
Fundamental Aspects of Software Measurement

Sandro Morasca

Università degli Studi dell’Insubria
Dipartimento di Scienze Biomediche, Informatiche e della Comunicazione

I-22100 Como, Italy
sandro.morasca@uninsubria.it

Abstract. Empirical studies are increasingly being used in Software
Engineering research and practice. These studies rely on information ob-
tained by measuring software artifacts and processes, and provide both
measures and models based on measures as results. This paper illustrates
a number of fundamental aspects of Software Measurement in the defi-
nition of measures that make sense, so they can be used appropriately.
Specifically, we describe the foundations of measurement established by
Measurement Theory and show how they can be used in Software Mea-
surement for both internal and external software attributes. We also
describe Axiomatic Approaches that have been defined in Software Mea-
surement to capture the properties that measures for various software
attributes are required to have. Finally, we show how Measurement The-
ory and Axiomatic Approaches can be used in an organized process for
the definition and validation of measures used for building prediction
models.

Keywords: Software Measurement, Measurement Theory, internal soft-
ware attributes, external software attributes, Axiomatic Approaches,
GQM.

1 Introduction

Measurement is an essential part in every scientific and engineering discipline
and is a basic activity in everyday life. We use measurement for a variety of goals,
by acquiring information that we can use for developing theories and models, de-
vising, assessing, and using methods and techniques, and making informed and
rational practical decisions. Researchers use measurement to provide evidence for
supporting newly proposed techniques or for critically assessing existing ones. In-
dustry practitioners use measurement for production planning, monitoring, and
control, decision making, carrying out cost/benefit analyses, post-mortem anal-
ysis of production projects, learning from experience, improvement, etc. Final
consumers use measurement to make sensible decision.

Thus, it is not surprising that measurement is at the core of many engineer-
ing disciplines, and the interest towards measurement has been steadily grow-
ing in Software Engineering too. However, Software Engineering differs from

A. De Lucia and F. Ferrucci (Eds.): ISSSE 2009-2011, LNCS 7171, pp. 1–45, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 S. Morasca

other engineering disciplines in a number of aspects that deeply affect Software
Measurement.

– Software Engineering is a relatively young discipline, so its theories, meth-
ods, models, and techniques still need to be fully developed, assessed, con-
solidated, and improved. The body of knowledge in Software Engineering is
still limited, if compared to the majority of engineering disciplines, which
have been able to take advantage of scientific models and theories that have
been elaborated over the centuries. These models and theories were built
through a process that required 1) the identification of a number of funda-
mental concepts (e.g., length, mass, time, and electrical charge in Physics),
2) the study of their characteristics, 3) the investigation of how they are
related to each other by means of theories and models, and 4) how they can
be measured by collecting data from the field so theories and models can be
validated and used.

– Software Engineering is a very human-intensive discipline, unlike the engi-
neering branches that are based on the so-called hard sciences (e.g., Physics,
Chemistry). One of the main tenets of these sciences is the repeatability
experiments and their results. This is hardly ever the case in a number of
interesting Software Engineering studies. For instance, it is clearly impossi-
ble to achieve repeatability when it comes to developing a software product.
So, it is virtually impossible that given the same requirements and given
two teams of developers with the same characteristics working in environ-
ments with the same characteristics, we obtain two identical values for the
effort needed to develop a software application. Thus, Software Measurement
models, theories, methods, and techniques will be different from those of the
hard sciences and will probably not have the same nature, precision, and
accuracy. As a matter of fact, some aspects of Software Measurement are
more similar to measurement in the social sciences than measurement in the
hard sciences.

– Software Engineering deals with artifacts that are mostly immaterial, like
software code, test suites, requirements, etc., for which there is no real, direct
experience. For instance, we are much more acquainted with the concept of
length of a material object than the concept of “complexity” of a software
program.

Given these specific aspects of Software Engineering, and the practical impact
that Software Measurement can have on Software Engineering practices, we here
investigate two basic questions, similar to those that are frequently quoted for
Software Verification and Validation.

– Are we measuring the attributes right? When using or defining a measure,
it is necessary to make sure that it truly quantifies the attribute it purports
to measure. As mentioned above, Software Engineering has not yet reached
the same level of maturity of other engineering disciplines, nor has Soft-
ware Measurement, so this theoretical validation is a required activity for
using or defining measures that make sense. Theoretical validation is also

Fundamental Aspects of Software Measurement 3

a necessary step not only for the empirical validation of software measures,
but, even more importantly, for empirically validating Software Engineering
techniques, methods, and theories. For instance, empirically validating the
claim that the maintainability of a software system decreases if the cou-
pling between its modules increases requires that one use sensible measures
for coupling and maintainability. Given the lack of intuition about software
product attributes, theoretical validation is not a trivial activity, as it in-
volves formalizing intuitive ideas around which a widespread consensus still
needs to be built.

– Are we measuring the right attributes? Measuring attributes that are irrel-
evant for our goals would clearly be useless. So, we need to select the right
ones, given the available resources. The best way to provide evidence that an
attribute is relevant for some specified goal is to use a sensible measure for
that attribute and carry out an experimental or empirical study by showing
that, for instance, it can be used for predicting some software product or
process attribute of interest. This activity entails the empirical validation of
the measure.

By not answering these two questions satisfactorily, we could end up with mea-
sures that are useless and waste the resources used for measurement. In an even
worse scenario, we could actually make incorrect decisions based on inappropri-
ate measures, which could even be detrimental to the achievement of our goals,
in addition to wasting the resources used for measurement.

In the remainder of this paper, we describe the foundational aspects of Soft-
ware Measurement, by using the two main approaches available in the related lit-
erature, namely Measurement Theory and Axiomatic Approaches. Beyond their
mathematical appearance, both approaches are actually ways to formalize com-
mon sense, so as to reach a reasonable compromise between the principles of
rigor and common sense that should rule in applied research. We describe these
two approaches in the remainder of this paper to show their usefulness and po-
tential, along with their strengths and weaknesses. In addition, we illustrate a
goal-oriented process that can be followed to carry out the definition and empir-
ical validation of sensible measures. This process also shows how the theoretical
validation of measures can be used to prevent irrelevant measures or attributes
from being used in prediction models.

We mostly address fundamental issues in the measurement of attributes of
software artifacts in this paper. So, our primary focus here is on the theoretical
validation of measures for attributes of software artifacts. The measurement of
process attributes is somewhat more straightforward. Take design effort as an
example of a software process attribute. The real challenge in this case is the
prediction of the effort required to carry out software design, not its measure-
ment. Software design effort prediction requires the identification of appropriate
measures that can be quantified before design takes place and the availability
of a quantitative model based on those measures. Software design effort mea-
surement, instead, simply requires the identification of which activities belong
to software design, the people who work on those activities, and the use of

4 S. Morasca

accurate collection tools for the effort used for software design. Thus, software
design effort measurement is mostly concerned with a number of details which,
albeit important, do not compare to the issues related to the building of a good
prediction model.

The remainder of this paper is organized as follows. Section 2 introduces a
few basic concepts and the terminology that is used in the paper. The use of
Measurement Theory for the intrinsic attributes of software artifacts is described
in Section 3, while Axiomatic Approaches are introduced in Section 4. A uni-
fied axiomatic approach for the description of a number of interesting intrinsic
attributes of software artifacts is described in more detail in Section 5. Sec-
tion 6 describes Probability Representations, which are a part of Measurement
Theory that has received little attention in Software Measurement so far, and
which can be used for providing firm foundations for all of those software artifact
attributes that are of practical interest for software stakeholders. Section 7 il-
lustrates GQM/MEasurement DEfinition Approach (GQM/MEDEA), a process
for the definition of measures for prediction models that integrates the funda-
mental aspects of Software Measurement into a coherent, practical approach.
Conclusions and an outline of future work on fundamental aspects of Software
Measurement follow in Section 8.

2 A Few Basic Concepts

Here, we introduce a few basic concepts and terminology that will be used
throughout the paper.

In Software Measurement, like in any kind of measurement, one measures the
attributes of entities. It does not make sense to measure an “entity,” without
mentioning which specific attribute of that entity we would like to measure. It
does not make much sense to “measure a car,” for instance. It is necessary to
specify whether we are measuring its length, width, height, weight, number of
seats, maximum speed, etc. By the same token, it does not make much sense to
measure a software program, unless we specify which particular attribute we have
in mind. There is a plethora of different attributes that have been introduced
in Software Measurement: size, complexity, cohesion, coupling, connectivity, us-
ability, maintainability, readability, reliability, effort, development time, etc., to
mention a few. Since there are so many of them, it is important to understand
the nature of these attributes and identify their similarities and differences. In
the long term, it would be useful to come to a generalized agreement about
these fundamental concepts of Software Measurement so that everybody uses
and understands the same concepts in the same way. For terminology consis-
tency, we use the term attribute in this paper, instead of other terms that have
been used in the past for the same concept, including quality, characteristic,
subcharacteristic, factor, criterion.

Conversely, it does not make sense to measure an attribute without mention-
ing the entity on which it is measured. For instance, it does not make sense
to measure the number of seats without referring to a specific car. In Software

Fundamental Aspects of Software Measurement 5

Measurement, it would not make sense to measure “complexity” without specify-
ing whose program it is. Software Measurement is used on a number of different
entities that belong to the following two categories:

– software products and documents, e.g., source code, executable code, soft-
ware design, test suites, requirements; we use the term “software artifact”
to refer to any such entity;

– activities carried out during software production process, e.g., coding, de-
ployment, testing, requirements analysis; we use the term “software process”
to refer to any such entity.

A typical distinction in Software Measurement is made between internal and
external attributes of entities.

– Internal attributes of software artifacts, such as size, structural complexity,
coupling, cohesion, are usually said to be as those attributes of an entity that
can be measured based only on the knowledge of the entity [15]. So, internal
attributes are easy to measure: for instance, the size of a program is often
measured by counting the number of its lines of code.

– External attributes, such as reliability, performance, usability, maintain-
ability, portability, readability, testability, understandability, reusability, are
characterized as those attributes that cannot be measured based only on the
knowledge of the software artifact. Their measurement involves the artifact,
its “environment,” and the interactions between the artifact and the envi-
ronment. For instance, the maintainability of a software program depends
on the program itself, the team of people in charge of maintaining the pro-
gram, the tools used, etc. The maintainability of a given program is likely to
be higher if maintenance is carried out by the same people that developed
the program than by other programmers. So, the knowledge of the program
alone is not sufficient to quantify its maintainability.

From a practical point of view, external software attributes are the ones related
to and of direct interest for the various categories of software “users,” e.g.: the
compiler/interpreter that translates a program; the computer on which it runs;
the final user; the practitioners. These “users” may have different and possi-
bly conflicting needs. The ensemble of the attributes that are relevant to the
users completely describes what is known as the quality of a software product.
Therefore, external attributes are the ones that have true industrial interest
and relevance. However, because of their very nature, external attributes are in
general more difficult to define and quantify than internal ones, as they require
that a number of factors be taken into account, in addition to the software arti-
fact [15,36]. On the other hand, internal attributes are much easier to quantify.
However, they have no real interest or relevance per se. The measurement of an
internal attribute of a software artifact (e.g., the size of a software design) is
interesting only because it is believed or it is shown that the internal attribute
is linked to: (1) some external attribute of the same artifact (e.g., the maintain-
ability of the software design) or of some other artifact (e.g., the fault-proneness

6 S. Morasca

of the software code); (2) some attribute of the software process (e.g., the ef-
fort needed to develop the software design). So, one typically measures internal
software attributes to assess or predict the value of external software attribute.

One final terminology clarification is in order before we start reviewing vari-
ous fundamental aspects of Software Measurement. The term “metric” has been
often used instead of “measure” in the Software Measurement and Software En-
gineering in the past. As it has been pointed out, “metric” has a more specialized
meaning than “measure.” The term “metric” is closely related to distance and
it typically implies the presence of some unit of measurement. As we explain in
the remainder of this paper, this is not necessarily the case, so the more general
term “measure” is preferable. Therefore, we consistently use “measure” in the
remainder of this paper.

3 Measurement Theory for Internal Software Attributes

The foundations of Measurement Theory were established by Stevens [38] in the
1940s, as a way to provide the mathematical underpinnings for measurement
in the social and human sciences. It has been used in other disciplines and
its concepts have been extended and consequences have been assessed since.
Measurement Theory is now a quite well-established field. The interested reader
can refer to [20,34] for more complete introductions to the subject. In Empirical
Software Engineering, Measurement Theory has almost exclusively been used
with reference to the measurement of the attributes of software artifacts, such
as size, structural complexity, cohesion, coupling.

3.1 Basic Notions of Measurement Theory

The first and most important goal of Measurement Theory is to make sure that
measures have properties that make them comply with intuition. So, Measure-
ment Theory [20,34] makes clear that measuring is not just about numbers, i.e.,
assigning measurement values to entities for some attribute of interest. For in-
stance, it would make little sense to have a software size measure that tells us
that a program segment is longer than another program segment when we look
at those two segments and conclude that it should actually be the other way
round.

Beyond all the mathematics involved, Measurement Theory shows how to
build a sensible, common sense bridge, i.e., a measure (Definition 3), between

– our “intuitive,” empirical knowledge on a specified attribute of a specified
set of entities, via the so-called Empirical Relational System (Definition 1),
and

– the “quantitative,” numerical knowledge about the attribute, via the so-
called Numerical Relational System (Definition 2), so that

– the measure makes sense, i.e., it satisfies the so-called Representation Con-
dition (Definition 4).

Fundamental Aspects of Software Measurement 7

We now explain these concepts and we use the size of a set of program segments
as an example to make these definitions more concrete.

Definition 1 (Empirical Relational System). Given an attribute, let

– E denote the set of entities for which we would like to measure the attribute
– R1,. . . , Ry denote y empirical relations capturing our intuitive knowledge on

the attribute: each Ri has an arity ni, so Ri ⊆ Eni ; we write (e1, . . . , eni) ∈
Ri to denote that tuple (e1, . . . , eni) is in relation Ri; if Ri is a binary rela-
tion, we use the infix notation e1Rie2

– o1, ..., oz denote z empirical binary operations on the entities that describe
how the combination of two entities yields another entity, i.e., oj : E×E →
E; we use an infix notation, e.g., e3 = e1oje2.

An Empirical Relational System is is an ordered tuple

ERS = (E,R1, . . . , Ry, o1, ..., oz)

For instance, suppose we want to study the size of program segments. We typi-
cally have

– the set of entities E is the set of program segments
– longer than ⊆ E × E, an empirical binary relation that represents our

knowledge that, given any two program segments e1 and e2 for which
e1longer thane2, e1 has a greater size than e2

– a concatenation operation, i.e., e3 = e1; e2.

Other attributes of the same set of entities, e.g., complexity, will have different
kinds and sets of empirical relationships and operations than size has. This is
due to the fact that we have different intuitions about different attributes of a
set of entities.

No numbers or values are found in the Empirical Relational System, which
only takes care of modeling our own empirical intuition. Measurement values are
introduced by the Numerical Relational System, which we define next

Definition 2 (Numerical Relational System). Given an attribute, let

– V be the set of values that we use to measure the attribute
– S1,. . . , Sy denote y relations on the values: each Si has the same arity ni

of Ri

– •1, ..., •z denote z numerical binary operations on the values, so each •j has
the form •j : V × V → V ; we use an infix notation, e.g., v3 = v1 •j v2.

A Numerical Relational System is an ordered tuple

NRS = (V, S1, . . . , Sy, •1, ..., •z)

8 S. Morasca

Even though it is called Numerical Relational System, We have chosen to rep-
resent V as a set of “values” and not necessarily numbers for greater generality
and because in some cases numbers are not really needed and may even be mis-
leading (e.g., for nominal or ordinal measures as described later in this section).
In our segment size example, we can take

– V = Re0+, the set of nonnegative real numbers, which means that the values
of the size measures we use are nonegative real numbers

– a binary relation ’>’, which means that we want to use the natural ordering
on those measurement values (so we can translate “longer than” into ’>’
and back as the Representation Condition will mandate)

– a binary operation ’+’, which means want to be able to sum the sizes of
segments (the Representation Condition will actually mandate that we sum
the sizes of concatenated program segments).

The Numerical Relational System is purposefully defined to mirror the Empirical
Relational System in the realm of values, even though the Numerical Relational
System in itself does not predicate about the entities and the specific attribute
investigated.

The connection between the Empirical Relational System and the Numerical
Relational System, and thus, entities and values, is made via the concept of
measure (Definition 3).

Definition 3 (Measure). A function m : E → V is said to be a measure.

However, there is more to the Empirical Relational System than just the set of
entities on which it is based. The Empirical Relational System also gives informa-
tion about what we know about an attribute of a set of entities. If that knowledge
is not taken into account, any m ∈ V E is a measure, i.e., any assignment of val-
ues to program segments may be a measure, according to Definition 3. Given
program segments e1, e2, e3 such that e1longer thane2 and e2longer thane3, a
measure m according to Definition 3 may be very well provide values of m(e1),
m(e2), and m(e3) such that m(e1) < m(e2) and m(e3) < m(e2), though this
does not make sense to us. Measurement Theory introduces the Representation
Condition (Definition 4) to discard all of those measures that contradict our
intuition and keep only the fully sensible ones.

Definition 4 (Representation Condition). A measure must satisfy the two
conditions

∀i ∈ 1 . . . n, ∀(e1, . . . , eni) ∈ Eni(e1, . . . , eni) ∈ Ri ⇔ (m(e1), . . . ,m(eni)) ∈ Si

∀j ∈ 1 . . .m, ∀(e1, e2) ∈ E × E(m(e1oje2) = m(e1) •j m(e2))

The Representation Condition translates into the following two conditions for
our segment size example

– e1longer thane2 ⇔ m(e1) > m(e2), i.e., our intuition on the ordering of the
program segments is mirrored by the ordering of the measurement values,
and vice versa,

Fundamental Aspects of Software Measurement 9

– m(e1; e2) = m(e1) + m(e2), i.e., the size of a program segment obtained
by concatenating two program segments is the sum of the sizes of the two
program segments.

A sensible measure is defined as a scale (Definition 5) in Measurement Theory.

Definition 5 (Scale). A scale is a triple (ERS,NRS,m), where ERS is an
Empirical Relational System, NRS is a Numerical Relational System, and m is
a measure that satisfies the Representation Condition.

In what follows, we assume for simplicity that measures satisfy the Represen-
tation Condition, so we use the terms “scale” and “measure” interchangeably,
unless explicitly stated.

So now, given an Empirical Relational System and a Numerical Relational
System, we would need to find out if we can actually build a measure. However,
the existence of a measure will depend on the specific Empirical Relational Sys-
tem and a Numerical Relational System, and we will not illustrate the issues
related to the existence of a measure in detail. Rather, we investigate whether
more than one legitimate measure may be built, given an Empirical Relational
System and a Numerical Relational System. This should not come as a surprise,
since it is well known from real life that we can quantify certain attributes of
physical objects by using different equally legitimate measures. For instance, the
length of a segment may be quantified equally well by meters, centimeters, yards,
feet, inches, etc. We know that we can work equally well with one measure or
another and that one measure can be translated into another by means of a
multiplicative factor. For notational convenience, we denote by M(ERS,NRS)
the set of scales that can be defined based on an Empirical Relational System
ERS and a Numerical Relational System NRS.

However, the very existence of a set of equally good measures shows something
a little bit more surprising: the bare value of a measure in itself does not provide
a lot of information. For instance, saying that the length of a wooden board is
23 does not mean much, unless one specifies the unit of measurement. Clearly,
talking about a 23 inch wooden board is not the same as talking about a 23 meter
one. Introducing the concept of unit of measurement actually means taking one
object as the reference one and then assigning a measurement value to all other
objects as the times the other objects possess that specified attribute with respect
to the reference object. So, if we say that a wooden board is 23 inches long, all
we are saying is that it is 23 times longer than some wooden board that we
took as the one that measures 1 inch. What is even more important is that this
23:1 ratio between the length of these two wooden boards is the same no matter
the measure used to quantify their length, be it inches, feet, meters, etc. This is
true for the ratios of the lengths of any pair of wooden boards, i.e., these ratios
are invariant no matter the scale used. Invariant properties of scales are called
meaningful statements and provide the real information content of a scale, as
they do not depend on the conventional and arbitrary choice of one specific scale.

10 S. Morasca

Definition 6 (Meaningful Statement). A statement S(m) that depends on
a measure m is meaningful if its truth value does not change across all scales,
i.e., ∀m ∈ M(ERS,NRS)(S(m)) ∨ ∀m ∈ M(ERS,NRS)(¬S(m)).

So, a statement that is true with one scale is also true with all other scales,
and one that is false with one scale is also false with all other scales. Choosing
one scale instead of another basically means adopting a convention, because this
choice does not affect the truth value of meaningful statements, like saying that a
wooden board object is 23 times as long as another. Instead, suppose we can tell
if a software failure is more critical than another on a 5-value criticality measure
cr′. For instance, suppose that those five values are {1, 2, 3, 4, 5}, from 1 (least
severe) to 5 (most severe). It is typically meaningless to say that criticality 2
failures are twice as severe as a criticality 1 failure, as the truth value of this
statement depends on the specific choice of values. If we choose another scale cr′′

with values {7, 35, 38, 981, 4365}, the truth value of the statement changes, as
we would say that the failures in the second category are five times more severe
than the ones in the first category. Still, the failures in the second category are
given a value that is higher than the value for the first category. The ordering
is preserved, and that is where the real information content of the scale lies.
This piece of information is preserved by applying a monotonically increasing
scale transformation, not just a proportional one. On the contrary, the length of
wooden boards cannot undergo any monotonically increasing scale transforma-
tion, but only proportional transformations. So, different scales may be subject
to different kinds of transformations without any loss of information, which are
called admissible transformations.

Definition 7 (Admissible Transformation). Given a scale (ERS,NRS,m),
the transformation of scale f is admissible if m′ = f ◦m (i.e., m′ is the compo-
sition of f and m) and (ERS,NRS,m′) is a scale.

Actually, proportional transformations can be used for a number of different
scales (e.g., the typical scales for weight), while monotonically increasing trans-
formations can be used for all sorts of ranking. Measurement Theory identifies
five different kinds of scales based on five different kinds of transformations scales
can undergo while still preserving their meaningful statements. We now list these
different kinds of scales in ascending order of the information they provide.

Nominal Scales. The values of these scales are labels–not necessarily numbers–
for categories in which the entities are partitioned, with no notion of order
among the categories. Their characterizing invariant property states that the
actual labels used do not matter, as long as different labels are used for different
categories. Formally, ∀e1, e2 ∈ E

∀m ∈ M(ERS,NRS)(m(e1) = m(e2)) ∨ ∀m ∈ M(ERS,NRS)(m(e1) 	= m(e2))

As the partitioning of the entities into the categories is the information that
needs to be preserved, nominal scales can be transformed into other nominal
scales via one-to-one transformations.

Fundamental Aspects of Software Measurement 11

The programming language in which a program is written is an example of
a nominal scale, i.e., we can associate the labels (i.e., values of the scale) C,
Java, COBOL, etc. with each program. As long as programs written in the
same language receive the same label and program written in different languages
receive different labels, we can adopt programming language names like alpha,
beta, gamma, etc.; or Language1, Language2, Language3, etc.; or 1, 2, 3, etc.
Note that we do not need to use numbers as values of the measure. Actually, it
would be meaningless to carry out even the simplest arithmetic operations. In
the Numerical Relational System it is obviously true that “1 + 2 = 3,” but that
would become something nonsensical like C+Java = COBOL just by choosing
a different legitimate scale.

As for descriptive statistics, it is well known that the mode (i.e., the most
frequent value) is the central tendency indicator that should be used with nom-
inal measures, even though there may be more than one mode in a sample.
The arithmetic average cannot be used, as it cannot even be computed, since
arithmetic operations are barred. As a dispersion indicator, one may use the
Information Content H(f) computed by taking the frequencies of each value as
their probabilities, i.e.,

H(f) = −
∑

v∈V

f(v) log2 f(v)

where f(v) is the frequency of value v.
Association statistical methods can be used too with nominal measures. For

instance, suppose that we would like to find a software component that we
may want to reuse in your software system and that there are a number of
functionally equivalent candidate software components we can choose from and
the only information we have is the programming language they are written in.
Suppose also that we want to select the software component that has the lowest
defect density, but we do not have that piece of information. If defect density
data about components are available, association statistical methods like those
based on chi-square tests can be used to find out how much we can rely on
components written in different languages. So, even though information about
defect density is not available and our measure (the programming language) does
not involve any number, we can still make an informed and statistically sensible
decision.

However, nominal measures only allow the classification of entities into differ-
ent categories. A nominal measure for the size of program segments could only
tell if two segments have the same size or not, but it would not provide any infor-
mation on whether one program segment is larger or smaller than another one.

Ordinal Scales. In ordinal scales, the entities are partitioned into categories,
and the values of these scales are totally ordered labels. Their characterizing
invariant property states that the actual labels used do not matter, as long as
the order of the values that label different categories is preserved. Formally,
∀e1, e2 ∈ E

12 S. Morasca

∀m ∈ M(ERS,NRS)(m(e1) > m(e2)) ∨
∀m ∈ M(ERS,NRS)(m(e1) = m(e2)) ∨

∀m ∈ M(ERS,NRS)(m(e1) < m(e2))

As the ordering across the categories is the piece of information that needs to
be preserved, ordinal scales can be transformed into other scales via strictly
monotonic transformations.

Roughly speaking, ordinal scales are like nominal scales for which, in addition,
an ordering on the categories has been defined. Because of the existence of this
additional property to be preserved when one scale is transformed into another
scale, not all of the possible one-to-one transformations can be used. So, the set
of admissible transformations for ordinal scales is a subset of the set of admissible
transformations for nominal scales. This reduces the degree of arbitrariness in
choosing a scale, and makes an ordinal scale more information-bearing than a
nominal scale, because ordinal scales give information about the ordering of the
entities and not just their belonging to classes. In our program segment size
example, ordinal scales allow us to tell if a program segment is of greater length
than another, not just that the two segments have different sizes.

A good example of an ordinal measure is failure criticality, as defined in many
bug tracking systems, in which it is possible to associate a criticality value with
each bug (for example, in SourceForge, bugs may be a ranked on a nine value
scale). Like with nominal scales, it is possible to use numbers as values of ordinal
scales, and it is even more tempting than with nominal scales to use arithmetic
operations on these numbers. However, this would not be correct, as it would
lead to meaningless results. Suppose here that we use an ordinal scale with five
values 1, 2, 3, 4, and 5 under the usual numerical ordering. Alternatively, we
could have used A, B, C, D, and E, with the usual alphabetical ordering, so A
is least severe and E is most severe. While obviously 1+2 = 3 in the mere realm
of numbers, an operation like that would translate into something like A+B = C
if we adopt the alphabetical labels. This statement is meaningful if and only if we
can actually say something like “the presence of a bug at criticality A and one at
criticality B are equivalent to the presence of a bug at criticality C,” under some
notion of equivalence. However, this is an additional piece of information, that
cannot be inferred from what we know about the mere ordering of the entities
in any way. So, this is not a meaningful statement. To have an additional proof
of this, let us transform the scale into another numerical scale with values 10,
15, 20, 25, 30. The corresponding statement would become 10 + 15 = 20, which
is clearly false. So, transforming a scale into another scale makes the truth value
of the statement change, i.e., the statement is not meaningful. The real point
here is that we know if one failure is more or less critical than another failure,
but we have no idea by how much.

So, one may very well use numbers as values of an ordinal scale, but the
kind of mathematical manipulations that can be made must be limited to us-
ing <, ≤, =, 	=, ≥, and >. As a consequence it is not allowed to compute
the arithmetic average or the standard deviation of a sample of ordinal values.

Fundamental Aspects of Software Measurement 13

As for descriptive statistics, the median is the central tendency indicator of
choice for ordinal measures. The median of a sample is defined as that value
med in the sample such that less than half of the data points have values less
than med and less than half of the data points have values greater than med. If
the median is not unique, there may be at most two medians in a sample, and
they have consecutive values. At any rate, since ordinal scales may be seen as
specializations of nominal scales, the descriptive statistics of nominal scales can
be applied to ordinal scales too.

Association statistical methods can be used too with ordinal measures. For
instance, suppose that we need to find whether failure criticality is statistically
related to the effort needed to solve a bug. For instance, suppose we would like
to find out if it is true that bugs with higher criticality also take more time to
be fixed. Suppose also that this bug fixing effort is measured on an ordinal scale,
because the effort collection system allows software engineers to enter values
in classes of values like “less than one hour,” “between one and four hours,”
“between four hours and one work day,” “between one workday and one work
week,” and “more than one work week.” Statistical indicators are available to
investigate this association. For instance, one can use Spearman’s ρ or Kendall’s
τ [19], which provide a measure of the strength of the increasing or decreasing
association between two ordinal variables (failure criticality and bug fixing effort,
in our example). Also, statistical tests are available to check how statistically
significant the associations are. These indicators do not assume that the two
variables are linked by any specific functional form (e.g., linear). On the positive
side, they can be used to investigate whether there is any increasing or decreasing
association between two variables. On the negative side, it is not possible to build
a specific estimation model, because an estimation model would be based on some
functional form that links the two variables. Again, the association statistics for
nominal scales can be used with ordinal scales as well.

Summarizing, by using a nominal or an ordinal scale, we can have information
about an attribute of a set of entities, but we do not need to use any numbers.
The following kinds of scales will require the use of numbers and will provide
more refined information about an attribute of a set of entities.

Interval Scales. In interval scales, each entity is associated with a numerical
value. Their characterizing invariant property states that the actual values used
do not matter, as long as the ratios between all pairs of differences between
values are preserved. Formally, by denoting the set of positive real numbers by
Re+, ∀e1, e2, e3, e4 ∈ E

∃k1, k2 ∈ Re+, ∀m ∈ M(ERS,NRS)k1(m(e1)−m(e2)) = k2(m(e3)−m(e4))

An interval scale m′ can be transformed into another interval scale m′′ only via
linear transformations m′′ = am′ + b, with a > 0, i.e., we can change the origin
of the values (by changing b) and the unit of measurement (by changing a). Lin-
ear transformations are a subset of strictly monotonic transformations, which are

14 S. Morasca

the admissible transformations for ordinal measures. So, again, this reduces the
number of possible measures into which an ordinal measure can be transformed,
and, again, this makes interval scales even more information-bearing than ordinal
scales.

Typical examples of interval scales are calendar time or temperature measured
with the scales ordinarily used to this end. For instance, take the Celsius scale for
temperatures. It is well known that the origin is conventionally established as the
temperature at which water freezes under the pressure of one atmosphere. Also,
the 100 Celsius degree mark is conventionally established as the temperature
at which water boils under the pressure of one atmosphere. These conventional
choices determine the (thereby conventional) extent of one Celsius degree. In
addition, it is well known that Celsius degrees can be transformed into, say,
Fahrenheit degrees, by means of the following linear transformation relationship

Fahrenheit =
9

5
Celsius+ 32

It is easy to see that, in addition to the meaningful statements that can be made
for ordinal scales, interval scales allow us to make statements in which the ratios
of the differences between measurement values are preserved.

Not many software measures are defined at the interval level of measurement.
The most important one is probably calendar time, which, for instance, is used
during the planning or monitoring of a project. However, the importance of in-
terval scales is that numbers are truly required as measurement values. For one
thing, it would not be possible to carry out the linear transformations, otherwise.
Some arithmetic manipulations are possible, as shown in the definition. For in-
stance, subtraction between two values of an interval measure provides a result
that makes sense. The difference between two dates, e.g., the end and the be-
ginning of a software project, obviously provide the project’s duration (which is
actually a ratio scale, as we explain in later in this section). Nevertheless, not all
possible arithmetic manipulations can be used. It would not make much sense to
sum two dates for two events, e.g., May 28, 2005 and July 14, 2007, for instance.
Also, if today’s Celsius temperature is 20 Celsius degrees, and yesterday’s was
10 Celsius degrees, it does not make any sense to say that today is twice as warm
as yesterday, as can be easily shown by switching to Fahrenheit temperatures.
So, taking the ratio of two interval measure values does not make sense.

Nevertheless, it is meaningful to compute the average value of an interval
measure, even though averages are built by summing values if we are interested
in comparing two average values. Suppose that the average of the values of a
sample is greater than the average of the values of another sample when we use
an interval measure. It can be shown that this relationship holds for any other
interval scale chosen. So, the average is a good central tendency indicator for
interval scales. At any rate, the same holds true for the medians, which can be
clearly used for interval scales, which can be seen as a subset of ordinal scales.
New dispersion statistics can be added to those “inherited” from ordinal scales,

Fundamental Aspects of Software Measurement 15

e.g., the standard deviation and the variance. As a matter of fact, they provide a
metric evaluation of dispersion, unlike the dispersion indicators of nominal and
ordinal scales.

As for association statistics, Pearson’s correlation coefficient r [19] can be used
when interval scales are involved. However, when using statistical significance
tests related to r, it is important to make sure that the assumptions underlying
these tests are satisfied. Otherwise, there is a danger of obtaining results that
are not statistically valid. At any rate, one can always resort to the association
indicators that can be used with ordinal scales. It is true that some statistical
power may be lost when using Spearman’s ρ or Kendall’s τ instead of Pearson’s
r, but this loss may not be too high. For instance, it has been computed that the
so-called Asymptotic Relative Efficiency of Kendall’s τ with respect to Pearson’s
r is 0.912. Roughly speaking, from a practical point of view, this means that
1,000 data points are needed to obtain enough evidence to reach acceptance or
rejection of a statistical hypothesis on the association between two interval scales
by using Kendall’s τ when 912 data points are needed to obtain enough evidence
to reach acceptance or rejection of a statistical hypothesis on their correlation.
Thus, using Kendall’s τ implies having to collect about 8.8% more data points
than we would need with Pearson’s r. The additional catch is that this value of
Asymptotic Relative Efficiency is computed only if the underlying assumptions
for using and statistically testing Pearson’s r are satisfied. These assumptions
may not hold, in practice, so it is usually advisable to use Spearman’s ρ and/or
Kendall’s τ in addition to Pearson’s r when carrying out an analysis of the
statistical dependence between two interval variables.

At any rate, with interval scales, we can use most of the traditional statistical
indicators, because interval scales are truly numerical scales. The next kind of
scales removes one of the degrees of arbitrariness intrinsic to interval scales: the
origin is no longer conventional.

Ratio Scales. Each entity is associated with a numerical value by ratio scales.
Their characterizing invariant property states that the actual values used do
not matter, as long as the ratios between all the pairs of values are preserved.
Formally, ∀e1, e2 ∈ E

∃k1, k2 ∈ Re+, ∀m ∈ M(ERS,NRS)k1m(e1) = k2m(e2)

So, this property implies that a ratio scale m′ can be transformed into another
ratio scale m′′ only via proportional transformations m′′ = am′, with a > 0.
This shows that it is possible to change the measurement unit by changing a,
but not the origin as the value 0 in one scale correspond to the value 0 in all
other scales, so it is invariant. The above formula shows that the set of admissible
transformations for ratio scales is a subset of the admissible transformations for
interval scales, the difference between ratio scales and interval scales basically
being that for ratio scales have a natural origin, which is invariant, while a
conventional origin can be chosen for interval scales. Ratio scales obviously can
only take numerical values, like interval scales.

16 S. Morasca

Size (e.g., volume or mass) is typically represented by ratio scales, for instance.
Time durations or temperature intervals may be represented with ratio scales
and, in general, the difference between two values of an interval measure is
a ratio scale. In Software Engineering Measurement, software size is typically
represented via ratio scales and so is development effort.

Legitimate operations involving ratio scales include differences, ratios, and
sums. For instance, the size of a program segment composed of two program
segments may be obtained as the sum of the sizes of those two program segments.
As for descriptive and association statistics, there is basically the geometric
mean that can be used with ratio scales, in addition to the other descriptive and
association statistics that can also be used with interval scales. From a practical
point of view, this shows that there is a real divide between ordinal and interval
measures. The former are nonnumeric, while the latter are numerical ones.

Absolute Scales. Absolute scales are the most “extreme” kind of measures,
in a sense. Each entity is associated with a numerical value in absolute scales,
and their invariant property states that the actual values used do matter, since
the only admissible transformation is identity, i.e., an absolute scale cannot be
transformed into anything other than itself. Formally, |M(ERS,NRS)| = 1.

Again, this transformation is a subset of the possible transformations of ratio
scales. The measurement unit is fixed and cannot be chosen conventionally. So,
these scales are the most informative ones, since their values bear information
themselves, and not only in relationship.

Statistics of Scales. The description of scale types is not simply a theoret-
ical exercise, but it has important practical consequences, as we have already
discussed. Some mathematical operations may not be applied to measures of
certain measurement levels, e.g., summing may not be used for the numerical
values of nominal, ordinal, or even interval measures. Based on the scale type
of a measure, different indicators of central tendency can be used without re-
sulting in meaningless statements, i.e., the mode for nominal scales, the median
as well for ordinal scales, the arithmetic mean as well for interval scales, and
the geometric mean as well for ratio and absolute scales. the same applies to
dispersion indicators and statistical tests. Table 1 summarizes a few well-known
indicators of central tendency, dispersion, and association that are appropriate
for each scale type. In each cell of columns “Central Tendency,” “Dispersion,”
and “Association,” we report only the indicators that can be used for scales that
are at least on that measurement level. So, these indicators can be used for scales
at higher measurement levels. For instance, as already noted, the median can be
used for ordinal, interval, ratio, and absolute scales, but not for nominal scales.

3.2 Additional Issues on Scales

Two additional issues on scales are often given some more attention, in practical
use and in theoretical debates. We briefly discuss them here.

Fundamental Aspects of Software Measurement 17

Table 1. Characteristics of different scale types

Scale Admissible Examples Central Dispersion Association
Type Transformation Tendency

Nominal Bijections Gender, Mode Information Chi-square
Progr. Language Content

Ordinal Monotonically Preference, Median Interquartile Spearman’s ρ,
increasing Fail. Criticality range Kendall’s τ

Interval Linear Temperature, Arithmetic Standard Pearson’s r
Milestone Date Mean Deviation

Ratio Proportional Mass, Geometric
Software Size Mean

Absolute Identity Probability

Subjective Scales. An “objective” measure is one for which there is an un-
ambiguous measurement procedure, so it is totally repeatable. A “subjective”
measure is computed via a measurement procedure that leaves room for inter-
pretation on how to measure it, so different people may come up with different
measurement values for the same entity, the same attribute, and the same mea-
sure itself. It is usually believed that objective measures are always better than
subjective measures, but this claim needs to be examined a bit further.

– For some attributes, no objective measure exists. The number of faults in
a software program cannot be measured, so we may resort to subjective
evaluations for it.

– Even when it is theoretically possible to use an objective measure, it may not
be practically or economically viable to use that measure. For instance, the
number of faults in a software application with a finite input domain may
be measured by executing the application with all possible input values, but
this would be impractical.

– Some measures look more objective than they actually are. Take this objec-
tive measure of reliability for a software application a: objReliability(a) = 0
if a has at least one failure in the first month of operation, and otherwise
objReliability(a) = 1 . Some failures may occur in the first month of opera-
tion, but they may go unnoticed, or their effect may surface several months
later.

– An objective measure may be less useful than a subjective measure anyway.
Take two measures (a subjective and an objective one) for two different
attributes. Nothing guarantees that the objective measure is more useful
than the subjective one to predict some variable of interest. Even for the
same attribute, a subjective measure may be more useful than an objective
one, if it captures that attribute more sensibly.

Indirect Scales. It is commonly said that measures built by combining other
measures are indirect ones. For instance, fault density represented as the ratio

18 S. Morasca

between the number of uncovered faults and LOC (the number of lines of code
of a program segment) would be an indirect measure. However, even among
measurement theoreticians, there is no widespread consensus that it is actually
necessary or useful to make the distinction between direct and indirect measures,
or that it is even possible to make this distinction. One of the points is that even
indirect scales should satisfy exactly the same requirements as direct scales, since
indirect scales are scales anyway, so they should be built by using an Empirical
Relational System, a Numerical Relational System, a function between them,
and a Representation Condition. If all of these theoretical definition elements
are in place, then there is no reason to distinguish between direct and indirect
scales anyway [34].

3.3 Evaluation of Measurement Theory

Measurement Theory is the reference, ideal model to which one should tend in
the definition of a measure. A measure defined in such a way as to comply with
the Representation Condition is a legitimate measure for an attribute. How-
ever, Measurement Theory’s constraints may be too strict. For instance, LOC
does not comply with the Measurement Theory’s requirements for size mea-
sures. Overall, Measurement Theory has been used to eliminate measures that
have been proposed for the quantification of software attributes, but it has not
been helpful or productive when it comes to defining new measures. Also, other
than the modeling of size, no other use of Measurement Theory is known in
Software Measurement. Thus, especially in this phase, in which Software Mea-
surement has not reached a sufficient degree of maturity, it is useful to use other
approaches like Axiomatic Approaches (see Sections 4 and 5), which have more
relaxed requirements and so they do not eliminate a number of measures that
Measurement Theory would reject. Measures may therefore get a chance to be
better refined later on, and this contributes to having a better understanding of
the characteristics of software attributes too.

4 Axiomatic Approaches

Other approaches have been used to represent the properties that can be ex-
pected of software attributes, e.g., [33,39,21,10,25,31,32,23]. The underlying idea
has been long used in mathematics to define concepts via sets of axioms. The
axioms for distance are a very well-known example. The distance d between two
elements x and y of any set S is defined as a real-valued function d : S×S → Re
that satisfies the following three axioms.

Distance Axiom 1 Nonnegativity. The distance between any two elements is
nonnegative, i.e., ∀x, y ∈ S(d(x, y) ≤ 0), and it is zero if and only if the two
elements coincide, i.e., ∀x, y ∈ S(d(x, y) = 0 ⇔ x = y).

Distance Axiom 2 Symmetry. The distance between any two elements x and
y is the same as the distance between y and x, i.e., ∀x, y ∈ S(d(x, y) = d(y, x)).

Fundamental Aspects of Software Measurement 19

Distance Axiom 3 Triangular Inequality. Given three elements, the sum of the
distances between any two pairs is greater than the distance between the other
pair of elements, i.e., ∀x, y, z ∈ S(d(x, y) + d(y, z) ≥ d(x, z)).

These axioms have been applied to very concrete sets, such as sets of points in
the physical world, and much more abstract ones, such as sets of functions in
mathematics. Different functions that satisfy these axioms can be defined, even
within the same application domain. The choice of a specific distance measure
depends on a number of factors, including the measurement goals, tools, and
resources. No matter the specific application, these three axioms are commonly
accepted as the right axioms that capture what a distance measure should look
like, so they are no longer a topic for debates, since a broad consensus has been
reached about them. Other sets of axioms have been defined for other attributes
(e.g., the Information Content H(p) of a discrete probability distribution p,
which is the basis of Information Theory).

The set of axioms for distance functions is certainly no longer controversial
and its introduction is based on the properties of distances between physical
points. The set of axioms for Information Content are quite recent and they ad-
dress a more abstract attribute, but, there is now a widespread consensus about
them. The introduction of Axiomatic Approaches in Software Measurement, is
even more recent, due to the novelty of Software Engineering and, more specif-
ically, of Software Measurement, which, as already noted, deals with somewhat
abstract attributes of intangible entities. Therefore, it is natural that there has
not been enough time to reach a broad consensus around specific sets of ax-
ioms for software attributes. Nevertheless, one of the main advantages of using
an axiomatic approach over using an “operational” approach, i.e., providing a
measure as if it was an “operational” definition for the attribute, is that the ex-
pected properties of the measures of the attribute are clearly spelled out. Thus,
a common understanding of the properties can be reached and disagreements
can focus on specific properties instead of more vaguely defined ideas. At any
rate, Axiomatic Approaches have already been used to check if existing measures
satisfy a specific set of axioms for the attribute that they are supposed to mea-
sure. Perhaps more importantly, these approaches have been used as guidelines
during the definition of new measures.

Also, it must understood that these Axiomatic Approaches do not have the
same “power” as Measurement Theory. Rather, the set of axioms associated
with a specific attribute (e.g., software size) should be taken as sets of necessary
properties that need to be satisfied by a measure for that software attribute, but
not sufficient ones. Thus, those measures that do not satisfy the set of axioms for
a software attribute cannot be taken as legitimate measures for that attribute.
The measures that do satisfy the set of axioms are candidate measures for that
software attribute, but they still need to be better examined. Finally, like with
Measurement Theory, the measures that comply with the theoretical validation
still need to undergo a thorough empirical validation that supports their practical
usefulness. We address this issue in Section 7.

20 S. Morasca

4.1 Weyuker’s Complexity Axioms

Weyuker’s approach [39] represents one of the first attempts to use axioms,
to formalize the concept of program complexity. The approach introduces a
set of nine axioms, which we number W1, . . . ,W9. Weyuker’s approach was
defined for the complexity of so called “program bodies,” which we have called
program segments so far. So, the approach was defined for the complexity of
sequential programs or subroutines. The composition of program segments is
concatenation and it is denoted by ’;’:ps1; ps2 denotes the concatenation of two
program segments ps1 and ps2.

W1. A complexity measure must not be “too coarse” (part 1)

∃ps1, ps2(Complexity(ps1) 	= Complexity(ps2))

W2. A complexity measure must not be “too coarse” (part 2). Given the non-
negative number c, there are only finitely many program segments of com-
plexity c.

W3. A complexity measure must not be “too fine.” There exist distinct program
segments with different complexity

∃ps1, ps2(Complexity(ps1) = Complexity(ps2))

W4. Functionality and complexity have no one-to-one correspondence between
them

∃ps1, ps2(ps1functionally equivalent tops2) ∧
(Complexity(ps1) 	= Complexity(ps2))

W5. Concatenating a program segment with another program segment may not
decrease complexity

∀ps1, ps2(Complexity(ps1) ≤ Complexity(ps1; ps2)) ∧
(Complexity(ps2) ≤ Complexity(ps1; ps2))

W6. The contribution of a program segment in terms of the overall program
may depend on the rest of the program

∃ps1, ps2, ps3(Complexity(ps1) = Complexity(ps2)) ∧
(Complexity(ps1; ps3) 	= Complexity(ps2; ps3))

∃ps1, ps2, ps3(Complexity(ps1) = Complexity(ps2)) ∧
(Complexity(ps3; ps1) 	= Complexity(ps3; ps2))

W7. A complexity measure is sensitive to the permutation of statements. There
exist ps1 and ps2, such that ps1 is obtained via a permutation of the state-
ments of ps2 and Complexity(ps1) 	= Complexity(ps1).

Fundamental Aspects of Software Measurement 21

W8. A complexity measure is not sensitive to the specific identifiers used. If ps1
is obtained by renaming the identifiers of ps2, then

Complexity(ps1) = Complexity(ps2)

W9. There are program segments whose composition has a higher complexity
than the sum of their complexities

∃ps1, ps2(Complexity(ps1) + Complexity(ps2) < Complexity(ps1; ps2))

The following analysis of Weyuker’s axioms may shed some light on their char-
acteristics and the kind of complexity that they are meant to describe.

– Axioms W1, W2, W3, W4, W8 do not characterize complexity alone, but
they may be applied to all syntactically-based product measures, e.g., size
measures. At any rate, they need to be made explicit in an axiomatic
approach.

– Axiom W5 is a monotonicity axiom which shows that Weyuker’s axioms are
about “structural” complexity and not “psychological” complexity. Suppose
that program segment ps1 is an incomplete program, and the complete pro-
gram is actually given by the concatenation ps1; ps2. It may very well be the
case that the entire program is more understandable than ps1 or ps2 taken in
isolation, as some coding decisions may be easier to understand if the entire
code is available.

– Axiom W7 shows that the order of the statements does influence complexity.
Without this axiom, it would be possible to define a control-flow complex-
ity measure that is totally insensitive to the real control flow itself, as the
statements in a program segment could be arbitrarily rearranged without
affecting the value of a control-flow complexity measure.

– Axiom W8 too shows that Weyuker’s axioms are about “structural” com-
plexity, not “psychological” complexity. Renaming does not have any impact
on Weyuker’s concept of complexity, but it is obvious that, if a program seg-
ment’s variables were renamed by using meaningless, absurd, or misleading
names, the program segment’s understandability would be certainly heavily
affected, and, in turn, its “psychological” complexity.

– Axiom W9 is probably the one that most characterizes complexity, even if it
does not come in a “strong” form, since it uses an existential quantification.
The idea, however, is that there are cases in which the complexity of a
program segment is higher than the sum of the complexities of its constituent
program subsegments. This axiom, however, does not rule out the existence
of two program segments whose composition has a lower complexity than
the sum of their complexities

∃ps1, ps2Complexity(ps1) + Complexity(ps2) > Complexity(ps1; ps2)

22 S. Morasca

5 A Unified Axiomatic Approach for Internal Software
Attributes

We now illustrate the proposal initially defined by Briand, Morasca, and Basili
[10,25] and its later refinements by Morasca [23]. This proposal addresses several
different software product attributes, including size, complexity, cohesion, and
coupling, which we discuss in this section. Based on an abstract graph-theoretic
model of a software artifact description of a software artifact, each software
attribute is associated with a set of axioms that its measures should satisfy. Thus,
unlike in other approaches, a set of different software attributes are studied in a
unified framework that makes it easier to identify the similarities and differences
between software attributes. In addition, as it is based on an abstract graph-
theoretic representation, this axiomatic approach can be applied for measures of
many different artifacts that are encountered during the software life cycle, and
not just software code.

5.1 Systems and Modules

The basic idea is that a system is a multigraph, where each arc is associated
with a multiset of relationships, and each relationship has a type.

Definition 8. System. A system S is a pair S =< E,R >, where

– E represents the set of elements of S
– R ∈ NE×E×T

where T is a finite set of types of relationships (N is the set of natural numbers,
including 0).

The idea is that a software artifact contains a set basic elements, which are
represented as the nodes of the multigraph. These elements are connected by
possibly more than one relationship of possibly different types. The relationships
between the elements are therefore represented by the multisets of typed arcs.

As an example, take the class diagram in Fig. 1, built by using a UML-like
notation in which classes (like C or D) may belong to two packages, so this
notation is even more general than standard UML. The classes are the elements
of the system. The arcs are annotated with different types, e.g., aggregations,
inheritance, use, etc., and two classes may very well be connected by several
relationships, of the same or of different types (see classesK and L). In addition,
a UML-like diagram may not even represent all of the relationships existing
between classes. For instance, inheritance is a transitive relation, and transitive
relationships are not explicitly represented. In Fig. 2, the aggregation between
M and Q gets inherited by N , O, and P . So, the actual set of relationships may
be greater than those that are explicitly mentioned in the graph.

To define axioms for internal software attributes defined for software artifacts,
we first need to define an “algebra” whose operations are introduced next. In
what follows, the same symbol (e.g., ∪ for union) may denote an operation
between

Fundamental Aspects of Software Measurement 23

m
1

m
2

m
3

B

C D

I J

A

m
6

F

G H

K L

E

m
5

m
4

Fig. 1. Representation of a system and its modules in a UML-like language

M

ON P

Q

2

R

Fig. 2. A UML-like Class Diagram

– sets when sets of elements are involved
– multisets when multisets of typed relationships are involved
– modules (see Definition 9) when modules are involved.

These operations are different, but no confusion will arise because they never in-
volve operands of different nature. For instance, no union will be defined between
a multiset of typed relationships and a module.

For completeness, we here provide the meaning of these operations between
two typed multisets of relationships R1, R2.

24 S. Morasca

Inclusion. R1 ⊆ R2 ⇔ ∀ << a, b, t >, n1 >∈ R1,
∃ << a, b, t >, n2 >∈ R2 ∧ n1 ≤ n2, i.e., R2 contains at least all the occurrences
of the typed relationships in R1.

Union. R3 = R1 ∪R2 ⇔ ∀ << a, b, t >, n3 >∈ R3,
∃ << a, b, t >, n1 >∈ R1, << a, b, t >, n2 >∈ R2, n3 = n1 + n2, i.e., R3 gathers
all the occurrences of the typed relationships in R1 and R2.

Intersection. R3 = R1 ∩ R2 ⇔∀<< a, b, t >, n3 >∈ R3, ∃<< a, b, t >, n1 >∈
R1, << a, b, t >, n2 >∈ R2, n3 = min{n1, n2}, i.e., R3 contains all the occur-
rences of typed relationships in common to R1 and R2.

Using operations like the union implies that parts of a system be identifiable
so they can be put together. Also, some internal software attributes naturally
require that parts of a system be identifiable. For instance, coupling is typically
defined as an attribute defined for the cooperating parts of a software system,
or for the entire system. These parts of a system are actually subsystems, which
we call modules.

Definition 9. Module. Given a system S=<E,R >, a module m =< Em, Rm >
is a system such that Em ⊆ E ∧Rm ⊆ R.

For maximum generality and simplicity, a module is simply a subsystem, with
no additional characteristics (e.g., an interface). At any rate, a module m of a
system will contain a multiset of relationships of its own, and there will be a
(possibly empty) multiset of relationships that link m to the rest of the system,
which will be denoted as OuterR(m). In Fig. 1, UML-like packages m1, m2, m3,
m4, m5, m6, may be interpreted as modules. It will be our convention in the
remainder of the paper that the set of elements and the multiset of relationships
of a system or a module have the same subscript as the system or module, unless
otherwise explicitly specified (e.g. m1 =< E1, R1 >).

We can now introduce a few operations and definitions that compose the
“algebra” of modules upon which the sets of axioms will be defined.

Inclusion. Module m1 is said to be included in module m2 (notation: m1 ⊆ m2)
if E1 ⊆ E2 ∧R1 ⊆ R2. In Fig. 1, m5 ⊆ m4.

Union. The union of modules m1 and m2 (notation: m1 ∪ m2) is the module
< E1 ∪ E2, R1 ∪R2 >. In Fig. 1, m1 = m2 ∪m3.

Intersection. The intersection of modules m1 and m2 (notation: m1 ∩m2) is
the module < E1 ∩ E2, R1 ∩ R2 >. In Fig. 1, m2 ∩ m3 is the module whose
elements are classes C and D and whose relationships are << C,D, t >, 1 > and
<< D,C, u >, 1 > (assuming that they have type t and u, respectively).

Empty Module. Module < �,� > (denoted by �) is the empty module.

Fundamental Aspects of Software Measurement 25

Disjoint Modules. Modules m1 and m2 are said to be disjoint if m1∩m2 = �.
In Fig. 1, m3 and m6 are disjoint.

Unconnected Modules. Two disjoint modules m1 and m2 of a system are said
to be unconnected if OuterR(m1)∩OuterR(m2) = �. In Fig. 1, m4 and m6 are
unconnected, while m3 and m6 are not unconnected.

5.2 Axiom Sets and Derived Properties

We here introduce a set of axioms for a few internal software attributes of inter-
est. In addition, we show properties that can be derived as implications of those
axioms, to further check whether the modeling of an internal software attributes
is consistent with the intuition on it. As a matter of fact, the decision as to which
properties are more basic and should be taken as axioms and which are derived
properties is somewhat subjective. We mostly take properties satisfied by ratio
measures as the axioms and, often, properties satisfied by ordinal measures are
derived. (Each axiom and property is annotated by the level of measurement of
the measures to which the axiom or property can be applied to.) The derived
properties are “weaker” than the axioms base and are often satisfied by mea-
sures that are ordinal or nominal and not necessarily ratio ones. This is not just
a theoretical exercise, but can guide the building of ordinal or nominal measures,
instead of only ratio ones.

Size. The idea underlying the first axiom is that the size of a module composed
of two possibly overlapping modules is not greater than the sum of the sizes of
the two modules by themselves.

Size Axiom 1 Union of Modules (ratio scales). The size of a system S is not
greater than the sum of the sizes of two of its modules m1 and m2 such that each
element of S is an element of either m1 or m2 or both

E = E1 ∪ E2 ⇒ Size(S) ≤ Size(m1) + Size(m2)

For instance, Size(m1) ≤ Size(m2) + Size(m3) in Fig. 1.
However, when the two modules are disjoint, size is additive.

Size Axiom 2 Module Additivity (ratio scales). The size of a system S is equal
to the sum of the sizes of two of its modules m1 and m2 such that any element
of S is an element of either m1 or m2 but not both

E = E1 ∪ E2 ∧ E1 ∩E2 = � ⇒
Size(S) = Size(m1) + Size(m2)

Thus, Size(m1 ∪m6) = Size(m1) + Size(m6) in Fig. 1.
A number of properties can be derived from these two base axioms, as follows:

– the size of the empty system is zero (ratio scales);

26 S. Morasca

– the size of a system is nonnegative (ratio scales);
– the size of a system is not lower than the size of the empty system; though it

can be clearly inferred from the first two derived properties, this is a property
that can be used for ordinal scales too (ordinal scales);

– adding elements to a system cannot decrease its size (ordinal scales);
– relationships have no impact on size, i.e., two systems with the same elements

will have the same size (nominal scales);
– a measure of size is computed as the sum of the “sizes” of its elements: if we

take each element e of a system and we build a module that only contains
e, then compute the size of this newly defined module, and then sum the
sizes of all these newly defined modules, we obtain the value of the size of
the entire system (ratio scales).

The last two derived properties thus show that size is based on the elements of
a software system and not on its relationships.

It turns out that this axiomatic definition of size is closely related to the
axiomatic definition of what is known as “measure” in Measure Theory [30], an
important branch of Mathematics that is a part of the basis of the theory of
differentiation and integration in Calculus. So, this places these axioms on even
firmer mathematical grounds.

Examples of size measures according to this axiomatic approach:
#Statements, LOC, #Modules, #Procedures, Halstead’s Length [17],
#Unique Operators, #Unique Operands, #Occurrences of Operators,
#Occurrences of Operands, WMC [13]. Instead, these are not size measures:
Halstead’s Estimator of length and V olume [17].

Complexity. We are dealing here with internal software attributes, so we here
mean “structural” complexity, and not some kind “psychological” complexity,
which would be an external software attribute. Complexity is based on the rela-
tionships among system elements, unlike size.

The idea underlying the first axiom, which characterizes complexity the most,
is that the complexity of a system is never lower than the sum of the complexities
of its modules taken in “isolation,” i.e., when they have no relationships in
common, even though they may have elements in common.

Complexity Axiom 1. Module Composition (ratio scales). The complexity of
a system S is not lower than the sum of the complexities of any two of its modules
m1, m2 with no relationships in common

S ⊇ m1 ∪m2 ∧R1 ∩R2 = � ⇒
Complexity(S) ≥ Complexity(m1) + Complexity(m2)

Suppose that the two modules m1 and m2 in Complexity Axiom 1 have ele-
ments in common. All of the transitive relationships that exist in m1 and m2

when they are taken in isolation still exist in S. In addition, S may contain new

Fundamental Aspects of Software Measurement 27

transitive relationships between the elements of m1 and m2, which do not exist
in either module in isolation. So, the complexity of S is not lower than the
sum of the complexities of the two modules in isolation. For instance, in Fig. 1,
Complexity(m1) ≥ Complexity(m2) + Complexity(m3).

When a system is made up of two unconnected modules, complexity is additive

Complexity Axiom 2. Unconnected Module Additivity (ratio scales). The
complexity of a system S composed of two unconnected modules m1, m2 is equal
to the sum of the complexities of the two modules

S = m1 ∪m2 ∧
m1 ∩m2 = � ∧OuterR(m1) ∩OuterR(m2) = � ⇒

Complexity(S) = Complexity(m1) + Complexity(m2)

We now describe a few derived properties for complexity:

– a system with no relationships has zero complexity (ratio scales);
– the complexity of a system is nonnegative (ratio scales);
– the complexity of a system is not lower than the complexity of a system

with no relationship, which can be clearly inferred from the first two derived
properties; however, this is a property that can be used for ordinal scales too
(ordinal scales);

– adding relationships to a system cannot decrease its complexity (ordinal
scales);

– elements have no impact on complexity, i.e., two systems with the same
relationships will have thee same complexity (nominal scales).

Summarizing, as opposed to size, complexity depends on relationships and not
on elements.

These measures may be classified as complexity measures, according to the
above axioms: Oviedo’s data flow complexity measure DF [29], v(G)− p, where
v(G) is McCabe’s cyclomatic number and p is the number of connected com-
ponents in a control-flow graph [22]. These measures do not satisfy the above
axioms: Henry and Kafura’s information flow complexity measure [18], RFC
and LCOM [13].

Cohesion. Cohesion is related to the degree and not the extent with which
the elements of a module are tied to each other. Thus, cohesion measures are
normalized.

Cohesion Axiom 1. Upper Bound (ordinal scales). The cohesion of a module
m is not greater than a specified value Max, i.e., Cohesion(m) ≤ Max.

Elements are linked to each other via relationships, so adding relationships does
not decrease cohesion.

28 S. Morasca

Cohesion Axiom 2. Monotonicity (ordinal scales). Let modules m1=<E,R1>,
m2 =< E,R2 > be two modules with the same set of elements E, and let
R1 ⊆ R2. Then, Cohesion(m1) ≤ Cohesion(m2).

A module has high cohesion if its elements are highly connected to each other.
So, if we put together two modules haphazardly and these two modules are not
connected to each other, we cannot hope that the cohesion of the new module
will be greater than the cohesion of each the two original modules separately.

Cohesion Axiom 3. Unconnected Modules (ordinal scales). Let m1 and m2 be
two unconnected modules, then,

max{Cohesion(m1), Cohesion(m2)} ≥ Cohesion(m1 ∪m2)

Thus, in Fig. 1, we have

Cohesion(m4 ∪m6) ≤ max{Cohesion(m4), Cohesion(m6)}
As a side note, these first three axioms may be safely applied to ordinal measures
(e.g., a measure like Yourdon and Constantine’s [40]).

The following axiom may be satisfied only by ratio measures.

Cohesion Axiom 4. Null Value (ratio scales). The cohesion of a module with
no relationships m =< E,� > is null, i.e., Cohesion(m) = 0.

The above axioms imply the following property:

– the cohesion of a module is not lower than the cohesion of a module with no
relationships (ordinal scales).

Examples of cohesion measures according to the above axioms: PRCI, NRCI,
ORCI [11].

Coupling. As opposed to cohesion, the coupling of a module in a system is
related to the amount of connection between the elements of a module and
the elements of the rest of the system. The interconnections may be direct or
transitive. So, adding a relationship, whether internal to the module or belonging
to its set of outer relationships, can never decrease coupling.

Coupling Axiom 1. Monotonicity (ordinal scales).
Adding a new relationship to a module m1 or to its set of outer relationships
OuterR(m1) does not decrease its coupling. So, if m2 is a module such that
E2 = E1, we have

OuterR(m2) ⊇ OuterR(m1) ∧R2 ⊇ R1 ⇒
Coupling(m2) ≥ Coupling(m1)

At any rate, if a module has no outer relationships, its elements are not connected
with the rest of the system, so its coupling is zero.

Fundamental Aspects of Software Measurement 29

Coupling Axiom 2. Null Value (ratio scales). The coupling of a module with
no outer relationships is null.

Suppose now that we take two modules and put them together. The relationships
from one to the other used to be outer ones, but become internal ones after the
merging. Thus, we have lost some couplings of the two initial modules in the new
module, whose coupling is not higher than the sum of the couplings of the two
modules. In Fig. 1, when modules m2 and m3 are merged into module m1 the
relationships to and from m4, m5, and m6 are still outer relationships for m1,
but the relationships between m2 and m3 have become internal relationships for
m1 (so, they may also contribute to the cohesion of m1).

Coupling Axiom 3. Merging of Modules (ratio scales). The coupling of the
union of two modules m1, m2 is not greater than the sum of the couplings of the
two modules

Coupling(m1 ∪m2) ≤ Coupling(m1) + Coupling(m2)

However, if the two original modules that got merged were not connected, no
coupling has been lost and the new modules has exactly the same coupling as
the two original modules.

Coupling Axiom 4. Unconnected Modules (ratio scales). The coupling of the
union of two unconnected modules is equal to the sum of their couplings

m1 ∩m2 = � ∧OuterR(m1) ∩OuterR(m2) = � ⇒
Coupling(m1 ∪m2) = Coupling(m1) + Coupling(m2)

So, Coupling(m4 ∪m6) = Coupling(m4) + Coupling(m6) in Fig. 1.
Like with the other internal attributes, derived properties can be found, as

follows:

– the coupling of a module is nonnegative (ratio scales);
– the coupling of a module is not less than the coupling of a module with no

outer relationships (ordinal scales).

Among the measures that may be classified as coupling measures according to
the above axioms are: TIC andDIC [11], CBO and RFC [13]. Fenton’s coupling
measure [16] does not satisfy the above axioms.

5.3 Relationships between Software Attributes

Table 2 summarizes the main characteristics of software attributes for a module
m of a system according to the unified axiomatic approach described in this sec-
tion. We report 1) the condition for the attribute to assume value zero in column
“Null Value,” 2) the variable with respect to which the attribute has a mono-
tonic behavior in column “Monotonicity,” and 3) the condition for additivity in
column “Additivity,” if any.

One of the goals of this axiomatic approach is to identify similarities, differ-
ences, and relationships between attributes, as we now concisely discuss.

30 S. Morasca

Table 2. Characteristics of different software attributes

Attribute Null Value Monotonicity Additivity

Size Em = ∅ Em Separate modules
Complexity Rm = ∅ Rm Unconnected modules
Cohesion Rm = ∅ Rm NO
Coupling OuterR(m) = ∅ OuterR(m) ∪Rm Unconnected modules

Size vs. Complexity These are the main differences in the properties of size
and complexity

– size is based on elements, complexity is based on relationships

– the inequalities about the sums of sizes and complexities in Size Axiom
1 and Complexity Axiom 1 go in opposite directions

– complexity cannot be interpreted as the amount of relationships, as if
it was the “size” of the set of relationships, while size is the sum of the
“sizes” of the individual elements.

On the other hand, both size and complexity have additivity properties,
though under different conditions (see Size Axiom 2 and Complexity Axiom
2).

Complexity vs. Cohesion Complexity and cohesion of a module share a num-
ber of similarities as both

– depend on the relationships within the module

– are null when there are no relationships in the module

– increase when a relationship is added to the relationships of the module.

It is possible to show that cohesion measures can actually be defined as
absolute measures as follows. Given a complexity measure cx, for any given
module m, suppose that there exists cxM (m) a maximum possible value for
cx when it is applied to the elements of module m. This may be reasonable,
as there is a finite number of elements in m, and the elements may be linked
by a limited number of relationships. Then, ch(m) = cx(m)/cxM (m) is a
cohesion measure. This has two important consequences.

1. From a practical point of view, cohesion may increase when complex-
ity increases. This might explain why sometimes cohesion measures are
not very well related to fault-proneness [8], as the positive effect of the
increase in cohesion on error-proneness is somewhat masked by the neg-
ative effect of an increase in complexity.

2. From a theoretical point of view, an equation like ch(m)= cx(m)/cxM (m)
may used as a starting point to find quantitative relationships among at-
tributes, as is usual in many scientific disciplines.

Complexity vs. Coupling. Both complexity and coupling of a module

– are null when there are no relationships in the module and outside it

– increase when a relationship is added to the relationships of the module.

Fundamental Aspects of Software Measurement 31

One characterizing difference between complexity and coupling is that, when
merging two disjoint modules are merged in a module, the complexity of the
resulting module is not less than the sum of the complexities of the original
modules, while the coupling of the resulting module is not greater than the
sum of the couplings of the original modules.

6 External Software Attributes: Probability
Representations

As explained in Section 2, a number of different external software attributes are
of interest for several categories of software “users,” depending on their specific
goals and the type of application at hand. For instance, usability may be very
important for the final users of web applications, while time efficiency may be
a fundamental external software attribute for the users of a real-time system,
which must deliver correct results within a specified time interval. As for prac-
titioners, every decision made during software development is made, implicitly
or explicitly, based on some external software attribute. For instance, when a
decision is made between two alternative designs, a number of external software
attributes are implicitly or explicitly taken into account, e.g., maintainability,
portability, efficiency.

External software attributes may be conflicting. Increasing one may negatively
affect others, so a satisfactory trade-off must be reached among them. Being
able to assess these qualities may provide users and practitioners with a way to
base decisions on firmer grounds and evaluate whether a software product’s or
component’s quality is satisfactory according to a user’s or practitioner’s goals,
and identify a product’s or component’s strengths and weaknesses.

A number of proposals have appeared in the literature to quantify these exter-
nal software attributes (e.g., among several others, maintainability [28], usability
[35]). In addition, standards have been defined to define the qualities (i.e., ex-
ternal software attributes) of software products, and, more generally, software
artifacts. For instance, the ISO9126 standard [1,2] defines quality by means of 6
characteristics: functionality, reliability, usability, efficiency, maintainability, and
portability. These characteristics, in turn, are defined in terms of subcharacter-
istics in a tree-like structure, and measures have been proposed for them too.
(An additional characteristic is called quality in use, to summarize the quality
as perceived by the user.)

Standards like ISO9126 are useful as reference frameworks, but they may turn
out to be too general, as they are meant to address the development of many
different kinds of software. So, they do not base the definition and quantification
of software qualities on precise, formal, and unambiguous terms, which is what
one would expect from measurement activities, which are among the most pre-
cise, formal, and unambiguous activities in engineering and scientific disciplines.
It is probably impossible to remove all subjectivity and uncertainty in Empirical
Software Engineering, due to the number of different factors that influence soft-
ware production, and especially its being so heavily human-intensive. However,

32 S. Morasca

because of the nature of Software Engineering, it is important that the degree
of subjectivity and uncertainty be reduced, and, most of all, formalized. Thus,
external software attributes should be based on firm, mathematical grounds, to
remove subjectivity and uncertainty to the extent possible, and highlight their
possible sources and the factors that may influence them. Theoretically sound
and sensible ways to measure external software attributes will help prevent the
quantification of external software attributes via ill-defined measures or not fully
justified approaches.

In this section, we describe a unified probability-based framework for mea-
suring external software attributes [24], which shows that external software at-
tributes should be quantified by means of probabilistic estimation models instead
of measures as defined in Section 3.1.

We discuss the problems associated with using measures to quantify exter-
nal software attributes (Section 6.1) and then describe of so-called “probability
representations” along with their advantages (Section 6.2). Probability Repre-
sentations are a part of Measurement Theory that is often neglected in Software
Measurement, even though they have already been implicitly used in Software
Measurement in the modeling and quantification of software reliability [27], for
instance. Software reliability can be viewed as a “success story” in the modeling
of external software attributes. We describe how it is possible to put another
important external software attribute, i.e., software modifiability, on firm math-
ematical grounds (Section 6.3), to show another useful application of Probability
Representations. However, it is not the goal of this paper to study any of these
models in detail or propose or validate a specific model as the “right” estimation
models for modifiability.

6.1 Issues in the Definition of External Attributes

While the distinction between internal and external software attributes may be
useful to understand their nature, we would like to point out a few issues with
this distinction.

No such definition in Measurement Theory. The distinction between in-
ternal and external attributes can only be found in the Software Measure-
ment literature (e.g., [16,15], but not in the general, standard, authoritative
literature on Measurement [20,34]

Incompleteness of the Definition. The definition of a measure given by Mea-
surement Theory [20,34] is the one reported in Section 3.1: a measure is a
function that associates a value with an entity. So, it is knowledge from that
entity alone that must used in the definition of the measure, and not other
entities that belong to the “environment” of the entity.

Logical Problems in Defining Attributes by Means of their Measures.
The distinction between internal and external software attributes is based
on whether their measures can be based on the entities alone or an “envi-
ronment” as well, although attributes exist prior to and independent of how
they can be measured. However, the definition of a measure logically follows
the definition of the attribute it purports to measure: one defines a measure

Fundamental Aspects of Software Measurement 33

based on the attribute, not the attribute based on the measure. Also, suppose
that two measures are defined for an attribute: one takes into account only
information from the entity being measured, while the other also takes into
account additional information about the “environment.” According to the
former measure, the attribute would be an internal one, but an external one
according to the latter. So, the nature of the attribute would be uncertain,
to say the least.

Deterministic vs. Probabilistic Approaches. An external software
attribute (e.g., reliability or maintainability) may be affected by many vari-
ables (the “environment”) in addition to the specific entity, so it would not
be sensible to build a deterministic measure for it.

Using Aggregate Indicators. Aggregate indicators are often used to quantify
external software attributes. For instance, the Mean Time Between Failures
(MTBF) may be a quite useful piece of information about reliability, but it
is not a measure of reliability in itself as we now explain.
– MBTF is the expected value of the probability distribution of the time

between failures, so quantifying MBTF implies knowing this probability
distribution. However, this is impossible, since probabilities cannot be
measured in a frequentist approach, but they can only be estimated. This
implies that MBTF itself can only be estimated, but not measured.

– The probability distribution is a conditional one anyway, since it depends
on the environment in which the program is used.

Validating a Probabilistic Representation for an Attribute. Probability
Representations can be empirically validated in a probabilistic sense, while
deterministic representations (like the ones shown in Section 3) should be val-
idated in a totally different way. For instance, to check whether software size
is additive with respect to some kind of concatenation operation, one should
take all possible program segments, make all possible concatenations, and
check if for all of these concatenations size is truly additive–which is totally
unfeasible. Probability Representations can be validated through statistical
inference procedures. It is true that these procedures can never provide ab-
solute certainty, but this is acceptable because of the random nature of the
modeling.

6.2 Probability Representations in Measurement Theory

Here, we introduce the basic concepts of Probability Representations defined in
Measurement Theory [20] by slightly adapting them to our Software Measure-
ment case. We first need to introduce the concept of algebra and of σ-algebra of
sets on a set X .

Definition 10 (Algebra on a Set). Suppose that X is a nonempty set, and
that E is a nonempty family of subsets of X. E is an algebra of sets on X if and
only if, for every A,B ∈ E

34 S. Morasca

1. X −A ∈ E
2. A

⋃
B ∈ E.

The elements of E are called events and the individual elements of X are called
outcomes, each of which is a possible results of a so-called random experiment
[19]. So, an event is actually a set of outcomes, and X is the set of all possible
outcomes.

Definition 11 (The Concept of σ-Algebra on a Set). If the conditions in
Definition 10 hold and, in addition, E is closed under countable unions, i.e.,
whenever Ai ∈ E, with i = 1, 2, . . ., it follows that

⋃∞
i=1 Ai ∈ E, then E is called

a σ-algebra on X.

Based on these definitions, the usual axiomatic definition of unconditional prob-
ability can be given [20].

However, we are here interested in conditional probability representations,
because we are interested in conditional probabilities like the following ones.

Continuous case. P (Eff ≤ eff |art, env), i.e., the probability that a specified
event occurs if one uses an amount of effort that is at most eff , provided that
the environment env in which it happens and the artifact art on which it hap-
pens are specified, e.g., the probability that a specified artifact art is modified
correctly with at most a specified amount of effort eff , in a specified modifi-
cation environment env. In this case, effort Eff is the random variable, once
the environment and the artifact are known (i.e., conditioned on their knowl-
edge). This probability can be used to quantify the external software attribute
“modifiability,” for which we provide a model in Section 6.3.

Discrete case. P (N ≤ n|art, env), i.e., the probability that a specified event
occurs after at most n trials, provided that the environment env in which it
occurs and the artifact art on which it occurs are specified, e.g., the probabil-
ity that a specified program art is covered (according to some specified notion
of coverage) by executing it with at most n inputs, in a specified environment
env. The number of trials N is the random variable, once the environment
and the artifact are known (i.e., conditioned on their knowledge). This prob-
ability can be used to quantify the external software attribute “coverability.”
More details are provided in [24].

The set-theoretic notation of the theory of [20] can be interpreted as follows for
our goals. The set X is the set of all possible triple of the form < op, art, env >
where

– op is an “observable phenomenon,” i.e., built via a predicate like Eff ≤ eff
or N ≤ n

– art is a specific artifact (e.g., a program)
– env is an environment in which art is used and op is observed.

For notational convenience, we denote conditional probabilities as P (op|art, env).
For instance, reliability can be quantified as a conditional probability, as follows

R(t) = P (t ≤ T |art, env)

Fundamental Aspects of Software Measurement 35

i.e., the probability that a failure occurs at time T not less than a specified time
t, in a specified program art and in a specified operational environment env.

Like with deterministic representations, we capture our intuitive knowledge
on the ordering among conditional events via an order relation �, whose mean-
ing is “qualitatively at least as probable as” [20]. In general, suppose that A,
B, C, and D are events. By writing A|B � C|D, we mean that event A, when
event B is known to occur, is “qualitatively at least as probable as” event C,
when event D is known to occur. In other words, instead of having a deter-
ministic ordering among entities according to some attribute of interest like in
deterministic representations, one has a probabilistic ordering. For instance, one
may order software programs according to their modifiability in a probabilistic
way (i.e., a program in an operational environment is qualitatively at least as
modifiable as another program in another operational environment), instead of
a deterministic way (i.e., a program is certainly more modifiable than another).
For completeness, based on relation �, one may also define relation ∼ as follows:
A|B ∼ C|D if and only if A|B � C|D and C|D � A|B.

The Representation Condition needed for conditional probability representa-
tions is

A|B � C|D ⇔ P (A|B) ≥ P (C|D)

At a first glance, it may appear that the order relation � is a binary relation that
is a subset of (E×E)×(E×E), since A|B � C|D is simply a graphical convention
for < A,B >�< C,D >. However, some caution must be exercised. Conditional
probabilities are defined as P (A|B) = P (A ∩ B)/P (B), so P (A|B) is defined
only if P (B) > 0. Thus, if P (B) = 0, writing A|B � C|D ⇔ P (A|B) ≥ P (C|D)
makes no sense. This means that any event B such that P (B) = 0 cannot appear
as the second element of A|B, i.e., as the conditioning event. Thus, by denoting
with NN (as in NonNull) the set of events B such that P (B) > 0, the order
relation � is actually a binary relation on E ×NN .

Here are necessary conditions (slightly adapted from [20]) for the Representa-
tion Condition. We simply list these axioms here for completeness. At any rate,
more details on the general theoretical approach are provided in [20], and on
their application in Software Measurement in [24].

Definition 12 (Conditional Probability Axioms). Let X be a nonempty
set, E an algebra of sets on X, NN a subset of E, and � a binary relation on
E×NN . The quadruple < X,E,NN,�> is a structure of qualitative conditional
probability if and only if for every A, B, C, A′, B′, and C′ ∈ E (or ∈ NN ,
whenever the name of the event appears to the right of ′|′), the following axioms
hold.

1. < E ×NN,�> is a weak order.

2. X ∈ NN and A ∈ E −NN if and only if A|X ∼ ∅|X.

3. X |X ∼ A|A and X |X � A|B.

4. A|B ∼ A
⋂
B|B.

36 S. Morasca

5. Suppose that A
⋂
B = A′ ⋂B′ = ∅. If A|C � A′|C and B|C � B′|C′, then

A
⋃
B|C � A′ ⋃B′|C′; also, if either hypothesis is �, then the conclusion

is �.
6. Suppose that A ⊃ B ⊃ C and A′ ⊃ B′ ⊃ C′. If B|A � C′|B′ and

C|B � B′|A′, then C|A � C′|A′; moreover, if either hypothesis is �, then
the conclusion is �.

The above axioms can be used as necessary conditions to find additional con-
ditions under which an ordering relation on E has an order-preserving function
P that satisfies the above axioms, i.e., the Representation Condition of Section
3.1. This means that different probability representations, i.e., different proba-
bility functions, may exist so that the Representation Condition of Section 3.1
is satisfied. Additional conditions may be provided to make the set of axioms
sufficient [20]. However, we are not interested in these additional conditions here.
In Section 6.3, we show how to build actual probability functions.

Note that it is not important here that our probabilistic intuitive knowledge
is accurate. We only need to put the concept of using probabilities for external
software attributes on solid bases. Empirical studies will show whether our intu-
itive knowledge is correct. If it is not, we need to modify our intuitive knowledge
in such a way as to fit the empirical results. This is another value added of this
approach, since it allows us to increase and refine our empirical knowledge about
an attribute of interest.

6.3 Representing Modifiability

Based on the above Probability Representation approach, modifiability is here
quantified as the probability that a given artifact, in a specified modification
environment, is modified with a specified amount of effort, i.e., Mod(eff) =
Mod(Eff ≤ eff |art, env) = P (Eff ≤ eff |art, env).

Simply to show how a modifiability model can be built [24], rather than
proposing it as the “right” or “preferred” modifiability model, suppose that
the modifiability rate of an artifact (which is the counterpart of the hazard rate
used for reliability [27] when studying modifiability) is a linear function of the
probability Mod(eff) that the artifact has been modified with eff effort. The
underlying idea is that, if an artifact needs to undergo one specific modification,
As more and more effort is used to carry out that modification, (1) the higher is
the probability Mod(eff) that the modification is actually carried out, and (2)
the higher is the instantaneous probability that the modification is going to be
carried out if it has not been carried out so far (this instantaneous probability
is actually the modifiability rate). Thus, we can write

Mod′(eff)
1−Mod(eff)

= a+ bMod(eff)

Coefficient a is the initial modifiability rate at eff = 0 and coefficient b describes
how well one uses the information contained in the modification activities up to

Fundamental Aspects of Software Measurement 37

effort eff . It can be shown that the function that describes the modification
probability in closed form is

Mod(eff) =
a(e(a+b)eff − 1)

b+ ae(a+b)eff

Parameters a and b may be explicitly related to env and art. For instance, they
may be a function of the number of people that modify the artifact and the size
(e.g., the number of lines of code) of the artifact. For instance, we could have
a = α ·#people and b = β · 1/LOC. Based on the past history of efforts needed
to modify an artifact, parameters a and b or α and β are estimated by using
some statistical techniques [19]–provided that a + b > 0, and a > 0, since the
modifiability rate is positive.

Once the probability distribution is known, a number of derived indices may
be used to provide a concise idea for the probability distribution of an attribute,
e.g., the expected values for the distributions obtained for modifiability (i.e., the
average effort needed for modifying a software artifact). These derived indices
may be used for instance to set process goals (e.g., the average effort needed
for modifying a software artifact must be no greater than a specified value)
or compare competing techniques (e.g., given two development techniques, one
may choose the one that has the lower average average effort needed to modify
a program).

One final note on modifiability. One may very well argue that modifiability
depends on the specific modification that needs to be carried out. However, a
similar remark applies to software reliability, which clearly depends on the spe-
cific inputs selected or the selection policy used. The fact that there are several
different modifications that may be carried out and one of them is actually car-
ried out in a specific way according to a random policy mirrors the random
selection of inputs that is used in software reliability modeling. Actually, in soft-
ware reliability modeling, one may argue that, once an input has been selected
for a deterministic program, then there is only one possible result which is ei-
ther correct or incorrect. Instead, when it comes to modifiability, when the need
for a modification has been identified, many different random variables may in-
fluence the way the actual modification is carried out, and therefore the effort
needed. Thus, the use of a probabilistic model may be even more justified for
modifiability than for reliability.

7 GQM/MEDEA

As the definition of a measure needs to be carried out carefully, it is necessary to
have a defined process in place. In this section, we describe the GQM/MEasure
DEfinition Approach (GQM/MEDEA) [12], which takes advantage of the goal-
oriented nature of the Goal/Question/Metric paradigm [6] to set the measure-
ment goals of any measurement activity to guide the measure definition and
validation process. GQM/MEDEA can be used for building so-called predictive
models, i.e., models that use one or more internal software attributes to predict

38 S. Morasca

an external software attribute or process attribute of interest. We use a semi-
formal notation, Data Flow Diagrams (DFDs) [14], to define and refine the steps
used in GQM/MEDEA. In DFDs, bubbles denote activities, boxes external in-
formation sources/sinks, and arrows data flows. The arrows also provide an idea
of the order in which the activities are executed, though, during the execution
of an activity, any other activity may be resumed or started as long as its inputs
are available. A bubble may be refined by a DFD, provided that the incoming
and outgoing data flows of the bubble and its refining DFD are the same.

The topmost diagram in DFDs is called the Context Diagram (shown in Fig. 3,
which represents the entire process as one bubble and shows the interactions of
the measure definition process with information sources and sinks.

GQM/MEDEA

management

corporate
objectives

literature

abstractions +
axioms +
measures

general
information

experience
factory

project teams

abstractions +
axioms +
measures

environment
specific
information

knowledge
about the
environment

Context
Diagram

Fig. 3. Interactions of GQM/MEDEA with information sources and sinks

Several sources of information, as shown in Fig. 3, are used by the GQM/
MEDEA process:

– the management, to help define measures that are useful to achieve the
corporate goals of a software organization (e.g.,“reduce maintenance effort”);

– the personnel of the project(s) used to practically validate the measures; the
people involved in the empirical study provide important information about
the context of the study that cannot be found anywhere else;

– experience belonging to the software organization that has been previously
gathered, distilled, and stored in the experience factory [4,7,5] (e.g., quan-
titative prediction models, lessons learned from past projects, measurement
tools and procedures, or even raw project data);

– the scientific literature.

Fundamental Aspects of Software Measurement 39

The measurement process itself should contribute its outputs to the experience
factory with new artifacts, in the form of abstractions (i.e., models of software
artifacts), measure properties, and measures. These outputs should be packaged
and stored so that they can be efficiently and effectively reused later on, thus
reducing the cost of measurement in an organization [6]. In a mature development
environment, inputs for most of the steps should come from reused knowledge.
Some of the steps that are made explicit in GQM/MEDEA are often left implicit
during the definition of a measure. We have made them explicit to show all the
logical steps that are carried out to identify all potential sources of problems. The
main contribution of GQM/MEDEA to GQM is the definition of an organized
process for the definition of software product measures based on GQM goals.

Fig. 4 7 shows the high-level structure of the approach.

Definition of
Measures for
Dependent
Attributes

management

corporate
objectives

literature
abstractions +
axioms +
measures

experience
factory

project teams

environment
specific
information

knowledge
about the
environment

Definition of
Measures for
Independent

Attributes

abstractions +
axioms +
measures

experience
factory

abstractions +
axioms +
measures

abstractions +
axioms +
measures

Setting of the
Empirical Study

Hypothesis
Refinement and

Verification

measures
measures

independent
measures

dependent
measures

empirical
hypotheses

entities +
independent
attributes

entities +
dependent
attributes

GQM/MEDEA

Fig. 4. GQM/MEDEA: high-level structure

Each high-level step of Fig. 4 is refined in the more detailed DFDs of Fig.
5. In Fig. 4 and in Fig. 5, we do not show explicitly the environment-specific
information from the project teams and the experience factory, which permeates
all activities represented in these figures, not to clutter the diagrams.

40 S. Morasca

We now concisely illustrate the steps in Fig. 5. The interested reader may
refer to [12] for more detailed information about GQM/MEDEA.

7.1 Setting of the Empirical Study

The steps and their connections are in Fig. 5(a). Corporate objectives (e.g.,
“reduce maintenance effort”) are first refined into tactical goals (e.g., “improve
the maintainability of the final product”), and then tactical goals are refined into
measurement goals (e.g., “predict the maintainability of software code based on
its design”). These refinements are based on knowledge about the environment
provided by the project teams and the experience factory, which help identify
processes and products that measurement should address. As the measurement
goal should be made as precise as possible, goal-oriented techniques [6] can be
used to detail the object of study, the specific quality to be investigated, the
specific purpose for which the quality should be investigated, the immediate
beneficiaries of the empirical investigation (e.g., the project managers), and the
specific context in which the empirical investigation is carried out.

The measurement goals help establish a set of empirical hypotheses that re-
late (independent) attributes of some entities (e.g., the coupling of software
components in design) to other (dependent) attributes of the same or different
entities (e.g., the maintainability of the maintained software code). Dependent
attributes are usually 1) external quality attributes of software systems or parts
thereof, e.g., reliability, maintainability, effort, or 2) process attributes, e.g., de-
velopment effort, development time, or number of faults. Independent attributes
capture factors that are usually hypothesized to have a causal relationship with
the dependent attribute. An empirical hypothesis describes how these two at-
tributes are believed to be related, e.g., the coupling of the modules identified
via a product’s design is hypothesized to be negatively related to the final code
maintainability. Empirical hypotheses cannot describe a specific functional form
for this hypothesized dependency, because no measures have been yet defined
for the independent and the dependent attributes. These definitions are carried
out in the remainder of the measure definition process. So, empirical hypothe-
ses are not statistical ones and cannot be tested. However, in the last phase of
the GQM/MEDEA process (see Section 7.4), when specific measures have been
defined for the independent and the dependent attributes, empirical hypotheses
will be instantiated into statistical (and therefore testable) hypotheses.

7.2 Definition of Measures for the Independent Attributes

The process used to define measures for independent attributes is in Fig. 5(b).
Independent attributes are formalized to characterize their measures, in ways
like those in Sections 3 and 4. If an axiomatic approach is chosen, it is necessary
to formalize entities via abstractions (e.g., graph models), which are built based
on the entities, the independent attributes and their defining axioms. Once a cor-
rect abstraction is built, the axioms can be instantiated, i.e., a precise mapping
of the specific characteristics of the model can be done onto the characteristics of

Fundamental Aspects of Software Measurement 41

management

corporate
objectives

Define
Empirical

Hypotheses

empirical
hypotheses

entities +
independent
attributes

entities +
dependent
attributes

Setting of the
Empirical Study literature

experience
factory

Instantiate
and Refine

Axioms

measures

independent
measures

Definition of
Measures for
Independent
Attributes

Define
Measurement

Goals

measurement
goals

Formalize
Independent

Attributes

Identify
Abstractions

Define
Independent

Measures

Validate
Independent

Measures

axioms

axioms

abstractions

abstractions

axioms

axioms abstractions

refined
axioms

refined
axioms

measures

independent
measures

independent
attributes

entities +
independent
attributes

literature
experience

factory

Instantiate
and Refine

Axioms

measures

dependent
measures

Definition of
Measures for
Dependent
Attributes

Formalize
Dependent
Attributes

Identify
Abstractions

Define
Dependent
Measures

Validate
Dependent
Measures

axioms

axioms

abstractions

abstractions

axioms

axioms abstractions

refined
axioms

refined
axioms

measures

dependent
measures

dependent
attributes

entities +
dependent
attributes

Instantiate
and Refine
Empirical

Hypotheses

empirical
hypotheses

Hypothesis Refinement
and Verification

Verify
Empirical

Hypotheses

refined
empirical
hypotheses

dependent
measures

independent
measures

literature
experience

factory

measures measures

 (a) (b)

 (c) (d)

Fig. 5. GQM/MEDEA: refined structure

42 S. Morasca

the mathematical model upon which the formalization of an attribute is based.
For instance, an abstraction of an object-oriented system can be obtained by
mapping each class onto a different element of a graph-based model and each
dependence between classes onto a relationship, like in Section 4. If a Measure-
ment Theory-based approach is used, we need to identify the entities, the rela-
tionships we intuitively expect among entities, and the composition operations
between entities first. In other words, we need to build the Empirical Relational
System first, and the Numerical Relational System later on. Note that using an
axiomatic approach may not provide all the information that is needed to build
a measure. Different measures, which will give different orderings of entities, can
be defined that satisfy a set of axioms. For instance, LOC and #Statements
both satisfy the axioms for size. However, given two program segments, it may
very well be that a program segment has a value for LOC greater than the other
program segment, but a smaller value for #Statements. So, an axiom set may be
incomplete, and additional properties may need to be introduced to refine it and
obtain a complete ordering of entities. These additional properties will depend
on the specific application environment. Based on this refined set of axioms, new
measures are defined or existing ones are selected for the attributes of entities.
Additional checks may be required to verify whether the defined measures really
comply with the refined set of axioms.

7.3 Definition of Measures for the Dependent Attributes

The GQM/MEDEA approach deals with independent and dependent attributes
of entities in much the same way, as can be seen from Fig. 5(c). For instance, if
our dependent attribute is a process attribute like maintenance effort, then effort
can be modeled as a type of size. If our dependent attribute is maintainability,
then we can use a Probability Representation approach like the one illustrated in
Section 6.2. In the context of experimental design, the definition of measures for
independent and dependent attributes via an organized and structured approach
has the goal of reducing the threats to what is referred to as construct validity
[37], i.e., the fact that a measure adequately captures the attribute it purports
to measure. Although construct validity is key to the validity of an experiment,
few guidelines exist to address that issue.

7.4 Hypothesis Refinement and Verification

Fig. 5(d) shows the steps carried out for hypothesis refinement and verification.
The empirical hypotheses established as shown in Section 7.1 need to be refined
and instantiated into statistical hypotheses to be verified, by using the mea-
sures defined for the independent and dependent attributes. One possibility is to
provide a specific functional form for the relationship between independent and
dependent measures, e.g., a linear relationship, so a correlation would be tested
in a statistical way, based on actual development data. (Statistically testing as-
sociations would not be sufficient, because this does not lead to a prediction
model, as we assume in this section for validating software measures.) Typically,

Fundamental Aspects of Software Measurement 43

additional data analysis problems have to be addressed such as outlier analysis
[3] or the statistical power [19] of the study. The predictive model can be used
to verify the plausibility of empirical hypotheses, in addition to being used as a
prediction model in its own right.

8 Conclusions and Future Work

In this paper, we have shown a number of approaches for dealing with the funda-
mental aspects of Software Measurement, by describing the notions of Measure-
ment Theory for both internal and external software attributes, the definition of
properties for software measures via Axiomatic Approaches, and the proposal of
an integrated process where the foundational aspects of Software Measurement
can be coherently used.

A number of research and application direction should be pursued, including

– using Measurement Theory for modeling internal and external software at-
tributes in a way that is consistent with intuition

– refining Axiomatic Approaches by building generalized consensus around the
properties for software attributes

– extending Axiomatic Approaches to other software attributes of interest and
understanding the relationships between different software attributes

– defining and refining processes for using the foundational aspects of Software
Measurement in practice.

Acknowledgments. This work has been partially supported by project
“Metodi e tecniche per la modellazione, lo sviluppo e la valutazione di sistemi
software” funded by Università degli Studi dell’Insubria.

References

1. ISO/IEC 9126-1:2001- Software Engineering - Product Quality Part 1: Quality
Model. ISO/IEC (2001)

2. ISO/IEC 9126-2:2002- Software Engineering - Product Quality Part 1: External
Metrics. ISO/IEC (2002)

3. Barnett, V., Lewis, T.: Outliers in statistical data, 3rd edn. John Wiley & Sons
(1994)

4. Basili, V.R.: The Experience Factory and Its Relationship to Other Improvement
Paradigms. In: Sommerville, I., Paul, M. (eds.) ESEC 1993. LNCS, vol. 717, pp.
68–83. Springer, Heidelberg (1993)

5. Basili, V.R., Caldiera, G., Rombach, H.D.: The Experience Factory. Encyclopedia
of Software Engineering, vol. 2, pp. 511–519. John Wiley & Sons (2002),
http://books.google.es/books?id=CXpUAAAAMAAJ

6. Basili, V.R., Rombach, H.D.: The tame project: Towards improvement-oriented
software environments. IEEE Transactions on Software Engineering 14(6), 758–
773 (1988)

http://books.google.es/books?id=CXpUAAAAMAAJ

44 S. Morasca

7. Basili, V.R., Zelkowitz, M.V., McGarry, F.E., Page, G.T., Waligora, S., Pajer-
ski, R.: Sel’s software process improvement program. IEEE Software 12(6), 83–87
(1995)

8. Briand, L.C., Daly, J.W., Wüst, J.: A unified framework for cohesion measurement
in object-oriented systems. Empirical Software Engineering 3(1), 65–117 (1998)

9. Briand, L.C., Differding, C., Rombach, H.D.: Practical guidelines for measurement-
based process improvement. Software Process: Improvement and Practice 2(4),
253–280 (1996),
http://www3.interscience.wiley.com/journal/24853/abstract

10. Briand, L.C., Morasca, S., Basili, V.R.: Property-based software engineering
measurement. IEEE Transactions on Software Engineering 22, 68–86 (1996),
http://portal.acm.org/citation.cfm?id=229713.229722

11. Briand, L.C., Morasca, S., Basili, V.R.: Defining and validating measures for object-
based high-level design. IEEE Transactions on Software Engineering 25, 722–743
(1999), http://portal.acm.org/citation.cfm?id=325392.325404

12. Briand, L.C., Morasca, S., Basili, V.R.: An operational process for goal-driven
definition of measures. IEEE Transactions on Software Engineering 28, 1106–1125
(2002), http://portal.acm.org/citation.cfm?id=630832.631301

13. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE
Transactions on Software Engineering 20(6), 476–493 (1994)

14. DeMarco, T.: Structured analysis and system specification. Yourdon computing
series. Yourdon, Upper Saddle River (1979)

15. Fenton, N., Pfleeger, S.L.: Software metrics: a rigorous and practical approach, 2nd
edn. PWS Publishing Co., Boston (1997)

16. Fenton, N.E.: Software metrics - a rigorous approach. Chapman and Hall (1991)

17. Halstead, M.H.: Elements of software science. Operating and programming systems
series. Elsevier (1977), http://books.google.com/books?id=zPcmAAAAMAAJ

18. Henry, S.M., Kafura, D.G.: Software structure metrics based on information flow.
IEEE Transactions on Software Engineering 7(5), 510–518 (1981)

19. Kendall, M.G., Stuart, A.: The advanced theory of statistics, 4th edn. C. Griffin,
London (1977)

20. Krantz, D.H., Luce, R.D., Suppes, P., Tversky, A.: Foundations of Measurement,
vol. 1. Academic Press, San Diego (1971)

21. Lakshmanan, K.B., Jayaprakash, S., Sinha, P.K.: Properties of control-flow com-
plexity measures. IEEE Transactions on Software Engineering 17(12), 1289–1295
(1991)

22. McCabe, T.: A complexity measure. IEEE Transactions on Software Engineer-
ing 2(4), 308–320 (1976)

23. Morasca, S.: Refining the axiomatic definition of internal software at-
tributes. In: Proceedings of the Second ACM-IEEE International Symposium
on Empirical Software Engineering and Measurement, ESEM 2008, Kaiser-
slautern, Germany, October 9-10, pp. 188–197. ACM, New York (2008),
http://doi.acm.org/10.1145/1414004.1414035

24. Morasca, S.: A probability-based approach for measuring external attributes of
software artifacts. In: Proceedings of the 2009 3rd International Symposium on
Empirical Software Engineering and Measurement, ESEM 2009, Lake Buena Vista,
FL, USA, October 15-16, pp. 44–55. IEEE Computer Society, Washington, DC
(2009), http://dx.doi.org/10.1109/ESEM.2009.5316048

http://www3.interscience.wiley.com/journal/24853/abstract
http://portal.acm.org/citation.cfm?id=229713.229722
http://portal.acm.org/citation.cfm?id=325392.325404
http://portal.acm.org/citation.cfm?id=630832.631301
http://books.google.com/books?id=zPcmAAAAMAAJ
http://doi.acm.org/10.1145/1414004.1414035
http://dx.doi.org/10.1109/ESEM.2009.5316048

Fundamental Aspects of Software Measurement 45

25. Morasca, S., Briand, L.C.: Towards a theoretical framework for measuring
software attributes. In: Proceedings of the 4th International Symposium on
Software Metrics, IEEE METRICS 1997, Albuquerque, NM, USA, Novem-
ber 5-7, pp. 119–126. IEEE Computer Society, Washington, DC (1997),
http://portal.acm.org/citation.cfm?id=823454.823906

26. Musa, J.D.: A theory of software reliability and its application. IEEE Transactions
on Software Engineering 1(3), 312–327 (1975)

27. Musa, J.D.: Software Reliability Engineering. Osborne/McGraw-Hill (1998)
28. Oman, P., Hagemeister, J.R.: Metrics for assessing a software system’s maintain-

ability. In: Proceedings of ICSM 1992, Orlando, FL, USA, pp. 337–344 (1992)
29. Oviedo, E.I.: Control flow, data flow and program complexity. In: Proceedings

of the 4th Computer Software and Applications Conference, COMPSAC 1980,
Chicago, IL, USA, October 27-31, pp. 146–152. IEEE Press, Piscataway (1980)

30. Pap, E.: Some elements of the classical measure theory, pp. 27–82. Elsevier (2002),
http://books.google.je/books?id=LylS9gsFEUEC

31. Poels, G., Dedene, G.: Comments on property-based software engineering measure-
ment: Refining the additivity properties. IEEE Transactions on Software Engineer-
ing 23(3), 190–195 (1997)

32. Poels, G., Dedene, G.: Distance-based software measurement: necessary and suffi-
cient properties for software measures. Information & Software Technology 42(1),
35–46 (2000)

33. Prather, R.E.: An axiomatic theory of software complexity measure. The Computer
Journal 27(4), 340–347 (1984)

34. Roberts, F.: Measurement Theory with Applications to Decisionmaking, Utility,
and the Social Sciences, Encyclopedia of Mathematics and its Applications, vol. 7.
Addison-Wesley (1979)

35. Sauro, J., Kindlund, E.: A method to standardize usability metrics into a single
score. In: CHI 2005: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, Portland, Oregon, USA, pp. 401–409 (2005)

36. Shepperd, M.J.: Foundations of software measurement. Prentice Hall (1995)
37. Spector, P.E.: Research designs. Quantitative applications in the social sciences.

Sage Publications (1981), http://books.google.com/books?id=NQAJE_sh1qIC
38. Stevens, S.S.: On the theory of scales of measurement. Science 103(2684), 677–680

(1946), http://www.ncbi.nlm.nih.gov/pubmed/16085193
39. Weyuker, E.J.: Evaluating software complexity measures. IEEE Transactions on

Software Engineering 14(9), 1357–1365 (1988)
40. Yourdon, E., Constantine, L.L.: Structured design: fundamentals of a discipline of

computer program and systems design, 2nd edn. Yourdon Press, New York (1978)

http://portal.acm.org/citation.cfm?id=823454.823906
http://books.google.je/books?id=LylS9gsFEUEC
http://books.google.com/books?id=NQAJE_sh1qIC
http://www.ncbi.nlm.nih.gov/pubmed/16085193

	Fundamental Aspects of Software Measurement
	Introduction
	A Few Basic Concepts
	Measurement Theory for Internal Software Attributes
	Basic Notions of Measurement Theory
	Additional Issues on Scales
	Evaluation of Measurement Theory

	Axiomatic Approaches
	Weyuker's Complexity Axioms

	A Unified Axiomatic Approach for Internal Software Attributes
	Systems and Modules
	Axiom Sets and Derived Properties
	Relationships between Software Attributes

	External Software Attributes: Probability Representations
	Issues in the Definition of External Attributes
	Probability Representations in Measurement Theory
	Representing Modifiability

	GQM/MEDEA
	Setting of the Empirical Study
	Definition of Measures for the Independent Attributes
	Definition of Measures for the Dependent Attributes
	Hypothesis Refinement and Verification

	Conclusions and Future Work
	References

