As example let us consider the rectifier network in Figure 2 (left). The POD
basis functions of two identical semiconductors may be different due to different
operating states of the semiconductors. Simulation results for this network are
plotted in Figure 2 (right). Details of the implementation are sketched in Sec-
tion 4. The distance between the linear spaces U1 and U2 which are spanned,
e.g., by the POD-basis-functions U1

ψ associated to ψ for the diode S1 and U2
ψ

associated to ψ for the diode S2 respectively, is measured by

d(U1, U2) := max
u∈U1

‖u‖2=1

min
v∈U2

‖v‖2=1

‖u− v‖2.

Exploiting the orthonormality of the bases U1
ψ and U2

ψ and using a Lagrange
framework, we find

d(U1, U2) =

√
2− 2

√
λ,

where λ is the smallest eigenvalue of the positive definite matrix SS� with
Sij = 〈u1ψ,i, u2ψ,j〉2. Here, u1ψ,i denotes the i-th node in U2

ψ, u
2
ψ,j the j-th node

in U2
ψ. The distances for the rectifier network are given in Table 1. While the

reduced model for the diodes S1 and S3 are almost equal, the reduced models
for the diodes S1 and S2 are significantly different. Similar results are obtained
for the reduction of the variables n, p, etc.

Table 1. Distances between reduced models in the rectifier network

Δ d(U1, U2) d(U1, U3)

10−4 0.61288 5.373 · 10−8

10−5 0.50766 4.712 · 10−8

10−6 0.45492 2.767 · 10−7

10−7 0.54834 1.211 · 10−6
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Fig. 2. Left: Rectifier network with 4 identical semiconductors. Right: Simulation re-
sults for the rectifier network. The input vs is sinusoidal with frequency 1 GHz and
offset +1.5 V . The time integration of the underlying nonlinear DAE system is per-
formed with DASPK [4,14].

4 Reduction of the Whole Network

Let us assume that the overall network with simple and complex components now
is represented by a nonlinear DAE system, where the linear part stems from the
simple components, and the nonlinear part from the spatially-discrete complex
components. The reduction for the complex components now is performed as
in the previous section, whereas the linear part is approximated by a reduced
order linear model of lower dimension. In the case of an electrical network the
passivity preserving reduction method PABTEC [18] can be used to perform the
reduction of the linear part of the network. Finally, the reduced order models, for
the linear an the nonlinear part have to be recoupled appropriately, for details
we refer to e.g. [17]. To illustrate the performance of this approach we report on
the numerical results obtained in [11] for an electrical network formed by an RC
chain with one diode, see Figure 3.
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Fig. 3. RC chain with a diode
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For model reduction of the linear circuit equations we use the MATLAB
Toolbox PABTEC [15]. The POD method is implemented in C++ based on the
FEM library deal.II [2] for discretizing the drift-diffusion equations. The obtained
large and sparse nonlinear DAE system as well as the small and dense reduced-
order model are integrated using the DASPK software package [4] based on a
BDF method, where the nonlinear equations are solved using Newton’s method.
Furthermore, the direct sparse solver SuperLU [6] is employed for solving linear
systems.

For the RC circuit with one diode in Figure 3 we use the input

u(t) = uV (t) = 10 sin(2πf0t)
4

with the frequency f0 = 104 Hz. The output of the system is y(t) = −ıV (t).
We simulate the models over the fixed time horizon [0, 2.5f0 ]. The linear resistors
have the same resistance R = 2kΩ and the linear capacitors have the same
capacitance C = 0.02μF.

We use the transient drift-diffusion equations to model the diode. For the
parameters of the diode and the related scaling we refer to [11]. In Table 2
we collect the numerical results for our reduction strategy. The outputs of the
systems with the reduced network and POD-reduced diode are compared to the
fully, spatially semidiscretized model with 7510 variables.

Here we construct a POD-reduced model for the diode based on a FE simula-
tion with 500 nodes, where we apply DEIM for the reduction of the nonlinearity.
The resulting reduced-order model for the diode is a dense nonlinear DAE of
dimension 105 while the original spatially discrete model of the diode has di-
mension 6006. In Table 2 we summarize the results of the numerical simulations
for the full nonlinear DAE system and the recoupled reduced system. The re-
sults demonstrate that the recoupling of the PABTEC reduced order model with
the POD-MOR model for the semiconductor delivers an overall reduced-order
model for the circuit-device system which allows significantly faster simulations
(speedup-factor is about 20) while keeping the relative errors below 10 %.

In Figure 4 the evolution of the output currents is depicted for the full and
the reduced systems. In addition, the evolutions of the output currents for the
partially reduced systems (only reduction of the linear network, and only reduc-
tion of the diode) are shown.

Table 2. Statistics for model reduction of the coupled circuit-device system

network diode dim. simul. Jacobian absolute relative
(MNA (DD time evaluations error error
equations) equations) ‖y − ŷ‖L2‖y − ŷ‖L2/‖y‖L2

unreduced unreduced 7510 23.37s 20
reduced reduced 130 1.19s 11 2.954 · 10−6 1.000 · 10−1
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Fig. 4. Input voltage and output currents for different model reduction setups

5 Parametric Model Order Reduction with Residual
Based Sampling

One major difficulty in simulation based MOR for complex components modeled
by e.g. nonlinear PDE systems consists in the construction of reduced order
models which are valid over a certain input parameter range, where the latter
for electrical networks may be given by the input frequency. To obtain reduced
order models for the complex components we propose residual based sampling
which detects extreme parameters by evaluating the residual R of the reduced
models over the parameter span. The greedy approach proposed in [13] then is
used to enrich the simulation basis for the construction of a new reduced order
model of the complex component, see Algorithm 1.

We summarize our ideas in the following sampling algorithm, for details
see [10]. Let P denote the parameter space and ω ∈ P a parameter. Furthermore,
let R(zPOD(ω, P )) denote the residual obtained by evaluation of the unreduced
model at the solution of the reduced order model zPOD(ω, P ) based on snapshots
taken on the parameter set P ⊂ P .

Algorithm 1 (Sampling)

1. Select ω1 ∈ P, Ptest ⊂ P, tol > 0, and set k := 1, P1 := {ω1}. Simulate
the unreduced model at ω1 and calculate the reduced model with POD basis
functions U1.

2. Calculate the residual ‖R(zPOD(ω, Pk))‖ for all ω ∈ Ptest.

3. Check termination conditions, e.g.

– maxω∈Ptest ‖R(zPOD(ω, Pk))‖ < tol, or

– no further reduction of residual, then STOP.

4. Calculate ωk+1 := argmaxω∈Ptest
‖R(zPOD(ω, Pk))‖.
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5. Simulate the unreduced model at ωk+1 and create a new reduced model with
POD basis Uk+1 using also the already available information at ω1, . . ., ωk.

6. Set Pk+1 := Pk ∪ {ωk+1}, k := k + 1 and goto 3.

The step 5 in Algorithm 1 can be executed in different ways. If offline time and
offline memory requirements are not critical one may combine snapshots from
all simulations of the full model and redo the model order reduction on the
large snapshot ensemble. Otherwise a new reduced model at reference frequency
ωk+1 may be constructed using the current POD-basis Ū and then perform an
additional POD step on (Uk, Ū).

Fig. 5. Basic test circuit with one diode
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Fig. 6. Relative reduction error (solid line) and residual (dashed line) plotted over
the frequency parameter space. The reduced model is based on simulations at the
frequency parameter space. The reduced model is based on simulations at the reference
frequencies ω1 := 1010 Hz (left), ω1 and ω2 := 108 Hz (middle), and ω1, ω2, and
ω3 := 1.0608 · 109 Hz (right). The reference frequencies are marked by vertical dotted
lines.

To illustrate the performance of the sampling procedure we now apply Algo-
rithm 1 to provide a reduced order model of the basic circuit shown in Figure 5.
We choose the frequency of the input voltage vs as model parameter with pa-
rameter space P := [108, 1012] Hz. We initialize with a reduced model which
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Table 3. Performance of Algorithm 1

step k reference parameters max. residual max. relative error
Pk (at frequency) (at frequency)

1 {1.0000 · 1010} 9.9864 · 102 3.2189 · 100
(1.0000 · 108) (1.0000 · 108)

2 {1.0000 · 108, 1.5982 · 10−2 4.3567 · 10−2

1.0000 · 1010} (1.0608 · 109) (3.4551 · 109)

3 {1.0000 · 108, 2.2829 · 10−2 1.6225 · 10−2

1.0608 · 109, (2.7283 · 109) (1.8047 · 1010)
1.0000 · 1010}

is constructed from the simulation of the full model at the reference frequency
ω1 := 1010 Hz. The number of POD basis functions s is chosen such that the
lack of information content Δ(s) is approximately 10−7. The relative error and
the residual are plotted in Figure 6 (left). We observe that the residual admits a
structure similar to that of the approximation error. Using Algorithm 1 the next
additional reference frequency is ω2 := 108 Hz since it maximizes the residual.

The next two iterations of the sampling algorithm are also depicted in Fig-
ure 6. Based on the residual in step 2, one selects ω3 := 1.0608 · 109 Hz as the
next reference frequency. Since no further reduction of the residual is achieved in
step 3, the algorithm terminates. The maximal errors and residuals are given in
Table 3. We note that in practical applications the error is not amenable over the
whole parameter span. However the residual at least in the presented example
seams to deliver a reliable indicator for the expected model error.
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Abstract. An optimal control problem to find the fastest collision-free
trajectory of a robot is presented. The dynamics of the robot is governed
by ordinary differential equations. The collision avoidance criterion is a
consequence of Farkas’s lemma and is included in the model as state
constraints. Finally an active set strategy based on backface culling is
added to the sequential quadratic programming which solves the optimal
control problem.

Keywords: Optimal control, collision avoidance, backface culling,
active set strategy.

1 Collision Avoidance

In automotive industry robots have to work simultaneously on the same work-
piece. The challenge is to find for each robot the fastest trajectory that avoids
any collision with the surrounding obstacles and the other robots. We start with
the establishment of the collision avoidance criterion.

For simplicity, we suppose that only one obstacle is present in the workspace.
As in [7,8] a collision detection can be obtained when the robot is approximated
by a union of convex polyhedra. This union is called P and it given by

P =

nP⋃
i=1

P (i), with P (i) = {y ∈ R
3|A(i)y ≤ b(i)}

where nP is the number of polyhedra in P . If pi denotes the number of faces in
P (i), then A(i) ∈ Rpi×3 and b(i) ∈ Rpi for i = 1, . . . , nP .

Similarly, the obstacle is approximated by the following union of convex poly-
hedra, called Q

Q =

nQ⋃
j=1

Q(j), with Q(j) = {y ∈ R
3|C(j)y ≤ d(j)}

where nQ is the number of polyhedra in Q. If qj is the number of faces in Q(j),
then C(j) ∈ Rqj×3 and d(j) ∈ Rqj for j = 1, . . . , nQ. In the following, nP , A, b

D. Hömberg and F. Tröltzsch (Eds.): CSMO 2011, IFIP AICT 391, pp. 102–111, 2013.
c© IFIP International Federation for Information Processing 2013
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and i are always associated with the robot, and nQ, C, d, and j are related to
the obstacle. Furthermore, the robot will be identified with its approximation P
and the obstacle with Q.

A first characterization of the collision-freeness between P and Q is given by

P (i) ∩Q(j) = ∅, ∀i = 1, . . . , nP and ∀j = 1, . . . , nQ.

The definition of the polyhedra P (i) and Q(j) implies that P (i) does not collide
with Q(j) if and only if there does not exist any point y(i,j) ∈ R3 satisfying(

A(i)

C(j)

)
y(i,j) ≤

(
b(i)

d(j)

)
.

According to Farkas’s lemma [1], this linear system does not have any solution
if and only if there exists a vector w(i,j) ∈ Rpi+qj such that

w(i,j) ≥ 0,

(
A(i)

C(j)

)�
w(i,j) = 0 and

(
b(i)

d(j)

)�
w(i,j) < 0.

In conclusion, the pair of polyhedra (P (i), Q(j)) is collision-free if and only if such
a vector w(i,j) exists. This forms the collision avoidance characterization between
a pair of polyhedra. Between the robot and the obstacle, the characterization
reads as follows:

Proposition 1. Two unions of convex polyhedra P =
⋃nP

i=1 P
(i) and Q =⋃nQ

j=1Q
(j) do not collide if and only if for each pair of polyhedra (P (i), Q(j)),

i = 1, . . . , nP , j = 1, . . . , nQ, there exists a vector w(i,j) ∈ Rpi+qj such that

w(i,j) ≥ 0,

(
A(i)

C(j)

)�
w(i,j) = 0 and

(
b(i)

d(j)

)�
w(i,j) < 0.

2 Optimal Control Problem

To express the dynamics of the robot, we need to describe P differently from the
previous section. As an industrial robot, P is composed bym links and is asked to
move from its current position to a desired point [12]. Let q = (q1, . . . , qm) denote
the vector of joint angles at the joints of the robot. The vector v = (v1, . . . , vm)
contains the joint angle velocities and u = (u1, . . . , um) describes the torques
applied at the center of gravity of each link. The Lagrangian form of the dynamics
of the robot depends on these three vectors as follows

q
′
(t) = v(t) and M(q(t)) v

′
(t) = G(q(t), v(t)) + F(q(t), u(t)), (1)

whereM(q) is the symmetric and positive definite mass matrix, G(q, v) contains
the generalized Coriolis forces and F(q, u) is the vector of applied joint torques
and gravity forces [10,12].
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For the remainder of the paper, let us define the vector x = (q, v) ∈ Rnx

with nx := 2m. With the definition of x and the non-singularity of the matrix
M, we can define the function f : Rnx × Rm → Rnx as follows

f(x, u) =

(
v

M−1(q) (G(q, v) + F(q, u))

)
.

The fastest trajectory of a robot is the solution of an optimal control problem
where the system of ordinary differential equations (ODE) are given by (1), see
[3,6]. If an obstacle is present in the workspace, the collision-freeness is assured as
soon as the vector w(i,j) of Proposition 1 is found at each time t and for all pairs
of polyhedra. However, to be written as state constraints, the strict inequality in
Proposition 1 has to be relaxed. Furthermore, since the robot moves, the matrices
A(i) and the vectors b(i) evolves in time. Their evolution depends explicitly on
x(t). A complete formulation of A(i)(x(t)) and b(i)(x(t)) is given in [6].

Before writing down the model, let us define the index transformation I = (i−
1)nQ+j. Hence, to each pair (i, j) ∈ {1, . . . , nP }×{1, . . . , nQ} there corresponds
an index I in {1, . . . , nPnQ}, and reciprocally. In the sequel, the index I is used
instead of the pair (i, j). The variable w(i,j) is then numbered as wI . Let us
also define the functions GI : Rnx → R(pi+qj)×3 and gI : Rnx → Rpi+qj for
I = 1, . . . , nPnQ as follows

GI(x) =

(
A(i)(x)

C(j)

)
and gI(x) =

(
b(i)(x)

d(j)

)
.

GI and gI allow us to write Proposition 1 as a function of time. Finally let
set M := nPnQ the number of indices I and nI := pi + qj the size of wI for
I = 1, . . . ,M , and let tf denote the travel time. Then, after transformation onto
the fixed time interval T := [0, 1] the optimal control problem reads as follows:

(OCP): minimize ϕ(x(0), x(1), tf )

with respect to the state variable x ∈Wnx
1,∞(T ), the control variables

u ∈ Lm
∞(T ) and wI ∈ LnI

∞ (T ), I = 1, . . . ,M , and tf ≥ 0, subject to:

- ODE: x′(t)− tff(x(t), u(t)) = 0, a.e. in T,

- state constraints: GI(x(t))
�wI(t) = 0, I = 1, . . . ,M, a.e. in T, (2)

gI(x(t))
�wI(t) ≤ −ε, I = 1, . . . ,M, a.e. in T, (3)

- boundary conditions: ψ(x(0), x(1)) = 0,

- box constraints: wI(t) ≥ 0, I = 1, . . . ,M, a.e. in T,

u(t) ∈ U := {u ∈ R
m|umin ≤ u ≤ umax}.

where the function ψ : Rnx × Rnx → R2nx is given as follows ψ(x(t0), x(tf )) =
(R(q(t0))−R0, 0, R(q(tf ))−Rf , 0) whereR(q) denotes the position of the barycen-
ter of the last link of the robot and R0, Rf ∈ Rm are given. The vectors umin

and umax are also given. The relaxation parameter ε is positive and small. As
usual Lm

∞(T ) denotes the Banach space of essentially bounded functions mapping
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from T into Rm andWnx
1,∞(T ) denotes the Banach space of absolutely continuous

functions with essentially bounded derivative that map from T into Rnx .
If multiple obstacles are present in the workspace, the anti-collision con-

straints (2)-(3) and the associated control variables wI are defined for each
obstacle.

Depending on the number M of anti-collision constraints, the problem is in-
herently sparse since the artificial control variables wI , I = 1, . . . ,M , do not
enter the dynamics, the boundary conditions, and the objective function of the
problem, but only appear linearly in the anti-collision constraints with one-sided
coupling through the state.

We attempt to solve the problem (OCP) numerically with a reduced dis-
cretization approach [4]. Let us consider the control grid GN := {tk = kh | k =
0, 1, . . . , N}, which, for simplicity, is chosen equidistantly with the fixed step-size
h = 1/N . We use B-spline of second order to approximate the control variables:

uh(t;u0, . . . , uN) :=
N∑
i=0

uiBi(t),

wI,h(t;wI,0, . . . , wI,N ) :=

N∑
i=0

wI,iBi(t), I = 1, . . . ,M

where (u0, . . . , uN)� ∈ Rm(N+1) and (wI,0, . . . , wI,N )� ∈ RnI(N+1) are the vec-
tor of de Boor points, and Bi, i = 0, . . . , N , denote elementary B-splines. As the
elementary B-splines sum up to one for all t ∈ T , the box constraints uh(t) ∈ U
are satisfied, if ui ∈ U , i = 0, . . . , N. The choice of B-splines is convenient as it is
easy to create approximations with prescribed smoothness properties and, even
more important, the elementary B-splines Bi have a local support only.

We solve the differential equations for the initial value x0 and a given tf by the
classical explicit Runge-Kutta method of order 4. The state approximations at
the grid points tk, k = 0, . . . , N depend on the vector z := (x0, u0, . . . , uN , tf )

� ∈
Rnz with nz = nx + (N + 1)m+ 1.

Let us define J(z) := ϕ(x0, xN (z), tf), h(z) := ψ(x0, xN (z)), as well as
ḠI,k(z) := GI(xk(z)) and ḡI,k(z) := gI(xk(z)) for I = 1, . . . ,M, k = 0, . . . , N .
With these new notations the discretized form of (OCP) can be formulated as
follows

(DOCP): Minimize J(z) with respect to z ∈ Rnz and

w = (w1,0, . . . , w1,N , . . . , wM,0, . . . , wM,N )� ∈ R(N+1)
∑M

I=1 nI

subject to: h(z) = 0,

wI,k ≥ 0, I = 1, . . . ,M, k = 0, . . . , N,

ḠI,k(z)
�wI,k = 0, I = 1, . . . ,M, k = 0, . . . , N,

ḡI,k(z)
�wI,k ≤ −ε, I = 1, . . . ,M, k = 0, . . . , N,

z ∈ Z := {z ∈ R
nz | z� ≤ z ≤ zu}.
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Herein, z� ≤ zu define box constraints for z, where the settings ±∞ are
permitted if a component of z is not restricted from above or below.

The above nonlinear optimization problem is solved by a sequential quadratic
programming (SQP) method [5,9]. As in [13] we use an Armijo type line-search
procedure for the augmented Lagrangian function in our implementation. How-
ever, (DOCP) contains a lot of constraints: at each time step tk, k = 0, . . . , N ,
and for every pair of polyhedra (P (i), Q(j)), four anti-collision constraints are de-
fined (compare (2)-(3)). To overcome this difficulty, we add an active set strategy
based on the following observation: the anti-collision constraints are superfluous
when the robot is far from the obstacle or moves in the opposite direction. The
establishment of the active set strategy is the purpose of the next section.

3 Backface Culling Active Set Strategy

Backface culling comes from computer graphics and consists of working only with
visible objects, see [14]. We apply here the same concept to define our active set
strategy and develop four criteria to determine which objects are visible.

In this section P , resp. Q, is a polyhedron belonging to the approximation
of the robot, resp. obstacle. The first criterion is similar to the broad phase in
[2,11] and consists of checking if P is far from Q. If this is the case, no collision
can occur and the anti-collision constraints are superfluous.

The distance between P and Q is roughly computed by defining the axis-
aligned bounding box of each polyhedron. Let (xPi , y

P
i , z

P
i ), i = 1, . . . , sP , denote

the vertices of P where sP is the number of vertices, and define

xPm = min
i=1,...,sP

xPi , yPm = min
i=1,...,sP

yPi , zPm = min
i=1,...,sP

zPi ,

xPM = max
i=1,...,sP

xPi , yPM = max
i=1,...,sP

yPi , zPM = max
i=1,...,sP

zPi .

Then, the tuple (xPm, y
P
m, z

P
m, x

P
M , yPM , zPM ) represents the smallest axis-aligned

bounding box around P . Similarly the tuple (xQm, y
Q
m, z

Q
m, x

Q
M , yQM , zQM ) denotes

the smallest bounding box of Q. Let δ > 0 and define slightly bigger boxes:

BP = [xPm − δ, xPM + δ]× [yPm − δ, yPM + δ]× [zPm − δ, zPM + δ]

BQ = [xQm − δ, xQM + δ]× [yQm − δ, yQM + δ]× [zQm − δ, zQM + δ].

With these definitions the first criterion reads

Criterion 1. If BP and BQ are separated, then P is far from Q and the asso-
ciated anti-collision constraints are superfluous.

The vertices of P evolve in time since they belong to the robot. Hence the box BP

has to be determined at each grid point tk, k = 0, . . . , N . Because the obstacle
does not move, the box BQ is computed only once.

Let us assume now that Q is close enough to P and consider the situation
depicted in Figure 2: P is moving downwards, vc indicates the velocity of the
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center of gravity and Q̃ is generated by the faces e1 and e2 of Q. According to
Proposition 1 Q̃ does not collide with P if and only if

∃w̃ > 0, such that

(
A
C1,2

)�
w̃ = 0 and

(
b
d1,2

)�
w̃ < 0, (4)

where C1,2 is the matrix composed of the first two rows of C and d1,2 is the
vector composed of the first two components of d.

x

y

P

Q
e2

e3
e4

e5
e1

vc

x

y

P

Q̃
e2

e3
e4

e5
e1

vc

(a) (b)

Fig. 1. (a) The polyhedron P is moving downwards. The faces of Q are denoted by
e1, . . . , e5. (b) The set Q̃ is generated by the faces of Q visible to P .

Suppose now that w̃ exists. By setting w = (w̃, 0, 0, 0), we obtain:(
A
C

)�
w = 0 and

(
b
d

)�
w < 0.

Then, Proposition 1 implies that P and Q do not collide. In summary, if no
collision occurs between Q̃ and P , then Q and P do not collide. The dimension
of w̃ is always smaller than that of w, because the polyhedra are supposed to
be compact. Consequently, the problem of finding w̃ is always smaller and there
is an advantage in replacing the anti-collision constraints by (4). In (4) only the
faces visible to P are taken into consideration. The next criteria concern the
determination of the visible faces of Q relative to P .

The faces of Q which are located behind P , are invisible to P . P is always
looking towards its velocity, vc. Hence, all objects located in the lower halfspace
H generated by vc and SR, the vertex of P located furthest in the opposite
direction of vc, are behind P . Then, the second criterion reads

Criterion 2. A face e of Q is invisible to P if e ⊂ H = {y ∈ Rn|v�c (y−SR) < 0}.
An example is given in Figure 2-(a) where the faces e3 and e4 satisfy Criterion
2. The case where all faces are located behind P means that P is moving in the
opposite direction to Q. In this situation no collision can occur and we have:

Criterion 3. If all faces of Q are invisible to P according to Criterion 2, then
the anti-collision constraints are superfluous.
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Remark 1. If the velocity vc is zero, Criteria 2 and 3 are not applied.

Not all remaining faces of Q are visible to P . Some of them can be hidden by
other faces of Q. This is the case of the face e5 in Figure 2-(b). The vertex S,
which is the closest point of P to e5, cannot see e5 because e5 is hidden by e1.
The face e5 will be visible to S as soon as S is no more located in the halfspace
H5 = {y ∈ Rn |C5 y < d5}. This yields the last criterion

Criterion 4. The face ei of Q is invisible to P if P ⊂ Hi = {y ∈ Rn|Ciy < di}
with Ci, the i

th line of C, and di, the i
th component of d, in the definition of Q.

O

Q

P

He2

e3
e4

e5

e1

x

y

SR

vc

O

Q

P

H5

e2

e3
e4

e5

e1

x

y

S

(a) (b)

Fig. 2. (a) The faces e3 and e4 of Q are located behind P . (b) The face e5 of Q is
invisible to P .

A limit case exists with Criterion 4 when P is included in Q. In that case all
faces of Q are invisible to P according to Criterion 4. But in fact all these faces
must be considered in the anti-collision constraints. Hence, Criterion 4 must not
be applied in this particular case.

Criterion 4 can also be applied to detect which faces of P are visible to Q.
Then the anti-collision constraints defined for the pair (P,Q) can be reduced as
it was done in (4).

In this section criteria to determine the visible faces of Q were developed,
provided Q is visible. All criteria were depending on the position of P which
is given by the state variable q. In the next section we show how the backface
culling is included in the SQP algorithm to solve (DOCP).

4 Algorithm and Numerical Examples

Let us recall the index transformation that associates to each pair (i, j) the new
index I via the formula: I = (i− 1)nQ + j and define the set of indices

K := {(I, k) | the polyhedron Q(j) is visible to P (i) at tk}.

K is determined by applying Criteria 1, 2 and 3. Let us also recall that wI

belongs to Rpi+qj . The first pi components of wI are associated to the faces of
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P (i) and the next qj components are related to the faces of Q(j). Then, let us
define the following set of indices for each (I, k) ∈ K

JI,k := {c ∈ {1, . . . , pi} | the face c of P (i) is invisible to Q(j) at tk}∪
{c ∈ {pi + 1, . . . , pi + qj} | the face c− pi of Q

(j) is invisible to P (i) at tk}.

This set contains the index of the faces of the pair (P (i), Q(j)) which are invisible
at tk. The invisibility of a face is determined using Criteria 2 and 4.

Backface culling involves considering the anti-collision constraints whose pair
of indices (I, k) belongs to K and write these constraints according to (4). The
algorithm to solve (DOCP ) is the SQP method presented below in which the
backface culling is added as an active set strategy. This means that at each iter-
ation we update the set K and then build the quadratic problem by considering
only the constraints whose pair of indices belongs to K.

Backface Culling Active Set Strategy

(0) Choose ε > 0, z(0) ∈ Z and w(0) ≥ 0.

Determine the sets of indices K(0) and J (0)
I,k for all (I, k) ∈ K(0).

Set B0 := I, the identity matrix and " := 0.
(1) If (z(�), w(�)) is a KKT point of the optimization problem, STOP.
(2) Compute a KKT point of the following linear-quadratic optimization prob-

lem: Minimize 1
2d

�B�d+ J ′(z(�))dz

with respect to d = (dz , dwI,k
), (I, k) ∈ K(�), subject to the constraints

h(z(�)) + h′(z(�))dz = 0,

w
(�)
I,k + dwI,k

≥ 0, (I, k) ∈ K(�),

ḠI,k(z
(�))�w

(�)
I,k + ḠI,k(z

(�))�dwI,k

+ Ḡ′
I,k(z

(�))�(w
(�)
I,k, dz) = 0, (I, k) ∈ K(�),

ḡI,k(z
(�))�w

(�)
I,k + ḡI,k(z

(�))�dwI,k

+ ḡ′I,k(z
(�))�(w

(�)
I,k, dz) ≤ −ε, (I, k) ∈ K(�),

z(�) + dz ∈ Z,
dwI,k,c = 0, c ∈ J (�)

I,k , (I, k) ∈ K(�).

Note: The constraints dwI,k,c = 0 are only included for notational simplicity.
In practice these variables are actually eliminated.

(3) Set

z(�+1) := z(�) + d(�)z , w
(�+1)
I,k := w

(�)
I,k + d(�)wI,k

, (I, k) ∈ K(�).

(4) Update the sets of indices K(�+1) and J (�+1)
I,k for (I, k) ∈ K(�+1) according

to Criteria 1 to 4 which depend on z(�+1). Update B�+1 according to BFGS
update formulas, set " := " + 1 and go to (1).
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At the step (4), if a pair of indices (I, k) newly appears in K(�+1) (i.e. if (I, k) ∈
K(�+1) \ K(�)), then the variable w

(�+1)
I,k must be initialized. We choose to take

w
(�+1)
I,k as the solution of

min
w

ḡI,k(z
(�+1))�w such that ḠI,k(z

(�+1))�w = 0,

wc > 0, if c /∈ J (�+1)
I,k , and wc = 0, if c ∈ J (�+1)

I,k .

Thereby, we are assured to satisfy the state constraints as close as possible.
In our first example we consider an obstacle and a robot composed by a socket

and 3 links. A load is fixed at the end of the last link. A complete description of
the example is given in [6]. In this example, the collision avoidance needs to be
applied only between the load and the obstacle. The obstacle is always close to
the load. Consequently, the number of state contraints is not reduced with the
backface culling. For this example, we take 21 control grid points and ε = 10−5.
In Figure 3 the visible faces of the obstacle are in white. We can observe that
only 3 faces of the obstacle are visible. The computational time is 52 s. If we do
not use the backface culling, the computational time is equal to 3min 44. So,
with about half of the unknowns, the code runs about four times faster.

at t1 at t4 at t9 at t14 at t17

Fig. 3. Snapshots of the motion of the robot avoiding an obstacle. The visible faces of
the obstacle are in white.

Q
Q

Q

Q

1
2

3
4

P

F

at t1 at t14 at t33 at t39

Fig. 4. Snapshots of the motion of the robot P moving to F and avoiding four obstacles.
The visible obstacles are in white and their visible faces in gray.
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The second example is in 2 dimensions and uses all criteria of the backface
culling. The robot P is a square and 4 obstacles, Q1 to Q4, are present in
the workspace. We take for this example 42 control grid points and ε = 10−2.
Snapshots of the motion of the robot, which must reach the point F , are given
in Figure 4. The visible obstacles are in white and their visible faces in gray.
The computational time is equal to 36min 50 when no backface culling is used.
With the backface culling strategy the CPU time is 27 s. Hence, Criteria 1 to 4
induce a large decrease in the computational time.
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Abstract. We discuss a technical approach, based on the method of
regularized extremal shift (RES), intended to help solve problems of
stable control of uncertain dynamical systems. Our goal is to demon-
strate the essence and abilities of the RES technique; for this purpose
we construct feedback controller for approximate tracking a prescribed
trajectory of an inaccurately observed system described by a parabolic
equation. The controller is “resource-saving” in a sense that control re-
source spent for approximate tracking do not exceed those needed for
tracking in an “ideal” situation where the current values of the input
disturbance are fully observable.

Keywords: parabolic equation, stable control, extremal shift.

1 Introduction

In the present work, the problem of tracking a solution of a system with dis-
tributed parameters is discussed. The essence of this problem can be formulated
in the following way. A parabolic equation is considered on a given time interval
T = [t0, ϑ], ϑ < +∞. The solution of this equation w(·) = w(·; v(·)) depends
on a time-varying control v = v(·). This solution is inaccurately measured at
frequent enough time moments. It is required to organize a control process for
the equation by the feedback principle in such a way that it is possible to pre-
serve given properties of the solution. The quality of the solution constructed is
estimated by the distance from a given (prescribed, standard) solution x(·). The
latter is a solution of the parabolic equation generated by some input u = u(·).
The problem in question is treated as the problem of constructing a control
v = v(·) providing the retention of the trajectory w(·) = w(·; v(·)) nearby x(·).
This is the conceptual statement of the control problem under consideration.
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2 Problem Statement

Let H and V be real Hilbert spaces. The space V is a dense subspace of H and
V ⊂ H ⊂ V ∗ algebraically and topologically, (·, ·) stands for the inner product
in H , 〈·, ·〉 stands for the duality relation between V and V ∗. We consider a
system Σ which is described by the parabolic equation

ẇ(t) +Aw(t) = Bv(t) + f(t), for a. a. t ∈ T, w(t0) = w0. (1)

Here A : V → V ∗ is a linear continuous (A ∈ L(V ;V ∗)) and symmetrical
operator satisfying (for some c∗ > 0 and real ω) the coercitivity condition

〈Aw,w〉 + ω|w|2H ≥ c∗|w|2V ∀y ∈ V, (2)

U is a Hilbert space, f ∈ L2(T ;H) is a given function, | · |H , | · |U and | · |V stand
for the norms in H , U and V , respectively, B : U → H is a linear continuous
operator (B ∈ L(U ;H)). Let the following condition be fulfilled.

Condition 1. Operator B is invertible.
Let w(t0) = w0 ∈ D(AH), where D(AH) = {w ∈ V : AH ∈ H}. It is

known that under such conditions, for any v(·) ∈ L2(T ;U), there exists a unique
solution w(·) = w(·; t0, w0, v(·)) of equation (1) with the following properties [1]:
w(·) ∈ W (T ) = W 1,2(T ;H) ∩ L2(T ;V ). Here, W 1,2(T ;H) = {w(·) ∈ L2(T ;H) :
ẇ(·) ∈ L2(T ;H)}, the derivative ẇ(·) is understood in the sense of distributions.

Assume that along with equation (1) we have another equation of the same
form:

ẋ(t) +Ax(t) = Bu(t) + f(t) for a.a. t ∈ T (3)

with an initial state x(t0) = x0 ∈ D(AH). This equation (in what follows, we call
it reference) is subject to the action of some reference control u(·) ∈ L2(T ;U).
The reference control as well as the corresponding solution x(·) = x(·; t0, x0, u(·))
of equation (3) are a priori unknown. At discrete, frequent enough, time mo-
ments τi ∈ Δ = {τi}mi=0 (τ0 = t0, τm = ϑ, τi+1 = τi + δ), the states w(τi) =
w(τi; t0, w0, v(·)) of equation (1) as well as the states x(τi) = x(τi; t0, x0, u(·)) of
reference equation (3) are measured. The states w(τi) are measured with an er-
ror. The results of measurements are elements ξhi ∈ H satisfying the inequalities

|w(τi)− ξhi |H ≤ h, i ∈ [1 : m− 1]. (4)

Here, the value h ∈ (0, 1) is the measurement accuracy. It is required to design
an algorithm for forming the control v = vh(·) in equation (1) allowing us to
track the solution x(·) of equation (3) by the solution w(·) of equation (1).
Thus, we consider the problem consisting in constructing an algorithm, which
(on the basis of current measurements of the values w(τi) and x(τi)) forms in
real time mode (by the feedback principle) the control v = vh(·) in the right-
hand part of inequality (1) such that the deviation of w(·) = w(·; t0, w0, v

h(·))
from x(·) = x(·; t0, x0, u(·)) in metric of the space C(T ;H) ∩ L2(T ;V ) is small
if the measurement accuracy h is small enough. We also want the constructed
algorithm to be resource-saving. This means that the resources of the synthetic
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control v = vh(·) (i.e., the value
ϑ∫
t0

|vh(τ)|2U dτ) should exceed the resources of the

reference control by a small value depending on the measurement accuracy h.
This value tends to zero as h tends to zero. Thus, we require the validity of the
inequality

ϑ∫
t0

|vh(τ)|2U dτ ≤
ϑ∫

t0

|u(τ)|2U dτ + ϕ(h), (5)

where ϕ(h)→ 0 as h→ 0.
In the case when the reference control u as well as the control v in inequality

(1) are subject to instantaneous constraints (u ∈ P , v ∈ P , where P ⊂ U is a
given bounded and closed set), the problem above can be solved by means of the
method of extremal shift [2]. Namely, if the control v = vh(·) in the right-hand
part of (1) is calculated by the formula

vh(t) = v(τi, ξ
h
i , x(τi)) = argmin{(x(τi)−ξhi , Bv) : v ∈ P} for t ∈ [τi, τi+1), (6)

then, as it follows from [3], for any ε > 0 one can find numbers h1 > 0 and
δ1 > 0 such that the inequality

sup
t∈T

|w(t; t0, w0, v
h(·))− x(t; t0, x0, u(·))|H ≤ ε

is fulfilled if h ∈ (0, h1) and δ ∈ (0, δ1). The last inequality is valid for any
reference control, i.e., for any Lebesgue measurable function u(t) ∈ P for almost
all t ∈ T . Here and below, we assume that ω > 0 and w0 ∈ D ⊂ V , where D is
a bounded set,

|w0 − x0|H ≤ h. (7)

Thus, the method of extremal shift allows us to solve the problem of tracking
the solution of the reference equation under instantaneous constraints on the
controls (v, u ∈ P ). In the present paper, we assume that any function from
the space L2(T ;U) can be the admissible control (both reference, u(·), and real,
v(·)). No additional information on the functions v(·) and u(·) is required. We
construct a corresponding modification of the method of extremal shift, using,
according to [4–9], the idea of its local regularization. Along with measuring the
phase states at discrete time moments (see (4)), we also consider the case of
“continuous” measuring of the states x(t) and w(t). Namely, it is assumed that,
at every time t ∈ T , the phase states of equations (1) and (3) are measured; as
a result, we have functions ξh(t) ∈ H with the properties

|ξh(t)− w(t)|H ≤ h, t ∈ T. (8)

The functions ξh(t), t ∈ T , are Lebesgue measurable.
In control theory for distributed systems, a linear quadratic control problem

(LQP) is widely known. Its solution methods have been studied rather well
(see, for example, [11, 12]). This problem consists in the minimization of some
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quadratic functional depending on a phase trajectory and control (for example,
in the minimization of the deviations in L2-norm from a reference control and
state trajectory). The problem in question, which is in essence close to LQP, has,
at the same time, several distinctive features. Among them, at the first turn, it
is worth while noticing the following two features. Firstly, an LQP solution,
as a rule, does not guarantee that we find a control generating a trajectory
that is close to the reference trajectory in uniform metric. In addition, some
apriori information on the reference control is rather often required. The second
distinction is in the essence of solving methods. Namely, the method suggested
in the present paper is based on constructions of the well-known in the theory
of guaranteed control principle of extremal shift.

3 Control Algorithm. Case of Continuous Measuring
of Solutions

First, we consider the case of “continuous” measuring of solutions of equations
(1) and (3). In this case, inequalities (8) are valid (for simplicity, we set ξh(t0) =
w0). The problem consists in designing a rule forming (by the feedback principle)
the control v = v(t, ξh(t), w(t)). Fix a function α = α(h) : (0, 1) → (0, 1). Let
the control vα,h(t) in equation (1) be defined by the formula

v = ṽα,h(t) = vα,h(t) + ṽh(t), (9)

where

ṽh(t) = cB−1(x(t) − ξh(t)), vα,h(t) = α−1B∗(x(t) − ξh(t)). (10)

Here, B∗ denotes the adjoint operator, c = const > 2ω. Thus, we obtain system
(1), (3); i.e., we have the pair of equations

ẋ(t) +Ax(t) = Bu(t) + f(t),

ẇα,h(t) +Awα,h(t) = α−1BB∗(x(t) − ξh(t)) + c(x(t)− ξh(t)) + f(t)

with the initial condition x(t0) = x0, wα,h(t0) = w0. Here, we denote by
wα,h(·) the solution of equation (1) corresponding to the function v = vα,h(·) of
form (9).

The second formula in (10) is an analog of relation (6). If the constraint in the
form of the set P is absent then the application of formula (6) for calculating
the control v is impossible, since in this case it is required to solve the problem
of minimization of the linear functional li(u) = (ξhi − y(τi), Bu) over the whole
space U . It is natural to replace this problem by a new regularized problem with
a smoothing functional of the form α(h)|v|2U , i.e., to replace problem (6) by the
problem of finding the function vα,h(t) by the rule

vα,h(t) = argmin{α|v|2U − 2(B∗(x(t)− ξh(t)), v)U : v ∈ U}.
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Formula (10) provides the solution of the new problem. Thus, to calculate
vα,h(t), we realize the regularization of the method of extremal shift by means
of the method of smoothing functional, which is known in the theory of ill-posed
problems.

Theorem 1. Let α = α(h)→ 0. Then the following inequalities

|x(t)− wα,h(t)|2H + 2c

t∫
t0

|x(τ) − wα,h(τ)|2V dτ ≤ d0(h+ α(h)), t ∈ T, (11)

ϑ∫
t0

|ṽα,h(τ)|2U dτ ≤
ϑ∫

t0

|u(τ)|2U dτ + d∗(hα
−2(h) + h1/2 + α1/2(h)) (12)

are fulfilled. Here, d0, d∗ = const > 0 are constants, which do not depend on
h ∈ (0, 1).

Proof. Due to (10), it holds that |vα,h(t)|2U ≤ 2b2α−2(h2 + |μα,h(t)|2H), t ∈ T ,
where μα,h(t) = x(t)−wα,h(t), b = |B∗|L(H;U) is the norm of the linear operator
B∗ ∈ L(H ;U). In this case, we have

t∫
t0

|vα,h(τ)|2Udτ ≤ 2b2α−2%h(t) + c1h
2α−2, %h(t) =

t∫
t0

|μα,h(τ)|2Hdτ. (13)

Due to coercivity condition (2), we obtain,

ε̇h(t) ≤ −2(vα,h(t), B∗(x(t)−ξh(t)))U+α|vα,h(t)|2U+2(u(t), B∗(x(t)−ξh(t)))U−

− α|u(t)|2U + 2bh{|u(t)|U + |vα,h(t)|U}+ (2ω − c)|μα,h(t)|2H + 2ch2, (14)

where εh(t) = |μα,h(t)|2H + 2c∗
t∫
t0

|μα,h(τ)|2V dτ + α
t∫
t0

{|vα,h(τ)|2U − |u(τ)|2U} dτ .

From (14) and (10), it follows that

εh(t) ≤ εh(t0) + c2 +

t∫
t0

2bh{|u(τ)|U + |vα,h(τ)|U}dτ + (2ω − c)%h(t). (15)

From (13), (15), and the inequality 2ω − c < 0, we derive

εh(t) ≤ c3(h+ h3α−2) + c4(hα
−2 + h)%h(t). (16)

Therefore, from (16) we get the bound

|μα,h(t)|2H ≤ c5(h+ α+ h3α−2) + c4(hα
−2 + h)%h(t). (17)

By the Gronwall inequality and (17), we obtain

|μα,h(t)|2H ≤ c5(h+ α+ h3α−2) exp{c4(t− t0)(hα
−2 + h)}. (18)
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Note that hα−2 ≤ const. Then

|μα,h(t)|2H ≤ c6(h+ α). (19)

From (16) and (19) we derive

εh(t) ≤ c3(h+ h3α−2) + c7(hα
−2 + 1)(h+ α) ≤ c9(h+ α). (20)

Relation (11) follows from (10). Let us verify (12). By virtue of inequality (19),
from (16) we obtain

εh(t) ≤ c8{h+ h3α−2 + (hα−2 + h)(h+ α)} ≤ c9{h+ h2α−2 + hα−1}. (21)

Using (21), we get for t ∈ T

t∫
t0

|vα,h(τ)|2U dτ ≤
t∫

t0

|u(τ)|2U dτ + c10hα
−2, (22)

|ṽh(t)|U ≤ c11(h+ α)1/2. (23)

Relation (12) follows from (22) and (23). The theorem is proved.

4 Control Algorithm. Case of Discrete Measuring
of Solutions

Let us describe the algorithm for solving the problem in the case of discrete
measuring of phase states. In this case, we assume that relations (4) are fulfilled.
Let l(·) : W 1,2(T ;H) ∩ L2(T ;V ) → R+, l(y(·)) = |y(·)|C(T ;H) + |ẏ(·)|L2(T ;H) +
|y(·)|L2(T ;V ). In a standard way, we establish the validity of the following lemma.

Lemma 1. There exists a number K = K(ω,D, c∗, |B|L(U ;H)) such that the
inequality l(x(·; t0, x, u(·))) ≤ K(1 + |u(·)|L2(T ;U)) is fulfilled uniformly for any
x ∈ D and u(·) ∈ L2(T ;U).

Let a family of partitions Δh = {τh,i}mh

i=0, τh,0 = t0, τh,mh
= ϑ, τh,i+1 = τh,i +

δ(h) and a function α(h) : (0, 1)→ (0, 1) be fixed. First, before the moment t0,
the value h and the partition Δh of the interval T are chosen and fixed. The
work of the algorithm is decomposed into m − 1 (m = mh) identical steps. At
the ith step, which is carried out on the time interval δi = [τi, τi+1), τi = τh,i,
the following sequence of actions is fulfilled. First, at the moment τi, the element

vhi = α−1B∗(x(τi)− ξhi ) (24)

is calculated. Then, the control defined by the formula

v = ṽh(t) = vhi + cB−1(x(τi)− ξhi ), t ∈ δi, (25)
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is fed onto the input of equation (1), where c = const > 2ω. Under the action of
this control, instead of the state wh(τi) = wh(τi; τi−1, w

h(τi−1), v
h
i−1), the state

wh(τi+1) = wh(τi+1; τi, w
h(τi), v

h
i ) is realized. The work of the algorithm stops

at the time moment ϑ.
Let the family of partitions Δh of the time interval T and the function α(h)

have the following properties:

hδ−1(h) ≤ C1, δ(h)α−2(h)→ 0, hα−1(h)→ 0, (26)

α(h)→ 0, δ(h)→ 0 as h→ 0+.

Here C1 = const > 0 is a constant, which does not depend on h.

Theorem 2. Uniformly with respect to h ∈ (0, 1), the inequalities

λh(t) ≡ |x(t)−wh(t)|2H+2c

t∫
t0

|x(τ)−wh(τ)|2V dτ ≤ d1(h+α+δ) ∀t ∈ T, (27)

ϑ∫
t0

|ṽh(τ)|2U dτ ≤
ϑ∫

t0

|u(τ)|2U dτ + d2(hα
−1 + δα−2) + d3(h+ α+ δ)1/2 (28)

are true. Here, d1, d3 (d1 − d3 = const > 0) are constants, which do not depend
on h, α = α(h), and δ = δ(h).

Proof. First, we verify inequality (27). Using the invertibility of the operator B
as well as coercitivity condition (2), we obtain for a.a. t ∈ δi the inequality

0.5
d|μh(t)|2H

dt
+c∗|μh(t)|2V −ω|μh(t)|2H ≤ (B(u(t)−vh(t))−c(x(τi)−ξhi ), μ

h(t))U ,

where μh(t) = x(t) − wh(t) for t ∈ T , vh(t) = vhi for t ∈ δi. From the inequality

c(ξhi −x(τi), μh(t)) ≤ −0.5c|μh(t)|2H+4ch2+8c(t−τi)
t∫

τi

{|ẋ(τ)|2H+ |ẇh(τ)|2H} dτ,

we have for a.a. t ∈ δi

(B(u(t)− vh(t)) − c(x(τi)− ξhi ), μ
h(t))U ≤

(B(u(t) − vh(t)), x(τi)− ξhi )U + %i(t, h) + χi(t, h)− 0.5c|μh(t)|2H .

Here,

χi(t, h) = 4ch2 + 8c(t− τi)

t∫
τi

{|ẋ(τ)|2H + |ẇh(τ)|2H} dτ,
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%i(t, h) = b(|u(t)|U + |vh(t)|U )(h+

t∫
τi

{|ẇh(τ)|H + |ẋ(τ)|H} dτ).

For a.a. t ∈ δi, we deduce that

ε̇h(t) ≤ −2(vh(t), B∗(x(τi)− ξhi ))U + α|vh(t)|2U +

+ 2(u(t), B∗(x(τi)− ξhi ))U − α|u(t)|2U + 2%i(t, h) + 2χi(t, h) + (2ω − c)|μh(t)|2H ,

where εh(t) = |μh(t)|2H +2c∗
t∫
t0

|μh(τ)|2V dτ + α
t∫
t0

{|vh(τ)|2U − |u(τ)|2U} dτ . There-

fore, by virtue of the rule of forming the control ṽh(·) (see (24) and (25)), we
conclude that, for a.a. t ∈ δi,

εh(t) ≤ εh(τi) + c1h
2 + c2δ

t∫
τi

{|u(τ)|2U + |vh(τ)|2U} dτ + (29)

+ c3δ

t∫
τi

{|ẇh(τ)|2H + |ẋ(τ)|2H}dτ + (2ω − c)

t∫
τi

|μh(τ)|2H dτ.

Summing the right-hand and left-hand parts of (29) over i and taking into ac-
count Lemma 1, we obtain for t ∈ T

εh(t) ≤ εh(t0) + c4h
2δ−1 + c6δ + c7γh,δ(t). (30)

Here, γh,δ(t) = δ2
∑i(t)

j=0 |vhj |2U . Using (4) and the rule of forming vhi (see (24)),
we get

|vhi |2U ≤ 2b2(%hi + h2)α−2 ≤ c8(%
h
i + h2)α−2, (31)

where %hi = |x(τi) − wh(τi)|2H . Due to (7), we have εh(t0) ≤ h2. Therefore, we
derive from (30) the estimate

λh(t) ≤ c9(δ + h2δ−1 + α+ γh,δ(t)). (32)

Note that %hi ≤ λhi , where λ
h
j = λh(τj). Therefore, for t ∈ [τi, τi+1], due to (31),

the inequality

γh,δ(t) ≤ c8δ
2

i(t)∑
j=0

(λhj + h2)α−2 (33)

is valid. Consequently, (32) implies the inequality

λhi ≤ c10(δ + h2δ−1 + α) + c11δh
2α−2 + c12δ

2α−2
i∑

j=0

λhj . (34)

By the discrete Gronwall inequality [10], (34), and the inequalities hδ−1(h) ≤ C1,
δα−2(h) ≤ C2 as h→ 0 (see (26)), we have

λhi ≤ c14(h+ δ + α), i ∈ [0 : m].
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This and (33) imply γh,δ(t) ≤ c15(h + δ + α) t ∈ T . Moreover, from the last
inequality and (32), we have λh(t) ≤ c16(δ+h2δ−1+α+γh,δ(t)) ≤ c17(h+δ+α).
Relation (27) follows from the last inequality. The proof of (28) is similar to the
proof of (12). The theorem is proved.

It follows from Theorems 1 and 2 that the algorithms presented above are
resource-saving.

5 Example

The second algorithm was tested. The parabolic equation

wt(t, η)− ∂2w(t, η)/∂η2 = v(t, η), η ∈ [0, 1] (35)

with the boundary w(t, 0) = w(t, 1), t ∈ T = [0, 2] and initial w(0, η) = 0,
η ∈ [0, 1] conditions was considered. The reference equation (see (3)) was of the
form

xt(t, η) − ∂2x(t, η)/∂η2 = u(t, η), η ∈ [0, 1] (36)

x(t, 0) = x(t, 1) = 0, t ∈ T, x(0, η) = 0, η ∈ [0, 1].

Equations (35) and (36) were solved by the grid method [10]. The grid {ηj}nj=0,
η0 = 0, ηn = 1 with the step γN = 1/n was taken on the interval [0, 1]. The
control v = vh(t, η) in the right-hand part of (35) was calculated by formula (25)
taking the form

vh(t, ηj) = (α−1 + c)(x(τi, ηj)− ξhi (ηj)), t ∈ [τi, τi+1), j ∈ [0 : n].

During the experiment, we assumed that ξhi (ηj) = w(τi, ηj) + h. In figs. 1–4,
the cross-sections of the trajectories x (dashed line) and w (solid line) by the
hyperplane η = 0, 4 are presented, as well as the variations of the values p(t) =
t∫
0

|vh(τ)|2L2([0,1])
dτ (solid line) and q(t) =

t∫
0

|uh(τ)|2L2([0,1])
dτ (dashed line).

Figs. 1 and 3 correspond to the case δ = 2/mh, mh = 800, n = 10, h = 0.05;
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Fig. 1. Fig. 2.
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Fig. 3. Fig. 4.

figs. 2 and 4, to the case δ = 2/mh, mh = 800, n = 10, h = 0.01. As the
numerical experiment showed,

max
i∈[0:mh]
j∈[0:n]

|x(τi, ηj)− wh(τi, ηj)| =
{
0, 01926, in the first case

0, 00972, in the second case.
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Abstract. In the paper we derive new necessary optimality conditions
for optimal control of differential equations systems with discontinuous
right hand side. The main attention is paid to a situation when an op-
timal trajectory slides on the discontinuity surface. The new conditions,
derived in the paper, are essential and do not follow from any known
necessary conditions for such systems.

Keywords: Optimal control problem, maximum principle, discontinu-
ous dynamic system.

1 Introduction

Optimal control of systems of differential equations with discontinuous right
hand side are widely used to describe numerous applications in natural sciences
and engineering, where, e.g., there is a necessity to model dynamics with differ-
ent scales or even with jumps. Such models appear e.g. in economics, mechanics
(e.g. optimal control of mechanical systems with Coulomb friction), chemical pro-
cesses, electrical and radio engineering, aerodynamics, automatic control theory,
and theory of hybrid systems [3,5,8,10,19].

There is a row of papers devoted to the numerical solution of such optimal
control problems, see [18] and references therein. However, due to the comple-
xity of these optimal control problems there are few papers devoted to their
theoretical studies.

The aim of this paper is to present new necessary optimality conditions for
optimal control of differential equations systems with discontinuous right hand
side. It is assumed that the discontinuity of the function, which describes the
dynamic system, appears at some surface defined in the state space. This surface
is called the discontinuity or switching surface. Most papers on the topic con-
sider the situation when an optimal trajectory crosses the surface [2,4,17]. In this
case the optimality conditions are a slight modification of the maximum prin-
ciple of Pontryagin. However, the more interesting and practically non-studied
case is the situation when an optimal trajectory slides on the surface. There
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are only very few papers [2,12,15,16], which deal with this case, however, the
maximum conditions presented there are weaker than the conditions presented
in this paper.

Dynamic systems with discontinuous right hand side may be presented as
differential inclusions. Necessary optimality conditions in optimal control prob-
lems for differential inclusions have been intensively studied, see e.g. [6,14,20]
and references therein. However, the results obtained there are based on the
assumption that the differential inclusion is Lipschitz continuous or possesses a
modified one-sided Lipschitz property, which is not the case for the differential
inclusion describing the dynamic system of this paper.

2 Problem Statement and Assumptions

Let us consider the following optimal control problem with discontinuous right
hand side:

min
u(·)

f0(x(t
∗)),

ẋ =

{
f̄−(x, u) if S(x(t)) < 0,
f̄+(x, u) if S(x(t)) > 0,

(1)

x(t∗) = x0, h(x(t
∗)) = 0, |u(t)| ≤ 1, t ∈ T = [t∗, t

∗].

Here f̄±(x, u) = f±(x) + b(x)u, x = x(t) ∈ Rn denotes the state n-vector,
u = u(t) ∈ R is a scalar control, S(x) := dTx−γ = 0 is a surface of discontinuity
(switching surface), the functions f0(x) ∈ R, f±(x), b(x) ∈ Rn, h(x) ∈ Rs∗ are
given sufficiently smooth scalar and vector functions, d, x0 are given vectors, γ,
t∗, t

∗ are given numbers, s∗ = dim(h) is the dimension of the vector-function
h = h(x).

In the general case, even for a fixed control u(·) = (u(t), t ∈ T ) and a given
initial value x(t∗) = x0, the system (1) may not have a classical solution, since
the system is not defined at the switching surface. Therefore, we redefine a
solution of the system (1) at the switching surface following Filippov [8]. Then
the problem may be reformulated as

min
u(·),α(·)

f0(x(t
∗)),

ẋ =

⎧⎨⎩
f̄−(x, u), if dTx(t) < γ,
f̄+(x, u), if dTx(t) > γ,
F (x, u, α), if dTx(t) = γ,

(2)

x(t∗) = x0, h(x(t
∗)) = 0,

|u(t)| ≤ 1, 0 ≤ α(t) ≤ 1, t ∈ T = [t∗, t
∗],

where F (x, u, α) := α f̄−(x, u) + (1 − α) f̄+(x, u) = f+(x) + a(x)α + b(x)u,
a(x) := f−(x) − f+(x). In this problem the control is u(t), α(t), t ∈ T.
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Using classical optimal control theory [13], we may conclude that if the prob-
lem (2) is feasible, it has an optimal solution in the class of measurable functions
u(t), α(t), t ∈ T.

Let u∗(·) = (u∗(t), t ∈ T ), α∗(·) = (α∗(t), t ∈ T ), x∗(·) = (x∗(t), t ∈ T ) be an
optimal control and the corresponding trajectory of the system (2). Here and in
what follows, we formally suppose that

α∗(t) = 1 if dTx∗(t) < γ, α∗(t) = 0 if dTx∗(t) > γ,

0 ≤ α∗(t) ≤ 1 if dTx∗(t) = γ, t ∈ T.

For the formulation and the proof of the maximum principle we need several
assumptions.

Assumption 1. The functions u∗(·) = (u∗(t), t ∈ T ), α∗(·) = (α∗(t), t ∈ T )
are piecewise continuous and piecewise smooth.

We denote Ts = {t ∈ T : dTx∗(t) = γ}. In the general case this set contains
points, which correspond to crossing the discontinuity surface by a trajectory,
and segments, which correspond to the case when the trajectory lies on the
surface. As it was mentioned before, the case when the trajectory crosses the
discontinuity surface is well-studied. The aim of this paper is to study the case
when the trajectory may lie on the discontinuity surface. For this purpose we
need the following assumption.

Assumption 2. The set Ts consists of a finite number of segments [τk, τ
k],

k = 1, ..., p,

t∗ < τ1 < τ1 < τ2 < τ2 < ... < τp < τp < t∗,

and the following inequalities hold,

dT ẋ∗(τk − 0) = 0, dT ẋ∗(τk + 0) = 0, k = 1, ..., p. (3)

Here and in what follows, z(t̄− 0) and z(t̄+ 0) for a given function z(t), t ∈ T,
are defined by z(t̄+ 0) := lim

t→t̄,t≥t̄
z(t), z(t̄− 0) := lim

t→t̄,t≤t̄
z(t).

We denote

T 0
s = {t ∈ Ts : α

∗(t) = 0}, T 1
s = {t ∈ Ts : α

∗(t) = 1}, T ∗
s = Ts \ (T 0

s ∪ T 1
s ).

Assumption 3. The “active” set T 0
s ∪ T 1

s does not contain isolated points and
the following relations hold true for an optimal control:

∃ ε0 > 0, |u∗(t)| ≤ 1− ε0, t ∈ T 0
s ∪ T 1

s ,

|dT b(x∗(t))| ≥ ε0, t ∈ T 0
s ∪ T 1

s ; |dTa(x∗(t))| ≥ ε0, t ∈ T ∗
s ,

rank
∂h(x∗(t∗))

∂x
= s∗.
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3 Necessary Optimality Conditions

The main goal of this section is to formulate and prove new necessary optimality
conditions in the form of the maximum principle. For this purpose we will need
some auxiliary results.

Without loss of generality, we will suppose for simplicity that the following
relations are satisfied

dTx∗(t) > γ, t ∈ [t∗, τ1), d
Tx∗(t) = γ, t ∈ [τ1, τ

1], dTx∗(t) < γ, t ∈ (τ1, t∗], (4)

α∗(t) = 1, |u∗(t)| < 1, t ∈ (τ1, τ0), 0 < α∗(t) < 1, t ∈ (τ0, τ
1).

Therefore, for the case under consideration we have

p = 1, Ts = [τ1, τ
1], T 1

α = (τ1, τ0), T
0
α = ∅, T ∗

α = (τ0, τ
1),

T+ = [t∗, τ1), T
− = (τ1, t∗].

We introduce the set of parameters

μ = (y0, y, λ1, λ
1), (5)

where y0 ≥ 0, λ1, λ
1 are scalars, y ∈ Rs∗ , and denote by ψ(t|μ), t ∈ T, a solution

of the system

ψ̇T (t) = −ψT (t)
∂f̄+(x∗(t), u∗(t))

∂x
, t ∈ [t∗, τ1);

ψ̇T (t) = −ψT (t)
∂f̄−(x∗(t), u∗(t))

∂x
, t ∈ [τ1, t∗];

ψ̇T (t) = −ψT (t)

(
∂F (x∗(t), u∗(t), α∗(t))

∂x
− q∗1(t)d

T

)
, t ∈ [τ1, τ0),

ψ̇T (t) = −ψT (t)

(
∂F (x∗(t), u∗(t), α∗(t))

∂x
− q∗2(t)d

T

)
, t ∈ [τ0, τ

1), (6)

ψ(t∗) = −y0
∂f0(x

∗(t∗))

∂x
− ∂hT (x∗(t∗))

∂x
y,

ψ(τ1 − 0) = ψ(τ1 + 0) + dλ1, ψ(τ
1 − 0) = ψ(τ1 + 0) + dλ1.

Further we pick up anym ∈ N, m ≥ 2, and consider a set of points t̄1, t̄2, ..., t̄2m,
such that

τ1 = t̄1 < t̄2 < ... < t̄2m−1 = τ0 < t̄2m = τ1. (7)

This set of points satisfies the following lemma:

Lemma 1. Let u∗(·), α∗(·), x∗(·) be an optimal control and the trajectory in
the problem (2), for which Assumptions 1-3 are fulfilled. For any choice of the
points (7) there exists a vector of parameters μ, ‖μ‖ = 1, (5), such that along
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the corresponding solution ψ(t) = ψ(t|μ), t ∈ T, of the system (6) the following
relations hold true,

ψT (t)b(x∗(t))u∗(t) = max
|u|≤1

ψT (t)b(x∗(t))u, a.e. t ∈ T ; (8)

ψT (t)a(x∗(t))α∗(t) = max
0≤α≤1

ψT (t)a(x∗(t))α, (9)

a.e. t ∈ [t̄2i−1, t̄2i], i = 1, 2, ...,m,

ψT (t)q∗1(t) ≥ 0, a.e. t ∈ [t̄2i, t̄2i+1], i = 1, 2, ...,m− 1. (10)

The proof of the lemma can be found in [11] and its main idea is sketched
here. For a fixed m ≥ 2 we consider a set of parameters θ = (t1, t2, ..., t2m) and
formulate the optimal control problem of a hybrid system:

min
u(·),α(·),θ

f0(x(t
∗)),

ẋ = f̄+(x, u), dTx(t) ≥ γ, t ∈ [t∗, t1[

ẋ = F (x, u, α), dTx(t) = γ, t ∈ [t2i−1, t2i[,

ẋ = f̄−(x, u), dTx(t) ≤ γ, t ∈ [t2i, t2i+1[, i = 1, ...,m, (11)

x(t∗) = x0, h(x(t∗)) = 0,

t∗ = t0 ≤ t1 ≤ ... ≤ t2m ≤ t2m+1 = t∗,

|u(t)| ≤ 1, t ∈ T ; 0 ≤ α(t) ≤ 1, t ∈
m⋃
i=1

[t2i−1, t2i].

Let us note that in the problem (11), the decision variables are the control
u(·), α(·) and a vector θ.

With the notations

zi(τ) = x(ti−1 + τ(ti − ti−1)), i = 1, 2, ..., 2m+ 1,

vi(τ) = u(ti−1 + τ(ti − ti−1)), i = 1, 2, ..., 2m+ 1, (12)

βi(τ) = α(ti−1 + τ(ti − ti−1)), i = 2, 4, ..., 2m,

we form the extended state vector

Z(τ) = (zi(τ), i = 1, ..., 2m+ 1; ti(τ), i = 1, ..., 2m) ∈ Rn×(2m+1)+2m, (13)

τ ∈ [0, 1],

and the extended control vector

V (τ) = (vi(τ), i = 1, ..., 2m+ 1, βi(τ), i = 2, 4, ..., 2m) ∈ R3m+1, (14)

τ ∈ [0, 1].
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Using the introduced notations we may rewrite the problem (11) as follows,

min
V (·)

f0(z2m+1(1)),

Ż(τ) = F(Z(τ), V (τ)), Φ(Z(0), Z(1)) = 0, (15)

GT
1 Z(τ) ≥ γ, GT

2iZ(τ) = γ, GT
2i+1Z(τ) ≤ γ, i = 1, 2, ...,m;

|vi(τ)| ≤ 1, i = 1, ..., 2m+ 1,

0 ≤ βi(τ) ≤ 1, i = 2, 4, ..., 2m,

ti(τ) ≤ ti+1(τ), i = 0, ..., 2m, τ ∈ [0, 1]. (16)

Here V (τ) is the control vector (14), Z(τ) is the state vector (13),

FT (Z, V ) =
(
(t1 − t0)f̄

+(z1, v1),

(t2i − t2i−1)F (z2i, v2i, β2i), (t2i+1 − t2i)f̄
−(z2i+1, v2i+1),

i = 1, ...,m, 0, ..., 0︸ ︷︷ ︸
2m

)
,

Φ(Z(0), Z(1)) =

⎛⎜⎜⎝
z1(0)− x0

zi(1)− zi+1(0), i = 1, ..., 2m
h(z2m+1(1))

dT zi(1)− γ, i = 1, ..., 2m

⎞⎟⎟⎠ ,

GT
i = (OT , ...,OT ,︸ ︷︷ ︸

i−1

dT ,OT , ...,OT ,︸ ︷︷ ︸
2m+1−i

0, ..., 0︸ ︷︷ ︸
2m

), i = 1, ..., 2m+ 1,

O ∈ R
n is a vector of zeros,

t0(τ) ≡ t̄0 = t∗, t2m+1(τ) ≡ t̄2m+1 = t∗.

Now consider the set of points t̄1, t̄2, ..., t̄2m satisfying (7) and denote by
Z∗(τ), V ∗(τ), τ ∈ [0, 1], the functions (12) - (14), constructed using this set,
the optimal control u∗(·), α∗(·) and the trajectory x∗(·) of the problem (2).

Since the control u∗(·), α∗(·) and the trajectory x∗(·) are optimal in the prob-
lem (2), it is obvious that V ∗(τ), Z∗(τ), τ ∈ [0, 1], are an optimal control and
the corresponding trajectory of the problem (15), (16). By the assumptions (see
(3) and (4)) we have

GT
1 Z

∗(τ) > γ, τ ∈ [0, 1), GT
1 Z

∗(1) = γ, GT
1 Ż

∗(1− 0) = 0,

GT
2m+1Z

∗(τ) < γ, τ ∈ (0, 1], GT
2m+1Z

∗(0) = γ, GT
2m+1Ż

∗(+0) = 0.
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Hence, V ∗(τ), Z∗(τ), τ ∈ [0, 1], is also a strong local extremal in the problem that
results from the problem (15), (16) by removing the state constraints GT

1 Z(τ) ≥
γ, GT

2m+1Z(τ) ≤ γ, τ ∈ [0, 1], and the constraints (16), namely in the problem

min
V (·)

f0(z2m+1(1)),

Ż(τ) = F(Z(τ), V (τ)), Φ(Z(0), Z(1)) = 0, (17)

GT
i Z(τ) ≤ γ, i = 3, 5, ..., 2m− 1; GT

i Z(τ) = γ, i = 2, 4, ..., 2m;

|vi(τ)| ≤ 1, i = 1, ..., 2m+ 1, 0 ≤ βi(τ) ≤ 1, i = 2, 4, ..., 2m;

τ ∈ [0, 1],

with the control V (τ) (see (14)) and the state vector Z(τ) (see (13)).
The problem (17) is an optimal control problem with inequality and equality

state constraints and boundary constraints Φ(Z(0), Z(1)) = 0. Due to Assump-
tions 1-3 and the specific structure of this problem, regularity conditions (see
[1]) are satisfied for the control V ∗(τ) and the trajectory Z∗(τ), τ ∈ [0, 1]. Thus
we can apply Theorems 4.1 and 12.1 from [1] and results from [7], according
to which the control V ∗(τ) and the trajectory Z∗(τ), τ ∈ [0, 1], satisfy certain
relations. Analyzing these relations and taking into account the structure of the
vectors V ∗(τ) and Z∗(τ) allow us to get the assertions of the lemma. �
Let us note that it follows from Lemma 1 that the continuity of the func-
tion ψ(t|μ), t ∈ (τ1, τ

1), the relations (9), (10) and the assumption α∗(t) = 1,
t ∈ (τ1, τ0), imply the inequalities

ψT (t̄i|μ)a(x∗(t̄i)) ≥ 0, ψT (t̄i|μ)q∗1(t̄i) ≥ 0, i = 2, 3, ..., 2m− 1, (18)

for each point set t̄1, t̄2, ..., t̄2m satisfying (7).
Now we are ready to formulate and prove new necessary optimality conditions

for problem (2) in the form of the maximum principle.

Theorem 1. Let u∗(·), α∗(·), x∗(·) be an optimal control and the corresponding
trajectory of the problem (2), which satisfy Assumptions 1-3. Then there exist
numbers λk, λ

k, k = 1, ..., p, y0 ≥ 0, and a vector y ∈ Rs∗ , not all trivial,

p∑
k=1

(|λk|+ |λk|) + y0 + ||y|| > 0,
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such that along a solution of the adjoint system

ψ̇T (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ψT (t)∂(f
±(x∗(t))+b(x∗(t))u∗(t))

∂x , t ∈ {t ∈ T :
±(dTx∗(t)− γ) > 0},

−ψT (t)
(
∂F (x∗(t),u∗(t),α∗(t))

∂x − q∗1(t)d
T
)
, t ∈ T 0

s ∪ T 1
s ,

−ψT (t)
(
∂F (x∗(t),u∗(t),α∗(t))

∂x − q∗2(t)d
T
)
, t ∈ T ∗

s ,

ψ(t∗) = −y0
∂f0(x

∗(t∗))

∂x
− ∂hT (x∗(t∗))

∂x
y,

ψ(τk − 0) = ψ(τk + 0) + dλk,

ψ(τk − 0) = ψ(τk + 0) + dλk, k = 1, ..., p,

the following relations hold true:

ψT (t)b(x∗(t))u∗(t) = max
|u|≤1

ψT (t)b(x∗(t))u, a.e. t ∈ T ;

ψT (t)a(x∗(t))α∗(t) = max
0≤α≤1

ψT (t)a(x∗(t))α, a.e. t ∈ Ts; (19)

ψT (t− 0)ẋ∗(t− 0) = ψT (t+ 0)ẋ∗(t+ 0), t = τk, t = τk, k = 1, ..., p,

ψT (t)q∗1(t) ≤ 0, t ∈ int T 0
s , ψT (t)q∗1(t) ≥ 0, t ∈ int T 1

s . (20)

Here

q∗i (t) := qi(x
∗(t), u∗(t), α∗(t)); i = 1, 2;

q1(x, u, α) :=

(
∂F (x, u, α)

∂x
b(x)− ∂b(x)

∂x
F (x, u, α)

)
/dT b(x),

q2(x, u, α) :=

(
∂F (x, u, α)

∂x
a(x)− ∂a(x)

∂x
F (x, u, α)

)
/dTa(x).

Proof. Again we will suppose for simplicity that relations (4) are satisfied. For
an arbitrary m ∈ N, m ≥ 2, we consider the set of points

t
(m)
i = τ1 + (i − 1)

(τ0 − τ1)

2m− 2
, i = 1, ..., 2m− 1, t

(m)
2m = τ1. (21)

For any m ≥ 2 the set (21) satisfies relations (7). Hence Lemma 1 and the
relation (18) imply that for a set (21) there exists a vector

μ(m) = (y0(m), y(m), λ1(m), λ1(m)), ||μ(m)|| = 1,
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such that the following relations hold true,

ψT (t|μ(m))b(x∗(t))u∗(t) = max
|u|≤1

ψT (t|μ(m))b(x∗(t))u, a.e. t ∈ T,

ψT (t|μ(m))a(x∗(t))α∗(t) = max
0≤α≤1

ψT (t|μ(m))a(x∗(t))α (22)

a.e. t ∈ [τ0, τ
1],

ψT (t− 0|μ(m))ẋ∗(t− 0) = ψT (t+ 0|μ(m))ẋ∗(t+ 0), t = τ1, t = τ1;

ψT (t
(m)
i |μ(m))a(x∗(t

(m)
i )) ≥ 0, ψT (t

(m)
i |μ(m))q∗1(t

(m)
i ) ≥ 0, (23)

i = 2, 3, ..., 2m− 1.

Consider the sequence of the vectors μ(m), m = 2, 3, .... Since ||μ(m)|| = 1,
m = 2, 3, ..., there exists a converging subsequence. Without loss of generality,
we assume that the sequence μ(m), m = 2, 3, ... converges itself,

μ∗ = lim
m→∞

μ(m).

Obviously, ||μ∗|| = 1.
It follows from (21) that for any point t ∈ [τ1, τ0] there exists a sequence of

indices
i(m) = i(m|t) ∈ {2, 3, ..., 2m− 1},m = 2, 3, 4, ...,

such that
t
(m)
i(m) → t as m→∞.

By construction (see (23)),

ψT (t
(m)
i(m)|μ(m))a(x∗(t

(m)
i(m))) ≥ 0, ψT (t

(m)
i(m)|μ(m))q∗1(t

(m)
i(m)) ≥ 0, (24)

m = 2, 3, 4, ....

For m→∞ in the last inequalities we get

ψT (t|μ∗)a(x∗(t)) ≥ 0, ψT (t|μ∗)q∗1(t) ≥ 0, t ∈ [τ1, τ0]. (25)

Similarly, for m→∞ in (22) we obtain

ψT (t|μ∗)b(x∗(t))u∗(t) = max
|u|≤1

ψT (t|μ∗)b(x∗(t))u, a.e. t ∈ T ;

ψT (t|μ∗)a(x∗(t))α∗(t) = max
0≤α≤1

ψT (t|μ∗)a(x∗(t))α a.e. t ∈ [τ0, τ
1]; (26)

ψT (t− 0|μ∗)ẋ∗(t− 0) = ψT (t+ 0|μ∗)ẋ∗(t+ 0), t = τ1, t = τ1.

The relations (25) and (26) are nothing but the assertions of Theorem 1 for the
considered structure of the solution of the problem (2) (see the assumption (4)).
Analogously we may prove the Theorem for other types of solution structure. �
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4 Discussion of the New Necessary Optimality Conditions

Because of the problem complexity, there are only few papers, e.g. [2,12,16,15],
where necessary optimality conditions for optimal control problems with discon-
tinuous dynamics are presented. The theorem formulated in this paper contains
new crucial conditions (19) and (20).

Let us briefly discuss differences between our maximum principle and maxi-
mum principles known from the literature.

The necessary conditions in [2] are proved under the very strong assumption
T 0
s = T 1

s = ∅, which is not needed in our theorem.
As in [12], the optimality conditions derived here are based on the so-called

direct approach (see [9]). However, the necessary conditions in [12] contain the
conditions (20) but not the condition (19).

The optimality conditions in [2,16] are formulated based on an so-called in-
direct approach (see [9]), which a priori leads to weaker results compared with
the direct approach.

In [16], conditions (19), (20) are not considered. However, the conditions (19),
(20) are essential and they are not a consequence of any other conditions men-
tioned in [12], [16].

The maximum principle in [15] is weaker than the Theorem 1. Indeed, one
can easily show that for the problems of the form (2) the maximum principle
from [15] is satisfied trivially for any feasible control. Furthermore, one can
construct examples (one of them is presented below) where a non-optimal control
satisfies the conditions of maximum principle from [15], but not the conditions
of Theorem 1.

To finish the discussion of the new necessary conditions, we would like to
stress the importance of the conditions (19).

Let us consider an optimal control problem with state constraints in the form

min f0(x(t
∗)),

ẋ = f−(x) + b(x)u, x(t∗) = x0, h(x(t
∗)) = 0,

dTx(t) ≤ γ, |u(t)| ≤ 1, t ∈ T = [t∗, t
∗].

Suppose that this problem has an optimal control u∗(t), t ∈ T, and the corre-
sponding trajectory x∗(t), t ∈ T, such that mes Ts > 0, Ts := {t ∈ T : dTx∗(t) =
γ}. Then the control u∗(t), t ∈ T, and the function α∗(t) = 1, t ∈ T , are feasi-
ble in the original problem (2) for any function f+(x) and satisfy the necessary
optimality conditions from [12], [16]. However, one can easily construct func-
tions f+(x) (and corresponding optimal control problems (2)), which together
with the functions u∗(t), α∗(t) = 1, t ∈ T, violate the maximum condition
(19). Hence, the control u∗(t), α∗(t), t ∈ T, is not optimal in (2) according to
Theorem 1.

5 Illustrative Examples

In order to demonstrate differences of our maximum principle from maximum
principles known from the literature we have constructed several examples. The
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aim of the examples is to show that the necessary conditions presented in this
paper are stronger than known necessary conditions. Namely, we want to show
that the new conditions (19) and (20) may be violated for controls that satisfy
other necessary optimality conditions known from the literature, and hence our
maximum principle guarantees that such controls are not optimal. Furthermore,
we want to show that the new conditions are essential and does not follow from
other known optimality conditions.

Example 1. Consider the optimal control problem depending on a parame-
ter c,

P(c) : min x1(t
∗)− 2.5x2(t

∗),

x(t∗) = x0, x3(t
∗) = 1,

|u(t)| ≤ 1, 0 ≤ α(t) ≤ 1, t ∈ [t∗, t
∗],

ẋ1 = x2,
ẋ2 = x3 + 5,
ẋ3 = u+ 1/2,

⎫⎬⎭ if x3 < 0,
ẋ1 = x2 + c,
ẋ2 = x3,
ẋ3 = u,

⎫⎬⎭ if x3 > 0,

ẋ1 = x2 + c(1 − α),
ẋ2 = x3 + 5α,
ẋ3 = u+ 1/2α,

⎫⎬⎭ if x3 = 0,

with xT0 = (19/32,−37/16,−3/4), t∗ = −0.5, t∗ = 2

and the control u∗(·), α∗(·):

u∗(t) =

⎧⎨⎩ 1, t ∈ [−0.5, 0],
−0.5, t ∈ [0, 1],
1, t ∈ [1, 2],

α∗(t) =

⎧⎨⎩1, t ∈ [−0.5, 0],
1, t ∈ [0, 1],
0, t ∈ [1, 2].

For the control u∗(·), α∗(·) we have Ts = [0, 1], T 1
s = [0, 1], T 0

s = ∅, T ∗
s = ∅.

If we choose c = c0 = 0, then in the problem P (c0) the control u∗(·), α∗(·)
is feasible, locally optimal and satisfies all necessary optimality conditions from
Theorem 1.

If we choose c = c∗ = −5.5, then in the problem P (c∗) the control u∗(·),
α∗(·) is feasible and not optimal but it satisfies all necessary conditions from
[12,16], and it satisfies all necessary conditions from Theorem 1 except for the
condition (19). Hence, according to [12,16], this control may be locally optimal
in the problem P (c∗). On the other hand, following Theorem 1, it cannot be
locally optimal in the problem P (c∗).

Example 2. Consider the optimal control problem

min 2x1(t
∗)− 2x2(t

∗),

x(t∗) = x0, x3(t
∗) = −1, |u(t)| ≤ 1, 0 ≤ α(t) ≤ 1, t ∈ [t∗ = −0.5, t∗ = 2],

ẋ1 = x2,
ẋ2 = x3,
ẋ3 = u,

⎫⎬⎭ if x3 < 0,
ẋ1 = x2 + 1,
ẋ2 = x3,
ẋ3 = u,

⎫⎬⎭ if x3 > 0, (27)
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ẋ1 = x2 + (1− α),
ẋ2 = x3,
ẋ3 = u,

⎫⎬⎭ if x3 = 0,

with xT0 = (−23/48,−1/8, 1/2),

and the control u∗(·), α∗(·)

u∗(t) = −1, α∗(t) = 0; t ∈ [−0.5, 0],
u∗(t) = 0, α∗(t) = 1; t ∈ [0, 1],

u∗(t) = −1, α∗(t) = 1; t ∈ [1, 2].

For the control u∗(·), α∗(·) we have Ts = [0, 1], T 1
s = [0, 1], T 0

s = T ∗
s = ∅.

The control u∗(·), α∗(·) satisfies all necessary optimality conditions from [16],
satisfies all necessary optimality conditions from Theorem 1, except for the con-
dition (20), and is not locally optimal.

Note that results from [15] can not be applied to this example because As-
sumption 3) from [15] (namely the condition dT (f̄−(x, u∗(t))− f̄+(x, u∗(t))) > 0,
∀ x ∈ S0(t), t ∈ Ts) is not satisfied.

Example 3. Consider the following problem,

P* : min cTx(t∗),

x(t∗) = x0, d
Tx(t∗) = 1, |u(t)| ≤ 1, 0 ≤ α(t) ≤ 1, t ∈ [t∗, t

∗],

ẋ = Ax+ bu+ g−, if dTx < 0,

ẋ = Ax+ bu+ g+, if dTx > 0,

ẋ = Ax+ bu+ αg− + (1− α)g+, if dTx = 0,

with x ∈ Rn, n = 4, t∗ = −0.5, t∗ = 2,

c =

⎛⎜⎜⎝
− 32

7
48
7
−5
0

⎞⎟⎟⎠ , d =

⎛⎜⎜⎝
0
0
0
1

⎞⎟⎟⎠ ,

g+ =

⎛⎜⎜⎝
−2
1
0
0

⎞⎟⎟⎠ , g− =

⎛⎜⎜⎝
0
0
5

1/2

⎞⎟⎟⎠ , b =

⎛⎜⎜⎝
0
0
0
1

⎞⎟⎟⎠ , A =

⎛⎜⎜⎝
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎞⎟⎟⎠ .

The vector x0 is uniquely defined by the condition that the trajectory x(t), t ∈
[−0.5, 0], of the system ẋ = Ax + b + g−, x(−0.5) = x0, should satisfy the
equality x(0) = 0 ∈ Rn. Hence dTx0 = −3/4.
Consider the control u∗(t), α∗(t), t ∈ [−0.5, 2],

u∗(t) = 1, α∗(t) = 1, t ∈ [−0.5, 0], (28)

u∗(t) = −1/2, α∗(t) = 1, t ∈ [0, 1],

u∗(t) = 1, α∗(t) = 0, t ∈ [1, 2],
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and the corresponding trajectory x∗(t) = (x∗1(t), x
∗
2(t), x

∗
3(t), x

∗
4(t)), t ∈ [t∗, t

∗],
with the function dTx∗(t) = x∗4(t) satisfying

x∗4(t) < 0, t ∈ [−0.5, 0); x∗4(t) = 0, t ∈ [0, 1]; x∗4(t) > 0, t ∈ (1, 2].

For the control (28) we have Ts = [0, 1], T 1
s = [0, 1], T 0

s = ∅.
We can show that the control (28) is not locally optimal in the problem P∗,

satisfies all assumptions and all necessary optimality conditions from [15] and
satisfies all conditions from Theorem 1 except for the condition (20).

6 Conclusions

We have presented a new maximum principle for optimal control problems in
discontinuous systems, which takes into account a situation when a solution of
the dynamic system lies on the switching surface. We have shown that the new
maximum principle is stronger than known optimality conditions and contains
new conditions which are essential and do not follow from other known optimality
conditions.
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Abstract. We are interested in a class of numerical schemes for the
optimization of nonlinear hyperbolic partial differential equations. We
present continuous and discretized relaxation schemes for scalar, one–
conservation laws. We present numerical results on tracking type
problems with nonsmooth desired states and convergence results for
higher–order spatial and temporal discretization schemes.

Keywords: IMEX schemes, optimal control, conservation laws,
Runge-Kutta methods.

1 Introduction

We consider an optimal control problem for scalar conservation laws of the type

minimizeu0 J(u(T ), u0)

subject to ut + f(u)x = 0, u(0, x) = u0(x),
(1)

Here, J and f are assumed to be smooth and possibly nonlinear functions. The
initial value u0 acts as control to the problem. It can be observed that the wave
interactions that occur in the solution u in the case of a nonlinear flux function
f pose the serious analytical challenges. Recently, the differentiability of J with
respect to u0 could be proven in the sense of shift–differentiability. We refer to
[6,9,10,11,28,29,30,4,32] for more details.

Here, a class of numerical methods applied to the optimal control problem
(1) is studied. We only consider the case of smooth initial data and smooth
solutions u and refer to [4] for more details. For a numerical analysis including
shock waves and in the case of the Lax–Friedrichs scheme we refer to [21,32] and
the references therein.

1.1 Relaxation Method

As motiviation for a numerical scheme we follow the ideas of Jin and Xin [22].
Therein, a linear approximation (2) of the nonlinear hyperbolic equation

D. Hömberg and F. Tröltzsch (Eds.): CSMO 2011, IFIP AICT 391, pp. 136–144, 2013.
c© IFIP International Federation for Information Processing 2013
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∂tu+ ∂xf(u) = 0

has been discussed. For initial conditions u(x, 0) = u0 the approximation is

∂tu+ ∂xv = 0 , u(x, 0) = u0,

∂tv + a2∂xu = 1
ε (f(u)− v) , v(x, 0) = f(u0)

(2)

where ε > 0 is the relaxation rate and a is a given constant satisfying the
subcharacteristic condition maxu |f ′(u)| ≤ a. For ε being small, the solution u
of (2) satisfies ∂tu + ∂xf(u) = ε∂x((a

2 − f(u)2)∂xu) (cf. [22]). Applying the
relaxation to the optimal control problem (1), we obtain

min
u0

J(u(·, T ), u0) subject to

⎧⎪⎨⎪⎩
ut + vx = 0,

vt + a2ux = 1
ε (f(u)− v) ,

u(0, x) = u0, v(0, x) = f(u0)

(3)

The corresponding adjoint equations for (3) are given by (cf. [ ?? ])

−pt − a2qx =
q

ε
f ′(u), p(T, x) = pT (x),

−qt − px = −q

ε
, q(T, x) = qT (x).

For more information on the relaxation system, its limiting scheme for ε =
0, further numerical analysis and extensions we refer to [1,2,5,14,3,8,22,25,27]
and the references therein. Also, the computations are valid provided that all
appearing functions are at least once differentiable. This is in general not the
case for conservation laws.

2 IMEX-Runge-Kutta Discretization

Numerical discretization of the relaxation system using higher order temporal
discretizations combined with higher order spatial discretization has been in-
vestigated in several recent publications as for example [22,27]. We apply so
called implicit–explicit Runge-Kutta methods [26,27,3] as temporal discretiza-
tion (IMEX RK). Here, the expliciti integration is used for the linear hyperbolic
transport part and an implicit method is applied to the the stiff source term.
Implicit-explicit Runge-Kutta method have been studied in the context of con-
trol problems for example in [4,19]. Define

y = (u, v)T , g(y) = (v, a2u)T and r(y) := (0,−(v − f(u)))T
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then (2) becomes

yt + g(y)x =
1

ε
r(y), and y(0, x) = (u0, f(u0))T (x)

Applying a suitable discretization Dx of the spatial derivative yields the semi-
discrete state equations

y′ = −Dx g(y) +
1

ε
r(y), y(0) = y0. (4)

Remark 1. Spatial discretizations for the linear transport part are well–known.
The simplest possible is a first–order Upwind method:

∂

∂t
yj = − 1

Δx

(
0 1
a2 0

)
(yj+1/2 − yj−1/2) +

1

ε
r(yj) ,

where yj+1/2 is obtained by applying the first-order upwind method to char-
acteristic variables v ± au. Higher order MUSCL schemes, WENO schemes or
central schemes have also been studied in this context.

The resulting semi–discrete optimal control problem is then given by:

minimize j(y(T ),y0)

subject to y′ = −Dx g(y) +
1
ε r(y), y(0) = y0. t ∈ [0, T ]

(5)

In the context of relaxation schemes the semi–discrete problem is seen as a
time–integration problem with stiff source which is discretized by an IMEX RK
methods. For the numerical discretization we therefore consider the previous
problem as an optimal control problem involving ordinary differential equa-
tions. Literature concerning the numerical analysis of Runge-Kutta methods
for the optimality system of (5) have been studied in [17,7,24]. In [7,17] parti-
tioned Runge-Kutta methods for the optimality system are obtained using the
discretize–then–optimize approach. The derived partitioned Runge–Kutta meth-
ods have been analysed with regard to symplecticity and order of convergence. In
[19], Herty and Schleper, moreover, analysed the associated adjoint imex Runge-
Kutta method that one obtains if an explicit method is applied to Dxg(y) and a
(diagonally) implicit method to 1

ε r(y). In the following, we will analyse general
partitioned Runge-Kutta methods using IMEX RK methds. More details can be
found in [20]. Therein, the following IMEX Runge-Kutta discretization of (4) is
studied.

Y
(i)
n = yn + h

∑i−1
j=1 ãijDxg(Y

(j)
n ) + h

∑i
j=1 aij

1
ε r(Y

(j)
n ) i = 1, .., s

yn+1 = yn + h
∑s

i=1 ω̃iDxg(Y
(i)
n ) + h

∑s
i=1 ωi

1
ε r(Y

(i)
n ), n = 0, 1, 2, .

(6)
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A nonlinear variable transformation and two intermediate states K̃
(i)
n and K

(i)
n

give the equivalent system

K̃
(i)
n = Dxg

(
yn + h

∑s
j=1 ãijK̃

(j)
n + h

∑s
j=1 aijK

(j)
n

)
i = 1, .., s

K
(i)
n = 1

ε r
(
yn + h

∑s
j=1 ãijK̃

(j)
n + h

∑s
j=1 aijK

(j)
n

)
i = 1, .., s

yn+1 = yn + h
∑s

i=1 ω̃iK̃
(i)
n + h

∑s
i=1 ωiK

(i)
n , n = 0, 1, 2, .

(7)

The associated optimality systems for the two previous optimization problems
then coincide and we refer to [20] for mor details. It is proven that the adjoint
schemes are equivalent to

P̃ (i) = pn − h
s∑

j=1

α̃ij g
′(Y (j)

n )T D̄xP̃
(j) − h

s∑
j=1

αij
1

ε
r′(Y (j)

n )TP (j) i = 1, .., s

P (i) = pn − h
s∑

j=1

β̃ij g
′(Y (j)

n )T D̄xP̃
(j) − h

s∑
j=1

βij
1

ε
r′(Y (j)

n )TP (j) i = 1, .., s (8)

pn+1 = pn − h

s∑
i=1

ω̃ig
′(Y (i)

n )T D̄xP̃
(i) − h

s∑
i=1

ωi
1

ε
r′(Y (i)

n )TP (i) n = 0, 1, .., N − 1

Here, the coefficients of the Runge-Kutta method α̃ij , αij , β̃ij and βij are given
by

α̃ij := ω̃j−
ω̃j

ω̃i
ãji, αij := ωj−

ωj

ω̃i
ãji, β̃ij := ω̃j−

ω̃j

ωi
aji, βij := ωj−

ωj

ωi
aji.

2.1 Properties of Discrete IMEX-RK Optimality System

For the resulting scheme (6),(8) order conditions can be stated [20]. To this end
we add a suitable equation for p̃ to the previous system.

p̃n+1 = p̃n − h

s∑
i=1

ω̃i fy(Y
(i)
n )T P̃ (i) − h

s∑
i=1

ωi gy(Y
(i)
n )TP (i). (9)

The full method therefore is a standard additive Runge-Kutta scheme for

y′ = −Dx g(y) +
1

ε
r(y)

p̃′ = g′(y)TDxp̃+
1

ε
r′(y)Tp

p′ = g′(y)TDxp̃+
1

ε
r′(y)Tp

If we define

ci :=
∑s

j=1 aij , and c̃i :=
s∑

j=1

ãij ,
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γi :=
∑s

j=1 αij , and γ̃i :=

s∑
j=1

α̃ij ,

δi :=
∑s

j=1 βij , and δ̃i :=
s∑

j=1

β̃ij

then (1) holds true.

Theorem 1. Consider the Runge-Kutta scheme (6),(8),(9). This scheme is of

– First-Order : if (SRK1) is of first order

– Second-Order : if (SRK1) is of second order

– Third-Order : if (SRK1) is of third order and either

s∑
i=1

ωi γ
2
i =

1

3
,

s∑
i=1

ωi γ̃
2
i =

1

3
,

s∑
i=1

ωi γiγ̃i =
1

3
,

are satisfied or if

s∑
i=1

ωi aij γi =
1

6
,

s∑
i=1

ωi ãij γ̃i =
1

6

and if
s∑

i=1

ωi aij γ̃i =
1

6
or

s∑
i=1

ωi ãij γi =
1

6

are satisfied.

Note that the system (6) and (8) is not completely coupled, since the forward
scheme (6) is solved independently of the adjoint scheme (8). General order
conditions can be found e.g. in [23]. The proof of Theorem 1 and together with
more details are discussed in [20].

3 Numerical Results

3.1 Scalar Example

As a simple example, we use a tracking type functional J(u) together with
Burgers’ equation

ut +

(
u2

2

)
x

= 0,

and the desired state ud at final time T = 2.0, that belongs to the initial con-
dition ud(0, x) =

1
2 + sin(x) and we start the optimization with the initial data
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us(0, x) ≡ 0.5. Moreover, the spatial interval is given by x ∈ [0, 2π], As dis-
cretization of the objective functional, we use

J(u(·, T ), u0, ud) =
Δx

2

K∑
i=1

‖ui − ud i‖2.

Moreover, the discrete gradient of the reduced cost functional is given by

∇u0,i J̃ = p0,i + (Df(u0)
Tq0)i.

In order to solve the optimal control problem, we apply a steepest descent
method (with respect to the reduced cost functional) with fixed stepsize 0 <
α < 1, i.e. we set uk+1

0 = uk0 + α∇u0,i J̃ . As stopping criterion for the optimiza-

tion process we test |J̃(u0, ud)| < tol where tol = 1E − 2 denotes a predefined
stopping tolerance. We observe grid independence in the case where u and u0
are differentiable in space and time.

As first-order scheme, we test the Implicit-Explicit Euler scheme

u∗i = uni
v∗i = vni − Δt

ε (v∗i − f(u∗i ))

un+1
i = u∗i −ΔtDxv

∗
i

vn+1
i = v∗i −Δt a2Dxv

∗
i

for the forward, as well as for the backward

q∗i = qn+1
i −ΔtD∗

xp
n+1
i

p∗i = pn+1
i −Δt a2D∗

xq
n+1
i

qni = q∗i − Δt
ε q

n
i

pni = p∗i +
Δt
ε q

n
i f

′(uni )

The spatial gridsize is chosen to be Nx = 300, whereas the time discretization is
done according to the CFL condition with constant cCFL = 0.5.
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N Nr. of It. CPU time (in sec.)

100 44 1.795572e+01
150 43 3.768984e+01
200 42 6.380441e+01
300 41 1.491838e+02

4 Summary

We briefly discussed a class of numerical methods applied to an optimal control
problem for scalar, hyperbolic partial differential equations. Order conditions for
the temporal numerical discretization in the case of differentiable functions have
been stated. Future work includes the analysis of additional properties of the
derived numerical discretizations as for example strong stability and asymptotic
preservation properties.
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Appendix

The discrete adjoint equations that correspond to the discrete optimization prob-
lem associated with (7) are

ξ̃(i)n = h ω̃i pn+1 + h

s∑
j=1

ãjig
′(Y (j)

n )T D̄xξ̃
(j)
n + h

s∑
j=1

ãji
1

ε
r′(Y (j)

n )T ξ(j)n

ξ(i)n = hωi pn+1 + h

s∑
j=1

ajig
′(Y (j)

n )T D̄xξ̃
(j)
n + h

s∑
j=1

aji
1

ε
r′(Y (j)

n )T ξ(j)n

pn = pn+1 +
s∑

i=1

g′(Y (i)
n )T D̄xξ̃

(i)
n +

s∑
i=1

1

ε
r′(Y (i)

n )T · ξ(i)n

pN = j′(yN , y
0) .

Moreover, the variable transformation that is needed to obtain (8) is given by

P̃ (i)
n :=

ξ̃
(i)
n

h ω̃i
and P (i)

n :=
ξ
(i)
n

hωi
(i = 1, .., s; n = 0, .., N − 1) .

On the other hand, using (6) the associated discrete adjoint equations are

ζ(i)n = h
(
ω̃ify(Y

(i)
n ) + ωigy(Y

(i)
n )
)T

pn+1 +
s∑

j=1

ãji fy(Y
(i)
n )T ζ(j)
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+h

s∑
j=1

aji gy(Y
(i)
n )T ζ(j) i = 1, .., s

pn = pn+1 +

s∑
i=1

ζ(i)n , i = 1, .., N − 1, pN = j′(yN )

which can be transformed into the scheme (8) using the variable transformation

P̃ (i)
n := pn+1 +

s∑
j=1

ãji
ω̃i

ζ(j)n and P (i)
n := pn+1 +

s∑
j=1

aji
ωi

ζ(j)n .
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Abstract. We investigate the Tikhonov regularization of control con-
strained optimal control problems. We use a specialized source condition
in combination with a condition on the active sets. In the case of high
convergence rates, these conditions are necessary and sufficient.
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1 Introduction

In this article, we investigate regularization schemes for the following class of
optimization problems:

Minimize
1
2
‖Su − z‖2

Y + β‖u‖L1(Ω)

such that u ∈ L2(Ω) and ua ≤ u ≤ ub a.e. on Ω.
(P)

Here, Ω is a measurable subset of Rn, n ≥ 1, Y is a Hilbert space, S : L2(Ω) → Y
a bounded linear operator, and the function z ∈ Y is given. The parameter β
is assumed to be non-negative. The control constraints ua, ub ∈ L∞(Ω) satisfy
ua ≤ 0 ≤ ub.

This model problem can be interpreted as an optimal control problem as well
as an inverse problem. In the point of view of inverse problems, the unknown u
has to be constructed in order to reproduce given measurements z. The inequality
constraints on u reflect certain a-priori knowledge about the solution u† of the
linear ill-posed equation Su = z. If the problem at hand is seen as an optimal
control problem, then u is the control, Su the state of the system, which has
to be close to a desired state z, the inequality constraints restrict the feasible
set and may hinder the state Su to reach the target z. If the parameter β is
positive, then the resulting optimal control will be sparse, that is, its support is
a possibly small subset of Ω.

The resulting optimization problem (P) is nevertheless ill-posed if S is not
continuously invertible. Due to the control constraints, problem (P) still pos-
sesses a solution, which is even unique if S is injective. However, the solution
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c© IFIP International Federation for Information Processing 2013



146 D. Wachsmuth and G. Wachsmuth

may be unstable with respect to perturbations in the problem data, for instance
in the given state z. Here small perturbations due to measurement errors may
lead to large changes in the solution. Consequently, any numerical approxima-
tion of (P) is challenging to solve and numerical approximations of solutions
may converge arbitrarily slow. Let us note, that a positive value of β does not
make the problem well-posed. This is due to the fact, that L1(Ω) is not a dual
space and hence bounded sets in L1(Ω) are not compact w.r.t. the weak(-star)
topology, see also the discussions in [7,8].

In order to overcome this difficulty, we apply common ideas from inverse
problem theory. We will study a regularization of the type

Minimize
1
2
‖Su − z‖2

Y + β‖u‖L1(Ω) +
α

2
‖u‖2

L2(Ω)

such that u ∈ L2(Ω) and ua ≤ u ≤ ub a.e. on Ω,
(Pα)

where α > 0 is given. Clearly, the problems (Pα) are uniquely solvable for α >
0. Now, the question arises, whether their solutions uα converge (weakly or
strongly) to a solution u0 of (P) for α → 0. Moreover, in the case of convergence,
one is interested in proving convergence rates of ‖uα−u0‖L2(Ω) and ‖Suα−Su0‖Y

under suitable assumptions.
In this work, we will prove necessary conditions for convergence rates. In

some parts, the necessary conditions are similar to sufficient conditions found
in earlier works [7,8]. Moreover, the result of Theorem 3 leads to a weakened
sufficient condition for convergence rates.

1.1 Standing Assumptions and Notation

Let us fix the standing assumptions on the problem (P). We assume that S :
L2(Ω) → Y is linear and continuous. In many applications this operator S is
compact. Furthermore, we assume that the Hilbert space adjoint operator S�

maps into L∞(Ω), i.e., S� ∈ L(Y, L∞(Ω)). These assumptions imply that the
range of S is closed in Y if and only if the range of S is finite-dimensional, see
[8, Prop. 2.1]. Hence, up to trivial cases, (P) is ill-posed. A typical example for
S is the solution operator of the Poisson problem with homogeneous Dirichlet
boundary conditions.

The set of feasible functions u is given by

Uad := {u ∈ L2(Ω) : ua ≤ u ≤ ub a.e. on Ω}.

The problem (Pα) is uniquely solvable for α > 0. We will denote its solution by
uα, with the corresponding state yα := Suα and adjoint state pα := S�(z − yα).
There is a unique solution of (P) with minimal L2(Ω) norm, see [8, Thm. 2.3,
Lem. 2.7]. This solution and the associated state and adjoint state will be denoted
by u0, y0 and p0, respectively. Note that the weak convergence uα ⇀ u� in L2(Ω),
where u� is a solution of (P) already implies u� = u0, see [8, Rem. 3.3].
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1.2 Optimality Conditions

As both problems (P) and (Pα) are convex, their solutions can be characterized
by the following necessary and sufficient optimality conditions:

Theorem 1 ([7, Lemma 2.2]). Let α ≥ 0 be given, and let uα be a solution
of (Pα) (or (P) in the case α = 0).

Then, there exists a subgradient λα ∈ ∂‖uα‖L1(Ω), such that the variational
inequality

(α uα − pα + β λα, u − uα) ≥ 0 ∀u ∈ Uad, (1)

is satisfied, where pα = S�(z − Suα) is the associated adjoint state.

Here, (·, ·) refers to the scalar product in L2(Ω).
Standard arguments (see [6, Section 2.8]) lead to a pointwise a.e. interpre-

tation of the variational inequality, which in turn implies the following relation
between uα and pα in the case α > 0:

uα(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ua(x) if pα(x) < α ua(x) − β
1
α (pα(x) + β) if α ua(x) − β ≤ pα(x) ≤ −β

0 if |pα(x)| < β
1
α (pα(x) − β) if β ≤ pα(x) ≤ α ub(x) + β

ub(x) if α ub(x) + β < pα(x)

a.e. on Ω. (2)

In the case α = 0, we have

u0(x)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

= ua(x) if p0(x) < −β

∈ [ua(x), 0] if p0(x) = −β

= 0 if |p0(x)| < β

∈ [0, ub(x)] if p0(x) = β

= ub(x) if β < p0(x)

a.e. on Ω. (3)

Note that if β = 0, one obtains u0(x) ∈ [ua(x), ub(x)] where p0(x) = 0 in (3).
This implies that u0(x) is uniquely determined by p0(x) on the set, where it
holds |p0(x)| �= β.

2 Sufficient Conditions for Convergence Rates

Let us first recall the sufficient conditions for convergence rates as obtained in
[8]. We will work with the following assumption. There we denote by proj[a,b](v)
the projection of the real number v onto the interval [a, b].

Assumption 2. Let u0 be a solution of (P). Let us assume that there exist a
measurable set I ⊂ Ω, a function w ∈ Y , and positive constants κ, c such that it
holds:
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1. (source condition) I ⊃ {x ∈ Ω : |p0(x)| = β}, and for almost all x ∈ I

u0(x) =

⎧⎪⎨⎪⎩
proj[ua(x),0]

(
(S�w)(x)

)
if β > 0, p0(x) ≤ −β

2 ,

proj[0,ub(x)]

(
(S�w)(x)

)
if β > 0, p0(x) ≥ β

2 ,

proj[ua(x),ub(x)]

(
(S�w)(x)

)
if β = 0.

(4)

2. (structure of active set) A = Ω \ I and for all ε > 0

meas
({x ∈ A : 0 <

∣∣|p0(x)| − β
∣∣ < ε}) ≤ c εκ if w �= 0,

meas
({x ∈ A : 0 < |p0(x)| − β < ε}) ≤ c εκ if w = 0.

(5)

Some remarks are in order. The first part of the assumption is analogous to
source conditions in inverse problems: we assume that on the set I ⊂ Ω the
solution u0 is the restriction to I of a certain pointwise projection of an el-
ement in the range of S�. This part of the condition is different from other
conditions in the literature: in our earlier work [8] we used the assumption
u0(x) = proj[ua(x),ub(x)]

(
(S�w)(x)

)
on I. However, in the light of the deriva-

tion of necessary conditions it turns out that such a condition can be weakened
without losing anything with respect to convergence rates. In works on inverse
problems [3,5], the source condition u0 = projUad

(S�w) is used, which is retained
as the special case I = Ω in Assumption 2.

The assumption (5) (without the second alternative) on the active sets was al-
ready employed to obtain regularization error estimates [7,8], error estimates for
finite-element discretizations of (P) [2], as well as stability results of bang-bang
controls [4]. Note that in the case β = 0, both conditions in (5) are equivalent.
However, if β > 0 and w = 0 (in particular, if I has measure zero), the second
alternative provides a weaker condition than the first one. Hence, condition (5)
is weaker than the condition used in our earlier work [8].

Theorem 3. Let Assumption 2 be satisfied.
Let d be defined as

d =

⎧⎪⎨⎪⎩
1

2−κ if κ ≤ 1,

1 if κ > 1 and w �= 0,
κ+1

2 if κ > 1 and w = 0.

Then there is αmax > 0 and a constant c > 0, such that

‖y0 − yα‖Y ≤ c αd

‖p0 − pα‖L∞(Ω) ≤ c αd

‖u0 − uα‖L2(Ω) ≤ c αd−1/2

holds for all α ∈ (0, αmax].

Under the assumptions of the theorem, one can prove also convergence rates for
‖uα − u0‖L1(A) [8].
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Proof. The proof is analogous to the proof of [8, Thm. 3.14]. We have to take
into account the modification of the source condition (4) in the case β > 0 and
the modification of (5) in the case w = 0. By [8, Lemma 2.12], we have

‖y0 − yα‖2
Y + α ‖u0 − uα‖2

L2(Ω) ≤ α (u0, u0 − uα). (6)

Since Uad is bounded, we obtain ‖p0 − pα‖L∞(Ω) ≤ c α1/2 for some c > 0 inde-
pendent of α.

Let now α be small enough such that ‖p0−pα‖L∞(Ω) < β/2. This implies that
p0 and pα have the same sign on the set {x ∈ I : |p0(x)| ≥ β/2}. Consequently,
u0 and uα have the same sign on this set, too. Moreover, on the set {x ∈ I :
|p0(x)| < β/2} it holds |pα| < β, and hence uα = 0 = u0 on this set. This yields

(χIu0, u0 − uα) ≤ (χIS�w, u0 − uα)

for α > 0 small enough. Note that in case of w = 0, the right-hand side in the
previous estimate vanishes and it remains to estimate (χA u0, u0 − uα). Taking
into account that u0(x) = 0 whenever |p0(x)| < β, the weakend estimate (5)
is sufficient in this case. Arguing as in the proof of [8, Thm. 3.14] proves the
claim. ��

3 Necessary Conditions for Convergence Rates

3.1 Necessity of the Source Condition (4)

Theorem 4. Let us suppose that ‖yα−y0‖Y = O(α) with y0 = Su0. Then there
exists w ∈ Y such that

u0(x) =

⎧⎪⎨⎪⎩
proj[ua(x),0]

(
(S�w)(x)

)
if β > 0, p0(x) = −β,

proj[0,ub(x)]

(
(S�w)(x)

)
if β > 0, p0(x) = +β,

proj[ua(x),ub(x)]

(
(S�w)(x)

)
if β = 0, p0(x) = 0.

If moreover ‖yα − y0‖Y = o(α), then u0 = 0 on {x ∈ Ω : |p0(x)| = β}, i.e.
w = 0.

This result shows that the source condition (4) is necessary on the set {x ∈ Ω :
|p0(x)| = β}.
Proof. Let us prove the claim in the case β > 0. The result in the case β = 0
can be proved with obvious modifications. Let us take a test function u ∈ Uad

defined as

u(x)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

= ua(x) if p0(x) < −β,

∈ [ua(x), 0] if p0(x) = −β,

= 0 if |p0(x)| < β,

∈ [0, ub(x)] if p0(x) = β,

= ub(x) if p0(x) > β.
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Due to the relation

λ0 = proj[−1,1]

( 1
β

p0

)
, (7)

which is a consequence of the necessary optimality condition, see [1] for a proof,
we obtain λ0 = ±1 where p0 = ±β. Hence it holds

(−p0, u − u0) = (−β λ0, u − u0) = β ‖u0‖L1(Ω) − β ‖u‖L1(Ω) (8)

for u as above.
Since λ0 ∈ ∂‖u0‖L1(Ω), we obtain

(λ0, uα − u0) ≤ ‖uα‖L1(Ω) − ‖u0‖L1(Ω). (9)

Using the optimality of uα and the relation −pα = −p0 + S�S(uα − u0) we get

(−p0 + S�S(uα − u0) + α uα, u − uα) + β ‖u‖L1(Ω) − β ‖uα‖L1(Ω) ≥ 0.

Adding (−p0 + β λ0, uα − u0) ≥ 0 to the left-hand side yields

(S�S(uα − u0) + α uα, u − uα) + (−p0, u − u0) + (β λ0, uα − u0)
+β ‖u‖L1(Ω) − β ‖uα‖L1(Ω) ≥ 0.

Using (8) and (9) we obtain

(S�S(uα − u0) + α uα, u − uα) ≥ 0.

Due to the assumptions of the theorem, the functions 1
α (S(uα−u0)) = 1

α (yα−y0)
are uniformly bounded for α ↘ 0. As a consequence, α ↘ 0 implies

(S�ẏ0 + u0, u − u0) ≥ 0

for any weak subsequential limit ẏ0 of 1
α (yα − y0). Due to the construction of

the test function u, we obtain

u0 =

{
proj[ua,0](S�ẏ0) where p0 = −β,

proj[0,ub]
(S�ẏ0) where p0 = +β.

If ‖yα−y0‖Y = o(α) then 1
α (yα−y0) → 0 strongly in Y for α → 0, hence ẏ0 = 0,

and u0 = 0 on the set {|p0| = β}. ��
As can be seen from the proof, the element that realizes the source condition
can be interpreted as the (weak) directional derivate of α �→ yα at α = 0.

The result of the theorem resembles known results of necessity of the source
condition in linear inverse problems, see e.g. [3,5].
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3.2 Necessity of the Condition (5) on the Active Set

In this section, we want to prove the necessity of (5) in the case of high conver-
gence rates d > 1. In this case, we have w = 0, see Theorem 4. It remains to
show that the second condition in (5) is necessary to obtain convergence rates
d > 1. Hence, we derive a bound on

μ(ε) := |{x ∈ Ω : 0 < |p0(x)| − β < ε}| ,
which is the measure of a subset of

A := {x ∈ Ω : β < |p0(x)|}.
For α > 0 let ũα denote the unique solution of

min
u∈Uad

−(u, p0) +
α

2
‖u‖2

L2(Ω) + β‖u‖L1(Ω). (Paux
α )

Analogous to (2), we have the representation

ũα(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ua(x) if p0(x) < α ua(x) − β
1
α (p0(x) + β) if α ua(x) − β ≤ p0(x) ≤ −β

0 if |p0(x)| < β
1
α (p0(x) − β) if β ≤ p0(x) ≤ α ub(x) + β

ub(x) if α ub(x) + β < p0(x)

a.e. on Ω. (10)

Let us first prove a relation between the convergence rates of ‖u0− ũα‖L2(A) and
μ(ε) for α → 0 and ε → 0, respectively.

Lemma 5. Let us assume that there is σ > 0 such that ua ≤ −σ < 0 < σ ≤ ub

a.e. on Ω. Then it holds: If ‖u0 − ũα‖L2(A) = O(αd), d > 0, for α → 0, then
μ(ε) = O(ε2d) for ε → 0.

Proof. Due to the pointwise representations of ũα and u0 in (10) and (3), re-
spectively, it holds

‖u0 − ũα‖2
L2(A) =

∫
{β<p0<αub+β}

(ub − α−1(p0 − β))2

+
∫
{αua−β<p0<−β}

(ua − α−1(p0 + β))2.

Due to the assumption on the control constraints we have∫
{β<p0<αub+β}

(ub − α−1(p0 − β))2 ≥
∫
{β<p0<ασ/2+β}

(ub − α−1(p0 − β))2

≥
∫
{β<p0<ασ/2+β}

(σ/2)2

≥ (σ/2)2
∣∣{x ∈ Ω : 0 < p0(x) − β < ασ/2}∣∣.
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Similarly, we obtain∫
{αua−β<p0<−β}

(ua−α−1(p0+β))2 ≥ (σ/2)2
∣∣{x ∈ Ω : 0 < −p0(x)−β < ασ/2}∣∣.

This implies
‖u0 − ũα‖2

L2(A) ≥ (σ/2)2μ(ασ/2).

Hence if ‖u0 − ũα‖L2(A) = O(αd) holds, then

μ(ασ/2) ≤ O(α2d),

for α → 0, which proves the claim. ��
Using the same arguments, we can prove the following result.

Corollary 6. Let the requirements of Theorem 5 be satisfied. Let p ∈ [1,∞) be
given. Then it holds(σ

2

)p

μ
(σ

2
α
)
≤ ‖u0 − ũα‖p

Lp(A) ≤ Mp μ(Mα)

with M = max(‖ua‖L∞(Ω), ‖ub‖L∞(Ω)).

Lemma 7. Let ũα be defined as above. Then it holds

α‖ũα − uα‖2
L2(Ω) + ‖y0 − yα‖2

Y ≤ (p0 − pα, ũα − u0).

Proof. Since uα and ũα solve (Pα) and (Paux
α ), respectively, we have

(αuα − pα + βλα, ũα − uα) ≥ 0,

(αũα − p0 + βλ̃α, uα − ũα) ≥ 0,

with some λ̃α ∈ ∂‖ũα‖L1(Ω). Due to the monotonicity of the subdifferential we
have (λα − λ̃α, uα − ũα) ≥ 0. This gives

α‖ũα − uα‖2
L2(Ω) ≤ (p0 − pα, ũα − uα).

The identity

(p0 − pα, ũα − uα) = (p0 − pα, ũα − u0 + u0 − uα)

= (p0 − pα, ũα − u0) − ‖y0 − yα‖2
Y

finishes the proof. ��
Theorem 8. Let us assume that there is σ > 0 such that ua ≤ −σ < 0 < σ ≤ ub

a.e. on Ω. The we have the following implication: If

‖u0 − uα‖L2(Ω) = O(αd−1/2), ‖y0 − yα‖Y = O(αd) for α → 0

holds with d > 1, then it follows

μ(ε) ≤ O(ε2d−1) for ε → 0.
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Proof. Let us begin with

‖u0 − ũα‖2
L2(Ω) ≤ 2(‖u0 − uα‖2

L2(Ω) + ‖uα − ũα‖2
L2(Ω))

≤ O(α2d−1) + α−1(p0 − pα, ũα − u0)

≤ O(α2d−1) + O(αd−1)‖u0 − ũα‖L2(Ω),

which gives ‖u0 − ũα‖L2(Ω) = O(αd−1). Hence by Theorem 5, we obtain μ(ε) =
O(ε2d−2). Let us note that the convergence rates imply u0(x) = 0 if |p0(x)| = β
by Theorem 4. Moreover, we have u0 = ũα = 0 on {x ∈ Ω : |p0(x)| ≤ β} by (3)
and (10). This implies u0 = ũα = 0 on the set {x ∈ Ω : |p0(x)| ≤ β} = Ω \ A,
cf. (10). Using the convergence rate ‖p0 − pα‖L∞(Ω) = O(αd) and Theorem 6,
we find

α−1|(p0 − pα, ũα − u0)| = O(αd−1)‖ũα − u0‖L1(Ω)

= O(αd−1)‖ũα − u0‖L1(A)

≤ O(αd−1)μ(M α).

Since by the above considerations we already got μ(ε) = O(ε2d−2) this gives

‖u0 − ũα‖2
L2(Ω) = O(α2d−1) + O(α3(d−1)).

Repeating this process k times until k(d − 1) ≥ 2d − 1 yields

‖u0 − ũα‖2
L2(Ω) = O(α2d−1),

which finishes the proof. ��

Together with Theorem 4, this result shows that the requirements of Theorem 3
for convergence rates d > 1 are sharp. It is an open question, whether the
requirement (5) on the active set is also necessary for convergence rates d ≤ 1.
In our opinion, this condition is too strong and has to be relaxed in order to
obtain a characterization for convergence rates d ≤ 1.

3.3 Necessary Conditions for Exact Reconstruction with α > 0

Let us now investigate the case of exact reconstruction. That is, the solutions of
the regularized problem uα coincide with the (minimal L2-norm) solution u0 of
the original problem.

Lemma 9. Let us assume that uα∗ = u0 a.e. on Ω for some α∗ > 0. Then
uα = u0 a.e. on Ω for all α ∈ (0, α∗).

Proof. The claim follows from known monotonicity results: The mapping α �→
‖uα‖L2 is monotonically decreasing, while α �→ 1

2‖yα−yd‖2
Y +β‖uα‖L1 is mono-

tonically increasing from (0, +∞) to R, see e.g. [8, Lemma 2.8]. ��
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Theorem 10. Let us assume that there is σ > 0 such that ua ≤ −σ < 0 < σ ≤
ub a.e. on Ω. Then the exact recovery uα∗ = u0 a.e. on Ω for some α∗ > 0 is
equivalent to

u0 = 0 on {x ∈ Ω : |p0(x)| = β} and

μ(ε) =
∣∣{x ∈ Ω : 0 < |p0(x)| − β < ε}∣∣ = 0

}
(11)

for some ε > 0.

Proof. Let us assume uα∗ = u0 for some α∗ > 0. Theorem 9 and Theorem 4
imply u0(x) = 0 for x ∈ {x ∈ Ω : |p0(x)| = β}. Moreover, due to p0 = pα∗

we infer u0 = uα∗ = ũα∗ from Theorem 7, where ũα∗ is defined by (10). Hence,
Theorem 6 implies μ(σ α∗/2) = 0.

To prove the converse, let (11) be satisfied for some ε > 0. Using (6) we obtain

α ‖u0 − uα‖2
L2(Ω) ≤ α (u0, u0 − uα) = α (χA u0, u0 − uα) ≤ C α |Aα|,

where A = {x ∈ Ω : |p0(x)| > β} and Aα = {x ∈ A : u0(x) �= uα(x)}. Arguing
similarly as in [8, Corollary 3.13], we have |Aα| = 0, and hence ‖u0−uα‖L2(A) = 0
holds for α > 0 small enough. ��
In many applications, the adjoint state p0 belongs to C(Ω). In this case, the result
of Theorem 10 shows that an exact reconstruction is only possible if |p0(x)| �= β
for all x ∈ Ω. This in turn implies either u0 ≡ ua or u0 ≡ 0 or u0 ≡ ub on every
connected component of Ω.
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Robustness Analysis of Stochastic Programs

with Joint Probabilistic Constraints

Jitka Dupačová

Charles University in Prague, Faculty of Mathematics and Physics
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Sokolovská 83, 18675 Prague, Czech Republic

Abstract. Due to their frequently observed lack of convexity and/or
smoothness, stochastic programs with joint probabilistic constraints have
been considered as a hard type of constrained optimization problems,
which are rather demanding both from the computational and robustness
point of view. Dependence of the set of solutions on the probability
distribution rules out the straightforward construction of the convexity-
based global contamination bounds for the optimal value; at least local
results for probabilistic programs of a special structure will be derived.
Several alternative approaches to output analysis will be mentioned.

Keywords: Joint probabilistic constraints, contamination technique,
output analysis.

1 Introduction

Consider the following abstract formulation of a stochastic program

min
x∈X (P )

G0(x, P ) (1)

where P is the probability distribution of a random vector ω with range Ω ⊂ IRM

and both the criterion G0 and the set of feasible solutions X (P ) ⊂ IRN may
depend on P. We assume that in (1)

X (P ) := {x ∈ X : Gj(x, P ) ≤ 0, j = 1, . . . , J} (2)

where Gj(x, P ) ≤ 0 are joint probabilistic constraints such as

P (ω : g(x, ω) ≤ 0) ≥ 1− ε (3)

with g : IRN ×Ω → IRK ,K > 1; Individual probabilistic constraints correspond
to K = 1. Probability level ε ∈ (0, 1) in (3) is fixed, prescribed by regulations or
chosen by the decision maker.

Probabilistic constraints are sufficiently flexible and model well the intuitive
requirements of system reliability or hedging against risk. Depending on the
problem, multiple probabilistic constraints can be used. However, the set X (P )

D. Hömberg and F. Tröltzsch (Eds.): CSMO 2011, IFIP AICT 391, pp. 155–164, 2013.
c© IFIP International Federation for Information Processing 2013
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is typically nonconvex, sometimes even disconnected, and functions Gj(•, P )
need not be smooth. This is the reason why probabilistic programs have been
recognized as hard optimization problems that are very demanding from the
computational point of view. For a given probability distribution P, (1) with
joint probabilistic constraints (3) is a nonlinear program and in principle, known
algorithms can be adapted provided that checking feasibility is manageable and
the set of feasible solutions is convex. In so doing, one has to cope with the fact
that derivatives are expressed as surface or volume integrals, cf. Chapter 5 of
[31] for an introductory survey and references.

The seminal results on convexity of problems with joint probabilistic con-
straints were proved by Prékopa, cf. [20], under assumptions concerning both
the function g and the probability distribution P.

Definition 1 (α-concave functions). A nonnegative function f(x) defined
on a convex set C ⊂ IRN is α-concave with α ∈ [−∞,∞] if for all x, y ∈ C and
λ ∈ [0, 1] the inequality

f(λx+ (1− λ)y) ≥ mα(f(x), f(y), λ)

holds true. The function mα : IR+ × IR+ × [0, 1]→ IR is defined as follows:

mα(a, b, λ) = 0 if ab = 0

and for a > 0, b > 0, 0 ≤ λ ≤ 1

mα(a, b, λ) =

⎧⎪⎪⎨⎪⎪⎩
aλb1−λ if α = 0, i.e. f log-concave
max[a, b] if α =∞, i.e. f quasi-convex
min[a, b] if α = −∞, i.e. f quasi-concave

(λaα + (1− λ)bα)1/α otherwise.

If f(x) is an α-concave function then it is locally Lipschitz continuous, direc-
tionally differentiable and Clarke regular, i.e. directional derivatives f ′(x, d) exist
and

f ′(x, d) = lim
y→x,t→0

f(y + td)− f(y)

t
∀d ∈ IR.

One of the most general results about convexity of X (P ) is the following
extension of Prékopa’s original theorem.

Theorem 1 (Theorem 4.39 in [31]). Let the functions gk : IRN × IRM →
IR ∀k be quasi-convex. Let ω ∈ IRM be a random vector that has an α-concave
probability distribution, then the function P (ω : gk(x, ω) ≤ 0 ∀k) is α-concave on
the set

D := {x ∈ IRN : ∃y ∈ IRM s.t. gk(x, y) ≤ 0 ∀k}.

The required joint quasi-convexity of gk(x, ω) is the main limitation for exploita-
tion of this result. Theorem 1 is applicable e.g. for gk(x, ω) = −gk(x)+ωk ∀k, i.e.
for separable joint probabilistic constraints. We refer to [21], [22] and to Chapter
5 of [31] for details. Another favorable class are linear probabilistic constraints
with Gaussian coefficients, see e.g. [22], [32].
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To solve complex probabilistic programs one tries to simplify or reformulate
the model, to approximate the probability distribution, etc. These approxima-
tions and simplifications ask for development of suitable validation techniques
and for stability and robustness tests. See e.g. [15] for qualitative stability results
under perturbations of all input data, including the probability distribution P,
the set X and the probability level α.

Moreover, the probability distribution P itself need not be known completely.
Nevertheless, the wish is to find a solution of (1) which is efficient and reliable
enough to support sensible decisions. This gives a motivation for stability or
robustness analysis of (1) with respect to perturbations of P. Dependence of the
set of feasible solutions on P complicates the stability considerations substan-
tially. We denote X ∗(P ) the set of optimal solutions, ϕ(P ) the optimal value of
the objective function in (1) and we shall assume that ϕ(P ) is finite.

General stability results for (2) were proved by Römisch without any con-
vexity assumptions; cf. Theorems 5 and 9 in [25]. Then the main stumbling
block for their application is the requirement of the metric regularity property
which is related with continuity of the set X (P ) when some perturbations of
P are considered; see e.g. [1] for the general theory and [16] for specific results
for probabilistic constraints. When, in addition, the set of optimal solutions is
nonempty and bounded, the perturbed probability distribution, say Q, is close
to the true one and the objective function is locally Lipschitz continuous one
gets a local Lipschitz property of the optimal value

|ϕ(P ) − ϕ(Q)| ≤ Ld(P,Q)

and upper semicontinuity of the set of optimal solutions. A proper selection
of the probability distance d is crucial. These results were detailed mainly for
separable linear probabilistic programs and α-concave probability distributions,
see e.g. [16], [25], [26].

Similarly as in [11] we shall focus on quantitative stability properties of the
optimal value with respect to perturbations of P. In Section 2 we shall apply
relatively simple ideas of output analysis based on the contamination technique
initiated in [4], [29] whose applications for stochastic programs with a fixed
set of feasible decisions were elaborated e.g. in [8], [12]. The considered special
type of perturbations reduces the stability analysis of (2) to that for parametric
programs with one-dimensional real parameter. At the same time, it gets on with
needs for what-if-analysis or stress testing.

For stochastic programs whose set of feasible decisions does not depend on P
and the objective function G0(x, P ) is linear or concave in P one obtains then
global bounds for the optimal value function. Local contamination bounds for
the optimal value function in (2) were derived in [11] under convexity of the
set X and of functions Gj(•, P )∀j. We shall discuss possible extensions of these
results to problems with probabilistic constraints for which one cannot rely on
convexity properties. In Section 3 some alternative recent approaches will be
indicated.
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2 Robustness Analysis via Contamination

Contamination means to model the perturbations of P by its contamination by
another fixed probability distribution Q, i.e. to use Pt := (1− t)P + tQ, t ∈ [0, 1]
in stochastic program (1) – (2) at the place of P. Then the set of feasible solutions
of (2) for the contaminated probability distribution Pt equals

X (Pt) = X ∩ {x : Gj(x, Pt) ≤ 0, j = 1, . . . , J}. (4)

For probabilistic programs Gj(x, P ) = 1− ε−Hj(x, P ) with Hj(x, P ) = P{ω :
ω ∈ Hj(x)} where Hj(x) = {y ∈ IRs : gk(x, y) ≤ 0 for k ∈ Kj} describes the
j-th group of constraints depending on ω and on the decision vector x. Evidently,
Gj(x, Pt) = (1− t)Gj(x, P )+ tGj(x,Q) := Gj(x, t)∀j are linear in t. We assume
that the perturbed objective function G0(x, t) is also linear in t. The perturbed
problem (2) is then the linearly perturbed parametric program

min
x∈X

(1− t)G0(x, 0) + tG0(x, 1) (5)

subject to
(1 − t)Gj(x, 0) + tGj(x, 1) ≤ 0, j = 1, . . . , J. (6)

We denote X (t), ϕ(t), X ∗(t) the set of feasible solutions, the optimal value and
the set of optimal solutions of (5)–(6). For t = 0, X (0), ϕ(0), X ∗(0) denote the
set of feasible solutions, the optimal value and the set of optimal solutions of the
initial unperturbed problem (1) with probabilistic constraints. We shall assume
that X ∗(0) = ∅, i.e., that ϕ(0) is finite.

Contamination technique was developed and applied for X (P ) independent
of P and for expectation type objective G0(x, P ), cf. [8], [12]. Assume that such
stochastic program

min
x∈X

G0(x, P ) (7)

was solved for P and that its optimal value ϕ(P ) is finite. Consider a contami-
nated distribution

Pt := (1− t)P + tQ, t ∈ [0, 1]

with Q another fixed probability distribution such that ϕ(Q) is finite. Via con-
tamination, robustness analysis with respect to changes in P gets reduced to
much simpler analysis of parametric program with scalar parameter t.
The objective function in (7) is linear in P so that the perturbed objective
G0(x, t) := G0(x, Pt) = (1− t)G0(x, P ) + tG0(x,Q) is linear in t. For a fixed set
of feasible solutions X (t) ≡ X we get easily (see e.g. Theorem 4.16 of [1])

Theorem 2. Assume that X = ∅ and ϕ(t) is finite for all t ∈ [0, 1]. Then ϕ(t)
is a lower semicontinuous concave function on [0, 1].

This result allows us to construct bounds for ϕ(t)

(1− t)ϕ(0) + tϕ(1) ≤ ϕ(t) ≤ ϕ(0) + tϕ′(0+) ∀t ∈ [0, 1], (8)
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i.e. the sought global contamination bounds for the perturbed optimal value
ϕ(Pt). They quantify change in optimal value due to considered perturbations
of (7).

For parameter dependent sets of feasible solutions the optimal value function
ϕ(t) is concave only under rather strict assumptions such asGj(x, t), j = 1, . . . , J
jointly concave on X × [0, 1] (cf. Corollary 3.2 of [17].) We shall examine how
to construct computable local upper and lower contamination bounds (8) for
the perturbed optimal value ϕ(t) for stochastic programs (1) with probabilistic
constraints (3). These local bounds can be then exploited in robustness analysis
of probabilistic programs with respect to small contamination of data, inclusion
of additional scenarios, etc. The form of (8) suggests that we should concentrate
on the existence and form of the directional derivatives and on assumptions
under which for small t, the sets of feasible solutions X (t) remain fixed or the
optimal value function ϕ(t) is concave.

There exist formulas for directional derivative ϕ(0+) based on the Lagrange
function L(x, u, t) = G0(x, Pt) +

∑
j ujGj(x, Pt) for the contaminated problem.

The generic formula

ϕ′(0+) = min
x∈X ∗(0)

max
u∈U∗(x,0)

∂

∂t
L(x, u, 0)

simplifies thanks to linearity of the Lagrange function with respect to the pa-
rameter t. The derivations proceed in accordance with the assumed properties
of problem (5)–(6); consult section 4.3.2 of [1]. The directional derivative ϕ′(0+)
provides information about the influence of contamination on the optimal value
ϕ(t) for small t. It can be obtained without the second order sufficient condi-
tion, e.g. [14], [28], under assumptions which guarantee existence of a continuous
trajectory x∗(t) for a small contamination t. Besides of uniform compactness
of X (t) for t > 0 and small enough, the approach assumes that the unper-
turbed problem has unique optimal solution x∗(0) for which the Mangasarian-
Fromowitz constraint qualification holds. Multiple Lagrange multipliers, whose
sets are bounded convex polyhedra, are not excluded and multiple optimal so-
lutions may occur for t > 0.

Classical stability results for nonlinear parametric programs with a parameter
dependent set of feasible solutions such as (6), including directional differentia-
bility of the optimal value function, were first obtained by applying the Implicit
Function Theorem to the first-order optimality conditions under assumptions
that imply existence and uniqueness of the optimal solution and of the corre-
sponding Lagrange multipliers for the unperturbed problem, see e.g. [13]. For
the Lagrange function

L(x, u, t) = G0(x, t) +
∑

j
ujGj(x, t),

with differentiable functions Gj(•, t) and for X = IRN the optimal solution and
the vector of the corresponding Lagrange multipliers for (6) have to satisfy the
first-order optimality condition

∇xL(x, u, t) = ∇xG0(x, t) +
∑

j
uj∇xGj(x, t) = 0.
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Besides of the linear independence and the strict complementarity conditions
valid at the optimal solution x∗(0) of the unperturbed problem and at the cor-
responding vector of Lagrange multipliers u∗(0), the derivation exploits also
existence and nonsingularity of the Hessian matrix of the Lagrange function
on the tangent space to the active constraints at x∗(0), u∗(0); see e.g. [1], [13].
Then there exists t0 > 0 and a smooth trajectory [x∗(t), u∗(t)] emanating from
[x∗(0), u∗(0)] which satisfies the first-order optimality conditions for 0 ≤ t ≤ t0 :

Gj(x
∗(t), t) ≤ 0, u∗j (t) ≥ 0, Gj(x

∗(t), t)u∗j (t) = 0, j = 1, 2, . . . , J,

∇xG0(x
∗(t), t) +

∑
j
u∗j (t)∇xGj(x

∗(t), P ) = 0

and the directional derivative

ϕ′(0+) = L(x∗(0), u∗(0), 1)− L(x∗(0), u∗(0), 0).

This approach was applied in [5] for probabilistic programs under the second
order sufficient condition. Having in mind the nonsmooth character of proba-
bilistic constraints we wish to get bounds for the optimal value function ϕ(t)
under relaxed differentiability requirements. We shall see that thanks to the as-
sumed structure of perturbations

• lower bound for ϕ(t) can be derived for G(x, P ) linear (or concave) with re-
spect to P without any smoothness or convexity assumptions with respect to x,
• further assumptions are needed for derivation of an upper bound.

The lower bound for the optimal value function was derived in [11] for the as-
sumed structure of perturbations without any smoothness or convexity assump-
tions with respect to x. Let us consider first only one probability constraint and
an objective G0 independent of P , i.e. the unperturbed problem is

min
x∈X

G0(x) subject to G(x, P ) := 1− ε− P (ω : g(x, ω) ≤ 0) ≤ 0. (9)

Theorem 3 ([11]). Let X ⊂ IRN be a nonempty convex set, G(x, t) be a linear
function of t ∈ [0, 1] and ϕ(t) be finite for all t ∈ [0, 1]. Then the optimal value
function

ϕ(t) := min
x∈X

G0(x) subject to G(x, t) ≤ 0

is quasi-concave on [0, 1] with the lower bound

ϕ(t) ≥ min{ϕ(1), ϕ(0)}. (10)

When also the objective function depends on the probability distribution, i.e. on
the contamination parameter t, the problem is

min
x∈X

G0(x, t) subject to G(x, t) ≤ 0. (11)
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For G0(x, P ) linear in P , a lower bound can be obtained by application of the
bound (10) separately to G0(x, P ) and G0(x,Q):

ϕ(t) = min
x∈X (t)

G0(x, t) = min
x∈X (t)

[(1 − t)G0(x, P ) + tG0(x,Q)] ≥

(1− t)min{ϕ(0), min
X (Q)

G0(x, P )} + tmin{ϕ(1), min
X (P )

G0(x,Q)}. (12)

The bound is more complicated but still computable. It requires solution of 4
problems two of which are the non-contaminated programs for probability dis-
tributions P,Q and the other ones use both P and Q alternating in the objective
function and constraints. For multiple constraints and contaminated probability
distributions it would be necessary to prove first the inclusion X (t) ⊂ X (0) ∪
X (1). Then the lower bound (12) for the optimal value ϕ(t) = minx∈X (t)G0(x, t)
follows as in the case of one constraint.

Similarly as in [11], trivial upper bounds for ϕ(t) can be obtained with-
out any differentiability assumption if no constraint is active at x∗(0) or if
for all constraints active at x∗(0), i.e. Gj(x

∗(0), 0) = 0, j ∈ J0, inequalities
Gj(x

∗(0), 1) ≤ 0, j ∈ J0 hold true. Then for t small enough, x∗(0) is a feasible
solution of (6), hence G0(x

∗(0), t) ≥ ϕ(t) for t small enough. Using linearity of
G0 with respect to t we obtain the upper bound

ϕ(t) ≤ ϕ(0) + t(G0(x
∗(0), 1)− ϕ(0));

compare with (8). An upper bound for ϕ(t) can be also constructed when-
ever there is at disposal a feasible solution x̂ ∈ X (Pt) which may occur due
to the structure of the solved problem. A direct search for x̂ ∈ X which satisfies
constraints

Gj(x, 0) ≤ 0 ∀j and Gj(x, 1) ≤ 0 ∀j
may be manageable, namely, when Q = δω∗ is a degenerated probability distri-
bution. Using it means to augment X by deterministic constraints gk(x, ω

∗) ≤
0, k ∈ Kj , j = 1, . . . , J. For problems with one joint probability constraint one
may solve

min
x∈X

G(x, 1) subject to G(x, 0) ≤ 0.

These ideas, however, do not exploit the parametric form of constraints in the
definition of X (Pt). For problems with one joint probabilistic constraint solution
of parametric program

min
x∈X

[(1− t)G(x, 0) + tG(x, 1)] (13)

for increasing values of t may lead to the sought solution x̂ ∈ X (Pt) and to the
upper bound ϕ(t) ≤ G0(x̂, t).

ILLUSTRATIVE EXAMPLE. In the jointly constrained probabilistic program

minx1 + x2

subject to (14)

P (ω1x1 + x2 ≥ 7, ω2x1 + x2 ≥ 4) ≥ 1− ε,

x1 ≥ 0, x2 ≥ 0
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the random components (ω1, ω2) are independent and have uniform distributions
on the intervals [1, 4] and [1/3, 1]. It is a convex program and, thanks to the
independence assumption, the explicit form of the optimal solution can be ob-
tained directly: x∗1(P )

.
= 3.6735, x∗2(P )

.
= 2.7755 and ϕ(P )

.
= 6.4480 for ε = .05;

cf. [18].
To stress the sample distribution we choose the extremal scenario (ω∗

1 , ω
∗
2) =

(1.02, 0.34). The optimal solution x∗1(P ), x∗2(P ) is infeasible for t = 1, x∗1(Q)
.
=

4.4118, x∗2(Q)
.
= 2.5000 and ϕ(Q)

.
= 6.9118. Hence, for all 0 ≤ t ≤ 1 the lower

bound (10) for ϕ(t) is ϕ(P )
.
= 6.4480.

Solution x̂1 = 4.4725, x̂2 = 2.4994 of the “upper bound problem” (13) ob-
tained for t = 0 is feasible for all contaminated problems (7.0614 ≥ 7, 4.02 > 4).
Then, the value 6.9719 = x̂1 + x̂2 is upper bound for ϕ(t)∀t.

For differentiable functions Gj properties of the set X (t) = X (Pt) for small
t follow from results of [2], [23], [24]. Linear independence condition at x∗(0)
implies that x∗(0) is a nondegenerate point, the vector u∗(0) of Lagrange mul-
tipliers is unique and the problem (5)–(6) can be locally reduced to one with a
fixed set of feasible solutions:

min
z

G0(T (z, t), t) on a set C (15)

where T (z, t) is continuously differentiable and T (0, 0) = x∗(0). However, the
cost for obtaining a fixed set of feasible solutions is that linearity of the objec-
tive function with respect to t gets lost. This can be compared to the situation
described in detail in Example 1 of [3] for stochastic linear program with indi-
vidual probabilistic constraints and random right-hand sides ωk. Using quantiles
of marginal probability distributions, the problem can be cast into the form of
a linear program for which the dual feasible set is fixed, independent of P. How-
ever, the quantiles of the contaminated marginal probability distributions that
appear as parameter dependent coefficients in the dual objective function are
not linear in t.

3 Conclusions and Alternative Approaches

Whereas there exists a general lower bound, our discussion indicates that there
are limited possibilities to construct local upper contamination bounds for non-
convex probabilistic programs when differentiability cannot be guaranteed.

In paper [3], an indirect approach was suggested: To apply contamination
technique to a penalty reformulation of the probabilistic program. Then the set
of feasible solutions does not depend on P and for the approximate problem,
global bounds (8) follow. We refer to Example 4 of [3] for numerical results
related with the illustrative example (14).

Another way how to get an upper bound for the optimal value of the proba-
bilistic program is to apply the worst-case analysis with respect to a whole set P
of considered probability distributions, cf. [19], [33]. This means to hedge against
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all probability distributions belonging to the chosen ambiguity set and to solve
the following problem:

min
x∈X

max
P∈P

G0(x, P ) (16)

subject to

P (ω : g(x, ω) ≤ 0) ≥ 1− ε ∀P ∈ P . (17)

The problem (16)–(17) need not be more complicated than the underlying prob-
abilistic program. Its tractability depends on function g(x, ω) and on the choice
of the ambiguity set P . In [19], P is the Prokhorov neighborhood of the true
probability distribution P, whereas in [33], P contains probability distributions
with a given mean, covariance matrix and support. In the last case, (16)–(17)
can be solved via semidefinite optimization techniques. The results depend on
the input information and similarly as in [10], their stability should be studied.
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Abstract. The paper deals with polyhedral estimates for reachable
tubes of differential systems with a multiplicative uncertainty, namely
linear systems with set-valued uncertainties in initial states, additive in-
puts and coefficients of the system. We present nonlinear parametrized
systems of ordinary differential equations (ODE) which describe the
evolution of the parallelotope-valued estimates for reachable sets (time
cross-sections of the reachable tubes). The main results are obtained for
internal estimates. In fact, a whole family of the internal estimates is
introduced. The properties of the obtained ODE systems (such as exis-
tence and uniqueness of solutions, nondegeneracy of estimates) are inves-
tigated. Using some optimization procedure we also obtain a differential
inclusion which provides nondegenerate internal estimates. Examples of
numerically constructed external and internal estimates are presented.

Keywords: Differential systems, reachable sets, set-valued state esti-
mation, multiplicative uncertainty, polyhedral estimates, parallelepipeds,
parallelotopes, interval analysis.

1 Introduction

The problem of constructing trajectory tubes (in particular, reachable tubes) is
an essential theme in control theory [25]. Since practical construction of such
tubes may be cumbersome, different numerical methods are devised for this
cause, in particular, methods based on approximations of sets either by arbi-
trary polytopes with a large number of vertices or by unions of points [6], [3], [1]
(here and below, we mention, as examples, only some references from numerous
publications; see also references therein). Such methods, as well as the methods
based on different schemes of discrete approximations of initial set-valued prob-
lems [2], [31] and numerical methods of solving the Hamilton-Jacobi-Bellman
equation [30], are devised to obtain approximations as accurate as possible. But
they may require much calculations, especially for large dimensional systems;
also smaller step-sizes create a heavy computational load. It is appropriate to

D. Hömberg and F. Tröltzsch (Eds.): CSMO 2011, IFIP AICT 391, pp. 165–176, 2013.
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mention approximations by polytopes based on support functions or supporting
points [4], [23].

Other techniques are based on estimates of sets by domains of some fixed
shape such as ellipsoids, parallelepipeds, zonotopes [7], [11], [13], [15]-[17], [22],
[24]-[29]. Fair results in this area were obtained for linear systems with set-valued
initial states and set-valued additive uncertain inputs. The main advantage of
the mentioned techniques is that they enable to obtain approximate solutions
using relatively simple tools (up to explicit formulas). Note that more accurate
approximations and even exact representations of the solutions may be obtained
by using the whole families of such simple estimates (as it was proposed by
A.B. Kurzhanski) [25]-[27], [22], [16]. The methods of interval analysis which use
subpavings of interval vectors [14] serve the same purpose, but such methods
may require much computations and memory for large dimensional systems.

It is also important to study linear systems when system matrices are uncer-
tain too. This leads to the multiplicative uncertainty and additional difficulties
due to nonlinearity of the problem (in particular, reachable sets — cross-sections
of reachable tubes — can be non-convex). There are some results for such systems
with different types of bounds on uncertainties [5], [8], [12], including construct-
ing external ellipsoidal estimates [7], [29] and external interval (in other terms,
coordinate-wise or box-valued) estimates [15], [24], [28].

We construct polyhedral (parallelepiped-valued and parallelotope-valued) es-
timates for reachable sets and reachable tubes of differential systems with pa-
rallelepiped-valued uncertainties in initial states and in additive uncertain inputs
and with interval uncertainties in coefficients of the system. In contrast to in-
terval analysis, faces of our estimates may be not parallel to coordinate planes.
The main results are obtained for the internal estimates. Using constructions
from [19], [20], we obtain nonlinear parametrized systems of ordinary differen-
tial equations (ODE) which describe the evolution of centers and matrices of
the parallelotope-valued internal estimates for the reachable sets. So, in fact, the
whole family of internal estimates is introduced (but, unfortunately, unlike the
case of linear systems [25]-[27], [22], [16], this family does not ensure exact repre-
sentations of the reachable sets in general). The properties of the obtained ODE
systems (such as existence and uniqueness of solutions for fixed values of param-
eters, nondegeneracy of estimates) are investigated. Using some optimization
procedure we also obtain a differential inclusion which provides nondegenerate
internal estimates. ODE for external estimates were obtained earlier [18]. Here
we remind these results for completeness of the exposition. Results of numerical
simulations are presented.

The following notation is used below: Rn — the n-dimensional vector space;
� — the transposition symbol; ‖x‖1 =

∑n
i=1 |xi|, ‖x‖2 = (x�x)1/2, ‖x‖∞ =

max1≤i≤n |xi| — vector norms for x = (x1, x2, . . . , xn)
� ∈ Rn; ei=(0, . . . , 0, 1, 0,

. . . , 0)� — the unit vector oriented along the axis 0xi (the unit stands at i-
position); e = (1, 1, . . . , 1)�; Rn×m — the space of real n×m-matrices A =
{aji} = {aj} (with columns aj); I — the unit matrix; 0 — the zero matrix

(vector); AbsA = {|aji |} for A = {aji}; diag π, diag {πi} — the diagonal matrix



State Estimation for Systems with Multiplicative Uncertainty 167

A with aii = πi (πi — the components of the vector π); detA — the determinant

of A ∈ Rn×n; trA =
∑n

i=1 a
i
i — the trace of A; ‖A‖ = max1≤i≤n

∑m
j=1 |a

j
i | —

the matrix norm for A∈Rn×m induced by the vector norm ‖x‖∞; the notation
of the type k = 1, . . . , N is used instead of k = 1, 2, . . . , N for shortening.

2 Problem Formulation

Consider the following system (x ∈ Rn is the state):

ẋ = A(t)x + w(t), t ∈ T = [0, θ]. (1)

Here the initial state x(0) = x0 ∈ Rn, the input (control/disturbance) w(t) ∈ Rn

(which is assumed to be a Lebesgue measurable function) and the measurable
matrix function A(t) ∈ Rn×n are unknown but subjected to given set-valued
constraints

x0 ∈ X0, w(t) ∈ R(t), a.e. t ∈ T, (2)

A(t) ∈ A(t) = {A ∈ R
n×n|A(t) ≤ A ≤ A(t)}, a.e. t ∈ T, (3)

where X0, R(t) are given convex compact sets in Rn, the set-valued map R(t) is
continuous, the matrix functions A(t), A(t) are continuous. Matrix and vector
inequalities (≤, <,≥, >) here and below are understood componentwise. The
interval constraints (3) can be rewritten in the form

A(t) ∈ A(t) = {A|Abs (A−Ã(t)) ≤ Â(t)}, Ã = (A+A)/2, Â = (A−A)/2. (4)

Let X (t)=X (t, 0,X0) be a reachable set of system (1)–(3) at time t>0 that is the
set of all points x∈Rn, for each of which there exist x0, w(·), A(·) that satisfy
(2)–(3) and generate a solution x(·) of (1) that satisfies x(t)=x. The multivalued
function X (t), t∈T , is known as a trajectory (or reachable) tube X (·).

We presume the sets X0, R(t) to be parallelotopes (then the sets X (t) are not
obliged to be parallelotopes) and look for external and internal parallelepiped-
valued or parallelotope-valued (shorter, polyhedral) estimates P±(t) for X (t).

By a parallelepiped P(p, P , π)⊂Rn we mean a set such that P=P(p, P , π) =
{x ∈ Rn|x=p+

∑n
i=1 p

iπiξi, ‖ξ‖∞≤1}, where p∈Rn; P={pi}∈Rn×n is such that
detP =0, ‖pi‖2=11; π ∈ Rn, π ≥ 0. It may be said that p determines the center
of the parallelepiped, P — the orientation matrix, pi — the “directions” and πi
— the values of its “semi-axes”. We call a parallelepiped nondegenerate if π>0.

By a parallelotope P [p, P̄ ] ⊂ Rn we mean a set P = P [p, P̄ ] = {x ∈ Rn| x =
p+P̄ ζ, ‖ζ‖∞ ≤ 1}, where p ∈ Rn and the matrix P̄ = {p̄i} ∈ Rn×m, m ≤ n, may
be singular. We call a parallelotope P nondegenerate, if m = n and det P̄ = 0.

Each parallelepiped P(p, P , π) is a parallelotope P [p, P̄ ] with P̄ = P diag π;
each nondegenerate parallelotope is a parallelepiped with P=P̄ diag {‖p̄i‖−1

2 },
πi = ‖p̄i‖2 or, in a different way, with P = P̄ , π = e, where e = (1, 1, . . . , 1)�.

We call P an external (internal) estimate for X ⊂ Rn if P ⊇ X (P ⊆ X ).

1 The normality condition ‖pi‖2=1 may be omitted to simplify formulas (it ensures
the uniqueness of the representation of a nondegenerate parallelepiped).
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Assumption 1. The set X0 = P0 = P [p0, P̄0] = P(p0, P0, π0) is a parallelepiped,
the sets R(t) = P [r(t), R̄(t)] are parallelotopes where R̄(t) ∈ Rn×m, m ≤ n; r(·),
R̄(·) and A(·), A(·) are continuous vector and matrix functions.

Problem 1. Find some external P+(t) and internal P−(t) polyhedral estimates2

for reachable sets X (t): P−(t) ⊆ X (t) ⊆ P+(t), t ∈ T .

3 Auxiliary Discrete Time Systems. Primary Estimates

Following arguments similar to [7], [25, Sec. 3.2] we obtain ODE for the estimates.
The first step in this way is to construct estimates for reachable sets X [k] of
auxiliary discrete time systems – the Euler approximations3 of the initial system:

x[k] = A[k−1]x[k−1] + w[k−1], k=1, . . . , N ; x[0] ∈ P0;

w[k] ∈ R[k] = hNR(tk); A[k] ∈ A[k] = {I + hNA |A ∈ A(tk)},
(5)

tk=khN , hN=θN−1. It is known that X [k] satisfy the relations X [k] = A[k−1]◦
X [k−1]+R[k−1], k=1, . . . , N , X [0] = P0, which involve two operations with sets
— multiplying an interval matrix A = {A ∈ Rn×n|A≤A≤A} on a set X ⊂ Rn:
A ◦ X = {y ∈ Rn| y = Ax, A ∈ A, x ∈ X} and the Minkowski sum [25, p.93].

In [18], [19], [20], the ways of constructing primary polyhedral estimates for
A ◦ P and P1 + P2 (where P , P1, P2 are parallelepipeds or parallelotopes) are
described; hence we have the corresponding recurrence relations for external and
internal estimates P±[k] for X [k]. Passing to the limit as N →∞, we obtain the
corresponding nonlinear ODE systems for parallelotopes/parallelepipeds P±(t).

4 Internal Estimates

We come to the following ODE system for parallelotopes P−(t)=P [p−(t), P̄−(t)]:

dp−

dt
= Ã(t) p− + r(t), p−(0) = p0; (6)

dP̄−

dt
= Ã(t) P̄− + diag ν(t, P̄−; J(t)) ·B(P̄−) + R̄(t)Γ (t), P̄−(0) = P̄0,

νi(t, P̄
−; J) = âjii (t) · ηji (t, P̄−), i = 1, . . . , n,

η(t, P̄−) = max{0,Abs p−(t)− (Abs P̄−)e},
B = diag β(P̄−) · P̄−, βi(P̄

−) = 1 / (ei
�
(Abs P̄−) e), i = 1, . . . , n,

(7)

2 Our estimates will satisfy the upper and lower semigroup properties and the su-
perreachability and subreachability properties similarly to [25, Lemmas 3.3.2, 3.3.4]
and [7, Remark 8.2] respectively; these properties are analogues to the semigroup
property [25, p.9] for X (t). Also our set-valued estimates will be continuous.

3 In connection with the Euler approximations, the papers [9], [32] may be mentioned
which analyzed the numerical error of the set-valued method.



State Estimation for Systems with Multiplicative Uncertainty 169

(the operation of maximum is understood componentwise). Here Γ (t) ∈ Rm×n

is an arbitrary Lebesgue measurable matrix function satisfying ‖Γ (t)‖ =
max1≤i≤m

∑n
j=1 |γ

j
i | ≤ 1, a.e. t ∈ T , and J = {j1, . . . , jn} is an arbitrary per-

mutation of numbers {1, . . . , n} or even a measurable vector function J(·) with
values J(t) being arbitrary permutations of numbers {1, . . . , n}. Let G and J be
the sets of all such functions Γ (·) and J(·) respectively.

Later on it is useful to mark out the following case.

Assumption 2. Either R(t) are singletons (then the function w(·) ≡ r(·) may be
assumed to be measurable) or Γ (·) ∈ G is such that R̄(t)Γ (t) ≡ 0, t ∈ T .

Theorem 1. Let the above assumptions about the system (1), (2), (4) be satis-
fied, P0 be a nondegenerate parallelotope (det P̄0 = 0) and J(·) ∈ J, Γ (·) ∈ G.
Then the system (6), (7) has a unique solution (p−(·), P̄−(·)) at least on some
subinterval T1 = [0, θ1] ⊆ T , where 0<θ1≤θ, and we have det P̄−(t)=0, t ∈ T1.
The corresponding nondegenerate parallelotopes P−(t)=P [p−(t), P̄−(t)], t ∈ T1,
are internal estimates for the reachable sets X (t) of the system (1), (2), (4):
P−(t)⊆X (t), t∈T1. Under Assumption 2, the subinterval T1 coincide with T .

Proof. Here and below we give mostly only sketches; more details can be found
in [21]. The existence, uniqueness and extendability of the solution are obtained
using the known results [10, pp. 7,8,10]. In particular, under Assumption 2, we
verify that P−(t) can not leave the domain where detP−(t) ≥ δ for some δ > 0
and then use [10, p. 10, Theorem 4].

To prove P−(t) ⊆ X (t) we verify the subreachability property: P−(t) ⊆
X (t, s,P−(s)), ∀s, t : 0 ≤ s ≤ t ≤ θ1. Fix t ∈ T1. If x∗ ∈ P−(t), then
there exists ξ such that Abs ξ ≤ e and x∗ = p−(t) + P̄−(t) ξ. Consider
x∗ = x∗(t) as a function of t (when ξ is fixed). Evidently, x∗(s) ∈ P−(s) also
for arbitrary s ≤ t. It remains to check that it is possible to find functions
A(τ) = Ã(τ) +ΔA(τ) ∈ A(τ) and w(τ) ∈ R(τ), τ ∈ [s, t], such that x∗(τ) will
satisfy (1) for τ ∈ [s, t]. Differentiating x∗(τ) with the account (6), (7) we have
(the argument τ is omitted for short): ẋ∗ = Ãx∗+w+diag ν B ξ = Ax∗ +w+ q,
where w = r + R̄Γ ξ ∈ R (because ‖Γ ξ‖∞ ≤ ‖Γ‖ ‖ξ‖∞ ≤ 1), A = Ã + ΔA,
q = diag ν B ξ − ΔA (p− + P̄−ξ). The desired equality q = 0 is achieved if we
take ΔA in the form ΔA = diagαD, where D = {ej1 · · · ejn}� is a matrix cor-
responding to a permutation J={j1, . . . , jn}=J(τ) of rows of the unit matrix,
and components of the vector α = α(τ) are calculated by formulas αi = 0, if

|p−ji | ≤ eji
�
(Abs P̄−)e (i.e. if νi = 0), and αi = νi e

i�Bξ/(p−ji + eji
�
P̄−ξ) other-

wise. Inequalities |αi| ≤ âjii , i = 1, . . . , n (which ensure A ∈ A) are obtained by
obvious estimates.  !

Note that Theorem 1 describes the whole family of estimates P−(·) where J(·)
and Γ (·) are parameters.

Remark 1. Obviously, we have X (t) ⊇ X 0(t) ≡ P0−(t), t ∈ T , where X 0(t) are
reachable sets of the system (1) under assumptions x0 ∈ P0, w(·) ≡ r(·) and
A(·) ≡ Ã(·), and parallelotopes P0−(t) are determined by (6), (7) when ν ≡ 0,
Γ ≡ 0. We call these parallelotopes P0−(t) trivial internal estimates for X (t).
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The following corollary compares internal estimates P−(t) for X (t) satisfying (6),
(7) with trivial internal estimates P0−(t) for X (t) in the sense of volume. We
like to remind that volume of a nondegenerate parallelotope P = P [p, P̄ ] ⊂ Rn

is equal to volP = 2n| det P̄ |.

Corollary 1. Under conditions of Theorem 1, we have volP−(t) = volP0−(t) ·
exp (ψ1(t) + ψ2(t)), t ∈ T1, where ψ1(t) =

∫ t
0
ν(τ, P̄−(τ); J(τ))�β(P̄−(τ))dτ ,

ψ2(t) =
∫ t
0
tr (Ξ(τ, P̄−(τ))Γ (τ))dτ , Ξ(t, P̄−) = (P̄−)−1R̄(t).

Therefore under additional Assumption 2 we have:
(i) volP−(t) ≥ volP0−(t), and volP−(t) > volP0−(t) iff ψ1(t) > 0;
(ii) if it is turned out that P−(t) " 0 for all t ∈ T , then P−(t) ≡ P0−(t), t ∈ T .

Proof. The expression for volP−(t) follows from the equality det P̄−(t) = m0(t)·
exp (ψ1(t) + ψ2(t)), where m0(t) = det P̄0 exp

∫ t
0 tr Ã(τ) dτ , which, in turn, can

be obtained similarly to [17, p. 293]. Namely, we use the change of variables
P̄−(t) = Φ(t)P (t), where Φ satisfies Φ̇ = Ã Φ, Φ(0) = I, and obtain the relation

d detP

dt
/ detP = ν(t, P̄−(t); J(t))�β(P̄−(t)) + tr ((P̄−)−1R̄ Γ ) (8)

on the base of the known relation d detP/dt = detP tr (P−1Ṗ ) and (7); then

the Liouville formula detΦ(t)= exp
∫ t
0
tr Ã(τ) dτ is used.

Assumption 2 yields ψ2(t) ≡ 0. Thus (i) is evident, (ii) is true because we
have ψ1(t) ≡ 0 similarly to [20, Corollary1].  !

In general case (without Assumption 2) we can obtain some differential inclu-
sions which determine internal estimates on the whole time interval T . Consider
two ways to do that. Following the first way, fix J(·)∈J and Γ (·)∈G; if a denom-
inator of some row of the matrix B vanishes, replace this row by a suitable set.
The corresponding differential inclusion determines P−(t) on T (see Theorem 2
below), but there is no guarantee for P−(t) to be nondegenerate. The second way
allows (using some considerations of “local” optimality of the estimate volume)
to construct Γ (·) to ensure nondegenerate estimates on T (Theorem3).

Following the first way, consider the matrix differential inclusion

dP̄−

dt
∈ Ã(t)P̄− + diag ν(t, P̄−; J(t)) ·B(P̄−) + R̄(t)Γ (t), P̄−(0) = P̄0, (9)

where ν(t, P̄−; J(t)) is defined in (7), and B(P̄−) is the set of all matrices B(P̄−)

such that each row ei
�
B (i=1, . . . , n) satisfy the following conditions

ei
�
B =

{
ei

�
P̄−/(ei

�
(Abs P̄−) e), if ei

�
(Abs P̄−) e = 0,

arbitrary row such that ‖ei�B‖1 ≤ 1, if ei
�
(Abs P̄−) e = 0.

(10)

Theorem 2. For arbitrary J(·) ∈ J, Γ (·) ∈ G, there exists a solution
(p−(·), P̄−(·)) of the system (6), (9)–(10) which is determined on the whole T ,
and all solutions of this system determine internal parallelotope-valued estimates
P−(t) for X (t), t ∈ T .
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Proof. Existence and extendability are obtained using [10, p. 66, Theorem6].
The inclusions P−(t) ⊆ X (t) are proved similarly to Theorem 1.  !

Following the second way under conditions of Theorem 1, assume, without loss of
generality, that det P̄0>0. The idea of local optimization arises from (8) and con-
sists in finding the maximal possible velocity of increasing det P̄−(t) (therefore
volP−(t)) at time t, by the choice of the value Γ , when the value P̄− = P̄−(t)
has already been found. Consider the set Γ (t, P̄−) of matrices Γ (t, P̄−), which
are solutions to the following optimization problem: max{tr (Ξ(t, P̄−)Γ ) | Γ ∈
Rm×n s.t. ‖Γ‖ ≤ 1}. This set Γ (t, P̄−) may be described in the following form:

Γ (t, P̄−) = {Γ (t, P̄−) = {γik(t, P̄−)} | γik(t, P̄−) = sign (ξki (t, P̄
−)) lik,

k = 1, . . . ,m, i = 1, . . . , n, L = {lik} ∈ L}. (11)

Here Ξ(t, P̄−) = {ξki (t, P̄−)} = (P̄−)−1R̄(t) ∈ Rn×m, and L is a set of matrices
L = {lik} ∈ Rm×n satisfying conditions lik ≥ 0, k = 1, . . . ,m, i = 1, . . . , n; lik = 0
if i ∈ Ik(t, P̄

−), k=1, . . . ,m, i=1, . . . , n;
∑n

i=1 l
i
k = 1, k=1, . . . ,m; Ik(t, P̄

−) =
Argmax {|ξki (t, P̄−)| | i=1, . . . , n}, k=1, . . . ,m, where sign z is equal to −1, 0, 1
for z < 0, z = 0, z > 0 respectively. Consider the matrix differential inclusion

dP̄−

dt
∈ Ã(t)P̄−+diag ν(t, P̄−; J(t))·B(P̄−)+R̄(t)Γ (t, P̄−), P̄−(0) = P̄0, (12)

where ν(t, P̄−; J) and B(P̄−) are the same as in (7).

Theorem 3. Let the above conditions be satisfied and P0 be a nondegenerate
parallelepiped with det P̄0 > 0. Then, for each function J(·) ∈ J, there exists
a solution (p−(·), P̄−(·)) of system (6), (11)–(12), which is determined on the
whole interval T , and all solutions of this system determine parallelotopes P−(t)
which turn out to be internal nondegenerate parallelepiped-valued estimates for
X (t), t ∈ T .

Proof. We use arguments similar to [17, Theorem5.2]. Existence and extend-
ability are obtained using [10, p. 66, Theorem6]. In particular, (8) is used to see
that the function P = Φ−1P̄− is such that detP (t) is a nondecreasing function
and therefore P (t) can not leave the domain where detP (t) ≥ detP (0) > 0; con-
sequently, solutions to (12) are defined on the whole interval T and determine
nondegenerate parallelepiped-valued estimates. The inclusions P−(t) ⊆ X (t) are
proved similarly to Theorem 1.  !

Remark 2. We can choose J(·) in (7), (9) and (12) in different ways, in particular
as a constant. A simple way is also to apply a “local” optimization which arises
from (8). Fix a natural number N and introduce a grid TN of times τk = khN ,
k=0, . . . , N , hN = θN−1. Let us, for each τk ∈ TN , solve the optimization prob-
lem which is to maximize ν(τk, P̄

−; J)�β(P̄−) over all possible permutations
J = {j1, . . . , jn} assuming that P̄− = P̄−(τk) has already been found. Then
we can sequentially construct the piecewise constant function J(t) ≡ J(τk) ∈
Argmax J ν(τk, P̄

−(τk); J)
�β(P̄−(τk)), t ∈ [τk, τk+1), k = 0, . . . , N − 1, and find
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P̄−(·). Note that the described procedure is not obliged to give the estimates
P−(t) with maximal volume even if N →∞.

5 External Estimates

In [18], the ODE systems of two types were obtained for external estimates for
X (t) in the form of parallelepipeds P+(t) = P(p+(t), P (t), π+(t)), where P (t) is
a fixed matrix function. Let us restate here, for completeness of the exposition,
the ODE system for the more accurate estimates of the type II:

dp+

dt
= ṖP−1p+ + P (Φ(+) − Φ(−))/2 + r, p+(0) = p0; (13)

dπ+

dt
= (Φ(+) + Φ(−))/2 + Abs (P−1R̄) e, π+(0) = Abs (P (0)−1P0)π0,

where Φ
(±)
i = max

ξ∈Ξ±
i

(
±P−1(Ã−ṖP−1)x+Abs (P−1)ÂAbs x

)
i
,

x = p+ + Pdiag π+ ξ; Ξ±
i = {ξ | ξ∈E(P(0, I, e)), ξi=±1}, i=1, . . . , n,

(14)

the symbolE(P) denotes the set of all vertices of a parallelepiped P=P(p, P , π),
namely the set of points of the form x = p+

∑n
j=1 p

jπjζj , ζj ∈ {−1, 1}.

Theorem 4. Let Assumption 1 be satisfied and P (t) ∈ Rn×n be an arbitrary
continuously differentiable function such that detP (t) = 0, t ∈ T . Then the sys-
tem (13),(14) has a unique solution (p+(·), π+(·)) on T , and the parallelepipeds
P+(t) = P(p+(t), P (t), π+(t)) are the external estimates for the reachable sets
X (t) of the system (1), (2), (4): X (t) ⊆ P+(t), t ∈ T .

Proof. The existence, uniqueness and extendability of the solution follow from
[10, pp. 7,8,10], the inclusions — from [18, Theorem1].  !
Remark 3. In fact, Theorem 4 describes the whole family of estimates where P (·)
is a parameter. Some heuristic ways of choosing P (·) were indicated in [18] (in
particular, (i) find P (·) from relations Ṗ=Ã(t)P , P (0)=P0, or (ii) put P (t)≡I).
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6 Examples

Consider some examples. The estimates were calculated using the Euler approxi-
mations (5) with N = 100 (in fact, the estimates for X [k] are presented in figures
below). But it would be emphasized that different schemes of approximation can
be used for solving the obtained differential systems and finding the estimates.

Example 1. Let Ã ≡
[

0 1
−1.5 0

]
, Â ≡

[
0 0
0.1 0

]
, R ≡ P(

[
0
0

]
, I,

[
0
0.3

]
), P0=P((2, 0.5)�, I,

(0.2, 0.5)�), θ = 3.5. Fig. 1 (a) presents tubes formed by external (see Re-
mark 3, (i)) and internal estimates for X [k]. The internal ones are obtained
by discrete analogous to Theorem 3 (similar to [17, Example 6.1]). Fig. 1 (b)
shows the initial set P0 (dashed line), the external estimate for X [N ] (thin line)
and four internal ones. Three of them correspond to “quasistationary” functions
Γ (·) (similarly to [17, Example 6.1]), the last-named (thick line) corresponds to
Theorem 3. For comparison, the trivial internal estimate P0−[N ] is shown too
(dashed thick line); it is the “smallest” of the presented internal estimates.

Example 2. Let Ã≡

⎡⎣−1 0 5
1 −1 0
0 1 −1

⎤⎦, Â≡
⎡⎣0 0 3
0 0 0
0 0 0

⎤⎦, R≡P(
⎡⎣−0.6−0.4
−0.2

⎤⎦,
⎡⎣1 0 1
0 1 1
0 0 1

⎤⎦,
⎡⎣ 00
0.4

⎤⎦), P0 =

P((1, 1, 1)�, I, (0.2, 0.2, 0.2)�), θ = 0.4. Such system may be interpreted as a
simple ecological model of dynamics of a number of microorganisms which have
3 stages of development, provide division at the last stage and produce from 2 to
8 descendants [33, p. 112]. The additive control describes injecting a preparation
to reduce the population. Estimates for X [·] and X [N ] are shown in Fig. 2, where
drawings are similar to Fig. 1. Since parallelotopes here are three-dimensional,
we present their two-dimensional projections on coordinate plains. The reachable
sets belong to the intersection of external estimates and contain the internal ones.

It must be admitted that the proposed estimates may turn out to be rather
conservative. But we can calculate them easily via integration of the ODE, and
they can give useful information, while it is hard to calculate exact reachable
sets. Improved external (possibly nonconvex) estimates in the form of the union
of parallelepipeds can be constructed for systems with constant coefficients [18].

Acknowledgments. The work was supported by the Program of the Presid-
ium of the Russian Academy of Sciences No. 17 “Dynamic Systems and Control
Theory” and by the Russian Foundation for Basic Research (grant 12-01-00043).
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5. Barmish, B.R., Sankaran, J.: The Propagation of Parametric Uncertainty via Poly-
topes. IEEE Trans. Automat. Control. AC 24(2), 346–349 (1979)

6. Bushenkov, V., Chernykh, O., Kamenev, G., Lotov, A.: Multi-dimensional Images
Given by Mappings: Construction and Visualization. Pattern Recognition and Im-
age Analysis 5(1), 35–56 (1995)

7. Chernousko, F.L., Rokityanskii, D.Y.: Ellipsoidal Bounds on Reachable Sets of
Dynamical Systems with Matrices Subjected to Uncertain Perturbations. J. Optim.
Theory Appl. 104(1), 1–19 (2000)

8. Digailova, I.A., Kurzhanski, A.B.: On the Joint Estimation of the Model and
State of an Under-Determined System from the Results of Observations. Dokl.
Math. 65(3), 459–464 (2002)

9. Dontchev, A.L., Farkhi, E.M.: Error Estimates for Discretized Differential Inclu-
sions. Computing 41(4), 349–358 (1989)

10. Filippov, A.F.: Differential Equations with Discontinuous Right-Hand Sides.
Nauka, Moscow (1985) (Russian)

11. Filippova, T.F.: Trajectory Tubes of Nonlinear Differential Inclusions and State
Estimation Problems. J. Concr. Appl. Math. 8(3), 454–469 (2010)

12. Filippova, T.F., Lisin, D.V.: On the Estimation of Trajectory Tubes of Differential
Inclusions. Proc. Steklov Inst. Math. Suppl. 2, S28–S37 (2000)

13. Gusev, M.I.: Estimates of Reachable Sets of Multidimensional Control Systems
with Nonlinear Interconnections. Proc. Steklov Inst. Math. Suppl. 2, S134–S146
(2010)

14. Jaulin, L., Kieffer, M., Didrit, O., Walter, E.: Applied Interval Analysis. Springer,
London (2001)

15. Kornoushenko, E.K.: Interval Coordinatewise Estimates for the Set of Accessible
States of a Linear Stationary System. I–IV. Autom. Remote Control 41, 598–606
(1980), 41, 1633–1639 (1981), 43, 1266–1270 (1983), 44, 203–208 (1983)

16. Kostousova, E.K.: External and Internal Estimation of Attainability Domains by
Means of Parallelotopes. Vychisl. Tekhnol. 3(2), 11–20 (1998) (Russian),
http://www.ict.nsc.ru/jct/search/article?l=eng

17. Kostousova, E.K.: Control Synthesis via Parallelotopes: Optimization and Parallel
Computations. Optim. Methods Softw. 14(4), 267–310 (2001)

18. Kostousova, E.K.: Outer Polyhedral Estimates for Attainability Sets of Systems
with Bilinear Uncertainty. J. Appl. Math. Mech. 66(4), 547–558 (2002)

19. Kostousova, E.K.: On Polyhedral Estimates for Reachable Sets of Discrete-Time
Systems with Bilinear Uncertainty. Autom. Remote Control. 72, 1841–1851 (2011)

20. Kostousova, E.K.: On Polyhedral Estimates for Trajectory Tubes of Dynamical
Discrete-Time Systems with Multiplicative Uncertainty. In: Discrete Contin. Dyn.
Syst., Dynamical Systems, Differential Equations and Applications. 8th AIMS Con-
ference, Suppl., pp. 864–873 (2011)

21. Kostousova, E.K.: On Polyhedral Estimates for Reachable Sets of Differential Sys-
tems with a Bilinear Uncertainty. Trudy Instituta Matematiki i Mekhaniki UrO
RAN 18(4) (to appear, 2012) (Russian)

http://www.ict.nsc.ru/jct/search/article?l=eng


176 E.K. Kostousova

22. Kostousova, E.K., Kurzhanski, A.B.: Guaranteed Estimates of Accuracy of Com-
putations in Problems of Control and Estimation. Vychisl. Tekhnol. 2(1), 19–27
(1997) (Russian)

23. Krastanov, M., Kirov, N.: Dynamic Interactive System for Analysis of Linear Dif-
ferential Inclusions. In: Kurzhanski, A.B., Veliov, V.M. (eds.) Modeling Techniques
for Uncertain Systems, Proc. of a Conferences Held in Sopron, Hungary, July 6-10
(1992); Progress in Systems and Control Theory, vol. 18, pp. 123–130. Birkhäuser,
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Abstract. An algorithm for solving quadratic, two-stage stochastic
problems is developed. The algorithm is based on the framework of the
Branch and Fix Coordination (BFC) method. These problems have con-
tinuous and binary variables in the first stage and only continuous vari-
ables in the second one. The objective function is quadratic and the
constraints are linear. The nonanticipativity constraints are fulfilled by
means of the twin node family strategy. On the basis of the BFC method
for two-stage stochastic linear problems with binary variables in the first
stage, an algorithm to solve these stochastic quadratic problems is de-
signed. In order to gain computational efficiency, we use scenario clusters
and propose to use either outer linear approximations or (if possible) per-
spective cuts. This algorithm is implemented in C++ with the help of
the Cplex library to solve the quadratic subproblems. Numerical results
are reported.

Keywords: Stochastic Programming, Mixed-Integer Quadratic
Problems, Branch-and-Fix Coordination, Perspective Cuts.

1 Introduction

Two-stage stochastic mixed integer programs are among the most interesting
problems since the complexity generated by the integrality of variables and the
high dimensionality. Stochastic parameters can exist anywhere in the problem.
In order to model the uncertainty a finite set of scenarios, Ω, is used, where
each ω ∈ Ω has an associated probability of ocurrence pω. In a two-stage pro-
gram decisions on the first and second stage variables must be taken. First-stage
variables are chosen before knowing the realization of the uncertain parameters.
After having decided on first stage and having known each realization of the
uncertain parameters, the second stage decision must be taken. The first-stage
variables take the same value in each scenario, which yields nonanticipativity con-
straints. If we consider a finite number of scenarios, a general two-stage program
can be expressed regarding the first-stage variables being equivalent to a large
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programming problem suggested in [10] and known as deterministic equivalent
model (DEM). A general two-stage problem can include binary first-stage vari-
ables. The simplest form of two-stage stochastic integer problems have first-stage
binary and second-stage continuous variables. In [7] a branch-and-cut method is
used for those problems, which is based on the Benders decomposition method.
An efficient branch-and-fix coordination (BFC) method for solving two-stage
programs is provided in [1], where the first-stage has only binary variables, and
where the uncertainty only appears in the coefficients of the objective function
and in the right-hand-side of the constraints. If the first stage involves pure
binary variables, finite termination is justified by using branching over the 0-1
first-stage variables, see among others [8] and [9]. Escudero et al. [3] study gen-
eral two-stage stochastic mixed 0-1 problems, where the first stage only involves
binary variables and continuous variables and the second stage continuous vari-
ables. They use a specialization of the BFC scheme and the twin-node-family
(TNF) concept, which was introduced in [1]. Their scheme is specifically de-
signed for coordinating the node branching selection and pruning and the 0-1
variable branching selection and fixing at each branch-and-fix (BF) tree. Also,
they suggest to decompose the set of scenarios in clusters.

On the other hand, real problems with this structure exist and have a high
dimensionality. They often need to be solved and it is important to find the
procedure that will solve them with the highest efficiency. An example of this
type is the Iberian Electricity Market (MIBEL), which comprises Spanish and
Portuguese electricity systems, see [6].

In this paper we consider the two-stage mixed 0-1 quadratic problem

minimize ctδ + q(x, y)

subject to : la ≤ A

[
δ
x

]
≤ ua,

lt ≤ T

⎡⎣δx
y

⎤⎦ ≤ ut,

x ≥ 0, y ≤ y ≤ y, δ ∈ {0, 1}nδ ,

where δ are first-stage-binary variables, x ∈ Rnx are first-stage continuous vari-
ables, y ∈ Rny are second-stage continuous variables, c is the coefficient vector
for δ, and q is the quadratic function defined as follows

q(x, y) = bt
[
x
y

]
+ [xt yt]Q

[
x
y

]
,

where Q is a positive-definite matrix and b and Q are partitioned as

[
x
y

]
; i.e.,

b =

[
bx
by

]
and Q =

[
Qxx Qxy

Qyx Qyy

]
.

In addition, la and ua are the bounds for the first-stage constraints and lt and
ut are the bounds for the second-stage constraints.
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Let us suppose that some of the coefficient in by, Qxy, Qyx, Qyy, lt, ut and T
are uncertain. The uncertainty is given by the scenarios ω in the finite set Ω and
pω is the probability of that occurs ω ∈ Ω. Therefore, the initial problem given in
a stochastic way can be written as the so-called Deterministic Equivalent Model
(DEM)

minimize ctδ +
∑
ω∈Ω

pωqω(x, yω) (1)

subject to : la ≤ A

[
δ
x

]
≤ ua, (2)

lωt ≤ Tω

⎡⎣ δ
x
yω

⎤⎦ ≤ uωt , ω ∈ Ω, (3)

x ≥ 0, y ≤ yω ≤ y, ω ∈ Ω, (4)

δ ∈ {0, 1}nδ , (5)

As is shown by [3] the compact representationDEM can be written as a splitting
variable representation; i.e., δ and x are respectively replaced by δω and xω, for
ω ∈ Ω. So, we have

(MIQP) minimize
∑
ω∈Ω

pω(ctδω + qω(xω , yω))

subject to : la ≤ A

[
δω

xω

]
≤ ua, ω ∈ Ω,

lωt ≤ Tω

⎡⎣δωxω
yω

⎤⎦ ≤ uωt , ω ∈ Ω,

xω ≥ 0, y ≤ yω ≤ y, δω ∈ {0, 1}nδ , ω ∈ Ω,

(NACδ) δω − δω
′
= 0, ∀ω, ω′ ∈ Ω : ω = ω′,

(NACx) xω − xω
′
= 0, ∀ω, ω′ ∈ Ω : ω = ω′,

where NACδ and NACx are the nonanticipativity constraints.
Note that the relaxation of the NACs in the model MIQP gives rise to |Ω|

independent MIQPω submodels

minimize pω(ctδω + qω(xω , yω)), (6)

subject to : la ≤ A

[
δω

xω

]
≤ ua, (7)

lωt ≤ Tω

⎡⎣δωxω
yω

⎤⎦ ≤ uωt , (8)

xω ≥ 0, y ≤ yω ≤ y, (9)

δω ∈ {0, 1}nδ, (10)
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and these models are linked by the NACs, which force the equality of the first-
stage variables.

In this work to solve the original quadratic problem DEM a Branch-and-
Fix-Coordination scheme (BFC) is used for each scenario ω ∈ Ω to fulfill the
integrality condition (IC) given by (10), so that the NACδ are also satisfied when
selecting branching nodes and branching variables by the Twin-Node-Families
concept (TNF), which was introduced by [1]. A similar approach to that sug-
gested in [3] is used in this work to coordinate the selection of the branching
node and branching variable for each scenario-related BF tree, such that the
NACδ are satisfied when fixing δω, ∀ω ∈ Ω, either to 1 or to 0. A TNF integer
set is a set of integer BF nodes (i.e. they verify IC), one per BF tree, in which
the NACδ are verified.

For each TNF integer set we use two quadratic submodels. The quadratic
model QPTNF obtained after fixing in DEM δ = δ ∈ {0, 1}nδ for a TNF
integer set

(QPTNF ) ZTNF = ctδ+ min
∑
ω∈Ω

pωqω(x, yω)

subject to : la ≤ A

[
δ
x

]
≤ ua,

lωt ≤ Tω

⎡⎣ δ
x
yω

⎤⎦ ≤ uωt , ω ∈ Ω,

x ≥ 0, y ≤ yω ≤ y, ω ∈ Ω,

It gives a feasible solution and a possible incumbent solution.
The second quadratic submodel to solve at a TNF integer set corresponds

to the case where not all the δ variables have been branched on in the current
TNF, but all of them hold the integrality condition. Then, the other quadratic

submodel (QPf) is obtained from problem DEM with δ =

(
δ
δf

)
, where δj ,

for j ∈ {1, . . . , k}, are fixed to 0-1 values and the componentes of δfj are in the
interval [0, 1].

(QPf ) Zf = min ctδ +
∑
ω∈Ω

pωqω(x, yω)

subject to : la ≤ A

[
δ
x

]
≤ ua,

lωt ≤ Tω

⎡⎣ δ
x
yω

⎤⎦ ≤ uωt , ω ∈ Ω,

x ≥ 0, y ≤ yω ≤ y, ω ∈ Ω,

δj = δj fixed to 0-1, for j ∈ {1, . . . , k}
δj = δfj ∈ [0, 1], for j ∈ {k + 1, . . . , nδ}



An Algorithm for Stochastic Quadratic Problems 181

This model contributes strong lower bounds of the solution value of the descen-
dent nodes from a given node, by satisfying the NACx.

1.1 Outline of BFC

This method branches on the δ-variables, obtaining the solution of the quadratic
submodels MIQPω and coordinating the selection of the branching node and
branching variable for the BF trees, such that the NACδ constraints are fulfilled
once fixed the suitable variables δ to 1 or to 0.

A sequence of lower bounds Zi is computed, where Zi =
∑
ω∈Ω

zωi and zωi is

the solution to the quadratic relaxation (QPω) of MIQPω once the previous
variables δ have been fixed to 0 or to 1.

If the optimal solution obtained in each node of the TNF satisfies the IC
(integrality constraints) and the NACδ, two cases can happen with respect to
the NACx. If NACx are satisfied, the incumbent solution is updated and the
TNF’s branch is pruned; if the set of active nodes is empty, that solution is
the optimum. Otherwise, to satisfy NACx we solve the TNF quadratic problem
obtained by fixing the δ-variables that verified IC and NACδ; if this problem is
feasible, the incumbent solution is updated, and if the TNF cannot be pruned,
we continue with the tree examination. For more details about the BFC method
for two-stage stochastic problems see [3].

1.2 Scenario Clusters

When the number of scenarios is very large, in order to gain computational
efficiency we can take scenario clusters; see in [4] an information structuring for
scenario cluster partitioning of nonsymmetric scenario trees.

Let p̂ be the number of clusters and Ω1, . . . , Ωp̂, where Ωp ∩ Ωp′ = ∅ for
p, p′ = 1, . . . , p̂, such that p = p′, and ∪p̂p=1Ω

p = Ω. So, instead of the submodel
MIQPω for ω ∈ Ω we can consider the following submodel for the scenario
cluster p = 1, . . . , p̂

(MIQPp) minimize
∑
ω∈Ωp

pω(ctδp + qω(xp, yω))

subject to : la ≤ A

[
δp

xp

]
≤ ua,

lωt ≤ Tω

⎡⎣δpxp
yω

⎤⎦ ≤ uωt , ω ∈ Ωp

xp ≥ 0, y ≤ yω ≤ y, ω ∈ Ωp, δp ∈ {0, 1}nδ

These models are linked by the NACs δp − δp
′
= 0 and xp − xp

′
= 0, for all

p, p′ ∈ {1, . . . , p̂} such that p = p′.
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However, since the number of branches to test can be huge, the BFC method
has some troubles: the number of feasible solutions can be too high, a high num-
ber of quadratic problems QPp, QPTNF , and QPf can exist to solve, and QPTNF

and QPf can have very high dimensions. Hence, in order to gain computational
efficiency, we propose to use either outer linear approximations or (if possible)
perspective cuts to solve QPp in each TNF (i.e., MIQPp where the previous
branching variables have been fixed and the rest is relaxed in [0, 1])

2 Outer Linear Approximations (OLA)

Let the problem miny∈Y g(y), where g is convex and Y is a polyhedral set. The
optimal value of that problem is not smaller than that of

minimize η

subject to : η ≥ g(yi) +∇g(yi)t(y − yi),

y ∈ Y.

Therefore, the value of η∗ gives us an underestimate of g(y∗) and, so, we can use
it instead of g(y∗) in the comparison with the current upper bound, in order to
prune (or not) the current branch.

In our problem, we use as yi the solution in the previous node.

3 Perspective Cuts

When Qxy and Qyx are zero matrices, the quadratic function q is defined as
follows

q(x, y) = btxx+ btyy + xtQxxx+ ytQyyy.

This kind of model can be found in liberalized electricity markets [6] and [2].
For each scenario ω ∈ Ω we can write the objective function of the submodel

MIQPω as follows

pω(ctδω + btxx+ (bωy )
tyω + xtQxxx+ (yω)tQω

yyy
ω) =

pω
{(

btxx+ xtQxxx
)
+
(
(yω)tQω

yyy
ω + (bωy )

tyω + ctδω
)}

and, if n := nδ = ny and Qyy is diagonal (as in [6]), we can write the last bracket
as
∑n

i=1 q
ω
ii(y

ω
i )

2 + bωi y
ω
i + ciδ

ω
i .

For notational simplicity in this paragraph we drop the indices. The issue is
then how to best represent the quadratic function f(y, δ) = qy2+by+cδ by means
of a piecewise-linear one. There is an effective way based on ideas developed by
Frangioni and Gentile [5]. The function f(y, δ) is only relevant at points (y, δ)

of its (disconnected) domain D = [0, 0] ∪
[
[y, y] × {1}

]
. Standard branch-and-

cut approaches typically solve the continuous relaxation of the mixed problem,
where δ ∈ [0, 1] instead of {0, 1}, in order to obtain lower bounds on the optimal
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value. This makes sense to use the convex envelope of f(y, δ) over D, that is, the
convex function with the smallest (in set-inclusion sense) epigraph containing
that of f(y, δ). As is showed in [5] the convex envelope is

h(y, δ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if (y, δ) = (0, 0)
qy2

δ
+ by + cδ,

{
if δy ≤ y ≤ δy,

for δ ∈ (0, 1]

}
+∞, otherwise.

This function is strongly related with the perspective-function f̆(y, δ) = δf(y/δ)
of f(y) = qy2 + by + c, which is convex if f(y) is convex.
h(y, δ) ≥ f(y, δ) for 0 < δ ≤ 1, i.e. h is a tighter objective function than

f for the continuous relaxation. As is well-known, every convex function is the
point-wise supremum of affine functions. In fact, the epigraph of h is composed
of all and only triples (v, y, δ) satisfying δy ≤ y ≤ δy, 0 ≤ δ ≤ 1 and the
infinite system of linear inequalities

v ≥ (2qŷ + b)y + (c− qŷ2)δ

taking ŷ ∈ [y, y]. For each ŷ we have an inequality so-called a perspective
cut (PC), which is the unique supporting hyperplane to the function passing by
(0, 0) and (ŷ, 1).

3.1 PC Formulation (PCF)

PC formulation (PCF) lies in choosing these supporting hyperplanes and using
as an objective function the polyhedral function that is the point-wise maximum
of the corresponding linear functions. A small set of initial PCs is chosen to solve
the problem with the continuous relaxation. When δ∗ > 0, check whether the
solution (v∗, y∗, δ∗) satisfies the PC for ŷ = y∗/δ∗; if not, the obtained cut can
be added to PCF.

PCF starts with only two pieces, the ones corresponding with y and y; ad-
ditional cuts are then dynamically generated when needed as described in the
previous paragraph.

Therefore, the objective function of MIQPω for PCF becomes

pω

{(
btxx+ xtQxxx

)
+
( n∑
i=1

vωi
)}

,

and the initial PCs added to the constraints of MIQPω for each i ∈ {1, . . . , n}

vωi ≥ (2qωiiyi + bωi )y
ω
i + (ci − qωiiy

2
i
)δωi

vωi ≥ (2qωiiyi + bωi )y
ω
i + (ci − qωiiy

2
i )δ

ω
i
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We can extend this formulation to scenario clusters obtaining the MIQPp

submodels for p = 1, . . . , p̂ in this way

min
∑
ω∈Ωp

pω

{(
btxx+ xtQxxx

)
+
( n∑

i=1

vωi

)}
s.t.: vωi ≥ (2qωiiyi + bωi )y

ω
i + (ci − qωiiy

2
i
)δωi , i ∈ {1, . . . , n}, ω ∈ Ωp

vωi ≥ (2qωiiyi + bωi )y
ω
i + (ci − qωiiy

2
i )δ

ω
i , i ∈ {1, . . . , n}, ω ∈ Ωp

la ≤ A

[
δp

xp

]
≤ ua,

lωt ≤ Tω

⎡⎣δpxp
yω

⎤⎦ ≤ uωt , ω ∈ Ωp

xp ≥ 0, yω ∈ [y, y], ω ∈ Ωp, and δp ∈ {0, 1}nδ

4 Implementation

These methods have been implemented in C++ with the help of Cplex 12.1
to solve only the quadratic subproblems QPp in each node of the BF tree, for
each p ∈ {1, . . . , p̂}, and the QPTNF and QPf subproblems. These algorithmic
alternatives have been considered:

( QBFC: coordination of δ in the TNF of the BF trees for clusters p ∈
{1, . . . , p̂} without using neither OLAs nor PCs, i.e. solving the quadratic
subproblems QPp.

( QBFC-PC: coordination of δ in the TNF of the BF trees for clusters p ∈
{1, . . . , p̂} using PCs.

( QBFC-OLA: coordination of δ in the TNF of the BF trees for clusters p ∈
{1, . . . , p̂} using OLAs.

For our instances the number of scenarios in each cluster is the same, |Ωp| =
|Ω|/p̂. Each cluster contains |Ωp| consecutive scenarios, starting from the first
one and following in natural order.

5 Numerical Tests

In order to obtain a computational comparison of the performance of the al-
gorithmic alternatives QBFC, QBFC-PC, and QBFC-OLA some computational
tests are carried out, which consist in solving two-stage stochastic problems,
where the objective function is convex quadratic with linear constraints using
QBFC code with those algorithmic choices. Therefore, these problems have a
unique primal solution and the duality gap is zero. The tests have been per-
formed on HP Compact with Intel Core 2 Quad Q9550 2.83GHz 4 CPU under
Linux 2.6.38-8-generic-pae (x86 64).
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The test problems have been randomly generated by using a C++ code de-
veloped by this author. This generator provides the scenarios set together with
the associated probability of occurrence for two-stage stochastic mixed quadratic
problems where Qxy = 1l, Qxy = 00, and Qyx = 00. Moreover, as can be seen in
Table 1, in some problems Qxx = 00 and in the rest of problems Qxx = 1l. Also,
“# var” means the number of continuous variables, “# bin” the number of bi-
nary variables, “# constr” the number of constraints for DEM, see (1)-(5), and
“dens” constraint matrix density %.

Table 1. Test problems

Prob. |Ω| # var # bin # constr Qxx dens.

P1 20 420 20 840 00 38
P2 30 620 20 1240 00 37
P3 40 820 20 1640 00 42
P4 50 1020 20 2040 00 43
P5 60 1220 20 2440 00 39
P6 70 1420 20 2840 00 37

P7 30 930 30 1860 00 2
P8 40 1230 30 2460 00 2
P9 50 1530 30 3060 00 1
P10 60 1830 30 3660 00 1
P11 70 2130 30 4260 00 1
P12 100 3030 30 6060 00 1

P13 30 930 30 1550 1l 13
P14 40 1230 30 2050 1l 10
P15 50 1530 30 2550 1l 10
P16 60 1830 30 3050 1l 9
P17 70 2130 30 3550 1l 9

Table 2 presents the main results of the computational experimentation for
given values of the number of scenario clusters. Below the heading QBFC-1 are
the times in CPU-seconds used for solving problems with 1 only scenario cluster
(i.e. p̂ = 1) and by solving the quadratic subproblem QPp for each node using
Cplex; the heading QBFC-5OLA indicates the CPU-times for 5 scenario cluster
(i.e. p̂ = 5) and by solving the quadratic subproblem QPp for each node using
outer linear approximations (OLA). Finally, PC means perspective cuts are used.

As can be observed in Table 2, the best efficiency is mainly obtained when
the problems are solved with 5 clusters, except in the case of QBFC-5 because
of the computational cost of solving a quadratic problem in each node of the BF
tree for the different clusters. In addition, the outer linear approximations give
us a higher efficiency than the perspective cuts.

6 Conclusions

An algorithm to solve two-stage stochastic quadratic problems based on the
Twin Node Family concept involved in the Branch-and-Fix Coordination has
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Table 2. Computational results: CPU-times

Prob. QBFC-1 QBFC-1PC QBFC-1OLA QBFC-5 QBFC-5PC QBFC-5OLA

P1 4.4 11.8 4.9 17.8 3.8 2.0
P2 9.7 14.2 6.7 6.6 8.0 3.0
P3 17.0 26.3 7.8 24.5 22.8 4.4
P4 21.4 43.3 16.3 14.5 18.6 6.3
P5 56.4 22.3 18.8 28.9 45.0 19.6
P6 33.9 96.0 28.7 10.6 20.0 9.7

P7 51.1 10.6 5.1 - 5.2 3.8
P8 5.2 9.3 3.9 - 5.0 2.3
P9 - 2.18 10.2 - 5.2 3.3
P10 135.4 28.5 14.2 - 18.8 10.5
P11 1052.7 39.1 14.5 - 17.2 3.7
P12 915.1 30.2 11.0 - 16.3 20.1

P13 10.5 7.1 7.8 - 5.3 6.8
P14 5.8 149.1 37.5 - 15.2 20.4
P15 94.4 69.5 58.4 - 33.2 16.1
P16 46.3 143.5 109.1 - 16.7 44.6
P17 1260.4 250.8 87.3 - 13.3 7.6

been implemented in C++ with the help of Cplex library to solve only the
quadratic subproblems. When the problem’s structure makes it possible, the
algorithm uses perspective cuts or OLA to linearize the MIQ subproblems in
each BF tree. The preliminary numerical results show a bit better efficiency
with OLA than with PCF.

The path started from this work has the aim of solving nonlinear (non-
quadratic) stochastic problems with nonlinear constraints and for two stage or
more.
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ing two-stage stochastic mixed 0-1 first-stage problems. Computers & Operations
Research 36, 2590–2600 (2009)
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Abstract. We consider a stochastic control problem of beating a stochastic
benchmark. The problem is considered in an incomplete market setting with
external economic factors. The investor preferences are modelled in terms of
HARA-type utility functions and trading takes place in a finite time horizon.
The objective of the investor is to minimize his expected loss from the outper-
formance of the benchmark compared to the portfolio terminal wealth, and to
specify the optimal investment strategy. We prove that for considered loss func-
tions the corresponding Bellman equation possesses a unique solution. This solu-
tion guaranties the existence of a well defined investment strategy. We prove also
under which conditions the verification theorem for the obtained solution of the
Bellman equation holds.

Keywords: optimal portfolios, stochastic target, benchmark tracking.

1 Introduction

We analyze the optimal portfolio and investment policy for an investor who is concerned
about his wealth relative to the performance of a given benchmark. The benchmark
evolves stochastically over time and the investor’s objective is to minimize his loss
with respect to this benchmark by investing in a portfolio of stochastically evolving
financial instruments. Since the benchmark is not necessarily perfectly correlated with
the investment opportunities, we are in the framework of an incomplete market, and
there is no investment policy under which the investor can outperform the benchmark
with certainty.

The portfolio problem where the objective is to exceed the performance of a selected
target benchmark is sometimes called an active portfolio management. It is well known
that many professional investors apply this benchmarking procedure. However, many
small investors follow a benchmarking procedure as well, by trying to beat inflation,
exchange rates, or other market indices.

The problem of an investment portfolio which outperforms a given benchmark has
been studied for a long time. For objectives such as maximizing the probability that the
investor’s wealth achieves a certain performance goal relative to the benchmark, before
falling below to a predetermined shortfall, or minimizing the expected time to reach
the performance goal, the problem is studied by Browne [4], [5]. For the special case
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where the benchmark is perfectly correlated with the investment opportunities, these
problems over a finite-horizon are analyzed in [4], and for a more general model that
the benchmark is not perfectly correlated with the investment opportunity in [5]. The
problem of finding the minimal initial data of a controlled process which guarantees to
reach the benchmark with a given probability of success or, more generally, with a given
level of expected loss was first introduced by Föllmer and Leukert [7] in the context of
quantile hedging. This approach has been then extended to the stochastic target problem
studied by Soner and Touzi [9, 10], and in a number of papers by Bouchard et. al.
[1, 2, 3].

In opposition to the majority of previously mentioned papers, in this paper, we study
a loss minimization objective when the prices of financial instruments are functions of
external economic factors. A similar problem but without taking into account economic
factors is solved by Browne [5]. The absence of economic factors makes the problem
much simpler as the HJB equation is reduced in that case to an ODE. In the presence of
external factors the HJB equation becomes a multidimensional nonlinear PDE for which
the existence of solutions is a challenging problem. We solve this problem using the well
developed theory of quasilinear parabolic equations. We also show that under suitable
regularity assumptions the verification theorem holds. Hence, the obtained solution to
the HJB equation is a solution to the optimization problem. The plan of the paper is as
follows. In Section 2, we present the portfolio problem arising from the active portfolio
management. In Section 3, we show that, under additional assumptions on the loss
function, we can find a smooth solution to the HJB equation and construct effectively
an optimal investment strategy. Section 4 is devoted to the formulation and proof of the
verification theorem.

2 The Portfolio Problem

We consider the portfolio problem in which the prices of securities are functions of
external state variables (economic factors). Our goal is to construct a portfolio which
can outperform a stochastic benchmark. We consider a general setting of the problem. In
particular, the risk factors which define the dynamics of the benchmark can be different
from the risk factors in the dynamics of securities. Hence, the problem is an incomplete
market problem.

The setting of the market is as follows: we have a market defined on a probabil-
ity space (Ω,F ,P) with the filtration (Ft)t∈[0,T ] generated by d-dimensional standard
Wiener process W (t) = (W1, . . . ,Wd) (in what follows we treat W as a column vec-
tor). On that probability space we have N stochastic processes describing the prices of
securities with the dynamics

dSi(t)

Si(t)
= μi(t, R)dt+

d∑
j=1

σij(t, R)dWj(t), i = 1, 2, . . . , N, (1)

where μi and σij depend on an M -dimensional vector of economic factors R.
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We assume that the dynamics of factors R follow the Markovian diffusion process

dRm(t) = μrm(t, R)dt+
d∑

i=1

bmi(t, R)dWi(t), m = 1, 2, . . . ,M. (2)

It is convenient to switch to vector notation and introduce the matrices σ = (σij),
B = (bij) and the column vectors μ = (μ1, . . . , μN )′, μr = (μr1, . . . , μ

r
M )′. (Here and

in what follows x′ denotes the transpose of the matrix or vector x.)

Assumption 2.1. For the model of security prices we assume that coefficients μ(t, r)
and σ(t, r) are deterministic functions bounded and continuous for t ∈ [0, T ] and r ∈
RM . For the model of economic factors we make typical assumptions which guarantee
the existence of strong solutions to equation (2), i.e., we assume that μr(t, r) andB(t, r)
are deterministic continuous functions of their arguments, which in addition fulfil the
estimates

‖μr(t, r1)− μr(t, r2)‖+ ‖B(t, r1)−B(t, r2)‖ ≤ c‖r1 − r2‖, (3)

‖μr(t, r)‖2 + ‖B(t, r)‖2 ≤ c2(1 + ‖r‖2), (4)

for t ∈ [0, T ], r, r1, r2 ∈ RM , where c is a positive constant.

We analyze the stochastic target problem in an incomplete market assuming that the
dimension of risk factors is high, i.e. dimmension d of the Wiener process W is high,
and the number of securities and economic factors much lower. This means that d# N
and d#M . To guarantee well-posedness and solvability of the optimization problem,
we have to make additional assumptions.

Assumption 2.2. About the model of securities dynamics we assume a ”partial invert-
ibility” of the model, i.e., the matrix Σ = σσ′ is nonsingular and Σ−1(t, r) is bounded
for t ∈ [0, T ] and r ∈ RM . This in fact means that securities are driven by N risk
factors and limited to these N dimensions the security market is complete.
About the model of dynamics of economic factors we assume that the matrix BB′ is
positive definite. Strictly speaking, we postulate that there exist positive constants ν1,
ν2 such that for any x ∈ RM

0 < ν1‖x‖2 ≤ x′BB′x ≤ ν2‖x‖2.

The stochastic benchmark is modelled as a general log-normal stochastic process
H(t) which fulfils the equation

dH(t) := H(t)
(
μHdt+ ξdW (t)

)
,

where ξ = (ξ1, . . . , ξd)
′ is a column vector, and coefficients μH and ξ are deterministic

functions of t ∈ [0, T ] and r ∈ RM .
We consider now a portfolio V (t) consisting of assets Si(t), i = 1, . . . , N . Denoting

by πi the fraction of the total wealth V (t) invested in the security Si, we can write

dV π(t) = V π(t)
(
μV dt+ θV dW (t)

)
, (5)
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where after introducing the column vector π = (π1, . . . , πN )′ we have μV = μ′π and
θV = σ′π.

We define now the new process

X(t) =
H(t)

V π(t)
. (6)

This approach enables us to consider in the same framework losses and gains. Such
an approach is not quite new in the financial literature. It is applied by Browne [4, 5].
A similar quotient is used by Dai Pra, Runggaldier and Tolotti [6] who optimize the
quadratic loss in the benchmark tracking problem.

For the process X(t) we obtain the following equation of evolution

dX

X
= μXdt+ θdW, (7)

where
θ = ξ − θV , μX = μH − μV − θ′θV .

We optimize the process X(t) with respect to the vector of strategies π. Admissible
strategies for our problem are defined as follows.

Definition 2.1. Let U be a complete, separable metric space and 0 < T < ∞. We
define the set of admissible strategies Π(t, x, r) as fulfilling the conditions:

1. π : [t, T ]×Ω → U ⊆ RN is measurable, bounded and {Fτ}τ≥t-adapted, for each
π ∈ Π(t, x, r),

2. X(t) = x (budget constraint),
3. R(t) = r.

We consider the optimization problem in the framework of utility theory. This means
that we fix a utility function g and optimize the terminal value of process X measured
by g. The optimization problem is of the form

min
π∈Π(t,x,r)

E
[
g(X(T ))|X(t) = x,R(t) = r

]
. (8)

In fact, it is better to call g a loss function as our goal is to minimize losses and not to
maximize gains.

Under Assumptions 2.1, 2.2 and Definition 2.1, equation (7) admits the unique solu-
tion and the value function

u(t, x, r) := min
π∈Π(t,x,r)

E
[
g(X(T ))|X(t) = x,R(t) = r

]
(9)

is well defined.
With this value function we arrive at the following Hamilton-Jacobi-Bellman

equation

∂tu+ inf
π∈Π

(
μXx∂xu+ (μr)′∇ru+

1

2
θ′θx2∂xxu+

+
1

2
BB′(∇r ⊗∇ru) + xθ′B′∇r∂xu

)
= 0,

u(T, x, r) = g(x),

(10)
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where ∇r denotes the gradient operator with respect to vector variable r (a column
vector), ∂t and ∂x denote differential operator with respect to scalar variables t and x,
respectively. ∇r ⊗ ∇r has the following meaning: when x and y are n- dimensional
column vectors then x ⊗ y denotes the n× n matrix xy′, i.e. ∇r ⊗∇ru is a matrix of
all second order derivatives of u with respect to variables ri and rj , i, j = 1, . . . ,M .

3 Smooth Solutions of the HJB Equation

To obtain smooth solutions to the HJB equation (10), we make the following
assumption.

Assumption 3.1. The loss function g(x) is from the generalized HARA class and is
given by the expression g(x) = cxα, for α > 1 and x ∈ [0,∞).

Remark 3.1. In fact, from the technical point of view, we can assume only that g is
such that α = −1. The assumption α > 1 is essential when we want to interpret g(x)
as a loss function.

Under the above assumption, we postulate that the value function can be factorized in
the form

u(t, x, r) = g(x)q(t, r). (11)

Substituting the above factorization into equation (10), we obtain the following PDE
problem for q:

∂tq + inf
π∈Π

(
αμXq + (μr)′∇rq +

α(α − 1)

2
θ′θq+

+
1

2
BB′(∇r ⊗∇rq) + αθ′B′∇rq

)
= 0,

q(T, r) = 1.

(12)

From equation (12) we can derive formally the optimal investment strategy

π∗ = π0 +
π1∇rq

q
, (13)

where

π0 =
1

1 + α
Σ−1(μ+ ασξ),

π1 =
1

1 + α
Σ−1σB′.

Substituting expression (13) into the HJB equation (12) we obtain

∂tq + αμ∗q + (μr)′∇rq +
α(α − 1)

2
(θ∗)′θ∗q+

+
1

2
BB′(∇r ⊗∇rq) + α(θ∗)′B′∇rq = 0.

(14)
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In this equation, μ∗ denotes the value of μX , and θ∗ the value of θ evaluated at the point
of the optimal strategy π∗.

After rearrangements, the HJB equation (14) takes the form

∂tq +A0(∇r ⊗∇rq) +A1
∇rq ⊗∇rq

q
+A2∇rq +A3q = 0, (15)

where

A0 =
1

2
BB′,

A1 =
1

2
α(α + 1)(π1)′Σπ1 − αBσ′π1,

A2 =μr + α(α + 1)(π1)′Σπ0 − α2(π1)′σξ + α
(
Bξ − (π1)′μ−Bσ′π0

)
,

A3 =
1

2
α2
(
(π0)′Σπ0 − 2(π0)′σξ + ξ′ξ

)
+ α
(
μH − μ′π0 − 1

2
ξ′ξ
)
.

Equation (15) has to be solved in the strip 0 ≤ t ≤ T with the terminal condition

q(T, r) = 1. (16)

Equation (15) is a quasilinear parabolic equation which possesses a solution provided
this solution is bounded away from zero. To find this solution we make the substitution

z = ln q.

For the new function z we obtain the equation

∂tz +A0(∇r ⊗∇rz) + (A0 +A1)∇rz ⊗∇rz +A2∇rz +A3 = 0, (17)

with the terminal condition
z(T, r) = 0. (18)

To solve equation (17) with condition (18), we use well known results in the theory of
quasilinear parabolic equations.

Let us consider a boundary value problem for a n-dimensional quasilinear parabolic
equation

∂tw −
n∑

i,j=1

aij(t, x)∂xixjw + a(t, x, w, ∂xw) = 0, for (t, x) ∈ OT ,

w(t, x) = ψ(t, x), for (t, x) ∈ ΓT ,

(19)

in a bounded domain OT = [0, T ]×O, where O is a bounded domain in Rn with the
boundary of class H2+β , and ΓT = ∂O × [0, T ] ∪O × {t = 0}.

Theorem 7.4 in Chapter 6 of the book by Ladyzhenskaya, Solonnikov and Uralt-
seva [8] guarantees that, under suitable assumptions on coefficients aij , a and bound-
ary function ψ, there exists a unique solution to the boundary value problem (19) in
H1+β/2,2+β(OT ).

To apply the above result to equation (17), we have to make additional assumptions.
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Assumption 3.2. Let functions μ, μr, μH , σ, B, ξ and Σ−1 be Hölder continuous
functions of t with the Hölder exponent β/2, and Hölder continuous functions of r with
the Hölder exponent β , for some β > 0.

Now we can prove our main theorem.

Theorem 3.1. Under Assumptions 2.1, 2.2, 3.1, 3.2 and the assumptions of Defini-
tion 2.1, there exists a unique solution z(t, r) to the terminal problem (17)-(18) and |z|,
|∂tz|, |∂xiz|, |∂xixjz| are bounded in [0, T ] × RM . This solution belongs to
H1+β/2,2+β(OT ), where OT = [0, T ]×O and O is a bounded domain in RM .

Proof: Let us consider the terminal problem (17)-(18) in OT = [0, T ]× O, where
O is a fixed bounded domain in RM . To solve this problem, we supplement equation
(17) and terminal condition (18) with the boundary condition

z(t, r) = 0 for (t, r) ∈ ∂O × [0, T ]. (20)

The above defined augmented problem fulfils already the assumptions of Theorem 7.4
in Chapter 6 of [8]. Due to this theorem, there exists a unique solution of equation
(17) with terminal condition (18) and boundary condition (20). This solution together
with its derivatives can be estimated in OT with constants which depend only on con-
stants present in the Assumptions, and not on the size of domainO. Hence, the solution
which exists in any bounded domainOT belongs to H1+β/2,2+β(OT ) and is uniformly
bounded together with its derivatives independently of the size of the domain. Then
we can consider a increased sequence of bounded smooth domains On that fill in the
whole RM and solutions zn to problem (17), (18), (20) with O replaced by On. By the
standard Arzela-Ascoli theorem, we can choose a subsequence of zn which converges
to a function which is a solution to (17)-(18) on [0, T ]×RM . �

Remark 3.2. In many situations, economic factors should be restricted to nonnegative
values only. In that cases, Theorem 3.1 is still applicable as we can construct a sequence
of bounded smooth domains On approximating the space RM

+ .

Corollary 3.1. Let us observe that due to Theorem 3.1 fuction z(t, r) and its deriva-
tives are bounded. Returning back to the original function q, we conclude that q(t, r)
is bounded away from zero and the quotient qrm/q is bounded. It follows than that
the optimal investment strategy given by expression (13) is bounded and admissible in
accordance with Definition 2.1.

4 Verification Theorem

Theorem 3.1 guaranties a smooth solution to the terminal problem (17)-(18). This solu-
tion is not necessarily a solution to the optimization problem. To prove the optimality,
we need some additional results. First, we have to show that the solution to problem
(17)-(18) is a function of class C1,2 on [0, T ]× RM .

To this end, we can use Theorem 8.1 from Chapter 6 of [8] which guarantees the
existence of a unique solution in H1+β/2,2+β(QT ), where QT = [0, T ] × Rn, to the
Cauchy problem for a quasilinear parabolic equation
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∂tw −
n∑

i,j=1

aij(t, x)∂xixjw + a(t, x, w, ∂xw) = 0, in (0, T ]× R
n,

w(0, x) = ψ(x), in R
n,

(21)

if in addition to the assumptions of Theorem 7.4 from [8] the coefficients of the equation
can be uniformly estimated on every bounded set with the bound independent of the size
of this set.

To apply the above mentioned theorem, we make the following assumption

Assumption 4.1. Let functions μ, μr, μH , σ, B, ξ and Σ−1, in addition to being
Hölder continuous, be uniformly bounded for all (t, r), t ∈ [0, T ], r ∈ RM .

Theorem 4.1. Under the assumptions of Theorem 3.1 and Assumption 4.1, there ex-
ists a unique solution to the terminal problem (17)-(18). This solution belongs to
H1+β,2+β/2([0, T ]× RM ) and the estimates of Theorem 3.1 hold for (t, r) ∈ [0, T ]×
RM . In particular, the solution is a C1,2 function on [0, T ]× RM .

Proof: The proof follows straightforwardly from Theorem 8.1 in Chapter 6 of
[8]. That theorem states that the solution to problem (21) is unique and belongs to
H1+β/2,2+β([0, T ] × RM ) for some β > 0. It is obvious that such a solution is a
function of class C1,2. �
To use the classical stochastic verification theorem (cf. Theorem 5.1 in Chapter 5 of the
book by Yong and Zhou [11]), we have to prove the following simple lemma.

Lemma 4.1. Let z(t, r) be the unique solution to the boundary value problem (17)-
(18), which exists due to Theorem 4.1 in [0, T ]× RM . Let q(t, r) = exp

(
z(t, r)

)
and

π∗ be given by equation (13). Then

inf
π∈Π

(
αμXq + (μr)′∇rq +

α(α− 1)

2
θ′θq +

1

2
BB′(∇r ⊗∇rq) + αθ′B′∇rq

)
=

= αμ∗q + (μr)′∇rq +
α(α − 1)

2
(θ∗)′θ∗q +

1

2
BB′(∇r ⊗∇rq) + α(θ∗)′B′∇rq,

where μ∗ denotes the value of μX , and θ∗ the value of θ evaluated at the point of the
optimal strategy π∗.

Proof: The proof is straightforward as the left and right hand sides of the equation
in the Lemma are left hand sides of equations (12) and (14), respectively. But equation
(14) has been obtained from equation (12) upon substitution (13). The fact that π∗ is an
admissible investment strategy has been already stated in Corollary 3.1. �
From Theorem 4.1 and Lemma 4.1, we easily obtain the verification theorem.

Theorem 4.2. Under assumptions of Theorem 4.1, the function

u(t, x, r) = g(x)q(t, r)

is the value function to the optimization problem (9), where g(x) fulfils the conditions
of Assumption 3.1 and q(t, r) = exp

(
z(t, r)

)
with z(t, r) being the solution of the

boundary value problem (17)-(18), which exists due to Theorem 4.1.
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5 Conclusions

In this paper, we have solved the stochastic optimization problem for the loss minimiza-
tion with the state variable being the ratio of a stochastic benchmark to an investment
portfolio. The control parameter of this problem is the portfolio investment strategy.
The problem is solved in a market model of N securities being log-normal stochastic
processes and depending on M external economic factors. The stochastic benchmark is
also a log-normal process but the set of risk factors on which this benchmark depends
can be larger than the set of risk factors of the securities making the whole problem an
incomplete market problem.

The stochastic optimization problem has been reduced to the HJB equation which,
in this case, is a multidimensional quasilinear parabolic equation. Using the general
theory of such equations, we have proved that under suitable regularity conditions the
HJB equation possesses a unique solution which is sufficiently smooth to guarantee the
fulfilment of the stochastic verification theorem. Hence, the solution to the HJB equa-
tion is a unique solution to the initial optimization problem. This is a natural extention
of similar results obtained in a less general setting without the dependence of security
prices on external economic factors.

A natural question which arises is the extension of the obtained results to a market
with less restrictive assumpions. The most severe of these assumptions is the bounded-
ness of the coefficients in the whole domain and the lifting of these restrictions will be
the subject of future research.
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Abstract. This paper examines the objective of optimally harvesting a
single species in a stochastic environment. This problem has previously
been analyzed in [1] using dynamic programming techniques and, due
to the natural payoff structure of the price rate function (the price de-
creases as the population increases), no optimal harvesting policy exists.
This paper establishes a relaxed formulation of the harvesting model in
such a manner that existence of an optimal relaxed harvesting policy
can not only be proven but also identified. The analysis imbeds the har-
vesting problem in an infinite-dimensional linear program over a space of
occupation measures in which the initial position enters as a parameter
and then analyzes an auxiliary problem having fewer constraints. In this
manner upper bounds are determined for the optimal value (with the
given initial position); these bounds depend on the relation of the initial
population size to a specific target size. The more interesting case occurs
when the initial population exceeds this target size; a new argument is
required to obtain a sharp upper bound. Though the initial population
size only enters as a parameter, the value is determined in a closed-form
functional expression of this parameter.

Keywords: Singular stochastic control, linear programming, relaxed
control.

AMS subject classification: 93E20, 60J60.

1 Introduction

This paper examines the problem of optimally harvesting a single species that
lives in a random environment. Let X be the process denoting the size of the
population and Z denote the cumulative amount of the species harvested. We
assume X(0−) = x0 > 0, Z(0−) = 0, and X and Z satisfy

dX(t) = b(X(t))dt+ σ(X(t))dW (t) − dZ(t), (1)

in which W (·) is a 1-dimensional standard Brownian motion that provides the
random fluctuations in the population’s size, and b and σ are real-valued continu-
ous functions. We assume that b and σ are such that in the absence of harvesting
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the population process X takes values in R+ and that ∞ is a natural boundary
so that the population will not explode to∞ in finite time. The boundary 0 may
be an exit or a natural boundary point but may not be an entrance point; this
indicates that the species will not spontaneously reappear following extinction.
Note that X(0) may not equal X(0−) due to an instantaneous harvest Z(0) at
time 0 and the process Z is restricted so that ΔZ(t) := Z(t) − Z(t−) ≤ X(t−)
for all t ≥ 0. This latter condition indicates that one cannot harvest more of
the species than exists. Let r > 0 denote the discount rate and f denote the
marginal yield for harvesting. The objective is to select a harvesting strategy Z
so as to maximize the expected discounted revenue

J(x0, Z) := Ex0

[∫ τ

0

e−rsf(X(s−))dZ(s)
]
, (2)

where τ = inf {t ≥ 0 : X(t) = 0} denotes the extinction time of the species.
As a result of developments in stochastic analysis and stochastic control tech-

niques, there has been a resurgent interest in determining the optimal harvesting
strategies in the presence of stochastic fluctuations (see, e.g., [1,6]). In partic-
ular, [1] examines the current problem using dynamic programming techniques
and determines the value function. The paper indicates the lack of an optimal
policy in the admissible class of (strict) harvesting policies by commenting that
a “chattering” policy will be optimal. The problem of optimal harvesting of a
single species in a random environment is also studied in [8] in which the model
is extended to regime-switching diffusions so as to capture different dynamics
such as for drought and non-drought conditions. The paper also adopts a dy-
namic programming solution approach to determine the value function while
at the same time exhibiting ε-optimal harvesting policies since, as in the static
environment of [1], no optimal harvesting policy exists. In light of the complexi-
ties of the regime-switching model, it further identifies a condition under which
the value function is shown to be continuous and a viscosity solution to the
variational inequality.

The focus of this paper is on developing a relaxed formulation for the harvest-
ing problem under which an optimal harvesting control exists and on establishing
optimality using a linear programming formulation instead of dynamic program-
ming. In addition, it is sufficient to have a weak solution to (1) rather than plac-
ing Lipschitz and polynomial growth conditions on the coefficients b and σ that
guarantee existence of a strong solution. Intuitively, relaxation completes the
space of admissible harvesting rules by allowing measure-valued policies. A ben-
efit of the linear programming solution methodology is the analysis concentrates
on the optimal value for a single, fixed initial condition, rather than seeking the
value function and thus no smoothness properties need to be established about
the value as a function of the initial position.
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To set the stage for the relaxed singular control formulation of the model, let
D = C2

c (R+) and for a function g ∈ D, define the operators A and B by

Ag(x) =
1

2
σ2(x)g′′(x) + b(x)g′(x), and (3)

Bg(x, z) =

{
g(x−z)−g(x)

z , if z > 0,

−g′(x), if z = 0,
(4)

where x, z ∈ R+. Itô’s formula then implies

g(X(t)) = g(x0) +

∫ t

0

Ag(X(s)) ds+

∫ t

0

Bg(X(s), ΔZ(s)) dZ(s)

+

∫ t

0

σ(X(s))g′(X(s)) dW (s), ∀g ∈ D.

It therefore follows that for any g ∈ D

g(X(t))− g(x0)−
∫ t

0

Ag(X(s)) ds−
∫ t

0

Bg(X(s), ΔZ(s)) dZ(s) (5)

is a mean 0 martingale. In fact, requiring (5) to be a martingale for a sufficiently
large collection of functions g is a way to characterize the processes (X,Z) which
satisfy (1). We turn now to a precise formulation of the model in which the pro-
cesses are relaxed solutions of a controlled martingale problem for the operators
(A,B).

1.1 Formulation of the Relaxed Model

For a complete and separable metric space S, we define M(S) to be the space of
Borel measurable functions on S, B(S) to be the space of bounded, measurable
functions on S, C(S) to be the space of continuous functions on S, C(S) to be
the space of bounded, continuous functions on S,M(S) to be the space of finite
Borel measures on S, and P(S) to be the space of probability measures on S.
M(S) and P(S) are topologized by weak convergence.

Recall, the amount of harvesting is limited by the size of the population.
Define R = {(x, z) : 0 ≤ z ≤ x, x ≥ 0}; R denotes the space on which the paired
process (X,Z) evolves when considering solutions of (1).

The formulation of the population model in the presence of “relaxed” harvest-
ing policies adapts the relaxed formulation for singular controls given in [5] to
the particulars of the harvesting problem. This adaptation sets the state space
E to be R+ and the control space U = R+, with U = R ⊂ R+ × R+.

Let X be an R+-valued process and Γ be an L(R)-valued random variable.
Let Γt denote the restriction of Γ to R× [0, t]. Then (X,Γ ) is a relaxed solution
of the harvesting model if there exists a filtration {Ft} such that (X,Γt) is
{Ft}-progressively measurable, X(0−) = x0, and for every g ∈ D,

g(X(t))− g(x0)−
∫ t

0

Ag(X(s)) ds−
∫
R×[0,t]

Bg(x, z)Γ (dx× dz × ds) (6)
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is an {Ft}-martingale, in which the operators A and B are given by (3) and (4),
respectively. Throughout the paper we assume that a relaxed solution (X,Γ )
exists and is strong Markov. Let A denote the set of measures Γ for which there
is some X such that (X,Γ ) is a relaxed solution of the harvesting model.

We turn now to the extension of the reward criterion (2) to the relaxed frame-
work. Specifically, f : R+ �→ R+ represents the instantaneous marginal yield ac-
crued from harvesting. Assume f is continuous and non-increasing with respect
to x. Thus f(x) ≥ f(y) whenever x ≤ y; this assumption indicates that the
price when the species is plentiful is smaller than when it is rare. Moreover, we
assume 0 < f(0) <∞. Let (X,Γ ) be a solution to the harvesting model (6). Let
S = (0,∞) denote the survival set of the species and τ = inf{t ≥ 0 : X(t) /∈ S}.
Then the expected total discounted value from harvesting is

J(x0, Γ ) := E

[∫
R×[0,τ ]

e−rsf(x)Γ (dx× dz × ds)

]
. (7)

The goal is to maximize the expected total discounted value from harvesting
over relaxed solutions (X,Γ ) of the harvesting model and to find an optimal
harvesting strategy Γ ∗. Thus, we seek

V (x0) = J(x0, Γ
∗) := sup

Γ∈A
J(x0, Γ ). (8)

We emphasize that the initial position x0 is merely a parameter in the problem
and that V is not to be viewed as a function with any particular properties but
merely is the value of the harvesting problem when the initial population size is
x0. We do, however, obtain the value in functional form for x0 in two regions.

2 Linear Programming Formulation and Main Result

Throughout this paper, we assume the equation (A − r)u(x) = 0 has two fun-
damental solutions ψ and φ, where ψ is strictly increasing and φ is strictly
decreasing; without loss of generality we may assume ψ(0) = 0 (see [1]).

The main result of this paper is summarized in the following theorem.

Theorem 1. Assume that there exists some b̃ ≥ 0 such that

(i) f(x)
ψ′(x) ≤

f(b̃)

ψ′(b̃)
, ∀x ≥ 0,

(ii) the function f/ψ′ is nonincreasing on [b̃,∞), and

(iii) the function f is continuously differentiable on (b̃,∞).

Put b∗ = inf{b̃ ≥ 0 : b̃ satisfies (i)–(iii)}. Then the value is given by

V (x0) =
f(b∗)

ψ′(b∗)
ψ(x0 ∧ b∗) +

∫ x0∨b∗

b∗
f(y)dy (9)
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and an optimal relaxed harvesting policy is given by

Γ ∗(dx× dz × dt) = I(b∗,∞)(x0)λ[b∗, x0](dx)δ{0}(dz)δ{0}(dt) + Γb∗(dx × dz × dt),
(10)

where λ[b∗, x0](·) denotes Lebesgue measure on [b∗, x0] and Γb∗ is defined in Propo-
sition 6.

We begin the task of reformulating the harvesting problem with the following
observation. Let τ̃ be any {Ft}-stopping time. The optional sampling theorem
along with the requirement that (6) be a mean 0 martingale for each g ∈ D
implies

e−r(t∧τ̃)g(X(t ∧ τ̃ ))− g(x0) −
∫ t∧τ̃

0

e−rs[A− r]g(X(s)) ds

−
∫
R×[0,t∧τ̃]

e−rsBg(x, z)Γ (dx× dz × ds)

is also a martingale. Recall g ∈ D means g has compact support and hence is
bounded. So taking expectations and letting t→∞ yields

g(x0) = E
[
e−rτ̃I{τ̃<∞}g(X(τ̃ ))

]
− E

[∫ τ̃

0

e−rs[A− r]g(X(s)) ds

]
(11)

− E

[∫
R×[0,τ̃ ]

e−rsBg(x, z)Γ (dx× dz × ds)

]
.

The initial analysis takes τ̃ = τ ; later we will need (11) for a different stopping
time.

The measures involved in the infinite-dimensional linear program are expected
discounted occupation measures corresponding to relaxed solutions (X,Γ ) of the
harvesting model. Indeed, for any Borel measurable G1 ⊂ S and G ⊂ R, we
define

μτ (G1) = E
[
e−rτIG1(X(τ))I{τ<∞}

]
, μ0(G1) = E

[∫ τ

0

e−rsIG1(X(s))ds

]
,

μ1(G) = E

[∫
R×[0,τ ]

e−rsIG(x, z)Γ (dx× dz × ds)

]
. (12)

Using these measures, the singular control problem of maximizing (7) over re-
laxed solutions of the harvesting problem (6) can be written in the form⎧⎪⎪⎪⎨⎪⎪⎪⎩

Maximize

∫
fdμ1,

subject to

∫
gdμτ −

∫
(A− r)gdμ0 −

∫
Bgdμ1 = g(x0), ∀g ∈ D,

μτ , μ0, μ1 ∈ M(S), μτ (S) ≤ 1, μ0(S) ≤ 1
r .

(13)

Since each relaxed solution (X,Γ ) defines measures μτ , μ0 and μ1 by (12),
the harvesting problem is embedded in (13). There might be feasible measures
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which do not arise in this manner. Consequently, letting Vlp(x0) denote the
value of the LP problem (13) with initial condition X(0−) = x0 > 0, we have
V (x0) ≤ Vlp(x0).

3 The Proof of Theorem 1

This section is devoted to the proof of Theorem 1 and involves two steps.

3.1 Step 1: Universal Upper Bound

The proof follows along the lines of the arguments used in [4]. The general
argument involves finding an upper bound for Vlp(x0) by reducing the number
of constraints in the linear program (13). We state the results and leave the
proofs to the reader.

Proposition 2. Let b∗ be defined as in Theorem 1. Then for every x0 ≥ 0,

V (x0) ≤
f(b∗)

ψ′(b∗)
ψ(x0). (14)

Notice the bound in (14) holds for all initial positions x0. The following result
shows that this bound is sharp for x0 ≤ b∗.

Proposition 3. For x0 ≤ b∗, let Lb∗ denote the local time process of X at b∗.
Define the random measure Γb∗ for Borel measurable G ⊂ R and t ≥ 0 by

Γb∗(G× [0, t]) =

∫ t

0

IG(X(s−), ΔLb∗(s)) dLb∗(s). (15)

Then J(x0, Lb∗) = J(x0, Γb∗) =
f(b∗)
ψ′(b∗)ψ(x0).

Since ΔLb∗(s) = 0 for every s ≥ 0, an optimal strategy is to harvest just enough
of the population (using the local time of X∗ at b∗) so that the population size
“reflects” at b∗.

The value function has been determined for intial population sizes x0 that are
smaller than b∗. It therefore remains to prove the validity of (9) when x0 > b∗.

3.2 Step 2: Return of Stochasticity for a Refined Upper Bound

This step is the more interesting of the two and requires a new argument and
also a different type of harvesting policy than appears in the literature.

When dealing with singular control problems, one usually takes the so-called
reflection strategy, namely, Z(t) = (x0 − b∗)+ + Lb∗(t), where one follows an
immediate jump from x0 to b∗ by using the local time process Lb∗ at b∗. Such a
reflection strategy is used in [2], [7] and others. The corresponding income is

J(x0, Z) = f(x0)(x0 − b∗) +
f(b∗)

ψ′(b∗)
ψ(b∗).
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When f is strictly decreasing, the reflection strategy is not optimal. Our purpose
is to find an optimal relaxed harvesting strategy.

To develop a sharp upper bound, it is beneficial to revisit the definitions of
the occupation measures in (12) so that the connection between the measures,
the initial position and the harvesting strategy is more clearly displayed. Let
x0 ∈ R+ and (X,Γ ) be a relaxed solution of the harvesting model. Modify the
notations of the measures to indicate their dependence on x0 and Γ by writing
μτ (G;x0, Γ ), μ0(G;x0, Γ ) and μ1(G;x0, Γ ).

Proposition 4. For x0 > b∗,

V (x0) ≤
∫ x0

b∗
f(y) dy +

f(b∗)

ψ′(b∗)
· ψ(b∗). (16)

Proof. The proof of (16) is broken into two parts, with a technical lemma be-
tween the parts.
Part 1: Define the stopping time τb∗ = inf{t ≥ 0 : X(t) ≤ b∗} to be the first time
the process X takes value at most b∗ and note that τb∗ ≤ τ . For the harvesting
measure Γ , define Γτb∗ by

Γτb∗ (G× [0, t]) = I{τb∗<τ}Γ (G× [τb∗ , τb∗ + t]), G ∈ B(R), t ≥ 0.

Notice that Γτb∗ captures all harvesting using the measure Γ from time τb∗
onwards. Also define the measures μ0,τb∗ and μ1,τb∗ by

μ0,τb∗ (G;x0, Γ ) = Ex0

[∫ τb∗

0

e−rsIG(X(s)) ds

]
,

μ1,τb∗ (G;x0, Γ ) = Ex0

[∫
R×[0,τb∗)

e−rsIG(x, z)Γ (dx× dz × ds)

]
.

Note carefully that any harvesting at the time τb∗ is excluded from the measure
μ1,τb∗ . Also observe that the total mass of μ0,τb∗ equals r−1 (1−Ex0 [e

−rτb∗ ]).
Using the strong Markov property of (X,Γ ), for each G ∈ B(R) it follows

that

Ex0

[∫
R×[0,τ ]

e−rsIG(x, z)Γ (dx× dz × ds)

]

= Ex0

[∫
R×[0,τb∗)

e−rsIG(x, z)Γ (dx× dz × ds)

]

+Ex0

[
Ex0

[
I{τb∗<τ}

∫
R×[τb∗ ,τ ]

e−rsIG(x, z)Γ (dx× dz × ds)

]∣∣∣∣∣Fτb∗

]

= Ex0

[∫
R×[0,τb∗)

e−rsIG(x, z)Γ (dx× dz × ds)

]

+Ex0

[
e−rτb∗ I{τb∗<τ}EX(τb∗)

[∫
R×[0,τ ]

e−rsIG(x, z)Γτb∗ (dx × dz × ds)

]]
.
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As a result, for each G ∈ B(R), this identity can be written in terms of the
measures as

μ1(G;x0, Γ ) = μ1,τb∗ (G;x0, Γ ) +Ex0

[
e−rτb∗ I{τb∗<τ}μ1(G;X(τb∗), Γτb∗ )

]
.

Notice, in particular, that the expectation term involves the measure μ1 evalu-
ated at the random initial position X(τb∗). Hence∫

f(y)μ1(dy;x0, Γ )

=

∫
f(y)μ1,τb∗ (dy;x0, Γ ) +Ex0

[
e−rτb∗ I{τb∗<τ}

∫
f(y)μ1(dy;X(τb∗), Γτb∗ )

]
≤
∫

f(y)μ1,τb∗ (dy;x0, Γ ) +Ex0

[
e−rτb∗ I{τb∗<τ}

] f(b∗)
ψ′(b∗)

· ψ(b∗), (17)

in which the inequality follows from Step 1.
This concludes Part 1 of the proof. Part 2 concentrates on estimating the first

term of the right-hand side of (17); a technical lemma is required.

Lemma 5 Assume the conditions in Theorem 1. Define the function h by h(x) :=∫ x
b∗ f(y)dy for x ≥ 0. Then the following estimates hold:

(A− r)h(x) ≤ r
f(b∗)

ψ′(b∗)
ψ(b∗), for x ≥ b∗ and (18)

−Bh(x, z) ≥ f(x), for all (x, z) ∈ R. (19)

Proof. Since by assumption the function f/ψ′ is nonincreasing and differentiable
on (b∗,∞), we have

0 ≥ d

dx

(
f(x)

ψ′(x)

)
=

f ′(x)ψ′(x) − f(x)ψ′′(x)

(ψ′(x))2
, x > b∗.

But ψ is strictly increasing and so ψ′(x) > 0. Hence it follows that f ′(x)ψ′(x)−
f(x)ψ′′(x) ≤ 0, or equivalently f ′(x) ≤ f(x)

ψ′(x)ψ
′′(x), for x > b∗. It then follows

that for each x > b∗

(A− r)h(x) ≤ 1

2
σ2(x)

f(x)

ψ′(x)
ψ′′(x) + b(x)f(x) − r

f(x)

ψ′(x)
(ψ(x)− ψ(b∗))

=
f(x)

ψ′(x)

[
1

2
σ2(x)ψ′′(x) + b(x)ψ′(x)− rψ(x)

]
+ r

f(x)

ψ′(x)
ψ(b∗)

= r
f(x)

ψ′(x)
ψ(b∗) ≤ r

f(b∗)

ψ′(b∗)
ψ(b∗).

Turning to a consideration of (19), since f is nonincreasing, for any 0 ≤ x1 <
x2, we have

f(x2)[x2 − x1] ≤
∫ x2

x1

f(y)dy = h(x2)− h(x1).
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Hence it follows that for (x, z) ∈ R, we have

−Bh(x, z) =
{
h′(x) = f(x), if z = 0
h(x)−h(x−z)

z ≥ f(x), if z > 0.

The relation (19) is therefore established.

Part 2: The goal is of this part of the proof is to estimate
∫
f(y)μ1,τb∗ (dy× dz)

of (17). Using Itô’s formula, one obtains for each t > 0,

− E

[∫
R×[0,t∧τb∗)

e−rsBh(x, z)Γ (dx× dz × ds)

]

= h(x0)−E
[
e−r(t∧τb∗)h(X((t ∧ τb∗)−))

]
+E

[∫ t∧τb∗

0

e−rs[A− r]h(X(s)) ds

]
,

in which the deliberate choice of the half-open interval [0, t∧ τb∗) in the integral
with respect to Γ leads to the use of X((t∧τb∗)−) for the location of the process
just before any harvest occurs at time τb∗ . This is extremely important since
h(X((t∧τb∗)−)) ≥ 0 and hence the right-hand side is not decreased by dropping
the first expectation. Letting t→∞ yields

−E

[∫
R×[0,τb∗ )

e−rsBh(x, z)Γ (dx× dz × ds)

]

≤ h(x0) + E

[∫ τb∗

0

e−rs[A− r]h(X(s)) ds

]
.

Using the estimates (18) and (19) and the definition of the measures μ1,τb∗ and
μ0,τb∗ , we obtain∫

R
f(y)μ1,τb∗ (dy × dz;x0, Γ ) ≤ −

∫
R
Bh(y, z) μ1,τb∗ (dy × dz;x0, Γ )

≤ h(x0) +

∫
r · f(b

∗)ψ(b∗)

ψ′(b∗)
μ0,τb∗ (dx;x0, Γ )

= h(x0) +
(
1−Ex0

[
e−rτb∗

]) f(b∗)
ψ′(b∗)

· ψ(b∗), (20)

in which the last equality follows from the mass of μ0,τb∗ . Combining (17) and
(20) produces the desired relation∫

f(y)μ1(dy × dz;x0, Γ ) ≤
∫ x0

b∗
f(y) dy +

f(b∗)

ψ′(b∗)
· ψ(b∗).

We have derived an upper bound for the value V (x0) in Proposition 4. The
following proposition exhibits an optimal relaxed harvesting policy. The proof is
left to the reader.
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Proposition 6. Let λ[b∗,x0](·) denote Lebesgue measure on [b∗, x0]. Also let Lb∗

denote the local time process of Proposition 3 with x0 taken to be b∗ and denote
by Γb∗ the random measure defined in (15). Finally, define the relaxed harvesting
strategy by

Γ ∗(dx× dz × dt) = λ[b∗,x0](dx)δ{0}(dz)δ{0}(dt) + Γb∗(dx× dz × dt).

Then

V (x0) = J(x0, Γ
∗) =

∫ x0

b∗
f(y)dy +

f(b∗)

ψ′(b∗)
ψ(b∗). (21)

We observe that the manner in which this optimal harvesting policy differs from
the typical “reflection” strategy occurs at the initial time. Whereas the reflec-
tion strategy has the process X instantaneously jump from x0 to b∗, the optimal
relaxed harvesting policy obtains this relocation in an instantaneous but contin-
uous manner.

Finally we note that the combination of Propositions 2 and 6 establishes
Theorem 1. Moreover, the optimal relaxed harvesting policy in (10) unifies the
two cases.
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Abstract. A change of shares of credits portfolio is described by Markov
chain with discrete time. A credit state is determined on as an accessory
to some group of credits depending on presence of indebtedness and
its terms. We use a model with discrete time and fix the system state
through identical time intervals - once a month. It is obvious that the ma-
trix of transitive probabilities is known incompletely. Various approaches
to the matrix estimation are studied and methods of forecast the portfo-
lio risk are proposed. The portfolio risk is set as a share of problematic
loans. We propose a method to calculate necessary reserves on the base
of the considered model.

Keywords: Loan portfolio, Markov chain, incomplete information.

1 Introduction

Markov chain models [1] are widely used to explain the dynamics of state changes
for different systems. Often they are used as a mathematical model for some
random physical process.

Markov chains are used in finance and economics to model a variety of dif-
ferent phenomena, including asset prices, market crashes and credit portfolio
dynamics [2,3].

If the transition probability matrix of Markov chain is known then dynamics of
the system states probabilities is completely described by a system of difference
equations. As a rule the transition probabilities are unknown and estimated
during the system evolution.

The most important indicator of a bank loan portfolio quality is a probability
of default which is closely connected with a share of the problematic loans [5,6].
A value of necessary reserves depends on quality and structure of the portfolio.
On the one hand reserves should provide low probability of default, on the other
hand they impact on profitability of the portfolio.

Let’s assume that a change of shares of credits portfolio is described by Markov
chain with discrete time. In this case the credit state is determined on as an ac-
cessory to some group of credits depending on presence of indebtedness and its
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D. Hömberg and F. Tröltzsch (Eds.): CSMO 2011, IFIP AICT 391, pp. 207–216, 2013.
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terms. We will use a model with discrete time and fix the system state through
identical time intervals – once a month. It is proposed that the transition prob-
abilities vary a little. Thus, we consider a stable economic situation when the
transition probabilities are constant.

It is obvious that the matrix of transitive probabilities is known incompletely.
Its values are estimated using a data on changes the quality of loans (a migration
analysis of the portfolio). Criterion of a choice is accuracy of the forecast of a
share of problematic loans.

2 Mathematical Model

2.1 Dynamics of System States

We consider a system with k states, the probability that the system is in i-th
state at moment t denote by xi(t), i = 1, . . . , k. Thus the following conditions
hold:

0 ≤ xi(t) ≤ 1, x1(t) + . . .+ xk(t) = 1. (1)

The dynamics of the system states probabilities is described by the discrete
Markov chain model:

xj(t+ 1) =
k∑

i=1

pijxi(t), t = 0, 1, . . . , T, (2)

where pij is the probability of transition from state i to state j in one step.
The first-order stationary Markov model for credit transitions is somewhat

restrictive as a credit quality responds to changes in economics. Using a higher-
order Markov process or a nonstationary transition probability matrix may be
more appropriate, but in such models one should estimates too many parameters
and the requirements to statistical data increase quite substantially. Thus the
simple Markov chain is usually used in stable economic situation and with not
longer time horizon [2,3].

Let’s denote by x(t) a vector of states probabilities x(t) = {x1(t), . . . , xk(t)}�,
by P a matrix of the transition probabilities P = {pij} and rewrite equation (2)
in the vector form:

x(t+ 1) = P�x(t), t = 0, 1, . . . , T. (3)

When the transition probability matrix P is known incompletely there is a prob-
lem to estimate x(T ). It is assumed that we have information about the number
of transitions from i-th state to j-th on t step, t = 1, . . . ,m.

2.2 Ways to Select Groups

We consider two ways of describing a credit portfolio dynamics: a regular Markov
chain in which we do not take into account repaid loans and renovation of the
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portfolio and a scheme which included ”new loan” and ”repaid loan” as possible
states of a loan. In the first way we investigate a steady-state behavior of the
loan portfolio shares, in the second way we study the profitability of loans from
delivery to its repayment.

Let us consider a fist way of describing the states of loan. For beginning we
consider a simplified scheme with three groups of loans:

1. Loans without delay, including the new ones (S1);
2. Overdue loans with 1− 65 days delay (S2);
3. Non-performing (problematic) loans (S3).

Fig. 1. Graph of the Markov chain for the simplified scheme

A graph of the system state is in Fig.1. An investigation of this scheme allows
to define the most important features of the model. As a rule risk-managers use
more detailed schemes which takes into account a number of overdue days on
a loan. For example let consider the expanded scheme with 5 groups of loans
[7]: loans without delay, including a new one; overdue loans with 1 to 35 days
delay; overdue loans with 35 to 65 days delay; more than 65 days overdue loans
(problematic loans); reconstructed loans.

In these schemes the renovation and repayment of credits are considered with-
out allocating a separate state. New credits are included into the first group
together with credits without delay.

A loan is ”reconstructed” in case it was problematic in the previous period
and a borrower has made partial payments under the credit.

In schemes with the repayments(amortization) there is the category ”repaid
credits”. The scheme on the basis of the expanded scheme of loans has 6 groups
of loans: loans without delay, including a new one; overdue loans with 1 to 35
days delay; overdue loans with 35 to 65 days delay; more than 65 days overdue
loans (problematic loans); reconstructed loans; repaid loans.

3 Estimation of Transition Probabilities

For the estimation of the probability pij one usually use the statistical data
about transitions from one state to another. Let’t denote by ni(t) the number of
individuals who are in state i in period t, and by nij(t) the number of individuals
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who were in state i in period t−1 and are in state j in period t. We can estimate
the probability pij of an individual being in state j in period t given that they
were in state i in period t− 1.

The probability of transition pij(t) from any given state i is approximated
by a proportion of individuals that started in state i and ended in state j as a
proportion of all individuals in that started in state i:

wij(t) =
nij(t)

ni(t− 1)
. (4)

If the Markov chain is stationary (i.e. pij(t) ≡ pij) then one can use another
estimate:

w̃ij =

T∑
t=1

nij(t)

T−1∑
t=0

ni(t)

(5)

Using the methods described above, it is possible to estimate a transition matrix
using count data.

Anderson and Goodman [4] showed that the estimator wij given by equation
(5) is a maximum-likelihood estimator and calculated statistical moments of
random values ξij(t) = nij − pijni(t− 1).

On the t-th step ni(t−1) � ni, i = 1, . . . , k are known. The statistical moment
of wij are following [8]:

E(wij(t)) = pij , (6)

V ar(wij(t)) =
pij(1−pij)

ni
,

Cov(wij(t), wil(t)) = − pijpil
ni

, j = l,

Cov(wij(t), wcl(t)) = 0, i = c.

(7)

Here E(ξ) is a mathematical expectation of a random value ξ, V ar(ξ) is its
variance, Cov(ξ, ζ) is a covariance between ξ and ζ.

From relations (7) follows that wij and wcl are noncorrelated if i = c.
Suppose that instead of observing the actual count of transitions from the dif-

ferent states, we only observe the aggregate proportions yi(t), which represent the
proportion of observations with the state i. The aggregate proportions yi(t) es-
timate the system state probabilities: yi(t) ≈ Nxi(t), i = 1, . . . , N , t = 1, . . . , T ,
where N is a number of all individuals.

If the time series of observations T are sufficiently long, it is possible to esti-
mate a transition matrix P from aggregate data using the least square method
[9] and its generalizations [10].

The maximum-likelihood estimates in asset prices model is used to estimate
transition matrices in credit risk modeling with a decades-old methodology that
uses aggregate proportions data [2].
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To specificate an order and a number of states in Markov chain model one
may use criteria [4], but they are based on the detailed analysis of the data such
as nijm(t), where nijm(t) is a number of individuals in state i at t − 2, in j at
t− 1 and in m at t.

4 Approaches to Estimation the Share of Problematic
Loans

We considered two ways to forecast the share of problem loans taking into ac-
count the uncertainty of the transition probabilities matrix. There are a confi-
dence estimation method and a simulation method.

4.1 Confidence Estimation

The confidence estimation method consists of two stages: construction a confi-
dence set Zα for the transition probabilities matrix based on statistical data and
relations (6)–(7) and the analysis of all possible trajectories of the system taking
into account that the probabilities are constant but uncertain.

Let’s estimate the elements of the transition probability matrix P . Denote the
confidence region for {pij = zs, i = 1, . . . , k, j = 1, . . . , k, j = i} on m-th step
by Zα ⊂ RK , s = 1, . . . ,K, K = k(k − 1).

Thus pij are the transition probabilities then Zα ⊂ Z+ ⊂ RK , where Z+ is
the set of all possible values of transition probabilities {pij , j = i}

Z+ = {zs : 0 ≤ zs ≤ 1,

K∑
s=1

zs ≤ 1} ⊂ R
K .

Estimation for pii follows from the equalities

pi1 + . . .+ pik = 1, i = 1, . . . , k. (8)

In the considered model pij = zs are distributed approximately normal [4] with

mean values equal to wij � z̄s and a covariance matrix G defined by relations
(7) with substitution pij by wij .

Therefore we may use the confidence set Zα defined by joint restrictions:

Zα = {z ∈ Z+ : (z − z̄)�G(z − z̄) ≤ b
(α)
K }, (9)

where b
(α)
K is the α-quantile of χ2 distribution with K degrees of freedom.

The next step is to solve the state estimation problem of a multistage deter-
ministic system with uncertain matrix P :

x(t+ 1) = P�x(t), t = m, . . . , T,

x(m) = x∗, P ⊂ Z.
(10)

and to find an information set
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X(t, Z) = {x ∈ Rk
+ : x = (P�)T−mx∗, P ∈ Z}. (11)

We may construct information sets for system (10) using approaches proposed
by Kurzanski and Tanaka [11].

This method is very time-consuming because the number of estimated ele-
ments of the matrix is large. We can perform calculations only for the scheme
with 3 groups of loans, in which only 4 probabilities should be estimated. For
schemes 2 and 3 the number of estimated probabilities are 9 and 17 respectively.

Example 1. Let us consider the estimation problem for the scheme with 3 groups
of loans (Fig.1). For this scheme the matrix of transition probabilities has a form

P =

⎛⎝1− p12 p12 0
p21 1− p21 − p23 p23
0 p32 1− p32

⎞⎠ , (12)

and only 4 transition probabilities pij should be estimated. Denote them as zs,
s = 1, . . . , 4:

p12 = z1, p23 = z2, p32 = z3, p21 = z4. (13)

From a statistical data we estimate the mean values z̄s = wij , where wij defined
by (4). A covariance matrix is calculated using relations (7), where estimates wij

substituted instead of values pij :

G =

⎛⎜⎜⎜⎝
z̄1(1−z̄1)

n1
0 0 0

0 z̄2(1−z̄2)
n2

0 − z̄2z̄4
n2

0 0 z̄3(1−z̄3)
n3

0

0 − z̄2z̄4
n2

0 z̄4(1−z̄4)
n2

⎞⎟⎟⎟⎠ . (14)

Then find a confidence set for transition probabilities pij in ellipsoidal form (9).
For the considered scheme with 3 groups of loans we obtain

Zα = {zs ∈ R4
+ : (z − z̄)�G(z − z̄) ≤ b

(α)
4 }. (15)

Then we find an information set for system (5) for a given T = 12 using ellipsoidal
calculus [12]. Thus we get the confidence set for the portfolio shares after 12
months x(12) and for the share of problematic loans x3(12) in particularly. For
our data we obtain x3(12) ∈ [0.03; 0.152] with probability α = 0.95.

4.2 Simulation Method

This method has 4 stages:

1. We determine statistical moments (4) and (5) for the transition probabilities
based on statistical data on transitions between loan states;

2. Generate the random vector of unknown probabilities as the Gaussian vector
with the given statistical moments;
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3. Simulate the dynamics of system (2) with the large number of runs;
4. On the basis of the calculations determine the mean value and the confidence

interval for the share of problem loans.

A histogram of the predicted share of problem loans after 12 months one can see
in Fig. 2. On the base of modeling we find the expected mean of value of the share

Fig. 2. Histogram of the share of problematic loans and normal density

of problem loans after 12 month: x(t+12) = 0.09 and quantile q0.95 = 0.135, i.e.
x(t+ 12) < 0.135 with the probability α = 0.95.

This result is more precise than the confidence interval obtained by the con-
fidence estimation, because the confidence interval for the share of problematic
loans, obtained in section 4.1, depends on the form of confidence set for unknown
parameters pij and the ellipsoidal form is not optimal in this case.

5 Estimation of a Reserve

According recommendations of the International Committee [13] bank portfolio
managers should estimate a risk of the portfolio and form reserves in a proportion
of the its value.
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There are different approaches to estimate the necessary reserves. Some of
them based on probability of ”nonreconstruction” of the problematic credits.

Let’s denote by p
[t]
ij a probability of transition from the i-th state to j-th state

by t steps. It is an element of the t power of the transition probability matrix

P [t] = P t. Denote by D[t] = p
[t]
mm, where m-th state is ”problematic loans”. The

value 1−D[T ] is called a probability of reconstruction during a period T .
The value of risk for j-th group of loans is defined as

r̂j = p
[τ1]
jmD[τ2], if j = m,

r̂m = D[τ1].

The reserveW is equals to: W = W1r̂1+ . . .+Wk r̂k, where Wj is a sum of loans
in j-th group.

Risk managers take different τ1 and τ2, such as 6, 12 or 24 months. The
problem is how to choose the period of transition to the problematic state and
the reconstruction period. In some approaches value of τ1 depends on j and a
period of an overdue.

We propose another approach taking into account time structure of possible
losses. Let’s define a risk of loans in j-th group as maximum of a sum of prob-
lematic loans in future for loans of this group. Thus, the risk for j-th loans group
equals

rj = max
t∈0,...,T

1

(1 + ρ)t
p
[t]
jm, (16)

where ρ is a month discount factor.
For a new loan we have

r0 = max
t∈0,...,T

1

(1 + ρ)t
p
[t]
0m. (17)

We can take into account that transition probabilities are known incompletely
and instead of (16) use its quantile:

qj(α) : P{ max
t∈0,...,T

1

(1 + ρ)t
p
[t]
jm ≤ qj(α)} ≥ α, (18)

where P(A) is a probability of a random event A. The quantile may be calculated
using the confidence approach or the simulation method (see Sect. 4).

Example 2. Let’s consider a scheme with repayment (Scheme 3) and calculate
the value of reserves for new loans using the proposed approach. Is proposed
that we may estimate statistical moments (6) of the transition probabilities pij
based on a previous data and estimates (4), (5) or their modifications.

We take a possible value of transitions probabilities matrix P = {pij},
calculate

h(t) =
1

(1 + ρ)t
p
[t]
0m, t = 0, . . . , T,

and find their maximum r0(t) which depended on matrix P .
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Fig. 3. Dependence of the discounted sum of problem loans h(t) on time

In Fig. 3 one can see changes of h(t) (the discounted sum of problem loans)
for a fixed matrix P . Values of h(t) decreasing for t ≥ 20.

We generate many times transition probabilities according normal distribution
with the given statistical moments, calculated the discounted sum of problem
loans h(t) = h(t, P ), and its maximum r0 = r0(P ), then we obtain estimates of
a mean value and quantile (18).

In Fig.4 one can see a histogram for risk estimates r0 = r0(P ). For considered
data mean value of risk r̄0 = 0.039, q0.95 = 0.065.

Fig. 4. Histogram of risk r0(P ) and normal density
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6 Conclusion

We studied the discrete Markov chain model for loan portfolio. It is proposed
that transition probabilities are unknown and estimated during the process. We
proposed methods to estimate system state probabilities in future. Obtained
results apply to forecast credit portfolio shares and to define necessary reserves.
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Abstract. We provide a theoretical framework for model predictive con-
trol of infinite-dimensional systems, like, e.g., nonlinear parabolic PDEs,
including stochastic disturbances of the input signal, the output mea-
surements, as well as initial states. The necessary theory for implement-
ing the MPC step based on an LQG design for infinite-dimensional linear
time-invariant systems is presented. We also briefly discuss the necessary
ingredients for the numerical computations using the derived theory.

1 Introduction

The control of nonlinear processes is a fundamental problem in engineering. A
usual strategy for computer-aided control consists in pre-computing, in an off-
line phase, an optimal trajectory and control input, and in the implementation
(online phase) to endow the system with a feedback controller in order to com-
pensate for external disturbances and deviations from the optimized trajectory.
A successful strategy for designing a nonlinear control scheme for complex dy-
namical systems, whose global optimization is impossible in real time, is model
predictive control (MPC), see, e.g., [10,14]. In this approach, the behavior of
the dynamical process is predicted on a small (local) time horizon and then
optimized for a certain time interval using an auxiliary problem for which the
computational solution of the local optimization problem is feasible in real-time.
The control strategy is then applied for a small time step, the process is advanced
in time, and for the next time step, prediction and optimization are repeated for
the new state of the system based on new available measurements. Under certain
conditions, this process converges to the optimal solution of the global control
problem if the time steps and prediction/optimization horizons tend to zero,
see, e.g., [10,14] and references therein. If used as a feedback control scheme, the
“optimization” goal is to minimize the deviation from the desired trajectory so
that stabilization, i.e., convergence to zero, becomes the goal.

If the state is not fully available in the prediction step, one is faced with the
problem of incomplete observations. This requires to include a state estimator in

D. Hömberg and F. Tröltzsch (Eds.): CSMO 2011, IFIP AICT 391, pp. 217–224, 2013.
c© IFIP International Federation for Information Processing 2013
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the prediction/optimization step. If the local optimization problem is solved via
an auxiliary linear-quadratic optimal control (LQ) problem (based on a suitable
linearization of the nonlinear system) without control and state constraints, the
optimal state estimator in a least-squares sense is given by the Kalman(-Bucy)
filter [19], and the solution of the local LQ problem is obtained by the linear-
quadratic Gaussian (LQG) design, consisting of a combination of the Kalman
filter and the linear-quadratic regulator (LQR). This requires the solution of
two Riccati equations. Depending on whether the linearization is time-invariant
or time-varying, these are the algebraic or differential Riccati equations (ARE
or DRE, respectively) — see, e.g., [12] or any other textbook on linear control
design. In [18], this MPC/LQG approach was suggested for finite-dimensional
problems. Here, we will extend this idea to infinite-dimensional systems.

In the following we consider the control problem

min

Tf∫
0

〈y(t), Q(t)y(t)〉Y + 〈u(t), R(t)u(t)〉U dt+G(x(Tf )), (1)

subject to the semi-linear stochastic system with additive unmodeled disturbance

ẋ(t) = f(x(t)) +Bu(t) + Fv(t), t > 0, x(0) = x0 + η, (2)

u(t) ∈ U , x(t) ∈ X , where v(t) is an unknown Gaussian disturbance process
with covariance V and η denotes the noise in the initial condition. Since in
many applications the state is not completely available we introduce the output
function (simulating measurements)

y(t) = Cx(t) + w(t), y ∈ Y,

where w(t) is a measurement noise process which will also be assumed to be
Gaussian with covariance W . If (2) is an ordinary differential equation then we
have a finite-dimensional problem with X = Rn, Y = Rp and U = Rm. In the
case of a partial differential equation (PDE), the problem is infinite-dimensional
and X ,Y,U are appropriate Hilbert spaces. Here, B,F,Q,R are linear operators
on these Hilbert spaces, f is a nonlinear map, and 〈 . , . 〉 are inner products on
the respective Hilbert spaces.

The outline of the paper is as follows: in the next section, we will briefly sketch
the MPC/LQG control design. In Section 3, we will then provide the necessary
theoretical background to solve the local LQG problems for infinite-dimensional
systems and briefly discuss a framework for the numerical approximation of
the solution of the AREs to be solved in a practical implementation of the
infinite-dimensional controller. Note that we have demonstrated the efficiency
of the suggested MPC/LQG approach for the stabilization of the noisy Burgers
equation in [4] and for a 3D reaction-diffusion system in [6]. Concluding remarks
are provided in Section 4.
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2 The MPC/LQG Controller

Given a reference trajectory and control (x̄(t), ū(t)) obtained, e.g., from an offline
optimization procedure, in the following we design a model predictive feedback
control strategy. This MPC/LQG approach is based on a linearization of (2) on
small intervals to obtain a linear time-invariant (LTI) or time-varying (LTV)
problem. Due to space restrictions, we will concentrate here on the LTI case.
For the general strategy in the LTV case, we refer to [5,15] We solve this linear
problem on a small interval by using an LQG design. Note that we write M∗

to denote the adjoint operator corresponding to the linear operator M and the
derivative of f from (2) is to be understood as the Fréchet derivative. With these
preliminaries, the strategy is the following:

(1) Prediction and optimization step on [ti, ti + Tp], ti + Tp ≤ Tf :

linearize (2) around a given set point x̄ to obtain A = f ′(x̄(ti)) and the
linear state equation

ż(t) = Az(t) +Bũ(t) + Fv(t), z(ti) = x(ti)− x̄(ti), y(t) = Cx(t) + w(t),

with z(t) = x(t)− x̄(t) and ũ(t) = u(t)− ū(t). Then solve the ARE

0 = XA+A∗X −XBR−1B∗X + C∗QC (3)

in order to obtain X
 and K = −R−1B∗X
.

(2) Implementation step on [ti, ti + Tc], Tc ≤ Tp:

solve the filter ARE (FARE)

0 = AΣ +ΣA∗ −ΣC∗W−1CΣ + FV F ∗, (4)

where V , W are the covariance matrices of the noise processes. Feed the real
system on [ti, ti + Tc] with

u(t) = ū(t)−K(x̂(t)− x̄(t)),

and obtain the “measurement” y(t) by solving the nonlinear system on
[ti, ti + Tc]. Estimate the state by x̂(t) by solving

˙̂z(t) = Aẑ(t) +Bũ(t) + L
(
y(t)− Cx̂(t)

)
, ẑ(t) = x̂(t)− x∗(t),

using the estimator gain L = Σ
C
∗W−1.

(3) Receding Horizon Step:
update ti+1 = ti + Tc and go to the first step.

Note that the solutions of the AREs (3) and (4) are linear selfadjoint operators
on D(A), the domain of A, and D(A∗), respectively.
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Some remarks are in order:

Remark 1. For the finite-dimensional case, if G in (1) is selected as a control
Lyapunov function, Ito and Kunisch established the asymptotic stability and
estimated the performance for the receding horizon synthesis in [16]. Analogous
results for the LTV case in the slightly more general MPC setting are obtained
in [5,15].

Remark 2. Solving the AREs (3) and (4) yields an LQG controller for an infinite
time-horizon. Therefore, we can also consider this scheme as an MPC scheme
with infinite prediction and optimization horizon.

In the following, we will discuss an appropriate setting in which this procedure
is well-posed and can be approximated using an appropriate numerical scheme.
Note that using efficient numerical algorithms, large-scale AREs resulting from
discretized PDE control problems can be solved in a reasonable time-scale, see
[7]. Whether or not this is real-time feasible depends on the control horizon
Tc of the process. Further advances in computer hardware and improvements
of the numerical algorithms will certainly allow real-time solution of AREs for
moderately fast processes with medium-fine granularity of the discretization in
the near future.

3 Infinite-Dimensional LQG Theory

Consider the following nonlinear optimal control problem:

minJ (u) := 〈xTf
, GxTf

〉X +

∞∫
0

〈x(t), C∗QCx(t)〉X + 〈u(t), Ru(t)〉U dt, (5)

subject to ẋ(t) = f(x(t)) +Bu(t) + Fv(t), t > 0,

y(t) = Cx(t) + w(t), t > 0,

x(0) = x0 + η.

Following the infinite-dimensional LQG theory derived in [11] and denoting the
set of linear maps from M to N by L(M,N ), we will assume the following:

Assumption 1

– X , Y, U are Hilbert spaces, f : D(f) ⊆ X → X is a nonlinear map;
– B ∈ L(U ,X ), F ∈ L(U ,X ), C ∈ L(X ,Y), G ∈ L(X );
– Q ∈ L(Y), R,R−1 ∈ L(U), all self-adjoint and nonnegative and 〈ν,Rν〉 ≥
α||ν||2 for all ν ∈ U and some α > 0;

– x0 ∈ X and η is a zero mean Gaussian random variable on X with covariance
Σ0,
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– v(t) and w(t) are Wiener processes (Gaussian with zero mean) on the Hilbert
spaces U and Y with incremental covariance operators V ∈ L(U) and
W,W−1 ∈ L(Y), respectively.

Assuming that f(x) is Fréchet-differentiable and linearizing on small intervals
[ti, ti + Tp] around a stationary operating point x̄, we obtain the stochastic LTI
problem in differential form on [ti, ti + Tp]:

dz(t) = Az(t)dt+Bũ(t)dt+ Fdv(t), ti < t < ti + Tp,

dỹ(t) = Cz(t)dt+ dw(t), ti < t < ti + Tp, (6)

z(ti) = zti ,

with z(t) := h(t) = x(t)− x̄(t), ũ(t) = u(t)− ū(t) and

f(x̄+ h)(t) ≈ f(x̄(t)) +Ah(t),

where A := f ′(x̄(ti)) is the Fréchet derivative of f , evaluated at x̄(ti).
Note that the linear system (6) is only a local approximation to the original

nonlinear system, but nevertheless we will use it to solve the LQG problem on
an infinite horizon. The so obtained control is then only applied locally on the
control horizon [ti, ti + Tc], then the prediction horizon is shifted by Tc, and a
new linearization based on x̄(ti + Tc), leading to a new LQG problem, is used.

To avoid problems of existence and uniqueness of the stochastic evolution
equation (6), we use its integral form on [ti, ti + Tp]:

z(t) = St−tiz(ti) +

t∫
ti

St−sBũ(s) ds+

t∫
ti

St−sF dv(s),

ti ≤ s ≤ t ≤ ti + Tp, (7)

ỹ(t) =

t∫
ti

Cz(s) ds+ w(t), ti < t ≤ ti + Tp,

z(ti) = zti ,

where St is a strongly continuous semigroup on X generated by A on [ti, ti+Tp]
(see, e.g., [13] for the notion of semigroups and their properties).

A direct consequence of results from [11] is then the following theorem which
yields the solution to the MPC/LQG/LTI problem on [ti, ti + Tp] for Tp =∞:

Theorem 1. Under the Assumptions 1., the optimal control and corresponding
estimated state for the minimization problem (5) subject to (7) on [ti, ti + Tp]
are given by

u∗(t) = ur(t)−R−1B∗Π∞
(
x̂∗(t)− x̄(t)

)
,

x̂∗(t) = Sti x̂(ti) +

t∫
ti

St−sΣ∞C∗W−1 dy(s) +

t∫
ti

St−s(f(x̄(s))−Ax̄(s)) ds,
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where St is the strongly continuous semigroup generated by

A−BR−1B∗Π∞ −Σ∞C∗W−1C,

and Π∞ and Σ∞ are the unique nonnegative, self-adjoint solutions of the ARE

0 = A∗Π +ΠA−ΠBR−1B∗Π + C∗QC,

and the FARE

0 = AΣ +ΣA∗ −ΣC∗W−1CΣ + FV F ∗.

Note again that the global solution of the LQG problem which is computed for
Tp = ∞ in the above theorem is only used locally on [ti, ti + Tc]. In this way,
we can implement the infinite-dimensional MPC/LQG controller for any infinite
dimensional system satisfying the assumptions made in this section.

Checking the Assumptions 1 for a practical problem is tedious. In [15], as an
example the control problem for the Burgers equation

xt(t, ξ) = ν xξξ(t, ξ)− x(t, ξ)xξ(t, ξ) + b(ξ)u(t), on (0, Tf ]× (0, 1)

x(t, 0) = x(t, 1) = 0, t ∈ (0, Tf ],

x(0, ξ) = x0(ξ), ξ ∈ (0, 1),

is considered and it is shown that linearization about a set point leads to an
infinite-dimensional LTI system satisfying the Assumptions 1.

For a practical implementation, it is of course necessary to discretize the
infinite-dimensional system and to work with a finite-dimensional approxima-
tion. If the infinite-dimensional problem is defined via a PDE, this can be
achieved using a spatial semi-discretization based on finite differences or finite
elements. As both A and its adjoint A∗ appear in the formulation of the prob-
lem and their discretizations Ah and AT

h are used to define the finite-dimensional
AREs that need to be solved to obtain the approximate feedback and estimator
gain matrices Kh and Lh, standard convergence results for finite element dis-
cretizations are not sufficient. The necessary conditions for dual convergence are
stated in [2] for linear parabolic equations with distributed control and are gen-
eralized in [8] to boundary control problems. Both papers only consider the LQR
problem, the extension to the LQG case is rather straightforward and is executed
in [15, Section 8.2.6]. The numerical solution of the resulting large-scale AREs
is the computational bottleneck of the suggested control approach. The effective
solution of large-scale AREs and associated LQR problems is discussed, e.g., in
[1,3,7,20]. The main idea is to apply a Newton-type method to the quadratic
nonlinear systems of equations defined by the AREs and to solve the Newton
steps by effective iterative methods. It should be noted that for LQG design as
discussed here, the actual solution operators/matrices are not necessary as one is
only interested in the feedback and estimator gain matrices K and L. Note that
the Newton iteration for AREs can be re-written in such a way that one directly
iterates on approximations to these operators rather than on approximations to
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the ARE solutions. This saves a significant amount of workspace and computa-
tional effort and is thus recommended in the context of the suggested MPC/LQG
scheme. For an efficient variant of the Newton-Kleinman iteration suitable for
large-scale AREs, see [9]. Numerical examples demonstrating the effectiveness
of the proposed MPC/LQG feedback control design for PDE-constrained opti-
mization problems are shown in [4] for the Burgers equation and in [5] for a
bilinear 3D reaction-diffusion system.

4 Conclusions

We have presented a framework for model predictive control of infinite-
dimensional nonlinear systems subject to stochastic perturbations based on an
LQG design to implement the optimization step. This includes the state esti-
mation using a Kalman filter. Linearization about the set point leads to an LTI
system. We have focused here on the necessary theoretical ingredients to render
this step well-posed. Sufficient conditions for convergence of a numerical approx-
imation scheme to implement the LQG design in a computational procedure can
be derived, but are not detailed here due to space restrictions. Though stabi-
lization properties of the nonlinear infinite-dimensional MPC/LQG controller
have not been shown yet, numerical experiments in [4,5] illustrate the good per-
formance of this control scheme. Further improvements can be obtained if one
allows for time-varying linearizations in the optimization step, i.e., linearization
around the reference trajectory. The treatment of this case is similar to the LTI
case and will be described, together with further numerical experiments, in a
forthcoming detailed publication. A convergence and stabilization proof of the
infinite-dimensional design based on ideas presented in [16,17,18] is in progress.
Further investigations are necessary in order to make the approach real-time
feasible. This may require algorithmic improvements in the Riccati solvers or
the inclusion of a model reduction strategy in the prediction and optimization
step.
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Abstract. We discuss a problem of the dynamic reconstruction of un-
known input controls in nonlinear vector equations. A regularizing algo-
rithm is proposed for reconstructing these controls simultaneously with
the processes. The algorithm is stable with respect to informational
noises and computational errors.
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1 Introduction Problem Statement

Consider a controlled system described by the following equation

ẋ(t) = f1(t, ut(s), xt(s)) + f2(t, xt(s))u(t) (1)

with the initial state

ut0(s) = u0(s) ∈ C([−τum, 0];Rn1), xt0(s) = x0(s) ∈ C([−τxn , 0];Rn2). (2)

Here t is time from a fixed interval T = [t0, ϑ] (t0 < ϑ < +∞); x(t) =
(x1(t), . . . , xn2(t)) is the phase state of the system; u(t) = (u1(t), . . . , un1(t))
is a control; the symbols xt(s) and ut(s) mean the functions xt(s) = x(t + s)
for s ∈ [−τxn , 0] and ut(s) = u(t + s) for s ∈ [−τum, 0], respectively. We assume
that initial state (2) is Lipschitz. For simplicity, we assume also that the initial
state x0(s), u0(s) is fixed and known. The control u = u(t) = (u1(t), . . . , un1(t))
is called an admissible control if its components ui(t), i ∈ [1 : n1], are Lebesgue
measurable functions on the interval T and values u(t) belong to a given compact
set P from Euclidean space Rn1 for almost all t ∈ T . The set of all admissible
controls is denoted by P (·). Therefore, P (·) = {u(·) ∈ L2(T ;R

n1) : u(t) ∈ P
for a. a. t ∈ T }. By the trajectory (or the solution) x(·) of equation (1) with
initial state (2) corresponding to some admissible control u(·), we call absolutely
continuous on T function x = x(t) satisfying (1) for a.a. t ∈ T .
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Condition 1. The elements of matrix function

f2ij(t, xt(s)) = f2ij(t, x(t), x(t − τx1 ), . . . , x(t− τxn )), i ∈ [1 : n2], j ∈ [1 : n1],

and vector-valued function

f1i(t, ut(s), xt(s)) =

= f1i(t, u(t− τu1 ), . . . , u(t− τum), x(t), x(t − τx1 ), . . . , x(t− τxn )), i ∈ [1 : n2]

satisfy the Lipschitz conditions

|f2ij(t1, x(1)0 , x
(1)
1 , . . . , x(1)n )− f2ij(t2, x

(1)
0 , x

(2)
1 , . . . , x(2)n )| ≤ (3)

≤ C1(|t2 − t1|+
n∑

j=0

|x(1)j − x
(2)
j |),

|f1i(t1, u(1)1 , . . . , u(1)m , x
(1)
0 , x

(1)
1 , . . . , x(1)n )−f1i(t2, u

(2)
1 , . . . , u(2)m , x

(2)
0 , x

(2)
1 , . . . , x(2)n )|

≤ d1(|t2 − t1|+
m∑
i=1

|u(1)i − u
(2)
i |+

n∑
j=0

|x(1)j − x
(2)
j |). (4)

In this case, under this condition for any pair, i.e., for initial state (2) and the
control u(·) ∈ P (·), there exists a unique solution of equation (1).

Let u(·) be an admissible control realizing during the given time interval T ;
x(·) be the real motion generated by this control. We assume that the phase
states x(τi) of the system are inaccurately measured at frequent enough time
moments τi ∈ T in the process. Measurement results ξh(τi) ∈ Rn2 satisfy the
inequalities

|ξh(τi)− x(τi)| ≤ h. (5)

Here, the quantity h ∈ (0, 1) specifies the measurement error.
In the present paper, we construct an algorithm that reconstructs the control

u(·) on the basis of the current information ξh(·) in real time. Since the exact
reconstruction is impossible due to the error of measurements ξh(·) we require
that the algorithm should generate some approximation. Namely, it is required to
construct an algorithm allowing us, on the basis of the inaccurate measurements
ξh(·), and in real time, to form the admissible control vh(·) such that the mean-
square deviation of vh(·) from u(·):, i.e.,

|vh(·)− u(·)|2L2(T ) =

ϑ∫
t0

|vh(t)− u(t)|2 dt, (6)

is arbitrarily small for the sufficiently small measurement error h. Since the
measurements are inaccurate it is in general impossible to identify u(t) precisely,
therefore the problem is to approximate the input by some function vh(t).
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Here and below, the symbol | · | stands for both the Euclidean norm and the
corresponding matrix norm and for the modulo of a number. In what follows,
we set τum = τxn = τ for simplicity, and by ξh(·) we denote the function ξh(t),
t ∈ [t0 − τ, ϑ] such that ξh(t) = x0(t − t0) for t ∈ [t0 − τ, t0), ξ

h(t) = ξh(τi) for
t ∈ [τi, τi+1), i ∈ [0 : d− 1], where τi = τh,i, d = dh, ξ

h(τi) satisfies (5).
The suggested solution outline is the following ( [1–6]). An auxiliary control

system (model M) described by equation of the form

ẇ(t) = F (t, ξht (s), v
h
t (s)), wt0(s) = w0(s), t ∈ T (7)

is associated with the real dynamical system (1). Here the vector w ∈ Rn2

characterizes state of the model, the form of function F is corrected below,
vector vh is control action. After that, the problem of reconstruction of input
u(·) is replaced by the problem of positional control of the model. This process is
realized on the time interval T in such a way that control vh(·) “approximates”
appropriately u(·). First, one takes a uniform net Δ = {τi}mi=0, τi+1 = τi + δ,
δ > 0, i ∈ [0 : m], τ0 = 0, τm = T with the step δ. Then, on the interval
t ∈ [τi, τi+1) the model is acted upon the controls

vhi = Vh(τi, wτi(s), ξ
h
τi(s)) (8)

calculated at the moment τi by use of some rule, which hereinafter we shall
identify with mapping Vh. Thus, the controls in the model are realized by the
method of feedback control. Its value on the interval [τi, τi+1] depends on the
measurement results ξh(·) corresponding to the phase state x(·) of the system
(1) and state w of the model (7). The described process forms the piece-wise
function

vh(t) = vhi , t ∈ [τi, τi+1)

in real time synchro with the motion of real system (1). Thus, to solve the
problem above, we should specify a model and a control law for this model.

2 Algorithm for Solving the Problem

As a model, we take the following system of linear ordinary differential equation

ẇ(t) = f1(τi, v
h
τi(s), ξ

h
τi(s)) + f2(τi, ξ

h
τi(s))v

h
i + 2(ξh(τi)− w(τi)), (9)

w ∈ Rn2 , t ∈ [τi, τi+1), τi = τh,i, vht0(s) = u0(s),

with the initial state w(t0) = ξh(t0). The solution of this equation w(·) =
w(·; t0, wt0(s), v

h(·)) is understood in the sense of Caratheodory. So, the right-
hand side of equation of the model (7) has the form

F (t, ξht (s), v
h
t (s)) = f1(τi, v

h
τi(s), ξ

h
τi(s)) + f2(τi, ξ

h
τi(s))v

h
i +

+2(ξh(τi)− w(τi)), t ∈ [τi, τi+1).



228 M. Blizorukova

Introduce the following notation: Δ(j) = [tj , tj+1], tj = t0 + τx1 j; the symbol l
stands for the integer part of the number τ/τx1 ; j∗ = max{j : tj < ϑ},

gj(h) = h(1/3)
j

, j ∈ [1 : j∗].

Fix a partition of the interval T with a step δ = δ(h) depending on the mea-
surement error h, i.e.,

Δh = {τh,i}dh

i=0, τi = τh,i, τh,0 = t0, τh,dh
= ϑ, (10)

(for simplicity, we assume that τi− τi−1 = δ = δ(h)). Without loss of generality,
we can suppose that the partition Δh is chosen in such a way that tj ∈ Δh.
Define the law of forming the control vhi in the model (for τi ∈ [tj , tj+1)∩ T ) by
the relations

Vh(τi, wτi(s), ξ
h
τi(s)) = Vj(τi, wτi(s), ξ

h
τi(s))

= argmin{2(li, f2(τi, ξhτi(s))v) + αj |v|2 : v ∈ P}. (11)

Here αj is a parameter, j ∈ [0 : j∗], li = w(τi)− ξh(τi).

Condition 2. Let n2 ≥ n1, and let there exists a number c∗ > 0 such that
the matrix f2(t, xt(s)) has a minor of order n1 with the property: the n1 × n1-
dimensional matrix f̄2(t) = f̄2(t, xt(s)) corresponding to this minor satisfies the
inequality

|f̄2(t)u| ≥ c∗|u|

for each t ∈ T and all u ∈ Rn1 .
We choose the parameter αj which plays the role of the regularizer, as follows:

α0 = Ch2/3, αj = Cg
2/3
j (h), j ≥ 1, C = const > 0. (12)

Let us describe the algorithm for solving the problem above.
Before the initial moment the value h and the partition Δ = Δh with di-

ameter δ = δ(h) are fixed. The work of the algorithm starting at time t = 0
is decomposed into mh − 1 steps. At the i-th step carried out during the time
interval δi = [τi, τi+1), τi = τh,i, the following actions take place. First, at time
moment τi vector v

h
i is calculated by formula (11). Then the control vh(t) = vhi

is fed onto the input of the model (9). After that, we transform the state wτi(s)
of the model into wτi+1(s). The procedure stops at time ϑ.

The following theorem is true.

Theorem 1. Let δ = δ(h) ≤ h. Then the inequalities

ν(j) ≡ |vh(·)− u(·)|2L2(Δ(j−1) ;Rn1) ≤ cjgj(h), j ∈ [1 : j∗],

are valid. Here, vh(t) = u(t) for t ∈ [t0 − τ, t0], v
h(t) = u0(−τ) for t ∈ [t0 − τ −

τu1 , t0 − τ).
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The proof of the theorem is based on auxiliary statements, which are used in
forthcoming considerations. Introduce two systems

ṗ(t) = f1(t) + f2(t)u1(t), t ∈ T,

q̇(t) = F1(t) + F2(t)u2(t),

where p(t), q(t) ∈ Rn, f1(·), F1(·) ∈ L2(T ;R
n), f2(·) ∈ L2(T ;R

n×r), F2(·) ∈
L2(T ;R

n×r), u1(·), u2(·) ∈ L2(T ;R
r), |ul(·)|L∞(T ;Rr) ≤ K, l = 1, 2.

Introduce the notation: Δ
(j)
∗ = [t∗j , t

∗
j+1] ∩ T , t∗j = t0 + τ∗j, j ∈ [0 : j0],

Δ(−1) = [t0 − τ∗, t0], τ∗ = const ∈ (0, ϑ − t0), j0 = max{j : t∗j ≤ ϑ}. Let r ≤ n
and let there exists a number c > 0 such that the matrix f2(t) has a minor of
order r such that the r× r-matrix f̄2(t) corresponding to this minor satisfies the
following inequality: |f̄2(t)u| ≥ c|u| for each t ∈ T and all u ∈ Rr.

It is easy to verify the following lemmas.

Lemma 1. Let the function t→ (f̄2(t))
−1u1(t) be a function of bounded varia-

tion on T and let the conditions

|f1(·)− F1(·)|2L2(Δ
(j)
∗ ;Rn)

≤ a
(j)
1 , |f2(·)− F2(·)|2L2(Δ

(j)
∗ ;Rn×r)

≤ a
(j)
2 ,

|p(t)− q(t)|2 + α̃j

t∫
t∗j

{|u2(ν)|2 − |u1(ν)|2} dν ≤ a
(j)
3 t ∈ [t∗j , t

∗
j+1],

|p(t∗j )− q(t∗j )|2 ≤ a
(j)
4 , α̃j = const ∈ (0,+∞)

be true. Then the inequality

|u1(·) − u2(·)|2L2(Δ
(j)
∗ ;Rr)

≤ Kj{
4∑

l=1

(a
(j)
l )1/2 + α̃

1/2
j }+ a

(j)
3 /α̃j

is valid.

Lemma 2. The bunches of solutions of systems (1) and (9) are bounded in the
space W 1,∞(T ;Rn2) = {x(·) ∈ L2(T ;R

n2); ẋ(·) ∈ L2(T ;R
n2)}.

We use the relation

εj(t) = |x(t) − w(t)|2 + αj

t∫
tj

{|vh(ν)|2 − |u(ν)|2} dν, j ∈ [0 : j∗], t ∈ T.

Lemma 3. The following inequalities

εj(t) ≤ bj , t ∈ Δ(j) ∩ T, j ∈ [0 : j∗],

are valid, where

bj = |x(tj)− w(tj)|2 + c
(1)
j (h+ δ) + c

(2)
j

j∑
k=j−l

ν(k),

c
(1)
j , c

(2)
j are some constants, which can be explicitly written.
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Proof. Fix τi ∈ Δ(j). Then for t ∈ Δ(j) ∩ δi = [τi, τi+1], we obtain

εj(t) ≤ εj(τi) +

4∑
j=1

Λji(t), (13)

where

Λ1i(t) = 2(si,

t∫
τi

{f1(ν, uν(s), xν(s))−f1(τi, vhν (s), ξhτi(s))} dν), si = x(τi)−w(τi),

Λ2i(t) = 2(si,

t∫
τi

{f2(ν, xν(s))u(ν) −

− f2(τi, ξ
h
τi(s))v

h
i } dν) + αj

t∫
τi

{|vh(ν)|2 − |u(ν)|2} dτ,

Λ3i(t) = −2(t− τi)(si, ξ
h(τi)− w(τi)), Λ4i(t) = (t− τi)

t∫
τi

|ẇ(τ) − ẋ(τ)|2 dτ.

By virtue of lemma 2, we have

Λ4i(t) ≤ K
(j)
∗ (t− τi)

2, t ∈ δi. (14)

Note that vh(τi + s) = vh(t+ s) for s ≥ t0 − τi, t ∈ [τi, τi+1] and in addition

|ξh(τi + s)− x(t + s)| ≤ K∗(h+ t− τi) for τi + s ≥ t0 − τ. (15)

Taking into account lemma 2, as well as the Lipschitz property of the functions
u0(s) and x0(s), inequalities (4) and the relation

|ξh(τi + s)− x(t + s)| ≤ K∗(h+ t− τi) for τi + s ≥ t0 − τ, (16)

we obtain for t ∈ δi the estimate

t∫
τi

|f1(ν, uν(s), xν(s))− f1(τi, v
h
ν (s), ξ

h
τi(s))| dν ≤

≤ K
(j)
1 (t− τi)(h+ t− τi) +K

(j)
2 (t− τi)

1/2
m∑
k=1

( t−τu
k∫

τi−τu
k

|u(ν)− vh(ν)|2 dν
)1/2

.

Here, τx0 = 0. In this case, the inequality

Λ1i(t) ≤ 2(t− τi)|x(τi)− w(τi)|2 +K
(j)
3 {(t− τi)(h+ t− τi)

2 +



On an Algorithm for Dynamic Reconstruction 231

+

m∑
k=1

t−τu
k∫

τi−τu
k

|u(ν)− vh(ν)|2 dν} (17)

holds for t ∈ δi. In view of (5), we have

Λ3i(t) ≤ −2(t− τi)|x(τi)− w(τi)|2 +K
(j)
4 h(t− τi), t ∈ δi. (18)

Moreover, from (5), (3), and (16), we derive

|f2(ν, xν(s))u(ν) − f2(τi, ξ
h
τi(s))u(ν)| ≤ K0(h+ ν − τi)

for ν ∈ [τi, τi+1]. In this case,

Λ2i(t) ≤ K
(j)
5 (t− τi)(h+ t− τi)+

+

t∫
τi

{2(li, f2(τi, ξhτi(s)){v
h
i − u(ν)} + αj{|vhi |2 − |u(ν)|2}} dν.

The rule for forming the control vhi (11) and the last inequality imply

Λ2i(t) ≤ K
(j)
5 (t− τi)(h+ t− τi). (19)

Finally, taking into account (13)–(19), we conclude that for t ∈ Δ(j) ∩ δi

εj(t) ≤ εj(τi) +K
(j)
6 δ(h+ δ) +K

(j)
3

m∑
k=1

t−τu
k∫

τi−τu
k

|u(ν)− vh(ν)|2 dν,

i.e., for t ∈ Δ(j) = [tj , tj+1],

εj(t) ≤ εj(tj) +K
(j)
7 (h+ δ) +K

(j)
8

tj+1−τu
1∫

tj−τ

|u(ν)− vh(ν)|2 dν.

Note that τ = lτu1 + γ, γ ≥ 0. Therefore, tj+1 − τu1 = tj , tj−l−1 ≤ tj − τ ≤ tj−l.
In this case, for t ∈ Δ(j) we have

εj(t) ≤ εj(tj) +K
(j)
7 (h+ δ) +K

(j)
9

j∑
k=j−l

ν(k).

Here, constants K
(j)
k , k ∈ [0 : 9] are written explicitly. Thus, one can assume

that c
(1)
j = K

(j)
7 and c

(2)
j = K

(j)
9 . The lemma is proved.

Lemma 4. Let δ ≤ h and values αj be given by (12). Then the inequalities

ν(j) ≤ cjgj(h), (20)

bj ≤ c
(0)
j gj(h) (21)

are valid.
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Proof. For simplicity, set tj∗+1 = ϑ. By virtue of lemma 3, we have for t ∈ Δ(j)

|x(t)−w(t)| ≤
(
εj(t)+αj

t∫
tj

{|vh(ν)|2+ |u(ν)|2} dν
)1/2

≤
(
bj+αjρA

)1/2
, (22)

where ρA = 2τ∗d
2(P ) and d(P ) = sup{|u| : u ∈ P}. Taking into account the

inclusion tj ∈ Δh, we conclude that for any j ∈ [0 : j∗], one can specify the
number i = ij(h) such that tj = τij(h). Introduce the notation %j ≡ |f1(·) −
F1(·)|2L2(Δ(j) ;Rn2)

. In this case, by virtue of lemma 2, as well as of (4) and (16),

we obtain

%j ≤ d
(1)
j

i=ij+1(h)−1∑
i=ij(h)

τi+1∫
τi

{δ2 + h2 + γh(ν) + γhi (ν) + |ξh(τi)− w(τi)|2} dν,

where

γh(ν) =

m∑
k=1

|u(ν − τuk )− vh(ν − τuk )|2, γhi (ν) =

n∑
k=0

|x(ν − τxk )− ξh(τi − τxk )|2.

Note that

tj+1∫
tj

γh(ν) dν ≤ d
(2)
j

tj∫
tj−l−1

|u(ν)− vh(ν)|2 dν = d
(2)
j

j∑
k=j−l

ν(k), (23)

tj+1∫
tj

γhi (ν) dν ≤ d
(3)
j (h2 + δ2). (24)

In addition,
ν(k) = 0 k ∈ [−l : 0]. (25)

Therefore, combining inequalities (22)–(24), we obtain the estimates

%j ≤ d
(5)
j {h2 + δ2 +

j∑
k=j−l

ν(k) + bj + αj}, j ∈ [0 : j∗]. (26)

One can easily see that the following estimates also hold:

|f2(·)− F2(·)|2L2(Δ(j);Rn2×n1) ≤ d
(5)
j (h2 + δ2), j ∈ [0 : j∗]. (27)

Here d
(1)
j –d

(5)
j are some constants, which can be explicitly written. By lemma 3,

(22), and (25), for δ ≤ h, we have the inequalities

ε0(t) ≤ b0 ≤ c∗0h, t ∈ Δ(0), (28)
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|x(t1)− w(t1)|2 ≤ ρAα0 + c∗0h ≤ c∗h
2/3. (29)

Taking into account (25)–(28), for h ∈ (0, 1), we obtain

%0 ≤ d
(1)
0 {h2+δ2+b0+h2/3} ≤ d∗0h

2/3, |f2(·)−F2(·)|2L2(Δ(0);Rn2×n1) ≤ c
(∗)
j h2.

By virtue of condition 1, one can use lemma 1. Set p = x, q = w, u1 = u, u2 = vh,
f1(t) = f1(t, ut(s), xt(s)), f2(t) = f2(t, xt(s)), F1(t) = f1(τi, v

h
τi(s), ξ

h
τi(s)) +

2(ξh(τi) − w(τi)), F2(t) = f2(τi, ξ
h
τi(s)) t ∈ [τi, τi+1). Then, assuming a

(0)
1 =

d∗0h
2/3, a

(0)
2 = c

(∗)
j h2, a

(0)
3 = c∗0h, a

(0)
4 = c∗h

2/3, α̃0 = α0 = ch2/3, we have

ν(1) = |u(·)− vh(·)|2L2(Δ(0);Rn1) ≤ c̃1h
1/3 = c1g1(h). (30)

It means that inequality (20) holds for j = 1. Further, by using (29) and (30),
we deduce that

b1 = |x(t1)− w(t1)|2 + c
(1)
1 (h+ δ) + c

(2)
1

1∑
k=1−l

ν(k) ≤ c̃
(0)
1 h1/3 = c

(0)
1 g1(h).

Inequality (21) for j = 1 is also verified. It follows from (22) that

|x(tj)− w(tj)|2 ≤ bj−1 + ρAαj−1, j ∈ [1 : j∗ − 1]. (31)

Consequently, in view of relations (31), as well as of the rule for definition bj ,
we have the inequality

bj ≤ bj−1 + dj

(
h+ αj−1 +

j∑
k=j−l

ν(k)
)
, dj = const ∈ (0,+∞). (32)

Setting a
(j)
1 = d

(4)
j {h2+ δ2+

∑j
k=j−l ν

(k)+a
(j)
3 +αj}, a(j)3 = bj, a

(j)
2 = d

(5)
j (h2+

δ2), a
(j)
4 = bj−1 + ρAαj−1, j ∈ [1 : j∗] for j ≥ 1 in lemma 1 and taking into

account inequalities (32), we obtain

ν(j+1) ≤ c(j){h1/2 +
( j∑
k=j−l

ν(k)
)1/2

+ b
1/2
j−1 + α

1/2
j−1 + α

1/2
j }+ bjα

−1
j , j ∈ [1 : j∗].

Here, we used lemma 3 and inequalities (27), (28), and (31)) for choosing values

a
(j)
i . Now, to proof inequalities (20) and (21), one can use the proof by induction.

The lemma is proved.

3 Example

The algorithm was tested by a model example. The following system

ẋ1(t) = 2x1(t− 1) + u(t)

ẋ2(t) = x2(t− 1) + x1(t) + u(t− 1), t ∈ T = [0, 2],
(33)
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with initial conditions x0(s) = y0(s) = 1, u(s) = 0 for s ∈ [−1, 0] and con-
trol u(t) = t was considered. The solution x(t) = {x1(t), x2(t)} of system (33)
was calculated analytically. During the experiment, we assumed that ξh(τi) =
x1(τi) + h. As a model, we took the system (9), which has the form

ẇ(0)(t) = 2ξh1 (τi − 1) + vhi + 2(ξh1 (τi)− w(0)(τi)) for t ∈ [τi, τi+1)

ẇ(1)(t) = ξh2 (τi − 1) + ξh1 (τi) + vh(τi − 1) + 2(ξh2 (τi)− w(1)(τi)),
(34)

with the initial condition w(0)(s) = w(1)(s) = 1, for s ∈ [−1, 0]. Here vh(τi) = vhi
for t ∈ [τi, τi+1), i ≥ 0, vh(s) = 0 for s ∈ [−1, 0). The controls vhi in model (34)
were calculated by the following formula (see (11))

vhi = argmin{2liv + αj |v|2 : |v| ≤ K},

where li = w(0)(τi)− ξh1 (τi).
In figures 1 and 2 the results of calculations are presented for the case when

δ = 10−4, α0 = Ch2/3, α1 = Ch2/9, C = 0.2, K = 10. Fig. 1 corresponds to
the case when h = 0.001, fig. 2 — h = 0.02. In these figures the solid (dashed)
lines represent the model control vh(·) (the real control u(·)). The equations were
solved by the Euler method with step δ.

u, v

t

u, v

t

Fig. 1. Fig. 2.
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Abstract. Finite-difference schemes for the computation of value func-
tions of nonlinear differential games with non-terminal payoff functional
and state constraints are proposed. The solution method is based on
the fact that the value function is a generalized viscosity solution of the
corresponding Hamilton-Jacobi-Bellman-Isaacs equation. Such a viscos-
ity solution is defined as a function satisfying differential inequalities
introduced by M. G. Crandall and P. L. Lions. The difference with the
classical case is that these inequalities hold on an unknown in advance
subset of the state space. The convergence rate of the numerical schemes
is given. Numerical solution to a non-trivial three-dimensional example
is presented.

Keywords: Differential games, non-terminal payoff functionals, state
constraints, value functions, viscosity solutions, finite-difference schemes.

1 Introduction

Numerical methods for solving differential games (see [1,2,3] for concepts) are
intensively developed during two or three last decades. We consider control sys-
tems with nonlinear dynamics, non-terminal payoff functionals, and state con-
straints. Our approach is based on the approximation of viscosity solutions of the
Hamilton-Jacobi-Bellman-Isaacs equation associated with the considered differ-
ential game.

In [4], a pair of differential inequalities determining the value function of non-
linear differential games with non-terminal payoff functionals was introduced.
Additionally, the directional differentiability of the value function was required.
In [5], such a requirement was relaxed, and the results were stated in terms of
upper and lower directional derivatives. At the same time, the concept of viscos-
ity solutions for Hamilton-Jacobi equations was proposed in [6] and [7]. Further
investigations [8] showed that the inequalities for the upper and lower directional
derivatives are equivalent to the inequalities defining viscosity solutions.
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Grid methods based on vanishing viscosity techniques for finding viscosity so-
lutions of Hamilton-Jacobi equations were suggested in [9]. In [10], an abstract
operator that generates approximate solutions was introduced, and the uniform
convergence of approximate solutions to a viscosity solution was proved. A rep-
resentation of this operator in terms of differential game theory was given in [11].
The results of [10] and [11] cover differential games with the payoff functional

γ1(x(·)) = χ(T, x(T )). (1)

In [12], the approach of [10] and [11] was extended to differential games with
more general (non-terminal) payoff functionals of the form

γ2(x(·)) = min
t∈[t0,T ]

χ(t, x(t)), (2)

where t0 is the starting time, T the termination time, x(·) a trajectory of the
controlled system, and χ a given function.

In the present paper, differential games with payoff functionals of the form

γ3(x(·)) = max{ min
t∈[t0,T ]

χ(t, x(t)), max
t∈[t0,T ]

θ(t, x(t))}, (3)

where χ and θ are given functions, satisfying the relation χ(t, x) ≥ θ(t, x) for all
t and x, are considered. As it will be seen later, the first part of functional (3),
mint∈[t0,T ] χ(t, x(t)), is responsible for the quality of the process, and the second
part, maxt∈[t0,T ] θ(t, x(t)), accounts for state constraints. In the following, differ-
ential inequalities defining viscosity solutions in the case of payoff functional (3)
will be formulated and compared with those related to payoff functionals (2)
and (1). A finite difference scheme based on a modified abstract operator that
generates approximations of viscosity solutions is presented, and an example of
computation of value function for a three-dimensional problem originated from
the famous isotropic rocket game introduced in [1] is given.

2 Statement of the Problem

Consider a collision-avoidance differential game with the dynamics

ẋ = f(t, x, α, β), t ∈ [0, T ], x ∈ R
n, α ∈ A ⊂ R

μ, β ∈ B ⊂ R
ν , (4)

where t is time; x = (x1, ..., xn) the state vector ; α, β are control parameters of
the players; and A,B are given compacts. The game starts at t = t0 and finishes
at t = T . The first player, control parameter α, strives to bring the trajectories
of system (4) to a target set given by

M := {(t, x) : t ∈ [0, T ], χ(t, x) ≤ 1}

within the time [t0, T ]. The objective of the second player, control parameter β,
is opposite. Besides, the trajectories should remain in a state constraint set
given by

N := {(t, x) : t ∈ [0, T ], θ(t, x) ≤ 1}.
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Here, χ : [0, T ]×Rn → R and θ : [0, T ]×Rn → R are some given functions such
that χ(t, x) ≥ θ(t, x) for all t and x so that M ⊂ N holds.

We extend this differential game by considering the payoff functional (3) being
minimized by the first player and maximized by the second one. It is easily
seen that the value function of such an extended problem gives a solution to
the collision-avoidance differential game. In fact, if the value function of the
differential game (4) and (3) is less than or equal to 1 at the starting position of
the extended game, then there exists a strategy of the first player such that, for
all strategies of the second player and all trajectories x(·), two conditions hold:

(a) mint∈[t0,T ] χ(t, x(t)) ≤ 1 (the position (t, x(t)) arrives at the target set M at
some time instant t ≤ T ),

(b) maxt∈[t0,T ] θ(t, x(t)) ≤ 1 (the position (t, x(t)) remains in the state constraint
set N for all t ∈ [t0, T ]).

Let the extended game is formalized as in [2,3,4]. That is, the players use feedback
strategies which are arbitrary functions

A : [0, T ]× R
n → A, B : [0, T ]× R

n → B.

For any initial position (t0, x0) ∈ [0, T ] × Rn and any strategies A and B, two
functional sets X1(t0, x0,A) and X2(t0, x0,B) are defined. These sets consist of
the limits of the step-by-step solutions of (4) generated by the strategies A and
B, respectively (see [2,3,4]).

We assume that the function f is uniformly continuous, bounded and Lips-
chitzian in t and x on [0, T ]× Rn × A × B; the functions χ and θ are bounded
and Lipschitzian in t, x; and the following saddle point condition holds:

H(t, x, p) := max
β∈B

min
α∈A

〈p, f(t, x, α, β)〉 = min
α∈A

max
β∈B

〈p, f(t, x, α, β)〉

for any p ∈ Rn, (t, x) ∈ [0, T ]× Rn.
It is proved in [4,13] that the differential game (3,4) has a value function

c : (t, x)→ c(t, x) defined by the relation

c(t, x) = min
A

max
x(·) ∈

X1(t, x,A)

γ3(x(·)) = max
B

min
x(·) ∈

X2(t, x,B)

γ3(x(·)).

Thus, the upper value of the game coincides with the lower one for all (t, x) ∈
[0, T ]×Rn. The value function is bounded and Lipschitzian in t, x on [0, T ]×Rn.

3 Viscosity Solutions

We formulate differential inequalities defining the value function of the differ-
ential game (3,4) and compare them with corresponding differential inequalities
for the value functions of differential games (2,4) and (1,4).
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Proposition 1. A Lipschitz function c is the value function of differential game
(3) and (4) if and only if:

(i) for any (t, x) ∈ [0, T ]×Rn, c(T, x) = χ(T, x) and θ(t, x) ≤ c(t, x) ≤ χ(t, x);

(ii) for any point (s0, y0) ∈ [0, T ] × Rn such that c(s0, y0) ≤ χ(s0, y0) and any
function ϕ ∈ C1 such that c−ϕ attains a local minimum at (s0, y0), the following
inequality holds

∂ϕ

∂t
(s0, y0) +H(s0, y0,

∂ϕ

∂y
(s0, y0)) ≤ 0; (5)

(iii) for any point (s0, y0) ∈ [0, T ]× Rn such that c(s0, y0) ≥ θ(s0, y0) and any
function ϕ ∈ C1 such that c−ϕ attains a local maximum at (s0, y0), the following
inequality holds

∂ϕ

∂t
(s0, y0) +H(s0, y0,

∂ϕ

∂y
(s0, y0)) ≥ 0. (6)

The proof of Proposition 1 is given in [14].

Remark 1. If the relation θ(t, x) ≤ c(t, x) in (i) and the condition c(s0, y0) ≥
θ(s0, y0) in (iii) are omitted, relations (i)-(iii) define the value function of dif-
ferential game (2,4) (see [12]). If, additionally, the relation c(t, x) ≤ χ(t, x) in
(i) and the condition c(s0, y0) ≤ χ(s0, y0) in (ii) are omitted, relations (i)-(iii)
define the value function of differential game (1,4).

Remark 2. We call a Lipschitz function c satisfying relations (i)-(iii) of Propo-
sition 1 a generalized viscosity solution of the Hamilton-Jacobi equation

ct +H(t, x, cx) = 0.

Thus, a generalized solution exists and is unique.

4 Finite-Difference Schemes

In this section, an upwind operator (see [15] for the idea) is introduced, and
finite-difference schemes based on this operator are described.

Let ρ, h1, ..., hn be time and space discretization step sizes. The upwind oper-
ator F is defined as follows:

F (c; t, ρ, h1, ..., hn)(x) = c(x) + ρmax
β∈B

min
α∈A

n∑
i=1

(pRi f
+
i + pLi f

−
i ),

where fi = fi(t, x, α, β) are the right hand sides of the control system, and

a+ = max {a, 0}, a− = min {a, 0},

pRi = [c(x1, ..., xi + hi, ..., xn)− c(x1, ..., xi, ..., xn)]/hi,

pLi = [c(x1, ..., xi, ..., xn)− c(x1, ..., xi − hi, ..., xn)]/hi.
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Remark 3. Note that, if ρ is fixed, the time step operator can be restricted to
functions defined on rectangular grids with the step size hi in ith coordinate,
i = 1, n. Therefore, this operator will yield fully discrete finite difference schemes
when used in the approximation procedure considered below.

Let M = T/ρ+ 1. Denote tm = mρ, m = 0, ...,M, and introduce the following
notation:

cm(xi1 , ..., xin) = c(tm, i1h1, ..., inhn),

χm(xi1 , ..., xin) = χ(tm, i1h1, ..., inhn),

θm(xi1 , ..., xin) = θ(tm, i1h1, ..., inhn).

In the case of functional (1), the finite-difference scheme be

cm−1 = F (cm; tm, ρ, h1, ..., hn), c
M = χM. (7)

In the case of functional (2), it is modified as follows:

cm−1 = min {F (cm; tm, ρ, h1, ..., hn), χ
m}, cM = χM. (8)

When the state constraint is presented, i.e. the functional (3) is considered, the
numerical scheme be

cm−1 = max
{
min {F (cm; tm, ρ, h1, ..., hn), χ

m}, θm
}
, cM = χM. (9)

The following convergence result holds.

Theorem 1. Let M be a bound of the right hand side of system (4). If
ρ

hi
≤

1

M
√
n
, then the grid functions obtained by the procedures (7), (8), and (9) con-

verge point-wise to the value functions of games (1,4), (2,4), and (3,4), respec-
tively, as ρ→ 0, hi → 0, and the convergence rate is max(

√
ρ,maxi

√
hi).

The proof of the Theorem is given in [14] and [16].

5 Example

It should be noted that high-dimensional computation (n ≥ 3) of value functions
of nonlinear differential games with state constraints is a very difficult problem.
Since about fifteen years, several groups are working on appropriate numerical
methods (see e.g. [17,18,19,20,21]), but only few three-dimensional problems are
solved numerically. The following example deals with a very famous unsolved
problem.

In the PhD thesis by Pierre Bernhard [22] and in paper [23] by Joseph Lewin
and Geert Jan Olsder, a pursuit-evasion game deduced from the game of isotropic
rockets [1] is considered:
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ẋ = − Wy

Vp
sinφ+ Ve sinψ,

ẏ =
Wx

Vp
sinφ+ Ve cosψ − Vp,

V̇p = W cosφ.

(10)

Here, x and y are the coordinates of the evader (E) in the moving reference
system whose origin is at the position of the pursuer (P ), and the axis y is
directed along the velocity of P ; W is the magnitude of the acceleration of P ;
Vp the magnitude of the velocity of P ; φ, control of P , the angle between the
vectors of the acceleration and velocity of P (we assume that −π/2 ≤ φ ≤ π/2,
i.e. V̇p ≥ 0); Ve the magnitude of the velocity of E; ψ, control of E, the angle
between the velocity vector of E and the direction of y-axis (0 ≤ ψ ≤ 2π).

The target set is a a cylinder

M = {(x, y, Vp) : x2 + y2 ≤ 0.32}, (11)

and the state constraint set is given by

N = {(x, y, Vp) : a ≤ Vp ≤ b}, (12)

where a and b are positive numbers, which will be specified later.
It is observed in [23] that the classical homicidal chauffeur game [1] can be

deduced from (10). In fact, permitting only bang-bang controls of the pursuer,
φ = ±π/2, implies that cosφ = 0, and therefore Vp = const. Introduce a new
control parameter u = sinφ of the pursuer and allow it to assume values from the
interval [−1, 1] because the control system is linear with respect to u. Moreover,
setW ≡ 1, Vp ≡ 1, Ve ≡ 0.3, and introduce new control parameters, v1 = Ve sinψ
and v2 = Ve cosψ, of the evader. Reduce the target set (11) to M = {(x, y) :
x2 + y2 ≤ 0.32}. This yields the classical homicidal chauffeur game

ẋ = −yu+ v1, ẏ = xu + v2 − 1, |u| ≤ 1,
√
v21 + v22 ≤ 0.3 (13)

whose numerical solutions are known and can be used for the verification of
computations applied to problem (10)–(12). Namely, solutions of (10)–(12) have
to converge to the solution of (13) as a and b go to 1 in (12).

The value function of differential game (10)–(12) is computed using the nu-
merical scheme (9). The spatial region and the grid size are chosen as [−10, 10]×
[−10, 10]× [0.1, 2] and 300× 300× 60, respectively. The time horizon T is equal
to 7, and the time step equals 0.01. The computation time is about 15 minutes
on a Linux SMP-computer with 8xQuad-Core AMD Opteron processors (Model
8384, 2.7 GHz) and shared 64 Gb memory.

Figures 1 and 2 show the computed three-dimensional set

{(x, y, Vp) : c(0, x, y, Vp) ≤ 0.3}. (14)

In the case of Figure 1, state constraint (12) is specified by a = 0.8 and b = 1.2,
whereas a = 0.5 and b = 1.5 for Figure 2.
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Fig. 1. Level set (14) corresponding to the state constraint 0.8 ≤ Vp ≤ 1.2 (z-axis
measures Vp)

Figure 3 shows the comparison of solutions of problems (10)–(12) and (13).
Curve 1 bounds the solvability set of problem (13) without any state constraints.
Curves 2 and 3 bound the sets

{(x, y) : c(0, x, y, 1) ≤ 0.3}, (15)

Fig. 2. Level set (14) corresponding to the state constraint 0.5 ≤ Vp ≤ 1.5 (z-axis
measures Vp)
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Fig. 3. Comparison of solutions of problems (10)–(12) and (13). Curves 2 and 3 show
level set (15) in the case of the state constraints 0.8 ≤ Vp ≤ 1.2 and 0.5 ≤ Vp ≤ 1.5,
respectively. Curve 1 shows the solvability set of problem (13).

Fig. 4. Comparison of the level set (14) corresponding to the state constraints 0.5 ≤
Vp ≤ 1.5 and |y| ≤ 3 (z-axis measures Vp) with the set from Fig. 2

where c is as before the value function of problem (10)–(12) computed with
a = 0.8 and b = 1.2 in the case of curve 2, and a = 0.5 and b = 1.5 in the case of
curve 3. It is seen that the closer a and b are to 1, the closer the corresponding
curve is to curve 1.
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Figure 4 shows the case when the state constraint |y| ≤ 3 is additionally
imposed. The obtained set (14) is compared with the set given in Fig. 2.

6 Conclusion

Our experience shows that the numerical method outlined in this paper is ap-
propriate for solving three- and even four-dimensional nonlinear problems with
state constraints. Next steps are to be aimed towards dimensions five and six,
which demands sparse representation of grid functions and operations on them,
bearing in mind supercomputing systems available now. Such results will allow
us to consider e.g. aircraft applications related to essentially nonlinear take-off
and landing problems with complex state constraints inherent for them.
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tricht (1998)

16. Botkin, N.D., Hoffmann, K.-H., Turova, V.L.: Stable Numerical Schemes for Solv-
ing Hamilton-Jacobi-Bellmann-Isaacs Equations. SIAM J. on Scientific Comput-
ing 33(2), 992–1007 (2011)

17. Bardi, M., Koike, S., Soravia, P.: Pursuit-Evasion Games with State Constraints:
Dynamic Programming and Discrete Time Approximations. Discrete and Contin-
uous Dynamical Sytems, Series A 2(6), 361–380 (2000)

18. Grigor’eva, S.V., Pakhotinskikh, V.Y., Uspenskii, A.A., Ushakov, V.N.: Construc-
tion of Solutions in Certain Differential Games with Phase Constraints. Mat.
Sbornik 196(4), 51–78 (2005)

19. Cardaliaguet, P., Quincampoix, M., Saint-Pierre, P.: Differential Games through
Viability Theory: Old and Recent Results. In: Jorgensen, S., Quincampoix, M.,
Vincent, T.L. (eds.) Advances in Dynamic Game Theory: Numerical Methods and
Applications to Ecology an Economics. Annals of the Int. Society of Dynamic
Games IX, pp. 3–35. Birkhäuser, Basel (2007)
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Abstract. Continuing research in [13] and [14] on well-posedness of the
optimal time control problem with a constant convex dynamics in a
Hilbert space we adapt one of the regularity conditions obtained there to
a slightly more general problem, where nonaffine additive term appears.
We prove existence and uniqueness of a minimizer in this problem as well
as continuous differentiability of the value function, which can be seen as
the viscosity solution to a Hamilton-Jacobi equation, near the boundary.

Keywords: optimal time control problem, viscosity solution, eikonal
equation, duality mapping, proximal normals, proximal regularity,
Hölder continuity.

1 Introduction

Let us start with the first order partial differential equation in finite dimensions

Γ (x, u (x) ,∇u (x)) = 0 (1)

where Γ : Ω × R × Rn → R is a continuous function, nonlinear with respect
to (w.r.t.) the third variable; Ω ⊂ Rn is an open bounded region. Due to ap-
plications in optimal control and dynamical systems (1) is traditionally called
(stationary) Hamilton-Jacobi equation. There are various notions of solutions to
this equation. For instance, a function u : Ω → R of class C

(
Ω
)
∩C1 (Ω) satisfy-

ing (1) for all x ∈ Ω is said to be classical solution, while a Lipschitz continuous
function u : Ω → R such that (1) holds for almost each (a.e.) x ∈ Ω is usually
called generalized (or almost everywhere) solution. Speaking about solutions of
(1) we always have in mind some prescribed boundary condition

u (x) = θ (x) , x ∈ ∂Ω, (2)
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where θ : Ω → R is a (continuous) given function. Since in practice a classical so-
lution to the boundary value problem (1)-(2) often fails to exist while generalized
solution may not be unique, another physically reasonable concept (so named
viscosity solution) was introduced by M. Crandall and P.-L. Lions in 1983 (see
[6]) while similar constructions under different names were known earlier (see,
e.g., [16], [12], [15]). This concept was mainly based on the idea of ”vanishing
viscosity” in the sense that each viscosity solution is the uniform limit of the
sequence of solutions uε (·) to the respective boundary value problems for the
nonlinear elliptic equations

Γ (x, u,∇u)− εΔu = 0 (3)

as ε → 0+ where Δ =
∑n

i=1
∂2

∂x2
i
is the Laplace operator (notice that (3) has a

unique classical solution for each ε > 0 small enough due to Theorem 3.2 [15]).
The exact definition of viscosity solution can be given either in terms of the
suitable test functions (similarly as the notion of the generalized solutions of
linear PDE in the sense of distributions), or by involving a Fréchet generaliza-
tion of the gradient of a function at the point of nondifferentiability. It turned
out that for each suitable boundary data θ (·) a (continuous) viscosity solution
to the problem (1)-(2) exists, is unique and stable w.r.t. both θ (·) and Γ (·).
Furthermore, it is agreed with other types of solutions. In particular, each vis-
cosity solution belonging to C1 (Ω) is classical. For the main results of Theory
of Viscosity Solutions, very developed and powerful field of the modern mathe-
matics, we refer to [1]−[2] and the bibliography therein. For a concise survey of
viscosity solutions in finite dimensions see also the excellent tutorial lessons by
A. Bressan [3].

Afterwards, the concept and the main results concerning viscosity solutions
were generalized to Banach spaces with the Radon-Nikodym property (see [7],
[8]), in particular, to Hilbert spaces. The gradient ∇u in (1) is understood then
in the sense of Fréchet. Notice that although the definition based on the Fréchet
sub- and superdifferentials remains the same, the interpretation of viscosity so-
lutions via ”vanishing viscosity” is no longer valid in infinite dimensions. The
motivation, however, comes now from the Theory of Differential Games.

In our paper we deal only with the case when the hamiltonian Γ in (1) does
not depend of x neither u, and is convex w.r.t. the third variable. Already S.
N. Kružkov studied in [15] such Hamilton-Jacobi equations arizing from the
geometric optics. For instance, when n = 3 and Γ (x, u, ξ) = |ξ| − a, with a
constant a > 0, one has the so called eikonal equation describing the propagation
of a light wave from a point source placed at the origin in homogeneous medium
with refraction index 1/a. If, instead, this medium is anisotropic and has constant
coefficients of refraction of light rays parallel to the coordinate axes (say ci) then
the propagation of light can be described by the (more general) elliptic equation

n∑
i=1

c2iu
2
xi
− 1 = 0. (4)
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If, besides that, the medium moves with a constant velocity −→v then the equation
contains already a linear additive term and admits the form

n∑
i=1

c2iu
2
xi

+
2

c
〈−→v ,∇u〉 − 1 = 0, (5)

where c means the speed of the light in a vacuum.
In general, denoting by F the closed convex hull of the set of zeros

{ξ ∈ R
n : Γ (ξ) = 0}

and assuming F to be bounded with intF = ∅ (the hamiltonians in (4) and (5)
satisfy these conditions), the equation (1) can be reduced to

ρF (∇u (x))− 1 = 0, (6)

where ρF (·) is the Minkowski functional (gauge function) associated to F ,

ρF (ξ) := inf {λ > 0 : ξ ∈ λF} .

More precisely, it was proved in [4] that under appropriate conditions involving
a kind of geometric compatibility of F , θ (·) and the domain Ω the (unique)
viscosity solution û (·), û |∂Ω = θ, of (6) is the viscosity solution of the problem
(1)-(2) (belonging to the space W 1,∞ (Ω)) and vice versa. Furthermore, this
viscosity solution can be given by the formula

û (x) = inf
y∈C

{ρF 0 (x− y) + θ (y)} (7)

whenever θ : Rn → R is a Lipschitz continuous function such that

∇θ (x) ∈ intF for a.e. x ∈ R
n. (8)

Here C := Rn\Ω and F 0 is the polar set for F .
Let now H be a Hilbert space with the norm ‖·‖ and the inner product 〈·, ·〉.

Then the convolution (7) remains the unique viscosity solution to the equation
(6) with the boundary data u (x) = θ (x), x ∈ C, whenever the slope condition

θ (x)− θ (y) < ρF 0 (x− y) ∀x, y ∈ C (9)

holds. Notice that the inequality (9) follows from (8) in finite dimensions while
in an arbitrary Hilbert space from the inclusion ∂cθ (x) ⊂ F , x ∈ H , where ∂c

is the Clarke generalized gradient of a Lipschitz continuous function.
So, we are interested in regularity properties of the function (7), which were

well studied when θ ≡ 0 (see [10], [13], [14]). In the latter case let us notice the
following:

1) existence and regularity of the (Fréchet) gradient ∇û (x) depends on unique-
ness (in infinite dimensions also on existence) of a minimizer in (7);
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2) it is not possible that ∇û (x) exists everywhere out of C unless some special
situations;

3) the function û (x) can be interpreted as the minimal time necessary to achieve
the closed set C from x ∈ H\C by trajectories of the differential inclusion
ẋ (t) ∈ −F 0.

Taking into account 1) and 2) it is natural to study the regularity only in an
(open) neighbourhood of C (target set due to 3). If F = B is the closed unit
ball centred in the origin then û (·) is nothing else than the distance from C, and
the minimizers in (7) are the usual metric projections onto C. In this case the
(necessary and sufficient) condition guaranteeing well-posedness of the problem
and the (Lipschitz) continuity of the gradient ∇û (x) near C is so named ϕ-
convexity (or proximal smoothness) of the set C well studied up to now (see
survey [9] and the bibliography therein).

As concerns an arbitrary gauge F (and θ ≡ 0) then in [13], [14] two different
hypotheses are given, under which both a unique minimizer in (7) (that is a point
on the boundary ∂C attained from x for the minimal time) and the gradient
∇û (x) are (Hölder) continuous in a neighbourhood of C. It turns out that one
of these hypotheses (based on certain ballance between external normals to the
sets C and F ) can be adapted to the case of a Lipschitz continuous perturbation
θ (·).

We start in Section 2 with the basic definitions and an auxiliary statement.
Then, in Section 3, we study the mathematical programming problem (7) from
the viewpoint of the existence, uniqueness and the (Lipschitz) regularity of min-
imizers near the set C. The geometric condition ensuring such well-posedness is
emphasized here. Finally, in Section 4 we examine the (Fréchet) differentiability
of the value function û (·) and justify the (Hölder) continuity of its gradient also
under the assumption that either F 0 or the restriction θ |C is smooth.

2 Preliminaries

Given a convex closed bounded set F ⊂ H with 0 ∈ intF we consider the so
called duality mapping JF : ∂F 0 → ∂F , which associates to each ξ∗ ∈ ∂F 0 the
set of (normalized) linear functionals that support F 0 at ξ∗,

JF (ξ∗) := {ξ ∈ ∂F : 〈ξ, ξ∗〉 = 1} .

In other words, JF (ξ∗) = NF 0 (ξ∗) ∩ ∂F where NF 0 (ξ∗) is the normal cone to
the polar F 0 at ξ∗. It can be interpreted also as the subdifferential ∂ρF 0 (ξ∗) in
the sense of Convex Analysis. For each dual pair (ξ, ξ∗), i.e., such that ξ ∈ ∂F ,
ξ∗ ∈ ∂F 0 and 〈ξ, ξ∗〉 = 1 let us define the modulus of rotundity (see [13])

ĈF (r, ξ, ξ∗) := inf {〈ξ − η, ξ∗〉 : η ∈ F, ‖ξ − η‖ ≥ r} , r > 0.

If the set F is strictly convex (rotund) at ξ w.r.t. ξ∗, i.e., ĈF (r, ξ, ξ∗) > 0 ∀r > 0
then ξ is an exposed point of F and, in particular, ξ is the unique element of
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JF (ξ∗). So, in this case ξ is well defined whenever ξ∗ is fixed. Furthermore, given
a set U ⊂ ∂F 0 we say that F is uniformly rotund w.r.t. U if

inf
{
ĈF (r, ξ, ξ∗) : ξ∗ ∈ U

}
> 0 ∀r > 0.

By [14, Proposition 2.1] this property is equivalent to the uniform continuity of
JF (·) in the following sense

sup
η∈JF (η∗)

‖JF (ξ∗)− η‖ → 0 as ‖ξ∗ − η∗‖ → 0, ξ∗ ∈ U, η∗ ∈ ∂F 0 (10)

(we clearly identify JF (ξ∗) with its element whenever it is a singleton). Uniform
rotundity implies also the existence and the uniform continuity on U of the
Fréchet gradient ∇ρF 0 (ξ∗).

Besides the concepts of Convex Analysis above we will use the following no-
tations. For a lower semicontinuous function ϕ : H → R ∪ {+∞} we denote
by ∂pϕ (x), ∂lϕ (x), ∂−ϕ (x) and ∂cϕ (x) the proximal, limiting (Mordukhovich),
Fréchet and Clarke subdifferential, respectively, at a point x, ϕ (x) < +∞. All
the definitions and the basic facts of the calculus for non convex sets can be
found, e.g., in [5]. Here we observe only that the inclusions

∂pϕ (x) ⊂ ∂−ϕ (x) ⊂ ∂lϕ (x) ⊂ ∂cϕ (x) (11)

always hold, while one of the reverse inclusions takes place whenever ϕ (·) is
regular at x in some sense. For instance, ϕ (·) is said to be proximal (Clarke)
regular at x if ∂pϕ (x) = ∂lϕ (x) (respectively, ∂−ϕ (x) = ∂cϕ (x)).

If C ⊂ H is a nonempty closed set then the notion of some kind of normal
cone to C at a point x ∈ C can be given as the respective subdifferential of the
indicator function IC (·) equal to 0 on C and to +∞ elsewhere. In particular,
the proximal normal cone Np

C (x) := ∂pIC (x). Further on we denote by ∂∗C :=
{x ∈ ∂C : Np

C (x) = {0}} the effective boundary, which is dense in ∂C.
Returning to the problem of minimization in (7) let us formulate first an

approximation result, which is crucial for what follows. It can be proved similarly
as Lemma 5.1 [13] by using the Ekeland’s variational principle as well as the fuzzy
sum rule for the proximal subdifferentials (see [5, Theorem 1.8.3]).

Lemma 1. Let C ⊂ H be a nonempty closed set, and θ : H → R ∪ {+∞} be a
lower semicontinuous function, lipschitzean on C. If x ∈ H\C and {xn} ⊂ C is
a minimizing sequence for the function y �→ ρF 0 (x− y) + θ (y) on C then there
exist another minimizing sequence {x′n} ⊂ C and sequences {x′′n}, {vn} and {ξn}
such that vn ∈ ∂p (θ |C ) (x′n), ξn ∈ ∂ρF 0 (x− x′′n) and ‖x′n − xn‖+‖x′′n − xn‖ →
0, ‖vn − ξn‖ → 0 as n→∞. Here θ |C := θ + IC .

Notice that if the points x′n are such that ∂p (θ |C ) (x′n) = ∂pθ (x′n) +Np
C (x′n)

and ∂pθ (x′n) ⊂ γF for some 0 < γ < 1 then without loss of generality we can
assume that x′n ∈ ∂∗C and vn ∈ ∂F .
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3 Existence, Uniqueness and Regularity of Minimizers

Our standing hypothesis in what follows will be a slightly strengthened condition
than (9):

(H) there exists 0 < γ < 1
‖F‖‖F 0‖ such that

θ (x)− θ (y) ≤ γρF 0 (x− y) ∀x, y ∈ C,

where ‖F‖ := sup {‖ξ‖ : ξ ∈ F}.

Hence θ (·) is lipschitzean on C with the constant γ ‖F‖.
Given now an arbitrary point x0 ∈ ∂C let us emphasize the main local as-

sumptions, under which the well-posedness results hold:

(H1) the mapping x �→ JF 0 (∂p (θ |C ) (x) ∩ ∂F ) is single-valued and lips-
chitzean (with a constant L = L (x0) > 0) on the set

Cδ (x0) := {x ∈ ∂∗C : ‖x− x0‖ ≤ δ} , δ > 0;

(H2) in the δ-neighbourhood of x0 the sum rule ∂p (θ |C ) (x) = ∂pθ (x) +
Np

C (x) takes place;
(H3) F 0 is uniformly rotund w.r.t. the set

Uδ (x0) := ∂F ∩
⋃

x∈Cδ(x0)

∂p (θ |C ) (x). (12)

For each x ∈ H we denote by πF,θC (x) the (possibly empty) set of all minimizers
of the function y �→ ρF 0 (x− y) + θ (y) on C.

Theorem 1. Under the hypotheses (H1) − (H3) there exists a neighbourhood

U (x0) such that the mapping x �→ πF,θC (x) is single-valued and continuous on
U (x0).

Proof. Let us give a sketch of the proof. Taking without loss of generality δ > 0
such that δγ ‖F‖ <

(
1− γ ‖F‖

∥∥F 0
∥∥) /L, let us set

U (x0) :=

{
x ∈ H : ‖x− x0‖ <

(
1− γ ‖F‖

∥∥F 0
∥∥) δ

2 ‖F‖ ‖F 0‖ ,

û (x) < û (x0) +
1− γ ‖F‖

∥∥F 0
∥∥

L
− δγ ‖F‖

}
. (13)

Fix x ∈ U (x0) \C and a minimizing sequence {xn} ⊂ C of y �→ ρF 0 (x− y) +
θ (y). Let us choose {x′n} ⊂ C, {x′′n} ⊂ H , vn ∈ ∂p (θ |C ) (x′n) and ξn ∈
∂ρF 0 (x− x′′n) as in Lemma 1. Our goal is to prove that {x′n} (hence {xn} as
well) is a Cauchy sequence.
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To this end we show, first, that ‖x′n − x0‖ ≤ δ. It follows then from (H2) and
from the remark after Lemma 1 that x′n ∈ Cδ (x0) and vn ∈ ∂F for all n large
enough. Consider a (nonincreasing) sequence νn → 0+ such that

‖x′n − xn‖+ ‖x′′n − xn‖ ≤ νn; (14)

ρF 0 (x− x′n) + θ (x′n) ≤ û (x) + νn; (15)

‖vn − ξn‖ ≤ νn,

n = 1, 2, ... (see Lemma 1). Then using the hypothesis (H3) together with the
property (10) (applied to the gauge F 0) gives that

βn := sup
‖ξ−η‖≤νn

sup {‖JF 0 (ξ)− JF 0 (η)‖ : ξ ∈ ∂F, η ∈ Uδ (x0)} → 0 as n→∞.

Taking into account that vn ∈ Uδ (x0) (see (12)) and ξn ∈ ∂F we obtain
‖JF 0 (ξn)− JF 0 (vn)‖ ≤ βn, and, consequently, by (H1)

‖JF 0 (ξn)− JF 0 (ξm)‖ ≤ 2βn + L ‖x′n − x′m‖ (16)

for all m ≥ n ≥ 1.
On the other hand, by the elementary properties of the convex subdifferentials

and duality mappings we find that (x− x′′n) /ρF 0 (x− x′′n) = JF 0 (ξn), and hence

‖x′′n − x′′m‖ = ‖ρF 0 (x− x′′n) JF 0 (ξn)− ρF 0 (x− x′′m) JF 0 (ξm)‖ ≤
≤ ρF 0 (x− x′′n) ‖JF 0 (ξn)− JF 0 (ξm)‖+

+ |ρF 0 (x− x′′n)− ρF 0 (x− x′′m)|
∥∥F 0
∥∥ . (17)

The terms |ρF 0 (x− x′′n)− ρF 0 (x− x′′m)| and ρF 0 (x− x′′n) can be approximately
estimated by ‖x′n − x′m‖ and by û (x)− û (x0), respectively (we use for that the
inequalities (14) and (15)). Hence, taking into account also (16) we deduce from
(17) that

‖x′n − x′m‖ ≤ ‖x′′n − x′′m‖+ 2νn ≤ μn +

+
[
L (μ′

n + û (x)− û (x0) + δγ ‖F‖) + γ ‖F‖
∥∥F 0
∥∥] ‖x′n − x′m‖

for all m ≥ n ≥ 1, where {μn} and {μ′
n} are some sequences, converging to

zero. We conclude the proof recalling the definition of the neighbourhood U (x0).

Thus, the limit x̄ := limn→∞ x′n will be (unique) minimizer from πF,θC (x). The
continuous dependence of this singleton on x ∈ U (x0) also follows.

Remark 1. In fact, adapting the proof of Theorem 3.1 [14] we can show that the

mapping x �→ πF,θC (x) is locally lipschitzean on the same neighbourhood (13)
with the Lipschitz constant tending to +∞ as x tends to the boundary ∂U (x0).

4 Differentiability of the Viscosity Solution

We announce, first, a result on subdifferential regularity of the function (7) at
a fixed point x /∈ C, similar to Proposition 5.1 [14]. We see that the regularity
relies upon well-posedness of the minimizers studied in the previous section.
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Theorem 2. Let us fix x ∈ H\C and assume that

– πF,θC (y) is a singleton for each y, ‖x− y‖ ≤ δ, δ > 0;

– the restriction θ |C is proximally regular at x̄ := πF,θC (x);
– the following ”centred” Hölder property∥∥∥πF,θC (x)− πF,θC (y)

∥∥∥ ≤ K ‖x− y‖β ∀y, ‖x− y‖ ≤ δ,

holds with an exponent 1/2 < β ≤ 1 and a constant K = K (x) > 0.

Then the function û (·) is Clarke regular at x. More precisely,

∂cû (x) = ∂−û (x) = ∂ρF 0 (x− x̄) ∩ ∂− (θ |C ) (x̄) = ∅. (18)

Recalling Theorem 1 and Remark 1 we immediately obtain from the statement
above that under the hypotheses (H1)−(H3) the viscosity solution û (·) is Clarke
regular and (18) holds for all x ∈ U (x0) where the neighbourhood U (x0) is de-
fined by (13). Thus, for the (Fréchet) continuous differentiability it suffices to
require that the intersection ∂ρF 0 (x− x̄) ∩ ∂− (θ |C ) (x̄) is a singleton continu-
ously depending on x ∈ U (x0). However, this is difficult to verify directly because
the mapping (18) (which is nothing else than the Fréchet gradient ∇û (x)) de-

pends on the point x through a priori unknown function πF,θC (·). On the other
hand, this condition splits into two different hypotheses regarding the smooth-
ness either of both the function θ(·) and the set C, or of the polar gauge F 0.
Moreover, such hypotheses can be given plainly in terms of boundary points of
the sets C and F 0. Notice that C is said to be with smooth boundary near x0 if
Nl

C (x) ∩ ∂B is a singleton (say {nC (x)}) continuously depending on x ∈ ∂C,
‖x− x0‖ ≤ δ, δ > 0. Also the smoothness of F 0 can be equivalently substituted
by the rotundity assumption for F .

Thus, we arrive at the following result.

Theorem 3. Given x0 ∈ ∂C and δ > 0 let us assume the hypotheses (H1) −
(H3). Suppose also that at least one of the following two conditions holds:

(i) C has smooth boundary, and θ (·) is of class C1 near x0;
(ii) F is rotund w.r.t. each ξ∗ ∈ JF 0 (∂p (θ |C ) (x)), x ∈ ∂C with ‖x− x0‖ ≤ δ.

Then û (·) is Fréchet continuously differentiable on a neighbourhood U (x0). Fur-
thermore, in the first case we have

∇û (x) = ∇θ (x̄) + λnC (x̄) ,

where λ = λ (x̄) > 0 is the unique positive root of the equation

ρF (∇θ (x̄) + λnC (x̄)) = 1,

while in the second
∇û (x) = ∇ρF 0 (x− x̄) .

Here x̄ := πF,θC (x), x ∈ U (x0), as before.
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Proof. If the condition (i) is fulfilled then taking into account that πF,θC (·) is
single-valued and continuous on U (x0), and that

∂l (θ |C ) (x̄) = ∇θ (x̄) +Nl
C (x̄) = {∇θ (x̄) + λnC (x̄) : λ ≥ 0}

whenever x ∈ U (x0), we obtain that the intersection in (18) reduces to the
singleton {∇θ (x̄) + λ (x̄) nC (x̄)} (see also (11)). The continuity of ∇û (·) can be
shown now by the standart implicit function argument.

Under the alternative assumption (ii) it sufices to observe that due to a nec-
essary condition of optimality (in the proximal form) the (unique) minimizer

x̄ = πF,θC (x) must satisfy the relationship

∂p (θ |C ) (x̄) ∩NF 0

(
x− x̄

ρF 0 (x− x̄)

)
∩ ∂F = ∅. (19)

Then, it follows from (19) that x−x̄
ρF0(x−x̄) ∈ JF 0 (ξ) for some ξ ∈ ∂p (θ |C ) (x̄).

Therefore, if x ∈ U (x0) then x̄ is closed to x0 as well, and taking ξ∗ = x−x̄
ρF0 (x−x̄)

we deduce from (ii) that ρF 0 (·) is (Fréchet) continuously differentiable at ξ∗.
So, the intersection in (18) reduces to {∇ρF 0 (x− x̄)}, and the continuity w.r.t.
x also follows.

Remark 2. If in addition to the hypothesis (i) in Theorem 3 we assume that
both unit normal vector nC (·) and the gradient ∇θ (·) are Hölder continuous
with an exponent 0 < α ≤ 1 on a δ-neighbourhood of x0 then ∇û (·) will be
also Hölder continuous near x0 with the same exponent (we say that û (·) is of
class C1,αloc on U (x0)). One can derive the Hölder inequality for ∇û (·) by using
Theorem 3 and the estimates for the Hausdorff distance between the polars for
convex solids (see Lemma 2 [11]).
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Abstract. We consider the subcritical gas flow through star-shaped
pipe networks. The gas flow is modeled by the isothermal Euler equations
with friction. We stabilize the isothermal Euler equations locally around
a given stationary state on a finite time interval. For the stabilization we
apply boundary feedback controls with time-varying delays. The delays
are given by C1-functions with bounded derivatives. In order to analyze
the system evolution, we introduce an L2-Lyapunov function with delay
terms. The boundary controls guarantee the exponential decay of the
Lyapunov function with time.

Keywords: boundary feedback stabilization, Euler equations, gas net-
work, Lyapunov function, star-shaped network, time-varying delay.

1 Introduction

Recently, there has been intense research on the system dynamics in gas networks
(see e.g. [1,2,5,7,8,10,13]). Due to the pipe wall friction, there is a loss of pressure
along the pipe. A common model for the gas flow in pipes is the isothermal Euler
equations with friction, a 2× 2 PDE system of balance laws (see (1)). We study
the isothermal Euler equations on a star-shaped network ofN (N ≥ 2) pipes that
meet at a central node ω. The flow at the node ω is governed by the continuity
of the density and conservation of mass (see (5)).

Our main result, stated in Theorem 1, is a method to stabilize the gas flow
locally around a given stationary subcritical state on a finite time interval. To do
so, we use boundary feedback controls with varying delays at the pipe ends which
are not at the node ω (see (16)). In order to measure the system evolution, we
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introduce a network Lyapunov function (see (22)) which is the sum of a weighted
and squared L2-norm (see (20)) and a delay term (see (21)) for each pipe. The
feedback controls guarantee the exponential decay of the Lyapunov function with
time (see (36)) and, hence, the exponential stability of the system.

In contrast to a previous work which studies only the case of constant delays
(see [7]), the novelty of this paper is that we consider nonconstant, i.e. time-
dependent, delays. This is very important for the daily operation of real gas
networks. E.g., in the control of such networks via electrical and mechanical
systems, nonconstant time delays often appear (see [3]).

This paper is structured as follows: In Sect. 2 we give the network notation,
consider the isothermal Euler equations in terms of the physical and charac-
teristic variables and present the coupling conditions at the node ω. In Sect. 3
stationary and nonstationary states are studied. The stabilization method, i.e.
the feedback controls, the Lyapunov function and the exponential stability result
(Theorem 1), are stated in Sect. 4. In Sect. 5 we prove Theorem 1.

The weighted and squared L2-norm from (20) for the Euler equations has first
been presented in [8]. It is an extension of the Lyapunov function introduced in
[4]. Delay terms of the form (21) have been presented in [12] for the time-delayed
stabilization of the wave equation. Related questions of the stabilization of the
wave equation are e.g. studied in [6,9,14].

2 Gas Flow in a Star-Shaped Pipe Network

In this section we consider the gas flow in a star-shaped pipe network. First,
we give the network notation. Then, we present the isothermal Euler equations
in terms of the physical variables (see (1)) and in terms of the characteristic
variables (see (3)). The coupling conditions at the central node of the network
are stated in (5).

2.1 Network Notation

We consider a star-shaped network of N (N ≥ 2) cylindrical pipes with the
same diameter δ > 0 that meet at a central node ω. We define the index set
I = {1, ..., N} and number the pipes from pipe 1 to pipe N . Variables referring
to pipe i (i ∈ I) are denoted with a superscript (i). We model the pipes by a
one-dimensional space model and parameterize the length L(i) > 0 of pipe i by
the space interval [0, L(i)] such that the end x = 0 is at the node ω. We consider
the system on a finite time interval [0, T ] with T > 0.

2.2 Isothermal Euler Equations in Physical Variables

A common model for the system dynamics in gas pipes is the isothermal Euler
equations with friction, a hyperbolic 2×2 system of balance laws (see [1,2,10,13]):
For pipe i (i ∈ I) they have the following form on [0, T ]× [0, L(i)]:
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⎧⎨⎩ ∂t ρ
(i)(t, x) + ∂x q

(i)(t, x) = 0 ,

∂t q
(i)(t, x) + ∂x

(
(q(i)(t,x))2

ρ(i)(t,x)
+ a2ρ(i)(t, x)

)
= − θ

2
q(i)(t,x) |q(i)(t,x)|

ρ(i)(t,x)

(1)

where ρ(i)(t, x) > 0 is the density of the gas and q(i)(t, x) = 0 the mass flux.
The sign of q(i) depends on the direction of the gas flow. It is positive if the gas
in pipe i flows away from the node ω. The constant a > 0 is the sonic speed in
the gas and the constant θ = ν/δ is the quotient of the friction factor ν > 0
and the pipe diameter δ > 0. The first equation in (1) states the conservation of
mass and the second equation is the momentum equation. In this paper we study
subsonic or subcritical C1-states, i.e. C1-states with |q(i)|/ρ(i) < a for all i ∈ I.
The equations (1) have the same form for each pipe. However, our calculations
would also be true if we had different pressure laws on different pipes.

2.3 Isothermal Euler Equations in Characteristic Variables

The equations (1) can be transformed to the Riemann invariants (characteristic
variables)

R
(i)
± = −q(i)/ρ(i) ∓ a ln(ρ(i)) . (2)

For the calculation of the Riemann invariants see [5,8]. In terms of R
(i)
± the

system (1) has the form

∂t

(
R

(i)
+

R
(i)
−

)
+

(
λ
(i)
+ 0

0 λ
(i)
−

)
∂x

(
R

(i)
+

R
(i)
−

)
= −θ

8
(R

(i)
+ +R

(i)
− ) |R(i)

+ +R
(i)
− |
(
1
1

)
(3)

with the eigenvalues

λ
(i)
± =

q(i)

ρ(i)
± a = −

R
(i)
+ +R

(i)
−

2
± a . (4)

In the subsonic case, λ
(i)
+ is strictly positive and λ

(i)
− strictly negative.

2.4 Coupling Conditions

At the node ω, i.e. at the ends x = 0 of the pipes, we have the following coupling
conditions in terms of the physical variables (t ∈ [0, T ]) (see [1,11]):

ρ(1)(t, 0) = ρ(i)(t, 0) (i ∈ I\{1}) and
∑
i∈I

q(i)(t, 0) = 0 . (5)

The first equation in (5) says that the density is continuous at the node ω. Due
to the parameterization of the pipes, the second equation in (5) means that



258 M. Gugat, M. Dick, and G. Leugering

the total ingoing mass flux is equal to the total outgoing mass flux at ω. The

conditions (5) can equivalently be stated in terms of R
(i)
± as (t ∈ [0, T ])(

R
(1)
+ (t, 0), ..., R

(N)
+ (t, 0)

)
=
(
R

(1)
− (t, 0), ..., R

(N)
− (t, 0)

)
Aω (6)

with the orthogonal, symmetric (N×N)-matrix Aω = (akl)
N
k,l=1 with the entries

akk = (N − 2)/N (k ∈ I) and akl = −2/N (k, l ∈ I, k = l) . (7)

3 Stationary and Nonstationary States

3.1 Stationary States

The existence and behavior of stationary solutions of the isothermal Euler equa-
tions, i.e. solutions which do not explicitly depend on the time t, is studied in
[5,8]. We denote the stationary variables as ρ̄(x), q̄(x), R̄±(x) and λ̄±(x). In [5,8]
it is shown that q̄(x) is constant along a pipe and ρ̄(x) is strictly monotonically
decreasing in the direction of the gas flow. Furthermore, a stationary subsonic
C1-solution of the isothermal Euler equations exists on the whole pipe if the pipe
length is shorter than a critical length (see (8)). The critical length depends on
the inflow density, the mass flux, the friction factor and the pipe diameter. For
typical high-pressure gas pipes the critical length is around 180km (see [5]).

For the system (1) on a star-shaped network with the conditions (5), the
existence and behavior of stationary subsonic C1-solutions is in detail discussed
in [7]. In the following we summarize the main results from [7]: The stationary
mass fluxes q̄(i) = 0 are constant and have to satisfy

∑
i∈I q̄

(i) = 0. At the node

ω, we have a constant density ρ̄ω with ρ̄(i)(0) = ρ̄ω and |q̄(i)|/ρ̄ω < a for all
i ∈ I. Furthermore, the lengths of the pipes with positive mass flux, i.e. with
q̄(i) > 0, have to satisfy

L(i) <
1

θ

(
a2

ρ̄2ω
(q̄(i))2

− 1 + 2 ln

(
q̄(i)

aρ̄ω

))
. (8)

3.2 Nonstationary States

Assume that on the star-shaped network we have a given stationary subsonic

state (ρ̄(i)(x), q̄(i)) with the corresponding Riemann invariants (R̄
(i)
+ (x), R̄

(i)
− (x))

∈ (C1([0, L(i)]))2 and the eigenvalues λ̄(i)(x) (i ∈ I) (see (2), (4)). We define the
numbers (see (4))

σ(i) = sign(q̄(i)) = −sign(R̄(i)
+ + R̄

(i)
− ) ∈ {−1, 1} . (9)

Now we consider a nonstationary state (R̄
(i)
+ (x) + r

(i)
+ (t, x), R̄

(i)
− (x) + r

(i)
− (t, x))

on [0, T ] × [0, L(i)] in a local neighborhood of (R̄
(i)
+ , R̄

(i)
− ). That is we assume

the given stationary state R̄
(i)
± (x) to be slightly perturbed by r

(i)
± (t, x) where the
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C1-norms ||r(i)± ||C1([0, T ]×[0, L(i)]) are small. In particular, we suppose that the
mass flux directions of the nonstationary state are the same as of the stationary
state, i.e. (i ∈ I) (see (9))

σ(i) = −sign(R̄(i)
+ + R̄

(i)
− + r

(i)
+ + r

(i)
− ) . (10)

The stabilization method presented in Sect. 4 guarantees that the absolute values

of r
(i)
± are small enough (see (24), (35)), such that (10) holds and such that the

direction of the mass fluxes does not change during the stabilization process.

From (3) we obtain the following quasilinear system for r
(i)
± (t, x) (i ∈ I)⎧⎨⎩∂t r

(i)
+ + (λ̄

(i)
+ − r

(i)
+ +r

(i)
−

2 ) ∂x r
(i)
+ = (r

(i)
+ + r

(i)
− )(−K(i)

+ + σ(i) θ
8 (r

(i)
+ + r

(i)
− )) ,

∂t r
(i)
− + (λ̄

(i)
− − r

(i)
+ +r

(i)
−

2 ) ∂x r
(i)
− = (r

(i)
+ + r

(i)
− )(−K(i)

− + σ(i) θ
8 (r

(i)
+ + r

(i)
− ))

(11)
on [0, T ]× [0, L(i)] with the strictly positive C1-functions

K
(i)
± (x) =

θ

8
|R̄(i)

+ (x) + R̄
(i)
− (x)|

4a∓ (R̄
(i)
+ (x) + R̄

(i)
− (x))

2a∓ (R̄
(i)
+ (x) + R̄

(i)
− (x))

> 0 . (12)

The linearity of the equation (6) implies that for r
(i)
± (t, 0) at the node ω we have

the equation (t ∈ [0, T ])(
r
(1)
+ (t, 0), ..., r

(N)
+ (t, 0)

)
=
(
r
(1)
− (t, 0), ..., r

(N)
− (t, 0)

)
Aω (13)

with the matrix Aω as in (7).

4 Feedback Stabilization with Time-Varying Delay

In this section we present a method for the stabilization of the system (11) on
[0, T ]× [0, L(i)] with time-delayed feedbacks. The corresponding boundary con-
trols are given in (16). In order to measure the system evolution, we define the
Lyapunov function F(t) in (22) with the weighted and squared L2-norms E(i)(t)
in (20) and the delay terms D(i)(t) in (21). Theorem 1 states the existence of
a unique C1-solution of (11) with small C1-norm (see (35)) for which F(t) de-
cays exponentially with time (see (36)). Hence, Theorem 1 gives the exponential

stability of the system (11) around (r
(i)
+ , r

(i)
− ) = (0, 0).

4.1 Boundary Feedback Controls with Time-Varying Delay

Let a finite time T > 0 and a stationary subsonic state (R̄
(i)
+ (x), R̄

(i)
− (x)) ∈

(C1([0, L(i)]))2 on the star-shaped network be given with the eigenvalues λ̄
(i)
± (x)

as in (4) (i ∈ I). Define the numbers σ(i) ∈ {−1, 1} as in (9) and the functions
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K
(i)
± (x) ∈ C1([0, L(i)]) as in (12). Let functions τ (i)(t) ∈ C1([0, T ]) (i ∈ I) be

given that satisfy (t ∈ [0, T ]):

0 < τ (i)(t) <
T

2
and | d

dt
τ (i)(t)| < 1 . (14)

Define the constants

τ (i) = max
t∈[0, T ]

τ (i)(t), τ̂ (i) = max
t∈[0, T ]

| d
dt
τ (i)(t)| and τmax = max

i∈I

{
τ (i)
}
.

(15)

For a nonstationary state R̄
(i)
± (x) + r

(i)
± (t, x) on [0, T ]× [0, L(i)] we consider the

system (11) with the condition (13) with the matrix Aω as in (7). At the end
x = L(i) of pipe i (i ∈ I) we apply the controls

r
(i)
− (t, L(i)) =

⎧⎪⎪⎨⎪⎪⎩
ϑ(i)(t) (t ∈ [0, τ (i)]) ,

(1− ς(i)(t))ϑ(i)(t) + ς(i)(t) k(i) r
(i)
+ (t− τ (i)(t), L(i)) (t ∈ (τ (i), 2τ (i)]) ,

k(i) r
(i)
+ (t− τ (i)(t), L(i)) (t ∈ (2τ (i), T ])

(16)

with feedback constants k(i) ∈ (−1, 1) and functions ϑ(i)(t) ∈ C1([0, 2τ (i)]) and
ς(i)(t) ∈ C1([τ (i), 2τ (i)]) that have the following properties:

ς(i)(τ (i)) =
d

dt
ς(i)(τ (i)) =

d

dt
ς(i)(2τ (i)) = 0 and ς(i)(2τ (i)) = 1 . (17)

4.2 Network Lyapunov Function with Delay Terms

In order to define the network Lyapunov function, we define the numbers (i ∈ I)

μ(i) =

(∫ L(i)

0

1

λ̄
(i)
+ (x)

+
1

|λ̄(i)− (x)|
dx

)−1

> 0 (18)

and the functions (i ∈ I, x ∈ [0, L(i)])

h
(i)
± (x) = exp

(
−μ(i)

∫ x

0

1

λ̄
(i)
± (ξ)

dξ

)
> 0 . (19)

For constants A
(i)
± > 0 we define the weighted and squared L2-norms (i ∈ I,

t ∈ [0, T ])

E(i)(t) =

∫ L(i)

0

A
(i)
+

λ̄
(i)
+ (x)

h
(i)
+ (x) (r

(i)
+ (t, x))2 +

A
(i)
−

|λ̄(i)− (x)|
h
(i)
− (x) (r

(i)
− (t, x))2 dx

(20)
and the delay terms (i ∈ I, t ∈ [τ (i), T ])

D(i)(t) =

∫ τ (i)(t)

0

A
(i)
+ h

(i)
+ (L(i)) exp(−μ(i)s) (r

(i)
+ (t− s, L(i)))2 ds . (21)
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The network Lyapunov function F(t) is defined as (t ∈ [τmax, T ])

F(t) =
∑
i∈I

E(i)(t) + D(i)(t) . (22)

Constants of the form μ(i) in (18) and functions of the form h
(i)
± (x) and E(i)(t)

in (19) and (20) have been introduced in [8]. Delay terms of the form (21) have
been presented in [12].

4.3 Main Result: Exponential Stability

Theorem 1 states the existence of a unique C1-solution of the system (11) on
[0, T ]× [0, L(i)] (i ∈ I) with the boundary conditions (13) and (16) and initial
data of the form (i ∈ I, x ∈ [0, L(i)])

(r
(i)
+ (0, x), r

(i)
− (0, x)) = (ϕ

(i)
+ (x), ϕ

(i)
− (x)) (23)

with functions ϕ
(i)
± ∈ C1([0, L(i)]). For this solution, the function F(t) decays

exponentially on [2τmax, T ] (see (36)). The decay rate is η = mini∈I α
(i)β(i)μ(i)

with numbers α(i) ∈ (0, 1) and β(i) ∈ (0, 1). The C1-norm of the solution

r
(i)
± (t, x) is bounded by a constant ε1 > 0 (see (35)) which has to satisfy (i ∈ I)

ε1 < min
x∈[0, L(i)]

|λ̄(i)± (x)| , 2ε1 < min
x∈[0, L(i)]

|R̄(i)
+ (x) + R̄

(i)
− (x)| (24)

and

ε1

(
θ

4
+

1

2

)(
3 + max

{
exp(1)

A
(i)
−

A
(i)
+

λ̄
(i)
+ (L(i))

|λ̄(i)
− (L(i))|

,
A

(i)
+

A
(i)
−

|λ̄(i)
− (0)|

λ̄
(i)
+ (0)

})
< (1− β(i))α(i)μ(i).

(25)

The C1-norms of the initial data ϕ
(i)
± and the functions ϑ(i) in the controls (16)

have to be sufficiently small. More precisely, there exists a number ε2 ∈ (0, ε1]
such that the following inequalities have to hold:

||ϕ(i)
± ||C1([0, L(i)]) ≤ ε2 (26)

and
||ϑ(i)||C1([0, τ (i)]) ≤ ε2 , ||(1− ς(i))ϑ(i)||C1([τ(i), 2τ (i)]) ≤

ε2
2
. (27)

Note that the second inequality in (27) holds for any ς(i) if the C1-norm of ϑ(i) on
[τ (i), 2τ (i)] is small enough. For Theorem 1 we define the positive real numbers
(i ∈ I)

U
(i)
± = max

x∈[0, L(i)]

∣∣∣∣∣ λ̄
(i)
± (x)

λ̄
(i)
∓ (x)

∣∣∣∣∣ K
(i)
∓ (x)

K
(i)
± (x)

> 0 (28)

and

V
(i)
± = min

x∈[0, L(i)]

∣∣∣∣∣ λ̄
(i)
± (x)

λ̄
(i)
∓ (x)

∣∣∣∣∣ K
(i)
∓ (x)

K
(i)
± (x)

(
1 +

(1 − α(i))μ(i)

K
(i)
∓ (x)

)
> 0 . (29)
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Theorem 1. Consider a star-shaped network of pipes as described in Sect. 2.1.
Let a finite time T > 0 and functions τ (i)(t) ∈ C1([0, T ]) with (14) be given
(i ∈ I). Define the constants τ (i), τ̂ (i) and τmax as in (15). Let real numbers

α(i) ∈ (0, 1), β(i) ∈ (0, 1) and a stationary subsonic state (R̄
(i)
+ (x), R̄

(i)
− (x)) ∈

(C1([0, L(i)]))2 with the eigenvalues λ̄
(i)
± (x) as in (4) be given (i ∈ I) that satis-

fies the coupling conditions (6). Define the numbers σ(i) ∈ {−1, 1} and μ(i) > 0

as in (9) and (18) and the functions K
(i)
± > 0 and h

(i)
± > 0 as in (12) and (19).

Define the numbers U
(i)
± > 0 and V

(i)
± > 0 as in (28) and (29) and assume that

we have
exp(1)U

(i)
+ ≤ V

(i)
+ or exp(1)U

(i)
− ≤ V

(i)
− . (30)

Choose constants A
(i)
± > 0 that satisfy

A
(i)
+ ≤ 1 ≤ A

(i)
− (31)

and assume that we have

A
(i)
+ /A

(i)
− ∈ [exp(1)U

(i)
+ , V

(i)
+ ] or A

(i)
− /A

(i)
+ ∈ [U

(i)
− , exp(−1)V (i)

− ] . (32)

Choose a real number ε1 > 0 that satisfies (24) and (25) for all i ∈ I. Then
there exists ε2 ∈ (0, ε1] such that the following statements hold:

Choose functions ϑ(i)(t) ∈ C1([0, 2τ (i)]), ς(i)(t) ∈ C1([τ (i), 2τ (i)]) and ϕ
(i)
± (x)

∈ C1([0, L(i)]) (i ∈ I) that satisfy (17), (26) and (27) and such that the C1-
compatibility conditions are satisfied at the points (t, x) = (0, 0) and (t, x) =
(0, L(i)) (see Remark 1). Choose constants k(i) ∈ (−1, 1) (i ∈ I) that satisfy

exp(1) (k(i))2A
(i)
− ≤ A

(i)
+ exp(−μ(i)τ (i)) (1 − τ̂ (i)) (33)

and
|k(i)| ≤ ε2/(8ε1||ς(i)||C1([τ(i), 2τ (i)])) . (34)

Then the initial-boundary value problem (11), (13), (16), (23) has a unique

solution (r
(i)
+ , r

(i)
− ) ∈ (C1([0, T ]× [0, L(i)]))2 that satisfies

||r(i)± ||C1([0, T ]×[0, L(i)]) ≤ ε1 . (35)

For this solution define the functions E(i)(t), D(i)(t) and F(t) as in (20), (21)
and (22). Then the Lyapunov function F(t) satisfies the following inequality with
η = mini∈I α

(i)β(i)μ(i):

F(t) ≤ F(2τmax) exp (−η(t− 2τmax)) for t ∈ [2τmax, T ] . (36)

Remark 1. The C1-compatibility conditions guarantee that the initial data (23)
and the boundary conditions (13) and (16) and their first derivatives fit together
at the points (t, x) = (0, 0) and (t, x) = (0, L(i)) (i ∈ I). They can be calculated

from ϕ
(i)
± , ϑ

(i)
± , Aω and the equations (11) (see [7]).
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Remark 2. The inequalities (31) and the second assumption in (32) hold if, e.g.,

V
(i)
− is sufficiently large such that

max{1, U (i)
− } ≤ exp(−1)V (i)

− . (37)

More precisely, if (37) is satisfied, we can first choose the quotient A
(i)
− /A

(i)
+ such

that

A
(i)
− /A

(i)
+ ∈ [max{1, U (i)

− }, exp(−1)V (i)
− ] .

Then, without changing the quotient A
(i)
− /A

(i)
+ , we choose A

(i)
± > 0 such that

(31) holds. The conditions (32) and (37) are satisfied if the number μ(i) > 0
from (18) is sufficiently large which is the case if the length L(i) is not too long.

5 Proof of the Main Result Stated in Theorem 1

In this section we prove Theorem 1. The existence of a unique solution of (11)
follows from Theorem 2.1 in [15] where initial-boundary value problems for first
order quasilinear hyperbolic systems are studied (see also [5,8]). For the proof of
(36) we use the estimates (38), (40) and (41) for d

dtE(i)(t), d
dtD(i)(t) and d

dtF(t).

The estimate (38) is the same as in [7] where α(i) = β(i) = 1/2 (i ∈ I). The
calculation of (40) is more complicated than in [7] where only constant delays
are considered. Using integration by parts, Young’s Inequality and the conditions
(25) and (32), we obtain the following estimate for d

dtE(i)(t) (t ∈ [0, T ]):

d

dt
E (i)(t) ≤ −α(i)β(i)μ(i)E (i)(t)+

[
A

(i)
− h

(i)
− (x)(r

(i)
− (t, x))2 − A

(i)
+ h

(i)
+ (x)(r

(i)
+ (t, x))2

]L(i)

x=0
.

(38)

For a detailed calculation of (38) see [7]. For the derivative d
dtD(i)(t) we get

(t ∈ [τ (i), T ])

d
dt
D(i)(t) = 2

∫ τ(i)(t)

0
A

(i)
+ h

(i)
+ (L(i)) exp(−μ(i)s) r

(i)
+ (t− s, L(i)) ∂tr

(i)
+ (t− s, L(i)) ds

+ A
(i)
+ h

(i)
+ (L(i)) exp(−μ(i)τ (i)(t)) (r

(i)
+ (t− τ (i)(t), L(i)))2 d

dt
τ (i)(t) .

(39)

Using the equation ∂sr
(i)
+ (t − s, L(i)) = −∂tr(i)+ (t − s, L(i)) and integration by

parts, from (39) we obtain (t ∈ [τ (i), T ])

d
dtD(i)(t) = −μ(i)D(i)(t) + A

(i)
+ h

(i)
+ (L(i))(r

(i)
+ (t, L(i)))2

− A
(i)
+ h

(i)
+ (L(i)) exp(−μ(i)τ (i)(t))(r

(i)
+ (t− τ (i)(t), L(i)))2(1 − d

dtτ
(i)(t)) .

Hence, the inequalities (14) and the definition of τ (i) and τ̂ (i) in (15) imply
(t ∈ [τ (i), T ])

d
dtD(i)(t) ≤ −μ(i)D(i)(t) + A

(i)
+ h

(i)
+ (L(i))(r

(i)
+ (t, L(i)))2

− A
(i)
+ h

(i)
+ (L(i)) exp(−μ(i)τ (i))(r

(i)
+ (t− τ (i)(t), L(i)))2(1− τ̂ (i)) .

(40)
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From (38) and (40) we obtain the following estimate for d
dtF(t) with η =

mini∈I α
(i)β(i)μ(i) (t ∈ [τmax, T ]):

d

dt
F(t) ≤ − ηF(t) + B0(t) + BL(t) (41)

with the boundary terms

B0(t) =
∑
i∈I

A
(i)
+ (r

(i)
+ (t, 0))2 − A

(i)
− (r

(i)
− (t, 0))2 ,

BL(t) =
∑
i∈I

[
A

(i)
− h

(i)
− (L(i)) (r

(i)
− (t, L(i)))2

− A
(i)
+ h

(i)
+ (L(i)) exp(−μ(i)τ (i)) (1− τ̂ (i)) (r

(i)
+ (t− τ (i)(t), L(i)))2

]
.

The equation (13), the orthogonality of the matrix Aω from (7) and the in-
equalities (31) yield that we have B0(t) ≤ 0 for all t ∈ [τmax, T ]. Furthermore,
the boundary controls (16) and the inequality (33) guarantee BL(t) ≤ 0 for all
t ∈ [2τmax, T ]. Thus, from (41) we obtain (t ∈ [2τmax, T ])

d

dt
F(t) ≤ − ηF(t)

which implies the inequality (36).
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Abstract. The control of complex forming processes (e.g., glass forming
processes) is a challenging topic due to the mostly strongly nonlinear be-
havior and the spatially distributed nature of the process. In this paper a
new approach for the real-time control of a spatially distributed temper-
ature profile of an industrial glass forming process is presented. As the
temperature in the forming zone cannot be measured directly, it is esti-
mated by the numerical solution of the partial differential equation for
heat transfer by a finite element scheme. The numerical solution of the
optimization problem is performed by the solver HQP (Huge Quadratic
Programming). In order to meet real-time requirements, in each sampling
interval the full finite element discretization of the temperature profile is
reduced considerably by a spline approximation. Results of the NMPC
concept are compared with conventional PI control results. It is shown
that NMPC stabilizes the temperature of the forming zone much better
than PI control. The proposed NMPC scheme is robust against model
mismatch of the disturbance model. Furthermore, the allowed param-
eter settings for a real-time application (i.e., control horizon, sampling
period) have been determined. The approach can easily be adapted to
other forming processes where the temperature profile shall be controlled.

1 Introduction

The control of complex forming processes (e.g., glass forming processes) is a
challenging topic due to the mostly strongly nonlinear behavior and the spa-
tially distributed nature of the process. The nonlinearity is caused on the one
hand by the physics of the process (e.g., radiation) and on the other hand by
nonlinear material properties (e.g., memory effect). In recent years considerable
progress has been made in the field of simulation tools (e.g., finite element based
simulation of complex rheological processes [11], [1]) and model order reduc-
tion (MOR) methods [4], [3]. Consequently, the use of these (reduced) models
for process control and optimization is in the focus of actual research activities
[2]. Nonlinear Model Predictive Control (NMPC) concepts play an important
role in this context, as NMPC can be applied for nonlinear and spatially dis-
tributed dynamic systems. Main advantages of NMPC approaches are that the
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Fig. 1. Glass forming process overview

performance criteria can be designed in a transparent way and that even time de-
pendent constraints can be applied to manipulated, output and state variables of
the controlled system. Drawbacks of NMPC are that computational costs for the
solution of the nonlinear programming problems often are high, hence powerful
optimization solvers are needed [8], [9]. A suited solver for large scale dynamic
optimization problems is HQP (Huge Quadratic Programming, [10]). HQP has
been used e.g., for NMPC appplications in process industry [12], power plants
[7] as well as for optimal management of water resources [5].

For complex forming processes in many cases an optimal spatially distributed
(and sometimes time-dependent) viscosity profile of the material has to be as-
sured. As viscosity is difficult to measure on-line, temperature often is used
as an auxiliary controlled variable. Hence the problem consists in controlling a
spatially distributed temperature profile. In [6] a first NMPC concept has been
investigated. In this work a predictive functional control scheme (PFC) has been
applied in order to optimize the forming control loops, but not the temperature
control. Only a very short prediction horizon is assumed in the mentioned sim-
ulation studyy. In the present paper a new approach for the real-time control of
a spatially distributed temperature profile is presented. As the temperature in
the forming zone cannot be measured directly, it is estimated by the numerical
solution of the partial differential equation (PDE) for heat transfer by a finite
element (FE) scheme. As the dimension of the state space model, which is result
of the FE algorithm, is too large for real-time optimization, in each sampling
interval the full finite element discretization of the temperature profile is reduced
considerably by a spline approximation. The numerical solution of the optimiza-
tion problem is performed by HQP. The approach can easily be adapted to other
forming processes where the temperature profile shall be controlled.

The paper is organized as follows. Section 2 describes an industrial glass form-
ing process to which the NMPC approach is applied. The details of the proposed
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NMPC concept are presented in section 3. In section 4 the results of the NMPC
concept are discussed. Section 5 gives some conclusions.

2 Optimal Temperature Profile of an Industrial Glass
Forming Process

The NMPC concept which will be introduced in the next section has been applied
to an industrial glass forming process (Fig. 1). A vertically hung glass cylinder
is fed into a ring-shaped furnace where it begins to liquefy. It then starts flowing
downwards viscously and is taken up by pullers which pull the resulting glass
tube with an appropriate speed. It is essential for the process to stabilize the
viscosity profile along the cylinder. The viscosity can be controlled by the furnace
temperature.

Figure 1 depicts the relevant sensors and actuators regarding the temperature
control: As the furnace tightly encloses the glass cylinder, there are only three
temperature sensors available – one each right above (Tcyl) and below (Ttube)
the furnace, and one which measures the furnace temperature (Tfurnace) itself.
There is no possibility to measure the temperature in the forming zone (Tform)
directly. Thus, a strategy is needed to reconstruct this control variable using
the measurements of the only three available sensors. This is achieved by a
finite element model. The forming temperature is controlled by increasing or
decreasing the heating power and hence furnace temperature.

In order to ensure optimal product quality there are three major variables
which must be controlled in an optimal way. The first two are the feeding and
pulling speed (respectively force) which are accounted for by a common control
loop. We call this one the geometry control. The third variable is the (spatially
distributed) temperature of the glass in the forming zone, whose control is done
by a seperate loop, which we call the temperature control. In the scope of this
paper we will concentrate on the latter, i.e., the temperature control.

For glass the system’s behavior is in general strongly nonlinear due to the
impact of radiation. The spatio-temporal temperature distribiution can be cal-
culated solving the heat transfer PDE. If a symmetric cylinder is assumed and
radial temperature distribution the following one dimensional PDE describes the
temperature distribution T (z, t) along the vertical z-axis:

ρcp(T )
∂T

∂t
= λ(T )

∂2T

∂z2
+ q̇conv(T, z) + q̇rad,oven(T, z) + q̇rad,dist(z, t) (1)

Radiative heat transfer exchange between the oven and the glass is described by
the nonlinear term q̇rad,oven (Stefan-Boltzmann law). Radiation inside the glass
is considered by means of an effective heat conduction coefficient λ(T ) which is
nearly exponential increasing with temperature and hence introduces a second
nonlinearity in the model. The term q̇conv describes the convective heat transfer
due to the movement of the glass cylinder. A further nonlinearity is introduced
by temperature dependence of the specific heat capacity cp(T ).
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At the end of a batch production (i.e., the when the length of the cylinder
which is fed on the oven tends to zero), disturbances arise due to radiation ef-
fects which are caused by the end of the cylinder. This radiative disturbance are
described by the space and time dependent term q̇rad,dist(z, t). As the distur-
bance cannot be measured directly, it is estimated online by a special parameter
estimation approach.

Due to the transport length and the corresponding dead time it is important
that the disturbances are suppressed as early as possible by an optimal strategy
of furnace temperature during process end phase. As the steadiness of the vis-
cosity in the forming zone exerts the main impact upon the quality of the final
product, an optimal control must stabilize the spatially distributed temperature
(and hence viscosity) profile of the forming zone as good as possible.

To accommodate for the deficiencies of the PI controller we developed a control
concept which explicitly takes into account the large dead time of the process and
the disturbances arising during the end phase. As a PI controller can only react
to changes in the control variable which are already in effect, we switched over
to a predictive control strategy, which is able to take corrective action before any
impact of the disturbances is visible to the temperature sensors. This behavior is
necessary since the delay time of the furnace is too large to lower the temperature
in sufficient time. Otherwise, overshooting of the forming temperature would be
unavoidable.

As the prediction model for the NMPC scheme we exploit the finite element
model of the 1D temperature distribution T (z, t) along the vertical z-axis by
solving the PDE (1) online. The finite element model considers heat conduction,
convection by the movement of the glass, radiation and the time dependent
disturbances caused by the end of the cylinder.

3 Concept for Real-Time Optimization of a Spatially
Distributed Temperature Profile

In our solution concept (Fig. 2) we propose a real-time nonlinear model predictive
control of the temperature of a forming zone (here for glass forming processes). In
most cases the temperature profile cannot be measured directly, hence it has to
be estimated by a spatially distributed model. The one dimensional heat transfer
PDE (1) has to be solved numerically for the temperature distribution T (z, t),
where z denotes the height and t the time. The time-dependent disturbances at
the end of a cylinder are estimated by a disturbance model using the knowledge
from previous productions to determine the model’s parameters in a predictive
way.

The NMPC approach is formulated as follows. The predicted values of the con-
trolled variable y(t) are collected in the vector ŷ for the timesteps from tk...tk+np ,
where tk is the actual time and np the prediction horizon. The predicted values
are calculated by the model

ŷ = F (xk, Δu) (2)
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Fig. 2. NMPC temperature control scheme

Fig. 3. Spline approximation
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Fig. 4. HQP update step

where xk denotes the actual state of the model and the vector Δu denotes all
changes of the controlled variables from the actual time step tk to the prediction
horizon (we set prediction horizon np equal control horizon np). The optimization

J = (w − ŷ)�Q (w − ŷ) +Δu�RΔu (3)

Δuopt = argmin
Δu

J (4)

is performed subject to

Δumin ≤ Δu(k + j|k) ≤ Δumax j = 0, . . . , nC − 1

ŷmin ≤ ŷ(k + j|k) ≤ ŷmax j = 1, . . . , nP (5)

In this formulation the changes of the manipulated variable u are calculated. If
necessary, also the absolute value u could be considered directly in the optimiza-
tion problem.

The proposed control concept has been implemented in a C++ application
by utilizing the software suite HQP (Huge Quadratic Programming), a solver
for large scale nonlinear programming problems, to solve the arising nonlinear
optimal control problems. In order to meet real-time requirements, in each sam-
pling interval the full finite element discretization of the temperature profile is
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reduced considerably by a spline approximation (see Fig. 4 and 3). The spline
approximation is admissible due to the temperature profile’s smoothness. In our
application the number of states could be reduced from 200 to 30.

4 Results

We evaluated the control performance resulting with the proposed NMPC con-
cept and compared it to a PI controller using previously recorded production
data. It is shown that NMPC stabilizes the temperature of the forming zone
much better than PI control. As can be seen in Fig. 5 with very small prediction
and control horizon (np = nc = 2) the performance of NMPC and PI control do
not differ very much. In subplot 1 of Fig. 5 the deviation eforming from the refer-
ence value is shown for a production time of 40 minutes. In subplot 2 the change
of the furnace temperature (manipulated variable) compared to the value at
starting time t = 0 min. can be seen (i.e., T̄furnace(t) = Tfurnace(t)− Tfurnace(0)).
Subplot 3 shows the changes of furnace temperature in each sample time. These
changes have been restricted to ±5K during the optimization in order to guar-
antee a smooth change of the furnace temperature. Finally, in subplot 4 the
computation time for each sample interval (30 s) is shown. It can be seen that
the computation time does not differ very much (about 2 s). Fig. 6 shows the
results with a much larger prediction and control horizon (np = nc = 30). From
subplot 1 it can be observerd that the control deviation with NMPC is much
smaller compared to the results with PI control. Accordingly, the decrease of
the furnace temperature (subplot 2) with NMPC starts much earlier. This is
caused by the internal disturbance model which predicts the disturbances early
enough. From subplot 3 it can be seen that the defined threshold for changes of
the furnace temperature are reached for a period of about 10 minutes. In subplot
4 it can be seen that the computation is always smaller than the sample time of
30 s, hence the real-time condition is satisfied. The computation time decreases
strongly in the last 15 minutes of the production due to the shortened horizon.

The allowed parameter settings for a real-time application (e.g., control hori-
zon, sampling period) have been determined. In Fig. 7 the computation time is
plotted versus the prediction and control horizon (np, nc). The internal time dis-
cretization dτ of the finite element model (nFDM = Ts/dτ) is used as parameter
(Ts: sample time). From Fig. 7 it is obvious that for a wide range of parameter
values np, nc and nFDM real-time application (computation time < sample time
= 30 s) is possible.

Furthermore, simulation based application of the proposed NMPC scheme
to a large number of historical runs showed that the concept is robust against
model mismatch of the disturbance model. This property is very important for
the industrial implementation.
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Fig. 5. Comparison NMPC and PI control (nP = nC = 2)

Fig. 6. Comparison NMPC and PI control (nP = nC = 30)
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Fig. 7. Computation time vs. prediction horizon

5 Conclusion

In this paper a new approach for the real-time control of a spatially distributed
temperature profile of an industrial glass forming process has been presented.
A numerically efficient solution of the partial differential equation has been im-
plemented. By means of the powerful solver HQP a real-time application could
be achieved. It has been shown that with the proposed NMPC concept much
better disturbance rejection and hence stabilization of the temperature profile
than conventional PI control is achieved. The approach can easily be adapted to
other forming processes where the temperature profile shall be controlled.
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Abstract. We consider a system of transmission of the wave equation
with Neumann feedback control that contains a delay term and that
acts on the exterior boundary. First, we prove under some assumptions
that the closed-loop system generates a C0−semigroup of contractions
on an appropriate Hilbert space. Then, under further assumptions, we
show that the closed-loop system is exponentially stable. To establish this
result, we introduce a suitable energy function and use multiplier method
together with an estimate taken from [3] (Lemma 7.2) and compactness-
uniqueness arguments.

Keywords: Wave equation, transmission problem, time delays, bound-
ary stabilization, exponential stability.

1 Introduction

It is by now well-known that certain infinite-dimensional second-order systems
are not robust with respect to arbitarily small delays in the damping. This
lack of stability robustness was first shown to hold for the one-dimensional
wave equation ([2]). Later, further examples illustrating this phenomenon were
considered in [1]: the two-dimensional wave equation with damping introduced
through Neumann-type boundary conditions on one edge of a square boundary
and the Euler-Bernoulli beam equation in one dimension with damping intro-
duced through a specific set of boundary conditions on the right end point.

Recently, Xu et al [9] established sufficient conditions that guarantee the ex-
ponential stability of the one-dimensional wave equation with a delay term in the
boundary feedback. Nicaise and Pignotti [5] extended this result to the multi-
dimensional wave equation with a delay term in the boundary or internal feed-
backs. The same type of result was obtained by Nicaise and Rebiai [6] for the
Schrödinger equation.

Motivated by the references [9], [5] and [6]; we investigate in this paper the
problem of exponential stability for the system of transmission of the wave equa-
tion with a delay term in the boundary feedback.

Let Ω be an open bounded domain of Rn with a boundary Γ of class C2 which
consists of two non-empty parts Γ1 and Γ2 such that Γ1 ∩ Γ2 = ∅. Let Γ0 with
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Γ0 ∩ Γ1 = Γ0 ∩ Γ2 = ∅ be a regular hypersurface of class C2 which separates Ω
into two domains Ω1 and Ω2 such that Γ1 ⊂ ∂Ω1 and Γ2 ⊂ ∂Ω2. Furthermore,
we assume that there exists a real vector field h ∈ (C2(Ω))n such that:
(H.1) The Jacobian matrix J of h satisfies∫

Ω

J(x)ζ(x).ζ(x)dΩ ≥ α

∫
Ω

|ζ(x)|2 dΩ,

for some constant α > 0 and for all ζ ∈ L2(Ω;Rn);
(H.2) h(x).ν(x) ≤ 0 on Γ1;

(H.3) h(x).ν(x) ≥ 0 on Γ0.
where ν is the unit normal on Γ or Γ0 pointing towrds the exterior of Ω or Ω1.

Let a1, a2 > 0 be given. Consider the system of transmission of the wave
equation with a delay term in the boundary conditions:

y′′(x, t) − a(x)Δy(x, t) = 0 in Ω × (0,+∞), (1)

y(x, 0) = y0(x), y′(x, 0) = y1(x, 0) in Ω, (2)

y1(x, t) = 0 on Γ1 × (0,+∞), (3)

∂y2(x, t)

∂ν
= −μ1y

′
2(x, t) − μ2y

′
2(x, t− τ) on Γ2 × (0,+∞), (4)

y1(x, t) = y2(x, t), on Γ0 × (0,+∞), (5)

a1
∂y1(x, t)

∂ν
= a2

∂y2(x, t)

∂ν
on Γ0 × (0,+∞), (6)

y′2(x, t− τ) = f0(x, t− τ) on Γ2 × (0, τ). (7)

where:

– a(x) =

{
a1, x ∈ Ω1

a2, x ∈ Ω2

– y(x, t) =

{
y1(x, t), (x, t) ∈ Ω1 × (0,+∞)
y1(x, t), (x, t) ∈ Ω2 × (0,+∞)

– ∂.
∂ν is the normal derivative.

– μ1 and μ2 are positive real numbers.

– τ is the time delay

– y0, y1, f0 are the initial data which belong to suitable spaces.

In the absence of delay, that is μ2 = 0, Liu and Williams [4] have shown that the
solution of (1)-(6) decays exponentially to zero in the energy space H1

Γ1
(Ω) ×

L2(Ω) provided that

a1 > a2 (8)

and {Ω,Γ0, Γ1, Γ2} satisfies (H.1), (H.2), (H.3), and
(H.4) h(x).ν(x) ≥ γ > 0.
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The purpose of this paper is to investigate the stability of problem (1) − (7) in
the case where both μ1 and μ2 are different from zero. To this end, assume as
in [5] that

μ1 > μ2. (9)

and define the energy of a solution of (1)− (7) by

E(t) =
1

2

∫
Ω

[∣∣y′(x, t)
∣∣2 + a(x) |∇(y(x, t)|2

]
dx+

ξ

2

∫
Γ2

∫ 1

0

|y(x, t− τρ)|2 dρ dσ(x),

(10)

where
a2τμ2 < ξ < a2τ(2μ1 − μ2), (11)

We show that if {Ω,Γ0, Γ1, Γ2} satisfies (H.1), (H.2) and (H.3), then there is
an exponential decay rate for E(t).The proof of this result combines multipliers
technique and compactness-uniqueness arguments.
The main result of this paper can be stated as follows.

Theorem 1. Assume (H1), (H.2), (H.3), (8) and (9). Then there exist con-
stants M ≥ 1 and ω > 0 such that

E(t) ≤Me−ωtE(0).

Theorem 1 is proved in Section 3. In Section 2, we investigate the well-posedness
of system (1)− (7) using semigroup theory.

2 Well-Poseness of Problem (1) − (7)

Inspired from [5] and [6], we introduce the auxilliary variable z(x, ρ, t) = y(x, t−
τρ). With this new unknown, problem (1)− (7) is equivalent to

y′′(x, t) − a(x)Δy(x, t) = 0 in Ω × (0,+∞), (12)

y(x, 0) = y0(x), y′(x, 0) = y1(x) in Ω, (13)

y(x, t) = 0 on Γ1 × (0,+∞), (14)

∂z(x, ρ, t)

∂t
+

1

τ

∂z(x, ρ, t)

∂ρ
= 0 on Γ2 × (0,+∞) (15)

∂y2(x, t)

∂ν
= −μ1y

′
2(x, t)− μ2z(x, 1, t) on Γ2 × (0,+∞), (16)

y1(x, t) = y2(x, t) on Γ0 × (0,+∞), (17)

a1
∂y1(x, t)

∂ν
= a2

∂y2(x, t)

∂ν
on Γ0 × (0,+∞), (18)

z(x, 0, t) = y′(x, t) on Γ2 × (0,+∞) (19)

z(x, ρ, 0) = f0(x,−τρ) on Γ2 × (0, 1) (20)

Now, we endow the Hilbert space

H =H1
Γ1
(Ω)× L2(Ω)× L2(Γ2;L

2(0, 1))
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with the inner product

〈⎛⎝u
v
z

⎞⎠ ;

⎛⎝u
v
z

⎞⎠〉
=

∫
Ω

(a(x)∇u(x)∇u(x)+v(x)v(x)) dx+ξ

∫
Γ2

∫ 1

0

z(x, ρ)z(x, ρ)dρ dσ(x)

and define a linear operator in H by

D(A) = {(u, v, z)T ∈ H2(Ω1, Ω2, Γ1)×H1
Γ1
(Ω)× L2(Γ2;H

1(0, 1);

∂u

∂ν
= −μ1v − μ2z(., 1), v = z(., 0) on Γ2} (21)

A

⎛⎝u
v
z

⎞⎠ =

⎛⎝ v
a(x)Δu
−τ−1 ∂z

∂ρ

⎞⎠ (22)

The spaces used for the definition of H and D(A) are

H1
Γ1
(Ω) = {u ∈ H1(Ω) : u = 0 on Γ1}

H2(Ω1, Ω2, Γ1) = {ui ∈ H2(Ωi) : u = 0 on Γ1, u1 = u2 and a1
∂u1

∂ν
= a2

∂u2

∂ν
on Γ0}

Then we can rewrite (12)− (20) as an abstract Cauchy problem in H{
d
dtY (t) = AY (t)
Y (0) = Y0

(23)

where

Y (t) = (y, y′, z)T and Y0 = (y0, y1, f0(.,−.τ))T

Proposition 1. The operator A defined by (21) and (22) generates a strongly
continuous semigroup on H. Thus, for every Y0 ∈ H, problem (23) has a unique
solution Y whose regularity depends on the the initial datum Y0 as follows:

Y (.) ∈ C([0,+∞);H) if Y0 ∈ H,
Y (.) ∈ C([0,+∞);D(A)) ∩ C1([0,+∞);H) if Y0 ∈ D(A).

Proof. Let Y =

⎛⎝u
v
z

⎞⎠ ∈ D(A). Then

〈AY, Y 〉 =
∫
Ω

a(x)∇u(x).∇v(x)dx +

∫
Ω

(a(x)Δu(x))v(x)dx −

ξ

τ

∫
Γ2

∫ 1

0

zρ(x, ρ)z(x, ρ)dρdΓ (24)
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Applying Green’s first theorem, we obtain∫
Ω

(a(x)Δu(x))v(x)dx = a1

∫
Γ1

v(x)
∂u(x)

∂ν
dΓ − a1

∫
Ω1

∇u(x).∇v(x)dx +

a2

∫
Γ2

v(x)
∂u(x)

∂ν
dΓ − a2

∫
Ω2

∇u(x).∇v(x)dx

= a2

∫
Γ2

v(x){−μ1v(x) − μ2z(x, 1)}dΓ −
∫
Ω

a(x)∇u(x).∇v(x)dx (25)

Integrating by parts in ρ, we get∫
Γ2

∫ 1

0

zρ(x, ρ)z(x, ρ)dρdΓ =
1

2

∫
Γ2

{z2(x, 1)− z2(x, 0)}dΓ (26)

Inserting (25) and (26) into (24) results in

〈AY, Y 〉 = −a2μ1

∫
Γ2

v2(x)dΓ − a2μ2

∫
Γ2

v(x)z(x, 1)dΓ −

ξ

2τ

∫
Γ2

z2(x, 1)dΓ +
ξ

2τ

∫
Γ2

v2(x)dΓ

from which follows using the Cauchy-Schwarz inequality

〈AY, Y 〉 ≤ −(a2μ1−
a2μ2

2
+

ξ

2τ
)

∫
Γ2

v2(x)dΓ −(
ξ

2τ
− a2μ2

2
)

∫
Γ2

z2(x, 1)dΓ (27)

(27) implies that

〈AY, Y 〉 ≤ 0

Thus A is dissipative.
Now we show that for a fixed λ > 0 and (g, h, k)T ∈ H, there exists Y =
(u, v, z)T ∈ D(A) such that

(λI −A)Y = (g, h, k)T

or equivalently

λu− v = g (28)

λv − a(x)Δu = h (29)

λz +
1

τ
zρ = k (30)

Suppose that we have found u with the appropriate regularity, then we can
determine z. Indeed, from (21) and (30) we have{

zρ(x, ρ) = −λτz(x, ρ) + τk(x, ρ)
z(x, 0) = v(x)



Exponential Stability of the Transmission Wave Equation with Delay 281

The unique solution of the above initial value problem is

z(x, ρ) = e−λτρv(x) + τe−λτρ

∫ ρ

0

eλτsk(x, s)ds

and in particular

z(x, 1) = λe−λτu(x) + z0(x), x ∈ Γ2

where

z0(x) = −e−λτg(x) + τe−λτ

∫ 1

0

eλτsk(x, s)ds

By (28) and (29), the function u satisfies

λ2u− a(x)Δu = h+ λg (31)

Problem (31) can be reformulated as∫
Ω

(λ2u− a(x)Δu)wdx =

∫
Ω

(h+ λg)wdx, w ∈ H1
Γ1
(Ω) (32)

Using Green’s first theorem and recalling (21), we express the right-hand side of
(32) as follows∫

Ω

(λ2u− a(x)Δu)wdx =

∫
Ω

(λ2uw + a(x)∇u.∇w)dx + a2

∫
Γ2

{μ1(λu− g)w

+μ2(λe
−λτu(x) + z0(x))w}dΓ

Therefore (32), can be rewritten as∫
Ω

(λ2uw + a(x)∇u.∇w)dx + a2

∫
Γ2

(μ1 + μ2e
−λτ )λuwdΓ =

∫
Ω

(h+ λg)wdΓ

+a2μ1

∫
Γ2

gwdΓ − a2μ2

∫
Γ2

z0wdΓ, ∀w ∈ H1
Γ1
(Ω). (33)

Since the left-hand side of (33) is coercive on H1
Γ1
(Ω), the Lax-Milgram Theorem

guarantees the existence and uniqueness of a solution y ∈ H1
Γ1
(Ω) of (31). If we

consider w ∈ D(Ω) in (28), then y is a solution in D′(Ω) of

λ2u− a(x)Δu = h+ λg (34)

and thus Δu ∈ L2(Ω).
Combining (33) together with (34), we obtain after using Green’s first theorem

a2

∫
Γ2

(μ1 + μ2e
−λτ )λuwdΓ + a2

∫
Ω

∂u

∂ν
wdΓ = a2μ1

∫
Γ2

gwdΓ − a2μ2

∫
Γ2

z0wdΓ

which implies that
∂u(x)

∂ν
= −μ1v(x) − μ2z(x, 1)

So, we have found (u, v, z)T ∈ D(A) which satisfies (28) − (30). Thus, by
the Lumer-Phillips Theorem (see for instance [8], Theorem 1.4.3), generates a
strongly continuous semigroup of contractions on H.
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3 Proof of Theorem 1

We prove Theorem 1 for smooth initial data. The general case follows by a
standard density argument.
We proceed in several steps.
Step 1.
Since

E(t) =
1

2
‖(y, y′, z)‖2H

Then, we deduce from the proof of Proposition 1 that E(t) is non-increasing and

d

dt
E(t) ≤ −C

∫
Γ2

{y2(x, t) + y′2(x, t)}dΓ (35)

where

C = min{a2μ1 −
a2μ2

2
+

ξ

2τ
,
ξ

2τ
− a2μ2

2
}

Step 2.
Set

E(t) = E(t) + Ed(t)

where

E(t) = 1

2

∫
Ω

{a(x) |∇y(x, t)|2 + |y′(x, t)|2}dx

and

Ed(t) =
ξ

2τ

∫
Γ2

∫ 1

0

|y′(x, t− τρ)|2 dρdΓ

Ed(t) can be rewritten via a change of variable as

Ed(t) =
ξ

2τ2

∫ t+τ

t

∫
Γ2

y′2(x, s− τ)dΓds (36)

From (36), we obtain

Ed(t) ≤ C1

∫ T

0

∫
Γ2

y′2(x, s− τ)dΓds (37)

for 0 ≤ t ≤ T and T large enough.
Step 3.
By applying energy methods (multiplier 2h.∇y+(divh−α)y) (see the appendix)
to problem (1)− (7), we obtain for all T > 0.∫ T

0

E(t)dt ≤ C2(E(0) + E(T )) + C3

∫ T

0

∫
Γ2

{(∂y(x, t)
∂ν

)2 + y′2(x, t)}dΓdt+

C4

∫ T

0

∫
Γ2

|∇σy(x, t)|2 dΓdt+ C5

∫ T

0

∫
Ω

|y(x, t)|2 dΩdt (38)
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where ∇σy is the tangential gradient of y.
Step 4.
We eliminate the tangential gradient from (38) by using the following estimate
due to Lasiecka and Triggiani (Lemma 7.2 in [3])∫ T−ε

ε

∫
Γ2

|∇σy(x, t)|2 dΓdt ≤ C6{
∫ T

0

∫
Γ2

{(∂y(x, t)
∂ν

)2 + y′2(x, t)}dΓdt+

‖y‖2L2(0,T ;H1/2+δ(Ω))}

where ε and δ are arbitrary positive constants. We obtain∫ T

0

E(t)dt ≤ C2(E(0) + E(T )) + C7

∫ T

0

∫
Γ2

{(∂y(x, t)
∂ν

)2 + y′2(x, t)}dΓdt+

C8 ‖y‖2L2(0,T ;H1/2+δ(Ω)) (39)

Step 5.
We differentiate E(t) with respect to t and apply Green’s first theorem. We
obtain

d

dt
E(t) = a2

∫
Γ2

y′(x, t)
∂y(x, t)

∂ν
dΓdt (40)

From (40), we get via the Cauchy-Schwarz inequality

E(0) ≤ E(T ) + a2
2

∫ T

0

∫
Γ2

{y′2(x, t) + (
∂y(x, t)

∂ν
)2}dΓdt (41)

Insertion of (41) into (39) yields∫ T

0

E(t)dt ≤ 2C2E(T ) + C9

∫ T

0

∫
Γ2

{(∂y(x, t)
∂ν

)2 + y′2(x, t)}dΓdt+

C8 ‖y‖2L2(0,T ;H1/2+δ(Ω)) (42)

Step 6.
Since E(t) is non-increasing and E(t) = E(t) + Ed(t), then (42) together with
(37) implies that

TE(T ) ≤ 2C2E(T ) + C9

∫ T

0

∫
Γ2

{(∂y(x, t)
∂ν

)2 + y′2(x, t)}dΓdt+

C8 ‖y‖2L2(0,T ;H1/2+δ(Ω)) + TC1

∫ T

0

∫
Γ2

y′2(x, t− τ)dΓdt (43)

Thus invoking again the identity E(t) = E(t)+Ed(t) and recalling the boundary
condition (4), we obtain from (43)

E(T ) ≤ C10

∫ T

0

∫
Γ2

{y′2(x, t)+y′2(x, t−τ)}dΓdt+C11 ‖y‖2L2(0,T ;H1/2+δ(Ω)) (44)

for T large enough.
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Step 7.
We drop the lower order term on the right-hand side of (44) by a compactness-
uniqueness argument to obtain

E(T ) ≤ C12

∫ T

0

∫
Γ2

{y′2(x, t) + y′2(x, t− τ)}dΓdt (45)

Step 8.
The estimate (45) together with (35) yields

E(T ) ≤ C13

1 + C13
E(0) (46)

The desired conclusion follows now from (46) since the system (1) − (7) is in-
variant by translation.
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Appendix: Sketch of Proof of (38)

Wemultiply both sides of (1) by 2h.∇y+(divh−α)y and integrate over (0, T )×Ω.
We obtain

2

∫ T

0

∫
Ω

a(x)J∇y.∇ydΩdt+ α

∫ T

0

∫
Ω

{y′2 − a(x) |∇y|2}dΩdt =

−
∫
Ω

{2y′h.∇y + (divh− α)y′y}T0 dΩ −
∫ T

0

∫
Ω

a(x)y∇y.∇(divh− α)dΩdt +

a1

∫ T

0

∫
Γ1

∣∣∣∣∂y1∂ν

∣∣∣∣2 h.νdΓdt− (a1 − a2)

∫ T

0

∫
Γ0

|∇y1|2 h.νdΓdt−

(a1 − a2)
2

a2

∫ T

0

∫
Γ0

∣∣∣∣∂y1∂ν

∣∣∣∣2 h.νdΓdt+ ∫ T

0

∫
Γ2

|y′2|
2
h.νdΓdt+

2a2

∫ T

0

∫
Γ2

∣∣∣∣∂y2∂ν

∣∣∣∣2 h.∇y2dΓdt− a2

∫ T

0

∫
Γ2

|∇y2|2 h.νdΓdt+

a2

∫ T

0

∫
Γ2

∣∣∣∣∂y2∂ν

∣∣∣∣2 (divh− α)dΓdt (47)

after using the boundary conditions (3) and (5). Identity (47) is used together
with (H.1), (H.2), (H.3) and (8) to obtain estimate (38).



Nonlinear Stabilizers in Optimal Control

Problems with Infinite Time Horizon

Alexander Tarasyev and Anastasia Usova


Institute of Mathematics and Mechanics
of the Ural Branch of the Russian Academy of Sciences,
S.Kovalevskaja Str. 16, 620990, Ekaterinburg, Russia

tam@imm.uran.ru, tarasiev@iiasa.ac.at,

anastasy.ousova@gmail.com

http://www.imm.uran.ru/engl.asp

Abstract. In optimal control problems with infinite time horizon, aris-
ing in models of economic growth, there are essential difficulties in an-
alytical and even in numerical construction of solutions of Hamiltonian
systems. The problem is in stiff properties of differential equations of the
maximum principle and in non-stable character of equilibrium points
connected with corresponding transversality conditions. However, if a
steady state exists and meets several conditions of regularity then it is
possible to construct a nonlinear stabilizer for the Hamiltonian system.
This stabilizer inherits properties of the maximum principle, generates a
nonlinear system with excluded adjoint variables and leads its trajecto-
ries to the steady state. Basing on the qualitative theory of differential
equations, it is possible to prove that trajectories generated by the non-
linear stabilizer are close to solutions of the original Hamiltonian system,
at least locally, in a neighborhood of the steady state. This analysis al-
lows to create stable algorithms for construction of optimal solutions.

Keywords: optimal control, nonlinear control system, nonlinear stabi-
lizer, economic systems.

Introduction

This paper deals with optimal control problems with infinite time horizon basing
on economical growth models which is relied on classical constructions of growth
theory (see [10], [11]). Also it includes ideas of a SEDIM model [9] describing
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the role of different economic factors such as the demographic ones in a coun-
try’s economic development. Another technique in the background (see [2], [5])
considers capital and useful work as the key drivers of economic growth and uses
optimal control theory to design past and future growth trajectories.

The research of optimal control problems uses as basis the Pontryagin’s max-
imum principle [8] for the problem with infinite time horizon (see [1], [3], [5]).
We investigate properties of the maximized Hamiltonian function and provide
analysis of existence of steady states in domains of specific control regimes and
focus attention on the domain corresponding to the transient control regimes of
investment. We consider linearized Hamiltonian system in this domain. Special
attention is given to the Jacobi matrix which has two negative and two positive
eigenvalues that is the steady state has the saddle character. According to the
results of the qualitative theory of differential equations [4] the trajectory of
the nonlinear Hamiltonian dynamics converges to the steady state tangentially
to the plane generated by eigenvectors corresponding to negative eigenvalues of
the Jacobi matrix. This analysis provides the important information about the
growth rates of optimal synthetic trajectories.

A novelty of the proposed solution is based on the idea of creating of non-
linear stabilizers built on the feedback principle (see [6], [7]) which lead the
system from any current position to a steady state. The constructed nonlinear
stabilizer generates the dynamic system closed in phase variables and having the
property of local stability. Also we construct solutions of the Hamiltonian sys-
tem and the stabilized Hamiltonian system in a steady state neighborhood and
compare behavior of these trajectories. Simulated optimal trajectories of nonlin-
ear Hamiltonian systems are obtained numerically by the implicit Runge–Kutta
method.

1 Two-Sectors Economical Growth Model and Optimal
Control Problem

The Model. The model is based on analysis of the Gross Domestic Product
(GDP) dynamics which is denoted by symbol Y . It is supposed that changes of
GDP depend on three production factors: capital stock K, labor L (or it can
be named as human capital) and useful work U . The production function F de-
scribes the relation between these factors and GDP (Y ), that is Y = F [K,L,U ].
It is assumed that the production function F has the property of homogeneity
of degree one, i.e.

F [αK,αL, αU ] = αF [K,L,U ] ∀α > 0.

This model includes also a parameter P (t) denoting the number of workers in a
country at time t. According to the Sanderson model [9] we assume that labor L
is proportional to the number of workers P with coefficient E. This coefficient has
the sense of labor efficiency of one worker. Hence, we have the following equality:
L(t) = E(t)P (t). Due to the homogeneous property of the production function
we introduce relative variables: k = K/P, l = E = L/P, u = U/P, y = Y/P.
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It is supposed that the total number of workers P has exponential growth
trend

Ṗ (t) = ρP (t), ρ > 0. (1)

Here ρ is a positive predefined constant denoting the relative growth rate. It
should be mentioned that the considered dynamics for the labor force is quite
adequate for the US statistical data in the period from 1900 to 2005. Parameter
ρ is small enough and equal to (approx.) 10−2.

The dynamics of the capital stock K(t) is determined by the Solow model in
which changes of capital depend on investment level S(t) with the depreciate
rate δ, i.e.

K̇(t) = S(t)− δK(t). (2)

Investments in capital constitute a part of GDP (Y ). Hence, it can be written
as follows: S(t) = s(t)Y (t), where function s(t) may take any value in the range
from zero to the positive constant as which is less than one, i.e. 0 � s(t) � as < 1.

Changes in labor are described by the equation:

L̇(t) = bR(t), (3)

where function R(t) denotes investments in growth of the labor efficiency. In-
vestments R(t) is also a share of GDP (Y ), i.e. R(t) = r(t)Y (t). It is assumed
that function r(t) takes any values from zero to the predefined constant ar which
is less than one. The positive parameter b stands for the marginal effectiveness
of investment in human capital. It is supposed that the relative useful work (per
one worker) u(t) = U(t)/P (t) is constant with an average value ũ, ∀t ≥ t0.
Due to this assumption the production function F [k, l, u] can be rewritten as
follows: F [k, l, u] = F [k, l, ũ] = f(k, l).

Based on equations (1), (2) and (3), one can evaluate dynamics of relative
variables k and l.

Let functions C(t) and c(t) describe the total consumption level in a coun-
try and the consumption level per one worker, respectively. It is assumed that
the closed economical system is considered in which GDP (Y ) is spent on con-
sumption (C) and investments in capital stock (S) and human capital (R):
Y (t) = C(t)+S(t)+R(t), or in relative variables: y(t) = c(t)+ (s(t)+ r(t))y(t).
Hence one can easily calculate consumption per one worker

c(t) = (1 − s(t)− r(t))y(t) ≈ (1− s(t))(1 − r(t))y(t). (4)

Optimal Control Problem. Let us consider investments s and r as control
variables. It is supposed that the utility function of the growth process is de-
scribed by an integral consumption index discounted on the infinite horizon. We
use the consumption index of the logarithmic type, rather common for the the-
ory of endogenous growth (see [12]). Let us note that the utility of such type
is closely related to the notion of entropy in thermodynamics, mechanics and

dynamic systems J =
+∞∫
t0

e−λt ln c(t) dt. Here, parameter λ is the discounting

factor.
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It should be mentioned that the following equality d ln c(t) =
dc(t)

c(t)
determines

relative growth of the consumption c(t) (4) per one worker. In fact, the intro-
duced utility function presents the summary growth of the relative consumption
adjusted to the value of money depreciation.

Problem 1. The optimal control problem presumes maximization of the utility
function

J =

+∞∫
t0

e−λt (ln (1− s(t)) + ln (1− r(t)) + ln f(k(t), l(t))) dt

over trajectory (k(·), l(·), s(·), r(·)) of the system{
k̇(t) = s(t)f(k(t), l(t))− (δ + ρ)k(t)

l̇(t) = br(t)f(k(t), l(t)) − ρl(t)

with control parameters (s(·), r(·)) subject to constraints

0 ≤ s(t) ≤ as < 1, 0 ≤ r(t) ≤ ar < 1, 0 ≤ as + ar < 1, (5)

and phase variables (k(·), l(·)) satisfying initial conditions k(t0) = k0, l(t0) = l0.

The production function y = f(k, l) meets the following conditions
PF1. For all positive values of phase variables k and l function f(k, l) is positive
with its partial derivatives, i.e. f(k, l) > 0, fk > 0, fl > 0.
PF2. For all positive values of phase variables k and l function f(k, l) is a
strictly concave function in phase variables, i.e. fkk < 0, fkkfll − f2

kl > 0.
Here we use the following notations for the first and second order derivatives of
the production function f = f(k, l)

fk =
∂f(k, l)

∂k
, fl =

∂f(k, l)

∂l
, fkl =

∂2f(k, l)

∂k∂l
, fkk =

∂2f(k, l)

∂k2
, fll =

∂2f(k, l)

∂l2
.

Let us note that the problem 1 can be solved within the optimal control theory
for problems with infinite horizon (see [1], [5]).

2 Model Analysis

Model analysis is based on the Pontryagin maximum principle [8] for problems
with infinite time horizon [1].

Hamiltonian Function. We investigate properties of the Hamiltonian function
H̃ = H̃(t; k, l; s, r; ψ̃1, ψ̃2) which is defined by the equality:

H̃(t; k, l; s, r; ψ̃1, ψ̃2) = e−λt(ln (1 − s) + ln (1 − r) + ln f(k, l)) +

+ ψ̃1(sf(k, l)− (δ + ρ)k) + ψ̃2(brf(k, l)− ρl). (6)

Let us formulate the main property of the Hamiltonian function (6).
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Proposition 1. The Hamiltonian function H̃(t; k, l; s, r; ψ̃1, ψ̃2) is concave in
control variables s and r.

It is convenient to introduce new variables for excluding the exponential time
term: ψ1 = ψ̃1e

λt, ψ2 = ψ̃2e
λt and Ĥ = H̃eλt. Substituting new variables to

the Hamiltonian function (6) we get the expression:

Ĥ(k, l; s, r;ψ1, ψ2) = ln (1 − s) + ln (1 − r) + ln f(k, l) +

+ ψ1(sf(k, l)− (δ + ρ)k) + ψ2(brf(k, l)− ρl). (7)

Since control variables s and r satisfy to restrictions (5), the optimal control has
the following structure:

s0 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, (k, l, ψ1) ∈ Δ1

s = {(k, l, ψ1) : ψ1f(k, l) � 1} ;

1− 1

ψ1f(k, l)
, (k, l, ψ1) ∈ Δ2

s =

{
(k, l, ψ1) : 1 � ψ1f(k, l) �

1

1− as

}
;

as, (k, l, ψ1) ∈ Δ3
s =

{
(k, l, ψ1) : ψ1f(k, l) �

1

1− as

}
;

r0 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, (k, l, ψ2) ∈ Δ1

r = {(k, l, ψ2) : bψ2f(k, l) � 1} ;

1− 1

bψ2f(k, l)
, (k, l, ψ2) ∈ Δ2

r =

{
(k, l, ψ2) : 1 � bψ2f(k, l) �

1

1− ar

}
;

ar, (k, l, ψ2) ∈ Δ3
r =

{
(k, l, ψ2) : bψ2f(k, l) �

1

1− ar

}
.

(8)

Substituting values of optimal control to the Hamiltonian function Ĥ(·) in (7)

we obtain the maximized Hamiltonian: H(k, l;ψ1, ψ2) = Ĥ(k, l; s0, r0;ψ1, ψ2).
There exist nine domains Dij = Δi

s ∩ Δj
r (i, j = 1, 2, 3) of definition of the

maximized Hamiltonian function. These domains are determined by the struc-
ture of optimal controls. Let us discuss important properties of the maximized
Hamiltonian function.

Proposition 2. The maximized Hamiltonian function H(k, l;ψ1, ψ2) is a
smooth function in variables k, l and ψ1, ψ2 in domains Dij (i, j = 1, 3) and
on boundaries between these domains.

Proposition 3. The maximized Hamiltonian is a strictly concave function in
phase variables k, l for all positive values of conjugate variables ψ1 and ψ2, if
the following matrix is negatively defined:

∂f(k, l) =

⎛⎝−f fk fl
fk fkk fkl
fl flk fll

⎞⎠ , ∀ (k, l, ψ1, ψ2) ∈ D22, ψ1 > 0, ψ2 > 0.

Necessary and Sufficient Conditions of Optimality. Let us mention that
for the control problem 1 all conditions of the existence theorem (see [1], [3]) are
fulfilled. Moreover, one can formulate necessary [1] and sufficient [5] conditions
of optimality for problems with infinite horizon in the form of the Pontryagin
maximum principle. It should be noted that properties 2 and 3 ensure sufficiency
of necessary optimality conditions [5].
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Qualitative Analysis. Firstly, we construct the Hamiltonian system and in-
vestigate the existence of steady states. Due to the structure of the optimal
control (s0(t), r0(t)) in (8) the Hamiltonian system has different form in each
domain Dij (i, j = 1, 3). The special attention is given to domain D22 with the
transient control regime, where both controls are not constant.

In the domain D22 = Δ2
s ∩ Δ2

r the Hamiltonian system has the following
form:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k̇ = f(k, l)− (δ + ρ)k − k

z1
= H1,

l̇ = bf(k, l)− ρl − l

z2
= H2,

ż1 =

(
λ− fk(k, l) +

f(k, l)

k

)
z1 − b

k

l
fk(k, l)z2 +

k

f(k, l)
fk(k, l)− 1 = H3,

ż2 = − l

k
fl(k, l)z1 +

(
λ− bfl(k, l) + b

f(k, l)

l

)
z2 +

l

f(k, l)
fl(k, l)− 1 = H4,

(9)
where new adjoint variables z1 and z2 are defined as follows: z1 = kψ1 and
z2 = lψ2 and symbols Hi denotes functions Hi = Hi(k, l, z1, z2), i = 1, 4.

Let us suppose that the Hamiltonian system has a steady state P ∗ with co-
ordinates P ∗ = (k∗, l∗, z∗1 , z

∗
2). In this case conjugate coordinates z∗1 and z∗2 of

the steady state can be found from the first two equations of the Hamiltonian
system, namely

z∗1 =
k∗

f(k∗, l∗)− (δ + ρ)k∗
, z∗2 =

l∗

bf(k∗, l∗)− ρl∗
. (10)

Further, we construct the linearized Hamiltonian system in a neighborhood of
the steady state. Let symbol A = {αij}4i,j=1 denotes the matrix of the linearized
Hamiltonian system, where

αi1 =
∂Hi(P

∗)

∂k
, αi2 =

∂Hi(P
∗)

∂l
, αi3 =

∂Hi(P
∗)

∂z1
, αi4 =

∂Hi(P
∗)

∂z2
, i = 1, 4.

3 Nonlinear Stabilizer

A nonlinear stabilizer is constructed under the following assumptions
A1. It is assumed that matrix A has two real negative λ1 and λ2 and two real
positive λ3 and λ4 eigenvalues.

This assumption means that the steady state P ∗ = (k∗, l∗, z∗1 , z
∗
2) has the

saddle character.
Let the symbols hi = {hij}4j=1, i = 1, 4 denote eigenvectors corresponding

to eigenvalues λi, i = 1, 4, respectively.
A2. It is supposed that first two coordinates of eigenvectors h1 and h2 corre-
sponding to negative eigenvalues λ1 and λ2 meet the restriction h11h22 = h12h21.

Construction of Nonlinear Stabilizer. Idea of construction of the nonlinear
stabilizer is based on results of the qualitative theory of differential equations
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(see [4]). Namely, the trajectory of the nonlinear Hamiltonian dynamics con-
verges to the steady state tangentially to the plane generated by eigenvectors
corresponding to negative eigenvalues of the Jacobi matrix. Let us describe the
algorithm of construction of the nonlinear stabilizer.
1. To build the plane π generated by two eigenvectors h1 and h2 corresponding
to two negative eigenvalues λ1 and λ2, so that the steady state P ∗ belongs to
this plane π.
2. To extract conjugate variables z1 and z2 from equations of the plane.
3. To substitute the obtained relations of extraction instead of conjugate vari-
ables into control functions s0(t) and r0(t) corresponding to domain D22.

As a result, the algorithm provides construction of control ŝ(t) and r̂(t) which
is called nonlinear stabilizer. Let us consider each step in details.

Plane Construction. Any vector v located in the plane π can be expressed
through eigenvectors h1 and h2 in the following way: v = ν1h1+ν2h2. Hence, the
plane π generated by two eigenvectors h1 and h2 and containing the equilibrium
point P ∗ can be written as follows:

k − k∗ = ν1h11 + ν2h21, l − l∗ = ν1h12 + ν2h22,
z1 − z∗1 = ν1h13 + ν2h23, z2 − z∗2 = ν1h14 + ν2h24.

(11)

Due to assumption A2 coefficients ν1 and ν2 can be found from the first two
equations (11).

Extraction of Conjugate Variables. Conjugate variables z1 and z2 can be
extracted from the equations (11) of the plane π. As a result, we obtain

z1 = z1(k, l) = z∗1 + γ11(k − k∗) + γ12(l − l∗), (12)

z2 = z2(k, l) = z∗2 + γ21(k − k∗) + γ22(l − l∗),

where γ11 = −

∣∣∣∣h12 h13h22 h23

∣∣∣∣∣∣∣∣h11 h12h21 h22

∣∣∣∣ , γ12 =

∣∣∣∣h11 h13h21 h23

∣∣∣∣∣∣∣∣h11 h12h21 h22

∣∣∣∣ , γ21 = −

∣∣∣∣h12 h14h22 h24

∣∣∣∣∣∣∣∣h11 h12h21 h22

∣∣∣∣ , γ22 =

∣∣∣∣h11 h14h21 h24

∣∣∣∣∣∣∣∣h11 h12h21 h22

∣∣∣∣ .
It should be mentioned that the following equalities take place

z1(k
∗, l∗) = z∗1 , z2(k

∗, l∗) = z∗2 . (13)

Nonlinear Stabilizer. The only thing left is to substitute expressions (12) into
relations (8) for optimal controls in the domain D22. Finally, we get the following
structure of the nonlinear stabilizer:

ŝ(k, l) = 1− k

z1(k, l)f(k, l)
, r̂(k, l) = 1− l

bz2(k, l)f(k, l)
. (14)

Substituting expressions for conjugate variables (12) to the first two equations
of the Hamiltonian system (9) we get the stabilized Hamiltonian system:

k̇ = f(k, l)− (δ + ρ)k − k

z1(k, l)
, l̇ = bf(k, l)− ρl − l

z2(k, l)
. (15)
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Properties of the Nonlinear Stabilizer. Let us indicate main properties of
the constructed nonlinear stabilizer.

Proposition 4. The nonlinear stabilizer (14) generates the nonlinear system
(15) having the steady state with coordinates (k∗, l∗) which are the same as the
first two coordinates at the steady state of the original Hamiltonian system (9).

Proof of this propositions is based on the property (13) of the representation of
adjoint variables z1 = z1(k, l), z2 = z(k, l) in the plane π and relations (10) for
conjugate coordinates z∗1 , z

∗
2 of the steady state.

Let us consider the linearized Hamiltonian system with Jacobi matrix A pro-
jected on subspace π. We substitute representation z1 = z1(k, l) and z2 = z2(k, l)
(12) of conjugate variables into the first two equations of the linearized dynamics
and collect similar terms

k̇ = a11(k − k∗) + a12(l − l∗), l̇ = a21(k − k∗) + a22(l − l∗), (16)

where aij = αij + α13γ1j + α14γ2j , i, j = 1, 2.

Proposition 5. The matrix of the linearized stabilized system is the same as
the matrix A = {aij}2i,j=1 of the linearized Hamiltonian system projected on
plane π.

In order to prove this proposition it is necessary to linearized stabilized Hamil-
tonian system (15) at the steady state (k∗, l∗) neighborhood.

Let the symbol A denote the matrix of the linearized stabilized system (16).
The next important question deals with eigenvalues of the stabilized Hamiltonian
system (15).

Proposition 6. The linearized stabilized Hamiltonian system (15) has two real
negative eigenvalues coinciding with eigenvalues λ1 and λ2 and the following
eigenvectors

h1 = (h11, h12), h2 = (h21, h22). (17)

Proof. Basing on property 5 one can assert that the linearized stabilized Hamil-
tonian system coincides with the linearized Hamiltonian system (16) projected
on plane π. For the Jacobi matrix A evaluated at the steady state P ∗ the fol-
lowing equalities are fulfilled A hi = λi hi, i = 1, 4. Moreover eigenvectors
h1, h2 are located at the plane π. Thus, for coordinates of these vectors are valid
relations hi3 = γ11hi1 + γ12hi2, hi4 = γ21hi1 + γ22hi2, i = 1, 2. Using these
facts let us check the following equalities I hi = λihi, i = 1, 2.

A hi =

(
a11 a12
a21 a22

)(
hi1
hi2

)
=

=

(
α11hi1 + α12hi2 + α13(γ11hi1 + γ12hi2) + α14(γ21hi1 + γ22hi2)
α21hi1 + α22hi2 + α23(γ11hi1 + γ12hi2) + α24(γ21hi1 + γ22hi2)

)
=

=

(
α11hi1 + α12hi2 + α13hi3 + α14hi4
α21hi1 + α22hi2 + α23hi3 + α24hi4

)
=

(
λihi1
λihi2

)
= λihi, i = 1, 2.

 !



294 A. Tarasyev and A. Usova

The following theorem collects all obtained results.

Theorem 1. Under assumptions A1 and A2 for the Hamiltonian system (9)
constructed in domain D22 and linearized in a neighborhood of the steady state
P ∗ the nonlinear stabilizer (14) exists and generates the nonlinear dynamical
system (15) which is closed with respect to the phase variables k, l and has the
following properties
1. the steady state of the closed system (15) has coordinates (k∗, l∗) coinciding
with the phase coordinates k and l of the steady state P ∗ of the original Hamil-
tonian system (9);
2. the system (15) is stabilized at the steady state P ∗;
3. the eigenvectors h1 and h2 of the linearized closed system (16) generated by
the nonlinear stabilizer are evaluated by formulas (17).

The proof of the theorem follows directly from properties of the nonlinear
stabilizer.

Remark 1. The constructed nonlinear stabilizer generates the nonlinear system
which is closed with respect to phase variables. The solution of the obtained
stabilized system approximates optimal trajectories of the original Hamiltonian
system in a neighborhood of the steady state, since a trajectory of the nonlinear
Hamiltonian system that tends to the equilibrium point is tangent to the plane
formed by two eigenvectors corresponding to negative eigenvalues. One can use
this fact to estimate the growth rates of optimal trajectories The growth rates
are determined by values of negative eigenvalues.

Numerical Simulations. The calculations are carried out on the basis of the
data on the US economy in the period of 1900 to 2005. The data values are
normalized with respect to the data values of 1900. The production function of
the Cobb–Douglas type is used: f(k, l) = μ kα lβ. The calibration procedure for
the model parameters provides the following values: μ = 2.19942, α = 0.31, β =
0.09, λ = 0.03, δ = 0.2, ρ = 0.013, b = 0.31, as = 0.3, ar = 0.2, k0 = 1, l0 = 1.
The Hamiltonian system has the equilibrium point P ∗ with coordinates k∗ =
5.75, l∗ = 5.2, z∗1 = 1.8188, and z∗2 = 2.9684. The control parameters at the
equilibrium point take the values s∗ = 27.95 and r∗ = 3.79. All four eigen-
values of the matrix A calculated at the equilibrium point P ∗ = (k∗, l∗, z∗1 , z

∗
2)

are real numbers; two of them are positive, and the other two are negative:
λ1 = − 0.268, λ2 = − 0.094, λ3 = 0.124, λ4 = 0.298.

Trajectories of the system (15) generated by the nonlinear stabilizer (14) and
the original Hamilton system (9) are calculated numerically by the Runge–Kutta
method. Figure 1.(a) demonstrates phase trajectories k(l) as a solutions of the
stabilized (15) and Hamiltonian (9) dynamics. One can see that these trajectories
almost coincide with each other especially at the vicinity of the steady state.
Optimal trajectories of the capital stock k(t) and labor efficiency l(t) and its
stabilized solutions are depicted at figures 1.(b) and 1.(c) respectively. In the
steady state neighborhood optimal trajectories are very close to its stabilized
solutions.
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Fig. 1. Stabilized and optimal graphs (a) of phase trajectories, k(l); (b) of the capital

stock, k(t); (c) of the labor efficiency, l(t)
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Abstract. The tracking control design for setpoint transitions of a
quasi-linear diffusion-convection-reaction system with boundary control
is considered. For this a suitable model-based feedforward control is de-
termined that relies on the flatness-based parametrization of the control
input. A receding horizon feedback control is added within a two-degrees-
of-freedom control scheme to account for disturbances, model inaccura-
cies, and input constraints. The tracking performance of this control
scheme is shown by means of simulation studies.

A large class of chemical reactors with an interaction of diffusive, convective,
and reactive effects leads to infinite-dimensional mathematical models in the
form of nonlinear boundary-controlled parabolic partial differential equations
(PDEs) [6]. The control design for setpoint transitions of chemical reactors, e. g.,
for ignition, extinction, or grade-transitions constitutes a challenging problem. In
this contribution, the well-known two-degrees-of-freedom (2DOF) control scheme
is applied in order to tackle this control task. The basic idea consists in first
designing a feedforward control to steer the system along prescribed trajectories.
The trajectory planning and feedforward control are complemented with a state
feedback tracking control stabilizing the system about the desired trajectories.

In the literature, there exists a variety of concepts for the design of both feed-
forward and feedback tracking controllers. For the feedforward control design,
approaches using the flatness concept [2] have found widespread attention. The
flatness property allows for a parametrization of the state and input in terms
of a so-called flat output and its time derivatives and therefore provides a sys-
tematic approach for feedforward control design. Originally proposed for finite-
dimensional systems, generalizations of the flatness concept have been success-
fully carried over to certain classes of PDEs, see, e. g., [7,10,12]. In these so-called
late lumping approaches the parametrization is directly solved for the underlying
PDE. In contrast, the early lumping approach to control design is based on a
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finite-dimensional approximation of the system. Using suitable finite difference
schemes to approximate the spatial derivatives results in a semi-discretization
which is differentially flat, and the equivalence of the respective feedforward con-
trols has been shown under certain conditions for some types of PDEs, see, e. g.,
[14,19].

In practice, the feedforward part has to be amended by an additional feedback
tracking control in order to compensate for model uncertainties or disturbances.
For the design of such stabilizing feedback controllers for infinite-dimensional
systems, receding horizon optimal control, e. g., [9,15], constitutes a promising
tool. This method is particularly attractive since it provides, in contrast to most
state-of-the-art tracking control design methods for DCRSs, see, e. g., [12,13],
the possibility to systematically include constraints as they are frequently en-
countered in technical systems.

The paper is structured as follows: In Section 1, the diffusion-convection-
reaction system (DCRS) and the control task is introduced. Section 2 is devoted
to the control design based on a semi-discretization of the considered infinite-
dimensional system. The paper provides simulation results in Section 3 and
conclusions are drawn in Section 4.

1 Problem Formulation

The quasilinear, scalar DCRS, described by the (suitably scaled) parabolic PDE

p(θ(z, t))∂tθ(z, t) = ∂z(q(θ(z, t))∂zθ(z, t))− ν∂zθ(z, t) + r(θ(z, t))θ(z, t) , (1)

z ∈ (0, 1), t > 0 is considered. The storage coefficient p(θ(z, t)) = p0 + p1θ(z, t),
the diffusion coefficient q(θ(z, t)) = q0 + q1θ(z, t), and the reaction coefficient
r(θ(z, t)) = r0 + r1θ(z, t) depend on the state θ(z, t) in an affine way, whereas
the convection parameter ν ≥ 0 is constant. The boundary conditions

∂zθ(z, t)|z=0 = d(t) , (2a)

q(θ(1, t)) ∂zθ(z, t)|z=1 = q̃(u(t)− θ(1, t)) , (2b)

t > 0, q̃ > 0, and the initial condition

θ(z, 0) = θinit(z) , (3)

z ∈ [0, 1], complete the infinite-dimensional system. In order for (1) to be
parabolic it has to be assured that q(θ(z, t)) is positive in the considered range
of the state variable. The exogenous input variable d(t) in (2a) represents an ad-
ditional sink or source term that will be considered as an unknown disturbance
and is assumed to be zero for the feedforward controller design. Additionally,
the control input u(t) entering via the boundary condition (2b) is supposed to
be subject to so-called box constraints, i. e.,

u(t) ∈ [u−, u+] . (4)
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Σffwd Σfb Σ∞
−

y∗, ẏ∗, . . . uΔufbθ
∗ Δθ

θ
∗

u∗

θ

Fig. 1. 2DOF control scheme consisting of the infinite-dimensional system Σ∞, a tra-
jectory planning and feedforward control Σffwd, which provides nominal state and con-
trol input trajectories θ∗ and u∗ based on desired output trajectories y∗, and a tracking
controller Σfb, which provides a correction to the nominal control input trajectories
Δufb based on the state tracking error Δθ

Denoting the state evaluated at z = 0 as the output of the system, i. e. y(t) =
θ(0, t), the control task consists in stably and robustly carrying out transitions
between setpoint values and the associated steady-state profiles of (1)–(3), within
the transition time T = 1. The 2DOF control scheme used to accomplish these
transitions is schematically depicted in Figure 1.

2 Tracking Control Based on Finite Difference
Semi-Discretization

The design of both the flatness-based feedforward control and the receding hori-
zon tracking control depends on a semi-discretization of the infinite-dimensional
system (1)–(3), see also [17]. The methodology to obtain the semi-discretized
system pursued in this contribution is to discretize the spatial coordinate z us-
ing finite differences on an equidistant grid with N grid elements and the nodes
z0 = 0, z1 = Δz, . . . , zk = kΔz, . . . , zN = 1 where Δz = 1/N . Applying the
central finite difference schemes

∂zθk =
1

2Δz
(θk+1 − θk−1) +O(Δz2) , (5a)

∂2
zθk =

1

Δz2
(θk+1 − 2θk + θk−1) +O(Δz2) , (5b)

(∂zθk)
2 =

1

Δz2
(
θk+1 − θk

)(
θk − θk−1

)
+O(Δz2) (5c)

to the PDE (1) and the boundary conditions (2), leads to the following system
of N + 1 ODEs for the discretized states1 θk(t) = θ(zk, t):

(p0 + p1θ0) θ̇0 = (q0 + q1θ0)
2(θ1 − θ0 −Δzd)

Δz2
+ q1d

2 − νd+ (r0 + r1θ0)θ0 ,

(6a)

1 For the sake of readability, time-dependencies as in θk(t) are omitted whenever they
are clear from the context.
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(p0 + p1θk) θ̇k = (q0 + q1θk)
θk+1 − 2θk + θk−1

Δz2
+ q1

(θk+1 − θk)(θk − θk−1)

Δz2

− ν
θk+1 − θk−1

2Δz
+ (r0 + r1θk)θk , k = 1, . . . , N − 1 , (6b)

(p0 + p1θN ) θ̇N =
2(q0 + q1θN )

Δz2

(
Δzq̃

q0 + q1θN
(u− θN )− θN + θN−1

)
+

q1
Δz2

(
2Δzq̃

q0 + q1θN
(u− θN ) + θN−1 − θN

)
(θN − θN−1)

− νq̃

q0 + q1θN
(u− θN) + (r0 + r1θN )θN . (6c)

Note that the scheme (5c) for the squared first derivative with respect to z is
only applied to nodes with k > 0, which is advantageous for the parametriza-
tion considered in the subsequent section. The initial conditions obtained by
evaluating (3) at the nodes

θk(0) = θinit(zk) , (7)

k = 0, . . . , N complete the finite-dimensional semi-discretized approximation of
the infinite-dimensional system (1)–(3).

2.1 Flatness-Based State and Input Parametrization

The semi-discretization (6) has the property of being flat, which is shown in the
following. The k-th equation of (6a) and (6b) is affine in θk+1(t), k = 0, . . . , N−1
and (6c) is affine in the control input u(t). Thus, solving these equations for
θk+1(t) and u(t), respectively, yields

θ1 =: Ψ0(θ0, θ̇0) , (8a)

θk+1 =: Ψk(θk, θ̇k, θk−1) , k = 1, . . . , N − 1, (8b)

u =: ΨN (θN , θ̇N , θN−1) . (8c)

Considering y(t) = θ0(t) it follows from (8a) that θ1(t) can be parametrized in
terms of y(t) and ẏ(t). Differentiating (8a) with respect to time

θ̇1 =
∂Ψ0

∂θ0
θ̇0 +

∂Ψ0

∂θ̇0
θ̈0 (9)

and inserting this result into (8b) for k = 1 directly yields a parametrization
of θ2(t) by y(t), ẏ(t) and ÿ(t). Obviously, this procedure can be analogously
continued for k = 2, . . . , N − 1 with

θ̇k+1 =
∂Ψk
∂θk

θ̇k +
∂Ψk

∂θ̇k
θ̈k +

∂Ψk
∂θk−1

θ̇k−1 , (10)

such that every state θk(t), k = 1, . . . , N as well as the control input u(t) are
recursively parametrized by y(t) and its first N +1 time derivatives. Hence y(t)
constitutes a flat output.
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As a consequence, nominal state trajectories θ∗k(t) and a control input u∗(t)
can be calculated by recursively evaluating (8) using a sufficiently smooth tra-
jectory for the flat output y∗(t), such that the output of (6)–(7) for an exact
model and in the absence of disturbances exactly tracks y∗(t). Under certain
conditions on the growth of the time-derivatives of the prescribed flat output
y∗(t) (defined by its so-called Gevrey-class) and given a suitable set of system
parameters p0, p1, q0, q1, ν, r0, and r1, it can be shown that the control input
u∗(t) converges for N → ∞ to a suitable control input for the DCRS (1)–(3),
see, e. g., [10,19].

2.2 Receding Horizon Tracking Control

In the case of model uncertainties or in order to account for disturbances or
control constraints, the feedforward control Σffwd in Figure 1 has to be extended
by a feedback controller Σfb. The receding horizon control strategy thereby is
formulated for the same semi-discretization that is used for the flatness-based
parametrization.

In view of the 2DOF control structure in Figure 1, the feedback controller
Σfb is designed to stabilize the system Σ∞ along the reference trajectories θ∗k(t),
k = 0, . . . , N provided by the flatness-based trajectory planning Σffwd. This
means that the tracking errors

Δθk(t) = θ(zk, t)− θ∗k(t) ,

k = 0, . . . , N have to be suppressed by the control action Δufb(t), which corrects
the feedforward control u∗(t), see Figure 1. Using θ(t) = [θ0(t), . . . , θN (t)]T ∈
RN+1 to summarize the differential equations (6) in the form

θ̇(t) = f(θ(t), u(t)) ,

the tracking error Δθ(t) = [Δθ0(t), . . . , ΔθN (t)]T ∈ RN+1 satisfies the error
dynamics

Δθ̇(t) = f
(
θ∗(t)+Δθ(t), u∗(t)+Δufb(t)

)
−θ̇

∗
(t) =: F(Δθ(t), Δufb(t), t) . (11)

The receding horizon controller design accounts for the nonlinear and time-
varying error dynamics (11) by solving the following optimal control problem
(OCP) in a discrete-time fashion for each instant of time ti = iΔt with the given
sampling time Δt:

min
Δu(·)

J(Δu(·), Δθi) = ||Δθ(ti,f)||2P +

∫ ti,f

ti

||Δθ(t)||2Q +RΔu(t)2 dt (12a)

s.t. Δθ̇(t) = F(Δθ(t), Δu(t), t) , Δθ(ti) = Δθi (12b)

Δu(t) ∈ [Δu−(t), Δu+(t)] , t ∈ [ti, ti,f ]· (12c)

Starting from the tracking error Δθi = θ(ti) − θ∗(ti) at time ti, the error dy-
namics in (12b) are used to predict the error trajectory Δθ(t) over a finite
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prediction horizon t ∈ [ti, ti,f ] with the final time ti,f = ti + tf , where tf ≥ Δt
denotes the (constant) horizon length. The cost functional (12a) to be minimized
penalizes the tracking error Δθ(t) as well as the feedback control action Δu(t)
with respect to the positive definite matrices2 P,Q and the positive scalar R.
The time-varying input constraints (12c) follow from the original constraints (4)
of the feedforward trajectory u∗(t) in the form

Δu±(t) := u± − u∗(t) , t ∈ [ti, ti,f ] . (13)

In the following, it is assumed that the OCP (12) possesses an optimal solu-
tion Δū(t;Δθi), Δθ̄(t;Δθi), t ∈ [ti, ti,f ]. Note that this assumption is not very
restrictive due to the absence of terminal and state constraints.

The OCP (12) is solved in each time step ti of the receding horizon scheme and
only the first part of the control trajectory Δū(t;Δθi) is used as the feedback
control in Figure 1, i. e.

Δufb(t) = Δū(t;Δθi) , t ∈ [ti, ti +Δt) , i ∈ N
+
0 . (14)

In the next time step ti+1, the OCP (12) is solved again with respect to the new
tracking error Δθi+1 that is used as initial condition in (12b).

If the system exactly follows the reference trajectory at time ti, i. e., if Δθi =
0, and in the absence of disturbances and model inaccuracies the optimal solution
of the OCP (12) is

Δū(t;Δθi) = 0 , Δθ̄(t;Δθi) = 0 , t ∈ [ti, ti,f ] (15)

with J(Δū(·), Δθi) = 0. Hence, if the system exactly tracks the nominal trajec-
tories the control action of the feedback controller Σfb is zero, see Figure 1.

Important design parameters of the receding horizon control scheme are the
choice of the weighting matrices P ∈ R(N+1)×(N+1) and Q ∈ R(N+1)×(N+1), of
the scalar weight R, and the horizon length tf . Receding horizon formulations in
model predictive control often use terminal set or equality constraints to achieve
stability. In the case of a free end point formulation as it is the case in (12),
stability can be shown, e. g., if the terminal cost function ||Δθ(ti,f)||2P represents
a (local) control Lyapunov function [1,11,8] or if the horizon length tf is suffi-
ciently large [5]. For the error dynamics (12b), which is time-dependent due to
the feedforward trajectories, the rigorous proof of stability [3] as well as the con-
sistency of this finite-dimensional control with the original infinite-dimensional
system is subject of current research. In this contribution, the stability and per-
formance of the receding horizon tracking controller are demonstrated by means
of simulation studies in the following section.

3 Simulation Example

With the flat output y(t) = θ0(t), the control task under consideration consists in
realizing the finite-time transition between two setpoints y(0) = y0 and y(1) =

2 Here ||x||2S = xTSx denotes the weighted Euclidean norm of the vector x ∈ R
n with

the matrix S ∈ R
n×n being positive definite.
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y1, which correspond to the (infinite-dimensional) steady-state profiles θ(z, 0)
and θ(z, 1). A suitable reference trajectory y∗(t) for the trajectory planning has
to comply with the desired steady-state output values at the beginning (t = 0)
and at the end (t = 1) of the setpoint transition, i. e.

y∗(0) = y0 , y∗(1) = y1 ,
dl

dtl
y(t)

∣∣∣∣
t=0

=
dl

dtl
y(t)

∣∣∣∣
t=1

= 0 (16)

l = 1, . . . , N + 1. The temporal path of the transition can be provided either by
a polynomial of suitable order or, especially with regard to the continuous limit
of the parametrization, by any smooth function of an appropriate Gevrey-class,
see, e. g., [10].

In all simulation results shown in this contribution, the control design relies
on a semi-discretization with N = 10 grid elements. The following set of system
parameters p0 = 1.2, p1 = 0.05, q0 = 1, q1 = −0.05, q̃ = 1, ν = 0.1, r0 = 1,
and r1 = 0.2 is used and the desired initial and final output values are y0 = 1
and y1 = 2, respectively. In addition, the values u± = ±4 are used as box
constraints (4) and a non-zero disturbance

d(t) =

{
−0.4 for t ∈ [0.4, 0.6]

0 else
(17)

is considered in the simulations. The receding horizon control design is based
on the time discretization ti = iΔt with the sampling time Δt = 0.005 and the
horizon length tf = 0.3. In each time step ti, the OCP (12) is numerically solved
with a tailored gradient projection method [4], such that the OCP may be solved
in a computationally very efficient way, see also [16]. The weighting matrix Q is
set to a diagonal matrix with the diagonal element values interpolated between
200 for the first error state corresponding to the output and the value 2 for the
last error state. The terminal weighting matrix P is set to 0.1Q, while R is chosen
as 0.3. The overall feedback controller Σfb is implemented as a Cmex function in
Matlab, and for the simulations, the standard Matlab-solver ode15s is used
to solve the semi-discretized system (6)–(7) on a grid with Nsim nodes, where
Nsim # N .

In Figure 2, the setpoint transition in the nominal case, i. e., without distur-
bance or input constraints, as well as a transition with disturbance (17) and a
transition with input constraints (4) is shown. The time behaviour of the feedfor-
ward control u∗(t) as well as the evolution of the cost J(Δū(·), Δθi) show that
the contribution of the tracking controller Δufb(t) vanishes in the nominal case.
For the non-zero disturbance (17), this is of course no longer the case. However,
it can be seen that after restoring the nominal conditions, the tracking error is
reduced very fast, the transition is completed as prescribed and the simulation
remains stable. At the same time, the cost J(Δū(·), Δθi) decreases monotoni-
cally to zero. In the case of input constraints (4), deviations from the desired
behaviour are also inevitable, since they are not considered in the feedforward
control design. It can also be observed that due to the prediction horizon the
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Fig. 2. Output y(t), control input u(t) and cost J(Δū(·),Δθi) for the tracking control
of the DCRS in the nominal case, in the case of non-zero disturbance, and under input
constraints

feedback controller becomes aware of the impending violation of the constraints
before it actually occurs. This results in a rise of the cost and subsequently in
the pre-steering action visible in the control input time behaviour, see Figure 2.

The use of a 2DOF control scheme offers some benefits for the realization
of setpoint transition tracking control, which are pointed out in the following.
In Figure 3 the same setpoint transition as before is considered with non-zero
disturbance (17) and the input constraints (4). However, the flatness-based tra-
jectory generation and feedforward control are replaced by a pure feedforward
of the steady-state reference values of the state variables θk(t), k = 0, . . . , N and
of the input u(t) at t = 0.1. Furthermore, a shorter prediction horizon tf = 0.1
is considered for the receding horizon controller. This could be motivated by
the need to reduce the computational cost for the solution of the OCP (12).
It can be observed on the one hand that with the prediction horizon tf = 0.3,
the receding horizon control carries out the transition within a transition time
comparable to the one observed for the 2DOF control scheme. However, this
also results in significant control action especially at the beginning of the transi-
tion. On the other hand, the transition time is increased in the case of the short
prediction horizon tf = 0.1 and the desired final output value is not reached
within the simulation time. The largely different tracking behaviour seems com-
prehensible since the transition time is an important tuning parameter of the
receding horizon control. This is in contrast to the simulation results obtained if
the flatness-based trajectory generation and feedforward control are used in the
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Fig. 3. Output y(t), control input u(t) and cost J(Δū(·),Δθi) for the tracking con-
trol of the DCRS with non-zero disturbance and under input constraints both without
flatness-based feedforward control and prediction horizon tf ∈ {0.1, 0.3}, and with
flatness-based feedforward control (denoted by Σffwd in the figure legend) and predic-
tion horizon tf = 0.1

2DOF control scheme. A slight deterioration of the tracking behaviour can also
be seen for a reduced prediction horizon. However, as the main control action for
the transition is provided by the feedforward control, this deterioration remains
comparatively small. This confirms the observation [18] that the disturbance re-
jection may be designed nearly independently from the setpoint transition in the
2DOF control scheme.

4 Conclusion

In this contribution, a 2DOF control scheme is presented for setpoint transi-
tion tracking control of a quasilinear scalar DCRS. A flatness-based feedforward
controller and a receding horizon feedback tracking controller are designed in an
early lumping approach using a finite-difference semi-discretization of the DCRS.
Thereby, input constraints are systematically incorporated into the receding hori-
zon control design. In the simulation studies, the 2DOF control scheme shows a
good performance for both trajectory tracking and disturbance rejection. Fur-
thermore, the 2DOF control scheme allows for a nearly independent tuning of
the tracking performance and the disturbance rejection. Stability of the feedback
tracking control scheme as well as the further decrease of the computational costs
are subject to current research activities.
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Abstract. Time-varying discrete-time linear systems may be temporarily 
uncontrollable and unreconstructable. This is vital knowledge to both control 
engineers and system scientists. Describing and detecting the temporal loss of 
controllability and reconstructability requires considering discrete-time systems 
with variable dimensions and the j-step, k-step Kalman decomposition. In this 
note for linear discrete-time systems with variable dimensions measures of 
temporal and one-step stabilizability and detectability are developed. These 
measures indicate to what extent the temporal loss of controllability and 
reconstructability may lead to temporal instability of the closed loop system when 
designing a static state or dynamic output feedback controller. The measures are 
calculated by solving specific linear quadratic cheap control problems.  

Keywords: Temporal system properties, linear discrete-time systems, cheap 
LQ control problems, j-step k-step Kalman decomposition.  

1 Introduction 

Feedback control design and stability analysis of nonlinear systems along trajectories 
is often performed using the linearized dynamics about the trajectory [1], [2]. If the 
trajectory is time-varying the linearized model is time-varying. If in addition the 
nonlinear dynamics or the controls are non-smooth, i.e. in the case of bang-bang or 
digital control, the structure of the time-varying linearized system may change. Even 
if the nonlinear dynamics and the controls are smooth the structure of the time-
varying linearized system may almost change. For control system design this is vital 
information since this structure reveals the temporal loss of controllability and 
reconstructability of the linearized system. They in turn may lead to temporal 
instability of a closed-loop control system [3], [4]. Recently we investigated these 
issues for continuous-time systems assuming continuous-time control. This 
investigation lead to the introduction of the properties temporal and differential 
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stabilizability and detectability for continuous-time linear systems [5]. In addition 
measures of these properties were introduced and calculated by solving specific linear 
quadratic cheap control problems [5], [6], [7]. 

Associated with computer control are digital control problems (sampled-data control 
problems). They concern the control of continuous-time systems by means of piecewise 
constant controls using sampled measurements. A common approach is to transform 
such control problems into equivalent discrete-time control problems [8], [9], [10]. 
Following this approach feedback control system design is performed in discrete-time. 
This motivates the discrete-time development in this paper that on the one hand 
parallels, but on the other is also very different from the one in continuous-time. The 
fact that discrete-time is not dense, as opposed to continuous-time, causes some major 
differences. In continuous-time our investigation required the introduction of piecewise 
constant rank systems and the differential Kalman decomposition [3], [4]. In discrete-
time their counterparts are discrete-time linear systems with variable state dimensions 
and the j-step, k-step Kalman decomposition [11].  

This paper develops measures of temporal stability of time-varying linear discrete-
time systems over arbitrary finite time intervals, notably intervals where 
controllability or reconstructability is lost temporarily. Associated to this, measures of 
temporal and one-step stabilizability and detectability are developed. These measures 
can for instance be used to analyse temporal instability of a closed loop control 
system design using LQG output feedback. 

Temporal stability may sound as a contradiction because formally stability relates to 
behavior when time tends to infinity. However, in one of his early seminal papers [12] 
Kalman together with Bertram already proposed measures of stability over finite time 
intervals (page 386). Intuitively stability relates to growth of the system state. Intuitively 
over intervals where the state grows we call the system temporal unstable and over 
intervals where the state decays, we call the system temporal stable. This intuition is 
formalized by the temporal stability property proposed in this note. This property is 
derived from a measure of temporal stability also proposed in this note that measures 
the maximum growth of the state over an arbitrary interval. Our concept of stability over 
a finite time interval differs from what is called finite-time stability [13], [14]. The 
reason we make a different choice is that our measures, their computation and the 
associated control system designs, come down to solving standard LQ problems. The 
standard LQ problems are of a special type called cheap control LQ problems [6], [7] . 
They are characterized by a control penalty that tends to zero. Computations and control 
system design associated to finite-time stability concern matrix inequalities [13], [14]. 
Generally these are much more difficult to solve.  

2 Temporal and One-Step Stability, Stabilizability  
and Detectability 

Temporal uncontrollability/unreachability and temporal unreconstructability/ 
unobservability of linear time-varying systems was introduced and investigated in 
continuous-time [3], [4] and in discrete-time [11]. Intuitively, temporal stabilizability 
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and temporal detectability are associated properties that apply over intervals  
where the system is temporal uncontrollable/unreachable and temporal 
unreconstructable/unobservable respectively. In continuous-time this was formalized 
in [5]. In this section we formalize the discrete-time case. This requires considering 
variable dimension discrete-time linear systems (VDD systems) [11], [15], [16], [17] 
as well as j-step controllability, j-step reachability, k-step reconstructability, k-step 
observability and the associated j-step, k-step Kalman decomposition. All these are 
introduced in [11] that relies partly on [18]. In this section we consider VDD systems 

with a time domain  where  may tend to  and  may tend to . 

Intervals where the VDD system is temporal uncontrollable/unreachable or temporal 

unreconstructable/unobservable are denoted by . 
 

Definition 1. 

A VVD system is called j-step unreachable over the interval / j-step 

uncontrollable over the interval ,  if 

 the system is not j-step reachable at time  / not j-step 

controllable from time . 

Lemma 1. 

If  satisfy the conditions in Definition 1 then over the interval  the 

VDD system is 1) not j-step reachable at each time and 2) not j-step controllable from 
each time. 

 
Proof: 
Follows immediately from [11] and Definition 1.  

 

Definition 2. 

A VDD system that satisfies the conditions in Definition 1 is called j-step 

uncontrollable/unreachable over the interval .  
  

Definition 3 (Dual of Definition 1). 

A VVD system is called k-step unobservable over the interval / k-step 

unreconstructable over the interval ,  if 

 the system is not k-step observable at time  / not k-step 

reconstructable from time . 
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Lemma 2 (dual of Lemma 1). 

If  satisfy the conditions in Definition 3 then over the interval  the 

VDD system is 1) not k-step observable at each time and 2) not k-step reconstructable 
from each time.  

 

Definition 4 (dual of Definition 2). 

A VDD system that satisfies the conditions in Definition 3 is called k-step 

unreconstructable/unobservable over the interval . 
 

Application of the j-step k-step Kalman decomposition [11], [19] at each time 

, reveals all closed intervals (i.e. consisting of at least two consecutive 

discrete-time instants) where the system is j-step uncontrollable/unreachable and 
dually all closed intervals where the system is  k-step unreconstructable/unobservable. 

As in Definition 2 and Definition 4 such intervals will be denoted by . These 

closed intervals are precisely the intervals where stability of the closed loop system 
may be lost temporarily when designing static state and dynamic output feedback 
controllers.  

Stabilizability is a property that relates entirely to the uncontrollable part of a 
system. A general approach to determine stabilizability is to extract this 
uncontrollable part, that is autonomous, by means of a Kalman decomposition, and to 
determine its stability. It will become clear in this section that application of a state 
basis transformation changes temporal stability and stabilizability properties. To 
recover them we therefore need to transform back to the original state basis. As 
opposed to this general approach, the stabilizability analysis presented in this section 
is much more straightforward and simple. It does not require transformation of the 
state basis because it relies fully on well established standard LQ theory applied to the 
original system representation. Therefore the associated numerical computations are 
also very efficient.  

The stabilizability analysis in this section is unconventional in the sense that 
stability, stabilizability and detectability over finite time intervals is required. Stability 
over an interval relates to growth of the magnitude of the state over this interval. 

Throughout this paper  denotes the matrix 2 norm. For vectors this amounts to the 

L2 norm. In the next section we will demonstrate how to compute numerically the 
temporal and one-step stabilizability and detectability measures presented in this 
section, using only evaluations of the system matrices. 

Definition 5. 

An autonomous VVD system is called temporal stable over the interval   if 

for any , . 
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Loosely speaking, according to Definition 5 an autonomous VDD system is called 

temporal stable over  if for any initial state the magnitude of the associated 

terminal state is smaller than that of the initial state. An important difference between 
our definition and other finite-time stability concepts [13], [14] is that ours does not 
impose any restrictions on the magnitude of the state inside the interval. The 
advantage of Definition 5 is that it matches LQ control design as opposed to finite-
time stability that relates to control system design using matrix inequalities [13] that is 
generally much more complicated. 

  

Definition 6. 

Associate to Definition 5 the following temporal stability measure, 
 

.                                             (1) 

Observe that  in Definition 6 is the largest possible ratio . 

This ratio matches the largest possible ratio  in Definition 5. Therefore 

 is indeed a measure of temporal stability associated to Definition 5. The 

smaller  the larger temporal stability. It will become clear that the squares 

in equation (1) are needed to achieve compatibility with LQ control computations. 
 

Theorem 1. 

An autonomous VDD system is temporal stable over the time interval  if and 

only if, 
 

,                                      (2) 

 
where represents the state transition matrix of the associated autonomous 

system from time  to . 
 

Proof: 
Because Theorem 1 applies to autonomous systems, 

 
. (3) 

 
Using equation (3) the temporal stability measure (1) becomes, 
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 (4) 

 

The last equality in equation (4) holds because  is nonnegative symmetric. 

Theorem 1 now follows from (4), Definition 5 and Definition 6 and,  
 

 .                             (5) 

 
Stabilizability over a finite time-interval relates to the ability to stabilize the system 
over that interval by means of control. 

 

Definition 7. 

Associate to Definition 5 and Definition 6 the following temporal stabilizability 

measure that applies to VDD systems considered over the interval , 
 

,                                  (6) 

 
where  indicates a control law dependent on . 

 

Definition 8. 

A VDD system is called temporal stabilizable over  if  . 

Theorem 2. 

A VDD system is temporal controllable over     the 

VDD system is temporal stabilizable over  . 

Proof: 
If a VDD system is temporal controllable over , then according to Definition 1 

and [11], any state  can be controlled to . This implies  and, 

according to Definition 8, temporal stabilizability over .  
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Remark 1. 

As with ordinary controllability and stabilizability, temporal controllability is a 
stronger property than temporal stabilizability. 

To state the main theorem in this section consider the following parameterized 
discrete-time LQ problem. Given the system,  

 

,                                  (7) 
 

with initial state, 
 

, (8) 
 

find the control  that minimizes the cost function, 
 

,                            (9) 

 
with,  

 
 , , .                            (10) 

 
If  the Linear Quadratic control problem (7), (8)-(10) satisfies 

. In this standard case it is well known that the optimal 

control is given by, 
 

 ,                      (11) 
 

and the minimum cost by, 
 

 ,                                                (12) 
 

where  is the solution of the matrix Riccati difference equation, 
 

 .                (13) 

Theorem 3. 

,                                                         (14) 

 
exists, where  satisfies the matrix Riccati difference equation (13) with 

data as specified by equation (10). Furthermore, 
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.                                       (15) 
 

As a special case of (15), 
  

 .                                                     (16) 
 
Proof: 
First observe that in the parameterized LQ problem (7)-(10) we may replace the initial 

time  by . This also hold for the stabilizability measure . Next 

from equations (9), (10) observe that 
 

 
                                 

 (17) 

 
Now the key to proving (14), (15) is to prove that,  

 

                                    (18) 

 
Suppose equation (18) holds. Then from equations (6), (17), (18), 

 

                                       (19) 

 
The last equality in equation (19) holds because  is nonnegative symmetric. So we 

are left to prove equation (18). Consider the j-step, k-step Kalman decomposition at 

time  with . According to this decomposition the linear system (7) can 

be decomposed into a part that is j-step controllable from time  and a part that is 

autonomous. The contribution of the j-step controllable part to  is zero. 

The contribution to  tends to zero as . The contribution of the 

autonomous part to both  and  is fixed and independent of . 

Because the system matrices are bounded this contribution is also finite. This proves 
the existence of the limit (16) and the equality (18). 
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Remark 2. 

There are three reasons for considering  in equation (10), instead of 
. Taking ,  may be used to 1) keep the control within certain 

bounds that apply in practice and 2) as a numerical tolerance to prevent ill-

conditioning of the computation of equation (11) when  is not full rank and 

 as . In practice the selection of  will be a compromise 

and  will approximate , . As a result all computations in this 

paper involving  will be approximations, although generally very good ones. 

Thirdly  leads to a singular LQ problem that is generally much more difficult 
to solve and the solution of which need not be unique. 

 
When analyzing control systems the state behavior over the entire interval 

 is generally of interest, not just the behavior at the initial time  and the 

final time . This behavior is partly considered by equation (15) of Theorem 3 that 

determines the stabilizability measure for each sub interval . 

The following theorem introduces a one-step stabilizability measure that applies to 
individual time instants. 

 

Theorem 4. 

 is a one-step stabilizability measure (os-stabilizability measure) at time 

.  
 

Proof: 
From (15), 

 

                 

 (20) 

so ,  is the one-step contribution at time  to the 

temporal stabilizability measure . If this contribution is negative 

 decreases and temporal stabilizability increases.  

Definition 9. 

A VDD system is called one-step stabilizable (os-stabilizable) at time 

 if . 
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Because for a VDD system temporal and one-step detectability are dual to temporal 
and one-step stabilizability, the following definitions and theorems are stated without 
further explanation and proof. 

Theorem 5 (dual of Theorem 3). 

, (21) 

exists, where  satisfies the matrix Riccati difference equation that is dual 

to (13), 
 

 ,              (22) 
 
with, 
 

 ,                                         (23) 
 
with data as specified by equation (10). Furthermore,  
 

 .                                         (24) 
 

where  is a temporal detectability measure over the interval . As 

a special case, 
  

 .                                                   (25) 

Definition 10 (dual of Definition 8). 

A VDD system is called temporal detectable over  if . 

Theorem 6 (dual of Theorem 4). 

 is a one-step detectability measure (os-detectability measure) at time 

.  
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3 Conclusions 

New temporal properties and associated measures for control system design 
concerning time-varying linear discrete-time systems were introduced in this paper. 
The properties and associated measures concern temporal and one-step stabilizability 
and detectability. They indicate to what extent control system design is problematic 
when discrete-time linear time-varying systems are temporal uncontrollable or 
temporal unreconstructable. Temporal uncontrollability and unreconstructability are 
detected by the j-step, k-step Kalman decomposition. As demonstrated in this paper, 
after introduction of a suitable, simple stability property, that applies over finite time 
intervals, application of ordinary standard LQ theory and algorithms enables the 
computation of associated temporal and one-step stabilizability and detectability 
measures. These determine to what extent a static or dynamic feedback control 
system becomes temporal unstable. A major application concerns the temporal 
stability analysis of digital perturbation output feedback controllers for nonlinear 
systems tracking control and state trajectories that may be optimal [1], [10]. 

As an alternative to LQ theory, temporal stabilizability may be determined by 
extracting the temporal uncontrollable or temporal unreconstructable subsystems and 
analyzing their temporal stability. In principle, the j-step, k-step Kalman 
decomposition is able to extract these subsystems. The extraction employs state basis 
transformations that generally change temporal stability properties. The approach 
presented in this paper is more simple and direct because it applies standard LQ 
theory to the original, untransformed system. 

Although the LQ problems in this paper are singular in principle, it is advantageous 
to approximate them by non-singular LQ problems, as demonstrated in this paper. The 

interpretation of as a temporal stabilizability measure is new and highly 

interesting. The same applies to the interpretation of  as a one-step 

stabilizability measure that measures the contribution to stabilizability of each single 
time-step. 

Along the lines of this paper we are also currently exploring temporal properties of 
time-varying linear systems with white stochastic parameters [20]. Among others 
these enable robust digital optimal perturbation feedback design for nonlinear 
systems.  
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and Nicolas R. Gauger3
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Abstract. While active flow control is an established method for con-
trolling flow separation on vehicles and airfoils, the design of the actua-
tion is often done by trial and error. In this paper, the development of
a discrete and a continuous adjoint flow solver for the optimal control
of unsteady turbulent flows governed by the incompressible Reynolds-
averaged Navier-Stokes equations is presented. Both approaches are ap-
plied to testcases featuring active flow control of the blowing and suction
type and are compared in terms of accuracy of the computed gradient.

Keywords: optimal control, active flow control, discrete adjoint,
continuous adjoint, unsteady turbulent flows, URANS.

1 Introduction

For many aerodynamic applications in aviation and automotive industry, flow
separation has to be taken into account. The lift of an airfoil at a high angle
of attack, for instance, decreases drastically, if the flow separates on the suction
side.

Many studies in the past decades have shown that the aerodynamic behaviour
of a body can be improved by using active flow control [4]. However, the choice of
the control parameters is very case-specific and not trivial. An efficient method
of finding the optimal set of actuation parameters is the gradient-based optimi-
sation, which requires the calculation of the gradient of the cost function with
respect to the control parameters. The control variables are then updated in an
iterative manner according to a descent direction, which can be obtained from
the gradient vector.
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A very efficient way of computing the gradient is by using adjoint methods.
Compared to simpler approaches such as Finite Differences or the Complex Tay-
lor Series Expansion (CTSE) [13], adjoint-based methods compute the gradient
vector at a fixed expense independent of the number of actuation parameters.
Adjoint methods are commonly divided into the continuous and the discrete
approach.

In the continuous adjoint method [10], first the optimality system for a given
objective function is derived and the resulting PDEs are then discretised and
solved numerically. This procedure is called first optimise then discretise. The
continuous approach is numerically efficient but it is known to suffer from consis-
tency problems. The gradient can become inaccurate for insufficient time steps
and grid spacing, which can be disadvantageous for complex configurations. Fur-
thermore, most statistical turbulence models required for the unsteady Reynolds-
averaged Navier-Stokes equations (URANS) are non-differentiable. The common
approach is to use the so-called constant eddy viscosity or frozen turbulence as-
sumption, i.e. the eddy viscosity is treated as independent of the control param-
eters and therefore taken from the primal solution. This assumption can lead to
significant errors in the computed gradient [1].

The concept of the discrete adjoint method [3,6,12] is to first discretise then
optimise, i.e. the discretised governing equations are used to derive the optimal-
ity system. This approach allows the generation of a fully consistent optimality
system independent of the grid size, time step and turbulence model, as it does
not require analytical differentiability [11]. Furthermore, Automatic Differentia-
tion (AD) techniques [8] can be used to develop the discrete adjoint solver for a
given simulation code in a semi-automatic fashion.

In this paper, we present the development of a continuous and a discrete
adjoint solver for the optimal control of unsteady turbulent flows governed by
the incompressible URANS equations. Both approaches, which are presented in
more detail in sections 3 and 4, are based on the same flow solver ELAN [16].
For the current study, the adjoint solvers are applied to testcases which feature
active flow control of the blowing and suction type.

2 Flow Model

Governing equations For this study, the unsteady, incompressible, turbulent flow
in the domain Ω is described by the Reynolds-averaged Navier-Stokes equations1

∂ui
∂xi

= 0 (1)

∂%ui
∂t

+
∂%uiuj
∂xj

+
∂p

∂xi
− ∂

∂xj

[
(μ+ μt)

(
∂ui
∂xj

+
∂uj
∂xi

)]
= 0 , (2)

1 In the following, the Einstein summation convention is used, which implies summa-
tion from 1 to 3 over indices which appear twice in a single term. Indices, which
appear only once take the value 1, 2 and 3 individually.
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where ui and p are the Reynolds-averaged velocity and pressure, respectively.
The density % and the dynamic viscosity μ are constant for the cases shown here.
The eddy viscosity μt is obtained from the Wilcox-k-ω-model [15], which con-
sists of transport equations for the turbulent kinetic energy k and the turbulent
frequency ω.

Boundary Conditions At the farfield boundaries (Γi), ui, k and ω were pre-
scribed. On the body surface (Γb), ui and ∂k/∂n were set to zero, whereas a
high-Re boundary condition [16] was used for the turbulent frequency. At the
outflow (Γo), the gradient of the turbulent quantities normal to the boundary
was set to zero. For the Navier-Stokes equations, we want the sum of normal
and friction forces to vanish at the outlet, i.e.

−pni + (μ+ μt)

(
∂ui
∂xj

+
∂uj
∂xi

)
nj = 0 . (3)

At the control segment (Γc), the actuation velocity ci(bj) as well as the turbu-
lent quantities were prescribed. The dependence of ci(bj) on the vector of the
actuation parameters, bj , is case-specific and is given in the testcase descriptions.

3 Continuous Adjoint Approach

Let J be the objective function to be minimised. Then the optimisation problem
can be stated as

J(ui, p, ci(bj)) � min over (ui, p, ci(bj)) subject to R(ui, p, ci(bj)) = 0 , (4)

where R represents the state equations including the boundary conditions. In
the cases presented here, the objective function can be written as2

J = − 1

T

T∫
0

∫
Γb,c

[
(μ+ μt)

(
∂ui
∂xj

+
∂uj
∂xi

)
nj − pni − %uiujnj

]
ei dAdt

+
γ

u∞

1

T

T∫
0

∫
Γc

%u2
√
(uini)2 + ε dAdt . (5)

If the unity vector ei is parallel to the mean flow, eq. 5 is the time-averaged drag.
If ei is oriented normal to the mean flow, eq. 5 represents the time-averaged
downforce. The second integral is a penalty term which accounts for the energy
consumption of the actuation and can be scaled by the factor γ. The parameter
ε is only required for the differentiability of the penalty term, i.e. 1# ε > 0.

2 Note, that the negative sign of the first integral is a result of the convention that
the normal vector ni is directed out of the wall-adjacent control volume, i.e. into the
body surface.
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To solve the minimisation problem, one first introduces the Lagrange function

L(ui, p, ci(bj), vi, q) = C J(ui, p, ci(bj))+

T∫
0

∫
Ω

qR� dV dt+

T∫
0

∫
Ω

viRu dV dt , (6)

where the Lagrange multipliers vi and q are the adjoint velocity and pressure,
respectively, and C is a scaling factor to fix the units. By setting the variation of
L with respect to the state variables, ∂L

∂uk
δuk and ∂L

∂p δp, to zero, one can obtain
the adjoint equations. First the variations δuk and δp have to be separated from
other terms by using integration by parts and the boundary conditions have to be
applied to the boundary integrals. As the resulting equations have to be fulfilled
for any variation δuk and δp, all integrals have to vanish individually, which gives
the adjoint equations and boundary conditions. Setting the variation of L with
respect to the control to zero and using the same procedure gives the equation
for the gradient calculation. Due to the page limitation, a detailed derivation
has to be omitted and the adjoint system can only be summarised. The adjoint
PDEs read

∂vi
∂xi

= 0 Ω

−∂%vi
∂t

+ %vj
∂uj
∂xi

− ∂%ujvi
∂xj

+
∂q

∂xi
− ∂

∂xj

[
(μ+ μt)

(
∂vi
∂xj

+
∂vj
∂xi

)]
= 0 Ω

vi = 0 Γi

%viujnj − qni + (μ+ μt)

(
∂vi
∂xj

+
∂vj
∂xi

)
nj = 0 Γo

vi +
C

T
ei = 0 Γb,c ,

(7)
with the initial condition vi = 0 at t = T . The gradient w.r.t. the actuation
parameters can be evaluated from

dJ

dbn
=

T∫
0

∫
Γc

[
−%ujvjnm − qnm + (μ+ μt)

(
∂vm
∂xj

+
∂vj
∂xm

)
nj

]
∂cm
∂bn

dAdt

+
γ

u∞

C

T

T∫
0

∫
Γc

[
%ckck√

cinicjnj + ε
clnlnm + 2%cm

√
cinicjnj + ε

]
∂cm
∂bn

dAdt .

(8)
Note, that the frozen turbulence assumption has been used, i.e. an adjoint tur-
bulence model is not required.

4 Discrete Adjoint Approach

If we consider the discrete implementations of the objective function J and the
state equations R, the discrete optimisation problem can be stated as:

Jd(y, bi) � min over (y, bi) subject to Rd(y, bi) = 0 , (9)
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where y = (ui, p) is the discrete state vector and Jd, Rd denote the discrete
implementations of J and R. Note, that in the discrete realisation the actuation
variables bi are chosen as independent variables. The gradient of Jd with respect
to the actuation parameters bi can be computed from

dJd
dbi

=
∂Jd
∂bi

− ψ� ∂Rd

∂bi
, (10)

where the adjoint vector ψ can be determined by solving the adjoint system(
∂Rd

∂y

)�
ψ =

∂Jd
∂y

. (11)

One way of constructing the adjoint system is by computing ∂Rd/∂y and ∂Jd/∂y
using Finite Differences. The linear system of equations is then hand-coded and
solved by an iterative method (e.g. GMRES). The resulting adjoint variables are
used to calculate the gradient vector in eq. 10. A more promising way of devel-
oping the adjoint system is by employing the reverse mode of AD, which has the
major advantage that it constructs the adjoint system consistently and computes
the gradient vector dJd/dbi accurate to machine precision. In the present work,
the discrete adjoint solver is developed by employing the AD tool TAPENADE
[9] in reverse mode of differentiation.

If the reverse mode of AD is applied in a black-box fashion, the resulting
adjoint code will have tremendous memory requirements. In order to reduce the
excessive memory demands, we apply the reverse accumulation and checkpoint-
ing strategies for the Automatic Differentiation of the underlying flow solver.
The solution strategy for the incompressible URANS equations mainly consists
of two iterative loops: the time evolution step and the iterations for the velocity-
pressure coupling scheme. Inside each time step, the velocity-pressure coupling
iterations are performed, which are commonly known as outer iterations in the
CFD community. It may be noted, that the outer iterations for the velocity-
pressure coupling scheme converge to a fixed point in each time step. If AD is
applied to these outer iterations in a black-box fashion, the flow solutions at each
outer iteration of the primal solver must be saved for the adjoint part. However,
the adjoint iterations require only the converged primal solution. Therefore, a lot
of memory and run time can be saved, if we make use of the iterative structure
and store only the converged flow solution in each physical time step. This can
be achieved by employing the reverse accumulation approach [2,5], the details
of which are presented in the following.

Consider the total derivative of a discrete objective function Jd with respect
to the control bi at the converged state solution y∗ for any time step:

dJd(y
∗, bi)

dbi
=

∂Jd(y
∗, bi)

∂bi
+
∂Jd(y

∗, bi)

∂y∗
dy∗

dbi
. (12)

On the other hand, if we have a fixed point for the state solution y∗ = G(y∗, bi)⇔
Rd (y

∗, bi) = 0, we get

dy∗

dbi
=

∂G(y∗, bi)

∂bi
+
∂G(y∗, bi)

∂y∗
dy∗

dbi
=

(
I − ∂G(y∗, bi)

∂y∗

)−1
∂G(y∗, bi)

∂bi
. (13)



Optimal Control of Unsteady Flows 323

Multiplying on both sides with ∂Jd(y
∗,bi)

∂y∗
�
, we obtain

(
∂Jd(y

∗, bi)

∂y∗

)�
dy∗

dbi
=

(
∂Jd(y

∗, bi)

∂y∗

)�(
I − ∂G(y∗, bi)

∂y∗

)−1

︸ ︷︷ ︸
:=y∗�

∂G(y∗, bi)

∂bi
. (14)

From the definition of y∗� in equation (14) and making use of equation (13),
the adjoint fixed point iteration can be written as

y∗� = y∗�
∂G(y∗, bi)

∂y∗
+

(
∂Jd(y

∗, bi)

∂y∗

)�
. (15)

The first term on the right hand side of the above equation is the adjoint of a
single outer iteration. This can be generated by applying the reverse mode of
AD to the wrapper subroutine G, which combines all the steps done within one
outer iteration of the flow solver. The gradient vectors ∂Jd/∂y

∗ and ∂Jd/∂bi
come from the adjoint of the post-processor, which is computed only once for
each time iteration.

We now focus our attention on adjoining the time iterations. In general, the
computation of the unsteady adjoint solution over the time interval [0, T ] with
N time steps requires the storage of flow solutions at time steps T0 to TN−1. The
stored solutions are then used in solving the adjoint equations from TN to T0.
For many practical aerodynamic configurations with millions of grid points and a
large number of unsteady time steps, the storage costs may become prohibitively
expensive.

One way of circumventing the excessive storage cost is by employing a check-
pointing strategy [8], where the flow solutions are stored only at selective time
steps known as checkpoints. These are then used to recompute the intermediate
states that have not been stored. In the present example, we chose r (r ( N)
checkpoints. We then have 0 = T0 = TC1 < TC2 < · · · < TCr−1 < TCr < TN = T .
Here, TCr represents the time step at rth checkpoint. During the adjoint compu-
tation over the subinterval [TCr , TN ], required flow solutions at intermediate time
steps are recomputed by using the stored solution at TCr as the initial condition.
The above procedure is then repeated over other subintervals

[
TCr−1 , TCr

]
until

all adjoints are computed. It may be noted, that the checkpoints can be reused
when they become free. We designate them as intermediate checkpoints.

Various checkpointing strategies have been proposed based on the storage
criteria. If all the checkpoints are stored in main memory, it is called single-
stage checkpointing. In yet another approach called multi-stage checkpointing
[14], the checkpoints are stored both in main memory and on hard-disk, thus
reducing the number of flow recomputations. In the present work, we have used
the single-stage binomial checkpointing strategy, which is implemented in the
algorithm revolve [7] and generates the checkpointing schedules in a binomial
fashion, so that the number of flow recomputations is proven to be optimal.
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5 Numerical Results

5.1 Cylinder with Pulsed Blowing and Suction

The first application is the unsteady laminar flow around a circular cylinder at
a Reynolds-number of Re = 100, based on the cylinder diameter D and the
freestream velocity u∞. The objective is to reduce the drag by applying pulsed
blowing or suction according to

cn = ua sin [2πf (t− t0)]− ua (16)

on 15 slits, which are equidistantly distributed in 75% of the cylinder surface,
see fig. 1(a). In eq. 16, cn is the actuation velocity normal to the slit surface

Velocity Magnitude: 0.0 1.2

(a) Snapshot of actuated flow

p
m:

-0.4 0.4

base flow

actuated flow

(b) Time-averaged pressure field

Fig. 1. Contour plots for the cylinder flow

and ua, f and t0 are the amplitude, frequency and phase shift, respectively. The
actuation mode, i.e. blowing or suction, is set by the sign of the amplitude. For
the case studied here, the actuation amplitudes at all slits are the parameters
to be optimised, while the frequency and phase shift were fixed to f = 1 u∞/D
and t0 = 0D/u∞, respectively.

Only the continuous adjoint flow solver was applied to this testcase in order
to test its accuracy in the unsteady laminar mode, i.e. without the influence of
the frozen turbulence assumption. A numerical mesh consisting of about 25000
control volumes (CV) and a time step of Δt = 0.04D/u∞ was used for the
computations. In every iteration of the optimisation, which was performed with
the steepest descent method, the primal solution was integrated over 15000 time
steps. For the calculation of the objective function and the gradient, the first
5000 time steps were neglected to remove the initial transient. The optimisation
was terminated when all sensitivities had dropped by two orders of magnitude.

As can be seen from fig. 2(a), the drag coefficient of the cylinder decreases from
cd = 1.336 to cd = 0.899 when actuated with the optimal control parameters,
which is a reduction of more than 30%. The comparison of the sensitivities at
the first optimisation step shows a good agreement of the adjoint-based gradient
with Finite Differences, see fig. 2(b). There are only small deviations, which can
be attributed to the insufficient grid spacing and time step. Note, that only the
slits on the upper half of the cylinder are shown, as the optimisation leads to
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Fig. 2. Optimisation results for the cylinder flow

a symmetric actuation. The same holds for the optimal amplitude distribution,
which is presented in fig. 2(c). The blowing and suction at slits one to four
generates a symmetric vortex pair which is pushed away from the rear of the
cylinder by the blowing at slits five to eight. As is obvious in fig. 1(b), this
increases the pressure level behind the cylinder, thus reducing the pressure drag.

5.2 NACA0015 Airfoil with Synthetic Jet Actuation

The second application is the lift maximisation for the unsteady turbulent flow
around a NACA0015 airfoil at Re = 106, based on the cord length c and the
freestream velocity u∞. The angle of attack (AoA) is α = 20o, leading to a mas-
sive separation on the suction side. In this case, sinusoidal blowing and suction
(also called synthetic jet), which can be modelled according to

ci = uari sin [2πf (t− t0)] , ri =

(
cos (β − θ)
sin (β − θ)

)
, (17)

is applied at four slits on the suction side of the airfoil with a constant frequency
of f = 1.28 u∞/c. Compared to the pulsed actuation (eq. 16) the blowing angle
β can now be varied. The angle of the slit surface, θ, is fixed by the geometry
of the airfoil. Computations with the discrete and the continuous adjoint solver
were performed on a coarse mesh with 9500 CV and Δt = 0.005 c/u∞ over 100
time steps, including the initial transient.

The comparison of the sensitivity gradients, summarised in tab. 1, reveals an
excellent agreement between the forward and reverse mode AD, giving only very
small differences of approx. 1× 10−5.

Compared to the AD-based solver, the results of the continuous adjoint code
are significantly less accurate. One reason for this is the insufficient grid spac-
ing, which is known to cause consistency problems with the continuous adjoint
approach [11]. Furthermore, this can also be attributed to the frozen turbulence
assumption. The active flow control modifies the separation on the suction side
of the airfoil considerably, which has a strong impact on the turbulence field.
This is completely neglected by the frozen turbulence assumption.



326 A. Carnarius et al.

Table 1. Comparison of the sensitivities for the NACA0015 testcase

control parameter forward mode AD reverse mode AD continuous adjoint
amplitude slit 1 0.132843488475446 0.132869414677547 0.070114751633607
amplitude slit 2 0.167065662623720 0.167070460770784 0.091718158272631
amplitude slit 3 0.181252126166289 0.181247271988999 0.103029635268416
amplitude slit 4 0.155843813170431 0.155844489164031 0.078944639252318
angle slit 1 0.005209720130677 0.005212791392634 0.000849278587241
angle slit 2 0.006705398122871 0.006697219503597 0.000654244527370
angle slit 3 0.006841527973356 0.006841492789784 0.002024334722777
angle slit 4 0.007246750396135 0.007246751418587 0.001287773996372
phase slit 1 0.204178681978258 0.204246051913213 0.278962118275295
phase slit 2 0.244693324906123 0.244791572866917 0.295707942189874
phase slit 3 0.244819168327026 0.244817849004966 0.304905513643976
phase slit 4 0.125955476539906 0.125957535080716 0.150374244523809

6 Summary and Outlook

In this paper, the development of a continuous and a discrete adjoint flow solver
for the optimal control of unsteady, turbulent flows governed by the incompress-
ible URANS equations was presented. For the continuous adjoint approach, the
wide-spread frozen turbulence assumption was used, while the AD-based discrete
approach is fully consistent independent of the grid size, time step and turbulence
model, as it does not require analytical differentiability. The numerical efficiency
of the discrete solver has been improved by employing the reverse accumulation
technique and the binomial checkpointing, which allows the application of the
discrete adjoint solver to practical configurations.

The numerical results of the drag reduction of the cylinder flow showed, that
the continuous adjoint method works well for unsteady laminar flows. However,
it gives fairly inaccurate sensitivity gradients when applied to the turbulent flow
around a NACA0015 airfoil at a high Re-number due to the frozen turbulence
assumption and insufficient grid spacing. In contrast to this, the sensitivities
obtained from the AD-based adjoint solver are of excellent accuracy and match
the forward mode AD nearly perfectly.

In future studies, the different approaches will be applied to more complex
geometries such as multi-element high-lift configurations or simplified car mod-
els, aiming at a more detailed comparison of the adjoint methods in terms of
accuracy and numerical efficiency.
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Abstract. We deal with well-posedness and asymptotic dynamics of a
class of coupled systems consisting of linearized 3D Navier–Stokes equa-
tions in a bounded domain and a classical (nonlinear) elastic plate/shell
equation. We consider three models for plate/shell oscillations: (a) the
model which accounts for transversal displacement of a flexible flat part
of the boundary only, (b) the model for in-plane motions of a flexible flat
part of the boundary, (c) the model which accounts for both transver-
sal and longitudinal displacements. For all three cases we present well-
posedness results and prove existence of a compact global attractor. In
the first two cases the attractor is of finite dimension and possesses ad-
ditional smoothness. We do not assume any kind of mechanical damping
in the plate component in the case of models (a) and (b). Thus our re-
sults means that dissipation of the energy in the fluid due to viscosity is
sufficient to stabilize the system in the latter cases.

Keywords: Fluid–structure interaction, nonlinear shell/plate, lineari-
zed 3D Navier–Stokes equations, global attractor, finite dimension.

1 Introduction

We consider a coupled (hybrid) system, which describes interaction of a homo-
geneous viscous incompressible fluid that occupies a bounded domain O with
elastic plate/shell. Boundary ∂O of O consists of the (solid) walls of the con-
tainer S and a horizontal (flat) part Ω, on which a thin (nonlinear) elastic shell
or plate is placed. The motion of the fluid is described by linearized 3D Navier–
Stokes equations. To describe deformations of the shell/plate we use several
elastic models. In all cases we assume that large deflections of the shell produce
small effect on the fluid. This corresponds to the case when the fluid fills the
container which is large in comparison with the size of the shell/plate.

We note that the mathematical studies of the problem of interaction of viscous
fluids and elastic plates/bodies have a long history. We refer to [3,12,14] for the
case of plates/membranes, to [10] in the case of moving elastic bodies, and to
[1,2,11] in the case of elastic bodies with fixed interface; see also the literature
cited in these papers.
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2 Mathematical Description of the Models

Fluid. Let O ⊂ R3 be a bounded domain with sufficiently smooth boundary ∂O.
We assume that ∂O = Ω ∪ S, where Ω ⊂ {x = (x1;x2; 0) : x′ ≡ (x1;x2) ∈ R2}
with a smooth contour Γ = ∂Ω and S is a surface lying in R3

− = {x3 ≤ 0}. The
exterior normal on ∂O is denoted by n. We have that n = (0; 0; 1) on Ω. The
surface S corresponds to solid walls of the container with a fluid, and Ω models
an elastic shell or plate placed over the fluid.

To describe the fluid we consider the following linear Navier–Stokes equations
in O for the fluid velocity field v = v(x, t) = (v1(x, t); v2(x, t); v3(x, t)) and the
pressure p(x, t):

vt − νΔv +∇p = Gf in O × (0,+∞) , (1)

divv = 0 in O × (0,+∞) , (2)

where ν > 0 is the dynamical viscosity and Gf is a volume force.
We denote by Tf (v) the surface force exerted by the fluid on the shell which is

equal to Tn|Ω, where n is an outer unit normal to ∂O at Ω and T = {Tij}3i,j=1

is the stress tensor of the fluid,

Tij ≡ Tij(v) = ν
(
vixj

+ vjxi

)
− pδij , i, j = 1, 2, 3 .

Since n = (0; 0; 1) on Ω, we have that

Tf (v) = (ν(v1x3
+ v3x1

); ν(v2x3
+ v3x2

); 2νv3x3
− p) .

A specific form of this force as well as boundary conditions on Ω for the fluid
depend on elastic plate/shell model we choose.

General Model (GM). We start with the full von Karman shallow shell model
which accounts for both transversal and in-plane displacements (see [20,15,13,17]
and the references therein). To this end we equip (1) and (2) with the (non-slip)
boundary conditions imposed on the velocity field v = v(x, t):

v = 0 on S, v ≡ (v1; v2; v3) = (u1t ;u
2
t ;wt) on Ω , (3)

where u = u(x, t) ≡ (u1;u2;w)(x, t) is the displacement of the shell occupying
Ω. Here w stands for the transversal displacement, ū = (u1;u2) — for the lateral
(in-plane) displacements.

To describe the shell motion we use the full von Karman model which takes
into account rotational inertia of the filaments and possible presence of in-plane
acceleration terms (see the literature cited above):

Mα(wtt+γwt)+Δ2w+trace {KN (u)}−div {N (u)∇w} = G3−2νv3x3
+p , (4)

and
%ūtt = div {N (u)}+

(
G1 − ν(v1x3

+ v3x1
);G2 − ν(v2x3

+ v3x2
)
)
, (5)
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where Mα = 1− αΔ, K = diag (k1, k2), and

N (u) ≡
(
N11 N12

N12 N22

)
= C(ε0(ū) + wK + f(∇w))

with ū = (u1;u2), C(ε) = D [μ trace ε · I + (1 − μ)ε], and

ε0(ū) =
1

2
(∇ū +∇T ū), f(s) =

1

2
s⊗ s, s ∈ R

2 .

Here D = Eh/(1− μ2), E is Young’s modulus, 0 < μ < 1/2 is Poisson’s ratio, h
is the thickness of the shell, α > 0 and % ≥ 0 are constants taking into account
rotational inertia and in-plane inertia of the shell, γ ≥ 0 is a parameter which
describes intensity of the viscous damping of the shell material. We denote by
Gsh ≡ (G1;G2;G3) a (given) body force applied to the shell.

We impose the clamped boundary conditions on the shell:

u1|∂Ω = u2|∂Ω = 0 (6)

and

w|∂Ω =
∂w

∂n

∣∣∣∣
∂Ω

= 0 . (7)

We supply (1)–(7) with the initial data for the velocity field v = (v1; v2; v3) and
the shell displacement vector u = (u1;u2;w) of the form1

v
∣∣
t=0

= v0, u
∣∣
t=0

= u0, wt

∣∣
t=0

= w1, %
[
ūt
∣∣
t=0

− ū1
]
= 0 , (8)

where ū = (u1;u2). Here v0 = (v10 ; v
2
0 ; v

3
0), u0 = (u10;u

2
0;w0), w1, and ū1 =

(u11;u
2
1) are given vector functions which we will specify later.

From (2) and (3) we can also derive the compatibility condition∫
Ω

w(x′, t)dx′ = const for all t ≥ 0 , (9)

which can be interpreted as preservation of the volume of the fluid.

Simplified Model 1 (SM1). This kind of models arises in the study of the
problem of blood flows in large arteries (see, e.g., [12] and the references therein).
The model assumes additional hypothesis that the transversal displacement w
of the plate is negligible relatively to the in-plane displacement (u1;u2). Thus
we consider only longitudinal deformations of the plate and take into account
only tangential shear forces which fluid exerts on the plate. Formally this means
that we omit equation (4) and put w ≡ 0 in (3) and (5). Thus we arrive at the
following boundary conditions imposed on the velocity field v = v(x, t):

v = 0 on S, v ≡ (v1; v2; v3) = (ut; 0) ≡ (u1t ;u
2
t ; 0) on Ω , (10)

1 We put the multiplier � in the fourth relation of (8) to emphasize that this relation
is not needed in the case of negligibly small in-plane inertia (� = 0).
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where u = u(x, t) ≡ (u1(x, t);u2(x, t)) is the in-plane displacement vector of the
plate placed on Ω satisfying (5) with N0(u) = C(ε0(u)) instead of N .

We assume that for this case the external (in-plane) force (G1;G2) in (5) is a
nonlinear feedback force represented by a potential Φ:

Gi = f i(u1, u2) ≡ ∂Φ(u1, u2)

∂ui
, i = 1, 2 .

Since v3(x1;x2; 0) = 0 for (x1;x2) ∈ Ω due to the second relation in (10), we
have v3xi

= 0 on Ω, i = 1, 2. Thus after rescaling of the elastic constants we
arrive at the following equations for the in-plane displacement u = (u1;u2):

uitt −Δui − λ∂xi [div u] + νvix3
|x3=0 + f i(u) = 0, i = 1, 2 , (11)

where λ is a nonnegative parameter. We impose the clamped boundary condi-
tions (6) for the displacement u = (u1;u2) on Γ = ∂Ω. Thus we obtain

Problem (SM1): Find vector functions v = (v1; v2; v3) and u = (u1;u2) satis-
fying (in some sense) equations (1), (2), (10), (11), (6) and the initial data

v|t=0 = v0, u|t=0 = u0, ut|t=0 = u1 .

This problem with λ = 0 and f i(u) ≡ 0 was considered in [12] (see also the
literature cited there) with the additional strong (Kelvin-Voight type) damping
force applied to the interior of the plate. In contrast with [12] we do not assume
the presence of mechanical damping terms in the plate component of the system
and consider a nonlinearly forced model.

Simplified Model 2 (SM2). This model is concerned to dynamics of the
transversal displacement w. The corresponding model assumes a special struc-
ture of the in-plane displacements ū = ū(x, t) ≡ (u1(x, t);u2(x, t)) in (4) as a
function of the transversal displacement w only. Hence we neglect the equation
in (5) (see, e.g., [15,20] and the references therein). We also assume that α = 0.
This formal procedure leads to the following boundary conditions imposed on
the velocity field v = v(x, t):

v = 0 on S; v ≡ (v1; v2; v3) = (0; 0;wt) on Ω . (12)

This and also (2) imply that v3x3
= 0 and therefore the third (transversal) com-

ponent Tf(v) on ∂Ω is exactly the pressure p of the fluid. Thus the transversal
displacement w = w(x, t) of the plate satisfies the following equation:

wtt +Δ2w + F(w) = Gpl + p|Ω in Ω × (0,∞) , (13)

where Gpl is a given body force on the plate, F(u) is a nonlinear feedback force
which will be specified later. As a result we obtain

Problem (SM2): Find the fluid velocity field v = (v1; v2; v3), the pressure p,
and the transversal displacement of the plate w satisfying (in some sense)
equations (1), (2), (12), (13) and also compatibility condition (9), boundary
conditions (7), and initial conditions of the form

v(0) = v0, w(0) = w0, wt(0) = w1 .
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Remark 1. We emphasize that even in the linear case due to the structure of
the surface fluid forces Tf(v) we cannot split system (1)–(8) into two sets of
equations describing longitudinal and transversal plate movements separately,
i.e., we cannot reduce the model in (GM) to the cases considered in the models
in (SM1) and (SM2). The point is that in the case (SM1) equation (11) for
longitudinal plate deformations does not contain the terms v3xi

and the model
does not require any compatibility conditions like (9) because the volume of the
fluid obviously preserves. In the case of purely transversal displacements (see
(SM2)) the force exerted on the plate by the fluid contains the pressure only.
See also [9] for a further discussion.

Spaces and Notations. To describe fluid velocity fields we introduce the follow-
ing spaces. Let C(O) be the class of C∞ vector-valued solenoidal (i.e., divergence-
free) functions on O which vanish in a neighborhood of S. We denote by X the
closure of C(O) with respect to the L2-norm and by V the closure of C(O) with
respect to the H1(O)-norm. One can see that

X =
{
v = (v1; v2; v3) ∈ [L2(O)]3 : div v = 0, γnv ≡ (v, n) = 0 on S

}
,

V =
{
v = (v1; v2; v3) ∈ [H1(O)]3 : div v = 0, v = 0 on S

}
.

We refer to [19], for instance, for the details concerning spaces of this type.
To describe shell/plate displacements we use the Sobolev spaces Hs(Ω) and

Hs
0(Ω). We also denote Ĥs(Ω) = Hs(Ω) ∩ L̂2(Ω) for s ≥ 0, where L̂2(Ω) is the

subspace in L2(Ω) consisting of functions with zero average over Ω.
For D = either O or Ω we denote by ‖ · ‖D the norm in L2(D) and by ‖ · ‖s,D

the norm in Hs(D) and keep the corresponding notations for the inner products.

3 Results: Well-Posedness and Long-Time Dynamics

General Model. We deal with weak (variational) solutions to (1)-(9) and con-
sider the cases % > 0 and % = 0 simultaneously. This is possible due to an
additional regularity estimate for the shell velocities, which follows from (3) and
from the standard trace theorem. Even in the case % = 0 we have that

||wt(t)||2H1/2(Ω) + ||u1t (t)||2H1/2(Ω) + ||u2t (t)||2H1/2(Ω) ≤ C||∇v(t)||2O (14)

for every weak solution (v(t);u(t)). We use this observation to suggest unified
way to prove a well-posedness result not distinguishing the cases % > 0 and
% = 0 in contrast with [20] (see also [17]). We also note that in the case we
neglect the inertia of longitudinal deformations (% = 0) the equations in (5)
become elliptic. However, we keep the initial data for the in-plane displacement
(u1;u2). The point is that the first order evolution for (u1;u2) goes from the
boundary condition for the fluid velocity in (3).

As a phase space we use

H =

⎧⎨⎩ {(v0;u0;u1) ∈ X ×W × Y : v0 = u1 on Ω} , % > 0 ,{
(v0;u0;w1) ∈ X ×W × Ĥ1

0 (Ω) : (v0)
3 = w1 on Ω

}
, % = 0 ,
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where w1 is the third component of the initial displacement velocity u1 and

W = H1
0 (Ω)×H1

0 (Ω) × Ĥ2
0 (Ω), Y = L2(Ω)× L2(Ω)× Ĥ1

0 (Ω) .

Our main result concerning (GM) is the following well-posedness theorem.

Theorem 1. Assume that α > 0, γ ≥ 0, % ≥ 0, and

U0 ∈ H, Gf ∈ V ′, Gsh ∈
[
H−1/2(Ω)

]2
×H−1(Ω)

(in the case % = 0 the data ū1 are not fixed). Then for any interval [0, T ] there
exists a unique weak solution (v(t);u(t)) to (1)–(9) with the initial data U0. This
solution satisfies an energy balance equality and generates a continuous (both in
strong and weak sense) evolution semigroup St in the space H. The evolution
operator St is defined as follows

– case % > 0: St(v0;u0;u1) ≡ U(t) = (v(t);u(t);ut(t)), where the couple
(v(t);u(t)) solves (1)–(9);

– case % = 0: St(v0;u0;w1) ≡ Ū(t) = (v(t);u(t);wt(t)), where v(t) and u(t) =
(u1(t);u2(t);w(t)) solves (1)–(9) with % = 0.

Proof. We use the compactness method with Galerkin’s approximations, which
was inspired by the method developed in [3] for the case of a linear plate interact-
ing with nonlinear Navier-Stokes equations. Uniqueness relies on the same idea as
in [17] and involves Brésis–Gallouet type inequality. We follow the scheme of [13]
in the proof of continuity properties of the solution and the energy equality. The
details of the proof can be found in [9].

Remark 2. In the case α = 0 we can prove existence of weak solutions which
satisfy an energy inequality using the same type of argument. Uniqueness of the
solutions is still an open question. Sedenko’s method does not work here because
the nonlinearity is strongly supercritical when α = 0.

Our next result deals with global attractors. We recall (see, e.g., [5,18]) that
global attractor of the dynamical system (St,H) is defined as a bounded closed
set A ⊂ H which is invariant (StA = A for all t > 0) and uniformly attracts all
other bounded sets:

lim
t→∞

sup{distH(Sty,A) : y ∈ B} = 0 for any bounded set B in H.

Theorem 2. Assume that α > 0, γ > 0, and the external forces satisfy

Gf ≡ 0, G1
sh = G2

sh ≡ 0, and G3
sh ≡ g ∈ H−1(Ω) .

Let the set of the stationary points in H of the problem (1)–(9) is bounded. Then
the corresponding evolution semigroup St possesses a compact global attractor.
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To prove this theorem we apply J.Ball’s method (in the form presented in [16]).
To this end we need the property γ > 0, i.e., assume a presence of mechanical
damping in the transversal component of displacement. The question whether
the system under consideration demonstrates compact long-time behavior with-
out mechanical damping in the shell component is still open. The main obstacle
in this case is that the dissipation of the energy in the fluid leads to the me-
chanical damping of order 1/2 in the shell components (see (14)). This is not
enough to stabilize kinetic energy of the plate, which is of the first order, (at
least, uniformly). The same effect is valid for the model (SM2) with rotational
inertia (see Remark 3 below). However, in the case of rotational inertia neglected
(α = 0) the matter differs. One can compare Remark 3 with the results for mod-
els (SM1) and (SM2), in which rotational inertia is not accounted for. We do
not require any mechanical damping in these models and compact asymptotic
dynamics of the corresponding systems is guaranteed by viscous dissipation in
the fluid. Moreover, in these cases we can establish finite-dimensionality of the
the corresponding attractors and also their smoothness. See [4,8] for details.

Simplified Model 1. We assume that the plate force potential Φ(u) ∈ C2(R2)
is a nonnegative polynomially bounded function,∣∣∣∣ ∂Φ(u)∂ui∂uj

∣∣∣∣ ≤ C (1 + |u|p) , i, j = 1, 2, u = (u1;u2) ∈ R
2 ,

and the following dissipativity condition holds: for any δ > 0 there exist c1(δ) > 0
and c2(δ) ≥ 0 such that∑

i=1,2

uif i(u)− c1(δ)Φ(u) + δ|u|2 ≥ −c2(δ) with f i(u) =
∂Φ(u)

∂ui
. (15)

We can consider as examples

Φ(u) = ψ0(|u1|2 + |u2|2) or Φ(u) = ψ1(u
1) + ψ2(u

2),

where ψi(s) are nonnegative polynomials.
We use the following phase space for this model:

H = {v ∈ X : (v, n) = 0 on Ω} ×
[
H1

0 (Ω)
]2 × [L2(Ω)]

2
.

Theorem 3 (Well-Posedness). Let U0 ∈ H. Then for any interval [0, T ] there
exists a unique weak solution (v(t);u(t)) to problem (SM1) for which an energy
balance equality holds. Moreover, this solution defines a continuous evolution
operator St : H �→ H by the formula

St(v0;u0;u1) = (v(t);u(t);ut(t)) ,

where the couple (v(t);u(t)) solves problem (SM1), and there exists a con-
stant aR,T > 0 such that for any couple of initial data possessing the property

‖U‖H, ‖Û‖H ≤ R we have

‖StU − StÛ‖2H +

∫ t

0

‖∇(v − v̂)‖2Odτ ≤ aR,T ‖U − Û‖2H, ∀ t ∈ [0, T ] ,
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where StU = (v(t);u(t);ut(t)) and StÛ = (v̂(t); û(t); ût(t)). In the linear case
Φ(u) ≡ 0 problem (SM1) generates an exponentially stable C0-semigroup of
contractions e−tA in H: there exist C,α > 0 such that

‖e−tAU‖L(H,H) ≤ Ce−αt for all t > 0 . (16)

We refer to [4] for the details . We note that property (16) improves the result
in [12] which states the strong stability only.

The following result shows that model (SM1) demonstrates finite dimensional
long-time dynamics.

Theorem 4 (Global Attractor). The dynamical system (H, St) generated by
(SM1) possesses a compact global attractor A of finite fractal dimension2. If
relation (15) holds with c2(δ) ≡ 0, then the global attractor A consists of a single
point, A = {(0; 0; 0)}, which is exponentially attractive, i.e. there exist cR > 0
and α > 0 such that

‖StU‖H ≤ cRe
−αt for any U ∈ H such that ‖U‖H ≤ R .

It is well-known (see, e.g., [18]), that to prove the existence of a compact global
attractor it is sufficient to show that the system is dissipative and asymptotically
smooth. To prove dissipativity we use an appropriate Lyapunov function. As for
asymptotic smoothness of the system and finite-dimensionality of the attractor,
we rely on recently developed approach based on stabilizability estimates (see
[6,7] and the references therein). We refer to [4] for further details.

Simplified Model 2. We impose the following hypotheses concerning the non-
linear feedback force F(u) in the plate equation (13).

(F1) F(u) is locally Lipschitz from H2−ε
0 (Ω) into H−1/2(Ω) for some ε > 0.

(F2) There exists a C1-functional Π(u) on H2
0 (Ω) such that F(u) = Π ′(u).

(F3) The plate force potential Π is bounded on bounded subsets of H2
0 (Ω), and

there exist η < 1/2 and c ≥ 0 such that

η‖Δw‖2Ω +Π(w) ≥ −c, η‖Δw‖2Ω + (w,F(w))Ω ≥ −c ∀w ∈ H2
0 (Ω) .

We can consider Kirchhoff, von Karman, or Berger nonlinearities as examples of
nonlinear feedback (elastic) force F(u), see [8] for the details.

We use

H =
{
(v0;w0;w1) ∈ X × Ĥ2

0 (Ω)× L̂2(Ω) : v30 = w1 on Ω
}

as a phase space and deal with weak (variational) solutions.

Theorem 5 (Well-Posedness). Assume that U0 = (v0;w0;w1) ∈ H, Gf ∈ V ′,
and Gpl ∈ H−1/2(Ω). Then for any interval [0, T ] there exists a unique weak

2 For the definition and basic properties of the fractal dimension see, e.g., [18].
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solution (v(t);w(t)) to problem (SM2) with the initial data U0. The solution
possesses the property

U(t) ≡ (v(t);w(t);wt(t)) ∈ C(0, T ;H)

and satisfies the energy balance equality

E(v(t), w(t), wt(t)) + ν

∫ t

0

||∇v||2Odτ = E(v0, w0, w1) +

∫ t

0

(Gf , v)Odτ

for every t > 0, where the energy functional E is defined by the relation

E(v, w,wt) =
1

2

(
‖v‖2O + ‖wt‖2Ω + ‖Δw‖2Ω

)
+

∫
Ω

Π(w(x))dx − (Gpl, w)Ω .

Moreover, there exists a constant aR,T > 0 such that for any couple of weak

solutions U(t) = (v(t);w(t);wt(t)) and Û(t) = (v̂(t); ŵ(t); ŵt(t)) with the initial
data possessing the property ‖U0‖H, ‖Û0‖H ≤ R we have

‖U(t)− Û(t)‖2H +

∫ t

0

‖∇(v − v̂)‖2Odτ ≤ aR,T ‖U0 − Û0‖2H, t ∈ [0, T ] . (17)

In the case Gf ≡ 0, Gpl ≡ 0, F(u) ≡ 0 the problem generates a strongly contin-
uous exponentially stable contraction semigroup Tt on H.

Using the same approach as in the proof of Theorem 4 we can establish the
following result (see [8] for details).

Theorem 6 (Global Attractor). The dynamical system (St,H) generated by
(SM2) possesses a compact global attractor A. Moreover,

(1) A is the unstable set emanating from the set of equilibria N , A = M+(N );
(2) the attractor has finite fractal dimension;
(3) any trajectory γ = {(v(t);w(t);wt(t)) : t ∈ R} from the attractor A pos-

sesses the property (vt;wt;wtt) ∈ L∞(R;X × Ĥ2
0 (Ω) × L̂2(Ω)), and there

is R > 0 such that
(
‖vt‖2O + ‖wt‖22,Ω + ‖wtt‖2Ω

)
≤ R2 for all t ∈ R and

γ ⊂ A.

We recall (see, e.g., [18]) that the unstable set M+(N ) emanating from some
set N ⊂ H is a subset of H such that for each z ∈ M+(N ) there exists a full
trajectory {y(t) : t ∈ R} satisfying y(0) = z and dist(y(t),N )→ 0 as t→ −∞.

Remark 3. We can consider model (SM2) with the rotational inertia accounted
for (i. e., with the additional inertial term −αΔwtt in the plate equation). In this
case the phase space is {(v0;w0;w1) ∈ H : w1 ∈ H1

0 (Ω)} and the corresponding
analog of Theorem 5 remains true, except the property of exponential stability
of the linear semigroup Tt (the case Gf ≡ 0, Gpl ≡ 0, F(u) ≡ 0). To prove the
existence of the attractor for (SM2) with the rotational inertia as in the case
of (GM), we need to assume presence of rotational mechanical damping in the
plate equation (see Theorem 2 and the comments after its statement). Whether
model (SM2) with rotational inertia term and without mechanical dissipation
demonstrates a compact long-time dynamics is still an open question.
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On the Normal Semilinear Parabolic Equations

Corresponding to 3D Navier-Stokes System

Andrei Fursikov
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Abstract. The semilinear normal parabolic equations corresponding to
3D Navier-Stokes system have been derived. The explicit formula for so-
lution of normal parabolic equations with periodic boundary conditions
has been obtained. It was shown that phase space of corresponding dy-
namical system consists of the set of stability (where solutions tends to
zero as time t → ∞), the set of explosions (where solutions blow up
during finite time) and intermediate set. Exact description of these sets
has been given.

Keywords: Equations of normal type, Navier-Stokes system, structure
of dynamical flow.

1 Introduction

As well known (see e.g. [1],[2]), existence of weak solution to 3D Navier-Stokes
equations is proved with help of energy estimate, which is true because the im-
age B(v) of nonlinear operator from Navier-Stokes equations consists of vectors
tangent to sphere in the L2-space with the centrum in origin. If these vectors
would be tangent to sphere in Soblev H1-space, one could prove existence of
strong solution to 3D Navier-Stokes system by the methods similar to ones used
to prove existence of a weak solution. But this is not the matter: in this case
B(v) = Bτ (v)+Bn(v) where Bτ (v) is the component tangent to sphere inH1 and
Bn(v) is normal component. In this paper we change nonlinear operator B(v)
of input system on its normal part Bn(v). Obtained equations, which we call
Normal Parabolic Equations do not satisfy to analog in H1 of energy estimate
”‘in the most degree”’. We hope that investigation of these equations can help to
understand better the problems connected with solvability of 3d Navier-Stokes
system in the class of strong solutions.

In this paper we study Normal Parabolic Equations (NPE ) corresponding to
3D Navier-Stokes system. In Section 2 we derive NPE. In Section 3 we study
some properties of NPE. The key property obtained there is existence of ex-
plicit formula for solution to NPE. In section 4 the structure of dynamical flow
corresponding to NPE is investigated.

� The work has been fulfilled by RAS program ”Theoretical problems of modern math-
ematics‘”’, project ”‘Optimization of numerical algorithms of Mathematical Physics
problems”’.
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Note that NPE has been introduced in [3] where normal parabolic equation
corresponding to Burgers equation was studied. Here we generalize results from
[3] on the case of NPE corresponding to Navier-Stokes system and, besides,
continuer to develop the theory of NPE.

2 Semilinear Parabolic Equations of Normal Type

Our aim is to try to understand better how to investigate 3D Navier-Stokes sys-
tem in phase space of one time differentiable vector fields where energy estimate
is not true. To this end we derive some semilinear parabolic equation.

2.1 Navier-Stokes System and Helmholtz Equations

Let consider 3D Navier-Stokes equations with periodic boundary conditions:

∂tv(t, x)−Δv + (v,∇)v +∇p(t, x) = 0, div v = 0, (1)

v(t, . . . , xi, . . .) = v(t, . . . , xi + 2π, . . .), i = 1, 2, 3, (2)

v(t, x)|t=0 = v0(x) (3)

where t ∈ R+, x = (x1, x2, x3) ∈ R3, v(t, x) = (v1, v2, v3) is the velocity vector
field of fluid flow,∇p is the gradient of pressure,Δ is Laplace operator, (v,∇)v =∑3

j=1 vj∂xjv. Periodic boundary conditions (2) mean in fact that Navier-Stokes

equations (1) and initial conditions (3) are defined on torus T3 = (R/2πZ)
3
.

We transform problem (1)-(3) for velocity to the problem for curl of velocity
as unknown function:

ω(t, x) = curl v(t, x) = (∂x2v3 − ∂x3v2, ∂x3v1 − ∂x1v3, ∂x1v2 − ∂x2v1) (4)

Recall the following well-known formulas of vectorial analysis:

(v,∇)v = ω × v +∇|v|
2

2
, (5)

curl (ω × v) = (v,∇)ω − (ω,∇)v, if div v = 0, divω = 0 (6)

where ω × v = (ω2v3 − ω3v2, ω3v1 − ω1v3, ω1v2 − ω2v3) is vector product and
|v|2 = v21 + v22 + v23 . Let substitute (5) into the first equality of (1) and apply
to both parts of obtained equality operator curl. Then in virtue of (4),(6), and
formula curl∇F = 0 we obtain the Helmholtz equations

∂tω(t, x)−Δω + (v,∇)ω − (ω,∇)v = 0 (7)

We add these equations with initial conditions

ω(t, x)|t=0 = ω0(x) (8)

where ω0 = curl v0.
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2.2 Normal Parabolic Equations (NPE) and Their Derivation

For each m ∈ Z+ = {j ∈ Z : j ≥ 0} we define the space

V m = V m(T3) = {v(x) ∈ (Hm(T3))3 : divv = 0,

∫
T3

v(x)dx = 0} (9)

where Hm(T3) is Sobolev space.
Multiplying Navier-Stokes system (1) on v scalarly in L2(T

3) we obtain after
integration by parts (on x) and integration on t well-known energy estimate∫

T3

|v(t, x)|2dx+ 2

∫ t

0

∫
T3

|∇xv(τ, x)|2dxdτ ≤
∫
T3

|v0(x)|2dx (10)

that gives opportunity to prove existence of weak solutions to problem (1)-(3).
Unfortunately, this solution is not smooth enough to establish its uniqueness. If
in a hope to get existence of smooth solution to (1) we would try to get analog
of energy estimate in phase space V 1, multiplying (1) on v scalarly in V 1(T3)
we will not get analog of bound (10). Let try to understand situation passing
from Navier-Stokes to Helmholtz equations.

Using decomposition in Fourier series

v(x) =
∑
k∈Z3

v̂(k)eix·k, where v̂(k) = (2π)−3

∫
T3

v(x)e−ix·kdx,

x · k =
∑3

j=1 xjkj , k = (k1, k2, k3), and well-known formula curl curl v = −Δv
if div v = 0, we see that on space V m inverse operator to curl is well-defined and
is determined by the formula

curl−1ω(x) = i
∑
k∈Z3

k × ω̂(k)

|k|2 eix·k (11)

That is why operator
curl : V 1 −→ V 0

realized isomorphism of the spaces. Therefore sphere in V 1 for problem (1), (3)
is equivalent to sphere in V 0 for problem (7), (8).

Let denote nonlinear term of Helmholtz equation by B:

B(ω) = (v,∇)ω − (ω,∇)v (12)

(we did not indicate dependence B on v because it can be expressed via ω by
(11)).

Multiplying equality (12) on ω = (ω1, ω2, ω3) scalarly in V 0 and integrating
by parts we get

(B(ω), ω)V 0 = −
∫
T3

3∑
j,k=1

ωj∂jvkωkdx (13)
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that, generally saying, is not equal to zero. Just because of this 3D Helmholtz
equations do not possess energy estimate. In other words, operator B admits the
decomposition

B(ω) = Bn(ω) +Bτ (ω) (14)

where vector Bn(ω) is orthogonal to the sphere Σω = {u ∈ V 0 : ‖u‖V 0 = ‖ω‖V 0}
at the point ω, and vector Bτ (ω) is tangential to Σω at ω. Generally saying, both
operators Bn, Bτ in (14) are not equal to zero. Note that just the component
Bn = 0 prevents to derivation of energy bound and therefore it is quite possible
that the main difficulties obstructing to investigation of Navier-Stokes equations
are connected just with this operator. That is why there is reason to omit in
Helmholtz equations the component Bτ and to study on the first stage analog
of equations (7) in which nonlinear operator B(ω) is changed on its normal
component Bn(ω). Such equations we call Normal Parabolic Equations (NPE).

Let construct now normal parabolic equations with respect to sphere in V 0,
corresponding to problem (7), (8).

Since summand (v,∇)ω from (7) is tangential operator:∫
T3

(v,∇)ω · ωdx = 0,

normal part of nonlinear operator from (7) is defined by nonlinear term (ω,∇)v.
We look it for in the form Φ(ω)ω where Φ is unknown functional that is found
by equation ∫

T3

Φ(ω)ω(x) · ω(x)dx =

∫
T3

(ω(x),∇)v(x) · ω(x)dx (15)

Relation (15) implies desired formula for Φ:

Φ(ω) =

{∫
T3(ω(x),∇)curl −1ω(x) · ω(x)dx

/∫
T3 |ω(x)|2dx, ω = 0,

0, ω ≡ 0
(16)

where curl −1ω(x) is defined in (11).
So, normal parabolic equations corresponding to system (7) are defined as

follows:
∂tω(t, x)−Δω − Φ(ω)ω = 0, divω = 0 (17)

where functional Φ is defined in (16). These equations supplied with initial con-
ditions (8) and periodic boundary conditions are the main object of our investi-
gation in this paper.

3 Properties of Normal Parabolic Equations

3.1 Explicit Formula for Solution of NPE

In this subsection we derive explicit formula for NPE solution. This is the key
result because it gives the possibility to establish many important properties
on NPE. Some of them will be obtained below in next sections. The following
assertion is true:
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Lemma 1. Let S(t, x, y0) be resolving operator of the following Stokes system
with periodic boundary conditions:

∂ty(t, x)−Δy(t, x) = 0, div y = 0, y(t, x)|t=0 = y0(x), (18)

i.e. S(t, x, y0) = y(t, x) (we assume, of course, that div y0 = 0). The solution of
problem (17),(8) has the form

ω(t, x;ω0) =
S(t, x;ω0)

1−
∫ t
0 Φ(S(τ, ·;ω0))dτ

(19)

The proof of this lemma is reduced to substitution (19) into (17) and direct
checking of obtained equality.

3.2 Properties of Functional Φ

Let s ∈ R. Recall that Sobolev space Hs(T3) is the space of periodic real-valued
distributions z(x) possessing with the finite norm

‖z‖2Hs(T3) ≡ ‖z‖2s =
∑

k∈Z3\{0}
|k|2s|ẑ(k)|2 <∞ (20)

where ẑ(k) are Fourier coefficients of z.
We will use the following generalization of spaces (9) of solenoidal vector fields:

V s ≡ V s(T3) = {v(x) ∈ (Hs(T3))3 : divv(x) = 0,

∫
T3

v(x)dx = 0}, s ∈ R

(21)

Lemma 2. Let Φ(u) be functional (16). There exists a constant c > 0 such that
for each u ∈ V 3/2

|Φ(u)| ≤ c‖u‖3/2 (22)

This lemma is proved similarly to analogous bound from [3].

Lemma 3. Let Φ be functional (16). For each β < 1/2 there exists a constant
c1 > 0 such that for each y0 ∈ V −β(T3), t > 0∣∣∣∣∫ t

0

Φ(S(τ, ·, y0))dτ
∣∣∣∣ ≤ c1‖y0‖−β (23)

where S(t, ·, y0) is resolving operator of problem (18).

Proof. Using (22) we get

∣∣∣∣∫ t

0

Φ(S(τ, ·, y0))dτ
∣∣∣∣ ≤ c

∫ t

0

e−τ/2

⎛⎝∑
k �=0

(|ŷ0(k)|2|k|−2β)|k|3+2βe−(k2−1)τ

⎞⎠1/2

dτ

(24)
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where ŷ0(k) are Fourier coefficients of y0. Solution ρ̂ = ρ(t) of extremal problem

f(t, ρ) = ρ3+2βe−(ρ2−1)t → max, ρ ≥ 1

is defined with expression ρ(t) =
√

3+2β
2t , and

f(t, ρ(t)) =

⎧⎨⎩
(

3+2β
2t

) 3+2β
2

e−(3+2β−2t)/2, t ≤ 3+2β
2 ,

1, t ≥ 3+2β
2

(25)

Substitution (25) into (24) implies (23).

Remark 1. Lemma 3 implies that the functional from left side of bound (23)
is well defined for y0 ∈ V −β(T3) with β < 1/2. In particular, in virtue of this
Lemma and (19) solution of problem (17),(8) is well defined for each initial
condition ω0 ∈ V 0, and therefore our choice V 0 as phase space for corresponding
dynamical system is correct. Note also that simple modification of Lemma 3
proof gives continuity of the functional from left side in (23) with respect to
y0 ∈ V −β , β < 1/2.

4 The Structure of NPE Dynamics

The aim of this section is to find out the main feature of dynamical flow corre-
sponding to NPE. We decompose the phase space of the dynamical system on
three sets with different behavior of dynamical flow inside each of them.

4.1 Distinctive Sets of Phase Space

Let give definitions of three subsets of phase space for NPE. Recall that we take
V 0(T3) ≡ V 0 as the phase space for problem (17),(8).

Definition 1. The set M− ≡ M−(α) ⊂ V 0 of initial conditions ω0 such that
the solution ω(t, x;ω0) of problem (17),(8) exists and satisfies inequality

‖ω(t, ·;ω0)‖0 ≤ α‖ω0‖0e−t ∀t > 0 (26)

is called the set of stability. Here α > 1 is a certain fixed number.

The following simple sufficient condition for belonging to M−(α) is true in virtue
of (19): If ω0 ∈ V 0 satisfies the bound

sup
t∈R+

∫ t

0

Φ(S(τ, ·;ω0))dτ ≤
α− 1

α
(27)

then ω0 ∈M−(α).
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Definition 2. The set M+ ⊂ V 0 of initial conditions ω0 from (17),(8) such that
corresponding solution ω(t, x;ω0) exists only on a finite interval t ∈ (0, t0) with
t0 > 0 depending on ω0, and blows up at t = t0 is called the set of explosions.

In virtue of formula (19) for solution ω(t, x;ω0)

M+ = {ω0 ∈ V 0 : ∃t0 > 0

∫ t0

0

Φ(S(τ, ·;ω0))dτ = 1} (28)

The minimal magnitude from the set {t0} for which equality in (28) holds is
called the time of explosion.

Definition 3. The collection

MI(α) = V 0 \ {M−(α) ∪M+} (29)

is called intermediate set.

Remark 2. Definitions of stability and intermediate sets include parameter α > 1
and from this point of view they are not absolute. Nevertheless they are conve-
nient for using.

We study below the properties of these sets and, in particular, we show that all
these sets are nonempty. We begin from the set of stability. This set is the most
important for us.

4.2 Subsets Belonging to the Set of Stability

Let ρ > 0, β < 1/2. Introduce the set

Elβρ = {v ∈ V 0(T3) : ‖v‖2−β =
∑

k∈Z3\{0}

|v̂(k)|2
|k|2β ≤ ρ2}

= {v ∈ V 0(T3) :

∞∑
k∈Z3\{0}

|v̂(k)|2
ρ2|k|2β ≤ 1}, (30)

which we can interpret as ellipsoid in V 0(T3) with length of axes directed along
functions eik·x, e−ik·x equal to ρ|k|β. Since ρ|k|β →∞ as |k| → ∞, this ellipsoid
is unbounded in V 0.

Lemma 4. Let c1ρ < 1 and ρ ≤ (α − 1)/(αc1) where c1 is the constant from
(23). Then

Elβρ ⊂M−(α) (31)

where the set Elβρ is defined in (30).
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Proof. Note that solution S(t, x, ω0) of problem (18) with y0 = ω0 satisfies in-
equality:

‖S(t, ·, ω0)‖20 =
∑
k �=0

e−2|k|2t|ω̂0(k)|2 = e−2t
∑
k �=0

e−2(|k|2−1)t|ω̂0(k)|2 ≤ e−2t‖ω0‖20

(32)
Let ω0 ∈ Elβρ , i.e. ‖ω0‖−β ≤ ρ. Formula (19) and inequalities (32), (23) imply
(26) if α ≥ 1/(1−c1ρ). But the last inequality is equivalent to ρ ≤ (α−1)/(αc1).

This Lemma is analog of local existence theorem for 3D Navier-Stokes equa-
tions obtained in [4] with help of Fujita-Kato approach [5] and of local existence
theorem for NPE connected with Burgers equation (see [3]). The proof of Lemma
4 is essentially easier then proofs of aforementioned results because here we use
explicit formula (19) for solutions.

We show in this subsection that, actually, M−(α) is essentially wider than
Elβρ . For this goal we consider one infinite-dimensional subspace and show that
it belongs to M−(α)

Let introduce the following subset UL of Z3 \ {0}:

UL = {ξ ∈ Z
3 \ {0} : ξ + η − ζ = 0 ∀ξ, η, ζ ∈ UL} (33)

An example of the subset belonging to UL is the following set:

{k = (k1, k2, k3) ∈ Z
3 \ {0} : k1 + k2 + k3 is odd number }

Lemma 5. The subspace

L = {ω0 =
∑
k∈UL

(zke
ik·x + zke

−ik·x), zk ∈ C
3, zk · k = 0} ⊂ V 0(T3) (34)

belongs to M−(α) if UL is the set (33). Moreover

∀ω0 ∈ L Φ(S(t, ·, ω0)) ≡ 0 ∀t ≥ 0 (35)

The proof of this Lemma is similar to analogous Lemma from [3].
Lemmas 4, 5 imply that M−(α) = ∅.

4.3 Certain Sets of Unit Sphere of V 0

Let denote the unit sphere of the phase space V 0 as follows:

Σ = {v ∈ V 0 : ‖v‖0 = 1} (36)

To understand better the structure of phase flow corresponding to problem
(17),(8) we introduce on Σ several sets. Define

A−(t) = {v ∈ Σ :

∫ t

0

Φ(S(τ, ·, v))dτ ≤ 0},

A+(t) = {v ∈ Σ :

∫ t

0

Φ(S(τ, ·, v))dτ ≥ 0},

A0(t) = {v ∈ Σ :

∫ t

0

Φ(S(τ, ·, v))dτ = 0},
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and
A− = ∩t≥0A−(t), A+ = ∩t≥0A+(t), A0 = ∩t≥0A0(t) (37)

All these sets are closed and nonempty. For instance, A0 = ∅ in virtue of Lemma
5. Sets A±(t), A± possess nonempty interior in topology of Σ, i.e. in the topology
induced on Σ by topology of the space V 0. This assertion follows from continuity
of the functional V −β " v →

∫ t
0 Φ(S(τ, ·, v))dτ with β < 1/2 and in particular

for β = 0 (see Remark 1). Evidently, A0 = A− ∩ A+.
Linearity on v of operator S(t, x, v) and oddness of Φ(v) with respect to v

imply

Lemma 6.
v ∈ A− if and only if − v ∈ A+

Introduce also the sets

B+ = Σ \A− ≡ {v ∈ Σ : ∃t0 > 0

∫ t0

0

Φ(S(τ, ·, v))dτ > 0}, B− = Σ \A+

(38)
It is easy to see that the set B+ is open in topology of Σ. Moreover, the boundary
∂B+ of set B+ is defined by the relation

∂B+ = {v ∈ Σ : ∀t > 0

∫ t

0

Φ(S(τ, ·, v))dτ ≤ 0, ∃t0 > 0 :

∫ t0

0

Φ(S(τ, ·, v))dτ = 0}

It is clear that A0 ⊂ ∂B+ and ∂B+ \A0 = ∅.

4.4 On Structure of Phase Space V 0

Let us introduce the following function defined on the set B+ of sphere Σ:

B+ " v → b(v) = max
t≥0

∫ t

0

Φ(S(τ, v))dτ (39)

Evidently, b(v) > 0 and b(v) → 0 as v → ∂B+. Let ρ ∈ (0, 1]. We define the
following map Γρ(v) that plays the key role in description of structure of phase
flow generated by boundary value problem (17),(8):

B+ " v → Γρ(v) =
ρ

b(v)
v ∈ V 0 (40)

where b(v) is function (39). Note that ‖Γρ(v)‖0 →∞ as v → ∂B+.

Theorem 1. Let α > 1 be a parameter from definition of the stability set M−(α)
and ρ = (α − 1)/α. Then the image Γρ(v), v ∈ B+ of the map Γρ divides the
space V 0 on two separate parts. The part containing origin coincides with the set
of stability M−(α). The part of V 0 between Γρ(v), v ∈ B+ and Γ1(v), v ∈ B+

coincides with intermediate space MI(α), and the rest part of V 0 coincides with
the set of explosions M+.

The proof of this theorem will be given in some other place.
Theorem 1 implies that M+ = ∅ and MI(α) = ∅.
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Abstract. We present a nonlinear model predictive framework for
closed-loop control of two-phase flows governed by the Cahn-Hilliard
Navier-Stokes system. We adapt the concept for instantaneous control
from [6,12,16] to construct distributed closed-loop control strategies for
two-phase flows. It is well known that distributed instantaneous control
is able to stabilize the Burger’s equation [16] and also the Navier-Stokes
system [6,12]. In the present work we provide numerical investigations
which indicate that distributed instantaneous control also is well suited
to stabilize the Cahn-Hilliard Navier-Stokes system.

Keywords: Flow control, Navier-Stokes, Cahn-Hilliard, Model Predic-
tive Control, Instantaneous Control, Adaptive Finite Elements.

1 Introduction

The aim of this work is the development of numerical methods for closed-loop
control of two-phase flows governed by the Cahn-Hilliard Navier-Stokes system.
The approach is based on an inexact variant of model predictive control called
instantaneous control. Instantaneous control in the context of flow control is
proposed in e.g. [5,6,14], and for distributed control of the Navier-Stokes system
is analyzed in [12], where among other things it is shown that the method is
able to exponentially stabilize given solution states supposing certain smallness
assumptions on the initial conditions. For an overview in the field of nonlinear
model predicitve control we refer to [20,21] and also to the monograph [9], where
also further references can be found.

The outline of this paper is as follows. In section 2 we describe the concept
of nonlinear model predictive control as it is used in the present work, and also
introduce instantaneous control. In section 3 we present a brief introduction
to the Cahn-Hilliard Navier-Stokes system, including its numerical treatment.
In section 4 we discribe the instantaneous control strategy for the Cahn-Hilliard
Navier-Stokes system and demonstrate its performance at morphing a circle into
a square in section 5. We end with some conclusions formulated in section 6

D. Hömberg and F. Tröltzsch (Eds.): CSMO 2011, IFIP AICT 391, pp. 348–357, 2013.
c© IFIP International Federation for Information Processing 2013
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2 Nonlinear Model Predictive Control

The aim of model predictive control consist in steering or keeping the state of a
dynamical system to or at a given desired trajectory. To fix the concept, we are
going to apply it to the Cahn-Hilliard Navier-Stokes system. Let us first consider
an abstract dynamical system with initial condition x0, state x(t), observation
y(t) and control u(t):

ẋ(t) +Ax(t) = b(x, t) + Bu(t), (t > 0) state,

y(t) = Cx(t) observation,

x(0) = x0 initial condition.

(1)

Our aim consists in constructing a nonlinear feedback control lawK with Bu(t) =
K(x(t)) which steers the dynamical system to the desired trajectory x̄(t), i.e.

x(t)
!→ x̄(t) (t → ∞). To simplify notations we from here onwards use B = id

and C = id, i.e. we do not distinguish between state and observation and we
allow fully distributed controls.

To prepare for model predicitve control, system (1) is discretized in time using
the semi-implicit Euler method on an equidistant time grid 0 = t0 ≤ t1 ≤ . . .
with tk+1 − tk = τ for k = 0, 1, . . . . Here xk denotes the state at time tk and bk

denotes the nonlinearity b(xk, tk). We obtain the time discrete model

(I + τA)xk+1 = xk + τbk + uk+1, k = 0, 1, . . . . (2)

For L ∈ N and xj given, we consider the optimal control problem

min J(xj+1, . . . , xj+L, uj+1, . . . , uj+L)

s.t. (2) for j = k, . . . , k + L− 1,
(Pk)

where

J(xj+1, . . . , xj+L, uj+1, . . . , uj+L) :=

L∑
i=1

(
1

2
‖xk+i − x̄k+i‖2 + α

2
‖uk+i‖2

)
Let us note that for L = 1 problem (Pk) admits a unique solution. However, in
the case L > 1 the solution might not be unique due to the nonlinear character
of the transition constraints (2). In this case we assume that (Pk) admits a
solution.

Now we define the abstract model predictive control strategy using a comput-
ing oracle called RECIPE.

Model Predicitve Control:

1. Initialization: Specify time grid (tj) and discrete state x̄, set k = 0 and
specify L0 > 0.

2. Given uk, xk, set
uk+1 = RECIPE(uk, xk, Lk).



350 M. Hinze and C. Kahle

3. Solve (2) with uk+1, i.e. compute xk+1 according to
(I + τA)xk+1 = xk + τb(xk, tk) + uk+1.

4. Set k = k + 1, goto 2.

In the classical model predictive control context [20,21] the oracle
RECIPE(u, x, L), for given u, x, L, solves the optimal control problem (Pk)
with xk ≡ x, uk ≡ u and L the length of the control horizon. From the solution
(xk+1, . . . , xk+L,uk+1, . . . , uk+L) only xk+1 and uk+1 are actually used to steer
the discrete system to the next time instance tk+1.

In practical applications often quick response to system changes is necessary.
In such cases it may be too time consuming to solve problem (Pk) exactly.
Instead, an approximate solution could be used. This leads to the so called
concept of instantaneous control [6,12], whose oracle is described next.

Instantaneous Control:
Given L, x, v, then u = RECIPE(v, x, L) iff u = uk+1, where
(xk+1, . . . , xk+L, uk+1, . . . , uk+L) is the result of a steepest descent step applied
to the solution of (Pk) with xk ≡ x and uk ≡ v.

In the case L = 1, instantaneous control realizes the steps:

– Solve (I + τA)z = x+ τb(x, tk) + v,
– solve (I + τA∗)λ = −(x− z),
– set d = αv − λ,
– determine ρ > 0 (step size for steepest descent),
– set RECIPE = v − ρd,

where we have used the adjoint calculus to expose the derivations of the func-
tional J , see e.g. [15].

Instantaneous control with L = 1 is analytically investigated in [16] for the
control of Burger’s equation and in [12] for control of the two-dimensional Navier-
Stokes system. Among other things it is shown in [12, Thm. 4.4,4.5] that

‖xk − x̄k‖H1(Ω) ≤ cκk for some κ ∈ (0, 1),

and also that instantaneous control may be regarded as the discrete realization
of a nonlinear feedback operator K which is able to steer x(t) exponentially fast
to the desired trajectory x̄(t), i.e. with u(t) = K(x(t)) in (1) there holds

‖x(t)− x̄(t)‖H1(Ω) ≤ c exp
(
−ρ

τ
t
)
,

where ρ denotes the step size in the steepest descent algorithm and τ is the time
step in the discretization, see [12, Thm. 4.1,4.2] for the details.

3 The Cahn-Hilliard Navier-Stokes System

The Cahn-Hilliard Navier-Stokes equations are a diffuse interface model for de-
scribing two-phase flows. In comparison to sharp interface models (see e.g. [8])
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which model the interface between the two components as a sharp line, diffuse
interface models allow a partial mixing of the components yielding a small dif-
fuse interface. A derivation of the model used here can be found e.g. in [1]. It
is related to the model ’H’ for two-phase flows in the classification of Hohen-
berg and Halperin [17]. We note that there are also models for flows with three
components, see e.g [3].

For Ω ⊂ Rn, (n = 2, 3) and T > 0 we here consider the following weak
form of the Cahn-Hilliard Navier-Stokes system with double-obstacle free energy
according to [2].

Find (c(t), w(t), y(t), p(t)) in K ×H1(Ω)×H1
0 (Ω) × L2

(0)(Ω) such that

(∂ty, v) +
1

Re
(∇y : ∇v)

+((y · ∇)y, v)− (p, div v) + (c∇w, v) = 0 ∀v ∈ H1
0 (Ω), a.e. t ∈ (0, T ], (3)

(−div y, v) = 0 ∀v ∈ L2
(0)(Ω), a.e. t ∈ (0, T ], (4)

c(t) ∈ K a.e. t ∈ (0, T ], (5)

(∂tc, v)+
1

Pe
(∇w,∇v)−(cy,∇v)=0 ∀v ∈ H1(Ω), a.e. t ∈ (0, T ], (6)

γ2(∇c,∇(v − c))−(w + c, v − c)≥0 ∀v ∈ K, a.e. t ∈ (0, T ], (7)

c(x, 0) = c0(x) ∀x ∈ Ω, (8)

∂νc = 0, ∂νw = 0 on ∂Ω × (0, T ], (9)

y(x, 0) = y0(x) ∀x ∈ Ω, (10)

y = 0 on ∂Ω × (0, T ]. (11)

Here, for v, w ∈ H1(Ω)

(∇v : ∇w) :=
∫
Ω

∇v : ∇w dx =

∫
Ω

n∑
i,j=1

(∇v)ij(∇w)ij dx,

and c0 ∈ K := {v ∈ H1(Ω) | |v| ≤ 1 a.e. in Ω}), y0 ∈ H1
0 (Ω).

The function c is called order parameter and satisfies c = c(t, x) ∈ [−1, 1], with
c ≡ 1 on the pure A-phase and c ≡ −1 on the pure B-phase region, respectively,
where A and B are the two components of the fluid. Initially, i.e. for t = 0, we
assume that the concentration equals c0. The quantity w represents the chemical
potential, y denotes the mean flow velocity field, i.e. y = 1+c

2 yA+ 1−c
2 yB, where

yA and yB denote the fluid velocities in the fluid phases A and B, respectively,
and p ∈ L2

(0)(Ω) = {v ∈ L2(Ω) | (v, 1) = 0} denotes the mean free pressure of

the fluid. The flow profile at t = 0 is given by y0. The Péclet number Pe and the
Reynolds number Re are given physical constants. The parameter γ is related
to the width of the diffuse interface region which is of size O(γ2) [4].

For an analytical treatment of the above system we refer to [1, Chapter 6.5].
Especially in two space dimensions there exists a unique solution (c, w, y, p) to
this system and we have
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y ∈ C0([0, T ],H1
0(Ω)), c ∈ BCω([0, T ], H

1(Ω)), ∇w ∈ L2(0, T ;L2(Ω)).

Here, BCω([0, T ], H
1(Ω)) is the space of bounded and weakly continuous func-

tions from [0, T ] with values in H1(Ω).

3.1 Time Discretization and Treatment of the Variational Inequality
in (7)

For the discretization of (3)–(11) we use the semi-implicit approach proposed
in e.g. [7,19] with constant step size τ > 0. The variational inequality in (7)
according to [10] is relaxed using Moreau-Yosida regularization. At time instance
t this results in finding (y, p, c, w) ∈ H1(Ω)n × L2

(0)(Ω) ×H1(Ω) ×H1(Ω) such
that

(y − yold, v) +
τ

Re
(∇y : ∇v) + τ((yold · ∇)yold, v)

+τ(cold∇wold, v)− τ(p, div v) = 0 ∀v ∈ H1
0 (Ω), (12)

(−div y, v) = 0 ∀v ∈ L2
(0)(Ω), (13)

(c, v) +
τ

Pe
(∇w,∇v) − τ(coldy,∇v)− (cold, v) = 0 ∀v ∈ H1(Ω), (14)

γ2(∇c,∇v)− (w, v) + (λs(c), v)− (cold, v) = 0 ∀v ∈ H1(Ω). (15)

is satisfied. Here the subscript old refers to the value of the respective function
at time told = t− τ and λs(c) = λ+s (c)+λ−s (c) = s(max(0, c− 1)+min(0, c+1))
stems from Moreau-Yosida regularization of (7), see e.g. [10,11] for details. Let
us emphasize that (12)–(15) is decoupled in the sense that using yold, cold and
wold, the flow y and the pressure p at time t can be computed from (12)–(13),
and then using this flow vector y, the concentration c and the chemical potential
w are obtained from (14)–(15). Furthermore, normalizing p by (p, 1) = 0, it
can be shown that (12)–(15) admits a unique solution (y, p, c, w), compare [11,
Thm 4.1]. The system (14)–(15) is nonlinear and can be treated by semi-smooth
Newton methods, see [11].

3.2 Spatial Discretization

The spatial discretization is performed by linear finite elements for both the
concentration and the chemical potential to obtain finite element approximations
ch, wh. For the flowfield and the pressure we use the LBB-stable Taylor-Hood
P 2−P 1 finite elements, see e.g. [18,22], to obtain finite element approximations
yh, ph. For the spatial treatment of the Cahn-Hilliard part (14)–(15) we use
the adaptive approach presented in [10,11]. We emphasize that we use different
spatial meshes for the Cahn-Hilliard and the Navier-Stokes part.
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4 Instantaneous Control of the Cahn-Hilliard
Navier-Stokes System

The aim of this section is to develop a simple distributed closed-loop control
strategy for the Cahn-Hilliard Navier-Stokes system. It uses instantaneous con-
trol with L = 1 on a control horizon which coincides with the time interval of
one time step. We consider the idealized situation that the flow can be controlled
by a vector field which is distributed over the whole spatial domain and that
the concentration c can be measured in the whole spatial domain. The control
goal consists in steering the concentration c towards a prescribed concentration
trajectory cd by applying volume forces to the flow field.

Now let t0 = 0 and k ∈ N. At time instance t = tk, for α > 0, we consider the
minimization problem

min Jk(u) :=
1

2
‖c− cd‖2L2(Ω) +

α

2
‖u‖2L2(Ω) (Pk)

s.t.

(y − yold, v) +
τ

Re
(∇y : ∇v) + τ((yold · ∇)yold, v)

+τ(cold∇wold, v)− τ(p, div v) = u ∀v ∈ H1
0 (Ω), (16)

(−div y, v) = 0 ∀v ∈ L2
(0)(Ω), (17)

(c, v) +
τ

Pe
(∇w,∇v) − τ(coldy,∇v)− (cold, v) = 0 ∀v ∈ H1(Ω), (18)

γ2(∇c,∇v)− (w, v) + (λs(cold), v)− (cold, v) = 0 ∀v ∈ H1(Ω). (19)

where now old refers to the time instance tk−1.
It is not hard to show that problem (Pk) admits a unique solution u ∈ L2(Ω)n,

which together with (y, p, c, w) satisfies the adjoint system

(p1, v) + γ2(∇p2,∇v) = (c− cd, v) ∀v ∈ H1(Ω), (20)

(p2, v) =
τ

Pe
(∇p1,∇v) ∀v ∈ H1(Ω), (21)

(p3, v) +
τ

Re
(∇p3,∇v)− τ(p4, div v) = τ(p1∇cold, v) ∀v ∈ (H1

0 (Ω))n, (22)

(div p3, v) = 0 ∀v ∈ L2
(0)(Ω), (23)

αu+ p3 = 0. (24)

i.e. there exists a uniquely determined adjoint (p1, p2, p3, p4) ∈ H1(Ω)×H1(Ω)×
H1(Ω)n×L2

(0)(Ω) which solves (20)–(24). The gradient of Jk is given by∇Jk(v) =
αv+p3. Its evaluation for a given v ∈ L2(Ω)n amounts to first solving (16)–(19)
for (y, p, c, w) and then solving (20)–(23) for (p1, p2, p3, p4).

Let us note that (16)–(19) differ from (12)–(15) in the explicit treatment of
the nonlinearity λs, which in (19) is frozen at told. We emphasize that (16)–
(19) is not used to simulate the controlled Cahn-Hilliard Navier-Stokes system,
but to construct a feedback operator K such that u = K(y, p, c, w). With this
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feedback operator available, system (3)–(11) then is controlled through inserting
u = K(y, p, c, w)) as right hand in (3). The resulting system then is treated on
the time discrete level as in (12)–(15), where K is evaluated at told, i.e.

u = K(yold, pold, cold, wold).

Next we describe the construction of K from (16)–(24). For this pupose let us
denote by B the solution operator associated to the quasi-Stokes problem (12)–
(13) and by C the linear, fourth order solution operator of the Cahn-Hilliard
system (18)–(19). Then the system to obtain p3 can be written in the form

y = B (yold − τ(yold∇yold))− τcold∇wold + u) ,

c = C
(
cold − τy∇cold +

τ

Pe
Δ(λs(cold)− cold)

)
,

p1 = C(c− cd), and

p3 = −τB(p1∇cold).

Using these abbreviations, the control u obtained by the instantaneous control
strategy for uk0 = 0 is given by

ỹ = B(yold + τb(yold)− τcold∇wold),

c̃ = C
(
cold − τ∇coldỹ +

τ

Pe
Δ(λs(cold)− cold)

)
,

u = ρτB∇coldC (c̃− cd) =: K(yold, pold, wold, wold)

(25)

and is inserted in (12).
Note that this system does not depend on α since uk0 = 0.
The spatially discrete treatment of (12)–(15) with this control is similar as

in the uncontrolled case. We note that (24) motivates to use Taylor-Hood fi-
nite elements for the discretization of the control, see the concept of variational
discretization proposed in [13].

5 Numerical Results - Circle2Square

To demonstrate the effectiveness of our control method we now morph a circle
into a square with the following setup. As domain we use Ω := (0, 1)2, the
initial concentration c0 is chosen as 1 in B 1

4
(12 ,

1
2 ) and as −1 in Ω \ B 1

4
(12 ,

1
2 ),

see Fig. 1 (left). Control is applied to the flow field with control gain of steering
c to the desired state cd with values 1 in the square centered at ( 7

20 ,
7
20 ), see

Fig. 1 (right), with edge length such that (c0, 1) = (cd, 1). This requirement is
meaningful, since our time discretization scheme is mass-conserving. We choose
Re = 10, Pe = 100, γ = 1/(40π), α = 1e − 4, τ = 0.01 and use ρ = 1 as step
size in the steepest descent method.

Fig. 2 presents snapshots of the concentration after 40 time steps (left) and
after 500 time steps (right, where also the controlled flow is depicted). Clearly,
the corners formed in cd cannot be reached by the controlled concentration, since
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Fig. 1. Initial state c0 (left) and desired state cd (right). Black indicates −1, white
indicates +1.

the phasefield approach used here always delivers a smooth diffuse interface in
the present situation. Fig. 3 presents the evaluation of d(t) := ‖c(t)−cd(t)‖L2(Ω)

for various Reynolds numbers ranging in the interval [10, 200]. We observe a clear
decrease in d(t), till a certain value around 1e− 1 is reached. The method is not
able to further reduce d(t) due to the unreachability of cd. The oscillations of
d for larger Reynolds numbers can be explained by the indirect control method
(flow is controlled, concentration should be steerd to cd), which becomes more
sensible with increasing Reynolds number.

Fig. 2. Controlled state at t = 40τ and t = 500τ
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Fig. 3. The reduction of ‖c− cd‖ for various Reynolds numbers

6 Conclusion

We have presented a general inexact model predictive control concept called
instantaneous control and sketched its interpretation as closed loop controller.
For the Cahn-Hilliard Navier-Stokes system we have derived a nonlinear feedback
u = K(y, p, c, w) which realizes instantaneous control on the continuous level.
With morphing the circle into a square we have numerically demonstrated the
scope and effectiveness of our approach in control of two-phase flows.
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Abstract. We present a weak formulation for a steady fluid-structure
interaction problem using an embedding domain technique with penaliza-
tion. Except of the penalizing term, the coefficients of the fluid problem
are constant and independent of the deformation of the structure, which
represents an advantage of this approach. A second advantage of this
model is the fact that the continuity of the stress at the fluid-structure
interface does not appear explicitly. Numerical results are presented.

Keywords: fluid-structure interaction, embedding domain.

1 A Steady Fluid-Structure Interaction Problem

The present paper is devoted to the study of the numerical behavior of an elastic
structure immersed in a viscous incompressible fluid. We use Stokes equation to
model the flow motion. The displacement of the structure under the flow motion
will be modeled by linear elasticity equations, under the small deformations
assumption. In this paper, we study the steady case.

Let D ⊂ R2 be a bounded open domain with boundary ∂D. Let ΩS
0 be

the undeformed structure domain, and suppose that its boundary admits the
decomposition ∂ΩS

0 = ΓD ∪ Γ0, where Γ0 is a relatively open subset of the
boundary. On ΓD we impose zero displacement for the structure. We assume
that ΩS

0 ⊂ D.
Suppose that the structure is elastic and denote by u = (u1, u2) : Ω

S
0 → R2

its displacement. A particle of the structure with initial position at the point
X will occupy the position x = ϕ (X) = X + u (X) in the deformed domain
ΩS
u = ϕ

(
ΩS

0

)
.

We assume that ΩS
u ⊂ D and the fluid occupies ΩF

u = D \ ΩS

u . We set
Γu = ϕ (Γ0) and we suppose that Γu does not touch the container wall, i.e.
∂D ∩ Γu = ∅. We recall that Γ0 is a relatively open subset. The boundary Γu
represents the moving fluid-structure interface. The boundary of the deformed

D. Hömberg and F. Tröltzsch (Eds.): CSMO 2011, IFIP AICT 391, pp. 358–367, 2013.
c© IFIP International Federation for Information Processing 2013

http://www.edp.lmia.uha.fr/murea/
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structure is ∂ΩS
u = ΓD ∪ Γu. In the case when Ω

S

u ⊂ D, the fluid-structure
geometrical configuration is represented in Figure 1 and the boundary of the
fluid domain admits the decomposition ∂ΩF

u = ∂D ∪ ΓD ∪ Γu.

Γ

Γ0
uΓ

D

Ω
F

Ω
S
u

u

D

Fig. 1. Geometrical configuration

Also, for the first numerical test, we consider the case when ΓD ⊂ ∂D as
in Figure 2 and the boundary of the fluid domain admits the decomposition
∂ΩF

u = (∂D \ ΓD) ∪ Γu.

2 Weak Formulation Using an Embedding Domain
Technique with Penalization

We introduce the tensor ε (w) = 1
2

(
∇w + (∇w)T

)
and we assume that the

fluid is Newtonian and the Cauchy stress tensor is given by σF (v, p) = −p I+
2μF ε (v), where μF > 0 is the viscosity of the fluid and I is the unit matrix.
We assume that the structure verifies the linear elasticity equation, under the
assumption of small deformations. The stress tensor of the structure written in
the Lagrangian framework is σS (u) = λS (∇ · u) I+2μSε (u), where λS , μS > 0
are the Lamé coefficients.

We present in an informal and intuitive manner the ideas behind our approx-
imation approach using embedding domain technique with penalization. In the
fluid domain, Stokes equations are solved:

−∇ · σF (v, p) = fF , in ΩF
u (1)

∇ · v = 0, in ΩF
u (2)

We introduce two more equations concerning the fluid fields, but written on the
deformed structure domain:

−∇ · σF (v, p) +
1

ε
P (v) = fF , in ΩS

u (3)

∇ · v = 0, in ΩS
u (4)
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where ε > 0 is a penalization parameter,

P (v) =
(
|v1|α−1

sgn (v1) , |v2|α−1
sgn (v2)

)
(5)

where v = (v1, v2) and 1 < α < 2 is a real number.

Remark 1. This choice of the penalization term is justified in [2], in order to
obtain existence of the fluid-structure interaction problem. For the steady case,
the role of the penalization term is to obtain very small values of the fluid velocity
in the structure domain. If we take other values for α or for a H1 penalization,
we do not get more regularity of the solution.

Let χSu be the characteristic function of ΩS
u . Combining (1) and (3), it follows

that

−∇ · σF (v, p) +
1

ε
χSu P (v) = fF , in D. (6)

Similarly, we have from (2) and (4)

∇ · v = 0, in D. (7)

In view of the equation (3), the “fictitious” fluid velocity and pressure defined
on the structure domain ΩS

u depend on ε. In the following, we denote by vε and
pε the fluid velocity and pressure defined all over the domain D.

Let us introduce the bi-linear forms

aS
(
u,wS

)
=

∫
ΩS

0

(
λS (∇ · u)

(
∇ ·wS

)
+ 2μSε (u) : ε

(
wS
))

dX

aF (v,w) =

∫
D

2μF ε (v) : ε (w) dx

bF (w, p) = −
∫
D

(∇ ·w) p dx

and the Hilbert spaces

WS =
{
wS ∈

(
H1
(
ΩS

0

))2
; wS = 0 on ΓD

}
,

W =
(
H1

0 (D)
)2
,

Q = L2
0 (D) = {q ∈ L2 (D) ;

∫
D

q dx = 0}.

We assume for the moment that fF ∈
(
L2(D)

)2
, fS ∈

(
L2(ΩS

0 )
)2

and g ∈(
H1/2 (∂D)

)2
, such that

∫
∂D g · nFds = 0.

For a given u ∈
(
W 1,∞(ΩS

0 )
)2
, such that ‖u‖1,∞,ΩS

0
< 1 and u = 0 on ΓD,

we define:

– fluid velocity vε ∈
(
H1(D)

)2
, vε = g on ∂D,

– fluid pressure pε ∈ Q,
– structure displacement uε ∈WS ,

as the solution of the following weakly coupled system of PDE’s:
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aF (vε,w) + bF (w, pε)

+
1

ε

∫
D

H̃uP (vε) ·w dx =

∫
D

fF ·wdx, ∀w ∈W (8)

bF (vε, q) = 0, ∀q ∈ Q (9)

aS
(
uε,w

S
)
=

∫
ΩS

0

fS ·wS dX+

∫
ΩS

0

J
(
σF (vε, pε) ◦ ϕ

)
F−T : ∇XwS dX

+
1

ε

∫
ΩS

0

JH̃uP (vε ◦ ϕ) ·wS dX

−
∫
ΩS

0

J
(
fF ◦ ϕ

)
·wS dX, ∀wS ∈WS(10)

where ϕ(X) = X+ u(X), F(X) = I+∇Xu(X), J(X) = det F(X).

The equations (8) and (9) are obtained from (6) and (7). The coefficient H̃u

in (8) is a regularization of the characteristic function of ΩS
u , which is necessary

in order to prove the continuity of the solution with respect to the structure
displacement.

Remark 2. From the structure equation −∇·σS (uε) = fS , in ΩS
0 using Green’s

formula, we obtain for all wS = 0 on ΓD that

aS
(
uε,w

S
)
=

∫
ΩS

0

fS ·wS dX+

∫
Γ0

σS (uε)n
S ·wSdS.

We can prove (see [2]) that the sum of the last three terms in (10) is equal to the
fluid forces acting on the structure which is also equals to

∫
Γ0
σS (uε)n

S ·wSdS.

In fact, from (10) and the above weak formulation of the structure, we can get
that the boundary condition at the interface concerning the continuity of the
stress is verified in a weak sense (see [2]). The second boundary condition at the
interface is the continuity of the velocity, i.e. v = 0 on Γu in the steady case.
This is obtained by using the penalization term in the structure domain.

Define the nonlinear operator

Tε :
{
u ∈
(
W 1,∞(ΩS

0 )
)2

; ‖u‖1,∞,ΩS
0
< 1, u = 0 on ΓD

}
→
(
W 1,∞(ΩS

0 )
)2

by Tε(u) = uε. A solution of the penalized fluid-structure interaction problem
will be, by definition, a fixed point of Tε. In [2], we discuss the existence of a
solution of the penalized fluid-structure interaction problem. The convergence
of uε, vε, pε when ε goes to 0 is also analyzed.

3 Partitioned Procedures Based on Fixed Point Iterations

The penalized term P (v) is non-linear in v for α = 2. But for α = 2, we
have P (v) = v. Now, the fluid problem, at the Step 2 of the algorithm below,
becomes linear and, for a given ukε , it has a unique solution.
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For 1 < α < 2, we can prove the existence of a fixed point for the nonlinear
operator Tε defined at the end of the previous section, but not for α = 2. We
can also replace H̃u in (8) by χSu the characteristic function of ΩS

u in order to
simplify the computation. The regularization of the the characteristic function
was necessary in order to prove the continuity of the solution with respect to
the structure displacement.

Under the assumption of small displacements for the structure, we can ap-
proach the Jacobian determinant J by 1 and the gradient of the deformation F
by the identity matrix I. The structure problem at the Step 3 is linear and, for
given vkε and pkε , it has a unique solution.

Algorithm.

Step 1. Given the initial displacement of the structure u0 ∈ WS , compute the
characteristic function χSu0 , put k := 0.

Step 2. Find the velocity vε ∈
(
H1(D)

)2
, vε = g on ∂D and the pressure

pkε ∈ Q by solving the fluid problem

aF
(
vkε ,w

)
+ bF

(
w, pkε

)
+

1

ε

∫
D

χSuk
ε
vkε ·w dx =

∫
D

fF ·w dx, ∀w ∈ W

bF
(
vkε , q
)
= 0, ∀q ∈ Q.

Step 3. Find the new displacement of the structure uk+1
ε ∈ WS by solving

aS
(
uk+1
ε ,wS

)
=

∫
ΩS

0

(
fS − fF

)
·wS dx+

∫
ΩS

0

2μF ε
(
vkε
)
: ε
(
wS
)
dx

−
∫
ΩS

0

(
∇ ·wS

)
pkε dx+

1

ε

∫
ΩS

0

(
vkε ◦ ϕkε

)
·wS dx ∀wS ∈WS

where ϕkε (X) = X+ ukε (X).
Step 4. Stopping test: if

∥∥ukε − uk+1
ε

∥∥
0,ΩS

0
≤ tol, then Stop.

Step 5. Compute the characteristic function χS
uk+1
ε

, put k := k + 1 and Go to

Step 2.

It is possible to consider Navier-Stokes equations for the fluid domain, then
at the Step 2 we have to solve a non-linear system. In this case we can use
the non-linear penalization term for α = 2. If we use a non-linear model for the
structure, too, we have to use more accurate approximations for the the Jacobian
determinant J and the gradient of the deformation F.

4 Numerical Tests

The numerical tests have been produced using the software FreeFem++ [3].
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4.1 Test 1. Shell in Steady-State Cross Flow

First, we have performed numerical simulation using a 2D model adapted from
[1] (see Figure 2) where we have changed the physical parameters of the fluid
and of the structure.

Σ1

Σ

Σ

2

4

Γ

Γ0
uΓ

D

Ω
F

Ω
S
u

u

D

Σ3

Fig. 2. Geometrical configuration for the Test 1

The dimensions of a rectangular elastic structure are: height " = 3m, thickness
h = 0.125 m. The computational domain of the fluid D is a rectangle of height
H = 5 m and length L = 12 m. The distance between the left side of the fluid
and the left side of the structure is 2 m. The lower left corner of Figure 2 is
(x1 = 0, x2 = 0).

We denote by Σ1, Σ3 the left and the right vertical boundaries of D and by
Σ2, Σ4 the bottom and the top boundaries of D, respectively.

The mechanical proprieties of the structure (polybutadiene) are: Young mod-
ulus ES = 1.6× 106 N/m2, Poisson’s ratio νS = 0.49, the applied volume forces
on the structure fS : ΩS

0 → R2, fS = (0, 0) N/m3.
The dynamic viscosity of the fluid (glycerin) is μF = 1.14 N · s/m2.
The inflow velocity profile on Σ1 is

v1(x1, x2) = V × 1.5

(
2H x2 − x22

)
H2

m/s, V = 1, v2(x1, x2) = 0.

The other boundary conditions are: v = 0 (no-slip) on Σ2, v · nF = 0 (slip) on
Σ4 and v × nF = 0, nF ·

(
σF (v, p)nF

)
= 0 (the tangential velocity and the

normal traction are zero) on Σ3.
We use a fixed mesh for the fluid domain of 13096 triangles and 6719 vertices.

The mesh of the structure domain has 188 triangles and 145 vertices. The fluid
and structure meshes are not compatible, for example, a vertex on the structure
boundary is not necessary a vertex on the fluid mesh. For the approximation of
the fluid velocity and pressure we have employed the triangular finite elements
P1+bubble and P1 respectively, also called “mini” finite elements. The finite
element P1 was used in order to solve the structure problem. The characteristic
function was approached by P0 finite elements.
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Fig. 3. The fluid pressure [Pa]

Fig. 4. The fluid velocity around the final position of the structure. In each point of
the grid, there is an arrow giving the direction of the velocity and the length of the
arrow is proportional to the euclidean norm of the velocity. The maximal value for the
horizontal component v1 is 2.82 m/s and for the vertical component v2 is 1.18 m/s.

We have performed the simulation using the Algorithm described in the
previous section. For the stopping criterion at the Step 4, we have used the
tolerance tol = 0.2 × 10−4. The penalization parameter is ε = 10−3. The stop-
ping criterion holds after 5 iterations of the fixed point algorithm. The maximal
structural displacement is 0.14 m.

The fluid velocity into the fictitious domain is very small

‖vε‖0,ΩS
uε

=

√∫
D

χSuε
vε · vε dx = 0.0703384.
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4.2 Test 2. Flexible Appendix in a Flow

We have adapted the benchmark from [4]. Originally, the structure was placed
horizontally, parallel to the flow, but the displacements in this case are very small.
We have placed the structure vertically, transversely to the flow, see Figure 5.

Fig. 5. Geometrical configuration

The structure is composed by a rectangular flexible appendix attached to a
fixed circle. The circle center is positioned at (0.2, 0.2) m measured from the left
top corner of the channel. The circle has the radius r = 0.5m and the rectangular
appendix is of length " = 0.35 m, thickness h = 0.02 m. The Young modulus is
ES = 1.6× 106 N/m2 and Poisson’s ratio is νS = 0.49 (polybutadiene).

The channel has the length L = 2.5 m and the width H = 0.75 m. The fluid
dynamic viscosity is μF = 1.420 N · s/m2 (glycerin).

We have used the following boundary conditions: at the inflow the velocity is

v1(x1, x2) = V × 1.5

(
H x2 − x22

)
(H/2)2

m/s, V = 1, v2(x1, x2) = 0;

at the bottom and the top we have imposed the no-slip boundary condition
v = 0 and at the outflow the traction free σF (v, p)nF = 0.

We use a fixed mesh for the fluid domain of 30330 triangles and 15461 vertices
and a structure mesh of 128 triangles and 97 vertices. We have employed the
same finite elements as for the Test 1. We have treated by the embedding domain
technique only the flexible part of the structure.

The penalization parameter is ε = 10−4 and for the stopping criterion tol =
10−8. The fixed point algorithm stops after 8 iterations.

The maximal horizontal displacement of the structure is 0.10886m. The pres-
sure and the velocity of the fluid are presented in Figures 6 and 7. The fluid
velocity in the fictitious domain is very small

‖vε‖0,ΩS
uε

=

√∫
D

χSuε
vε · vε dx = 0.080920.
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Fig. 6. The fluid pressure [Pa]

Fig. 7. The fluid velocity [m/s] around the final position of the structure. In each point
of the grid, there is an arrow giving the direction of the velocity. The length of the
arrow is proportional to the euclidean norm of the velocity which is represented in the
color bar.
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5 Conclusions

We have presented a fixed point algorithm for solving steady fluid-structure
interaction problem. Using the embedding domain technique with penalization,
the fluid equations as well as the structure equations are solved in fixed meshes.
The fluid and structure meshes could be generated independently. The algorithm
can be used for the three dimensions problems.
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Abstract. In this note a concept of ε-level set function is introduced,
i.e. a function which approximates a level set function satisfying the
Hamilton-Jacobi inequality. We prove that each Lipschitz continuous so-
lution of the Hamilton-Jacobi inequality is an ε-level set function. Next,
a numerical approximation of the level set function is presented, i.e.
method for the construction of an ε-level set function.

Keywords: level set function, numerical approximation, shape
optimization.

1 Introduction

The goal of shape optimization is to deform and modify the admissible shapes
in order to comply with a given cost function that needs to be optimized.

Let D ⊂ Rn be a given bounded domain and Ωt ⊂ D, be a sets from a family
of admissible shapes Θ, indexed by t from some set of indexes. Assume that
a certain functional J(·) reaches its minimum value on the set Ωt for a xmin

t

function.
Consider the following shape optimization problem: find a set Ωopt ∈ Θ, for

which there exists a function xmin
opt such that the following formula holds

JΩopt(x
min
opt ) ≤ JΩt(x

min
t ) Ωt ∈ Θ,

that is
J(Ωopt) = inf

Ω∈Θ
J(Ω).

Problem formulated this way is difficult to solve – the crucial part is the con-
struction of the family Θ so a known mathematical methods could be used.
While solving this problem we were inspired by the approach we found in paper
[1], where minimization over a family of sets is turned into a minimization over
functions. Following this idea e.g. the level set function could be used to connect
sets with functions – it allows us to manipulate boundary of the given shape
through the level set function. A very brief sketch of this approach (transforma-
tion from optimization over domains into optimization over functions) is given
in section 2.1. Notice that whenever a computation is mentioned, it means that,
due to numerical computations limits, we are able to find only an approximate

D. Hömberg and F. Tröltzsch (Eds.): CSMO 2011, IFIP AICT 391, pp. 368–377, 2013.
c© IFIP International Federation for Information Processing 2013
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solution to a given problem. This is why, in practice, when solving shape opti-
mization problem with the help of level set functions, only an approximation of
it could be used and this is the main aim of this paper: to present a numerical
approximation of the level set function, i.e. we want to present a method for the
construction of an ε-level set function.

2 Level Set Method

Let Ω be an open and connected subset of D for which there exists a continuous
function Ψ(x) : D → R such that Ω = {x ∈ D : Ψ(x) < 0}. In consequence,
the boundary Γ of Ω is a set of all points x ∈ D, such that Ψ(x) = 0. Let
φ : (t, x) ∈ [0, 1]× D → R be any function of class C1, such that

φ(0, x) = Ψ(x), x ∈ D.

If Ω is a subject to changes in time we can describe Ω and its boundary Γ at
time t (denoted as Ωt and Γt) as

Ωt(φ) = {x ∈ D : φ(t, x) < 0}

and
Γt(φ) = {x ∈ D : φ(t, x) = 0}.

Let x : [0, 1] × Γ (0) → D be a continuous function, which for every point
x0 ∈ Γ (0) assigns its location at time t, t ∈ [0, 1], i.e. x(t, x0) = x ∈ Γ (t).
Function x(·, x0) represents the location of the point x0 at successive time steps
t, determining a trajectory starting from the point x0 ∈ Γ0. For fixed starting
point x0, a trajectory represents the movement of this point. Taking all points
x0 ∈ Γ0 into account we have the movement of a given boundary of Ω. This is
why we call a trajectory starting at x0 a deformation of the point x0. We call
the family of trajectories for all points x0 ∈ Γ0 the deformation of the initial
domain Ω.

Let Vn(x(t, x0)), t ∈ [0, 1], x0 ∈ Γ0(φ) be a Lipschitz mapping assigning to
every point x(y, x0) its speed of movement in a normal direction to the boundary
Γt(φ). A well known level set formula (e.g. [4]) according to which the changes
of the function φ(t, ·) affect the boundary Γt takes the following form

∂φ

∂t
(t, x(t, x0)) + |∇φ(t, x(t, x0))| Vn(x(t, x0)) = 0 (1)

Thus φ has to satisfy the following equation of Hamilton-Jacobi type

∂φ

∂t
(t, x) + |∇φ(t, x)| Vn(x) = 0, (t, x) ∈ (0, 1) × D

with initial condition
φ(0, x) = Ψ(x), x ∈ D. (2)
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2.1 Problem Reformulation

Denote by

� =
{
Ψ : Ψ ∈ C(Ω̄) and Ψ = 0 on ∂ΩΨ , Ω̄Ψ ⊂ Ω̄, ∂ΩΨ -smooth

}
Put Ωt(φt) = (x ∈ Ω | φt < 0). The family Θ of sets over which our shape
optimization problem is considered can be defined as

Θ = {Ωt(φt) : t ∈ [0, 1], φt = φ(t, ·), φ ∈ Lips([0, 1], Ω̄Ψ )}
where φ satisfies (1) in ΩΨ , Ψ ∈ �, with boundary condition (2) on ∂ΩΨ , Ψ ∈ �.
Define a new family

Φ = {φt : φt = φ(t, ·), Ωt(φt) ∈ Θ, t ∈ [0, 1]}
Now we can reformulate the shape optimization problem to the following problem

J(Ωopt) = inf
φt∈Φ

J(φt).

2.2 ε - Level Set Function

However, from the practical point of view only an approximate solution to (1)
is considered, i.e. a solution φε(·, ·), which instead of an equality satisfies an
inequality

−ε ≤ ∂φε

∂t
(t, x(t, x0)) + |∇φε(t, x(t, x0))| Vn(x(t, x0)) ≤ 0. (3)

Therefore, instead of a level set function we have its approximation. We call a
function (t, x) → φε(t, x), defined in [0, 1] × Ω, an ε− level set function if

−ε ≤ φε(t, x(t, x0)) ≤ 0, (t, x0) ∈ [0, 1]× ∂Ω, (4)

Ψ(x) ≤ φε(0, x) ≤ Ψ(x) + ε/2, x ∈ Ω̄. (5)

It is also well known that there exists a Lipschitz continuous ε− level set function
and that it satisfies the Hamilton - Jacobi inequality

−ε ≤ ∂φε

∂t
(t, x) + |∇φε(t, x)| Vn(t, x) ≤ 0 (6)

and initial condition (5). We have the following theorem, which is very important
from the numerical point of view.

Theorem 1. Each element of the set Wε,

Wε =
{

w(t, x) is Lipschitz: − ε

2
≤ w(0, x) ≤ 0, x ∈ ∂Ω;

−ε

2
≤ ∂

∂t
w(t, x) + |∇w(t, x)| Vn(t, x) ≤ 0, a.a. (t, x) ∈ [0, 1] × Ω

}
is an ε− level set function, i.e. it satisfies (4)-(5).
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Proof. We use the ideas of a proof from [2]. Let t0, 0 < t0 ≤ 1 and δ > 0, be such
that the interval [δ, t0 − δ] is nonempty; let x0, x0 ∈ ∂Ω, be an arbitrary initial
value and let the x(t), t ∈ [0, t0 − δ] start at x0. Of, course, by assumptions the
values of x(t) are then bounded on [δ, t0 − δ], i.e. there is some compact set Q
such that x(t) ∈ Q, t ∈ [δ, t0 − δ]. Let Bτ (Rn) be a ball in Rn (with Euclidean
norm) with radius τ ∈ R and center at 0. Denote Q1 = Q + B1(Rn). Take
w ∈ Wε and α ∈ R such that 0 < α < ε/4 and define

w1(t, x) = w(t, x) + α(t − 1), (t, x) ∈ [0, 1] × Ω.

Then, for a.a. (t, x) ∈ [0, 1]× Ω, w1 satisfies

α − ε

2
≤ ∂

∂t
w1(t, x) + |∇w1(t, x)| Vn(t, x)} ≤ α.

Let us choose 0 < β0 < min{1, δ} and define a function (t, x) → wβ0
2 (t, x) on

[δ, t0 − δ] × Q by the convolution wβ0
2 (t, x) = (w1 ∗ ρβ0)(t, x) where

ρβ0(t, x) =
1

βn+1
0

ρ1(
t

β0
,

x

β0
),∫

Rn+1
ρ1(t, x)dtdx = 1, supp ρ1 ⊂ B1(Rn+1).

We claim that there exists β′ > 0 such that for β ≤ β′ and (t, x) ∈ [δ, t0−δ]×Q,

1
2
α − ε

2
≤ ∂

∂t
wβ

2 (t, x) +
∣∣∣∇wβ

2 (t, x)
∣∣∣ Vn(t, x) ≤ 3

2
α. (7)

Indeed, since w1(t, x) is Lipschitz continuous, there exists M , such that
∣∣ ∂
∂xw1

∣∣ ≤
M and∣∣∣∣∣∣∇wβ

2 (t, x)
∣∣∣ Vn(t, x) − ((|∇w1(·, ·)|Vn(·, ·)) ∗ ρβ) (t, x)

∣∣∣
≤

∫
Bβ(Rn+1)

|∇w1(t − s, x − y)| |Vn(t, x) − Vn(t − s, x − y, u)| ρβ(s, y)dsdy

≤ M sup
(t,x)∈[δ,t0−δ]×Q

(s,y)∈Bβ(Rn+1)

|Vn(t, x) − Vn(t − s, x − y)| .

The right-hand side of the inequality presented above tends to zero as β → 0
and that on [δ, t0 − δ] × Q, there is β2 > 0 such that for β ≤ β2,∣∣∣∣∣∣∇wβ

2 (t, x)
∣∣∣ Vn(t, x) − ((|∇w1(·, ·)| Vn(·, ·)) ∗ ρβ) (t, x)

∣∣∣ <
α

2
.

Let us put on [δ, t0 − δ] × Q,

F (t, x) =
∂

∂t
wβ

2 (t, x) +
∣∣∣∇wβ

2 (t, x)
∣∣∣ Vn(t, x)

=
((

∂w1

∂t
(·, ·) + |∇w1(·, ·)| Vn(·, ·)

)
∗ ρβ

)
(t, x)

+
∣∣∣∇wβ

2 (t, x)
∣∣∣ Vn(t, x) − ((|∇w1(·, ·)|Vn(·, ·)) ∗ ρβ) (t, x).
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Considering the above estimations, we can find 0 < β′ ≤ min{β0, β1, β2} such
that for β ≤ β′,

1
2
α − ε

2
≤
((

α − ε

2

)
∗ ρβ

)
(t, x) − α

2
≤ F (t, x)

≤ (α ∗ ρβ) (t, x) +
α

2
=

3
2
α, for (t, x) ∈ [δ, t0 − δ] × Q.

It is clear that wβ
2 (·, ·) is C∞([δ, t0 − δ]×Q) and the function (t, x) → F (t, x), is

continuous on [δ, t0 − δ] × Q. After integrating the inequalities (7) in [δ, t0 − δ]
and considering the definition of Vn,∫ t0−δ

δ

(
1

2
α − ε

2

)
dt

≤
∫ t0−δ

δ

(
∂

∂t
wβ

2 (t, x) +
{∣∣∣∇wβ

2 (t, x)
∣∣∣Vn(t, x)

})
dt (8)

≤
∫ t0−δ

δ

3

2
αdt.

As a consequence of (8), the following are obtained:(
1
2
α − ε

2

)
(t0 − 2δ) ≤

(∫ t0−δ

δ

d

dt
wβ

2 (t, x(t))dt

)
≤ 3

2
α(t0 − 2δ)

and (
1
2
α − ε

2

)
(t0 − 2δ) ≤ wβ

2 (t0 − δ, x(t0 − δ)) (9)

−wβ
2 (δ, x(δ)) ≤ 3

2
α(t0 − 2δ).

By the property of convolution, we see that wβ
2 → w1 uniformly on [δ, t0−δ]×Q

and thus (9) leads to(
1
2
α − ε

2

)
(t0 − 2δ) ≤ w1(t0 − δ, x(t0 − δ))

−w1(δ, x(δ)) ≤ 3
2
α(t0 − 2δ).

Taking the limit with α → 0, we obtain

−ε

2
(t0 − 2δ) ≤ w(t0 − δ, x(t0 − δ)) − w(δ, x(δ)) ≤ 0

Since δ was chosen arbitrarily and

−ε

2
≤ w(0, x0) ≤ 0,

we infer further that
−ε ≤ w(t0, x(t0) ≤ 0.

Since t0 and w ∈ Wε were chosen arbitrarily, the theorem is proved.
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In this section, we proved that each Lipschitz continuous solution of the Hamilton-
Jacobi inequality is an ε-level set function. As a direct conclusion of the theorem
we infer the following corollary.

Corollary 1. Let εn > 0, εn → 0. Then each sequence of εn-level set functions
wεn ∈ Wεn tends uniformly to the level set function φ(t, x) on [0, 1]× Ω.

3 Numerical Approximation

In the second part of this paper we want to present a numerical approximation
of the level set function for the equation (1), i.e. we want to present a method
for the construction a ε-level set function for the equation (3), which satisfies
(4) and (5). In order to achieve that, an adaptation of the method developed by
J. Pustelnik in his Ph.D. thesis [3] is used.

Let T ⊂ [0, 1]×D be a compact set and (t, x) → w(t, x) be a function defined
on set T ′, T ⊂ T ′ of class C2(T ′) such that

−ε

2
≤ w(0, x) ≤ 0, x ∈ ∂Ω.

For w(·, ·) define now on the set T a new function (t, x) → Fw(t, x), corresponding
to the left hand side of the formula (1)

Fw(t, x) :=
∂w

∂t
(t, x) + |∇w(t, x)| Vn(x). (10)

Function (t, x) → Fw(t, x) is a continuous function on T . Moreover it is also
a Lipschitz function on T let MF w be a Lipschitz constant for the function
Fw(·, ·). Owing to the compactness of T , function Fw(·, ·) reaches its lower and
upper limits denoted respectively as kl and ku.

Let η > 0 be any fixed real number and {yη
j }j∈Z a sequence of numbers such

that yη
0 = 0 and yη

j+1 − yη
j = η for j ∈ Z. Define a new set J

J := {j ∈ Z : ∃(t,x)∈T yη
j < Fw(t, x) ≤ yη

j+1}.
and let PT = {P η,w

j }j∈J be a family of sets covering the set T where

P η,w
j :=

{
(t, x) ∈ T : yη

j < Fw(t, x) ≤ yη
j+1

}
As a consequence of the definition of the family PT and uniform continuity of
the function Fw(·, ·) on the set T we have the following proposition

Proposition 1. There exists a real number ε > 0, such that for every point
(t, x) ∈ T a ball with radius ε centered in (t, x) is covered either by one set
P η,w

j , j ∈ J or by two sets P η,w
j1

, P η,w
j2

, j1, j2 ∈ J and |j1 − j2| = 1.

Let hη,w(·, ·) be a function defined on T as follows

hη,w(t, x) := −yη
j+1 for (t, x) ∈ P η,w

j , j ∈ J. (11)

As a consequence of the above definition we have

∀
(t,x)∈T

− η ≤ Fw(t, x) + hη,w(t, x) ≤ 0. (12)
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Lemma 1. Let xw(·, x0) be a deformation of any point x0. There exists an in-
creasing sequence of m points {ti}i=1,...,m, t1 = 0 and tm = 1 such that

∀
t∈[ti,ti+1]

|Fw(ti, xw(ti, x0)) − Fw(t, xw(t, x0))| ≤ η

2
, i = 1, . . . , m − 1. (13)

Proof. This is a simple consequence of the absolute continuity of xw(·, ·).
Notice, that Lemma 1 holds for any τ ∈ [0, 1], since for any τ ∈ [0, 1] there exists
an increasing sequence of mτ points {tτi }i=1,...,mτ , where tτ1 = 0 and tτmτ

= τ ,
for which the following formula holds

∀
t∈[ti,ti+1]

|Fw(ti, xw(ti, x0)) − Fw(t, xw(t, x0))| ≤ η

2
, i = 1, . . . , mτ − 1.

Moreover, having the aforementioned sequence for τ = 1, we can easily determine
a sequence for any τ = {t1i }i=1,...,m1 . As a consequence of the formula (13) we
have that for any i ∈ {1, . . . , mτ − 1}, if (ti, xw(ti, x0)) ∈ P η,w

j for some j ∈ J ,
than for every x0 ∈ Γ0 the following property holds

∀
t∈[ti,ti+1]

(t, xw(t, x0)) ∈ P η,w
j−1 ∪ P η,w

j ∪ P η,w
j+1 .

From the above and Definition (11) for all t ∈ [ti, ti+1] we get that

[hη,w(ti, xw(ti, x0)) − η ≤ hη,w(t, xw(t, x0)) ≤ hη,w(ti, xw(ti, x0)) + η] . (14)

Particularly for every i ∈ {2, . . . , mτ − 1}
hη,w(ti, xw(ti, x0)) − hη,w(ti−1, xw(ti−1, x0)) = ηi

xw(·,x0)
, (15)

where ηi
xw(·,·) ∈ {−η, 0, η}. Integration of (14) results, for any i ∈ {1, . . . , mτ−1},

in the following double inequality

[hη,w(ti, xw(ti, x0)) − η] (ti+1 − ti)

≤
∫ ti+1

ti

hη,w(t, xw(t, x0))dt ≤ [hη,w(ti, xw(ti, x0)) + η] (ti+1 − ti)

and in consequence∑
i∈1,...,mτ−1

[hη,w(ti, xw(ti, x0))(ti+1 − ti)] − ητ

≤
∫ τ

0

hη,w(t, xw(t, x0))dt (16)

≤
∑

i∈1,...,mτ−1

[hη,w(ti, xw(ti, x0))(ti+1 − ti)] + ητ.

Owing to the fact, that by simple calculation the expression∑
i∈1,...,mτ−1

[hη,w(ti, xw(ti, x0))(ti+1 − ti)]
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can be substituted by some sum of differences (15), finally formula (16) takes
the following form∑

i∈2,...,mτ−1

ηi
xw(·,x0)

(τ − ti) + hη,w(0, xw(0, x0))τ − ητ

≤
∫ τ

0

hη,w(t, xw(t, x0))dt (17)

≤
∑

i∈2,...,mτ−1

ηi
xw(·,x0)

(τ − ti) + hη,w(0, xw(0, x0))τ + ητ.

Notice that inequality (17) is very useful in computation. It allows estimation
of an integral of function hη,w(·, ·) along deformation xw(·, x0) as a finite sum of
values from the set {−η, 0, η}. Moreover for any two deformations of two different
points x1

0 ∈ Γ0 and x2
0 ∈ Γ0 values∑

i∈2,...,mτ−1

ηi
xw(·,x1

0)
(τ − ti) + hη,w(0, xw(0, x1

0))τ

and ∑
i∈2,...,mτ−1

ηi
xw(·,x2

0)
(τ − ti) + hη,w(0, xw(0, x2

0))τ

are equal if the following conditions hold

ηi
xw(·,x1

0)
= ηi

xw(·,x2
0)

for every i ∈ {2, . . . , mτ − 1}, (18)

x1
0 ∈ P η,w

j i x2
0 ∈ P η,w

j , j ∈ J. (19)

In consequence, in the set K of all deformations xw(·, x0), x0 ∈ Γ0 an equiv-
alence relation E can be introduced, taking as an equivalent any two defor-
mations x(·, x1

0) and x(·, x2
0), x1

0, x
2
0 ∈ Γ0 fulfills (18) and (19). The cardinality

of a set KE of all disjoint equivalence class of relation E is finite and limited
from above by value 3mτ−1. Now define a set X of mτ − 1-dimensional vectors
x = (x1, . . . , xmτ−1), where x1 = 0 and xi = ηi

xj
w
, i = 2, . . . , mτ − 1, while

xj
w ∈ XE is any element of j-th equivalence class, i = 1, . . . , ||KE ||. Inequality

(17) can be rewritten as∑
i∈1,...,mτ −1

xi
xw(·,x0)(τ − ti) + hη,w(0, xw(0, x0))τ − ητ

≤
∫ τ

0

hη,w(t, xw(t, x0))dt (20)

≤
∑

i∈1,...,mτ−1

xi
xw(·,x0)(τ − ti) + hη,w(0, xw(0, x0))τ + ητ.

Thus infinite space of all deformation can be reduced to the finite set.
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Lemma 2. If x0 is any point from Γ0 and τ ∈ [0, 1] then we have the following
inequality

−
∑

i∈2,...,mτ−1

xi
xw(·,x0)

(τ − ti) − hη,w(0, xw(0, x0))τ − 2ητ

≤ w(τ, x(τ)) − w(0, x0)

≤ −
∑

i∈2,...,mτ−1

xi
xw(·,x0)

(τ − ti) − hη,w(0, xw(0, x0))τ + ητ.

Proof. Integration of (12) along any deformation x(·, x0) on interval [0, τ ] gives

−ητ −
∫ τ

0

hη,w(t, x)dt ≤
∫ τ

0

Fw(t, x)dt ≤ −
∫ τ

0

hη,w(t, x)dt,

and in consequence

− ητ −
∫ τ

0

hη,w(t, x)dt

≤
∫ τ

0

(
∂w

∂t
(t, x(t, x0)) + |∇w(t, x(t, x0))| Vn(t, x(t, x0))

)
dt

≤ −
∫ τ

0

hη,w(t, x)dt.

Considering equation (17) we have

−
∑

i∈2,...,mτ−1

xi
xw(·,x0)

(τ − ti) − hη,w(0, xw(0, x0))τ − 2ητ

≤
∫ τ

0

(
∂w

∂t
(t, x(t, x0)) + |∇w(t, x(t, x0))| Vn(t, x(t, x0))

)
dt

≤ −
∑

i∈2,...,mτ−1

xi
xw(·,x0)

(τ − ti) − hη,w(0, xw(0, x0))τ + ητ,

and finally because∫ τ

0

(
∂w

∂t
(t, x(t, x0)) + |∇w(t, x(t, x0))|Vn(t, x(t, x0))

)
dt

=
∫ τ

0

d

dt
w(t, x(t, x0))dt

we have

−
∑

i∈2,...,mτ−1

xi
xw(·,x0)

(τ − ti) − hη,w(0, xw(0, x0))τ − 2ητ

≤ w(τ, x(τ)) − w(0, x0)

≤ −
∑

i∈2,...,mτ−1

xi
xw(·,x0)

(τ − ti) − hη,w(0, xw(0, x0))τ + ητ.
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Theorem 2. Set a real number η > 0, point x0 ∈ ∂Ω and τ ∈ [0, 1]. Then

w(τ, x(τ)) − w(0, x0)

+
∑

i∈2,...,mτ−1

xi
xw(·,x0)

(τ − ti) + hη,w(0, xw(0, x0))τ − ητ

is a value of some ε-level set function at the point (τ, x(τ, x0)) for ε = 3ητ .

Proof. From the Theorem 2 we obtain

−3ητ ≤ w(τ, x(τ)) − w(0, x0)

+
∑

i∈2,...,mτ−1

xi
xw(·,x0)

(τ − ti) + hη,w(0, xw(0, x0))τ − ητ

≤ 0.

From the above we infer that it is enough to take into account a finite number of
points from ∂Ω to get the approximation of the level set function with an error
not greater than 3η.
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Abstract. The paper aims to illustrate the algorithm developed in the
paper [6] in some specific problems of shape optimization issued from
fluid mechanics. Using the fictitious domain method with penalization,
the fluid equations will be solved in a fixed domain. The admissible
shapes are parametrized by continuous function defined in the fixed do-
main, then the shape optimization problem becomes an optimal control
problem, where the control is the parametrization of the shape. We get
the directional derivative of the cost function by solving co-state equa-
tion. Numerical results are obtained using a gradient type algorithm.

Keywords: shape optimization, optimal control, penalization, approx-
imate extension, gradient method.

1 Introduction

The paper presents some applications of an algorithm developed in [6]. This
algorithm is based on a method that uses a penalization of the stationary Navier-
Stokes equation that approximates its solution by functions defined on a larger
fixed domain. The unknown domains are parametrized by functions in a certain
subspace of the space of continuous functions on the larger fixed domain.

The approximating extension technique makes possible the approximation of
the solution to the shape optimization problem by a solution of an optimal con-
trol problem. The basic reference will be [6]. For shape optimization, the general
references are [13], [3] and for optimal control [7], [10]. In particular, for shape op-
timization for fluids a standard work is [9]. In optimal design related to optimal
control, relevant contributions to the topic of this paper are [1], [4], [15].

In Section 2, the shape optimization problem for steady Navier-Stokes is pre-
sented. The directional derivative of the cost function is given in Section 3. A

D. Hömberg and F. Tröltzsch (Eds.): CSMO 2011, IFIP AICT 391, pp. 378–386, 2013.
c© IFIP International Federation for Information Processing 2013
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gradient type algorithm is also introduced. In Section 4, numerical results are
presented in order to design a nozzle.

2 Formulation of the Shape Optimization Problem and
Approximating Extensions

Let d be a natural number, d ≤ 4, let D ⊂ Rd be a bounded fixed domain
and suppose a family O of admissible subdomains Ω ⊂ D is given, satisfying an
uniform Lipschitz condition on the boundary ∂Ω.

With the standard notations from [16], V(Ω) = {y ∈ D(Ω)d|div y = 0},
V (Ω) = closure of V(Ω) in H1

0 (Ω)d = {y ∈ H1
0 (Ω)d|div y = 0} (since ∂Ω is

lipschitzian), we have the following weak formulation of the stationary Navier-
Stokes equation with Dirichlet boundary (non-slip) conditions:

∫
Ω

⎛⎝ν d∑
i,j=1

∂yj
∂xi

∂vj
∂xi

+
d∑

i,j=1

yi
∂yj
∂xi

vj

⎞⎠ dx =

∫
Ω

⎛⎝ d∑
j=1

fjvj

⎞⎠ dx, ∀v ∈ V (Ω)

(2.1)

or (see [16]), ν((y, v))Ω + bΩ(y, y, v) =

∫
Ω

f · v dx. Here f = (f1, . . . , fd) ∈

H−1(D)d, and ν > 0 is the viscosity.
To this equation we associate the minimization problem

min{J(Ω) =

∫
E

||y − y0||2edx, E ⊂ Ω ∈ O; y verifies (2.1)} (2.2)

E ⊂ Ω is a fixed set and y0 ∈ L2(E)d is given.
This functional is a particular case of a larger class,

J(Ω) =

∫
∧
j(x, y(x),∇y(x))dx, ∧ = E or ∧ = Ω,

that are studied in [6].
The uniform Lipschitz assumption turns O into a compact with respect to

the Hausdorff-Pompeiu complementary metric (see [11], p. 466). Based on this,
it is inferred in [6] that if there exists an admissible Ω̂ and a corresponding
solution of (2.1) for which J(Ω̂) is finite then there exists at least an optimal
pair [Ω∗, y∗] ∈ O × V (Ω∗). So, the optimization problem is well defined but its
solution is generally nonunique.

If X(D) ⊂ C(D̄) is a functional space, define, for g ∈ X(D), Ω = Ωg =
int{x ∈ D|g(x) ≥ 0}. If E ⊂ Ω is to be fulfiled one must require g(x) ≥ 0
∀x ∈ E. g is called a parametrization of Ωg and Ωg an admissible domain. The
solutions of (2.1) in Ωg will be denoted as yg.
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If H : R → {0, 1} is the Heaviside function, H ◦ g = χΩ̄g
, the characteristis

function of Ω̄g. For ε > 0 the following smoothing of the Yosida approximation
of the maximal monotone extension of H will be used:

Hε(r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, r ≥ 0

(ε− 2r)(r + ε)2

ε2
, −ε < r < 0

0, r ≤ −ε

(see also [8], [12]). It is easy to see that Hε ∈ C1(R) and is lipschitzian. The
boundary value problem (2.1) has an approximate extension

ν((yε, v))D + bD(yε, yε, v) +
1

ε

∫
D

[1−Hε(g)]yε · v dx =

∫
D

f · v dx (2.3)

Suppose now that d = 3. It is proved in [6] that, for C1 = 9m(D)1/6, if

ν2 > C1||f ||V ∗ (2.4)

then (2.3) has an unique solution yε(g) that depends continuously on g as a
function from (C(D), || ||∞) to L2(D)3. The following theorem that is proved in
[6], §3, allows the approximation of the shape optimization problem (2.1), (2.2)
by the optimal control problem (2.2), (2.3).

Theorem 2.1. If (2.4) holds then there exists a sequence εn → 0 such that
yεn(g)|Ωg → yg weakly in H1(Ωg)

3 and strongly in L2(Ωg)
3.

3 The Directional Derivative and a Gradient Type
Algorithm

In order to solve the optimal control problem (2.2), (2.3) through a gradient
type algorithm an important step is the calculation of the directional derivative
of the mapping g �→ J [yε(g)] in the direction w ∈ X(D). It is proved in [6],
§4, that, under the uniqueness condition (2.4), this derivative in direction w,
∂yε
∂w

(g) = (z1, z2, z3) ∈ V (D) is the solution of the equation in variations

∫
D

⎛⎝ν 3∑
i,j=1

∂zj
∂xi

∂vj
∂xi

+
3∑

i,j=1

yε,i
∂zj
∂xi

vj +
3∑

i,j=1

zi
∂yε,j
∂xi

vj

⎞⎠ dx+

+
1

ε

∫
D

[1−Hε(g)]z · v dx =
1

ε

∫
D

((Hε)′(g)w)yε · r dx

(3.1)

It is also proved in [6], §4, that under condition (2.4), equation (3.1) has an
unique solution.
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For the optimal control problem (2.2), (2.3) the co-state equation (see [2], [5],
[14]) is

∫
D

⎛⎝ν 3∑
i,j=1

∂pε,j
∂xi

∂vj
∂xi

−
3∑

i,j=1

yε,i
∂pε,j
∂xi

vj +
3∑

i,j=1

∂yε,j
∂xi

pε,jvj

⎞⎠ dx+

+
1

ε

∫
D

[1−Hε(g)]pε · v dx =

∫
E

(yε − y0) · v dx.

(3.2)

Under condition (2.4) the equation (3.2) has a unique solution pε ∈ V (D). The
algorithm will result from the following theorem

Theorem 3.1 ([6], §4, Th.5). The direction derivative in g ∈ X(D) of J [yε(g)]
in the direction w ∈ X(D) is given by

∂J

∂w
[yε(g)]w =

1

ε

∫
D

((Hε)′(g)w)yε · pεdx (3.3)

(pε is the unique solution of (3.2)).

Algorithm
Step 0. Choose a starting parametrization g0 and a positive scalar ε. Set k = 0.

Step 1. Find yε the solution of (2.3).
Step 2. Find pε the solution of (3.2).
Step 3. Set the descent direction wk = −yε · pε. If ‖wk‖ < tol stop.
Step 4. Determine gk+1 = gk + θkwk, θk > 0 by means of an approximate

minimization
J(gk+1) ≈ min

θ≥0
J(gk + θwk).

Step 5. Update k = k + 1 and go to the Step 1.

For the inaccurate line search at the Step 4, the methods of Goldstein and
Armijo were used. If we denote by j : [0,∞)→ R the function j(θ) = J(gk+θwk),
we determine θk > 0 such that

j(0) + (1− λ) θkj
′(0) ≤ j(θk) ≤ j(0) + λθkj

′(0) (1)

where λ ∈ (0, 1/2).

4 Numerical Results. Shape Optimization of a Nozzle

Problem Setting
We have adapted the nozzle problem from [13]. We assume that the flow in a
nozzle is governed by the steady Navier-Stokes equation with prescribed trac-
tion at the inflow and outflow. The problem is to design a nozzle that gives a
prescribed velocity near the exit. This kind of problem arises in rocket engine
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industries, in the design of a spray for applying a coating or in the manufacture
of high-resolution inkjet printer.

We assume that the polyhedron [A1 A2A3 A4A5A6 A7] is the fixed com-
putational domain D. The coordinates of its vertices are: A1(H, 0), A2(0, 0),
A3(L/2, 0), A4(L,H − h), A5(L + ",H − h), A6(L + ",H), A7(L,H), where
L = 6, " = 1, H = 3, h = 1. We denote by E the observation zone which is the
rectangle [A4 A5A6A7].

We denote by Σin the boundary [A1 A2] representing the inflow section and
by Σout the boundary [A5A6] representing the outflow section. The desired fluid
velocity in the observation zone E is

y0 =

(
vout

4(H − x2)(x2 −H + h)

h2
, 0

)
, where vout = 4.

The fluid viscosity is μ = 1 and its density is ρ = 1.

E

A6

ω
A4 A5

A7A1

A2 A3

Fig. 1. Computing domain

Let ω ⊂ D such that ω ∩E = ∅. We look for a connected domain Ω verifying
D \ ω ⊂ Ω ⊂ D and minimizing the cost function

J =
1

2

∫
E

(yε − y0) · (yε − y0) dx.

The traction imposed on the inflow is (100, 0) and on the outflow it is (0, 0). We
impose no-slip condition on the other boundaries, including the free boundary.

Descent Direction
In Figure 2, we show 1−Hε(g) which is an approximation of the characteristic
function of the domain D \Ω, for a typical admissible parametrization g.

We remark that the (Hε)
′
(r) vanishes on R, excepting for r ∈ (−ε, 0). Conse-

quently, the zone in D, where (Hε)′ (g) = 0 is very narrow, see Figure 3. When ε
is very small, this zone could be empty. For this season, we have taken as descent
direction not − (Hε)

′
(g)yε · pε which is given by (3.3), but wd = −yε · pε. We
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Fig. 2. The value of 1−Hε(g) on D for ε = 10−4

Table 1. Mesh parameters used in Figure 3

mesh no. triangles no. vertices mesh size

1 828 460 0.340972

2 3316 1749 0.171328

3 7412 3842 0.146829

4 13168 6765 0.095475

Mesh 1 Mesh 2

Mesh 3 Mesh 4

Fig. 3. The zone where the derivative of the Yosida approximation of the Heaviside
function is not vanishes for ε = 10−1. The mesh parameters are prezented in Table 1.
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case i)

case ii)

case iii)

Fig. 4. Case i): final shape (bottom) obtained from the initial shape (top). Case ii): final
shape (top) obtained from the initial shape (bottom). Case iii): final shape (bottom)
obtained from the initial shape (top).

recall that (Hε)′ (g) ≥ 0, consequently wd = −yε · pε is a descent direction in
view of (3.3).

Numerical Parameters
The mesh of D has 15032 triangles and 7697 vertices. We have used the following
finite elements: P1 + bubble for the velocity, P1 for the pressure and for the g.

We set the penalization parameter to be ε = 0.0001, the number of iterations
for the descent algorithm to be 10 and number of iterations for the line search
to be 10.

We have tested our algorithm for three initial values of g:

i) for g(x1, x2) = 10−4(x2 − x2
1

18 − 1.5), the initial value of J is 0.518529 and its
final value of is 0.00697268;

ii) for g(x1, x2) = 10−4(x2 − x2
1

18 − 0.5), the initial value of J is 0.185802 and its
final value of is 0.00466894;
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Fig. 5. Fluid velocity for the optimal shape in the case iii)

iii) for g(x1, x2) = 10−4(x2 − x2
1

18 − 1), the initial value of J is 0.0735282 and its
final value is 0.00448260.

Numerical Results
We have obtained three different optimal shapes, see Figure 4, that means the
algorithm find only local optimum. The minimum final value of the cost function
among the three tests is obtained in the case iii).

We remark in Figure 4 case ii), that the zero level set of the initial g partially
coincides with the zero level set of the final g. In fact, the initial g vanishes on
the free boundary. Since, we impose non-slip boundary condition for yε and pε
on the free boundary, the descent direction wd = −yε · pε vanishes on the free
boundary, also. Consequently, gk+1 could have the same zero level set as gk.

The fluid velocity is ploted in Figure 5. We observe that the fluid velocity is
very small in the exterior of the optimal shape, more precisely we have

Error(g) =

∫
ω

(1−Hε(g)) yε · yε dx = 0.000446
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Abstract. We present a novel, thermodynamically consistent, model for
the charged-fluid flow and the deformation of the morphology of polymer
electrolyte membranes (PEM) in hydrogen fuel cells. The solid membrane
is assumed to obey linear elasticity, while the pore is completely filled
with protonated water, considered as a Stokes flow. The model com-
prises a system of partial differential equations and boundary conditions
including a free boundary between liquid and solid. Our problem gener-
alizes the well-known Nernst-Planck-Poisson-Stokes system by including
mechanics. We solve the coupled non-linear equations numerically and
examine the equilibrium pore shape. This computationally challenging
problem is important in order to better understand material properties
of PEM and, hence, the design of hydrogen fuel cells.

Keywords: Nernst-Planck-Poisson-Stokes system, Free boundary prob-
lem, Equilibrium shape, Fluid-structure interaction, Polymer electrolyte
membrane, Proton exchange membrane fuel cell, Nafion, Mechanical de-
formation of pores, Ohmic interface resistance.

1 Introduction

Fuel cells running at low temperature provide a possibility for the electrification
of the power train in automotive devices. Proton exchange membrane fuel cells
(PEMFC) are based on hydrogen as fuel and do not rely on the use of fossil
combustible material, which is likely getting increasingly scarce and expensive
in the future. PEMFC allow to produce electric current by only emitting water
as a byproduct and no carbon dioxide. In a hydrogen fuel cell, hydrogen enters
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D. Hömberg and F. Tröltzsch (Eds.): CSMO 2011, IFIP AICT 391, pp. 387–396, 2013.
c© IFIP International Federation for Information Processing 2013



388 S.-J. Kimmerle, P. Berg, and A. Novruzi

into the fuel cell at the anode (negative), while oxygen flows in at the cathode
(positive). The design of the PEM allows for control of the potentially explosive
chemical reaction between hydrogen and oxygen. The reaction product, just
water, leaves the fuel cell predominantly through the cathode outlet. The electric
load is applied between anode and cathode, which closes the electric circuit.
Within the PEM, the protons migrate from anode to cathode.

The PEM consists of a polymer with a nanopore structure. Negatively charged
sulfonic acid groups (SO−

3 ) at the walls of the nanoscale pores allow the dissocia-
tion of protons (H3O

+) in the presence of water. A typical material for a PEM is
Nafion, a perfluorosulfonic acid ionomer. A hydrated Nafion membrane exhibits
a hydrophobic elastic backbone and hydrophilic pores, that are filled with pro-
tons and water molecules [1]. The precise morphology of Nafion on nanoscales
remains a controversially discussed issue. We follow the widely accepted ap-
proach by Schmidt-Rohr and Chen [2], that a Nafion membrane consists mainly
of parallel cylindrical channels surrounded by hydrophilic side chains.

Within the production of PEMs, a possibility is to press together several layers
of thinner membranes. An increased ohmic resistance between interfaces of two
joint PEM is observed in experiments. Our objective is to establish a mathemat-
ical model, describing the charged fluid flow and the change of the morphology of
the pore due to mechanical deformations, that allows to understand better mate-
rial properties of PEM. In particular we are interested in finding an equilibrium
pore shape and, finally, in explaining this ohmic resistance.

The behaviour of water in a nanochannel may be very different compared to
that of bulk water. The physics of water in a confined small channel depends
significantly on the type of surface, i.e. whether the interface is hydrophilic or
hydrophobic, and on the presence of surface charges [3]. There are several ap-
proaches, adapted to different scales, in order to study the charged fluid within
PEM pores. On a microscopic level these are mainly molecular dynamics and
Brownian motion, on a mesoscopic level there are continuum models, e.g. the
Nernst-Planck-Poisson-Stokes (NPPS) system. We follow a continuum approach
that is applicable in our situation since the Debye length is small, see [4].

We generalize the well-known NPPS model [5] by fluid-structure interaction
between the charged fluid flow and the elastic wall of the channel. Previous
electrohydrodynamic models, e.g. [4,5,6], do not incorporate the coupling to the
mechanical displacement field. The equations for the flow stated by Castellanos
[5] and analysed by Schmuck [7] are more general. They deal with the full non-
stationary Navier-Stokes flow and allow also negative charge carriers, but the
liquid domain is fixed. The equations in [4,6] represent the first-order approxi-
mation for a stationary version of our model without mechanical deformations.
The significant effects of the radial variation of system parameters in this sit-
uation has been underlined in [4]. However, we work with a varying viscosity
instead of a no-slip surface as in [4], modelling essentially the Stern layer in
the pore. Furthermore, we consider slightly different boundary conditions (b.c.),
e.g. we work with homogeneous Neumann b.c. (13), (14) for the chemical poten-
tial on in-/outlet and on the interface instead of Neumann b.c. for the proton
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Fig. 1. Domains: L, the liquid, S the solid, I the interface, O1 inlet (anode), O2 outlet
(cathode). Unknowns: in L: u, p, φ, c; in S: U . Dashed part of the interface: initial
pore shape, part of the interface with continuous lines: equilibrium pore shape.

concentration, which are only an approximation of our thermodynamically con-
sistent b.c. A free boundary problem for an interface between elastic solids and
fluids is described in [8,9]. These models are similar to our model, when any cou-
pling of the flow to electric field and concentration is neglected. A similar setting
as ours has been considered by [10], but the authors focus on possible equilib-
rium configurations depending on the hydration of the pore and they make the
assumption, arguably too strong in nature, of a constant proton concentration.
Secondly, we study a stationary fluid flow in a fully saturated PEM.

To the best knowledge of the authors, a full problem involving both charged
fluid flow and fluid-structure interaction has not been considered yet. We derive
partial differential equations that we state in Sect. 2. We focus on a single cylin-
drical channel that joins another cylindrical channel from the adjacent PEM
layer. Both channels are assumed to be completely filled with protonated water.
In §2.1 we define our geometry and introduce the crucial physical quantities. The
model is solved numerically by a commercial finite element software in Sect. 3.
We discuss the impact of our results in the last part, Sect. 4, of this short paper.

2 An Elasto-Electrohydrodynamical Model for Polymer
Electrolyte Membranes

2.1 Geometry and Relevant Physical Quantities

We assume that a single Nafion pore consists of several nanochannels and that
the length of nanochannels is larger than their diameter d, typically a few
nanometre. Instead of solving the full problem for many channels, we examine
the situation around the region where one channel from one PEM layer meets
one other channel from another PEM layer. We consider a nanochannel segment
of length l including the interface (see Fig. 1). The joint channel extends further
on in both directions and is assumed to be connected to other pores at both
ends. Let C = L∪S ∪ I denote the whole domain with the open domains L and
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S, modelling the liquid channel and the solid Nafion backbone (of both PEM).
I = ∂L∩∂S denotes the interior free boundaries (or interface) between S and L
and ∂C are all outer boundaries of C. We denote the inlet by O1 and the outlet
by O2. Here the outer boundaries are considered as fixed boundaries, since in our
model the channel extends further out of the considered domain C. Free bound-
aries may move with a normal speed ω. We make the following convention: ν
denotes the outer normal on I ∪ ∂C, pointing on ∂C outside C and pointing on
I \∂C always from the liquid into the solid. Consequently ∂νf = ∇f ·ν denotes
the derivative in direction of the outer normal for a differentiable function f .
The mean curvature (times a factor 2) of a surface is the tangential divergence
of the outer normal, i.e. κ = ∇τ · ν, being positive on I, if I is convex (seen
from L). τ1 and τ2 denote the two orthonormal tangential vectors on I.

In this study, we suppose that the channel is completely filled with protonated
water. Counter-ions, i.e. protons, are considered to be the only charge carriers
in our model. On the interface I between liquid and solid we have negatively
charged sulfonic acid groups, that are modelled by the negative surface charge
density σC , see [6]. We like to solve for the velocity field u, the pressure p, the
proton concentration c, and the electric potential φ in the liquid L, and we are
looking for the mechanical displacement field U in the solid S.

2.2 Modelling of Strains and Stresses

Mechanical strains and stresses are defined w.r.t. a reference configuration, where
the system is free of strains and stresses or the stresses are at least known a-
priori, either from experiments or from calculations (as it is possible e.g. in
the case of a symmetrical geometry). In order to define a mechanical reference
configuration, we consider at first another case where we have a straight circular
channel with a fixed diameter cut out of a box of solid Nafion. An outer pressure
p∗ is exerted on the liquid channel without flow. At the interface the well-known
Young-Laplace law p∗+γκR = pR holds. Here γ is the surface tension, κR = 2/d
is the mean curvature of the straight channel, and pR is the reference pressure
in the solid for a straight cylinder.

As a reference configuration we consider the case of two joint straight cylin-
drical channel segments with the same radius and parallel axes. These channels
are shifted by a fixed offset s between the axes. The offset is the distance be-
tween the circle centres at the interface plane. The reference pressure p in the
solid, corresponding to the situation of two channels with an offset, is varying in
space. Namely we have p = pR = p∗ − 2γ/d on the part of I that belongs to the
cylinder barrels, while p = p∗ on the part of I near the offset that belongs to the
cylinder covers. Stresses and strains are to be formulated w.r.t. this reference
configuration. The geometry within the reference configuration will be denoted
by S0, L0 and I0, while in the current (actual or deformed) configuration we
write S, L and I. We assume that we may neglect here inelastic deformations
that are due to changes of the chemical composition.
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We consider mechanical deformations and displacements U0 in the reference
configuration on S0 and then as U in the current (actual) configuration on
S w.r.t. the reference configuration. We consider a material point X in the
reference configuration, whose location at time t is given by x in the cur-
rent configuration. χ(t,X) = x is called the deformation of material points.
The displacement of a material point is defined by U0(t,X) := χ(t,X) −X.
We assume that we may invert the deformation χ at any time w.r.t. material
points X and, thus, we express the displacement w.r.t. the current configura-
tion, U(t,x) := U0(t,χ

−1(t,x)). It is convenient to consider fluid flow in the
current configuration, i.e. in Eulerian coordinates, while mechanical displace-
ments in a solid are considered in the reference configuration, i.e. in Lagrangian
coordinates. We may work in good approximation with linear elasticity instead
of nonlinear elasticity, which would be needed for a full description of large de-
formations of polymers, see e.g. [11]. Therefore solid stresses are represented by
the Cauchy stress tensor σS(∇U) = (−p + λStr(∇U))1 + μS e(∇U), where 1
is the unit tensor, tr denotes the trace, and e(t) = t+ t� is the symmetrization
of a tensor t times 2. The Lamé constants λS , μS are given material parame-
ters. In the liquid we deal with a Newtonian fluid and the stress tensor reads
σL = −(p+ 2

3μdtr(∇u))1+ μde(∇u), with μd being the dynamic viscosity.

2.3 Governing Equations

Now we may state our mathematical problem. For details of its derivation from
first principles and the choice of thermodynamically consistent constitutive re-
lations, see [12]. We remark that we assume that the dynamic viscosity μd, the
electric permittivity εr, and the diffusion coefficient of protons, D, may vary in
space [4]. Furthermore, we have as given data the outer pressure at in-/outlet

p
(1)
0 /p

(2)
0 , a given displacement g0 on the boundary ∂S0 \ I0, and a constant

external electric field Eext.
Our problem consists of Stokes equations for u and p,

[Momentum balance] −∇ · (μd e(∇u)) +∇p = −Fc∇φ inL, (1)

[Incompressibility] ∇ · u = 0 inL, (2)

where Fc∇φ accounts for electro-osmotic pressure, F being Faraday’s constant.
This is complemented by the boundary conditions

[Normal pressure bal.] μd e(∇u)ν − pν = −p(i)0 ν onOi, i = 1, 2, (3)

[Tangential moment. bal.] u · τj = 0 onOi, i, j = 1, 2, (4)

[Momentum balance] u = ∂tU on I. (5)

The mechanical displacement field U0 is determined by the following problem
of linear elasticity, formulated in the reference configuration,

−∇ · σS(∇U0) = 0 inS0, (6)

U0 = g0 on ∂S0 \ I0, (7)

−σS(∇U0)ν0 = −μd e(∇u0)ν0 + (p0 − γκ0)ν0 on I0, (8)
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where the last line is the Young-Laplace equation, a pressure balance. u0, p0 and
κ0 denote u, p and κ expressed in the reference configuration. For the electric
potential φ, we solve the Poisson equation with Neumann b.c.

[Electrostatics] −ε0∇ · (εr∇φ) = Fc inL, (9)

[External electric field] −∂νφ = (−1)iEext onOi, i = 1, 2, (10)

[Interface charges] −ε0εr∂νφ = −σc on I, (11)

where ε0 is the vacuum permittivity. For the proton concentration c, we solve
the Nernst-Planck equation

−∇ ·
(
D∇c+

F

RT
Dc∇φ

)
+ u · ∇c = 0 inL, (12)

∂νc+ (−1)i+1 F

RT
Eext c = 0 onOi, i = 1, 2, (13)

∂νc+
F

RTε0εr
σc c = 0 on I, (14)

the last two lines representing homogeneous Neumann b.c. for the chemical po-
tential RT ln(c/c) + Fφ, R denoting the universal gas constant and T the tem-
perature. In (12), the first term represents the diffusion of protons, the second
term the migration of protons within the electric field and the third term is the
advection due to the moving fluid. The normal velocity ω of the free boundary
I is determined by

[Normal momentum balance] ω = ∂tU · ν on I. (15)

In this study, we are looking for stationary solutions of (1) – (15). Consequently,
we neglect the time-derivatives in (5) and (15). Otherwise, we would have to
prescribe an initial condition for I, and consider time-dependent domains and
boundaries. The equilibrium pore shape corresponds to a displacement on the
interface, U0|I , that is constant in time. It is designated by (8).

We determine uniquely the electric potential φ by imposing φ = φ at the
centre point P of the inlet O1. By solving a nonlinear eigenvalue problem, a
typical value c for the proton concentration is derived in [6] that corresponds to
setting φ = φ at the centre of a straight cylindrical channel in the case of constant
permittivity. The arbitrariness of φ or c corresponds to the gauge invariance of
the electric potential.

We emphasize that the b.c. (10) is consistent with global electroneutrality,
meaning that we rule out that the electric field extends into the solid and, hence,
ions would cross the interface. This requires that the hydronium charges (H30

+)
in the liquid and the negative ions (SO−

3 ) on the boundary balance,
∫
L
Fc +∫

I
σc = 0. Together with (9), (11), and Gauss’ theorem we find

∫
O1∪O2

ε0εr∂νφ =

0. The last equation is guaranteed by (10), a choice among many others.
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3 Numerical Solution

For any solution approach, numerical or analytical, it is crucial to non-dimen-
sionalize the system, and to split up the equations and, consequently, the quanti-
ties according to their different scales. We remark that by non-dimensionalization
of the system we find the relevant dimensionless coupling parameters, e.g. a pa-
rameter resulting from non-dimensionalization of (9) is the Debye length of the
nanochannel. The dimensionless parameter Pe arising in (12) is the Peclet num-
ber describing the relation between advection and diffusion for mass transfer.
Since Pe ( 1 we could be tempted to neglect the term u · ∇c in the Nernst-
Planck equation. This observation motivates the first-order approximation that
is considered and compared with the full model in [12]. However, for the flux of
protons, j+ = −D

(∇c+ F
RT c∇φ

)
+ cu, that enters significantly into the ohmic

resistance within the nanochannel, we would obtain zero within this first-order
approximation. Hence, it is crucial to consider the full equation (12). Sorting
the r.h.s. of the PDE by their scales suggests to introduce an internal electric
potential φ0 (with a non-zero b.c. only on the interface), an external electric
potential φ1 (with a non-zero b.c. only at in-/outlet) and a remainder potential
φ2. Corresponding to φ0 we introduce a concentration c0 = c exp (−F/(RT )φ0),
yielding a remainder concentration c1 with a well scaled PDE. Finally for the
pressure it is convenient to replace p by q := p−RTc0, since q = 0 implies u = 0.

Since the analytical solution of our non-linear coupled system is quite am-
bitious we focus on a numerical solution. Schmuck’s analytical results [7], for a
model without coupling to linear elasticity, rely on the parabolic structure of the
non-stationary equations for u and c and cannot be transferred to our station-
ary case directly. We remark that we have a two-sided fluid-structure interaction.
The charged fluid flow influences by means of (8) the deformation of the elas-
tomer membrane, while a narrowing (e.g. a complete closing of the channel) or
widening of L has large influence on velocity or pressure.

3.1 Description of the Numerical Algorithm

Our numerical algorithm solves for the state variables as well as for the free
interface. It should be emphasized that it is a non-trivial matter in which order
the coupled equations are solved so as to obtain fast convergence and numerically
stable results. We make use of the ALE (Arbitrary Lagrangian Eulerian) method,
i.e. we discretize the original geometry in Lagrangian coordinates. Our numerical
algorithm is built up in the following way:

a) Considering the reference configuration, we initialize the mesh for L0, S0 and
I0. Formally, we set U0 = 0, u0 = 0, and q0 = 0, where q0 is q transformed
into the reference configuration.

b) We compute smoothed normal vectors on the boundaries by extending the
normal vector field ν0 by means of Δν0 = 0 into L0∪S0, using the definition
of ν0 on ∂C0 ∪ I0 as boundary condition. This enables us to compute the
mean curvature κ0, even at corners that would become smooth instantly due
to surface tension anyways.
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Fig. 2. Top: u3, velocity in x3 direction, zoom towards the channel intersection, plotted
on the cross section L ∩ {x1 = 0} (s.t. the channels are sliced in half). Bottom: Cross
section S ∩{x1 = 0}. U2, mechanical displacement field in x2 direction, deformed con-
figuration. A channel may close completely. In both figures the cylinders have diameter
d = 2 nm in the reference configuration, length 10 nm and offset s = 0.5 nm; g0 = 0.

c) We store U
(old)
0 = U0, then we solve the linear elasticity problem (6) – (8)

for U0 in S0, using the present values for u0 and q0.
d) We update the geometry. The free boundary is moved by the mechanical

displacement U0 − U
(old)
0 on I0, yielding the update of I, and hence of S

and L.
e) We solve the electrohydrodynamical system (1) – (5), (9) –(14) as follows.

(i) First we solve for φ1, φ0, and c0, that do not depend on other variables.
(ii) We solve the remaining equations iteratively. We start solving for u and

q simultaneously, and then for φ2 and c1 simultaneously.
(iii) Then we reiterate e)(i) and e)(ii) until we have a suitable residual error.
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f) If maxI0

∥∥∥U0 −U
(old)
0

∥∥∥ < err, err a prescribed error tolerance, or if a topo-

logical event has occured (e.g. closing of the pore), or a specified maximal
number of iterations has been reached, we terminate our algorithm with
the obtained numerical solution. Else we take the updated geometry as new
reference configuration. Should the situation of a geometrically unsuitable
mesh arise after the deformation, we remesh. We restart with step b).

For more details of the algorithm see [13]. Our algorithm has been implemented
in the commercial finite element software COMSOL 3.4. The use of a parallel
solver, like PARDISO, is crucial for efficient calculations.

3.2 Numerical Results

We show two plots, corresponding to two different choices for external parame-
ters, namely, (i) a situation where the initial interface is close to an equilibrium

(due to large p
(1)
0 −p

(2)
0 and p∗ the surface tension term is negligible) (see Fig. 2,

top), and (ii) a situation where the charged fluid flow is close to zero (p
(1)
0 − p

(2)
0

small, Eext negligible) (see Fig. 2, bottom). All remaining data for our simu-
lations is discussed and summarized in [12]. We emphasize that the database,
e.g. for surface tension of protonated water and typical pressures, is thin.

4 Conclusions and Open Questions

We have stated a continuum model describing the charged fluid flow within
nanochannels of PEM. The numerically accurate simulation of the differential
equations allows further investigation of system characteristics. In our study
[12], we focus on the ohmic interface resistance between two circular cylindrical
pores, and analyze its dependence on system parameters. By splitting our model
into two models, we consider the main effects separately. In this context, our
model suggests that this interface resistance depends mainly on two factors: (a)
the offset value (the distance between the pore centres at the intersection plane)
and its stochastic distribution and (b) on the deformed pore shape due to the
balance of elastic and electrohydrodynamic forces. Furthermore, for a straight
channel the electro-osmotic drag and the specific pore conductivity match results
from experiments, see the discussion in [12], supporting the validity of our model.
The effect (b) raises the question whether it is possible to find an equilibrium
shape for the nanochannel pore, balancing the solid pressure with the liquid
pressure and the interfacial pressure, due to surface tension and mean curvature
of the interface. This question yields a mathematically challenging problem and
requires refined numerical techniques. For suitable outer pressures and external
electric field, the above described algorithm suggests fast convergence, but a
mathematical justification thereof is missing. However, for a simplified version
of our model we can prove existence and uniqueness of a solution and the shape
differentiability of the solution. Using a variational energy formulation, we show
that this numerically determined optimal shape minimizes the free energy. The
latter results are the subject of an upcoming paper [13].
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In summary, our full model, being derived from thermodynamical first prin-
ciples, presents a generalisation of previous models [4,5,6] by including surface
tension and bulk stresses in the solid Nafion, or compared to [8,9,10], by including
charged fluid flow. We emphasize that, contrary to our last contributions [4,6],
we have solved additionally, in the electrohydrodynamical part of our model, the
full Nernst-Planck-Poisson-Stokes system without neglecting higher order terms.
In particular, our novel approach, i.e. a continuum model of the electrochem-
ical fluid flow within a nanochannel of a PEM including surface tension and
bulk stresses, allows to explain ohmic resistance and electro-osmotic drag. Our
mathematical results might turn out to be important for further advances in the
design of hydrogen fuel cells.

Acknowledgements. The authors would like to thank Toyota Motor Engi-
neering and Manufacturing North America (TEMA) for financial support of this
research. S.-J. K. thanks the University of Ottawa for its hospitality.
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Abstract. This work deals with the development and application of re-
duction strategies for real-time and many query problems arising in fluid
dynamics, such as shape optimization, shape registration (reconstruc-
tion), and shape parametrization. The proposed strategy is based on the
coupling between reduced basis methods for the reduction of computa-
tional complexity and suitable shape parametrizations – such as free-form
deformations or radial basis functions – for low-dimensional geometrical
description. Our focus is on problems arising in haemodynamics: efficient
shape parametrization of cardiovascular geometries (e.g. bypass grafts,
carotid artery bifurcation, stenosed artery sections) for the rapid blood
flow simulation – and related output evaluation – in domains of variable
shape (e.g. vessels in presence of growing stenosis) provide an example
of a class of problems which can be recast in the real-time or in the
many-query context.

Keywords: Model order reduction, reduced basis methods, free-form
deformation, radial basis functions, computational fluid dynamics, shape
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1 Introduction and Motivation

In last decades more and more powerful computers have allowed to solve numer-
ical problems of very large dimensions and describing very complex phenomena.
Nevertheless, a computational reduction is still crucial whenever interested to
high performances in rapid – even real-time – simulations and/or repeated out-
put evaluations – seen as many queries evaluations– for different values of some
inputs of interest.
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1.1 A General Strategy for Reduction in Shape Dependent Flows

Flow control and optimization problems can be formulated as the minimiza-
tion of a given cost functional (or output) controlling some input parameters
which can be physical quantities (e.g. source terms or boundary values) or, al-
ternatively, geometrical quantities; we refer to the latter case as flow control by
shape variation, and the optimization of the corresponding flow geometries is
thus one possibility to reach that goal; we refer to this case – the most difficult
one among flow control problems – such as shape optimization or shape reg-
istration/reconstruction problems [4]. Concerning applications arising in fluid
mechanics, cost functionals are expressed as functions of flow variables (such as
velocity, pressure, temperature), while constraints are usually given in form of
PDE systems (Stokes, Navier-Stokes equations, with or without coupling with a
structural equation to account for fluid-structure interaction effects) describing
the flow, besides topological constraints on the shape of the domain, if necessary.
Since (i) optimization procedures require repetitive evaluations of outputs, (ii)
PDEs can be hard to solve and (iii) discretization is expensive when geome-
try keeps changing, computational costs are usually very high; we thus want to
address suitable strategies to reduce numerical efforts in many-query problems.

Substantial computational saving becomes possible thanks to a reduced order
model which relies on two reduction steps: (i) parameterization of the admissible
shapes and (ii) substitution of the full-order finite element (FE) solution of flow
problems with a reduced solution obtained by the reduced basis (RB) method
[17]. In fact, once an equivalent parametrized formulation of the flow problem –
now embedding the shape as a parametric quantity – can be derived, reduced ba-
sis method for parametrized PDEs, enables to evaluate the output very rapidly.
In the end, at the outer level a suitable iterative procedure for the optimization
is performed. A brief presentation of the whole framework can be found in [8],
while a more detailed analysis has been recently addressed in [5,6].

1.2 Abstract Setting

From an abstract point of view, a shape optimization/identification can be seen
as an optimal control problem for which the control variable is the shape of the
domain Ω itself. This entails the minimization of a cost functional J (·) over a
set of admissible shapes Oad, by finding the optimal shape of the domain where
the PDE is defined:

find Ω̂ = arg min
Ω∈Oad

J (Y (Ω)) (1)

where J (Y (Ω)) depends on the solution Y = Y (Ω) of a PDE state problem –
defined on Ω – which can be written in an abstract form as

Y ∈ Y(Ω) : A(Y,W ;Ω) = F(W ;Ω), ∀W ∈ Y(Ω). (2)

Here A(·, ·;Ω) is a continuous, uniformly inf-sup stable bilinear form and F(·;Ω)
is a bounded linear form, both defined on the original domain Ω; Y(Ω) denotes a
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suitable functional space defined overΩ. Let us assume that the shape Ω = Ω(μ)
depends on a set of input parameters μ = (μ1, . . . , μp) ∈ D ⊂ Rp; in this way,
problem (1)-(2) can be reduced to the following parametric optimization inverse
problem:

find μ̂ = arg min
μ∈Dad

J (Y (μ)) (3)

where Dad ⊆ D and Y (μ) solves

Y (μ) ∈ Y(Ω(μ)) : A(Y (μ),W ;μ) = F(W ;μ), ∀W ∈ Y(Ω(μ)). (4)

For a more general setting and overview, see e.g. [5].

2 Reduced Basis Method for Computational Reduction

Our approach to shape dependent flow problems takes advantage of reduced basis
(RB) methods for rapid and reliable prediction of engineering outputs associated
with parametric PDEs [17,12,14]; see e.g. [15,19,16] for applications to the Stokes
problem and [13,20,3] for the Navier-Stokes case. The method is built upon
a classical finite element (FE) “truth” approximation space YN of (typically
very large) dimension N and is based on the use of “snapshot” FE solutions of
the PDEs, corresponding to certain parameter values, as global approximation
basis functions previously computed and stored. The RB framework requires
a reference (μ-independent) domain Ω̃ in order to compare, and combine, FE
solutions that would be otherwise computed on different domains and grids;
moreover, this procedure enables to avoid shape deformation and remeshing
that normally occur at each step of an iterative optimization procedure [18]. In
Sect. 3 two possible techniques for the construction of such a mapping will be
briefly recalled.

We thus consider Ω̃ as reference domain related to the parameter-dependent
“original” domain of interest Ω(μ) through a parametric mapping T (·;μ), s.t.
Ω(μ) = T (Ω̃;μ). By mapping the problem (3) back to the reference domain Ω̃,
we obtain the following problem in its abstract form:

find μ̂ = arg min
μ∈Dad

s(μ) = J̃ (Y (μ)) s.t.

Y (μ) ∈ Y(Ω̃) : Ã(Y (μ),W ;μ) = F̃(W ;μ), ∀W ∈ Y(Ω̃).
(5)

Focusing on shape optimization and/or registration problems, and following the
so-called discretize than optimize approach, the standard Galerkin FE approxi-
mation of (5) reads as follows:

find μ̂ = arg min
μ∈Dad

sN (μ) = J̃ (Y N (μ)) s.t.

Y N (μ) ∈ YN : Ã(Y N (μ),W ;μ) = F̃(W ;μ), ∀W ∈ YN .

The reduced basis method provides an efficient way to compute an approxima-
tion YN (μ) of Y N (μ) (and related output) by using a Galerkin projection on
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a reduced subspace made up of well-chosen FE solutions, corresponding to a
specific choice SN = {μ1, . . . ,μN} of parameter values. Denoting

YN
N = span{Y N (μn), n = 1, . . . , N}, (6)

the RB space, the RB formulation of (5) is as follows:

find μ̂ = arg min
μ∈Dad

sN (μ) = J̃ (YN (μ)) s.t.

YN (μ) ∈ YN
N : Ã(YN (μ),W ;μ) = F̃(W ;μ), ∀W ∈ YN

N .

Thanks to the (considerably) reduced dimension O(N)( O(N ) of the systems
obtained from RB approximation, we can provide both reliable results and rapid
response in the real-time and multi-query contexts. In particular:

– Reliability is ensured by rigorous a posteriori estimations for the error in the
RB approximation w.r.t. truth FE discretization (see e.g. [17,16]);

– Rapid response is achieved by an Offline–Online computational strategy and
a rapidly convergent RB space assembling, based on a greedy algorithm. To
achieve this goal, RB methods rely on the assumption of affine parametric
dependence1 in A(·, ·;μ) and F(·;μ).

Hence, in an expensive Offline stage we prepare a very small RB “database”,
while in the Online stage, for each new μ ∈ D, we rapidly evaluate both the
field and the output (with error bounds) whose computational complexity is
independent of FE dimension N .

3 Efficient Shape Parametrization Techniques for
Geometrical Complexity Reduction

In general, shape optimization problems feature more difficulties than optimal
control problems, such as shape deformation, shape derivatives and the evalua-
tion of shape-dependent quantities: a crucial aspect of optimal shape design is
thus the geometrical treatment of the shapes during the optimization process.
Common strategies for shape deformation involve the use of (i) the coordinates
of the boundary points as design variables (local boundary variation) or (ii) some
families of basis shapes combined by means of a set of control point (polynomial
boundary parametrizations).

These techniques are not well suited within the RB framework, since a global
transformation T (·;μ) is needed, rather than a boundary representation [18].
A more versatile parametrization can be introduced by exploiting the free-form
deformation (FFD) techniques, in which the deformations of an initial design,
rather than the geometry itself, are parametrized [7]. In this case, the shape

1 If this assumption does not hold, it could be recovered in through an intermediate
empirical interpolation process.
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parametrization is constructed on a regular lattice of control points, by combin-
ing the deformations acting on a subset of active control points through a basis
of (tensor products of) Berstein polynomials. Input parameters are given by the
deformations of the active control points, which have to be properly chosen,
following some problem-dependent criteria [10].

Despite its flexibility, the FFD techniques do not satisfy any interpolation
property and control points must reside on a regular lattice. In order to over-
come these possible limitations, other different techniques based on interpolation
properties may be recovered. In particular, we have been focusing on the radial
basis functions (RBF) techniques [9], which are traditionally used for nonlinear
multidimensional interpolation on scattered data (for example in image regis-
tration). With respect to FFD techniques, RBF techniques allow a better local
boundary control and a free choice of the position of the control points (also on
the boundary of the shape domain).

4 Application in Haemodynamics: Real-Time Blood
Flow Simulations in Parametrized Cardiovascular
Geometries

The framework based on the coupling between FFD or RBF techniques (or other
low-dimensional shape parametrizations) and RB methods has turned out to be
useful also for a real-time simulation of blood flows in arterial vessels which
might show a deep variation in geometrical configuration, as for example carotid
artery bifurcations. Our goal is twofold:

– spanning a variety of carotid configurations through low-dimensional shape
parametrizations [1], and shape registration of parametrized carotid shapes
from patient data measured in the form of flow velocities;

– real-time simulation of blood flows in reconstructed geometries and com-
puting indices related to arterial occlusion risk and highly dependent on
geometrical configurations, possibly for predictive surgery applications.

In the first approach we might minimize some discrepancy functional between the
simulated velocity and the observed velocity in an atlas-based variational data
assimilation method (see e.g. [11]); in the latter we minimize a cost function such
as the viscous energy dissipation

J (Y (μ)) =
ν

2

∫
Ω

|∇u(μ)|2 dΩ.

to obtain carotid shapes exhibiting the least disturbance to the blood flow, being
Y (μ) = (u(μ), p(μ)) the velocity and the pressure of the fluid, respectively.

4.1 Validation of the Reduced Basis Methodology

A first numerical test has been performed exploiting a coupled FFD+RB frame-
work on a simple geometrical configuration (see Fig. 1), given by a stenosed
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carotid artery parametrized with respect to the displacement of two control
points (p = 2) located close to the bifurcation (see e.g. [9] for further details
about representation of carotid bifurcations). Flow simulations through a steady
Stokes model show a remarkable dependence of the flow even on small variation
of the shape configuration. In particular, our interest has been focused on the
evaluation of an output related both with the flow and the shape, given by the
viscous energy dissipation.

Fig. 1. Schematic diagram of the FFD setting; bold (red) control points can be freely
moved in vertical direction and used as parameters representing small deformations

Some details concerning the reduced basis spaces are listed in Tab. 1; we re-
mark the strong reduction in the system dimensions and a large computational
speedup, concerning performances for each new geometrical configuration, of
about two orders of magnitude. We provide a certification of the accuracy of the
methodology: in Fig. 2 the true errors between the FE and the RB approxima-
tion are reported, the related error bounds (see [16] for error bound expression
and derivation), as well as the error between the FE and the RB output. We
observe fast, nearly exponential convergence in N . Furthermore, the a posteriori
error bounds are both reliable and reasonably effective.

Table 1. RB + FFD for the carotid artery bifurcation: numerical details

Number of FE dof Nv +Np 24046

Number of RB functions N 16
Number of design variables P 2

Linear system dimension reduction 500:1

FE evaluation tonline
FE (s) 2.8039

RB evaluation tonline
RB (s) 0.0231

4.2 A Comparison between FFD and RBF Parametrizations

Next, we report here some preliminary results on the comparison between a FFD
and a RBF setting defined on the carotid configuration already introduced. Also
in this case we are interested in the evaluation of the viscous energy dissipation;
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Fig. 3. FFD setting (top) and RBF setting (bottom); for each case, parameters are
given by the displacements of the selected (blue) control points

we just compare the two parametrizations techniques by considering a Navier-
Stokes model for the fluid flow. Both the settings deal with p = 6 parameters,
given by the vertical displacements of some selected control points; in the FFD
case we introduce a 6 × 8 lattice of control points, while in the RBF case we
introduce in total 12 control points close to the bifurcation and at the extrema
(see Fig. 3), using the thin-plate spline (TPS) and the Gaussian shape functions



404 T. Lassila, A. Manzoni, and G. Rozza

Table 2. Results for the minimization of the viscous energy dissipation obtained by
using the FFD and the RBF settings introduced above

FFD RBF (thin-plate) RBF (Gaussian)

output reduction 39, 1% 45, 9% 36, 7%

iterations 84 117 91
parameters 6 (48) 6 (12) 6 (12)

Fig. 4. Optimal configuration obtained by minimizing the viscous energy dissipation
for the FFD case (top), the RBF case with the thin-plate spline option (middle) and
the RBF case with the Gaussian option (bottom)

[2]. In this last case, we deal with the displacement of the six control points
located at the center of the configuration.

We compare the shapes obtained by minimizing the viscous energy dissipa-
tion: in Tab. 2 are reported the results for the two cases, while the configurations
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corresponding to the minimum values of the viscous energy dissipation are repre-
sented in Fig. 4. We can remark that the three shapes are quite similar, as well
as the output reduction. The number of iterations taken by the optimization
procedure is comparable among the three options. Regarding the main qualities
of these two shape parametrization tools, the RBF technique proves to be more
versatile and accurate for this kind of applications – it enables to choose freely
the location of control points rather than selecting the most relevant control
points on the regular FFD lattice, as well as to impose interpolation constraints
– even if its construction and the computation of the related parametrized ten-
sors is much more difficult. Not only, by considering the same amount, location
and available displacements of control points, the Gaussian RBF is found to be
more suitable for describing local deformations; the TPS option allows to get a
more global and regular deformation, where an enhanced shape smoothness is
ensured by a minimization of the bending deformation energy property, fullfilled
by this kind of RBF.

5 Conclusion and Perspectives

The capability of the reduced basis method to solve shape registration and opti-
mization problems involving incompressible flows in real-time looks promising if
coupled with an efficient and versatile geometrical parametrization. The integra-
tion of the RBF parametrization technique within the reduced basis framework,
as well as its application to blood flow simulation on geometries reconstructed
from patient data, looks promising in its flexibility and ability to express a vari-
ety of shape deformations. Further elements that may be explored deal with the
uncertainty quantification [5] and/or robust optimization and control problems
[6] for patient-specific scenarios.
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Abstract. The paper deals with the shape and topology optimization
of the elliptic variational inequalities using the level set approach. The
standard level set method is based on the description of the domain
boundary as an isocountour of a scalar function of a higher dimension-
ality. The evolution of this boundary is governed by Hamilton-Jacobi
equation. In the paper a piecewise constant level set method is used
to represent interfaces rather than the standard method. The piecewise
constant level set function takes distinct constant values in each subdo-
main of a whole design domain. Using a two-phase approximation and a
piecewise constant level set approach the original structural optimization
problem is reformulated as an equivalent constrained optimization prob-
lem in terms of the level set function. Necessary optimality condition is
formulated. Numerical examples are provided and discussed.

Keywords: shape and topology optimization, unilateral problems, pie-
cewise constant level set method, Uzawa method.

1 Introduction

The paper deals with the solution of a structural optimization problem for an
elliptic variational inequality. This inequality governs unilateral contact between
an elastic body and a rigid foundation. The structural optimization problem for
the elastic body in unilateral contact consists in finding such topology of the
domain occupied by the body and the shape of its boundary that the normal
contact stress along the boundary of the body is minimized. The volume of the
body is bounded.

In structural optimization the standard level set method [1,15] is employed in
the numerical algorithms for tracking the evolution of the domain boundary on a
fixed mesh and finding an optimal domain. This method is based on an implicit
representation of the boundaries of the optimized structure, i.e., the position of
the boundary of the body is described as an isocountour of a scalar function of
a higher dimensionality. While the shape of the structure may undergo major
changes the level set function remains to be simple in its topology. The evolution
of the domain boundary is governed by Hamilton - Jacobi equation. The speed
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vector field driving the propagation of the level set function is given by the
Eulerian derivative of the cost functional with respect to the variations of the
free boundary. The solution of this equation requires reinitialization procedure
to ensure that it is as close as possible to the signed distance function to the
interface. Moreover this approach requires regularization of non-differentiable
Heaviside and Dirac functions. Applications of the level set methods in structural
optimization can be found, among others, in [1,6,7,8,11,12,14,17].

Recently, a piecewise constant level set method as a variant of traditional
level set method has been proposed for the image segmentation [10], shape re-
covery [4] or elliptic inverse problems. For a domain divided into 2N subdomains
in standard level set approach is required 2N level set functions to represent
them. Piecewise constant level set method can identify an arbitrary number of
subdomains using only one discontinuous piecewise constant level set function.
This function takes distinct constant values on each subdomain. The interfaces
between subdomains are represented implicitly by the discontinuity of a set of
characteristic functions of the subdomains [10]. Comparing to the classical level
set method, this method is free of the Hamilton-Jacobi equation and do not
require the use of the signed distance function as the initial one. Piecewise con-
stant level set method has been used in [18] to solve numerically topological
optimization problem in plane elasticity. Moreover in [19] this method has been
used to solve structural optimization problem for the Laplace equation in 2D
domain.

In the paper the original structural optimization problem is approximated
by a two-phase material optimization problem. Using the piecewise constant
level set method this approximated problem is reformulated as an equivalent
constrained optimization problem in terms of the piecewise constant level set
function only. Therefore neither shape nor topological sensitivity analysis is re-
quired. During the evolution of the piecewise constant level set function small
holes can be created without use of the topological derivatives. Necessary opti-
mality condition is formulated. This optimization problem is solved numerically
using the augmented Lagrangian method. Numerical examples are provided and
discussed.

2 Problem Formulation

Consider deformations of an elastic body occupying two-dimensional domain Ω
with the smooth boundary Γ (see Fig.1). Assume Ω ⊂ D where D is a bounded
smooth hold-all subset of R2. Let E ⊂ R2 and D ⊂ R2 denote given bounded
domains. So-called hold-all domain D is assumed to possess a piecewise smooth
boundary. Domain Ω is assumed to belong to the set Ol defined as follows:

Ol = {Ω ⊂ R2 : Ω is open, E ⊂ Ω ⊂ D, #Ωc ≤ l}, (1)

where #Ωc denotes the number of connected components of the complement Ωc

of Ω with respect to D and l ≥ 1 is a given integer. Moreover all perturbations
δΩ of Ω are assumed to satisfy δΩ ∈ Ol. The body is subject to body forces
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f(x) = (f1(x), f2(x)), x ∈ Ω. Moreover, surface tractions p(x) = (p1(x), p2(x)),
x ∈ Γ , are applied to a portion Γ1 of the boundary Γ . We assume, that the
body is clamped along the portion Γ0 of the boundary Γ , and that the contact
conditions are prescribed on the portion Γ2, where Γi∩Γj = ∅, i = j, i, j = 0, 1, 2,
Γ = Γ̄0 ∪ Γ̄1 ∪ Γ̄2. We denote by u = (u1, u2), u = u(x), x ∈ Ω, the displacement
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Fig. 1. Initial Domain Ω

of the body and by σ(x) = {σij(u(x))}, i, j = 1, 2, the stress field in the body.
Consider elastic bodies obeying Hooke’s law, i.e., for x ∈ Ω and i, j, k, l = 1, 2

σij(u(x)) = aijkl(x)ekl(u(x)). (2)

We use here and throughout the paper the summation convention over repeated
indices [9]. The strain ekl(u(x)), k, l = 1, 2, is defined by:

ekl(u(x)) =
1

2
(uk,l(x) + ul,k(x)), (3)

where uk,l(x) =
∂uk(x)
∂xl

. The stress field σ satisfies the system of equations [9]

− σij(x),j = fi(x) x ∈ Ω, i, j = 1, 2, (4)

where σij(x),j =
∂σij(x)
∂xj

, i, j = 1, 2. The following boundary conditions are

imposed

ui(x) = 0 on Γ0, i = 1, 2, (5)

σij(x)nj = pi on Γ1, i, j = 1, 2, (6)

uN ≤ 0, σN ≤ 0, uNσN = 0 on Γ2, (7)

| σT |≤ 1, uTσT+ | uT |= 0 on Γ2, (8)

where n = (n1, n2) is the unit outward versor to the boundary Γ . Here uN = uini
and σN = σijninj, i, j = 1, 2, represent the normal components of the displace-
ment u and the stress σ, respectively. The tangential components of displace-
ment u and stress σ are given by (uT )i = ui − uNni and (σT )i = σijnj − σNni,
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i, j = 1, 2, respectively. | uT | denotes the Euclidean norm in R2 of the tangent
vector uT . The results concerning the existence and uniqueness of solutions to
(2)-(8) can be found in [9,16].

2.1 Variational Formulation of Contact Problem

Let us formulate contact problem (4)-(8) in variational form. Denote by Vsp and
K the space and set of kinematically admissible displacements:

Vsp = {z ∈ [H1(Ω)]2 = H1(Ω)×H1(Ω) : zi = 0 on Γ0, i = 1, 2}, (9)

K = {z ∈ Vsp : zN ≤ 0 on Γ2}. (10)

Denote also by Λ the set

Λ = {ζ ∈ L2(Γ2) : | ζ | ≤ 1}. (11)

Variational formulation of problem (4)-(8) has the form: find a pair (u, λ) ∈ K×Λ
satisfying ∫

Ω

aijkleij(u)ekl(ϕ− u)dx−
∫
Ω

fi(ϕi − ui)dx−∫
Γ1

pi(ϕi − ui)ds+

∫
Γ2

λ(ϕT − uT )ds ≥ 0 ∀ϕ ∈ K, (12)∫
Γ2

(ζ − λ)uTds ≤ 0 ∀ζ ∈ Λ, (13)

i, j, k, l = 1, 2. Function λ is interpreted as a Lagrange multiplier corresponding
to term | uT | in equality constraint in (8) [9,16]. In general, function λ belongs
to the space H−1/2(Γ2). Here following [9] function λ is assumed to be more
regular. The results concerning the existence and uniqueness of solutions to
system (12)-(13) can be found, among others, in [9].

2.2 Structural Optimization Problem

Before formulating a structural optimization problem for the state system (12)-
(13) let us introduce first the set Uad of admissible domains. Domain Ω is as-
sumed to satisfy the volume constraint of the form

V ol(Ω)− V olgiv ≤ 0, V ol(Ω)
def
=

∫
Ω

dx, (14)

where the constant V olgiv = const0 > 0 is given. Moreover this domain is
assumed to satisfy the perimeter constraint [6], [16, p. 126]

Per(Ω) ≤ const1, P er(Ω)
def
=

∫
Γ

dx. (15)
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The constant const1 > 0 is given. The set Uad has the following form

Uad = {Ω ∈ Ol : Ω is Lipschitz continuous, (16)

Ω satisfies conditions (14) and (15) }.

The set Uad is assumed to be nonempty. In order to define a cost functional we
shall also need the following set M st of auxiliary functions

M st = {η = (η1, η2) ∈ [H1(D)]2 : ηi ≤ 0 on D, i = 1, 2, (17)

‖ η ‖[H1(D)]2 ≤ 1},

where the norm ‖ η ‖[H1(D)]2= (
∑2

i=1 ‖ ηi ‖2H1(D))
1/2. Recall from [12] the cost

functional approximating the normal contact stress on the contact boundary Γ2

Jη(u(Ω)) =

∫
Γ2

σN (u)ηN (x)ds, (18)

depending on the auxiliary given bounded function η(x) ∈ M st. σN and φN
are the normal components of the stress field σ corresponding to a solution u
satisfying system (12)-(13) and the function η, respectively.

Consider the following structural optimization problem: for a given function
η ∈M st, find a domain Ω
 ∈ Uad such that

Jη(u(Ω

)) = min

Ω∈Uad

Jη(u(Ω)) (19)

Lemma 1. There exists an optimal domain Ω
 ∈ Uad to the problem (19).

The proof follows from Šverák theorem and arguments provided in [3, Theorem
2]. Recall from [3] the class of domains Ol determined by (1) is endowed with
the complementary Hausdorff topology that guarantees the class itself to be
compact. The admissibility condition #Ωc ≤ l is crucial to provide the necessary
compactness property of Uad [3].

3 Level Set Approach

In [11,12] the standard level set method [16] is employed to solve numerically
problem (19). Let t > 0 denote the time variable. Consider the evolution of a
domain Ω under a velocity field V = V (x, t). Under the mapping T (t, V ) we
have

Ωt = T (t, V )(Ω) = (I + tV )(Ω), t > 0.

By Ω−
t and Ω+

t we denote the interior and the outside of the domain Ωt, respec-
tively. This domain and its boundary ∂Ωt are defined by a function φ = φ(x, t) :
R2 × [0, t0)→ R satisfying the conditions:

φ(x, t) = 0, if x ∈ ∂Ωt, φ(x, t) < 0, if x ∈ Ω−
t , (20)

φ(x, t) > 0, if x ∈ Ω+
t .
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In the standard level set approach Heaviside function and Dirac function are
used to transform integrals from domain Ω into domain D. Assume that velocity
field V is known for every point x lying on the boundary ∂Ωt, i.e., such that
φ(x, t) = 0. Therefore the equation governing the evolution of the interface in
D × [0, t0], known as Hamilton-Jacobi equation, has the form [15]

∂φ(x, t)

∂t
+ V (x, t) · ∇xφ(x, t) = 0. (21)

Moreover φ(x, 0) = φ0 where φ0(x) is a given function close to the signed distance
function [15].

3.1 Piecewise Constant Level Set Formulation

Define a piecewise constant level set function [4,10,18,19]. Recall D is an open
bounded domain in R2. Let us assume D is partitioned into N subdomains
{Ωi}Ni=1 such that

D =
N⋃
i=1

(Ωi ∪ ∂Ωi), (22)

where N is a given integer and ∂Ωi denotes the boundary of the subdomain Ωi.
Define function φ = φ(x) : D → R such that [10,18,19]

φ = i in Ωi, i = 1, 2, ..., N. (23)

This function is used to identify all the phases in D. In order to ensure that
there is no vacuum or overlap between different subdomains Ωi assume function
φ satisfies the following constraint:

W (φ) = 0, (24)

W (φ)
def
= (φ − 1)(φ− 2)...(φ−N) =

N∏
i=1

(φ− i). (25)

The constraint (25) means that for every x ∈ D there exists a unique i ∈
{1, 2..., N} such that φ(x) = i. Using this approach the characteristic function
χi, i = 1, 2, ..., N , of the subdomain Ωi is represented as [10,18,19]

χi =
1

αi

N∏
j=1,j �=i

(φ− j) and αi =

N∏
k=1,k �=i

(i − k), (26)

i.e., it is constructed using one level set function φ only. Each characteristic
function χi is expressed as a product of linear factors of the form (φ − j) with
the ith factor omitted. Therefore as long as (23) holds, χi(x) = 1 for x ∈ Ωi and
equals zero elsewhere. Any piecewise constant density function ρ = ρ(x) : D →
R2 defined as

ρ(x) =

{
ε if x ∈ D \ Ω̄ ,
1 if x ∈ Ω,

(27)



Structural Optimization of Variational Inequalities 413

where ε > 0 is a small constant, can be constructed as a weighted sum of the
characteristic functions χi. Denoting by {ρi}Ni=1 a set of real scalars, we can
represent a piecewise constant function ρ taking these N distinct constant values
by

ρ(x) =

N∑
i=1

ρiχi(φ(x)). (28)

We confine to consider a two-phase problem in the domain D, i.e., we set N = 2.
Therefore

χ1(x) = 2− φ(x) and χ2(x) = φ(x) − 1, (29)

ρ(x) = ρ1χ1(x) + ρ2χ2(x) = (1 − ε)φ(x) + 2ε− 1. (30)

Moreover function (25) takes the form

W (φ) = (φ− 1)(φ− 2). (31)

Using (23) as well as (30) the structural optimization problem (19) can be trans-

formed into the following one: find φ ∈ Uφ
ad such that

min
φ∈Uφ

ad

Jη(φ) =

∫
Γ2

ρ(φ)σN (uε)ηNds, (32)

where the set Uφ
ad of the admissible functions is given as

Uφ
ad = {φ ∈ H1(D) : V ol(φ)− V olgiv ≤ 0, W (φ) = 0, P er(φ) ≤ const1}, (33)

V ol(φ)
def
=

∫
Ω

ρ(φ)dx, W (φ)
def
= (φ− 1)(φ− 2), P er(φ)

def
=

∫
Ω

| ∇φ | dx. (34)

The element (uε, λε) ∈ K × Λ satisfies the state system (12)-(13) in the domain
D rather than Ω:∫

D

ρ(φ)aijkleij(uε)ekl(ϕ− uε)dx −
∫
D

ρ(φ)fi(ϕi − uεi)dx−∫
Γ1

pi(ϕi − uεi)ds+

∫
Γ2

λε(ϕT − uεT )ds ≥ 0 ∀ϕ ∈ K, (35)∫
Γ2

(ζ − λε)uεTds ≤ 0 ∀ζ ∈ Λ. (36)

Lemma 2. There exists an optimal solution φ ∈ H1(D) to the optimization
problem (32)-(36).

The proof follows from the presence of the regularization term in (33) and its
lower semicontinuity in L1(D) (see [2, Theorem 3.2.1, p. 75]). For the similar
approach see [4].
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3.2 Necessary Optimality Conditions

In order to formulate the necessary optimality condition for the optimization
problem (32)-(36) we introduce the Lagrangian L(φ, λ̃) = L(φ, uε, λε, p

a, qa, λ̃):

L(φ, λ̃) = Jη(φ) +

∫
D

ρ(φ)aijkleij(uε)ekl(p
a)dx−

∫
D

ρ(φ)fip
a
i dx −∫

Γ1

pip
a
i ds+

∫
Γ2

λεp
a
Tds+

∫
Γ2

qauεTds+ λ̃c(φ) +

3∑
i=1

1

2μi
c2i (φ), (37)

where i, j, k, l = 1, 2, λ̃ = {λ̃i}3i=1, c(φ) = {ci(φ)}3i=1 = [V ol(φ),W (φ), P er(φ)]T ,
cT (φ) denotes a transpose of c(φ), μm > 0, m = 1, 2, 3, is a given real. Element
(pa, qa) ∈ K1 × Λ1 denotes an adjoint state defined as follows:∫

D

ρ(φ)aijkleij(η + pa)ekl(ϕ)dx +

∫
Γ2

qaϕT ds = 0 ∀ϕ ∈ K1, (38)∫
Γ2

ζ(paT + ηT )ds = 0 ∀ζ ∈ Λ1. (39)

The sets K1 and Λ1 are given by

K1 = {ξ ∈ Vsp : ξN = 0 on Ast }, (40)

Λ1 = {ζ ∈ Λ : ζ(x) = 0 on B1 ∪B2 ∪B+
1 ∪B+

2 }, (41)

while the coincidence set Ast = {x ∈ Γ2 : uN + v = 0}. Moreover B1 = {x ∈
Γ2 : λ(x) = −1}, B2 = {x ∈ Γ2 : λ(x) = +1}, B̃i = {x ∈ Bi : uN (x) + v = 0},
i = 1, 2, B+

i = Bi \ B̃i, i = 1, 2. The derivative of the Lagrangian L with respect
to φ has the form:

∂L

∂φ
(φ, λ̃) =

∫
D

ρ′(φ)[aijkleij(uε)ekl(p
a + η)− f(pa + η)]dx+

λ̃c′(φ) +
3∑

i=1

1

μi
c(φ)c′(φ), (42)

where ρ′(φ) = 1− ε, c′(φ) = [V ol′(φ),W ′(φ), P er′(φ)] and

V ol′(φ) = 1, W ′(φ) = 2φ− 3, P er′(φ) = (43)

χ{∂Ω=const0} max{0,−∇ · ( ∇φ
| ∇φ | )} − χ{∂Ω>const0}∇ · ( ∇φ

| ∇φ | ). (44)

Using (38)-(44) we can formulate the necessary optimality condition:

Lemma 3. If φ̂ ∈ Uφ
ad is an optimal solution to the problem (32)-(36) than there

exists Lagrange multiplier λ̃
 = (λ̃
1, λ̃


2, λ̃



3) ∈ R3 such that λ̃
1, λ̃



3 ≥ 0 satisfying

L(φ̂, λ̃) ≤ L(φ̂, λ̃
) ≤ L(φ, λ̃
) ∀(φ, λ̃) ∈ Uφ
ad ×R3. (45)
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Proof follows from standard arguments [5,16]. Recall [9,16] condition (45) implies

that for all φ ∈ Uφ
ad and λ̃ ∈ R3

∂L(φ̂, λ̃)

∂φ
≥ 0 and

∂L(φ, λ̃
)

∂λ̃
≤ 0. (46)

4 Numerical Experiments

The optimization problem (32)-(36) is discretized using the finite difference ap-
proximation [9,15,19]. The discretized structural optimization problem (32)-(36)
is solved numerically. We employ Uzawa type algorithm to solve numerically
optimization problem (32)-(36). The algorithm is programmed in Matlab en-
vironment. For details of numerical implementation see [13]. As an example a
body occupying 2D domain

Ω = {(x1, x2) ∈ R2 : 0 ≤ x1 ≤ 8 ∧ 0 < v(x1) ≤ x2 ≤ 4}, (47)

is considered. The boundary Γ of the domain Ω is divided into three pieces

Γ0 = {(x1, x2) ∈ R2 : x1 = 0, 8 ∧ 0 < v(x1) ≤ x2 ≤ 4},
Γ1 = {(x1, x2) ∈ R2 : 0 ≤ x1 ≤ 8 ∧ x2 = 4}, (48)

Γ2 = {(x1, x2) ∈ R2 : 0 ≤ x1 ≤ 8 ∧ v(x1) = x2}.

The domain Ω and the boundary Γ2 depend on the function v given as in [13].
Fig. 2 presents the obtained optimal domain. The areas with low values of den-
sity function appear in the central part of the body and near the fixed edges.
The obtained normal contact stress is almost constant along the optimal shape
boundary and has been significantly reduced comparing to the initial one.
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Fig. 2. Optimal domain Ω�
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9. Haslinger, J., Mäkinen, R.: Introduction to Shape Optimization. Theory, Approx-
imation, and Computation. SIAM Publications, Philadelphia (2003)

10. Lie, J., Lysaker, M., Tai, X.C.: A piecewiase constant level set framework. Inter-
national Journal of Numerical Analysis and Modeling 2(4), 422–438 (2005)
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Numerical Shape Optimization via Dynamic

Programming

Jan Pustelnik

University of Lodz, Fac. of Math. & Computer Science,
Banacha 22, 90-128 Lodz, Poland

Abstract. In this paper we describe a novel framework for finding nu-
merical solutions to a wide range of shape optimization problems. It
is based on classical dynamic programming approach augmented with
discretization of the space of trajectories and controls. This allows for
straightforward algorithmic implementation. This method has been used
to solve a well known problem called the ”dividing tube problem”, a state
problem related to fluid mechanics, that requires simultaneous topology
and shape optimization in case of elastic contact problems and involves
solving the Navier-Stokes equations for viscous incompressible fluids.

Keywords: dynamic programming, numerical approximation, contact
problem, shape optimization, sufficiency optimality condition, structural
optimization, topological derivative, stationary Navier-Stokes equations.

1 Introduction

In the paper, as a model problem, we consider state problems related to fluid
mechanics, namely the Navier-Stokes equations for viscous incompressible fluids.
The main problem is to search for optimal shape of a given objective. For an
incompressible fluid, conservation laws for momentum and mass are assumed to
be in force. The displacement field of the body is governed by the Reynolds-
averaged Navier-Stokes (RANS) equations with an algebraic mixing length tur-
bulence. The volume of the body is assumed to be bounded.

The results pertaining the existence, regularity and finite-dimensional approx-
imation of solutions to mentioned problems are given in [4], [5]. The primal–dual
algorithms for numerical solving of contact problems were developed in [6], [8]. In
the course of solution the necessary optimality condition for simultaneous shape
and topology optimization is formulated, while the shape and topological deriva-
tives are employed, what stays close to classical optimization problems and gives
sufficient optimality conditions. It is a different approach than the one applied
e.g. in [2] where the notion of topological derivative and results concerning its
application in optimization of elastic structures are reported.

We describe a new numerical algorithm for that optimization problem.
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2 General Shape Optimization Problem

We consider the following shape optimization problem, which is being analyzed
and subsequently solved in [3]:

minimize J(Ω) =

∫
Ω

L(x, u(x),∇u(x))dx (1)

subject to

Ω ∈ Θ, Au(x) = f(x, u(x)), Bu(x) = φ(x) on ∂Ω (2)

where Θ is a certain family of bounded with C0,1 boundary domains of D ⊂ Rn

which will be defined precisely in subsection 2.1 and A is a differential operator
e.g. defining Navier-Stokes equations and B an operator acting on the boundary.
We assume that L : Rn × R × Rn → R is Lipschitz continuous with respect to
all variables, f : Rn × Rm → Rm is continuous and Lipschitz continuous with
respect to last variable, φ(·) is continuous on ∂Ω.

2.1 Reduction of Shape Optimization Problem to Classical Control
Problem

We will summarize in this subchapter the results of research published in [3] in
order to introduce relevant objects on which the presented numerical method
operates.

Let U be a given nonempty, compact set in C0,1 of surfaces defined on E ⊂
Rn−1. We assume that each supremum of each subfamily of U also belongs to U
as well as finite concatenation of element of U belongs to U . Let U " v → Ω(v)
be a given family of simply connected domains in D ⊂ Rn with C0,1 boundary
such that some fixed part of their boundary is changing and is a surface v from
U . We assume that Ω(v) depends in a smooth way on v and that there exists a
vmax ∈ U such that Ω(v) ⊂ Ω(vmax), for all v ∈ U and there exists a vmin ∈ U
such that Ω(vmin) ⊂ Ω(v), for all v ∈ U . Let us denote the part of the boundary
∂Ω(vmin) corresponding to the surface vmin as Γ0 while that corresponding the
surface v as Γ (v). We have the following BVP:

Find zmax ∈ C1,k(Ω(vmax)) such that Δz(x) = 0 in Ω(vmax)\Ω̄(vmin), z(x) =
0 on Γ0, z(x) = 1 on Γ (vmax). Next for v ∈ U , v = vmin, find
z ∈ C1,k(Ω(v)\Ω̄(vmin)) such that: Δz(x) = 0 in Ω(vmax)\Ω̄(vmin), z(x) =
0 on Γ0, z(x) = zmax(x) on Γ (v). Solutions to the BVP above belong to
C1,k(Ω(v)\Ω̄(vmin))and in fact they are restrictions of zmax to Ω(v)\Ω̄(vmin).
Because z(x) depends (in a continuous way) on v, we will use the notation
z(x, v).We define the family Θ of sets over which the problem (1)-(2) is consid-
ered as: Θ = {Ω(v) : v ∈ U}. The sets from Θ are called admissible sets for
problem (1)-(2). For a given Ω(v)\Ω̄(vmin), we introduce the field and the defor-
mation: V (x, v) = ||∇z(x, v)||−2∇z(x, v), T (w, v) = x(s, w, v), s ∈ [0, 1], where
x(·, w, v) is a solution to d

dsx(s, w, v) = V (x(s, w, v), v), s ∈ [0, 1], x(0, w, v) = w,
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w ∈ Γ0. Notice, that for a given fixed w ∈ Γ0, the point x(1, w, v) belongs to
Γ (v).

For a given control v ∈ U we can write:

d

ds
x(s, w, v) = V (x(s, w, v), v), s ∈ [0, 1], x(0, w, v) = w. (3)

Then the boundary Γ (v) is the image of Γ0 by the map x(1, ·, v). Thus, for a given
v = vmin, we have an alternative definition of theΩ(v)\Ω̄(vmin):Ω(v)\Ω̄(vmin) =
{x : x = x(s, w, v), 0 < s < 1, w ∈ Γ0}. This means that we can construct
and study some objects over the set Ω(v) with the help of the family F (v):
F (v) = {x(s, w, v) : 0 < s < 1, w ∈ Γ0}. The original functional J(Ω) in terms
of the family F (v) can be rewritten as J(F (v)) = I(v),

I(v) =

∫
Ω(vmin)

L(y, u(y),∇u(y))dy +
∫
Ω(v)\Ω̄(vmin)

L(x, u(x),∇u(x))dx

=

∫
Ω(vmin)

L(y, u(y),∇u(y))dy +
∫ 1

0

∫
Γ0

L̂(x(s, w, v))dwds,

where L̂(x(s, w, v)) = L(x(s, w, v), u(x(s, w, v)),∇u(x(s, w, v)))
∣∣ ∂
∂sx

∂
∂wx
∣∣.

Therefore we are able to reduce the original shape optimal control problem
to classical optimal control problem (P): minimize I(v) subject to d

dsx(s, w, v) =
V (x(s, w, v), v), s ∈ [0, 1], x(0, w, v) = w, w ∈ Γ0, v ∈ U ,

Ω(v) ∈ Θ,Au(x) = f(x, u(x)), x ∈ Ω(v). (4)

In order to formulate any sufficient optimality conditions for this problem we
apply classical dynamic programming scheme.

2.2 Dynamic Programming Approach as a Method to Solution
of (P)

Let us take any x ∈ Ω(vmax)\Ω̄(vmin) and denote by Ux a subfamily of U such
that x ∈ v for each v ∈ Ux. Next denote by vx = maxUx, where the maximum
over Ux means that Ω(v) ⊂ Ω(vx) for all v ∈ Ux. By our assumption on U , vx
exists and vx ∈ U . Put Ūx = {v ∈ U : Ω(v) ⊂ Ω(vx)}. By (3) for each v ∈ Ux

there is a trajectory x(·, w, v) such that x = x(1, wv, v), for some wv ∈ Γ0. The
problem (P) falls into the category of Lagrange control problems treated in many
books (e.g. [1]). Following Chapter IV of this book we define a value function
for (P), for x ∈ Ω(vmax):

S(x) = inf

{∫
Ω(vmin)

L(y, u(y),∇u(y))dy +
∫ 1

0

∫
Γ0

L̂(x(s, w, v))dwds

}
, (5)

where infimum in (5) is taken over all pairs (x(·, w, v), v) satisfying d
dsx(s, w, v)

= V (x(s, w, v), v), s ∈ [0, 1], v ∈ Ūx, w ∈ Γ0 and for v ∈ Ux, x(1, wv, v) = x, for
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some wv ∈ Γ0. Each pair (x(·, w, v), v) satisfying these equations will be called
admissible for the point x ∈ Ω(vmax)\Ω̄(vmin). However, in practice, we cannot
expect that S(·) is of C1 in Ω(vmax)\Ω̄(vmin), this is why we are interested in
numerical approximation of S(·). Therefore, we shall look for ε-value function:
Sε(·). For given ε > 0 we call Sε : Ω(vmax)\Ω̄(vmin)→ R, ε-value function if

S(x) ≤ Sε(x) ≤ S(x) + ε, x ∈ Ω(vmax)\Ω̄(vmin). (6)

It is clear that there exists infinitely many ε-value functions Sε(·).

3 Numerical Approximation of the Value Function

This section is an adaptation of the method developed by Pustelnik in his Ph.D.
thesis [7] for numerical approximation of value function for Bolza problem from
optimal control theory.

Let us define the following set T =
{
x : x ∈ Ω(vmax)\Ω̄(vmin)

}
. Since

Ω(vmax)\Ω̄(vmin) is bounded, the set T̄ is compact. Let T " x → g(x) be
an arbitrary function of class C1 in T̄ such that g(x) = c, x ∈ Γ0, where c is
some constant which will be determined later. For a given function g, we define
(x, v)→ Gg(x, v) as

Gg(x, v) = gx(x)V (x, v) −
∫
Γ0

L̂(x(1, w, v))dw, (7)

v ∈ Ūx, where x(·, w, v), u are defined as previously. Next, we define the function
x→ Fg(x) as

Fg(x) = max
{
Gg(x, v) : v ∈ Ūx

}
. (8)

Note that by the assumptions on L and V , the function Fg is continuous in T .
By the continuity of Fg and compactness of T̄ , there exist kd and kg such that
kd ≤ Fg(x) ≤ kg for x ∈ Ω(vmax)\Ω̄(vmin).

3.1 Definition of Covering of T

Let η > 0 be fixed and {qηj }j∈Z be a sequence of real numbers such that qηj = jη,
j ∈ Z (Z - set of integers). Denote

J = {j ∈ Z : there is x ∈ T , jη < Fg(x) ≤ (j + 1)η},

Next, let us divide the set T into the sets P η,g
j , j ∈ J , as follows

P η,g
j :=

{
x ∈ T : qηj < Fg(x) ≤ qηj+1

}
, j ∈ J.
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3.2 Discretization of Fg

Define in T a function

hη,g(x) = −qηj+1, x ∈ P η,g
j , j ∈ J. (9)

Then, by the construction of the covering of T , we have

0 ≤ Fg(x) + hη,g(x) ≤ η, x ∈ T. (10)

Let (x(·, w, v), v) be any admissible pair with the trajectory defined in [0, 1],
starting at the point x(0, w, v)), w ∈ Γ0 fixed. We show that there exists an
increasing sequence of m points {τi}i=1,...,m, τ1 = 0, τm = 1, such that for
τ ∈ [τi, τi+1]

|Fg(x(τi, w, v)) − Fg(x(τ, w, v))| ≤
η

2
, i = 2, . . . ,m− 2, (11)

|Fg(x(τ2, w, v))− Fg(x(τ, w, v))| ≤
η

2
, τ ∈ (τ1, τ2],

|Fg(x(τm−1, w, v))− Fg(x(τ, w, v))| ≤
η

2
, τ ∈ [τm−1, τm).

Indeed, it is a direct consequence of two facts: Lipschitz continuity of x(·, w, v)
with a common Lipschitz constant and continuity of Fg. From (11) we infer that
for each i ∈ {1, . . . ,m− 1} if x(τi, w, v) ∈ P η,g

j for a certain j ∈ J , then we have
for τ ∈ [τi, τi+1)

x(τ, w, v) ∈ P η,g
j−1 ∪ P η,g

j ∪ P η,g
j+1.

Define

hη,g(x(τ1, w, v)) = hη,g(x(τ, w, v)) for some τ near τ1,

hη,g(x(τm, w, v)) = hη,g(x(τ, w, v)) for some τ near τm.

Thus for τ ∈ [τi, τi+1]

hη,g(x(τi, w, v)) − η ≤ hη,g(x(τ, w, v)) ≤ hη,g(x(τi, w, v)) + η, (12)

and so, for i ∈ {2, . . . ,m− 1}

hη,g(x(τi, w, v)) − hη,g(x(τi−1, w, v)) = ηix(·,w,v), (13)

where ηix(·,w,v) is equal to −η or 0 or η. Integrating (12) we get

|
∫ 1

0

hη,g(x(τ, w, v))dτ −
∑

i∈{1,...,m−1}
[hη,g(x(τi, w, v))(τi+1 − τi)]| ≤ η.

By using the formula above and the following simple arithmetic transformations∑
i∈{2,...,m−1}

[hη,g(x(τi, w, v))− hη,g(x(τi−1, w, v))](τm − τi)

=
∑

i∈{1,...,m−1}
[hη,g(x(τi, w, v))(τi+1 − τi)]− hη,g(x(τ1, w, v))(τ1 − τm),
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we obtain ∑
i∈{2,...,m−1}

[hη,g(x(τi, w, v)) − hη,g(x(τi−1, w, v))](τm − τi)

+ hη,g(x(τ1, w, v))(τm − τ1)− η(τm − τ1)

≤
∫ τm

τ1

hη,g(x(τ, w, v))dτ

≤
∑

i∈{2,...,m−1}
[hη,g(x(τi, w, v)) − hη,g(x(τi−1, w, v))](τm − τi)

+ hη,g(x(τ1, w, v))(τm − τ1) + η(τm − τ1).

and, taking into account (13), we infer that∑
i∈{2,...,m−1}

ηix(·,w,v)(τm − τi) + hη,g(x(τ1, w, v))(τm − τ1)− η(τm − τ1)

≤
∫ τm

τ1

hη,g(x(τ, w, v))dτ (14)

≤
∑

i∈{2,...,m−1}
ηix(·,w,v)(τm − τi) + hη,g(x(τ1, w, v))(τm − τ1) + η(τm − τ1).

We would like to stress that (14) is very useful from numerical point of view:
we can estimate the integral hη,g(·, ·) along any trajectory x(·, w, v) as a sum
of finite number of values, where each value consists of a number from the
set {−η, 0, η} multiplied by τm − τi. Moreover, for two different trajectories:
x(·, w1, v1), x(·, w2, v2), the expressions∑

i∈{2,...,m−1}
ηix(·,w1,v1)(τm − τi) + hη,g(x(τ1, w

1, v1))(τm − τ1)

and ∑
i∈{2,...,m−1}

ηix(·,w2,v2)(τm − τi) + hη,g(x(τ1, w
2, v2))(τm − τ1)

are identical if
hη,g(x(τ1, w

1, v1)) = hη,g(x(τ1, w
2, v2)) (15)

and
ηix(·,w1,v1) = ηix(·,w2,v2) for all i ∈ {2, . . . ,m− 1}. (16)

The last one means that in the set B of all trajectories x(·, w, v), w ∈ Γ0,
v ∈ U , we can introduce an equivalence relation r: we say that two trajectories
x(·, w1, v1) and x(·, w2, v2), w1, w2 ∈ Γ0, v

1, v2 ∈ U are equivalent if they satisfy
(15) and (16). We denote the set of all disjoint equivalence classes by Br. The
cardinality of Br, denoted by ||Br||, is finite and bounded from above by 3m+1.

Define

X =
{
x = (x1, . . . , xm−1) : x1 = 0, xi = ηixj ,

i = 2, . . . ,m− 1, xj ∈ Br, j = 1, . . . , ||Br||
}
.
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It is easy to see that the cardinality of X is finite.
The considerations above allow us to estimate the approximation of the value

function.

Theorem 1. We have the following estimation

min
x∈Br,w0∈Γ0

(
−
∫ τm

τ1

hη,g(x(τ, w0, v))dτ − g(x(τm, w0, v))

)
≤ max

x∈Br

{∫ τm

τ1

(
−
∫
Γ0

L̂(x(s, w, v))dw

)
ds− g(x(τ1, w0, v))

}
≤ max

x∈Br,w0∈Γ0

(
−
∫ τm

τ1

hη,g(x(τ, w0, v))dτ − g(x(τm, w0, v))

)
+ η(τm − τ1),

where u is a solution to (4) for Ω(v).

Proof. By inequality (10) 0 ≤ Fg(x) + hη,g(x) ≤ η we have −hη,g(x) ≤ Fg(x) ≤
−hη,g(x) + η. Integrating the last inequality along any x(·, w0, ṽ) in the interval
[τ1, τm] we get

−
∫ τm

τ1

hη,g(x(τ, w0, ṽ))dτ

≤ max
v∈U

∫ τm

τ1

(
gx(x(τ, w0, ṽ))V (x(τ, w0, ṽ), v) −

∫
Γ0

L̂(x(τ, w, v))dw

)
dτ

≤ −
∫ τm

τ1

hη,g(x(τ, w0, ṽ))dτ + η(τm − τ1).

Hence, we get two inequalities

min
x∈Br,w0∈Γ0

(
−
∫ τm

τ1

hη,g(x(τ, w0, ṽ))dτ − g(x(τm, w0, ṽ))

)
≤ min

x∈Br,w0∈Γ0

max
v∈U

∫ τm

τ1

(−g(x(τm, w0, ṽ))

+gx(x(τ, w0, ṽ))V (x(τ, w0, ṽ), v)−
∫
Γ0

L̂(x(τ, w, v))dw

)
dτ

and

max
x∈Br,w0∈Γ0

max
v∈U

∫ τm

τ1

(−g(x(τm, w0, ṽ))

+gx(x(τ, w0, ṽ))V (x(τ, w0, ṽ), v)−
∫
Γ0

L̂(x(τ, w, v))dw

)
dτ

≤ max
x∈Br,w0∈Γ0

(
−
∫ τm

τ1

hη,g(x(τ, w0, ṽ))dτ − g(x(τm, w0, ṽ))

)
+ η(τm − τ1).
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As a consequence of the above we get

min
x∈Br,w0∈Γ0

(
−
∫ τm

τ1

hη,g(x(τ, w0, ṽ))dτ − g(x(τm, w0, ṽ))

)
≤ max

x∈Br

{∫ τm

τ1

(
−
∫
Γ0

L̂(x(τ, w, v))dw

)
dτ − g(x(τ1, w0, v))

}
≤ max

x∈Br,w0∈Γ0

(
−
∫ τm

τ1

hη,g(x(τ, w0, v))dτ − g(x(τm, w0, ṽ))

)
+ η(τm − τ1)

and thus the assertion of the theorem follows.

Let us now define four following symbols: F(η,1)(x) := −
∑

i=2,...,m−1 η
i
x(τm−τ1),

F1(x) := −
∑

i∈{1,...,m−1} x
i(τm − τ1), F(η,i)(x) := −

∑
i=2,...,m−1 η

i
x(τm − τi),

Fi(x) := −
∑

i∈{1,...,m−1} x
i(τm − τi). Now, we use the definition of equivalence

class to reformulate the theorem above in a way that is more useful in practice.
To this effect let us note that, by definition of equivalence relation r, we have

min
x∈Br

{
F(η,1)(x)

}
= min

x∈X
{F1(x)} ,max

x∈Br

{
F(η,1)(x)

}
= max

x∈X
{F1(x)} .

Let us now also define the following auxiliary symbol
H(x,w0) := −hη,g(x(τ1, w0, v))(τm − τ1)− g(x(τm, w0, v)). Taking into account
(14) we get

min
x∈X

{Fi(x)} + min
x∈Br,w0∈Γ0

{H(x,w0)} − η(τm − τ1)

≤ min
x∈Br

{
−
∫ τm

τ1

hη,g(x(τ, w0, v))dτ − g(x(τm, w0, v))

}
≤ min

x∈X
{Fi(x)} + max

x∈Br,w0∈Γ0

{H(x,w0)}+ η(τm − τ1)

and a similar formula for supremum. Applying that to the result of the theorem
above, we obtain the following estimation

min
x∈X

{Fi(x)} + min
x∈Br,w0∈Γ0

{H(x,w0)} − 2η(τm − τ1)

≤ max
x∈Br

{∫ τm

τ1

(
−
∫
Γ0

L̂(x(τ, w, v))dw

)
dτ − g(x(τ1, w0, v))

}
(17)

≤ max
x∈X

{Fi(x)} + max
x∈Br,w0∈Γ0

{H(x,w0)} + η(τm − τ1).

Thus, we come to the main theorem of this section, which allows us to reduce
an infinite dimensional problem to the finite dimensional one.

Theorem 2. Let η > 0. Assume that there is θ > 0 and v̄ such that

max
x∈X

{Fi(x)} (18)

+ max
x∈Br,w0∈Γ0

{H(x,w0)}

≤ min
x∈X

{Fi(x)}

+ min
x∈Br,w0∈Γ0

{H(x,w0)}+ θ(τm − τ1),
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min
x∈Br,w0∈Γ0

{H(x,w0)} = min
w0∈Γ0

{−hη,g(x(τ1, w0, v̄))(τm − τ1)− g(x(τm, w0, v̄))}

Then

(η + θ)(τm − τ1) + min
x∈Br,w0∈Γ0

{H(x,w0)}+ min
x∈X

{Fi(x)} (19)

is ε-optimal value at (τ1, w0) for ε = 2η + θ with

g(w) =

∫
Ω(vmin)

L(y, ū(y),∇ū(y))dy, w ∈ Γ0,

where ū is a solution to (4) for Ω(v̄).

Proof. From the formulae (17), (18) we infer

min
x∈X

{Fi(x)} + min
x∈Br,w0∈Γ0

{H(x,w0)} − 2η(τm − τ1)

≤ max
x∈Br

{∫ τm

τ1

(
−
∫
Γ0

L̂(x(τ, w, v))dw

)
dτ −

∫
Ω(vmin)

L(y, ū(y),∇ū(y))dy
}

≤ max
x∈X

{Fi(x)} + max
x∈Br,w0∈Γ0

{H(x,w0)} + η(τm − τ1) + θ(τm − τ1).

Next, using the definition of value function (5), we get (19).

3.3 The Algorithm for Numerical Solution of (P)

In the previous section the last theorem allows us to estimate an ε-optimal value
of function (see (6)) for problem (P). As can be seen from the formulas (18) and
(19) the essence of the approximation is to be able to calculate the value of the
following expressions:

sup
x∈X

⎧⎨⎩− ∑
i∈{1,...,m−1}

xi(τm − τi)

⎫⎬⎭ , inf
x∈X

⎧⎨⎩− ∑
i∈{1,...,m−1}

xi(τm − τi)

⎫⎬⎭ .

To achieve this aim we construct a particular directed weighted graph G, in
which the weight of every edge is the value of the expression xi(τm − τi). This
graph has following properties

1. Every path has length of m− 1 edges.

2. Every two vertices connected by an edge correspond to points (τ, x1) and
(τ + Δτ, x2) such, that the point x2 is reachable from the point x1 in the
next unit of time τ +Δτ .

Therefore by identifying in the graph G the path with lowest (greatest) cost we
find the value of the expression inf

x∈X
{·} (sup

x∈X
{·}).
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The Algorithm for Generation of the Graph G.

1. Let B – a set of trajectories – be a finite set Bezier curves.
2. Let P be a set of points. At the beginning, P contains only one point: p = w0,

where w0 is any but fixed point such that w0 ∈ Ω0

3. Create in graph G node which corresponds to point p.
4. Calculate Fg(x0) (equation (8)) where x0 = (0, w0) , i.e. find a Bezier curve

α ∈ B which minimize value of Gg(x0, ·).
5. For t = dτ, . . . , 1 repeat

(a) Let P ′ be an empty set of points.
(b) For each point p from P repeat

i. For each Bezier curve β from B repeat

A. Find point p′ reachable from p under ,,control” β in time t.
B. Calculate Fg(x

′) (equation (8)) where x′ = (t, p′), i.e. find a
Bezier curve α ∈ B which minimize value of Gg(x

′, ·).
C. Create in graph G node which correspond to point p′.
D. Create in graph G edge e(p,p′) from point p to p′.
E. Label edge e(p,p′) with a weight xt(1 − t) calculated basing on

the indexes j of sets P η,g
j which contain points (t − dt, p) and

(t, p′) generated in the t-th step (depending on the difference in
those indexes, xt itself is equal to −η, 0 or η).

F. Save p′ in P ′.

(c) Replace set P by P ′.

6. Generation of the graph G is complete.
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Abstract. We study the shape differentiability of a cost function for
the steady flow of an incompressible viscous fluid of power-law type. The
fluid is confined to a bounded planar domain surrounding an obstacle.
For smooth perturbations of the shape of the obstacle we express the
shape gradient of the cost function which can be subsequently used to
improve the initial design.

Keywords: shape optimization, shape gradient, incompressible fluid,
non-Newtonian fluid, Navier-Stokes equations.

1 Introduction

Shape optimization for nonlinear partial differential equations is a growing field
in the contemporary optimum design of structures. In this field systems of the
solid and fluid mechanics as well as e.g., the coupled models of fluid-structure
interaction are included for real life problems. The main difficulty associated with
the mathematical analysis of nonlinear state equations is the lack of existence
of global strong solutions for mathematical models in three spatial dimensions.

In numerical methods of shape optimization the common approach is the
discretization of continuous shape gradient. Therefore, the proper derivation
and analysis of the regularity properties of the shape gradient is crucial for
numerical solution of the shape optimization problem. The shape sensitivity
analysis requires, in particular, the proof of the Lipschitz continuity of solutions
the the state equations with respect to the boundary variations. This property of
solutions can be obtained e.g. by analysis of the state equation transported to the
fixed reference domain which is explained in the case of linear elliptic boundary
value problems in monograph [11]. For the nonlinear problems the Lipschitz
continuity is not obvious and it requires the additional regularity of solutions
to the state equation. In addition, for the applications of levelset method of
shape optimization it is required that the obtained shape gradient of the cost
functional is given by a function while the general theory gives only the existence
of a distribution. In conlusion, it seems that the shape sensitivity analysis in the
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case of a nonlinear state equation is the main step towards the numerical solution
of the shape optimization problems.

In gas dynamics described by the compressible Navier-Stokes there is the
existence of weak global solutions. However, the shape sensitivity analysis can be
performed only for specific local solutions. The state of art in shape optimization
for compressible Navier-Stokes equations is presented in the monograph [8], see
also [7]. For incompressible Navier-Stokes equations, the sensitivity analysis of
shape functionals is performed e.g. in [2] and [6]. In this paper we are concerned
with the non-Newtonian model where the stress is a (nonlinear) function of the
velocity gradient. Optimal control problem for this model was studied in [9, 13].
Numerical shape optimization was done in [1], see also [3]. We present new results
on the existence of the shape gradient.

We consider the steady flow of an incompressible fluid in a bounded domain
Ω := B \ S in R2, where B is a container and S is an obstacle. Motion of the
fluid is described by the system of equations

div (v ⊗ v) − div S(Dv) +∇p+ Cv = f in Ω,

div v = 0 in Ω, (P (Ω))

v = g on ∂Ω.

Here v, p, C, f stand for the velocity, the pressure, the constant skew-symmetric
Coriolis tensor and the body force, respectively. The traceless part S of the
Cauchy stress can depend on the symmetric part Dv of the velocity gradient in
the following way:

S(Dv) = ν(|Dv|2)Dv, (1)

where ν, |Dv|2 is the viscosity and the shear rate, respectively. In particular, we
assume that ν has a polynomial growth (see Section 2.1 below), which includes
e.g. the Carreau and the power-law models.

In the model the term of Coriolis type is present. This term appears e.g.
when the change of variables is performed in order to take into account the
flight scenario of the obstacle in the fluid.

The aim of this paper is to investigate differentiability of a shape functional
depending on the solution to (P (Ω)) with respect to the variations of the shape
of the obstacle. We consider a model problem with the drag functional

J(Ω) :=

∫
∂S

(S(Dv) − pI)n · d, (2)

with a given constant unit vector d. Instead of J one could take other type of
functional, since our method does not rely on its specific form.

Our main interest is the rigorous analysis of the shape differentiability for
(P (Ω)) and (2). We follow the general framework developed in [11] using the
speed method and the notion of the material derivative. Let us point out that due
to (1) the state problem is nonlinear in its nature. We refer the reader to [12]
for an introduction to optimization problems for nonlinear partial differential
equations.
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1.1 Shape Derivatives

We start by the description of the framework for the shape sensitivity analysis.
For this reason, we introduce a vector field T ∈ C2(R2,R2) vanishing in the
vicinity of ∂B and define the mapping

y(x) = x+ εT(x).

For small ε > 0 the mapping x �→ y(x) takes diffeomorphically the region Ω
onto Ωε = B \ Sε where Sε = y(S). We consider the counterpart of problem
(P (Ω)) in Ωε, with the data f|Ωε

and g|Ωε
. The new problem will be denoted by

(P (Ωε)) and its solution by (v̄ε, p̄ε).
For the nonlinear system (P (Ω)) we introduce the shape derivatives of solu-

tions. To this end we need the linearized system of the form:
Find the couple (u, π) such that

div [u⊗ v + v ⊗ u− S
′(Dv)Du] +∇π + Cu = F in Ω,

divu = 0 in Ω, (Plin(Ω))

u = h on ∂Ω,

where F and h are given elements.
The shape derivative v′ and the material derivative v̇ of solutions are formally

introduced by

v′ := lim
ε→0

v̄ε − v

ε
, v̇ := lim

ε→0

v̄ε ◦ y − v

ε
,

where v̄ε ◦ y(x) := v̄ε(y(x)), and are related to each other as follows:

v̇ = v′ + (∇v)T.

The standard calculus for differentiating with respect to shape yields that v′ is
the solution of (Plin(Ω)) with the data F = 0 and h = −∂v/∂n(T · n). Using
(7) as the definition of J we obtain the expression for the shape gradient:

dJ(Ω;T) := lim
ε→0

J(Ωε)− J(Ω)

ε

=

∫
Ω

[(Cv′) · ξ + (S′(Dv)Dv′ − v′ ⊗ v − v ⊗ v′) : ∇ξ]−
∫
∂S

(f · d)T · n. (3)

In the above formula, the part containing v′ depends implicitly on the direc-
tion T. This is not convenient for practical use, hence we introduce the adjoint
problem for further simplification of (3):

Find the couple (w, s) such that

−2(Dw)v − div
[
S
′(Dv)�Dw

]
+∇s− Cw = 0 in Ω,

divw = 0 in Ω,

w = d on ∂Ω. (Padj(Ω))



430 J. Soko�lowski and J. Stebel

Consequently, the expression for dJ reduces to

dJ(Ω;T) = −
∫
∂S

[(
S
′(Dv)�Dw − sI

)
:
∂v

∂n
⊗ n+ f · d

]
T · n. (4)

In order to prove the result given by (3) and (4) we need the material derivatives.
In particular, it is sufficient to show that the linear mapping

T �→ dJ(Ω;T)

is continuous in an appropriate topology, see the structure Theorem in the book
[11] for details.

2 Preliminaries

We impose the structural assumptions on the data, state the known results
on well-posedness of (P (Ω)) and introduce the elementary notation for shape
sensitivity analysis.

2.1 Structural Assumptions

We require that S has a potential Φ : [0,∞) → [0,∞), i.e. Sij(D) =
∂Φ(|D|2)/∂Dij. Further we assume that Φ is a C3 function with Φ(0) = 0 and
that there exist constants C1, C2, C3 > 0 and r ≥ 2 such that

C1(1 + |A|r−2)|B|2 ≤ S
′(A) :: (B⊗ B) ≤ C2(1 + |A|r−2)|B|2, (5a)

|S′′(A)| ≤ C3(1 + |A|r−3) (5b)

for any 0 = A,B ∈ R2×2
sym. Here the symbol :: stands for the usual scalar product

in R24 . The above inequalities imply the monotone structure of S, see e.g. [5].

2.2 Weak Formulation

For the definition of the weak solution we will use the space

W1,r
0,div (Ω) := {φ ∈W1,r

0 (Ω); divφ = 0}.

Let f ∈ (W1,2
0,div (Ω))∗ and g ∈ W1,r(Ω) with div g = 0. Then a function v ∈

g+W1,r
0,div (Ω) is said to be a weak solution to the problem (P (Ω)) if∫

Ω

[
S(Dv) : Dφ− v ⊗ v : ∇φ+ Cv · φ

]
=

∫
Ω

f · φ (6)

for everyφ ∈W1,r
0,div (Ω). Note that the pressure is eliminated since test functions

are divergence free.
The following result was shown in [4].
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Theorem 1 (Kaplický et al. [4]). Let Ω ∈ C2, f ∈ L2+ε0(Ω), ε0 > 0 and
(5a)–(5b) hold with r > 3

2 . Then there exists a constant δ > 0 such that for
every g satisfying

‖g‖3,q ≤ δ, (q > 2),

problem (P (Ω)) has a weak solution satisfying v ∈W2,2+ε(Ω), p ∈ W 1,2+ε(Ω),
ε > 0.

Note that the above result applies only to the unperturbed domain, i.e. ε = 0.
Assuming smallness of ‖f‖2,B and ‖g‖3,q,B, one can prove that (P (Ω)), (P (Ωε))
has a unique weak solution satisfying

‖v‖ ≤ CE(‖f‖2,B, ‖g‖3,q,B) and ‖v̄ε‖ ≤ CE(‖f‖2,B, ‖g‖3,q,B),

respectively, where CE is independent of ε. At this point we summarize the main
hypotheses.

Assumption 1. In what follows, Ω ∈ C2 is a bounded planar domain of the
form Ω = B \ S, f ∈ L2+ε0(B), ε0 > 0, g ∈ W3,q(B) (q > 2) is supported in
the vicinity of ∂B, (5a)–(5b) hold with r ∈ [2, 4) and ‖f‖2,B, ‖g‖3,q,B are small
enough.

Let us point out that equation (2) which defines J is not suitable for weak solu-
tions in general, since the energy inequality does not provide enough information
about the trace of p and Dv. We therefore introduce an alternative definition
that requires less regularity. Let us fix an arbitrary divergence free function
ξ ∈ C∞c (B,R2) such that ξ = d in a vicinity of S. Then, integrating (2) by parts
and using (P (Ω)) yields:

J(Ω) =

∫
Ω

[(Cv − f) · ξ + (S(Dv) − v ⊗ v) : ∇ξ] . (7)

Note that this volume integral is finite for any v ∈W1,2(Ω).

2.3 Deformation of the Shape

Let us introduce the following notation: We will denote by DT the Jacobian
matrix whose components are (DT)ij = (∇T)ji = ∂iTj. Further,

N(x) := g(x)M−1(x), M(x) := I+ εDT(x), g(x) := detM(x).

One can easily check that the matrix N and the determinant g admit the expan-
sions:

g = 1+ εdivT+O(ε2), N = I+ εN′ +O(ε2), N
′ = (divT)I −DT, (8)

where the symbol O(ε2) denotes a function whose norm in C1(Ω) is bounded by
Cε2, see [11].
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The value of the shape functional for Ωε is given by

J(Ωε) :=

∫
Ωε

[(Cv̄ε − f) · ξε + (S(Dv̄ε)− v̄ε ⊗ v̄ε) : ∇ξε] ,

where ξε := (N−�ξ) ◦ y−1. Using the properties of the Piola transform one can
check that div ξε = 0. If v̄ε and p̄ε were sufficiently smooth, it would hold that

J(Ωε) =

∫
∂Sε

(S(Dv̄ε)− p̄εI)nε · d. (9)

Nevertheless, as opposed to (P (Ω)), we do not require any additional regularity
of the solution to the perturbed problem (P (Ωε)) and hence the expression in
(9) need not be well defined.

We introduce the auxiliary function ṽ:

ṽ := lim
ε→0

N�v̄ε ◦ y − v

ε
,

which is related to the material derivative v̇ by the identity

ṽ = N
′�v + v̇.

For the justification of the results of the paper we will use ṽ since, unlike the
material derivative, it preserves the divergence free condition.

3 Main Results

The first result is the existence of ṽ and hence also of the material derivative.

Theorem 2. Let Assumption 1 be satisfied. Then the function ṽ exists and is
the unique weak solution of (Plin(Ω)) with the data

F = A′
0 := div (v ⊗ N

′�v) + N
′div (v ⊗ v)

+ div
[
S
′(Dv)

(
((N′ − I trN′)∇v)sym − D(N′�v)

)
+ N

′�
S(Dv)

]
− N

′div S(Dv) +
(
(N′ − I trN′)C+ CN

′�)v + (I trN′ − N
′)f + (∇f)T, (10a)

h = 0. (10b)

The following estimate holds:

‖ṽ‖1,2,Ω ≤ C‖A′
0‖W1,2

0,div (Ω)∗ ≤ C‖T‖C2(Ω). (11)

Next we establish the existence of the shape gradient of J .
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Theorem 3. Let Assumption 1 be satisfied and f ∈ W1,2(Ω). Then the shape
gradient of J reads

dJ(Ω,T) = Jv(ṽ) + Je(T),

where the dynamical part Jv and the geometrical part Je is given by

Jv(ṽ) =

∫
Ω

[(Cṽ) · ξ + (S′(Dv)Dṽ − ṽ ⊗ v − v ⊗ ṽ) : ∇ξ] ,

Je(T) =

∫
Ω

{[
(I trN′ − N

′)Cv − CN
′�v − (I trN′ − N

′) f − (∇f)T
]
· ξ

+
[
v ⊗ N

′�v + S
′(Dv)

(
(N′∇v −∇(N′�v))sym − (trN′)Dv

)
+ N

′�
S(Dv)

]
: ∇ξ

+
[
v ⊗ v − S(Dv)

]
: ∇(N′�ξ)

}
,

respectively. In particular, as ṽ depends continuously on T, the mapping

T �→ dJ(Ω,T)

is a bounded linear functional on C2(R2,R2).

Based on the previous result we can deduce that the shape gradient has the
form of a distribution supported on the boundary of the obstacle. Since this
representation is unique, the formal results derived in Section 1.1 are justified
provided that the shape derivatives and adjoints exist and are sufficiently regular.

Corollary 1. Let Assumption 1 be satisfied. Then

(i) the shape derivative v′ exists and is the unique weak solution to (Plin(Ω))

with F = 0, h = −∂v

∂n
(T · n);

(ii) the adjoint problem (Padj(Ω)) has a unique weak solution that satisfies:
w ∈W2,2(Ω) and s ∈W 1,2(Ω).

If in addition f ∈W1,2(Ω), then

(iii) the shape gradient of J satisfies (3);

(iv) the representation (4) is satisfied in the following sense:

dJ(Ω;T) = −
∫
∂S

[(
S
′(Dv)�Dw− sI

)
:
∂v

∂n
⊗ n+ f · d

]
T · n. (12)

In the remaining part we show the main steps of the proof of Theorem 3. Details
can be found in [10], where the time-dependent problem is treated.
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4 Formulation in the Fixed Domain

In this section we transform the problem (P (Ωε)) to the fixed domain Ω. Let us
introduce the following notation:

vε(x) := N
�(x)v̄ε(y(x)), x ∈ Ω.

Note that the definition of vε implies that div vε = 0. The new function vε ∈
g+W1,r

0,div (Ω) satisfies the equality∫
Ω

[
gS(Dεvε) : Dεφ− vε ⊗ vε : ∇φ+ Cvε · φ

]
=

∫
Ω

f · φ+ 〈A1
ε,φ〉W1,2

0,div (Ω) for all φ ∈W1,r
0,div (Ω), (13)

where the term A1
ε on the right hand side is defined for φ ∈W1,2

0,div (Ω) by

〈A1
ε,φ〉W1,2

0,div (Ω) =

∫
Ω

[
vε ⊗ N

−�vε : ∇(N−�φ)− vε ⊗ vε : ∇φ

+ (C− gN−1
CN

−�)vε · φ+ (gN−1f ◦ y − f) · φ
]
. (14)

Here Dεvε := g−1(N∇(N−�vε))sym.
Applying change of coordinates we further get:

J(Ωε) =

∫
Ω

[
g
(
N

−1
CN

−�vε − N
−1f ◦ y

)
· ξ

+
(
N

�
S(Dεvε)− vε ⊗ (N−�vε)

)
: ∇(N−�ξ)

]
. (15)

Now after all quantities and equations have been transformed to the fixed domain
Ω, we can analyze the limit ε→ 0.

Lemma 1. The sequence {vε}ε>0 is bounded in W1,r
0,div (Ω) and satisfies:

vε ⇀ v weakly in W1,r
0,div (Ω),

N
�
S(Dεvε) ⇀ S(Dv) weakly in Lr′(Ω,R2×2),

A1
ε ⇀ 0 weakly in W1,r

0,div (Ω)∗.

In particular, v is the unique weak solution to (P (Ω)).

5 Existence of Material Derivative

Our next task is to identify ṽ as the limit of the sequence {uε}, where

uε :=
vε − v

ε
.
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First we write down the system for the differences uε. Subtracting (13) and (6)
we find that uε ∈W1,r

0,div (Ω) satisfies the equality

∫
Ω

[1
ε
g(S(Dεvε)− S(Dεv)) : Dεφ+ Cuε · φ− (vε ⊗ uε + uε ⊗ v) : ∇φ

]
=

1

ε
〈Aε,φ〉W1,2

0,div (Ω) (16)

for all φ ∈ W1,r
0,div (Ω). The term Aε ∈ W1,2

0,div (Ω)∗ on the right hand side is
defined as follows:

Aε := A1
ε +A2

ε,

A1
ε is given by (14),

〈A2
ε,φ〉W1,2

0,div (Ω) :=

∫
Ω

[
N

�
S(Dεv) : ∇(N−�φ)− S(Dv) : Dφ

]
.

Next we state the properties of the sequence {uε}ε>0.

Lemma 2. The sequence {uε}ε>0 is bounded in W1,2
0,div (Ω). Further it holds:

Aε

ε
⇀ A′

0 weakly in W1,2
0,div (Ω)∗,

uε ⇀ ṽ weakly in W1,2
0,div (Ω),

1

ε
(g(S(Dεvε)− S(Dεv)),Dεφ)→ (S′(Dv)Dṽ,Dφ) for all φ ∈W1, 2r

4−r (Ω),

where A′
0 is defined in (10a) and ṽ is the solution of (Plin(Ω)) with F := A′

0

and h = 0.

This completes the proof of Theorem 2.

6 Shape Gradient of J

To prove Theorem 3, we decompose the fraction

J(Ωε)− J(Ω)

ε
= Jε1 + Jε2

in a suitable way. Using Lemma 1 and Lemma 2 and the properties of g and N′,
it is then possible to show that

Jε1 → Jv(ṽ) and Jε2 → Je(T).

The continuity of the map T �→ dJ(Ω;T) follows from the estimate (11).
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ISBN 978-3-0348-0366-3

[9] Slawig, T.: Distributed control for a class of non-newtonian fluids. Journal of
Differential Equations 219(1), 116–143 (2005)

[10] Soko�lowski, J., Stebel., J.: Shape sensitivity analysis of time-dependent flows of
incompressible non-Newtonian fluids. Control and Cybernetics 40(4), 1077–1097
(2011)

[11] Soko�lowski, J., Zolésio, J.-P.: Introduction to shape optimization. Shape sensitivity
analysis. Springer Series in Computational Mathematics, vol. 16. Springer, Berlin
(1992)
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Abstract. For shape optimization problems associated to stationary
Navier-Stokes equations, we introduce the corresponding finite element
approximation and we prove convergence results.

Keywords: shape optimization, full discretization, finite elements, con-
vergence.

1 Introduction

Optimal design and optimal control problems for partial differential equations
are extensively studied in the recent mathematical literature. In the case of
stationary Navier-Stokes equations, we quote the works Casas, Mateos and Ray-
mond [2007], Rösch and Vexler [2006], Los Reyes and Tröltzsch [2007] devoted to
optimal control problems or to approximation procedures. Shape optimization
problems related to fluid mechanics have been discussed in Borrvall and Pe-
tersson [2003], Mohammadi and Pironneau [2001], Posta and Roubicek [2007],
Roubicek and Tröltzsch [2003], Halanay and Tiba [2009]. See as well [7], [8] for
related problems and arguments.

This work is concerned with the discretization and the associated convergence
analysis, in the spirit of general shape optimization problems for linear elliptic
systems, as discussed in Chenais and Zuazua [2006] and in Tiba [2011]. Another
approximation procedure for such problems is due to Neittaamäki, Pennanen
and Tiba [2009].

In the next section we formulate the problem and review briefly some prelimi-
naries, necessary in the subsequent parts. Section 3 investigates some approxima-
tion properties of the stationary Navier-Stokes equation under our discretization
approach. The last section introduces the fully discretized optimization problem
and studies its convergence.

2 Problem Formulation and Preliminaries

Let Ω ⊂ Rd be an (unknown) lipschitzian domain, such that E ⊂ Ω ⊂ D ⊂ Rd

with E ⊂ D some given bounded domains and d an arbitrary natural number.
We recall from Temam [1979] the definition of the following spaces :

D. Hömberg and F. Tröltzsch (Eds.): CSMO 2011, IFIP AICT 391, pp. 437–444, 2013.
c© IFIP International Federation for Information Processing 2013
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V(Ω) = {y ∈ D(Ω)d; div y = 0}, (1)

V (Ω) = closure of V(Ω) in H1
0 (Ω)d. (2)

Then, it is known that V (Ω) = {y ∈ H1
0 (Ω)d, div y = 0}, as Ω is assumed

lipschitzian. For any y ∈ V (Ω), if ỹ is its extension by 0 to D, then ỹ ∈ V (D)
and conversely, if z̃ ∈ V (D) and z̃ = 0 a.e. in D\Ω ; then z = z̃|Ω ∈ V (Ω). Such
properties may be partially extended to domains with the segment property,
Wang and Yang [2008].

The weak formulation of the stationary Navier-Stokes equation with Dirichlet
(no-slip) boundary conditions is

∫
Ω

(ν
d∑

i,j=1

∂yj
∂xi

∂vj
∂xi

+
d∑

i,j=1

yi
∂yj
∂xi

vj)dx =

∫
Ω

d∑
j=1

fjvjdx, ∀v ∈ V (Ω) (3)

where f = (f1, · · · , fd) ∈ H−1(D)d and ν > 0 is the viscosity.
By Theorem 1.2 from Temam [1979], the equation (3) has at least one solution

y ∈ V (Ω). If d > 4, the supplementary condition y ∈ [Ld(Ω)]d should be included
in the definition (1), (2) of V (Ω).

We associate to (3) an integral cost functional of the form∫
Λ

j(x, y(x))dx (4)

where Λ is either E ⊂ Ω or Ω and y is one of the weak solutions of (3). The
integrand j : D × Rd → R satisfies measurability and continuity properties to
be precised later.

The shape optimization problem considered in this paper consists in the min-
imization of the performance index (4) subject to the state system (3) and to
the constraints

E ⊂ Ω ⊂ D, (5)

for any Ω ∈ O, where O is a prescribed family of domains. If the Lipschitz
assumption is valid for any Ω ∈ O with a uniform constant, then O is compact
with respect to the Hausdorff-Pompeiu complementary metric. A similar com-
pactness result holds for domains with the uniform segment property according
to Theorem A3.9, Neittaanmäki, Sprekels and Tiba [2006]. The following exis-
tence result is a simplified version of Theorem 1 in Halanay and Tiba [2009].

Theorem 1. Assume that j(x, yn(x)) → j(x, y(x)) weakly in L2(E) if yn → y
strongly in L2(E) and O is compact. Then, the shape optimization problem (3)-
(5), with Λ = E has at least one optimal pair [Ω∗, y∗] ∈ O × V (Ω∗) if it has an
admissible pair.
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Remark. This theorem should be understood in the sense of singular control
problems Lions [1983], Neittaanmäki, Sprekels and Tiba [2006, 3.1.3.1]. The
state system is ill-posed (nonuniqueness), but the optimization problem (3)-(5)
is well defined as minimization over admissible pairs [Ω, y], Ω ∈ O satisfying (5)
and y ∈ V (Ω) being one of the weak solutions of (3).

3 Discretization of the State Equation

We assume now that D is a smooth bounded subdomain of R2 and we consider
a family of uniformly regular finite element meshes {Th}h>0 in D with h =
maxTh∈Th

diam(Th).
For any admissible Ω ∈ O, we define its discrete approximation as follows

(Chenais and Zuazua [2006] or Tiba [2011] where other variants are also dis-
cussed) :

Ωh = int ∪ {Th;Th ∈ Th, Th ⊂ Ω} (6)

According, for instance, to Temam [1979], there are many possibilities to intro-
duce a finite element space Vh in Ωh approximating (2), that is approximating
H1

0 (Ω) and the divergence free condition. In particular, the piecewise linear fi-
nite elements are not possible to be used in this setting. One also has to impose
null values on ∂Ωh in order to take account the Dirichlet boundary condition
and any yh ∈ Vh may be extended by 0 to Ω, respectively to D. We shall also
write Vh(Ω) or Vh(D) in order to avoid possible confusions.

One example of space Vh (in dimension 2 as assumed here) is the space of
continuous functions, vanishing outside Ωh, that are polynomials of degree less
or equal two on any simplex T ∈ Th and satisfy :∫

T

divyhdx = 0, ∀T ∈ Th, ∀yh ∈ Vh (7)

On Vh we take the scalar product (·, ·)h induced by H1
0 (Ω). Note that Vh is an

external approximation of V due to (7). The discrete approximation of (3) is

ν(yh, vh)h + bh(yh, yh, vh) =

∫
Ω

f · vhdx, ∀vh ∈ Vh (8)

Notice that the last integral in (8) is over Ωh in fact, as vh vanishes outside Ωh.
We have denoted by “·” the scalar product in R2 and bh(·, ·, ·) is the trilinear
form approximating

b(y, v, w) =

2∑
i,j=1

∫
Ω

yiDivjwjdx, ∀y, v, w ∈ H1
0 (Ω).

A detailed construction of bh(·, ·, ·) and the proof of

bh(uh, uh, rhv)→ b(u, u, v), ∀v ∈ V(Ω) (9)



440 D. Tiba

if uh → u weakly in H1
0 (Ω) can be found in Teman [1979], Ch. II.3.

Here rhv ∈ Vh is given by a term that takes the same values as v ∈ V(Ω) in
the interior nodes and edge midpoints of Ωh plus a correction term defined in
Temam [1979, p.81]. On ∂Ωh, rhv should be zero.

Then, the following convergence property is also valid.

Proposition 3.1. Under the above conditions, there exists at least one uh ∈ Vh,
solution of (8) , for each h > 0.

The Family. {uh} in H1
0 (Ω) has strong accumulation points, denoted ū, which

are solutions of (3)

Remark. If the uniqueness property is valid for (3), the convergence is valid
without taking subsequences. In Casas, Mateos and Raymond [2007] and in
Girault and Raviart [1989] Ch. II 4, finite element approximations with uniform
convergence properties are indicated, including error estimates.

4 Approximation of the Shape Optimization Problem

We also discretize the cost functional (4) and the constraint (5) :

Jh(yh) =

∫
Eh

j(x, yh(x))dx (10)

where yh is any of the solutions of (8), associated to Ωh and Eh is obtained as
in (6), starting from E ;

Eh ⊂ Ωh ⊂ D. (11)

Notice that for any admissible Ω ∈ O, restriction (11) is automatically fulfilled by
our discretization construction. The collection of all admissible discretized open
sets is denoted by Oh. The discrete shape optimization problem is defined by
(8), (10), (11). By (6), the family Oh is always finite, for any given h > 0. Then,
the discrete minimization problem has at least one discrete optimal solution
denoted by Ω∗

h ∈ Oh. Since (8) may have, in principle, an infinity of solutions
ynh , we remark that in each T ∈ Th, T ⊂ Ωh, the corresponding coefficients of ynh
are bounded, by the construction of the finite elements. This is a consequence of
|ynh |Vh

bounded and it is enough to pass to the limit in (8), (10) on a minimizing
sequence (with respect to n) of admissible states (h and Ωh are fixed here). The
minimization in (10) should be understood as minimization over pairs [Ωh, yh] ∈
Oh × Vh(Ωh), similar to the situation in Theorem 1.

We recall first some convergence properties of the admissible pairs [Ωh, yh] ∈
Oh × Vh(Ωh), when h→ 0.

Proposition 4.1 i) If Ω ∈ O, then Ωh ∈ Oh and Ωh → Ω in the Hausdorff-
Pompeiu complementary topology.
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ii) If Ωh ∈ Oh and Ωh → Ω̂ in the Hausdorff-Pompeiu complementary topol-
ogy, then Ω̂ ∈ O.

Remark. At point ii), the discrete sets Ωh are not necessarily constructed via (6)
starting from Ω̂. Point i) also applies to the discretization of E and Eh → E in
the Hausdorff-Pompeiu complementary topology. The proof of this proposition
and other related properties may be found in Chenais and Zuazua [2006] and in
Tiba [2011].

In the sequel, a crucial role is played by the following result which is an extension
of Proposition 3.1.

Theorem 2. If Ωh ∈ Oh and yh ∈ Vh is any solution of (8) and if Ωh → Ω̂
in the Hausdorff-Pompeiu complementary topology, then for any subdomain K,
compactly included in Ω̂ there is h0 > 0 such that K ⊂ Ωh, h < h0 and

yh|K → ŷ|K (12)

weakly in H1(K), on a subsequence, where ŷ ∈ V (Ω̂) is a solution of (3) in
Ω̂ ∈ O.

Proof
The fact that Ω̂ ∈ O is a consequence of P4.1. The inclusion K ⊂ Ωh for h < h0 is
known as the Γ -property of the Hausdorff-Pompeiu complementary convergence,
Neittaanmäki, Sprekels and Tiba [2006], p. 63.

Extend yh by 0 to D and denote it by ỹh ∈ H1
0 (D). By Temam [1979], p. 209,

we have

bh(uh, vh, vh) = 0, |bh(uh, vh, wh) ≤ c|uh|Vh
|vh|Vh

|wh|Vh
(13)

for any uh, vh, wh in Vh, where c > 0 is an absolute constant.

Fixing vh = yh ∈ Vh in (8) we get that {|yh|Vh
} is bounded, due to (13), and {ỹh}

is bounded in H1
0 (D). On a subsequence, we have ỹh → ỹ ∈ H1

0 (D). A simple
distributions argument gives that ỹ|D\Ω̂ = 0 almost everywhere. Then ỹ|Ω̂ ∈
H1

0 (Ω̂) as we have assumed that any admissible domain Ω̂ ∈ O is lipschitzian
and the trace theorem may be applied.We also get ỹ ∈ V (Ω̂) by an adaptation of
Proposition 4.3, Temam[1979], p.83. In particular yh|K → ỹ|K weakly in H1(K),
on a subsequence.

We have to show that ỹ|Ω̂ is a solution of (3). We fix in (8) vh = rhv for any

v ∈ V(Ω̂). In particular supp v ⊂ Ω̂ is a compact subset and the Γ -property
gives that supp v ⊂ Ωh for h < h0. Consequently rhv ∈ Vh for h < h0 and may
be used in (8). Moreover, by (9) we have

bh(yh, yh, rhv)→ b(ỹ, ỹ, v), ∀v ∈ V(Ω̂). (14)

Relation (14) is obtained by applying (9) in D as ỹ ∈ H1
0 (D), v ∈ V(D) by

extending it with 0 outside Ω̂ and since ỹh → ỹ weakly in H1
0 (D). The formulas

for b(·, ·, ·) and bh(·, ·, ·) are not affected by these extensions.
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One can pass to the limit in (8) by (14) and the strong convergence r̃hv → ṽ
in H1

0 (D) due to the regularity of v ∈ V(Ω̂). This ends the proof since V(Ω̂) is
dense in V (Ω̂) and (3) may be obtained.

Remark. In fact, we have shown that the extensions

ỹh → ỹ

weakly in H1
0 (D), on a subsequence. If the solution of (3) is unique, the conver-

gence is valid on the whole sequence.

Theorem 3. i) Any accumulation point of any sequence {Ω∗
h}h→0 of discrete

minimizers of (10) is a continuous minimizer Ω∗ of (4).
ii) Jh(Ω

∗
h)→ J(Ω∗) for h→ 0, on the initial sequence.

Proof i) Clearly {Ω∗
h}, h > 0 is relatively compact in the Hausdorff-Pompeiu

complementary metric and we may assume that Ω∗
h → Ω̂ on a subsequence;

where Ω̂ ∈ O by Proposition 4.1.

By Theorem 2, we get ỹh|E → ŷ|E strongly in L2(E), where ỹh is the extension by
0 of yh and ŷ is a solution of (3) in Ω̂. The convergence is valid on a subsequence.

We have Jh(Ω
∗
h) → J(Ω̂). This is a consequence of j(x, ỹh)→ j(x, ŷ) weakly

in L2(E) (see the assumption on j(·, ·) in Theorem 1 ) and of

Jh(Ω
∗
h) =

∫
Eh

j(x, yh)dx =

∫
E

j(x, ỹh)dx−
∫

E\Eh

j(x, ỹh)dx (15)

The last integral in (15) converges to 0 as meas(E\Eh) → 0, Tiba [2011], and
j(x, ỹh) is bounded in L2(E), which is argued above.

For any Ω ∈ O, we can construct Ωh as in (6) and again by Theorem 2 and
Proposition 4.1 we obtain that Jh(Ωh)→ J(Ω). Taking into account that

Jh(Ω
∗
h) ≤ Jh(Ωh)

we infer that J(Ω̂) ≤ J(Ω) for any Ω ∈ O, i.e. Ω̂ is optimal for the problem
(3)-(5) and we redenote it by Ω∗.

ii) This is a consequence of i) as the minimal value J(Ω∗) is uniquely associ-
ated to O.

Remark. The results of this section may be extended to the cost functional
corresponding to the choice Λ = Ω by using supplementary arguments as in
Neittaanmäki, Sprekels and Tiba [2006], p. 472.

Remark. The approach of this paper is based on a fixed grid given in the whole
domain D, i.e. it is a fixed domain method. It should be noticed that the finite
dimensional optimization problem is nonconvex and it is not easy to find a global
minimum Ω∗

h , h > 0.
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Starting with some initial guess Ω̃ ∈ O, one can define Ω̃h ∈ Oh by (6) and
use it as initial iteration in some descent algorithm for the finite dimensional
problem. Denote by Ω̇h the obtained finite dimensional “solution” (which is not
necessarily a global minimum of Jh). Then, reading (6) in the converse sense,
we get at least one Ω̇ ∈ O, corresponding to Ω̇h. If the descent property for Jh
“dominates” the approximation error between (3) and (8), then J(Ω̇) < J(Ω̃),
i.e. the method may find a better admissible domain from the point of view of
the cost J .

Acknowledgement. This work was supported by Grant 145/2011 of CNCS,
Romania.
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Jean-Paul.Zolesio@inln.cnrs.fr

2 NC State University, Department of Mathematics, Raleigh, NC 27695, USA

Abstract. The paper provides shape derivative analysis for the wave
equation with mixed boundary conditions on a moving domain Ωs in
the case of non smooth neumann boundary datum. The key ideas in the
paper are (i) bypassing the classical sensitivity analysis of the state by
using parameter differentiability of a functional expressed in the form
of Min-Max of a convex-concave Lagrangian with saddle point, and (ii)
using a new regularity result on the solution of the wave problem (where
the Dirichlet condition on the fixed part of the boundary is essential) to
analyze the strong derivative.

1 Introduction

The aim of this paper is to give a full analysis of the shape differentiability for
the solution to the wave equation with mixed boundary conditions on a mov-
ing domain Ωs. The shape derivative investigation has been solved for the wave
equation with homogeneous and non-homogeneous Dirichlet boundary condi-
tions [1, 9, 13]. The novelty and difficulty of the paper are represented by the
fact that the wave equation has non-homogeneous Neumann boundary condi-
tion on part of the boundary of its geometrical domain. Moreover, the Neumann
datum g is non-smooth, i.e. g ∈ H−1/2(∂Ωs).

First, we prove existence of weak shape derivative by using parameter differ-
entiability of a functional expressed in the form of Min-Max of a convex-concave
Lagrangian with saddle point [3, 13]. This completely bypasses the classical sen-
sitivity analysis of the state (solution) [9]. A lot of problems in shape sensitivity
analysis can be expressed as a Min Max of some Lagrangian dependent on the
domain Ω. Using a velocity field of deformations V over Ω one can build a family
of perturbations Ωs, s ≥ 0, and then the tunics extends to situation when after
some change of variable the sensitivity analysis reduces to the study of the dif-
ferentiability of a Min Max Lagrangian functional with respect to the parameter
s for fixed velocity fields V and domains Ω.

Then we use a new regularity result for the solution to the wave problem
to analyze the strong derivative via a brute force estimate on the differen-
tial quotient. In particular, we study the variational solution ys in the space
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W 1,∞(0, τ, L2(Ωs)) ∩ L∞(0, τ,H1
∗ (Ωs) = {φ ∈ H1(Ωs), φ = 0 on S}) by tak-

ing advantage of the Dirichlet condition on the fixed part of the boundary S
and we derive sharp estimate for ys at the boundary Γs in terms of geometri-
cal constants, in view of controlling the differential quotient’s regularity that is
necessary in the proof of our main result.

The new results obtained in this paper are: (i) existence of strong material
and shape derivatives for the solution to the wave problem with mixed boundary
conditions, and (ii) the new wave equation that the shape derivative solves.

The rest of the paper is organized as follows. In Section 2, we provide a
preliminary result on existence and uniqueness of a Galerkin solution for the
classical wave equation with variable coefficients. This result will be needed in
the proof of our main theorem. In Section 3, we introduce the PDE model for
the wave equation on a moving domain Ωs and briefly recall the velocity method
from shape optimization. In Section 4, we prove existence for the weak material
derivatives. Finally, in Section 5 we complete the analysis by proving existence of
strong material and shape derivatives, using the “extractor strategy” introduced
in [5, 6] and Fourier transform techniques.

2 Galerkin Solution for the Wave Equation

Let D ⊂ RN be fixed (potentially included in a C2 manifold). Let Ω ⊂ D be an
open bounded domain, with smooth boundary ∂Ω = Γ ∪ S, where Γ̄ ∩ S̄ = ∅.
Let A(x) = {aij(x)} be a matrix of functions defined on Ω with the following
properties:{

aij ∈ L∞(Ω), and

∃α > 0 such that ∀x ∈ Ω, ∀ζ = {ζi} ∈ RN , aij ζiζj ≥ α|ζ|2.
(2.1)

We associate with the matrix A(x) the following operator

Ay
def
= − div(A(x)∇y).

Given τ > 0 and the interval I = [0, 2τ ], consider the following wave equation
problem: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

ytt + A.y = f Ω
∂y
∂nA

= g Γ

y = 0 S

y(0) = y0, yt(0) = y1

(2.2)

Galerkin solution for (2.2) in L2(I,H1(Ω)) ∩H1(I, L2(Ω)).

Let H1
∗ (Ω) = {φ ∈ H1(Ω), φ = 0 on S } with norm ||φ||2 =

∫
Ω

|∇φ|2 dx.
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Proposition 2.1. Let (y0, y1) ∈ H1
∗ (Ω) × L2(Ω) and f ∈ L2(I × Ω) or f ∈

H(Ω) := W 1,∞(I,H−1(Ω)), and g ∈ G(Γ ) := W 1,1(I,H−1/2(Γ )). Then the so-
lution y to (2.2) verifies y ∈ E(Ω) := L∞(I,H1

∗ (Ω))∩W 1,∞(I, L2(Ω)). Moreover
when f ∈ L2(I ×Ω)), the trace yΓ of y at the boundary Γ verifies :

yΓ ∈ F (Γ ) := H1/2(0, τ, L2(Γ )) ∩H−1/2(0, τ,H1(Γ )),

and we have the following estimates: There exists constants c, k such that

||y||2E(Ω) = ||yt||2L∞(I,L2(Ω)) + ||y||2L∞(I,H1∗(Ω)) ≤ c |||(f, g)|||2, (2.3)

and

||y||2F (Γ ) = ||y||2H1/2(0,τ,L2(Γ )) + ||y||2H−1/2(0,τ,H1(Γ )) ≤ k|||(f, g)|||2, (2.4)

where

|||(f, g)|||2 = ||g||2
W 1,1(I,H−1/2(Γ ))

+ ||f ||2

+|y0|2H1∗(Ω) + |y1|2L2(Ω) + ||f(0)||2H−1(Ω) + ||g(0)||2
H−1/2(Γ )

, (2.5)

and
||f ||2 = ||f ||2W 1,1(I,H−1(Ω)) or ||f ||2L2(I,L2(Ω)).

3 The Wave Equation on Ωs

Let D ⊂ RN be fixed (potentially included in a C2 manifold). Let Ω ⊂ D be an
open bounded domain, with smooth boundary ∂Ω = Γ ∪ S, where Γ̄ ∩ S̄ = ∅.

The moving domain: For s ∈ [0, s∗], let V be a smooth vector field,

V ∈ C0([0, s∗[, C1(D,RN )) with V · n = 0 on ∂D, and V = 0 on S.

The flow transformation associated to V is given by:

Ts(V ) : D̄ → D̄, such that Ts(V )(S) = S.

Using Ts(V ), we build the family of perturbed domains {Ωs}s as follows: Ωs =
Ts(V )(Ω) and ∂Ωs = S ∪ Γs, where Γs = Ts(V )(Γ ). The normal component of
the vector field V (s) on the boundary Γs (called the “normal speed”) is denoted
by v(s), i.e. v(s) = 〈V (s), ns〉, where ns = ∇bΩs where b(s) = bΩs stands for the
oriented distance function to Ωs. From [4], we know that its shape derivative
verifies

b′(s) = −V (s) ◦ ps in a neighborhood of Γs,

where ps is the projection map onto Γs. Most of the time, the normal speed
appears in the calculus evaluated at 0, hence we will use the following notation
v = v(0) for it.
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The PDE model for the wave problem. Let Ωs ⊂ D be a moving domain
with boundary ∂Ωs = Γs ∪ S, where Γ̄s ∩ S̄ = ∅, and S is fixed with respect to
the parameter s.

We consider the solution ys to the wave equation in the cylinder ]0, τ [×Ωs,
with homogeneous Dirichlet condition on the fixed part S of the boundary, and
verifying a non homogeneous Neumann condition on the moving part Γs:⎧⎪⎨⎪⎩

ystt −Δys = 0 Ωs

ys = 0 S
∂

∂ns
ys = g(s) Γs

For each s let the boundary datum g have the following regularity gs ∈
W 1,1(I,H−1/2(Γs)). Then we consider the element ys ∈ Hs = L2(I,H1

∗ (Ωs)) ∩
H1(I, L2(Ωs)) solution to

∀φs ∈ Hs,

∫ 2τ

0

∫
Ωs

(− ∂

∂t
ys

∂

∂t
φs +∇ys · ∇φs)dxdt =

∫ 2τ

0

∫
Γs

gsφsdΓs dt

As mentioned before, the goal of this paper is threefold. We want to prove

existence of the material derivative ẏ(Ω;V ) = ∂
∂s [ys ◦Ts]

∣∣∣
{s=0}

and of the shape

derivative y′(Ω;V ) = ẏ(Ω;V )−∇y · V (0), and to render the new wave problem
whose solution is the shape derivative y′(Ω;V ). The first step consists in proving
the existence of weak material derivative.

4 Weak Material Derivatives

To prove existence of material derivatives, we will take advantage of the regu-
larity of solution for the linear wave equation and use the parameter differen-
tiability for any functional expressed in form of a Min Max of a convex-concave
Lagrangian with saddle points. The complete prove of MinMax parameter dif-
ferentiability under saddle point was given in [2]. The result in case of single
unique saddle point ( which is easier) is given in [3] with application to PDE
problem. Of course on formal view point such results was known by ingeeniers as
a ”necessary expression” ( assume it is differentiable then such is the expression.
The difficult part being to prove the differentiability it self)

Let R ∈ L2(I,H−1(Ω)) and q ∈ H1/2(0, τ,H−1(Γ )). We consider the trans-
ported solution ys in the non perturbed geometry, that is ys = ys ◦ Ts(V ), and
we set

j(s) =

∫ τ

0

(

∫
Ω

ysRdx+

∫
Γ

ys q dΓ ) dt.

Then we obtain that

j(s) = MinMax{(φ;ψ)∈×} L(s, φ, ψ),
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where the Lagrangian L is given by

L(s, φ; ψ) =
∫ τ

0

(

∫
Ω

φRdx+

∫
Γ

φ q dΓ ) dt

+

∫ τ

0

∫
Ω

(−J(s) ∂φ
∂t

∂ψ

∂t
+ 〈A(s)∇φ,∇ψ〉)dxdt −

∫ τ

0

∫
Γ

ω(s) gs ◦ Ts(V )ψ dΓdt,

where J(s) = det(DTs) is the Jacobian of the transformation Ts(V ),

A(s) = J(s)(DTs)
−1(DTs)

−∗,

and the density ω(s) is given as

ω(s) = det(DTs)|(DTs(V ))−∗ns|. (4.1)

At s = 0 the unique saddle point of L is (y, p), where the co-state p is the
solution to the following problem:

∂2

∂t2
p−Δp = R,

∂

∂n
p = q.

We derive that the functional L is differentiable and we get the explicit expression
for its derivative w.r.t s at s = 0:

j′(0) = ∂
∂sL(0, y, p)

=
∫ τ
0

∫
Ω(−divV (0) ∂y

∂t
∂p
∂t + 〈[divV (0)− 2ε(V (0)) ]∇y,∇p〉) dxdt

−
∫ τ
0

∫
Γ p (ġ(V ) + H g v )dΓdt

where 2ε(V ) = DV + (DV )∗, ġ(V ) = [ ddsgs ◦ Ts(V )]s=0, v = 〈V (0), n〉, and H
is the mean curvature of the boundary.

As a conclusion we get the existence of the weak derivative of the map s→ ys

in L2(0, τ,H1(Ω)), and the weak differentiability of the trace mapping: s→ ys|Γ
in H−1/2(0, τ,H1(Γ )).

5 Strong Material Derivative

Theorem 5.1. Assume gs ∈ W 1,1(I,H−1/2(Γs)) such that there exists ġ ∈
L1(I,H−1/2(Γ )) verifying

gs ◦ Ts(V )

s
− ġ(V )→ 0 strongly in L1(I,H−1/2(Γ )). (5.1)

Then the solution ys has a strong material derivative in the following
topology:

ys ◦ Ts(V )− y

s
−(Ẏ −divV (0) y)→ 0 in L∞(0, τ, L2(Ω))∩W−1,∞(0, τ,H1

∗ (Ω)),

(5.2)
where Ẏ is the solution to problem (5.10).
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Corollary 5.1.1. Let gs ∈ W 2,1(I,H−1/2(Γs)) such that there exists
ġ ∈W 1,1(I,H−1/2(Γ )) verifying

gs ◦ Ts(V )

s
− ġ(V )→ 0 strongly in W 1,1(I,H−1/2(Γ )). (5.3)

Then the solution ys has a strong boundary material derivative in the fol-
lowing topology:

ys ◦ Ts(V )− y

s
− (Ẏ − divV (0) y)→ 0 in L∞(0, τ,H1/2(Γ )), (5.4)

where Ẏ is the solution to problem (5.10).

5.1 Shape Derivative

We know that

∃Y ∈ C0{[0, s∗[, W 1,∞(I, L2(D)) ∩ L∞(I,H1
∗ (D))} ∩ C1{[0, s∗[, W 1,∞

(I,H−1(D)) ∩ L∞(I, L2(D))}

such that
∀s, Y(s, .) = ys(.) on Ωs.

Now the term

y′(Ω;V ) := [
∂

∂s
Y(0, x)]{x∈Ω} ∈W 1,∞(I,H−1(Ω)) ∩ L∞(I, L2(Ω))

is independent of the choice of the function Y and is given by

y′(Ω;V ) = ẏ(Ω;V )− ∇y · V (0).

For simplicity we write ẏ and y′ for the material and shape derivatives.

5.1.1 Characterization of y′(Ω;V )

Proposition 5.1. The element y′ is solution to the wave problem:{
∂2

∂t2 y
′ − Δy′ = 0 in Ω

∂
∂ny

′ = divΓ (y∇Γ v ) − v ∂2y
∂t2 + H g v + g′Γ on Γ,

(5.5)

where g′Γ stands for the boundary shape derivative of g given by

g′Γ = ġ −∇Γ g.VΓ (0).

The proof is done in several steps. Let Ys =
∫ t
0 ys(σ) dσ and Gs =

∫ t
0 gs(σ) dσ

be the solution to

∀φs ∈ H(D),

∫ 2τ

0

∫
Ωs

(− ∂

∂t
Ys

∂

∂t
φs +∇Ys.∇φs)dxdt =

∫ 2τ

0

∫
Γs

GsφsdΓs dt.
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From 5.9 we get

|| ∂
∂t
Ys||2L∞(I,L2(Ωs))

+ ||Ys||2L∞(I,H1∗(Ωs))
≤ c (||Gs||L∞(I,H−1/2(Γs)) (5.6)

+ ||gs||L1(I,H−1/2(Γs)) )

Consider the symmetrical matrix A(s) = J(s) DTs(V )−1.DTs(V )−∗ ∈
L∞(D,RN2

). Setting Y s = Js Ys ◦ Ts(V ) we get (with φs = ψ ◦ Ts(V )−1)

∀ψ ∈ H = H0,

∫ 2τ

0

∫
Ω

(− ∂

∂t
Y s ∂

∂t
ψ +A(s).∇(J−1

s Y s).∇ψdxdt

=

∫ 2τ

0

∫
Γ

Gsw(s)ψdΓ dt

Concerning the continuity of s → Y s let Zs = Y s − Y ∈ H1(I, L2(Ω)) ∩
L2(I,H1

∗ (Ω)), setting m(s) = (DT−1
s .DT−∗

s − I).∇ΓY
s + Y sA.∇(J−1

s ) + Gs

(DT−1
s .DT−∗

s − I).n

Lemma 5.1. the term 1
s ||m(s)||L∞(0,2τ,L2(Ω)) remains bounded when s→ 0

Indeed from classical estimates ( see [9]) we have

||DT−1
s .DT−∗

s − I||L∞(D)N2 + ||A(s).∇J−1
s ||L∞(D) ≤ CV s

We get with 5.6

1

s
||m(s)||L∞(0,2τ,L2(Ω)) ≤ CV c (||Gs||L∞(I,H−1/2(Γs)) + ||gs||L1(I,H−1/2(Γs)) )

(5.7)
and rom the sharp regularity at the boundary 2.4 we get

Lemma 5.2.
m(s) ∈ H1/2(0, τ, L2(Γ ))

with the following estimate

1

s
||m(s)||2H1/2(0,τ,L2(Γ )) ≤ cCV (5.8)

||Gsw(s) −G||L∞(Γ ) ≤ CV s

The element Zs is solution of, ∀ψ ∈ H = H0∫ 2τ

0

∫
Ω

(− ∂

∂t
Zs ∂

∂t
ψ+ < ∇Zs,∇ψ > dxdt = −

∫ 2τ

0

∫
Ω

< m(s),∇ψ > dxdt

+

∫ 2τ

0

∫
Γ

(Gsw(s) −G)ψdΓ dt
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That is∫ 2τ

0

∫
Ω

(− ∂

∂t
Zs ∂

∂t
ψ+ < ∇Zs,∇ψ > dxdt = −

∫ 2τ

0

∫
Ω

f̄(s)ψdxdt

+

∫ 2τ

0

∫
Γ

ḡ(s)ψdΓ dt

Where
f̄(s) = −div(m(s))→ 0 in W 1,1(I,H−1(Ω))

ḡ(s) = Gsω(s)−G+ < m(s),n >→ 0 in W 1,1(I,H−1/2(Γ ))

From 2.5 we get:

||Zt||2L∞(I,L2(Ω))+ ||Z||2L∞(I,H1∗(Ω)) ≤ c (||Gsω−G+ < m(s).n > ||L∞(I,H−1/2(Γ ))

+ ||gsω − g+ <
∂

∂t
m(s), n > ||L1(I,H−1/2(Γ )) )

+ ||f̄ ||L∞(I,H−1(Ω)) + || ∂
∂t
f̄ ||L1(I,H−1(Ω)) + [c ||||2 + |||| (5.9)

2 + ||f̄(0)||H−1(Ω) + ||Ḡ(0)||H−1/2(Γ )]
1/2

Proposition 5.2. Assume that s→ gs is continuous in L1(I,H−1/2(Γ )).

We consider the element Ẏ ∈ H0 solution to the problem

∀ψ ∈ H = H0,

∫ 2τ

0

∫
Ω

(− ∂

∂t
Ẏ
∂

∂t
ψ +∇Ẏ .∇ψ)dxdt

=

∫ 2τ

0

∫
Ω

< ∇(Y divV (0)) − Ȧ.∇Y, ∇ψ > dxdt

+

∫ 2τ

0

∫
Γ

( Ġ+ GH v )ψdΓ dt

=

∫ 2τ

0

< div( [Ȧ − divV (0) I ].∇Y ) , ψ >H−1

Ω̄
(D)×H1(Ω) dt

+

∫ 2τ

0

∫
Γ

( Ġ+ GH− < Ȧ.n,∇Y > + < ∇(Y divV (0)), n > )ψdΓ dt (5.10)

This problem is relevant from the previous variational approach as the right
hand side

f = div(Ȧ∇Y − ∇Y divV (0) ) = −2div(ε(V (0)).∇Y ) ∈ H1(I,H−1(Ω))

ḡ = − < Ȧ.n,∇Y > + < ∇(Y divV (0)), n >

= 2 < ε(V ).∇Y, n > + Y
∂

∂n
divV (0) ∈ H1/2(I, L2(Γ ))
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5.2 Differential Quotient

We consider the elements

d(s) =
ys − y

s
− ẏ, δ(s) =

Y s − Y

s
− Ẏ

In order to characterise δ(s) we introduce the following vectors functions:

M1(s) = [
DT−1

s .DT−∗
s

s
− 2εV (0) ].∇Y s

M2(s) = 2 ε(V ).∇(Y s − Y )

M3(s) = [Y sA.(
∇(J−1

s )

s
−∇divV (0) ) + (Y I − Y sA).∇divV (0) ]

M(s) =M1(s) +M2(s) +M3(s)

And the function on the boundary:

Gδ(s) =
Gsω(s)−G

s
− (Ġ+GH v )

the element δ(s) is then solution to

∀ψ,
∫ 2τ

0

∫
Ω

(− ∂

∂t
δ
∂

∂t
ψ +∇δ.∇ψ)dxdt = −

∫ 2τ

0

∫
Ω

< M , ∇ψ > dt

+

∫ 2τ

0

∫
Γ

Gδ(s) ψdΓ dt

That is ∫ 2τ

0

∫
Ω

(− ∂

∂t
δ
∂

∂t
ψ + ∇δ.∇ψ)dxdt =∫ 2τ

0

< fδ(s), ψ >H−1

Ω̄
(D)×H1(Ω) dt +

∫ 2τ

0

∫
Γ

gδ(s) ψdΓ dt (5.11)

Where
fδ(s) = div(M )→ 0 in H1(I,H−1(Ω)), s→ 0,

gδ(s) = Gδ(s) − M.n → 0 in H1(I,H−1/2(Γ )), s→ 0.

5.3 Fourier Transform

From now on we assume the data, y0 = y1 = 0 and the Neumann data g ∈
W 1,1(I,H−1/2(Γ )) being approached in this space by a smooth element gm.
Then the associated solution ym is smoother. We consider a smooth cuting func-
tion 0 ≤ ρ(t) ≤ 1 such that ρ(t) = 0 for |t| ≥ 2τ while ρ(t) = 1 when |t| ≤ τ . We
consider (ym)0, (gm)0 the extension by zero out of I and we set

ỹm(t, x) = ρ(t) (ym)0(t, x), g̃m(t, x) = ρ(t) (gm)0(t, x)
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With

Fm = ρf + 2ρt y
m
t + ρtt y

m → F = ρf + 2ρt yt + ρtt y in L2(I,L2(Ω)) as m → ∞.
(5.12)

We get

ỹmtt + A.ỹm = Fm,
∂ỹm

∂nA
= g̃m, on Γ, ỹm = 0 on S. (5.13)

For each m we consider the Fourier transform

Fm(ζ, x) =

∫ +∞

−∞
F̃m(t, x) e−i ζ t dt, zm(ζ, x) =

∫ +∞

−∞
ỹm(t, x) e−i ζ t dt,

Gm(ζ, x) =

∫ +∞

−∞
g̃m(t, x) e−i ζ t dt

− ζ2 zm + A.zm = Fm,
∂zm

∂nA
= Gm, on Γ, zm = 0 on S, (5.14)

5.3.1 Extractor. Given μ > 0, consider the velocity field V ∈ C0([0, μ[ ;W 2,∞

(D,RN )) and its associated flow mapping Ts(V ). Given s ≥ 0, denote by
Ωs = Ts(V )(Ω) the perturbed domain with boundary Γs = Ts(V )(Γ ). Consider
the functional

Em(s, V )
def
=

∫ +∞

−∞
dζ

∫
Ωs(V )

[
|ζ|
∣∣zm ◦ Ts(V )−1

∣∣2
+

1

1 + |ζ| | < A.∇(zm ◦ Ts(V )−1),

∇(zm ◦ Ts(V )−1) > |)
]
dx

and its derivative

em
def
=

d

ds
Em(s, V )

∣∣∣∣
s=0

that will be computed in two different ways. For simplicity in the following
computations we denote by V the autonomeous vector field V (0). Derivative by
moving boundary results : Let

em1
def
=

∫ +∞

−∞
dζ

∫
Ω

|ζ| 2Re{zm ∇z̄m · (−V )}

+
1

1 + |ζ| 2Re{< A.∇(zm), ∇(∇z̄m(−V ) > )} dx

+

∫ +∞

−∞
dζ

(∫
Γ

{|ζ| |zm|2 + 1

1 + |ζ| < A.∇zm,∇zm >} < V, n > dΓ (x)

)
.



Strong Shape Derivative for the Wave Equation 455

Consider the first integral term over Ω:

a
def
=

∫ +∞

−∞
dζ

∫
Ω(

|ζ| 2Re {zm∇z̄m · (−V )} − 1

1 + |ζ| 2Re {< A.∇zm,∇(∇z̄m.V ) >}
)
dx

By Stokes theorem using the fact that ∂zm/∂nA = Gm, we get the following
expression:

a =

∫ +∞

−∞
dζ

∫
Ω

(
|ζ| 2Re {−zm ∇z̄m · V }+ 1

1 + |ζ| 2Re{div(A.∇zm)∇z̄m.V }
)

dx

−
∫ +∞

−∞
dζ

∫
Γ

1

1 + |ζ| 2Re{Gm ∇z̄m.V } dΓ

As we have − div(A.∇zm) = A.zm = (ζ2 zm + Fm(ζ, x)) we get

a =2Re
{∫ +∞

−∞
dζ

∫
Ω

(
−zm (|ζ| + ζ2

1 + |ζ| )
)
∇z̄m · V dx

}
+ 2Re

{∫ +∞

−∞
dζ

∫
Ω

1

1 + |ζ| F
m∇z̄m · V dx

}
−
∫ +∞

−∞
dζ

∫
Γ

1

1 + |ζ| 2Re{G
m∇z̄m.V } dΓ.

Lemma 5.3. For each m > 0 we get

em1 =

∫ +∞

−∞
dζ

(∫
Γ

{|ζ| |z |2 + 1

1 + |ζ| < A.∇zm,∇zm >} < V, n > dΓ (x)

)
−
∫ +∞

−∞
dζ

∫
Γ

1

1 + |ζ| 2Re{G
m∇z̄m.V } dΓ

+ 2Re
{∫ +∞

−∞
dζ

∫
Ω

(
−zm (|ζ|+ ζ2

1 + |ζ|

)
∇z̄m · V dx

}
+ 2Re

{∫ +∞

−∞
dζ

∫
Ω

1

1 + |ζ| F
m∇z̄m · V dx

}
.

5.3.2 Derivative by change of variable Ts(V ) Consider now the
expression

Em(s, V )
def
=

∫ +∞

−∞
dζ

∫
Ω

[
|ζ| |zm|2 + 1

1 + |ζ| < B(s).∇zm,∇zm >

]
j(s) dx

where

B(s)
def
= DTs(V )−1.A ◦ Ts(V ).(DTs(V )−1)∗, j(s)

def
= detDTs(V )
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and
(B′.V ) = −DV.A−A.DV ∗ + ∇A.V (5.15)

where ∇A.V is the matrix

(∇A.V )i,j
def
= ∇ai,j .V.

Then we get

Lemma 5.4.

em2 =

∫ +∞

−∞
dζ

∫
Ω

[
|ζ| |zm|2 + 1

1 + |ζ| < A.∇zm,∇zm >

]
div V dx

+

∫ +∞

−∞
dζ

∫
Ω

1

1 + |ζ| < (B′.V ).∇zm,∇zm > dx.

5.4 Extractor Identity

We now equate the two expressions, em1 = em2 , to get

Lemma 5.5.∫ +∞

−∞
dζ

(∫
Γ

{|ζ| |zm|2 + 1

1 + |ζ| < A.∇zm,∇zm >} < V, n > dΓ (x)

)
−
∫ +∞

−∞
dζ

∫
Γ

1

1 + |ζ| 2Re{G
m∇z̄m.V } dΓ

=− 2Re
{∫ +∞

−∞
dζ

∫
Ω

(
−zm (|ζ| + ζ2

1 + |ζ| )
)
∇z̄m · V dx

}
.

− 2Re
{∫ +∞

−∞
dζ

∫
Ω

1

1 + |ζ|F
m∇z̄m · V dx

}
+

∫ +∞

−∞
dζ

∫
Ω

[
|ζ| |zm|2 + 1

1 + |ζ| < A.∇zm,∇zm >

]
div V dx

+

∫ +∞

−∞
dζ

∫
Ω

1

1 + |ζ| < (B′.V ).∇zm,∇zm > dx.

The velocity vector V will be choosen in terms of the geometry of the boundary
which is best handled by using the oriented distance function, (cf. [7]) bΩ =
dΩ − dΩc , Ωc = RN \Ω. When Ω is of class C1,1, the unit outward normal n
to the boundary Γ = ∂Ω is equal to ∇bΩ. Moreover when Γ is compact, there
exist h > 0 and an h-tubular neighboorhood Uh = {x ∈ RN : |bΩ(x)| < h} of Γ
such that bΩ ∈ C1,1(Uh). In order to work in RN, localize the oriented distance
function to this neighboorhood and work with a global C1,1 function on RN ,

define bhΩ
def
= θh ◦ bΩ for some function θh ∈ C1,1(R; [0, 1]) such that

θh(t)
def
=

{
1, , |t| < h/3

0, |t| > 2h/3.



Strong Shape Derivative for the Wave Equation 457

Obviously bhΩ is equal to bΩ in Uh/3 and supp bhΩ ⊂ Uh, with bhΩ ∈ C1,1(R) with

the unit outward normal n = ∇bΩ = ∇bhΩ on Γ . In order to take care of the
boundary condition term G in the extractor identity we have to make a specific
choice for the vector field V . Choose V in the following form (here we assume the

matrix A to be defined in the neighbourhood of Ω̄): V
def
= A.∇bhΩ ⇒ V =

A.n on Γ, so that∇zm.V =< ∇zm, A.n >= Gm, while v =< V, n >=< A.n, n >
≥ α > 0 on Γ . So the first term yields

α

∫ +∞

−∞
dζ

(∫
Γ

{|ζ| |zm|2 + 1

1 + |ζ| |∇z
m|2} dΓ (x)

)
≤
∫ +∞

−∞
dζ

∫
Γ

1

1 + |ζ| 2Re{G
mḠm} dΓ . . .

·
∣∣∣∣− 2Re

{∫ +∞

−∞
dζ

∫
Ω

(
−zm(|ζ|+ ζ2

1 + |ζ| )
)
∇z̄m · V dx

}
.

− 2Re
{∫ +∞

−∞
dζ

∫
Ω

1

1 + |ζ| F
m∇ ¯zm · V dx

}
+

∫ +∞

−∞
dζ

∫
Ω

[
|ζ| |zm|2 + 1

1 + |ζ| < A.∇zm,∇zm >

]
div V dx

+

∫ +∞

−∞
dζ

∫
Ω

1

1 + |ζ| < (B′.V ).∇zm,∇zm > dx

∣∣∣∣.
and we obtain the following estimate.

Proposition 5.3. There exists a constant M > 0 such that for all m > 0∫ +∞

−∞
dζ

(∫
Γ

{|ζ| |zm|2 + 1

1 + |ζ| |∇z
m|2} dΓ (x)

)

≤ 1

α
M

{∥∥∥∥∥
√

1

1 + |ζ| G
m

∥∥∥∥∥
2

L2(Rζ ,L2(Γ ))

+ ‖V (0)‖L∞(D,RN )‖zm‖L2(Rζ ,L2(Ω)) ‖∇zm‖L2(Rζ ,L2(Ω,RN ))

+ ‖V (0)‖L∞(D,RN )

∥∥∥∥∥
√

1

1 + |ζ|F
m

∥∥∥∥∥
L2(Rζ ,L2(Ω))

‖∇zm‖L2(Rζ ,L2(Ω,RN ))

+ ‖
√
ζ zm‖L2(Rζ ,L2(Ω))‖ divV (0)‖L∞(D)

+

∥∥∥∥∥
√

1

1 + |ζ|∇z
m

∥∥∥∥∥
L2(Rζ ,L2(Ω,RN ))

‖(B′.V ) + A‖
L∞(D,RN2

)

}
(5.16)

As V = A.∇bhΩ, we get

‖ div V (0)‖L∞(D) ≤M3( ‖A‖W 1,∞(Ω) + ‖ΔbhΩ‖L∞(D))
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while

‖B′.V ‖L∞(D) ≤ M4( ‖A‖W 1,∞(Ω) + ‖D2bhΩ‖L∞(D) ‖A‖L∞(D,RN2))

Each terms depending on m in the right-hand side of (5.16) converges in the
respective norms:

Gm → G, Fm → F , zm → z.

So that there exists a constant M2 > 0 such that, for all m > 0 we have:

∀m > 0,

∫ +∞

−∞
dζ

(∫
Γ

{|ζ| |zm|2 + 1

1 + |ζ| |∇z
m|2} dΓ (x)

)
≤M2.

Consider the following two measures on Rζ :

μ1(ζ)
def
=
√

|ζ| dζ and μ2(ζ)
def
=

√
1

1 + |ζ| dζ.

Then we get

‖zm‖L2
μ1

(Rζ ,L2(Γ )) ≤M2 and ‖∇zm‖L2
μ2

(Rζ ,L2(Γ,RN )) ≤M2

and there exist elements φ,Φ such that for the two associated weighted topologies
we get the weak convergences:

zmΣ ⇀ φ weakly in L2
μ1
(Rζ , L

2(Γ ))

∇zmΣ ⇀ Φ weakly in L2
μ2
(Rζ , L

2(Γ,RN ))

Obviously φ = z|σ and Φ = ∇φ|Σ then Φ = ∇z|Σ and the norms being weakly
l.s.c. in the limit we get the estimate:∫ +∞

−∞
dζ

(∫
Γ

{
|ζ| |z|2 + 1

1 + |ζ| |∇z |
2

}
dΓ (x)

)
≤M2

By Plancherel isomorphism we get in the real line, we get

Corollary 5.1.2.

|ζ|1/2z ∈ L2(R, L2(Γ )) ⇐⇒ ỹ ∈ H1/2(R, L2(Γ )),

((1 + |ζ|)−1/2)∇z ∈ L2(R, L2(Γ,RN )). ⇐⇒ ∇ỹ ∈ H−1/2(R, L2(Γ,RN )).

Obviously we have:

‖y‖H1/2(I,L2(Γ )) ≤ ‖ỹ‖H1/2(R,L2(Γ ))

Also:

∇y|Σ = ∇Γ y +
∂y

∂n
n
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But
∂y

∂n
= g ∈ L2(Σ)

So that
∇Γ y ∈ H−1/2(R, L2(Γ,RN ))

Which implies
y|Σ ∈ H−1/2(R, H1(Γ ))

from which, as y ∈ C0([0, τ ], H3/5−σ(Ω)), we get (??).

Proposition 5.4. Let Γ be a C2 submanifold in RN and g ∈ L2(I;L2(Γ )),

f ∈ L2(I;L2(Ω)), y0 ∈ H2(Ω), y1 ∈ L2(Ω), and A ∈ W 1,∞(D,RN2

). Then the
trace at the boundary Γ of y verifies the regularity (2.4).

We have:

||y||2H1/2(0,τ,L2(Γ )) + ||y||2H−1/2(0,τ,H1(Γ )) ≤ ||ỹ||2H1/2(0,2τ,L2(Γ )) + ||ỹ||2H−1/2(0,2τ,H1(Γ ))

from the Plancherel isometry in the estimation 5.16, we get:

≤ C{||g̃||2H−1/2(0,2τ,L2(Γ )) + ||ỹ||2H−1/2(0,2τ,H1(Ω)) + ||F̃ ||2H−1/2(0,2τ,L2(Ω))

+||ỹ||2H1/2(0,2τ,L2(Ω)) + ||∇ỹ||2H−1/2(0,2τ,L2(Ω))

and obviously

≤ C2 {||g||2H1/2(0,2τ,L2(Γ )) + ||y||2H−1/2(0,2τ,H1(Ω)) + ||F ||2H−1/2(0,2τ,L2(Ω))

+||y||2H1/2(0,2τ,L2(Ω)) + ||∇y||2H−1/2(0,2τ,L2(Ω)N )

5.4.1 Boundedness of F . From 5.12 there exists a constant cρ > 0 such
that

||F ||H−1/2(0,2τ,L2(Ω)) ≤ ||F ||L2(0,2τ,L2(Ω)) ≤ cρ { ||yt||2L2(I×Ω) + ||y||2L2(I×Ω)

+ ||f ||2L2(I×Ω) }

and from 5.9 we get

||F ||H−1/2(0,2τ,L2(Ω)) ≤ ||F ||L2(0,2τ,L2(Ω)) ≤ c (||f |L2(I×Ω) + ||g(t)||L∞(I,H−1/2(Γ ))

+ || ∂
∂t
g(t)||L1(I,H−1/2(Γ )) )

+ ||f ||L∞(I,H−1(Ω)) + || ∂
∂t
f ||L1(I,H−1(Ω)) + [c E(0) + ||f(0)||H−1(Ω)

+ ||g(0)||H−1/2(Γ )]
1/2 (5.17)



460 J.-P. Zolésio and L. Bociu

Theorem 5.2. Let g ∈ W 1,1(0, 2τ,H−1/2(Γ ))∩H1/2(0, 2τ, L2(Γ )), f ∈ L2(I ×
Ω) ∩W 1,1(I,H−1(Ω)). Then there exist a constant k depending on the domain
Ω, on the L∞(I,W 1,∞(Ω))-norm of the coefficients matrix A, on the cutting
function ρ and on the trace of the linear trace operator (restriction to Γ in the
norm of L(H1

∗ (Ω), H1/2(Γ )) such that:

||y||2H1/2(0,τ,L2(Γ )) + ||y||2H−1/2(0,τ,H1(Γ )) ≤ k {(||f |L2(I×Ω)

+||g(t)||L∞(I,H−1/2(Γ )) + || ∂
∂t
g(t)||L1(I,H−1/2(Γ )) )

+ ||f ||L∞(I,H−1(Ω)) + || ∂
∂t
f ||L1(I,H−1(Ω))

+ [ E(0) + ||f(0)||H−1(Ω) + ||g(0)||H−1/2(Γ )]
1/2} (5.18)
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Abstract. The exactness of the penalization for the exact l1 penalty
function method used for solving nonsmooth constrained optimization
problems with both inequality and equality constraints is considered.
Thus, the equivalence between the sets of optimal solutions in the non-
smooth constrained optimization problem and its associated penalized
optimization problem with the exact l1 penalty function is established
under locally Lipschitz invexity assumptions imposed on the involved
functions.
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tion, Generalized Karush-Kuhn-Tucker optimality conditions.

1 Introduction

Considerable attention has been given in recent years to devising methods for
solving nonlinear programming problems via unconstrained minimization tech-
niques. One class of methods which has emerged as very promising is the class
of exact penalty function methods. Methods using exact penalty function trans-
form a constrained extremum problem into a single unconstrained optimization
problem. The constraints are placed into the objective function via a penalty
parameter c in a way that penalizes any violation of the constraints.

One important property that distinguishes exact penalty functions is the ex-
actness of the penalization. The concept of exact penalization is sometimes am-
biguous, or at least varies from author to author. One of the definitions of the
exactness of the penalization is the following: there is an appropriate penalty
parameter choice such that a single unconstrained minimization of the penalty
function yields a solution of the constrained optimization problem.

Nondifferentiable exact penalty functions were introduced for the first time
by Eremin [6] and Zangwill [17]. In almost all of the introduced penalized ap-
proaches the notion of convexity plays a dominant role. In 1970, Luenberger [13]
showed that, under convex assumptions, there is a lower bound for a penalty
parameter c, equal to the largest Lagrange multiplier in absolute value, associ-
ated to one of the constraints of the nonlinear constrained optimization problem.
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Later, Charalambous [3] generalized the result of Luenberger for the absolute
value penalty function, assuming the second-order sufficient conditions. Under
the assumptions that the minimization problem is solvable and that it satis-
fies the relaxed Slater constraint qualification, Mangasarian [14] characterized
solutions of the convex optimization problem in terms of minimizers of the ex-
act penalty function for a single value of the penalty parameter exceeding some
treshold. Bazaraa et al. [2] also used the exact l1 penalty function method to
solve nonlinear convex optimization problems with both inequality and equality
constraints. They assumed that the objective function and the inequality con-
straints are convex and the equality constraints are affine functions to prove that
a Karush-Kuhn-Tucker point in the original optimization problem is a minimizer
of the exact l1 penalty function in the associated penalized optimization prob-
lem with sufficiently large value of a penalty parameter. In the mentioned above
works, the lower bound of the penalty parameter above which, for all penalty
parameters, any optimal solution of the original nonlinear optimization problem
is also a minimizer of the penalized problem has been given for differentiable
optimization problems involving convex functions. However, from the practical
point of view, the converse result is also important.

In recent years, some numerous generalizations of convex functions have been
derived which proved to be useful for extending optimality conditions and some
classical duality results, previously restricted to convex programs, to larger
classes of nonconvex optimization problems. One of them is the invexity notion
introduced by Hanson [10] for differentiable scalar functions and later general-
ized from different points of view, also in the case of nondifferentiable functions
(see [1], [5], [8], [11], [12], [16], [18], and others).

Now, we show that there is the equivalence between the set of optimal solu-
tions in a nondifferentiable nonconvex optimization problem and the set of mini-
mizers in its associated exact penalized problem with the absolute value penalty
function. It turns out that this property is not true only for (differentiable) con-
vex optimization problems, but it still holds for nonlinear optimization problems
involving locally Lipschitz invex functions with respect to the same function η
(with the exception of those equality constraint functions for which the asso-
ciated Lagrange multipliers are negative – these functions should be assumed
to be incave with respect to the same function η). The result established here
shows that there does exist a lower bound for a penalty parameter c, equal to
the largest Lagrange multiplier in absolute value, associated to a Karush-Kuhn-
Tucker point in the original nonlinear optimization problem, above which this
equivalence holds. Further, in the case when at least one of the functions con-
stituting the nondifferentiable constrained optimization problem is not locally
Lipschitz invex and in the case when the objective function is coercive but not
invex, then the equivalence in the sense discussed here might not hold between
these optimization problems.
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2 Preliminaries and Problem Formulation

Throughout this section, X is a nonempty subset of Rn. A real-valued function
f : X → R is said to be locally Lipschitz on X if, for any x ∈ X , there exist
a neighborhood U of x and a positive constant Kx > 0 such that, for every
y, z ∈ U , it holds |f(y)− f(z)| � Kx ‖y − z‖. The Clarke generalized directional
derivative [4] of a locally Lipschitz function f : X → R at x ∈ X in the direction

v ∈ Rn, denoted f 0 (x; v), is given by f 0(x; v) = lim sup
y→x
λ↓0

f(y+λv)−f(y)
λ .

Definition 1. The Clarke generalized subgradient [4] of f at x ∈ X, denoted
∂f (x), is defined by ∂f (x) =

{
ξ ∈ Rn : f 0(x; v) ≥ ξT v for all v ∈ Rn

}
.

The following definition is a generalization of the definition of a class of differen-
tiable convex functions to the case of a class of locally Lipschitz invex functions
(see [10]).

Definition 2. [10] Let a function f : X → R be a locally Lipschitz function on
X and u ∈ X. If there exists a vector-valued function η : X×X → Rn such that,
for each x ∈ X, the inequality f(x)− f(u) ≥ ξT η(x, u) holds for any ξ ∈ ∂f (u),
then f is said to be a locally Lipschitz invex function at u on X with respect to
η. If the inequality above is satisfied at any point u, then f is said to be a locally
Lipschitz invex function on X with respect to η.

In order to define an analogous class of Lipschitz incave functions with respect
to η, the direction of the inequality in the definition of invex functions should
be changed to the opposite one.

Definition 3. [15] A continuous function f : Rn → R is said to be coercive if
lim‖x‖→∞ f(x) =∞.

Consider the following constrained optimization problem:

minimize f(x)
subject to gi(x) ≤ 0, i ∈ I = {1, ...m} ,

hj(x) = 0, j ∈ J = {1, ..., s} ,
x ∈ X,

(P)

where f : X → R and gi : X → R, i ∈ I, hj : X → R, j ∈ J , are locally
Lipschitz functions on a nonempty set X ⊂ Rn.

Let D := {x ∈ X : gi(x) ≤ 0, i ∈ I, hj(x) = 0, j ∈ J} be the set of all fea-
sible solutions of problem (P). Further, we denote a set of active inequality
constraints at point x ∈ X by I (x) = {i ∈ I : gi (x) = 0}.

Theorem 4. [4], [18] (Generalized Karush-Kuhn-Tucker necessary optimality
conditions). Let x ∈ D be an optimal solution in problem (P) and some suitable
constraint qualification be satisfied at x. Then, there exist λ ∈ Rm, μ ∈ Rs such
that

0 ∈ ∂f(x) +
m∑
i=1

λi∂gi(x) +
s∑

j=1

μj∂hj(x), (1)
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λigi(x) = 0, i ∈ J, (2)

λi ∈ R+, i ∈ J. (3)

We will assume that a suitable constraint qualification is satisfied at any optimal
point in problem (P).

Definition 5. The point x ∈ D is said to be Karush-Kuhn-Tucker point (a KKT
point, for short) if there exist the Lagrange multipliers λ ∈ Rm, μ ∈ Rs such
that the conditions (1)-(3) are satisfied at x.

3 The Exactness of the Exact l1 Penalty Function
Method

The most popular nondifferentiable exact penalty function is the absolute value
penalty function also called the exact l1 penalty function. Its definition, for the
considered optimization problem (P), is the following

minimize P (x, c) = f(x) + c

⎡⎣∑
i∈I

g+i (x) +
∑
j∈J

|hj(x)|

⎤⎦ , (P(c)) (4)

where, for a given constraint gi(x) ≤ 0, the function g+i is defined by

g+i (x) =

{
0 if gi(x) ≤ 0,

gi(x) if gi(x) > 0.
(5)

The unconstrained optimization problem defined above, we call the penalized
optimization problem with the absolute value penalty function.

It is known (see, for example, [2]) that under suitable convexity assumptions
and a constraint qualification, there exists a finite value c that will recover an op-
timal solution in the constrained optimization problem (P) via the minimization
of the exact penalty function being the objective function in the exact penal-
ized optimization problem (P(c)). Now, we generalize this result by weakening
the convexity assumption imposed on the functions constituting the considered
nonsmooth optimization problem (P).

Theorem 6. Let x ∈ D be a Karush-Kuhn-Tucker point in the constrained
optimization problem (P), at which the Generalized Karush-Kuhn-Tucker condi-
tions (1)-(3) are satisfied with the Lagrange multipliers λ ∈ Rm and μ ∈ Rs. Let
J+ (x) =

{
j ∈ J : μj > 0

}
and J− (x) =

{
j ∈ J : μj < 0

}
. Furthermore, assume

that the functions f , gi, i ∈ I, hj, j ∈ J+ (x), are locally Lipschitz invex at x on
X with respect to the same function η and the functions hj, j ∈ J− (x), are locally
Lipschitz incave at x on X with respect to the same function η. If c is assumed
to be sufficiently large (it is sufficient to set c ≥ max

{
λi, i ∈ I,

∣∣μj∣∣ , j ∈ J
}
,

where λi, i = 1, ...,m, μj, j = 1, ..., s, are the Lagrange multipliers associated to
the constraints gi and hj, respectively), then x is also a minimizer of its penalized
optimization problem (P(c)) with the absolute value penalty function.
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Proof. By assumption, x is a Karush-Kuhn-Tucker point in the constrained opti-
mization problem (P), at which the Generalized Karush-Kuhn-Tucker conditions
(1)-(3) are satisfied with the Lagrange multipliers λ ∈ Rm and μ ∈ Rs. Since
c ≥ max

{
λi, i ∈ I,

∣∣μj∣∣ , j ∈ J
}
, then, by definition of the objective function in

the penalized optimization problem (P(c)), it follows that

P (x, c) = f(x)+c

m∑
i=1

g+i (x)+c

s∑
j=1

|hj(x)| ≥ f(x)+

m∑
i=1

λig
+
i (x)+

s∑
j=1

∣∣μjhj(x)∣∣ .
(6)

Thus, (5) gives

f(x) +

m∑
i=1

λig
+
i (x) +

s∑
j=1

∣∣μjhj(x)∣∣ ≥ f(x) +

m∑
i=1

λigi(x) +

s∑
j=1

μjhj(x). (7)

By assumption, the inequality constraints gi, i ∈ I, and the equality constraints
hj , j ∈ J+ (x), are locally Lipschitz invex at x on X and the equality constraints
hj , j ∈ J− (x), are locally Lipschitz incave at x on X . Hence, by the Generalized
Karush-Kuhn-Tucker conditions (2) and (3) together with the feasibility of x in
problem (P), it follows that the inequality

f(x)+

m∑
i=1

λigi(x)+

s∑
j=1

μjhj(x) ≥ f(x)+

m∑
i=1

λiζ
T
i η (x, x)+

s∑
j=1

μjγ
T
j η (x, x) (8)

holds for any ζi ∈ ∂gi (x), i = 1, ...,m, and for any γj ∈ ∂hj (x), j = 1, ..., s.
Then, using the Generalized Karush-Kuhn-Tucker condition (2) , we get

f(x) +
∑m

i=1 λi
[
gi(x) + ζTi η (x, x)

]
+
∑s

j=1 μj
[
hj(x) + γTj η (x, x)

]
= f(x) +

∑m
i=1 λiζ

T
i η (x, x) +

∑s
j=1 μjγ

T
j η (x, x) .

(9)

Thus, by the Generalized Karush-Kuhn-Tucker necessary optimality condition
(1), it follows that

f(x) +

m∑
i=1

λiζ
T
i η (x, x) +

s∑
j=1

μjγ
T
j η (x, x) = f(x)− ξT η (x, x) , (10)

where ξ ∈ ∂f(x). By assumption, f is locally Lipschitz invex at x on X also
with respect to the function η. Using Definition 2 together with the feasibility
of x in problem (P), we get

f(x)− ξT η (x, x) ≥ f(x) = f(x) + c

m∑
i=1

g+i (x) + c

s∑
j=1

|hj(x)| = P (x, c) . (11)

Then, by (6)-(11), we conclude that the inequality P (x, c) ≥ P (x, c) holds for all
x ∈ X . This means that x is a minimizer of the penalized optimization problem
(P(c)) with the absolute value penalty function and the proof of theorem is
complete. �
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Corollary 7. Let x be an optimal point in the considered optimization problem
(P). Furthermore, assume that all hypotheses of Theorem 6 are fulfilled. Then x
is also a minimizer in the penalized optimization problem (P(c)) with the absolute
value penalty function.

Theorem 8. Let the point x be a minimizer of the penalized optimization prob-
lem (P(c)) with the absolute value penalty function. Furthermore, assume that
the functions f , gi, i ∈ I, hj, j ∈ J+ (x̃), are locally Lipschitz invex at x̃
on X with respect to the same function η, and the functions hj, j ∈ J− (x̃),
are locally Lipschitz incave at x̃ on X with respect to the same function η,
where x̃ is any Karush-Kuhn-Tucker point in problem (P), at which the Karush-
Kuhn-Tucker necessary optimality conditions (1)-(3) are satisfied with the La-

grange multipliers λ̃ ∈ Rm and μ̃ ∈ Rs. If the set of all feasible solutions in
the constrained optimization problem (P) is compact and the penalty parame-
ter c is sufficiently large (it is sufficient if c satisfies the following condition

c > max
{
λ̃i, i ∈ I, |μ̃j | , j ∈ J

}
), then x is also optimal in problem (P).

Proof. We assume that x is a minimizer in the penalized optimization problem
(P(c)) with the absolute value penalty function. Then, by the definition of the
penalized optimization problem (P(c)) and (5), the following inequalities f(x)+

c
(∑m

i=1 g
+
i (x) +

∑s
j=1 |hj(x)|

)
≥ f(x)+c

(∑m
i=1 g

+
i (x) +

∑s
j=1 |hj(x)|

)
≥ f (x)

hold for all x ∈ X . Thus, for all x ∈ D, the following inequality

f(x) ≥ f(x) (12)

holds. The inequality above means that values of the function f are bounded
below on the set D of all feasible solutions in the constrained optimization prob-
lem (P). Since f is a continuous function bounded below on the compact set D,
therefore, by Weierstrass’ theorem, f admits its minimum x̃ on D.

Now, we prove that x is also optimal in the considered optimization problem
(P). First, we show that x is feasible in problem (P). By means of contradiction,
suppose that x is not feasible in problem (P). As we have established above, the
given constrained optimization problem (P) has an optimal solution x̃. Since a
constraint qualification is satisfied at x̃, then there exist the Lagrange multipliers
λ̃ ∈ Rm and μ̃ ∈ Rs such that the Generalized Karush-Kuhn-Tucker necessary
optimality conditions (1)-(3) are satisfied at x̃. By assumption, the functions
f , gi, i ∈ I, hj, j ∈ J+ (x̃), are invex at x̃ on X with respect to the same
function η and the functions hj , j ∈ J− (x̃), are incave at x̃ on X with respect
to the same function η. Therefore, by Definition 2, respectively, it follows that
the inequalities

f (x)− f (x̃) ≥ ξT η (x, x̃) , (13)

gi(x)− gi(x̃) ≥ ζTi η (x, x̃) , i ∈ I, (14)

hj(x)− hj(x̃) ≥ γTj η (x, x̃) , j ∈ J+(x̃), (15)
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hj(x)− hj(x̃) ≤ γTj η (x, x̃) , j ∈ J−(x̃) (16)

hold for each ξ ∈ ∂f (x̃), ζi ∈ ∂gi (x̃), i = 1, ...,m, and γj ∈ ∂hj (x̃), j = 1, ..., s.
Multiplying (14), (15) and (16) by the associated Lagrange multiplier and then
adding both sides of the obtained inequalities and both sides of (13), we get

f (x)− f (x̃) +
∑m

i=1 λ̃igi(x)−
∑m

i=1 λ̃igi(x̃) +
∑s

j=1 μ̃jhj(x)−
∑s

j=1 μ̃jhj(x̃)

≥
[
ξT +

∑m
i=1 λ̃iζ

T
i +
∑s

j=1 μ̃jγ
T
j

]
η (x, x̃) .

Using (5) with the Karush-Kuhn-Tucker necessary optimality conditions (1), (2)
and the feasibility of x̃ in problem (P), we get

f (x) +

m∑
i=1

λ̃ig
+
i (x) +

s∑
j=1

μ̃j |hj(x)| ≥ f (x̃) . (17)

By assumption, the penalty parameter c is sufficiently large (it is sufficient that

c > max
{
λ̃i, i ∈ I, |μ̃j | , j ∈ J

}
. Since x is assumed to be not feasible in the

given optimization problem (P), therefore, at least one of g+i (x) and |hj(x)| must
be nonzero. Therefore, (17) yields

f (x) + c

⎡⎣ m∑
i=1

g+i (x) +

s∑
j=1

|hj(x)|

⎤⎦ > f (x̃) . (18)

Then, by x̃ ∈ D and (2), we get

f (x) + c

⎡⎣ m∑
i=1

g+i (x) +

s∑
j=1

|hj(x)|

⎤⎦ > f (x̃) + c

⎡⎣ m∑
i=1

g+i (x̃) +

s∑
j=1

|hj(x̃)|

⎤⎦ .
Then, by the definition of the exact l1 penalty function (see (4)), it follows that
the following inequality P (x, c) > P (x̃, c) holds, which is a contradiction to the
assumption that x is a minimizer in the penalized optimization problem (P(c))
with the absolute value penalty function. Thus, we have proved that x is feasible
in the given constrained optimization problem (P). Hence, the optimality of x
in problem (P) follows directly from (12). �

Corollary 9. Let the hypotheses of Corollary 7 and Theorem 8 are fulfilled.
Then, the set of optimal solutions in the considered extremum problem (P)
and the set of minimizers in its associated exact penalized optimization prob-
lem (P(c)) with the absolute value penalty function coincide.

Example 10. Consider the following nonsmooth optimization problem

f(x) = arctan (|x|)→ min

g(x) = 1
2

(
e|x|−x − 1

)
≤ 0.

(P1)
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Note that D = {x ∈ R : x ≥ 0} and x = 0 is an optimal solution in the consid-
ered nonsmooth optimization problem (P1). Since we use the exact l1 penalty
method for solving problem (P1), then we construct the following unconstrained
optimization problem

P (x, c) = arctan (|x|) + cmax

{
0,

1

2

(
e|x|−x − 1

)}
→ min . (P1(c))

Note that x = 0 is feasible in problem (P1) and the Generalized Karush-Kuhn-
Tucker necessary optimality conditions (1)-(3) are fulfilled at x with the La-
grange multiplier λ satisfying the following condition: 0 ∈ ∂f (x) + λ∂g (x),
where ∂f (x) = [−1, 1] and ∂g (x) = [−1, 0]. Further, it can be established by
Definition 2 that the objective function f and the constraint function g are lo-
cally Lipschitz invex at x on R with respect to the same function η defined by
η (x, x) = 1

2 (arctan (|x|)− arctan (|x|)). Then, by Theorems 6 and 8, it follows

that, for any penalty parameter c satisfying c > λ, there is the equivalence be-
tween the sets of optimal solutions in optimization problems (P1) and (P1(c)).
Further, note that not all functions involved in problem (P1) are differentiable
and convex. Therefore, in order to show that the point x = 0, being optimal in
(P1), is also a minimizer in the unconstrained optimization problem (P1(c)), we
can not use the conditions for convex smooth optimization problems (see, for
instance, Theorem 9.3.1 [2]).

Example 11. Consider the following nonsmooth constrained optimization
problem

min f(x) =

⎧⎪⎪⎨⎪⎪⎩
−x+ 4 if x < −4,
1
2x+ 10 if −4 ≤ x < 0,
−5x+ 10 if 0 ≤ x < 2,
x− 2 if x ≥ 2,

g(x) = x− 1
4 ≤ 0,

(P2)

in which not all functions are locally Lipschitz invex. Note that
D =

{
x ∈ R : x ≤ 1

4

}
and x = −4 is an optimal solution in the considered

optimization problem (P2). Since 0 ∈ ∂f (0) =
[
−5, 12

]
, then x̃ = 0 is a station-

ary point of f . It is not difficult to show that x̃ is not a global minimizer of f .
Then the objective function f is not locally Lipschitz invex on R with respect
to any function η defined by η : R × R → R (see, for example, [16]). However,
we use the exact l1 penalty method to solve the considered optimization problem
(P2). Therefore, we construct the following unconstrained optimization problem

P (x, c) = f(x) + cmax

{
0, x− 1

4

}
→ min (P2(c))

Note that x = −4, being an optimal solution in problem (P2), is not a global
minimizer in the associated penalized optimization problem (P2(c)) for all val-
ues of the penalty parameter c satisfying the condition c > λ = 0, (where λ is
the Lagrange multiplier associated to the inequality constraint g satisfying the
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Karush-Kuhn-Tucker necessary optimality conditions (1)-(3)). However, for ev-
ery penalty parameter c ∈ (0, 327 ), the point x̂ = 2 is a global minimizer in the
above penalized optimization problem (P2(c)). Therefore, there is no the equiva-
lence between the sets of optimal solutions in problems (P2) and (P2(c)) for any
penalty parameter c satisfying the condition c > λ. This follows from the fact
that not all functions constituting the considered optimization problem (P2) are
locally Lipschitz invex on R.

Remark 12. Peressini et al. [15] considered differentiable convex optimization
problems and solved them by using the exact l1 penalty function method. Under
assumption that the objective function in the constrained optimization problem
is coercive (see Definition 3), they proved that, for sufficiently large values of the
penalty parameter c, the constrained optimal solution in (P) is also a minimizer
in its associated penalized optimization problem (P(c)) with the exact l1 penalty
function. But the finite value of the penalty parameter c, above which this result
holds, was not given in [15]. Note that the objective function in the optimization
problem (P2) considered in Example 11 is coercive. However, for not all values
of the penalty parameter c satisfying the condition c > λ, an optimal solution
in the considered optimization problem (P2) yields a minimizer in its associated
penalized optimization problem (P(c)) with the exact l1 penalty function. But
the result proved in the paper shows that, under invexity assumptions imposed
on the functions constituting the constrained nonsmooth optimization problem
(P), for every value of the penalty parameter c satisfying the condition c >
max
{
λi, i ∈ I,

∣∣μj∣∣ , j ∈ J
}
, the sets of optimal solutions in problems (P) and

(P(c)) coincide. Hence, this example shows that in the case when the objective
function is coercive but not invex the result established in the paper might not be
true for such optimization problems.
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Abstract. One of the most important factors of users comfort inside
building is air temperature. From the other side one of the most biggest
position in home budget is price for heat. Mutually exclusive indices are
the cause that the control of temperature task using the smallest amount
of energy as it is possible is very difficult. In this paper is presented simple
model of temperature changes inside building base on lumped capacity
method. Using this method finally obtains mathematical model of tem-
perature changes which model is equivalent in structure to electrical RC-
network. The model is composed of linear differential equations. Based
on this mathematical model the simple algorithm controlling of temper-
ature inside room is proposed. In this article are also included numerical
simulations of the proposed solutions.

Keywords: building temperature model, control, optimization.

1 Introduction

Problem of optimal use of the heat energy for heating residential building is still
a current problem. Some of the main reasons for this are: still rising energy price
(electricity, gas, coal), still rising power consumption by household or environ-
mental pollution. The goal of this article is to present a control system which
stabilises the temperature inside the building with the using minimum amount
of energy.

The air temperature inside the building Ti depends on many factors. Some of
them like: solar radiation, wind, heating system, light, people, air ventilation are
showed on figure 1. Some of these factors are unpredicted like: people inside, light,
air ventilation. Some of them are periodical and can be measured or predicted,
for example: solar radiation, temperature outside, wind direction and force. The
physical phenomena of thermal conductivity are also very complex and described
by partial differential equations which depend on time and spatial variables. For
those reasons one and general thermal model of the building does not exist. On
the other hand for searching optimal controls the mathematical model of the

D. Hömberg and F. Tröltzsch (Eds.): CSMO 2011, IFIP AICT 391, pp. 471–480, 2013.
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Fig. 1. The temperature inside the building depends on many factors such as: heating
system, external air temperature, wind, solar heat, casual heat gains, structure of the
building

system is necessary. In the literature can be found three main methods to obtain
and identify an approximated thermal model of the building.

The first method: the impulse response factor method [1,8] is based on the
response of the model if the excitation is a unit impulse. Making some additional
assumptions and using the properties of Laplace transform the response of the
wall to this excitation function can be expressed as time series.

The second method is the finite difference method. This is a numerical method
for solving partial differential equation of the heat conduction [1,8]. The finite
difference method is based on approximation derivates by algebraic equation.
The building wall is divided into a finite number of layers and temperature for
each layers is computed using set of the algebraic equations.

The third method: the lumped parameter method (or other name the lumped
capacitance method) base on assumptions that transfer of the heat flux between
two spaces which are divided by partition (wall) can be modeled by the equiva-
lent electrical RC circuit [4,5,8]. The parameters of the electrical RC circuit like
resistances are interpreted as thermal resistances, capacities are interpreted as
heat capacities of the modeled elements. The physical properties of the construc-
tion elements of the building are represented by resistors and capacitors. The
lumped parameter method describes changes of the air temperatures or the tem-
peratures of the construction elements in one point. Finally, the mathematical
model which is obtained by using the lumped parameter method has the form
of linear differential equations. This model can be easily solved by analytical or
numerical methods. In this paper, the lumped parameter method was chosen for
modeling changes of the indoor air temperature of building.
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The plan of the article is as follow, the first section contains short description
of the lumped parameter method (LPM), next section contains description of
the LQR controller. The last section presents some of experimental results. At
the end of the article are contained conclusions and plans for the future works.

2 Thermal Modeling Methodologies

The most suitable form of the mathematical model of dynamic system for search-
ing of optimal control solutions, is form of the linear differential equations.

ẋ(t) = Ax(t) +Bu(t) +Zz(t) (1)

y(t) = Cx(t) (2)

where An×n – state space matrix, Bn×r – control matrix, Zn×k – noise matrix,
Cm×n – output matrix, x(t) ∈ X = Rn – state space vector, z(t) ∈ Z = Rk –
noise vector, u(t) ∈ U = Rr – control vector, y(t) ∈ Y = Rm – output vector.
In all simulations the noise matrix Z was assumed to zero.

2.1 LPM

The assumptions of the lumped parameters method is that the temperature of
the solid is spatially uniform at any instant during the transport of the heat
process [6]. The result of this assumption is that the heat flow between two
spaces which are separated by partition can be replaced by an equivalent RC
electrical circuit [4,5,8]. The lumped parameter method describes changes of the
temperature in one point so it is only an approximation of the real temperature.
These simplifications allow us use the linear differential equations instead of more
complicated partial differential equations. The lumped parameters method can
be used for materials for which the conductivity in the middle is larger than the
conductivity on the material surface [2,6].

As was said, the heat flow between two spaces which are separated by the
partition can be replaced by the electrical circuit and figure 2 shows this. The
meaning parameters are: the Rout and Rint thermal resistances of area outer
and inner, Ctotal thermal capacity of the partition. The equation of the heat
conduction based on the first-order model is:

Ctotal
dT

dt
=

(To − T )

Rout
+

(Ti − T )

Rin
+ q (3)

where q represents the other heat sources, T is uniform material temperature,
To is outer air temperature and Ti is inner air temperature. The wall on figure 2
consists one of the uniform material but in the real wall may be build more than
one of layers of the uniform materials. In this case, we can extend the model by
adding the next equations for each uniform layer [5,8]. Also, if is needed the more
accurate mathematical model we may add the next equations to the model [3,5].
All these operations finally increase total number of the equations and order of
the model.
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Ti

Ctotal

To Rout Rin

Wall

T
q

Fig. 2. Representation of the lumped parameter construction element

2.2 The Simple Thermal Model of Building

The state equations from (4) to (9) describe the thermal behaviour of more
complex space [4]. The space inside which temperature is modeled contains two
external walls , two partitions, floor and ceiling. In this case changes of the
temperature of the indoor air depend on much more factors.

C1Ṫ1 = U1(Ti − T1) + U2(T0 − T1) (4)

C2Ṫ2 = U3(Ti − T2) + U4(T0 − T2) (5)

C3Ṫ3 = U5(Ti − T3) + U6(Tz1 − T3) +Qs (6)

C4Ṫ4 = U6(Ti − T4) + U5(Tz2 − T4) (7)

C5Ṫ5 = U7(Ti − T5) + U7(Tz3 − T5) (8)

C6Ṫi = U1(T1 − Ti) + U3(T2 − Ti) + U5(T3 − Ti) (9)

+U6(T4 − Ti) + U7(T5 − Ti) + U8(To − Ti)

+Qp +Qg

The parameters are: T1 and T2 – temperature of the building structure, T3 and
T4 – temperature of the floor and ceiling, T5 – temperature of the partitions, To
– outdoor air temperature and Ti – indoor air temperature. The figure 3 shows
electrical circuit RC which is equivalent with the building thermal model. The
electrical parameters of this circuit correspond with physical parameters of the
building. The resistances are equivalent to overall thermal transmittance and ca-
pacities are equivalent to thermal capacity. As is shown on the figure 3 electrical
circuit has the form of the RC ladder network. The analytical solutions of the
model’s equations can be easily found and analysed and this is big advantage of
this type of the model.

In next simulations values of the parameters of the building like Ci and Ri

are the same as those adopted in the article [4].
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Fig. 3. The equivalent electrical circuit RC for the building thermal model given by
equations number from (4) to (9)

3 Temperature Control in the Building

The typical idealised behaviour of indoor air temperature is shown on figure 4.
As we can see the three different phases can be highlighted. The first phase,
when indoor air temperature should reach the reference value in given time. The
second phase when the air temperature should be stabilised on the specified
level. The third phase when the air temperature do not need to be stabilised or
controlled. This is idealised behaviour of indoor air temperature but generally
all more complicated schemas of the temperature changes can be described by
using those three phases.

Fig. 4. Typical idealised changes of indoor air temperature
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Only in the first and second phases is required active control of indoor air tem-
perature. The main goal of the control system is to control indoor temperature in
the first and second phases but in the first phase, time of control is also limited.
In this paper is proposed to use two different controllers. The finite-horizon LQR
controller which works in the first phase and the infinite-horizon LQR controller
which works in the second phase. The next two subsections are describe shortly
those controllers and are present their advantages and disadvantages.

3.1 The Finite-Horizon LQR Controller

The finite-horizon LQR controller minimizes the cost function (10) [7]:

J(x,u) =
1

2

∫ tk

0

(
x(t)TWx(t) + u(t)TRu(t)

)
dt+

1

2
x(tk)

TFx(tk). (10)

The matrices W , F , R are weight matrices and that matrices must be nonneg-
ative and symmetric and W = W T ≥ 0, F = F T ≥ 0 R = RT > 0, the pair of
matrices (A,B) is stabilisabe , the pair of matrices (W ,A) is detectable, tk –
is the control time. The control law is given by equation (11) [7]:

u(t) = −R−1BTK(t)x(t) (11)

where matrix K is unique, symmetric and nonnegative solution of Riccati dif-
ferential equation (12) [7]:

K̇(t) = K(t)BR−1BTK(t)−ATK(t)−K(t)A −W . (12)

The controller (11) is nonstationary because the values of matrix K depend on
time.

Simulation. The fig. 5 shows the result of simulation of the control system
with the finite-horizon LQR controller. The control task was to increase the
temperature value from 15 to 20 degrees in a finite time (75 minutes). The first
plot shows the change of the indoor air temperature Ti (9), the second graph
shows the change of the control signal u(t) (11). �

The finite-horizon LQR controller is complicated in practical applications. First
of all this is the nonstationary controller because the gain matrixK(t) is depends
on time. In order to compute matrix K(t) the Riccati differential equation (12)
must be solved. The same result, raise the value of indoor temperature from one
level to other level in finite time, can be obtained using the infinite-horizon LQR
controller with appropriate chose of the weight matrices, W and K.

3.2 The Infinite-Horizon LQR Controller

The infinite-horizon LQR controller minimizes a cost function (13) [7]:

J(x,u) =

∫ ∞

0

(
x(t)TWx(t) + u(t)TRu(t)

)
dt (13)
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Fig. 5. (a): Changes of the indoor air temperature Ti (9) and (b): the control signal
u(t) = Qp(t) (11)

where W = W T ≥ 0, R = RT > 0, the pair of matrices (A,B) is stabilisable,
the pair of matrices (W ,A) is detectable. The cost function (13) contains two
parts: a part which is joined with state space vector x(t) and part which is
joined with the control vector u(t). The matrices W and R are called the weight
matrices and appropriate selection of their values determines which part of cost
function is better stabilised. The infinite-horizon LQR controller is proportional
controller and the control law is given by equation (14) [7]:

u(t) = −R−1BTKx(t) (14)

where K is unique, symetric, nonnegative solution of algebraic Riccati equation:

KBR−1BTK −ATK −KA−W = 0. (15)

Simulation. The fig. 6 shows the result of simulation of the control system
with the infinite-horizon LQR controller. The control task was to increase the
temperature value from 15 to 20 degrees in a finite time (1 hour). The first plot
of figure 6 shows the change of the indoor temperature Ti (9), the second graph
shows the change of the feedback control signal u(t) (11). �

The infinite-horizon LQR controller is easier in practical applications because
the values of matrixK are constant and it is a stationary proportional controller.
By changing values of the matrices W and R is possible to modify in wide range
of how the controller works e.g. approximate time after which the desired value
of controlled variable will be achieved.

4 The Complex Control System

The goal is to build a control system which works properly in phase I and phase
II, see fig. 4. The control system will be implemented in a computer so this
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Fig. 6. (a): Changes of the inside temperature Ti (9) and (b): the control signal u(t) =
Qp(t) (11)

gives ability to build more complex control system. The infinite-horizon LQR
controller will be used because, as was said earlier, this kind of controller is
easy to use in practical applications. The figure 7 shows the block diagram of
proposed control system. The LQR controller number 1 works during phase I

Fig. 7. Scheme of the proposed complex control system

and the LQR controller number 2 works during phase II. The difference between
the two LQR controllers is in their values of weight matrices W and R. The
controller number 1 should achieve desired temperature in finite time of control.
The controller number 2 should stabilise temperature on desired level but time
of control is unknown. The block with title ”Switching algorithm” on figure 4
contains an algorithm which decide which of controllers should work currently.

Simulation. The fig. 8 shows the simulation result of the control system whose
block diagram is presented on figure 7. The control task was to increase the
temperature value from 15 to 20 degrees in a finite time and next stabilise this
temperature on desired level. The figure 8(a) shows the changes of the indoor
temperature Ti (9), the figure 8(b) shows the change of the control signal u(t)
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(11). At the beginning, the LQR controller number 1 is working, after some time
when desired the indoor temperature Ti is reached, the LQR controller number
2 starts to work . The moment of switched between the controller number 1 and
the controller number 2 can be observed on figure 8(b) as a step change of the
value of control signal u(t).

0 1 2 3 4 5 6 7 8 9 10
15

15.5

16

16.5

17

17.5

18

18.5

19

19.5

20

time [hours]

T
i [o  C

]

(a)

0 1 2 3 4 5 6 7 8 9 10
3500

4000

4500

5000

5500

6000

6500

7000

7500

time [hours]

Q
p [W

]

(b)

Fig. 8. Changes of the inside temperature (left plot) and the control signal u(t) = Qp(t)
(right plot)

The fig. 9 shows a comparison of the controls signals for the single LQR con-
troller (dotted line) and the control system which contains the two LQR con-
trollers (solid line). The control system which includes two LQR controllers uses
less energy to stabilise the temperature than system with one LQR controller
and the area between two curves corresponds to the amount of saved energy. �

5 Conclusions

This paper is presented the control system which contains two infinite-horizon
LQR controllers. The infinite-horizon LQR controllers were chosen because: the
control system is closed-loop system with negative feedback, simple structure of
the infinite-horizon LQR controller (proportional controller) and modifying the
weight matrices W and R can change the nature of the work control system.
Also, some disadvantages of the infinite-horizon LQR controller are existing like:
the LQR controller is a proportional controller so always is a deviation between
desired value and real value of controlled signal, the LQR controller for proper
work needs to know values of all coordinates of the state vector x(t) and in some
cases reconstruction of the non-measurable coordinates of the state variables is
needed. As shown by results of the simulations there is possibility to control
indoor air temperature efficiently and using less energy. The LQR controller
minimises the cost function which also takes into account the energy consump-
tion of the control signal. Recent times, can be observed the growing popularity
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Fig. 9. Comparison of the controls signals u(t) = Qp(t) for the single LQR controller
(dotted line) and the control system which contains the two LQR controllers (solid
line)

of wireless home automation devices. The future work will be concentrated on
practical implementation of the proposed solutions in devices which work in
ZWave and ZigBee standard.
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Abstract. This paper presents the application of the Discrete Linear
Quadratic Control (DLQC) method for a parameter optimization prob-
lem in a marine ecosystem model. The ecosystem model simulates the
distribution of nitrogen, phytoplankton, zooplankton and detritus in a
water column with temperature and turbulent diffusivity profiles taken
from a three-dimensional ocean circulation model. We present the lin-
earization method which is based on the available observations. The lin-
earization is necessary to apply the DLQC method on the nonlinear
system of state equations. We show the form of the linearized time-
variant problems and the resulting two algebraic Riccati Equations. By
using the DLQC method, we are able to introduce temporally varying
periodic model parameters and to significantly improve – compared to
the use of constant parameters – the fit of the model output to given
observational data.

Keywords: Optimal Control, Non-linear Systems, Parameter Optimiza-
tion, Biogeochemical Modelling, Discrete Linear Quadratic Regulator
Problem, Periodic Parameter, Discrete Riccati Equation.

1 Introduction

We consider nonlinear partial differential diffusion-advection systems of the form

∂xi

∂t
= −wi ∂x

i

∂z
+

∂

∂z

(
νρ
∂xi

∂z

)
+ qi(x,u), i = 1, 2, 3, 4 (1)

xi : [0, T ]× [−H, 0] −→ R.
Here z denotes the vertical spatial coordinate, H the depth in the water

column, qi represents the biogeochemical coupling terms for the four species and
u = (u1, . . . , up) is the vector of unknown physical and biological parameters.
The circulation data are the turbulent mixing coefficient νρ = νρ(z, t) and the
temperature Θ = Θ(z, t), which goes into the non-linear coupling terms qi, see
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(3). The vertical sinking velocity wi is a parameter of the biological model that
is nonzero only for x4, i.e. w1 = w2 = w3 = 0, w4 = ws > 0.

The state of the system is denoted by x = (x1, x2, x3, x4)� and the control
by u. A control problem is defined as

min
u
F(x,u) subject to (1), (2)

where F is a cost functional which will be introduced later.
Our main goals are:

– to minimize a least-squares type cost functional,
– to allow the parameters to vary temporally over the year while remaining

periodic over all years of the considered time interval.

The work presented in this paper is motivated by results obtained for a typical
marine ecosystem model, namely the NPZD model introduced in [1], [2]. As was
reported in several publications with different optimization algorithms, the qual-
ity of the model-to-dat fit was not optimal, and in some cases it was difficult
to identify the parameters uniquely, see for example [3],[5],[4]. In most cases,
the parameters of the marine ecosystem models are assumed to be temporally
constant. This reflects the aim to obtain a model that is applicable for arbitrary
time intervals. To solve this problems, we discretize and linearize the nonlinear
state (1) around a reference trajectories and we interpret it as a Discrete Linear
Quadratic Control (DLQC) problem. Therein, we allow the parameters to be
time-dependent, apply a well-established method for optimal control, and addi-
tionally impose the constraint of annual periodicity. This avoids the process of
parametrization in the sense that we do not have to know or assume how the
above mentioned periodic functions look like. In contrast, the method itself will
generate an optimal periodic function for each parameter. Moreover, it allows
to balance the two aims that we have: By introducing weight matrices we can
choose if it is more important to obtain a very good fit or nearly perfect peri-
odicity. The method requires a reference trajectory and a reference control, i.e.,
the vector of model parameters. The former can be taken from the measurement
data, and for the latter we use an initial guess for the parameters which can
be the output of an optimization with constant parameters. The outline of this
paper is as follows. In the next section we briefly described the model Equation
and optimization problem (2), the DLQC problem formulation in section 3. A
application of the DLQC method on the NPZD model is presented in section
4.3. Afterwards, we present our results with respect to the quality of the fit and
the periodicity of the parameters and end the paper with some conclusions.

2 Model Equations and Optimization Problem

In this section we give the formulations of the NPZD model and of the corre-
sponding parameter optimization problem and we formulate the optimization
problem for the discrete model.



DLQC for the Optimization of a Marine Ecosystem Model 483

2.1 Model Equations

This section describes the ecosystem model. The considered system (1) is a
spatially one-dimensional marine biogechemical model, that simulates the inter-
action of dissolved inorganic nitrogen N, phytoplankton P, zooplankton Z and
detritus D. It was developed with the aim of simultaneously reproducing obser-
vations at three North Atlantic locations by the optimization of free parameters
within credible limits, see [4]. The model uses the ocean circulation and tempera-
ture field in an off-line modus, i.e. these are used only as forcing, but no feedback
on them is modeled. The model simulates one water column at a given horizontal
position, which is motivated by the fact that there have been special time series
studies at fixed locations, one of which was used here. In the model, the concen-
trations (in mmol N m−3) of dissolved inorganic nitrogen N, phytoplankton P,
zooplankton Z, and detritus D, denoted by x = (xi)i=1,...,4 = (N,P, Z,D) are
described by the PDE system (1).

The biogeochemical source-minus-sink terms q = (qi)i=1,...,4 are explicit by
given in [1]:

q1(x,u) = −J̄(z, t, N)P + γ2Z + μDD,
q2(x,u) = J̄(z, t, N)P − μXP −G(P )Z,
q3(x,u) = γ1G(P )Z − γ2Z − μZZ

2,
q4(x,u) = (1− γ1)G(P )Z − μZZ

2 + μXP − μDD − ws
∂D
∂z

⎫⎪⎪⎬⎪⎪⎭ (3)

where J̄ is the daily averaged phytoplankton growth rate as a function of depth z
and time t, and G is the grazing function (see below). The remaining parameter
in the above equations are defined in [1],

G(ε, g) =
gεP 2

g + εP 2
J̄(z, t, N) = min

(
L(z, t), Jmax

N

K1 +N

)
, (4)

where L denotes the purely light-limited growth rate, and Jmax is the light-
saturated growth. For more details of J̄ , L and the parameters see [1], [4].

2.2 The Optimization Problem

The aim of the optimization is to fit the aggregated model output y = Cx
(C is called the output matrix) to the given observational data yobs. There
are five types of measurement data yobs = (yobsm )m=1,...,5, which correspond to
aggregated values y := (ym)m=1,...,5 of the model output see also [3]. Thus the
cost function can be written as:

F(x,u) := ‖Cx− yobs‖2,σ, (5)

where ‖‖2,σ is a Euclidean norm weighted using the vector

σ = (σl)l=1,...,5 = (0.1, 0.01, 0.01, 0.0357, 0.025)

of uncertainties corresponding to the five types of measurement data.
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3 DLQC Problem Formulation

We use a discrete linear time-varying (LTV) system, i.e. we assume that the dy-
namical system is already discretized in time, namely at discrete times
tk, k = 1, . . . ,M . In the context of the DLQC, one usually considers a discrete-
time system of the form:

xk+1 = Akxk +Bkuk, k = 1, 2, ...,M − 1

x1 (the given initial value), (6)

where in every time step k

– xk = x(tk) ∈ Rn is called the state vector (here the model output),
– uk = u(tk) ∈ Rp is the control (here the model parameter) vector, with the

parameter vector from the model (3).
– The matrix Ak ∈ Rn×n and Bk ∈ Rn×p are called the system matrix and

the input matrix, respectively.

We will use the notations

x = (xk)k=1,...,M ∈ R
M×n ∼= R

Mn,

u = (uk)k=1,...,M−1 ∈ R
(M−1)×p ∼= R

(M−1)p

for the whole discrete trajectories of state and control vector, respectively. The
quadratic cost function of this optimal control problem is defined by:

J (u) =
1

2
x�
MQMxM +

1

2

M−1∑
k=1

x�
k Qkxk + u�

k Rkuk, (7)

where in every time step k

– Qk is a positive semidefinite diagonal weighting matrix for the state vector
for every model time step k = 1, . . . ,M ,

– Rk is a positive definite diagonal weighting matrix for the control vector for
every model time step k = 1, . . . ,M − 1.

For the solution of a discrete linear quadratic optimal control problem with LTV
systems, there exists the following theorem, see [6].

Theorem 1. If the Qk, k = 1, . . . ,M, are positive semi-definite and the Rk, k =
1, . . . ,M − 1, are positive definite, then there exists a unique solution of the
DLQC (6), (7). The optimal control is given by the feedback law

uk = −Kkxk, k = 1, . . . ,M − 1.

Kk := (Rk +B�
k Xk+1Bk)

−1B�
k Xk+1Ak, k = 1, . . . ,M − 1

xk+1 = (Ak −BkKk)xk, k = 1, . . . ,M − 1.

where the (Xk)k=1,...,M−1, is the unique symmetric solution of the Discrete Ric-
cati Equation (DRE).

Xk = Qk +A�
k Xk+1Ak −A�

k Xk+1Bk(Rk +B�
k Xk+1Bk)

−1B�
k Xk+1Ak,

k = 1, . . . ,M − 1.

}
(8)
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4 Application of DLQC to the NPZD Model

In this section we apply the LQOC method to the discretized version of the
NPZD model. We present the details of discretization, linearization and the
enforcement of the periodicity of the parameters (controls).

4.1 Discretization Scheme

We use a discrete linear quadratic control (DLQC). For this purpose we present
the original discretization scheme of the model.

The NPZD model is forced by output from the OCCAM global circulation
model, namely the hourly vertical profiles of temperature t and vertical diffu-
sivity νρ. The vertical grid consists of 32 layers with thickness increasing with
depth. The time integration of the system (1) is performed by an operator split-
ting method:

– At first, the nonlinear coupling operators qk = (q1k, q
2
k, q

3
k, q

4
k)

�
k=1,...,M−1 are

computed at every spatial grid point and integrated by four explicit Euler
steps, each of which is described by the operator:

Bk(xk,uk) := (xk +
τ

4
qk(xk,uk)). (9)

This gives an intermediate iterate

x̂k := Bk ◦Bk ◦Bk ◦Bk(xk,uk).

– Then, an explicit Euler step with full step-size τ is performed for the sinking
term, which is spatially discretized by an upstream scheme. This step is
summarized in a matrix S. Since the sinking velocity is temporally constant,
this matrix does not depend on the time step k. Thus, at the end of this
step, an intermediate tracer vector x̃k is computed as

x̃k := Sx̂k, (10)

where S = (Ik + τAadv).
– Finally, an implicit Euler step is applied for the diffusion operator discretized

with second order central differences. The resulting matrix Dk for the diffu-
sion depends on k since the diffusion coefficient depends on time. The matrix
is tridiagonal, and the system is solved directly for xk+1

D̃kxk+1 = x̃k, (11)

where D̃k = (Ik − τDk)xk+1.
Summarizing, the discrete system can be written as

xk+1 = D̃−1
k SBk ◦Bk ◦Bk ◦Bk(xk,uk)

= D̃−1
k SG(xk,uk), k = 1, ...,M − 1, (12)

The function G is nonlinear and represents the discretized source minus sink
terms.
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4.2 Linearization of the Model

The LDQC approach is based on a linearization of (12) to obtain a linear time-
varying problem. The linearization is performed around reference trajectories
(xrk,u

r
k)k=1,...,M−1. For the reference state trajectory we take available the ob-

servational data, is taken from the Bermura Atlantic Time-series Study (BATS)
see also [7], the choice of the reference control trajectory is described in below.
The linearized state equation now reads

x̃k+1 = Akx̃k +Bkvk + rk, k = 1, . . . ,M − 1, (13)

where

Ak = D̃−1
k S

∂G

∂x
(xrk,u

r
k), Ak ∈ R

n×n

Bk = D̃−1
k S

∂G

∂u
(xrk,u

r
k) Bk ∈ R

n×p,

rk = D̃−1
k SG(xrk,u

r
k)− xrk+1, rk ∈ R

n

x̃k = xk − xrk, vk = uk − urk, x̃k ∈ R
n, vk ∈ R

p.

Now we write the linearized problem in the form of a (LDQC) problem, therefore
we set:

x̂k :=

(
x̃k
1

)
, Âk =

(
Ak rk
0 1

)
, B̂k =

(
Bk

0

)
, Q̂k =

(
Qk 0
0 0

)

where x̂k ∈ Rn+1, Âk ∈ R(n+1)×(n+1), B̂k ∈ R(n+1)×p, Q̂k ∈ R(n+1)×(n+1). The
linearized state equation (13) can be written in a form similar to (6), namely as:

x̂k+1 = Âkx̂ + B̂kvk k = 1, ...,M − 1. (14)

Enforcing Periodicity of the Parameters. A main objective of this work
is to enforce periodicity of the parameters/controls. For this purpose, let us
assume that the length of a time period – measured in time steps – is T > 0
and that M mod T = 0. We now chose the reference trajectory for the control
ur = (urk)k=1,...,M−1 ∈ R(M−1)p to be

urk :=

{
u0, if k ≤ T
uk−T , if k > T.

(15)

Where u0 is the parameter vector determined by optimization in [1], that was
used as an initial guess here. we will enforce periodicity of uk = urk + vk =
uk−T + vk for k ≥ T + 1.
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4.3 Application to NPZD Model

From Theorem 1 in section 3, the optimal control is given by

vk = −(Rk + B̂�
k X̂k+1B̂k)

−1B̂�
k X̂k+1Âkx̂k, k = 1, . . . ,M − 1.

According to (15), we find

uk =

{
u0 − (R + B̂�

k X̂k+1B̂k)
−1B̂�

k X̂k+1Âkx̂k, if k ≤ T,

uk−T − (Rk + B̃�
k X̂k+1B̂k)

−1B̂�
k X̂k+1Âkx̂k, if k > T.

Here the X̂k can be computed backwards in discrete time, starting from

X̂M = Q̂M , (16)

as the unique symmetric solutions of the Discrete Riccati equations (8). We set

X̂k =

[
Xk hk
h�k αk

]
(17)

with hk ∈ Rn and αk ∈ R for k = 1, . . . ,M − 1. we easily get

uk =

{
u0 +Kkzk + Sk, if k ≤ T,

uk−T +Kkzk + Sk, if k > T,

where Kk and Sk are given by

Kk = −(Rk +B�
k Xk+1Bk)

−1B�
k Xk+1Ak, k = M − 1, . . . , 1

Sk = −(Rk +B�
k Xk+1Bk)

−1B�
k (Xk+1rk + hk+1), k = M − 1, . . . , 1.

Now, the system (16), (17) to compute the Xk can be separated into

XM = QM ,

Xk = Qk +A�
k XkAk −A�

k Xk+1Bk(Rk +B�
k Xk+1Bk)

−1B�
k Xk+1Ak,

k = M − 1, . . . , 1.

To evaluate the Xk and an additional difference equation for the hk, namely

hM = 0,

hk = A�
k (Xk+1rk + hk+1)−A�

k Xk+1Bk(Rk +B�
k Xk+1Bk)

−1B�
k (Xk+1rk + hk+1),

k = M − 1, . . . , 1.

For the application on the NPZD Model, Qk is to be constant for all k, this can
be written as following

Qk = diag(
1

σ2
l

)l=1,...,5, k = 1, . . . ,M − 1,

and the matrix Rk can be written as

Rk = diag

⎧⎪⎨⎪⎩
1

|(u0)i|2
, i = 1, . . . , p, k = 1, . . . , T

1

|(uk−T,i|2
, i = 1, . . . , p, k = T + 1, . . . ,M − 1
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5 Optimization Results

5.1 Fit of Model Output to Observational Data

This section shows a comparison between the optimized model output obtained
by the DLQC method with periodic parameters and the observational data. As a
reference we also compare the results to those obtained by a direct optimization
of the nonlinear model using constant parameters with a Sequential Quadratic
Programming (SQP) method that takes into account parameter bounds. This
method was used in [4]. We performed the optimization for the years 1994 to
1998, in contrast to the years 1991 to 1996 that were used in [4]. The reason
for this is that no zooplankton data are available at BATS for the years 1991
to 1993, which would be disadvantageous for the linearization procedure in the
DLQC method. In [4] a minimum value of the cost function (5) of F ≈ 70
was obtained for optimized constant parameters for the five year time interval
[1991, 1996]. For the time interval [1994, 1998] a comptation with the method
used in [4] gave a very similar value. In contrast to these and other (as in [3])
earlier results obtained for constant model parameters, the DLQC method gives
a nearly perfect fit of the data. Figure 1 shows the model results y obtained
with the DLQC method together with the observational data yobs for the years
1994 to 1998. The model-data fit for y2 = P (chlorophyll a) is nearly perfect.
Even substantial concentration changes that occur between some neighboring
measurement points (e.g. for y4 = P + Z +D (particulate organic nitrogen), in
1994, 1995 or 1997) can be captured by the optimized trajectory. There are only
some parts of the time interval where the trajectories are slightly farther away
from the data, for example in 1996 for zooplankton and in the last two years of
the simulated time interval for PON.
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Fig. 1. Observational data yobs
i , i = 1, .., 4 and aggregated model trajectories yi, i =

1, .., 4 , optimized with periodic parameters obtained by the DLQC method. Values are
shown for the upper layer (depth less than 5 meters) and years 1994-1998.
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5.2 Periodicity of the Parameters

we show here that the above model-to-data fit can be achieved by almost annually
periodic parameters. This was possible due to an appropriate adjustment of the
matricesQk and Rk,K = 1, . . . ,M−1, in the cost function (7) used in the DLQC
framework, see sectionl 4.3. Thus both the annual periodicity of the parameters.
Due to the choice of the reference values for the parameters in the first year, we
could also keep the parameters in their desired bounds, although these bounds
need not to be imposed explicity. Figures 2 illustrate the temporal behavior of
the selected four parameters that were optimized with the DLQC method. In
these figure, the temporal changes of the parameters are plotted against the
actual times of the linearization points which are determined by the available
measurements. Obviously, the DLQC method then leads to perfectly periodic
parameters.

,
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Fig. 2. Periodicity of the selected optimal parameters un,1 = γ1, un,4 = γ2, un,6 =
g, un,8 = μz, obtained by the DLQC method

6 Conclusion

In this paper, we successfully applied the method linear quadratic optimal control
to the optimization of an one-dimensional marine ecosystem model. The model
has to be linearized to fit in the LQOC frame work. The method permits perfect
periodic evolution of model parameters and additionally notably improves the
fit of the data in comparison with the solution with fixed model parameters. We
demonstrated that the LQOC optimization is suitable for the considered prob-
lem and furthermore have shown that this method provides a very reasonable
solution. Even with the available small number of observational data, which is
typical to oceanographic time series sites, its quality is very high. Temporal devi-
ations of individual parameters about the annual mean can be analyzed further
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to help making inferences about processes that the model cannot describe well
when constant parameters are used. This analysis should contribute to a better
understanding of model deficiencies and may improve marine ecosystem models.
A next step could be to use only a part of the time horizon to estimate the pe-
riodic parameters and verifying the model and the parameters on the remaining
part of the data.

Acknowledgements. The authors would like to thank Johannes Rückelt, In-
stitute of Computer Science, Christian-Albrechts-Universität zu Kiel, for a direct
optimization of the nonlinear model using constant parameters with a Sequential
Quadratic Programming (SQP) method over the years 1994 to 1998.
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Abstract. The article suggests a conceptual model-based simulation
method with the aim to detect collision of cars in all-day road traffic.
The benefit of the method within a driver assistance system would be
twofold. Firstly, unavoidable accidents could be detected and appropriate
actions like full braking maneuvers could be initiated in due course. Sec-
ondly, in case of an avoidable accident the algorithm is able to suggest
an evasion trajectory that could be tracked by a future active steer-
ing driver assistance system. The algorithm exploits numerical optimal
control techniques and reachable set analysis. A parametric sensitivity
analysis is employed to investigate the influence of inaccurate sensor
measurements.

Keywords: driver assistance, collision avoidance, optimal control, reach-
able sets, parametric sensitivity analysis.

1 Introduction

Over the years many passive and active safety systems have been developed
for modern passenger cars with the aim to reduce the number of casualties in
traffic accidents. Passive safety systems contain amongst others improvements
of the chassis, airbags, seat belts, and seat belt tighteners. These safety sys-
tems help to reduce the severeness of accidents once an accident has occured. In
contrast, semi-active safety systems and driver assistance systems, for instance
anti-blocking system, braking assistant, anti-slip regulation, electronic stability
control, adaptive cruise control, lane departure warning, or blind spot interven-
tion, become active in critical situations before an accident occurs and intend
to prevent accidents. In future, active driver assistance systems that actively
initiate braking maneuvers or even active steering maneuvers to avoid obstacles
will become relevant in order to detect potential collisions and reduce severeness
of collisions. The availability of high performance sensors will play a central role
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in future collision avoidance systems. But next to the required technical devices,
intelligent software systems and algorithms will play a crucial role as well. The
main tasks in collision avoidance are to reliably indicate future collisions and –
if possible – to provide escape trajectories if such exist. This paper suggests an
optimal control based method that has the potential of fulfilling these two tasks.

2 Model Scenarios

We investigate two model scenarios that are likely to occur in all-day traffic.
According to [9] wrong velocity, short distance, and overtaking maneuvers are
responsible for approximately 29.7 % of accidents with injuries to persons. The
following model scenarios address these situations, see Figure 1. The typical time
to collision ranges from 0.5 to 3 seconds. For simplicity we assume a straight
road throughout. A reference coordinate system is used with the x-axis pointing
into the longitudinal direction of the road and the y-axis pointing in the cross-
direction of the road.

Scenario 1: A stationary obstacle at a given distance to an approaching car,
which drives at a prescribed speed, has to be avoided.

Scenario 2: An overtaking maneuver on a highway is considered. One car (car
A) has initiated an overtaking maneuver to overtake car B while another car
(car C) is approaching at a prescribed speed.

Fig. 1. Collision avoidance model scenarios: stationary obstacle (left) and overtaking
maneuver (right)

For these two model scenarios we aim at answering the following questions:

– Can a collision be avoided?
– If a collision can be avoided, how can it be avoided?

3 Model of the Car

In this article the single-track car model is used. It is a simplified car model,
which is commonly used in the automobile industry for basic investigations of
the dynamical behavior of cars. It is based on the simplifying assumptions that
rolling and pitching behavior of the car body can be neglected. The car model
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includes two control variables for the driver: the steering angle velocity |wδ| ≤ 0.5
[rad/s] and a function FB with values in [FBmin, FBmax], FBmin = −5000 [N ],
FBmax = 15000 [N ], which models a combined brake (if FB > 0) and acceleration
(if FB < 0) assembly. Details on the model can be found in [5,6,7]. The dynamics
are given by the following system of differential equations for the car’s center of
gravity (x, y) in the plane, the yaw angle ψ, the velocities vx and vy in x- and
y-direction, respectively, the yaw angle rate wψ , and the steering angle δ:

x′ = vx, y′ = vy, ψ′ = wψ , δ′ = wδ, (1)

v′x =
1

m
[Fx cosψ − Fy sinψ] , (2)

v′y =
1

m
[Fx sinψ + Fy cosψ] , (3)

w′
ψ =

1

Izz
[Fsf · lv · cos δ − Fsr · lh + Flf · lv · sin δ] , (4)

The functions Fx, Fy, Fsf , Fsr , Flf denote forces (in x-, y-direction, as well as
lateral and longitudinal tyre forces at front and rear wheels) and are smooth
nonlinear functions of the state (x, y, ψ, vx, vy, wψ , δ) and m, Izz , lv, lh are con-
stants. For further details please refer to [5,6,7]. For the following numerical
computations we used realistic data for the various parameters involved in this
model. Unfortunately, these parameter values are proprietary and may not be
published. For a different parameter set which is quite realistic please refer to [5].

4 Collision Detection and Collision Avoidance

Once an obstacle has been detected by suitable sensors, e.g. radar or lidar, we
use the following approaches to decide whether a collision is going to happen or
not. As we intend to use optimal control to model the scenarios, as a by-product
we obtain evasion trajectories if such exist at all. We investigate three different
approaches. Herein, it is assumed for simplicity that the obstacle in scenario 1
is fixed close to the right boundary of a straight road as in the left picture in
Figure 1. Moreover, the following approaches assume that the constellation of
car and obstacle is such that a collision cannot be avoided by just applying a
full braking maneuver.

4.1 Approach 1: Reaching a Safe Target Position for Scenario 1

The first approach aims at reaching a safe target state, which should be defined
such that the evading car is able to avoid the obstacle and moreover is able to
continue its drive after the obstacle has been passed. This approach is modeled
by the following optimal control problem OCP(y0, vx,0):

Minimize

c1tf + c2d+ c3

∫ tf

0

wδ(t)
2dt
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subject to the equations of motion (1)-(4) with initial condition

(x(0), y(0), ψ(0), vx(0), vy(0), wψ(0), δ(0)) = (0, y0, 0, vx,0, 0, 0, 0),

the control constraints |wδ| ≤ wδ,max, FB ∈ [FB,min, FB,max], the pure state
constraint

ymin ≤ y(t) ≤ ymax,

and boundary conditions

x(tf ) = d, vy(tf ) = 0, y(tf ) ≥ ytarget.

Herein, the final time tf is supposed to be free and c1, c2, c3 ≥ 0 are suitable
constants. y0 is the initial y-position of the evading car on the road, vx,0 is
the initial velocity in x-direction of the evading car. ymin and ymax define the
boundaries of the road. The terminal constraint vy(tf ) = 0 shall ensure that
the evading car can continue its drive beyond tf without leaving the road im-
mediately. ytarget defines a y-position sufficiently far away from the obstacle’s
y-position (safe target position).
d is the initial distance of the evading car to the obstacle. If c2 > 0, then d

is assumed to be an additional optimization parameter. The resulting optimal
control problem then aims at finding the minimal distance to the obstacle that
still allows to avoid a collision. If c2 = 0, then d is supposed to be a fixed distance.
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Fig. 2. Avoidance trajectory for vx,0 = 35, y0 = 1.75, ytarget = 3.85: center of gravity
and velocity in x-direction (top), steering angle velocity and braking/acceleration force
(bottom). The distance d computes to 35.6798 and the final time tf to 1.1399.
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In this case, it might happen that the problem becomes infeasible owing to the
constraint y(tf ) ≥ ytarget. A remedy in this case is approach 2 below.

Figure 2 shows the result for ymin = 0.9, ymax = 6.1, y0 = 1.75, vx,0 = 35,
c1 = c2 = 0.1, c2 = 0.2, wδ,max = 0.5, FB,min = −5000, FB,max = 15000,
ytarget = 3.85. The minimal distance computes to d = 35.6798 [m] and the final
time (time to collision) is tf = 1.1399 [s].

Approach 1 yields one single optimal trajectory provided an avoidance tra-
jectory exists. This avoidance trajectory could be tracked by a real car.

However, the solution depends on the definition of the safe target position
ytarget and it does not exist if a collision is unavoidable. Therefore it would be
nicer to have full information about what points on the road can actually be
reached by the evading car. This leads to the following reachable set approach.

4.2 Approach 2: Computing the Projected Reachable Set

The second approach aims at providing all points on the road that can be reached
by the evading car in finite time tf from a given initial state with boundary
condition vy(tf ) = 0. More precisely, we aim at computing the projected reachable
set

PR :=
⋃

d∈[dmin,dmax]

⋃
y∈PR(d)

{(d, y)},

where

PR(d) :=
{
ŷ ∈ R | ∃ final time tf > 0, controls wδ, FB ,

and states x, y, ψ, vx, vy, wδ, δ such that

dynamics and constraints are satisfied

and ŷ = y(tf ), x(tf ) = d, vy(tf ) = 0
}

denotes the projected reachable set at initial distance d. Note that we are not
interested in the reachable set at tf for the full state vector but only for the
components x and y. In order to approximate the projected reachable set we
employ the optimal control technique in [1,2], which for a simplified setting
allows a first order approximation. The set PR is approximated as follows. For
N,M ∈ N and step-sizes h = (dmax − dmin)/N and k = (ymax − ymin)/M let

Gh,k = {(di, yj) ∈ R
2 | di = dmin+ih, yj = ymin+jk, i = 0, . . . , N, j = 0, . . . ,M}

denote a grid covering the road region of interest. Then for each grid point
(di, yj) ∈ Gh,k the following optimal control problem is solved:

Minimize
1

2
(y(tf ))− yj)

2

subject to the equations of motion (1)-(4) with initial condition

(x(0), y(0), ψ(0), vx(0), vy(0), wψ(0), δ(0)) = (0, y0, 0, vx,0, 0, 0, 0),
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the control constraints |wδ| ≤ wδ,max, FB ∈ [FB,min, FB,max], the pure state
constraint

ymin ≤ y(t) ≤ ymax,

and boundary conditions x(tf ) = di, vy(tf ) = 0.

Let x∗i,j(·) and y∗i,j(·) denote the optimal solution components of the state vector.
The projected reachable set is approximated by collecting all grid points in Gh,k

with distance of order O(h+ k) to end points of trajectories:

PRh,k :=
⋃

(di,yj )∈Gh,k :

‖(x∗
i,j

(tf ),y∗
i,j

(tf ))−(di,yj)‖≤C(h+k)

{(di, yj)}.

Herein, C > 0 is a constant. In [2] it is shown that the approximation PRh,k

convergences in the Hausdorff distance to PR of order O(h + k) as h and k
approach zero, if PR is closed and non-empty. Direct discretization techniques
for the numerical solution of the optimal control problem introduce a further
approximation to PRh,k whose convergence properties for a special setting are
analyzed in [2] as well.

The projected reachable set approximations PRh,k are depicted in Figure 3
for different initial velocities and the data ymin = 1.3, ymax = 5.7, dmin = 10,
dmax = 200, y0 = 1.75, FB,min = −5000, FB,max = 15000. The optimal control
problems have been solved by the software OCPID-DAE1 [8].

Note that the obstacle car is not taken into account in the optimal control
problems. But once the projected reachable set is known, it can be decided for a
given obstacle position whether a collision can be avoided or not by investigating
the remaining space in the projected reachable set outside the obstacle at the
x-position of the obstacle.

4.3 Approach 3: Feasibility Problem for Scenario 2

For a fixed obstacle it is comparatively simple to define a safe target position
or to approximate the projected reachable set, but for moving objects as in the
overtaking maneuver in Figure 1 it is not, since a collision with all other moving
cars has to be avoided at all times. In the overtaking scenario in Figure 1 let
car A denote the car that overtakes a car called car B and car C is the car
approaching car A in opposite direction. Cars B and C are supposed to drive at
constant velocity in a straight line. Anti-collision constraints lead to the following
pure state constraints, where W denotes the maximum width of the cars (for
simplicity we use balls to model the anti-collision constraints):

(xA(t)− xB(t))
2 + (yA(t)− yB(t))

2 ≥W 2, (don’t hit car B)

(xA(t)− xC(t))
2 + (yA(t)− yC(t))

2 ≥W 2, (don’t hit car C)

Unfortunately, these constraints will be infeasible if there is no way to avoid a
collision. Of course, in this case the resulting optimal control problems do not
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vx,0 = 75 km/h :

vx,0 = 100 km/h :

vx,0 = 150 km/h :

vx,0 = 250 km/h :

Fig. 3. Projected reachable sets for initial velocities vx,0 = 75, 100, 150, 250 [km/h].
The approaching car can avoid a collision with the obstacle in the first three settings,
but not in the final setting, if the measurements of the obstacle and the approaching
car are taken into account.

have a solution and numerical methods will fail. In order to circumvent this
problem the relaxed constraints

(xA(t)− xB(t))
2 + (yA(t)− yB(t))

2 + α ≥W 2,

(xA(t)− xC(t))
2 + (yA(t)− yC(t))

2 + α ≥W 2

are considered, where α denotes the maximal constraint violation. Now, an op-
timal control problem with the aim to minimize the constraint violation α is
solved subject to the above constraints. A collision detection algorithm is then
given by considering the minimal constraint violation α∗. If α∗ > 0, then a col-
lision cannot be avoided (the anti-collision constraints cannot be satisfied). If
α∗ ≤ 0, then a collision can be avoided with a trajectory that is produced by
the optimal control problem. We illustrate the outcome for the following data:
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– car A: 100 [km/h], car B: 75 [km/h], car C: 100 [km/h]
– car width 2.6 [m], road width 7 [m]
– initial y-position of car A : 5.25 [m]

initial y-position of car B : 1.75 [m]
initial y-position of car C : 5.25 [m]

Table 1 summarizes the results for different initial distances of cars A and C
obtained with OCPID-DAE1 [8]. Amovie that visualizes the overtakingmaneuver
with initial distance of 60m can be downloaded on the homepage of the first author.

Table 1. Results for the constraint minimization problem for the overtaking maneuver

initial distance constraint violation α∗ collision
[m] [m]

10 0.24780E+01 yes
20 0.22789E+01 yes
30 0.21355E+01 yes
40 0.19351E+01 yes
50 0.94517E-01 yes
60 0.74140E-08 no
...

...
...

190 0.74593E-08 no
200 0.74760E-08 no

5 Sensor Influence

In the collision avoidance scenarios, the initial position, i.e the constellation of
evading car and obstacles, is determined by sensor measurements. These sensor
measurements are subject to measurement errors and hence it is important to
investigate how the optimal solution depends on these sensor measurement er-
rors. We outline this for approach 1 and consider the initial values y0 and vx,0
to be parameters in the optimal control problem OCP(y0, vx,0). We apply the
sensitivity analysis in [3], which exploits the sensitivity results in [4] for finite
dimensional optimization problems. To this end, OCP(y0, vx,0) is discretized us-
ing piecewise constant control approximations wδ,j ≈ wδ(tj) and FB,j ≈ FB(tj),
j = 0, . . . ,K, and Runge-Kutta approximations for the state on a grid with grid
points tj , j = 0, . . . ,K. The discretized problem is a finite dimensional nonlin-
ear optimization problem, which is solved for nominal parameters ŷ0 and v̂x,0.
If the nominal optimal solution satisfies the assumptions of the sensitivity theo-
rem in [4], i.e. second order sufficient conditions, linear independence constraint
qualification and strict complementarity, then it was shown that the solution
locally depends continuously differentiable on the parameters y0 and vx,0 and
the sensitivities of the optimal control discretization with respect to the initial
values y0 and vx,0 can be computed, that is we obtain the sensitivities

dwδ,j

(y0, vx,0)
(ŷ0, v̂x,0),

dFB,j

(y0, vx,0)
(ŷ0, v̂x,0), j = 0, . . . ,K.
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Fig. 4. Sensitivity differentials for the optimal controls of OCP(ŷ0, v̂x,0) at ŷ0 = 1.75
and v̂x,0 = 35: Control and sensitivities of wδ w.r.t. y0 and vx,0 (left) and of FB w.r.t.
y0 and vx,0 (right)

The sensitivities indicate how sensitive the solution depends on perturbations
in the initial values and hence can help to specify tolerances for sensors. We
omit the details here since this sensitivity approach became quite standard in
the meanwhile. Details can be found, e.g., in [3].

Figure 4 shows the sensitivity differentials for the controls wδ and FB with
respect to y0 and vx,0 at the nominal parameters ŷ0 = 1.75 and v̂x,0 = 35. From
the pictures it can be concluded that a perturbation in the initial y-position has
the highest influence on the controls wδ and FB . A perturbation of the initial
velocity vx,0 has less influence. Hence, the sensor measurement of the y-position
(respectively, the offset to the obstacle) should be more accurate than the sensor
measurement of the velocity. More elaborate investigations regarding the defini-
tion of sensor tolerances that are necessary to achieve a certain performance are
currently under investigation.
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Please note that the above sensitivity approach does not work for the optimal
control problems in approach 2 as those do not satisfy the assumptions of the
sensitivity theorem in [4] whenever a grid point is in the projected reachable set.
Adding a regularization term in the objective function might help to overcome
this difficulty and would allow to investigate the dependence of the projected
reachable set on sensor measurements.

6 Outlook

The paper suggests different approaches to an avoidance trajectory system based
on optimal control techniques, reachable set computations, and sensitivity analy-
sis. Many extensions are possible, e.g. computation of driver-friendly trajectories
for active steering driver assistance systems, more complicated road geometries,
real-time approximations, investigation of worst-case scenarios or cooperative
control in the presence of many moving objects, and the investigation of param-
eter dependence of the projected reachable set. These issues are currently under
investigation.
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Abstract. We present the investigation of a biogeochemical marine
ecosystem model used as part of the climate change research focusing on
the enhanced carbon dioxid concentration in the atmosphere. Numerical
parameter optimization has been performed to improve represention of
observational data using data assimilation techniques. Several local min-
ima were found but no global optimum could be identified. To detect the
actual capability of the model in simulating natural systems, a theoreti-
cal analysis of the model equations is conducted. Here, basic properties
such as continuity and positivity of the model equations are investigated.

Keywords: Climate models, Marine ecosystem models, Parameter op-
timization, Ordinary differential equations.

1 Introduction

An important part of climate change research is the investigation of biogeochemi-
cal processes occurring in the oceans. The Earth’s carbon cycle, one of the main
climate drivers, is highly dependent on the marine ecosystem and its interac-
tions due to primary carbon producers such as phytoplankton. For this reason,
scenarios of the climate’s future are commonly created from numerical models,
including a submodel to simulate the marine ecosystem. These submodels range
from conceptually simple models, like the FDM model by Fasham [1], to highly
complex models simulating numerous components of the marine ecosystem such
as different types of plankton or multiple nutrients (see e.g. [2,3,4]).

In this work, we consider a model of mid-complexity used at GEOMAR, Kiel
studying the CO2 uptake of the ocean. Four components of the marine ecosys-
tem, namely nitrogen (N), phytoplankton (P), zooplankton (Z) and detritus (D)
are simulated in this model. The model, hereafter called NPZD model, depicts
the main interactions and feedbacks of the marine ecosystem. However, its fea-
sibility to reproduce real observed data is limited (see e.g. [5,6]). Currently, the
reason for this fact is unclear and is the motivation for this study.

� In cooperation with Andreas Oschlies, GEOMAR, Kiel, Germany.

D. Hömberg and F. Tröltzsch (Eds.): CSMO 2011, IFIP AICT 391, pp. 501–510, 2013.
c© IFIP International Federation for Information Processing 2013
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We introduce two methods used. Numerical parameter optimization is con-
ducted to assess the influence of different parameter combinations on the model
outcome and to detect whether optimal parameters exist reproducing a given ob-
servational data set. Further, the theoretical framework of the model is analysed.
The knowledge of basic properties of the model as well as the demonstration of
particular dependencies of model parameters may yield a better understanding
and assessment of the model dynamics.

The paper is structured as follows: In Section 2, we introduce the ecosystem
model considered. Biological definitions as well as a mathematical formulation
of the model are provided. In Section 3 we show an extract of the numerical ex-
periments conducted focusing on the variability of model outcomes. Theoretical
findings regarding the mathematical framework of the NPZD model are subse-
quently presented in Section 4. A final discussion and an outlook of future work
conclude the paper in Section 5.

2 Model

We study the behaviour of a marine ecosystem model of NPZD type developed
by Oschlies and Garçon [7]. This model simulates the concentration (in mmol
Nm−3) of four geobiochemical components (also named tracers in the following)
in the atlantic ocean, namely dissolved inorganic nitrogen (N), phytoplankton
(P), zooplankton (Z) and detritus (D). The interactions of the four tracers among
each other control the dynamics of the model (see below and Fig. 1).

Fig. 1. Scheme of the coupling between the model variables N, P, Z and D. Arrows
indicate a nitrogen flux from one to another component.

Aside from light, phytoplankton needs nutrients to photosynthesize and to
grow. In the model, these nutrients are represented by the nitrogen component
N. Zooplankton graze on phytoplankton and fecal particles of zooplankton as well
as other organic, sinking material are summarized in the component detritus.
A part of the detritus sinks down to the bottom of the system, another part is
recycled by bacteria and comes back to the nitrogen component.
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2.1 Mathematical Formulation

The model is directly defined by the interactions of the four tracers N, P, Z and
D, in the following denoted by y = (yi)i=1,...,4 = (N,P, Z,D).

A system of coupled, nonlinear ordinary differential equations (ODEs), in
detail given by

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂y1
∂t = −J(μ, U)y2 + ΦZmy3 + γmy4,
∂y2
∂t = (J(μ, U)− ΦPm)y2 −G(ε, g)y3,
∂y3
∂t = (βG(ε, g) − ΦZm − Φ∗

Zy3)y3,
∂y4
∂t = ΦPmy2 + ((1 − β)G(ε, g) + Φ∗

Zy3)y3 − (γm + ws)y4

, (1)

describes these interactions. J and G are nonlinear functions representing the
growth of phytoplankton respectively the grazing of zooplankton on phytoplank-
ton. Parameters appearing in the equations as well as in functions J and G are
nonnegative and signify for example growth and mortality rates. Table 1 gives a
summary of all parameters. Characteristic, environmental conditions are taken
into account by an additional extrinsic physical forcing.

We want to note, that due to our focus on the model specific representation
of the interactions of the four tracers this forcing is not further regarded in this
work.

Table 1. Model parameters. Units and definitions of the parameters are given together
with their value resp. the biological, significant range. Parameters with an index in the
first column are included in the optimization processes.

Index Symbol Value Unit Defintion

Cref 1.066 1 Growth coefficient of phytoplankton
c 1 ◦C Growth coefficient of phytoplankton
kwater 25 m−1 PAR extinction length
fPAR 0.43 1 PAR fraction of insolation

1 β [0,1] 1 Assimilation effiency of zooplankton
2 νm R+ d−1 Phytoplankton growth rate

3 α R+ m2 W−1d−1 Slope of photosynthesis vs light intensity

4 ΦZ
m [0,1] d−1 Zooplankton linear loss rate

5 kP [0, 1] m2 (mmol N)−1 Light attenuation by phytoplankton

6 ε R+ m6 (mmol N)−2 d−1 Grazing encounter rate
7 g R+ d−1 Maximum grazing rate

8 ΦP
m [0,1] d−1 Phytoplankton linear mortality

9 Φ∗
Z R+ m3 (mmol N)−1 d−1 Zooplankton quadratic mortality

10 γ [0,1] d−1 Detritus remineralization rate

11 kN R+ mmol N m−3 Half saturation for NO3 uptake
12 ws [0,1] m d−1 Detritus sinking

Light and Nutrient Limited Growth Rate of Phytoplankton

Biologically, the growth of phytoplankton, in the model represented by J , is
limited by two factors, light and nutrients. Here, this limitation is modeled using
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Liebig’s law of the minimum (see Eq. (2)). The temperature weighted maximum
growth rate Vp(t) = μmC

T (t) is multiplied by the minimum of two functions,
function μ, describing the light limitation (Eq. (3)) and function U , mirroring
the nutrient limitation (Eq. (4)).

J(μ(I, y2, t), U(y1, t)) = Vp(t)min{μ(I, y2, t), U(y1, t)} . (2)

The function μ, given by

μ(I, y2, t) =
1

kto(t)z
ln

(
I0(t) +

√
Vp(t)2 + I0(t)2

Iz(t) +
√
Vp(t)2 + Iz(t)2

)
, (3)

I0(t) = αIin(t) ,

Iz(t) = I0(t)e
−ktoz(t) ,

kto(t) = kw(t) + kP (t)y2 ,

is based on the Smith’s curve [8] and describes the relationship between pho-
tosynthesis and light for phytoplankton. The motivation for this function is to
enable the integration of variable insolation, for example due to seasonal influ-
ences or in case a daily cycle is to be simulated.

The nutrient limitation U is described by a so called Holling type II function,

U(y1, t) =
y1

kN + y1
. (4)

Holling type functions describe the reproduction of a consumer as a function of
food density, here as a function of nutrients y1. Obviously, U is monotonically
increasing and ranges in the interval [0, 1] for kN > 0 and y1 ∈ R0

+.

Zooplankton Growth Rate

The growth of zooplankton is dependent on the phytoplankton availability and
is given by a Holling type III function,

G(ε, g, y2) =
gεy22

g + εy22
. (5)

Such as U , G is monotonically increasing, but ranges in the interval [0, g] for
g, ε > 0 and y2 ∈ R0

+.

3 Numerical Optimization

We show an extract of the experiments conducted in the course of the parameter
optimization of the ecosystem model introduced in Section 2. Two observational
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data sets are used to optimize the parameters of the model by data assimilation
techniques (see below). In both cases, a cost function of least-squares type,

min
u∈R

k
+

J(y(u)) := ||y(u)− yd||2 s.t. lb ≤ u ≤ ub , (6)

is applied. Reference data is denoted by yd, the model output is given by y(u)
and u ∈ Rk

+ is the parameter vector to be optimized, componentwise within the
constraints lb and ub.

3.1 Data

The following two data sets are used for parameter optimization of the NPZD
model.

D1. The Bermuda Atlantic Time Series (BATS): Vertical profiles obtained dur-
ing the US JGOFS project. This data is frequently used within optimization
approaches of marine ecosystem models, among others the one dimensional
version of the NPZD model (see e.g. [9,6,12]). For this study, each profile is
vertically averaged from the surface to the respective “mixed layer depth”
which is fixed by a temperature decline of more than 0.5 ◦C (for details see
[10]).

D2. Indoor-mesocosm data obtained during the AQUASHIFT project: A 30
day mesocosm experiment performed at GEOMAR, Kiel investigating the
impact of ocean warming on the phytoplankton spring bloom in the North
Atlantic (for details see [11]).

Since parameter optimization with respect to D1 is subject of [12], we here focus
on the optimization using data set D2.

3.2 Results with Respect to D2

In the following we show a cut-out of the numerical optimization experiments.
Note, that we show individual examples instead of statistics to highlight specific
issues. Table 2 and Figure 2 demonstrate the impact of varying upper bounds of
the parameters (E1), Table 3 and Figure 3 provide the results of an initial value
experiment (E2).

All results shown are obtained operating an optimization algorithm of SQP
(sequential quadratic programming) type. Initial values are taken from liter-
ature as well as chosen randomly. The optimization runs include the indexed
parameters presented in Table 1.

E1. In the first experiment, optimal parameter values found by Rückelt et al.
[6] are used to initialize the model. Table 2 shows the parameters to be
optimized, their initial values uini, optimized values u∗ and the bounds lb and
ub for two examples. Replacing the upper bounds as given in [6] by a vector
of ones1, the cost function can be decreased less (J = 3.8091) in contrast to

1 Consequently, the initial values of some parameters are modified as well.
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Table 2. Variation of the upper bounds. Initial values and upper bounds of the pa-
rameters according to [6] (left), resp. modified (right).

lb ub uini u∗ ub1 ũini ũ∗

ΦP 0.0001 1 0.001 0.0021 1 0.001 0.0205
Φ∗

Z 0.0001 10 0.202 0.1631 1 0.202 0.4179
γ 0.0001 1 0.092 0.0044 1 0.092 0.9051
β 0.0001 1 1.000 0.9484 1 0.8 0.9365
ΦZ 0.0001 1 0.025 0.0087 1 0.025 0.4074
g 0.0001 100 20.00 20.457 1 0.8 0.9761
ε 0.0001 100 5.446 4.6083 1 0.8 0.3319
νm 0.0001 10 1.076 1.1482 1 0.8 0.1696
kN 0.0001 10 1.827 1.1982 1 0.8 0.5867
ws 0.0001 1 0.230 0.0085 1 0.8 0.3761
α 0.0001 100 0.107 0.0217 1 0.107 0.2462
kP 0.0001 1 0.026 0.8503 1 0.026 0.0130

Cost 3.4240 3.8091

final costs using the original setting (J = 3.4240). One might assume that
narrowing the constraints may yield to worse optimization results. However,
the values do not differ so much, and, as visible in Figure 2, both parameter
sets result in an unsatisfying model outcome.

Fig. 2. Simulations of N, P, Z and D for a 30 day period, according to the length of
the mesocosm study, using parameter values u∗ (left) and ũ∗ (right) as presented in
Table 2. Circles depict data points.

E2. The second experiment addresses the influence of initial values on the op-
timized parameter vector. Table 3 displays the results of four, randomly
initialized optimization runs, where uini1,2 ∈ [0, 1]12 and uini3,4 are within the

constraints (see Tab. 3). While the optimization started at uini1 reaches costs
J near 1, the optimization process initialized with uini2 gets stuck, just reach-
ing a cost function of J � 6. Similar results are obtained for uini3 and uini4

indicating the independence of the optimization on the initial values. Further,
although the cost function reaches values in the same ranges, the outcomes
as well as the final parameter sets u∗i , i = 1, . . . , 4 differ noticeably and we
deduce the existence of multiple distinctive, local minima (see Tab. 3 and
Fig. 3).

These two experiments demonstrate the general challenge of finding an optimal
parameter set in the context of ecosystem modeling. The experiments performed
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Table 3. Impact of different, random initial values uini. Upper and lower bounds are
fix (lb = (0.0001)12 and ubi = 1.0 for i = 1, 3, 4, 5, 12, ubj = 10.0, j �= i). u∗ are the
optimized values.

uini
1 u∗

1 uini
2 u∗

2 uini
3 u∗

3 uini
4 u∗

4

ΦP 0.8147 0.0585 0.6787 0.5547 0.1146 0.0036 0.4551 0.0005
Φ∗

Z 0.9058 0.0660 0.7577 1.7077 3.5730 8.8814 3.7551 3.3658
γ 0.1270 0.1883 0.7431 0.9756 0.0947 0.6833 0.0095 0.1377
β 0.9134 0.7945 0.3922 0.4261 0.0942 0.2343 0.2697 0.1882
ΦZ 0.6324 0.0035 0.6555 0.2604 0.0476 0.5000 0.1297 0.9283
g 0.0975 0.0361 0.1712 3.4484 7.0978 3.4276 6.3543 7.9393
ε 0.2785 0.7821 0.7060 1.1090 0.9482 1.3885 2.4897 0.2272
νm 0.5469 0.1146 0.0318 0.7970 0.6744 0.0297 4.2283 4.6502
kN 0.9575 3.0715 0.2769 1.8394 6.6350 6.5590 1.3252 2.2505
ws 0.9649 0.0458 0.0462 0.3040 9.7396 9.2367 4.8159 5.7531
α 0.1576 9.9534 0.0971 0.1138 5.8376 5.8376 2.1038 2.2880
kP 0.9706 0.6453 0.8235 0.9280 0.0162 0.0162 0.5233 0.5997

Cost 1.109 5.925 1.390 5.670

for the NPZD model indicate the existence of numerous local minima which
make the numerical detection of a global minimum - as far as it exists - virtually
impossible. Thus, we proceed with a second approach to gain information on the
feasibility of the model.

Fig. 3. Simulations created by u∗
1 (top left), u∗

2 (top right), u∗
3 (bottom left) and u∗

4

(bottom right). Notations are the same as in Figure 1.

4 Theoretical Analysis

In the following, we consider the initial value problem (IVP)

y′ = f(t,y), y(t0) = y0 > 0 and t ∈ I = [t0, t0 + a], (7)

where f(t,y) is given by the right-hand side of
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⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂y1
∂t = −J(U)y2 + ΦZmy3 + γmy4,
∂y2
∂t = (J(U)− ΦPm)y2 −G(ε, g)y3,
∂y3
∂t = (βG(ε, g)− ΦZm − Φ∗

Zy3)y3,
∂y4
∂t = ΦPmy2 + ((1− β)G(ε, g) + Φ∗

Zy3)y3 − γmy4

. (8)

In contrast to system (1), we here assume that the ODE system is mass conserv-
ing (equivalent to ws = 0 in system (1)) and the limitation of phytoplankton
growth due to light is ignored.
To reveal fundamental characteristics of the model dynamics, basic properties
of the model equations have to be checked at first. From now on, the differential
equations ∂yi

∂t are denoted by fi(y), i = 1, . . . , 4 and the model parameters are
summarized in the vector u = (ui)i=1,..,12.

Remark 1. The equations fi, i = 1, . . . , 4 in (8) are continuous in y and u for
positive y resp. u.

This is obvious since the equations are compositions of continuous functions in
both, y and u, that especially holds for the functions J and G.

Next, we consider the range of f . Concentrations, as simulated in our model,
are assumed to be nonnegative. To ensure this, we check an important prelimi-
nary to investigate this property. The following definition is used.

Definition 1. A function f : R×Rn → Rn is called quasipositive if for y ∈ Rn

with yi ≥ 0, i = 1, . . . , n, for all k ∈ 1, ..., n, t ≥ t0 and yk = 0 hold fk(t,y) ≥ 0.

Proposition 1. The equations fi, i = 1, . . . , 4 in (8) are quasipositive given any
parameter vector u ≥ 0.

Proof. Let u ≥ 0 and y = (yi)i=1,...,4 ≥ 0. Then

f1(y) = ΦZmy3 + γmy4 ≥ 0 for y1 = 0,

f2(y) = 0 for y2 = 0,

f3(y) = 0 for y3 = 0,

f4(y) = ΦPmy2 + ((1 − β)G(ε, g) + Φ∗
Zy3)y3 ≥ 0 for y4 = 0 .

�
To investigate the existence and uniqueness of solutions of an IVP, Lipschitz
continuity plays a main role. We want to recall the following, well-known Lemma.

Lemma 1. Let D be a domain in Rn and f : R×Rn → Rn. If f and its partial
derivatives ∂fi

∂yj
are continuous in D, then f is locally Lipschitz continuous in D.
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Now, for parameters in the range [0, 1], the local Lipschitz continuity of functions
fi, i = 1, . . . , 4 can be shown providing a good base for further analyses regarding
the uniqueness of solutions.

Proposition 2. Let D ⊂ R4
+ be a domain and u ∈ [0, 1]12. Then, the equations

fi, i = 1, . . . , 4 in (8) are locally Lipschitz continuous in y.

Proof. As noted before, the functions fi are continuous for all i. We do not show
the calculations in detail, but ∂fi

∂yj
∈ C1(D) for i, j = 1, . . . , 4. Hence, f ∈ C1(D)

and the preliminaries of corollary 1 are fulfilled. The local Lipschitz continuity
of f follows. �

Remark 2. The global Lipschitz continuity of fi, i = 1, . . . , 4 is not necessarily
given. For demonstration, we here give a short counterexample.

Example: Let L > 0 and a parameter vector u ∈ [0, 1]. We distinguish 2 cases.

1. βg ≤ βg2 + 2Φ∗
Z + ΦZ .

Choose y := (y1,
√

1−g
ε , 1, y4) and ȳ := (y1,

√
1−g
ε , 1 + L+δ

Φ∗
Z
, y4) for a δ > 0.

Then

||f3(y) − f3(ȳ)|| = (L+ δ)||ΦZ
Φ∗
Z

+ 2 +
L+ δ

Φ∗
Z

− βg(1− g)

Φ∗
Z

||

> L
L+ δ

Φ∗
Z

= L||y − ȳ|| .

2. βg > βg2 + 2Φ∗
Z + ΦZ .

Choose y := (y1,
√

1−g
ε , 1, y4) and ȳ := (y1,

√
1−g
ε , 1− L

Φ∗
Z
, y4). Then

||f3(y) − f3(ȳ)|| = L||ΦZ
Φ∗
Z

+ 2+
L

Φ∗
Z

− βg(1− g)

Φ∗
Z

||

> L
L

Φ∗
Z

= L||y− ȳ||

5 Conclusions and Outlook

An extract of the numerical and theoretical investigation of a marine ecosys-
tem model is presented. Parameter optimization and numerical experiments are
conducted to get an insight of the model variability. Two examples are shown
addressing the influence of different parameter settings. We demonstrate that
the model is highly variable and numerous local minima exist, making the de-
termination of a global optimum by numerical methods virtually impossible.
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The theoretical part of this study focus on basic properties of the model
equations. Continuity and quasipositivity of the equations are established and
conditions for local Lipschitz continuity are presented. These first findings facili-
tate the ongoing investigation of theoretical characteristics of the model making
the model and its application in climate research more meaningful.
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Abstract. The electric market regulation in Spain (MIBEL) establishes
the rules for bilateral and futures contracts in the day-ahead optimal bid
problem. Our model allows a price-taker generation company to decide
the unit commitment of the thermal units, the economic dispatch of the
bilateral and futures contracts between the thermal units and the optimal
sale bids for the thermal units observing the MIBEL regulation. The
uncertainty of the spot prices is represented through scenario sets. We
solve this model on the framework of the Branch and Fix Coordination
metodology as a quadratic two-stage stochastic problem. In order to
gain computational efficiency, we use scenario clusters and propose to
use perspective cuts. Numerical results are reported.

Keywords: Liberalized Electricity Market, Optimal Bid, Stochastic Pro-
gramming, Quadratic Branch-and-Fix Coordination.

1 Introduction

This work is applied to the Iberian Electricity Market (MIBEL) comprising the
Spanish and Portuguese electricity systems. The MIBEL market includes in the
short-term: the day-ahead market (DAM) and a set of balancing, reserve and
adjustment markets (intraday markets); these markets are complemented with
the medium- and long-term mechanisms: a derivatives market and different kinds
of bilateral contracts. This structure is similar to other European electricity
markets and explains why generation companies can no longer optimize their
short-term generation planning decisions, i.e. their bidding strategies, without
considering the relationship between the short-term bid and the medium-term
physical products. The MIBEL’s directives dictate specific rules describing how
these medium-term mechanisms should be included into the DAM bid. This
work deals with the most relevant medium-term mechanisms in the MIBEL:
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the national bilateral contracts (BC) and the future physical contracts (FC).
Stochastic programming techniques are applied to maximize the expected value
of the utility’s profit coming from the day-ahead market, where the significative
random variable is the auction clearing price of the day-ahead electricity market.
This random variable is modeled through a set of scenarios of the forecasted
prices. The set of scenarios is used to feed a two-stage stochastic optimization
model that finds the optimal day-ahead bid of a price-taker GenCo (an electrical
utility without influence over the market prices) operating in the MIBEL and
holding bilateral and physical futures contracts.

The extensive form of the deterministic equivalent of this stochastic program-
ming problem will be a mixed integer quadratic programming problem (MIQP),
which is difficult to solve efficiently, particularly for large-scale instances. Sev-
eral algorithmic approaches can be adopted to overcome this difficulty. In [2] the
quadratic objective function of this problem is approximated by a polyhedral
outer approximation by means of perspective cuts so that we can exploit the
efficiency of general-purpose solvers for mixed integer linear problems (MILP).
An alternative to the perspective cuts methodology is the Second-Order Cone
Program reformulation (SOCP, [9]), but for quadratic problems the perspective
cuts reformulation was reported to be more efficient [6]. Finally, the Branch-and-
Fix Coordination (BFC) method has been used successfully to solve two-stage
stochastic mixed integer linear problems [3] to solve the day-ahead optimal bid
problem. In this work we propose an combination between BFC and PC to
efficiently solve the optimal day-ahead bid problem.

2 Day-ahead Electricity Market Bid with Futures and
Bilateral Contracts Model (DAMB-FBC)

In this section the model (DAMB-FBC) is formulated as a two-stage stochastic
programming problem that allows a price-taker generation company to opti-
mally decide the unit commitment of its thermal units, the economic dispatch of
the bilateral and futures contracts between the thermal units, and the optimal
generation bid of the committed units to the MIBEL’s day-ahead market. The
objective function of the model represents the expected profits of the GenCo’s
participation in the day-Ahead market. The constraints assure that the MIBEL’s
rules and the operational restrictions of the units are respected. The main deci-
sion variables are the ones that model the start-up and shut-down of the units,
the quantity that will be bid at instrumental price and the scheduled energy
committed to the bilateral and the futures contracts settlement.

2.1 Parameters

The (DAMB-FBC) model considers a price-taker GenCo owning a set of thermal
generation units I that bid to the t ∈ T = {1, 2, .., 24} hourly auctions of the
DAM. The parameters for the ith thermal unit are:
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– cbi , c
l
i and c

q
i , generation costs with constant, linear and quadratic coefficients

(e, e/MWh and e/MWh2 respectively).

– P i and P i, upper and lower bounds on the hourly energy generation (MWh).

– coni and coffi , start-up and shut-down costs (e).

– toni and toffi , minimum operation and minimum idle time (h).

A base load physical futures contract j ∈ F is defined by:

– Uj , the set of generation units allowed to cover the FC j.

– LF
j , the amount of energy (MWh) to be procured each interval of the delivery

period by the set Uj of generation units to cover contract j.

– λFj , the price of contract j (e/MWh).

A base load bilateral contract k ∈ B is defined by:

– LB
k , the amount of energy (MWh) to be procured at each interval of the

delivery period by the set of available generation units to cover the BCs.

– λBk , the price of the contract k (e/MWh).

The random variable λDt , the clearing price of the tth hourly auction of the DAM,
is represented in the two-stage stochastic model by a set of scenarios s ∈ S, each
one with its associated clearing price for each DAM auction t ∈ T :

– λD,s
t clearing price for auction t at scenario s (e/MWh).

– P s probability of scenario s.

2.2 Variables

Those decision variables that doesn’t depend on the scenarios are called first
stage (or here-and-now) variables and in our formulation are, for each t ∈ T and
i ∈ I:

– uti, the unit commitment (binary)

– cuti, c
d
ti, the start-up/shut-down costs variables.

– qti, the instrumental price offer bid.

– ftij , the scheduled energy for FC j ∈ F .

– bti, the scheduled energy for the pool of BCs .

Decision variables that can adopt different values depending on the scenario are
called second stage variables and in our formulation are, for each t ∈ T , i ∈ I
and scenario s ∈ S:

– gsti, the total generation.

– psti, the matched energy in the day-ahead market.
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2.3 Contraints

Bilateral and Futures Contracts Constraints. The coverage of both the
physical futures contracts and the bilateral contracts must be guaranteed. The
constraints for each futures contract are:

∑
i∈Uj

ftij = LF
j t ∈ T , j ∈ F (1)

ftij ≥ 0 t ∈ T , j ∈ F , i ∈ I (2)

and the bilateral contract constraints are:∑
i∈I

bti =
∑
k∈B

LB
k t ∈ T (3)

0 ≤ bti ≤ P iuti i ∈ I, t ∈ T (4)

where LB
k is the energy that has to be settled for contract k ∈ B

Day-ahead Market and Total Generation Constraints. As we have in-
troduced, we will use the value of the matched energy in our formulation. The
matched energy is the accepted energy in the clearing process, that is, the energy
generated that will be rewarded at the clearing price. This matched energy is
uniquely determined by the sale bid and the clearing price and it will play a
central role in the presented model [2].

The MIBEL’s rules affecting the day-ahead market establishes the relation
between the variables representing the matched energy psti, the energy of the
bilateral contracts bti, the energy of the futures contracts ftij , the instrumental
price offer bid qti, and the commitment binary variables uti. The energies L

F
j and

LB
k must be integrated in the MIBEL’s DAM bid observing the two following

rules:

1. If generator i contributes with ftij MWh at period t to the coverage of the
FC j, then the energy ftij must be offered to the pool for free (instrumental
price bid).

2. If generator i contributes with bti MWh at period t to the coverage of any
of the BCs, then the remaining production capacity P i − bti must be bid to
the DAM.

These rules can be included in the model by means of the following set of con-
straints:

psti ≥ qti i ∈ I, t ∈ T , s ∈ S (5)

psti ≤ P iuti − bti i ∈ I, t ∈ T , s ∈ S (6)

qti ≥ P iuti − bti i ∈ I, t ∈ T , s ∈ S (7)

qti ≥
∑

j | i∈Uj

ftij i ∈ I, t ∈ T , s ∈ S (8)

where:
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(5) and (6) ensure respectively that the matched energy psti will be greater
than the instrumental price bid qti and less than the total available energy
not allocated to BC.
(7) and (8) guarantee respectively that the instrumental price bid will be
greater than the minimum generation output of the unit and greater than
the contribution of the unit to the FC coverage.

Please note that (2) together with (8) assures that qti will be always non-
negative. The total generation level of a given unit i, gsti, is defined as the addition
of the allocated energy to the BC plus the matched energy of the DAM:

gsti = bti + pstii ∈ I, t ∈ T , s ∈ S (9)

Contraints (1)-(9) assure that gsti will be always either zero or gsti ∈ [P i, P i], that
is:

P iuti ≤ gsti ≤ P iuti, i ∈ I, t ∈ T , s ∈ S (10)

Unit Commitment Constraints. This section includes the formulation for
the unit commitment of the thermal units [2]. The first two sets of constraints
model the start-up and shut-down costs and the next ones control minimum
operation and idle time for each unit. First, the start-up and shut-down costs
are modeled:

cuti ≥ coni [uti − u(t−1)i] i ∈ I, t ∈ T \ {1} (11)

cdti ≥ coffi [u(t−1)i − uti] i ∈ I, t ∈ T \ {1} (12)

cuti, c
d
ti ≥ 0 i ∈ I, t ∈ T (13)

uti ∈ {0, 1} i ∈ I, t ∈ T (14)

The initial state of each thermal unit i can be taken into account through the
parameters Gi and Hi that represent, respectively, the number of the initial time
periods along which the thermal unit must remain on (Gi) or off (Hi). These
conditions are imposed by the following set of constraints:

Gi∑
j=1

(1 − uji) = 0 and

Hi∑
j=1

uji = 0, i ∈ I (15)

Finally, the minimum up and down time, toni and toffi are imposed, up to the

periods |T |−(toni −1) and |T |−(toffi −1), through the following set of constraints:

t+toni −1∑
n=t

uin ≥ toni [uti − u(t−1)i] t = Gi + 1, . . . , |T | − toni + 1, i ∈ I

(16)

t+toff
i −1∑
n=t

(1 − uni) ≥ toffi [u(t−1)i − uti] t = Hi + 1, . . . , |T | − toffi + 1 i ∈ I

(17)
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and for the last toni − 1 and toffi − 1 time periods:

|T |∑
n=t

(uni − [uti − u(t−1)i]) ≥ 0 t = |T | − toni + 2, . . . , |T |, i ∈ I (18)

|T |∑
n=t

(1 − uni − [u(t−1)i − uti]) ≥ 0 t = |T | − toffi + 2, . . . , |T |, i ∈ I (19)

2.4 Objective Function

The quadratic function that gives the long-run expected profits of the GenCo
after the participation in the DAM is:

minEλD

[
C(u, cu, cd, g, p;λD)

]
=
∑
t∈T

∑
i∈I

(
cuti + cdti + cbiuti + (20)

+
∑
s∈S

P s
[
(clig

s
ti + cqi (g

s
ti)

2)− λD,s
t psti

] )
, (21)

where the right hand side of (20) is the on/off fixed cost of the unit commitment
of the thermal units, deterministic and independent of the realization of the
random variable λD,s

t and (21) represents the expected value of the benefits
from the DAM. The term between parenthesis corresponds to the expression of
the quadratic generation costs associated to the total generation of the unit gsti
while the last term, λD,s

t psti computes the incomes from the DAM due to a value
psti of the matched energy.

Please note that the constant incomes from the BC and FC, i.e.
∑
k∈B

λBC
k LBC

k

and
∑

t∈T , j∈J
(λFCj − λ̄Dt )L

FC
j , have been dropped from the objective function.

2.5 Model (DAMB-FBC)

The model defined so far can be represented as:

(DAMB-FBC)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
min EλD

[
C(u, cu, cd, g, p ;λD)

]
s.t.

Eq. (1)− (4) BC and FC constraints
Eq. (5)− (9) DAM and total gen. constraints
Eq. (11)− (19) Unit commitment constraints

Model (DAMB-FBC) is the optimization problem associated with the two-stage
stochastic programming problem with a set S of scenarios for the spot price λDt ,
where t ∈ T . This optimization problem is a convex MIQP with a well defined
global optimal solution.
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3 QBFC Method

Model (DAMB-FBC) can be rewritten as the so-called Deterministic Equivalent
Model (DEM)

minimize ctδ +
∑
s∈S

P sqs(x, ys)

subject to : la ≤ A

[
δ
x

]
≤ ua,

lst ≤ T s

⎡⎣ δx
ys

⎤⎦ ≤ ust , s ∈ S,

x ≥ 0, y ≤ ys ≤ y, s ∈ S,
δ ∈ {0, 1}nδ ,

where δ = u, x = (cu, cd), y = (g, p), q(x, y) = btxx + btyy+ +ytQyyy, and
Qyy being a diagonal matrix.

As is showed by [3] the compact representation (DEM) can be written as a
splitting variable representation; i.e., δ and x are respectively replaced by δs and
xs, for s ∈ S. So, we have

(MIQP) minimize
∑
s∈S

P s(ctδs + qs(xs, ys))

subject to : la ≤ A

[
δs

xs

]
≤ ua, s ∈ S,

lst ≤ T s

⎡⎣δsxs
ys

⎤⎦ ≤ ust , s ∈ S,

xs ≥ 0, y ≤ ys ≤ y, δs ∈ {0, 1}nδ , s ∈ S,
(NACδ) δs − δs

′
= 0, ∀s, s′ ∈ S : s = s′,

(NACx) xs − xs
′
= 0, ∀s, s′ ∈ S : s = s′,

where NACδ and NACx are the nonanticipativity constraints.
In this method (DEM) is solved by using a Branch-and-Fix-Coordination

scheme (BFC) for each scenario s ∈ S to fulfill the integrality condition (IC)
on the variables δ, so that the NACδ are also satisfied when selecting branching
nodes and branching variables by the Twin-Node-Families concept (TNF), which
was introduced by [1].

A similar approach to that suggested in [3] is used in this work to coordinate
the selection of the branching node and branching variable for each scenario-
related BF tree, such that the NACδ are satisfied when fixing δs, for all s ∈ S,
either to 1 or to 0. A TNF integer set is a set of integer BF nodes (i.e. they
verify IC), one per BF tree, in which the NACδ are verified. More details about
this metodology can be found in [8].
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When the number of scenarios is very hight, in order to gain computational
efficiency we can take scenario clusters; i.e., instead a submodel for each scenario
s ∈ S we can use a submodel (MIQPp) for each scenario cluster Sp ⊂ S with

p = 1, . . . , p̂, where Sp ∩ Sp′ = ∅, for all p = p′, and ∪p̂p=1Sp = S,

(MIQPp) minimize
∑
s∈Sp

P s(ctδp + qs(xp, ys)), (22)

subject to : la ≤ A

[
δp

xp

]
≤ ua, (23)

lst ≤ T s

⎡⎣δpxp
ys

⎤⎦ ≤ ust , s ∈ Sp, (24)

xp ≥ 0, y ≤ ys ≤ y, s ∈ Sp, δp ∈ {0, 1}nδ , (25)

These submodels are linked by the NACs δp − δp
′
= 0 and xp − xp

′
= 0, for

all p, p′ ∈ {1, . . . , p̂} such that p = p′.
In order to gain computational efficiency we propose to use perspective cuts

(PC) [5,2] to solve the quadratic subproblems in each node of the TNF. Then
MIQPp becomes:

min
∑
s∈Sp

P s

{(
btxx+ xtQxxx

)
+
( n∑
i=1

vsi

)}
s.t.: vsi ≥ (2qsiiyi + bsi )y

s
i + (ci − qsiiy

2
i
)δsi , i ∈ {1, . . . , n}, s ∈ Sp,

vsi ≥ (2qsiiyi + bsi )y
s
i + (ci − qsiiy

2
i )δ

s
i , i ∈ {1, . . . , n}, s ∈ Sp,

Eq. (23)− (25).

These methods have been implemented in C++ with the help of Cplex 12.1 to
solve only the quadratic subproblems. In this work two algorithmic alternatives
have been considered:

( QBFC: coordination of δ in the TNF of the BF trees for clusters p ∈
{1, . . . , p̂} without using PCs.

( QBFC-PC: coordination of δ in the TNF of the BF trees for clusters p ∈
{1, . . . , p̂} using PCs.

For our instances the number of scenarios in each cluster is the same, |Sp| =
|S|/p̂. Each cluster contains |Sp| consecutive scenarios, starting from the first
one and following in natural order.

4 Numerical Tests

These instances are based on the liberalized electricity market model suggested
in [2]. In these problems Qxx is the zero matrix, as a result, when we use per-
spective cuts the subproblem to solve in each node is linear. The tests have been
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performed on HP with Intel(R) Core(TM)2 Quad CPU Q8300 2.50GHz 4 CPU
under SUSE Linux Enterprise Desktop 11 (x86 64).

In Table 1 |S| means the number of scenarios, |T | the number of periods, “#
var” the number of continuous variables, “# varPCF ” the number of continuous
variables for the PC formulation, “# bin” the number of binary variables, and
“# constr” the number of constraints for (DEM).

Table 1. Test problems

Prob. |S| |T | # var # varPCF # bin # constr

P01 10 12 1296 1776 48 1788
P02 20 12 2256 3216 48 3228
P03 30 12 3216 4656 48 4668
P04 40 12 4176 6096 48 6108
P05 50 12 5136 7536 48 7548
P11 10 24 2592 3552 96 3600
P12 20 24 4512 6432 96 6480
P13 30 24 6432 9312 96 9360
P14 40 24 8352 12192 96 12240
P15 50 24 10272 15072 96 15120

For every problem |F| = |B| = 2 and |I| = 4. If we use the PC formulation,
the problem increases the number of variables in m = |T | · |I| · |S| and the
number of constraints in 2 ·m.

Table 2. Computational results: CPU-times

Prob. p̂ QBFC QBFC-PC ratio # PC

P01 2 10.1 3.4 0.34 280
P02 4 18.7 8.7 0.47 825
P03 5 2153.0 39.8 0.02 1685
P04 5 50.0 45.1 0.90 1491
P05 5 113.7 19.5 0.17 1276
P11 2 86.8 27.4 0.32 513
P12 4 469.7 50.3 0.11 1821
P13 5 687.3 176.6 0.26 3454
P14 5 1198.0 276.7 0.23 4239
P15 5 1190.9 246.3 0.21 2592

In Table 2 below the headings QBFC are the times in CPU-seconds used for
solving problems with the number of scenario cluster given below the heading
p̂ and by solving the quadratic subproblem QPp for each node using Cplex.
Column QBFC-PC gives us the CPU-seconds and indicates that the quadratic
subproblems QPp have been solved by using perspective cuts, which means that
instead of solving a quadratic problem QPp in each node of a TNF for p ∈
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{1, 2, . . . , p̂}, a linear problem is solved. Also, “ratio”=QBFC−PC
QBFC gives us the

ratio of CPU-times. Note that the running time with PC is a 30% of the running
time without PC (average). The last column, “# PC”, means the number of
perspective cuts generated in each test.

5 Conclusions

We have presented an Optimal Bidding Model for a price-taker generation com-
pany operating both in the MIBEL Derivatives and Day-Ahead Electricity Mar-
ket (DAMB-FBC). The model developed finds the optimal bid for the spot mar-
ket, the optimal allocation of the physical futures and bilateral contracts among
the thermal units and the unit commitment following in detail the MIBEL rules.
The (DAMB-FBC) has been solved both with the standard BFC method and
with a PC variation which reduces the running time to a 30% on the average.
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Abstract. We study a nonlinear transmission problem for a plate which
consists of thermoelastic and isothermal parts. The problem generates a
dynamical system in a suitable Hilbert space. Main result is the proof
of asymptotic smoothness of this dynamical system and existence of a
compact global attractor in special cases.
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1 Introduction

In this work we deal with a partially thermoelastic plate: one part is of isothermal
material, the second one is of material whose structure does not neglect the
thermal dissipation. Due to the thermal dissipation, purely thermoelastic plate
is exponentially stable in linear case (see, e.g., survey in [1, Chapter 3A]) or
possesses a compact global attractor in cases of different kind of nonlinearities
(see, e.g., [2]). On the other hand, in the case of purely isothermal plate the
energy is constant, thus there could not be any decay to zero point in the linear
model and global attractor in the nonlinear model. Here we investigate whether
the thermal dissipation on a part of the plate is enough to have any stabilization.
Exponential stability of the linear problem of this type was established in [3].

Let Ω1, Ω2 and Ω be bounded open sets in R2, Γ0 = Ω1 ∩Ω2, Γ1 = ∂Ω1/Γ0

and Γ2 = ∂Ω2/Γ0 be smooth surfaces. We also assume that Ω = Ω1 ∪ Ω2 ∪ Γ0

and Γ 1∩Γ 2 = ∅. In the model under consideration the plate (its middle surface),
in equilibrium, occupies the domain Ω which consists of two parts Ω1 and Ω2

with common boundary Γ0. In what follows below ν denotes the outward normal
vector on Γ1 and Γ2, in cases of common boundary Γ0 the vector ν is outward
to Ω2.

We consider the following system of equations:

ρ1utt + β1Δ
2u+ μΔθ + F1(u, v) = 0 in Ω1 × R

+, (1)

ρ0θt − β0Δθ − μΔut = 0 in Ω1 × R
+, (2)

ρ2vtt + β2Δ
2v + F2(u, v) = 0 in Ω2 × R

+. (3)

D. Hömberg and F. Tröltzsch (Eds.): CSMO 2011, IFIP AICT 391, pp. 521–527, 2013.
c© IFIP International Federation for Information Processing 2013
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Fig. 1.

We impose the following boundary conditions:

u =
∂u

∂ν
= 0 on Γ1, v =

∂v

∂ν
= 0 on Γ2, (4)

u = v,
∂u

∂ν
=

∂v

∂ν
, β1Δu = β2Δv, β1

∂Δu

∂ν
+ μ

∂θ

∂ν
= β2

∂Δv

∂ν
on Γ0, (5)

θ = 0 on Γ0,
∂θ

∂ν
+ λθ = 0 on Γ1. (6)

The equations above are equipped with the following initial data:

u(x, 0) = u0(x), ut(x, 0) = u1(x), θ(x, 0) = θ0(x) in Ω1,
v(x, 0) = v0(x), vt(x, 0) = v1(x) in Ω2.

(7)

Coefficients ρi, βi and μ are strictly positive, the functions

Fi : H
2(Ω1)×H2(Ω2) −→ L2(Ωi), i = 1, 2

are nonlinear.
Functions u(x, t) and v(x, t) describe the vertical displacement of the plate in

Ω1 and Ω2, respectively, and function θ(x, t) describes the temperature regime.
Equations (1) and (3) are plate equations, equation (1) is a heat equation. Equal-
ities in (4) mean that the plate is clamped along Γ1 and Γ2. Boundary conditions
(5) are transmission boundary conditions. Temperature function θ satisfies the
Newton law of cooling on Γ1 with some positive coefficient λ and vanishes on Γ0

(see equalities (6)).
Let us introduce four problems which are concrete examples of abstract

problem (1)-(7).
Problem A corresponds to oscillations of a plate in the Berger approach. In

this case
F1(u, v) = −M(u, v)Δu, F2(u, v) = −M(u, v)Δv,

where

M(u, v) = Γ + γ

⎡⎣∫
Ω1

|∇u|2dx+

∫
Ω2

|∇v|2dx

⎤⎦ . (8)

Here Γ is a real number, γ is strictly positive.
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In problem B we consider scalar nonlinearities, namely,

F1(u, v) = f1(u), F2(u, v) = f2(v),

where the scalar functions fi ∈ C2 satisfy the following conditions: there exist
such p > 1 and C > 0 that

|f ′
i(s)| ≤ C(1 + |s|p),

lim inf
|s|→∞

fi(s)

s
> 0.

In problem C we deal with the von Karman nonlinearity. Here we set Γ2 = ∅
and

F1(u, v) = −[u,F1], F2(u, v) = −[v,F2],

where [ψ, ϕ] = ψxxϕyy + ψyyϕxx − 2ψxyϕxy is the von Karman brackets; the
Airy stress functions F1 and F2 solve the following equations (parameters γi are
strictly positive):

γ1Δ
2F1 + [u, u] = 0 in Ω1 × R

+ and γ2Δ
2F2 + [v, v] = 0 in Ω2 × R

+ (9)

with the boundary conditions:

on Γ1 : F1 = ∂
∂νF1 = 0,

on Γ0 : F1 = F2,
∂
∂νF1 = ∂

∂νF2, γ1ΔF1 = γ2ΔF2, γ1
∂
∂νΔF1 = γ2

∂
∂νΔF2.

Problem D corresponds to the problem of oscillations of the Berger plate on
an elastic base. Mathematically, this problem is a a generalization of problems
A and B. Nonlinearities Fi are given by the following equalities:

F1(u, v) = −M(||∇u||2Ω1
+ ||∇v||2Ω2

)Δu + a1(x)u|u|p−1 + g1(x, u),

F2(u, v) = −M(||∇u||2Ω1
+ ||∇v||2Ω2

)Δv + a2(x)v|v|p−1 + g2(x, v),

where M(s) = s1+α with α > 0, a1(x) ∈ L∞(Ω1) and a2(x) ∈ L∞(Ω2). We
assume that the following condition holds:

either a(x) ≥ c0 ∀x ∈ Ω or 2(α+ 2) > p+ 1, p ≥ 1. (10)

Here a = {a1, a2} and c0 > 0 is a small number. The functions g1(x, u) and
g2(x, v) are scalar and satisfy the growth condition for some ε0 > 0 and any
xi ∈ Ωi:∣∣∣∣ ∂∂ug1(x1, u)

∣∣∣∣+∣∣∣∣ ∂∂vg2(x2, v)

∣∣∣∣ ≤ C(1+|u|max{0,p−1−ε0}+|v|max{0,p−1−ε0}), (11)

Our main result is the property of asymptotic smoothness of the dynamical
system generated by weak solutions of problem (1)-(7). To achieve it we use
method of so-called compensated compactness function first introduced in [7] (see
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also [2, Proposition 2.10]). The method for various types of nonlinearities was
developed in [2]. We also need to impose the following conditions on parameters:

ρ1 ≥ ρ2 and β1 ≤ β2 (12)

and on geometric structure of Ωi:

(x− x0) · ν(x) ≥ δ0 on Γ0, (13)

(x− x0) · ν(x) ≤ 0 on Γ2 (14)

for some x0 ∈ R2 and δ0 > 0. Imposing these conditions authors of work [3]
proved the exponential stability of linear problem (F1 = F2 = 0).

Asymptotic smoothness is important property of a dynamical system if one
wants to prove the existence of a compact global attractor. In particular, asymp-
totically smooth dynamical system possesses a compact global attractor, if it
possesses an appropriate Lyapunov function (for details we refer to [2, Chapter
2.4]).

Our result on asymptotic smoothness is applicable for each of the concrete
problem listed above. For problems A, B and D we proved that the corresponding
dynamical system possesses an appropriate Lyapunov function and, thus, there
exists a compact global attractor.

Up to our best knowledge asymptotic behavior in transmission problem for a
plate of types A, B, C and D was not considered before.

One can find formulations of our results in the next section. For proofs and
other details we refer to our works [4] and [5].

2 Formulation of Main Result

2.1 Dynamical System

Below notation ψ = {ψ1, ψ2} means that ψ(x) defined for x ∈ Ω is equal to
ψi(x), if x ∈ Ωi, for i = 1, 2.

To formulate a well-posedness result we need to impose the following
conditions:∫

Ω1

|F1(w
1
1 , w

1
2)− F1(w

2
1 , w

2
2)|2dx+

∫
Ω2

|F2(w
1
1 , w

1
2)− F2(w

2
1 , w

2
2)|2dx (15)

≤ C(r)||
{
w1

1 − w2
1 , w

1
2 − w2

2

}
||2H2

T

for all ||
{
wi

1, w
i
2

}
||H2

0 (Ω) ≤ r, i = 1, 2. We also assume that there exists such

continuous functional Π : H2
0 (Ω)→ R that

d

dt
Π(w1, w2) =

∫
Ω1

F1(w1, w2)w1,tdx+

∫
Ω2

F2(w1, w2)w2,tdx, (16)

Π(w1, w2) ≥ −C, ∃C > 0, (17)

Π(w1, w2) ≤ G
(
|| {w1, w2} ||H2

0 (Ω)

)
. (18)
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Condition (16) holds for

{w1, w2} ∈ L2(0, T ;H2
0 (Ω)) and {w1,t, w2,t} ∈ L2((0, T )× Ω).

Conditions (17) and (18) hold for all {w1, w2} ∈ H2
0 (Ω). The scalar function

G : R+ −→ R+ is supposed to be bounded on bounded intervals. The condi-
tion (16) also means that feedback forces {F1(u, v), F2(u, v)} are potential, i.e.,
{F1(u, v), F2(u, v)} is a Freshet derivative of Π(u, v).

For problem A Π(w1, w2) =
1
4M

2(w1, w2), for problem B:

Π(w1, w2) =

∫
Ω1

∫ w1(x)

0

f1(s)dsdx +

∫
Ω1

∫ w2(x)

0

f2(s)dsdx.

For problem C, if calculate Fi according to (9):

Π(w1, w2) =
γ1
2

∫
Ω1

|ΔF1|2dx+
γ2
2

∫
Ω2

|ΔF2|2dx. (19)

For problem D:

Π(w) =
1

2(α+ 2)
||∇w||2(α+2)

L2(Ω)
+

1

p+ 1

∫
Ω

a(x)|w(x)|p+1dx+

∫
Ω

∫ w(x)

0

g(x, s)dsdx,

where a = {a1, a2} and g = {g1, g2}.
We introduce phase space H = H2

0 (Ω)×L2(Ω)×L2(Ω2) and energy function
E : H −→ R which we define for an argument w = (w1, w2, w3, w4, w5) (here
{w1, w2} ∈ H2

0 (Ω), {w3, w4} ∈ L2(Ω) and w5 ∈ L2(Ω)) as follows

E(w) = 1

2

[∫
Ω1

β1|Δw1|2 + ρ1|w3|2 + ρ0|w5|2dx

+

∫
Ω2

β2|Δw2|2 + ρ2|w4|2dx+ 2Π(w1, w2)

]
. (20)

Now we are in position to formulate the theorem on well-posedness of problem
(1)-(7).

Theorem 1. Let (15),(16), (17) and (18) hold. Then for any initial w0 ∈ H
and T > 0 there exists a unique weak solution w(t) ∈ C([0, T ];H). Moreover, it
satisfies the energy equality:

E(w(T ))− E(w(t)) = −
∫ T

t

∫
Ω1

β0|∇w5|2dxdτ −
∫ T

t

∫
Γ1

β0λ|w5|2dΓdτ (21)

for all 0 ≤ t ≤ T . If one sets Stw0 = w(t), then (H, St) is a continuous dynamical
system.



526 M. Potomkin

2.2 Asymptotic Smoothness

In this subsection we define the notion of asymptotic smoothness of a dynamical
system, impose additional conditions on nonlinear functions Fi and formulate
our result on asymptotic smoothness of the dynamical system (H, St).

Definition 1. Let (X,St) be a dynamical system. Assume that X is a complete
metric space and St is a semigroup of operators on X.The dynamical system
(X,St) is said to be asymptotically smooth if for any positively invariant bounded
set D ⊂ X there exists a compact K in the closure D of D such that

lim
t→+∞

sup
x∈D

distX (Stx,K) = 0.

For the detailed discussion and applications of asymptotic smoothness we refer
to, e.g., [6] and [2].

To obtain asymptotic smoothness we need to impose additional conditions on
nonlinear functions Fi.

Assume that there exist such δ, σ > 0 that

w �−→ Π(w) : H2−δ −→ R is a continuous mapping, (22)

w �−→ Π ′
Φ(w) : H

2−δ −→ H−σ is a continuous mapping. (23)

Our main result is the following theorem.

Theorem 2. Let (12),(13), (14), (15), (17), (18), (22) and (23) hold. Then the
dynamical system (H, St) is asymptotically smooth.

The method of the proof is based on idea of compensated compactness function
(see [7] and [2]). This result is applicable for all concrete problems, A,B,C and
D, listed in introduction.

2.3 Compact Global Attractor and Its Properties

The direct application of [2, Corollary 2.29] gives the following theorem.

Theorem 3. Let conditions of theorem 2 hold. Assume also that for all solution
w(t) to problem (1)-(7) the following statement holds:

if E(w(t)) does not depend on t, then w(t) does not depend on t. (24)

In other words, energy E is constant only on stationary trajectories.
Then the dynamical system (H, St) possesses a compact global attractor.

Verification of condition (24) could be reduced to the problem which is relative
to unique continuation problems. Let w(t) = (u(t), v(t), ut(t), vt(t), θ(t)) be a
solution of problem (1)-(7) such that E(w(t)) is constant. Let us denote vh(t) :=
v(t+ h)− v(t), B(t)vh := F2(u, v(t+ h))−F2(u, v(t)) for some h > 0. If E(w(t))
does not depend on t, then vh solves the following problem:

ρ2v
h
tt + β2Δ

2vh = B(t)vh,

vh|Γ0 =
∂vh

∂ν
|Γ0 = Δvh|Γ0 =

∂Δvh

∂ν
|Γ0 = 0.
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Therefore, if we prove that vh(t) ≡ 0, then we will have that w(t) ≡ w0.
Using Pochozhaev multiplicator (x − x0) · ∇vh, where vector x0 is the same

as in conditions (13) and (14), for concrete problems A and B with f2 ≡ 0 and
Carleman estimates obtained in [8] for concrete problems B and D, we manage
to verify (24). Thus, we obtain the following corollary.

Corollary 1. Let (12),(13), (14) hold. The dynamical system (H, St) corre-
sponding to one of the concrete problems A, B or D possesses a compact global
attractor.
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Abstract. This paper is devoted to singular calculus of variations prob-
lems with constraints which are not regular mappings at the solution
point, e.i. its derivatives are not surjective. We pursue an approach based
on the constructions of the p-regularity theory. For p-regular calculus of
variations problem we present necessary conditions for optimality in sin-
gular case and illustrate our results by classical example of calculus of
variations problem.
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1 Introduction

Let us consider the following Lagrange problem:

J0(x) =

∫ t2

t1

F (t, x(t), x′(t))dt→ min (1)

subject to the subsidiary conditions

H(t, x(t), x′(t)) = 0, Ax(t1) +Bx(t2) = 0 (2)

where x ∈ C2n[t1, t2],H(t, x(t), x′(t)) = (H1(t, x(t), x
′(t)), . . . , Hm(t, x(t), x′(t)))T ,

Hi : R×Rn ×Rn → R, i = 1, . . . ,m, F : R×Rn ×Rn → R, t ∈ [t1, t2], A,B —
n×n matrices, Cln[t1, t2] — Banach spaces of n-dimensional l-times continuously
differentiable vector functions with usual norms.

Let us introduce a mapping G(x) = H(·, x(·), x′(·)) such that G : X → Y ,
whereX = {x(·) ∈ C2n[t1, t2] : Ax(t1)+Bx(t2) = 0}, Y = Cm[t1, t2]. It means that
G acts as follows G(x)t = H(t, x(t), x′(t)). Then the system of equations (2) can
be replaced by the following operator equation G(x) = 0Y (or G(x(·)) = 0Y ).
We assume that all the functions and their derivatives in (1)–(2) are p+1-times
continuously differentiable with respect to the corresponding variables t, x, x′.

D. Hömberg and F. Tröltzsch (Eds.): CSMO 2011, IFIP AICT 391, pp. 528–537, 2013.
c© IFIP International Federation for Information Processing 2013
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Under these assumptions: G(x) ∈ Cp+1(X), where by Cp+1(X) we mean a set of
p+ 1-times continuously differentiable mappings on X .

Let us denote λ(t) = (λ1(t), . . . , λm(t))T , λ(t)H = λ1(t)H1 + · · ·+ λm(t)Hm,
λ(t)Hx = λ1(t)H1x + · · ·+ λm(t)Hmx, λ(t)Hx′ = λ1(t)H1x′ + · · ·+ λm(t)Hmx′ .

If ImG′(x̂) = Y, where x̂(t) is a solution to (1)–(2), then necessary conditions
of Euler-Lagrange Fx+λ(t)Hx − d

dt(Fx′ +λ(t)Hx′) = 0 hold. Here, Fx, Hx, Fx′ ,
Hx′ are partial derivatives of the functions F (t, x(t), x′(t)) and H(t, x(t), x′(t))
with respect to x and x′, respectively.

In singular (nonregular or degenerate) case when ImG′(x̂) = Y, we can only
guarantee that the following equations

λ0Fx + λ(t)Hx −
d

dt
(λ0Fx′ + λ(t)Hx′ ) = 0 (3)

hold, where λ20 + ‖λ(t)‖2 = 1, i.e. λ0 might be equal to 0, and then we have not
constructive information of the functional F (t, x(t), x′(t)).

Example 1. Consider the problem

J0(x) =

∫ 2π

0

(x21(t) + x22(t) + x23(t) + x24(t) + x25(t))dt→ min (4)

subject to

H(t, x(t), x′(t)) =

=

(
x′1(t)− x2(t) + x23(t)x1(t) + x24(t)x2(t)− x25(t)(x1(t) + x2(t))
x′2(t) + x1(t) + x23(t)x2(t)− x24(t)x1(t)− x25(t)(x2(t)− x1(t))

)
= 0,

(5)

xi(0)− xi(2π) = 0, i = 1, . . . , 5.
Here F (t, x(t), x′(t)) = x21(t) + x22(t) + x23(t) + x24(t) + x25(t), A = −B = I5,

where I5 is the unit matrix of size 5 and

G(x) =

=

(
x′1(·)− x2(·) + x23(·)x1(·) + x24(·)x2(·) − x25(·)(x1(·) + x2(·))
x′2(·) + x1(·) + x23(·)x2(·)− x24(·)x1(·) − x25(·)(x2(·)− x1(·))

)
= 0.

The solution of (4)–(5) is x̂(t) = 0. At this point G′(0) is singular. Later we
explain this in more details.

The corresponding Euler-Lagrange equation (see (3)) in this case is as follows:

2λ0x1 + λ2 − λ′1 + λ1x
2
3 + λ1x

2
5 − λ2x

2
5 − λ2x

2
4 = 0

2λ0x2 − λ1 − λ′2 + λ1x
2
4 + λ2x

2
3 − λ1x

2
5 − λ2x

2
5 = 0

2λ0x3 + 2λ1x1x3 + 2λ2x2x3 = 0 (6)

2λ0x4 + 2λ1x2x4 − 2λ2x1x4 = 0

2λ0x5 − 2λ1x5x1 − 2λ1x2x5 − 2λ2x2x5 + 2λ2x1x5 = 0

λi(0)− λi(2π) = 0, i = 1, 2.

(to simplify formulas we omit dependence of t here and further in the paper).
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If λ0 = 0 we obtain the series of spurious solutions to the system (4)–(5):

x1 = a sin t, x2 = a cos t, x3 = x4 = x5 = 0,

λ1 = b sin t, λ2 = b cos t, a, b ∈ R.

2 Elements of p-Regularity Theory

Let us recall the p-order necessary and sufficient optimality conditions for de-
generate optimization problems (see [1]–[5]):

minϕ(x) (7)

subject to
f(x) = 0, (8)

where f : X → Y and X, Y are Banach spaces, ϕ : X → R,
f ∈ Cp+1(X), ϕ ∈ C2(X) and at the solution point x̂ of (7)–(8) we have:
Im f ′(x̂) = Y i.e. f ′(x̂) is singular.

Let us recall the basic constructions of p-regularity theory which is used in
investigation of singular problems.

Suppose that the space Y is decomposed into a direct sum

Y = Y1 ⊕ . . .⊕ Yp, (9)

where Y1 = Im f ′(x̂), Z1 = Y. Let Z2 be closed complementary subspace to Y1
(we assume that such closed complement exists), and let PZ2 : Y → Z2 be the
projection operator onto Z2 along Y1. By Y2 we mean the closed linear span of
the image of the quadratic map PZ2f

(2)(x̂)[·]2.More generally, define inductively,

Yi = span ImPZif
(i)(x̂)[·]i ⊆ Zi, i = 2, . . . , p− 1,

where Zi is a chosen closed complementary subspace for (Y1 ⊕ . . .⊕ Yi−1) with
respect to Y, i = 2, . . . , p and PZi : Y → Zi is the projection operator onto Zi

along (Y1 ⊕ . . . ⊕ Yi−1) with respect to Y, i = 2, . . . , p. Finally, Yp = Zp. The
order p is chosen as the minimum number for which (9) holds. Let us define the
following mappings

fi(x) = Pif(x), fi : X → Yi i = 1, . . . , p,

where Pi := PYi : Y → Yi is the projection operator onto Yi
along (Y1 ⊕ . . .⊕ Yi−1 ⊕ Yi+1 ⊕ . . .⊕ Yp) with respect to Y, i = 1, . . . , p.

Definition 1. The linear operator Ψp(x̂, h) ∈ L(X,Y1⊕ . . .⊕ Yp), h ∈ X, h = 0

Ψp(x̂, h) = f ′
1(x̂) + f ′′

2 (x̂)h+ . . .+ f (p)
p (x̂)[h]p−1,

is called the p-factor operator.
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Definition 2. We say that the mapping f is p-regular at x̂ along an element h,
if ImΨp(x̂, h) = Y.

Remark 1. The condition of p-regularity of the mapping f(x) at the point x̂

along h is equivalent to Im f
(p)
p (x̂)[h]p−1 ◦Ker Ψp−1(x̂, h) = Yp, where

Ψp−1(x̂, h) = f ′
1(x̂) + f ′′

2 (x̂)h+ . . .+ f
(p−1)
p−1 (x̂)[h]p−2

Definition 3. We say that the mapping f is p-regular at x̂ if it is p-regular
along any h from the set

Hp(x̂) =

p⋂
k=1

Kerkf
(k)
k (x̂) \ {0},

where
Kerkf

(k)
k (x̂) = {ξ ∈ X : f

(k)
k (x̂)[ξ]k = 0}.

is k-kernel of the k-order mapping f
(k)
k (x̂)[ξ]k.

For a linear surjective operator Ψp(x̂, h) : X �→ Y between Banach spaces we
denote by {Ψp(x̂, h)}−1 its right inverse. Therefore {Ψp(x̂, h)}−1 : Y �→ 2X

and we have {Ψp(x̂, h)}−1(y) = {x ∈ X : Ψp(x̂, h)x = y} . We define the norm of
{Ψp(x̂, h)}−1 via the formula

‖{Ψp(x̂, h)}−1‖ = sup
‖y‖=1

inf{‖x‖ : x ∈ {Ψp(x̂, h)}−1(y)}.

We say that {Ψp(x̂, h)}−1 is bounded if ‖{Ψp(x̂, h)}−1‖ <∞.

Definition 4. The mapping f is called strongly p-regular at the point x̂ if there
exists γ > 0 such that

sup
h∈Hγ

∥∥∥{Ψp(x̂, h)}−1
∥∥∥ <∞

where Hγ(x̂) =

{
h ∈ X :

∥∥∥f (k)
k (x̂)[h]k

∥∥∥
Yk

≤ γ, k = 1, . . . , p, ‖h‖ = 1

}
.

3 Optimality Conditions for p-Regular Optimization
Problems

We define p-factor Lagrange function

Lp(x, λ, h) = ϕ(x) +

〈
p∑

k=1

f
(k−1)
k (x)[h]k−1, λ

〉
,

where λ ∈ Y ∗, f
(0)
1 (x) = f(x) and

L̄p(x, λ, h) = ϕ(x) +

〈
p∑

k=1

2

k(k + 1)
f
(k−1)
k (x)[h]k−1, λ

〉
.

Let us recall the following basic theorems on optimality conditions in nonregular
case.
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Theorem 1 (Necessary and sufficient conditions for optimality). (see
[1]) Let X and Y be Banach spaces, ϕ ∈ C2(X), f ∈ Cp+1(X), f : X → Y,
ϕ : X → R. Suppose that h ∈ Hp(x̂) and f is p-regular along h at the point
x̂. If x̂ is a local solution to the problem (7)–(8) then there exist multipliers,

λ̂(h) ∈ Y ∗ such that

L′
px(x̂, λ̂(h), h) = 0⇔ ϕ′(x̂) +

(
f ′
1(x̂) + · · ·+ f (p)

p (x̂)[h]p−1
)∗

λ̂(h) = 0. (10)

Moreover, if f is strongly p-regular at x̂, there exist α > 0 and a multipliers λ̂(h)

such that (10) is fulfilled and L̄pxx(x̂, λ̂(h), h)[h]2 ≥ α‖h‖2 for every h ∈ Hp(x̂),
then x̂ is a strict local minimizer to the problem (7)–(8).

For our purposes, the following modification of Theorem 1 will be useful
(see [3]).

Theorem 2. Let X and Y be Banach spaces, ϕ ∈ C2(X), f ∈ Cp+1(X),
f : X → Y, ϕ : X → R, h ∈ Hp(x̂), and f is p-regular along h at the point x̂. If
x̂ is a solution to the problem (7)–(8), then there exist multipliers λ̄i(h) ∈ Y ∗

i ,
i = 1, . . . , p such that

ϕ′(x̂) + (f ′(x̂))
∗
λ̄1(h) + . . .+

(
f (p)(x̂)[h]p−1

)∗
λ̄p(h) = 0, (11)

and (
f (k)(x̂)[h]k−1

)∗
λ̄i(h) = 0, k = 1, . . . , i− 1, i = 2, . . . , p. (12)

Moreover, if f is strongly p-regular at x̂, there exist α > 0 and multipliers λ̄i(h),
i = 1, . . . , p such that (11)–(12) hold, and(

ϕ′′(x̂) +
1

3
f ′′(x̂)λ̄1(h) + . . .+

2

p(p+ 1)
f (p+1)(x̂)[h]p−1λ̄p(h)

)
[h]2 ≥

≥ α‖h‖2,
for every h ∈ Hp(x̂), then x̂ is a strict local minimizer to the problem (7)–(8).

Proof.
We need to prove only the formula (12). From (10) we obtain

ϕ′(x̂) +
(
P1f

′(x̂) + · · ·+ Ppf
(p)(x̂)[h]p−1

)∗
λ̂(h) = 0.

This expression can be transformed as follows
ϕ′(x̂) + f ′(x̂)∗P ∗

1 λ̂(h) + · · ·+
(
f (p)(x̂)[h]p−1

)∗
P ∗
p λ̂(h) = 0.

Let λ̄i(h) := P ∗
i λ̂(h), i = 1, . . . , p. Then, for k < i, i = 1, . . . , p,(

f (k)(x̂)[h]k−1
)∗
λ̄i(h) =

(
f (k)(x̂)[h]k−1

)∗
P ∗
i λ̂(h) =

=
(
Pif

(k)(x̂)[h]k−1
)∗
λ̂(h) = 0, which proves (12).

Now we are ready to apply this theorem to singular calculus of variations
problems. Let us introduce p-factor Euler-Lagrange function

S(x) = F (x) +
〈
λ(t),

(
g1(x) + g′2(x)[h] + . . .+ g(p−1)

p (x)[h]p−1
)〉

=

= F (x) + λ(t)G(p−1)(x)[h]p−1,
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where G(p−1)(x)[h]p−1 = g1(x) + g′2(x)[h] + · · ·+ g
(p−1)
p (x)[h]p−1,

λ(t) = (λ1(t), . . . , λm(t))T and gk(x), for k = 1, . . . , p are determined for the
mapping G(x) similarly like fk(x), k = 1, . . . , p for the mapping f(x), i.e.
gk(x) = PYk

G(x), k = 1, . . . , p. Denote

g
(k−1)
k (x)[h]k−1 =

∑
i+j=k−1

Ci
k−1g

(k−1)
kxi(x′)j (x)h

i(h′)j , k = 1, . . . , p,

where
g
(k−1)
kxi(x′)j (x) = g

(k−1)

kx . . . x︸ ︷︷ ︸
i

x′ . . . x′︸ ︷︷ ︸
j

(x).

Definition 5. We say that the problem (1)–(2) is p-regular at x̂ along

h ∈
p⋂

k=1

Kerkg
(k)
k (x̂), ‖h‖ = 0 if

Im
(
g′1(x̂) + . . .+ g(p)p (x̂)[h]p−1

)
= Cm[t1, t2].

The following theorem holds.

Theorem 3. Let x̂(t) be a solution of the problem (7)–(8) and assume that the

problem is p-regular at x̂ along h ∈
p⋂

k=1

Kerkg
(k)
k (x̂). Then there exists a multi-

plier λ̂(t) = (λ̂1(t), . . . , λ̂m(t))T such that the following p-factor Euler-Lagrange
equation

Sx(x̂)−
d

dt
Sx′(x̂) = Fx(x̂) +

+

〈
λ̂(t),

p∑
k=1

∑
i+j=k−1

Ci
k−1g

(k−1)
xi(x′)j (x̂)h

i(h′)j

〉
x

− (13)

− d

dt

⎡⎣Fx′(x̂) +

〈
λ̂(t),

p∑
k=1

∑
i+j=k−1

Ci
k−1g

(k−1)
xi(x′)j (x̂)h

i(h′)j

〉
x′

⎤⎦ = 0

holds.

The proof of this theorem is very similar to the one of analogous result for the
singular isoperimetric problem, see in [4], [5].

Consider again the Example 1 and (4)–(5). Here p = 2, x̂ = 0.At the beginning
we substantiate that G is singular at the points x̄ = (a sin t, a cos t, 0, 0, 0)T .

Indeed, G′(x̄) =

(
(·)′1 − (·)2
(·)′2 + (·)1

)
, where G′(x̄)x(t) =

(
x′1(t)− x2(t)
x′2(t) + x1(t)

)
. Let us

denote

(
x′1 − x2
x′2 + x1

)
by x′ + Lx, where L =

(
0 −1 0 0 0
1 0 0 0 0

)
.

Then G′(x̄) = (·)′ + L(·) and

KerG′(x̄) = span {(Φ1(t), 0, 0, 0)
T , (Φ2(t), 0, 0, 0)

T}⊕ {(0, 0, x3(t), x4(t), x5(t))T ,
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xi ∈ C2[0, 2π], i = 3, 4, 5}, where Φ1(t) = (sin t, cos t)T , Φ2(t) = (cos t,− sin t)T ,

and moreover ImG′(x̄) = (Ker(G′(x̄)∗)⊥ =
(
Ker(− d

dt(·)′ + LT (·))
)⊥

=

=
{
ξ ∈ C2[0, 2π] : 〈ξ, ψi〉 = 0, i = 1, 2, ψ1(t) = (sin t, cos t)T , ψ2(t) =

= (cos t,− sin t)T
}
= C2[0, 2π].

It means that the mapping G(x) is non-regular at the points x̄. From the
last relation we obtain that Y2 = (ImG′(x̄))⊥ = span {ψ1, ψ2} where ψ′

1 = ψ2,

ψ′
2 = −ψ1 and 〈Φi, ψj〉 = δij , 〈ζ, η〉 =

∫ 2π
0

ζ(τ)η(τ)dτ.
The projection operator PY2 is defined as

P2

(
y1
y2

)
= P2y = ȳ1ψ1 + ȳ2ψ2,

where y = (y1, y2)
T and

〈y − (ȳ1ψ1 + ȳ2ψ2), ψ1〉 = 0,

〈y − (ȳ1ψ1 + ȳ2ψ2), ψ2〉 = 0,

i.e. 1
2π 〈y, ψ1〉 = ȳ1,

1
2π 〈y, ψ2〉 = ȳ2.

Let us point out that P2(x1, ψ1 + x2ψ2) = x1ψ1 + x2ψ2.
Based on Remark 1 we can verify surjectivity of P2G

′′(x̄)h only on KerG′(x̄),
for h ∈ KerG′(x̄) ∩ Ker2P2G

′′(x̄), h = (a sin t, a cos t, 1, 1, 1)T . In order to find
P2G

′′(x̄)h let us determine

G′′(x̄) =

⎛⎜⎜⎜⎜⎜⎜⎝

⎛⎝0 0 sin t 0 0
0 0 0 cos t 0
0 0 0 0 cos t− sin t

⎞⎠⎛⎝0 0 cos t 0 0
0 0 0 − sin t 0
0 0 0 0 sin t− cos t

⎞⎠

⎞⎟⎟⎟⎟⎟⎟⎠
and

G′′(x̄)h = 2a

(
0 0 h3 sin t h4 cos t h5(cos t− sin t)
0 0 h3 cos t −h4 sin t h5(sin t− cos t)

)
.

It is obvious that h = (a sin t, a cos t, 1, 1, 1)T belongs to KerG′(x̄) ∩ Ker2G′′(x̄)
and consequently belongs to KerG′(x̄) ∩Ker2P2G

′′(x̄). We have

G′′(x̄)[h, x] = 2a(x3 − x5)

(
sin t
cos t

)
+ 2a(x4 − x5)

(
cos t
− sin t

)
.

It means that
P2G

′′(x̄)[h, x] = G′′(x̄)[h, x] and G′′(x̄)[h] ◦ KerG′(x̄) = span {Φ1, Φ2} = Y2.
Therefore G′′(x̄)[h] is surjection. Hence, G(x) is 2-regular along h at the points
x̄ = (a sin t, a cos t, 0, 0, 0)T . Finally, we can apply Theorem 3 with λ0 = 1. We
have constructed operator

G′(x̄) + PY2G
′′(x̄)h =
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=

(
(·)′1
(·)′2

)
+

(
0 −1 2a sin t 2a cos t 2a(cos t− sin t)
1 0 2a cos t −2a sin t 2a(sin t− cos t)

)
which corresponds to the following system (Fx′ = 0):

Fx(x̄)+ (G′(x̄)+P2G
′′(x̄)h)∗λ = 0⇔ Fx(x̄)+G′(x̄)Tλ+(P2G

′′(x̄)h)
T
λ = 0,⇔

⇔

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2x̄1 − λ′1 + λ2 = 0
2x̄2 − λ′2 + λ1 = 0
2x̄3 + 2λ1a sin t+ 2λ2a cos t = 0
2x̄4 + 2λ1a cos t− 2λ2a sin t = 0
2x̄5 + 2λ1a(cos t− sin t) + 2λ2a(sin t− cos t) = 0

(14)

or

⇔

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2a sin t− λ′1 + λ2 = 0
2a cos t− λ′2 + λ1 = 0
λ1 sin t+ λ2 cos t = 0
λ1 cos t− λ2 sin t = 0
λ1(cos t− sin t) + λ2(sin t− cos t) = 0,
λi(0)− λi(2π) = 0, i = 1, 2.

One can verify that the false solutions of (6)

x1 = a sin t, x2 = a cos t, x3 = x4 = x5 = 0

do not satisfy the system (14) for a = 0. It means that x1 = a sin t,
x2 = a cos t, x3 = x4 = x5 do not satisfy 2-factor Euler-Lagrange equation (13)

Let us consider the same problem with higher derivatives x′(t), . . ., x(r)(t),
r ≥ 2,

J(x) =

∫ t2

t1

F (t, x(t), x′(t), . . . , x(r)(t))dt→ min, x(t) ∈ C2r
n [t1, t2],

subject to subsidiary differential relation

H(t, x(t), x′(t), . . . , x(r)(t)) =

⎛⎝H1(t, x(t), x
′(t), . . . , x(r)(t))
· · ·

Hm(t, x(t), x′(t), . . . , x(r)(t))

⎞⎠ =

⎛⎝ 0
. . .
0

⎞⎠ ,

Akx
(k)(t1) + Bkx

(k)(t2) = 0, where Ak, Bk are n × n matrices, k = 1, . . . , r.
Let G(x) = H(·, x(·), . . . , x(r)(·)), G : X → Y, where Y = Cm([t1, t2]) and
X = {x(·) ∈ C2rn [t1, t2] : Akx

(k)(t1) +Bkx
(k)(t2) = 0, k = 1, . . . , r}.

Moreover,

g
(k−1)
k (x)[h]k−1 =

∑
i1+···+ir=k−1

g
(k−1)

xi1 ···(x(r))ir
[h+ h′ + · · ·+ h(r)]k−1, k = 1, . . . , p,

and introduce the co called p-factor Euler-Poisson function

K(x) = F (x) +
〈
λ(t),

(
g1(x) + g′2(x)[h] + . . .+ g(p−1)

p (x)[h]p−1
)〉
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Theorem 4. Let x̂(t) be a solution of the problem (1)–(2) and assume that

this problem is p-regular at x̂ along h ∈
⋂p
k=1 Kerkg

(k)
k (x̂). Then there exist

a multiplier λ̂(t) = (λ̂1(t), . . . , λ̂m(t))T such that the following p-factor Euler-
Poisson equation

Kx(x̂)−
d

dt
Kx′(x̂+

d2

dt2
Kx′′(x̂)− ...+ (−1)rKx(r)(x̂) =

= Fx(x̂) +

〈
λ̂(t),

p∑
k=1

g
(k−1)
k (x̂)[h]k−1

〉
x

−

− d

dt

[
Fx′(x̂) +

〈
λ̂(t),

p∑
k=1

g
(k−1)
k (x̂)[h]k−1

〉
x′

]
+

+ . . .+ (−1)r d
r

dtr

[
Fx(r)(x̂) +

〈
λ̂(t),

p∑
k=1

g
(k−1)
k (x̂)[h]k−1

〉
x(r)

]
= 0

holds.

The proof of Theorem 4 is similar to that one the reader can find in [4] for
isoperimetric problem.

Example 2. Consider the following problem

J0(x) =

∫ π

0

(x21(t) + x22(t) + x23(t))dt→ min (15)

subject to

H(t, x(t), x′(t), x′′(t)) = x′′1(t) + x1(t) + x22(t)x1(t)− x23(t)x1(t) = 0, (16)

xi(0)− xi(π) = 0, x′i(0) + x′i(π) = 0, i = 1, 2, 3. Here A1 = −B1 = I3,
A2 = B2 = I3, where I3 means the unit matrix of size 3.

The solution of (15)–(16) is x̂(t) = 0. The Euler-Poisson equation in this case
has the following form

λ0Fx + λ(t)Hx −
d

dt
(λ(t)Hx′ ) +

d2

dt2
(λ(t)Hx′′ ) = 0

or
2λ0x1 + λ+ λx22 − λx23 + λ′′ = 0

2λ0x2 + 2λx2x1 = 0
2λ0x3 − 2λx3x1 = 0,

λ(0)− λ(π) = 0, λ′(0) + λ′(π) = 0

and gives us the series of spurious solutions x1 = a sin t, x2 = 0, x3 = 0,
λ = b sin t, λ0 = 0, a ∈ R. The mapping G(x) is singular at these points
x1 = a sin t, x2 = 0, x3 = 0 and G′(a sin t, 0, 0) is non surjective.
ButG(x) is 2−regular at the points x̄ = (a sin t, 0, 0) along h = (sin t, sin t,− sin t).
Indeed, Y2 = span {sin t},

G′(x̄)h+ PY2G
′′(x̄)[h]2 = h′′ + h+ 2a sin t

∫ π

0

(sin2 t− sin2 t) sin2 tdt = 0.
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It means that h ∈ KerG′(x̄) ∩ PY2Ker2G′′(x̄) and

PY2G
′′(x̄)h = 2a sin t

∫ π

0

(sin t(·)2 + sin t(·)3) sin2 tdt.

We have

PY2G
′′(x̄)h

⎛⎝ b sin t
b sin t
b sin t

⎞⎠ = 2ab sin t

∫ π

0

2 sin4 tdt = Y2, b ∈ R

i.e. G is 2-regular at the points x̄ = (a sin t, 0, 0) along h. At these points x̄ we
can guarantee λ0 = 1 in the 2−factor Euler-Poisson equation

2a sin t+ λ′′ + λ = 0
2a sin t

∫ π
0
sin3 τλ(τ)dτ = 0

2a sin t
∫ π
0
sin3 τλ(τ)dτ = 0

λ(0)− λ(π) = 0, λ′(0) + λ′(π) = 0

The first equation has no solutions for a = 0, which means that the point
x̄ = (a sin t, 0, 0)T is not a local solution of the considered problem.
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Abstract. The paper presents mathematical and implementation chal-
lenges associated with testing of embedded software systems with
dynamic behavior. These challenges are related to notation of tests, cal-
culation of test coverage, implementation of a test comparator, and au-
tomatic generation of test cases. Some author’s ideas and solutions are
presented with the help of abstract models that describe behavior of
the software systems. The models are represented using the state space
(or input/state/output) notation. An application example is given to
illustrate theoretical analysis and mathematical formulation.

Keywords: software system, model-based testing, dynamical system.

1 Introduction

Designing an embedded control system is a complex and error prone task. Within
the last decades embedded systems have become increasingly sophisticated and
their software content has grown rapidly. The increasing miniaturization of em-
bedded control systems on the one hand and rising functional demands on the
other hand require advanced and automated development and testing method-
ologies. In this context, model-based development (MBD) and model-based test-
ing (MBT) approaches have the potential to facilitate the development of such
systems under pressure of time-to-market constraints, quality assurance, and
safety standards.

MBD is a process that provides the ability to graphically represent require-
ments, specification, and designs using domain-specific notations and simulate
the resultant behavior for validation purposes. The code can be then generated
from models, ranging from system skeletons to complete, deployable products.
MBT is a related part that supports test generation from various kinds of models
by application of a number of sophisticated methods.

Testing is the process of trying to discover every conceivable fault or weakness
in a work product. The primary goal of the testing process is to found defects; the

D. Hömberg and F. Tröltzsch (Eds.): CSMO 2011, IFIP AICT 391, pp. 538–546, 2013.
c© IFIP International Federation for Information Processing 2013
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secondary goal is to show the system’s compliance to its requirements. Testing
can show that defects are present, but cannot prove that there are no defects [9].
Testing reduces the probability of undiscovered defects remaining in the software
but, even if no defects are found, it is not a proof of correctness. Poorly tested
systems may cost producers billions of dollars annually especially when defects
are found by end users in production environments [7], [8], [13]. Barry Boehm’s
research analysis [4] indicates that the cost of removing a software defect grows
exponentially for each stage of the development life cycle in which it remains
undiscovered. Boris Beizer [2] estimates that 30 up to 90 percentage of the effort
in put into testing. Another research project conducted by the United States
Department of Commerce, National Institute of Standards and Technology [10]
estimated that software defects cost the U.S. economy $60 billion per year.

Exhaustive testing is impossible what means that testing everything (all com-
binations of inputs and preconditions) is not feasible expect for trivial cases. This
is valid in particular for software systems with dynamic behavior. The dynamic
systems are modeled by difference or differential equations and have usually in-
finitely many states. Testing dynamic aspects of such systems requires tests that
utilize time continuous input signals and time continuous output signals (even
when the system is digitally processed). The process of selecting just a few of
the many possible scenarios to be tested is a difficult and challenging task and
currently is most often based on qualitative best engineering judgment.

In this paper, testing problem as well as test artifacts for software systems
with dynamic behavior are formulated using the mathematical formalism. The
main results concern the concept of testing with a model as an oracle (section 2),
a proposal for test notation (section 4), an implementation of a test comparator
(section 5), a calculation of test coverage (section 6), and a selection of tests
(sections 7). An example (section 8) is given to present a perspective on the
applicability of the approach for industrial projects.

2 Concept of Testing with a Model as an Oracle

The model of a software system shall specify the system’s behavior in a clear and
unambiguous form. It can be used in computer simulations in an early phase of
the development to validate the system concept, calibrate parameters, and opti-
mize the system performance. In the next phase, the physical system is designed
(i.e., hardware and software) that shall meet the requirements specified by the
model. Testing process shall be considered as the last phase in the development
process that allows verifying that the physical system behavior is identical to
that observed during computer simulations. When the tests failed then the sys-
tem needs to be redesigned. The physical system that is being tested for the
correct operation is often referred to as the system under test (SUT).

The model fully represents the requirements therefore it can be used an oracle
to assess if the algorithm implemented in the electronic control unit (ECU) being
tested correctly implements the requirements. The term test oracle describes a
source to determine expected results to compare with the actual result of the
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SUT [1]. The approach of a validated model being used as an oracle (the block
Mathematical Model of the SUT on figure 1) is very popular in industry and
often applied. The execution of a test case consists of exciting the system using
actuators to simulate its working conditions and measuring the system’s response
in terms of electrical signals, motion, force, strain, etc. The signals are physical
in case of the SUT and virtual in case of the model. The approach stipulates
that the same inputs u(·) are applied to both the SUT and to the model. Next,
the responses from the SUT ys(·) and from the model y(·) are compared by a
test comparator to determine whether a test case has passed or failed.

Mathematical
Model 

of the SUT

Physical
SUT

Test Comparator
u z

y

ys

Fig. 1. Testing approach of a validated model being used as an oracle

3 Mathematical Model of the System under Test

The state space (or input/state/output) representation provides a convenient
way to model and analyze dynamical systems. The state space model consists
of a set of input, output, and internal state variables that are expressed as
vectors. The relationship between inputs, outputs, and internal states in a finite-
dimensional, time-invariant, nonlinear system with continuous-time parameter
can be specified by the following equations:

ẋ(t) = f(x,u, t), x(0) = x0 , (1)

y(t) = g(x,u, t) , (2)

where x(t) ∈ X ⊂ Rn refers to the internal state, u(t) ∈ U ⊂ Rr refers to the
input state, y(t) ∈ Y ⊂ Rm refers to the output state, the independent variable
t > 0 is time, x0 ∈ Rn is the given initial condition, f : Rn×Rr×R→ Rn denotes
a mathematical relationship describing the system behavior, g : Rn ×Rr ×R→
Rm determines the output, X is the internal state space, Y is the output state
space, U is called the input state space, Rn, Rm, Rr are real vector spaces of
column vectors, n, m, r are positive integers that determine numbers of internal
state, output, and input variables, respectively.

The physical and implementation constraints imposed by computer system
resources lead to the assumption that the spaces U , X , and Y shall be bounded.
The assumption means that each space is contained in a ball of finite radius.
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4 Test Notation

A test case can be considered as a set of inputs, execution preconditions, and
expected outcomes developed for a particular objective, such as to exercise a
particular program path or to verify compliance with a specific requirement
[15]. Adapting this definition to the state space modeling concept of the SUT

(1), (2), a single test case T
(j)
case can be defined as

T(j)
case =

{
T (j),x

(j)
0 ,u(j)(·),y(j)(·)

}
, (3)

in case of black-box testing [3], or

T(j)
case =

{
T (j),x

(j)
0 ,u(j)(·),x(j)(·),y(j)(·)

}
, (4)

in case of gray-box testing [12]. Here, u(j) : [0, T (j)] → Rr is an input function
applied to the SUT, x(j) : [0, T (j)]→ Rn is an expected state function, and y(j) :
[0, T (j)]→ Rm is an expected output function within the execution time window

[0, T (j)] when the system starts from an initial condition x
(j)
0 , j = 1, 2, . . . , N

is a label to indicate different test cases. A collection of one or more test cases
forms a test suite Tsuite =

{
T

(1)
case,T

(2)
case, . . . ,T

(N)
case

}
.

5 Test Comparator Implementation

The test comparator can be considered as a tool that implements a mechanism
for determining whether a test has passed or failed [5]. In the concept, illustrated
on figure 1, this tool compares the actual output ys(·) produced by the SUT with
the expected output y(·) produced by the model. If the actual output is within
a predefined tolerance range ε relative to the expected output, then the test is
qualified as pass (z = 0, system ok), otherwise the test is qualified as fail (z = 1,
system error). A possible practical realization of the comparison function z for

a given test case T
(j)
case is presented below:

z(T(j)
case) =

{
0 if ∀t∈[0,T (j)]

∥∥y(j)(t)− ys
(j)(t)

∥∥ < ε
∥∥y(j)(t)

∥∥ ,

1 otherwise .
(5)

In the formula (5) the standard Euclidean norm ‖ · ‖ has been used to measure
the distance between two points in the space Rm.

6 Test Coverage Calculation

The degree to which a given test suite Tsuite addresses all specified requirements
for a given system is determined by a test coverage measure [15]. The most
obvious quantification of the system’s behavior exercised by the test suite is
computed by dividing the number of the system states explored by the test
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suite by the cardinality of the entire state space. However, the formula has
limited usefulness for dynamical systems because the state space for such systems
contains usually infinite number of states. In such situation, one of the possible
ways out is to transform the internal state space X into another one Xh that
contains countable number of elements.

The test coverage Ch of the test suite Tsuite = {T(1)
case,T

(2)
case, . . . ,T

(N)
case} can

be defined as follows [14]

Ch(Tsuite) =

∣∣∣∣∣ N⋃j=1

Vh(T
(j)
case)

∣∣∣∣∣
|Xh|

, (6)

where
Xh = {i ∈ Z

n : ∃x∈X : x ∈ Gh(i)} (7)

is the transformed internal state space, h = [h1 h1 . . . hn]
T
, hk > 0 for k =

1, 2, . . . , n, Z stands for the set of integers,

Gh(i) =

{
x ∈ R

n : x = [x1 x2 . . . xn]
T
,

⌊
xk
hk

⌋
= ik, k = 1, 2, . . . , n

}
(8)

denotes a partition with the size h in the space Rn,
⌊
xk

hk

⌋
is the largest integer

not greater than xk

hk
,

Vh(T
(j)
case) =

{
i ∈ Xh : ∃t∈[0,T (j)] : x

(j)(t) ∈ Gh(i)
}

(9)

is a set of states of the transformed internal state space covered by the test case

T
(j)
case. It should be noticed that the sum

Vh(Tsuite) =

N⋃
j=1

Vh(T
(j)
case) (10)

will contain the information about the internal states covered by the test suite
Tsuite.

The proposed test coverage measure is defined using a partition (or discretiza-
tion) of the system internal state space. The partition forms a rectangular grid
and, roughly speaking, the test coverage is defined by the number of the grid
boxes visited by the system state during a test.

7 Conformance Test Selection Method

The section presents a proposal of the algorithm for generating test cases. The
general principle of the algorithm is to create input functions u(·) for which the
system trajectories x(·) cross every element Gh(i) of the space Xh. The selection
and completeness of test cases is quantified by the coverage metric (6). Test cases
are selected to check that the functional specification (here in the form of the
mathematical model) is correctly implemented, which is variously referred to in
the literature as conformance testing [5], correctness testing [6], or functional
testing [15].
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Algorithm 1. Conformance test selection method

1: h = [h1 h2 . . . hn]
T, h1, h2, . . . , hn > 0, δ ∈ (0, 1], T > 0

2: Tsuite := ∅, Vh(Tsuite) := ∅, Ch(Tsuite) = 0, j := 0
3: while Ch(Tsuite) ≤ δ do
4: Find xa ∈ Gh(ia), xb ∈ Gh(ib) where ib ∈ Xh\Vh(Tsuite)
5: Calculate the control function u∗(·) that steers the system from the initial state

x(0) = xa to the final state x(T ) = xb at finite time T
6: Calculate the trajectory x∗(·) and output function y∗(·)
7: j := j + 1
8: T

(j)
case := {T (j),x

(j)
0 ,u(j)(·),x(j)(·),y(j)(·)}, where T (j) := T , x

(j)
0 := xa,

u(j)(·) := u∗(·), x(j)(·) := x∗(·), y(j)(·) := y∗(·)
9: Tsuite := Tsuite ∪ T

(j)
case

10: Calculate Vh(Tsuite) and Ch(Tsuite)
11: end while

8 Embedded PID Controller Example

An embedded PID controller is a system that can be considered as a combina-
tion of computer hardware and software designed to perform a dedicated control
function. The PID controller works in a closed-loop system (figure 2) and at-
tempts to minimize the error e(t) by adjusting the control input s(t). The error

P

Process
e(t) v(t)vsp(t)

I

D

+

+

+ s(t)

Controller

Fig. 2. A block diagram of the closed-loop system with the PID controller

is calculated as the difference between a measured process output v(t) and a
desired set point vsp(t). The control signal is a result of the following calculation

s(t) = K

(
e(t) +

1

Ti

∫ t

0

e(τ) dτ + Td
de(t)

dt

)
, (11)

where K = 3.6 is proportional gain, Ti = 1.81 [s] is integral time, Td = 0.45 [s]
is derivative time. The control signal is thus a sum of three terms: the P-term
(which is proportional to the error), the I-term (which is proportional to the
integral of the error), and D-term (which is proportional to the derivative of the
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error). The parameters K, Ti, and Td can be obtained using the Ziegler-Nichols
algorithm [16]. The model of the process to be controlled has been omitted in
the example for the purpose of clarity and easy readability.

The algorithm 1 can be used to generate a set of conformance test cases.
Before its execution, the equation (11) needs to be rewritten to the form

ẋ(t) = Ax(t) +Bu(t), x(0) = 0 , (12)

y(t) = Cx(t) , (13)

where x(t) = [x1(t) x2(t)]
T, x1(t) =

∫ t
0
e(τ) dτ , x2(t) = ẋ1(t),

A =

[
0 1

−(TiTd)
−1 −T−1

d

]
, B =

[
0

(KTd)
−1

]
, C =

[
1 0
0 1

]
. (14)

Then, the algorithm has been implemented and executed with the following
parameters: h = [0.3, 0.2]T (size of the partition), δ = 0.7 (acceptable coverage
level), T = 20 [s] (test execution time), −1.5 ≤ x1(t) < 1.5, −1 ≤ x2(t) < 1
(system implementation constraints). The test suite that guarantees the coverage
level higher than δ consists of 10 test cases. The elements of these test cases are
detailed in table 1, figures 3 and 4.

−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x
1

x 2

T
case
(1) T

case
(2) T

case
(3) T

case
(4) T

case
(5)

T
case
(6)T

case
(7)T

case
(8)T

case
(9)T

case
(10)

Fig. 3. Trajectories x(j), j = 1, 2, . . . , 10 and elements (gray rectangles) of the trans-

formed state space covered by the test cases T
(j)
case. The trajectories start in � and end

in ◦.
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u(4)
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u(6)
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u(8)
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Fig. 4. Illustration of the input functions u(j)(·), j = 1, 2, . . . , 10 belonging to the test

cases T
(j)
case

Table 1. An example test report for the test suite Tsuite = {T(1)
case , T

(2)
case, . . . , T

(10)
case}

that guarantees the coverage level Ch > δ, where h = [0.3, 0.2]T, δ = 0.7 (70%). The

notation used in the last column means T
(j)
suite = {T(1)

case , T
(2)
case, . . . ,T

(j)
case}.

j T (j)[s] x
(j)T
0 u(j)(·) x(j)(·) y(j)(·) Ch(T

(j)
case) Ch(T

(j)
suite)

1 20 [0, 0] fig. 4 fig. 3 0.16 0.16
2 20 [0, 0] fig. 4 fig. 3 0.12 0.24
3 20 [0, 0] fig. 4 fig. 3 0.08 0.30
4 20 [0, 0] fig. 4 fig. 3 0.07 0.36
5 20 [0, 0] fig. 4 fig. 3 0.09 0.40
6 20 [0, 0] fig. 4 fig. 3 0.14 0.49
7 20 [0, 0] fig. 4 fig. 3 0.12 0.58
8 20 [0, 0] fig. 4 fig. 3 0.08 0.65
9 20 [0, 0] fig. 4 fig. 3 0.08 0.70
10 20 [0, 0] fig. 4 fig. 3 0.09 0.73

9 Conclusions

In spite of continuing research on test approaches for continuous and mixed
discrete-continuous systems, there is still a lack for patterns, processes, method-
ologies, and tools that effectively support automatic generation and selection of
the correct test cases for such systems. The model-based approach presented in
the paper looks promising. The functional model of the system under test can
be used as an oracle providing the capabilities to assess the results of test cases
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in an automatic way and also in test generation algorithms. Additional aspects,
such as test notation, implementation of a test comparator, and coverage anal-
ysis have been discussed in the paper in order to have complete set of tools and
mathematical methods for testing software systems with dynamic behavior. The
example has been used to validate the concept and to have a perspective on its
applicability for industrial projects.
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Abstract. In this work we present an iterative algorithm for solving a
parameter identification problem relative to a system of diffusion, con-
vection and reaction equations. The parameters to estimate are the re-
tardation factors, diffusivity, reaction and transport coefficients relative
to a model of pollutant transport with chemical reaction. The proposed
method solves the nonlinear least squares problem by means of a se-
quence of constrained optimization problems. The algorithm does not
depend on the type of discretization method used to solve the state
equation. The results reported in the numerical tests show the efficiency
of the algorithm in terms of performance and solution quality.

1 Introduction

Parameter estimation is a very important topic in applied sciences and chemical
engineering: an overview of methods and applications can be found in [3]. The
modeling of pollutant transport with (bio)chemical reaction gives raise to partial
differential systems which are usually very complex. Therefore there is a need
for efficient algorithms for solving parameter estimation problems.

In this work we consider the parameter estimation problem for a system of
reaction, diffusion and transport equations:

∂U

∂t
= ∇ · (D∇U)− V∇U +R(U), (1)

where U ≡ (u1, u2, . . . , uNc)
t represents the concentration in the state variable

(x, t), x ∈ [a, b], t ∈ [0, T ]. The coefficients D and V represent the diffusion
coefficient and the fluid velocity, while the reaction term is represented by the
function R which depends on the solution U . Free flow condition is assumed
at outlet boundary and pulse functions are given at inlet boundary. Homoge-
nous initial conditions are assumed. A typical model of pollutant transport and
biodegradation is illustrated by Frascari et al. [8].

The parameter estimation problem can be formalized as a constrained opti-
mization problem:

min
q

J(U, q) s.t. c(U, q) = 0

� Department of Mathematics.
�� Department of Chemical, Mining and Environmental Engineering.

D. Hömberg and F. Tröltzsch (Eds.): CSMO 2011, IFIP AICT 391, pp. 547–556, 2013.
c© IFIP International Federation for Information Processing 2013
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where c(U, q) = 0 represents the governing PDEs system (1) or state equation,
the objective function J(U, q) is the distance between the measurements y ∈ Y
and the solution U of the state equation c(U, q) = 0, corresponding to the pa-
rameter q ∈ Q in the measurement points. Introducing the reduced observation
operator F : Q −→ Y , that maps the unique solution of the state equation U(q)
into the measurements space Y , we define the equivalent nonlinear least squares
problem:

min
q

1

2
‖F (q)− y‖ (2)

where ‖ · ‖ is the euclidean norm throughout the paper. The ill posedness of the
problem is well known [6] and different methods are proposed in the literature
to obtain stable solutions in the presence of noisy data.

In this paper we propose an iterative method that solves the nonlinear least
squares problem (2) by computing a sequence of constrained optimization prob-
lems. The proposed algorithm computes the solution q and the proper smoothing
parameters, suitable to overcome the instability problems that arise in the so-
lution of nonlinear least squares problems. The necessary starting values and
tolerance parameters are computed using information obtained by the given
measurements.

The paper is organized as follows. In section 2 we formulate the parameter
estimation problem as an optimization problem and describe the discrete opti-
mization algorithm. In section 3 the described algorithm is tested to evaluate
both efficiency and solution quality.

2 The Optimization Algorithm

Aim of this section is to describe the discrete optimization algorithm for param-
eter estimation in the contest of transport and chemical reaction.

Given a set of measurements y ∈ RNm relative to the concentration of com-
pound ui (i = 1, . . . , Nc) at points (tj , xj) ∈ [0, T ]×[a, b]. The problem consists in
finding the parameters q ∈ RNp whose image F (q) ∈ RNm is the least squares
approximation of the data y. The discrete nonlinear least squares problem is
given by:

min
q

J(q), J(q) ≡ 1

2
‖F (q)− y‖ (3)

By applying the first order conditions we obtain the nonlinear system:

J t
F (q)(F (q) − y) = 0, JF (q) ∈ R

Nm×Np, (JF (q))i,j =
∂Fi
∂qj

(q)

This problem is solved iteratively by setting an initial guess q(0) and defining a
direction s(k) s.t. q(k+1) = q(k) + s(k), k ≥ 0, where s(k) is obtained as solution
of the linear system Hks

(k) = −Gt
krk where

Gk ≡ JF (q(k)), rk ≡ F (q(k))− y
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and Hk is the Hessian of the objective function J(q(k)) in (3). Although the
dimensions of the linear system are small (Np×Np), the computation of second
order information is very expensive. In this work we use first order approxima-
tion given by the Gauss Newton method which is equivalent to defining s(k) as
solution of the linearized problem:

min
s

1

2
‖Gks+ rk‖, k ≥ 0. (4)

It is well known that instabilities often occur in the solution of this unconstrained
linear least squares problem and it is necessary to introduce some smoothing
technique to obtain stable solutions in the presence of data noise. A possible
strategy is to add a constraint to the problem and compute the direction s(k) as
solution of the following constrained optimization problem:

min
s

1

2
‖Gks+ rk‖, s.t. ‖s‖ ≤ Δk (5)

where Δk represents the smoothness level required in the solution s. The algo-
rithm that we propose here allows us to solve problem (5) iteratively by com-
puting the approximate solution of the equivalent dual lagrangian problem. The
smoothed solution s(k) is obtained by applying a few steps of Constrained Least
Squares Regularization CLSRit algorithm [1] . Furthermore we define a suitable
size of the initial trust region Δ0, by using the problem data and we update it
to compute Δk > 0 by means of the trust region update method [4].

This algorithm can be viewed as an implementation of the Levemberg Mar-
quardt Trust Region method, widely used both in constrained optimization and
in the contest of parameter estimation [5], [4]. The Trust Region Constrained
Least Squares Regularization TRCLSR, reported in table 1, can be split in the
following steps:

– Computation of the initial trust region size Δ0 (paragraph 2.1).
– Computation of the direction s(k) (paragraph 2.2).
– Update of the trust region size Δk (paragraph 2.1).
– Solution update and stopping rules (paragraph 2.3).

The following input parameters are required: the starting value for the unknown
parameters q(0), the relative tolerance τJ of the objective function J , the absolute
tolerance τs of the step size ‖s(k)‖, the problem data y and the function F that
maps the parameters into the data space.

2.1 Update of Δk

An initial estimate of the size of Trust Region parameter Δ0 can be obtained by
computing a Tikhonov [7] regularized solution of problem (4) with regularization
parameter α = 10−6 i.e.:

Δ0 = ‖s̄(0)‖, s̄(0) s.t. (Gt
0G0 + αI)s̄(0) = Gt

0(F (q(0))− y)
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Table 1. Algorithm TRCLSR

Algorithm 1 (TRCLSR(F , y, q(0), τJ , τs))

Compute U (0) solving the PDE state equation c(U (0),q(0)) = 0;
Compute Jacobian G0 as in subsection 2.4

Compute s̄(0) s.t. (Gt
0G0 + 1.e − 6I)s̄(0) = Gt

0(F (q(0))− y);

Set Δ0 = ‖s̄(0)‖;
k = 0
repeat

Compute direction s(k) as in subsection 2.2
Compute Δk+1 as in subsection 2.1

Compute q(k+1) as in subsection 2.3;

Solve PDE state equation c(U (k+1),q(k+1)) = 0;
Compute Gk+1 (subsection 2.4)
k = k + 1

until
(
|J(q(k+1)) − J(q(k))| < τJ |J(q(k))| or ‖s(k)‖ < τs

)

the value of the parameter α should be small enough to avoid the instability of
the linear system without smoothing too much the solution. At each step k the
update Δk+1 is performed following the Trust Region algorithm (see algorithm
4.1 in [4]).

2.2 Computation of the Direction s(k)

The direction s(k) is computed by solving problem (5) in its equivalent lagrangian
dual form [2]:

max
λ

Φ(λ), Φ(λ) ≡ min
q
L(s, λ). (6)

where L is the lagrangian function: L(s, λ) ≡ 1
2‖Gks+rk‖+λ (‖s‖ −Δk). Solving

the dual problem (6) requires to find λ̂ s.t. ‖s(λ̂)‖ = Δk where s(λ̂) is the
solution of the following linear system

(Gt
kGk + λ̂I)s(λ̂) = −Gt

krk

The nonlinear equation ‖s(λ)‖−Δk = 0 is solved by the hybrid method proposed
in [1]. Given a starting value λ0 > 0 s.t. s(λ0) ≤ Δk and a value ks > 2 s. t.

0 < λ0 < λks < λ̂, compute (s�, λ�) where λ0 = ‖rk‖ and

λ� = λ�−1 + S�−1, " ≥ 1

where

S�−1 =

⎧⎪⎪⎨⎪⎪⎩
sign(‖s(λ�−1)‖ −Δk)

λ0
2�−1

" ≤ ks + 1

‖s(λ�−1)‖ −Δk

‖s(λ�−1)‖ − ‖s(λ�−2)‖
(λ�−2 − λ�−1) " > ks + 1

(7)
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where s(λ�) satisfies: (G
t
kGk + λ�I)s(λ�) = −Gt

krk Under the given hypotheses

it is proven that λ� converges to the solution λ̂ of the dual problem (6) and the

sequence {s�} converges to ŝ ≡ s(λ̂) which is the solution of the problem (5) [1].

2.3 Solution Update q(k+1) and Stopping Conditions

After the computation of each direction s(k), the solution q(k+1) is updated as
follows:

q(k+1) =

{
q(k) + s(k) ρk > η, 0 ≤ η ≤ 0.25

q(k) otherwise

where the parameter ρk is given by

ρk =
J(q(k))− J(q(k) + s(k))

mk(0)−mk(s(k))

and it represents the ratio between the actual reduction J(q(k))− J(q(k) + s(k))
and the reduction predicted in J by the model function mk:

mk(s) ≡ J(q(k)) + stGt
k(F (q(k))− y) + stGt

kGks.

The iterations are stopped when the relative reduction of the objective function
J is below a given tolerance τJ or when the increase of the step size ‖s(k)‖ is
less than a given threshold τs.

2.4 Computation of the Jacobian Matrix Gk

In our tests we used central finite difference approximation (FD). The i-th row
of the Jacobian matrix (Gk)i is obtained as:

(Gk)i =
F (U(q(k) + εei))− F (U(q(k) − εei))

2ε
, i = 1, . . . , Np

where ei is the i − th canonical basis vector, and ε = 1.e − 4. Each row (Gk)i
requires the solution of two state equations to compute U(q(k)+εei) and U(q(k)−
εei). Therefore the number of PDE solutions for each iteration k is 2 ·Np + 1.

3 Numerical Results

In this section we test the proposed algorithm for the estimation of selected pa-
rameters in the time evolution model of Butane (CB), Oxygen (CO) and Chlo-
roform (CCF ) concentrations in a column bioreactor. Taking advantage of sym-
metry, the problem is solved along one section of the spatial domain. The model
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is given by the following system of diffusion transport and reaction equations
representing the concentrations in time t ∈ [0, T ] and space variable x ∈ [a, b]:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

δB
∂CB

∂t
= −V ∂CB

∂x
+ (DB + αLV )

∂2CB

∂x2

δO
∂CO

∂t
= −V ∂CO

∂x
+ (DO + αLV )

∂2CO

∂x2
+KOCO

δCF
∂CCF

∂t
= −V ∂CCF

∂x
+ (DCF + αLV )

∂2CCF

∂x2

. (8)

The parameter αL represents the longitudinal dispersivity, V is the water ve-
locity, δB and δCF are the Butane and Chloroform retardation factors and
KO is the abiotic oxygen consumption rate. The parameters DB, DO and
DCF represent the molecular diffusivities in water (DB = 1.03e − 9 m2s−1,
DO = 2.5e − 9 m2s−1, DCF = 1.e − 9 m2s−1). Inlet boundary conditions are
given by CB(t, a) = B1p(t, 0.625, 1.875), CO(t, a) = C1p(t, 4, 5.625), CCF (t, a) =
CF1p(t, 7.125, 8.125)

where p(t, τ1, τ2) represents the unit smoothed pulse function:

p(t, τ1, τ2) =

⎧⎪⎪⎨⎪⎪⎩
1/(1 + e−(t−τ1)/τ ) t ∈ [τ1 −Δτ , τ1 +Δτ ], Δτ = 0.321
1 t ∈ (τ1 +Δτ , τ2 −Δτ )

1− 1/(1 + e−(t−τ2)/τ ) t ∈ [τ2 −Δτ , τ2 +Δτ ]
0 otherwise

Free flow boundary conditions are assumed at the outlet:

∂

∂x
CB(t, b) = 0,

∂

∂x
CO(t, b) = 0,

∂

∂x
CCF (t, b) = 0

and homogeneous initial conditions are assumed (CB(0, x) = 0, CO(0, x) =
0, CCF (0, x) = 0).

The test problem is obtained by solving the state equation (8) in the domain
[a, b] × [0, T ] with a = 0, b = 2 and T = 15, using the Crank Nicolson method
on a mesh of M = Xs × Ts uniformly spaced points. The measurements y
are obtained by sampling on a uniform grid, with N = Tm × Nm points, each
component (CB , CO, CCF ) of the solution of (8), computed with the parameter
vector q = [V, αL, δB, δCF ,KO, B1, O1, CF1], reported in table 2.

Table 2. Value of the parameters used to obtain measurement data y

Parameter Units Value Parameter Units Value

V md−1 0.75 KO d−1 0.035
αL m 0.12 B1 molm−3 0.26
δB – 1.14 O1 molm−3 0.47
δCF – 1.01 CF1 molm−3 3.4e-3
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Table 3. Results obtained with 40× 12 measurements by changing the starting guess
q0 as in (9). The state equation is solved using a mesh size M = 257× 128.

δ0 k � ‖rk‖ ‖q∗ − qk‖/‖q∗‖
8.e-2 5 95 5.607516e-3 4.647818e-4
1.e-1 5 92 5.607516e-3 4.647818e-4
5.e-1 7 107 5.607516e-3 4.647814e-4
6.e-1 8 123 5.607516e-3 4.647789e-4
7.e-1 12 182 5.607516e-3 4.647818e-4
8.e-1 3 71 4.603204e-1 8.000000e-1
9.e-1 3 71 5.018664e-1 9.000000e-1
1.2 4 89 3.544192e-1 1.304530

In the following paragraphs we report the results of experiments to test the
algorithm with respect to initial value q0, mesh size M and data noise. All the
experiments were performed using MATLAB (R2010a) on a workstation with 6
Intel(R) Core(TM) i7 processors and 24 GByte ram. In all the tests reported in
the following paragraphs, algorithm TRCLSR in table 1 has the following tolerance
parameters: η = 0, τJ = 10−7 and τs = 10−8.

3.1 Starting Guess q0

In this experiment we apply the algorithm TRCLSR to estimate the parameters
q∗ = [V, αL, δB, δCF ,KO] by changing the starting guess q0 in order to get an
assigned relative error δ0, i.e. ‖q0 − q∗‖/‖q∗‖ = δ0.

Table 3 shows the relative error (fifth column) and the residual norm (fourth
column) obtained with 8% ≤ δ0 ≤ 120% and mesh size M = 32896. The mea-
surements are obtained by uniformly sampling CB, CO, CCF on N = Tm ×Nm

points with Tm = 40 and Nm = 4. Computing the starting vector as follows

q0 = q∗ + δ0‖q∗‖η, (9)

where η is a uniform random vector s.t. ‖η‖ = 1, we observe that, in order to
have an accurate solution, the maximum allowed δ0 is 70% and this value does
not depend on the mesh size used to solve the state equation (8). Figure 1(a)
shows the results of the same experiment carried out using meshes of increasing
size 8256 ≤M ≤ 424571: it is clear a significant error increase when δ0 is beyond
the percentage allowed.

When δ0 ≤ 70% the algorithm converges to the optimal solution with residual
norm and relative error independent on q0.

3.2 Estimate Accuracy

The quality of parameters estimate improves by increasing the accuracy of the
solution of the state equation (8). In table 4 are reported the residual norm (fifth
column) and relative error (sixth column) obtained by increasing the size of the
mesh Ts ×Xs (first and second columns) used to solve (8).
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Table 4. Results obtained with 40 × 12 measurements by changing the mesh size
M = Ts ×Xs in the state equation solution

Ts Xs k � ‖rk‖ ‖q∗ − qk‖/‖q∗‖
257 128 7 107 5.607516e-3 4.647814e-4
513 256 7 100 9.653799e-4 9.616222e-5
917 463 8 104 1.030716e-4 1.055537e-5
1013 617 7 93 1.394869e-4 8.879562e-6

We can not get the same conclusion by increasing the number of measurements
N . As it can be observed in figure 1(b), more than N = 100 measurement points
do not lead to a sharp decrease of the relative error.

3.3 Noisy Data

In this paragraph we analyze the solution in the presence of noise on the mea-
sured data. The noisy data yδ are computed so as to achieve a predetermined
level of noise δ: yδ = y + δ‖y‖η, where η is a random vector with ‖η‖ = 1. In
table 5 we report the results obtained by solving the state equation with mesh
size M = 424571 (Xs = 917, Ts = 463) and measurements obtained by sampling
CB, CO, CCF on a uniform grid with Tm = 40 and Nm = 4 points. The noise δ,
reported in column 1, is increased from 0.01% to 10% and we observe the same
behavior in the residual norm (column fourth). The quality of the result is still
good, as can be observed from the relative error (fourth column table 5) and the
graph in figure 3.

The plots in figure 2 show the relative error and residual convergence history
relative to the case M = 424571 with noise δ = 1.e− 3.

Table 5. Results obtained with noise added to 40× 12 measurements and solving (8)
with M = 424571

δ k � ‖rk‖ ‖q∗ − qk‖/‖q∗‖
1.e-4 7 98 4.984954e-4 3.761874e-5
1.e-3 7 103 2.404441e-3 1.147139e-4
1.e-2 7 114 2.159983e-2 1.841462e-3
1.e-1 6 111 2.363836e-1 5.460248e-3

3.4 Algorithm Efficiency

The efficiency of the algorithm can be measured by outer iteration numbers (k)
and by the inner iterations ", reported in tables 3, 4 and 5 (columns k and ").
We observe a small number of outer iterations (k) with respect to the inner
iterations ". The outer iterations (k) are computationally expensive since each
step requires 2 ·Np+1 solutions of the state equation (8), as shown in paragraph
2.4. Although the number of internal iterations is quite large it is relative to the
the solution of a small size linear system Np × Np (Np = 5), so it’s generally
inexpensive.
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Fig. 1. (a) Relative errors obtained by changing δ0 and using meshes of incresing size
M . (b) Relative Errors obtained by increasing the measurements N (state equation
solved with M = 474571).
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Fig. 2. Algorithm convergence in the case M = 424571 with noise δ = 1.e − 3: (a)
Relative Error: ‖q∗ − qk‖/‖q∗‖ (b) Residual norm: ‖rk‖
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4 Conclusions

We can conclude that the algorithm TRCLSR computes accurate estimates of the
parameters of the model (8), with up to 70% relative error on the initial guess.
Furthermore, studies with data affected by noise show that the algorithm can
determine accurate solutions with residual norm related to the level of added
noise.

Future work will focus on the use of experimental data and more complex
nonlinear models. The proposed optimization algorithm is independent of the
type of discretization used to solve the state equation, therefore different PDE
solutors will be tested.
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Abstract. We propose a variational formulation of a macroscopic model
for crowd motion involving a conservation law describing mass conserva-
tion coupled with an eikonal equation giving the flow direction. To get a
self contain paper we recall many results concerning flow mapping and
convection process associated with non smooth vector field V .

1 The Crowd Motion Problem

We consider a set Ω ⊂ RN representing a room and we denote by Γ = Γw∪Γo its
boundary, where Γw represents the solid wall, and Γo the doors (we also assume
Γw ∩ Γo = ∅). The natural setting for the problem considered in this paper is
N = 2, but the 3D problem arises for example for fishes in an aquarium or flock
of birds in a portion of sky.

The aim of this paper is to present a variational formulation of a model de-
scribing the motion of pedestrians in a finite set Ω. The control parameter of the
crowd dynamics is the speed vector field V (which is time dependent) and equa-
tion (2.1) below expresses the conservation of the pedestrian mass

∫
Ω ρ(t, x) dx,

where ρ = ρ(t, x) denotes the pedestrian density. We study the dynamic system
on a time interval I = (0, τ), the final time τ being arbitrary.

2 Crowd Motion

We denote by v ∈ RN the velocity, which is the norm of speed vector V , i.e.
v(t, x) = |V (t, x)|. The conservation of the mass, ρ being the density, is classically
expressed by the following equation in conservation form

(2.1)

ρt + div(ρ V ) = 0, in I ×Ω,

ρ(0) = ρ0,

V.n = 0, on Γw,

V = vn, v ≥ 0, on Γo.

D. Hömberg and F. Tröltzsch (Eds.): CSMO 2011, IFIP AICT 391, pp. 557–566, 2013.
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The “crowd rheology” modeling is done in two steps. First, we impose that v is
a decreasing function of the density ρ, which means that the pedestrian is going
faster when there are less people around him. We assume given a decreasing
function f (we will consider as an example the function f(ρ) = 1− ρ, so that we
have

(2.2) v = f ◦ ρ.

Secondly, we want to take into account the fact that pedestrians try to minimize
their travel time. As a consequence, they prefer avoiding high density regions,
where they would proceed at low velocity. This behavior can be recovered by
means of an eikonal equation whose running cost is given by the reciprocal of
the velocity, as proposed by [3]. More precisely, we impose that there exists some
potential function Φ, which solves

(2.3)
‖∇Φ‖ = 1

f(ρ)
, in Ω,

Φ = 0, on Γo,

such that

(2.4) V = f2(ρ) ∇Φ.

Since the geometrical domain Ω is assumed to be simply connected, the existence
of Φ such that (2.4) holds implies the following curl free condition (assuming that
f never reaches zero):

(2.5) curl

(
V

f2(ρ)

)
= 0

We observe that curl
(

V
f2(ρ)

)
= f−2 curlV + ∇( f−2 )× V , then (2.5) is equiv-

alent to

(2.6) f(ρ) curlV − 2f ′(ρ) ∇ρ× V = 0,

which, taking f = 1−ρ +κ (for some constant κ > 0), simplifies to the following
bilinear condition:

(2.7) (1− ρ) curlV + 2 ∇ρ× V = 0 .

Concerning the boundary condition for the vector field V , we shall assume that
the initial density ρ0 is compactly supported inside the domain Ω so that during
the time τ , the speed of the crowd being bounded, no pedestrian will reach the
boundary so that without any loss of generality and for sake of simplicity we
shall assume V.n = 0 on the wall Γw and ||V || ≤ vmax, where vmax > 0 is the
maximum speed for a pedestrian. The ”strong” boundary bondition Φ = 0 on
Γ0 is lost in this process but is preserved in weak form as, from V = vn on Γ0,
we get Φ = cte on Γ0.
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3 Speed Vector V

We assume Ω to be a bounded domain in RN with “smooth boundary” Γ .
We consider a vector field V ∈ L1(I, L1(Ω;RN )) with divergence divV ∈
L1(I, L1(Ω)) and normal component V.n = 0 at the boundary (as an element of
W−1,1(Γ )). As a definition we set E(V ) the family of such L1 vector fields V .
We denote by V (t) the partial mapping x→ V (t)(x) = V (t, x).

3.1 Regularization

We assume now Ω to be star shaped, and without any loss of generality we
assume that 0 ∈ Ω and the domain to be star shaped with respect to 0. (In
fact in all what follows in this section it suffices the domain to be locally star
shaped.) We denote by V e the extension of V to RN by zero outside of Ω. And
we set

V̄n(t, x) = V e (t, (1 + 1/n)x) ,

which is compactly supported in Ω. Let λn be a mollifier and consider

Vn(t) = λn + V̄n(t) ∈ C∞
c (Ω,RN ))

We assume the mollifier suitably chosen, so that Vn(t) is also compactly sup-
ported in Ω. We get divV̄n(t, x) = (1 + 1/n) (divV )e(t, (1 + 1/n)x )

divVn(t) = (1 + 1/n)λn + divV̄n

So that we have the following strong convergences

Vn → V in L1(I, L1(Ω,RN )); divVn → divV in L1(I, L1(Ω))

4 Flow Mapping

Consider V ∈ L1(I, C1(Ω) ∩ H1
0 (Ω)). We prove here, following [6], that the

mapping mapping Tt(V ) defined over the bounded domain Ω .

4.1 Existence

Let X ∈ Ω, we consider the sequence

x0(t) = X

x1(t) = X +

∫ t

0

V (s, x0(s))ds

...

xn+1(t) = X +

∫ t

0

V (s, xn(s))ds(4.1)
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As a first result we have xn(t) ∈ Ω̄. We apply Ascoli compactness theorem to
the family xn(.) ∈ C0(I, Ω̄). We verify the equicontinuity of this family at any
t ∈ I = [0, τ ]:

xn(t+ ε)− xn(t) =

∫ t+ε

t

V (s, xn(s)) ds

∀n, ||xn(t+ ε)− xn(t)|| ≤
∫ t+ε

t

‖V (s)‖L∞(Ω,RN ) ds

Then this sequence converges in C0(I, Ω̄) to an element x(t), passing to the limit
in (4.1) we observe that x(t) is a solution to the flow equation.

4.2 Uniqueness

Assume xi, i = 1, 2 are two solutions. We set y(t) = x2(t)− x1(t), we get

y(t) =

∫ t

0

[

∫ 1

0

DV (s, x1(s) + λy(s) ) dλ ].y(s) ds

Then

∀t ∈ I, ‖y(t)‖ ≤
∫ t

0

‖DV (s)‖L∞ ‖y(s)‖ ds ≤ max
s
‖y(s)‖

∫ t

0

‖DV (s)‖L∞ ds

Choose tV such that k =
∫ tV
0
‖DV (s)‖L∞ds < 1, then we get y = 0 on [0, tV ].

Then the solution is unique on this interval [0, tV ]. Now the interval I can be
decomposed in a finite number of such intervals, then the solution is unique on I.

Let X ∈ Ω, we set Tt(V )(X) = x(t), and T (V ) denotes the mapping (t,X) �→
Tt(V )(X)

Proposition 41. Let V ∈ L1(I, C1(Ω) ∩ H1
0 (Ω)), the flow mapping Tt(V ) is

defined for any t ≤ τ and Tt(V ) ∈ C1(Ω). It is invertible and Tt(V )−1 = Tt(V
t)

where V t(s) = −V (t− s), so that Tt(V )−1 ∈ C1(Ω).

4.3 Convection

Let ζ0 ∈ L1(Ω) and set ζ(t) = ζ0 ◦ Tt(V )−1. This function solves the convection
problem

(4.2) ζt +∇ζ(t).V (t) = 0, ζ(0) = ζ0

Moreover, as ζt = −div(ζV ) + ζ divV (t) ∈ L1(I,W−1,1(Ω)), we get
ζ ∈ C(I,W−1,1(Ω)).
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5 Solution to Transport Equation (2.1)

5.1 The Homogeneous Equation

Proposition 51. Let V ∈ L1(I, L1(Ω,RN )) with divV ∈ L1(I×Ω) and V.n = 0
on Γ as an element of W−1,1(Γ ). Let ρ0 ∈ L∞(Ω). Then there exists a solution
ρ ∈ L∞(I ×Ω) to the transport equation (4.2). Moreover, we have the following
estimates

(5.1) ‖ρ‖L∞(I×D) ≤ ‖ρ0‖L∞(Ω)

Proof. Let Vn a smooth field strongly converging to V . Let ρn be the solution
of this equation associated to the smooth vector field Vn, that is:

(5.2) ρn(t) = ρ0 ◦ Tt(Vn)−1

then

||ρn||L∞(I×D) = ||ρ0||L∞(Ω)

There exists a subsequence which is σ∗ weakly converging to some element ρ
verifying ‖ρ‖L∞(I×D) ≤ ‖ρ0‖L∞(Ω) and we can pass to the limit in the weak
formulation :

∀ϕ ∈ C∞(I×Ω), ϕ(τ) = 0,

∫ τ

0

∫
Ω

ρn(−ϕt−div(ϕVn)) dx dt+
∫
Ω

ρ0ϕ(0) dx = 0

5.2 The Non-homogeneous Equation

Proposition 52. Let V ∈ L1(I, L1(Ω,RN )) with divV ∈ L1(I×Ω) and V.n = 0
on Γ as an element of W−1,1(Γ ). Let ρ0 ∈ L∞(Ω), ‖ρ0‖ ≤ 1. Assume that
F ∈ L1(I, L∞(Ω)), then there exists a solution ρ ∈ L∞(I ×Ω) to the transport
equation

(5.3) ρt +∇ρ.V = F, ρ(0) = ρ0

Moreover, we have the following estimate

(5.4) ‖ρ‖L∞(I×D) ≤ ‖ρ0‖L∞(Ω) +

∫ τ

0

‖F (s)‖L∞(Ω) ds.

Proof. Let Vn be a smooth field strongly converging to V . Let ρn be the solution
associated to the smooth vector field Vn, that is:

(5.5) ρn(t) = [ρ0 +

∫ t

0

F (s) ◦ Ts(Vn)ds] ◦ Tt(Vn)−1
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then

∀t, ‖ρn(t)‖L∞(Ω) = ‖ρ0 +
∫ t

0

F (s) ◦ Ts(Vn) ds‖L∞Ω)

≤ ||ρ0||L∞(Ω) +

∫ t

0

||F (s)||L∞(Ω) ds.(5.6)

Then

‖ρn(t)‖L∞(I×Ω) ≤ ‖ρ0‖L∞(Ω) +

∫ τ

0

‖F (s)‖L∞(Ω) ds,

The weak formulation gives

ϕ(τ) = 0,

∫ τ

0

∫
Ω

ρn(−ϕt−div(ϕVn)) dxdt+
∫
Ω

ρ0ϕ(0, x) dx =

∫ τ

0

∫
Ω

Fϕ dxdt

for all ϕ ∈ C∞(I ×Ω). Now

div(ϕVn) = ϕ divVn + ∇ϕ.Vn −→ div(ϕV ) in L2,

which, together with the weak convergence of ρn to some ρ, enables us to pass
to the limit and obtain the weak formulation of a solution ρ to equation (5.5).
The bound leads to the convergence (up to a subsequence) weakly in σ−∗, and
the (weak) limit preserves the estimate.

6 The Conservation Equation

Proposition 61. Let ρ0∈L∞(Ω) and V ∈ L1(I×Ω,RN ), divV ∈ L1(I, L∞(Ω)),
with V.n = 0 in W−1,1(Γ ). Assuming ‖divV ‖L1(I,L∞(Ω)) < 1, there exists a so-
lution ρ ∈ L∞(I ×Ω) to equation (2.1).

Proof. Equation (2.1) writes

ρt +∇ρ.V = − ρ divV, ρ(0) = ρ0.

Let
ρn+1
t + ∇ρn+1.V = − ρn divV, ρn+1(0) = ρ0

and
δn,p = ρn+p − ρn.

From ??, as δn,p(0) = 0, we get,

‖δn+1,p‖L∞(I,L∞) ≤ ‖δn,p divV ‖L1(I,L∞)

≤ ‖δn,p‖L∞(I,L∞) ‖divV ‖L1(I,L∞(Ω))

≤ ‖δn−1,p‖L1(I,L∞) ‖divV ‖2L1(I,L∞(Ω)

...

≤ ‖δ1,p‖L∞(I,L∞(Ω)) ‖divV ‖nL1(I,L∞(Ω))

= ‖ρp+1 − ρ1‖L∞(I,L∞(Ω)) ‖divV ‖nL1(I,L∞(Ω)).
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Now

‖ρp+1‖L∞(I,L∞(Ω))

≤ ‖ρ0‖L∞(Ω) + ‖ρp divV ‖L1(I,L∞(Ω))

≤ ‖ρ0‖L∞(Ω) + ‖ρp‖L∞(I,L∞(Ω))‖divV ‖L1(I,L∞(Ω))

≤ ‖ρ0‖L∞(Ω) +
(
‖ρ0‖L∞(Ω) + ‖ρp−1 divV ‖L1(I,L∞(Ω))

)
‖divV ‖�L1

(I,L∞(Ω)

≤ ‖ρ0‖L∞(Ω) +
(
‖ρ0‖L∞(Ω) + ‖ρp−1‖L1(I,L∞(Ω))‖divV ‖L1(I,L∞(Ω))

)
‖divV ‖L1(I,L∞(Ω))

...

≤ ‖ρ0‖L∞(Ω)Σi=0,....,p+1‖divV ‖iL1(I,L∞(Ω))

We get

∀p, ‖ρp‖L∞(I,L∞(Ω)) ≤ ‖ρ0‖L∞(Ω)

(
1− ‖divV ‖L1(I,L∞(Ω))

)−1
.

So {ρn}n is a Cauchy sequence in L∞(I, L∞(Ω)) .

Theorem 61. Let ρ0 ∈ L∞(Ω) and V ∈ L1(I ×Ω,RN ), divV ∈ L1(I, L∞(Ω))
with V.n = 0 in W−1,1(Γ ). Then there exists a solution ρ ∈ L∞(I × Ω) to
equation (2.1).

Proof. We consider a finite covering of the interval I = [0, τ ] by open in-
tervals ]ti, ti + τi[, i = 0, . . . , k, with t0 = 0, tk + τk = τ , and such that∫ ti+τi
ti

‖V (t)‖L∞(Ω) dt < 1 for all i. From the next proposition, there exists

a solution ρ1 on the interval ]t0, t0 + τ0[ verifying ρ1(0) = ρ0. This solution is
continuous in the following sense:

ρ1 ∈ C([t0, t0 + τ0],W
−1,1(Ω)).

Then for all t ∈ [t0, t0+τ0] the element ρ1(t) is defined as an element ofW−1,1(Ω),
but for a.e. t ∈ [t0, t0 + τ0] this element is in L∞(Ω). So we can choose such
an element t̃1 ∈]t1, t0 + τ0[ with ρ1(t̃1) ∈ L∞(Ω). Then on the interval I2 =
(t̃1, t1 + τ1) by the next proposition we built a solution ρ2, and so on on each
interval Ii. We obtain a solution on the whole interval (0, τ).

7 Crowd Motion Variational Formulation

Let us denote by I the time interval, I = ]0, τ [. To any element V ∈ E(Ω) ⊂
L1(I, L1(Ω,RN )), we associate the set RV of solutions to the conservation equa-
tion (2.1) and we introduce the functionals
(7.1)
J(V, ρ) = ‖f ◦ ρ− |V |‖L1(I,L1(Ω))+β‖(1− ρ) curlV +2∇ρ×V ‖L1(I,W−1,1(Ω,RN ))

(7.2) j(V ) = inf
ρ∈RV

J(V, ρ)
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which can be rewritten as

(7.3) j(V ) = inf
r∈L∞(I,L∞Ω))

sup
θ∈W

L(V, r, θ)

where
W =

{
θ ∈ L1(I,W 1,∞(Ω)) ∩W 1,1(I, L1(Ω)), : θ(τ) = 0

}
and

L(V, r, θ) = J(V, r) +

∫
I

∫
Ω

r (θt + ∇θ.V )) dxdt+

∫
D

ρ0θ(0) dx.

We have the obvious

Proposition 71. Let V ∈ E(Ω) such that j(V ) = 0, then it solves the crowd
problem in the sense that there exists a solution ρ ∈ RV such that (V, ρ) solves
the crowd system (2.1), (2.3), (2.4).

If such a speed vector V exists it minimizes the positive functional j over the
spaceE(Ω). The variational approach for the crowd problem under consideration
is to replace it by the weaker one which is the minimization of the non negative
functional j over E(Ω). Our approach is now to compute the gradient of the
functional j to be minimized.

We remark that, if the infimum of the functional j is not zero, then, in some
sense, the crowd problem formulated as (2.1), (2.3), (2.4) would have no solution.
If the infimum reaches zero it would built a solution.

8 Minimization of the Functional

The main objective is to calculate the gradient of j.
We denote by j′(V ;W ) = lim infε>0, ε→0 j(V + εW ). If the limit exists, it is

the classical Gateau semi derivative. For sake of simplicity let us first compute
the gradient for a regularized functional jγ expressed in the following form

(8.1) jγ(V ) = j2(V ) +
γ

2

∫
I

∫
D

‖V (t)‖2Hdt,

where H stands here for a Banach space of function over the domain Ω which
will ensure the set RV of solutions to the conservation equation (2.1) to be a
singleton element ρV . This will be the case for the following choices :
H = {V ∈ H3(Ω,RN ), Δv = 0, V.n = vmax on Σ } ⊂ E(Ω) ∩C1(Ω̄)

or
H = {V ∈ BV (Ω,RN ) with divV ∈ L∞(Ω)},

and where j2 is the quadratic version of j, that is j2(V ) = infρ∈RV J2(V, ρ) with
(8.2)
J2(V, ρ) = ‖f ◦ ρ− |V |‖2L2(I,L2(Ω)) + β‖(1− ρ) curlV + 2∇ρ× V ‖2L2(I,L2(Ω,RN ))

We briefly recall now the calculus of the gradient of the functional expressed in
Min Max.
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8.1 Derivative of a Function in Min Max Form, from [1], [6]

Let E, F be two Banach spaces and L(s, e, f) be a function defined from [0, 1]×
KE × KF into R, where KE, KF are convex sets, respectively in E and F .
Assume that the Lagrangian functional L is convex l.s.c. with repect to e ,
concave u.s.c. with respect to f and continuously differentiable with respect to
the parameter s. Assume moreover that there exists a non empty set S(s) of
saddle points. Then it always takes the following form:

S(s) = A(s)×B(s), A(s) ⊂ KE , B(s) ⊂ KF , such that :

∀a(s) ∈ A(s), ∀b(s) ∈ B(s), ∀γ ∈ KA, ∀β ∈ KB,

L(s, a(s), β) ≤ L(s, a(s), b(s)) ≤ L(t, γ, b(s))

So that ∀γ′ ∈ KE, ∀β′ ∈ KF we have

−L(0, γ′, b(0)) ≤ −L(0, a(0), b(0)) ≤ −L(0, a(0), β′).

By choosing γ = a(0), β = b(0), γ′ = a(s), β′ = b(s), and adding the two
previous inequalities we get for any s > 0 :

L(s, a(s), b(0))− L(0, a(s), b(0))

s
≤ L(s, a(s), b(s))− L(0, a(0), b(0))

s

≤ L(s, a(0), b(s))− L(0, a(0), b(s))

s

Under reasonable smoothness assumptions on L and Kuratowski continuity of
the sets A(s) and B(s) we get the semi-derivative of

l(s) = min
a∈KE

max
b∈KF

L(s, a, b)

i.e.

(8.3) l′(0) = min
a∈A(0)

max
b∈B(0)

∂

∂s
L(0, a, b)

In the following section we shall make use of that semi-derivative in the specific
situation in which the set S(0) is reduced to a unique pair, A(0) = {y}, B(0) =
{p}, where y and p will be the “state” and “adjoint-state” solution associated
with the wave equation under consideration. In this situation the function l is
differentiable at s = 0 and the derivative (8.3) takes the following form:

l′(0) =
∂

∂s
L(0, y, p).
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8.2 The Optimal System

Just for shortness of the expressions we make β = 0 and m = 1 so that

J ′
γ(V ;W )=

∫
I

∫
Ω

(
2(|V | − f ◦ ρV )

V

|V | .W +ρV W.∇P

)
dxdt+γ

∫
I

∫
Ω

DΔV.DΔW dxdt,

where the adjoint state P is the solution to the following backward adjoint prob-
lem:

(8.4) Pt +∇P.V = 2(f ◦ ρV − |V |)f ′ ◦ ρV , P (τ) = 0.

Obviously the gradient is

∇Jε(V ) = 2(|V | − f ◦ ρV )
V

|V | + ρV∇P − γΔV.

Proposition 81. If the vector field V minimizes the functional jγ , then it solves
the optimality system

ρt + div(ρ V ) = 0, ρ(0) = ρ0,

Pt +∇P.V = −2( 1− ρ + γ − |V |), P (τ) = 0,

( 2(|V | − f ◦ ρ) V|V | + ρ∇P − γΔV = 0.

V (t).n = 0 on Γω, V (t).n = vmax on Γ0, ΔV (t) = Δ2V (t) = 0, on Σ
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