
Lecture Notes in Computer Science 7171
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Andrea De Lucia Filomena Ferrucci (Eds.)

Software Engineering
International Summer Schools
ISSSE 2009-2011
Salerno, Italy
Revised Tutorial Lectures

13

Volume Editors

Andrea De Lucia
Filomena Ferrucci

Università di Salerno
Via Ponte don Melillo
84081 Fisciano (SA), Italy

E-mail:
adelucia@unisa.it
fferrucci@unisa.it

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-36053-4 e-ISBN 978-3-642-36054-1
DOI 10.1007/978-3-642-36054-1
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012955373

CR Subject Classification (1998): D.2, D.1, K.6.3, F.3, H.3-4, J.1, I.2

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume collects chapters originating from some tutorial lectures given at the
2009, 2010, and 2011 editions of the International Summer School on Software
Engineering (ISSSE). Beginning in 2003, ISSSE is an annual meeting point that
aims to provide a contribution on some of the latest findings in the field of
software engineering, which is an exciting, stimulating, and profitable research
area with significant practical impacts on software industry. ISSSE contributes to
training future researchers in this field and to bridging the gap between academia
and industry, thereby facilitating knowledge exchange. Indeed, it is intended
for PhD students, university researchers, and professionals from industry, and
the format of the school aims at creating extensive discussion forums between
lecturers and industrial and academic attendees.

Attracting about 60 participants each year, the program of the school includes
state-of-the-art tutorials given by internationally recognized research leaders on
very relevant topics for the scientific community. Each tutorial provides a gen-
eral introduction to the chosen topic, while also covering the most important
contributions in depth and identifying the main research challenges for software
engineers. The focus is on methods, techniques, and tools; in some cases theory
is required to provide a solid basis. Besides traditional tutorials, student talks
and tool demos are also included in the program to further stimulate interaction.

This volume is organized in three parts, collecting chapters focused on Soft-
ware Measurement and Empirical Software Engineering, Software Analysis, and
Software Management.

Empirical software engineering has established itself as a research area aimed
at building a body of knowledge supported by observation and empirical evi-
dence. Thus, in the last few years there have been a great amount of empirical
studies in software engineering meant to assess methods and techniques, iden-
tify important variables, and develop models. Measurement plays a key role in
these observations and in empirical work as well as in a variety of practical goals
in software engineering including production planning, monitoring, and control.
Thus, to make the correct conclusions and to avoid wasting resources, it is crucial
to use software measures that make sense for the specified goal. To this aim, a
theoretical and empirical validation process should be carried out meant to prove
that a measure really measures the attribute that it is supposed to and that it
is practically useful. Starting from this observation, in the first chapter, Sandro
Morasca illustrates the foundational aspects of software measurement needed
for the theoretical validation process. He describes the notions of measurement
theory for internal and external software attributes, the definition of properties
for software measures through axiomatic approaches, and the proposal of a goal-
oriented process that can be followed to carry out the definition and empirical
validation of measures.

VI Preface

In Chap. 2, Martin Shepperd first examines the history of empirical software
engineering and overviews different meta-analysis methods meant to combine
multiple results. Then, he describes the process of systematic reviews as a means
for systematically, objectively, and transparently locating, evaluating, and syn-
thesizing evidence to answer a particular question. Finally, he identifies some
future directions and challenges for researchers.

Chapter 3 focuses on software fault prediction, a field that has generated
a great deal of research in the last few decades. The research aims to provide
methods for identifying the components of a software system that most likely
will contain faults and is motivated by the need to improve the efficiency of soft-
ware testing, which is one of the most expensive phases of software development.
Indeed, knowing in advance the potentially defective components, project man-
agers can better decide how to allocate resources to test the system, concentrat-
ing their efforts on fault-prone components, thus improving the dependability,
quality, and cost/effectiveness of the software product. In this chapter, Thomas
J. Ostrand and Elaine J. Weyuker survey the research they have carried out in
the last ten years in the context of software fault prediction.

In Chap. 4, Pollock et al. illustrate the main aspects of natural language
program analysis (NLPA) that combines natural language processing techniques
with program analysis to extract information for analysis of the source program.
The research is motivated by the aim to improve the effectiveness of software
tools that support program maintenance exploiting natural language clues from
programmers’ naming in literals, identifiers, and comments. The authors sum-
marize the state of the art and illustrate how NLPA has been used to improve
several applications, including search, query reformulation, navigation, and com-
ment generation. An analysis of future directions in preprocessing, analysis, and
applications of NLPA concludes the chapter.

In chap. 5, Andrian Marcus and Sonia Haiduc present and discuss the ap-
plications of text retrieval (TR) techniques to support concept location, in the
context of software change. Concept location starts with a change request and
results in the identification of the starting point in the source code for the desired
change. In systems of medium or large size, developers need to be supported by
suitable tools during the concept location task. To develop such tools, many
different approaches exist that rely on different kinds of information. The most
recent and most advanced techniques rely on TR methods. The authors provide
an overview of the TR-based concept location techniques and their evolution,
discuss their limitations, and identify future research directions.

In chap. 6, Andrea Zisman provides an overview of existing approaches for
service discovery, an important activity in service-oriented computing meant to
identify services based on functional, behavioral, quality, and contextual charac-
teristics. Moreover, the author describes a framework that supports both static
and dynamic identification of services. The static process can help the devel-
opment of service-based systems at design-time by identifying the services that
match specified characteristics. The dynamic process is used during runtime ex-
ecution of a system to support the replacement of a service.

Preface VII

In Chap. 7, Frank Maurer and Theodore D. Hellmann give an overview of
agile software development processes and techniques focusing the discussion on
project management and quality assurance. They describe project planning with
special attention to iteration planning and interaction design approaches, and
illustrate agile quality assurance with a focus on test-driven development and
the state space of testing.

In the last chapter, Frank van der Linden focuses on software product line
engineering and describes some experiences of introducing software product
line engineering in industry. He analyzes some problems originating from the
distributed organization of companies and illustrates how practices from open
source software development may be used to address the problems mentioned.

We wish to conclude by expressing our gratitude to the many people who
supported the publication of this volume with their time and energy. First of all,
we wish to thank the lecturers and all the authors for their valuable contribution.
We also gratefully acknowledge the Scientific Committee members, for their work
and for promoting the International Summer School on Software Engineering.
We are also grateful to Gabriele Bavota, Vincenzo Deufemia, Sergio Di Martino,
Fausto Fasano, Rita Francese, Carmine Gravino, Rocco Oliveto, Ignazio Passero,
Abdallah Qusef, Michele Risi, Federica Sarro, and Giuseppe Scanniello, who were
of great help in organizing the school. Finally, we want to thank Springer, for
giving us the opportunity to publish this volume and all the staff involved.

We hope you will enjoy reading the chapters and find them relevant and
fruitful for your work. We also hope that the tackled topics will encourage your
research in the software engineering field and your participation in the Interna-
tional Summer School on Software Engineering.

January 2012 Andrea De Lucia
Filomena Ferrucci

Table of Contents

Software Measurement and Empirical Software
Engineering

Fundamental Aspects of Software Measurement . 1
Sandro Morasca

Combining Evidence and Meta-analysis in Software Engineering 46
Martin Shepperd

Predicting Bugs in Large Industrial Software Systems 71
Thomas J. Ostrand and Elaine J. Weyuker

Software Analysis

Natural Language-Based Software Analyses and Tools for Software
Maintenance . 94

Lori Pollock, K. Vijay-Shanker, Emily Hill, Giriprasad Sridhara, and
David Shepherd

Text Retrieval Approaches for Concept Location in Source Code 126
Andrian Marcus and Sonia Haiduc

Discovering Services . 159
Andrea Zisman

Software Management

People-Centered Software Development: An Overview of Agile
Methodologies . 185

Frank Maurer and Theodore D. Hellmann

Open Source Practices in Software Product Line Engineering 216
Frank van der Linden

Author Index . 237

Fundamental Aspects of Software Measurement

Sandro Morasca

Università degli Studi dell’Insubria
Dipartimento di Scienze Biomediche, Informatiche e della Comunicazione

I-22100 Como, Italy
sandro.morasca@uninsubria.it

Abstract. Empirical studies are increasingly being used in Software
Engineering research and practice. These studies rely on information ob-
tained by measuring software artifacts and processes, and provide both
measures and models based on measures as results. This paper illustrates
a number of fundamental aspects of Software Measurement in the defi-
nition of measures that make sense, so they can be used appropriately.
Specifically, we describe the foundations of measurement established by
Measurement Theory and show how they can be used in Software Mea-
surement for both internal and external software attributes. We also
describe Axiomatic Approaches that have been defined in Software Mea-
surement to capture the properties that measures for various software
attributes are required to have. Finally, we show how Measurement The-
ory and Axiomatic Approaches can be used in an organized process for
the definition and validation of measures used for building prediction
models.

Keywords: Software Measurement, Measurement Theory, internal soft-
ware attributes, external software attributes, Axiomatic Approaches,
GQM.

1 Introduction

Measurement is an essential part in every scientific and engineering discipline
and is a basic activity in everyday life. We use measurement for a variety of goals,
by acquiring information that we can use for developing theories and models, de-
vising, assessing, and using methods and techniques, and making informed and
rational practical decisions. Researchers use measurement to provide evidence for
supporting newly proposed techniques or for critically assessing existing ones. In-
dustry practitioners use measurement for production planning, monitoring, and
control, decision making, carrying out cost/benefit analyses, post-mortem anal-
ysis of production projects, learning from experience, improvement, etc. Final
consumers use measurement to make sensible decision.

Thus, it is not surprising that measurement is at the core of many engineer-
ing disciplines, and the interest towards measurement has been steadily grow-
ing in Software Engineering too. However, Software Engineering differs from

A. De Lucia and F. Ferrucci (Eds.): ISSSE 2009-2011, LNCS 7171, pp. 1–45, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 S. Morasca

other engineering disciplines in a number of aspects that deeply affect Software
Measurement.

– Software Engineering is a relatively young discipline, so its theories, meth-
ods, models, and techniques still need to be fully developed, assessed, con-
solidated, and improved. The body of knowledge in Software Engineering is
still limited, if compared to the majority of engineering disciplines, which
have been able to take advantage of scientific models and theories that have
been elaborated over the centuries. These models and theories were built
through a process that required 1) the identification of a number of funda-
mental concepts (e.g., length, mass, time, and electrical charge in Physics),
2) the study of their characteristics, 3) the investigation of how they are
related to each other by means of theories and models, and 4) how they can
be measured by collecting data from the field so theories and models can be
validated and used.

– Software Engineering is a very human-intensive discipline, unlike the engi-
neering branches that are based on the so-called hard sciences (e.g., Physics,
Chemistry). One of the main tenets of these sciences is the repeatability
experiments and their results. This is hardly ever the case in a number of
interesting Software Engineering studies. For instance, it is clearly impossi-
ble to achieve repeatability when it comes to developing a software product.
So, it is virtually impossible that given the same requirements and given
two teams of developers with the same characteristics working in environ-
ments with the same characteristics, we obtain two identical values for the
effort needed to develop a software application. Thus, Software Measurement
models, theories, methods, and techniques will be different from those of the
hard sciences and will probably not have the same nature, precision, and
accuracy. As a matter of fact, some aspects of Software Measurement are
more similar to measurement in the social sciences than measurement in the
hard sciences.

– Software Engineering deals with artifacts that are mostly immaterial, like
software code, test suites, requirements, etc., for which there is no real, direct
experience. For instance, we are much more acquainted with the concept of
length of a material object than the concept of “complexity” of a software
program.

Given these specific aspects of Software Engineering, and the practical impact
that Software Measurement can have on Software Engineering practices, we here
investigate two basic questions, similar to those that are frequently quoted for
Software Verification and Validation.

– Are we measuring the attributes right? When using or defining a measure,
it is necessary to make sure that it truly quantifies the attribute it purports
to measure. As mentioned above, Software Engineering has not yet reached
the same level of maturity of other engineering disciplines, nor has Soft-
ware Measurement, so this theoretical validation is a required activity for
using or defining measures that make sense. Theoretical validation is also

Fundamental Aspects of Software Measurement 3

a necessary step not only for the empirical validation of software measures,
but, even more importantly, for empirically validating Software Engineering
techniques, methods, and theories. For instance, empirically validating the
claim that the maintainability of a software system decreases if the cou-
pling between its modules increases requires that one use sensible measures
for coupling and maintainability. Given the lack of intuition about software
product attributes, theoretical validation is not a trivial activity, as it in-
volves formalizing intuitive ideas around which a widespread consensus still
needs to be built.

– Are we measuring the right attributes? Measuring attributes that are irrel-
evant for our goals would clearly be useless. So, we need to select the right
ones, given the available resources. The best way to provide evidence that an
attribute is relevant for some specified goal is to use a sensible measure for
that attribute and carry out an experimental or empirical study by showing
that, for instance, it can be used for predicting some software product or
process attribute of interest. This activity entails the empirical validation of
the measure.

By not answering these two questions satisfactorily, we could end up with mea-
sures that are useless and waste the resources used for measurement. In an even
worse scenario, we could actually make incorrect decisions based on inappropri-
ate measures, which could even be detrimental to the achievement of our goals,
in addition to wasting the resources used for measurement.

In the remainder of this paper, we describe the foundational aspects of Soft-
ware Measurement, by using the two main approaches available in the related lit-
erature, namely Measurement Theory and Axiomatic Approaches. Beyond their
mathematical appearance, both approaches are actually ways to formalize com-
mon sense, so as to reach a reasonable compromise between the principles of
rigor and common sense that should rule in applied research. We describe these
two approaches in the remainder of this paper to show their usefulness and po-
tential, along with their strengths and weaknesses. In addition, we illustrate a
goal-oriented process that can be followed to carry out the definition and empir-
ical validation of sensible measures. This process also shows how the theoretical
validation of measures can be used to prevent irrelevant measures or attributes
from being used in prediction models.

We mostly address fundamental issues in the measurement of attributes of
software artifacts in this paper. So, our primary focus here is on the theoretical
validation of measures for attributes of software artifacts. The measurement of
process attributes is somewhat more straightforward. Take design effort as an
example of a software process attribute. The real challenge in this case is the
prediction of the effort required to carry out software design, not its measure-
ment. Software design effort prediction requires the identification of appropriate
measures that can be quantified before design takes place and the availability
of a quantitative model based on those measures. Software design effort mea-
surement, instead, simply requires the identification of which activities belong
to software design, the people who work on those activities, and the use of

4 S. Morasca

accurate collection tools for the effort used for software design. Thus, software
design effort measurement is mostly concerned with a number of details which,
albeit important, do not compare to the issues related to the building of a good
prediction model.

The remainder of this paper is organized as follows. Section 2 introduces a
few basic concepts and the terminology that is used in the paper. The use of
Measurement Theory for the intrinsic attributes of software artifacts is described
in Section 3, while Axiomatic Approaches are introduced in Section 4. A uni-
fied axiomatic approach for the description of a number of interesting intrinsic
attributes of software artifacts is described in more detail in Section 5. Sec-
tion 6 describes Probability Representations, which are a part of Measurement
Theory that has received little attention in Software Measurement so far, and
which can be used for providing firm foundations for all of those software artifact
attributes that are of practical interest for software stakeholders. Section 7 il-
lustrates GQM/MEasurement DEfinition Approach (GQM/MEDEA), a process
for the definition of measures for prediction models that integrates the funda-
mental aspects of Software Measurement into a coherent, practical approach.
Conclusions and an outline of future work on fundamental aspects of Software
Measurement follow in Section 8.

2 A Few Basic Concepts

Here, we introduce a few basic concepts and terminology that will be used
throughout the paper.

In Software Measurement, like in any kind of measurement, one measures the
attributes of entities. It does not make sense to measure an “entity,” without
mentioning which specific attribute of that entity we would like to measure. It
does not make much sense to “measure a car,” for instance. It is necessary to
specify whether we are measuring its length, width, height, weight, number of
seats, maximum speed, etc. By the same token, it does not make much sense to
measure a software program, unless we specify which particular attribute we have
in mind. There is a plethora of different attributes that have been introduced
in Software Measurement: size, complexity, cohesion, coupling, connectivity, us-
ability, maintainability, readability, reliability, effort, development time, etc., to
mention a few. Since there are so many of them, it is important to understand
the nature of these attributes and identify their similarities and differences. In
the long term, it would be useful to come to a generalized agreement about
these fundamental concepts of Software Measurement so that everybody uses
and understands the same concepts in the same way. For terminology consis-
tency, we use the term attribute in this paper, instead of other terms that have
been used in the past for the same concept, including quality, characteristic,
subcharacteristic, factor, criterion.

Conversely, it does not make sense to measure an attribute without mention-
ing the entity on which it is measured. For instance, it does not make sense
to measure the number of seats without referring to a specific car. In Software

Fundamental Aspects of Software Measurement 5

Measurement, it would not make sense to measure “complexity” without specify-
ing whose program it is. Software Measurement is used on a number of different
entities that belong to the following two categories:

– software products and documents, e.g., source code, executable code, soft-
ware design, test suites, requirements; we use the term “software artifact”
to refer to any such entity;

– activities carried out during software production process, e.g., coding, de-
ployment, testing, requirements analysis; we use the term “software process”
to refer to any such entity.

A typical distinction in Software Measurement is made between internal and
external attributes of entities.

– Internal attributes of software artifacts, such as size, structural complexity,
coupling, cohesion, are usually said to be as those attributes of an entity that
can be measured based only on the knowledge of the entity [15]. So, internal
attributes are easy to measure: for instance, the size of a program is often
measured by counting the number of its lines of code.

– External attributes, such as reliability, performance, usability, maintain-
ability, portability, readability, testability, understandability, reusability, are
characterized as those attributes that cannot be measured based only on the
knowledge of the software artifact. Their measurement involves the artifact,
its “environment,” and the interactions between the artifact and the envi-
ronment. For instance, the maintainability of a software program depends
on the program itself, the team of people in charge of maintaining the pro-
gram, the tools used, etc. The maintainability of a given program is likely to
be higher if maintenance is carried out by the same people that developed
the program than by other programmers. So, the knowledge of the program
alone is not sufficient to quantify its maintainability.

From a practical point of view, external software attributes are the ones related
to and of direct interest for the various categories of software “users,” e.g.: the
compiler/interpreter that translates a program; the computer on which it runs;
the final user; the practitioners. These “users” may have different and possi-
bly conflicting needs. The ensemble of the attributes that are relevant to the
users completely describes what is known as the quality of a software product.
Therefore, external attributes are the ones that have true industrial interest
and relevance. However, because of their very nature, external attributes are in
general more difficult to define and quantify than internal ones, as they require
that a number of factors be taken into account, in addition to the software arti-
fact [15,36]. On the other hand, internal attributes are much easier to quantify.
However, they have no real interest or relevance per se. The measurement of an
internal attribute of a software artifact (e.g., the size of a software design) is
interesting only because it is believed or it is shown that the internal attribute
is linked to: (1) some external attribute of the same artifact (e.g., the maintain-
ability of the software design) or of some other artifact (e.g., the fault-proneness

6 S. Morasca

of the software code); (2) some attribute of the software process (e.g., the ef-
fort needed to develop the software design). So, one typically measures internal
software attributes to assess or predict the value of external software attribute.

One final terminology clarification is in order before we start reviewing vari-
ous fundamental aspects of Software Measurement. The term “metric” has been
often used instead of “measure” in the Software Measurement and Software En-
gineering in the past. As it has been pointed out, “metric” has a more specialized
meaning than “measure.” The term “metric” is closely related to distance and
it typically implies the presence of some unit of measurement. As we explain in
the remainder of this paper, this is not necessarily the case, so the more general
term “measure” is preferable. Therefore, we consistently use “measure” in the
remainder of this paper.

3 Measurement Theory for Internal Software Attributes

The foundations of Measurement Theory were established by Stevens [38] in the
1940s, as a way to provide the mathematical underpinnings for measurement
in the social and human sciences. It has been used in other disciplines and
its concepts have been extended and consequences have been assessed since.
Measurement Theory is now a quite well-established field. The interested reader
can refer to [20,34] for more complete introductions to the subject. In Empirical
Software Engineering, Measurement Theory has almost exclusively been used
with reference to the measurement of the attributes of software artifacts, such
as size, structural complexity, cohesion, coupling.

3.1 Basic Notions of Measurement Theory

The first and most important goal of Measurement Theory is to make sure that
measures have properties that make them comply with intuition. So, Measure-
ment Theory [20,34] makes clear that measuring is not just about numbers, i.e.,
assigning measurement values to entities for some attribute of interest. For in-
stance, it would make little sense to have a software size measure that tells us
that a program segment is longer than another program segment when we look
at those two segments and conclude that it should actually be the other way
round.

Beyond all the mathematics involved, Measurement Theory shows how to
build a sensible, common sense bridge, i.e., a measure (Definition 3), between

– our “intuitive,” empirical knowledge on a specified attribute of a specified
set of entities, via the so-called Empirical Relational System (Definition 1),
and

– the “quantitative,” numerical knowledge about the attribute, via the so-
called Numerical Relational System (Definition 2), so that

– the measure makes sense, i.e., it satisfies the so-called Representation Con-
dition (Definition 4).

Fundamental Aspects of Software Measurement 7

We now explain these concepts and we use the size of a set of program segments
as an example to make these definitions more concrete.

Definition 1 (Empirical Relational System). Given an attribute, let

– E denote the set of entities for which we would like to measure the attribute
– R1,. . . , Ry denote y empirical relations capturing our intuitive knowledge on

the attribute: each Ri has an arity ni, so Ri ⊆ Eni ; we write (e1, . . . , eni) ∈
Ri to denote that tuple (e1, . . . , eni) is in relation Ri; if Ri is a binary rela-
tion, we use the infix notation e1Rie2

– o1, ..., oz denote z empirical binary operations on the entities that describe
how the combination of two entities yields another entity, i.e., oj : E×E →
E; we use an infix notation, e.g., e3 = e1oje2.

An Empirical Relational System is is an ordered tuple

ERS = (E,R1, . . . , Ry, o1, ..., oz)

For instance, suppose we want to study the size of program segments. We typi-
cally have

– the set of entities E is the set of program segments
– longer than ⊆ E × E, an empirical binary relation that represents our

knowledge that, given any two program segments e1 and e2 for which
e1longer thane2, e1 has a greater size than e2

– a concatenation operation, i.e., e3 = e1; e2.

Other attributes of the same set of entities, e.g., complexity, will have different
kinds and sets of empirical relationships and operations than size has. This is
due to the fact that we have different intuitions about different attributes of a
set of entities.

No numbers or values are found in the Empirical Relational System, which
only takes care of modeling our own empirical intuition. Measurement values are
introduced by the Numerical Relational System, which we define next

Definition 2 (Numerical Relational System). Given an attribute, let

– V be the set of values that we use to measure the attribute
– S1,. . . , Sy denote y relations on the values: each Si has the same arity ni

of Ri

– •1, ..., •z denote z numerical binary operations on the values, so each •j has
the form •j : V × V → V ; we use an infix notation, e.g., v3 = v1 •j v2.

A Numerical Relational System is an ordered tuple

NRS = (V, S1, . . . , Sy, •1, ..., •z)

8 S. Morasca

Even though it is called Numerical Relational System, We have chosen to rep-
resent V as a set of “values” and not necessarily numbers for greater generality
and because in some cases numbers are not really needed and may even be mis-
leading (e.g., for nominal or ordinal measures as described later in this section).
In our segment size example, we can take

– V = Re0+, the set of nonnegative real numbers, which means that the values
of the size measures we use are nonegative real numbers

– a binary relation ’>’, which means that we want to use the natural ordering
on those measurement values (so we can translate “longer than” into ’>’
and back as the Representation Condition will mandate)

– a binary operation ’+’, which means want to be able to sum the sizes of
segments (the Representation Condition will actually mandate that we sum
the sizes of concatenated program segments).

The Numerical Relational System is purposefully defined to mirror the Empirical
Relational System in the realm of values, even though the Numerical Relational
System in itself does not predicate about the entities and the specific attribute
investigated.

The connection between the Empirical Relational System and the Numerical
Relational System, and thus, entities and values, is made via the concept of
measure (Definition 3).

Definition 3 (Measure). A function m : E → V is said to be a measure.

However, there is more to the Empirical Relational System than just the set of
entities on which it is based. The Empirical Relational System also gives informa-
tion about what we know about an attribute of a set of entities. If that knowledge
is not taken into account, any m ∈ V E is a measure, i.e., any assignment of val-
ues to program segments may be a measure, according to Definition 3. Given
program segments e1, e2, e3 such that e1longer thane2 and e2longer thane3, a
measure m according to Definition 3 may be very well provide values of m(e1),
m(e2), and m(e3) such that m(e1) < m(e2) and m(e3) < m(e2), though this
does not make sense to us. Measurement Theory introduces the Representation
Condition (Definition 4) to discard all of those measures that contradict our
intuition and keep only the fully sensible ones.

Definition 4 (Representation Condition). A measure must satisfy the two
conditions

∀i ∈ 1 . . . n, ∀(e1, . . . , eni) ∈ Eni(e1, . . . , eni) ∈ Ri ⇔ (m(e1), . . . ,m(eni)) ∈ Si

∀j ∈ 1 . . .m, ∀(e1, e2) ∈ E × E(m(e1oje2) = m(e1) •j m(e2))

The Representation Condition translates into the following two conditions for
our segment size example

– e1longer thane2 ⇔ m(e1) > m(e2), i.e., our intuition on the ordering of the
program segments is mirrored by the ordering of the measurement values,
and vice versa,

Fundamental Aspects of Software Measurement 9

– m(e1; e2) = m(e1) + m(e2), i.e., the size of a program segment obtained
by concatenating two program segments is the sum of the sizes of the two
program segments.

A sensible measure is defined as a scale (Definition 5) in Measurement Theory.

Definition 5 (Scale). A scale is a triple (ERS,NRS,m), where ERS is an
Empirical Relational System, NRS is a Numerical Relational System, and m is
a measure that satisfies the Representation Condition.

In what follows, we assume for simplicity that measures satisfy the Represen-
tation Condition, so we use the terms “scale” and “measure” interchangeably,
unless explicitly stated.

So now, given an Empirical Relational System and a Numerical Relational
System, we would need to find out if we can actually build a measure. However,
the existence of a measure will depend on the specific Empirical Relational Sys-
tem and a Numerical Relational System, and we will not illustrate the issues
related to the existence of a measure in detail. Rather, we investigate whether
more than one legitimate measure may be built, given an Empirical Relational
System and a Numerical Relational System. This should not come as a surprise,
since it is well known from real life that we can quantify certain attributes of
physical objects by using different equally legitimate measures. For instance, the
length of a segment may be quantified equally well by meters, centimeters, yards,
feet, inches, etc. We know that we can work equally well with one measure or
another and that one measure can be translated into another by means of a
multiplicative factor. For notational convenience, we denote by M(ERS,NRS)
the set of scales that can be defined based on an Empirical Relational System
ERS and a Numerical Relational System NRS.

However, the very existence of a set of equally good measures shows something
a little bit more surprising: the bare value of a measure in itself does not provide
a lot of information. For instance, saying that the length of a wooden board is
23 does not mean much, unless one specifies the unit of measurement. Clearly,
talking about a 23 inch wooden board is not the same as talking about a 23 meter
one. Introducing the concept of unit of measurement actually means taking one
object as the reference one and then assigning a measurement value to all other
objects as the times the other objects possess that specified attribute with respect
to the reference object. So, if we say that a wooden board is 23 inches long, all
we are saying is that it is 23 times longer than some wooden board that we
took as the one that measures 1 inch. What is even more important is that this
23:1 ratio between the length of these two wooden boards is the same no matter
the measure used to quantify their length, be it inches, feet, meters, etc. This is
true for the ratios of the lengths of any pair of wooden boards, i.e., these ratios
are invariant no matter the scale used. Invariant properties of scales are called
meaningful statements and provide the real information content of a scale, as
they do not depend on the conventional and arbitrary choice of one specific scale.

10 S. Morasca

Definition 6 (Meaningful Statement). A statement S(m) that depends on
a measure m is meaningful if its truth value does not change across all scales,
i.e., ∀m ∈ M(ERS,NRS)(S(m)) ∨ ∀m ∈ M(ERS,NRS)(¬S(m)).

So, a statement that is true with one scale is also true with all other scales,
and one that is false with one scale is also false with all other scales. Choosing
one scale instead of another basically means adopting a convention, because this
choice does not affect the truth value of meaningful statements, like saying that a
wooden board object is 23 times as long as another. Instead, suppose we can tell
if a software failure is more critical than another on a 5-value criticality measure
cr′. For instance, suppose that those five values are {1, 2, 3, 4, 5}, from 1 (least
severe) to 5 (most severe). It is typically meaningless to say that criticality 2
failures are twice as severe as a criticality 1 failure, as the truth value of this
statement depends on the specific choice of values. If we choose another scale cr′′

with values {7, 35, 38, 981, 4365}, the truth value of the statement changes, as
we would say that the failures in the second category are five times more severe
than the ones in the first category. Still, the failures in the second category are
given a value that is higher than the value for the first category. The ordering
is preserved, and that is where the real information content of the scale lies.
This piece of information is preserved by applying a monotonically increasing
scale transformation, not just a proportional one. On the contrary, the length of
wooden boards cannot undergo any monotonically increasing scale transforma-
tion, but only proportional transformations. So, different scales may be subject
to different kinds of transformations without any loss of information, which are
called admissible transformations.

Definition 7 (Admissible Transformation). Given a scale (ERS,NRS,m),
the transformation of scale f is admissible if m′ = f ◦m (i.e., m′ is the compo-
sition of f and m) and (ERS,NRS,m′) is a scale.

Actually, proportional transformations can be used for a number of different
scales (e.g., the typical scales for weight), while monotonically increasing trans-
formations can be used for all sorts of ranking. Measurement Theory identifies
five different kinds of scales based on five different kinds of transformations scales
can undergo while still preserving their meaningful statements. We now list these
different kinds of scales in ascending order of the information they provide.

Nominal Scales. The values of these scales are labels–not necessarily numbers–
for categories in which the entities are partitioned, with no notion of order
among the categories. Their characterizing invariant property states that the
actual labels used do not matter, as long as different labels are used for different
categories. Formally, ∀e1, e2 ∈ E

∀m ∈ M(ERS,NRS)(m(e1) = m(e2)) ∨ ∀m ∈ M(ERS,NRS)(m(e1) 	= m(e2))

As the partitioning of the entities into the categories is the information that
needs to be preserved, nominal scales can be transformed into other nominal
scales via one-to-one transformations.

Fundamental Aspects of Software Measurement 11

The programming language in which a program is written is an example of
a nominal scale, i.e., we can associate the labels (i.e., values of the scale) C,
Java, COBOL, etc. with each program. As long as programs written in the
same language receive the same label and program written in different languages
receive different labels, we can adopt programming language names like alpha,
beta, gamma, etc.; or Language1, Language2, Language3, etc.; or 1, 2, 3, etc.
Note that we do not need to use numbers as values of the measure. Actually, it
would be meaningless to carry out even the simplest arithmetic operations. In
the Numerical Relational System it is obviously true that “1 + 2 = 3,” but that
would become something nonsensical like C+Java = COBOL just by choosing
a different legitimate scale.

As for descriptive statistics, it is well known that the mode (i.e., the most
frequent value) is the central tendency indicator that should be used with nom-
inal measures, even though there may be more than one mode in a sample.
The arithmetic average cannot be used, as it cannot even be computed, since
arithmetic operations are barred. As a dispersion indicator, one may use the
Information Content H(f) computed by taking the frequencies of each value as
their probabilities, i.e.,

H(f) = −
∑

v∈V

f(v) log2 f(v)

where f(v) is the frequency of value v.
Association statistical methods can be used too with nominal measures. For

instance, suppose that we would like to find a software component that we
may want to reuse in your software system and that there are a number of
functionally equivalent candidate software components we can choose from and
the only information we have is the programming language they are written in.
Suppose also that we want to select the software component that has the lowest
defect density, but we do not have that piece of information. If defect density
data about components are available, association statistical methods like those
based on chi-square tests can be used to find out how much we can rely on
components written in different languages. So, even though information about
defect density is not available and our measure (the programming language) does
not involve any number, we can still make an informed and statistically sensible
decision.

However, nominal measures only allow the classification of entities into differ-
ent categories. A nominal measure for the size of program segments could only
tell if two segments have the same size or not, but it would not provide any infor-
mation on whether one program segment is larger or smaller than another one.

Ordinal Scales. In ordinal scales, the entities are partitioned into categories,
and the values of these scales are totally ordered labels. Their characterizing
invariant property states that the actual labels used do not matter, as long as
the order of the values that label different categories is preserved. Formally,
∀e1, e2 ∈ E

12 S. Morasca

∀m ∈ M(ERS,NRS)(m(e1) > m(e2)) ∨
∀m ∈ M(ERS,NRS)(m(e1) = m(e2)) ∨

∀m ∈ M(ERS,NRS)(m(e1) < m(e2))

As the ordering across the categories is the piece of information that needs to
be preserved, ordinal scales can be transformed into other scales via strictly
monotonic transformations.

Roughly speaking, ordinal scales are like nominal scales for which, in addition,
an ordering on the categories has been defined. Because of the existence of this
additional property to be preserved when one scale is transformed into another
scale, not all of the possible one-to-one transformations can be used. So, the set
of admissible transformations for ordinal scales is a subset of the set of admissible
transformations for nominal scales. This reduces the degree of arbitrariness in
choosing a scale, and makes an ordinal scale more information-bearing than a
nominal scale, because ordinal scales give information about the ordering of the
entities and not just their belonging to classes. In our program segment size
example, ordinal scales allow us to tell if a program segment is of greater length
than another, not just that the two segments have different sizes.

A good example of an ordinal measure is failure criticality, as defined in many
bug tracking systems, in which it is possible to associate a criticality value with
each bug (for example, in SourceForge, bugs may be a ranked on a nine value
scale). Like with nominal scales, it is possible to use numbers as values of ordinal
scales, and it is even more tempting than with nominal scales to use arithmetic
operations on these numbers. However, this would not be correct, as it would
lead to meaningless results. Suppose here that we use an ordinal scale with five
values 1, 2, 3, 4, and 5 under the usual numerical ordering. Alternatively, we
could have used A, B, C, D, and E, with the usual alphabetical ordering, so A
is least severe and E is most severe. While obviously 1+2 = 3 in the mere realm
of numbers, an operation like that would translate into something like A+B = C
if we adopt the alphabetical labels. This statement is meaningful if and only if we
can actually say something like “the presence of a bug at criticality A and one at
criticality B are equivalent to the presence of a bug at criticality C,” under some
notion of equivalence. However, this is an additional piece of information, that
cannot be inferred from what we know about the mere ordering of the entities
in any way. So, this is not a meaningful statement. To have an additional proof
of this, let us transform the scale into another numerical scale with values 10,
15, 20, 25, 30. The corresponding statement would become 10 + 15 = 20, which
is clearly false. So, transforming a scale into another scale makes the truth value
of the statement change, i.e., the statement is not meaningful. The real point
here is that we know if one failure is more or less critical than another failure,
but we have no idea by how much.

So, one may very well use numbers as values of an ordinal scale, but the
kind of mathematical manipulations that can be made must be limited to us-
ing <, ≤, =, 	=, ≥, and >. As a consequence it is not allowed to compute
the arithmetic average or the standard deviation of a sample of ordinal values.

Fundamental Aspects of Software Measurement 13

As for descriptive statistics, the median is the central tendency indicator of
choice for ordinal measures. The median of a sample is defined as that value
med in the sample such that less than half of the data points have values less
than med and less than half of the data points have values greater than med. If
the median is not unique, there may be at most two medians in a sample, and
they have consecutive values. At any rate, since ordinal scales may be seen as
specializations of nominal scales, the descriptive statistics of nominal scales can
be applied to ordinal scales too.

Association statistical methods can be used too with ordinal measures. For
instance, suppose that we need to find whether failure criticality is statistically
related to the effort needed to solve a bug. For instance, suppose we would like
to find out if it is true that bugs with higher criticality also take more time to
be fixed. Suppose also that this bug fixing effort is measured on an ordinal scale,
because the effort collection system allows software engineers to enter values
in classes of values like “less than one hour,” “between one and four hours,”
“between four hours and one work day,” “between one workday and one work
week,” and “more than one work week.” Statistical indicators are available to
investigate this association. For instance, one can use Spearman’s ρ or Kendall’s
τ [19], which provide a measure of the strength of the increasing or decreasing
association between two ordinal variables (failure criticality and bug fixing effort,
in our example). Also, statistical tests are available to check how statistically
significant the associations are. These indicators do not assume that the two
variables are linked by any specific functional form (e.g., linear). On the positive
side, they can be used to investigate whether there is any increasing or decreasing
association between two variables. On the negative side, it is not possible to build
a specific estimation model, because an estimation model would be based on some
functional form that links the two variables. Again, the association statistics for
nominal scales can be used with ordinal scales as well.

Summarizing, by using a nominal or an ordinal scale, we can have information
about an attribute of a set of entities, but we do not need to use any numbers.
The following kinds of scales will require the use of numbers and will provide
more refined information about an attribute of a set of entities.

Interval Scales. In interval scales, each entity is associated with a numerical
value. Their characterizing invariant property states that the actual values used
do not matter, as long as the ratios between all pairs of differences between
values are preserved. Formally, by denoting the set of positive real numbers by
Re+, ∀e1, e2, e3, e4 ∈ E

∃k1, k2 ∈ Re+, ∀m ∈ M(ERS,NRS)k1(m(e1)−m(e2)) = k2(m(e3)−m(e4))

An interval scale m′ can be transformed into another interval scale m′′ only via
linear transformations m′′ = am′ + b, with a > 0, i.e., we can change the origin
of the values (by changing b) and the unit of measurement (by changing a). Lin-
ear transformations are a subset of strictly monotonic transformations, which are

14 S. Morasca

the admissible transformations for ordinal measures. So, again, this reduces the
number of possible measures into which an ordinal measure can be transformed,
and, again, this makes interval scales even more information-bearing than ordinal
scales.

Typical examples of interval scales are calendar time or temperature measured
with the scales ordinarily used to this end. For instance, take the Celsius scale for
temperatures. It is well known that the origin is conventionally established as the
temperature at which water freezes under the pressure of one atmosphere. Also,
the 100 Celsius degree mark is conventionally established as the temperature
at which water boils under the pressure of one atmosphere. These conventional
choices determine the (thereby conventional) extent of one Celsius degree. In
addition, it is well known that Celsius degrees can be transformed into, say,
Fahrenheit degrees, by means of the following linear transformation relationship

Fahrenheit =
9

5
Celsius+ 32

It is easy to see that, in addition to the meaningful statements that can be made
for ordinal scales, interval scales allow us to make statements in which the ratios
of the differences between measurement values are preserved.

Not many software measures are defined at the interval level of measurement.
The most important one is probably calendar time, which, for instance, is used
during the planning or monitoring of a project. However, the importance of in-
terval scales is that numbers are truly required as measurement values. For one
thing, it would not be possible to carry out the linear transformations, otherwise.
Some arithmetic manipulations are possible, as shown in the definition. For in-
stance, subtraction between two values of an interval measure provides a result
that makes sense. The difference between two dates, e.g., the end and the be-
ginning of a software project, obviously provide the project’s duration (which is
actually a ratio scale, as we explain in later in this section). Nevertheless, not all
possible arithmetic manipulations can be used. It would not make much sense to
sum two dates for two events, e.g., May 28, 2005 and July 14, 2007, for instance.
Also, if today’s Celsius temperature is 20 Celsius degrees, and yesterday’s was
10 Celsius degrees, it does not make any sense to say that today is twice as warm
as yesterday, as can be easily shown by switching to Fahrenheit temperatures.
So, taking the ratio of two interval measure values does not make sense.

Nevertheless, it is meaningful to compute the average value of an interval
measure, even though averages are built by summing values if we are interested
in comparing two average values. Suppose that the average of the values of a
sample is greater than the average of the values of another sample when we use
an interval measure. It can be shown that this relationship holds for any other
interval scale chosen. So, the average is a good central tendency indicator for
interval scales. At any rate, the same holds true for the medians, which can be
clearly used for interval scales, which can be seen as a subset of ordinal scales.
New dispersion statistics can be added to those “inherited” from ordinal scales,

Fundamental Aspects of Software Measurement 15

e.g., the standard deviation and the variance. As a matter of fact, they provide a
metric evaluation of dispersion, unlike the dispersion indicators of nominal and
ordinal scales.

As for association statistics, Pearson’s correlation coefficient r [19] can be used
when interval scales are involved. However, when using statistical significance
tests related to r, it is important to make sure that the assumptions underlying
these tests are satisfied. Otherwise, there is a danger of obtaining results that
are not statistically valid. At any rate, one can always resort to the association
indicators that can be used with ordinal scales. It is true that some statistical
power may be lost when using Spearman’s ρ or Kendall’s τ instead of Pearson’s
r, but this loss may not be too high. For instance, it has been computed that the
so-called Asymptotic Relative Efficiency of Kendall’s τ with respect to Pearson’s
r is 0.912. Roughly speaking, from a practical point of view, this means that
1,000 data points are needed to obtain enough evidence to reach acceptance or
rejection of a statistical hypothesis on the association between two interval scales
by using Kendall’s τ when 912 data points are needed to obtain enough evidence
to reach acceptance or rejection of a statistical hypothesis on their correlation.
Thus, using Kendall’s τ implies having to collect about 8.8% more data points
than we would need with Pearson’s r. The additional catch is that this value of
Asymptotic Relative Efficiency is computed only if the underlying assumptions
for using and statistically testing Pearson’s r are satisfied. These assumptions
may not hold, in practice, so it is usually advisable to use Spearman’s ρ and/or
Kendall’s τ in addition to Pearson’s r when carrying out an analysis of the
statistical dependence between two interval variables.

At any rate, with interval scales, we can use most of the traditional statistical
indicators, because interval scales are truly numerical scales. The next kind of
scales removes one of the degrees of arbitrariness intrinsic to interval scales: the
origin is no longer conventional.

Ratio Scales. Each entity is associated with a numerical value by ratio scales.
Their characterizing invariant property states that the actual values used do
not matter, as long as the ratios between all the pairs of values are preserved.
Formally, ∀e1, e2 ∈ E

∃k1, k2 ∈ Re+, ∀m ∈ M(ERS,NRS)k1m(e1) = k2m(e2)

So, this property implies that a ratio scale m′ can be transformed into another
ratio scale m′′ only via proportional transformations m′′ = am′, with a > 0.
This shows that it is possible to change the measurement unit by changing a,
but not the origin as the value 0 in one scale correspond to the value 0 in all
other scales, so it is invariant. The above formula shows that the set of admissible
transformations for ratio scales is a subset of the admissible transformations for
interval scales, the difference between ratio scales and interval scales basically
being that for ratio scales have a natural origin, which is invariant, while a
conventional origin can be chosen for interval scales. Ratio scales obviously can
only take numerical values, like interval scales.

16 S. Morasca

Size (e.g., volume or mass) is typically represented by ratio scales, for instance.
Time durations or temperature intervals may be represented with ratio scales
and, in general, the difference between two values of an interval measure is
a ratio scale. In Software Engineering Measurement, software size is typically
represented via ratio scales and so is development effort.

Legitimate operations involving ratio scales include differences, ratios, and
sums. For instance, the size of a program segment composed of two program
segments may be obtained as the sum of the sizes of those two program segments.
As for descriptive and association statistics, there is basically the geometric
mean that can be used with ratio scales, in addition to the other descriptive and
association statistics that can also be used with interval scales. From a practical
point of view, this shows that there is a real divide between ordinal and interval
measures. The former are nonnumeric, while the latter are numerical ones.

Absolute Scales. Absolute scales are the most “extreme” kind of measures,
in a sense. Each entity is associated with a numerical value in absolute scales,
and their invariant property states that the actual values used do matter, since
the only admissible transformation is identity, i.e., an absolute scale cannot be
transformed into anything other than itself. Formally, |M(ERS,NRS)| = 1.

Again, this transformation is a subset of the possible transformations of ratio
scales. The measurement unit is fixed and cannot be chosen conventionally. So,
these scales are the most informative ones, since their values bear information
themselves, and not only in relationship.

Statistics of Scales. The description of scale types is not simply a theoret-
ical exercise, but it has important practical consequences, as we have already
discussed. Some mathematical operations may not be applied to measures of
certain measurement levels, e.g., summing may not be used for the numerical
values of nominal, ordinal, or even interval measures. Based on the scale type
of a measure, different indicators of central tendency can be used without re-
sulting in meaningless statements, i.e., the mode for nominal scales, the median
as well for ordinal scales, the arithmetic mean as well for interval scales, and
the geometric mean as well for ratio and absolute scales. the same applies to
dispersion indicators and statistical tests. Table 1 summarizes a few well-known
indicators of central tendency, dispersion, and association that are appropriate
for each scale type. In each cell of columns “Central Tendency,” “Dispersion,”
and “Association,” we report only the indicators that can be used for scales that
are at least on that measurement level. So, these indicators can be used for scales
at higher measurement levels. For instance, as already noted, the median can be
used for ordinal, interval, ratio, and absolute scales, but not for nominal scales.

3.2 Additional Issues on Scales

Two additional issues on scales are often given some more attention, in practical
use and in theoretical debates. We briefly discuss them here.

Fundamental Aspects of Software Measurement 17

Table 1. Characteristics of different scale types

Scale Admissible Examples Central Dispersion Association
Type Transformation Tendency

Nominal Bijections Gender, Mode Information Chi-square
Progr. Language Content

Ordinal Monotonically Preference, Median Interquartile Spearman’s ρ,
increasing Fail. Criticality range Kendall’s τ

Interval Linear Temperature, Arithmetic Standard Pearson’s r
Milestone Date Mean Deviation

Ratio Proportional Mass, Geometric
Software Size Mean

Absolute Identity Probability

Subjective Scales. An “objective” measure is one for which there is an un-
ambiguous measurement procedure, so it is totally repeatable. A “subjective”
measure is computed via a measurement procedure that leaves room for inter-
pretation on how to measure it, so different people may come up with different
measurement values for the same entity, the same attribute, and the same mea-
sure itself. It is usually believed that objective measures are always better than
subjective measures, but this claim needs to be examined a bit further.

– For some attributes, no objective measure exists. The number of faults in
a software program cannot be measured, so we may resort to subjective
evaluations for it.

– Even when it is theoretically possible to use an objective measure, it may not
be practically or economically viable to use that measure. For instance, the
number of faults in a software application with a finite input domain may
be measured by executing the application with all possible input values, but
this would be impractical.

– Some measures look more objective than they actually are. Take this objec-
tive measure of reliability for a software application a: objReliability(a) = 0
if a has at least one failure in the first month of operation, and otherwise
objReliability(a) = 1 . Some failures may occur in the first month of opera-
tion, but they may go unnoticed, or their effect may surface several months
later.

– An objective measure may be less useful than a subjective measure anyway.
Take two measures (a subjective and an objective one) for two different
attributes. Nothing guarantees that the objective measure is more useful
than the subjective one to predict some variable of interest. Even for the
same attribute, a subjective measure may be more useful than an objective
one, if it captures that attribute more sensibly.

Indirect Scales. It is commonly said that measures built by combining other
measures are indirect ones. For instance, fault density represented as the ratio

18 S. Morasca

between the number of uncovered faults and LOC (the number of lines of code
of a program segment) would be an indirect measure. However, even among
measurement theoreticians, there is no widespread consensus that it is actually
necessary or useful to make the distinction between direct and indirect measures,
or that it is even possible to make this distinction. One of the points is that even
indirect scales should satisfy exactly the same requirements as direct scales, since
indirect scales are scales anyway, so they should be built by using an Empirical
Relational System, a Numerical Relational System, a function between them,
and a Representation Condition. If all of these theoretical definition elements
are in place, then there is no reason to distinguish between direct and indirect
scales anyway [34].

3.3 Evaluation of Measurement Theory

Measurement Theory is the reference, ideal model to which one should tend in
the definition of a measure. A measure defined in such a way as to comply with
the Representation Condition is a legitimate measure for an attribute. How-
ever, Measurement Theory’s constraints may be too strict. For instance, LOC
does not comply with the Measurement Theory’s requirements for size mea-
sures. Overall, Measurement Theory has been used to eliminate measures that
have been proposed for the quantification of software attributes, but it has not
been helpful or productive when it comes to defining new measures. Also, other
than the modeling of size, no other use of Measurement Theory is known in
Software Measurement. Thus, especially in this phase, in which Software Mea-
surement has not reached a sufficient degree of maturity, it is useful to use other
approaches like Axiomatic Approaches (see Sections 4 and 5), which have more
relaxed requirements and so they do not eliminate a number of measures that
Measurement Theory would reject. Measures may therefore get a chance to be
better refined later on, and this contributes to having a better understanding of
the characteristics of software attributes too.

4 Axiomatic Approaches

Other approaches have been used to represent the properties that can be ex-
pected of software attributes, e.g., [33,39,21,10,25,31,32,23]. The underlying idea
has been long used in mathematics to define concepts via sets of axioms. The
axioms for distance are a very well-known example. The distance d between two
elements x and y of any set S is defined as a real-valued function d : S×S → Re
that satisfies the following three axioms.

Distance Axiom 1 Nonnegativity. The distance between any two elements is
nonnegative, i.e., ∀x, y ∈ S(d(x, y) ≤ 0), and it is zero if and only if the two
elements coincide, i.e., ∀x, y ∈ S(d(x, y) = 0 ⇔ x = y).

Distance Axiom 2 Symmetry. The distance between any two elements x and
y is the same as the distance between y and x, i.e., ∀x, y ∈ S(d(x, y) = d(y, x)).

Fundamental Aspects of Software Measurement 19

Distance Axiom 3 Triangular Inequality. Given three elements, the sum of the
distances between any two pairs is greater than the distance between the other
pair of elements, i.e., ∀x, y, z ∈ S(d(x, y) + d(y, z) ≥ d(x, z)).

These axioms have been applied to very concrete sets, such as sets of points in
the physical world, and much more abstract ones, such as sets of functions in
mathematics. Different functions that satisfy these axioms can be defined, even
within the same application domain. The choice of a specific distance measure
depends on a number of factors, including the measurement goals, tools, and
resources. No matter the specific application, these three axioms are commonly
accepted as the right axioms that capture what a distance measure should look
like, so they are no longer a topic for debates, since a broad consensus has been
reached about them. Other sets of axioms have been defined for other attributes
(e.g., the Information Content H(p) of a discrete probability distribution p,
which is the basis of Information Theory).

The set of axioms for distance functions is certainly no longer controversial
and its introduction is based on the properties of distances between physical
points. The set of axioms for Information Content are quite recent and they ad-
dress a more abstract attribute, but, there is now a widespread consensus about
them. The introduction of Axiomatic Approaches in Software Measurement, is
even more recent, due to the novelty of Software Engineering and, more specif-
ically, of Software Measurement, which, as already noted, deals with somewhat
abstract attributes of intangible entities. Therefore, it is natural that there has
not been enough time to reach a broad consensus around specific sets of ax-
ioms for software attributes. Nevertheless, one of the main advantages of using
an axiomatic approach over using an “operational” approach, i.e., providing a
measure as if it was an “operational” definition for the attribute, is that the ex-
pected properties of the measures of the attribute are clearly spelled out. Thus,
a common understanding of the properties can be reached and disagreements
can focus on specific properties instead of more vaguely defined ideas. At any
rate, Axiomatic Approaches have already been used to check if existing measures
satisfy a specific set of axioms for the attribute that they are supposed to mea-
sure. Perhaps more importantly, these approaches have been used as guidelines
during the definition of new measures.

Also, it must understood that these Axiomatic Approaches do not have the
same “power” as Measurement Theory. Rather, the set of axioms associated
with a specific attribute (e.g., software size) should be taken as sets of necessary
properties that need to be satisfied by a measure for that software attribute, but
not sufficient ones. Thus, those measures that do not satisfy the set of axioms for
a software attribute cannot be taken as legitimate measures for that attribute.
The measures that do satisfy the set of axioms are candidate measures for that
software attribute, but they still need to be better examined. Finally, like with
Measurement Theory, the measures that comply with the theoretical validation
still need to undergo a thorough empirical validation that supports their practical
usefulness. We address this issue in Section 7.

20 S. Morasca

4.1 Weyuker’s Complexity Axioms

Weyuker’s approach [39] represents one of the first attempts to use axioms,
to formalize the concept of program complexity. The approach introduces a
set of nine axioms, which we number W1, . . . ,W9. Weyuker’s approach was
defined for the complexity of so called “program bodies,” which we have called
program segments so far. So, the approach was defined for the complexity of
sequential programs or subroutines. The composition of program segments is
concatenation and it is denoted by ’;’:ps1; ps2 denotes the concatenation of two
program segments ps1 and ps2.

W1. A complexity measure must not be “too coarse” (part 1)

∃ps1, ps2(Complexity(ps1) 	= Complexity(ps2))

W2. A complexity measure must not be “too coarse” (part 2). Given the non-
negative number c, there are only finitely many program segments of com-
plexity c.

W3. A complexity measure must not be “too fine.” There exist distinct program
segments with different complexity

∃ps1, ps2(Complexity(ps1) = Complexity(ps2))

W4. Functionality and complexity have no one-to-one correspondence between
them

∃ps1, ps2(ps1functionally equivalent tops2) ∧
(Complexity(ps1) 	= Complexity(ps2))

W5. Concatenating a program segment with another program segment may not
decrease complexity

∀ps1, ps2(Complexity(ps1) ≤ Complexity(ps1; ps2)) ∧
(Complexity(ps2) ≤ Complexity(ps1; ps2))

W6. The contribution of a program segment in terms of the overall program
may depend on the rest of the program

∃ps1, ps2, ps3(Complexity(ps1) = Complexity(ps2)) ∧
(Complexity(ps1; ps3) 	= Complexity(ps2; ps3))

∃ps1, ps2, ps3(Complexity(ps1) = Complexity(ps2)) ∧
(Complexity(ps3; ps1) 	= Complexity(ps3; ps2))

W7. A complexity measure is sensitive to the permutation of statements. There
exist ps1 and ps2, such that ps1 is obtained via a permutation of the state-
ments of ps2 and Complexity(ps1) 	= Complexity(ps1).

Fundamental Aspects of Software Measurement 21

W8. A complexity measure is not sensitive to the specific identifiers used. If ps1
is obtained by renaming the identifiers of ps2, then

Complexity(ps1) = Complexity(ps2)

W9. There are program segments whose composition has a higher complexity
than the sum of their complexities

∃ps1, ps2(Complexity(ps1) + Complexity(ps2) < Complexity(ps1; ps2))

The following analysis of Weyuker’s axioms may shed some light on their char-
acteristics and the kind of complexity that they are meant to describe.

– Axioms W1, W2, W3, W4, W8 do not characterize complexity alone, but
they may be applied to all syntactically-based product measures, e.g., size
measures. At any rate, they need to be made explicit in an axiomatic
approach.

– Axiom W5 is a monotonicity axiom which shows that Weyuker’s axioms are
about “structural” complexity and not “psychological” complexity. Suppose
that program segment ps1 is an incomplete program, and the complete pro-
gram is actually given by the concatenation ps1; ps2. It may very well be the
case that the entire program is more understandable than ps1 or ps2 taken in
isolation, as some coding decisions may be easier to understand if the entire
code is available.

– Axiom W7 shows that the order of the statements does influence complexity.
Without this axiom, it would be possible to define a control-flow complex-
ity measure that is totally insensitive to the real control flow itself, as the
statements in a program segment could be arbitrarily rearranged without
affecting the value of a control-flow complexity measure.

– Axiom W8 too shows that Weyuker’s axioms are about “structural” com-
plexity, not “psychological” complexity. Renaming does not have any impact
on Weyuker’s concept of complexity, but it is obvious that, if a program seg-
ment’s variables were renamed by using meaningless, absurd, or misleading
names, the program segment’s understandability would be certainly heavily
affected, and, in turn, its “psychological” complexity.

– Axiom W9 is probably the one that most characterizes complexity, even if it
does not come in a “strong” form, since it uses an existential quantification.
The idea, however, is that there are cases in which the complexity of a
program segment is higher than the sum of the complexities of its constituent
program subsegments. This axiom, however, does not rule out the existence
of two program segments whose composition has a lower complexity than
the sum of their complexities

∃ps1, ps2Complexity(ps1) + Complexity(ps2) > Complexity(ps1; ps2)

22 S. Morasca

5 A Unified Axiomatic Approach for Internal Software
Attributes

We now illustrate the proposal initially defined by Briand, Morasca, and Basili
[10,25] and its later refinements by Morasca [23]. This proposal addresses several
different software product attributes, including size, complexity, cohesion, and
coupling, which we discuss in this section. Based on an abstract graph-theoretic
model of a software artifact description of a software artifact, each software
attribute is associated with a set of axioms that its measures should satisfy. Thus,
unlike in other approaches, a set of different software attributes are studied in a
unified framework that makes it easier to identify the similarities and differences
between software attributes. In addition, as it is based on an abstract graph-
theoretic representation, this axiomatic approach can be applied for measures of
many different artifacts that are encountered during the software life cycle, and
not just software code.

5.1 Systems and Modules

The basic idea is that a system is a multigraph, where each arc is associated
with a multiset of relationships, and each relationship has a type.

Definition 8. System. A system S is a pair S =< E,R >, where

– E represents the set of elements of S
– R ∈ NE×E×T

where T is a finite set of types of relationships (N is the set of natural numbers,
including 0).

The idea is that a software artifact contains a set basic elements, which are
represented as the nodes of the multigraph. These elements are connected by
possibly more than one relationship of possibly different types. The relationships
between the elements are therefore represented by the multisets of typed arcs.

As an example, take the class diagram in Fig. 1, built by using a UML-like
notation in which classes (like C or D) may belong to two packages, so this
notation is even more general than standard UML. The classes are the elements
of the system. The arcs are annotated with different types, e.g., aggregations,
inheritance, use, etc., and two classes may very well be connected by several
relationships, of the same or of different types (see classesK and L). In addition,
a UML-like diagram may not even represent all of the relationships existing
between classes. For instance, inheritance is a transitive relation, and transitive
relationships are not explicitly represented. In Fig. 2, the aggregation between
M and Q gets inherited by N , O, and P . So, the actual set of relationships may
be greater than those that are explicitly mentioned in the graph.

To define axioms for internal software attributes defined for software artifacts,
we first need to define an “algebra” whose operations are introduced next. In
what follows, the same symbol (e.g., ∪ for union) may denote an operation
between

Fundamental Aspects of Software Measurement 23

m
1

m
2

m
3

B

C D

I J

A

m
6

F

G H

K L

E

m
5

m
4

Fig. 1. Representation of a system and its modules in a UML-like language

M

ON P

Q

2

R

Fig. 2. A UML-like Class Diagram

– sets when sets of elements are involved
– multisets when multisets of typed relationships are involved
– modules (see Definition 9) when modules are involved.

These operations are different, but no confusion will arise because they never in-
volve operands of different nature. For instance, no union will be defined between
a multiset of typed relationships and a module.

For completeness, we here provide the meaning of these operations between
two typed multisets of relationships R1, R2.

24 S. Morasca

Inclusion. R1 ⊆ R2 ⇔ ∀ << a, b, t >, n1 >∈ R1,
∃ << a, b, t >, n2 >∈ R2 ∧ n1 ≤ n2, i.e., R2 contains at least all the occurrences
of the typed relationships in R1.

Union. R3 = R1 ∪R2 ⇔ ∀ << a, b, t >, n3 >∈ R3,
∃ << a, b, t >, n1 >∈ R1, << a, b, t >, n2 >∈ R2, n3 = n1 + n2, i.e., R3 gathers
all the occurrences of the typed relationships in R1 and R2.

Intersection. R3 = R1 ∩ R2 ⇔∀<< a, b, t >, n3 >∈ R3, ∃<< a, b, t >, n1 >∈
R1, << a, b, t >, n2 >∈ R2, n3 = min{n1, n2}, i.e., R3 contains all the occur-
rences of typed relationships in common to R1 and R2.

Using operations like the union implies that parts of a system be identifiable
so they can be put together. Also, some internal software attributes naturally
require that parts of a system be identifiable. For instance, coupling is typically
defined as an attribute defined for the cooperating parts of a software system,
or for the entire system. These parts of a system are actually subsystems, which
we call modules.

Definition 9. Module. Given a system S=<E,R >, a module m =< Em, Rm >
is a system such that Em ⊆ E ∧Rm ⊆ R.

For maximum generality and simplicity, a module is simply a subsystem, with
no additional characteristics (e.g., an interface). At any rate, a module m of a
system will contain a multiset of relationships of its own, and there will be a
(possibly empty) multiset of relationships that link m to the rest of the system,
which will be denoted as OuterR(m). In Fig. 1, UML-like packages m1, m2, m3,
m4, m5, m6, may be interpreted as modules. It will be our convention in the
remainder of the paper that the set of elements and the multiset of relationships
of a system or a module have the same subscript as the system or module, unless
otherwise explicitly specified (e.g. m1 =< E1, R1 >).

We can now introduce a few operations and definitions that compose the
“algebra” of modules upon which the sets of axioms will be defined.

Inclusion. Module m1 is said to be included in module m2 (notation: m1 ⊆ m2)
if E1 ⊆ E2 ∧R1 ⊆ R2. In Fig. 1, m5 ⊆ m4.

Union. The union of modules m1 and m2 (notation: m1 ∪ m2) is the module
< E1 ∪ E2, R1 ∪R2 >. In Fig. 1, m1 = m2 ∪m3.

Intersection. The intersection of modules m1 and m2 (notation: m1 ∩m2) is
the module < E1 ∩ E2, R1 ∩ R2 >. In Fig. 1, m2 ∩ m3 is the module whose
elements are classes C and D and whose relationships are << C,D, t >, 1 > and
<< D,C, u >, 1 > (assuming that they have type t and u, respectively).

Empty Module. Module < �,� > (denoted by �) is the empty module.

Fundamental Aspects of Software Measurement 25

Disjoint Modules. Modules m1 and m2 are said to be disjoint if m1∩m2 = �.
In Fig. 1, m3 and m6 are disjoint.

Unconnected Modules. Two disjoint modules m1 and m2 of a system are said
to be unconnected if OuterR(m1)∩OuterR(m2) = �. In Fig. 1, m4 and m6 are
unconnected, while m3 and m6 are not unconnected.

5.2 Axiom Sets and Derived Properties

We here introduce a set of axioms for a few internal software attributes of inter-
est. In addition, we show properties that can be derived as implications of those
axioms, to further check whether the modeling of an internal software attributes
is consistent with the intuition on it. As a matter of fact, the decision as to which
properties are more basic and should be taken as axioms and which are derived
properties is somewhat subjective. We mostly take properties satisfied by ratio
measures as the axioms and, often, properties satisfied by ordinal measures are
derived. (Each axiom and property is annotated by the level of measurement of
the measures to which the axiom or property can be applied to.) The derived
properties are “weaker” than the axioms base and are often satisfied by mea-
sures that are ordinal or nominal and not necessarily ratio ones. This is not just
a theoretical exercise, but can guide the building of ordinal or nominal measures,
instead of only ratio ones.

Size. The idea underlying the first axiom is that the size of a module composed
of two possibly overlapping modules is not greater than the sum of the sizes of
the two modules by themselves.

Size Axiom 1 Union of Modules (ratio scales). The size of a system S is not
greater than the sum of the sizes of two of its modules m1 and m2 such that each
element of S is an element of either m1 or m2 or both

E = E1 ∪ E2 ⇒ Size(S) ≤ Size(m1) + Size(m2)

For instance, Size(m1) ≤ Size(m2) + Size(m3) in Fig. 1.
However, when the two modules are disjoint, size is additive.

Size Axiom 2 Module Additivity (ratio scales). The size of a system S is equal
to the sum of the sizes of two of its modules m1 and m2 such that any element
of S is an element of either m1 or m2 but not both

E = E1 ∪ E2 ∧ E1 ∩E2 = � ⇒
Size(S) = Size(m1) + Size(m2)

Thus, Size(m1 ∪m6) = Size(m1) + Size(m6) in Fig. 1.
A number of properties can be derived from these two base axioms, as follows:

– the size of the empty system is zero (ratio scales);

26 S. Morasca

– the size of a system is nonnegative (ratio scales);
– the size of a system is not lower than the size of the empty system; though it

can be clearly inferred from the first two derived properties, this is a property
that can be used for ordinal scales too (ordinal scales);

– adding elements to a system cannot decrease its size (ordinal scales);
– relationships have no impact on size, i.e., two systems with the same elements

will have the same size (nominal scales);
– a measure of size is computed as the sum of the “sizes” of its elements: if we

take each element e of a system and we build a module that only contains
e, then compute the size of this newly defined module, and then sum the
sizes of all these newly defined modules, we obtain the value of the size of
the entire system (ratio scales).

The last two derived properties thus show that size is based on the elements of
a software system and not on its relationships.

It turns out that this axiomatic definition of size is closely related to the
axiomatic definition of what is known as “measure” in Measure Theory [30], an
important branch of Mathematics that is a part of the basis of the theory of
differentiation and integration in Calculus. So, this places these axioms on even
firmer mathematical grounds.

Examples of size measures according to this axiomatic approach:
#Statements, LOC, #Modules, #Procedures, Halstead’s Length [17],
#Unique Operators, #Unique Operands, #Occurrences of Operators,
#Occurrences of Operands, WMC [13]. Instead, these are not size measures:
Halstead’s Estimator of length and V olume [17].

Complexity. We are dealing here with internal software attributes, so we here
mean “structural” complexity, and not some kind “psychological” complexity,
which would be an external software attribute. Complexity is based on the rela-
tionships among system elements, unlike size.

The idea underlying the first axiom, which characterizes complexity the most,
is that the complexity of a system is never lower than the sum of the complexities
of its modules taken in “isolation,” i.e., when they have no relationships in
common, even though they may have elements in common.

Complexity Axiom 1. Module Composition (ratio scales). The complexity of
a system S is not lower than the sum of the complexities of any two of its modules
m1, m2 with no relationships in common

S ⊇ m1 ∪m2 ∧R1 ∩R2 = � ⇒
Complexity(S) ≥ Complexity(m1) + Complexity(m2)

Suppose that the two modules m1 and m2 in Complexity Axiom 1 have ele-
ments in common. All of the transitive relationships that exist in m1 and m2

when they are taken in isolation still exist in S. In addition, S may contain new

Fundamental Aspects of Software Measurement 27

transitive relationships between the elements of m1 and m2, which do not exist
in either module in isolation. So, the complexity of S is not lower than the
sum of the complexities of the two modules in isolation. For instance, in Fig. 1,
Complexity(m1) ≥ Complexity(m2) + Complexity(m3).

When a system is made up of two unconnected modules, complexity is additive

Complexity Axiom 2. Unconnected Module Additivity (ratio scales). The
complexity of a system S composed of two unconnected modules m1, m2 is equal
to the sum of the complexities of the two modules

S = m1 ∪m2 ∧
m1 ∩m2 = � ∧OuterR(m1) ∩OuterR(m2) = � ⇒

Complexity(S) = Complexity(m1) + Complexity(m2)

We now describe a few derived properties for complexity:

– a system with no relationships has zero complexity (ratio scales);
– the complexity of a system is nonnegative (ratio scales);
– the complexity of a system is not lower than the complexity of a system

with no relationship, which can be clearly inferred from the first two derived
properties; however, this is a property that can be used for ordinal scales too
(ordinal scales);

– adding relationships to a system cannot decrease its complexity (ordinal
scales);

– elements have no impact on complexity, i.e., two systems with the same
relationships will have thee same complexity (nominal scales).

Summarizing, as opposed to size, complexity depends on relationships and not
on elements.

These measures may be classified as complexity measures, according to the
above axioms: Oviedo’s data flow complexity measure DF [29], v(G)− p, where
v(G) is McCabe’s cyclomatic number and p is the number of connected com-
ponents in a control-flow graph [22]. These measures do not satisfy the above
axioms: Henry and Kafura’s information flow complexity measure [18], RFC
and LCOM [13].

Cohesion. Cohesion is related to the degree and not the extent with which
the elements of a module are tied to each other. Thus, cohesion measures are
normalized.

Cohesion Axiom 1. Upper Bound (ordinal scales). The cohesion of a module
m is not greater than a specified value Max, i.e., Cohesion(m) ≤ Max.

Elements are linked to each other via relationships, so adding relationships does
not decrease cohesion.

28 S. Morasca

Cohesion Axiom 2. Monotonicity (ordinal scales). Let modules m1=<E,R1>,
m2 =< E,R2 > be two modules with the same set of elements E, and let
R1 ⊆ R2. Then, Cohesion(m1) ≤ Cohesion(m2).

A module has high cohesion if its elements are highly connected to each other.
So, if we put together two modules haphazardly and these two modules are not
connected to each other, we cannot hope that the cohesion of the new module
will be greater than the cohesion of each the two original modules separately.

Cohesion Axiom 3. Unconnected Modules (ordinal scales). Let m1 and m2 be
two unconnected modules, then,

max{Cohesion(m1), Cohesion(m2)} ≥ Cohesion(m1 ∪m2)

Thus, in Fig. 1, we have

Cohesion(m4 ∪m6) ≤ max{Cohesion(m4), Cohesion(m6)}
As a side note, these first three axioms may be safely applied to ordinal measures
(e.g., a measure like Yourdon and Constantine’s [40]).

The following axiom may be satisfied only by ratio measures.

Cohesion Axiom 4. Null Value (ratio scales). The cohesion of a module with
no relationships m =< E,� > is null, i.e., Cohesion(m) = 0.

The above axioms imply the following property:

– the cohesion of a module is not lower than the cohesion of a module with no
relationships (ordinal scales).

Examples of cohesion measures according to the above axioms: PRCI, NRCI,
ORCI [11].

Coupling. As opposed to cohesion, the coupling of a module in a system is
related to the amount of connection between the elements of a module and
the elements of the rest of the system. The interconnections may be direct or
transitive. So, adding a relationship, whether internal to the module or belonging
to its set of outer relationships, can never decrease coupling.

Coupling Axiom 1. Monotonicity (ordinal scales).
Adding a new relationship to a module m1 or to its set of outer relationships
OuterR(m1) does not decrease its coupling. So, if m2 is a module such that
E2 = E1, we have

OuterR(m2) ⊇ OuterR(m1) ∧R2 ⊇ R1 ⇒
Coupling(m2) ≥ Coupling(m1)

At any rate, if a module has no outer relationships, its elements are not connected
with the rest of the system, so its coupling is zero.

Fundamental Aspects of Software Measurement 29

Coupling Axiom 2. Null Value (ratio scales). The coupling of a module with
no outer relationships is null.

Suppose now that we take two modules and put them together. The relationships
from one to the other used to be outer ones, but become internal ones after the
merging. Thus, we have lost some couplings of the two initial modules in the new
module, whose coupling is not higher than the sum of the couplings of the two
modules. In Fig. 1, when modules m2 and m3 are merged into module m1 the
relationships to and from m4, m5, and m6 are still outer relationships for m1,
but the relationships between m2 and m3 have become internal relationships for
m1 (so, they may also contribute to the cohesion of m1).

Coupling Axiom 3. Merging of Modules (ratio scales). The coupling of the
union of two modules m1, m2 is not greater than the sum of the couplings of the
two modules

Coupling(m1 ∪m2) ≤ Coupling(m1) + Coupling(m2)

However, if the two original modules that got merged were not connected, no
coupling has been lost and the new modules has exactly the same coupling as
the two original modules.

Coupling Axiom 4. Unconnected Modules (ratio scales). The coupling of the
union of two unconnected modules is equal to the sum of their couplings

m1 ∩m2 = � ∧OuterR(m1) ∩OuterR(m2) = � ⇒
Coupling(m1 ∪m2) = Coupling(m1) + Coupling(m2)

So, Coupling(m4 ∪m6) = Coupling(m4) + Coupling(m6) in Fig. 1.
Like with the other internal attributes, derived properties can be found, as

follows:

– the coupling of a module is nonnegative (ratio scales);
– the coupling of a module is not less than the coupling of a module with no

outer relationships (ordinal scales).

Among the measures that may be classified as coupling measures according to
the above axioms are: TIC andDIC [11], CBO and RFC [13]. Fenton’s coupling
measure [16] does not satisfy the above axioms.

5.3 Relationships between Software Attributes

Table 2 summarizes the main characteristics of software attributes for a module
m of a system according to the unified axiomatic approach described in this sec-
tion. We report 1) the condition for the attribute to assume value zero in column
“Null Value,” 2) the variable with respect to which the attribute has a mono-
tonic behavior in column “Monotonicity,” and 3) the condition for additivity in
column “Additivity,” if any.

One of the goals of this axiomatic approach is to identify similarities, differ-
ences, and relationships between attributes, as we now concisely discuss.

30 S. Morasca

Table 2. Characteristics of different software attributes

Attribute Null Value Monotonicity Additivity

Size Em = ∅ Em Separate modules
Complexity Rm = ∅ Rm Unconnected modules
Cohesion Rm = ∅ Rm NO
Coupling OuterR(m) = ∅ OuterR(m) ∪Rm Unconnected modules

Size vs. Complexity These are the main differences in the properties of size
and complexity

– size is based on elements, complexity is based on relationships

– the inequalities about the sums of sizes and complexities in Size Axiom
1 and Complexity Axiom 1 go in opposite directions

– complexity cannot be interpreted as the amount of relationships, as if
it was the “size” of the set of relationships, while size is the sum of the
“sizes” of the individual elements.

On the other hand, both size and complexity have additivity properties,
though under different conditions (see Size Axiom 2 and Complexity Axiom
2).

Complexity vs. Cohesion Complexity and cohesion of a module share a num-
ber of similarities as both

– depend on the relationships within the module

– are null when there are no relationships in the module

– increase when a relationship is added to the relationships of the module.

It is possible to show that cohesion measures can actually be defined as
absolute measures as follows. Given a complexity measure cx, for any given
module m, suppose that there exists cxM (m) a maximum possible value for
cx when it is applied to the elements of module m. This may be reasonable,
as there is a finite number of elements in m, and the elements may be linked
by a limited number of relationships. Then, ch(m) = cx(m)/cxM (m) is a
cohesion measure. This has two important consequences.

1. From a practical point of view, cohesion may increase when complex-
ity increases. This might explain why sometimes cohesion measures are
not very well related to fault-proneness [8], as the positive effect of the
increase in cohesion on error-proneness is somewhat masked by the neg-
ative effect of an increase in complexity.

2. From a theoretical point of view, an equation like ch(m)= cx(m)/cxM (m)
may used as a starting point to find quantitative relationships among at-
tributes, as is usual in many scientific disciplines.

Complexity vs. Coupling. Both complexity and coupling of a module

– are null when there are no relationships in the module and outside it

– increase when a relationship is added to the relationships of the module.

Fundamental Aspects of Software Measurement 31

One characterizing difference between complexity and coupling is that, when
merging two disjoint modules are merged in a module, the complexity of the
resulting module is not less than the sum of the complexities of the original
modules, while the coupling of the resulting module is not greater than the
sum of the couplings of the original modules.

6 External Software Attributes: Probability
Representations

As explained in Section 2, a number of different external software attributes are
of interest for several categories of software “users,” depending on their specific
goals and the type of application at hand. For instance, usability may be very
important for the final users of web applications, while time efficiency may be
a fundamental external software attribute for the users of a real-time system,
which must deliver correct results within a specified time interval. As for prac-
titioners, every decision made during software development is made, implicitly
or explicitly, based on some external software attribute. For instance, when a
decision is made between two alternative designs, a number of external software
attributes are implicitly or explicitly taken into account, e.g., maintainability,
portability, efficiency.

External software attributes may be conflicting. Increasing one may negatively
affect others, so a satisfactory trade-off must be reached among them. Being
able to assess these qualities may provide users and practitioners with a way to
base decisions on firmer grounds and evaluate whether a software product’s or
component’s quality is satisfactory according to a user’s or practitioner’s goals,
and identify a product’s or component’s strengths and weaknesses.

A number of proposals have appeared in the literature to quantify these exter-
nal software attributes (e.g., among several others, maintainability [28], usability
[35]). In addition, standards have been defined to define the qualities (i.e., ex-
ternal software attributes) of software products, and, more generally, software
artifacts. For instance, the ISO9126 standard [1,2] defines quality by means of 6
characteristics: functionality, reliability, usability, efficiency, maintainability, and
portability. These characteristics, in turn, are defined in terms of subcharacter-
istics in a tree-like structure, and measures have been proposed for them too.
(An additional characteristic is called quality in use, to summarize the quality
as perceived by the user.)

Standards like ISO9126 are useful as reference frameworks, but they may turn
out to be too general, as they are meant to address the development of many
different kinds of software. So, they do not base the definition and quantification
of software qualities on precise, formal, and unambiguous terms, which is what
one would expect from measurement activities, which are among the most pre-
cise, formal, and unambiguous activities in engineering and scientific disciplines.
It is probably impossible to remove all subjectivity and uncertainty in Empirical
Software Engineering, due to the number of different factors that influence soft-
ware production, and especially its being so heavily human-intensive. However,

32 S. Morasca

because of the nature of Software Engineering, it is important that the degree
of subjectivity and uncertainty be reduced, and, most of all, formalized. Thus,
external software attributes should be based on firm, mathematical grounds, to
remove subjectivity and uncertainty to the extent possible, and highlight their
possible sources and the factors that may influence them. Theoretically sound
and sensible ways to measure external software attributes will help prevent the
quantification of external software attributes via ill-defined measures or not fully
justified approaches.

In this section, we describe a unified probability-based framework for mea-
suring external software attributes [24], which shows that external software at-
tributes should be quantified by means of probabilistic estimation models instead
of measures as defined in Section 3.1.

We discuss the problems associated with using measures to quantify exter-
nal software attributes (Section 6.1) and then describe of so-called “probability
representations” along with their advantages (Section 6.2). Probability Repre-
sentations are a part of Measurement Theory that is often neglected in Software
Measurement, even though they have already been implicitly used in Software
Measurement in the modeling and quantification of software reliability [27], for
instance. Software reliability can be viewed as a “success story” in the modeling
of external software attributes. We describe how it is possible to put another
important external software attribute, i.e., software modifiability, on firm math-
ematical grounds (Section 6.3), to show another useful application of Probability
Representations. However, it is not the goal of this paper to study any of these
models in detail or propose or validate a specific model as the “right” estimation
models for modifiability.

6.1 Issues in the Definition of External Attributes

While the distinction between internal and external software attributes may be
useful to understand their nature, we would like to point out a few issues with
this distinction.

No such definition in Measurement Theory. The distinction between in-
ternal and external attributes can only be found in the Software Measure-
ment literature (e.g., [16,15], but not in the general, standard, authoritative
literature on Measurement [20,34]

Incompleteness of the Definition. The definition of a measure given by Mea-
surement Theory [20,34] is the one reported in Section 3.1: a measure is a
function that associates a value with an entity. So, it is knowledge from that
entity alone that must used in the definition of the measure, and not other
entities that belong to the “environment” of the entity.

Logical Problems in Defining Attributes by Means of their Measures.
The distinction between internal and external software attributes is based
on whether their measures can be based on the entities alone or an “envi-
ronment” as well, although attributes exist prior to and independent of how
they can be measured. However, the definition of a measure logically follows
the definition of the attribute it purports to measure: one defines a measure

Fundamental Aspects of Software Measurement 33

based on the attribute, not the attribute based on the measure. Also, suppose
that two measures are defined for an attribute: one takes into account only
information from the entity being measured, while the other also takes into
account additional information about the “environment.” According to the
former measure, the attribute would be an internal one, but an external one
according to the latter. So, the nature of the attribute would be uncertain,
to say the least.

Deterministic vs. Probabilistic Approaches. An external software
attribute (e.g., reliability or maintainability) may be affected by many vari-
ables (the “environment”) in addition to the specific entity, so it would not
be sensible to build a deterministic measure for it.

Using Aggregate Indicators. Aggregate indicators are often used to quantify
external software attributes. For instance, the Mean Time Between Failures
(MTBF) may be a quite useful piece of information about reliability, but it
is not a measure of reliability in itself as we now explain.
– MBTF is the expected value of the probability distribution of the time

between failures, so quantifying MBTF implies knowing this probability
distribution. However, this is impossible, since probabilities cannot be
measured in a frequentist approach, but they can only be estimated. This
implies that MBTF itself can only be estimated, but not measured.

– The probability distribution is a conditional one anyway, since it depends
on the environment in which the program is used.

Validating a Probabilistic Representation for an Attribute. Probability
Representations can be empirically validated in a probabilistic sense, while
deterministic representations (like the ones shown in Section 3) should be val-
idated in a totally different way. For instance, to check whether software size
is additive with respect to some kind of concatenation operation, one should
take all possible program segments, make all possible concatenations, and
check if for all of these concatenations size is truly additive–which is totally
unfeasible. Probability Representations can be validated through statistical
inference procedures. It is true that these procedures can never provide ab-
solute certainty, but this is acceptable because of the random nature of the
modeling.

6.2 Probability Representations in Measurement Theory

Here, we introduce the basic concepts of Probability Representations defined in
Measurement Theory [20] by slightly adapting them to our Software Measure-
ment case. We first need to introduce the concept of algebra and of σ-algebra of
sets on a set X .

Definition 10 (Algebra on a Set). Suppose that X is a nonempty set, and
that E is a nonempty family of subsets of X. E is an algebra of sets on X if and
only if, for every A,B ∈ E

34 S. Morasca

1. X −A ∈ E
2. A

⋃
B ∈ E.

The elements of E are called events and the individual elements of X are called
outcomes, each of which is a possible results of a so-called random experiment
[19]. So, an event is actually a set of outcomes, and X is the set of all possible
outcomes.

Definition 11 (The Concept of σ-Algebra on a Set). If the conditions in
Definition 10 hold and, in addition, E is closed under countable unions, i.e.,
whenever Ai ∈ E, with i = 1, 2, . . ., it follows that

⋃∞
i=1 Ai ∈ E, then E is called

a σ-algebra on X.

Based on these definitions, the usual axiomatic definition of unconditional prob-
ability can be given [20].

However, we are here interested in conditional probability representations,
because we are interested in conditional probabilities like the following ones.

Continuous case. P (Eff ≤ eff |art, env), i.e., the probability that a specified
event occurs if one uses an amount of effort that is at most eff , provided that
the environment env in which it happens and the artifact art on which it hap-
pens are specified, e.g., the probability that a specified artifact art is modified
correctly with at most a specified amount of effort eff , in a specified modifi-
cation environment env. In this case, effort Eff is the random variable, once
the environment and the artifact are known (i.e., conditioned on their knowl-
edge). This probability can be used to quantify the external software attribute
“modifiability,” for which we provide a model in Section 6.3.

Discrete case. P (N ≤ n|art, env), i.e., the probability that a specified event
occurs after at most n trials, provided that the environment env in which it
occurs and the artifact art on which it occurs are specified, e.g., the probabil-
ity that a specified program art is covered (according to some specified notion
of coverage) by executing it with at most n inputs, in a specified environment
env. The number of trials N is the random variable, once the environment
and the artifact are known (i.e., conditioned on their knowledge). This prob-
ability can be used to quantify the external software attribute “coverability.”
More details are provided in [24].

The set-theoretic notation of the theory of [20] can be interpreted as follows for
our goals. The set X is the set of all possible triple of the form < op, art, env >
where

– op is an “observable phenomenon,” i.e., built via a predicate like Eff ≤ eff
or N ≤ n

– art is a specific artifact (e.g., a program)
– env is an environment in which art is used and op is observed.

For notational convenience, we denote conditional probabilities as P (op|art, env).
For instance, reliability can be quantified as a conditional probability, as follows

R(t) = P (t ≤ T |art, env)

Fundamental Aspects of Software Measurement 35

i.e., the probability that a failure occurs at time T not less than a specified time
t, in a specified program art and in a specified operational environment env.

Like with deterministic representations, we capture our intuitive knowledge
on the ordering among conditional events via an order relation �, whose mean-
ing is “qualitatively at least as probable as” [20]. In general, suppose that A,
B, C, and D are events. By writing A|B � C|D, we mean that event A, when
event B is known to occur, is “qualitatively at least as probable as” event C,
when event D is known to occur. In other words, instead of having a deter-
ministic ordering among entities according to some attribute of interest like in
deterministic representations, one has a probabilistic ordering. For instance, one
may order software programs according to their modifiability in a probabilistic
way (i.e., a program in an operational environment is qualitatively at least as
modifiable as another program in another operational environment), instead of
a deterministic way (i.e., a program is certainly more modifiable than another).
For completeness, based on relation �, one may also define relation ∼ as follows:
A|B ∼ C|D if and only if A|B � C|D and C|D � A|B.

The Representation Condition needed for conditional probability representa-
tions is

A|B � C|D ⇔ P (A|B) ≥ P (C|D)

At a first glance, it may appear that the order relation � is a binary relation that
is a subset of (E×E)×(E×E), since A|B � C|D is simply a graphical convention
for < A,B >�< C,D >. However, some caution must be exercised. Conditional
probabilities are defined as P (A|B) = P (A ∩ B)/P (B), so P (A|B) is defined
only if P (B) > 0. Thus, if P (B) = 0, writing A|B � C|D ⇔ P (A|B) ≥ P (C|D)
makes no sense. This means that any event B such that P (B) = 0 cannot appear
as the second element of A|B, i.e., as the conditioning event. Thus, by denoting
with NN (as in NonNull) the set of events B such that P (B) > 0, the order
relation � is actually a binary relation on E ×NN .

Here are necessary conditions (slightly adapted from [20]) for the Representa-
tion Condition. We simply list these axioms here for completeness. At any rate,
more details on the general theoretical approach are provided in [20], and on
their application in Software Measurement in [24].

Definition 12 (Conditional Probability Axioms). Let X be a nonempty
set, E an algebra of sets on X, NN a subset of E, and � a binary relation on
E×NN . The quadruple < X,E,NN,�> is a structure of qualitative conditional
probability if and only if for every A, B, C, A′, B′, and C′ ∈ E (or ∈ NN ,
whenever the name of the event appears to the right of ′|′), the following axioms
hold.

1. < E ×NN,�> is a weak order.

2. X ∈ NN and A ∈ E −NN if and only if A|X ∼ ∅|X.

3. X |X ∼ A|A and X |X � A|B.

4. A|B ∼ A
⋂
B|B.

36 S. Morasca

5. Suppose that A
⋂
B = A′ ⋂B′ = ∅. If A|C � A′|C and B|C � B′|C′, then

A
⋃
B|C � A′ ⋃B′|C′; also, if either hypothesis is �, then the conclusion

is �.
6. Suppose that A ⊃ B ⊃ C and A′ ⊃ B′ ⊃ C′. If B|A � C′|B′ and

C|B � B′|A′, then C|A � C′|A′; moreover, if either hypothesis is �, then
the conclusion is �.

The above axioms can be used as necessary conditions to find additional con-
ditions under which an ordering relation on E has an order-preserving function
P that satisfies the above axioms, i.e., the Representation Condition of Section
3.1. This means that different probability representations, i.e., different proba-
bility functions, may exist so that the Representation Condition of Section 3.1
is satisfied. Additional conditions may be provided to make the set of axioms
sufficient [20]. However, we are not interested in these additional conditions here.
In Section 6.3, we show how to build actual probability functions.

Note that it is not important here that our probabilistic intuitive knowledge
is accurate. We only need to put the concept of using probabilities for external
software attributes on solid bases. Empirical studies will show whether our intu-
itive knowledge is correct. If it is not, we need to modify our intuitive knowledge
in such a way as to fit the empirical results. This is another value added of this
approach, since it allows us to increase and refine our empirical knowledge about
an attribute of interest.

6.3 Representing Modifiability

Based on the above Probability Representation approach, modifiability is here
quantified as the probability that a given artifact, in a specified modification
environment, is modified with a specified amount of effort, i.e., Mod(eff) =
Mod(Eff ≤ eff |art, env) = P (Eff ≤ eff |art, env).

Simply to show how a modifiability model can be built [24], rather than
proposing it as the “right” or “preferred” modifiability model, suppose that
the modifiability rate of an artifact (which is the counterpart of the hazard rate
used for reliability [27] when studying modifiability) is a linear function of the
probability Mod(eff) that the artifact has been modified with eff effort. The
underlying idea is that, if an artifact needs to undergo one specific modification,
As more and more effort is used to carry out that modification, (1) the higher is
the probability Mod(eff) that the modification is actually carried out, and (2)
the higher is the instantaneous probability that the modification is going to be
carried out if it has not been carried out so far (this instantaneous probability
is actually the modifiability rate). Thus, we can write

Mod′(eff)
1−Mod(eff)

= a+ bMod(eff)

Coefficient a is the initial modifiability rate at eff = 0 and coefficient b describes
how well one uses the information contained in the modification activities up to

Fundamental Aspects of Software Measurement 37

effort eff . It can be shown that the function that describes the modification
probability in closed form is

Mod(eff) =
a(e(a+b)eff − 1)

b+ ae(a+b)eff

Parameters a and b may be explicitly related to env and art. For instance, they
may be a function of the number of people that modify the artifact and the size
(e.g., the number of lines of code) of the artifact. For instance, we could have
a = α ·#people and b = β · 1/LOC. Based on the past history of efforts needed
to modify an artifact, parameters a and b or α and β are estimated by using
some statistical techniques [19]–provided that a + b > 0, and a > 0, since the
modifiability rate is positive.

Once the probability distribution is known, a number of derived indices may
be used to provide a concise idea for the probability distribution of an attribute,
e.g., the expected values for the distributions obtained for modifiability (i.e., the
average effort needed for modifying a software artifact). These derived indices
may be used for instance to set process goals (e.g., the average effort needed
for modifying a software artifact must be no greater than a specified value)
or compare competing techniques (e.g., given two development techniques, one
may choose the one that has the lower average average effort needed to modify
a program).

One final note on modifiability. One may very well argue that modifiability
depends on the specific modification that needs to be carried out. However, a
similar remark applies to software reliability, which clearly depends on the spe-
cific inputs selected or the selection policy used. The fact that there are several
different modifications that may be carried out and one of them is actually car-
ried out in a specific way according to a random policy mirrors the random
selection of inputs that is used in software reliability modeling. Actually, in soft-
ware reliability modeling, one may argue that, once an input has been selected
for a deterministic program, then there is only one possible result which is ei-
ther correct or incorrect. Instead, when it comes to modifiability, when the need
for a modification has been identified, many different random variables may in-
fluence the way the actual modification is carried out, and therefore the effort
needed. Thus, the use of a probabilistic model may be even more justified for
modifiability than for reliability.

7 GQM/MEDEA

As the definition of a measure needs to be carried out carefully, it is necessary to
have a defined process in place. In this section, we describe the GQM/MEasure
DEfinition Approach (GQM/MEDEA) [12], which takes advantage of the goal-
oriented nature of the Goal/Question/Metric paradigm [6] to set the measure-
ment goals of any measurement activity to guide the measure definition and
validation process. GQM/MEDEA can be used for building so-called predictive
models, i.e., models that use one or more internal software attributes to predict

38 S. Morasca

an external software attribute or process attribute of interest. We use a semi-
formal notation, Data Flow Diagrams (DFDs) [14], to define and refine the steps
used in GQM/MEDEA. In DFDs, bubbles denote activities, boxes external in-
formation sources/sinks, and arrows data flows. The arrows also provide an idea
of the order in which the activities are executed, though, during the execution
of an activity, any other activity may be resumed or started as long as its inputs
are available. A bubble may be refined by a DFD, provided that the incoming
and outgoing data flows of the bubble and its refining DFD are the same.

The topmost diagram in DFDs is called the Context Diagram (shown in Fig. 3,
which represents the entire process as one bubble and shows the interactions of
the measure definition process with information sources and sinks.

GQM/MEDEA

management

corporate
objectives

literature

abstractions +
axioms +
measures

general
information

experience
factory

project teams

abstractions +
axioms +
measures

environment
specific
information

knowledge
about the
environment

Context
Diagram

Fig. 3. Interactions of GQM/MEDEA with information sources and sinks

Several sources of information, as shown in Fig. 3, are used by the GQM/
MEDEA process:

– the management, to help define measures that are useful to achieve the
corporate goals of a software organization (e.g.,“reduce maintenance effort”);

– the personnel of the project(s) used to practically validate the measures; the
people involved in the empirical study provide important information about
the context of the study that cannot be found anywhere else;

– experience belonging to the software organization that has been previously
gathered, distilled, and stored in the experience factory [4,7,5] (e.g., quan-
titative prediction models, lessons learned from past projects, measurement
tools and procedures, or even raw project data);

– the scientific literature.

Fundamental Aspects of Software Measurement 39

The measurement process itself should contribute its outputs to the experience
factory with new artifacts, in the form of abstractions (i.e., models of software
artifacts), measure properties, and measures. These outputs should be packaged
and stored so that they can be efficiently and effectively reused later on, thus
reducing the cost of measurement in an organization [6]. In a mature development
environment, inputs for most of the steps should come from reused knowledge.
Some of the steps that are made explicit in GQM/MEDEA are often left implicit
during the definition of a measure. We have made them explicit to show all the
logical steps that are carried out to identify all potential sources of problems. The
main contribution of GQM/MEDEA to GQM is the definition of an organized
process for the definition of software product measures based on GQM goals.

Fig. 4 7 shows the high-level structure of the approach.

Definition of
Measures for
Dependent
Attributes

management

corporate
objectives

literature
abstractions +
axioms +
measures

experience
factory

project teams

environment
specific
information

knowledge
about the
environment

Definition of
Measures for
Independent

Attributes

abstractions +
axioms +
measures

experience
factory

abstractions +
axioms +
measures

abstractions +
axioms +
measures

Setting of the
Empirical Study

Hypothesis
Refinement and

Verification

measures
measures

independent
measures

dependent
measures

empirical
hypotheses

entities +
independent
attributes

entities +
dependent
attributes

GQM/MEDEA

Fig. 4. GQM/MEDEA: high-level structure

Each high-level step of Fig. 4 is refined in the more detailed DFDs of Fig.
5. In Fig. 4 and in Fig. 5, we do not show explicitly the environment-specific
information from the project teams and the experience factory, which permeates
all activities represented in these figures, not to clutter the diagrams.

40 S. Morasca

We now concisely illustrate the steps in Fig. 5. The interested reader may
refer to [12] for more detailed information about GQM/MEDEA.

7.1 Setting of the Empirical Study

The steps and their connections are in Fig. 5(a). Corporate objectives (e.g.,
“reduce maintenance effort”) are first refined into tactical goals (e.g., “improve
the maintainability of the final product”), and then tactical goals are refined into
measurement goals (e.g., “predict the maintainability of software code based on
its design”). These refinements are based on knowledge about the environment
provided by the project teams and the experience factory, which help identify
processes and products that measurement should address. As the measurement
goal should be made as precise as possible, goal-oriented techniques [6] can be
used to detail the object of study, the specific quality to be investigated, the
specific purpose for which the quality should be investigated, the immediate
beneficiaries of the empirical investigation (e.g., the project managers), and the
specific context in which the empirical investigation is carried out.

The measurement goals help establish a set of empirical hypotheses that re-
late (independent) attributes of some entities (e.g., the coupling of software
components in design) to other (dependent) attributes of the same or different
entities (e.g., the maintainability of the maintained software code). Dependent
attributes are usually 1) external quality attributes of software systems or parts
thereof, e.g., reliability, maintainability, effort, or 2) process attributes, e.g., de-
velopment effort, development time, or number of faults. Independent attributes
capture factors that are usually hypothesized to have a causal relationship with
the dependent attribute. An empirical hypothesis describes how these two at-
tributes are believed to be related, e.g., the coupling of the modules identified
via a product’s design is hypothesized to be negatively related to the final code
maintainability. Empirical hypotheses cannot describe a specific functional form
for this hypothesized dependency, because no measures have been yet defined
for the independent and the dependent attributes. These definitions are carried
out in the remainder of the measure definition process. So, empirical hypothe-
ses are not statistical ones and cannot be tested. However, in the last phase of
the GQM/MEDEA process (see Section 7.4), when specific measures have been
defined for the independent and the dependent attributes, empirical hypotheses
will be instantiated into statistical (and therefore testable) hypotheses.

7.2 Definition of Measures for the Independent Attributes

The process used to define measures for independent attributes is in Fig. 5(b).
Independent attributes are formalized to characterize their measures, in ways
like those in Sections 3 and 4. If an axiomatic approach is chosen, it is necessary
to formalize entities via abstractions (e.g., graph models), which are built based
on the entities, the independent attributes and their defining axioms. Once a cor-
rect abstraction is built, the axioms can be instantiated, i.e., a precise mapping
of the specific characteristics of the model can be done onto the characteristics of

Fundamental Aspects of Software Measurement 41

management

corporate
objectives

Define
Empirical

Hypotheses

empirical
hypotheses

entities +
independent
attributes

entities +
dependent
attributes

Setting of the
Empirical Study literature

experience
factory

Instantiate
and Refine

Axioms

measures

independent
measures

Definition of
Measures for
Independent
Attributes

Define
Measurement

Goals

measurement
goals

Formalize
Independent

Attributes

Identify
Abstractions

Define
Independent

Measures

Validate
Independent

Measures

axioms

axioms

abstractions

abstractions

axioms

axioms abstractions

refined
axioms

refined
axioms

measures

independent
measures

independent
attributes

entities +
independent
attributes

literature
experience

factory

Instantiate
and Refine

Axioms

measures

dependent
measures

Definition of
Measures for
Dependent
Attributes

Formalize
Dependent
Attributes

Identify
Abstractions

Define
Dependent
Measures

Validate
Dependent
Measures

axioms

axioms

abstractions

abstractions

axioms

axioms abstractions

refined
axioms

refined
axioms

measures

dependent
measures

dependent
attributes

entities +
dependent
attributes

Instantiate
and Refine
Empirical

Hypotheses

empirical
hypotheses

Hypothesis Refinement
and Verification

Verify
Empirical

Hypotheses

refined
empirical
hypotheses

dependent
measures

independent
measures

literature
experience

factory

measures measures

 (a) (b)

 (c) (d)

Fig. 5. GQM/MEDEA: refined structure

42 S. Morasca

the mathematical model upon which the formalization of an attribute is based.
For instance, an abstraction of an object-oriented system can be obtained by
mapping each class onto a different element of a graph-based model and each
dependence between classes onto a relationship, like in Section 4. If a Measure-
ment Theory-based approach is used, we need to identify the entities, the rela-
tionships we intuitively expect among entities, and the composition operations
between entities first. In other words, we need to build the Empirical Relational
System first, and the Numerical Relational System later on. Note that using an
axiomatic approach may not provide all the information that is needed to build
a measure. Different measures, which will give different orderings of entities, can
be defined that satisfy a set of axioms. For instance, LOC and #Statements
both satisfy the axioms for size. However, given two program segments, it may
very well be that a program segment has a value for LOC greater than the other
program segment, but a smaller value for #Statements. So, an axiom set may be
incomplete, and additional properties may need to be introduced to refine it and
obtain a complete ordering of entities. These additional properties will depend
on the specific application environment. Based on this refined set of axioms, new
measures are defined or existing ones are selected for the attributes of entities.
Additional checks may be required to verify whether the defined measures really
comply with the refined set of axioms.

7.3 Definition of Measures for the Dependent Attributes

The GQM/MEDEA approach deals with independent and dependent attributes
of entities in much the same way, as can be seen from Fig. 5(c). For instance, if
our dependent attribute is a process attribute like maintenance effort, then effort
can be modeled as a type of size. If our dependent attribute is maintainability,
then we can use a Probability Representation approach like the one illustrated in
Section 6.2. In the context of experimental design, the definition of measures for
independent and dependent attributes via an organized and structured approach
has the goal of reducing the threats to what is referred to as construct validity
[37], i.e., the fact that a measure adequately captures the attribute it purports
to measure. Although construct validity is key to the validity of an experiment,
few guidelines exist to address that issue.

7.4 Hypothesis Refinement and Verification

Fig. 5(d) shows the steps carried out for hypothesis refinement and verification.
The empirical hypotheses established as shown in Section 7.1 need to be refined
and instantiated into statistical hypotheses to be verified, by using the mea-
sures defined for the independent and dependent attributes. One possibility is to
provide a specific functional form for the relationship between independent and
dependent measures, e.g., a linear relationship, so a correlation would be tested
in a statistical way, based on actual development data. (Statistically testing as-
sociations would not be sufficient, because this does not lead to a prediction
model, as we assume in this section for validating software measures.) Typically,

Fundamental Aspects of Software Measurement 43

additional data analysis problems have to be addressed such as outlier analysis
[3] or the statistical power [19] of the study. The predictive model can be used
to verify the plausibility of empirical hypotheses, in addition to being used as a
prediction model in its own right.

8 Conclusions and Future Work

In this paper, we have shown a number of approaches for dealing with the funda-
mental aspects of Software Measurement, by describing the notions of Measure-
ment Theory for both internal and external software attributes, the definition of
properties for software measures via Axiomatic Approaches, and the proposal of
an integrated process where the foundational aspects of Software Measurement
can be coherently used.

A number of research and application direction should be pursued, including

– using Measurement Theory for modeling internal and external software at-
tributes in a way that is consistent with intuition

– refining Axiomatic Approaches by building generalized consensus around the
properties for software attributes

– extending Axiomatic Approaches to other software attributes of interest and
understanding the relationships between different software attributes

– defining and refining processes for using the foundational aspects of Software
Measurement in practice.

Acknowledgments. This work has been partially supported by project
“Metodi e tecniche per la modellazione, lo sviluppo e la valutazione di sistemi
software” funded by Università degli Studi dell’Insubria.

References

1. ISO/IEC 9126-1:2001- Software Engineering - Product Quality Part 1: Quality
Model. ISO/IEC (2001)

2. ISO/IEC 9126-2:2002- Software Engineering - Product Quality Part 1: External
Metrics. ISO/IEC (2002)

3. Barnett, V., Lewis, T.: Outliers in statistical data, 3rd edn. John Wiley & Sons
(1994)

4. Basili, V.R.: The Experience Factory and Its Relationship to Other Improvement
Paradigms. In: Sommerville, I., Paul, M. (eds.) ESEC 1993. LNCS, vol. 717, pp.
68–83. Springer, Heidelberg (1993)

5. Basili, V.R., Caldiera, G., Rombach, H.D.: The Experience Factory. Encyclopedia
of Software Engineering, vol. 2, pp. 511–519. John Wiley & Sons (2002),
http://books.google.es/books?id=CXpUAAAAMAAJ

6. Basili, V.R., Rombach, H.D.: The tame project: Towards improvement-oriented
software environments. IEEE Transactions on Software Engineering 14(6), 758–
773 (1988)

http://books.google.es/books?id=CXpUAAAAMAAJ

44 S. Morasca

7. Basili, V.R., Zelkowitz, M.V., McGarry, F.E., Page, G.T., Waligora, S., Pajer-
ski, R.: Sel’s software process improvement program. IEEE Software 12(6), 83–87
(1995)

8. Briand, L.C., Daly, J.W., Wüst, J.: A unified framework for cohesion measurement
in object-oriented systems. Empirical Software Engineering 3(1), 65–117 (1998)

9. Briand, L.C., Differding, C., Rombach, H.D.: Practical guidelines for measurement-
based process improvement. Software Process: Improvement and Practice 2(4),
253–280 (1996),
http://www3.interscience.wiley.com/journal/24853/abstract

10. Briand, L.C., Morasca, S., Basili, V.R.: Property-based software engineering
measurement. IEEE Transactions on Software Engineering 22, 68–86 (1996),
http://portal.acm.org/citation.cfm?id=229713.229722

11. Briand, L.C., Morasca, S., Basili, V.R.: Defining and validating measures for object-
based high-level design. IEEE Transactions on Software Engineering 25, 722–743
(1999), http://portal.acm.org/citation.cfm?id=325392.325404

12. Briand, L.C., Morasca, S., Basili, V.R.: An operational process for goal-driven
definition of measures. IEEE Transactions on Software Engineering 28, 1106–1125
(2002), http://portal.acm.org/citation.cfm?id=630832.631301

13. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE
Transactions on Software Engineering 20(6), 476–493 (1994)

14. DeMarco, T.: Structured analysis and system specification. Yourdon computing
series. Yourdon, Upper Saddle River (1979)

15. Fenton, N., Pfleeger, S.L.: Software metrics: a rigorous and practical approach, 2nd
edn. PWS Publishing Co., Boston (1997)

16. Fenton, N.E.: Software metrics - a rigorous approach. Chapman and Hall (1991)

17. Halstead, M.H.: Elements of software science. Operating and programming systems
series. Elsevier (1977), http://books.google.com/books?id=zPcmAAAAMAAJ

18. Henry, S.M., Kafura, D.G.: Software structure metrics based on information flow.
IEEE Transactions on Software Engineering 7(5), 510–518 (1981)

19. Kendall, M.G., Stuart, A.: The advanced theory of statistics, 4th edn. C. Griffin,
London (1977)

20. Krantz, D.H., Luce, R.D., Suppes, P., Tversky, A.: Foundations of Measurement,
vol. 1. Academic Press, San Diego (1971)

21. Lakshmanan, K.B., Jayaprakash, S., Sinha, P.K.: Properties of control-flow com-
plexity measures. IEEE Transactions on Software Engineering 17(12), 1289–1295
(1991)

22. McCabe, T.: A complexity measure. IEEE Transactions on Software Engineer-
ing 2(4), 308–320 (1976)

23. Morasca, S.: Refining the axiomatic definition of internal software at-
tributes. In: Proceedings of the Second ACM-IEEE International Symposium
on Empirical Software Engineering and Measurement, ESEM 2008, Kaiser-
slautern, Germany, October 9-10, pp. 188–197. ACM, New York (2008),
http://doi.acm.org/10.1145/1414004.1414035

24. Morasca, S.: A probability-based approach for measuring external attributes of
software artifacts. In: Proceedings of the 2009 3rd International Symposium on
Empirical Software Engineering and Measurement, ESEM 2009, Lake Buena Vista,
FL, USA, October 15-16, pp. 44–55. IEEE Computer Society, Washington, DC
(2009), http://dx.doi.org/10.1109/ESEM.2009.5316048

http://www3.interscience.wiley.com/journal/24853/abstract
http://portal.acm.org/citation.cfm?id=229713.229722
http://portal.acm.org/citation.cfm?id=325392.325404
http://portal.acm.org/citation.cfm?id=630832.631301
http://books.google.com/books?id=zPcmAAAAMAAJ
http://doi.acm.org/10.1145/1414004.1414035
http://dx.doi.org/10.1109/ESEM.2009.5316048

Fundamental Aspects of Software Measurement 45

25. Morasca, S., Briand, L.C.: Towards a theoretical framework for measuring
software attributes. In: Proceedings of the 4th International Symposium on
Software Metrics, IEEE METRICS 1997, Albuquerque, NM, USA, Novem-
ber 5-7, pp. 119–126. IEEE Computer Society, Washington, DC (1997),
http://portal.acm.org/citation.cfm?id=823454.823906

26. Musa, J.D.: A theory of software reliability and its application. IEEE Transactions
on Software Engineering 1(3), 312–327 (1975)

27. Musa, J.D.: Software Reliability Engineering. Osborne/McGraw-Hill (1998)
28. Oman, P., Hagemeister, J.R.: Metrics for assessing a software system’s maintain-

ability. In: Proceedings of ICSM 1992, Orlando, FL, USA, pp. 337–344 (1992)
29. Oviedo, E.I.: Control flow, data flow and program complexity. In: Proceedings

of the 4th Computer Software and Applications Conference, COMPSAC 1980,
Chicago, IL, USA, October 27-31, pp. 146–152. IEEE Press, Piscataway (1980)

30. Pap, E.: Some elements of the classical measure theory, pp. 27–82. Elsevier (2002),
http://books.google.je/books?id=LylS9gsFEUEC

31. Poels, G., Dedene, G.: Comments on property-based software engineering measure-
ment: Refining the additivity properties. IEEE Transactions on Software Engineer-
ing 23(3), 190–195 (1997)

32. Poels, G., Dedene, G.: Distance-based software measurement: necessary and suffi-
cient properties for software measures. Information & Software Technology 42(1),
35–46 (2000)

33. Prather, R.E.: An axiomatic theory of software complexity measure. The Computer
Journal 27(4), 340–347 (1984)

34. Roberts, F.: Measurement Theory with Applications to Decisionmaking, Utility,
and the Social Sciences, Encyclopedia of Mathematics and its Applications, vol. 7.
Addison-Wesley (1979)

35. Sauro, J., Kindlund, E.: A method to standardize usability metrics into a single
score. In: CHI 2005: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, Portland, Oregon, USA, pp. 401–409 (2005)

36. Shepperd, M.J.: Foundations of software measurement. Prentice Hall (1995)
37. Spector, P.E.: Research designs. Quantitative applications in the social sciences.

Sage Publications (1981), http://books.google.com/books?id=NQAJE_sh1qIC
38. Stevens, S.S.: On the theory of scales of measurement. Science 103(2684), 677–680

(1946), http://www.ncbi.nlm.nih.gov/pubmed/16085193
39. Weyuker, E.J.: Evaluating software complexity measures. IEEE Transactions on

Software Engineering 14(9), 1357–1365 (1988)
40. Yourdon, E., Constantine, L.L.: Structured design: fundamentals of a discipline of

computer program and systems design, 2nd edn. Yourdon Press, New York (1978)

http://portal.acm.org/citation.cfm?id=823454.823906
http://books.google.je/books?id=LylS9gsFEUEC
http://books.google.com/books?id=NQAJE_sh1qIC
http://www.ncbi.nlm.nih.gov/pubmed/16085193

Combining Evidence and Meta-analysis

in Software Engineering

Martin Shepperd

Brunel University,
London, UK

martin.shepperd@brunel.ac.uk

Abstract. Recently there has been a welcome move to realign soft-
ware engineering as an evidence-based practice. Many research groups
are actively conducting empirical research e.g. to compare different fault
prediction models or the value of various architectural patterns. How-
ever, this brings some challenges. First, for a particular question, how
can we locate all the relevant evidence (primary studies) and make sense
of them in an unbiased way. Second, what if some of these primary
studies are inconsistent? In which case how do we determine the ‘true’
answer? To address these challenges, software engineers are looking to
other disciplines where the systematic review is normal practice (i.e. sys-
tematic, objective, transparent means of locating, evaluating and syn-
thesising evidence to reach some evidence-based answer to a particular
question). This chapter examines the history of empirical software engi-
neering, overviews different meta-analysis methods and then describe the
process of systematic reviews and conclude with some future directions
and challenges for researchers.

1 Introduction – A Brief History of Empirical Software
Engineering

Software engineering (SE) is a relatively new discipline with the term only having
been coined just over 40 years ago at the now famous 1968 NATO Conference
[38]. Its focus is the application of theory from disciplines such as computer
science to the practice of developing non-trivial software systems for real users
under real constraints. This was the consequence of a growing realisation that
scale was the ‘enemy’ and that techniques and approaches suitable for the im-
plementation of small algorithms did not necessarily scale up. Figure 1 shows a
simplified timeline of developments in empirical software engineering.

Over the next two decades there was rapid growth in ideas for design, im-
plementation and testing methods and tools, new representations and models,
for good practice and pathological code structures, for effective project manage-
ment and dialogue with clients, for software reuse and mathematical means of
reasoning about the correctness of code [50]. Many claims and counter-claims
were made for competing approaches. However, evidence was primarily anec-
dotal and based on the opinions of experts — often self-proclaimed. From this

A. De Lucia and F. Ferrucci (Eds.): ISSSE 2009-2011, LNCS 7171, pp. 46–70, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Combining Evidence and Meta-analysis in Software Engineering 47

Fig. 1. A Timeline for Empirical Software Engineering

period of great activity emerged an appreciation of the need to empirically eval-
uate these techniques and methods. From small beginnings in the 1980s arose a
number of dedicated conferences and journals to the topic of empirical software
engineering and a vast number of outputs1. Unsurprisingly, for an emerging dis-
cipline, some of the work was ad hoc and it was often difficult to discern an
overall pattern.

By the 1990s the notion of explicitly constructing a body of empirical evidence
began to gain momentum. At the forefront were the ideas of Basili and his co-
workers with the proposal that individual primary studies should be seen as part
of a “family of studies” rather than isolated activities [4]. Thus, studies could
be replicated, context variables varied and results refined so that a framework
for organising related studies could be built. Such an approach relies upon some
narrative-based synthesis of the results and so did not fully solve the problem of
how this might be accomplished in a rigorous fashion. It also relies upon having
an appropriate set of initial studies for replication.

In parallel, other researchers such as Hayes [22], Pickard et al. [42] and Miller
[37] started to consider the extent to which empirical results might be pooled
for meta-analysis. The difficulty they all identified was that few primary stud-
ies provide access to raw data, or sufficient experimental details; consequently,
pooling was not possible or extremely difficult. Indeed Pickard et al. concluded
that without agreed sampling protocols for properly defined software engineering
populations, and a set of standard measures recorded for all empirical studies,

1 A simple search of the google scholar bibliographic database using the terms ‘em-
pirical’ AND ‘software engineering’ retrieved more than 45000 hits and whilst I
acknowledge this is not a sophisticated research tool it is indicative of substantial
research effort in this area.

48 M. Shepperd

meta-analyses should not be conducted [42]. So for these reason meta-analysis
of primary studies within SE has not been pursued until recently.

Nevertheless, in the following decade, there has been a move to explicitly po-
sition software engineering as an evidence-driven discipline. At the forefront was
Kitchenham et al. [32] and Dyb̊a et al. [16]). Their ideas were strongly influ-
enced by clinical practice and the formation of the Cochrane Collaboration [10].
Kitchenham and Charters [28] then went on to formulate a set of guidelines for
systematic reviews specifically for software engineers and these were principally
derived from clinical practice. Their ideas quickly took hold and in the last six or
seven years many systematic reviews have been conducted across a wide range
of topics.

Kitchenham et al. [27,30] performed a systematic review of systematic lit-
erature reviews published between January 2004 and June 2008 (known as a
meta-review or tertiary study) and found a total of 53 studies that satisfied
their quality and inclusion criteria. This has recently been updated by da Silva
et al. [49] to include the period up until the end of December 2009 who found an
additional 67 new studies making a total of 120 in period of just six years with
a dramatic increase in the rate of activity towards the end of that period. Both
groups have reported that quality — essentially meaning adherence to some de-
fined method for conducting the review — appeared also to be increasing. By
contrast, in yet another tertiary study, Cruzes and Dyb̊a [13] were somewhat
more critical of the prevailing state of affairs. In particular they found that
there was limited attention actually paid to the synthesis of results as opposed
to merely cataloguing what existed. Less than half of all Reviews contained any
synthesis, and of those that did, a narrative or relatively informal approach pre-
dominated. In other words, researchers are effective at locating primary studies
but less so at combining their results to form some kind of conclusion. There
are at least two contributory factors. First, the methods and reporting styles of
many of the primary studies are so diverse as to make synthesis difficult, that
is the problems noted by [42] persist. Second, many Reviews are not based on
single answerable questions but instead seek to understand research activity in
a particular field. These are known as Mapping Studies.

Presently, the range of Review topics is extremely diverse, ranging from map-
ping studies of distributed software development and agile software development,
to a comparison of regression modelling with case-based reasoning for project
prediction. Undoubtedly these reviews collectively provide a valuable resource
and a basis for empirical software engineers to take stock of what has been ac-
complished to date and to plan effectively for the future. It is difficult to see how
SE can proceed as a scientifically-based subject without careful cataloging and
reappraisal of the many primary studies being conducted and published.

The remainder of this chapter is organised as follows. The next section ex-
amines what we mean by scientific, empirical evidence, how we can appraise its
quality and how we can integrate more than one item of evidence (meta-analysis).
Section 3 then looks at the complete Systematic Review process and how this

Combining Evidence and Meta-analysis in Software Engineering 49

incorporates elements of evidence appraisal and meta-analysis as well address-
ing basic questions such as what is goal of the review. The section concludes
with a brief look at two international groups associated with the production,
validation and publication of Systematic Reviews, namely the Cochrane and
Campbell Collaborations. In Section4 we then examine how this specifically ap-
plies to empirical software engineering. The chapter concludes by considering
the opportunities and challenges for Systematic Reviews in the future.

2 Using Evidence

In everyday language, evidence is an extremely broad notion simply meaning
anything that might be used to show the truth of some assertion, however,
within this chapter I concentrate upon scientific evidence and, specifically, em-
pirical scientific evidence. By scientific I mean evidence that has been obtained in
accordance to generally accepted principles, that is by adhering to some method
and secondly that it is documented in a full and standard manner. By empirical
I mean evidence that is derived from observation. For this reason one would
not generally admit anecdote or opinion as scientific evidence. This is not a rea-
son to deprecate qualitative data which when rigorously collected, analysed and
documented can yield valuable, high quality scientific evidence.

2.1 Types of Evidence

Empirical scientific evidence may take many forms. It may be quantitative or
qualitative or a mixture. It is also important to consider the method by which
the evidence is obtained as this provides its meaning and significance. Classic
methods include: controlled experiments and quasi-experiments; case studies;
surveys; action research and ethnography. These are well documented elsewhere,
see for instance [3,5,47,56,58]. One important point to stress is that despite such
neat classification schemes many studies do not exactly fall into one category.
Nor is there unanimity regarding definitions although the principles of objec-
tivity through dealing with sources of bias, transparency and repeatability are
widespread.

Nevertheless the concept of a hierarchy of evidence (in terms of desirability
and trustworthiness) is quite widespread. Typically, evidence from systematic
reviews and randomised controlled experiments (RCTs) are placed at the top of
the hierarchy, whilst evidence from expert opinion is placed at the bottom. The
underlying idea is that this will help us weigh or select evidence accordingly.
However this can be a very simplistic approach. There are many reasons why
formal experiments may not be available or appropriate such as:

– there may ethical reasons why the allocation of participants to a partic-
ular treatment may be considered inappropriate, and this problem is not
limited to clinical research, for example, withholding an educational oppor-
tunity from a group of students in order to provide a control might well be
considered unethical.

50 M. Shepperd

Fig. 2. An Evidence Hierarchy (Adapted from [19])

– some interventions may be perceived as, or simply are, unpleasant and there-
fore hard to recruit volunteer participants.

– researchers may not have control over the allocation of the study units, due
to reasons of cost or lack of influence. For example, a company will decide
what software development method or programming language they intend to
use for a particular project and this will usually be beyond the investigator’s
control.

– the effect may be very infrequent.
– dealing with a very new or emerging idea that appears significant so we wish

to use the available evidence immediately.

So whilst there is some presumption that randomised controlled trials (RCTs)
are the best quality empirical evidence, often referred to as the “gold standard”,
the above list indicates some reasons why they may not always be the most
appropriate form of evidence. By extending the hierarchy to take account of
the nature of research enquiry Evans [19] has produced a matrix (see Figure 2)
which might be helpful if appraising the value of empirical evidence, though we
might view well conducted case studies in a slightly more generous light than
the matrix suggests.

In addition, many qualitative researchers strongly argue that other techniques
such as ethnography enable a richer, fuller picture of the phenomena of interest
and this may be of particular relevance where the basic constructs are not fully
understood, e.g. quality of life, professional experience, etc. There has been some

Combining Evidence and Meta-analysis in Software Engineering 51

interest in using such empirical methods within software engineering for example
[5,55] and more generally, case studies, surveys and interviews. Seaman [46] gives
a useful overview of using methodologically sound qualitative methods within
software engineering.

Examples of observational studies are (i) using data from an existing database,
(ii) a cross-sectional study, (iii) a case series, (iv) a case-control design, (v) a
design with historical controls, (vi) a cohort design and (vii) an ethnographic
study. Such studies may also be more effective for assessing the effect of an
intervention in vivo as opposed to in vitro.

To summarise, there is a huge diversity of differing empirical research meth-
ods. Their suitability for providing high quality evidence is largely dictated by
relevance to the given research question and so the notion of some immutable
hierarchy that some types of evidence are always preferable is rather simplistic.

2.2 Appraising Evidence Quality

What we have not yet considered is the strength of the evidence deriving from
(i) the importance that we might view as being inherent in the type of empir-
ical research and (ii) how well that research has been conducted including its
relevance to the research question at hand. An example of the former might
be, we would attach less weight to an anecdote from an expert than to a RCT.
Examples of the latter might be RCTs with no, or ineffectual, blinding or obser-
vational studies with unbalanced treatments and a confounder. To ignore study
quality seems particularly risky as it may result in highly misleading evidence
becoming influential in our decision making. Unfortunately many independent
studies have shown the prevalence of statistical and experimental design errors
and / or poor reporting, see for example Yancey [57], Altman [1] and specifically
within the context of empirical software engineering, Kitchenham et al. [31].

Most approaches to assessing the quality of a primary study are based on the
use of checklists or scoring procedures where individual items are summed to
produce an overall score. However, in a meta-analysis of 17 primary studies (all
RCTs) using no less than 25 different quality instruments Jüni et al. [25] found
that the results differed widely. By comparing the difference in effect between
the ‘low’ and ‘high’ quality studies Jüni et al. investigated the extent to which
the different quality instruments detected bias. For example, was it possible that
that low quality studies were more likely to detect an effect, perhaps because of
researcher bias or poor blinding strategies?. Unfortunately they found no clear
pattern at all, with some studies reporting a negative difference in effect between
‘low’ and ‘high’ quality studies, others a positive difference and the majority no
difference at all. The authors concluded that using overall summary scores to
evaluate primary studies was ‘problematic’ and that researchers should focus
only on those aspects of a study design that were relevant and important to
their particular research question.

Determining the quality of qualitative or mixed data is even more challenging
not least because of the many different philosophical and evaluative traditions
that exist. One useful approach based upon a framework of 18 questions was

52 M. Shepperd

produced for the UK government [51]. In order to make the instrument more
generic the questions are aligned to high level aspects of a study which, in theory
would be present irrespective of specific details of the methodology. These cover
design, sampling, data collection, analysis, findings, reporting and neutrality. An
example of a question on sampling is:

How well defined is the sample design or target selection of cases or
documents?

Suggested quality indicators are then provided for each question, so for the above,
we have non-exhaustively:

Description of study locations / areas and how and why chosen.
Description of population of interest and how sample selection relates to
it (e.g. typical, extreme case, diverse constituencies etc.)

Naturally there is something of a trade off between the generality of a quality
instrument (i.e. how widely applicable it is) and its specificity. However, even
the most detailed of schemes will still require appraisers to exercise their judge-
ment. Interestingly, the Cochrane Collaboration in their handbook [23] do not
recommend either a scale nor a checklist, but instead domain-based evaluation.
This encourages the appraiser to consider a series of sources of bias under the
following headings:

– selection bias (of participants)
– performance bias (e.g. due to lack of blinding)
– detection bias (e.g. due to lack of blind analysis)
– attrition bias (e.g. due to drop outs or missing data)
– reporting bias (e.g. due to selectivity of the researchers)
– other sources of bias (a catch all for other problems not accounted for above)

Of course the instrument is only a guideline and still requires a good deal of skill
and judgement to apply it. In other words, there seems no simple mechanical
shortcut to determining primary study quality, much as some meta-analysts
might wish otherwise! This topic is re-visited in Section 3 where it is formally
embedded as part of the Systematic Review process.

2.3 Meta-analysis

Suppose we have more than one item of evidence? Indeed, suppose we have a
body of evidence which might be expected given science is — or at least usually
is — a cooperative endeavour? And, suppose these items are not necessarily
consistent? Results from different primary studies may vary for many reasons,
such as differences in:

– research designs
– the sample characteristics leading to biases in how participants are sampled

from underlying population

Combining Evidence and Meta-analysis in Software Engineering 53

– the intervention e.g. if we’re interested in the impact of using object-oriented
architecture and staff on different projects having undertaken different train-
ing courses or even simply having read different books

– measures of the treatment effect or response variable e.g. an organisation
where overtime is unpaid may record effort very differently to where overtime
is remunerated

– context or setting e.g. safety critical systems versus games software.

So how do we combine multiple results, otherwise known as research synthesis?
The idea of meta-analysis, i.e. pooling results from more than one primary study
was first proposed by the statistician Karl Pearson in the early 20th century in
which he combined a number of studies of typhoid vaccine effectiveness and
then conducted a statistical analysis. Thus meta-analysis is a quantitative form
of research synthesis. Although clinical subjects dominate, areas of application
span from “astronomy to zoology” [41].

Essentially there are two purposes to meta-analysis. First is to assess the
treatment effect (or effect size) that is common between the included primary
studies. But, second is to assess the variability in effect between studies, and then
to try to discover the reason for this variation. When there is variation between
studies we say that there is heterogeneity. If this is not properly investigated
this can threaten the validity of the meta-analysis. Plainly, some variation will
arise through chance so typically it must be measured using a statistic such as
I2 [24] which shows the proportion of variation across studies that is due to
heterogeneity rather than chance. Alternatively heterogeneity can be explored
visually by means of a forest plot.

A basic approach is to compare effect size from the various primary studies
in some standardised way. For a binary effect (e.g. has / does not have the dis-
ease) this is typically accomplished using odds ratios. For a continuous effect
(e.g. productivity) this may be done using an effect size measure such as dif-
ference between means standardised by the pooled standard deviation or that
of baseline study [18,21]. If there is high between-study variance then the pri-
mary study characteristics such as the population sampled, or type of study (if
there are different types of design) can be coded. These characteristics are then
used as independent variables to predict the differences in effect size. In this way
it may be possible to correct for some methodological weaknesses in studies.
Alternatively there may be evidence that there are distinct populations being
sampled e.g. different countries or ages in which case partitioning the studies and
re-analysing may be the best way forward. In this case the outcome will be an-
swers to more specific or local research questions. Different techniques have been
proposed for modelling and understanding the variation in effect (within and
between studies) and these include meta-regression and Bayesian meta-analysis
(see Sutton and Higgins for a more in depth discussion [54]).

Whilst one might have the impression that since randomised controlled tri-
als (RCTs) are deemed to form the “gold standard” and there would be little
purpose in trying to synthesise other weaker forms of evidence, there has re-
cently been something of a sea change. For example, Dixon-Woods et al. state

54 M. Shepperd

“[p]olicy-makers and practitioners are increasingly aware of the limitations of
regarding randomised controlled trials as the sole source of evidence.” [15]. As
previously discussed there are many compelling reasons why some or all of the
primary studies may not be experiments or RCTs.

There are are various techniques for meta-analysis of evidence from observa-
tional studies and in particular for dealing with qualitative data. Dixon-Woods
et al. [15] provide a very useful summary and a table of the strengths and weak-
nesses of different meta-analytic techniques aimed at either qualitative or mixed
primary data (e.g., content analysis, meta-ethnography, narrative analysis of
qualitative research reports and even Bayesian meta-analysis).

Thematic analysis is one possible tool for such meta-analysis. Thematic anal-
ysis — a common technique used in the analysis of qualitative data within pri-
mary research — can be adapted to systematically identify the main, recurrent
or most important (based on the review question) concepts across the multiple
studies that are part of the meta-analysis. It is flexible and might be seen as a
relatively ‘lightweight’ qualitative technique. However, this strength can also be
a potential weakness due to lack of clear and concise guidelines leading to an
“anything goes” approach. For a very brief overview see [2] and for more detailed
account with an example see [7].

Related are the guidelines on producing a narrative research synthesis by
Popay et al. [43]. The writers stress that they do not see narrative synthesis
(NS) as “second best” nor the research synthesis of last resort but a technique
that is not only complementary to more traditional quantitative meta-analysis
but also valuable in increasing the likelihood of the findings being adopted by
practitioners or policy-makers. The goal is “bringing together evidence in a way
that tells a convincing story [my emphasis]” [43]. As the name implies the pri-
mary input is the use of words and text in order to summarise primary studies
and explain the synthesis findings. The NS should focus on two aspects of a re-
search question, namely the effects of the intervention and factors that influence
the implementation of the intervention. The guidelines also suggest four main
elements to the narrative or story. Quoting from the Guidelines [43] these are:

– Developing a theory of how the intervention works, why and for whom
– Developing a preliminary synthesis of findings of included studies
– Exploring relationships in the data
– Assessing the robustness of the synthesis

Combining them produces a 2 × 4 matrix which gives a purpose for each sub-
component of the overall narrative. A distinctive feature of NS is the emphasis
upon theory building, something that can be neglected in meta-analysis. The
Guidelines describe many different techniques that can be deployed including
clustering, thematic and content analysis. However, it suggests a starting point is
to summarise each primary study as a single paragraph description. Discovering
patterns from these descriptions, particularly if there are a large number of
studies is difficult so other techniques such as tabulation and clustering come
into their own.

Combining Evidence and Meta-analysis in Software Engineering 55

The challenge is that Narrative Synthesis is not based on any generally ac-
cepted deep theory and so is vulnerable to individual bias and consequently
result in wrong conclusions. For this reason the Cochrane Collaboration has
expressed some caution about its use, nevertheless, theNS Guidelines contain
a great deal of useful advice, and might usefully be integrated into a formal
Systematic Review.

In terms of what should be reported, Stroup et al. [53] give a detailed checklist
under six main headings which given its breadth in many ways mirrors a full
Systematic Review described in Section 3. Specific to the actual analysis part of
meta-analysis are the following:

– an assessment of heterogeneity [of the primary study results]
– description of statistical methods (e.g., complete description of fixed or ran-

dom effects models, justification of whether the chosen models account for
predictors of study results ...)

– graphical summaries of individual study estimates and the overall estimate
– tables giving descriptive information for each included study
– results of sensitivity testing (e.g., subgroup analysis)
– an indication of the statistical uncertainty of the findings

However, some researchers remain very critical of the use of meta-analysis on
observational studies, most notably Shapiro [48] who argues that particularly
when dealing with small effects such an analysis is extremely vulnerable to the
bias of each primary study (since participants are not randomly allocated to
treatments) and other possible confounders. He concludes that meta-analyses
should only performed on controlled experiments. Nevertheless, this is something
of a minority position since it would require us to throw away much relevant
and high quality evidence and would be particularly difficult for many open or
complex research questions.

The general conclusion is that meta-analysis is a powerful tool but, unsurpris-
ingly, can be abused when:

– if it is used when there is no underlying model or theory (for example, Egger
et al. [17] flag up a meta-analysis that suggests causality between smoking
and suicide rates which is biologically implausible, and in any case it is the
social and mental states predisposing to suicide that are also co-vary with
smoking. Nevertheless it can be easy to persuade oneself of the ‘plausibility’
of some set of results post hoc.

– the precision is over-emphasised. Again Egger et al. put it “we think that
the statistical combination of studies should not generally be a prominent
component of reviews of observational studies.” [17].

– meta-analysis cannot turn poor quality studies into ‘gold’. If a primary study
is of very low quality then its conclusions are jeopardised irrespective of how
it is merged with other studies [48].

– sources of heterogeneity are ignored e.g. compare variance between types of
study, use of blinding, ... Address with sensitivity analysis, especially mixed
or random effects model.

56 M. Shepperd

Finally, irrespective of how ‘well’ the meta-analysis is performed, the problem
remains that if we are unsystematic in the way that we select evidence (from
empirical primary studies) we are exposing ourselves to various sources of bias.
In particular we need to consider the quality of evidence (this was addressed in
the previous section) and that we select all relevant evidence which is the goal
of a Systematic Review which will be discussed in the next section.

3 Systematic Reviews

It would be highly unusual for a single primary study to provide a definitive
answer to any question of much significance to practitioners. Therefore we need
to combine results from multiple primary studies. Traditionally researchers have
sought to achieve this by means of narrative reviews. These are characterised
by:

– convenience samples of relevant studies

– informal description of studies

– informal synthesis techniques such as subjective opinion

– reliance upon primary studies, which may be of low quality

– reliance upon primary studies that lack sufficient power to detect effects,
hence they will be perceived as confirmation of the null hypothesis (i.e. no
effect)

– opaque reasoning that is difficult to submit to independent scrutiny

Although the issues of informal synthesis and opaque reasoning are addressed
by a formal meta-analysis, the other difficulties remain. Clearly such haphazard
approaches can lead to a good deal of bias. This bias may arise from multiple
sources including:

Confirmation bias is the tendency of researchers to confirm their prior belief
or hypothesis [40].

Publication bias is the disproportionate likelihood of ‘positive’ results being
published and the problem of ‘negative’ or ‘neutral’ results never being writ-
ten up, otherwise known as the “File Drawer problem” [44].

Preference bias (Luborsky et al. [33] found in a meta-analysis of 29 primary
studies in psychotherapy that almost 70% of the outcome variability could
be predicted by the research team’s ‘allegiance’ to a particular therapy or
technique. Whilst some of this behaviour may be down to sheer prejudice
it is also likely that ‘allegiance’ may also be a proxy for expertise. Many
modern techniques are complex and require a great deal of expertise to apply
effectively. This phenomenon has also been noted in machine learning where
Michie et al. [36] comment that “in many cases authors have developed their
own ‘pet’ algorithm in which they are expert but less so in other methods”
which confounds comparison studies.

Combining Evidence and Meta-analysis in Software Engineering 57

Table 1. A Comparison of Narrative Reviews, Meta-analysis and Systematic Reviews
(adapted from [39])

Traditional Review Meta-analysis Systematic Review

Method implicit Research synthesis may be explicit Method explicit in the Review
protocol

No real question / lack of focus Limited focus Answers focused on specified
research question

Biased / ad hoc selection of studies Biased / ad hoc selection of studies All relevant primary studies
included

Unquestioning acceptance of primary Possible appraisal of study quality Quality of primary studies
study results systematically appraised

No justification of reviewer Conclusions based on meta-analysis Conclusions based on the data
conclusions derived (might involve a

meta-analysis)

Results presented in black and white Results illustrate the hetero- Results illustrate the hetero-
terms without indicating the geneity of data allowing geneity of data allowing
uncertainty or variability quantification of uncertainty quantification of uncertainty

Not only are narrative reviews2 vulnerable to bias, but the societal cost deriving
from a biased or incomplete or non-rigorous analysis may be substantial. In
medicine this might, and indeed was shown to, lead to inappropriate clinical
interventions resulting in harm to patients. In areas such as social policy and
education, sub-optimal decisions might be made to the detriment of society. And
likewise in software engineering, given the ubiquity of software-intensive systems
in modern life, again the scope for harm (when such systems do not perform
as intended) or wasted opportunities and resources (as a result of cost overruns
and inefficient methods and procedures) is vast.

The growing appreciation of these problems, first in medicine and then in
other areas, has led to the popularising of the Systematic Review. The late
Archibald Cochrane, a leading epidemiologist, challenged the medical commu-
nity back in the early 1970s concerning the absence of summaries of “all relevant
randomised controlled trials [RCTs]” within a particular topic. Ultimately this
resulted in the establishment of the Cochrane Collaboration [10] (named in hon-
our of Cochrane) in 1993. This Collaboration was (and is) predicated upon the
notion of performing Systematic Reviews to synthesise results from all relevant
primary studies where typically RCTs were seen as the the highest quality of
primary study due to their blinding and design to avoid bias. Table 1 contrasts
the three approaches.

Whilst different groups and methodologists3 propose varying numbers of steps
and stages, overall there is a good deal of similarity and the actions needed can

2 Narrative reviews, as opposed to narrative synthesis which was described in Section
2.3.

3 See for example, The Cochrane Collaboration [23], Sackett et al. [45], Needleman
[39] and Kitchenham et al. [28].

58 M. Shepperd

Fig. 3. The Five Stages of a Systematic Review

be mapped to five steps (as outlined by Cooper [11] and extended in [12] and
shown diagrammatically in Figure 3. Note that the neat stages and absence of
any backtracking or parallelism will in practice be illusory.)

The five basic steps therefore are:

A. Problem formulation This involves clarifying the purpose of the proposed
Systematic Review and carefully specifying the research question(s) in a
review protocol.

B. Locating evidence This involves a search of the literature and extraction
of information from relevant primary studies. Systematic reviews very much
emphasise the need to find, and use, all relevant evidence.

C. Appraising evidence quality A Systematic Review will have explicit qual-
ity inclusion criteria so that the overall synthesis is not contaminated by low
quality studies.

D. Evidence synthesis and interpretation Relevant data must be extracted
from the primary studies as a preliminary to the ‘research synthesis’ which
involves some procedure — not necessarily quantitative — to make infer-
ences with respect to the initial research questions based upon the totality
of the evidence located. Note that, as indicated in Figure 3 meta-analysis is
a form of research synthesis and might or might not be part of a Systematic
Review.

E. Reporting A Review Report will contain some narrative, statistics (even
if only simple descriptive statistics), graphs, charts and diagrams, tables,
discussion of the findings and a list of threats to validity.

We now discuss each of these stages in more detail.

A. Problem Formulation. This involves clarifying the purpose of the pro-
posed Systematic Review and carefully specifying the research question(s). Be-
cause the research question is so central to the whole conduct of a Survey many
researchers find it helpful to adopt the PICO structure [39] where the question
should state the Population, Intervention, Comparison and Outcome. An ex-
ample taken from a Systematic Review[35] on comparing the use of local and
global data for software project effort prediction systems is given in Table 2.

Combining Evidence and Meta-analysis in Software Engineering 59

Table 2. Example PICO Definition from MacDonell and Shepperd Review Comparing
Local and Cross-Company Databases [35]

Research question: What evidence is there that cross-company estimation models are at least
as good as within-company estimation models for predicting effort for
software projects?

PICO definition:
Population: Local and global data sets relating to non-trivial, commercial software projects
Intervention: Effort estimation modelling – using global data
Comparison intervention: Effort estimation modelling – using local data
Outcomes: More accurate models, reduced bias in effort estimation

The research question and purpose should be detailed in the review protocol
which is a public statement of how the Review will be conducted. The very first
thing must be to consider the significance of the proposed question(s) and how
interesting the answer will be. Who are the stakeholders and how will they benefit
from a rigorous answer to the research question? Are other research groups
tackling the same question thereby rendering the proposed Review redundant?

A well conducted review is highly resource intensive so the opportunity cost
will be considerable. In addition it is appropriate to try to estimate the likely
size of the body of evidence. Obviously this will not be definitively known until
after a search has been performed, however, if it is likely to be very small (per-
haps less than five primary studies) a Mapping Study may be a more suitable
approach. On the other hand if a large body of evidence is anticipated, the ques-
tion of whether commensurate resources are available for Review arises. A half
completed Review is of absolutely no value to anyone. A slapdash Review has
negative value.

Another important topic that should be explicitly set out in the protocol is
the inclusion / exclusion criteria for primary studies.The danger, if they are
not clear, is that individual members of the Review team may make differing
decisions or that there may be drift over the course of the study and lastly the
context of the Review may be unclear to its consumers (both practitioners and
consumers).

The protocol should also define the proposed Review process such as the
databases to be searched and what validation procedures will be employed. More
details of a typical structure, as mandated by the Campbell Collaboration, are
given in Section 3.3. It is important since it firstly enables feedback and improve-
ment prior to the commencement of the Review, secondly it provides a clear and
detailed description for the scrutiny of other researchers and thirdly it serves as a
reference statement for the Review team to prevent misunderstandings or drift.

B. Locating Evidence. This second phase involves the literature search
and extraction of information from relevant primary studies. With the current
widespread availability of bibliographic databases such as sciencedirect and spe-
cialised search engines such as google scholar this will almost certainly involve
automated searching using one or more search queries. Systematic reviews very
much emphasise the need to find, and use, all relevant evidence.

60 M. Shepperd

The challenge is to devise a search with high precision and recall. By this I
mean a query that is efficient and does not retrieve large numbers of irrelevant
studies that have to be hand checked, but at the same time has good coverage
and so does not miss relevant studies. Usually there is something of a tradeoff
between these two goals. Factors that contribute to the ease (or difficulty) of
searching include the existence of an agreed terminology and bodies of evidence
located within a single discipline.

Sometimes it may be effective to structure the search query along the lines of
the research question particularly if a PICO structure has been employed. This
might result in a query something like:

(<Pop term1> OR <Pop term2> ...) AND (<Int term1> OR <Int term2> ...) AND
(<Comp term1> OR <Comp term2> ...) AND (<Out term1> OR <Out term2> ...)

One technique for assessing the quality of a search is the capture-recapture
method which whilst it may not give a precise estimate of the size of the missed
literature may be useful in providing a ‘ballpark’ figure [52]. Even where this
is not appropriate or possible, the underlying concept can be used to test the
effectiveness of a search strategy by assessing its ability to retrieve previously
known studies. If known studies are missed then the search should be augmented.

On occasions where Published reference lists should be scanned to determine if
other relevant studies exist. Next authors of retrieved studies should be approach
to discover if they have produced other relevant studies missed by the automated
search, for example, because they are in press.

Having retrieved what is typically a large number of studies these then must
be scrutinised for relevance according to the explicit inclusion criteria of the
protocol. Often this can be accomplished by successively more detailed scrutiny
so for instance the first pass scans the title and journal / conference, the next
pass might read the abstract and the final shortlist of candidate papers will be
read in their entirety. All decisions made should be documented so that a full
audit trail is available. In addition since applying the inclusion criteria generally
requires some degree of judgement it is a good idea to independently repeat
some or all of the process to assess the degree of consistency. Formal measures
of inter-rater reliability such as Cohen’s κ should be used.

C. Appraising Evidence Quality. A criticism that is often made of the narra-
tive review is a tendency towards unquestioning acceptance of all located primary
studies. In contrast, a Systematic Review will have explicit quality inclusion cri-
teria so that the overall synthesis is not contaminated by low quality studies.
As previously discussed in Section 2.2, many instruments have been proposed to
help researchers assess candidate studies for inclusion. In a pleasingly circular
way, [26] carry out a systematic review of different approaches for determining
primary study quality. They found an astonishing 121 different instruments just
in the field of medicine but disappointingly found little empirical evidence as
to the validity of differing techniques nor that there was any “gold standard”
critical appraisal tool for any study design, or any widely accepted “generic tool

Combining Evidence and Meta-analysis in Software Engineering 61

that can be applied equally well across study types”. Therefore their advice was
that the “interpretation of critical appraisal of research reports currently needs
to be considered in light of the properties and intent of the critical appraisal tool
chosen for the task” [26].

Typical quality instruments tend to take the form of additive checklists where
a study receives some score out of n where n is the number of items within
the list. Full compliance scores one, partial a half and no compliance zero. A
good example in software engineering is the list used by Kitchenham et al. in
their review of local versus cross-company data-sets for cost prediction [29]. The
dangers are, as some commentators have pointed out, that some choices are
highly arbitrary (e.g. why is a dataset of n < 10 judged to be poor? Why not 8
or 11? Another problem is the one-size fits all mentality particularly where there
are mixed types of primary study. In addition many concerns have been raised
to the approach of summary scores [25].

Rather than simply using the quality instrument as a threshold for inclusion,
it is recommended that (i) researchers identify those aspects of primary study
quality that are relevant and important to the research question and (ii) any
analysis of effect be performed both with and without the lower quality studies.
This at least highlights whether such studies do ‘contaminate’ the Review. What
is not recommended is to weight results by quality and the use of compound
scales and checklists [39].

D. Evidence Synthesis and Interpretation. Data extraction from the pri-
mary studies should involve the use of a form or data collection spreadsheet
with appropriate headings and categories. Wherever subjective judgement is in-
volved some sort of validation is required usually by comparing two independent
checkers. This implies that two researchers are the minimum for any Systematic
Review.

Next, interpreting the evidence that has been selected is central to the whole
review process. Many writers refer to this as ‘research synthesis’ which involves
some procedure— not necessarily quantitative— to make inferences with respect
to the initial research questions based upon the totality of the evidence located.

E. Reporting. Some communities have detailed reporting protocols for Sys-
tematic Reviews. Whatever the minutiae it would be expected that a Review
Report will contain some narrative, statistics (even if only simple descriptive
statistics), graphs, charts and diagrams, tables and threats to validity.

3.1 Tertiary Reviews and Mapping Studies

Closely related to Systematic Reviews are Tertiary Reviews and Mapping Stud-
ies. A Tertiary Review or Meta-Review is a Systematic Review of Systematic
Reviews and might be conducted to explore methodological or quality related
questions, for example, what topics are being explored, what types of primary
study are included, or what quality instruments are used to assess primary stud-
ies? Such reviews will follow the same methodology as a regular Systematic

62 M. Shepperd

Review. Appendix C of the Kitchenham and Charters Guidelines [28] contains
an example of protocol specifically for a Tertiary Review. A recent example in
software engineering is the Tertiary Review by Cruzes and Dyb̊a[13] that inves-
tigated how Systematic Reviews the process of synthesis and concluded that this
was largely neglected.

In contrast, a Mapping Study tends to be more general than a Systematic
Review, focusing upon a research topic rather than a specific question (although
clearly there is something of a continuum between the two). They are more
appropriate when either the goal is some broad overview or understanding of
research activity in a field or where little empirical evidence is expected to be
found. These studies are therefore potentially useful in guiding future research
to areas of need. They may also be relevant where important concepts are poorly
understood, so for example in software engineering we still have little consensus
as to what constitutes software productivity or what are the major factors influ-
encing it. This means agreeing what might be a reasonable response variable and
what other factors should be taken into account may well prove so challenging
that a focused Systematic Review is unlikely to be a suitable research tool.

3.2 Cochrane Collaboration

The Cochrane Collaboration was established in 1993, and is an international
non-profit and independent organisation, with the goal of making the most re-
cent, accurate and informed evidence about healthcare available to clinicians,
policy-makers and the public. It achieves this through systematic reviews which
are made available in the Cochrane Library [9]. It also promotes good prac-
tice and hosts a wealth of educational material on the various methodological
issues associated with systematic reviews and meta-analysis. This is now a ma-
jor operation with the Library containing many thousands of reviews. It is fair
to say that the Collaboration has had a transformative effect, not only upon
medicine, but also may other unrelated disciplines. For more information visit
http://www.cochrane.org.

3.3 Campbell Collaboration

This is loosely modelled on the better known Cochrane Collaboration and is con-
cerned with systematic reviews in the areas of education, criminal justice and
social welfare. Whilst there is much in common with medical systematic reviews,
there are also substantive differences. Specifically these are the fact that primary
studies are seldom randomised controlled trials (RCTs) and secondly, the out-
comes of interest are typically a good deal more complex (e.g. reduction in the
fear of crime) than survival rates or odds ratios. As a consequence, determining
suitable rand comparable response variables can in itself be highly challenging.
Presently the majority of Campbell reviews contain non-RCTs and determin-
ing how to integrate such evidence into a Review is a particular challenge for
researchers in this field.

Combining Evidence and Meta-analysis in Software Engineering 63

A protocol for a Campbell review should consist of the following sections:

1. Background for the review
2. Objectives of the review and the review question
3. Methods of the review
4. Timeframe
5. Plans for updating the review
6. Acknowledgements
7. Statement concerning conflict of interest
8. References and tables

Draft protocols are publicly available and subject to a formal review process prior
to their approval as Campbell Collaboration (C2) authorised systematic reviews.
Any deviation from the agreed protocol should be documented and justified in
the final report. After the review has been completed it is again subject to review
by subject and review methods experts. Once it is approved it is added to the
Campbell Library with the option of additional publication elsewhere.

It is interesting to note that typical reviews lead to reports of the order of 85
pages, which is considerably in excess of the customary conference or journal paper
in empirical software engineering (see Table 3.3). It may be that the importance
of the review protocol is under-appreciated within software engineering.

Table 3. Campbell Collaboration Review Reports: (The 10 most downloaded reviews
- accessed 17.5.2011)

Review Topic Pages

Bullying 147
Parent involvement 49
Cognitive behaviour 27

Delinquency 88
Cyber abuse 54

After school programmes 53
Mentoring 112

Kinship care 171
Parental imprisonment 105
Correctional boot camps 42

Mean 85
Median 71

3.4 Reflections on Systematic Reviews

In this section I consider both Systematic Reviews and meta-analysis since it is
somewhat artificial to separate them. A review is the source of primary studies
for meta-analysis; a review without some form of synthesis lacks the means of
forming conclusions or answering research questions.

64 M. Shepperd

According to Kitchenham and Charters [28] the major disadvantages of sys-
tematic reviews are (i) that they require considerably more effort than traditional
literature reviews and (ii) the increased power of a meta-analysis might also be
problematic, since it is possible to detect small biases as well as true effects. For
this reason careful analysis of sources of heterogeneity and sensitivity analysis
are strongly recommended [24]. Use of informal and graphical methods e.g. For-
est Plots should be used [6] to augment formal statistical tests for heterogeneity.
Furthermore, the systematic review provides little protection against publication
bias other than contacting each author of every located primary study.

There are some quite vociferous critics including Eysenck [20] and Shapiro
[48], although many of their comments relate more to the problems of doing
Systematic Reviews badly or in inappropriate situations rather than identifying
fundamental flaws with the methodology.

So how do we judge the quality of a particular Systematic Review4? One
approach is the DARE Standard [14] which rates Reviews according to five
factors (see Table 4 by applying a checklist. Criteria 1-3 are mandatory and
overall minimum score of 4 out of 5 is required.

Table 4. DARE Inclusion Criteria for Systematic Reviews [14]

1. Were inclusion / exclusion criteria reported?
2. Was the search adequate?
3. Were the included studies synthesised?
4. Was the validity of the included studies assessed?
5. Are sufficient details about the individual included studies presented?

However, these potential pitfalls for conducting Systematic Reviews do not mean:

“that researchers should return to writing highly subjective narrative
reviews. Many of the principles of systematic reviews remain: a study
protocol should be written in advance, complete literature searches car-
ried out, and studies selected and data extracted in a reproducible and
objective fashion.” [17]

As a small encouragement concerning the reliability of systematic reviews an
experiment by MacDonell et al. [34] based upon two independent systematic
reviews of the same research question found that despite some differences in
approach the results were almost identical.

4 Systematic Reviews and Empirical Software
Engineering

As has already been noted,, there has been extremely rapid take up of the
idea of the Systematic Review in empirical software engineering. Between the

4 Note that that this is not the same as quality instruments for appraising individual
primary studies, since a good Review may detect low quality primary studies.

Combining Evidence and Meta-analysis in Software Engineering 65

three tertiary reviews of Systematic Reviews in empirical software engineering
[27,30,49] a total of 120 studies were identified, that satisfied their quality and
inclusion criteria. Given that this has been in the space of five or six years this
is a remarkable effort. However, we need to mature and it is not simply a matter
of conducting as many Reviews as possible. In particular Cruzes and Dyb̊a[13]
sound a cautionary note concerning lack of research synthesis (Step D in terms
of the Five Step Model presented in Figure 3) that is prevalent in more than
half the studies they examined.

It seems that many studies are simply listing or cataloging primary stud-
ies with little attempt made to combine results. Cruzes and Dyb̊a[13] state
that“there is limited attention paid to research synthesis in software engineer-
ing” [13] and this matters because “the potential of empirical research will not
be realized if individual primary studies are merely listed”. In many ways this is
unsurprising since a substantial number of Reviews are actually mapping stud-
ies, if not in name certainly in practice. The consequence is research questions
are far more general in nature and not really constructed around notions of ef-
fect and intervention. Second, the primary studies are frequently diverse and
predominantly observational studies. And this leads to particular challenges for
meta-analysis and challenges that other disciplines are still struggling with.

It therefore seems timely to explore how other subjects are addressing these
problems. Despite, a study by Budgen et al. looking at similarities in research
methods across disciplines, that reported strong dissimilarities between clinical
medicine and software engineering ([8]; modified and summarised in [28], pp5-6)
it would be fair to say that at least the spirit behind evidence-based medicine
remains highly influential. Yet in many ways the Campbell Collaboration is far
more closely aligned with the problems we seek to address.

The other issue, that arises from many Reviews in empirical software engi-
neering is the paucity of high quality primary studies. Of course identifying areas
of lack is major service that Systematic Reviews can perform, however, it is im-
portant we do not devote all our effort to Systematic Reviews and meta-analysis
or we will run out of primary studies to combine!

The less attractive side of Systematic Reviews is excessive introspection. This
is exemplified by unforeseen uses of Tertiary Reviews such as the source of pro-
motional material for particular research centres5. The danger here is complex
and context-sensitive phenomena are reduced to simple quality checklists which
are in turn taken out of the intended situation, trivialised and then turned into
dramatic conclusions.

4.1 Challenges for the Future

– We clearly need better and more relevant primary studies. Systematic Re-
views can help identify areas of lack and for that matter areas of over-supply.

5 See for example “LERO Researchers come out top in SLR quality ratings” avail-
able from http://www.lero.ie/news/leroresearcherscomeouttopslrqualityratings – ac-
cessed June 21, 2011.

66 M. Shepperd

– Next, we need better reporting protocols as this will simplify the process
of extracting information from primary studies and also make meta-analysis
more feasible.

– We should start to be far more selective about SRs and ensure that they tar-
get interesting questions (particularly to stakeholders other than researchers)
and by implication there will be fewer new Mapping and Tertiary Studies.

– It may be that determining which discipline or community is the closest
to empirical software engineering is slightly misleading. We should borrow
from wherever is appropriate, but there seems a good deal we can learn from
C2 and Cochrane in respect of (i) the public review of protocols (ii) more
sophisticated and context-sensitive quality appraisal of primary studies (iii)
richer and fuller synthesis of located studies and (iv) careful attention to
the sources of variance in our results. There is much diversity within any
discipline and so we should determine which methods are most suitable.

However, I would like to end this tutorial by listing the ten Cochrane Collabo-
ration guiding principles6. The empirical software engineering community could
do a lot worse than take them to heart.

1. Collaboration – by internally and externally fostering good communications,
open decision-making and teamwork

2. Building on the enthusiasm of individuals – by involving and supporting
people of different skills and backgrounds

3. Avoiding duplication – by good management and co-ordination to maximise
economy of effort

4. Minimising bias – through a variety of approaches such as scientific rigour,
ensuring broad participation, and avoiding conflicts of interest

5. Keeping up to date – by a commitment to ensure that Cochrane Reviews
are maintained through identification and incorporation of new evidence

6. Striving for relevance – by promoting the assessment of healthcare interven-
tions using outcomes that matter to people making choices in health care

7. Promoting access – by wide dissemination of the outputs of the Collabora-
tion, taking advantage of strategic alliances, and by promoting appropriate
prices, content and media to meet the needs of users worldwide

8. Ensuring quality – by being open and responsive to criticism, applying ad-
vances in methodology, and developing systems for quality improvement

9. Continuity – by ensuring that responsibility for reviews, editorial processes
and key functions is maintained and renewed

10. Enabling wide participation – in the work of the Collaboration by reducing
barriers to contributing and by encouraging diversity

Glossary

Experiment: a study in which variables are intentionally manipulated. Usually
an experiment will also involve the random allocation of experimental units

6 http://www.cochrane.org/about-us/our-principles – Accessed June 21, 2011.

Combining Evidence and Meta-analysis in Software Engineering 67

(participants, etc.) to treatments and these are distinguished from quasi-
experiments where the allocation is non-random (for example dictated by
circumstances).

Mapping study: sometimes known as a scoping study, is a form of systematic
review that explores the general levels and forms of research activity within
a particular topic, and as such contrasts with the narrower systematic that
addresses a specific research question.

Meta-analysis: is some statistical procedure for pooling and analysing results
from more than one primary study.

Observational study: is an empirical study where the variables of interest
(context, treatment, response) are observed but not manipulated (unlike a
formal experiment).

Primary study: this is an individual empirical study that is closest to the
phenomena of interest. As such it might take the form of an experiment or
an observation study.

Secondary study: is a study that does not directly collect data but (re-)
analyses results from one or more primary studies. Some researchers use
this term to specifically refer to the re-analysis of primary data for some
different purpose to that originally intended, however I, in common with the
majority of researchers, simply intend it to mean any analysis. Therefore a
systematic review is an example of secondary analysis.

Systematic review: is a secondary study where the analysis is conducted in a
disciplined, documented, inclusive and unbiased manner as possible.

Tertiary study: is a meta-level review, that is a review of other reviews or
secondary studies.

Other Resources

– The ESRC National Centre for Research Methods have a valuable website
at http://www.ncrm.ac.uk/

– The Sage Encyclopaedia of Social Science Research Methods is available to
subscribers online at http://www.sage-ereference.com/socialscience/

– Both the Cochrane and Campbell Collaborations maintain an excellent set of
resources and educational material online at www.cochrane.org/ and
www.campbellcollaboration.org/ respectively.

– The journal Information and Software Technology has a dedicated section
to empirical software engineering Reviews. The journal website also hosts a
copy of the Kitchenham and Charters Guidelines [28].

There are increasing numbers of useful software systems to support different
aspects of systematic reviews:

– RevMan is freely available from http://ims.cochrane.org/revman/ and al-
though primarily intended for Cochrane reviews can be run in non-Cochrane
mode as well.

– The website of the Centre for Evidence-Based Medicine at Oxford University
maintains a useful page of tools and online resources for conducting Reviews
although with a clinical bias at http://www.cebm.net/index.aspx?o=1023.

68 M. Shepperd

References

1. Altman, D.: Poor-quality medical research – what can journals do? JAMA 287(21),
2765–2767 (2002)

2. Aronson, J.: A pragmatic view of thematic analysis. The Qualitative Report 2(1)
(1994)

3. Avison, D., Lau, F., Myers, M., Nielsen, P.A.: Action research. CACM 42(1), 94–97
(1999)

4. Basili, V.R., Shull, F., Lanubile, F.: Building knowledge through families of exper-
iments. IEEE Transactions on Software Engineering 25(4), 456–473 (1999)

5. Beynon-Davies, P.: Ethnography and information systems development: Ethnogra-
phy of, for and within is development. Information & Software Technology 39(8),
531–540 (1997)

6. Blettner, M., Sauerbrei, W., Schlehofer, B., Scheuchenpflug, T., Friedenreich, C.:
Traditional reviews, meta-analyses and pooled analyses in epidemiology. Intl. J. of
Epidemiology 28(1), 1–9 (1999)

7. Braun, V., Clarke, V.: Using thematic analysis in psychology. Qualitative Research
in Psychology 3(2), 77–101 (2006)

8. Budgen, D., Charters, S., Turner, M., Brereton, P., Kitchenham, B., Linkman, S.:
Investigating the applicability of the evidence-based paradigm to software engi-
neering. In: WISER 2006, pp. 7–13. ACM, Shanghai (2006)

9. Chalmers, I.: The Cochrane Collaboration: preparing, maintaining, and dissemi-
nating systematic reviews of the effects of health care. Annals N.Y. Acad. Sci. 703,
153–163 (1995)

10. Cochrane Collaboration: The Cochrane Collaboration. Tech. rep.,
http://www.cochrane.org

11. Cooper, H.: Scientific guidelines for conducting integrative research reviews. Review
of Educational Research 52(summer), 291–302 (1982)

12. Cooper, H.: Research synthesis and meta-analysis: A step-by-step approach, 4th
edn. Sage, Thousand Oaks (2010)

13. Cruzes, D., Dyb̊a, T.: Research synthesis in software engineering: A tertiary study.
Information and Software Technology 53(5), 440–455 (2011)

14. DARE: About DARE. Tech. rep., Centre for Reviews and Dissemination, York
University, UK (2011), http://www.crd.york.ac.uk/cms2web/AboutDare.asp

15. Dixon-Woods, M., Agarwal, S., Jones, D., Young, B., Sutton, A.: Synthesising
qualitative and quantitative evidence: a review of possible methods. Journal of
Health Services Research & Policy 10(1), 45–55 (2005)

16. Dyb̊a, T., Kitchenham, B., Jørgensen, M.: Evidence-based software engineering for
practitioners. IEEE Software 22(1), 58–65 (2005)

17. Egger, M., Schneider, M., Davey-Smith, G.: Meta-analysis spurious precision?
Meta-analysis of observational studies. BMJ 316, 140 (1998)

18. Ellis, P.: The Essential Guide to Effect Sizes: Statistical Power, Meta-Analysis, and
the Interpretation of Research Results. Cambridge University Press (2010)

19. Evans, D.: Hierarchy of evidence: a framework for ranking evidence evaluating
healthcare interventions. Journal of Clinical Nursing 12, 77–84 (2003)

20. Eysenck, H.: Systematic reviews: Meta-analysis and its problems. BMJ 309, 789
(1994)

21. Glass, G., McGaw, B., Smith, M.: Meta-analysis in social research. Sage Publica-
tions, Beverly Hills (1981)

http://www.cochrane.org
http://www.crd.york.ac.uk/cms2web/AboutDare.asp

Combining Evidence and Meta-analysis in Software Engineering 69

22. Hayes, W.: Research synthesis in software engineering: a case for meta-analysis.
In: 6th IEEE International Softw. Metrics Symp., pp. 143–151. IEEE Computer
Society, Boca Raton (1999)

23. Higgins, J., Green, S. (eds.): Cochrane Handbook for Systematic Reviews of Inter-
ventions, Version 5.1.0. The Cochrane Collaboration (2011)

24. Higgins, J., Thompson, S., Deeks, J., Altman, D.: Measuring inconsistency in meta-
analysis. British Medical Journal 327, 557–560 (2003)

25. Jüni, P., Witschi, A., Bloch, R., Egger, M.: The hazards of scoring the quality of
clinical trials for meta-analysis. JAMA 282(11), 1054–1060 (1999)

26. Katrak, P., Bialocerkowski, A.E., Massy-Westropp, N., Kumar, S., Grimmer, K.A.:
A systematic review of the content of critical appraisal tools. BMC Medical Re-
search Methodology (Electronic Resource) 4(1), 22 (2004)

27. Kitchenham, B., Brereton, P., Budgen, D., Turner, M., Bailey, J., Linkman, S.:
Systematic literature reviews in software engineering a systematic literature review.
Information & Software Technology 51(1), 7–15 (2009)

28. Kitchenham, B., Charters, S.: Guidelines for performing systematic literature re-
views in software engineering, version 2.3. Tech. Rep. EBSE Technical Report
EBSE-2007-01. Keele University, UK (2007)

29. Kitchenham, B., Mendes, E., Travassos, G.: A systematic review of cross- vs.
within-company cost estimation studies. In: 10th Intl. Conf. Empirical Assessment
in Soft. Eng, EASE (2006)

30. Kitchenham, B., Pretorius, R., Budgen, D., Brereton, P., Turner, M., Niazi, M.,
Linkman, S.: Systematic literature reviews in software engineering a tertiary study.
Information and Software Technology 52(8), 792–805 (2010)

31. Kitchenham, B.A., Pfleeger, S.L., Pickard, L.M., Jones, P.W., Hoaglin, D.C., El
Emam, K., Rosenberg, J.: Preliminary guidelines for empirical research in software
engineering. IEEE Transactions on Software Engineering 28(8), 721–734 (2002)

32. Kitchenham, B., Dyb̊a, T., Jørgensen, M.: Evidence-based software engineering.
In: 27th IEEE Intl. Softw. Eng. Conf. (ICSE 2004), IEEE Computer Society, Ed-
inburgh (2004)

33. Luborsky, L., Diguer, L., Seligman, D., Rosenthal, R., Krause, E., Johnson, S.,
Halperin, G., Bishop, M., Berman, J., Schweizer, E.: The researcher’s own therapy
allegiances: A wild card in comparisons of treatment efficacy. Clinical Psychology:
Science and Practice 6(1), 95–106 (1999)

34. MacDonell, S., Shepperd, M., Kitchenham, B., Mendes, E.: How reliable are sys-
tematic reviews in empirical software engineering? IEEE Transactions on Software
Engineering 36(5), 676–687 (2010)

35. MacDonell, S., Shepperd, M.: Comparing local and global software effort estimation
models reflections on a systematic review. In: 1st Intl. Symp. on Empirical Softw.
Eng. & Measurement, Madrid (2007)

36. Michie, D., Spiegelhalter, D.J., Taylor, C.C.: Machine learning, neural and statis-
tical classification. Ellis Horwood Series in Artificial Intelligence. Ellis Horwood,
Chichester (1994)

37. Miller, J.: Can results from software engineering experiments be safely combined?
In: Briand, L. (ed.) IEEE 6th Intl. Metrics Symp. IEEE Computer Society, Boca
Raton (1999)

38. Naur, P., Randall, B. (eds.): Software Engineering: Report on a Conference by the
NATO Science Committee. NATO Scientific Affairs Division, Brussels (1968)

39. Needleman, I.: A guide to systematic reviews. Journal of Clinical Periodontol-
ogy 29(suppl. s3), 6–9 (2002)

70 M. Shepperd

40. Oswald, M., Grosjean, S.: Confirmation bias. In: Pohl, R. (ed.) Cognitive Illu-
sions: A Handbook on Fallacies and Biases in Thinking, Judgement and Memory,
pp. 79–96. Psychology Press, Hove (2004)

41. Petticrew, M.: Systematic reviews from astronomy to zoology: Myths and miscon-
ceptions. British Medical Journal 322(7278), 98 (2001)

42. Pickard, L., Kitchenham, B., Jones, P.: Combining empirical results in software
engineering. Information & Software Technology 40(14), 811–821 (1998)

43. Popay, J., Roberts, H., Sowden, A., Petticrew, M., Arai, L., Rodgers, M., Britten,
N.: Guidance on the conduct of narrative synthesis in systematic reviews: A product
from the ESRC methods programme. Tech. rep., Institute for Health Research,
University of Lancaster (version 1, 2006)

44. Rosenthal, R.: The file drawer problem and tolerance for null results. Psychological
Bulletin 86(3), 638–641 (1979)

45. Sackett, D., Straus, S., Richardson, W., Rosenberg, W., Haynes, R.B.: Evidence-
Based Medicine: How to Practice and Teach EBM, 2nd edn. Churchill Livingstone,
Edinburgh (2000)

46. Seaman, C.: Qualitative methods in empirical studies of software engineering. IEEE
Transactions on Software Engineering 25(4), 557–572 (1999)

47. Shadish, W., Cook, T., Campbell, D.: Experimental and quasi-experimental designs
for generalized causal inference. Houghton Mifflin, Boston (2002)

48. Shapiro, S.: Meta analysis/shmeta analysis. American J. of Epidemiology 140, 771–
778 (1994)

49. da Silva, F., Santos, A., Soares, S., Franaa, A., Monteiro, C., Maciel, F.: Six years
of systematic literature reviews in software engineering: An updated tertiary study.
Information and Software Technology 53(9), 899–913 (2011)

50. Sommerville, I.: Software Engineering, 5th edn. Addison-Wesley, Wokingham
(1996)

51. Spencer, L., Ritchie, J., Lewis, J., Dillon, L.: Quality in qualitative evaluation: A
framework for assessing research evidence. Tech. rep., The Cabinet Office (2003)

52. Spoor, P., Airey, M., Bennett, C., Greensill, J., Williams, R.: Use of the capture-
recapture technique to evaluate the completeness of systematic literature searches.
BMJ 313(7053), 342–343 (1996)

53. Stroup, D., Berlin, J., Morton, S., Olkin, I., Williamson, G., Rennie, D., Moher,
D., Becker, B., Sipe, T., Thacker, S.: Meta-analysis of observational studies in
epidemiology: A proposal for reporting. JAMA 283(15), 2008–2012 (2000)

54. Sutton, A., Higgins, J.: Recent developments in meta-analysis. Statistics in
Medicine 27, 625–650 (2008)

55. Viller, S., Sommerville, I.: Ethnographically informed analysis for software engi-
neers. International J. of Human-Computer Studies 53(1), 169–196 (2000)

56. Wohlin, C., Runeson, P., Hst, M., Ohlsson, M., Regnell, B., Wessln, A.: Experi-
mentation in Software Engineering: An Introduction. Kluwer Academic, Norwell
(2000)

57. Yancey, J.: Ten rules for reading clinical research reports. American J. of
Surgery 159, 533–539 (1990)

58. Yin, R.: Case Study Research - Design and Methods, 3rd edn. SAGE Publications
(2003)

Predicting Bugs in Large Industrial Software

Systems

Thomas J. Ostrand and Elaine J. Weyuker

AT&T Labs - Research, Florham Park, NJ
180 Park Avenue

Florham Park, NJ 07932
{ostrand,weyuker}@research.att.com

Abstract. This chapter is a survey of close to ten years of software fault
prediction research performed by our group. We describe our initial mo-
tivation, the variables used to make predictions, provide a description of
our standard model based on Negative Binomial Regression, and sum-
marize the results of using this model to make predictions for nine large
industrial software systems. The systems range in size from hundreds
of thousands to millions of lines of code. All have been in the field for
multiple years and many releases, and continue to be maintained and
enhanced, usually at 3 month intervals.

Effectiveness of the fault predictions is assessed using two different
metrics. We compare the effectiveness of the standard model to aug-
mented models that include variables related to developer counts, to
inter-file calling structure, and to information about specific developers
who modified the code.

We also evaluate alternate prediction models based on different train-
ing algorithms, including Recursive Partitioning, Bayesian Additive Re-
gression Trees, and Random Forests.

Keywords: software fault prediction, defect prediction, negative bino-
mial model, fault-percentile average, buggy file ratio, calling structure,
prediction tool.

1 Introduction

There has been a great deal of research describing different ways of identifying
which parts of a software system are most likely to contain undiscovered defects.
This is a potentially very important question because if managers knew where de-
fects were likely to exist, then they could concentrate resources on those areas, and
hopefully be able to identify them more quickly, using fewer resources, and ulti-
mately wind up with more reliable software than would otherwise be produced.

In particular, test or quality assurance managers could decide which code units
were likely to be most problematic and allocate software testing personnel and
their time accordingly.Developmentmanagers could use the results of our research
to help decide when it was particularly likely to be worthwhile allocating scarce re-
sources to perform such expensive activities as design or code reviews, or to decide
to redesign and re-implement repeatedly problematic parts of the system.

A. De Lucia and F. Ferrucci (Eds.): ISSSE 2009-2011, LNCS 7171, pp. 71–93, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

72 T.J. Ostrand and E.J. Weyuker

Our research has focused on making predictions for large long-lived industrial
software systems. The predictions take the form of a list of those files predicted
to have the largest number of defects in the next release, in descending order.
In this chapter, we describe our approach to software fault prediction, which
variables and models we have examined in order to accurately identify the most
fault-prone files of a software system, and what we have observed when applying
our models to different types of systems, with different levels of maturity.

We use the words defect, fault and bug interchangeably in this chapter, to
mean some condition of the code that causes the system to behave differently
from its specifications.

Each of the systems we studied uses a software configuration management
system that combines both change management and version control functions in
a single integrated system. The configuration management system tracks succes-
sive releases of the system under construction and all changes made to the code
for any reason. Changes are initiated by writing a modification request or MR,
which includes such information as the identity of the individual who is making
the request, the individual who actually makes the change (if one is ultimately
made), the job function of the requester, the stage of development when the
change is being requested, any files changed as a result of the request, the dates
of the original request and of the changes, the assigned severity of the MR, plus
a number of other pieces of data. The MR writer has the option of providing a
written natural language description of the reason for requesting the change, or
suggestions for implementing the change, or any other information that might
be useful for the person who eventually makes the change.

Despite the wealth of information contained in each modification request, one
thing that is not generally specified in a uniform way is whether the change is
being requested to add functionality, to modify some existing functionality as
part of a planned or unplanned enhancement, or to fix a defect. This lack forced
us to come up with an alternate way to determine whether a change was made
because of a defect or for some other reason.

After experimenting with various ways of identifying defect MRs, we settled
on using the phase of software development when the MR was originally created.
Any MR that originates during system testing or customer acceptance testing is
considered to define a defect.

The MR information is recorded in the database that is the heart of the
configuration management system, which we mine to extract data needed for our
prediction models. Although our goal is to identify the most fault-prone files,
changes of all types, including bug fixes, planned or unplanned enhancements,
and modifications of functionality, all play a role in helping to predict whether
there will be faults in the next release of the software, and how many to expect.

Of the nine software systems for which we have made predictions, all but
one had a regular quarterly release schedule. The configuration management
system records data at the file level, and therefore that is the level at which our
predictions are made. While all of the nine systems use the same (commercially-
available) configuration management system or a slight variant of it, six of the

Predicting Bugs in Large Industrial Software Systems 73

Table 1. System Information

Years in Latest release Average over releases
System the field Releases Files LOC Faults Percent faulty files

Inventory1 4 17 1950 538,000 342 12.1%

Provisioning1 2 9 2241 438,000 34 1.3%

Voice Response 2.25 9 1926 329,000 165 10.1%

Maintenance A 9 35 668 442,000 44 4.8%

Maintenance B 9 35 1413 384,000 44 2.4%

Maintenance C 7 27 584 329,000 50 5.7%

Provisioning2 4 18 3920 1,520,000 388 5.1%

Utility 4 18 802 281,000 90 5.9%

Inventory2 4 18 6693 2,116,000 358 2.9%

systems we studied were developed and maintained by people at one company,
and three were developed and maintained by people at a second company. All of
the systems run continuously, all have been in the field for multiple years, and
they range in size from hundreds of thousands up to millions of lines of code.

Information about the age, the size, and the detected faults for each system
is summarized in Table 1. The two center columns of the table give the size
of each system’s latest release. The two rightmost columns show the number
of detected faults and percent of faulty files per release, averaged over all the
releases of the system. Often early releases have substantially more faults than
later releases. The last column shows that faults are always concentrated in a
fairly small percentage of the system’s files.

The remainder of this chapter is organized as follows. Section 2 describes
basic information about the negative binomial regression model we use to make
predictions, and the variables included in the model. We describe two different
ways of evaluating the effectiveness of predictions in Section 3. Section 4 looks
at the impact of augmenting the standard model with additional variables.

In particular, in Section 4.1 we consider several different ways of adding de-
veloper count information to the model. Section 4.2 continues our exploration of
the impact of augmenting the standard model, this time with information about
which individuals have modified a file during the previous release. In Section 4.3
we study the impact of inter-file communication on our ability to accurately
predict where defects will be in the next release. This is done by considering
various ways of augmenting the standard model with calling structure informa-
tion. In Section 5 we examine the use of different prediction models and compare
the prediction accuracy of these models on Maintenance Systems A, B, and C.
In particular, in Section 5.1 we study Recursive Partitioning, in Section 5.2 we
examine the use of Random Forests, and in Section 5.3 we consider Bayesian
Additive Regression Trees (BART). Section 6 describes our conclusions. Sec-
tion 7 provides pointers to some of our research papers where more details can
be found.

74 T.J. Ostrand and E.J. Weyuker

2 Our Approach to Defect Prediction Modeling

We have used a negative binomial regression model [4] to make predictions for all
the systems we considered. Negative binomial regression has much in common
with standard linear regression, but they differ in two fundamental ways. The
first is that while linear regression models the expected value of the fault counts
themselves, negative binomial regression uses a linear function of the predictor
variables to model the logarithm of the expected fault count values. The second
difference is that linear regression assumes that the counts come from a normal
distribution while negative binomial regression requires that fault counts be
nonnegative integers and so assumes that each count comes from a negative
binomial distribution.

More specifically, if yi is the observed fault count for a given file and release
pair, and xi is the corresponding vector of predictor variables, then negative
binomial regression models yi as a negative binomial distribution with mean
λi = eβ

′xi and variance λi + kλi
2 for unknown k ≥ 0. kλi

2 is included to
accommodate possible over-dispersion that we often see for fault counts relative
to that implied by Poisson regression.

The negative binomial model that makes fault predictions for a release of
a system is based on the fault and change history of the system, as well as
characteristics such as file type and file size, as far back as data can be obtained.
For each Release N, a new model is created to make its fault predictions, using
training data from Releases 1 through N-1. Once the model is created, values of
input variables from the previous two releases are used to make predictions for
Release N.

We developed a standard model for predictions on the basis of initial studies of
faults and system characteristics of systems Inventory1, Provisioning1, and Voice
Response, listed in Table 1. Our subsequent work with six additional systems
validated the effectiveness of the standard model.

The input variables included in the standard model are

– lines of code (LOC)
– faults in Release N-1
– changes in Releases N-1 and N-2
– files status (new, changed, unchanged)
– file age in terms of number of previous releases (0, 1, 2-4, 5 or greater)
– file type (programming language identified by the file extension, e.g., C,

C++, java, sql)

Because the standard model requires change data from two previous releases
to predict the current release, it is applied starting at release 3 of each of the
systems.

All the variables in the standard model showed some correlation with fault
occurrence in the first three studied systems. Some variables, like programming
language and file age, have a fixed set of values over all releases of a given
system, while others, like size, faults and changes, can vary over the lifetime of
the system.

Predicting Bugs in Large Industrial Software Systems 75

We have often found that the best single indicator of faults was size of a file
at the beginning of the release. This was typically measured as the logarithm of
the number of lines of code, log(LOC).

In many cases we observed that newer files tend to exhibit more problems
than ones that have been in the system for many releases, and we therefore
categorize the number of releases a file has been in the system. We have found
that using four categories worked well: files that were introduced in the current
release, files that have been in just one prior release, files in two to four prior
releases, and those that have been in five or more earlier releases.

We have also observed that if a file has been changed in recent releases or had
defects in recent releases, it often has problems in the current release. Therefore,
the standard model includes counts of defects in the most recent previous release
and changes in each of the two previous releases. To reduce skewness of the
predictor variables, for each of these counts we use the square root rather than
the count itself.

Because we have observed that different programming language have different
fault rates, and so may be an important predictor, we use a series of dummy
variables for all but one language.

The last thing we account for in the standard model is the maturity of the
system, measured in terms of the system release number. This is done because
the number of defects in the system often varies substantially from release to
release, even after controlling for the ages of files in the system. Again we use a
series of dummy variables.

We have evaluated several different modifications of our standard model and
found either small improvements over the standard model results or no improve-
ment at all. Variations that involve the use of additional variables beyond those
in the standard model are described in Section 4 of this chapter.

We have also examined the effectiveness of using different prediction models
and found that none of those considered performed better than our standard
negative binomial regression model. These alternate models are discussed in
Section 5.

For each file of a release, our prediction models compute an estimated number
of faults that the file is predicted to have in the next release. We have built an
automated tool which extracts the necessary data from the software configura-
tion management system’s database, builds the prediction model, and does the
calculation of the number of faults predicted for each file in the next release. The
tool then outputs a sorted list of the files in decreasing order of the predicted
number of faults. Our goal is to help the development and test teams prioritize
their efforts and resource usage, based on these predictions.

We and other researchers have repeatedly observed that the distribution of
faults among files of large systems is highly non-uniform, with a relatively small
percentage of files typically containing a large percentage of the defects. This
means that if our model correctly identifies the most fault-prone files, collectively
they will account for a very large percentage of the defects.

76 T.J. Ostrand and E.J. Weyuker

Our prediction model was designed to be applied just prior to the beginning
of system testing for the most recent version of a system. At that point, the code
should be stabilized, with unit and integration testing complete. The systems
we have studied typically have most defects identified during pre-release system
testing with few defects identified in the field. Our goal is to catch all defects
during pre-release testing so that the customer never sees a problem. Our tool
should help in this process.

3 Evaluating the Prediction Results

In this section we describe two different ways we have used to evaluate how
successful our predictions have been. In all of our research, we have considered
the percentage of bugs contained in the X% of the files predicted to contain the
largest numbers of defects. Often we setX to 20 and compute what percentage of
the actual bugs turned out to be contained in the predicted worst 20% of the files.
That is the value shown in the next to the last column of Table 2. In each case
the number was averaged over all releases for which we made predictions for a
given system. The table shows that for the nine systems studied, the predictions
were generally very successful with the top 20% of the files predicted to contain
the largest numbers of defects containing from 75% to 93% of the defects actually
detected in the next release.

Of course 20% is an arbitrary value, and it is possible that the results can vary
substantially using a slightly larger or smaller value of X , and so we proposed
an alternate measure called the fault-percentile average. Essentially, this measure
summarizes the percentage of actual defects over all possible values of the cutoff
percent.

Let K be the number of files in a release. The fault-percentile average is
computed for a given set of predictions by sorting the files based on the predicted
fault count. The ordering is from smallest to largest number of predicted faults:
f1, f2, ..., fK . The kth file is assigned the percentile value 100k/K. If nk is the
actual number of faults in file fk, then the fault-percentile average for the given
prediction ordering is the mean percentile value, weighted by nk.

As predictions improve, files with high numbers of actual faults move closer
to the high end of the listing, and their contributions to the percentile average
increase. The overall fault-percentile average is equivalent to the average, over
all values of m, of the percent of actual faults contained in the m files with the
highest predicted numbers of faults. The fault-percentile averages for six of the
systems we studied are shown in the last column of Table 1.

Both of these measures of prediction success have their uses, and provide
users of the prediction model with confidence in the model’s accuracy. We have
observed that practitioners tend to find the use of a concrete value of X more
useful, while the fault-percentile average is less sensitive to the choice of the
cutoff value and therefore is particularly well-suited for comparing alternative
models.

Predicting Bugs in Large Industrial Software Systems 77

Table 2. Fault-percentile average and actual faults in top 20% of predicted files for
nine systems

Actual faults
Years in found in top 20% Fault-percentile

System the field Releases LOC of predicted files average

Inventory1 4 17 538,000 83% not available

Provisioning1 2 9 438,000 83% not available

Voice Response 2.25 9 329,000 75% not available

Maintenance A 9 35 442,000 81% 88%

Maintenance B 9 35 384,000 93% 93%

Maintenance C 7 27 329,000 76% 88%

Provisioning2 4 18 1,520,000 91% 93%

Utility 4 18 281,000 87% 92%

Inventory2 4 18 2,116,000 93% 95%

4 Alternate Predictor Variables

In this section, we discuss ways that we have tried to modify our standard model
in the hope of improving predictions.

4.1 Adding Developer Count Information

Many software engineers believe that code is most reliable when it has been
written and maintained by only one programmer. The more general belief is
that the more programmers who are involved with the code, the more likely it is
that errors will be made and faults introduced. This is the too many cooks spoil
the broth hypothesis. It certainly seems reasonable to expect more problems if
different people write separate parts of a single file, or if one person writes the
original code and others later make maintenance updates or fixes. There is an
obvious potential for miscommunication and misunderstanding of the algorithm
being implemented, as well as of the coding techniques being used. On the other
hand, if two people are collaborating on a single piece of code, they might be
able to check each other’s work for mistakes, resulting in fewer faults.

To evaluate the influence that multiple developers might have on faults in a
file, we created models using three additional variables relating to the number
of separate developers who interacted with the file in previous releases. We refer
to these variables as the developer count variables.

– previous developers: the number of developers who modified the file during
the prior release.

– new developers: The number of developers who modified the file during the
prior release, but did not work on the file in any earlier release.

– cumulative developers: The number of distinct developers who modified the
file during all releases through the prior release.

78 T.J. Ostrand and E.J. Weyuker

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Pr
op

or
ti

on
 o

f F
ile

s
w

it
h

M
ul

ti
pl

e
D

ev
el

op
er

s

Number of Prior Releases

Fig. 1. Proportion of Changed Files with Multiple Developers, Maintenance A

The values of these variables are obtained from the MR history of the project.
The initial creation of the file is not considered a change, and does not contribute
to any of the three developer variables.

The first two variables are zero for any file that was not changed in the previous
release. The new developers variable is zero even for files that were changed in the
previous release if all the changers had also made changes in earlier releases. The
cumulative developers variable can be non-zero for files that are unchanged in
the previous release because it measures how many distinct people have changed
the file since its original creation. The value of this variable is monotonically
non-decreasing from release to release.

We investigated the three developer count variables for Maintenance systems
A, B, and C. Maintenance A revealed some surprising facts about the distribution
of these counts. Figures 1, 2 and 3 give some information about the variables for
the first 21 releases of Maintenance A.

How common is it for a file to be changed by more than one developer? Figure
1 shows that 20 to 40% of the changed files of System A have been edited by
multiple developers, and the proportion doesn’t vary much as files age. Even
more files have at least one new developer at each release, and aging of files does
not diminish the new developers. Figure 2 shows that the proportion of changed
files with at least one new developer tends to stay above 40% independent of the
age of the file. The ratio is 1 for Release 1, because every developer is new for
every file.

Over a file’s lifetime, it may be changed not at all after its initial creation, or
changed many times, and by varying numbers of developers. Figure 3 shows the
distribution of the number of developers that changed files in System A for the
first 20 releases of their lifetime. Files that have been in the system for fewer than

Predicting Bugs in Large Industrial Software Systems 79

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Pr
op

or
ti

on
 o

f F
ile

s
w

it
h

at
 L

ea
st

 O
ne

N

ew
 D

ev
el

op
er

Number of Prior Releases

Fig. 2. Proportion of Changed Files with New Developers, Maintenance A

0%

5%

10%

15%

20%

25%

0 5 10 15 20 25 30

Pe
rc

en
t o

f F
ile

s

Cumulative Number of Developers

Fig. 3. Cumulative Number of Developers after 20 Releases, Maintenance A

20 releases are not included in this figure. Notice that 18% of the files were never
changed after their initial creation, 25% were under control of a single developer
throughout, about half the files were changed by three or fewer developers, and
60% were changed by five or fewer developers.

Although the proportion drops quickly after five developers, there do exist files
that have been changed by 10 or more, up to 31 different individuals, during the

80 T.J. Ostrand and E.J. Weyuker

0%

20%

40%

60%

80%

100%

1 4 7 10 13 16 19 22 25 28

Cumulative Developers up to Previous Release

Percent of Changed Files with Faults

Fig. 4. Faulty Files per Cumulative Developers, Maintenance A

first 20 releases. Software engineering folklore would target those files as being
highly fault-prone after so many different people have edited them.

Figure 4 shows there is indeed an increase in fault-proneness as the total num-
ber of developers increases over a file’s lifetime. This figure shows the percent
of changed files that are faulty, as a function of the cumulative number of de-
velopers that have touched the file over its lifetime. Although there are a few
files in the system that have been touched by as many as 50 developers, above
28 the data is too sparse to be meaningful. The average percent of changed files
that are faulty, regardless of the number of developers, is 17.7%, shown by the
dashed red line across the figure.

Similar charts in Figures 5 and 6 show that the fault-proneness also tends to
be higher with higher numbers of developers and new developers, both counted
only in the previous release. However, these graphs are not as convincing as
Figure 4, mainly because almost all the files are concentrated in the first two
or three points in each graph. For example, of the 3110 files that were changed
over the course of 35 releases, 2636 had either no or one new developer in the
previous release, 404 had either two or three new developers, and only 70 had
more than three new developers at the previous release.

The relations that appear in these graphs are confirmed by the results of
prediction models that use the three developer count metrics. When the two
metrics that consider only the previous release are added to the standard model,
the prediction results barely change. Augmenting the standard model with cu-
mulative developers yielded a small, but statistically significant, increase in the
accuracy of the predictions for systems Maintenance A and B, but no increase
for Maintenance C. Averaged over releases 3-35, the percent of faults captured

Predicting Bugs in Large Industrial Software Systems 81

0%

10%

20%

30%

40%

50%

60%

70%

1 2 3 4 5 6 7 8

Number of Developers in Previous Release

Percent of Changed Files with Faults

Fig. 5. Faulty Files per Developers in Previous Release, Maintenance A

0%

10%

20%

30%

40%

50%

0 1 2 3

Number of New Developers in Previous Release

Percent of Changed Files with Faults

Fig. 6. Faulty Files per New Developers in Previous Release, Maintenance A

in the top 20% of the files predicted by the cumulative developers augmented
model exceeds the standard model results by 0.2% for System A and by 1.0%
for System B.

These models were also applied to the Provisioning2 system, and here the
advantage of the cumulative developer augmented model is stronger. Figure 7

82 T.J. Ostrand and E.J. Weyuker

65

70

75

80

85

90

95

100

3 4 5 6 7 8 9 10 11 12 13 14 15 16

Pe
rc

en
t o

f F
au

lt
s

in
 T

op
 2

0%
 o

f
Fi

le
s

Release

Cumulative Developers

Standard Model

Fig. 7. Prediction Accuracy with and without Cumulative Developers, Provisioning2

shows the release-by-release difference between the two models. The augmented
model is ahead of the standard model for all releases except Release 9, where it
falls only slightly behind. The lower value on the y-axis is set at 65 to facilitate
visualizing the difference between the values for the two models. The average
accuracy over releases 3-16 is 86.6% for the standard model, and 88.4% for the
cumulative developer augmented model.

4.2 Adding Individual Developer Information

In the previous subsection, we considered the impact of augmenting the stan-
dard model with three different ways of counting the number of different devel-
opers who modified a file in past releases. In this section, we investigate whether
knowing which particular developer modified a file can be helpful in predicting
whether the file is likely to be faulty or not in the next release.

The common intuition is that knowing who changed a file should be a very
potent predictor of fault-proneness since we believe we can identify who are the
“good” programmers, and who are not. Specifically we ask whether files changed
by particular developers are systematically either more or less likely to be faulty
than the average. If this is true, then we might be able to augment the standard
model to use this information to improve predictions.

There are several issues that make the use of individual developer data much
more difficult than using other code or history characteristics that contribute
to the standard model. In particular, while every file has a size, an age, and a
programming language, developers come and go from a project, and therefore
there is frequently insufficient data about a developer to make any meaningful
use of it. Furthermore, often developers change few files, even over a substantial
number of releases.

Predicting Bugs in Large Industrial Software Systems 83

For example, during the first 17 releases of system Provisioning2, approxi-
mately 70% of the 177 developers who worked on this system during that time
period modified fewer than 50 files, even when we included in this count, every
time Developer X changed File Y during multiple releases. That is, if Developer
X changed File Y six different times, that added six to the count associated
with Developer X .

We typically focus on files that were changed in the previous release because,
although in most cases 85% - 97% of all files are either new to the release or
remain unchanged from the previous release, the small fraction of changed files
accounted for 67% of the files that had defects for Releases 2 through 18.

We define the notion of the buggy file ratio as a way of determining the possible
relationship between defects in files and the developers who changed the files in
the previous release. The buggy file ratio of developer D at Release R− 1 is the
fraction of files changed by developer D at Release R-1 that subsequently have
one or more faults at Release R.

Of the 55 developers who did change at least 50 files during these 17 releases,
we do see some variation. Figure 8 shows the buggy file ratio for nine of these
developers. In addition to showing the ratio, the graph also shows the number
of files that a given developer changed during the previous release. Each point
is labeled with a number indicating the number of files a particular developer
changed during the previous release. To clarify, Developer 14 changed 35 files
during Release 1. This can be determined by looking at the first point in the
upper left panel of Figure 8. The vertical height of the point reflects the buggy file
ratio, indicating the proportion of files changed by Developer 14 that contained
one or more defect in Release 2. For this case, the ratio is 0.31 because 11 out
of the 35 files changed by Developer 14 contained bugs.

The leftmost graph in the second row presents information for Developer 18
The two files changed during Release 1 were both fault-free in Release 2. In
Release 10, 20 of the 50 files changed by this developer in Release 9 had bugs.

In each of the graphs we provide a solid line that shows the mean proportion
of buggy files across developers for each release. This is useful for comparison
purposes. If a file is changed by multiple developers during a given release, it is
included in the plots for each developer who modified it.

We selected the nine developers shown in Figure 8 to provide some examples of
developers who are always, or almost always, above average, and also some that
are always, or almost always, below average. But most developers, we observed,
are like the center row of the figure and sometimes do very well leading to few
faults in the next release, and other times do very poorly, meaning there are many
defects in the files they changed in the next release. But even being regularly
above or below average is not really good enough to be of real use for predictions.
For the buggy file ratio to be a useful fault predictor, the ideal situation would
be for “good” developers to be at or near 0, and for “poor” developers to have
buggy file ratios at or near 1.

We analyzed the buggy file ratio for three different systems (Provisioning2,
Utility, and Inventory2), and found weak evidence of some persistence over time

84 T.J. Ostrand and E.J. Weyuker

●●

●

●

●

●

●

●

●

●

●
●

Developer 14
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

2 4 6 8 10 12 14 16 18

35

16

19

16

55

34

81

45

61

28
18

●

●

●

●

●

●

●

●

●

●
●

●

Developer 75

2 4 6 8 10 12 14 16 18

1

20

11

18
16

18

13

19

7

16
13

12

●

●

●

●

●

Developer 157

2 4 6 8 10 12 14 16 18

9

21

12

5

6

●

●

●

●

●

●

●

●

●

●

Developer 18

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

2 4 6 8 10 12 14 16 18

2

28
25

12
16

29

76

50
63

10

● ●

●

●

●

●

●

●

●

●

●

Developer 53

2 4 6 8 10 12 14 16 18

3 3

4

5

5

5

4

8

10

8

2

●
● ●

●

●

●

●

●

●

Developer 171

2 4 6 8 10 12 14 16 18

19
9 2

2

1

10

13

9

1

●

●

●

●

●
●

●
● ● ●

Developer 22

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

2 4 6 8 10 12 14 16 18

7

8

6

16

20 14

21
13 3 1

● ● ● ● ● ●
●

● ●

●

Developer 103

2 4 6 8 10 12 14 16 18

6 1 9 8 4 2 32

7 7

2
●

●

●

●

●

●

● ●

Developer 145

2 4 6 8 10 12 14 16 18

8

22

23
15

27
13

4 1

Fig. 8. Buggy file ratios for selected developers in Provisioning2

of fault-proneness associated with individuals. However, incorporating this infor-
mation into the prediction model yielded no statistically significant improvement
to the prediction accuracy when the 20% metric was used for assessment. In fact,
adding this factor sometimes even decreased the accuracy of the predictions.
When accuracy was assesed using the fault-percentile average metric, there was
a very small, but statistically significant, improvement to the prediction accuracy
for all three systems.

4.3 Adding Calling Structure Information

Modern programming techniques argue that high cohesion and low coupling be-
tween the files or modules of a system lead to higher quality code that is less prone
to errors. The rationale for these beliefs is that increased communication between
programunits raises the chances ofmiscommunication and can lead tomismatches
between parameters and misunderstanding of input and output values.

Predicting Bugs in Large Industrial Software Systems 85

If these beliefs are correct, then variables that measure the extent of inter-
file communication could be useful predictors of faults. We examined a set of
variables that relate to the calling structure of C and C++ programs, and built
prediction models that included those variables.

File Q

•Method Q1

•Method Q2

File X

File Y

File Z

Callees of File Q

File A

File B

Callers of File Q

FAULTY?

Fig. 9. Calling Structure

Figure 9 shows the basic calling structure relations that we use. Because our
fault and change count data are at the file level, we take the caller-callee relations
of methods and apply them to the files that contain the methods. Files A and
B contain code that calls Method Q1 or Q2 in file Q, making A and B callers
of Q. Files X, Y and Z contain methods that are called or invoked by Method
Q1 or Q2 in file Q. X, Y and Z are callees of Q. Q is a caller of X, Y and Z,
and a callee of A and B. Since the general expectation is that fault-proneness
is related to the degree of inter-file communication, we considered the following
attributes of a file in the release being predicted as variables to augment the
standard prediction model.

– number of callers and callees
– number of new callers and callees
– number of prior new callers and callees
– number of prior changed callers and callees
– number of prior faulty callers and callees
– ratio of internal calls to total calls

A new caller or callee is a file that is new in the current release (the release being
predicted). A prior {new, changed, faulty} caller or callee is a file that was {new,

86 T.J. Ostrand and E.J. Weyuker

changed, or faulty} in the previous release. For example, the number of prior
faulty callers of file F is the number of files with faults in the previous release
that contain calls to any method in F in the current release.

Predictor variables come from two broad classes of system attributes, which
we call Code attributes and History attributes. Code attributes are obtainable
directly from the code of the system; they include file size, file type, code com-
plexity, and dependency relations. History attributes include counts of faults and
changes to the code in previous releases, and counts of developers who touched
the code in the past. The standard prediction model described in Section 2
contains both code and history attributes, but no calling structure variables.

To determine the effectiveness for fault prediction of the calling structure
attributes, we built and evaluated single variable models for each of the attributes
used in the standard model, as well as the calling structure attributes. Each
model started with a set of dummy variables for the release numbers, to avoid
the possibility that values of a particular variable that are unique to a particular
release would skew the resulting final model. Then, starting from the best single
variable predictor, we tried adding each unused variable to the latest best model,
measured the accuracy of the augmented model, and chose the single variable
that most improved the accuracy. The process of adding a new predictor variable
was continued as long as the improvement of the newest model over the previous
one had significance with P-value ≤ .001. Figure 10 is a pseudo-code description
of the process.

The model construction procedure was carried out for systems Maintenance
A and B. The code of Maintenance A is written in many different languages,
but over 70% of its files and 90% of its lines of code is either C, C++ or C++
with embedded SQL (C-Sql). Maintenance B is almost entirely C++. The code
structure tool we used was only able to analyze C and C++ code, so we restricted
attention to those file types. To make a fair comparison between the original
standard model and models that include calling structure variables, we derived
new models using only the C, C++ and C-Sql files for both systems. Models
were constructed using three different sets of attributes:

– code and history attributes, including calling structure attributes
– code and history attributes, without any calling structure attributes
– code attributes only, including calling structure attributes

Contrary to expectations, adding calling structure information to the standard
model did not result in any improvement to the prediction results, and in fact
yielded slightly poorer fault identification. When all attributes were considered,
the best uni-variate model for Maintenance A is based on Prior Changes, and
identifies 68% of the faults in the top 20% of the predicted files. The final Main-
tenance A model contains Prior Changes, KLOC, NewFile, CSql-file, PriorFault-
yCallees, Callers, C-file, and PriorFaultyCallers. This model identifies 77.1% of
the faults in the top 20% of files.

For Maintenance B, the best uni-variate model is based on KLOC, and it iden-
tifies 88% of the faults in the top 20% of files. The final model contains KLOC,

Predicting Bugs in Large Industrial Software Systems 87

Initialize:
Model M consists solely of RelNum
A = a subset of the attributes

Add Variable:
for each attribute a in A:

construct a model consisting of M ∪ {a}
create predictions for the system
evaluate the prediction improvement

determine the single attribute a′ that maximizes the improvement
if P-value ≥ 0.001, STOP. M is the final model.
else

add a′ to M
remove a′ from A
if A is empty, STOP. M is the final model.
else repeat the Add Variable step

Fig. 10. Pseudo-code for Model Construction

PriorDevelopers, Cohesion, Newfile, CumulativeDeveloper, Priorchanges, Pri-
orNewFile, and PriorNewCallees. This model identifies 91.3% of the faults in
the top 20% of files. The corresponding best models without calling structure
attributes identify 77.7% of faults for Maintenance A and 91.4% for Mainte-
nance B.

Because some projects might not have tools to collect and maintain fault and
change history, we also evaluated models that used only code and calling struc-
ture attributes that can be obtained directly from current and past code versions.
These code-only models yield slightly lower results than the code & history mod-
els. For Maintenance A, the final model contains KLOC, PriorChangedCallees,
NewFile, PriorNewFile, CSql-file, Callers, PriorChangedCallers, and C-file. The
model identifies 75.2% of the faults in the top 20% of files. For Maintenance
B, the final model contains KLOC, Cohesion, PriorChangedCallees, NewFile,
PriorNewFile, and PriorNewCallees. The model identifies 90.6% of the faults.

5 Alternate Prediction Models

Negative binomial regression is not the only method for creating a prediction
model. In this section we evaluate three alternative models, recursive partition-
ing, Bayesian additive regression trees, and random forests, and compare their
results to the NBR results. The first two alternatives produced results that were
noticeably inferior to the NBR results, while the third was approximately equal,
but computationally more expensive.

All prediction algorithms are developed by analyzing a set of data with known
outcomes, and finding an algorithm that fits that data. The data with known
outcomes are the observations, also known as the training data. The algorithm is

88 T.J. Ostrand and E.J. Weyuker

then applied to new data to produce predictions. In the case of fault prediction
for release N of a system, the known data is all the information available about
files in releases 1 through N-1, including their fault counts. Negative binomial
regression uses the observations to develop a linear formula with predicted fault
count as its output.

5.1 Recursive Partitioning

Recursive partitioning [2] builds a binary decision tree where each leaf node rep-
resents a group of observations whose output values are all close. Each interior
node of the tree is a decision based on the value of a single predictor variable.
When the tree based on all the training data has been constructed, a new ob-
servation can be sent from the root to a leaf node depending on the values of its
predictor variables. The predicted output value for the new observation is the
average output value of all the training observations in the leaf node’s group.

Figure 11 shows a simple example of a decision tree. The interior decision
nodes are in rectangles, and the leaf nodes in circles. The decision nodes are all
true/false decisions, with a true outcome taking the left branch from the node.
The first decision node sends an input to the left if the observation has fewer
than four faults in the previous release, and to the right if there were four or more
faults. A file with four or more faults in the previous release, whose language is
one of b, g, or j, and which has been in the system for fewer than four releases
is predicted to have four faults in the next release.

prev_faults<4

prev_changes
<2 lang==bcdg

file_age>=4prev_changes
<4

LOC<2388

lang==bgjprev_faults<2

3.51.14.85.2

.05 .58 1.36 4.0

5.9

4 faults

age == 3

file.b

Fig. 11. Recursive Partitioning tree

Predicting Bugs in Large Industrial Software Systems 89

The recursive partitioning tree is built by starting with all the training obser-
vations at the root node. The observations are split by using the single predictor
variable that minimizes the total squared error of all observations on each side of
the split. A single observation’s error is the difference between that observation’s
output value and the average of all output values in the group. The process con-
tinues on the two child nodes, and recursively until it terminates according to
three control parameters: minsplit, minbucket, and cp. If a node has fewer than
minsplit observations, it will not be split further, and becomes a leaf node. If
the best split of a node would result in either of its child nodes containing fewer
than minbucket observations, then the node will not be split, and becomes a leaf
node. Finally, a node will not be split unless the squared error of each of its child
nodes is at least cp better than the error of the parent node.

For our study, we used minsplit = 7 and minbucket = 20 (the default values in
the rpart package of R). We experimented with values of cp from .01 to .00001,
using the data from the Maintenance A system. Naturally, the smaller the value
of cp, the larger the resulting decision tree. For cp = .01, .005, .001, .0005, and
.0001, the trees had, respectively, 9, 15, 45, 74, and 171 leaf nodes. Too large a
value of cp results in a small tree, with the vast majority of training observations
together in a single leaf node. Too small a value can result in overfitting to
the training data, and poor results for predicting outcomes on new data. For
Maintenance A and B, cp = .0005 produced trees that put the highest percent
of faulty files in the the top 20% of predicted files. For Maintenance C, cp = .001
yielded the best tree, with cp = .0005 a close second.

5.2 Random Forests

A drawback of recursive partitioning is that the predictions from the decision
tree are highly dependent on the first few splits made at and near the top of the
tree. The random forests technique [1] avoids this by creating many randomized
trees, and basing predictions on the average of their results. Randomizing is
accomplished in two ways, first by basing each split on a subset of the training
data, and second by choosing the variable on which to make each split from
a small, randomly chosen subset of the predictor variables. The training data
subset for each split is a random choice of observations, with replacement, from
the entire training set.

Our random forest predictions were done using the RandomForest package
from R. At each node split, two randomly chosen predictor variables were eval-
uated to create the split. We considered forests of 1, 20, 100, and 500 trees, and
obtained the most accurate predictions with 500 trees.

The accuracy of prediction results from random forests was better than that
from the single tree recursive partitioning approach, and was close to the results
obtained from the standard NBR model.

90 T.J. Ostrand and E.J. Weyuker

5.3 Bayesian Additive Regression Trees

While the predictions from the random forests model is the average of predictions
from many trees, Bayesian additive regression trees (BART) makes predictions
by summing the output of many trees, each of which models a part of the out-
put variable’s predicted behavior. The BART method is described in detail by
Chipman et al. [3]. Our BART models were built using the BayesTrees package
in R, which allows varying the key parameters of the method to improve the
results. Our best results were obtained with models that created 100 trees, but
they were not as good as either the NBR or the random forest results.

5.4 Comparing Prediction Results

Predictions from the four modeling methods were compared on the Maintenance
A, B, and C systems.

Figure 12 shows the fault-percentile averages of the four different modeling
methods discussed above, applied to releases 3-35 of Maintenance A. The NBR
and Random Forest models, shown with solid lines, track each other quite closely,
and are relatively consistent over all the releases. The other two models, shown
with dotted lines, have noticeably lower results on some releases, and also are
much more erratic.

0

10

20

30

40

50

60

70

80

90

100

Pe
rc

en
til

e
av

er
ag

e

Release

NBR
Random Forest
Recursive Partition
BART

Fig. 12. Comparison of Alternate Prediction Models

Predicting Bugs in Large Industrial Software Systems 91

80.5

93.4

76.1

79.9

94.3

75.676.1

84.8

67.9

71.9 70.9

65.3

50

60

70

80

90

100

Maintenance A Maintenance B Maintenance C

A
ve

ra
ge

 P
er

ce
nt

 o
f F

au
lt

s
in

 T
op

 2
0%

 o
f

Fi
le

s

NBR

RF

RP

BART

Fig. 13. Average Percent of Faults for 3 Maintenance Systems

In Figure 13, the average performance of each model is shown for the three
maintenance systems. NBR and Random Forests clearly are superior to the other
two models.

6 Conclusions

This chapter has provided a description of our research on software fault predic-
tion models. We have described our standard model, and shown the results of
its use on nine different long-lived industrial software systems. Collectively we
have made predictions for almost 180 different releases of these systems. In spite
of the differing functionality of the systems, development and testing personnel,
corporation that wrote and maintained them, development methodologies, and
level of maturity, our standard model always behaved very well.

Using the 20% metric, we were able to correctly identify files that accounted
for between 75% and 93% of the actual defects occurring in the system. For the
six systems for which we also used the fault-percentile average metric for assess-
ment, the percentages ranged from 88% to 95% of the actual defects occurring
in the system.

We also studied the impact of augmenting our models with a variety of dif-
ferent intuitively appropriate variables including three different ways of incor-
porating the number of different developers who modified a file, and the past
behavior of individual developers who modified a file. In all cases, there was
little or no improvement to the predictive accuracy above the standard model.
Similarly, when adding calling structure information to the standard model, the
improvement was at best minor.

92 T.J. Ostrand and E.J. Weyuker

While we believed that our standard model which used Negative Binomial
Regression, provided excellent results, we wanted to make sure that a differ-
ent model using the same variables did not behave even better. We therefore
made predictions for several of the systems using three different models: Re-
cursive Partitioning, Random Forests, and Bayesian Additive Regression Trees
(BART). We observed that our standard model behaved better than Recursive
Partitioning and BART, and while Random Forests behaved comparably, it did
so at significantly greater computational cost.

We now have an automated tool that automatically extracts necessary data
from the configuration management system, builds the prediction model and
reports the results in terms of an ordered list of the files most likely to contain
the largest numbers of defects.

7 Literature

Much of the material presented in this chapter is discussed in greater detail in a
series of publications by the authors. An initial study of faults in large systems
and their association with various characteristics of the software was presented
in [5]. This study was the initial foundation for identifying attributes that might
be useful independent variables for a fault prediction model.

The standard negative binomial regression model first described in [6], and
applied to the Inventory 1 and Provisioning 1 systems. The developer count
attributes were studied and applied to systems Maintenance A, B and C in [10].
Information about individual developers and its possible use to produce more
accurate predictions was evaluated in [7].

Different algorithms for building prediction models were examined in [11].
Calling structure relations and their application to prediction models were stud-
ied in [8].

Acknowledgments. The research described in this chapter was performed by
the authors, in partnership with our colleague Robert M. Bell from AT&T Labs
- Research. Yonghee Shin contributed to the research described in the Calling
Structure section, while Andy Nocera and Andrew Gauld of AT&T contributed
to the construction of the automated prediction tool.

References

1. Breiman, L.: Random Forests. Machine Learning 45, 5–32 (2001)

2. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regres-
sion Trees. Wadsworth, Belmont (1984)

3. Chipman, H.A., George, E.I., McCulloch, R.E.: BART: Bayesian Additive Regres-
sion Trees (2008), http://arxiv.org/abs/0806.3286v1

4. McCullagh, P., Nelder, J.A.: Generalized Linear Models, 2nd edn. Chapman and
Hall, London (1989)

http://arxiv.org/abs/0806.3286v1

Predicting Bugs in Large Industrial Software Systems 93

5. Ostrand, T.J., Weyuker, E.J.: The Distribution of Faults in a Large Industrial
Software System. In: International Symposium on Software Testing and Analysis
(ISSTA 2002), pp. 55–64. ACM Press, New York (2002)

6. Ostrand, T.J., Weyuker, E.J., Bell, R.M.: Predicting the Location and Number
of Faults in Large Software Systems. IEEE Trans. on Software Engineering 31(4),
340–355 (2005)

7. Ostrand, T.J., Weyuker, E.J., Bell, R.M.: Programmer-based Fault Prediction. In:
Predictive Models for Software Engineering (PROMISE 2010). ACM Press, New
York (2010)

8. Shin, Y., Bell, R.M., Ostrand, T.J., Weyuker, E.J.: On the use of calling struc-
ture information to improve fault prediction. Empirical Software Eng. (July 2011),
http://www.springerlink.com/content/r4q76v4317148451/

9. Weyuker, E.J., Ostrand, T.J., Bell, R.M.: We’re Finding Most of the Bugs, but
What are we Missing? In: 3rd International Conference on Software Testing. IEEE
Press, New York (2010)

10. Weyuker, E.J., Ostrand, T.J., Bell, R.M.: Do Too Many Cooks Spoil the Broth?
Using the Number of Developers to Enhance Defect Prediction Models. Empirical
Software Eng. 13(5), 539–559 (2008)

11. Weyuker, E.J., Ostrand, T.J., Bell, R.M.: Comparing the Effectiveness of Several
Modeling Methods for Fault Prediction. Empirical Software Eng. 15(3), 277–295
(2010)

http://www.springerlink.com/content/r4q76v4317148451/

Natural Language-Based Software Analyses

and Tools for Software Maintenance

Lori Pollock1, K. Vijay-Shanker1,
Emily Hill2, Giriprasad Sridhara1, and David Shepherd3,�

1 Computer and Information Sciences, University of Delaware, Newark, DE 19716
{pollock,vijay,gsridhar}@cis.udel.edu

2 Computer Science, Montclair State University, Montclair, NJ 07043
hillem@mail.montclair.edu

3 ABB Inc., US Corporate Research
davidshepherd@gmail.com

Abstract. Significant portions of software life cycle resources are de-
voted to program maintenance, which motivates the development of au-
tomated techniques and tools to support the tedious, error-prone tasks.
Natural language clues from programmers’ naming in literals, identifiers,
and comments can be leveraged to improve the effectiveness of many soft-
ware tools. For example, they can be used to increase the accuracy of
software search tools, improve the ability of program navigation tools
to recommend related methods, and raise the accuracy of other pro-
gram analyses by providing access to natural language information. This
chapter focuses on how to capture, model, and apply the programmers’
conceptual knowledge expressed in both linguistic information as well
as programming language structure and semantics. We call this kind of
analysis Natural Language Program Analysis (NLPA) since it combines
natural language processing techniques with program analysis to extract
information for analysis of the source program.

Keywords: software maintenance, natural language program analysis,
software engineering tools.

1 Introduction

Despite decades of knowledge that software engineering techniques can reduce
software maintenance costs, focusing on fast initial product releases and lever-
aging existing legacy systems means that as much as 90% of software life cycle
resources are spent on maintenance [22]. Software engineers continually identify
and remove bugs, add or modify features, and change code to improve proper-
ties such as performance or security. Often, the maintainer is a newcomer to the
whole system or the parts of the system relevant to the maintenance task. Before

� The authors’ work in this area has been supported by the National Science Founda-
tion Grants No. CCF-0702401 and CCF-0915803.

A. De Lucia and F. Ferrucci (Eds.): ISSSE 2009-2011, LNCS 7171, pp. 94–125, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Natural Language-Based Software Analyses and Tools 95

they can safely make changes, they need to perform tasks that sometimes in-
volve tedious, error-prone collection and analysis of information over these large,
complex systems to understand the code adequately for making good decisions.

By automating error-prone tasks that do not require human involvement and
presenting that information to maintainers in a useful way, software tools and
environments can reduce high maintenance costs. Software development envi-
ronments now include tools for searching for relevant code segments, navigating
the code, providing contextual information at a given program point, and many
other kinds of information and predictions that help determine where to make
changes, the kinds of changes to make and their potential impact.

Automated program analyses historically build models of the program using
the static programming language syntax and semantics and dynamic informa-
tion from executing the program, and then perform analysis over the model to
gather and infer information that is useful for the software maintainer. While
the syntax of the program and the associated programming language seman-
tics convey the intended computations to the computer system, programmers
often convey the domain concepts through identifier names and comments. This
natural language information can be very useful to a wide variety of software
development and maintenance tools, including software search, navigation, ex-
ploration, debugging, and documentation.

This chapter focuses on how to capture, model, and apply the programmer’s
conceptual knowledge expressed in both linguistic information rooted in words
as well as programming language structure and semantics. We call this kind of
analysis, Natural Language Program Analysis (NLPA), since it combines nat-
ural language processing techniques with program analysis to extract natural
language information from the source program. The underlying premise is that
many developers attempt to make their code readable and follow similar pat-
terns in their naming conventions. NLPA leverages these common patterns and
naming conventions to automatically extract useful natural language information
from the source code.

A number of researchers have studied what these naming conventions are
and how they can be leveraged in software engineering tools. Researchers have
gained insight into naming convention habits by studying how developers write
identifiers and name methods [12, 50, 53] and use domain terms in source
code [31], as well as by studying how source code vocabulary in identifiers
evolves across multiple versions [2, 3]. These studies have led to guidelines for
proper naming [18, 39, 41, 48] and using these conventions to debug poorly
named methods [40], as well as identifying synonyms for words used in source
code [38] and building dictionaries of verb-object relations [32]. Natural lan-
guage information has been used by software engineering tools to search source
code for concern location [66, 54, 74, 78], find starting points for bug local-
ization [57, 75], automatically recover traceability links between software arti-
facts [1, 4, 17, 19, 64, 68, 76, 103], assemble and assess software libraries [58, 69],
assess code quality [52, 65], and mine topics from source code [46, 55, 67].

96 L. Pollock et al.

Source
Code

Developer

NLPA SE Applications
•Query Refinement &
 Reformulation
•Source Code Search
•Program Exploration
•Comment Generation

Building Blocks
•Identifier Splitting
•Abbreviation Expansion
•Identifier Part-of-Speech
 Tagging & Parsing
•Synonym Identification

Analysis & Modeling

Action-Oriented
Identifier Graph

(AOIG)

Software Word
Usage Model

(SWUM)

Fig. 1. Chapter Overview

Most existing tools that leverage words in identifiers treat a program as a “bag
of words” [63], i.e., words are viewed as independent occurrences with no relation-
ships. Not taking advantage of the natural language semantics captured by the
relationships between words can lead to reduced accuracy. For example, consider
searching for the query “add item” in a shopping cart application. The presence
of “add” and “item” in two separate statements of the same method does not
necessarily indicate that the method is performing an “add item” action—the
method may be adding an action to the system’s queue and then getting the
item field of another object in the system. Ignoring the relationships between
words causes irrelevant results to be returned by the search, distracting the user
from the relevant results. This suggests that richer semantic representations of
natural language information in source code may lead to more accurate software
engineering tools.

In this chapter, we provide an overview of NLPA that accounts for how words
occur together in code, rather than just counting frequencies. NLPA can be used
to (a) increase the accuracy of software search tools by providing a natural
language description of program artifacts to search, (b) improve the ability of
program navigation tools to recommend related procedures through natural lan-
guage clues, (c) increase the accuracy of other program analyses by providing
access to natural language information, and (d) enable automatic comment gen-
eration from source code.

Figure 1 depicts an overview of the relationship of the following sections. We
begin with the building blocks of NLPA—preprocessing source code identifiers to
enable analysis of the natural language for software engineering tools. We then

Natural Language-Based Software Analyses and Tools 97

motivate the focus on analyzing the natural language of source code from the
perspective of verbs and actions, and present an overview of a model of software
word usage in source code to serve as the underlying model for NLPA-based
applications. We describe briefly how NLPA has been used to improve several
applications, including search, query reformulation, navigation, and comment
generation. We conclude by summarizing the state of NLPA and future directions
in preprocessing, analysis, and applications of NLPA.

2 Building Blocks

In this section, we discuss the problems of automatically splitting individual
identifiers into component words, automatically expanding abbreviations which
are so common in identifiers, automatically tagging the part-of-speech of indi-
vidual words as used in different identifier contexts, and automatically learning
synonyms used in programs to connect similar programmer intent.

2.1 Identifier Splitting

A key first step in analyzing the words that programmers use is to accurately
split each identifier into its component words and abbreviations. Programmers
often compose identifiers from multiple words and abbreviations, but unlike En-
glish writing, program identifiers cannot contain spaces (e.g., ASTVisitorTree,
newValidatingXMLInputStream, jLabel6, buildXMLforComposite). Automatic
splitting of multi-word identifiers is straightforward when programmers follow
conventions such as using non-alphabetic characters (e.g., “ ” and numbers) to
separate words and abbreviations, or camel-casing (where the first letter of each
word is upper case) [12, 18, 49, 53]. However, camel casing is not followed in
certain situations, and may be modified to improve readability (e.g., Conver-
tASCIItoUTF, sizeof, SIMPLETYPENAME).

An identifier-splitting algorithm takes a given set of identifiers as input and
outputs the set of substrings partitioning the identifier. An identifier t =
(s0, s1, s3, ...sn), where si is a letter, digit, or special character. Most algorithms
first separate the id before and after each sequence of special characters and
digits, and each substring is then considered as a candidate to be further split.
For these alphabetic terms, there are four possible cases to consider in deciding
whether to split at a given point between si and si+1:

1. si is lower case and sj is upper case (e.g., getString, setPoint)
2. si is upper case and sj is lower case (e.g., getMAXstring, ASTVisitor)
3. both si and sj are lower case (e.g., notype, databasefield, actionparameters)
4. both si and sj are upper case (e.g., NONNEGATIVEDECIMALTYPE)

Case (1) is the natural place to split for straightforward camel case without ab-
breviations. Case (2) demonstrates how following strict camel casing can provide
incorrect splitting (e.g., get MA Xstring). We call the problem of deciding where
to split when there is alternating lower and upper case present, the mixed-case

98 L. Pollock et al.

id splitting problem. We refer to cases (3) and (4) as the same-case id splitting
problem.

Currently, there exists a small set of identifier-splitting algorithms. Some de-
pend on dictionaries, some exploit the occurrence of component words in other
parts of the source code and use frequencies, and some combine this informa-
tion. The greedy approach [24] is based on a predefined dictionary of words and
abbreviations, and splits are determined based on whether the word is found in
the dictionary, with longer words preferred. The Samurai [20] approach is based
on the premise that strings composing multi-word identifiers in a given program
are most likely used elsewhere in the same program, or in other programs. Thus,
Samurai mines string frequencies from source code, and builds a program-specific
frequency table and a global frequency table from mining a large corpus of pro-
grams. The frequency tables are used in the scoring function applied during both
mixed-case splitting and same-case splitting.

GenTest [51] focuses on the same-case splitting problem. Given a same-case
term, GenTest first generates all possible splittings. Each potential split is scored
(i.e., tested) and the highest scoring split is selected. The scoring function uses
a set of metrics ranging over term characteristics, dictionaries and information
from non-source code artifacts, and information derived from the program itself
or corpus of programs. The Dynamic Time Warping approach [59] is based on
the observation that programmers build new identifiers by applying a set of
transformation rules to words, such as dropping all vowels. Using a dictionary
containing words and terms belonging to the application domain or synonymous,
the goal is to identify a near optimal matching between substrings of the identifier
and words in the dictionary, using an approach inspired by speech recognition.

Enslen, et al.’s [20] empirical study showed that Samurai misses same-case
splits identified by the Greedy algorithm but outperforms Greedy overall by
making significantly fewer oversplits. Lawrie, et al. [51] results from comparing
Greedy, Samurai, and GenTest on same-case identifier splitting for Java showed
that both GenTest and Samurai achieve at least 84% accuracy in identifier split-
ting, with GenTest achieving slight higher accuracy than Samurai. The Dynamic
Time Warping approach has not been evaluated against the other techniques yet.

2.2 Abbreviation Expansion

When writing software, developers often use abbreviations in identifier names,
especially for identifiers that must be typed often and for domain-specific words
used in comments. Most existing software tools that use the natural language
information in comments and identifiers do nothing to address abbreviations, and
therefore may miss meaningful pieces of code or relationships between software
artifacts. For example, if a developer is searching for context handling code, she
might enter the query ‘context’. If the abbreviation ‘ctx’ is used in the code
instead of ‘context’, the search tool will miss relevant code.

Abbreviations used in program identifiers generally fall into two categories:
single-word and multi-word. Single-word abbreviations are short forms whose
long form (full word expansion) consists of a single word, such as ‘attr’

Natural Language-Based Software Analyses and Tools 99

(attribute) and ‘src’ (source). Single letter abbreviations are also commonly used,
predominantly for local variables with very little scope outside a class or method
[53], such as ‘i’ (integer). Multi-word abbreviations are short forms that when
expanded into long form consist of more than one word, such as acronyms. In
fact, acronyms can be so widely used that the long form is rarely seen, such as
‘ftp’ or ‘gif’. Some uses of acronyms are very localized, such as type acronyms.
When creating local variables or naming method parameters, a common naming
scheme is to use the type’s abbreviation. For example, a variable of the type
ArrayIndexOutOfBoundsException may be abbreviated ‘aiobe’. Some multi-word
abbreviations combine single-word abbreviations, acronyms, or dictionary words.
Examples include ‘oid’ (object identifier) and ‘doctype’ (document type).

Expansion Techniques. Automatically expanding abbreviations requires the
following steps: (1) identifying whether a token is a non-dictionary word, and
therefore a short form candidate; (2) searching for potential long forms for the
given short form; and (3) selecting the most appropriate long form from among
the set of potential long form candidates.

One simple way to expand short forms in code is to manually create a dic-
tionary of common short forms [85]. Although most developers understand that
‘str’ is a short form for ‘string’, not all abbreviations are as easy to resolve.
Consider the abbreviation ‘comp’. Depending on the context in which the word
appears, ‘comp’ could mean either ‘compare’ or ‘component’. Thus, a simple
dictionary of common short forms will not suffice. In addition, manually created
dictionaries are limited to abbreviations known to the dictionary builders.

More intelligent abbreviation expansion mechanisms have been developed for
software. Lawrie, Feild, and Binkley (LFB) [35] extract lists of potential expan-
sions as words and phrases, and perform a two-stage expansion for each abbre-
viation occurrence in the code. For each function f in the program, they create
a list of words contained in the comments before or within the function f or in
identifiers with word boundaries (e.g., camel casing) occurring in f, and a phrase
dictionary created by running the comments and multi-word-identifiers through
a phrase finder [25]. They create a stop word list containing programming lan-
guage keywords. After stemming and filtering by the stop word list, expansion
of a given non-dictionary word occurrence in a function f involves first looking
in f’s word list and phrase dictionary, and then in a natural language dictionary.
A word is a potential expansion of an abbreviation when the abbreviation starts
with the same letter and every letter of the abbreviation occurs in the word
in order. This technique returns a potential expansion only if there is a single
possible expansion.

When they manually checked a random sample of 64 identifiers requiring
expansion (from a set of C, C++, and Java codes), only approximately 20%
of the identifiers were expanded correctly. In another quantitative study of all
identifiers in their 158-program suite of over 8 million unique terms, only 7%
of the total number of identifier terms were expanded by their technique; these
expansions were not checked for correctness.

100 L. Pollock et al.

The AMAP abbreviation expansion approach [36] was developed with the
goal of improving on this technique and including heuristics to choose between
multiple possible expansions. AMAP utilizes a scoping approach similar to vari-
able scoping and automatically mines potential long forms for a given short form
from the source code. AMAP creates a regular expression from the short form
to search for potential long forms. When looking for long forms, AMAP starts
at the closest scope to the short form, such as type names and statements, and
gradually broadens its scope to include the method, its comments, and the class
comments. If the technique is still unsuccessful in finding a long form, it at-
tempts to find the most likely long form found within the program and then in
Java SE 1.5. With each successive scope, AMAP includes more general, i.e., less
domain-specific, information in its long form search.

In an evaluation of 227 non-dictionary words randomly selected from 5 open
source programs, AMAP automatically expanded 63% of the words to the correct
long form. On the same set, LFB expanded 40% correctly.

2.3 Part-of-Speech Tagging and Identifier Parsing

To facilitate extraction of relations between words appearing in identifiers, the
identifier splitting and abbreviation expansion are followed by identifying (i.e.,
tagging) the parts of speech of each word in the identifier and then the lex-
ical components of the identifier. Each word in an identifier is tagged with a
part-of-speech such as noun, noun modifier, verb, verb modifier, or preposi-
tion, and identifiers are then chunked into phrases such as noun phrases, verb
groups, and prepositional phrases. In the example below, words in identifier
findFileInPaths are tagged as verb - noun - preposition - noun, and chunked
as follows:

File findFileInPaths(): [find]: VG [file]: NP [in [paths]: NP]: PP

Part-of-speech tagging and identifier parsing in software is complicated by several
programmer behaviors. Programmers invent new non-dictionary words and their
own grammatical structures when naming program elements. For instance, they
form new adjectives by adding “able” to a verb (e.g., “give” becomes “givable”).
Thus, traditional parsers for natural language fail to accurately capture the
lexical structure of program identifiers.

Liblit, et al. identified common morphological patterns and naming conven-
tions [53], which can serve as a starting point for parsing rule development. Høst
and Østvold created a phrase book of commonly occurring method name pat-
terns [41]. Although the contents of the phrase book can be used to generate
more accurate semantic representations, the rules cannot be applied to parse
arbitrary method signatures.

To represent eachmethod name as a verb and direct object, Shepherd, et al. [88]
used WordNet [70] to approximate possible parts of speech for words in method
names, favoring the verb tag for words in the first position because methods typi-
cally encapsulate actions. Throughmanual analysis of function identifiers, Caprile

Natural Language-Based Software Analyses and Tools 101

and Tonella developed a grammar for function identifiers [12], and applied it to
an identifier restructuring tool [13]. Hill [34] developed a set of identifier gram-
mar rules for Java, as part of the construction of the Software Word Usage Model
(SWUM) defined in Section 3. Caprile and Tonella’s grammar shares similarities
with the SWUM grammar rules; however, SWUM’s rules cover a broader set of
identifiers and were developed using a much larger code base (18 million LOC in
Java versus 230 KLOC in C). Because Caprile and Tonella’s grammar was devel-
oped exclusively on C code, the similarities between their grammar and SWUM’s
provides further evidence that the construction rules built for Java can translate
to other languages.

Parsing rules can be developed by identifying common word and grammar
patterns from a corpus of programs, developing a generalized set of rules based on
the word and grammar patterns, evaluating their effectiveness, and then iterating
to expand the set of parsing rules to capture more identifier categories accurately.
Using this approach, Hill, et al. [34] developed an algorithm to automatically
parse identifiers according to the grammar. Malik [60] improves the accuracy of
the SWUM grammar by extensive POS tagging based on suffixes, discovering
more kinds of method signatures due to programmer conventions, and using
context frequencies in determining POS tags.

2.4 Synonyms in Programs

A human developer skimming for code related to “removing an item from a shop-
ping cart” understands that the method deleteCartItem(Item) is relevant, even
though it uses the synonym delete rather than remove. Similarly, automated tools
such as code search and query reformulation need to automatically recognize these
synonym relations between words to be able to successfully help humans find re-
lated code in large-scale software systems. In fact, knowledge ofword relations such
as synonyms, antonyms, hypernyms, and hyponyms can all aid in improving the
effectiveness of software tools supporting software maintenance activities.

Broadly defined, search tools use queries and similarity measures on software
artifacts (source code, documentation, maintenance requests, version
control logs, etc.) to facilitate a particular software engineering or program
comprehension task. Tools which use natural language or keyword queries and
matching can benefit by expanding queries and adding related words to textual
artifact representations. For example, synonyms are especially useful in overcom-
ing vocabulary mismatches between the query and software artifacts, especially
with regard to the concept assignment problem [8].

Several software maintenance tools have been developed that use some notion
of synonyms. FindConcept [87] expands search queries with synonyms to locate
concerns more accurately in code. FindConcept obtains synonyms from Word-
Net [70], a lexical database of word relations that was manually constructed for
English text. iComment [98] automatically expands queries with similar topic
words to resolve inconsistencies between comments and code and therefore helps
to automatically locate bugs. Their lexical database of word relations was auto-
matically mined from the comments of two large programs.

102 L. Pollock et al.

One potential technique for finding synonyms and other word relations in
software is to use Latent Semantic Indexing, an information retrieval technique
that uses the co-occurrences of words in documents to discover hidden semantic
relations between words [64, 66]. However, since the technique is based on co-
occurrences of words, the resulting word relations are not guaranteed to be
semantically similar. Another approach is to use synonyms found in English
text, such as the synonyms found in WordNet, for finding the synonyms used in
software.

Sridhara, et al. [92] performed a comparative study of six state of the art,
English-based semantic similarity techniques (used for finding various word rela-
tions) to evaluate their effectiveness on words from the comments and identifiers
in software. Their results suggest that applying English-based semantic similar-
ity techniques to software without any customization could be detrimental to
the performance of the client software tools. The analysis indicated that none of
the techniques appear to perform well at recall levels above 25%, where recall is
the percentage of true positives in related word pairs returned. In general, the
number of returned possible synonyms can be 10 times greater than the num-
ber of desired results, and much more for high levels of recall. Sridhara, et al.
propose two promising strategies to customize the existing semantic similarity
techniques to software: (1) augment WordNet with relations specific to software,
possibly by mining word relations in software, or (2) improve the estimation
of word probabilities used by the information content-based techniques, which
currently use a probability distribution of words based on English text.

Falleri et al. [23] use English-based POS tagging to automatically extract and
organize concepts from program identifiers in a WordNet-like structure, focus-
ing on hyperonym and hyponym relations between the extracted concepts. They
share similar insights into the challenges of applying these techniques to soft-
ware with [92]. Host and Ostvold [38] propose identifying synonymous verbs by
associating a verb with each method, characterizing each method by a set of
attributes, and measuring different forms of entropy over the corpus of meth-
ods with their attributes and associated verbs. Specifically, they investigate the
effect on entropy in the corpus when they eliminate one of the verbs as a possi-
ble synonymous verb pair. If the effects are beneficial, they say that a possible
synonym has been identified. Their results showed that they could identify rea-
sonable synonym candidates for many verbs, but choosing genuine synonyms
among the candidates will require a more sophisticated model of the abstract
semantics of methods.

3 Analysis and Modeling

For software maintenance tasks, action words are central because most main-
tenance tasks involve modifying, perfecting, or adapting existing actions [88].
Actions tend to be scattered in object-oriented programs, because the organi-
zation of actions is secondary to the organization of objects [100]. Like English,
typically actions (or operations) in source are represented by verbs, and nouns

Natural Language-Based Software Analyses and Tools 103

correspond to objects [10]. In a programming language, verbs usually appear
in the identifiers of method names, possibly in part because the Java Language
Specification recommends that “method names should be verbs or verb phrases
and class types should be descriptive nouns or noun phrases” [30]. Therefore, ini-
tial extraction efforts focused on method names and the surrounding information
(i.e., method signatures and comments).

In English or software, identifying the verb in a phrase does not always fully
describe the phrase’s action. To fully describe a specific action, it is important to
consider the theme. A theme is the object that the action (implied by the verb)
acts upon, and usually appears as a direct object (DO). There is an especially
strong relationship between verbs and their themes in English [14]. An example
is (parked, car) in the sentence “The person parked the car.” Similarly, in the
context of a single program code, often verbs, such as “remove,” act on many
different objects, such as “remove attribute”, “remove screen”, “remove entry”,
and “remove template”. Therefore, to identify specific actions in a program, it
is important to examine the direct objects of each verb (e.g., the direct object
of the phrase “remove the attribute” is “attribute”).

Initial NLPA [28, 88, 87] analyzed the source code to extract action words, in
the form of verb-DO pairs. A verb-DO pair is defined to be two terms in which
the first term is an action or verb, and the second term is a direct object for the
first term’s action. The program is modeled by an action-oriented identifier graph
(AOIG) that explicitly represents the occurrences of verbs and direct objects of
a program, mapping each verb-DO pair with their occurrences in the code.

The analysis focuses on occurrences of verbs and DOs in method declarations
and comments, string literals, and local variable names within or referring to
method declarations. After identifier splitting, POS tagging and chunking, a
set of verbs is extracted from the method signature. POS tagging typically finds
verbs in either the leftmost position or rightmost position or not in the signature.
Special verbs such as “run” and “convert”, which do not occur explicitly in
names, are implicitly identified through common word patterns in identifiers. The
direct object is identified based on the position of the verb. If a set of extraction
rules fits the same identifier, a set of verb-DO pairs is returned with the client
application ultimately determining the most appropriate pair. Table 1 shows
examples of the locations where verbs are identified and how the corresponding
DO is identified.

The AOIG is a first step in representing the actions and themes occurring in
source code as verb-DO pairs. The next step in NLPA, the Software Word Usage
Model (SWUM), was developed to address two of AOIG’s shortcomings: (1) any

Table 1. Locating Verb-DO Pairs in Method Signatures

Class Verb DO Example
Left-Verb Leftmost word Rest of method name public URL parseUrl()
Right-Verb Rightmost word Rest of method name public void mouseDragged()
Special-Verb Leftmost word Specific to Verb public void HostList.onSave()
Unidentifiable-Verb “no verb” Method name public void message()

104 L. Pollock et al.

verb in a methods name is assumed to be its action, and (2) verb-DO pairs were
the only NLPA information extracted from source code.

First, the AOIG’s rules to extract verb-DO pairs seek to capture the method’s
intended action and theme as verb and DO only. This works well for methods
like parseURL(String url), where the verb-DO “parse URL” accurately represents
the method’s action and theme. However, not all identifiable verbs and objects in
a method’s name capture intended actions. Consider mouseDragged(), where the
method’s implementation is reacting to the mouse dragged event. AOIG’s rules
greedily identify the verb-DO as “dragged mouse.” Instead, when the action is
difficult to determine from the signature alone, SWUM marks such methods as
general or event handlers to indicate that the model may not accurately capture
the method’s action. In this example, SWUM extracts the generic “handle mouse
dragged” as an event handler.

Aside from these cases, the AOIG generally identifies the correct verb and DO
as the action and theme. There are some situations where the action and theme
are insufficient to accurately represent the source code’s intent. For example,
consider searching an online store application for code related to adding an item
to the shopping cart. The action-theme “add item” will occur in many different
contexts, such as adding an item to a shopping cart, a wish list, or an inventory
list. Although the AOIG can model “add item,” it cannot model the more specific
“add item to cart,” “add item to wish list,” or “add item to inventory” concepts
that would differentiate between the relevant and irrelevant pieces of source code.

SWUM moves beyond verb-DO pairs by capturing arbitrary phrasal concepts,
such as full verb phrases (VPs) with verbs, direct objects, indirect objects and
prepositions, and noun phrases (NPs) with no identifiable verb. For example,
consider the method addEntry(ItemEntry ie) in the ShoppingCart class. SWUM’s
phrasal concepts can capture the verb, DO, and the indirect object: “add entry
to shopping cart”. SWUM also associates the DO in the method’s name, en-
try, with the equivalent parameter, ItemEntry. Thus, SWUM’s phrasal concepts
can capture deeper semantic relationships found anywhere in the source code.
Table 2 includes additional examples of how SWUM extracts the action (e.g.,
verb), theme (e.g., direct object), and secondary argument (e.g., indirect object)
semantic roles for different categories of method signatures, overcoming many
AOIG limitations.

SWUM uses a number of heuristics to determine whether the method name
should be parsed as a NP, VP, or some special class of method name. For exam-
ple, boolean checkers like isVisible or containsKey are a special class of method
name. Another special class is the set of general names, which include event-
driven methods like actionPerformed(), keyPressed(), or Thread.run(). If a method
name has not been classified as a checker, general, or beginning with a preposi-
tion, SWUM assumes the name starts with a verb in base form and moves on to
identifying the verb’s arguments. The direct and indirect objects are inferred by
looking in the name, parameters, declaring class, and return type of the method
signature.

Natural Language-Based Software Analyses and Tools 105

Table 2. Example SWUM Representation for Method Signatures

Class Example SWUM action-theme
[secondary argument]

Base verb URLHandler.parseURL(String url) parse-URL
Modal verb FIFO.canUnmount(Device device) can unmount-device
Contains
Preposition

DropDownButton.addToToolBar(
JToolBar toolbar)

add-drop down button [to
tool bar]

Event Handler MotionListener.mouseDragged(
MouseEvent e)

handle-mouse dragged

Begins with
Preposition

HostList.onSave() handle-on save

Noun Phrase BaseList.newIterator() get-new iterator
Void Noun
Phrase

JoinAction.message() handle-message

4 Applications of Natural Language Program Analysis

This section surveys several client tools that have been built to demonstrate
how leveraging NLPA can improve a broad range of tools useful during software
maintenance.

4.1 Targeted Software Maintenance Tools

To modify an application, developers must identify the high-level idea, or con-
cept, to be changed and then locate the concept’s concern, or implementation,
in the code. This is called the concern location problem. In object-oriented lan-
guages where the code is organized around objects or classes, action-oriented
concerns, such as “play track”, are scattered across different classes and files,
i.e., cross-cutting.

Source Code Search for Concern Location. To identify code relevant to a
concern, developers typically use an iterative refinement process [26, 33] as shown
in Figure 2. In this process, the developer enters a query into a source code search
tool. Depending on the relevance of the results, the user will reformulate the
query and search again. This process continues until the user is satisfied with the
results (or gives up). In this process, the user has two important tasks: (1) query
formulation and (2) determining whether the search results are relevant.

Studies show that formulating effective natural language queries can be as
important as the search algorithm itself [33]. During query formulation, the
developer must guess what words were used by the original developer to imple-
ment the targeted feature. Unfortunately, the likelihood of two people choosing
the same keyword for a familiar concept is only between 10-15% [29]. Specifi-
cally, query formulation is complicated by the vocabulary mismatch problem [33]
(multiple words for the same topic), polysemy (one word with multiple mean-
ings), and the fact that queries with words that frequently occur in the software
system will return many irrelevant results [63].

It is very difficult to overcome these challenges by automatically expanding a
query on the user’s behalf. For polysemy and word frequency, the user needs to

106 L. Pollock et al.

User

Source Code

Search Method
Search Results

Determine Relevance of Results

Query

(Re)formulate Query

Fig. 2. Iterative Query Refinement and Search Process

add additional query words about the feature to restrict the search results. Such
detailed knowledge about the feature exists only in the developer’s mind. Fur-
ther, automatically expanding a query with inappropriate synonyms can return
worse results than using no expansion [92]. Thus, the role of automation is not
to automatically expand the query, but to provide support that will enable the
human user to quickly formulate an effective query.

Few systems recommend alternative words to help developers reformulate
poor queries. One approach automatically suggests close matches for misspelled
query terms [73], but does not address the larger vocabulary mismatch prob-
lem. Sections 4.2 and 4.3 present two complementary approaches that help the
developer to formulate effective queries. These sections, along with Section 4.4,
also present innovative ways of using NLPA to improve source code search for
concern location.

Exploring and Understanding Concerns. Navigation and exploration tools
help developers explore and understand the program structure from a starting
point in the code. In general, these fall into two main categories: semi-automated
approaches, which provide automatically gathered information to the user but
require the developer to initiate every navigation step (stepwise), and approaches
that automatically traverse the program structure and return many related ele-
ments without user intervention (recursive).

Stepwise navigation tools begin from a relevant starting element and allow
developers to explore structurally related program elements such as methods,
fields, or classes. Some navigation tools allow developers to query structurally
connected components one edge away [15, 82, 89] or recommend structurally
related elements 1-2 edges away [80, 86]. Stepwise navigation tools suggest man-
ageable numbers of elements to be investigated, but provide limited contextual
information since the developer is only presented a small neighborhood of pro-
gram elements at each step. Each successive structural element to be explored

Natural Language-Based Software Analyses and Tools 107

must be manually selected. For example, if a developer were to use a stepwise
navigation tool for an “add auction” concern consisting of 24 methods and 6
fields, the developer would have to initiate as many as 19 exploration steps.

In contrast, recursive exploration tools provide more structural context by
automatically exploring many structural edges away from the starting element
[95, 102, 106, 107] (e.g., by including callers 5 edges up the call chain). For
instance, program slicing identifies which elements of a program may affect the
data values computed at some point of interest, usually by following edges in a
program dependence graph [102]. Because the number of structurally connected
components can grow very quickly as new program elements are added to the
result set, some recursive navigation tools (e.g., thin slicing) employ filtering
techniques to eliminate unnecessary results [95]. In addition, a textual similarity
metric has been used as a stopping criteria in slicing [43], which is another way
of filtering.

Rather than explore data dependences, some recursive navigation techniques
reduce expense by exploring the call graph [36, 107]. One approach is to filter
based purely on call graph information such as the number of edges away from
the starting element or the number of callees [107]. These filters can be fur-
ther refined by using textual information [36]. Section 4.5 presents a recursive
program exploration technique that takes advantage of NLPA.

Once the developer has located the elements of the concern, the next step is
to understand the related code. Several studies have demonstrated the utility
of comments for understanding software [97, 101, 105]. However, few software
projects adequately document the code to reduce future maintenance costs [44,
90]. To alleviate this problem, Section 4.6 presents an NLPA-based technique to
automatically generate comments directly from the source code.

4.2 FindConcept: A Concern Location Tool Based on the
Action-Oriented Identifier Graph

FindConcept [87] is a concern location tool that leverages both traditional struc-
tural program analysis and natural language processing of source code. FindCon-
cept improved upon the state-of-the-art by expanding the user’s initial query
and by searching over a natural language representation of source code (i.e., the
AOIG).

When using FindConcept, developers formulate their query as a verb-DO pair
(e.g., “draw circle”). FindConcept then helps the user expand their query by
suggesting additional terms. FindConcept generates these suggestions by com-
paring the initial query to existing terms in the AOIG and by analyzing the
usage patterns of these relevant words. When the user is satisfied with their
expanded query, they trigger a search over the AOIG program representation,
which returns search results displayed as a program graph. Displaying results as
a graph of methods connected by structural edges (e.g., call graph edges) allows
developers to quickly understand the concern.

Shepherd, et al. [87] evaluated FindConcept against two other concern location
tools. During this evaluation, eighteen programmers completed a set of nine

108 L. Pollock et al.

ELex GES FC

0

20

40

60

80

F
-m

ea
su

re

Fig. 3. Overall effectiveness results by search tool; FC = FindConcept

search tasks, where each search task consisted of an application and a concept
to be found. Programmers were asked to use one of the three tools to complete
each task (see [87] for detailed experimental setup).

FindConcept was compared with Eclipse’s built-in lexical search (ELex [42])
and a modified Google Eclipse search (GES [74]). Similar to grep’s functionality,
ELex allows users to search using a regular expression query over source code,
returning an unranked list of files that match the query. GES integrates Google
Desktop Search into the Eclipse workbench, allowing users to search Java files
with information-retrieval-style queries and return a set of ranked files. GES was
modified to return individual methods instead of files, for comparison.

Shepherd, et al. [87] used F measure, which combines precision and recall,
to measure the effectiveness of FindConcept, GES, and Elex. They measured
user effort by tracking the time that users spent formulating a final query for
each task. Figure 3 shows the F measure results. The box represents the inner
50% of the data, the middle line represents the median, the plus represents
the mean, and outliers are represented by an ‘◦’. According to these measures,
their study showed that FindConcept was more consistently effective than either
Elex or GES, without requiring additional user effort. Analysis of the cases in
which FindConcept’s performance was worse or similar to GES or Elex indicated
that straightforward improvements to the AOIG creation process would improve
FindConcept’s effectiveness. These observations have informed subsequent work
in extracting natural language information from source code [34].

Based on this initial success, Hill, et al.’s [34] work has generalized Find-
Concept’s approach, including significant contributions to the query expansion
process and the creation of a more general natural language representation of
source code. Their work not only extracts verb-DO pairs but entire verb phrases
from source code, which avoids the issues FindConcept encountered during its
evaluation.

Natural Language-Based Software Analyses and Tools 109

4.3 Contextual Query Reformulation

In addition to providing automated support to the developer in formulating
queries in a different way than FindConcept, the contextual query reformulation
technique [37], called contextual search, also helps the user discriminate between
relevant and irrelevant search results. The key insight is that the context of words
surrounding the query terms in the code is important to quickly determine result
relevance and reformulate queries. For example, online search engines such as
Google display the context of words when searching natural language text. The
contextual search approach automatically captures the context of query words
by extracting and generating natural language phrases, or word sequences, from
the underlying source code. By associating and displaying these phrases with
the program elements they describe, the user can see the context of the matches
to the query words, and determine the relevance of each program element to the
search.

Consider the search results for the query “convert” in Figure 4. The method
signatures matching the query are to the right, with the corresponding phrases
to the left. By skimming the list of words occurring with “convert” in these
phrases, we notice that convert can behave as a verb which acts on objects
such as “result,”, “arg”, or “parameter”; or convert can itself be acted upon or
modified by words such as “can” and “get args to.” If the user were searching
for code related to “converting arguments,” they could quickly scan the list of
phrases and identify “convert arg” as relevant. Thus, understanding this context
allows the user to quickly discard irrelevant results without having to investigate
the code, and focus on groups of related signatures that are more likely to be
relevant.

Going beyond Verb-DO Queries. The experimental study described in Sec-
tion 4.2 showed that capturing specific word relations in identifiers, such as
verb-DO pairs, enabled users to produce more effective queries more consis-
tently than with two competing search tools. However, strict verb-DO queries
cannot be used to search for every feature. For example, verb-DO pairs cannot
be used to search for features expressed as noun phrases without a verb, such as
“reserved keyword” or “mp3 player.”

One potential approach to go beyond verb-DO pairs is to capture all word
relation pairs in software by using co-occurrences [62]. The key problem with

Fig. 4. Example results for “convert” query. Phrases are to the left, followed by the
number of matching signatures, and signatures follow ‘::’.

110 L. Pollock et al.

co-occurring word pairs is that word order matters. For example, knowing that
“item” and “add” co-occur more often than due to chance is less useful than
simply knowing that the phrase “add item” frequently occurs. This observation
prompted the use of phrases, based on SWUM’s phrasal concepts, to develop
the contextual query reformulation technique.

Contextual query reformulation relies on SWUM’s phrasal concepts to extract
phrases from source code because existing techniques for extracting phrases did
not meet the needs of the concern location problem. There is work on automat-
ically extracting topic words and phrases from source code [67, 71], displaying
search results in a concept lattice of keywords [72], and clustering program ele-
ments that share similar phrases [46]. Although useful for exploring the overall
word usage of an unfamiliar software system, these techniques are not sufficient
for exploring all usage. In contrast to the contextual approach, these approaches
either filter the topics based on perceived importance to the system [46, 71, 72],
or do not produce human understandable topic labels [67]. Since it is impossi-
ble to predict a priori what will be of interest to the developer, the contextual
approach lets the developer filter the results with a natural language query, and
uses human-readable extracted phrases.

The Contextual Query Reformulation Approach. After using SWUM
to automatically extract phrases for method signatures, the contextual query
reformulation technique searches the resulting phrases for instances of the query
words. Related phrases, along with the methods they were generated from, are
grouped into a hierarchy based on partial phrase matching. As illustrated in
Figure 4, phrases at the top of the hierarchy are more general and contain fewer
words, whereas phrases more deeply nested in the hierarchy are more specific
and contain more words.

An empirical evaluation with 22 developers was conducted to compare contex-
tual search (context) with verb-DO (V -DO) recommendations without synonym
suggestions from WordNet. Synonyms were not used in order to explore whether
natural language phrases beyond V -DO improve searching capabilities, without
studying effects caused by synonym recommendations or other minor algorithmic
differences.

The results show that contextual search significantly outperforms V-DO rec-
ommendations in terms of effort and effectiveness. Figure 5 presents the results
of the comparison in a box and whisker plot. The box represents the inner 50%
of the data, the middle line represents the median, the plus represents the mean,
and outliers are represented by an ‘×’.

In terms of effort, shown on the left, developers entered 5 more queries on
average for V -DO than for context. In most cases, this was due to the fact that
users found it difficult to formulate strict V-DO queries for all the concerns. One
subject said,“I really liked the verb-direct object search add-on, but had trouble
formulating some of the mandatory verbs, for example with the sqrt2 query.” In
situations where V -DO could not extract a verb, users had trouble formulating
successful queries and therefore expended more effort than with context.

Natural Language-Based Software Analyses and Tools 111

 0

 5

 10

 15

 20

 25

 30

 35

Context V-DO Context V-DO
 0

 10

 20

 30

 40

 50

 60

 70

 80

N
um

be
r

of
 Q

ue
rie

s
(E

ffo
rt

)

F
 M

ea
su

re
 (

E
ffe

ct
iv

en
es

s)

Fig. 5. Effort and Effectiveness Results for context and V -DO. Effort is measured in
terms of the number of queries entered, shown on the left. Effectiveness is measured in
terms of the F Measure, shown on the right.

V -DO’s inability to extract verbs in all situations also led to poor effective-
ness, shown on the right in Figure 5. Although the developers found V -DO’s
query recommendations to be helpful, the recommendations did not provide sig-
nificantly improved results. For example, another subject said, “In the V-DO
part especially, it was difficult to find an accurate list [of signatures] for each
concern by specifying complete V-DO combinations.” Thus, the more flexible
phrase extraction process of context allowed for higher F measure values.

4.4 SWUM-Based Search

As described in Section 4.2, experimental results showed that AOIG-based Find-
Concept is more consistently effective than two existing search techniques. Source
code search effectiveness can be even further increased by taking advantage
of SWUM’s richer representation of natural language in a program [34]. The
core of SWUM-based search is the SWUM-based scoring function, swum, which
scores the relevance of program elements based on where the query words oc-
cur in the code by integrating location, semantic role, head distance, and usage
information:

– Location. When a method is well-named, its signature summarizes its intent,
while the body implements it using a variety of words that may be unrelated.
A query word in the signature is a stronger indicator of relevance than the
body.

– Semantic role. Prior research has shown that using semantic roles such as ac-
tion and theme can improve search effectiveness [87]. That intuition is taken
further by distinguishing where query words occur in terms of additional
semantic roles.

– Head distance. The closer a query word occurs to the head, or right-most,
position of a phrase, the more strongly the phrase relates to the query word.

112 L. Pollock et al.

For example, the phrase “image file” is more relevant to the concept of
“saving a file” than “file server manager”.

– Usage. If a query word frequently occurs throughout the rest of the program,
it is not as good at discriminating between relevant and irrelevant results.
This idea is commonly used in information retrieval techniques [63].

Individual query words are first scored based on their usage pattern in the code
as well as their head distance within a phrase. This score for a phrase is then
scaled based on its semantic role, where actions and themes are assigned the
highest coefficient multiplier. If a method is difficult for SWUM to split or parse,
purely lexical regular expressions are used to calculate the score, scaled by a low
coefficient. The score from a method’s signature is combined with lexical body
information in the final swum score.

This swum score was compared with the existing FindConcept search re-
sults [87], except for 1 concern which was used in swum’s training set. The
queries for swum were formulated by the subjects using the contextual query
reformulation technique, as presented in Section 4.3. Two variants of SWUM
were compared: SWUM10, which uses the top 10 ranked results, and SWUMT,
which uses a more sophisticated threshold that takes the average of the top 20
results to determine relevance. Depending on how the distribution of scores is
skewed, the threshold for SWUMT can be more or less than 10.

Based on the F measure shown in Figure 6, ELex appears inferior to the
other search techniques. The SWUM-based techniques, SWUM10 and SWUMT,
appear to be more consistently effective than FindConcept or GES. These results
are confirmed by the precision and recall results. In terms of precision, SWUMT
is a clear front-runner closely followed by FindConcept. For recall, SWUM10,
SWUMT, and GES appear to have similar results.

It is not surprising that ELex, the technique with the worst precision, also
has the best recall. For most queries in this study, ELex typically returns too
many results. This ensures ELex finds many relevant results, but too many
irrelevant ones. These observations independently confirm earlier results that
used tools similar to ELex for feature location [5]. SWUM10 and SWUMT begin
to approach ELex’s high recall, without sacrificing precision.

Overall, SWUMT is a very competitive search technique when the query words
match relevant signatures. However, when body information is important to
locating the concern, GES is the best state of the art technique in this study.
Although GES outperformed SWUMT, SWUM10, and FindConcept for some of
the concerns, its performance in general seems to be unpredictable. When GES
did not have the best performance, it tended to be a little better, and sometimes
even worse, than ELex. In contrast, even though SWUMT did not always have
the best results, it was usually competitive.

To investigate this observation, the approaches were ranked from 1–5 based
on their maximum F measure score for each concern, giving ties the same rank.
Using this measure, SWUMT is the most highly ranked technique with an aver-
age rank of 2.38 and a standard deviation (std) of 1.18. GES has an average of
2.75 (std 1.19), SWUM10 an average of 2.88 (std 1.64), FindConcept an average

Natural Language-Based Software Analyses and Tools 113

 0

 20

 40

 60

 80

 100

ELex GES FindConcept SWUM10 SWUMT

F
 M

ea
su

re
 (

%
)

Search Technique

Fig. 6. f-measure results for state of the art search techniques

of 3.00 (std 0.93), and ELex and average of 3.50 (std 1.41). From these results,
we can see that SWUMT and GES are the best overall techniques in this study,
but that SWUMT is consistently ranked more highly overall.

4.5 Program Exploration

Despite evidence that successful programmers use program structure as well
as identifier names to explore software [81], most existing program exploration
techniques use either structural or textual information. Using only one type of
information, current automated tools ignore valuable clues about a developer’s
intentions [7]—clues critical to the human program comprehension process.

By utilizing textual as well as structural program information, automatic pro-
gram exploration tools can potentially mirror how humans attempt to
understand code [47]. Combining information enables exploration tools to au-
tomatically prune irrelevant structural edges. By eliminating irrelevant edges,
exploration tools can recursively search a structural program representation to
provide the maintainer with a broad, high level view of the code relevant to a
maintenance task—without including the entire program.

Dora the Program Explorer, or Dora, is an automatic exploration technique
that takes as input a natural language query related to the maintenance task
and a program structure representation to be explored [36]. Dora then outputs a
subset of the program structure relevant to the query, called a relevant neighbor-
hood. Dora currently uses the call graph for program structure, and takes a seed
method as a starting point. By recursively traversing call edges, Dora identifies
the relevant neighborhood for this seed.

Dora uses structural information by traversing structural call edges to find
the set of callers and callees for the seed method. These methods become can-

114 L. Pollock et al.

didates for the relevant neighborhood. Dora uses textual information to score
each candidates’ relevance to the query. Candidates scored higher than a given
threshold, t1 = 0.5, are added to the relevant neighborhood. Candidates scored
less than t1 but more than a threshold t2 = 0.3 are further explored to ensure
they are not connected to more relevant methods. The exploration process is
recursively repeated for each method added to the relevant neighborhood.

To determine a method’s relevance to the query, Dora uses a unique similarity
measure that takes into account how frequently the query words occur in the
method versus the remainder of the program, as well as where the query words
appear. Dora captures word frequency based on the tf-idf score commonly used
in information retrieval (IR) [63]. In addition, Dora more highly weights the tf-idf
of query words occurring in the method name versus the body. The weights were
automatically trained using a logistic regression model on a set of 9 concerns [36].

Dora’s sophisticated relevance score (Dora) was evaluated against two simpler
relevance scores: boolean-AND (AND) and boolean-OR (OR). These techniques
output either 0 or 1: AND outputs 1 if all query terms appear in the method;
OR outputs 1 if any query term appears in the method. In addition, Dora was
compared to a purely structural technique, Suade [80, 104]. These 4 techniques
were compared using 8 concerns from 4 open source Java programs [83]. The 8
concerns contain a total of 160 seed methods and 1885 call edges (with overlap).
For each method m in the set of evaluation concerns, each scoring technique was
applied to all the callers and callees of m, and the precision and recall for m
were calculated.

The results of this study are summarized in Figure 7. Each bar shows the dis-
tribution of F measures calculated for each seed method across all the concerns.
The shaded box represents 50% of the data, from the 25th to 75th percentiles.
The horizontal bar represents the median, and the plus represents the mean.

Since each shaded box extends from 0, at least 25% of the 160 methods con-
sidered by each technique have 0% recall and precision. However, Dora achieves
100% precision and recall for 25% of the data—more than any other technique.
Suade and OR appear to perform similarly to one another, although OR has
a slightly higher mean F measure. These trends were verified with a Bonferroni
mean separation test. Dora performs significantly better than structural-based
Suade, although neither Dora nor Suade are significantly different from OR.
All the approaches outperform AND with statistical significance.

Overall, Dora appears to be the most successful technique, and structural-
based Suade to be competitive with the naive textual- and structural-based
OR. Of all the techniques, naive AND had the worst performance. AND’s poor
performance indicates that simply combining textual and structural information
alone does not guarantee success. The success of a textual- and structural-based
(NLPA) technique is highly dependent on the performance of the textual scoring
technique.

Natural Language-Based Software Analyses and Tools 115

 0

 20

 40

 60

 80

 100

AND Suade OR Dora

F
 M

ea
su

re

Fig. 7. f-measure across exploration techniques

4.6 Comment Generation

In spite of numerous studies demonstrating the utility of comments for under-
standing and analyzing software [97–99, 101, 105], few software projects ade-
quately document the code to reduce future maintenance costs [44, 90]. Lack of
comments may be fine when programmers use descriptive identifier names [27];
however, precise identifiers that accurately describe an entity lead to very long
identifier names [9, 53], which can actually reduce code readability, Another way
is to encourage the developer to write comments (1) by automatically prompting
the developer to enter them [21, 79], or, (2) by using a top-down design paradigm
and generating comments directly from the specification [84], or, (3) by using a
documentation-first approach to development [45]. Although these solutions can
be used to comment newly created systems, they are not suitable for existing
legacy systems.

An alternative to developer-written comments is to automatically generate
comments directly from the source code [11, 56]. These approaches are lim-
ited to inferring documentation for exceptions [11] and generating API function
cross-references [56], and are not intended for generating descriptive summary
comments.

This section describes how Sridhara, et al. [91, 93, 94] leveraged NLPA, specifi-
cally SWUM, to automatically generate method summary comments [91], detect
high level actions in method bodies for improved summaries [93], and generate
parameter comments and summaries with integrated parameter usage informa-
tion [94]. The method summaries are leading comments that describe a method’s
intent, called descriptive comments. Descriptive comments summarize the major
algorithmic actions of the method, similar to how an abstract provides a sum-

116 L. Pollock et al.

mary for a natural language document [61]. Descriptive parameter comments
describe the high-level role of a parameter in achieving the computational intent
of a method. Figure 8 shows example output from the automatic summary and
parameter comment generator.

Fig. 8. Example of a generated summary and parameter comment for a Java Method
@summary : /** Start meta server */. @param args: create meta server, using args.

The key insight in automatic summary comment generation is to model the
process after natural language generation, dividing the problem into sub-problems
of content selection and text generation [77]. Content selection involves choosing
the important or central code statements within a method that must be in-
cluded in the summary comment. For a selected code statement, text generation
determines how to express the content in natural language phrases in a concise
yet precise manner. Figure 9 depicts the summary comment generation process
with the NLPA preprocessing to build the linguistic and traditional program
representations.

Generating Method Summary Comments. The first phase selects s units
as content for the summary, where an s unit is a Java statement, except when
the statement is a control flow statement; then, the s unit is the control flow
expression with one of the if, while, for or switch keywords. Heuristics for s unit
selection are based on characteristics similar to beacons [16] for summary com-
ments, where a beacon is a surface feature which facilitates comprehension. End-
ing s units are statements that lie at the control exit of a method, as methods
often perform a set of actions to accomplish a final action, which is often the
main purpose of the method. Same-action s units are method calls where the
callee’s name indicates the same action as the method being analyzed for com-
ment generation. A void-return s unit is a method call that does not return
a value or whose return value is not assigned to a variable; these methods of-
ten supply useful content for a summary because they are invoked purely for
its side effects. These three kinds of s units are first identified, and then their

Natural Language-Based Software Analyses and Tools 117

Fig. 9. The Summary Comment Generation Process

data-facilitating s units are identified, which are those s units that assign data
to variables used in these s units. Any s units controlling the execution of any
of these s units are included. Finally, ubiquitous operations such as logging or
exception handling are filtered out.

The text generation phase determines how to express the selected s units as
English phrases and how to integrate the phrases to mitigate redundancy. For
example, for the s unit:

f.getContentPane().add(view.getComponent(), CENTER)

The output phrase is:
/* Add component of drawing view to content pane of frame*/

A naive approach to text generation is to generate a phrase based only on the
statement. For example, given print(current); one can generate the phrase “print
current”. The problem with this approach is that the name of the variable current
alone is insufficient; the reader is left with no concept of what is being printed.
The missing contextual information is current’s type, which is Document. Instead,
a process called lexicalization is used, in which the type information of a variable
is incorporated such that more descriptive noun phrases are generated for a
variable.

Text generation is achieved through a set of templates. Consider a method
call M(...). In Java, a method implements an operation and typically begins with
a verb phrase [96]. Thus, a verb phrase for M is generated. The template for the
verb phrase is:

action theme secondary-args
and get return-type [if M returns a value]

where action, theme and secondary arguments of M are identified by SWUM
and correspond to the verb, noun phrase and prepositional phrases of the verb
phrase.

Selected s unit: os.print(msg)

Generated Phrase: /* Print message to output stream */

There are additional templates for different constructs such as nested method
calls, composed method calls, assignments, returns, conditional and loop expres-
sions. The goal in template creation is to be precise while not being too verbose.

118 L. Pollock et al.

9 for (int x = 0 ; x < vAttacks . s i z e () ; x++) {
10 WeaponAttackAction waa=vAttacks . elementAt(x) ;
11 f loat fDanger = getExpectedDamage(g , waa) ;
12 i f (fDanger > fH i ghe s t) {
13 fH i ghe s t = fDanger ;
14 waaHighest = waa ;
15 }
16 }
17 return waaHighest ;

Listing 1.1. Lines 9-16 implement a high level action. Synthesized description: “Get
weapon attack action object (in vectorAttacks) with highest expected damage.”

Improving Generated Comments. More concise and higher level summary
comments are achievable if groupings of related statements can be recognized as
implementing a higher level action. These same identified high level actions could
also be used in ExtractMethod refactoring and other applications like traceability
recovery and concern location. For example, the code fragment from lines 9 to
16 in Listing 1.1 implements a high level action. Sridhara, et al. [93] leverage
SWUM and traditional program analysis to both identify statement groupings
that form high level actions, and generate the English phrases to express them.

Similarly, leading comments are improved by parameter comments and/or in-
tegrating parameter usage information into the summary comment itself. The
challenges are distinguishing the main role the parameter plays among its po-
tentially many uses within the body, expressing that role in English, and then
integrating that information into the existing summary comment. Sridhara et
al. [94] developed heuristics for identification of the main parameter role using
both SWUM and other information such as static estimation of execution fre-
quency [6]. Phrases are generated such that the parameter comment is linked
with the summary (i.e., there are overlapping words between the parameter
comment and summary). In Figure 8, in addition to using line 4 to generate the
parameter comment, line 14 is used to ensure that the parameter comment is
connected to the summary (via “meta server”).

Evaluating Automatically Generated Comments. Sridhara, et al. evalu-
ated their work [91, 93, 94] by obtaining judgements of the generated comments
from expert programmers. For summary comments, a majority of the develop-
ers believed that the generated summary was accurate in 87% of the evaluated
methods. A majority stated that the summary comments did not miss impor-
tant information in 75% of the evaluated methods. Finally, the majority noted
that the synthesized summary was not too verbose in 87.5% of the evaluated
methods. Similarly, the evaluation of the high level action identification and de-
scription also yielded positive results [93]. In an evaluation of 75 code fragments
with identified high level actions, 192 of the 225 developer responses agreed that
the synthesized description represented the high level action in the code frag-
ments. In the evaluation of the generated comments for 33 parameters [94], 89
of the 99 developer responses agreed that the comments were accurate. 89 of the
99 responses also agreed that the comments were useful in understanding the
parameter’s role.

Natural Language-Based Software Analyses and Tools 119

5 Summary

Results from various empirical evaluations described in this chapter demonstrate
that Natural Language Program Analysis can significantly improve the effective-
ness of tools to aid in software maintenance. By extracting phrases to represent
method signatures, and using the phrases to search for query word instances
in the code, developers can gain help in both reformulating search queries and
discriminating between relevant and irrelevant search results. Using the Soft-
ware Word Usage Model (SWUM) can improve scoring functions at the core
of software search tools. SWUM has enabled automatic generation of method
summary comments with parameter role information.

Experiments have also shown that the usefulness of NLPA in client appli-
cations is affected by its accuracy in extracting information from the source
code. The software maintenance tools should be improved even further as iden-
tifier splitting, abbreviation expansion, part-of-speech tagging, and word relation
determiners are improved for the software domain. While much progress in au-
tomation has been achieved, the empirical results thus far indicate that there is
considerable room for improving all of these building blocks as well as analysis
and modeling.

Acknowledgments. The authors greatly benefitted from work together with
Zachary Fry, Eric Enslen, Sana Malik, Michelle Allen, and Divya Muppaneni.

References

1. Abadi, A., Nisenson, M., Simionovici, Y.: A Traceability Technique for Specifica-
tions. In: ICPC 2008: Proceedings of the 16th IEEE International Conference on
Program Comprehension, pp. 103–112 (2008)

2. Abebe, S., Haiduc, S., Marcus, A., Tonella, P., Antoniol, G.: Analyzing the Evo-
lution of the Source Code Vocabulary, pp. 189–198 (2009)

3. Antoniol, G., Gueheneuc, Y.G., Merlo, E., Tonella, P.: Mining the Lexicon Used
by Programmers during Sofware Evolution. In: IEEE International Conference on
Software Maintenance, pp. 14–23 (2007)

4. Antoniol, G., Canfora, G., Casazza, G., Lucia, A.D., Merlo, E.: Recovering Trace-
ability Links between Code and Documentation. IEEE Transactions on Software
Engineering 28(10), 970–983 (2002)

5. Antoniol, G., Gueheneuc, Y.: Feature Identification: An Epidemiological
Metaphor. IEEE Transactions on Software Engineering 32(9), 627–641 (2006)

6. Ball, T., Larus, J.R.: Branch Prediction for Free. In: PLDI 1993: Proceedings
of the ACM SIGPLAN 1993 Conference on Programming Language Design and
Implementation, pp. 300–313. ACM Press, New York (1993)

7. Biggerstaff, T.J.: Design Recovery for Maintenance and Reuse. Computer 22(7),
36–49 (1989)

8. Biggerstaff, T.J., Mitbander, B.G., Webster, D.: The Concept Assignment Prob-
lem in Program Understanding. In: ICSE 1993: Proceedings of the 15th Interna-
tional Conference on Software Engineering, pp. 482–498 (1993)

120 L. Pollock et al.

9. Binkley, D., Lawrie, D., Maex, S., Morrell, C.: Impact of Limited Memory Re-
sources. In: Proceedings of the 16th IEEE International Conference on Program
Comprehension (2008)

10. Booch, G.: Object-oriented Design. Ada Lett. I(3), 64–76 (1982)
11. Buse, R.P., Weimer, W.R.: Automatic Documentation Inference for Exceptions.

In: International Symp. on Software Testing and Analysis, 2008, pp. 273–282.
ACM (2008)

12. Caprile, B., Tonella, P.: Nomen Est Omen: Analyzing the Language of Func-
tion Identifiers. In: WCRE 1999: Proceedings of the 6th Working Conference on
Reverse Engineering, pp. 112–122 (1999)

13. Caprile, B., Tonella, P.: Restructuring Program Identifier Names. In: ICSM 2000:
Proceedings of the International Conference on Software Maintenance (ICSM
2000), p. 97. IEEE Computer Society, Washington, DC (2000)

14. Carroll, J., Briscoe, T.: High Precision Extraction of Grammatical Re-
lations. In: 7th International Workshop on Parsing Technologies (2001),
citeseer.ist.psu.edu/article/carroll01high.html

15. Chen, K., Rajlich, V.: Case Study of Feature Location Using Dependence Graph.
In: IWPC 2000: Proceedings of the 8th International Workshop on Program Com-
prehension, pp. 241–249 (2000)

16. Crosby, M.E., Scholtz, J., Wiedenbeck, S.: The Roles Beacons Play in Comprehen-
sion for Novice and Expert Programmers. In: 14th Workshop of the Psychology
of Programming Interest Group, pp. 18–21. Brunel University (2002)

17. De Lucia, A., Oliveto, R., Tortora, G.: Assessing IR-based Traceability Recov-
ery Tools through Controlled Experiments. Empirical Softw. Engg. 14(1), 57–92
(2009)

18. Deissenboeck, F., Pizka, M.: Concise and Consistent Naming. Software Quality
Control 14(3), 261–282 (2006)

19. Eaddy, M., Aho, A.V., Antoniol, G., Gueheneuc, Y.: Cerberus: Tracing Require-
ments to Source Code Using Information Retrieval, Dynamic Analysis, and Pro-
gram Analysis. In: ICPC 2008: Proceedings of the 16th IEEE International Con-
ference on Program Comprehension. IEEE Computer Society, Washington, DC
(2008)

20. Enslen, E., Hill, E., Pollock, L., Vijay-Shanker, K.: Mining Source Code to Au-
tomatically Split Identifiers for Software Analysis. In: Proceedings of the 6th
International Working Conference on Mining Software Repositories, MSR 2009,
pp. 71–80 (2009)

21. Erickson, T.E.: An Automated FORTRANDocumenter. In: Proceedings of the 1st
Annual International Conference on Systems Documentation, pp. 40–45. ACM,
New York (1982)

22. Erlikh, L.: Leveraging Legacy System Dollars for E-Business. IT Professional 2(3),
17–23 (2000)

23. Falleri, J.-R., Huchard, M., Lafourcade, M., Nebut, C., Prince, V., Dao, M.: Au-
tomatic Extraction of a WordNet-Like Identifier Network from Software. In: 18th
Int’l Conf. on Program Comprehension, pp. 4–13. IEEE (2010)

24. Feild, H., Binkley, D., Lawrie, D.: An Empirical Comparison of Techniques for
Extracting Concept Abbreviations from Identifiers. In: Proceedings of IASTED
International Conference on Software Engineering and Applications, SEA 2006
(2006)

25. Feng, F., Croft, W.B.: Probabilistic Techniques for Phrase Extraction. Informa-
tion Processing and Management 37(2), 199–220 (2001)

citeseer.ist.psu.edu/article/carroll01high.html

Natural Language-Based Software Analyses and Tools 121

26. Fischer, G., Nieper-Lemke, H.: Helgon: Extending the Retrieval by Reformula-
tion Paradigm. In: CHI 1989: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pp. 357–362 (1989)

27. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley
(1999)

28. Fry, Z.P., Shepherd, D., Hill, E., Pollock, L., Vijay-Shanker, K.: Analysing Source
Code: Looking for Useful Verb-Direct Object Pairs in all the Right Places. Soft-
ware, IET 2(1), 27–36 (2008)

29. Furnas, G.W., Landauer, T.K., Gomez, L.M., Dumais, S.T.: The Vocabulary
Problem in Human-System Communication. Communications of the ACM 30(11),
964–971 (1987)

30. Gosling, J., Joy, B., Steele, G.: Java Language Specification, (September 2006),
http://java.sun.com/docs/books/jls/second_edition/html/names.doc.html

31. Haiduc, S., Marcus, A.: On the Use of Domain Terms in Source Code. In: ICPC
2008: Proceedings of the 16th IEEE International Conference on Program Com-
prehension, pp. 113–122 (2008)

32. Hayase, Y., Kashima, Y., Manabe, Y., Inoue, K.: Building Domain Specific Dictio-
naries of Verb-Object Relation from Source Code. In: 15th European Conference
on Software Maintenance and Reengineering (CSMR 2011), pp. 93–100. IEEE
Computer Society (2011)

33. Henninger, S.: Using Iterative Refinement to Find Reusable Software. IEEE Soft-
ware 11(5), 48–59 (1994)

34. Hill, E.: Integrating Natural Language and Program Structure Information to
Improve Software Search and Exploration. Ph.D. thesis, University of Delaware
(2010)

35. Hill, E., Fry, Z.P., Boyd, H., Sridhara, G., Novikova, Y., Pollock, L., Vijay-
Shanker, K.: AMAP: Automatically Mining Abbreviation Expansions in Pro-
grams to Enhance Software Maintenance Tools. In: MSR 2008: Proceedings of
the 5th International Working Conference on Mining Software Repositories, IEEE
Computer Society, Washington, DC (2008)

36. Hill, E., Pollock, L., Vijay-Shanker, K.: Exploring the Neighborhood with Dora
to Expedite Software Maintenance. In: ASE 2007: Proceedings of the 22nd IEEE
International Conference on Automated Software Engineering (ASE 2007), pp.
14–23. IEEE Computer Society, Washington, DC (2007)

37. Hill, E., Pollock, L., Vijay-Shanker, K.: Automatically Capturing Source Code
Context of NL-Queries for Software Maintenance and Reuse. In: ICSE 2009: Pro-
ceedings of the 31st International Conference on Software Engineering (2009)

38. Høst, E., Østvold, B.: Canonical Method Names for Java. In: Malloy, B., Staab,
S., van den Brand, M. (eds.) SLE 2010. LNCS, vol. 6563, pp. 226–245. Springer,
Heidelberg (2011)

39. Høst, E.W., Østvold, B.M.: The Programmer’s Lexicon, Volume I: The Verbs. In:
SCAM 2007: Proceedings of the 7th IEEE International Working Conference on
Source Code Analysis and Manipulation, pp. 193–202. IEEE Computer Society,
Washington, DC (2007)

40. Høst, E.W., Østvold, B.M.: Debugging Method Names. In: Drossopoulou, S. (ed.)
ECOOP 2009. LNCS, vol. 5653, pp. 294–317. Springer, Heidelberg (2009)

41. Høst, E.W., Østvold, B.M.: The Java Programmer’s Phrase Book. In: Gašević,
D., Lämmel, R., Van Wyk, E. (eds.) SLE 2008. LNCS, vol. 5452, pp. 322–341.
Springer, Heidelberg (2009)

42. IBM: Eclipse IDE (2010), http://www.eclipse.org

http://java.sun.com/docs/books/jls/second_edition/html/names.doc.html
http://www.eclipse.org

122 L. Pollock et al.

43. Ishio, T., Niitani, R., Murphy, G.C., Inoue, K.: A Program Slicing Approach for
Locating Functional Concerns. Tech. rep., Graduate School of Information Science
and Technology, Osaka University (March 2007),
http://sel.ist.osaka-u.ac.jp/~ishio/TR-slicing2007.pdf

44. Kajko-Mattsson, M.: A Survey of Documentation Practice within Corrective
Maintenance. Empirical Software Engineering 10(1), 31–55 (2005)

45. Knuth, D.E.: Literate Programming. The Computer Journal 27(2), 97–111 (1984)
46. Kuhn, A., Ducasse, S., Ǵırba, T.: Semantic Clustering: Identifying Topics in

Source Code. Information Systems and Technologies 49(3), 230–243 (2007)
47. Lawrance, J., Bellamy, R., Burnett, M., Rector, K.: Using Information Scent to

Model the Dynamic Foraging Behavior of Programmers in Maintenance Tasks.
In: CHI 2008: Proceeding of the Twenty-Sixth Annual SIGCHI Conference on
Human Factors in Computing Systems, pp. 1323–1332. ACM, New York (2008)

48. Lawrie, D., Feild, H., Binkley, D.: An Empirical Study of Rules for well-formed
Identifiers. Journal of Software Maintenance and Evolution 19(4), 205–229 (2007)

49. Lawrie, D., Feild, H., Binkley, D.: Extracting Meaning from Abbreviated Identi-
fiers. In: SCAM 2007: Proceedings of the 7th IEEE International Working Con-
ference on Source Code Analysis and Manipulation (SCAM 2007), pp. 213–222
(2007)

50. Lawrie, D., Morrell, C., Feild, H., Binkley, D.: What’s in a Name? A Study of
Identifiers. In: ICPC 2006: Proceedings of the 14th IEEE International Conference
on Program Comprehension (ICPC 2006), pp. 3–12. IEEE Computer Society,
Washington, DC (2006)

51. Lawrie, D., Binkley, D., Morrell, C.: Normalizing Source Code Vocabulary. In:
Working Conference on Reverse Engineering (WCRE), pp. 3–12 (2010)

52. Lawrie, D., Feild, H., Binkley, D.: Leveraged Quality Assessment using Informa-
tion Retrieval Techniques. In: ICPC 2006: Proceedings of the 14th IEEE Interna-
tional Conference on Program Comprehension (ICPC 2006), pp. 149–158. IEEE
Computer Society, Washington, DC (2006)

53. Liblit, B., Begel, A., Sweetser, E.: Cognitive Perspectives on the Role of Nam-
ing in Computer Programs. In: Proceedings of the 18th Annual Psychology of
Programming Workshop (2006)

54. Linstead, E., Bajracharya, S., Ngo, T., Rigor, P., Lopes, C., Baldi, P.: Sourcerer:
Mining and searching internet-scale software repositories. Data Mining and
Knowledge Discovery 18(2), 300–336 (2009)

55. Linstead, E., Rigor, P., Bajracharya, S., Lopes, C., Baldi, P.: Mining Concepts
from Code with Probabilistic Topic Models. In: ASE 2007: Proceedings of the
Twenty-Second IEEE/ACM International Conference on Automated Software
Engineering, pp. 461–464. ACM, New York (2007)

56. Long, F., Wang, X., Cai, Y.: API Hyperlinking via Structural Overlap. In: ACM
SIGSOFT Symposium on the Foundations of Software Engineering. ACM (2009)

57. Lukins, S., Kraft, N., Etzkorn, L.: Source Code Retrieval for Bug Localization Us-
ing Latent Dirichlet Allocation. In: WCRE 2008: Proceedings of the 15th Working
Conference on Reverse Engineering, pp. 155–164 (2008)

58. Maarek, Y.S., Berry, D.M., Kaiser, G.E.: An Information Retrieval Approach for
Automatically Constructing Software Libraries. IEEE Transactions on Software
Engineering 17(8), 800–813 (1991)

59. Madani, N., Guerrouj, L., Penta, M.D., Gueheneuc, Y.G., Antoniol, G.: Recog-
nizing Words from Source Code Identifiers using Speech Recognition Techniques.
In: European Conference on Software Maintenance and Reengineering, CSMR
(2010)

http://sel.ist.osaka-u.ac.jp/~ishio/TR-slicing2007.pdf

Natural Language-Based Software Analyses and Tools 123

60. Malik, S.: Parsing Java Method Names for Improved Software Analysis. Tech.
rep., University of Delaware (Senior Thesis) (2011)

61. Mani, I.: Automatic Summarization. John Benjamins (2001)
62. Manning, C., Schütze, H.: Foundations of Statistical Natural Language Process-

ing. MIT Press, Cambridge (1999)
63. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval.

Cambridge University Press, New York (2008)
64. Marcus, A., Maletic, J.I.: Recovering Documentation-to-Source-Code Traceability

Links using Latent Semantic Indexing. In: ICSE 2003: Proceedings of the 25th
International Conference on Software Engineering, pp. 125–135 (2003)

65. Marcus, A., Poshyvanyk, D.: The Conceptual Cohesion of Classes. In: ICSM 2005:
Proceedings of the 21st IEEE International Conference on Software Maintenance
(ICSM 2005), pp. 133–142. IEEE Computer Society, Washington, DC (2005)

66. Marcus, A., Sergeyev, A., Rajlich, V., Maletic, J.I.: An Information Retrieval
Approach to Concept Location in Source Code. In: WCRE 2004: Proceedings of
the 11th Working Conference on Reverse Engineering (WCRE 2004), pp. 214–223
(2004)

67. Maskeri, G., Sarkar, S., Heafield, K.: Mining Business Topics in Source Code using
Latent Dirichlet Allocation. In: ISEC 2008: Proceedings of the 1st India Software
Engineering Conference, pp. 113–120 (2008)

68. McMillan, C., Poshyvanyk, D., Revelle, M.: Combining Textual and Structural
Analysis of Software Artifacts for Traceability Link Recovery. In: TEFSE 2009:
Proceedings of the 2009 ICSEWorkshop on Traceability in Emerging Forms of Soft-
ware Engineering, pp. 41–48. IEEE Computer Society, Washington, DC (2009)

69. Michail, A., Notkin, D.: Assessing Software Libraries by Browsing Similar Classes,
Functions and Relationships. In: ICSE 1999: Proceedings of the 21st International
Conference on Software Engineering, pp. 463–472. IEEE Computer Society Press,
Los Alamitos (1999)

70. Miller, G.: WordNet: a lexical database for English. Communications of the ACM,
pp. 39–41 (1995)

71. Ohba, M., Gondow, K.: Toward Mining “Concept Keywords” from Identifiers in
Large Software Projects. In: MSR 2005: Proceedings of the 2005 International
Workshop on Mining Software Repositories, pp. 1–5 (2005)

72. Poshyvanyk, D., Marcus, A.: Combining Formal Concept Analysis with Informa-
tion Retrieval for Concept Location in Source Code. In: ICPC 2007: Proceedings
of the 15th IEEE International Conference on Program Comprehension, pp. 37–
48. IEEE Computer Society, Washington, DC (2007)

73. Poshyvanyk, D., Marcus, A., Dong, Y.: JIRiSS – an Eclipse Plug-in for Source
Code Exploration. In: Proceedings of the 14th International Conference on Pro-
gram Comprehension (ICPC 2006), pp. 252–255 (2006)

74. Poshyvanyk, D., Petrenko, M., Marcus, A., Xie, X., Liu, D.: Source Code Explo-
ration with Google. In: ICSM 2006: Proceedings of the 22nd IEEE International
Conference on Software Maintenance (ICSM 2006), pp. 334–338 (2006)

75. Rao, S., Kak, A.: Retrieval from Software Libraries for Bug Localization: a Com-
parative Study of Generic and Composite Text Models. In: Proceeding of the
8th Working Conference on Mining Software Repositories, MSR 2011, pp. 43–52.
ACM, New York (2011), http://doi.acm.org/10.1145/1985441.1985451

76. Ratanotayanon, S., Sim, S.E., Raycraft, D.J.: Cross-artifact Traceability using
Lightweight Links. In: TEFSE 2009: Proceedings of the 2009 ICSE Workshop
on Traceability in Emerging Forms of Software Engineering, pp. 57–64. IEEE
Computer Society, Washington, DC (2009)

http://doi.acm.org/10.1145/1985441.1985451

124 L. Pollock et al.

77. Reiter, E., Dale, R.: Building Natural Language Generation Systems. Cambridge
University Press (2000)

78. Revelle, M., Dit, B., Poshyvanyk, D.: Using Data Fusion and Web Mining to
Support Feature Location in Software. In: IEEE 18th International Conference
on Program Comprehension, ICPC 2010 (2010)

79. Roach, D., Berghel, H., Talburt, J.R.: An Interactive Source Commenter for Pro-
log Programs. SIGDOC Asterisk J. Comput. Doc. 14(4), 141–145 (1990)

80. Robillard, M.P.: Automatic Generation of Suggestions for Program Investigation.
In: ESEC/FSE-13: 10th European Software Engineering Conference Held Join-
ternationaly with 13th ACM SIGSOFT International Symp on Foundations of
Software Engineering, pp. 11–20 (2005)

81. Robillard, M.P., Coelho, W.: How Effective Developers Investigate Source Code:
An Exploratory Study. IEEE Transactions on Software Engineering 30(12), 889–
903 (2004)

82. Robillard, M.P., Murphy, G.C.: Concern Graphs: Finding and Describing Con-
cerns using Structural Program Dependencies. In: ICSE 2002: Proceedings of the
24th International Conference on Software Engineering, pp. 406–416 (2002)

83. Robillard, M.P., Shepherd, D., Hill, E., Vijay-Shanker, K., Pollock, L.:
An Empirical Study of the Concept Assignment Problem. Tech. Rep.
SOCS-TR-2007.3, School of Computer Science, McGill University (2007),
http://www.cs.mcgill.ca/~martin/concerns/

84. Robillard, P.N.: Schematic pseudocode for program constructs and its computer
automation by SCHEMACODE. Commun. ACM 29(11), 1072–1089 (1986)

85. Runeson, P., Alexandersson, M., Nyholm, O.: Detection of Duplicate Defect Re-
ports Using Natural Language Processing. In: ICSE 2007: Proceedings of the 29th
International Conference on Software Engineering, pp. 499–510. IEEE Computer
Society, Washington, DC (2007)

86. Saul, Z.M., Filkov, V., Devanbu, P., Bird, C.: Recommending Random Walks.
In: ESEC-FSE 2007: Proceedings of the the 6th Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering, pp. 15–24. ACM Press, New York (2007)

87. Shepherd, D., Fry, Z.P., Hill, E., Pollock, L., Vijay-Shanker, K.: Using Natural
Language Program Analysis to Locate and Understand Action-Oriented Con-
cerns. In: AOSD 2007: Proceedings of the 6th International Conference on Aspect-
Oriented Software Development (2007)

88. Shepherd, D., Pollock, L., Vijay-Shanker, K.: Towards Supporting on-demand
Virtual Remodularization using Program Graphs. In: AOSD 2006: Proceedings
of the 5th International Conference on Aspect-Oriented Software Development,
pp. 3–14 (2006)

89. Sinha, V., Karger, D., Miller, R.: Relo: Helping Users Manage Context during
Interactive Exploratory Visualization of Large Codebases. In: Visual Languages
and Human-Centric Computing, VL/HCC 2006 (2006)

90. de Souza, S.C.B., Anquetil, N., de Oliveira, K.M.: A Study of the Documentation
Essential to Software Maintenance. In: 23rd Annual International Conference on
Design of Communication, pp. 68–75. ACM (2005)

91. Sridhara, G., Hill, E., Muppaneni, D., Pollock, L., Vijay-Shanker, K.: Towards
Automatically Generating Summary Comments for Java Methods. In: ASE 2010:
Proceedings of the 25th IEEE International Conference on Automated Software
Engineering (ASE 2010) (2010)

http://www.cs.mcgill.ca/~martin/concerns/

Natural Language-Based Software Analyses and Tools 125

92. Sridhara, G., Hill, E., Pollock, L., Vijay-Shanker, K.: Identifying Word Relations
in Software: A Comparative Study of Semantic Similarity Tools. In: Proceedings
of the 16th IEEE International Conference on Program Comprehension. IEEE
(2008)

93. Sridhara, G., Pollock, L., Vijay-Shanker, K.: Automatically Detecting and De-
scribing High Level Actions within Methods. In: ICSE 2011: Proceedings of the
33rd International Conference on Software Engineering, ICSE 2011, pp. 101–110.
ACM, New York (2011)

94. Sridhara, G., Pollock, L., Vijay-Shanker, K.: Generating Parameter Comments
and Integrating with Method Summaries. In: International Conference on Pro-
gram Comprehension, ICPC 2011 (2011)

95. Sridharan, M., Fink, S., Bodik, R.: Thin Slicing. In: PLDI 2007: Proceedings
of the 2007 ACM SIGPLAN Conference on Programming Language Design and
Implementation (2007)

96. SUN: How to Write Doc Comments for the Javadoc Tool,
http://java.sun.com/j2se/javadoc/writingdoccomments/

97. Takang, A.A., Grubb, P.A., Macredie, R.D.: The effects of comments and identi-
fier names on program comprehensibility: an experimental investigation. J. Prog.
Lang. 4(3), 143–167 (1996)

98. Tan, L., Yuan, D., Krishna, G., Zhou, Y.: /*iComment: Bugs or Bad Com-
ments?*/. In: SOSP 2007: Proceedings of Twenty-First ACM SIGOPS Sympo-
sium on Operating Systems Principles, pp. 145–158. ACM, New York (2007)

99. Tan, L., Zhou, Y., Padioleau, Y.: aComment: Mining Annotations from Comments
and Code to Detect Interrupt Related Concurrency Bugs. In: Proceeding of the
33rd International Conference on Software Engineering, ICSE 2011, pp. 11–20.
ACM, New York (2011)

100. Tarr, P., Ossher, H., Harrison, W., Stanley, M., Sutton, J.: N Degrees of Separa-
tion: Multi-Dimensional Separation of Concerns. In: ICSE 1999: Proceedings of
the 21st International Conference on Software Engineering, pp. 107–119. IEEE
Computer Society Press, Los Alamitos (1999)

101. Tenny, T.: Program Readability: Procedures Versus Comments. IEEE Trans.
Softw. Eng. 14(9), 1271–1279 (1988)

102. Tip, F.: A Survey of Program Slicing Techniques. Journal of Programming Lan-
guages 3(3), 121–189 (1995)

103. Wang, X., Lai, G., Liu, C.: Recovering Relationships between Documentation
and Source Code based on the Characteristics of Software Engineering. Electron.
Notes Theor. Comput. Sci. 243, 121–137 (2009)

104. Warr, F.W., Robillard, M.P.: Suade: Topology-Based Searches for Software In-
vestigation. In: ICSE 2007: Proceedings of the 29th International Conference on
Software Engineering, pp. 780–783 (2007)

105. Woodfield, S.N., Dunsmore, H.E., Shen, V.Y.: The Effect of Modularization and
Comments on Program Comprehension. In: Proceedings of the 5th International
Conference on Software Engineering. IEEE Press (1981)

106. Xu, B., Qian, J., Zhang, X., Wu, Z., Chen, L.: A Brief Survey of Program Slicing.
SIGSOFT Software Engineering Notes 30(2), 1–36 (2005)

107. Ying, A.T.T., Tarr, P.L.: Filtering out methods you wish you hadn’t navigated. In:
Eclipse 2007: Proceedings of the 2007 OOPSLA Workshop on Eclipse Technology
Exchange, pp. 11–15. ACM, New York (2007)

http://java.sun.com/j2se/javadoc/writingdoccomments/

A. De Lucia and F. Ferrucci (Eds.): ISSSE 2009-2011, LNCS 7171, pp. 126–158, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Text Retrieval Approaches
for Concept Location in Source Code

Andrian Marcus and Sonia Haiduc

Department of Computer Science, Wayne State University, Detroit, MI, USA
{amarcus,sonja}@wayne.edu

Abstract. Concept location in source code is an essential activity during soft-
ware change. It starts with a change request and results in a place in the source
code where the change is to be implemented. As a program comprehension ac-
tivity, it is also part of other software evolution tasks, such as, bug localization,
recovery of traceability links between software artifacts, retrieving software
components for reuse, etc. While concept location is primarily a human activity,
tool support is necessary given the large amount of information encoded
in source code. Many such tools rely on text retrieval techniques and help de-
velopers perform concept location much like document retrieval on web. This
paper presents and discusses the applications of text retrieval to support concept
location, in the context of software change.

Keywords: Concept location, concern location, feature location, information
retrieval, software maintenance.

1 Introduction

Program comprehension is one of the most pervasive activities performed by devel-
opers and is particularly important and frequent during software maintenance and
evolution, where it has been estimated to account for more than half of the time. Rec-
ognition and location are two fundamental comprehension processes [1] employed
very often, when developers need to match their understanding of the problem domain
to its representation in the source code and vice-versa. This problem is known in the
literature as the concept assignment problem. Biggerstaff et al. [2] defined the concept
assignment problem as “… discovering human oriented concepts and assigning them
to their implementation instances within a program …”. Concept assignment and its
comprehension processes are performed often during software maintenance and evo-
lution, in the context of various activities. Depending on the context, various in-
stances of this problem have been defined and addressed.

Concept location in source code [3] is one such instance and it is the focus of this
paper. Its name and definition originates from the concept assignment problem [2]
and feature location in code [4]. It is related to other areas of research, such as, fault
localization, traceability link recovery between software artifacts, etc., all of which
are different instances of the concept assignment problem. What sets it apart from the

 Text Retrieval Approaches for Concept Location in Source Code 127

related problems is that concept location is defined in the context of software change.
Concept location starts with a change request and results in the starting point (in the
source code) for the desired change [3]. Thus, when the first code location where
changes need to be implemented is identified, concept location ends. Some research-
ers have adopted a more relaxed definition of concept location, considering it the task
of determining all the locations in the code where changes need to be implemented.
However, in the context of software change, we consider this as two different tasks,
i.e., concept location, responsible for identifying the first change location, and impact
analysis, which is responsible for finding the rest of the change locations starting from
the one determined by concept location.

One particular instance of concept location is feature location, which deals with
identifying the source code corresponding to a specific functionality of the software
system that is accessible and observable by the user (i.e., a feature). In other words,
the difference between concept and feature location is that feature location is focused
on special concepts (i.e., features). All features are concepts, but not all concepts are
features. For example, a linked list is a concept from the solution domain which may
be implemented in the source code, yet it is not a specific feature of the system. Since
the features of a software system are associated with its behavior, most feature loca-
tion techniques rely on the execution of the software.

Concern location is a task very similar to concept and feature location. However,
it deals with locating concerns in the code, i.e., anything that stakeholders of the
software consider to be a conceptual unit, such as features, requirements, design
idioms, or implementation mechanisms [5]. The difference between concept and con-
cern location is in the context and the scope. Concept location is performed during
software change (hence it has a specific input and output), whereas concern location
is a context agnostic view of the activity. Also, concern location usually involves
finding all the code elements participating in the implementation of a concern, rather
than locating just one of them. In this paper we are interested in concept location and
its variant feature location, as well as concern location.

While concept location might be performed manually in small systems, the task
can become daunting in systems of medium or large size. The software engineering
research community has recognized this problem and proposed a series of approaches
and tools to help developers during this task. Most approaches (manual or otherwise)
rely on searching and software analysis techniques. Different categories of approach-
es making use of different types of information have been defined, including
those using static information about the structure of the system, those using dynamic
information obtained by executing the program, etc. One specific type of information
leveraged by many techniques is encoded in the textual data present in the source
code. In fact, the textual data is used by many instances of the concept assignment
problem, especially by those involving different types of software artifacts, such as,
the traceability link recovery problem. Text is the common type of data between
different software artifacts and also used to capture communications between stake-
holders. The most recent and most advanced techniques used to extract and analyze
text to support concept location (and its related activities) rely on Text Retrieval (TR)
methods [6]. In most cases, concept location is redefined as a text retrieval problem.

128 A. Marcus and S. Haiduc

In this paper we offer an overview of the TR-based concept location techniques
and their evolution, discuss their limitations, and identify directions for future re-
search in this area. We will not discuss other instances of the concept assignment
problem that use TR a part of their solution, such as, the traceability link recovery
problem. The focus of the paper is on concept location, feature location and concern
location.

The rest of the paper is organized as follows. Section 2 presents a generic approach
to concept location as a text retrieval problem. Section 3 presents the existing work in
text retrieval-based concept location organized according to the steps of the generic
approach, whereas Section 4 presents an overview of the tools which make use of text
retrieval techniques to aid developers during concept location. Section 5 overviews
the evaluation methods used in text retrieval-based concept location, and Section 6
discusses the current state of the research in this field and identifies directions for
future research.

2 Concept Location as a Text Retrieval Problem

We define concept location in the context of software change, which occurs in the
presence of a source code modification request. The software change process [7]
starts with the modification request and ends with a set of correct changes to the
existing code and addition of new code (see Figure 1). The software maintainer un-
dertakes a set of activities to determine the parts of the software that need to be
changed: concept location, impact analysis, change propagation, and refactoring.
Concept location starts with the change request (input) and ends when the developer
finds the first location in the source code where a change must be implemented (out-
put). The code location can be a class definition, method, file, etc., depending on the
needs of the developer. The next activity in the software change process, i.e., impact
analysis starts from the result of concept location and identifies the rest of the source
code locations that are affected by the change. Some researchers have considered
impact analysis a part of concept location. In this paper, however, we make the dis-
tinction between the two and our focus is on concept location. We present the
approaches which unify concept location and impact analysis as well, but specify in
these cases the deviation from the definition we adopt.

During concept location, developers have an information need, which is finding
one starting point in the code where changes need to be implemented. In order to
satisfy this need, they search and navigate the source code. In this process, develop-
ers can use as a starting point the textual description of the change they need to
perform, which often provides information that helps formulate a query for a search,
choose a starting point for the navigation of the code, or choose a scenario for
executing the program. In any case, the task of the developers is identifying the right
fragment of code from the large amount of possibilities available in the source code of
a system.

 Text Retrieval Approaches for Concept Location in Source Code 129

Fig. 1. Simplified view of the software change process (adapted from [7]). Concept location
starts with the change requests and produces the input for impact analysis.

This situation is somewhat similar to a user searching and navigating the web in
order to identify among the vast amount of web pages available the ones that satisfy
her current information need. Both concept location and web search can be consi-
dered instances of a classic retrieval problem: given a large collection of available
documents and an information need (usually formulated as a search query), determine
those documents from the collection that satisfy the information need [8]. Moreover,
considering that source code is mostly text, concept location can be seen as a specific
text retrieval problem, where the documents represent fragments of source code from
a software system.

For the reminder of the paper, we will consider concept location as a text retrieval
problem and will discuss the existing techniques to address it from this perspective.

In the next two subsections we define the text retrieval terminology that will be
used for the rest of the paper (not necessarily familiar for the software engineering
readers) and present the generic concept location approach based on text retrieval,
adapted from the text retrieval for natural language documents.

2.1 Terminology

This section introduces some of the concepts specific to the field of text retrieval,
which we will be using in the reminder of the paper. Each of the definitions includes
examples for concept location.

Document
A document represents the specific unit of retrieval, i.e., what a user would get as a
result to a search. In the case of written natural language or the web, a document can
be a news article, a book, a chapter, a web page, etc. In the case of concept location,
the documents refer to source code elements and can be source code files, classes,
methods, functions, lines of code, etc.

130 A. Marcus and S. Haiduc

Term
A term is a unit of discourse considered by the text retrieval technique, used to ex-
press meaning in a document. In natural language, this is usually equivalent to a word
or its lexical root. In the case of concept location in source code, however, a
term need not be a word, as often identifiers contain units of discourse that are not
dictionary words. In source code, the terms in the documents are extracted from the
identifiers and comments present in the source code. For example, the identifier
“getName” represents the name of a method, and contains the term “getName” or the
terms “get” and “name”, in case the identifiers are split according to common naming
conventions. The terms will be associated with the document from which they were
extracted, in this case the method getName.

Corpus
A collection of documents is called a corpus. In the case of concept location in
source code it can be, for example, the set of all classes in the system, or the set of all
methods, etc.

Indexing
The text retrieval techniques transform the documents into an intermediary, mathe-
matical representation which is then used for fast accessing and retrieval. The process
of transforming the documents to this internal representation (i.e., index) is called
indexing. This is the core action performed by the TR-based search engines. Different
search engines use different TR models to define the indices.

Corpus normalization
Usually, before a corpus is indexed using a TR technique, it has to be transformed, that
is, normalized in order to improve the efficacy of the retrieval. This normalization is
comprised of several steps, each of them optional. In the case of concept location, the
steps are identifier splitting, where identifiers are split into their constituent terms
based on common identifier naming rules (i.e., “setValue” and “set_value” will be split
to the terms “set” and “value”), filtering, where terms that do not contain meaningful
information are removed, and stemming, where the terms are reduced to their lexical
root (e.g., “name”, “names”, “named”, “naming” are all reduced to “name”).

Query
A query is a word or set of words usually written by a user as input for a retrieval
operation and which represent an expression of the information need of the user. The
text retrieval technique analyzes the index for documents that are relevant to the input
query and retrieves them. If the corpus was normalized before indexing, the query
will be subjected to the same normalization steps as the corpus before being run by
the text retrieval technique. A query for concept location in source code has the same
form, i.e., a natural language phrase of one or more words, as a query used to search
the internet using online search engines like Google.

 Text Retrieval Approaches for Concept Location in Source Code 131

Relevance
A document is relevant to the information need of a user if its contents satisfy com-
pletely or partially the information need. It is often referred to as relevance to the
query, as it is presumed that the user expresses her information need well in the input
query. However, this might not always be the case, as sometimes users can have a
hard time formulating queries due to lack of information. This is a problem that the
Information Retrieval field recognizes and tries to address and is known as the search
paradigm. In this paper, we assume that the user expresses the information need well
in the query, thus we use the terms relevance to query and relevance to the informa-
tion need of the user interchangeably.

Target method/class
A class or a method is referred to as target when, during a software change task, it is
one of the classes or methods affected by the change. For example, if a class C con-
tains a bug and fixing the bug is the current change task, in order for the change to be
implemented class C needs to be modified. Thus, class C is a target class.

2.2 The Generic Approach for Text Retrieval-Based Concept Location

The generic text retrieval approach to concept location in source code is based on the
approach defined by the Information Retrieval field for retrieving natural language
documents (a.k.a. text retrieval). All text retrieval-based approaches to concept loca-
tion are based on this generic model and they differ in how the various steps are in-
stantiated. The generic approach is composed of five major steps, described below
(see Figure 2). Program comprehension is an activity that involves the developer and
tools that support her. As a comprehension activity, concept location also relies on the
human. In consequence, some of these steps of the generic concept location process
are done by specialized tools, while others need to be performed by the developer,
who is responsible for final decisions and judgments. In the description of each step,
we mention whether the step is performed automatically or not.

Fig. 2. The generic approach for text retrieval-based concept location. (A) indicates that the step
is performed automatically, whereas (U) indicates that it requires the involvement of a user.

132 A. Marcus and S. Haiduc

1. Corpus creation and normalization

Text retrieval techniques are designed to work with a collection of documents written
in natural language. While source code contains natural language, it contains much
more information besides text, which is of no use to text retrieval techniques. The
first step of the approach deals with transforming the source code into a format ap-
propriate for text retrieval techniques. This step is performed using specialized tools
for extracting and normalizing the corpus of a software system.

First of all, the source code of a system needs to be divided into documents. In the
case of natural language this division is often straight-forward and is usually done
without any input from the user, e.g., each web page on the web is a separate docu-
ment, each book in a library is a separate document, etc. This, however, is not true
for source code. The developer needs to make a conscious decision about what
should be considered a document, i.e., what will be the granularity of the retrieval
(e.g., a line of code, a function, a file). Also, the range of choices can depend on the
programming paradigm and on the structure of each software system. For example, in
the case of object-oriented code, two obvious choices are classes and methods. How-
ever, these are not applicable in the case of procedural software systems, where a file
or a function would be more appropriate.

Once the granularity level has been determined, the documents are identified and
extracted from the source code. In particular, the identifiers and comments are
extracted from each source code document, as they represent the meaning-baring
elements of the code, as well as additional strings, such as, constant values. This step
usually requires programming language-specific parsers.

After the extraction, a few optional steps (i.e., corpus normalization) can be per-
formed before the documents are indexed by the text retrieval techniques. First, the
identifiers can be split into their constituent terms according to common naming con-
ventions. For example, “setValue”, “set_value”, “SETvalue”, etc. would be all split
to “set” and “value”. This requires also a decision about keeping the original form of
the identifiers or not. Keeping the original identifiers along with the words resulted
after splitting can advantage any identifiers that the developers might include in the
queries. On the other hand, when no identifiers are included in the queries keeping
the original form might negatively impact the results.

The extracted documents contain some source code-specific terms, like program-
ming keywords, which do not contribute meaning to the documents. Also, the docu-
ments can contain common English terms like conjunctions, prepositions, common
adverbs, etc., which are too widespread to be specific to any document. The docu-
ments can be subjected to filtering algorithms in order to eliminate these types of
terms (known as stop words).

Sometimes different variations of the same term are used in the source code and in
the query, while all referring to the same concept. For example, “open”, “opened”,
“opening”, “opens” all refer to the concept “open”, even though the exact words used
for expressing it are different. However, from a semantic point of view, the meanings
of the different variants are very similar. In order to account for this when retrieving
source code documents, stemming can be applied, which reduces all the lexical varia-
tions of a word to the root form. How this operation is performed and what the end

 Text Retrieval Approaches for Concept Location in Source Code 133

result is depends on the chosen stemmer. For example, using the Porter stemmer [9],
all the words in the example above would be stemmed to “open”.

The result after applying all the steps described above is the normalized corpus of
the software system, i.e., a collection of source code documents ready for indexing.
This corpus represents the input for the text retrieval engine.

2. Corpus indexing

In this step, a mathematical representation of the corpus is built, which is stored by
the text retrieval engine in a quickly accessible format called index. Each document
in the source code corpus (i.e., each method, class, etc.) has a corresponding entry in
the index. This step is different for every text retrieval technique and is often what
sets the various text retrieval techniques apart. It is performed by specialized tools.

The terms in a document can be assigned a higher or lower importance, or weight,
based on two criteria: how well they describe the current document (local weight) and
how well they represent the entire corpus (global weight).

In the case of highly dynamic document collections, like the web, indexing is done
continuously in the background, and is transparent to the user. In the case when the
documents in the collection are rarely added, deleted, or modified, which is often the
case with source code, this step can be performed only once, before the first retrieval
task is performed.

3. Query formulation and normalization

This step is usually performed by the developer, but it can be also performed automat-
ically in certain instances. It involves defining a set of words that describe the infor-
mation need of the developer (i.e., the concepts to be located), which constitute the
query. The developers can use the information contained in the description of the task
at hand (e.g., a bug report, a new feature request, etc.) as a starting point for formulat-
ing the query. At the same time, developers can use previous knowledge, the system
documentation or any other sources of information that can help them formulate que-
ries. After the query is formulated, it is subjected to the same normalization applied
to the corpus (i.e., filtering, stemming, etc.). Once normalized, the query is run by the
text retrieval technique.

The query formulation is a very important part of the text-retrieval based concept
location, as the success of this type of approaches is highly dependent on the given
query. If the initial query did not lead to satisfactory results, developers can always
return to this step and reformulate the query, a process which can benefit from tool
support.

4. Retrieval and ranked list presentation

Once the query formulated by the developer is run, the text retrieval technique com-
putes semantic similarities between the query and every document present in the cor-
pus. Then it retrieves a ranked list of results, which contains all the documents in the
corpus in descending order of their similarity to the query and displays the list to the

134 A. Marcus and S. Haiduc

developer. Thus, the documents that match the query the best will be placed first in
the result list. By showing a ranked list of results, text retrieval approaches overcome
one of the major limitations of the string-matching techniques previously used for
textual search (i.e., grep), which presents the results of a search in no particular order
to the user. When using text retrieval approaches for concept location, the developer
can start investigating the results at the top of the ranked list and move down, as the
likelihood that documents in the result list are relevant to the query decreases in that
direction.

There are several similarity measures that can be used when comparing the con-
tents of the query with documents in the corpus. However, the similarity measures
that can be used in a particular case depend on the type of text retrieval technique
used. The choice of similarity must be done with care, as it can have an impact on the
results. All the actions described in this step are performed entirely automatic.

5. Results examination

After the list of documents has been retrieved, it is presented to the developer, who
can start examining the ranked list of source code documents. Usually, the recom-
mended order of examination is from the top of the list to the bottom, as the
documents that are most likely to be relevant to the query according to the text re-
trieval technique are located at the top of the list. The examination of the results is
performed entirely by the developer.

For every source code document examined, a decision is required whether the doc-
ument will be changed or not. If it will be changed, then concept location succeeded
and it ends. Concept location is usually followed by impact analysis, in order to de-
termine what other parts of the code have to change. Some approaches merge these
two activities conceptually. If the document is not going to be changed and the
developer accumulated new knowledge from the investigated documents, she can
formulate a better query (e.g., narrow down the search criteria) by repeating step 3.
Otherwise, the next document in the list should be examined.

3 Text Retrieval-Based Approaches for Concept Location

The text retrieval-based approaches proposed in the concept location field have in-
stantiated the above steps in various ways. Most research investigated how changes
to particular steps in the process described above impact the results of concept loca-
tion. This section presents an overview of the research in the field of text retrieval-
based concept location, organized by the steps of the basic approach and discusses
how and why the approaches instantiated these steps. As our focus is on describing
the text retrieval approaches, we focus only on the steps which are performed at least
in part automatically by the approach. Research in concept location is also concerned
with the activities that the developers undertake directly and the underlying cognitive
processes, but such research is outside the scope of this paper.

 Text Retrieval Approaches for Concept Location in Source Code 135

3.1 Corpus Creation and Normalization

The way the corpus is created can influence the results of a text retrieval – based con-
cept location approach independent of the actual text retrieval technique used. Some
of the research efforts in the field have been concerned with investigating the impact
of the corpus creation on the results of text retrieval-based concept location.

The granularity of the documents can influence greatly the results of concept loca-
tion, as the frequency and term co-occurrence information change depending on how
the documents are chosen. Researchers have used various document granularities for
concept location and its variants. However, there seems to be a preference for smaller
granularity levels, such as, methods [10-29] in the case of object oriented systems and
functions [30-33] for other programming paradigms. This preference can be explained
by several factors. First, methods and functions locate the concepts and features in
more detail than classes and files. Second, most of the approaches make use of struc-
tural or dynamic information in addition to the text retrieval techniques, which often
use information that is at the level of granularity of methods or functions. For exam-
ple, call graphs and their variants are often used for acquiring structural information
about the system, and execution traces are used for the dynamic component. The
approaches using the combination of text retrieval with other types of information
about the software system are explained in detail in Section 3.5. Third, as more and
more approaches made use of the method level granularity, researchers had little
choice in the cases when a comparison to previous approaches was desired.

Even though less widespread, file level granularity [34, 35] and class level granu-
larity [36] were used in some work in the field making use of text retrieval.

The success of retrieval depends on many factors, but one of the basic conditions
that need to be satisfied is that the vocabulary of the source code corpus needs to be
more or less the same as the vocabulary available to developers for formulating que-
ries. As developers usually express their information need using dictionary words,
it is important that the source code corpus contains also such words. Identifiers, how-
ever, are often composed of several concatenated dictionary words. It is important
therefore that the corpus normalization includes a step where the identifiers are de-
composed into their constituent words. This step is usually performed automatically,
as manual identifier splitting is unfeasible due to the high number of identifiers in a
software system.

Identifier splitting is usually employed when using text retrieval on source code
and the effect of different identifier splitting approaches on text retrieval-based fea-
ture location has been studied in [11]. The paper investigates the benefits of using
accurate techniques compared to more primitive splitting techniques, with the goal of
determining if using accurate splitting can improve the results of text retrieval-based
feature location significantly. In order to achieve this, the results of text retrieval-
based feature location when using camel case, the Samurai [37] and manual splitting
are compared in two open source systems. Two approaches making use of text re-
trieval are investigated, one implementing the generic approach described in Section
2.2, and one combining text retrieval with dynamic information. The results suggest
that feature location techniques using text retrieval can benefit from better splitting

136 A. Marcus and S. Haiduc

algorithms in some cases, and that the improvement while using manual splitting over
the automatic approaches is statistically significant in these cases. The results for
feature location using the combination of text retrieval and dynamic analysis, howev-
er, do not show any improvement while using manual splitting, indicating that any
splitting technique will suffice if execution data is available.

Filtering [10, 11, 13, 16-18, 20, 22-24, 38, 39] and stemming [10, 11, 16-18, 20,
22-24, 28] are the last two steps in the normalization step and they are now standard
steps in corpus normalization.

3.2 Corpus Indexing

The internal representation of documents during text retrieval-based concept location
depends on the particular model used. Different text retrieval models perform in dif-
ferent ways and researchers have employed various such models in the attempt to find
the one that performs the best. Remember that text retrieval techniques were devel-
oped with natural language in mind. While a lot of the text in the source code is natu-
ral language, its structure is quite unique; hence the performance of the text retrieval
techniques may not be the same as on natural language corpora. This section focuses
on the choices of text retrieval models and engines used in supporting concept loca-
tion. For more details about each of the text retrieval techniques mentioned in this
section, please refer to [6, 8, 40].

Cubranic et al. [34, 41] applied the Vector Space Model (VSM) [42] for concern lo-
cation. VSM represents documents in an n-dimensional vector space, where n
represents the number of unique terms in the source code corpus. Each document has
associated an n-dimensional vector, which contains information about the relevance
of each of the terms in the corpus for the document. Several term weights can be used
to determine this importance, and they are usually a combination of local weight,
which conveys information about the frequency of a term in the document, and a
global weight, which indicates how relevant the term is to all the documents in the
corpus.

The approach proposed in [41] makes use of VSM with log-entropy term weights
to find concepts not only in artifacts found in the source code of the system, but also
in online documentation, bug reports, and communications between developers. The
implemented tool, Hipikat forms a group memory from the source code repositories,
issue trackers, communication channels, and web documents of a project and then
uses VSM to suggest related artifacts to one selected artifact or a user query by using
the cosine similarity between their term vectors. Case studies have been performed
on AVID24 [41] and on Eclipse [34, 41], to evaluate if Hipikat helps developers per-
form maintenance tasks on unfamiliar systems and the results were promising. While
Hipikat was not presented in the context of software change specifically, it can be
used to support concept location and other similar tasks.

VSM was also used by Zhao et al. [30, 32] in SNIAFL, a static non-interactive
approach to feature location which uses text retrieval in conjunction with a branch-
reserving call graph. [31] introduces another approach based on combining VSM

 Text Retrieval Approaches for Concept Location in Source Code 137

with static information, as well as [17]. Details about the combination between text
retrieval and other sources of information are described in Section 3.5.

In [25] the lexical similarity based on using the cosine similarity between two doc-
uments in the VSM is combined with a technique based on using already available
mappings between features and program elements in order to determine the structural
similarity between a new feature and the program elements.

An approach based on VSM, but using a modified cosine similarity measure,
meant to perform better than the original cosine, was implemented in the open
source search library Lucene [43]. This approach was used in the implementation of
the FLAT^3 tool [44], where it can be combined also with dynamic information.
The same approach was used and modified in [10], combining it with a query expan-
sion mechanism, and in [26], where it has been combined with historical and static
information.

VSM, even though relatively successful, has some limitations due to the fact that
the similarity between a query and a document is correlated with the number of terms
they share. While logical, this approach requires that different documents referring to
the same concept use the same words in order to be recognized as similar. However,
this is not always the case, as a document and a user generated query could use differ-
ent terms when referring to the same concept or could use the same term, but referring
to different concepts. These problems are termed synonymy and polysemy respective-
ly. This is of potentially great detriment to novice software developers or developers
encountering an unfamiliar system for the first time, as they may not possess a voca-
bulary in sync with the one used in the source code.

To deal with part of these limitations, Latent Semantic Indexing (LSI) [45], a more
advanced text retrieval technique, was proposed as a substitute for VSM in the con-
text of concept location. In LSI, the initial vector space formed from the corpus is
projected to a lower dimensionality, in which dimensions do not represent terms, but
rather latent concepts. LSI, therefore, does not match words exactly, but rather by
comparing the vectors in the reduced semantic space it is able to capture their latent
meaning and match words that are similar in terms of their usage.

LSI was first applied to concept location by Marcus et al. [33, 36], and was used to
map feature descriptions expressed in natural language to the methods in the code that
implement them. In [33] the LSI-based approach was applied on a change request in
Mosaic, a medium sized software system written in C. A set of developer-formulated
queries were used, as well as queries semi-automatically generated using LSI. The
results indicated that LSI performs better than string matching (i.e., grep) and depen-
dency graph navigation for concept location in Mosaic. However, the paper also
underlined the fact that none of the concept location approaches leads to perfect re-
sults and suggested that a combination of approaches might be a good direction to
follow. These conclusions were strengthened by the results obtained in [36], where
the approach was used for locating concepts in two object-oriented systems.

Cubranic et al. updated the VSM-based approach they proposed in [41] to one us-
ing LSI in [35]. LSI was also used in combination with other techniques and sources
of information for performing feature location. In [12, 13], it was used in combina-
tion with probabilistic ranking and dynamic information for feature location, in [15] is

138 A. Marcus and S. Haiduc

used to order the methods executed in a single execution scenario, and in [14] is used
in combination with Formal Concept Analysis in order to present to the user a clus-
tered list of results, formed by clustering the set of documents most similar to a query.
In [20], the approach in [13] was extended and complemented with static information
and compared to each of the combined techniques considered individually. LSI was
also used in combination with static call graph navigation for feature location in [29]
and with dynamic information and a search-based optimization approach in [18].
Other papers where one of the presented approaches using LSI was applied are [24],
[46], and [17].

Even though capable of dealing with synonymy successfully, LSI is not able to
model and deal with polysemy. Moreover, the non-probabilistic nature of the method
raises issues with respect to the principles on which the approach is based [47].

One approach which overcomes these issues is Language Models (LM) [48]. This
is a probabilistic approach that builds a model of the language used in each of the
documents in the corpus, and then computes the probability of the query to be gener-
ated by each of these models and orders the documents in the result list based on this
probability.

Cleary and Exton introduced the use of LM for concept location in their approach
called cognitive assignment [16, 19]. The same authors had previously used a Bayes
classifier [49] in order to categorize the source code documents in pertaining to a
feature or not. In [16, 19], the authors extended the original LM approach by consi-
dering indirect correspondences between query and document terms so that relevant
source code can be retrieved even if it does not contain any of the query terms. To do
that, queries are expanded by analyzing term relationships from both source code and
non-source code artifacts like as bug reports, mailing lists, external documentation,
etc. A case study was conducted on Eclipse in which cognitive assignment was com-
pared to other text retrieval techniques, such as language modeling, dependency
language model, vector space model, and LSI. The results indicate that cognitive
assignment matches the performance of the other text retrieval techniques and in
some cases it outperforms it.

Language models, even though capable of dealing with polysemy, are not able of
dealing efficiently with synonymy, as they are not designed to capture semantic rela-
tions between words based on term co-occurrences. The semantic relations between
words are learned from (synthetically created) query-document pairs and are not
directly based on co-occurrences within the document collection [47].

Latent Dirichlet Allocation (LDA) [50] overcomes these limitations, as it is able to
represent both synonymy and polysemy. LDA is a probabilistic and fully generative
topic model that is used to extract the latent, or hidden, topics present in a collection
of documents and to model each document as a finite mixture over the set of topics.
Each topic in this set is a probability distribution over the set of terms that make up
the vocabulary of the document collection. In LDA, similarity between a document
and a query Q is computed as the conditional probability of the query given the
document.

LDA has also another advantage, as it is able to produce immediately interpretable
results, which is not true in the case of LSI and LM, where it is difficult to interpret

 Text Retrieval Approaches for Concept Location in Source Code 139

why a document is similar to the query. In the results returned by LDA, however, the
most likely terms for each topic can be examined to determine the likely meaning of
the topic. Though LSI has been used to extract and label topics [51], it cannot do so
directly or in isolation.

LDA has first been applied to concept location by Lukins et al. [22, 23]. A topic
model of the source code corpus is first built, which can be then queried by the user.
The new approach was applied for bug location in three software systems, i.e., Rhino,
Mozilla, and Eclipse, and compared to the LSI basic approach for concept location.
The results indicated that LDA can be successfully applied to concept location in
software and that LDA is more effective in locating bugs than LSI in the three sys-
tems analyzed.

In order to take advantage of the relationships between documents and their
strength, Revelle et al. [28] introduced the use of web mining techniques like Page-
Rank and the HITS algorithms, and their combination with information retrieval and
dynamic information for feature locationAs of today, there is insufficient empirical or
theoretical work to clearly show which text retrieval model or document representa-
tion is best suited for concept location in source code. Benchmarking efforts [52] will
hopefully provide more insight into this issue.

3.3 Query Formulation and Normalization

One of the major limitations of text-retrieval based approaches to concept location is
the fact that they are highly sensitive to the input query, and studies have shown that
effective natural language queries can be as important as the retrieval algorithm itself
[53]. In order for the text retrieval techniques to succeed, the query needs to contain
terms that describe the information need of the developer clearly and precisely, using
a vocabulary in concordance with the one used in the source code. This is a difficult
problem, as developers performing concept location are often not familiar with the
source code nor with the vocabulary used in its identifiers and comments. Also, there
are no guidelines on what a query should contain. Moreover, different developers
formulate queries quite differently [33] and the likelihood of two people choosing the
same keyword for a familiar concept is only 10-15% [54]. Some developers are able
to express the problem better than others and, in fact, some might have troubles ex-
pressing the information need in a way that leads them to the right code location even
after several reformulations of the query [55]. Under these circumstances, researchers
have focused on helping developers formulate queries offering suggestions that de-
velopers can follow, or introducing methods for automatic query formulation that do
not need human intervention. At the same time, it is important to know when a query,
formulated either manually or automatically, does not lead to the wanted results and
needs to be reformulated. This might be difficult in some cases for developers, so
approaches have been proposed to address this problem automatically.

A series of papers have addressed the problem of query formulation and refinement
in the context of text retrieval-based concept location. Some efforts have focused
on offering developers alternatives and suggestions when formulating queries,
as opposed to reformulating the query automatically for them. Poshyvanyk et al.

140 A. Marcus and S. Haiduc

introduce such an approach in their tool JIRiSS [39], based on using LSI to search the
source code of a software system for classes and methods relevant to a query. The
query term recommendation component of JIRiSS generates the vocabulary of the
software system and the frequency of occurrences of every word in the vocabulary.
The goal is to help the developers get familiar with the terms used in the system so
they can choose words to include in the query. This feature is meant to be especially
useful for users unfamiliar with the system and its naming conventions.

The approaches based on suggestions still require the developers to go through the
suggestions and make their best guess as to which of the terms should be included in
the query. The following approaches, however, not only suggest words for query re-
formulation, but actually refine the query without human intervention.

Marcus et al. [33] used LSI to automatically expand and reformulate queries by ex-
tracting words and identifiers from the source code of the system that are related to a
given query word or phrase. The automatic queries used in the presented case study
were created starting from the initial one-word query by adding the top n most similar
terms to the query, and keeping or removing the initial word. The results indicated
that the automatic technique can generate queries that are comparable in performance
to the user-generated queries, while at the same time requiring no domain knowledge
to formulate them.

An automatic query reformulation approach for concept location based on using re-
levance feedback in combination with LSI was introduced in [10]. In this approach,
the developer does not need to formulate or reformulate the query, but rather just
needs to provide feedback about the top n results provided by LSI, indicating their
relevancy to the task at hand. In this context, relevance refers to the fact that a docu-
ment is related conceptually to the task, but does not change. The text retrieval begins
with the description of the task as the initial query. Then, after the developer provides
feedback about the results of the retrieval, this feedback is used to automatically
 reformulate the query. More specifically, terms from the documents indicated as
relevant are added to the query and terms from the documents marked as irrelevant
are deleted from the query. This iterative process continues until the developer finds
the documents to be changed, or she decides to use other techniques to locate them.
The main advantage of this approach is the fact that the developer feedback is taken
into account, while having the developer focus on analyzing what she knows best, i.e.,
source code. Also, the results of the case study performed on three software systems
indicates that the text retrieval technique incorporating relevance feedback is more
efficient than using text retrieval alone.

Hayashi et al. [21] build on the idea introduced in [10] and propose an interactive
environment for comprehending feature implementations. In this approach, develop-
ers understand feature implementations by performing feature location several times.
Each time feature location is performed with a different query, obtained automatically
by expanding the query using synonym lists and by using relevance feedback pro-
vided in the previous steps.

A query expansion technique based on leveraging term relationships in a text
retrieval approach based on LM was proposed by Cleary et al. [16, 19]. The term
relationships from both source code and non-source code artifacts are captured in a

 Text Retrieval Approaches for Concept Location in Source Code 141

model based on the notion of information flow between terms and meant to produce
information-based inferences which correlate with inferences made by humans [56].
Using the measure of the degree of information flow between concepts and terms and
given a concept or set of concepts in the form of a query, one can compute informa-
tion flow values for each term in the vocabulary. Then, by imposing a threshold or by
selecting a set of the top ranked terms a set of terms related by information flow to the
terms in the query can be defined. These terms are then added to the query.

Revelle et al. [27] introduced a way by which queries are automatically
reformulated from the identifiers in a method known to be relevant to a feature. The
results show that this type of queries is just as effective as the queries formulated by a
human.

Determining when a query should be reformulated because it does not lead to the
wanted results is a hard problem, and often requires time and analyzing the results of
the retrieval in detail. This is even more difficult for developers not familiar with the
source code of a software system, as they do not know beforehand what parts of
the code they should find to satisfy their information need. This is often referred to as
the search paradox.

In order to ease the task of determining when a query can lead to good results or
not and speed up the reformulation of poor queries, Haiduc and Marcus [57] proposed
using a series of approaches from the field of Information Retrieval. The approaches
are divided into pre-retrieval and post-retrieval. Pre-retrieval approaches predict the
performance of a query before the retrieval stage is reached and are, thus, independent
of the ranked list of results. They base their predictions only on query terms, collec-
tion statistics and external sources such as dictionaries. In contrast, post-retrieval
methods can additionally analyze the retrieval results and make a prediction based on
the properties of the documents found in the result set.

Finding good word suggestions and automatically reformulating the query are one
approach to deal with the dependence of the text retrieval techniques on the query.
However, this problem can be also approached by combining the text retrieval tech-
niques with other sources of information, like structural or dynamic information about
the software. By making use of more sources of information and combining them in
order to obtain the final set of results, text retrieval-based approaches are less sensible
to the natural language query. Researchers have applied this approach in various
forms, presented in detail in section 3.5.

3.4 Retrieval and Ranked List Presentation

The results of concept location using text retrieval techniques are usually presented to
the user as a ranked list where documents are ordered according to their similarity to
the query, with the most similar documents located at the top of the list. However,
sometimes the target documents might not be located at the top of the ranked list, in
which case the list needs to be manipulated in order to improve the initial results
returned by the text retrieval technique. Research efforts have been made in this di-
rection and this section describes them.

142 A. Marcus and S. Haiduc

Poshyvanyk and Marcus [14] applied Formal Concept Analysis (FCA) on the
ranked list of results in order to organize the top returned documents in hierarchical
clusters based on their semantics. FCA takes as input a matrix specifying objects and
their associated attributes and produces as output clusters, referred to as concepts, of
the given objects based on their shared attributes. These concepts can be organized
hierarchically in a concept lattice. In this case, the objects considered were methods
and the attributes were the words that appear in the source code of the methods. The
top k words appearing in the first n methods in the ranked result list returned by LSI
were used to construct the input matrix required by FCA and to create the concept
lattice. Nodes in the lattice have associated attributes (terms) and objects (methods),
and programmers can focus on the nodes with attributes similar to their query to find
feature-relevant methods. The new concept location technique based on FCA was
compared against using LSI alone on two maintenance tasks in Eclipse. The results
indicated that using the concept lattice-based approach developers could locate a con-
cept in code by analyzing fewer methods.

In [17], the authors use clustering in order to group the source code documents be-
fore retrieval, such that the text retrieval technique returns clusters instead of individ-
ual documents. This approach allows relevant documents that might have been
placed on a high position in the original, unclustered result list to be placed on the top
of the list of clusters, as long as the other documents in the cluster are similar to the
query. By modifying the ranking of the documents this way, users can get to relevant
documents in fewer steps. The new technique was compared with the baseline TR-
based approach using data associated with changes in response to 198 bug reports in
the three software systems. The results indicate that the new technique outperforms
the baseline in average.

In order to take advantage of the relationships between documents and their
strength, Revelle et al. [28] introduced the use of web mining techniques like Page-
Rank and the As observed, the main thread of research on ranking the list of retrieved
documents is focused on filtering the list of results or identifying relationships be-
tween documents that help group them. One aspect ignored largely by current re-
search is the presentation of the results. Exception is the work in [14], where the
results are presented as a lattice rather than a list of ranked documents. More research
is needed in this area, maybe based on software visualization.

3.5 Combining TR with Other Sources of Information

Text retrieval-based concept location techniques take advantage of only one type of
information found in the source code of a system, i.e., the text. Source code contains,
however, much more information than just text, which can reveal code relationships
that text cannot capture. Structural information reveals relationships between soft-
ware components based on the information flow and dependencies between them,
whereas dynamic information reveals relations based on the behavior of the software.
At the same time, repositories like source code version control systems, issue trackers,
forums, etc. also contain information about a software system that can prove relevant

 Text Retrieval Approaches for Concept Location in Source Code 143

to current change tasks performed by developers. Using these sources of information
in addition to text retrieval can improve concept location.

At the same time, using other sources of information can overcome some of the li-
mitations that text retrieval techniques exhibit. For example, the sensibility to the
natural language query formulated by the user can be overcome by combining the
expertise of the text retrieval with that of other approaches.

Researchers have recognized the benefits of using additional source of information
which can complement the textual information leveraged by text retrieval techniques
and have proposed approaches that make use of these sources of information. This
section describes these approaches.

Text retrieval combined with structural static analysis
Combining structural and textual information for concept location was an obvious
step that researchers have made, as either textual analysis can be used to reduce the
set of results that the static analysis produces or static analysis can be used to find
additional relevant documents starting from the set of top results returned by the tex-
tual analysis. Several researchers have proposed approaches based on these ideas.

Zhao et al. [32] introduced a static, non-interactive approach to feature location,
which uses text retrieval in combination with a branch-reserving call graph (BRCG),
which is an expanded version of a call graph with branch information. Text retrieval,
i.e., VSM is used to retrieve an initial set of methods specific to the feature. Then, a
gap threshold technique is used to find the largest difference between the similarities
of consecutive methods in the ranked list of results. The methods above this gap are
considered to be the initial elements specific to the feature. Starting from these, addi-
tional relevant methods are found by pruning the BRCG to remove branches that are
not in the initial set. Note that the authors of this paper considered concept location
and impact analysis as one single step, thus determining all the target methods during
the analysis. The relevance of branches that are included in the initial set is propagat-
ed through the dependence relations in the graph, generating a static pseudo-execution
trace. In the two case studies performed, the new technique achieved better precision
and recall than both a pure text retrieval approach and a purely dynamic approach.

Shao et al. [29] combines text retrieval and static control flow information for fea-
ture location. First, LSI is used to rank all the methods in a software system by their
relevance to a query. Then, for each method in the ranked list, a call graph is con-
structed and inspected to assign a call graph score to each method based on the num-
ber of direct neighbors of the method that also appear in the ranked list returned by
LSI. The cosine similarity of the method, as returned by LSI, and its call graph score
are then combined using an affine transformation, and a new ranked list is produced.

Ahn et al. [31] use a new approach which builds and analyzes a weighted call
graph using the similarity values obtained from VSM in order to locate features speci-
fied in the manual of a software system. First, the approach uses VSM to recover
textual relationships between the description of the feature and the source code ele-
ments. Further, the approach uses a weighted call graph to select core functions
among the retrieved functions. Then, by analyzing the weighted call graph, the ap-
proach determines the final set of relevant functions.

144 A. Marcus and S. Haiduc

Ratanotayanon et al. [26] investigated the effect of integrating more data sources
with text retrieval for concept location, and one of the data sources considered was a
static dependency graph. The findings of the case studies performed revealed that it is
not always better to have more diverse data, in particular adding the static dependency
graph data to changesets increased recall, but drove down precision.

Peng et al. [25] measures the relevance between a feature and a program element
based on the textual and structural similarity of the program element to the feature.
The new approach uses an iterative process to propagate the knowledge of the already
established mappings between a feature and a program element to the neighboring
features and program elements in the call graph. The underlying intuition is that the
more feature-element mappings are recovered, the more likely it becomes that the
approach may recover further related feature-element mappings.

Scaniello and Marcus [17] used the cosine similarity as returned by VSM and
structural dependencies between the methods in the corpus in order to cluster the cor-
pus before retrieval. In consequence, the user retrieves clusters instead of individual
documents. The evaluation showed that the new approach performs better than the
baseline.

Text retrieval combined with dynamic analysis
Dynamic analysis and textual analysis can be combined in different ways for concept
location. One way to combine them is to use dynamic analysis to filter the program
elements for textual analysis instead of ranking all the program elements in a software
system. Also, both analyses can rank program elements by their relevance to a fea-
ture, so another direction is to combine the rankings produced by the two techniques.

Poshyvanyk et al. [13] introduced the Probabilistic Ranking of Methods based on
Execution Scenarios and Information Retrieval (PROMESIR) approach, which com-
bines two existent concept location techniques, one based on LSI text retrieval [33]
and the other on dynamic analysis, i.e., Scenario based Probabilistic Ranking (SPR),
introduced first by Antoniol et al. [58]. Both approaches rank program elements ac-
cording to their relevance to a given feature. Their rankings are combined through an
affine transformation to produce the final results. The weight given to SPR and LSI
can be varied to reflect the amount of confidence that should be assigned to each. The
case study performed on two large software systems indicate that the new, combined
approach outperforms the two techniques on which it is based.

The Single Trace and Information Retrieval approach, introduced in [15] is a fea-
ture location technique that applies text retrieval on the execution information col-
lected from exercising a single scenario relevant to the feature. The technique first
requires the execution of a scenario relevant to the feature by the developer, and cap-
tures the trace of that execution. Then it uses as input a query from the developer and
applies LSI to produce a list of methods from the execution trace which are ranked
based on the similarity with the query. This approach ranks only the methods that
appear in the execution trace, as opposed to ranking all the methods from the system,
as done by previous approaches. The results of the case studies performed on jEdit
and Eclipse, which compared the new approach to LSI, SPR and PROMESIR indicate
that the technique not only reduces dramatically the search space, but also leads to

 Text Retrieval Approaches for Concept Location in Source Code 145

better results in general. [11] also used this approach when studying the impact of
different identifier splitting algorithms on the results of concept location. An Eclipse
plug-in that supports this approach, FLAT3 [44], was also developed.

Asadi et al. [Asadi’10] introduce an approach which identifies concepts in execution
traces by determining cohesive and decoupled trace fragments. The approach relies on
text retrieval, dynamic information, trace compression techniques, and a genetic
algorithm. First, scenarios which exercise the features of interest are run and their
execution traces are captured. The traces are then modified such that the functions not
relevant to the features are removed (i.e., utility functions, cross-cutting concerns) and
repeating method sequences are compressed. LSI is then used to compute the Concep-
tual Cohesion of classes, according to the metric defined by Marcus et al. [59]. Using
the conceptual cohesion as a fitness function, a genetic algorithm is then applied in
order to segment the execution traces into conceptually-cohesive segments related to
the feature being exercised. The empirical study performed on two Java systems indi-
cates that the approach is able to locate concepts with high precision.

Text retrieval combined with structural and dynamic analysis
Researchers have studied also the combination of text retrieval with both static and
dynamic techniques, as they all offer a different perspective on the concept location
problem.

Eaddy et al. [20] were the first to propose an approach that combines all three
sources of information. The approach uses a technique called prune dependency
analysis, which functions based on the principle that a relationship between a program
element and a feature exists if the program element should be removed or modified if
the feature were to be pruned from the software system. The new approach uses
PROMESIR to combine rankings of program elements from execution traces with
rankings from text retrieval to produce seeds for the pruning process. Given an initial
set of relevant elements to be pruned, the approach determines additional relevant
elements. Using a large benchmark of mappings between code and features for over
400 features, the new approach was compared to techniques using each of the indi-
vidual approaches it is based on independently and in combinations. The results re-
vealed that combining the three types of analysis was the most effective approach.

Revelle et al. [28] proposed a feature location technique that combines text retriev-
al with the results produced by applying advanced link analysis algorithms on a call
graph containing methods obtained using execution information. The approach takes
as an input a query and the trace resulted after the execution of a scenario that exer-
cises the wanted feature. A program dependence graph is generated for the methods
present in the execution trace by using the caller and callees methods as nodes and the
relations between them as edges. Two link analysis algorithms, i.e., PageRank
[Brin'98] and HITS [Kleinberg'99] are applied on the program dependence graph and
assign a score to each method in the graph based on their importance in the graph.
The proposed technique for concept location filters out from the execution trace those
methods that obtained either a very high or very low score from the link analysis algo-
rithms (they are either at the top or at the bottom of the ranked list returned by the link
analysis algorithms). After these methods are eliminated, the remaining methods in

146 A. Marcus and S. Haiduc

the trace are ranked using the text retrieval technique, based on their similarity to the
input query. The evaluation of the new approach was performed on two systems and
it was compared to using link analysis techniques alone, LSI, and the SITIR [15] ap-
proach. The results showed that the new approach combining text retrieval tech-
niques with web mining, static and dynamic information outperformed all the other
approaches.

Hayashi et al. [21] proposed an iterative approach to feature location which
combines LSI with dynamic analysis based on the execution of a test case, and static
analysis, which is used to navigate the dependencies of the methods found in the ex-
ecution trace. The approach also makes use of relevance feedback. The paper claims
that the iterative approach leads to improved query formulation by end users and the
feedback provided by users during the iterative process enhances the understanding of
features implemented in a given software system. The proposed approach requires as
input source code, a test case (used to derive dynamic dependencies), a query, and
hints (relevance feedback) and returns to the user source code entities ordered by their
respective evaluation scores. Evaluation of the tool, which compares the interactive
and non-interactive versions of the approach, indicate that the iterative technique is
capable of reducing overhead, although does not always perform well.

Text retrieval combined with historical information
The approach introduced by Cubranic et al. [35] makes use of text retrieval and arc-
hival information for feature location. The approach forms a group memory from the
history of a project as recorded in source code repositories, issue trackers, communi-
cation channels, and web documents, based on which it recommends artifacts, such
as, online documentation, file versions, bug reports, or communications. Text retrieval
is used to determine links between these artifacts, as well as artifacts relevant to a user
query. The approach has been evaluated in two case studies, with promising results.

[24] used information found in past bug reports to improve concept location using
text retrieval, and presented an extended model of LSI which takes advantage of this
information as well. The new approach mined data from past bug reports where the
bug has been linked to its location in the source code. The three stages followed in
the approach are extracting semantic data from source code, adding additional infor-
mation from previous bugs, and querying the LSI model. The two case studies
performed in order to evaluate this model revealed that the new model taking into
consideration also historical data performs significantly better than LSI alone.

Ratanotayanon et al. [60] introduced the notion of Transitive Changeset, which is a
changeset extended using information extracted from the revision history. A change-
set temporally associates changes and conceptual descriptions provided in a commit
transaction. Transitive Changesets are created from information that is recorded by
revision control systems and other common software tools, such as issue trackers, and
extend the available information using transitive relationships. Transitive Changesets
contain conceptual-level information that is difficult to find in the source code and
relates this information to a list of program elements in the code. Using information
retrieval techniques, the Transitive Changesets are indexed to create a searchable
repository with which programmers can locate features through searching changesets.

 Text Retrieval Approaches for Concept Location in Source Code 147

The program elements included in the group of selected changesets are expanded
using a static dependency graph ranked using relevance metrics. A prototype of this
approach was developed as an Eclipse plug-in, named Kayley.

Kadgi et al. [61] have recently introduced a technique making use of LSI and his-
torical information captured in version control repositories in order to recommend a
ranked list of expert developers to assist in the implementation of software change
requests (e.g., bug reports and feature requests). LSI is first used to perform concept
location on the source code and identify source code entities, e.g., files and classes,
relevant to a given textual description of a change request. The previous commits
from version control repositories of these entities are then mined for expert develop-
ers. The role of the IR method in selectively reducing the mining space is different
from previous approaches that textually index past change requests and commits. The
approach is evaluated on change requests from three open-source systems and the
results show that the presented approach outperforms two previous recommendation
alternatives substantially.

4 Tools for Text Retrieval-Based Concept Location

IRiSS [38] and JIRiSS [39] are both tools for text retrieval-based concept location,
and are based on LSI. IRiSS implements text retrieval-based concept location as an
add-on to MS Visual Studio .NET, while JIRiSS implements it in Eclipse, as a plug-
in. Both tools work like the built-in search functionality in the two development envi-
ronments, with the difference that they use LSI instead of keyword-based retrieval,
they present the results in a ranked list, and the classes and methods that match the
query are listed, instead of just lines of code. JIRiSS is an extension to IRiSS that
also includes fragment-based retrieval, software vocabulary extraction, query spell
checking, and word suggestions to improve queries.

Xie et al. [Xie'06] introduced a tool that supports textual analysis through visuali-
zation, by combining IRiSS [Poshyvanyk'05] and sv3D [Marcus'03]. IRiSS performs
concept location via LSI and sv3D creates a 3D visualization of the results, showing
polycylinders that represent classes and methods in the system. The colors of the
polycylinders correspond to the similarity to the query and the height of the polycy-
linders represent the number of times the program element was visited in the past.
The combination of these two tools allows a developer to have a visual representation
of the results, as opposed to examine a ranked list of results.

Hipikat, introduced by Cubranic et al. [35] is a tool that makes use of text retrieval
and historical information for concept location. Along with source code, the tool
makes use of documents from source code repositories, issue trackers, communication
channels, and web documents in order to locate artifacts that are related to a user
query. The query can be itself an artifact, and Hipikat uses text retrieval to locate the
artifacts that are similar to it.

Cleary and Exton [Cleary'06] implemented an Eclipse plug-in based on language
models that supports the cognitive assignment technique proposed by the authors.
The tool allows a developer that is unfamiliar with a system to generate and store a set

148 A. Marcus and S. Haiduc

of links between the problem domain concepts stored in a cognitive map and the rele-
vant parts of the source code. The developer can select a particular concept as a query
and based on it the tool uses the language model representation to identify program
elements that the developer should investigated.

Google Eclipse Search (GES) [62] is an Eclipse plug-in that integrates Google
Desktop Search (GDS) and Eclipse for source code retrieval. GDS is an off-the-shelf
component that uses a proprietary information retrieval algorithm for its retrieval. It
allows users to search for files on their desktops similar to the way they would search
for information on the Internet. By integrating GDS with Eclipse, programmers can
search source code in a similar way. In an evaluation on a Java system, GES was
shown to produce accurate results and when compared against Eclipse file search
functionality, GES is considerably faster in producing the results.

TopicXP, developed by Savage et al. [Savage'10a] is an Eclipse plug-in that ex-
tracts a set of topics (which can be considered as concepts) from the source code us-
ing LDA. The topics generated are mapped to the source code, and the relationship
between the topics is determined by examining the static dependencies from the code.
The developer is able to navigate through these topics or to access the source code
associated with them.

The Feature Location and Textual Tracing Tool (FLAT3) [Savage'10b] implements
support for text retrieval-based and dynamic feature location, based on the SITIR
technique introduced in [Liu'07]. Programmers can define and name features and
then associate entire or partial classes, methods, and fields with them, based on the
concept location they perform using the tool. Once the features and their program
elements are defined and linked, they can be saved and retrieved at a later time.

5 Evaluation of Text Retrieval-Based Concept Location

Evaluation plays an important part in text retrieval-based concept location, as it de-
termines if new approaches are found useful by developers or if they improve the
state of the art and come closer to solving the problem. The evaluation of text retriev-
al-based concept location techniques has been approached from different perspectives
by researchers in the field: qualitative or quantitative. The qualitative evaluation aims
at investigating how well the text retrieval-based techniques satisfied the information
need of the user, and what was learned in the process. Quantitative evaluation, on the
other hand, investigates the “how much” aspects of the evaluation, i.e., how much
effort is needed for locating the concepts, how much time does a user spend to locate
the concept using the text retrieval-based approach, how much better did one tech-
nique perform over the previous work, how much of the user information need was
satisfied, etc.

5.1 Measures and Metrics

Quantitative evaluation usually involves a systematic empirical investigation of a
research approach via statistical, mathematical or computational techniques. Metrics

 Text Retr

and measures are central t
new research approaches ca
estimation of how much the

For concept location bas
searchers have used in orde
tively. Some of them are
field of information retrieva
introduce the most widely
dressed the quantitative ev
works use more than one m
details of the works after d
after each definition.

Jaccard index
The most basic measure us
tion techniques, the Jaccar
versity of sample sets. It is
of the union of the sample s

Researchers have used the
between the set of results
methods.

Precision
Precision is one of the metr
approach. It is measured by
to the user query.

Precision takes by default
evaluated at a given cut-off
approach. This measure is
the retrieved documents are
all relevant documents were

Note that the meaning an
al differs from the definit
science and technology.

Recall
Recall is a measure often
niques, and it is also from

rieval Approaches for Concept Location in Source Code

to quantitative evaluation. Using quantitative evaluati
an be easily compared to previous efforts in order to get
e new techniques achieve.
sed on text retrieval, there are a series of measures that
er to evaluate the performance of the techniques quant
measures used to evaluate text retrieval techniques in
al, while others are specific to concept location. We brie
used metrics before discussing how researchers have
aluation in text retrieval-based concept location. As so

measure for the quantitative evaluation, we will discuss
defining all the measures, instead of mentioning them ri

sed for the evaluation of text retrieval-based concept lo
rd index is a measure for comparing the similarity and
s defined as the size of the intersection divided by the s
sets:

e Jaccard measure in order to determine the simila
returned by a text retrieval approach to the set of tar

rics used in text retrieval to measure the performance of
y the fraction of retrieved documents that are also relev

all retrieved documents into account, but it can also
f rank, considering only the topmost results returned by
called precision at n. A high precision means that many
e relevant to the query. This does not mean, however, t
e retrieved.
nd usage of “precision” in the field of Information Retri
tion of accuracy and precision within other branches

used alongside precision to evaluate text retrieval te
the field of Information Retrieval. Recall is equal to

149

ion,
t an

t re-
tita-
the

efly
ad-

ome
the

ight

oca-
 di-
size

arity
rget

f an
vant

o be
the

y of
that

iev-
s of

ech-
the

150 A. Marcus and S. Ha

ratio of relevant document
ments retrieved.

High recall signifies that m
unrelated documents might
100% by returning all docu
not enough as one needs to
example by computing the
together.

Average precision
Average precision is define
relevant document is retriev
ranks a set of known relev
documents with higher ra
measure when compared w
a set of 10 relevant docume
relevant documents in the t
whereas an approach whic
positions would get an aver
text retrieval approach is d
approach as follows:

where R is the total numbe
of documents included in th
documents, respectively, ar

Effectiveness
Effectiveness is a measure
was first proposed by Poshy
allow the comparison betw
those using other methods,
evaluating text retrieval-ba
which may not be adequate
text retrieval, unless a thre
ments in the system are r
retrieval on an execution tr
ecuted methods to a given s

aiduc

s that are retrieved, divided by the total number of do

many of the relevant documents were retrieved. Howev
t have also been retrieved. It is trivial to achieve recal
uments in response to any query. Therefore, recall alon
o measure also the number of non-relevant documents,
precision. Recall and precision are, thus, often compu

ed as the mean of the precision scores obtained after e
ved, and measures how accurately a text retrieval techni
vant documents. An approach that returns more relev
ankings will perform better under the average precis

with an approach which does not. For example, consider
ents out of a corpus of 100, an approach that returns the
op 10 ranking positions has have an average precision o
h does not rank all the relevant documents in the top
rage precision score of < 1. The average precision v fo
efined over the set of document rankings produced by

er of relevant documents in the collection, n is the num
he ranked document list, and xi and xk are 1 if the ith and
e relevant or 0 otherwise.

specific for evaluating concept location approaches,
yvanyk et al. [13]. The measure was introduced in orde

ween concept location approaches using text retrieval
like dynamic analysis. Previously, the measures used

sed concept location techniques were precision and rec
e for evaluating other approaches. Moreover, when us
eshold is used the recall is always 100%, as all the do
retrieved and ranked. Also, if the approach applies t
race, precision is always 1/n, where n is the number of
scenario.

ocu-

ver,
ll of
ne is

for
uted

each
que

vant
sion
ring
e 10
of 1

p 10
or a
the

mber
d kth

and
er to
and
for

call,
sing
ocu-
text
ex-

 Text Retrieval Approaches for Concept Location in Source Code 151

To deal with these issues, effectiveness was defined as the rank of the first changed
method related to the concept or feature of interest. This allows also for a measure-
ment of the effort of a developer during the location process, which can be defined as
the number of methods which appear in the final ranked list that the developer needs
to investigate. A lower value effectiveness value indicates less effort, hence a more
effective technique.

5.2 Quantitative Evaluations

Asadi et al. [18] used quantitative evaluation in two case studies to investigate the
accuracy and completeness of their new approach, based on LSI, dynamic informa-
tion, and a search-based optimization algorithm. More specifically, they used the
Jaccard measure in order to determine how stable the approach was in determining
concepts in an execution trace and how much the concepts identified by the approach
were similar to the oracle. They also used precision in order to determine the accura-
cy of the determined concepts. The new approach was not compared to previous
ones.

Marcus et al. [33] performed the quantitative evaluation of the LSI-based concept
location approach by using three measures, i.e., precision, recall, and the position of
the last target method in the list of results returned by LSI. A series of user queries
and automatically generated queries were run the results indicated that the text re-
trieval-based approach returns the target methods in most cases within the first 22
results.

Zhao et al. [30, 32] performed a quantitative evaluation of the SNIAFL approach
using a large set of features from two software systems and precision and recall.
They compared the results of their approach to the approach using only text retrieval
and to the one using only dynamic information. The results obtained revealed that the
SNIAFL approach outperforms the other two approaches.

In order to be able to compare their results with those obtained by Zhao et al. [30],
Ahn et al. [31] followed closely the evaluation approach used in [30]. For that, they
used the same data set as [30], performed a quantitative evaluation of their newly
proposed approach using precision and recall , and compared their results to the ones
obtained using the approach introduced by Zhao et al. [30]. They used cut values of
3, 6, 9, 12, and 15 in order to compute the recall and precision at different thresholds,
and performed the concept location using the two techniques for all the requirements
in the system to get the average of precision and recall.

Cubranic et al. performed in [35] a quantitative evaluation of their approach, Hipi-
kat. A set of Eclipse changes were extracted from the issue tracking system and a set
of 20 bugs were randomly selected from these to perform the evaluation. The meas-
ures used for the quantitative evaluation were recall and precision, as well as the rank
of the first useful recommendation in the list of results. Even though Hipikat was not
compared to any other approaches to concept location, the results indicated that it was
able to determine all the affected files in the majority of the cases.

152 A. Marcus and S. Haiduc

Recall, precision and f-measure were also used also in [20] in order to compare
CERBERUS with previous approaches to concept location. Recall and precision
were used also as measures of performance in [25, 26].

Cleary et al. [19] performed a quantitative assessment of the newly introduced
cognitive assignment tool on a software system. The accuracy of the new approach
was determined by computing the average precision based on a set of expert map-
pings between the description of four concerns and their implementation in the source
code. At the same time, the new approach was compared using average precision to
three other approaches, i.e., a classic language models approach, a dependency based
language modeling approach, and LSI and the results indicated that the new approach
significantly outperformed the previous approaches.

The same authors performed another evaluation of the cognitive assignment ap-
proach in [16], where they used the same measure of average precision in order to
compare their approach to several other existing approaches, i.e., VSM, LSI, the clas-
sical language model approach, the dependency-based language model approach, and
KL-divergence. The results showed that overall the cognitive assignment approach
performs better than any of the other approaches.

Poshyvanyk et al. [13] performed three case studies to quantitatively evaluate the
newly introduced approach based on combining LSI with Probabilistic Ranking. The
metric used for the evaluation was the effectiveness. The new approach, PROMESIR
performed the best when compared with LSI and Scenario-based Probabilistic Rank-
ing (SPR). [15] used the same measure, i.e., effectiveness, to further compare
PROMESIR to LSI and SITIR, which is a new approach based on using LSI to rank
the methods in a single execution trace. SITIR proved to be comparable in results to
PROMESIR, while requiring less user effort.

Rao and Kak [63] used both average precision and effectiveness in order to com-
pare nine different text retrieval techniques, both generic and composite, for bug loca-
tion in source code. Effectiveness was also as the quantitative measure of choice in
[10, 11, 17, 22-24, 28, 29].

Poshyvanyk and Marcus use a specific set of measures in [14], i.e., lattice distilla-
tion factor and lattice browsing complexity in order to examine the benefits of their
newly introduced approach, based on using Formal Concept Analysis with LSI. These
measures are, however, specific for approaches using lattices to organize results.

Revelle et al. [27] used a new metric, i.e., the percentage of relevant methods in the
top ten results retrieved, for comparing the performance of ten feature location tech-
niques, all making use of text retrieval, alone or in combination with other sources of
data.

5.3 Qualitative Evaluations

In some cases, only a quantitative evaluation might not be enough to fully understand
the implication of the results or some characteristics of the approach being evaluated.
Under these circumstances, researchers have made use of qualitative evaluations,
which discuss in detail aspects of the technique used or results obtained.

 Text Retrieval Approaches for Concept Location in Source Code 153

Cleary et al. [16] performed a qualitative analysis of their cognitive assignment ap-
proach in order to identify reasons for the failure of the approach in some cases. In
order to do this, they chose two concepts in Eclipse JDT Core for which they per-
formed a manual identification of the methods involved in the implementation of the
concepts. For these two concepts, they analyzed in detail the terms used in the source
code of the involved methods, as well as the properties of the methods like size, quan-
tity of comments included in the method, the quality of the identifiers, etc. They
found that most of the terms in the query did not appear in the source code of one of
the concepts, for which the concept assignment technique failed, as opposed to the
second concept, where the terms included in the query were relevant terms existing in
the source code, thus explaining the success of the cognitive assignment approach.

In [41] the authors performed an initial qualitative evaluation of the Hipikat ap-
proach, which focused on whether the recommendations of relevant artifacts given by
the system were of help to developers working on a change task. The authors also
investigated if there were recommendations that the developers would have found
useful but Hipikat did not recommend. In a first study, using an oracle group memory
for a medium-sized system as a database for Hipikat, the authors had pairs of graduate
students analyze the recommendations given by Hipikat while they were performing
two change tasks on the system. At the end of the study, seven pairs of graduate stu-
dents submitted a report and six students were interviewed. Overall, the subjects
reported that Hipikat helped them to start the change tasks they were assigned, as well
as helped them identify the classes and methods that they need to understand and
change. The study revealed also that the usefulness of the suggestions depends on the
context of the suggestion and on the experience of the developer receiving the sugges-
tion. In a second study, Hipikat was evaluated on a completed enhancement for Ec-
lipse that was logged in BugZilla. The subject of the study was one of the authors of
the paper and he was observed while using Hipikat for the change task in Eclipse.

In a second evaluation of Hipikat [34], the authors study the usefulness of the rec-
ommendations of the approach on two previously completed enhancements (one easy
one difficult) in Eclipse, extracted from the issue tracking database of Eclipse.
The twelve paid participants in the study were mostly a mix of graduate students and
professional developers. In order to capture the data needed for the qualitative evalu-
ation, the authors used recorded interviews with the participants, performed first after
they had a mental plan of the change before the implementation, and then after the
implementation of the change was completed. A screen capture software was also
used to record the actions performed by the participants, and Hipikat was instru-
mented to capture the queries written by developers in a file. The results of the qualit-
ative analysis of all the materials recorded during the study revealed that newcomers
can use the information presented by Hipikat to achieve results comparable in quality
and correctness to those of more experienced members of the team.

Marcus et al. performed also a qualitative evaluation of the LSI-based approach
to concept location in [33], by analyzing in detail the results obtained by the new
approach to those obtained by grep and dependency graph navigation in [64].
The LSI-based approach was found to be almost as easy and flexible to use as grep.

154 A. Marcus and S. Haiduc

Additionally, LSI led to better results as it was able to identify certain parts of a con-
cept that were missed by the dependence graph search and grep.

The same approach introduced in [33] was qualitatively evaluated on object
oriented software systems in [36]. The process of finding the relevant methods using
LSI, grep and dependency graph search was analyzed and compared on one Java and
one C++ system. The strengths and weaknesses of each approach were identified and
discussed and the advantages of a combination of the approaches are highlighted.

Zhao et al. [30, 32] performed also a qualitative evaluation of their SNIAFL ap-
proach, along with the quantitative evaluation. Along with SNIAFL, they also
analyzed the approaches using only text retrieval and only dynamic information, re-
spectively. They conclude that while their approach works well on average, for the
recovered pseudo execution traces, it leads to too many irrelevant traces. However,
the approach was able to find some unusual traces and the overall effectiveness of the
approach was underlined.

Dit et al. [11] also performed a qualitative evaluation of their results and described
the problems and advantages of each of the identifier splitting techniques studied.
They also noticed that in some cases the queries presented problems due to the
vocabulary mismatch problem, and that this mismatch was more severe for bugs than
features.

Hayashi et al. [21] performed a brief qualitative evaluation of their approach and
determined two reasons for the poor performance of their technique in some cases,
i.e., inappropriate queries and events related to more than one feature.

6 Discussion and Directions for Future Research

While the paper did not present a timeline of the research on using text retrieval for
concept location, there is an observable evolution of the work in the field. Early ef-
forts focused more on determining whether particular text retrieval models (e.g.,
VSM, LSI, probabilistic models, etc.) are suitable for this problem and on defining
methodologies of using such techniques. Evaluation of the early work was based on
small case studies. More recent work focused on combining text retrieval with struc-
tural and dynamic analysis. Meanwhile the empirical evaluation matured and the
newer work is evaluated using sizeable data extracted from software repositories and
also includes comparing specific techniques. Newer retrieval models (e.g., based on
topic modeling) were also investigated recently and the attention of researchers also
shifted to issues such as query formulation, corpus normalization, etc.

All in all, text retrieval proved to be an essential technique to support concept loca-
tion in source code. So much so that all state of the art techniques incorporate today a
text retrieval engine, one way or another. More than that, related approaches (e.g.,
traceability link recovery, source code search in repositories, bug localization, etc.) all
use today text retrieval techniques.

While the combination of text retrieval with additional software analyses (i.e.,
structural and dynamic) seems to be the best suited for concept location, the use of

 Text Retrieval Approaches for Concept Location in Source Code 155

text retrieval in support of this important software engineering problem deserves more
attention and needs further research.

Most text retrieval techniques are used in black-box fashion when applied to source
code based corpora. Such techniques come with a variety of parameters that need to
be tuned for individual applications. Parameter tuning and customization of text re-
trieval techniques for source code corpora should be investigated further.

The empirical validation of this work matured in the past years, but it needs to
grow further. There is a need of annotated corpora and evaluation data, which hope-
fully will eventually result in a community defined and accepted benchmark. With
such a benchmark in place, more subtle work can be undertaken. For example, one
could investigate the combined use of various text retrieval techniques or more inter-
esting ways to create the source code corpus could be defined (e.g., by employing
selective weighting schemes on source code terms).

References

1. Rajlich, V.: Intensions are a Key to Program Comprehension. In: International Conference
on Program Comprehension, pp. 1–9 (2009)

2. Biggerstaff, T.J., Mitbander, B.G., Webster, D.E.: The Concept Assignment Problem in
Program Understanding. In: 15th IEEE/ACM International Conference on Software Engi-
neering, pp. 482–498 (1994)

3. Rajlich, V., Wilde, N.: The Role of Concepts in Program Comprehension. In: IEEE Inter-
national Workshop on Program Comprehension, pp. 271–278. IEEE Computer Society
Press (2002)

4. Wilde, N., et al.: Locating User Functionality in Old Code. In: IEEE International Confe-
rence on Software Maintenance, pp. 200–205 (1992)

5. Robillard, M.P., Murphy, G.C.: Representing concerns in source code. ACM Transactions
on Software Engineering and Methodology 16(1) (2007)

6. Salton, G., McGill, M.: Introduction to Modern Information Retrieval. McGraw-Hill
(1983)

7. Rajlich, V., Gosavi, P.: Incremental Change in Object-Oriented Programming. IEEE Soft-
ware 21(4), 62–69 (2004)

8. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cam-
bridge University Press (2008)

9. Porter, M.: An Algorithm for Suffix Stripping. Program 14(3), 130–137 (1980)
10. Gay, G., et al.: On the Use of Relevance Feedback in IR-Based Concept Location. In:

IEEE International Conference on Software Maintenance, pp. 351–360 (2009)
11. Dit, B., et al.: Can Better Identifier Splitting Techniques Help Feature Location? In: 19th

IEEE International Conference on Program Comprehension, pp. 11–20 (2011)
12. Poshyvanyk, D., et al.: Combining Probabilistic Ranking and Latent Semantic Indexing for

Feature Identification. In: 14th IEEE International Conference on Program Comprehen-
sion, pp. 137–146 (2006)

13. Poshyvanyk, D., et al.: Feature Location using Probabilistic Ranking of Methods based on
Execution Scenarios and Information Retrieval. IEEE Transactions on Software Engineer-
ing 33(6), 420–432 (2007)

156 A. Marcus and S. Haiduc

14. Poshyvanyk, D., Marcus, A.: Combining Formal Concept Analysis with Information Re-
trieval for Concept Location in Source Code. In: 15th IEEE International Conference on
Program Comprehension, pp. 37–46. IEEE Computer Society (2007)

15. Liu, D., et al.: Feature Location via Information Retrieval based Filtering of a Single Sce-
nario Execution Trace. In: 22nd IEEE/ACM International Conference on Automated Soft-
ware Engineering, pp. 234–243 (2007)

16. Cleary, B., et al.: An empirical analysis of information retrieval based concept location
techniques in software comprehension. Empirical Software Engineering 14(1), 93–130
(2009)

17. Scanniello, G., Marcus, A.: Clustering Support for Static Concept Location in Source
Code. In: 19th IEEE International Conference on Program Comprehension, pp. 1–10
(2011)

18. Asadi, F., et al.: A Heuristic-based Approach to Identify Concepts in Execution Traces. In:
14th European Conference on Software Maintenance and Reengineering, pp. 31–40 (2010)

19. Cleary, B., Exton, C.: Assisting Concept Location in Software Comprehension. In: 19th
Psychology of Programming Workshop, pp. 42–55 (2007)

20. Eaddy, M., et al.: CERBERUS: Tracing Requirements to Source Code Using Information
Retrieval, Dynamic Analysis, and Program Analysis. In: 17th IEEE International Confe-
rence on Program Comprehension, pp. 53–62 (2008)

21. Hayashi, S., Sekine, K., Saeki, M.: iFL: An Interactive Environment for Understanding
Feature Implementations. In: 26th IEEE International Conference on Software Mainten-
ance, pp. 1–5 (2010)

22. Lukins, S.K., Kraft, N.A., Etzkorn, L.H.: Source Code Retrieval for Bug Localization Us-
ing Latent Dirichlet Allocation. In: 15th Working Conference on Reverse Engineering, pp.
155–164 (2008)

23. Lukins, S.K., Kraft, N.A., Etzkorn, L.H.: Bug localization using Latent Dirichlet Alloca-
tion. Information and Software Technology 52, 972–990 (2010)

24. Nichols, B.D.: Augmented bug localization using past bug information. In: 48th ACM An-
nual Southeast Regional Conference, pp. 1–6 (2010)

25. Peng, X., et al.: Iterative Context-Aware Feature Location. In: 33rd International Confe-
rence on Software Engineering, NIER Track, pp. 900–903 (2011)

26. Ratanotayanon, S., Choi, H.J., Sim, S.E.: My Repository Runneth Over: An Empirical
Study on Diversifying Data Sources to Improve Feature Search. In: 18th IEEE Internation-
al Conference on Program Comprehension, pp. 206–305 (2010)

27. Revelle, M., Poshyvanyk, D.: An Exploratory Study on Assessing Feature Location Tech-
niques. In: 17th IEEE International Conference on Program Comprehension, pp. 218–222
(2009)

28. Revelle, M., Dit, B., Poshyvanyk, D.: Using Data Fusion and Web Mining to Support Fea-
ture Location in Software. In: 18th IEEE International Conference on Program Compre-
hension, pp. 14–23 (2010)

29. Shao, P., Smith, R.K.: Feature location by IR modules and call graph. In: 47th ACM An-
nual Southeast Regional Conference (2009)

30. Zhao, W., et al.: SNIAFL: towards a static non-interactive approach to feature location. In:
26th International Conference on Software Engineering, pp. 293–303 (2004)

31. Ahn, S.-Y., et al.: A Weighted Call Graph Approach for Finding Relevant Components in
Source Code. In: 10th ACIS International Conference on Software Engineering, Artificial
Intelligences, Networking and Parallel/Distributed Computing, pp. 539–544 (2009)

32. Zhao, W., et al.: SNIAFL: Towards a Static Non-interactive Approach to Feature Location.
ACM Transactions on Software Engineering and Methodologies 15(2), 195–226 (2006)

 Text Retrieval Approaches for Concept Location in Source Code 157

33. Marcus, A., et al.: An Information Retrieval Approach to Concept Location in Source
Code. In: 11th IEEE Working Conference on Reverse Engineering, pp. 214–223 (2004)

34. Cubranic, D., et al.: Learning from project history: a case study for software development.
In: ACM Conference on Computer Supported Cooperative Work, pp. 82–91 (2004)

35. Cubranic, D., et al.: Hipikat: A Project Memory for Software Development. IEEE Transac-
tions on Software Engineering 31(6), 446–465 (2005)

36. Marcus, A., et al.: Static Techniques for Concept Location in Object-Oriented Code. In:
13th IEEE International Workshop on Program Comprehension, pp. 33–42 (2005)

37. Enslen, E., et al.: Mining Source Code to Automatically Split Identifiers for Software
Analysis. In: 6th IEEE Working Conference on Mining Software Repositories, pp. 71–80
(2009)

38. Poshyvanyk, D., et al.: IRiSS - A Source Code Exploration Tool. In: 21st IEEE Interna-
tional Conference on Software Maintenance, pp. 69–72 (2005)

39. Poshyvanyk, D., Marcus, A., Dong, Y.: JIRiSS - an Eclipse plug-in for Source Code Ex-
ploration. In: 14th IEEE International Conference on Program Comprehension, pp. 252–
255 (2006)

40. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison Wesley (1999)
41. Cubranic, D., Murphy, G.C.: Hipikat: Recommending pertinent software development arti-

facts. In: 25th International Conference on Software Engineering, pp. 408–418 (2003)
42. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Commu-

nications of the ACM 18(11), 613–620 (1975)
43. Hatcher, E., Gospodnetić, O.: Lucene in Action. Manning Publications (2004)
44. Savage, T., Revelle, M., Poshyvanyk, D.: FLAT^3: Feature Location and Textual Tracing

Tool. In: 32nd ACM/IEEE International Conference on Software Engineering, Tool Demo,
pp. 255–258 (2010)

45. Deerwester, S., et al.: Indexing by Latent Semantic Analysis. Journal of the American So-
ciety for Information Science 41, 391–407 (1990)

46. Dit, B.: Monitoring the Searching and Browsing Behavior of Developers in Eclipse during
Concept Location. Department of Computer Science, Wayne State University, Detroit
(2009)

47. Hofmann, T.: From Latent Semantic Indexing to Language Models and Back. In: Work-
shop on Language Modeling and Information Retrieval (2001)

48. Ponte, J.M., Croft, W.B.: A Language Modeling Approach to Information Retrieval. In:
21st Annual International ACM SIGIR Conference on Research and Development in In-
formation Retrieval, pp. 275–281 (1998)

49. Cleary, B., Exton, C.: The Cognitive Assignment Eclipse Plug-in. In: 14th IEEE Interna-
tional Conference on Program Comprehension, pp. 241–244 (2006)

50. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet Allocation. Journal of Machine Learn-
ing Research 3, 993–1022 (2003)

51. Kuhn, A., Ducasse, S., Girba, T.: Semantic Clustering: Identifying Topics in Source Code.
Information and Software Technology 49(3), 230–243 (2007)

52. Ohlemacher, S., Marcus, A.: Towards a Benchmark and Automatic Calibration for IR-
based Concept Location. In: 19th IEEE International Conference on Program Comprehen-
sion, pp. 246–249 (2011)

53. Henninger, S.: Using iterative refinement to find reusable software. IEEE Software 11(5),
48–59 (1994)

54. Furnas, G.W., et al.: The Vocabulary Problem in Human-System Communication. Com-
munications of the ACM 30(11), 964–971 (1987)

158 A. Marcus and S. Haiduc

55. Starke, J., Luce, C., Sillito, J.: Searching and Skimming: An Exploratory Study. In: Inter-
national Conference on Software Maintenance, pp. 157–166 (2009)

56. Song, D., Bruza, P.: Towards Context-sensitive Information Inference. Journal of the
American Soceity for Information Science and Technology 4, 321–334 (2003)

57. Haiduc, S., Marcus, A.: On the Effect of the Query in IR-based Concept Location. In: 19th
IEEE International Conference on Program Comprehension, pp. 234–237 (2011)

58. Antoniol, G., Gueheneuc, Y.G.: Feature Identification: An Epidemiological Metaphor.
IEEE Transactions on Software Engineering 32(9), 627–641 (2006)

59. Marcus, A., Poshyvanyk, D.: The Conceptual Cohesion of Classes. In: 21st IEEE Interna-
tional Conference on Software Maintenance, pp. 133–142 (2005)

60. Ratanotayanon, S., Choi, H.J., Elliott Sim, S.: Using transitive changesets to support fea-
ture location. In: IEEE/ACM International Conference on Automated Software Engineer-
ing, pp. 341–344 (2010)

61. Kagdi, H., et al.: Assigning change requests to software developers. Journal of Software
Maintenance and Evolution: Research and Practice (2011) (to appear)

62. Poshyvanyk, D., Petrenko, M., Marcus, A.: Integrating COTS Search Engines into Eclipse:
Google Desktop Case Study. In: Proceedings of the 2nd International ICSE 2007 Work-
shop on Incorporating COTS Software Into Software Systems: Tools and Techniques, pp.
6–10 (2007)

63. Rao, S., Kak, A.: Retrieval from software libraries for bug localization: a comparative
study of generic and composite text models. In: 8th Working Conference on Mining Soft-
ware Repositories, pp. 43–52 (2011)

64. Chen, K., Vaclav, R.: RIPPLES: Tool for Change in Legacy Software. In: International
Conference on Software Maintenance, pp. 230–239 (2001)

A. De Lucia and F. Ferrucci (Eds.): ISSSE 2009-2011, LNCS 7171, pp. 159–184, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Discovering Services

Andrea Zisman

School of Informatics, City University London,
London, EC1V 0HB, United Kingdom
a.zisman@soi.city.ac.uk

Abstract. This tutorial paper presents an overview of existing approaches for
service discovery and describes a service discovery framework that can support
both static and dynamic service discovery. The framework and its extensions
have been developed within the EU 6th Framework projects SeCSE and Gredia
and the EU 7th Framework Network of Excellence S-Cube.

1 Introduction

Current software systems need to be more flexible, adaptable, and versatile. Service-
oriented computing (SOC), a paradigm that envisages software as a temporary service
rather than permanent property, aims to provide a more flexible approach to software
development. In this context, services are loosely-coupled autonomous computer-
based entities owned by third parties with different functionality, which can be
combined to realise applications and create dynamic business processes.

Service-oriented computing has attracted great interest from industry and research
communities all over the world. Service integrators, developers, and providers are
collaborating to address the various challenges in the area. Various approaches and
tools have been proposed to support different areas of SOC such as (a) languages to
describe services, (b) service design and development, (c) service discovery, (d)
service composition and adaptation, (e) service management and monitoring, and (f)
service governance.

An important activity in SOC is concerned with service discovery; i.e., the
identification of services based on one, or a combination of, functional, behavioural,
quality, and contextual aspects. Several approaches have been proposed to support
service discovery. These approaches can be classified as (a) static [23][32][41][62] or
(b) dynamic [16][19][79][80] service discovery approaches. The static approaches are
characterized by the identification of services during development (design-time) of
service-based systems to assist with the development of such systems. The identified
services are bound to the service-based systems prior to the execution of the systems.
The dynamic approaches are characterised by the identification of services during
execution time of service-based systems in order to replace participating services that
may become malfunctioning or unavailable, or are changed by service providers or
contextual characteristics (e.g., performance or cost changes). In this case, the
identified services are bound to the service-based systems during the execution of the
systems.

160 A. Zisman

In this tutorial paper, we present an overview of existing approaches for service
discovery and describe a service discovery framework that supports both static and
dynamic service discovery. The work presented in this paper was developed with the
collaboration of various colleagues and contains the results of several years of
research in the topic as already described in various papers [18][37][38][44][45]
[63][64][65][66][77][78][79][80][81]. In this paper, we provide a summary of the
work; where details can be found in the list of references above. The work has been
developed as part of three European-funded research projects, namely (a) the Service-
centric System Engineering (SeCSE) EU-ICT-FP6 project [60], (b) the Grid Enable
access to rich meDIA content (GREDIA) EU-ICT-FP6 project [22], and (c) the
Software Services and Systems (S-CUBE) EU-ICT-FP7 project [59].

The remaining of this paper is organized as follows. In Section 2 we present an
account of existing approaches for service discovery. In Section 3 we discuss our
static and dynamic service discovery framework. In Section 4 we present some
extensions of the framework. Finally, in Section 5 we summarise the work and
discuss some final remarks.

2 Overview of Existing Approaches

Several approaches have been proposed in the literature to support service discovery.
In [21], the authors introduce the topic of service discovery and describe some initial
work in this area. In [28], the discovery of services is addressed as a problem of
matching queries specified using a variant of Description Logic (DL) with service
profiles specified in OWL-S [50]. The matching process is based on the computation
of subsumption relations between service profiles and supports different types of
matching (exact, plug-in, subsume, intersection, and disjoint matching).

The work in [26] proposes the use of graph transformation rules for specifying
services and service discovery queries. These rules represent each service operation
by two "source" and "target" object graphs whose nodes and edges correspond to data
entities and relationships between them, respectively. Matching in this approach is
based on the use of RDQL by testing sub-graph relations and establishing if a
specification matching relation holds between the query and the service description.
In [34], the authors have also proposed the use of graph-matching for service
discovery but very few details of the matching algorithm are available.

The approach in [72] proposes four similarity assessment methods to support
service matching, namely lexical, attribute, interface, and quality-of-service (QoS)
similarity. These forms of similarity assessment can be used either separately or
jointly. Their lexical similarity method calculates the distance between two words in
concept hierarchies based on the lexicons WordNet and HowNet. The attribute
similarity uses hyperonymy/hyponymy relations to construct hierarchical structures
and calculates the similarity of two attributes based on the distance of the nodes that
represent them in the hierarchy. The interface similarity is based on the comparison of
the names and types of the parameters of the operations of two services. The
parameter name similarity is assessed by using the lexical similarity while the

 Discovering Services 161

similarity of the parameter data types is computed by using the data type mapping
table proposed in [13]. An evaluation of the approach in [72] has shown precision
between 42% and 62% for interface similarities whilst the preliminary evaluation of
our approach showed precision figures in the range of 55% to 100%.

METEOR-S [2] is a system that adopts a constraint driven approach to service
discovery in which queries are integrated into the composition process of a service
based system and are represented as a collection of tuples of features, weight, and
constraints. Details of the query matching process, which is used in this system, were
not available.

The approach in [29] uses service descriptions constructed as collections of
annotated multi-purpose extensible data containers, called "tuples", which can be
queried via XQuery. The service specifications assumed in [34] include only
specifications of service operation signatures and do not incorporate QoS properties
or behavioural descriptions of services. Thus, this approach is primarily focused on
interface queries where operation signatures are matched using string matching. This
form of matching is very limited, as it cannot account for even small variations in
operation signature specifications such as the use of different parameter names or
alternative orderings of parameters.

In [24][25], the authors advocate the use of (abstract) behavioural models of
service specifications in order to increase the precision of service discovery. Their
approach locates services, which satisfy task requirement properties expressed
formally in temporal logic, by using a lightweight automated reasoning tool. Another
approach that suggests behavioral matching for service discovery based on similarity
measures has been proposed in [23].

In [62], the authors also argue that the use of behavior signatures of web services
such as conversations of web services, events and activities of services, and semantic
descriptions of services can improve service discovery. Their approach proposes a
behavioral model for services, which associates messages exchanged between
services with activities performed within the services. A query language based on
first-order logic that focuses on properties of behavior signatures is used to support
the discovery process. These properties include temporal features of sequences of
service messages or activities and semantic descriptions of activities. The discovery
process is based on the use of evaluation algorithms for the query language. Another
approach that advocates the use of behavioral specifications represented as BPEL [9]
for service discovery has been proposed in [48]. In this approach the authors suggest
the use of BPEL specifications as a way of resolving ambiguities between requests
and services and use a tree-alignment algorithm to identify matching between request
and services.

There have been proposals for specific query languages to support web services
discovery [51][52][55][74]. The query language proposed in [55] is used to support
composition of services based on user’s goals. NaLIX [74], which is a language that
was developed to allow querying XML databases based on natural language, has also
been adapted to cater for service discovery. In [51], the authors propose USQL
(Unified Service Query language), an XML-based language to represent syntactic,
semantic, and quality of service search criteria. The query language used in [81] is

162 A. Zisman

more complete, since it accounts for the representation of behavioral aspects of the
system being developed. Moreover, in [81], structural and behavioral criteria are
represented by complete UML class and interaction models including the
specification of complex types. In addition, the constraint query language in [81]
allows for the specification of not only quality aspects of the system, but also extra
conditions concerned with structural and behavioral criteria. An extension of USQL
that incorporates the behavioral part of our query language has been proposed in [52].

Semantic web matchmaking approaches have been proposed to support service
discovery based on logic reasoning of terminological concept relations represented on
ontologies [1][2][28][32][35][36][41][68][69]. The METEOR-S [2] system adopts a
constraint driven service discovery approach in which queries are integrated into the
composition process of a service base system and are represented as a collection of
tuples of features, weight, and constraints. In [1], semantic, temporal, and security
constraints are considered during service discovery. In our framework, extra
constraints concerned with structural, behavioral, and quality aspects of the system
being constructed are also considered. In [28] the discovery of services is addressed
as a problem of matching queries specified as a variant of Description Logic (DL).
The work in [35] extends existing approaches by supporting explicit and implicit
semantic by using logic based, approximate matching, and IR techniques. The work in
[69] proposes QoS-based selection of services. In [32], the authors present a goal-
based model for service discovery that considers re-use of pre-defined goals,
discovery of relevant abstract services described in terms of capabilities that do not
depend on dynamic factors (state), and contracting of concrete services to fulfill
requesting goals. These best matches provide the designer an opportunity to choose
the most adequate service and to become more familiar with the available services
and, therefore, design the system based on this availability. Matching based on the
structure of data types is important during the design phase of (hybrid) service base
systems since they specify the functionality and constraints of the system being
constructed during design phase.

The WSDL-M2 approach [36], uses lexical matching to calculate linguistic
similarities between concepts, and structural matching to evaluate the overall
similarity between composite concepts. Moreover, this approach combines vector-
space model techniques with synonyms based on WordNet and semantic relations of
two concepts using WordNet. The structural matching is based on maximum weight
bipartite matching problem in which the weights in the edges are denoted by the
lexical similarities between the two elements associated with the edge. Several
experiments have been conducted to analyze the work in terms of the use of vector-
space model technique, use of vector-space model technique combined with
WordNet, and use of semantics. The results achieved precision values between 46%
to 100% for one set of services and 15% to 40% for another set of services. An
extension of this work that achieved better precision results proposes the use of
customizable hybrid approach in which a matching can be composed of different
techniques with distinct weights depending on the needs of the organization, domain,
or context. This approach suggests the use of compositions that mix several

 Discovering Services 163

techniques (mixed), use techniques in different stages as a refinement for the next
stage (cascade), or switch among techniques based on pre-defined criteria (switching).

Another approach that combines WordNet-based techniques and structure
matching for service discovery has been proposed in [68]. Initial experiments of this
approach in a collection of 19 services have achieved an average (a) precision of 48%
and recall of 100% when using WorNet with vector-space model techniques, (b)
precision of 20% and recall of 72% when using structure matching technique that
takes into consideration the data types of the parameters of the operations, and (c)
precision of 35.2% and recall of 81.8% when combining structure matching with
semantic distance of the names of the operations and data types. Although the
structural matching used in our framework is similar to the technique used in [68].

Other approaches have been proposed to support quality-of-services aware
composition in which services are composed to contribute to achieve quality of
service characteristics and support service level agreements [12][49][53]. Although
existing approaches have contributed to assist service composition an approach that
uses these compositions as part of the development of service-based systems has not
been proposed.

Several approaches have also been proposed to support context awareness
in service discovery [8][9][14][16][19][33][56]. In [19], context information is
represented by key-value pairs attached to the edges of a graph representing service
classifications. This approach does not integrate context information with behavioural
and quality matching and, context information is stored explicitly in a service
repository that must be updated following context changes. In [9], queries, services,
and context information are expressed in ontologies. Context information in this
approach can also be used as an implicit input to a service that is not explicitly
provided by the user (e.g. user location). The approach in [8] focuses on user context
information (e.g. location and time) and uses it to discover the most appropriate
network operator before making phone calls. Other approaches focusing on discovery
protocols in mobile computing also support context [14][56].

The work in [73] locates components based on context-aware browsing. In this
approach, the interaction of software developers with the development environment is
monitored and candidate components that match the development context based on
signature matching are identified and presented to developers for browsing. The
above context-aware approaches support simple conditions regarding context
information in service discovery, do not fully integrate context with behavioral
criteria in service discovery, and have limited applicability since they depend on the
use of specific ontologies for the expression of context conditions.

Approaches for dynamic service composition, in which services are identified and
aggregated during runtime in support of certain functional and quality characteristics
of the desired systems have been proposed in [3][7][12][15][20][46][58].

Approaches for reactive adaptation of service composition were proposed in
[3][6][31][42][70]. These approaches support changes in service composition based
on pre-defined policies [6], self-healing of compositions based on detection of
exceptions and repair using handlers [70], context-based adaptation of compositions
using negotiation and repair actions [3]; and key performance indicator (KPI) analysis
and the use of adaptation strategies related to the KPI fulfilment [31].

164 A. Zisman

Exceptions to the reactive approaches are found in the works in [17][27]
[30][40][47][67]. The work in [17] is based on prediction of performance failures to
support self-healing of compositions. The work uses semi-Markov models for
performance predictions, service reliability model, and minimization in the number of
service re-selection in case of changes. The decision to adapt is based on the
performance of a single service, while our framework considers a group of related
service operations in a composition, avoiding unnecessary changes to the
composition. Moreover, the work in [17] does not support unavailability and
malfunctioning of operations, services, and providers, as well as spatial correlations
between these elements in a composition.

In [40] the PREvent approach is described to support prediction and prevention of
SLA violations in service compositions based on event monitoring and machine
learning techniques. The prediction of violations is calculated only at defined
checkpoints in a composition based on regression classifiers prediction models.

The works in [27][47][67] advocate the use of testing to anticipate problems in
service compositions and trigger adaptation requests. The approach in [67] supports
identification of nine types of mismatches between services to be used in a
composition and their requests based on pre-defined test cases. In [27][47] test cases
are created during the deployment of service compositions and used to identify
violations after a service is invoked for the first time. However, the creation of test
cases is not an easy task and the work does not specify how to generate new test cases
for a modified composition.

Although the above approaches have contributed to the problem of service
discovery, none of them supports service discovery as part of the design process of
service-base systems, as well as during execution time of these systems. There are no
other approaches that focus on service discovery based on structural, behavioural,
quality, and contextual descriptions of services at the same time, and approaches that
support service requests based on structural, behavioural, quality, and contextual
constraints of the system. In addition, no approach has advocated a proactive service
discovery in which services are identified in parallel to the execution of service-based
systems. In the following, we describe our service discovery framework with the
above characteristics.

3 Service Discovery Framework

The static and dynamic service discovery framework supports both (i) design of
service-based systems based on existing available services in service repositories and
(ii) adaptation of service-based systems by replacing a participating service by
another available service when necessary. More specifically, the framework supports
the identification of services that provide functional and non-functional properties, as
well as some extra constraints of service-based systems as specified by their
requirements, architecture, design models, and workflow.

In the static phase, the framework assumes an iterative process in which queries are
derived from service-based system models and discovered services are used to amend
and re-formulate the models. In the dynamic phase, the framework supports a

 Discovering Services 165

proactive push mode of query execution in which candidate services are identified in
parallel to system execution based on subscribed services and queries. In both cases,
the discovery process is based on similarity analysis and distance measures of service
requests against service specifications. In the framework, service discovery queries
include structural, behavioural, quality, and contextual aspects of services specified in
a Service Discovery Query Language (SerDiQueL) [81] that we have developed. The
work assumes service specifications represented as facets describing different aspects
of the services, namely structural (represented in WSDL [71]), behavioural
(represented in BPEL4WS [9]), quality (represented in XML format), and context
(represented in XML format).

Fig. 1. Architecture Overview of the Framework

The architectural overview of the framework is shown in Figure 1. As shown in
the figure, the main components of the framework are: (a) client application, that
supports creation of service requests; (b) service requestor, that prepares service
queries to be evaluated, organises the results of a query, returns the results to a client
application, manages query subscriptions, and receives information from listeners; (c)
query processor, that parses a query and evaluates the parts of a query against service
specifications; (d) service registry intermediary, that provides an interface to access
services from various registries; (e) context servers, that support acquisition of
context information about services and application environment; (f) service listener,
that sends to service requestor notifications of new available services or changes in
services; and (g) service registry, that contains services specified by a set of facets
(e.g., textual, structural, behavioural, quality, and contextual facets).

A more detailed view of the query processor component is shown in Figure 2. As
shown in the figure, a query is received by the query processor and executed in terms
of its hard and soft constraints. Hard constraints need to be satisfied by all candidate
services and are used to filter services in the service repository that match the hard

166 A. Zisman

constraints. Soft constraints do not need to be satisfied by all candidate services and
are used to rank services in relation to the queries together with the structural and
behavioural aspects in a query. The matching of structural, behavioural, and soft
constraint aspects in a query provide structural, behavioural, and soft constraint
distances between service specifications and the query that are used in the
computation of an overall distance between a service and query. The overall distance
is used to rank candidate services with respect to a query.

Fig. 2. Overview of the Query Processor Component

3.1 Service Discovery Query Language

In the framework, we use an XML-based service discovery query language called
SerDiQueL [81] that allows for the specification of structural, behavioural, quality,
and contextual characteristics of services to be discovered or service-based systems
being developed. More specifically, in SerDiQueL a query may contain different
criteria, namely: (i) structural, specified by models describing the interface of a
required service; (iii) behavioural, specified by models describing the behavioural of a
required service; and (iii) constraints, specifying extra conditions for the service to be
discovered. These extra conditions may be concerned with structural, functional,
quality, or contextual aspects of a service to be discovered that cannot be represented
by interface or behavioural model descriptions used in the framework. For example,
specification of the time or cost to execute a certain operation in a service, the
receiver of a message, or the provider of a service.

A contextual constraint is concerned with information that changes dynamically
during the operation of the service-based application and/or the services that the
system deploys, while a non-contextual constraint is concerned with static
information. The non-contextual constraints can be hard or soft. As mentioned above,
a hard constraint must be satisfied by all discovered services for a query and are used

 Discovering Services 167

to filter services that do not comply with them. The soft constraints do not need to be
satisfied by all discovered services, but are used to rank candidate services.

Figure 3 presents the overall XML schema of SerDiQueL. As shown in the figure,
a query specified in the language (ServiceQuery) has three elements representing
structural, behavioural, and constraint sub-queries. The division of a query into these
three sub-queries is to (i) allow the representation of these three types of information
and (ii) support the representation of queries with arbitrary combinations of these
types of information.

Fig. 3. Overview XML Schema for SerDiQueL

Structural Sub-query
The structural sub-query describes structural aspects of (i) a service-based system
being developed (for static service discovery) or (ii) a service that needs to be
replaced and is being used by a service-based system (for dynamic service discovery).

The description of structural aspects for case (i) is based on design models of this
system. Our service discovery framework assumes design models expressed in UML
class and sequence diagrams represented as XMI documents, due to the popularity of
using UML for designing software systems in general, and service-based system in
particular. However, the structural sub-query could be based on other types of design
models representing the functionality of a system. In order to support the definition of
structural aspects of a system under development based on UML models, we have
developed a UML 2.0 profile [37]. The profile defines a set of stereotypes for
different types of UML elements such as messages in sequence diagrams, or
operations and classes defining the types of arguments in the messages.

For example, messages in a sequence diagram may be stereotyped as: (i) query
messages, representing service operations needed in identified services; (ii) context
messages, representing additional constraints for the query messages (e.g. if a context
message has a parameter p1 with the same name as a parameter p2 of a query
message, then the type of p1 should be taken as the type of p2); (iii) bound messages,
representing concrete service operations that have been discovered in previous query
executions.

In our framework, structural sub-queries for a service-based system being
developed are automatically generated from the class and sequence diagrams of a

168 A. Zisman

system based on the selection of messages from the designer of the system. The
description of structural aspects of a service-based system based on design models of
these systems supports the representation of operations being searched in different
services together with the representation of the input and output parameters of these
operations and their respective data types. This is important to assist with the
matching of structural aspects of the systems with structural aspects (interface
descriptions) of available services.

Fig. 4. Behavioural Model for ConferenceTravel SBS

As an example, consider a conference travel service-based system
(ConferenceTravel SBS) being developed with the UML design models shown in
Figures 4 and 5. Suppose the developer of this system interested in services that can
support booking of flights for someone to attend a conference. In this case, a designer
wants to find service operations that can provide implementation of messages as
specified in the diagram in Figures 4 and 5 (<<query_message>>), with the respective
classes representing the data types of the parameters of the query messages, namely:

 checkFlightAvailability (flight:FlightInfo): Boolean,
 calculateFlightCost(flight:FlightInfo):Price,
 bookFlight(flight:FlightInfo):String,
 getFlightDetails(flightReference:String):FlightInfo

The description of structural aspects for dynamic service discovery (case (ii)) is

represented as the WSDL [71] specification of a service to be replaced. SerDiQueL
supports a complete representation of the structural aspects of a service to be
identified as interface descriptions. In the framework, the structural sub-queries for a
service that needs to be replaced during execution time are automatic generated based
on the notification that a service became malfunctioning, unavailable, or there have

 Discovering Services 169

been changes in the characteristics of the service or in the context of the application
environment.

In both static and dynamic service discovery, structural sub-queries are matched
against interface descriptions of services specified as WSDL considering the names of
the operations and the data types of the parameters of the operations.

Fig. 5. Structural Model for ConferenceTravel SBS

Behavioural Sub-query
The behavioural sub-query is based on temporal logic supporting the representation of
behavioural aspects of required services. In particular, it supports the description
of queries that verify (a) the existence of a certain functionality, or a sequence of
functionalities, in a service specification; (b) the order in which certain functionalities
should be executed by a service; (c) dependencies between functionalities; (d) pre-
conditions; and (e) loops. Figure 6 shows a graphical representation of the SerDiQueL’s
XML schema for behavioural sub-queries. As shown in the figure, a behavioural sub-
query is defined as (a) a single condition, a negated condition, or a conjunction of
conditions, or (b) a sequence of expressions separated by logical operators.

In SerDiQueL, a behavioural sub-query is specified in terms of predicates, namely:
(a) Requires, that describes service operations that need to exist in service
specifications; (b) GuaranteedMember, that represents an element that needs to occur
in all traces of execution; (c) OccursBefore/OccursAfter, that represents the order of
occurrence of two member elements; (d) Sequence, that represents two or more
members that must occur in a certain order; and (e) Loop, that represents a sequence
of elements that are executed several times if a condition is satisfied.

As an example, consider the ConferenceTravel SBS shown in Figures 4 and 5.
Figure 7 shows the description of the behaviour subquery in SerDiQueL. As shown
in Figure 7, the Requires elements specify the requirement for the existence
of operations checkFlightAvailability, calculateFlightCost, bookFlight, and
getFlightDetails. The Sequence element specifies the order of these operations.

170 A. Zisman

Fig. 6. XML Schema for Bheavioural Sub-query in SerDiQueL

Fig. 7. Example of Behavioural Sub-query in SerDiQueL

For another example of a behavioural sub-query, consider a dynamic service
discovery situation in which a service that allows payments to be made by money
transfer from a client’s bank account in a service-based system becomes
malfunctioning and needs to be replaced. Suppose that the operations below are
executed in the current service that needs to be replaced, and that a user needs to be
authenticated before accessing any functionality of the service. In this case, a service
that supports the operations of the current services in the order below needs to be
identified. Figure 8 shows the description of the behavioural sub-query in SerDiQueL
for this example.

 Discovering Services 171

login(userID:string, password:string):boolean
credit(accountId:string, amount:double):balance

 transferAmount(fromAccId:int, toAccID:int, amount:double):boolean
debit(accountId:string, amount:double):balance

 logout(userID:string):boolean

Fig. 8. Example of Behavioural Sub-query in SerDiQueL

As shown in Figure 8, the Requires elements specify the requirement for the
existence of operations login, credit, transferAmount, debit, and logout. The
GuanranteeMember element specifies that operation login needs to appear in all
traces of execution in the service. The Sequence element specifies the order of
operations credit, transferAmount, and debit. The OccursBefore element specifies that
operation login needs to be executed before the operations in the sequence.

Constraint Sub-query
The constraint sub-query describes different types of extra conditions that need to be
fulfilled by a service. A constraint can be classified as contextual or non-contextual.
The non-contextual constraints in a sub-query can be evaluated against any type of
service specification (facet) in the service registries. The contextual constraints are
evaluated against context facets. These context facets are associated with services and
describe context information of the operations in these services. Context information
is specified as context operations that are executed at run-time. The framework
assumes the existence of context services that provide context information. Details of
the context constraint matching are described in [64].

Figure 9 shows a graphical representation of SerDiQueL’s XML schema for
specifying constraints. As shown in the figure, a constraint sub-query is defined as a
single logical expression, a negated logical expression, or a conjunction or disjunction
of two or more logical expressions, combined by logical operators.

172 A. Zisman

Fig. 9. XML Schema for Constraint Sub-query in SerDiQueL

In order to illustrate, consider the example of the service that allows payments to
be made by money transfer from a client’s bank account in a service-based system
that needs to be replaced. Assume two constraints for this service, namely (a) non-
contextual constraint concerned with the fact that the service needs to be available
24 hours a day, and (b) contextual constraint specifying that the time required

Fig. 10. Example of Non-Contextual Constraint in SerDiQueL

 Discovering Services 173

Fig. 11. Example of Contextual Constraint in SerDiQueL

to transfer money from a user’s bank account should not be more than 5 seconds.
Figure 10 shows the non-contextual constraint in SerDiQueL (case (a)) and Figure 11
shows the contextual constraint in SerDiQueL (case (b)).

Figure 10 shows that in facet QoS the minimal and maximum availability values
should be between 00:00 and 24:00, respectively. Figure 11 specifies that any
candidate service that can support transfer of money from a user’s bank account
(i.e., services that match operation transferMoney) needs to have a context
operation classified in the category GREDIA_RELATIVE_TIME in ontology
http://eg.org/CoDAMos_Extended.xml, and the result of executing this operation has
to be less than SECONDS-5 for this service to be accepted.

3.2 Service Discovery Execution

As explained above, for both static and dynamic service discovery, matchings
between queries and service specifications are executed in a two-phase process. In the
first phase, the query processor searches service registries in order to identify services
that satisfy the hard constraints of a query based on exact matchings (filtering phase).
In the second phase, candidate services identified in the filtering phase are matched
against the structural, behavioural, and constraints sub-queries, and the best candidate
services for the query are identified (ranking phase). The ranking phase is executed
based on the computation of partial distances, namely structural, behavioural, soft
non-contextual, and contextual distances when applicable. The partial distances
computed between services and a query are aggregated into an overall distance which
is then used to select the best services for a query. The best services for a query are
selected based on an instance of the assignment problem [54].

174 A. Zisman

There may be some differences in the execution process of a query. These dif-
ferences are due to the lack of hard, behavioural, and soft contextual and non-
contextual constraints in a query, or any combinations of these constraints. In cases
where there are no hard constraints in a query, the filtering phase is not executed and
partial distances are calculated for all the services in the registries. Also if there are no
behavioral or soft constraints in a query, the computation of the relevant partial
distances is bypassed and the overall distance is computed by using only the partial
distances of the types of constraints specified in a query. Note that structural
constraints are always present in a query and, therefore, distances based on these
constraints are always calculated.

Other differences in the execution process of a query exist in the case when a query
is to be performed to support static or dynamic service discovery. During static
service discovery, the structural and behavioural matching processes are flexible
allowing the identification of services whose structure and behaviour characteristics
have different degrees of similarity to those of a required service, and behaviour
matchings with alternative or missing mappings between a required service and an
existing service. The flexibility and alternative/missing mappings contribute to the
reformulation of the design models of the service-based system under development
and to the design of service-based systems based on characteristics of existing
services. During dynamic service discovery, the structural and behavioural matching
process requires matches with services that can be used to substitute services in an
already deployed system. Therefore, in this case, it is necessary to guarantee that the
input information for invoking the service that needs to be replaced in the system
covers the input information needed by a candidate service, and that the information
produced by the candidate service covers the information expected from the service to
be replaced. It is also necessary to preserve the order of the different functionalities to
be executed by a service.

The structural matching between a query and a service is performed by comparing
(i) the signatures of query messages in the structural model of a service-based system
against the signatures of the operations of WSDL specifications of candidate services,
during the design of service-based systems; or (ii) the signature of the operations in
the WSDL specification of a service that needs to be replaced in a service-based
system against the signature of the operations of WSDL specifications of candidate
services, during dynamic service discovery. In both cases, the structural matching is
based on the comparison of graphs representing the data types of the parameters of
the operations and the linguistic distances of the names of operations and parameters.
Details of the comparison of graphs and structural distances can be found in [37][38]
[63][65][77][79][80].

The behavioural matching between a query and a service is performed by
comparing the behavioural specification of the services and the behavioural sub-
query. In this case, the behavioural specifications of the service and the behavioural
sub-query are converted into state machine models and distances between these state
machines are calculated based on similarities of these state machines. Details about
the construction and comparison of the state machines can be found in [37][38]
[63][65][77][79][80].

 Discovering Services 175

The soft constraint matching (contextual and non-contextual) between a query and
a service is performed by analysing the conditions in the constraint part of a query
against service specifications. Details of this matching can be found in [64][80].

Static Service Discovery. In the case of static service discovery, the set of candidate
services with their respective distances are presented to the designer of the system.
The designer selects a service that is used to reformulate the design model of the
system being constructed and trigger new service discovery execution. As an
example, consider the ConferenceTravel scenario and the query shown in Figures 4
and 5. Table 1 shows the result of this query for the best three candidate services in a
service registry with 70 services and 212 operations, including services to support
travel arrangements. As shown in Table 1, the best match is for service AAirline1,
with its respective operations. Figure 12 shows the design model reformulated with
service AAirline1 (instead of placeholder :IFlightService as in the case of Figure 4),
and its respective operations that are now <<bound_messages>>.

Table 1. Results of ConferenceTravel Query

Operation: checkFlightAvailability
Service Operation Distance (struct) Distance (overall)
AAirline1 checkFlightAvailability 0.0644 0.3548
DeltaAirline2 checkFlightAvailability 0.0733 0.3578
DeltaAirline FlightAvailability 0.1918 0.3973
AAirline1 getFlightDetails 0.2199 0.4067

Operation: calculateFlightCost
Service Operation Distance (struct) Distance (overall)

AAirline1 calculateFlightPrice 0.0882 0.3627

DeltaAirline2 calculateTicketCost 0.1418 0.3806
AAirline2 FlightAvailability 0.1916 0.3972
AAirline1 checkFlightAvailability 0.2019 0.4006

Operation: bookFlight
Service Operation Distance (struct) Distance (overall)
AAirline1 bookFlight 0.0672 0.3557
AAirline1 calculateFlightPrice 0.1759 0.3919
AAirline1 checkFlightAvailability 0.1805 0.3935
DeltaAirline2 FlightAvailability 0.1848 0.3949

Operation: getFlightDetails
AAirline1 getFlightDetails 0.0816 0.3605
AAirline1 bookFlight 0.1869 0.3956
AAgenda getAddress 0.1919 0.3973
AAirline1 calculateFlightPrice 0.1925 0.3975

176 A. Zisman

Fig. 12. Reformulated Behavioural Model for ConferenceTravel SBS

Dynamic Service Discovery. For dynamic service discovery, the framework supports
the identification of services in both pull and proactive push modes of query
execution due to (a) unavailability or malfunctioning of services, (b) changes in the
context of services or the service-based system environment, (c) changes in the
structural or behavioural characteristics of services, and (d) emergency of a new
services that are better than the services already deployed in the service-based system.

In the pull mode of query execution, the query processor executes a query and
maintains services with distances from the query that does not exceed a certain
threshold. The proactive push mode of query execution consists of identifying a set of
replacement services for services already deployed in the service-based system, based
on subscribed services and queries during the execution time of service-based system,
and using these replacement services when necessary due to circumstances (a) to (d)
above. For each subscribed service, the framework identifies an up-to-date set of
candidate services. This set is maintained in parallel to the execution of a service-
based system and includes only services whose overall distance from the query
subscribed for a certain service does not exceed a given threshold, in ascending order.
When necessary, a replacement service for a deployed service in the service-based
system is used from the set of up-to-date candidate services. Details about the
matching process to create the up-to-date set of candidate services and how the
approach deals with each case (a) to (d) above is described in [18][79][80].

In the framework, the replacement of a service in a service-based system may not
take place right after modifications occur in the set of candidate services for the
service. This is due to the fact that an immediate replacement might be inappropriate.
For example, consider the situation in which a service S is executing some transactions
on behalf of the application, at the time when a new better service is found. The
decision to stop the execution of the application in order to replace a service for which
an alternative service has been found is based on replacement policies.

 Discovering Services 177

The replacement policies consider the position of a service S that may need to be
replaced with respect to the current execution point of the service-based system and
the situations that trigger the need for changes in the system. It tries to avoid making
changes that can be executed in the future. More specifically, there are three different
positions that needs to be considered with respect to a service S that needs to be
replaced, namely: (a) not_in_path, when service S in not in the current execution path
of the system, i.e., S appears in a different branch of the system’s execution path or
before the current point in the execution path; (b) current, when service S is in the
current execution point of the system; and (c) next_in_path, when service S is in the
current execution path of the system, and will be invoked some time in the future.
Depending on the positions of service S, the replacement policies verify if (i) changes
are required to be performed so that the system can continue its operations; (ii)
changes can wait to be performed after the current execution of the system; and (ii) no
changes are required. Details about the replacement policies used in the framework
can be found in [44].

4 Extensions

The framework assumes that services will be described in service repositories by
different facets such as structural, behavioral, quality, or contextual characteristics.
However, it is not possible to assume that services will always be described in terms
of all the above characteristics. Current service registries guarantee the existence of
structural descriptions of services, typically in the form of WSDL specifications
[29][48][51], even though it is necessary to identify services in terms of its other
characteristics to allow a more precise service selection.

In order to support the above need and the lack of behavioural service descriptions
in service repositories, we have extended the framework with a monitor component
that verifies the satisfiability of behavioural and contextual properties of the services
against messages exchanged between a service-based system and the services
deployed by the system. Details about this extension are described in [45]. The
monitor is based on the previous work presented in [43][45] supporting monitoring of
behavioural and contextual characteristics of service-based systems.

Figure 13 shows the architecture of the framework with the extension. As shown in
the figure, the monitor component is responsible for identifying services that become
unavailable, changes in the behavioural or contextual characteristics of the services
deployed in a service-based system and their replacement candidate services, and
changes in the context of the service-based system. The monitor is also responsible
for verifying whether the behavioural and contextual conditions specified in service
discovery queries are satisfied by services.

In the framework, the behavioural properties to be monitored are derived from
translation of SerDiQueL queries into event calculus (EC) [61] in terms of events and
fluents. The satisfiability of properties by the services is verified by the analyzer
component of the monitor based on invocations of the services by the service client
component and the events collected for these services by the event collector

178 A. Zisman

component. The monitor deploys a service client for each service that needs to be
monitored. The service client component is responsible for the invocation of services
and the generation of runtime events intercepted by the event collector. The event
collector component is responsible to gather runtime information during the execution
of services and to make this information available during the verification of the
different properties. The services that do not satisfy the behavioural properties are not
considered as possible candidate services during the computation of the ranking stage.

Fig. 13. Extension of the Service Discovery Framework Architecture

5 Conclusion and Final Remarks

In this tutorial paper we have provided an overview of a service discovery framework
that supports both static and dynamic identification of services represented by
structural, behavioural, quality, and contextual characteristics. The framework
supports a service discovery query language that can represent complex queries to be
matched against different types of service specifications. The static service discovery
process of the framework can be used to assist with the development of service-based
systems in which services matching some characteristics of the system being
developed are identified and used to amend or reformulate the design models of the
systems being developed. The dynamic service discovery process of the framework is
used to support the replacement of a service in a service-based system during runtime
execution of the system due to several situations. The dynamic discovery process is
based on a proactive approach in which candidate services for services deployed in
service-based systems are identified in parallel to the execution of the systems.

 Discovering Services 179

The framework has been evaluated in several scenarios for different queries,
considering different objectives such as precision, recall, and performance
measurements of the matching process. The framework has also been evaluated to
verify the advantages of using the proactive push mode of query execution during
dynamic service discovery with respect to a reactive approach, and using the monitor
component when it is not possible to guarantee the existence of behavioural service
specifications. The results of these evaluations have been positive and are described in
[37][45][65][79][80].

Currently we are extending the framework to support several points: (a) service
discovery based on service reputation and trust aspects; (b) service-based system
adaptation triggered by changes in business activities, user requirements, and quality
of services; (c) service discovery considering behavioural composition of candidate
services; and (d) verification of service-based system design models after amending
these models with the models of discovered services.

References

[1] Agarwal, S., Studer, R.: Automatic Matchmaking of Web Services. In: International
Conference on Web Services, pp. 45–54. IEEE Press (2006)

[2] Aggarwal, R., Verma, K., Miller, J., Milnor, W.: Constraint Driven Web Service
Composition in METEOR-S. In: 2004 IEEE International Conference on Services
Computing, pp. 23–30. IEEE Press, New York (2004)

[3] Ardagna, D., Comuzzi, M., Mussi, E., Pernici, B., Plebani, P.: PAWS: A Framework for
Executing Adaptive Web-Service Processes. IEEE Software 24, 39–46 (2007)

[4] Albert, P., Henocque, L., Kleiner, M.: Configuration-Based Workflow Composition. In:
2005 IEEE International Conference on Web Services, pp. 285–292. IEEE Computer
Society (2005)

[5] Baresi, L., Di Nitto, E., Ghezzi, C.: Inconsistency and Ephemerality in a World of e-
Services. In: Workshop on Requirements Engineering for Open Systems, Requirements
Engineering Conference (2003)

[6] Baresi, L., Di Nitto, E., Ghezzi, C., Guinea, S.: A Framework for the Deployment of
Adaptable Web Service Compositions. Service Oriented Computing and Applications
Journal 1, 75–91 (2007)

[7] Berbner, R., Spahn, M., Repp, N., Heckmann, O., Steinmetz, R.: Heuristics for QoS-
aware Web Service Composition. In: 2006 IEEE International Conference on Web
Services, pp. 72–82. IEEE Computer Society (2006)

[8] Bormann, F., Flake, S.: Towards Context-Aware Service Discovery: A Case Study for a
new Advice of Charge Service. In: 14th IST Mobile and Wireless Communications
Summit, Dresden (2005)

[9] BPEL4WS. Business process Execution language for Web Services 1.1, http://
www-106.ibm.com/developerworks/webservices/library/ws-bpel

[10] Broens, T., Pokraev, S., van Sinderen, M., Koolwaaij, J., Dockhorn Costa, P.: Context-
Aware, Ontology-Based Service Discovery. In: Markopoulos, P., Eggen, B., Aarts, E.,
Crowley, J.L. (eds.) EUSAI 2004. LNCS, vol. 3295, pp. 72–83. Springer, Heidelberg
(2004)

180 A. Zisman

[11] Canfora, G., Di Penta, M., Esposito, R., Perfetto, F., Villani, M.L.: Service Composition
(re)Binding Driven by Application–Specific QoS. In: Dan, A., Lamersdorf, W. (eds.)
ICSOC 2006. LNCS, vol. 4294, pp. 141–152. Springer, Heidelberg (2006)

[12] Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: QoS-Aware Replanning of
Composite Web Services. In: 2005 IEEE International Conference on Web Services, pp.
121–129. IEEE Computer Society (2005)

[13] Cardoso, J., Sheth, A.: Semantic e-Workflow Composition. Journal of Intelligent
Information Systems 21, 191–225 (2003)

[14] Lee, C., Helal, S.: Context Attributes: An Approach to Enable Context-awareness for
Service Discovery. In: 2003 Symposium on Applications and the Internet, pp. 22–30.
IEEE Computer Society (2003)

[15] Colombo, M., Di Nitto, E., Mauri, M.: SCENE: A Service Composition Execution
Environment Supporting Dynamic Changes Disciplined Through Rules. In: Dan, A.,
Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp. 191–202. Springer,
Heidelberg (2006)

[16] Cuddy, S., Katchabaw, M., Lutfiyya, H.: Context-Aware Service Selection Based on
Dynamic and Static Service Attributes. In: IEEE International Conference on Wireless
And Mobile Computing, Networking and Communications, pp. 13–20. IEEE Press,
New York (2005)

[17] Dai, Y., Yang, L., Zhang, B.: QoS-Driven Self-Healing Web Service Composition
Based on Performance Prediction. Journal of Computer Science and Technology 24,
250–261 (2009)

[18] Dolley, J., Zisman, A., Spanoudakis, G.: Runtime Service Discovery for Grid
Applications. In: Bessis, N. (ed.) Grid Technology for Maximizing Collaborative
Decision Management and Support: Advancing Effective Virtual Organizations, pp.
212–234. IGI Global (2009)

[19] Doulkeridis, C., Loutas, N., Vazirgiannis, M.: A System Architecture for Context-
Aware Service Discovery. Electr. Notes Theoretical Computer Science 146, 101–116
(2006)

[20] Fujii, K., Suda, T.: Semantics-based Dynamic Web Service Composition. Int. Journal of
Cooperative Inf. Systems 15, 293–324 (2006)

[21] Garofalakis, J., Panagis, Y., Sakkopoulos, E., Tsakalidis, A.: Web Service Discovery
Mechanisms: Looking for a Needle in a Haystack. In: International Workshop on Web
Engineering, Hypermedia Development and Web Engineering Principles and
Techniques: Put Them in Use, in Conjunction with ACM Hypertext 2004, Santa Cruz
(August 2004)

[22] GREDIA, http://www.gredia.eu
[23] Grirori, D., Corrales, J.C., Bouzeghoube, M.: Behavioral Matching for Service

Retrieval, International Conference on Web Services. In: International Conference on
Web Services, 2006, pp. 145–152. IEEE Computer Society (2006)

[24] Hall, R.J., Zisman, A.: Behavioral Models as Service Descriptions. In: 2nd Int.
Conference on Service Oriented Computing, pp. 163–172. ACM (2004)

[25] Hall, R.J., Zisman, A.: Validating Personal Requirements by Assisted Symbolic
Behavior Browsing. In: 19th IEEE International Conference on Automated Software
Engineering, pp. 56–66. IEEE Press, New York (2004)

[26] Hausmann, J.H., Heckel, R., Lohmann, M.: Model-based Discovery of Web Services.
In: IEEE International Conference on Web Services, pp. 324–331. IEEE Press, New
York (2004)

 Discovering Services 181

[27] Hielscher, J., Kazhamiakin, R., Metzger, A., Pistore, M.: A Framework for Proactive
Self-adaptation of Service-Based Applications Based on Online Testing. In: Mähönen,
P., Pohl, K., Priol, T. (eds.) ServiceWave 2008. LNCS, vol. 5377, pp. 122–133.
Springer, Heidelberg (2008)

[28] Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to OWL:
The Making of a Web Ontology Language. Journal of Web Semantics 1, 7–26 (2003)

[29] Hoschek, W.: The Web Service Discovery Architecture. In: 2002 ACM/IEEE
Conference on Supercomputing. ACM (2002)

[30] Jun, N., Bin, Z., Xiamgyu, Z., Zhiliang, Z., Dancheng, L.: Two-Stage Adaptation for
Dependable Service-Oriented System. In: 2010 International Conference on Service
Sciences, pp. 143–147. IEEE Computer Society (2010)

[31] Kazhamiakin, R., Wetzstein, B., Karastoyanova, D., Pistore, M., Leymann, F.:
Adaptation of Service-Based Applications Based on Process Quality Factor Analysis.
In: Dan, A., Gittler, F., Toumani, F. (eds.) ICSOC/ServiceWave 2009. LNCS,
vol. 6275, pp. 395–404. Springer, Heidelberg (2010)

[32] Keller, U., Lara, R., Lausen, H., Polleres, A., Fensel, D.: Automatic Location of
Services. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532,
pp. 1–16. Springer, Heidelberg (2005)

[33] Khedr, M., Karmouch, A.: Enhancing Service Discovery with Context Information. In:
ITS 2002 (2002)

[34] Klein, M., Bernstein, A.: Toward High-Precision Service Retrieval. IEEE Internet
Computing 8, 30–36 (2004)

[35] Klusch, M., Fries, B., Sycara, K.: Automated Semantic Web Service Discovery with
OWLS-MX. In: 5th Int. Joint Conf. on Autonomous Agents and Multiagent Systems
(AAMAS), pp. 915–922. ACM (2006)

[36] Kokash, N., van den Heuvel, W.-J., D’Andrea, V.: Leveraging Web Services Discovery
with Customizable Hybrid Matching. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006.
LNCS, vol. 4294, pp. 522–528. Springer, Heidelberg (2006)

[37] Kozlenkov, A., Spanoudakis, G., Zisman, A., Fasoulas, F., Sanchez, F.: Architecture-
driven Service Discovery for Service Centric Systems. International Journal of Web
Services Research (Special Issue on Service Engineering) 4, 81–112 (2007)

[38] Kozlenkov, A., Spanoudakis, G., Zisman, A., Fasoulas, F., Sanchez, F.: A Framework
for Architecture Driven Service Discovery. In: 2006 International Workshop on Service
Oriented Software Engineering (IW-SOSE 2006), in Conjunction with ICSE 2006, pp.
67–73. ACM (2006)

[39] Kramler, G., Kapsammer, E., Kappel, G., Retschitzegger, W.: Towards Using UML 2
for Modelling Web Service Collaboration Protocols. In: 1st Conference on
Interoperability of Enterprise Software and Applications (INTEROP-ESA 2005), pp.
227–238. Springer-Verlag London Limited (2006)

[40] Leitner, P., Michlmayr, A., Rosenber, F., Dustdar, S.: Monitoring, Prediction and
Prevention of SLA Violations in Composite Services. In: 2010 IEEE International
Conference on Web Services, pp. 369–376. IEEE Computer Society, Washington
(2010)

[41] Li, L., Horrock, I.: A Software Framework for Matchmaking based on Semantic Web
Technology. In: 12th Int. World Wide Web Conference - Workshop on E-Services and
the Semantic Web, pp. 331–339. ACM (2003)

[42] Lin, K.J., Zhang, J., Zhai, Y., Xu, B.: The Design and Implementation of Service
Process Reconfiguration with End-to-end QoS Constraints in SOA. Journal of Service
Oriented Computing and Applications 4, 157–168 (2010)

182 A. Zisman

[43] Mahbub, K., Spanoudakis, G.: Run-time Monitoring of Requirements for Systems
Composed of Web-Services: Initial Implementation and Evaluation Experience. In:
2005 IEEE International Conference on Web Services, pp. 257–265. IEEE Computer
Society (2005)

[44] Mahbub, K., Zisman, A.: Replacement Policies for Service-Based Systems. In: Dan, A.,
Gittler, F., Toumani, F. (eds.) ICSOC/ServiceWave 2009. LNCS, vol. 6275,
pp. 345–357. Springer, Heidelberg (2010)

[45] Mahbub, K., Spanoudakis, G., Zisman, A.: A Monitoring Approach for Runtime
Service Discovery. Automated Software Engineering Journal 18, 117–161 (2011)

[46] Pernici, B. (ed.): MAIS Project. Mobile Information Systems – Infrastructure and
Design for Flexibility and Adaptability. Springer (2006)

[47] Metzer, A., Sammodi, O., Pohl, K., Rzepka, M.: Towards Pro-active Adaptation with
Confidence Augumenting Service Monitoring with Online Testing. In: 2010 ICSE
Workshop on Software Engineering for Adaptive and Self-Managing Systems,
pp. 20–28. ACM (2010)

[48] Mikhaiel, R., Stroulia, E.: Examining Usage Protocols for Service Discovery. In: Dan,
A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp. 496–502. Springer,
Heidelberg (2006)

[49] Nguyen, X.T., Kowalczyk, R., Han, J.: Using Dynamic Asynchronous Aggregate
Search for Quality Guarantees of Multiple Web Services Compositions. In: Dan, A.,
Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp. 129–140. Springer,
Heidelberg (2006)

[50] OWL-S (2003), http://www.daml.org/services/owl-s/1.0
[51] Pantazoglou, M., Tsalgatidou, A., Athanasopoulos, G.: Discovering Web Services and

JXTA Peer-to-Peer Services in a Unified Manner. In: Dan, A., Lamersdorf, W. (eds.)
ICSOC 2006. LNCS, vol. 4294, pp. 104–115. Springer, Heidelberg (2006)

[52] Pantazoglou, M., Tsalgatidou, A., Spanoudakis, G.: Behavior-aware, Unified Service
Discovery. In: Service-Oriented Computing: a Look at the Inside Workshop,
SOC@Inside 2007, Co-located with ICSOC 2007 (2007)

[53] De Paoli, F., Lulli, G., Maurino, A.: Design of Quality-Based Composite Web Services.
In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp. 153–164.
Springer, Heidelberg (2006)

[54] Papadimitriou, C., Steiglitz, K.: Combinatorial Optimisation: Algorithms and
Complexity. Dover Publications (1998)

[55] Papazoglou, M., Aiello, M., Pistore, M., Yang, J.: XSRL: A Request Language for web
services. In: IEEE Internet Computing(2002),
http://infolab.uvt.nl/pub/papazogloump-2002-61.pdf

[56] Pawar, P., Tokmakoff, A.: Ontology-based Context-aware service discovery for
pervasive environments. In: 1st IEEE International Workshop on Services Integration in
Pervasive Environments (SIPE 2006), Co-located with IEEE ICPS 2006, pp. 1–7. IEEE
Computer Society (2006)

[57] Di Penta, M., Esposito, R., Villani, M.L., Codato, R., Colombo, M., Di Nitto, E.: WS
Binder: a Framework to enable Dynamic Binding of Composite Web Services. In: 2006
International Workshop on Service-Oriented Software Engineering (SOSE 2006), pp.
74–80. ACM, New York (2006)

[58] Pistore, M., Marconi, A., Bertolini, P., Traverso, P.: Automated Composition of Web
Services by Planning at the Knowledge Level. In: Kaelbling, L.P., Saffiotti, A. (eds.)
Nineteenth International Joint Conference on Artificial Intelligence (IJCAI 2005), pp.
1252–1259. Professional Book Center (2005)

 Discovering Services 183

[59] S-CUBE, the European Network of Excellence in Software Services and Systems,
http://www.s-cube-network.eu/

[60] SeCSE, Service Centric System Engineering, http://www.secse-project.eu/
[61] Shanahan, M.: The Event Calculus Explained. In: Wooldridge, M.J., Veloso, M.M.

(eds.) Artificial Intelligence Today. LNCS (LNAI), vol. 1600, pp. 409–430. Springer,
Heidelberg (1999)

[62] Shen, Z., Su, J.: Web Service Discovery Based on Behavior Signature. In: IEEE
International Conference on Services Computing (SCC 2005), pp. 279–286. IEEE
Computer Society (2005)

[63] Spanoudakis, G., Zisman, A., Kozlenkov, A.: A Service Discovery Framework for
Service Centric Systems. In: IEEE International Conference on Services Computing
(SCC 2005), pp. 251–259. IEEE Computer Society (2005)

[64] Spanoudakis, G., Mahbub, K., Zisman, A.: A Platform for Context-Aware Runtime
Service Discovery. In: 2007 IEEE International Conference on Web Services, pp. 233–
240. IEEE Computer Society (2007)

[65] Spanoudakis, G., Zisman, A.: Discovering Services during Service-based System
Design using UML. IEEE Transactions of Software Engineering 36, 371–389 (2010)

[66] Spanoudakis, G., Zisman, A.: Designing and Adapting Service-based Systems: A
Service Discovery Framework. In: Dustdar, S., Li, F. (eds.) Service Engineering:
European Research Results, pp. 261–298. Springer (2010) ISBN 978-3-7091-0414-9

[67] Tosi, D., Denaro, G., Pezzè, M.: Towards Autonomic Service-Oriented Applications.
International Journal of Autonomic Computing (IJAC) 1, 58–80 (2009)

[68] Wang, Y., Stroulia, E.: Semantic Structure Matching for Assessing Web-Service
Similarity. In: Orlowska, M.E., Weerawarana, S., Papazoglou, M.P., Yang, J. (eds.)
ICSOC 2003. LNCS, vol. 2910, pp. 194–207. Springer, Heidelberg (2003)

[69] Wang, X., Vitvar, T., Kerrigan, M., Toma, I.: A QoS-Aware Selection Model for
Semantic Web Services. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS,
vol. 4294, pp. 390–401. Springer, Heidelberg (2006)

[70] WSDiamond, Web Services - DIAgnosability, Monitoring and Diagnosis,
http://wsdiamond.di.unito.it

[71] WSDL, Web Services Description Language, http://www.w3.org/TR/wsdl
[72] Wu, J., Wu, Z.: Similarity-based Web Service Matchmaking. In: IEEE International

Conference on Services Computing, pp. 287–294. IEEE Computer Society (2005)
[73] Ye, Y., Fischer, G.: Context-Aware Browsing of Large Component Repositories. In:

IEEE 16th Int. Conference on Automated Software Engineering (ASE), pp. 99–106.
IEEE Computer Society (2001)

[74] Yunyao, V., Yanh, H., Jagadish, H.: NaLIX: an Interactive Natural Language Interface
for Querying XML. In: Özcan, F. (ed.) ACM SIGMOD International Conference on
Management of Data, pp. 900–902. ACM (2005)

[75] Zachos, K., Zhu, X., Maiden, N., Jones, S.: Seamlessly Integrating Service Discovery
into UML Requirements Processes. In: 2006 International Workshop of Service
Oriented Software Engineering (IW-SOSE), in Conjunction with ICSE 2006, pp. 60–66.
ACM, New York (2006)

[76] Zaremski, A.M., Wing, J.M.: Signature Matching: A Tool for Using Software Libraries.
ACM Transactions on Software Engineering and Methodology 4, 146–170 (1995)

[77] Zisman, A., Spanoudakis, G.: UML-Based Service Discovery Framework. In: Dan, A.,
Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp. 402–414. Springer,
Heidelberg (2006)

184 A. Zisman

[78] Zisman, A., Mahbub, K., Spanoudakis, G.: A Service Discovery Framework based on
Linear Composition. In: 2007 IEEE International Conference on Services Computing,
pp. 536–543. IEEE Computer Society (2007)

[79] Zisman, A., Spanoudakis, G., Dooley, J.: Proactive Runtime Service Discovery. In:
2008 IEEE International Conference on Services Computing, pp. 237–245. IEEE
Computer Society (2008)

[80] Zisman, A., Spanoudakis, G., Dooley, J.: A Framework for Dynamic Service Discovery.
In: 23rd IEEE/ACM International Conference on Automated Software Engineering
(ASE), pp. 158–167. ACM (2008)

[81] Zisman, A., Spanoudakis, G., Dooley, J.: A Query Language for Service Discovery. In:
4th International Conference on Software and Data Technologies (2009)

A. De Lucia and F. Ferrucci (Eds.): ISSSE 2009-2011, LNCS 7171, pp. 185–215, 2013.
© Springer-Verlag Berlin Heidelberg 2013

People-Centered Software Development:
An Overview of Agile Methodologies

Frank Maurer and Theodore D. Hellmann

The University of Calgary, Department of Computer Science,
2500 University Drive NW, Calgary, Alberta, Canada
{frank.maurer,tdhellma}@ucalgary.ca

Abstract. This chapter gives an overview of agile software development proc-
esses and techniques. The first part of the chapter covers the major agile project
management techniques with a focus on project planning. Iteration planning and
interaction design approaches are given special focus. The second part of the
chapter covers agile quality assurance with a focus on test-driven development
and the state space of testing. Current problems in agile testing, including meas-
uring test quality and testing applications with large state spaces, are discussed.

Keywords: Agile Methods, Agile Project Management, Agile Interaction De-
sign, Test-Driven Development, State Space Testing.

1 Introduction

Software development is a complex undertaking that poses substantial challenges to
teams in industry. In the 1980ies, companies tried to use Computer-Aided Software
Engineering (CASE) tools to increase the efficiency of software development
processes. The core idea was to use graphical notations to describe the functionality
of a software system on an abstract level and then generate (most of) the code from it.
However, the success of these approaches was limited and software teams nowadays
still write code manually.

In the 1990ies, software developers were a scarce resource and companies focused
on improving the development process to optimize their development efforts. Soft-
ware process improvement (SPI) initiatives following CMMI, ISO 900x or SPICE
ideas were commonplace. SPI approaches basically require an organization to define
the steps and outcomes of each development step and then ensure that all teams are
following these best practices: document what you do and do what is documented. As
a side effect of the process definition, organizations often adopted Tayloristic1 water-
fall processes where steps in the process corresponded to roles in the organization and
handoffs between steps happened in the form of documents. Unfortunately, many SPI

1 In his seminal 1911 book “The Principles of Scientific Management”, Frederick Taylor dis-

cussed repeatable manufacturing processes with a strong division of labor and a separation
between manufacturing and engineering work.

186 F. Maurer and T.D. Hellmann

implementations resulted in heavyweight, document-centric processes that created a
substantial overhead for software development teams.

Agile processes are trying to swing the pendulum back. Proponents of agile me-
thods ask the questions: how can we refocus projects on the bare minimum required
to make software development effective and efficient? What does a software devel-
opment team really have to do to create business value?

Agile methods came to the forefront of the discussion in the software development
community in the late 1990ies and have been widely adopted since then. Initially, in
the late 1990ies and early 2000s, teams started their journey by using ideas from
extreme programming (XP) to improve their engineering processes. Test-driven de-
velopment, pair programing, continuous integration, short release cycles, refactoring,
simple design and on-site customer are techniques that were included in Kent Beck’s
XP book [1]. XP introductions often happened bottom-up: software developers
pushed the ideas into their development projects and hoped to streamline the delivery
of value to their customers.

By the mid 2000s, agile methods moved from the development cubicle to the front-
line management level. At that time, many teams started their agile adoption with
ideas from Scrum for improving the management of software projects. Ken Schwa-
ber’s Scrum [2] emphasizes iterative and incremental development, self-organizing
teams and continuous process improvement in small steps. The methodology provides
a set of tools to help with coordinating software development efforts while ensuring
that value is delivered to customers frequently and reliably. This focus on project
management issues made Scrum a favorite for front-line and middle management –
which resulted in a middle-out strategy for agile method adoption where middle man-
agers pushed agile ideas downwards into their teams as well as upwards into senior
management.

More recently, in the late 2000s/early 2010s, agile adoptions often seem to be
pushed from senior management to the whole enterprise. Mary & Tom Poppendieck’s
Lean Software Development [3] is based on ideas from the Toyota Production System
and translates them into software development processes. Lean software development
provides guidelines for enterprise-level agile adoptions and includes techniques like
value stream mapping, flow, reducing cycle time and kanban.

While we highlighted XP, Scrum and Lean above, other methodologies fall into the
agile space and had substantial impact on the area. Feature-driven development [4],
DSDM [5], Crystal Clear [6], and adaptive software development [7] are some of the
approaches that had a substantial impact on the thinking and progress in the agile
community. However, our own – subjective – observations with industrial partners
clearly indicate that XP, Scrum and Lean are the ones that are more widely adopted
and discussed.

When we interact with teams that want to adopt agile approaches, we usually sug-
gest they initially focus on two aspects: agile project management and agile quality
assurance. The remainder of this chapter discusses these in more detail.

In Section 2, we provide an overview of agile project management approaches. We
discuss user stories, user story mapping, and low-fidelity prototyping as well as

 People-Centered Software Development: An Overview of Agile Methodologies 187

release and iteration planning. Section 3 presents an overview of agile quality assur-
ance focusing on test-driven development and acceptance test-driven development,
and also discusses the increasingly-important topic of graphical user interface (GUI)
testing. The concept of the state space of an application as it relates to testing is also
described in Section 3, as well as the implications of this concept in relation to GUI
testing. The final section summarizes our findings.

2 Agile Project Management

Agile project management is based on four values:

• Communication,
• Simplicity,
• Feedback, and
• Courage.

Communication is key for any software development project. Business representa-
tives understand their problems and can develop ideas about how they can be over-
come with software. However, they usually do not have the technical skills to develop
the software system. Thus, communication is an essential bridge between the business
domain and the development domain. Communication is needed between all stake-
holders in a project – from senior management to future users, IT operations, software
development, user experience, project management.

Simplicity is about asking the question: what is the simplest thing that could
possibly work? The question needs to be raised when designing software to avoid
gold-plating and over-engineering – YAGNI (you ain’t gonna need it) is the agile
battle cry. But it also needs to be raised in regard to project planning and progress
tracking: what does a team have to do to get an accurate picture of the future devel-
opment effort?

Feedback is fast and frequent in agile teams. Essential feedback comes from
putting the system (or updates) into production as quickly as possible. Feedback from
real use allows the development team to find bugs early and fix them. It helps the
team to steer the project back onto the right path when needed and provides necessary
confirmation of success when users do not find problems with newly deployed fea-
tures. Feedback from successful regression testing provides validation that existing
features have not been broken by new development results – ensuring the effort esti-
mates remain valid and the project stays on track.

Courage is needed when developers point out unrealistic expectations to custom-
ers: not everything can be delivered by a few weeks of work. Courage is also essential
when the development team has to explain to the customer why delivering new fea-
tures must be postponed for a major redesign of the existing platform.

A core agile strategy that embodies the four agile values is the creation of holistic
teams.

188 F. Maurer and T.D. Hellmann

2.1 Whole Team

A primary goal in agile project management is to create a “whole team” that has all
skills required to successfully create a software system. The team usually includes
business stakeholders, analysts, software architects and designers, developers, testers,
as well as any other stakeholder that needs to be involved in the discussions. Some
agile methods, for example XP, argue that teams usually require multi-skilled person-
nel: generalists that can fulfill multiple roles for the team. In such teams, role rotation
is common. However, teams –specifically larger teams – often include specialists that
focus on certain aspects of the project. Depending on workload, specialists are shared
between multiple teams, e.g. database administrators or usability experts often serve
in their respective roles in multiple teams. The whole team is involved in collabora-
tively planning the next steps in the development effort. If possible, project planning
is conducted by bringing all team members into the same room for a face-to-face
conversation.

2.2 Project Management

Project management deals with four variables: cost, scope, schedule and quality.
Cost in software development is highly correlated to the number and quality of

team members. Cost overruns were – and still are – a major problem for software
development projects. The scope of a project is defined by the set of all features that
need to be delivered to the customer. The schedule determines when a feature is or
should be delivered. The customer perception of quality is based on fitness for pur-
pose as well as the number of bugs that are found after delivery. Project management
needs to determine the appropriate balance between these dimensions. Improvements
in one dimension often impact other dimensions; for example, reducing the time to
delivery can to a certain extent be accomplished by hiring additional developers for
the duration of the project – which makes the project more expensive. It is a fallacy
that project management can optimize each dimension individually.

Fig. 1. Project variables

Cost Scope
Schedule QualityFinding a balance

 People-Centered Software Development: An Overview of Agile Methodologies 189

Agile methods recommend against spending much effort on upfront work. After
acquiring a basic understanding of the project’s goals and high-level requirements,
teams are expected to quickly start development iterations that deliver potentially
shippable product functionality. Usually, upfront work is limited to days or a
few weeks of effort. This approach is quite the opposite of more traditional software
development processes that front-load the development process and emphasize a
thorough and detailed analysis of software requirements followed by substantial arc-
hitectural and design work. The benefits of the agile approach are:

• As business environments and processes change quickly in today’s com-
petitive environment, a large delay between determining a requirement
and delivering it might make this requirement obsolete. In this sense, the
agile approach minimizes the risk that effort is spent on analyzing, design-
ing and implementing features that will be unnecessary by the time they
are delivered.

• The limited amount of development effort available in short iterations na-
turally forces business stakeholders to prioritize their feature requests.
Reasonable businesspeople understand that a team will not be able to de-
liver all their requirements in the next few weeks and will determine what
features are most urgently needed. As a result, requirements tend to be
fulfilled in decreasing levels of importance or urgency. This in turn allows
management to cut off a project when it determines that the business val-
ue of future iterations does not justify the costs incurred by them.

• As requirements are quickly turned into implemented features, feedback
from actual use helps to determine if these features are what is actually
needed or need to be revised.

• Effort spent on upfront work is actually wasted if the system is never deli-
vered to production. Limiting work before delivering a first feature set to
production reduces this risk.

• Source code is where the rubber hits the road in software development.
Detailed analysis and design models that are unrealistic exist – but the
first attempt to build the system often finds their issues quickly.

However, proponents of more upfront-centric approaches have arguments that can be
seen as a criticism of the agile style:

• Empirical studies have shown that fixing a bug after the software is deli-
vered is 60-100 times more expensive than fixing the same issue in the
analysis phase [8]. Thus, a thorough process that emphasizes analysis and
design will save expenses, as it does not allow bugs to slip through.

• Assuming the software designers get a set of current as well as future re-
quirements, they can develop code structures that make future changes
easy and cost effective compared to refactoring as needed. Designing with
models is less expensive than designing in code.

• Starting development without a basic understanding of the project’s vision
and goals will likely lead to wasted effort as initial implementation will
likely become useless over time.

190 F. Maurer and T.D. Hellmann

Development teams should weight these arguments before deciding which approach
they want to follow. In the following section, we will discuss techniques used by agile
teams that are trying to strike a balance between these conflicting approaches.

2.3 Agile Project Planning

Agile teams usually plan on three levels of abstraction:

• Project vision
• Release plan
• Iteration plan

The project vision captures the really big picture: Why is the project run? What are
the expected benefits? What are the budgetary and other constraints? How will the
organization function after the project is successfully completed? A project vision is
often used to establish a project budget or, at least, a budget that allows the organiza-
tion to refine the vision enough so that a go/no-go decision can be made. Agile teams
try to minimize this upfront work to avoid getting stuck in analysis without getting
feedback about delivered product functionality.

A project vision needs to clearly describe the anticipated benefits for the business
as well as assessment criteria that management can use to evaluate progress towards
realizing the vision. Agile teams need management oversight to ensure that the next
iteration/release still delivers enough business value to justify the development costs.

Release planning creates a strategic picture on the project. The team looks a few
months ahead and determines the high-level features/user stories that need to be rea-
lized in that time frame. In practice, we observed teams creating release plans for the
next three to six months, with a few exceptions looking approximately one year ahead.
The release plan determines release dates and iteration length. Scope is captured on a
high level but may be changed in the future based on new insights gained during de-
velopment. User stories from release planning form the initial product backlog.

Iteration planning determines the work for the next development iteration. The
whole team gets together to review what was delivered in the last iteration and then
collaboratively determines what should be delivered by the end of the next iteration.

2.3.1 Planning a Release
For release planning, we recommend that the whole team gets together to

• collect and discuss high-level user stories that should go into the next
software release,

• build a user story map, and
• create low fidelity prototypes.

Release planning is often conducted in a 1-3 day workshop involving the whole team
and, if possible, external stakeholders. It starts with collecting user stories on different
levels of abstraction: epics, themes, and implementation-ready stories.

 People-Centered Software Development: An Overview of Agile Methodologies 191

User Stories. A user story (also called: backlog entry or feature request) briefly de-
scribes a requirement that has business value. It serves as boundary object that
enables communication between different stakeholder groups. According to Wikipe-
dia, “A boundary object is a concept in sociology to describe information used in
different ways by different communities. They are plastic, interpreted differently
across communities but with enough immutable content to maintain integrity”2.

A user story is captured on an index card (see Fig. 2). As a bare minimum, the user
story has a name and a short description of the requirement. Descriptions need to be
in customer language and avoid IT terminology. They need to be understandable by
all team members. A user story also often includes effort estimates and is used to note
actual effort during development.

Fig. 2. Example story card

Mike Cohn, a prominent author focusing on agile project management, recom-
mends a more structured approach for user stories:

• As a [type of user]
• I want to [perform some task]
• so that I can [reach some goal]

This structure helps business stakeholders prioritize user stories.
Index cards are small and will not be able to capture all details about the user story.

They act as reminders to the developers to discuss these details with business repre-
sentatives as soon as they start working on the story implementation.

Often, the back of the story is used to capture acceptance criteria for a user story.
However, a more recent recommendation is to capture these in form of executable
acceptance tests using frameworks such as Fit [9] GreenPepper3 or BDD4. This ap-
proach is described in more detail in Section 3.

2 http://en.wikipedia.org/wiki/Boundary_object (last visited 29 July 2011).
3 http://www.greenpeppersoftware.com/ (last visited 29 July 2011).
4 http://dannorth.net/introducing-bdd/ (last visited 29 July 2011).

192 F. Maurer and T.D. He

2.3.2 Mapping User Stor
A user story map5 organiz
workflow of the system vis
large user stories and their
by a student team in its rele

A user story map shows
zontally at the top of the bo
their activity in the order of
ties and (sub)tasks while m
alternative tasks are added
Subtasks for tasks can be ad

During release planning
tended, updated, and chang
validating that the “story” o
It then evaluates if the task
more detailed questions.

After the user story map
the iterations that make up t

5 Developed by Jeff Patton ht
presentations/user_

ellmann

Fig. 3. Example user story map

ries
zes and prioritizes user stories for a release. It makes
sible to the whole team and shows the relationship betw

parts. Fig. 3 shows an example user story map develo
ease planning workshop.
s the sequence of activities of the system’s workflow h
oard, left to right. The team then organizes (sub)tasks un
f the workflow. This shows the relationship between act
aintaining the time dimension of work steps. Concurren
vertically by priority. Fig. 4 shows a conceptual examp

dded as needed (not shown in Fig. 4).
g, the user story map is created, discussed, refined,
ged until it is complete. The team checks completeness
of the system can be told by connecting the activity car
ks and subtasks provide enough information for answer

is complete, the team determines coherent sets of tasks
the release. Fig. 3 shows this with an example.

tp://www.agileproductdesign.com/
story_mapping/index.html (last visited 29 July 2011

the
ween
oped

hori-
nder
tivi-
nt or

mple.

ex-
s by
rds.
ring

 for

).

 People-Centered Softwa

The creation of a user sto
er, the time spent on it is
analysis in more traditional

When properly conducte
the whole team that create
workflow.

2.3.3 Low-Fidelity Protot
User story maps allow a tea
second technique that is us
prototyping. Low-fidelity p
with a strong focus on usab
is a sketch – a hand-draw
sketches that illustrates a w

Teams use sketches and
system’s user interface. Fig
face of an agile project plan

Bill Buxton’s book [10]
ment. Sketches are quick a
development cycles as exh
when needed. As they are
usually does not have a stro
alternative sketches for a u
other stakeholders. The se
often helps teams to clarify
ractions. The final system
different sketches).

Sketches also elicit feedb
it clear that they are conc

are Development: An Overview of Agile Methodologies

Fig. 4. Conceptual user story map

ory map is a – limited – upfront planning exercise. How
substantially shorter than the time used for requireme
processes.

ed, release planning is a collaborative exercise involv
es a shared understanding of the release goals and syst

typing
am to get a high-level overview of a system’s feature set
sed by agile teams to supplement the map is low-fide
prototypes are particularly useful for development effo

bility and interaction design issues. A low fidelity protot
wn representation – of a user interface. A sequence
orkflow of a system is called a storyboard.

d/or storyboards to capture the conceptual structure of
g. 5 shows an example sketch that illustrates the user in
nning tool.
 discusses the benefits of sketching for software devel

and easy to make. Thus, they fit well into short, iterat
hibited by agile development teams. They can be provi

cheap to make, they are also disposable and their crea
ong stake in them. As a result, teams often develop multi
user interface and discuss them with end users as well
eries of ideas that is illustrated by alternative sketc

y the design intent and the concept underlying the user in
is often a combination of different ideas (expressed

back on the “right” level. Their rendering and style ma
ceptual in nature and that the look of the system is

193

wev-
ents

ving
tem

t. A
elity
forts
type
e of

the
nter-

lop-
tive
ided
ator
iple
l as

ches
nte-

d by

akes
not

194 F. Maurer and T.D. Hellmann

Fig. 5. User interface sketch

finalized yet. Users usually comment on conceptual structures instead of the choice of
color or fonts. These conceptual level comments are exactly what interface designers
need in the early stage of a development project.

Sketches help to start conversations between users and designers in the same way
as user stories trigger discussions between developers and business representatives.
Their value lies in provoking interactions between all stakeholders and helping teams
derive better solutions for their customers.

Where a sketch illustrates the layout (or wireframe) of a single screen, a story
board captures a workflow supported by a user interface. Story boarding is a tech-
nique borrowed from the movie industry: “Storyboards are graphic organizers such
as a series of illustrations or images displayed in sequence for the purpose of
pre-visualizing a motion picture, animation, motion graphic or interactive media
sequence, including website interactivity.” 6

Fig. 6 shows an example story board for an agile planning tool. The sequence of
sketches illustrates how a user can create a story card, give it a name and effort esti-
mate and, lastly, select the developer responsible for it.

Interaction designers can use sequences of sketches, as available from storyboards,
to simulate the workflow with the user. These Wizard-of-Oz [11] experiments allow
gathering feedback on the usability of a user interface before the implementation ex-
ists and are often used to ensure that even the first version of a UI creates a positive
user experience.

6 http://en.wikipedia.org/wiki/Storyboard

 People-Centered Softwa

In Section 3.3, we will d
boards can also be used for

2.3.4 Iteration Planning
Iteration planning allows a
teams look ahead for a few
complished by the end of t
agile project and the team w
tion planning). Most teams
seems to be a tendency tow
moving towards a two week

Following an iterative d
tomers can expect to get a
iteration. Fixed delivery dat

• Sometimes exte
strated at a trad
date is fixed ext
tem after the sh

• Reliable deliver
development te

are Development: An Overview of Agile Methodologies

Fig. 6. Example story board

discuss how automated Wizard-of-Oz tests based on sto
test-driven development of graphical user interfaces.

a team to get a tactical picture of the development eff
w weeks and create a realistic plan on what should be
the iteration. The length of iterations is usually fixed in
will deliver on time (maybe with a reduced scope; see ite
s we work with run iterations for 2-4 weeks. Lately, th
wards shorter iterations, i.e. we see more and more tea
k cycle.
development process results in fixed delivery dates. C
a new set of production-ready features at the end of e
tes (with a slightly variable scope) have advantages:

ernal deadlines are hard. If a system needs to be dem
de show to have a benefit for the developing company,
ternally and it doesn’t help to deliver a more complete s
ow has ended.
ry of new features increases the trust of customers in
eam. Unfortunately in the past, customers were of

195

ory-

fort:
ac-

n an
era-
here
ams

Cus-
each

mon-
the

sys-

the
ften

196 F. Maurer and T.D. Hellmann

burned by late deliveries and low quality. Thus, a constant and reliable de-
livery cycle increases the customer’s confidence in the team and usually
results in a more collaborative work environment.

• Developer motivation increases when they constantly deliver new features
to their customers. Everybody likes to be successful – and delivering an
increment is seen as a success.

• Putting new features into production allows the team to get feedback from
actual use of the new functionality. While teams try their best to get eve-
rything right, the chances are that some details are wrong. Getting systems
into actual use will quickly discover such issues and allow development
teams to fix them quickly. Instead of accumulating technical debt over a
long time, fast delivery will allow teams to deal with it in more managea-
ble chunks.

• Reoccurring short-term delivery dates create some pressure on the team to
focus their efforts on concrete steps. Parkinson’s law states that work fills
the time available for its completion. Short deadlines encourage teams to
work on relevant tasks.

Iteration planning meetings normally run for a few hours and are attended by the
whole team. The team selects the highest priority user stories from the user story map
and discusses them. When needed, additional user stories are brought forward and the
user story map is augmented accordingly.

The goal of team discussion is to enable developers to come up with a realistic es-
timate of the development effort for the story. These estimates together with the time
available in the iteration allow the team to select a realistic set of stories that should
be implemented in the upcoming iteration.

Cohn [12], p. 83+85, suggests that teams consider two dimensions when prioritiz-
ing user stories: business value and development risks. He suggests (see Fig. 7) to
start with high risk, high value stories. Addressing high risk stories first allows a team
to determine if the system is technically as well as economically feasible at all (and if
not: cancel the project quickly before incurring the majority of the project costs).

Fig. 7. Business value and development risk

 People-Centered Software Development: An Overview of Agile Methodologies 197

To determine how many user stories fit into the upcoming iteration, the team esti-
mates user stories and determines its velocity.

Effort estimation: Effort estimates try to determine the size or complexity of a story
by comparing it with others of similar complexity. Teams use different metrics for
their estimates: (ideal) hours, story points or even gummy bears7. The goal of the
estimates is to cluster stories that require similar efforts into the same bin – not to
determine the amount of work hours needed for completing the user story (velocity is
used for this). Typically, developers use their experience to determine an estimate.
They remember similar tasks from the past and derive their estimate by remembering
the effort of the past tasks. This means that estimates are mainly based on expert opi-
nion and analogical reasoning.

Some teams use planning poker to derive estimates collaboratively. Each team
member estimates for herself and then places a card with her best estimate on a table.
If the set of cards shows different numbers from different developers, the team dis-
cusses these discrepancies and then estimates again until the estimates converge. Big
discrepancies in estimates are treated as opportunities to refine the understanding of
the story in the team as the differences are usually a result of an inconsistent under-
standing of what the story entails.

We recommend that developers provide two estimates for each story:

• Most likely estimate: the estimate that she thinks is really needed if no un-
expected events happen while developing the story.

• Worst case estimate: the developer is asked to come up with a number that
she is willing to guarantee

We treat the most likely estimate as a 50:50 chance that the actual effort needed to
complete the story is at or below the estimate. On the other hand, we see the worst
case estimate as a 95% chance that the actual effort is below the estimate.

Managers need to be careful in not treating most-likely estimates as commitments.
The goal of estimation is to get the most realistic picture possible of what will happen
in the next iteration. When estimates are treated as commitments or promises, devel-
opers will start over-estimating their effort to be on the safe side.

Estimates are not 100% accurate. A team will only know how much effort a task is
after it finishes working on it. Thus, planning is not about getting the correct picture
but is about getting a perspective on the development project that allows a team to
move forward while providing customers a good idea of what will be delivered at the
end of the iteration.

For any iteration, estimates should stay within one order of magnitude. This pre-
vents an effort overrun in one task from dominating the results of the iteration. When
user story efforts are too far apart, small tasks can be combined or large tasks can be
split. Splitting a task can be based on [12], p 121ff:

7 The “gummy bear” metric attempts to make it clear that the number that is derived by the

developers can not directly be mapped to calendar time.

198 F. Maurer and T.D. Hellmann

• the data supported by the story (e.g. Loan summary  List of individual
loans  List of loans with error handling)

• operations performed within a story (e.g. separate create, read, update, de-
lete (CRUD) operations)

• removing cross-cutting concerns (e.g. a story without and with security)
• separating functional from non-functional requirement (make it work,

then make it fast)

When all user stories that might go into the next iteration are estimated, a team uses
its velocity to determine how many of these are likely to be accomplished in the up-
coming iteration.

Team velocity: A team’s velocity determines how many story points are likely to
be completed in the next iteration. Teams use a simple heuristic to determine this
number: yesterday’s weather. The assumption is that a team will be able to complete
as many story points in the next iteration as it finished in the last iteration. The num-
ber is then slightly modified based on the number of person days in the upcoming
iteration compared to the number of person days in the last one.

Combining story point estimates with velocity creates a simple approach for
project planning. In our experience, it works rather well assuming that

• there are no major changes in the team and
• the team doesn’t dramatically change its approach to estimating from one

iteration to the next.

The approach is self-adaptive and corrects for developer optimism. A team that takes
on too many user stories in one iteration will see its velocity reduced in the next itera-
tion as they did not finish all their tasks. When a manager realizes that a team runs out
of tasks in the current iteration, she can always go back to the business representatives
and ask for more user stories. When they are also completed, the team’s velocity will
go up for the next iteration.

As estimates come from developers, some managers argue that they now have the
power to slack off. However, this is counter-balanced by the customer’s ability to
cancel a project if progress is too small to accomplish its vision within a given budget.

While a team’s velocity determines how many story points the business representa-
tives can select for an iteration, one question remains: which of the two estimates
should be used? The answer is: both. We usually recommend that teams first select a
number of must-have stories for the next iteration based on the worst-case estimates.
Business representatives can be quite sure that the developers will complete these
tasks as the worst-case estimates will likely be met. However, the expectation is that
not all tasks will require the effort as determined by the worst-case estimate. Thus, the
team selects as second set of optional user stories while keeping the sum of the most-
likely case estimates of all selected stories below the velocity:

• ∑ ௎ௌభא௜ሻ௜ݕݎ݋ݐݏ ݎ݁ݏݑሺ݁ݐܽ݉݅ݐݏ݁_݁ݏܽܿ_ݐݏݎ݋ݓ ൏ ݕݐ݅ܿ݋݈݁ݒ
• ∑ ௎ௌא௜ሻ௜ݕݎ݋ݐݏ ݎ݁ݏݑሺ݁ݐܽ݉݅ݐݏ݁_݁ݏܽܿ_ݕ݈݈݁݇݅_ݐݏ݋݉ ൏ ݕݐ݅ܿ݋݈݁ݒ

where ܷ ଵܵis the set of must have stories, ܷܵଶ is the set of optional user
stories and ܷܵ ൌ ܷ ଵܵ ׫ ܷܵଶ

 People-Centered Software Development: An Overview of Agile Methodologies 199

These constraints on the one hand ensure that the customers know at the beginning of
the iteration which user stories will definitely be delivered while any remaining time
is filled with optional user stories based on the customer’s priorities.

2.4 Progress Tracking

Agile teams track their progress on three levels of abstraction:

• Daily: Are we in trouble at the moment?
• Iteration: Will we make our tactical goals?
• Project: Will we reach our vision?

For tracking daily progress, most agile teams use a short stand-up meeting at a regular
time. During the daily stand-up, each team member reports on three questions:

• What have you done since the last meeting?
• What will you do before the next meeting?
• What is in your way?

The meeting is limited to at most 15 minutes and held at the same time and place
every workday. The meeting is not meant for problem solving but for bringing issues
to the attention of the whole team so that an appropriate group of people can be iden-
tified that can get together after the stand-up and find a solution.

Nobody sits during a stand-up. This encourages people to keep everything short.
Daily stand-ups force people to think about their short term goals and report on

their short term accomplishments. The latter creates some benevolent peer-pressure as
developers not making any progress on their tasks for several days in a row become
very visible. The last question addressed by each team member helps to discover
roadblocks quickly. The earlier a team knows about an issue, the earlier it can find a
solution.

Tracking progress within an iteration is done with task boards. A task board shows
the stages through which each user story/task goes and where it currently is. Fig. 8
shows an example task board from Mike Cohn’s web site. In this example, user sto-
ries are split into individual tasks. These tasks go through four stages: to do, in
progress, to verify and done. Each row in the task board shows the tasks for a certain
user story. Task boards are widely used by agile teams. They act as widely visible
information radiators that help all team members to understand how much progress is
being made in the current iteration.

For a more detailed tracking of progress against the iteration goals, teams some-
times use burn-down charts. These chart the amount of not-yet completed tasks on a
daily basis[2].

At the end of each iteration, an iteration review is conducted to show to product
owners and customers/users how much progress was made during the iteration. Dur-
ing the review, the team demonstrates all features that were completed in the current
iteration. An iteration review should not impose extra overhead on the development
team. Thus, it is conducted using the development equipment. Features shown during
the review must represent potentially shippable product functionality: i.e. it is then a
business decision if the feature goes live or not.

200 F. Maurer and T.D. He

Iteration reviews give se
was made is sufficient to m
ry and scheduling constrain

2.5 Business Contracts

Historically, software deve
customers paid a fixed amo
for all expenses incurred by
in the past, customer orga
customers pay a fixed amo
deliver a set of features la
proach tries to move the ris
veloper side. Unfortunately

• Development orga
price/fixed scope c
for incorrect effor
mine the honest e
they will use a risk
bid. This multiplie
ance premium that
velopment organiz
risk of the contract
correct, the client
needed to avoid th
incorrect estimates

• The size of the ris
marily by how urg
zation wants the
booming, custome

8 From http://www.mount

ellmann

Fig. 8. Task board example8

enior management an opportunity to see if the progress t
make the project vision reachable within the given budge
nts.

s

elopment contracts had a time-and-expenses structure,
ount of money per developer hour plus reimbursed the te
y the project. However, given the amount of cost overr
nizations switched to a fixed price/fixed scope structu

ount of money to the development team that in turn m
aid out in a detailed requirements specification. This
sk of incorrect estimates from the customer side to the

y, the success of this approach is quite limited:

anizations realize that a fixed
contract makes them vulnerable
rt estimates. After they deter-
effort estimate for a contract,
k multiplier when they submit a
er de-facto serves as an insur-
t a client has to pay to the de-
zation to assume the technical
t. If the initial effort estimate is
t organization pays more than
he risk of becoming burned by
s.
sk multiplier is determined pri-
gently the development organi-

contract. When business is
ers will pay a high premium.

taingoatsoftware.com/scrum/task-boards

Fig. 9. Budget
determination

that
eta-

i.e.
eam
runs
ure:

must
ap-
de-

 People-Centered Software Development: An Overview of Agile Methodologies 201

When it is slow, they will pay less. However, even when a development or-
ganization lowballs the project bid to get the contract, the customer still will
pay too much as developers know that over the course of a project customers
always change the requirements.9 Developers can overcharge for changes as
switching the development organization mid-project is usually not economi-
cally feasible for the customer organization due to penalties written into the
contract. Fig. 9. illustrates these issues.

Agile organizations can replace fixed price/fixed scope contract with a time-and-
expenses contract with an early termination clause. The later limits the risk of the
customer organization as it can cancel the project quickly when it realizes that the
project will not be able to deliver on its vision given the current budget constraints.

While project planning and progress tracking are important aspects of agile soft-
ware development processes, bad software delivered on time is still bad software.
Thus, we are now discussing how agile teams assure that they delivered high quality.

3 Agile Quality Assurance

Have you ever worried that the feature you’ve been developing doesn’t match the
expectations of your customer? Have you ever been reluctant to change code because
you might break something? Have you ever been unsure about whether or not you’ve
finished a feature? Have you ever been terrified that one of the other developers might
go on vacation, and that no one else will be able to understand what his code does?

Agile quality assurance is a set of testing methodologies that have evolved over
time to minimize these risks on software development projects. The overall goal of
these methodologies is to increase understanding of and communication about the
system that’s being developed. These practices can be divided into two classes: de-
veloper-facing and customer-facing tests. Tests written by developers ultimately
help them design and understand the system, while tests written under the auspices of
customers help developers understand what customers want and help customers un-
derstand what developers can offer.

Developer-facing tests require in-depth knowledge of the way in which the system
works, and require technical proficiency in a testing language to understand. These
tests are usually glass-box (or white-box) tests in which parts of the source code of the
system are tested. This name derives from the fact that the system under development
is being treated as something we can look into and inspect the intermediate results of
our actions. For example, in glass-box testing, we can set or inspect the state of spe-
cific objects or call only specific methods within the application rather – as opposed
to triggering high-level functionality, which would result in changes to the states of
many objects and many method calls. This allows much more fine-grained under-
standing of the way in which a system works, and will help developers ensure that
the feature they are coding matches their goals for its behavior – in other words, that

9 We’ve been involved in software development for about 30 years now and haven’t seen a

single project where requirements stayed fixed for its whole duration.

202 F. Maurer and T.D. Hellmann

developers are building the system right. Developer-facing tests are almost always
automated through a testing framework like JUnit10 or the Visual Studio Unit Testing
Framework11. Examples of developer-facing tests include unit tests, integration tests,
and system tests.

Customer-facing tests, on the other hand, are intended to be understandable by do-
main experts without requiring programming knowledge. These tests tend to be black-
box tests in which the internals of the system are not considered. An input is provided,
and the expectations of the business experts are compared against the output the sys-
tem produces. This sort of test ensures that the code created by developers fulfills
customer expectations – in other words, that developers are building the right system.
Customer-facing tests can be automated (through a system like FitNesse12 or Green-
Pepper13) or manual (through live demos on the actual system).

Customer- and developer-facing tests can be envisioned as two partially-
overlapping squares, as shown in Fig. 10. Developer-facing tests can show that indi-
vidual parts of an application are working in detail on a programmatic level, but not
that defined features are missing. Customer-facing tests, on the other hand, can show
that features are present, but not that they are working in detail on a programmatic
level.

Fig. 10. Both genres of tests are necessary in agile quality assurance

Finally, agile quality assurance tends to make heavy use of automated developer-
and customer-facing tests. This is due to the fact that the same tests will tend to get
run a large number of times on an agile project. For example, refactoring is a key
concept in agile software development. However, there is a risk that developers may
introduce errors into the program while performing this task. A suite of automated
tests can catch these errors quickly, which both emboldens developers to aggressively
refactor their code while at the same time making the refactoring process much safer.
In this light, automated tests are definitely worthwhile.

10 http://junit.org
11 http://msdn.microsoft.com/en-us/library/ms243147.aspx
12 http://fitnesse.org/
13 http://www.greenpeppersoftware.com

 People-Centered Software Development: An Overview of Agile Methodologies 203

This isn’t always the case though – it’s a fallacy to think that you have you auto-
mate every single test on your project. This is because some automated tests actually
cost more to create and maintain over the course of the project than a manual equiva-
lent. Brian Marick addressed this point eloquently in 1998:

“It took me a long time, but I finally realized that I was over-automating, that only
some of the tests I created should be automated. Some of the tests I was automating
not only did not find bugs when they were rerun, they had no significant prospect of
doing so. Automating them was not a rational decision” [13].

Remember, the point of test automation is to save effort in the long term. If a test is
difficult to automate or doesn’t have a reasonable chance of catching bugs, it may be
more cost-effective to run this test manually. The best tests to automate are those that
have a good chance to find bugs over a long life expectancy.

3.1 Test-Driven Development

Test-driven development (TDD) is a software development paradigm in which tests
are written before the code they are referencing actually exists. The tests used in TDD
are assumed to be automated, developer-facing unit tests unless otherwise specified.
This activity is more about software design and communication than it is about testing
per se, though it does build up a suite of regression tests that are useful for detecting
errors introduced by changes made later on. The goal of TDD is to increase the confi-
dence that developers have in their code, decrease the occurrence of bugs that make it
through to the customer, prevent the re-introduction of bugs, and increase communi-
cation between developers and customers.

The first step in TDD is to write a new test. This test should be confined to a single
new part of the system – a new method, a new class, or a new feature depending on
the scope of the testing. This causes the system to enter a red state: at least one test is
failing. In other words, there is something wrong with the system - it’s missing the
part specified by the new test. This defines a goal for the developer: get the system
back to a working state as quickly as possible. From this perspective, tests are driving
the development of the system.

Initially, this new test should be the only failing test for the system, so the next step
is to verify that this test is failing. If this new test passes immediately upon creation,
either:

1) there’s something wrong with the test; or
2) the “new” part of the system already exists, meaning no new code is neces-

sary; or
3) the developer misunderstood the current design of the system as a test that is

expected to fail in fact passes, meaning the developer will have to increase
her knowledge about the system.

Once we’ve watched our test fail, code should be written with the specific goal of
getting the new test to pass - no code should be written unless it directly relates to

204 F. Maurer and T.D. Hellmann

making this test pass! Additionally, it’s alright if our code is not perfect at this point,
because we’ll improve it in the next step.

Once the test is passing, the system is back in a green state (all tests are passing),
and we can focus on the crucial last step: refactoring. In the previous paragraphs, the
emphasis was on speed. This means that it’s crucial for us to go back to the new code
to make it efficient, secure, robust, maintainable, or any one of a number of software
quality concerns. However, this process is a safe one now because of the new test. If
our refactoring causes this test – or any other test – to fail, our first priority again
becomes getting the system back to a working state. Because of the suite of regression
tests built up through TDD, developers can aggressively refactor the code base of an
application.

Fig. 11. The test-driven development cycle

Evaluations of TDD have had mixed results. In general, it would seem that TDD
has a negative effect on productivity and a positive effect on quality [14]. However,
as was mentioned in Section 2.2, bugs found after release of an application are signif-
icantly more expensive to address, so any decrease in productivity needs to be viewed
with this in mind as the studies in the above mentioned publication did usually not
include data about post-deployment productivity comparisons.

3.2 Acceptance Test-Driven Development

In Acceptance Test-Driven Development (ATDD), instead of creating automated,
developer-facing unit tests, we create a suite of customer-facing system tests. These
tests are created before the features they test are implemented, as in TDD. However,
in ATDD, these tests should actually be created by customer representatives as de-
scriptions of what the application should behave like when it is working correctly.
Because of this, many acceptance testing frameworks, like FitNesse and GreenPepper,
include an interface that is friendlier to non-technical test writers. In practice, business
representatives may still need assistance in writing tests, in which case they should
be paired with testers who can help them write tests (not write tests for them!). An

 People-Centered Softwa

example of a FitNesse test
the result (right) of division
dle)) is shown in Fig. 12.

Fig.

It’s important to note th
tools interact with an applic
ing calls into business met
useful in that avoiding the
ly. However, if parts of the
will be difficult to automate
ible to write acceptance tes
exist that make it easy to pe

As with TDD, tests creat
ceptance tests written using
automated tests as part of th
application under test that
be detected quickly and eas

However, the functional
cult to test automatically. T
heavily dependent on GUI-
functionality of a standard
difficult to automate tests
may be preferable to specif
which integrates manual te
manual tests as part of AT
manually numerous times d
process.

3.3 Test-Driven Develo

User interfaces are an impo
they allow users to intera

14 Source: http://fitness
15 http://msdn.microso
VS2010TrainingCours

are Development: An Overview of Agile Methodologies

(showing a hypothetical business expert’s expectations
n given a specific numerator (left) and denominator (m

12. Example FitNesse acceptance test14

hat most tools which are advertised as acceptance test
cation below the level of its user interface by directly m
thods of the application and verifying the results. Thi
GUI simplifies the creation of an automated test drastic
e GUI are important to a customer’s acceptance criteria
e that part of the test for ATDD using such tools. It’s po
sts that involve interactions with a GUI, but few meth
erform ATDD of a GUI.
ted for ATDD should be automated wherever possible. A
g many acceptance testing tools can be run alongside ot
he suite of regression tests. This means that changes to
cause violations of the customer’s acceptance criteria

sily.
lity of modern applications is becoming increasingly di
This is due in part to the fact that modern applications
based interactions. While it is easy to automate tests of
webpage or desktop application using FitNesse tests,

of applications with complex GUIs. In these instances
fy manual tests using a tool like Microsoft Test Manage
ests with other software development tools. When us

TDD, however, developers will need to execute these te
during development, which can be a tedious and expens

opment of Graphical User Interfaces

ortant part of almost every modern application. Simply p
act with applications. Traditionally, this was done w

se.org/FitNesse.UserGuide.TwoMinuteExample
oft.com/en-us/
se_AuthoringAndRunningManualTests

205

 for
mid-

ting
mak-
is is
cal-
a, it
oss-

hods

Ac-
ther
the
can

iffi-
are

f the
it’s

s, it
er15,
sing
ests
sive

put,
with

e

206 F. Maurer and T.D. Hellmann

keyboard and mouse, but this is now possible using touch input in mobile phones (like
the iPhone and Windows Phone 7), tablet computers (like the iPad and Asus EEE
Slate), and digital surfaces (like the Microsoft Surface, SMART Board, and SMART
Table). Further, up and coming technologies like the Microsoft Kinect are making it
possible to interact with a computer without even touching it. Clearly, user interfaces
are an important and complex concern in software development.

Further, user interfaces can be either event-driven or loop-driven. Event-driven in-
terfaces primarily respond to input from the user. Examples of event-driven interfaces
include traditional desktop applications and web pages. Loop-driven interfaces are
primarily driven by the passage of time, but will also take user input into account.
Many computer games are excellent examples of loop-driven interfaces. The differ-
ence is that in an event-driven interface a sequence of interactions will produce the
same result regardless of timing, but in a loop-driven interface this is unpredictable.

For the purposes of this chapter, let us consider only event-driven graphical user
interfaces (GUIs) based on mouse, keyboard, or touch interaction. While powerful
patterns for dealing with the complexity of GUIs exist (e.g. the Model-View-
Controller pattern), there is still a significant amount of code present in a GUI – in
fact, 45-60% of an application’s code can be dedicated to its GUI [15]. In line with
this, one case study found that 60% of software defects found after release relate to
GUI code, and of these defects, 65% result in a loss of functionality [16]. Taken to-
gether, these studies suggest that GUI testing is an area of significant concern.

However, automated GUI testing is far from straightforward. In order to better un-
derstand what makes GUI testing a daunting task, let us consider four fundamental
concerns of automated software testing made especially clear in this context:

• Complexity,
• Verification,
• Change, and
• Cross-Process Testing

The complexity of an application refers to the number of alternative actions that are
possible. GUIs allow a great amount of freedom to user interaction, making them very
complex. When testing the functionality of a GUI-based application using automated
tests, two factors are of prime importance: the number of steps in the test; and the
number of times each action in the GUI is taken within a test [17]. In Section 3.4, the
implications of the complexity of modern GUIs will be explored in more detail. In
order to notice that a bug has been triggered, a test must also contain verifications that
will be able to notice that bug [18]. This is especially tricky when considering that
many aspects of GUIs are subjective. For example, it can be difficult to create a test
for determining whether a web page was rendered correctly. Third, GUIs tend to
change drastically over the course of development. A GUI test can show up as failing
although the underlying code is actually working [19] [20]. This is especially impor-
tant since a large number of false alarms from the GUI testing suite will cause devel-
opers to lose confidence in their regression suite [21]. Finally, these difficulties are
compounded by the fact that GUI tests generally interact with a GUI from a different
process. This means that the test will not have access to the internals of the GUI it is

 People-Centered Softwa

testing. Instead of simply c
that object within the GUI.
elements from the root win
widget – as it appeared whe
this cross-process testing, i
For example, the Button cla
can be tested through the In
The Button itself has 136 p
use by test code. It can be d
of the properties that isn’t e

With these concerns in
testing actually is. There ar
GUI; and performing syste
ample the Wikipedia entry
page that the Wikipedia l
below it is a “Main page” h
instead we want to verify th
paragraph takes us to a pag
lopedia,” then we are test

16 http://msdn.microso
17 http://msdn.microso
18 From http://en.wikip

Graphical_user_inte

are Development: An Overview of Agile Methodologies

calling a method on an object, it’s necessary to first loc
. This is generally done by traversing the tree of graph
ndow object until a widget matching details of the desi
en the test was created – is found. Additionally, because
it’s rare for all information about a widget to be expos
ass as implemented in Windows Presentation Foundatio
nvokePattern interface in the Windows Automation AP
properties, but InvokePattern exposes only 20 of these
difficult to create strong tests in the (common) case that
exposed is important to the functionality of a feature.
mind, we need to consider what the purpose of our G

re two distinct forms of GUI testing: testing the look of
m testing of the application through its GUI. Take for
for GUI testing, Fig. 13. If we want to verify that on

logo appears as the upper-leftmost widget, that direc
hyperlink, and so on, we are testing the look of the GUI
hat clicking on the link to software engineering in the f
e titled “Software engineering – Wikipedia, the free enc
ting the functionality of the system as a whole. Ag

Fig. 13. A sample GUI18

oft.com/en-us/library/ms754130.aspx
oft.com/en-us/library/dd561932(v=VS.85).as
pedia.org/wiki/
erface_testing

207

cate
hical
ired
e of
sed.
on16
PI17.

for
one

GUI
f the

ex-
this
ctly
I. If
first
cyc-
ain,

spx

208 F. Maurer and T.D. Hellmann

for the present, let us consider the second of these approaches. Essentially, we are
performing ATDD through the application’s GUI instead of below it.

It is possible to write GUI tests for use in test-driven development of a GUI ma-
nually using available GUI testing tools. For example, it is entirely possible to write a
Selenium19 test by hand before a GUI exists even though Selenium is primarily a cap-
ture/replay tool (CRT) – a testing application that records a series of interactions with
a system and records them in a format that can be replayed later as a test. This ap-
proach has been supported in the past by tool like TestNG-Abbot [22] and FEST [23],
but has not received widespread uptake. This could be due to the fact that test authors
need to know a large amount of detailed information about the GUI to be created in
order to write a test.

A simpler approach to UITDD involves the creation of an automated low-fidelity
prototype using a program like ActiveStory Enhanced [24] or SketchFlow20. These
prototypes are event-based GUIs that respond to user input in the same way in which
actual GUIs do. This means that they generate events when a user interacts with them.
These events can be captured using a CRT, like white21 or LEET [25], in the same
way in which they can be used to record events from an actual GUI. These events can
then be replayed on the actual GUI, with one caveat: the elements in the prototype
that are generating events need to have the same identifying information as the equiv-
alent elements in the actual GUI.

Consider for example the prototype shown in Fig. 14. It was created in Sketch-
Flow, which means that each widget will raise recordable events when interacted
with. We can use this prototype both for testing the actual GUI and testing the actual
application through its GUI. From the prototype, we can use information about, for
example, the arrangement of widgets to create tests of the GUI, or we could use the
functionality demonstrated through the prototype to create acceptance tests of the
actual application. For example, we can fill in the fields as shown in Fig. 14, then
click the “Clear Report” button and verify that the fields have been cleared. We can
then use this test for verification of both the form and functionality of the actual ap-
plication, Fig. 15.

There are several advantages to this approach. First, this approach to UITDD has
the advantage of being able to make use of CRTs, which makes it much easier to
create tests than it would be to create them by hand. Second, by integrating medium-
fidelity prototyping into the TDD process, we are creating another opportunity for
testing – usability testing, as described in Section 2.3.3. This means that it is possible
to detect usability errors early in the development process, which not only makes
them cheaper to fix, but also reduces the number of changes to the GUI that will be
necessary later in the software development process. This reduces the risk that
changes to the GUI will break GUI tests since there will be fewer of them. Third, this

19 http://www.seleniumhq.org
20 http://www.microsoft.com/expression/products/

sketchflow_overview.aspx
21 http://white.codeplex.com

 People-Centered Softwa

approach reduces the appar
us specify which parts of i
flows of each feature of the
we will automatically know
events) we need to focus on

Fig. 14. Prototype of Expense-
GUI

3.4 State Space of Test

The state of a program is th
that program. The state of
shrinks when garbage coll
state should be represented
of which also contains the s
then, is the graph of all po
cause the application to tran
variables. In a completely
sequence of states leading
fluenced by outside factors
user, or any number of oth
multiple edges between ma
the larger the state space be

For example, consider F
within square brackets with
calls that cause transitions a
that each method call has a
system.

are Development: An Overview of Agile Methodologies

rent complexity of the application we’re testing by help
it are going to be important early on. Only the import
e application will be shown in a low-fidelity prototype
w which parts of the application (and which sequences
n when we are recording tests.

-Manager's Fig. 15. Implementation of the GUI of
penseManager

ing

he set of values of all variables defined and instantiated
the system grows when new objects are instantiated

lection takes place. In an object-oriented application,
as a graph with each node containing a set of objects, e

state of each of its fields. The state space of an applicati
ossible states that the application can enter. Method c
nsition from one state to another by changing the value
deterministic program, the state space would be a lin
to a single terminal state. Whenever a program can be
s – such as interaction with the file system, input from

her events – then the state space will become a graph w
any of its state nodes. The more possible states there
ecomes.
Fig. 16. In this example, the states of the system are sho
h highlight boxes surrounding new information and meth
are described within callouts to the numbered arrows. N
a discrete – and testable – effect on the overall state of

209

ping
tant
, so
s of

Ex-

d by
and
the

each
ion,

calls
s of
near
e in-
m a
with
are,

own
hod

Note
the

210 F. Maurer and T.D. He

Fig. 16. A subs

When viewing a system
is threefold:

• To map out and
• To set up autom
• To search for ne

The difficult with GUI test
important parts of the state
This concern will be addres

There are many issues to
space to explore. First, wh
example web sites or docu
ways. Second, the state of a
example, with black-box G
state of the GUI, but not ab
difficult to actually determi
was able to navigate throug
of this last point, an applica
space of the computer as
database, processing and th
even time can be an import
chosen a starting point, how
terested? For some applica
desired state. For other GU
and there may be many int
we want to test. Changes
the functionality the test wa
the test isn’t able to naviga

ellmann

set of the state space of a sample email application

as a state space to be explored, the goal of a software te

d understand the system
mated tests that will detect new bugs introduced by chang
ew bugs in unexplored regions of the state space

ting from this perspective is: how can our tests cover
space effectively when we can only create so many te

ssed in more detail in the following section.
o consider when viewing an application under test as a s
hat starting state should be used? Many applications,
ument viewers, can be accessed initially in many differ
an application may not be entirely visible to test code.

GUI tests, it’s possible to make verifications regarding
bout the state of the underlying application. This make
ine whether features are entirely working, or even if a

gh the state space to the correct state. Third, as an extens
ation’s state space should be viewed as a subset of the s
a whole. Interactions with the file system, network, o
hreading timings controlled by the operating system,
tant part of the state of an application. Finally, once we
w do we move the system into a state in which we are
ations, like websites, it’s possible to navigate directly t
UI-based applications, there may be only one starting st
tervening states between the starting state and a state t
to these intervening states can cause a test to fail w

as initially intended to test is still working. This is beca
ate to the correct state. In such a case, either the test w

ester

ges

the
sts?

tate
for

rent
For
the

es it
test

sion
tate

or a
and

e’ve
e in-
to a
tate,
that

when
ause
will

 People-Centered Software Development: An Overview of Agile Methodologies 211

generate an exception by trying to perform impossible actions on the GUI, or verifica-
tions will fail because they are being run on a different state then they were intended
to. Both of these failures can occur when the system is actually working correctly. An
illustration of this can be found in Fig. 17.

Fig. 17. Tests may need to traverse significant portions of the state space to reach and test in-
teresting functionality

3.5 Test Quality

There are a variety of methods available to determine how good our testing is. Two of
the most popular are code coverage and mutation testing.

Code coverage is a measure of how much of the system a test suite actually enters
during testing. However, there are many different types of code coverage. The most
lenient definition is line coverage (also known as: statement coverage). When code
coverage is referred to in an agile environment without specifying what kind of cov-
erage metric is being used, this is the type that is meant. Line coverage is a measure of
the number of lines of the application that were executed during a test run, but doesn’t
account for the quality of that execution. For example, consider an “if” statement that
can resolve in two distinct ways. From the perspective of line coverage, it doesn’t
matter which way the condition is resolved – the if statement itself will be considered
covered either way. Close to the other extreme, we have multiple condition / decision
coverage (MC/DC). In MC/DC,

• Every result of every decision (set of conditions) must be evaluated,
• Every result of every condition must be evaluated,

System under Test

Important Functionality

Point of Entry into
System

Test

212 F. Maurer and T.D. He

• Each condition
result, and

• Each entry and

This method of evaluating c
a software failure would ha
guidance and control of air
as many states within the a
not verified in detail.

Mutation testing, on the
quality of a test suite. In m
then run our tests against t
that the system has changed
tion testing and code cover
our system haven’t been tes
strong enough.

3.6 Testing Graphical U

As was alluded to in the pr
especially true when we co
er, for example, the primit
visible widgets does it con
all of those widgets, and ho

Fi

In this application, there are

• 19 visible widge
• 2577 properties
• 4007 methods th

In this supposedly-simple a
the definition of each state

ellmann

in a decision must be shown to independently affect

exit point of the program must be used.

code coverage is very exact, and is used in instances wh
ave catastrophic consequences – such as software used
rcraft. As with all code coverage metrics, the goal is to
application’s state space as possible visited by test code

e other hand, is a very different approach to checking
mutation testing, we actually modify parts of the syst
this “mutant.” If our tests are not strong enough to rea
d, then the tests need to be modified. By combining mu
rage, we can get information not only about which parts
sted yet, but also when our verifications about a state are

User Interfaces – A State Space Explosion

revious section, state spaces tend to be very large. Thi
onsider the state space of a GUI-based application. Con
tive calculator application shown in Fig. 18. How m

ntain? How many properties do you think are contained
ow many methods are there to call?

g. 18. A simple calculator application

e:

ets,
s of these widgets, and
hat can be called on these widgets.

application, there are thousands of properties that go i
that the system can enter. This means that it would not

the

here
d in
get

e, if

the
tem,
alize
uta-
s of
en’t

is is
sid-

many
d in

into
t be

 People-Centered Softwa

possible attempt to visit eve
sidering the fact that GUI e
that are used in the real wo
it’s extremely important to
space of an application in a
effort.

So, how do we deal with
possible to conclusively tes
more likely to contain bugs
parts of the state space are m
is a significantly important
divide by zero from any sta
which “cannot divide by ze

The corollary to this is th
unnecessary complication
using mocking (sometimes
plexity that is not essential
simpler, and have fewer d
jMock23, allow us to detect
place it with a mock objec
the same way as the obje
determined value instead o
mock objects can record th
that we can verify later on t
we are mocking in an appro
of in individual state or of
cated, difficult-to-verify ob
object or state. An illustrati

Fig. 19. Repl

22 http://msdn.microso
23 http://jmock.org/

are Development: An Overview of Agile Methodologies

ery state of the application and verify every property. C
errors do impact customers, and that GUIs for applicati
orld are significantly more complicated than this examp
o think about GUI testing in terms of exploring the s
a way that will provide a good return on investment for

h the fact that it’s easy to create systems which will be
st? We have to prioritize which parts of the state space
 or are susceptible to the future introduction of bugs. Th
more important than others – for example, division by z
concept in our calculator application, and every attemp

ate should result in a transition to the same state (a state
ro” or the equivalent is displayed).
hat, where we can identify parts of a system that introd
into the state space, we can encapsulate this complex
referred to as isolation). That is, we can encapsulate co
to the purpose of a test so that our tests are more reliab

dependencies. Mocking frameworks, such as Moles22

t when a complex object would be created and instead
t. Mock objects can be interacted with by other object

ect they are replacing. However, they will return a p
of interacting with other parts of the system. Additiona
he parameters used in method calls into their methods
that other parts of the system are interacting with the obj
opriate manner. In essence, this allows us to reduce the s
f the state space as a whole by replacing a set of com
bjects or chains of method calls with a single, predicta
on of the latter is provided in Fig. 18.

lacing part of the state space with a simple mock

oft.com/en-us/library/ff798506.aspx

213

Con-
ions

mple,
tate
our

im-
are

hese
zero
pt to
e in

duce
xity
om-
ble,

2 or
d re-
ts in
pre-
ally,
s so
ject
size

mpli-
able

214 F. Maurer and T.D. Hellmann

For example, when a feature interacts
with a database, the state space of the
database becomes part of the state space
that we are testing. This can slow down
test execution and cause confusing test
failures for a host of reasons that are
completely unrelated to the purpose of
the test: make sure the feature is work-
ing. Testing the feature inclusive of the
database additionally tests the network
connection to the database, the database
itself, the database contents etc. Rather
than putting up with this additional
complexity, we can simply mock out the
portion of the system that relies directly
on this database and instead work with
predefined, predictable data. Mocking can be used to avoid a range of complications
that regularly complicate testing, from database and networking issues to file access
to testing features that depend on a specific date to testing multi-threaded applica-
tions. This allows us to focus on the real question: given that all its dependencies are
working, does our feature work correctly?

4 Summary and Conclusions

This chapter gave an overview of core strategies used by agile software development
teams.

We focused our discussion on two aspects: project management and quality assur-
ance. Fig. 19 summarizes our discussion. It shows that agile teams use an iterative
development processes with a daily feedback loop consisting of standup meetings.
User story maps and low fidelity prototypes are used as cost-effective means of cap-
turing the strategic view of the projects. These are updated based on new knowledge
gained in the current iteration. The development team primarily delivers source code
and tests. The team demonstrates the iteration results at the end of each development
cycle to all stakeholders. This in turn is the basis for the next iteration planning meet-
ing, which determines the goals for the upcoming cycle.

Agile processes are mainstream software development methodologies used by
many teams within the software development industry. While they are no silver bullet
and require substantial rigor and commitment from teams, they seem to be delivering
results.

References

1. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley (1999)
2. Schwaber, K.: Agile Project Management with Scrum. Microsoft Press (2004)

Fig. 20. Development process

 People-Centered Software Development: An Overview of Agile Methodologies 215

3. Poppendieck, M., Poppendieck, T.: Lean Software Development: An Agile Toolkit.
Addison-Wesley (2003)

4. Palmer, S.R., Felsing, J.M.: A Practical Guide to Feature-Driven Development. Prentice
Hall (2002)

5. Stapleton, J. (ed.): DSDM Consortium: DSDM: Business Focused Development. Pearson
Education (2003)

6. Cockburn, A.: Crystal Clear: A Human-Powered Methodology for Small Teams. Addison-
Wesley (2004)

7. Highsmith, J.A.: Adaptive Software Development: A Collaborative Approach to Managing
Complex Systems. Dorset House (1999)

8. Pressman, R.S.: Software Engineering: A Practitioner’s Approach. McGraw-Hill, Boston
(2001)

9. Mugridge, R., Cunningham, W.: Fit for Developing Software: Framework for Integrated
Tests. Prentice Hall (2005)

10. Buxton, B.: Sketching User Experiences: Getting the Design Right and the Right Design.
Morgan Kaufmann (2007)

11. Kelley, J.F.: An Iterative Design Methodology for User-Friendly Natural Language Office
Information Applications. ACM Transactions on Office Information Systems 2(1), 26–41
(1984)

12. Cohn, M.: Agile Estimating and Planning. Prentice Hall (2005)
13. Marick, B.: When Should a Test Be Automated? In: Proceedings of the 11th International

Software Quality Week, San Francisco, vol. 11 (1998)
14. Jeffries, R., Melnik, G.: Guest Editors’ Introduction: TDD - The Art of Fearless Program-

ming. IEEE Software, 24–30 (2007)
15. Memon, A.M.: A Comprehensive Framework for Testing Graphical User Interfaces. PhD

thesis, University of Pittsburgh (2001)
16. Robinson, B., Brooks, P.: An Initial Study of Customer-Reported GUI Defects. In: IEEE

International Conference on Software Testing, Verification, and Validation Workshops,
pp. 267–274. IEEE (2009)

17. Xie, Q., Memon, A.M.: Using a Pilot Study to Derive a GUI Model for Automated Test-
ing. ACM Transactions on Software Engineering and Methodology 18(2), 1–35 (2008)

18. Memon, A., Banerjee, I., Nagarajan, A.: What Test Oracle Should I Use for Effective GUI
Testing? In: 18th IEEE International Conference on Automated Software Engineering, pp.
164–173. IEEE (2003)

19. Memon, A.M., Soffa, M.L.: Regression Testing of GUIs. In: ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pp. 118–127. ACM (2003)

20. Memon, A.M.: Automatically Repairing Event Sequence-Based GUI Test Suites for Re-
gression Testing. ACM Transactions on Software Engineering and Methodology 18(2),
1–36 (2008)

21. Holmes, A., Kellogg, M.: Automating Functional Tests Using Selenium. In: AGILE 2006,
pp. 270–275. IEEE (2006)

22. Ruiz, A., Price, Y.W.: Test-Driven GUI Development with TestNG and Abbot. IEEE
Software, 51–57 (2007)

23. Ruiz, A., Price, Y.W.: GUI Testing Made Easy. In: Testing: Academic and Industrial Con-
ference - Practice and Research Techniques, pp. 99–103. IEEE (2008)

24. Hosseini-Khayat, A., Hellmann, T.D., Maurer, F.: Distributed and Automated Usability
Testing of Low-Fidelity Prototypes. In: International Conference on Agile Methods in
Software Development, pp. 59–66. IEEE (2010)

25. Hellmann, T.D., Maurer, F.: Rule-Based Exploratory Testing of Graphical User Interfaces.
In: International Conference on Agile Methods in Software Development, pp. 107–116.
IEEE (2011)

A. De Lucia and F. Ferrucci (Eds.): ISSSE 2009-2011, LNCS 7171, pp. 216–235, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Open Source Practices in Software Product Line
Engineering

Frank van der Linden

Philips Healthcare, Veenpluis 6, 5684 PC Best, The Netherlands
frank.van.der.linden@philips.com

Abstract. This chapter presents a short introduction to software product line
engineering. It describes experiences of introducing software product line
engineering in industry followed by a discussion on some problems in product
line engineering originating from the distributed organisation that is involved in
many cases. It addresses how solutions originating from open source software
development may be used to solve the mentioned problems, and it describes
some cases where open source practices have shown to be very useful.

Keywords: software product line engineering, open source, inner source,
distributed software development.

1 Introduction

This chapter is based on experiences of Philips Healthcare within a series of ITEA
projects on software product lines – Esaps, Café, Families [13,14] – and one on
collaborative development – COSI [3]. Results of these projects are applied to
continuously improve the software product line development capabilities iof the
company.

Originally the products of Philips Healthcare are imaging systems supporting
medical diagnosis. Most of these systems need extensive image processing, storage,
exchange and viewing. Images can be small – several kB – to very large – several
GB, and they are still increasing in size. They may be 2D, 3D or even 4D images.
Increasingly the products are meant to be used during intervention, meaning that
massive image processing has to be performed with low latency.

Philips Healthcare has a large software development organisation – there are more
than 1500 software developers. Development is done world-wide and is structured
around product groups. However, cross product group reuse is necessary, since image
processing and handling is important for most product groups. Philips Healthcare
has set up a product line platform to serve all business groups; [17]. Most of the
different business groups have set up a product line based on this platform.

The product line was started in 1998, based on a strategic decision by the
management. Most of the well known reasons for introducing a product line also
applied here: Reduce development effort and time to market, improve product
offering and enable new system combinations.

 Open Source Practices in Software Product Line Engineering 217

The first step was to get enough management support. When this was settled, an
architecture was needed. This architecture was defined by the architects of a small set
of product groups. The initial platform was based on existing assets of these product
groups. Before that time, each product group had its own architectures and effort was
duplicated in the multiple development of very similar software functionality. The
product line technology was aimed at the development of a common platform to be
used by many product groups, and the management of reuse of components that are
built for this platform.

The evolutionary introduction of the product-line was essential to be able to
manage it. Evolution proceeds in two dimensions:

1. Provide more functionality
2. Involve more product groups

Fig. 1. Organisational tension rises, then drops steep once the breakeven point is passed

Evolution is necessary, as the introduction of the product line initially takes up
additional effort of the involved development groups. The top of Fig. 1 gives
schematic figure of the development cost at the introduction of a product line. The
“no reuse” line shows that the cost for new functionality grows increasingly over time
when reuse is not applied; old functionality has to be redeveloped again as well. The
two curved lines show the costs when adopting the product line. As different groups
have different investments and reuse possibilities, the curves will vary from the
different groups. In any case initially there is an investment to integrate the platform
in the own development. Only after successful integration the reuse will save cost.
Typically, the tension in the interaction between the platform development group and
the adopting group grows when investments are done, but there is still no pay back.
The platform is seen to hold up the business. However after the breakeven point is
reached, and it is recognised by the adopting group, tension will drop very fast. This
is shown at the bottom of Fig. 1. In order to manage the tension well, it is best to
spread the tension of the different groups over time. This is depicted by the dots with
arrows at the top of Fig. 1. Different product groups are at different places in the
adoption, and consequently the associated level of tension is also different.

218 F. van der Linden

After more than 10 years most product groups are willing to fund the platform
groups. As newly acquired companies have been integrated, there are still groups in
the course of adopting the platform. Based on measurements, it is found that the
development of a reusable component takes about 1.6 times the effort with respect to
the development of a component of a single product. However, the reusable
components are used by many groups. So in case of reuse by 10 groups this leads for
each of the product groups only 16% of the cost of making a component on your own.
This knowledge supports the willingness to fund the platform by the product groups.

In the forthcoming sections give our experience on the main ingredients and
benefits of software product line development. Specific attention is placed on
variability management, distributed development and interaction with open source
projects.

2 Software Product Line Engineering

Software product line engineering [11,17,19,21] is an answer to the increasing
demand for individualised software-intensive systems. High quality individualised
systems need to be developed at low cost, with short time to market. Software product
line engineering provides an answer through a pro-active reuse of all development
artefacts. In particular, this involves a platform and the architecture. However
proactive reuse implies strategic, planned and consistent reuse of all artefacts,
including requirements, features, components, code, test cases, etc. This has to be
supported by commonality and variability management that links specific variants of
the system to the artefacts. In Experienced advantages of product lines report large
improvements in product, maintenance and training cost, productivity, lead-time and
quality

Software product line engineering is supported by a development process set-up
that distinguishes two interacting development processes: domain engineering and
application engineering. The former is meant to systematically develop variability and
artefacts to be reused (by others); the latter is to develop applications, applying
variability and reusing these artefacts.

2.1 Commonality and Variability

Commonality is defined as “a list of assumptions that are true for all product line
applications” [5,25]. Product line variability is defined as “Variation (differences)
between the systems that belong to a product line in terms of properties and qualities”
[18]. Commonality will be developed during domain engineering, and reused
unchanged during application engineering. This constitutes an important aspect of
reuse, as common artefacts are to be used by all applications. The architecture and
platform are artefacts that are part of the commonality of a product line. The
variability expresses the variation between the applications of the product line. As
variability has to be dealt with compositional, different applications may have the
same common part of the variability. This also amounts to reuse, but to a lesser extent

 Open Source Practices in Software Product Line Engineering 219

that the commonality. It is explicitly defined through distinguishing between variation
points – what does vary – and variants – how does it vary. In several aspects a
variation point can be seen as a type and a variant as an instance of the corresponding
type1.

Many stakeholders in the development process explicit decide upon what amounts
to commonality and variability in product lines. Each stakeholder has his/her own
view on what should be common and what should vary. For instance, the product
management will decide based on market trends, user needs, business and technology
strategy. The software architects and developers have insight in technical trends and
possibilities and use that for selecting commonality and variability. In any case
product line variability is a decision and not an inherent property of a development
artefact.

Within variability management a distinction is being made between external and
internal variability. External variability is visible to the customer. Their choice of
adopting the system will be supported by this external variability. Consequently, it is
related to the business strategy and external variability is mainly determined by the
product management. Internal variability comes from different development
stakeholders, and is not of importance to the customer. Keeping it hidden will reduce
the complexity of the communicated variability to the customer. They are usually
introduced due to technical reasons during the development process. They may
involve choices of underlying hardware, system software, middleware and tools.
Sometimes it is influenced by the need to use legacy software for certain systems.
They will also be related to the choices made for dependability requirements like
performance, security, etc.

Variability is refined in several stages. Variability is initially defined during the
requirements phase. This variability needs to be mapped to variability in architecture.
This can further be refined to variability in the components, and the code. Finally
variability needs also be mapped to the test artefacts. Each of these mappings is
usually n-m, where n and m are small numbers. Keeping these numbers small is
important to facilitate variability management. Note that during the mapping
variability will be refined and new internal variability will be added.

In order to keep a consistent view on variability it needs explicitly be modelled in a
compositional way. This model has to be related through traceability to the
development artefacts, in order to support variant the selection process. We have
proposed an Orthogonal Variability Model (OVM) as a language for defining
variability models [21]. The orthogonal variability model is independent of the
variation mechanisms in other development models. This is crucial, since variability
mechanisms in different models may not easily be mapped on each other. The OVM
is not compositional – it only groups variation points with variants, but compositional
mechanisms can be added to it2.

1 This is still to be investigated. Variation points and variants are concepts usable in all stages

of development. Consequently variation points should not be mixed with types in a
programming language.

2 This has to be investigated. The most important decision is on how the variability interfaces
between the components should be described.

220 F. van der Linden

2.2 Double Lifecycle

Software product line development distinguishes responsibilities for domain
engineering – introducing reuse and variability – and application engineering –
exploiting reuse and variability. These responsibilities are supported by two
interrelated, but distinct, processes; see Fig. 2. As domain and application engineering
have different paces and requirements, they may use different methods and tools.

Application engineering usually has several instances active at the same moment,
each of them developing for different products. Application Engineering deals with
short term concerns of delivering applications to the market. It reuses the domain
artefacts following to the domain engineering architecture and it defines the binding
of variability for individual applications. Application engineering consist of a
multitude of are fast processes that are aimed to deliver a single product.

Domain engineering usually has only one instance, although sometimes some
subsystems have their own domain engineering. Domain engineering is, generally,
dealing with long-term concerns of the product line. One important task is to define
the scope of the product line. Commonality and variability is based on the scope.
Domain engineering develops reusable domain artefacts incorporating commonality
and variability. Important artefacts are the architecture and a product line platform.
Domain engineering is a continuous process increasingly introducing new common
software in the platform.

Fig. 2. Two development processes; copy from [21]

Special care is needed for the collaboration between domain and application
engineering. Domain engineering delivers reusable artefacts, commonality and
variability. These have to be adopted by the application engineering. Conversely,
application engineering provides feedback on the quality of the delivered domain

 Open Source Practices in Software Product Line Engineering 221

artefacts. In addition application artefacts may be candidate to become reusable. Only
when the collaboration between domain and application engineering is managed well
these interactions can work well.

2.3 BAPO

There are four main aspects of software engineering, that all need to be addressed
consistently to ensure effective, efficient and correct development. These aspects are:
Business, Architecture, Process and Organisation (BAPO); for more details, cf.
[1,17]. It has to be considered that decisions in one aspect usually have consequences
to the other aspects as well. Stakeholders representing these four aspects all need to be
involved in software engineering decisions. In particular, good software product lines
engineering needs to consider the BAPO aspects as well. In [17] we have described an
extensive description of all BAPO aspect in software product line engineering. In
particular, it describes the change of concerns for these aspects during the evolution
of a product line.

The business aspect deals with costs, profits, strategy and planning. Product line
engineering connects many projects and departments in the company. This means a
serious investment, and it will influence the strategy, marketing and the financial
aspects of the company. In particular, not only the software developers are influenced,
but eventually almost everybody working for the company will be influenced by
software product line engineering.

Domain engineering is not profitable in itself. It only becomes profitable when it is
applied by application engineering. The business needs to provide funding for domain
engineering using profits of application engineering. This often leads to decisions on
making reusable on what pays itself back. It is a strategic business decision what will
be reused (scope of the product line) and what will be left to application engineering.
It is dependent on functionalities that will go to the market, in short and medium term.
If this is not done right either too much effort will be put in the platform, but the level
of reuse is too low, or the platform is too small, and double development still takes
place in application engineering. As it is important to know the effectiveness of
the development is. The business aspect may set up metrics, and measures the
performance of the product line development.

The architecture aspect deals with the technical means to build the software. One
of the most important assets of the product line is the product line reference
architecture that determines the organisation of components and their interaction and
the development rules for the complete product line. Architecture decision influences
system's quality attributes for all applications, the commonality and variability. In
many cases the architecture determines fixed interfaces within the family, which eases
exchange of components, and thus supporting ease of reuse. To facilitate application
engineering, domain engineering architects may decide on the use of specific tools to
support e.g., domain specific languages, or model based development. Important in
variability management is the use of configuration methodology and/or tools to
simplify binding of variants to variation points, and do this in a consistent manner.

222 F. van der Linden

Third party software plays a role in most product lines. Presently it is unrealistic to
expect that all software is built by the company. The architecture makes important
decision on which third party software to use, for which purpose and how to use it.
These are far reaching decisions influencing all application building groups.

The process aspect deals with roles, responsibilities and relationships in the
development of the product line. For both domain and application engineering,
development roles (requirements, architecture, development, testing) are determined,
but also roles for the collaboration processes between application and domain
engineering need to be determined. Important collaboration roles are:

• that domain engineering needs to ensure that the platform used and the
architecture rules applied well

• Roadmaps of domain and application engineering need to be aligned. Application
groups have new feature requests, and it is important to know when these features
will be delivered in the platform

• Many issues and problems with domain artefacts originate from application
engineering, where these artefacts are deployed in real systems. Consequently the
management of change request is a collaborative issue.

• Application engineering develops application specific artefacts. Sometimes these
artefacts of interest for other applications. In that case it would be best to promote
this software to become a domain artefact. Domain and application engineering
need to collaborate to promote artefacts from application to the domain. To reduce
risk, a promising technology will sometimes first be introduced in a specific
application only. When the introduction is successful, the related aspects need to be
promoted in the domain as well.

The process aspect has to provide for processes in which these collaboration roles can
be active.

The organisation aspect deals with people and organisational structures to support
the product line development. It distributes responsibilities and roles over people and
organisations. Product line engineering introduces a matrix structure with disciplinary
roles in one dimension, and products in the other dimension; see Fig. 3. The
organisation needs to map the matrix on the hierarchical company structure, taking
into account that people that are placed together will collaborate better that those that
are located far away of each other.

The placement of people influences the behaviour of the development groups with
respect to responsibility for profit and loss, accountability and funding. As reuse does
not provide direct income, the responsibility for reuse needs to be captured
on an organisational level. It can be solved in several ways. In a small organisation all
can be done in a single group. For larger organisations this is not possible. In many
cases domain engineering is done a single group or department. In that case the cost
of domain engineering is clear equal of the cost of that department, and funding can
directed to this department. However, this has as disadvantage that the application
group his direct influence on the domain engineering group, and therefore the flow of
requirements and funding towards domain engineering, and the flow of domain
artefacts towards the application group has to be carefully managed. Another solution

 Open Source Practices in Software Product Line Engineering 223

may be that domain engineering is part of a single application engineering group. This
has as advantage that domain engineering is closer to the market, and the flow of
information, at least with its own application group, is good. It has ad disadvantage
that the own group will be served first, leading to problems serving the other groups.

Fig. 3. Product line matrix organisation; copy from [17]

In many cases it is important to counter the disadvantages by introduction of a
virtual organisation in addition to the actual organisation. Teams involving people
form different organisation units form a “virtual” team in the other dimension. For
instance in an application organisation, virtual teams may be set up for functional
issues, such as a virtual architecture or testing group.

3 Distributed Development

Product line development is often distributed development. This has several causes.
First, product lines are usually large – dealing with a large part of the portfolio of a
company. Hence, there are many people involved in its development. For many
reasons companies cannot place all these people to a single room, and thus the
product line needs to be developed within distributed sites. Secondly, software shifts
to commodity: Software that was originally differentiating gets to be obtained as
commodity – [10,16], consequently 3rd party software is increasingly used within the
product line. Consequently large heterogeneous groups are working on the same
software. This leads to a complex situation like the one shown in Fig. 4. The dark
ellipses, inside the dotted box, denote the different development groups inside the
company. The light ellipses denote external development groups. Interaction –
including sharing of software – is denoted by arrows.

224 F. van der Linden

Fig. 4. Distributed development

3.1 Collaboration

An important aspect of distributed development is collaboration. Software is made
together with external parties that are more or less trusted. To deal with the different
levels of trust, it is important to know how much trust is needed for different parts of
the software. Fig. 5 provides a means to manage this. It shows the landscape of
technology commodification and collaboration; cf. [16]. The vertical axis deals with
commodity and differentiation. In all software only a part is differentiating. This
part is used by the company to distinguish itself from the competition, and this is
where the profit of the product originates from. This kind of software is situated at the
top of the diagram. Another part, at the vertical middle part of the diagram, is only
basic to the business. It is domain related software that each company needs to have
in the products, otherwise it will not be accepted by the clients. However, since the
competition also provides this software, not much profit can be generated from this.
Finally, at the bottom of the diagram, there is an amount of commodity software. This
is software that can be found in almost all software products. Examples are system,
communication and data storage software. All this software is necessary to let the
product work, but also here no profit can be obtained from its presence.

The horizontal axis in Fig. 5 shows the different ways to collaborate on software.
To the left hand side, there is no collaboration. Software is developed in the company
itself. In the horizontal middle part the collaboration of software is done between
companies that made agreements on working together. Finally, at the right hand side
software is situated that is developed in open communities.

In total we have 9 regions in the landscape of collaborating of different kinds of
software. In this landscape there are two regions that are better to be avoided. As the
borders of these regions are not very sharp, their borders do coinciding exactly with
borders of the 9 regions discussed above. The first region is located at the lower

 Open Source Practices in Software Product Line Engineering 225

left-hand side of Fig. 5. It describes the region where the company itself is producing
commodity software. The disadvantage of this is that the company is using its own
personnel and resources to produce commodity, which can be obtained elsewhere and
often cheaper, and in shorter times. Using the personnel to produce differentiating
software generates much more added value. The top right hand region is also to be
avoided. In that case differentiating software is produced in an open community. This
means that the competition can get hold easily of the software, and the own
competitive advantage, and related IP value, will be diminished.

Fig. 5. Commodification of software

However, it is observed that over time any software is moving from top to bottom
in the landscape of Fig. 5; see also [16]. Software that was originally differentiating
is moving to become just basic to the business, and later even commodity.
Consequently, there is a growing part of the software that is commodity. To deal with
the situation, the business has to decide at which moment it is best to move from left
to right – involving more collaboration – on certain pieces of software, during its
move towards commodity.

3.2 Business Aspect

Companies doing product line engineering are faced with the challenge to manage
complexity of heterogeneous distributed development. Although this initially seems
to be an organisational issue, also the other BAPO aspects will be involved to deal
with this issue. In particular the business aspect needs special attention. Decisions on
this aspect will have an influence on the tree other aspects: architecture choices,
distribution of processes and distributed responsibilities. When considering the
leverage of open source in a company, the business has to deal with relevant aspect of
what to share and what to keep private. An issue is how much trust can be put in open
source communities. It is important to determine which software is placed in the
collaboration landscape of Fig. 5.

226 F. van der Linden

3.3 Open Collaboration

Within the COSI project [6] we have concluded that leveraging open source
advantages is beneficial in the management of distributed development. This is not a
surprise, since open source developments show that large and distributed groups are
able to produce high quality software.

In open collaboration, the organisation is inherently distributed. Even more
distributed than what is normal in companies. In addition, there is no formal reporting
structure. However, this usually works very well. People are contributing because
they get respect and acknowledgement in these communities and the role in
development determined by meritocracy [20]. Collaboration in these communities is
supported with several web-based community tools that support open exchange of
information.

When the choice is made to collaborate, the business has to decide in which
manner, and how to select the parties to collaborated with. In cases of open
collaboration, it has to be clear what can be open and what should be kept proprietary.
The business needs to decide on costs and profits, not only in the own organisation,
but also with more or less trusted collaborators. In the case of open development, it
has to become clear how to collaborate, how much effort to put in the collaboration,
and what to donate to the community, to get best results.

There are 5 different ways, to leverage the advantages of open source development
in distributed development for software product lines; cf. Fig. 6. These are:

1. Developing with OSS practices
2. Using OSS tools in developing products
3. Developing products containing OSS
4. Developing OSS products
5. Engaging and leverage the community

In the next section we elaborate these different ways, and give some examples from
Philips Practice.

Fig. 6. Leveraging open source opportunities for product lines

 Open Source Practices in Software Product Line Engineering 227

4 Leveraging Open Source Opportunities

4.1 Developing with OSS Practices

A first way to exploit OSS is not to use open source software, but to use the practices
instead. Open source development is intrinsically distributed, thus the open source
development processes may also be made applicable for distributed development
within companies. This cannot be done unchanged, since companies do have
deadlines for products, accounting and decision hierarchies, and job appraisal
mechanisms.

Many good elements of open source development can be taken over, and these can
be translated within company borders. For instance, easy access to all information of
the software, helps users to understand the software better, and is crucial for
improvements and validating. Another aspect is the early and often release of
software. This supports collaboration on the software, nut it also helps users to build
on new software – although it may not be completely tested. Within open
development, the accessibility of information supports the distributed ownership and
control of assets. Those that are the best, and are available, will be contributing most.
Applying open source methods within company border is called Inner Source
[10,15,22,24] within Philips. It takes over the advantages mentioned above and uses
normal organisation mechanisms for internal company issues, such as escalation of
conflicts and the development and use of roadmaps.

The most important reason for Philips to move to inner source development was to
resolve the organisational issue that domain engineering was becoming a bottleneck
in product line development. Increasingly more business units are using the platform
developed by the domain engineering group. Consequently they issued more feature
and change request, but it was difficult to enlarge the domain engineering group.
Moreover, the bi-yearly release of the platform was too slow for the application
groups, since they could only build on the new features after they were released. This
led to roadmap mismatches.

By taking the best elements of open source development, it was expected that the
software engineers in the development departments will be working closer together,
supported by direct communication. This supports sharing the platform knowledge
and it eases the possibilities for the application groups to contribute to domain assets
that are crucial to them. This reduces the dependency of the application groups on the
domain engineering group. Components are to be developed in the department that
has the best expertise.

To support this inner open collaboration, the platform documentation should be
open. This improves trust in, and quality of, the platform. Consequently source code
and relevant documentation was published on an internal website, which was easily
accessible for all development departments. Note that also test suites and test results
are part of the documentation, and published. This facilitates the use of regression
tests for the platform and the applications built on it.

228 F. van der Linden

In order to involve users early, the platform software, which has biyearly
thoroughly tested releases, also gives early access to earlier versions of the software.
A label indicates the status of each version:

• Works-In-Progress are tested versions of the software updated bimonthly.
• Snapshots are low tested versions of the software, updated biweekly.
• Bleeding edge are untested version of the software, instantaneous accessible.

These early versions, including all relevant development information, are visible to
the complete community. This facilitates early use of the software. Departments can
already start developing upon new features of the platform before it is completely
tested. This improves the time to market drastically. If errors in early platform
releases are repaired, the new features can even be used before the official release
date. Early feedback leads to faster updates and earlier high quality and good
functionality. Application groups are encouraged to provide necessary changes in the
components they use. A simple add-on script supports the patching of components. In
general, priorities on what to adapt and by whom, is prepared by the discussion
departments and mailing lists, but it is decided by the management of the involved
departments.

In order to ensure clarity on the status of components developed in the distributed
setting a set of rules regulates the ownership and control of software components. The
owner of a component has the right to accept new versions of the components, but
then he/she also accept the maintenance of it. Therefore acceptance should not be
done lightly. Any user is allowed to change components. However, after changing a
component, the ownership moves and the adapter get maintenance obligations for the
changed component. The adapter may offer the adapted component back to the
domain engineering group. The domain engineering group owns and develops
components for the official releases of the platform. An adapted component may
improve the platform, thus acceptance of adaptations should be considered. It is taken
over when it is decided that the adaptations are beneficial to the other users as well.
When the adaptation is only of interest for a single user, this user is allowed to keep
the adapted version, but the maintenance burden stays by them.

In certain situations, e.g. when many change requests are dealing with the same set
of components, the domain engineering group may decide that the platform needs
refactoring, and a collection of related components needs to be adapted. In that case
the development cannot be delegated to a single developer. A virtual team may be set
up that has the assignment to make the change. Such a team will usually consist of
people from the domain engineering group and some from application groups. This
virtual team performs the adaptation in several stages, and each document and
components change is visible to all the developers. An issue here is that several parts
of the company hierarchy are involved. The higher management layers need to
approve and facilitate the virtual team.

An important issue in inner source development is the proper distribution of costs of
the development. The domain engineering group does not develop products, and does
not have direct income. It needs to be paid by the application groups, e.g. through a
licensing scheme. Application groups that contribute are initially responsible for the

 Open Source Practices in Software Product Line Engineering 229

maintenance cost and effort for the adapted components. However, if they convince the
domain engineering group of the wider usability of the adapted component, the domain
engineering group may take the component back. This reduces the maintenance cost
for the original contributor. In addition, a reduction of the license fee may be in place
when an application department provides many good contributions to the platform.

The results of the use of inner source within Philips are that there is a steady
growth of the number of users that are involved. In general about 50% of the involved
users are active, this means that they are involved in discussion groups, provide
documentation and/or provide improvements to components. From the start of inner
source up to now, three times more application department served with a domain
engineering group of the same size. The quality of the platform is improved largely;
shown in a much lower defect ratio. The environment improves the feedback from
application development departments, and they find defects early, leading to
significant time to market gains. The new collaborative development environment
boosted collaboration enormously, and we see many collaborations running at any
time on many aspects of the platform. The formal help desk, which was in use before
the inner source development was introduced, could be removed, as its role was taken
over by mailing lists and discussion groups.

4.2 Using OSS Tools in Developing Products

A second important way to leverage open source within companies is the use of open
source development tools. Using open source software in this way is often easy, since
the used software is usually not part of the final product, making it easy to comply
with licences. However, for maintenance reasons tools increasingly become part of
product. However for maintenance reasons open source tools are shipped with the
product, the licensing issue of the next section 4.3 have to be addressed as well.

Presently many good open source development tools already available, and these
certainly will be used within in-company developments. Some good examples are: the
eclipse tool [8], which may be extended with plug-in tools for many aspects of the
development. Philips uses several open source tools for inner source development.
For instance Subversion® [3] for version management and the Semantic MediaWiKi
[22] for document exchange.

To support the inner source development within Philips, a complete environment
of open and proprietary tools is in use. Access to the code is via the proprietary
CollabNet® tool [4]. CollabNet is based on open source tools. It provides role based
access control, mailing lists and discussion groups. Version control on code is
supported via Subversion. Other documents and files are shared through Semantic
MediaWiKi enabling the sharing of all kinds of document formats.

To reduce introduction risks, this environment was introduced evolutionary
over Philips Healthcare. It led to a much simplified development process for the
involved departments, and it was easy to learn, and had a minimal impact on other
processes. It provides a scalable solution for global and inter-organizational
collaboration, and it increases the collaboration agility in the company, and reduces
administration overhead.

230 F. van der Linden

4.3 Developing Products Containing OSS

The use of open source components is similar to the use of other 3rd party software,
such as COTS. As can be expected, open source and other 3rd party components are
usually commodity software; cf. Fig. 5. As the user of these components is not the
driver of the development, and often not involved at all, the user also does not have
much control over the functionality and quality. In particular, the compliance of 3rd
party solutions to the own architecture standards and interfaces is a continuous issue.
To ensure compliance to the latter, wrappers can be used.

In order to prepare the future use of any 3rd party components, it is important to
have advanced knowledge on future releases. In the case of COTS components, this is
usually done by having good contacts with the supplier, such as a direct contact
person, visits to user conferences, etc. This will provide information on future features
and quality issues, although guarantees will only come when the next version is
delivered, sometimes as a pre-release or beta-test version. A serious issue is the
disruptive nature of COTS releases. Architecture rules may have been changed, and
backwards compatibility is only guaranteed for a few earlier releases. It often takes
several moths till the new version can easily be integrated in new products.

In the case of open source components, advanced knowledge can be obtained via
good contacts as well. However, in this case, good contacts are different; they will be
maintained through involvement in the community. Although mailing lists and
discussion groups will give already lots of information. Active involvement in these
will lead to more precise information. Change requests and contributions may even
lead to adaptations that are useful, but these will not always be followed; see also
section 4.5. In any case, in this way the user has a limited control on the future of the
components. An important advantage is the continuous evolution of open source.
Disruptive changes are seldom, and when they come they are discussed intensively.
This means that new features may be incorporated early, and even not completely
tested software can already be used to build the own product. Issuing bug reports and
corrections will keep open source at quality.

In all cases, licensing of open source is an issue. Licenses may have requirements
on the status of the software it is connected to. Open source licenses may be in
conflict with each other, or with proprietary licenses. Consequently, it is necessary to
know which open source, under which licence is present in a product. In a distributed
development case this means that open source needs to be communicated to
everybody that uses it. However, it even is necessary for an integrator to inform all
providers of the use of open source software, as his may be in conflict with other
pieces of software that will be integrated.

In product line development it is an issue to introduce open source in domain or
application developments. As open source is commodity software, it is likely that it
can be used by many application development departments. Therefore it may be wise
to integrate it in domain software. However, to reduce risks, new software in product
lines is first only applied in a “trial” application. If it works well for this application,
the open source can be integrated in the platform.

 Open Source Practices in Software Product Line Engineering 231

4.4 Developing OSS Products

Opening up parts of software of the product line is another way to leverage open
source results. Especially, when software is becoming commodity, this is an option;
cf. Fig. 5. This way, the involved software is given away, but in return there are many
possible business advantages connected to it [2].

An important benefit is that others will be involved in the maintenance. When the
software is becoming commodity, it is expensive to keep the maintenance of the
software within the company. Successful open source software is maintained by the
community. The company effort on maintenance can be reduced.

Opening up software may be useful if the software is supporting an (open)
standard. When opening up is successful, it will lead to improve the interoperability
with products of the competition. This is required by the users of the product that do
not want to be dependent on a single supplier. Success is dependent on the need for
this software, when there is already a competing open source solution for the same
standard, the chance of success may be lower, it then depends on other qualities and
the willingness of the competition to support this initiative.

In cases that there is not yet a standard, but a standard is needed, opening up the
own solution may make it a de-facto standard, when it is opened up. As own products
comply already with this software, it is easy to keep compliance to the proposed de-
facto standard. In that case, again, the interoperability with products from the
competition may increase.

The competition may have similar software on the market for a seemingly too high
price. Opening up the own solution may be a way to devalue this propriety solution,
as the own solution is open, and thus it is freely obtainable. In that case it also may
lead to the interoperability benefits of above.

A more internal business reason is that opening the source of the software may
drive acceptance of the software. The visibility of the source leads to possibilities of
the user to inspect it, and improve it when needed. This will lead to an improvement
of the trust in the product as well.

Similarly opening software may increase its quality, such as security or safety. Others
in the community may have experience, and need for these qualities and may
incorporate it in the open source. In addition, software that has a larger diversity of users
will have more extensive tests, leading to better recognition and repair of the errors.

It may be the case that relevant 3rd party software is (in danger of) not being
supported anymore by the supplier. Users of the software may decide that the
software still needs to be maintained, and integrated with new developments.
Together with the supplier it may be decided to open up the software and move
maintenance from the originating company.

Opening up software may also support the sales of something else. For instance the
software may be used for services that are the main source of income of the company.
In that case the company can still focus on its own added value and still get the
required quality software.

232 F. van der Linden

For example, consider the Philips DICOM3 Validation Tool kit (DVTk) [7].
DICOM was introduced as an interoperability standard for professional medical
imaging equipment in hospitals. It supported medical image exchange for many kinds
of medical images. In 1995 the DICOM interface was considered a quality interface,
it was only available a system option for the high-end systems. Providing DICOM
support was differentiating for the companies providing medical imaging systems; cf.
Fig. 7. In 1999 DICOM was no longer differentiating. The hospitals all needed
interoperability and they just expected DICOM support in the equipment. Philips
decided that it profitable that the competition follows the standard, and it provided the
DVTk application binary freely downloadable via their own website. Soon it became
clear that development and maintenance costs for the software became a burden, as
the software did not provide direct added value. In 2001, a joint development started
with another company (AGFA) to share development costs and increase adoption of
DVTk. In 2005 it was decided to create an open platform to ensure uniformity. The
software is still domain specific, it is regarded as commodity.

Fig. 7. Commodification of DVTk

This open source community is presently dealing with state of the art tools for
interoperability in the medical imaging domain. To broaden its scope, it successfully
applied to a commercial SW tool development tender for the IHE-Radiation Oncology
Test SW and the IHE Gazelle Open Source tooling project.

3 DICOMSM – Digital Imaging and Communications in Medicine
 http://medical.nema.org/

 Open Source Practices in Software Product Line Engineering 233

4.5 Engaging and Leverage the Community

A final way to leverage advantages of open source development is to have a
symbiotic relationship with an open source community. This means that the company
is involved in the open source community, and the open source software is important
for the company. This asks for an active involvement in the community to ensure that
the issues that are important for the company are addressed by the community. This
not only means to use the open source software, and issue some bug requests, but also
to donate software and patches solving issues. This means that the company provides
people and effort to maintain the software at a high level.

An example of this is the involvement of Philips in the improvement of
Subversion® [3]. Subversion is a version management system that is strong in
distributed development. This makes it a good candidate for using it for the inner
source development. However, the software also has some weak points that need to be
repaired before it can be used. Luckily, Subversion is an open source development,
and thus Philips people could join and address, and improve these observed weak
points. The archive is globally accessible, giving single view on archive. The tool is
optimised for low connectivity conditions, enabling access from almost anywhere.
Another feature it is based on change sets, which enables departments not to accept
certain changes, supporting the inner source way of working. It is easy to link
archives from several origins together.

The weak points observed, originate from the fact that groups that were originally
developing independent at distributed sites, are moving to work together on a single
virtual distributed repository. Philips products may be used for many years, and
similarly products must be supported for many years. Products will be upgraded
during the lifespan, to keep the functionality and quality at high levels. Consequently,
the version management has to deal with many active versions of the product line
platform. Due to the high quality requirements on medical systems, regulatory bodies
enforce strict regulations on how products are created. In particular traceability is the
key to achieve quality.

The weak spot of Subversion (v.1.4) was that merging and rename handling was
not working properly for the Philips traceability requirements. There was no built-in
merge tracking, and renames were merged incorrectly. Merging between different
archives was not possible. The involvement of Philips Healthcare in the Subversion
community was mainly to improve these aspects of the tool. This lead to an
improvement of the tool in version 1.5 that solved all issues on merge tracking and
rename handing. This lead to a version management tool that is usable for the inner
source community of Philips. It was adapted to requirements from Philips, but
performed with joint effort of the Subversion community.

5 Conclusions

This paper describes product lines, and what are the advantages for companies to do so.
It also shows important aspects to address during product line development: Business,
Architecture, Process and Organisation. One of the organisational consequences of

234 F. van der Linden

product line engineering is the issue of distributed development. Open source
communities provide examples of well working distributed development. This gives
ideas to introduce the benefits of open source within product line development. Several
of the options of using open source for product line are addressed, in particular inner
source that mimics the open source distributed development within company setting.

Presently inner source development is established within Philips Healthcare. In
addition, other aspects of open source are also addressed, although on smaller scale.
The adoption of inner source is performed stage-wise to reduce company risks.
Groups that start involvement find it easy to take over the inner source way of
working. Inner Source helped break the platform bottleneck, since using departments
are able to create patches.

References

1. America, P., Obbink, H., van Ommering, R., van der Linden, F.: CoPAM: A Component-
Oriented Platform Architecting Method Family for Product Family Engineering. In:
Donohue, P. (ed.) 1st International Conference on Software Product Lines; Experiences
and Research Directions, SPLC, pp. 167–180. Kluwer (2000)

2. Babar, M.A., Fitzgerald, B., Ågerfalk, P., Lundell, B., Thiel, S.: On the Importance of
Sound Architectural Practices in the Use of OSS in Software Product Lines. In: van der
Linden, F., Lundell, B. (eds.) 2nd International Workshop on Open Source Software and
Product Lines (OSSPL 2007), Kyoto, Japan (2007)
http://itea-cosi.org/modules/wikimod/index.php?page=OssPlas07

3. ApacheTM - Subversion®, http://subversion.apache.org
4. CollabNet in.c, http://www.collab.net
5. Coplien, J., Hoffmann, D., Weiss, D.: Commonality and Variability in Software

Engineering. IEEE Software 15, 37–45 (1998)
6. COSI – Co-development using inner & Open source in Software Intensive systems, ITEA

project 2005-2008, http://www.esi.es/index.php?hl=&op=14.4#cosi
7. DVTk – Dicom Validation toolkit, open source software supporting medical image

exchange compliance, http://www.dvtk.org
8. The Eclipse Foundation, http://www.eclipse.org
9. Engelfriet, A.: Open Source and Open Innovation. Koninklijke Philips Electronics, NV

handout: LinuxWorld Open Summit (2007), http://www.idc.com/nordic/
downloads/events/linuxworld07/9%20-Arnoud%20Engelfriet.pdf

10. Jilderda, A., Rötschke, T.: Architecture Analysis Needs an Open Source Process. In: Ebert,
J., Kullbach, B., Lehner, F. (eds.) Workshop Software Reenginering, Universität Koblenz-
Landau, Koblenz (2001)

11. Käkölä, T., Dueñas, J.C.: Research Issues in Software Product Lines—Engineering and
Management. Springer, Heidelberg (2006)

12. van der Linden, F.J., Wijnstra, J.G.: Platform Engineering for the Medical Domain. In: van
der Linden, F. (ed.) PFE 2002. LNCS, vol. 2290, pp. 224–237. Springer, Heidelberg
(2002)

13. van der Linden, F.: Software Product Families in Europe: The Esaps and Café Projects.
IEEE Software 19, 41–49 (2002)

 Open Source Practices in Software Product Line Engineering 235

14. van der Linden, F.: Engineering Software Architectures, Processes and Platforms for
System Families - ESAPS Overview. In: Chastek, G.J. (ed.) SPLC 2002. LNCS, vol. 2379,
pp. 383–397. Springer, Heidelberg (2002)

15. van der Linden, F.: Applying Open Source Principles in Product Lines. Upgrade X, 32–40
(2009)

16. van der Linden, F., Lundell, B., Marttiin, P.: Commodification of Industrial Software: A
Case for Open Source. IEEE Software 26, 77–83 (2009)

17. van der Linden, F., Schmid, K., Rommes, E.: Software Product Lines in Action. Springer
(2007)

18. Metzger, A., Heymans, P., Pohl, K., Schobbens, P.-Y., Saval, G.: Disambiguating the
Documentation of Variability in Software Product Lines: a Separation of Concerns,
Formalization and Automated Analysis. In: Sutcliffe, A. (ed.) 15th IEEE International
Conference on Requirements, pp. 243–253 (2007)

19. Parnas, D.L.: Designing Software for Ease of Extension and Contraction. IEEE
Transactions on Software Engineering 5, 128–138 (1979)

20. Perens, B.: The Emerging Economic Paradigm of Open Source. First Monday 10(10)
(2005), http://www.firstmonday.org/issues/
special10_10/perens/index.html

21. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering. Springer
(2005)

22. Sematic Mediawiki,
http://semantic-mediawiki.org/wiki/Semantic_MediaWiki

23. Stellman, A., Greene, J.: Beautiful Teams. Inner Source, an interview with Auke Jilderda,
ch. 8, pp. 103–111. O’Reily (2009)

24. Wesselius, J.: The Bazaar inside the Cathedral: Business Models for Internal Markets.
IEEE Software 25, 60–66 (2008)

25. Weiss, D.M.: Commonality Analysis: A Systematic Process for Defining Families. In: van
der Linden, F.J. (ed.) ARES 1998. LNCS, vol. 1429, pp. 214–222. Springer, Heidelberg
(1998)

26. Wijnstra, J.G.: Critical Factors for a Successful Platform-Based Product Family Approach.
In: Chastek, G.J. (ed.) SPLC 2002. LNCS, vol. 2379, pp. 68–89. Springer, Heidelberg
(2002)

Author Index

Haiduc, Sonia 126
Hellmann, Theodore D. 185
Hill, Emily 94

Marcus, Andrian 126
Maurer, Frank 185
Morasca, Sandro 1

Ostrand, Thomas J. 71

Pollock, Lori 94

Shepherd, David 94
Shepperd, Martin 46
Sridhara, Giriprasad 94

van der Linden, Frank 216
Vijay-Shanker, K. 94

Weyuker, Elaine J. 71

Zisman, Andrea 159

	Title

	Preface
	Table of Contents
	Software Measurement and Empirical Software
Engineering
	Fundamental Aspects of Software Measurement
	Introduction
	A Few Basic Concepts
	Measurement Theory for Internal Software Attributes
	Basic Notions of Measurement Theory
	Additional Issues on Scales
	Evaluation of Measurement Theory

	Axiomatic Approaches
	Weyuker's Complexity Axioms

	A Unified Axiomatic Approach for Internal Software Attributes
	Systems and Modules
	Axiom Sets and Derived Properties
	Relationships between Software Attributes

	External Software Attributes: Probability Representations
	Issues in the Definition of External Attributes
	Probability Representations in Measurement Theory
	Representing Modifiability

	GQM/MEDEA
	Setting of the Empirical Study
	Definition of Measures for the Independent Attributes
	Definition of Measures for the Dependent Attributes
	Hypothesis Refinement and Verification

	Conclusions and Future Work
	References

	Combining Evidence and Meta-analysis
in Software Engineering
	Introduction – A Brief History of Empirical Software Engineering
	Using Evidence
	Types of Evidence
	Appraising Evidence Quality
	Meta-analysis

	Systematic Reviews
	Tertiary Reviews and Mapping Studies
	Cochrane Collaboration
	Campbell Collaboration
	Reflections on Systematic Reviews

	Systematic Reviews and Empirical Software Engineering
	Challenges for the Future

	References

	Predicting Bugs in Large Industrial Software
Systems
	Introduction
	Our Approach to Defect Prediction Modeling
	Evaluating the Prediction Results
	Alternate Predictor Variables
	Adding Developer Count Information
	Adding Individual Developer Information
	Adding Calling Structure Information

	Alternate Prediction Models
	Recursive Partitioning
	Random Forests
	Bayesian Additive Regression Trees
	Comparing Prediction Results

	Conclusions
	Literature
	References

	Software Analysis

	Natural Language-Based Software Analyses
and Tools for Software Maintenance
	Introduction
	Building Blocks
	Identifier Splitting
	Abbreviation Expansion
	Part-of-Speech Tagging and Identifier Parsing
	Synonyms in Programs

	Analysis and Modeling
	Applications of Natural Language Program Analysis
	Targeted Software Maintenance Tools
	FindConcept: A Concern Location Tool Based on the Action-Oriented Identifier Graph
	Contextual Query Reformulation
	SWUM-Based Search
	Program Exploration
	Comment Generation

	Summary
	References

	Text Retrieval Approaches
for Concept Location in Source Code
	Introduction
	Concept Location as a Text Retrieval Problem
	Terminology
	The Generic Approach for Text Retrieval-Based Concept Location

	Text Retrieval-Based Approaches for Concept Location
	Corpus Creation and Normalization
	Corpus Indexing
	Query Formulation and Normalization
	Retrieval and Ranked List Presentation
	Combining TR with Other Sources of Information

	Tools for Text Retrieval-Based Concept Location
	Evaluation of Text Retrieval-Based Concept Location
	Measures and Metrics
	Quantitative Evaluations
	Qualitative Evaluations

	Discussion and Directions for Future Research
	References

	Discovering Services
	Introduction
	Overview of Existing Approaches
	Service Discovery Framework
	Service Discovery Query Language
	Service Discovery Execution

	Extensions
	Conclusion and Final Remarks
	References

	Software Management
	People-Centered Software Development:
An Overview of Agile Methodologies
	Introduction
	Agile Project Management
	Whole Team
	Project Management
	Agile Project Planning
	Progress Tracking
	Business Contracts s

	Agile Quality Assurance
	Test-Driven Development
	Acceptance Test-Driven Development
	Test-Driven Develo opment of Graphical User Interfaces
	State Space of Test ing
	Test Quality
	Testing Graphical U User Interfaces – A State Space Explosion

	Summary and Conclusions
	References

	Open Source Practices in Software Product Line
Engineering
	Introduction
	Software Product Line Engineering
	Commonality and Variability
	Double Lifecycle
	BAPO

	Distributed Development
	Collaboration
	Business Aspect
	Open Collaboration

	Leveraging Open Source Opportunities
	Developing with OSS Practices
	Using OSS Tools in Developing Products
	Developing Products Containing OSS
	Developing OSS Products
	Engaging and Leverage the Community

	Conclusions
	References

	Author Index

