
Fast Algorithm for Rank-Width

Martin Beyß

RWTH Aachen University

Abstract. Inspired by the heuristic algorithm for boolean-width by
Telle et. al. [1], we develop a heuristic algorithm for rank-width. We com-
pare results on graphs of practical relevance to the established bounds of
boolean-width. While the width of most graphs is lower than the known
values for tree-width, it turns out that the boolean-width heuristic is
able to find decompositions of significantly lower width. In a second step
we therefore present a further algorithm that can decide if for a graph G
and a value k exists a rank-decomposition of width lower than k. This
enables to show that boolean-width is in fact lower than or equal to
rank-width on many of the investigated graphs.

1 Introduction

Many interesting problems on graphs like TSP or Hamiltonian path are
NP -complete. Thus, there is no fast way to solve them in general unless of course
P =NP . Width parameters of graphs like tree-width, clique-width or rank-width
can be used to construct fixed parameter tractable (FPT) algorithms for many
of these problems. This means if the input graphs are restricted to have width
at most k, a solution can be calculated in time at most f(k) · p(n) where f is a
computable function, n the size of the graph and p a polynomial independent of
k. For small k this provides a realistic chance of solving these problems even on
large graphs. Many of those algorithms use dynamic programming and need a
decomposition of the graph. Hence, practical methods of calculating decompo-
sitions of low width are of crucial importance.

A major result is Courcelles theorem [2] which states that every graph problem
that is expressible as a MSO2 formula can be decided in linear time for graphs
of fixed tree-width. A similar theorem exists for rank-width and clique-width
and a formula in MSO1 [3]. Recent research shows that these theorems are not
just of theoretical interest but also of practical applicability [4]. Accordingly,
an algorithm that is able to calculate rank-decompositions gives a possibility to
solve many hard problems on graphs. As [5] shows, there are several algorithms
that can compute reasonably small tree-decompositions, but tree-width is only
low for sparse graphs. Consequently, for dense graphs other width-measures have
to be considered. An overview of different width-measures other than tree-width
and their algorithmic applications can be found, e.g. in [6].

Although rank-width has been extensively researched over the last years, there
are only few practical results. For example in [7], Oum proposed an O(|V |3)
algorithm that for a fixed k either returns a rank-decomposition of width at

A. Kučera et al. (Eds.): MEMICS 2012, LNCS 7721, pp. 82–93, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Fast Algorithm for Rank-Width 83

most 3k − 1 or confirms that the rank-width is larger than k. Nevertheless, no
implementation is known and actual rank-decompositions only exist for very few
graphs.

In [1] Hvidevold et. al. presented a novel approach to find decompositions of
low boolean-width even on dense graphs. We can reuse their work and develop
a heuristic algorithm to calculate rank-decompositions. Moreover, our algorithm
is able to build rank-decompositions on graphs for which no bounds of other
width-measures are known in particular many graphs where the boolean-width
heuristic failed. This reveals the main weakness of boolean-width for practical
application. Calculating the boolean-width of a given decomposition is costly
especially in comparison with rank-width.

As an extension, an additional algorithm is implemented that decides for a
given k if a graph has rank-width less than k. This allows the calculation of lower
bounds for rank-width. These lower bounds can provide a quality estimation for
the heuristic algorithm. Furthermore, we are able to compare results for boolean-
width and rank-width on graphs from real life application, i.e. treewidthLIB [8].

2 Preliminaries

Graphs in this work are simple, undirected and loop free. A graph G is a tuple
(V,E) where V is a set and E ⊂ [V]2 and [V]2 is the set of all two-element subsets
of V . An element v ∈ V is called a vertex, e ∈ E is called edge. Instead of writing
v ∈ V , we may write v ∈ G; the same goes for e ∈ E. As a shorthand we write
|G| for |V | and ‖G‖ for |E|. For G = (V,E) we define functions V (G) = V and
E(G) = E, which assign a graph to its vertex and edge sets.

For a graph G = (V,E) and a set V ′ ⊂ V we define the induced subgraph as
G[V ′] = (V ′, E′) where E′ ⊂ E so that {v1, v2} ∈ E′ if v1, v2 ∈ V ′. For a Tree
T = (VT , ET), n ∈ VT is called a node.

Tree-width[9] is most likely the best studied and understood width measure
for graphs. It measures how similar a graph is to a tree. Hence, a tree has tree-
width 1 while a complete graph with n vertices has tree-width n− 1.

Definition 1. Let G = (V,E) be a graph, T = (VT , ET) a tree and V : VT →
2V , t �→ Vt a function. We call (T,V) a tree-decomposition of G if it fulfils the
following three conditions

1. V =
⋃

t∈VT
V(t)

2. For each e = {u, v}, e ∈ E there is a node t ∈ VT so that u, v ∈ V(t)
3. For nodes t1, t2, t3 ∈ VT where t2 lies on a path from t1 to t3 there is always

V(t1) ∩ V(t3) ⊆ V(t2)
The width of a tree-decomposition (T,V) is max{|V(t)|−1 ; t ∈ VT }. The lowest
width of all possible tree-decompositions is the tree-width of G or tw(G).

Branch-width is a width measure that was introduced in [10]. Since its invention
it has been generalized, and here the definition of [11] is used and extended to
suit our needs.

84 M. Beyß

Definition 2. Let V be a finite set and f : 2V → R a function. If for any set
X ⊆ V f has the property that f(X) = f(V \X), it is symmetric.

A subcubic tree is a tree in which every node has degree at most three. If T
is a subcubic tree and L : V → {v ; v is a leaf in T } a surjective function, then
(T, L) is called a partial branch-decomposition of f . If f is bijective, (T, L) is a
total branch-decomposition of f .

For an edge e ∈ T , T \{e} induces a partition (X,Y) of the leaves of T . The
value of f(L−1(X)) is the width of the edge e of the partial branch-decomposition
(T, L). The maximum width over all edges of T is the width of the partial
branch-decomposition (T, L). The minimum width over all possible total branch-
decompositions of f is called the branch-width of f , denoted by bw(f).

If f(X) > f(Y), we say X is wider than Y or analogously, Y is narrower
than Y . Consequently, that term can be applied to branch-decompositions.

Rank-width[11] is a recent width measure which is built on branch-width.

Definition 3. Let G = (V,E) be a simple, connected, undirected graph without
loops and M its adjacency matrix over GF (2). By MX

Y we denote the submatrix
of M with rows in X and columns in Y , for X,Y ⊆ V . For X ⊂ V we define
the cut-rank as cutrk(X) = rk(MX

X
) where rk is the standard matrix rank and

X is the set complement of X in V .
Obviously, the cut-rank function is symmetric, for that reason we can define

the branch-width of the cut-rank function of a graph G as the rank-width of G,
denoted as rw(G). Analogously, the term (partial) rank-decomposition can be
defined.

Like rank-width, boolean-width[12] is the branch-width of a special function, in
this case the cut-bool function.

Definition 4. Let G = (V,E) be a graph and let N(a) be the set of vertices ad-
jacent to a ∈ G. For X ⊂ V we define UN(X) to be the union of neighbourhoods
of subsets of X in X.

UN(X) = {S ⊆ X ; ∃ A ⊆ X ∧ S = X ∩
⋃

a∈A

N(a)} (1)

With this the cut-bool function can be defined.

cutbool : 2V → R, X �→ log2 |UN(X)| (2)

The branch-width of the cut-bool function of a graph G is called boolean-width
of G, denoted by boolw(G).

Remark 1. The set of GF (2)-sums of neighbourhoods of subsets of X in X is
called SN(X).

SN(X) = {S ⊆ X ; ∃ A ⊆ X ∧ S = X ∩
∧

a∈A

N(a)} (3)

We can easily see ([12])that cutrk(X) = log2 |SN(X)|, which shows that boolean-
width and rank-width are quite closely related.

Fast Algorithm for Rank-Width 85

3 An Upper Bound Algorithm

This Section describes a heuristic algorithm for rank-width, which is an im-
proved version of the boolean-width algorithm presented in [1]. Adapting their
algorithm for rank-width is easily possible as both width measures are closely
related branch-widths (c.f. Remark 1). However, this algorithm does not carry
some of the limitations of its boolean-width variant because the cut-rank func-
tion is much easier and faster to calculate than the cut-bool function.

3.1 Overview

The goal of this algorithm is to heuristically finda narrow total rank-decomposition
for a given graph.At the beginning an initial rank-decomposition is calculated, and
then attempts to improve it are made. In a first step we assume that there already
exists a total rank-decompositionR = (T, L).

Algorithm 1. Main loop

Input: a graph G = (V,E)
Output: a total decomposition R = (T,L) of G
1: Let T be an empty tree and L : ∅ → ∅
2: best ← ∞
3: R← (T,L)
4: while algorithm should keep running do
5: e = (n1, n2)← first edge of R
6: ImproveSubtree(n1)
7: ImproveSubtree(n2)
8: if R is total then
9: Ropt ← R � new best decomposition
10: best← Width(R)
11: else
12: R← Ropt � reset decomp.
13: end if
14: end while
15: return Ropt

Consequently, we skip the initialisation and start at line 4 of Algorithm 1.
Inside the while loop it is tried to improve the given rank-decomposition.
ImproveSubtree returns a total decomposition if and only if an improvement
could be made. Accordingly, the next steps depend on whether R is total or
not. If a better decomposition is found, it is saved along with its width (line 9).
Otherwise R is reset. This is repeated for a certain amount of time.

For initialisation an empty decomposition is created. This has to be considered
for the ImproveSubtree routine. The first rank-decomposition is calculated
greedily while later calculations use a mix of greedy and random decisions.

86 M. Beyß

Algorithm 2. ImproveSubtree

Input: a subtree rooted at n
Output:
1: if n is a leaf then
2: (X,Y) ← Split(n)
3: else
4: (X,Y) ← RandomSwap(n)
5: end if
6: if max(cutrk(X), cutrk(Y)) < best then
7: remove subtrees rooted at n (if any)
8: add children n1, n2 to n
9: ∀x ∈ X : L(x) ← n1, ∀y ∈ Y : L(y) ← n2

10: end if
11: if n has children n1 and n2 of width < best then
12: ImproveSubtree(n1), ImproveSubtree(n2)
13: end if

Algorithm 2 shows the functionality of the ImproveSubtree routine. If the
root of the subtree is an internal node, a good split is already known and we try
to randomly improve it. Otherwise a good split has to be calculated greedily.
Assume that the node n has some children, and thus the RandomSwap routine
is called. In Algorithm 2.6 it is now checked if the new cuts are narrow enough. If
this is the case, the new split is assigned to the children n1 and n2. Thereby the
subtrees rooted at them become meaningless and are removed. Then in line 12
the ImproveSubtree routine is called for the new split. In case no sufficiently
narrow split could be found, the old one is reused, provided that it is narrow
enough.

If the subtree consists just of the node n, a whole new partition has to be cal-
culated with the call to the Split function in line 2. In case a sufficiently narrow
one is found, two new leaves are added to n and labelled with the split. Then
for these nodes ImproveSubtree is called. If the ImproveSubtree function is
called with the initial rank-decomposition, there is always a new split calculated
because it does not exist an old one that could be altered. As already mentioned,
the first run always returns a total rank-decomposition. Later this may not al-
ways be the case. If Split is not able to find a good partition, or the old one
is not good enough and RandomSwap does not find a better one, the node n
does not have any children. Hence, ImproveSubtree stops there and returns
a partial rank-decomposition.

Splitting a leaf (Split) is done in a greedy way. We start with the partition
(X,Y) = (∅, L−1(n)) and then greedily move on element at a time from Y to X .
To be precise we exchange that y ∈ Y that leads to a minimal max{cutrk(X ∪
{y}), cutrk(Y \ {y})}. If there are several such y we chose one randomly. In
the end, we pick that pair (X,Y) so that max{cutrk(X), cutrk(Y)} becomes
minimal. Again, there may be more than one partition with equally low width
and we have to chose one randomly

Fast Algorithm for Rank-Width 87

There are some constraints for the partition (X,Y), namely X and Y are not
allowed to be too small, i.e. ≥ c · ∣∣L−1(n)

∣
∣ (and ≥ 1 of course). Later in this

work c is referred to as the split factor.
Swapping labels (RandomSwap) is done if the node n has children n1, n2.

Basically, there is an exchange of elements, i.e. n1 gets labels from n2 and n2

gets labels from n1. Let X be L−1(n1) and Y = L−1(n2). Then the random
subsets X ′ ⊂ X and Y ′ ⊂ Y are moved to the other set. The subsets have some
size constraints so that the partition (X,Y) still fulfils the size constraints of the
Split function.

Pseudo code implementations of Split and RandomSwap are not shown
here for conciseness. Moreover, they are extremely similar to those in [1].

3.2 Results and Discussion

To get real life results, graphs from TreewidthLIB [8] are investigated. Treewidth-
LIB is a collection of 710 graphs from many different fields like computanional
biology, probabilistic networks, TSP instances and more. Taking these graphs
also enables to compare results for boolean-width calculated in [1], tree-width
and rank-width on the same graph. We only use graphs that have between 25
and 256 nodes. The algorithm is able to handle much bigger graphs, but only
some are tried, mainly because the algorithm that is presented in Section 4 only
works on graphs up to that size. Moreover, results for boolean-width were only
found for smaller graphs, so a comparison would not be possible.

For many graphs there exist preprocessed versions for tree-width. These are
only used if the original graph is too big. That reduction leaves 193 graphs.
For 114 of them results for boolean-width exist, for 167 an upper-bound for
tree-width is known.

For every graph several runs with different configurations were made and we
use the best result that any of this runs could produce. In general, a low split-
factor and a high amount of greedy choices lead to better results.

Figure 1 shows a comparison of our results with known upper bounds for tree-
width and boolean-width. The dotted line in both Figures marks the equality of
both parameters.

In theory, rank-width can be as high as 2k on a graph with boolean-
width k [12]. While rank-width is sometimes almost equal to or better than
boolean-width, in most of the cases boolean-width is significantly lower. The
ratio between boolean-width and rank-width is between 1.33 and 0.32 with an
average of 0.57.

In [13] a tight bound connecting tree-width and rank-width is established:
rw(G) ≤ tw(G) − 1. This bound is beaten by most of the results the algorithm
could produce. On average the known upper bound for tw(G)− 1 is 70% higher
than our bound for rank-width. We are also able to find rank-decompositions
for graphs on which no bounds for tree-width are known.

Some results are shown in Table 1. The first graph 1bkf is from the field
of computational biology. The graph miles1500 is converted from the stanford
graph base [14]. The myciel6 graph is a Mycielskian graph from the second

88 M. Beyß

0 10 20 30 40 50 60
0

50

100

150

200

Rank−width

T
re

e−
w

id
th

(a) Tree-width

0 5 10 15 20 25 30 35 40
0

5

10

15

20

Rank−width

B
oo

le
an

−
w

id
th

(b) Boolean-width

Fig. 1. Comparison of the results with known upper bounds for tree-width and boolean-
width

Table 1. Selected results comparing upper bounds for rank-width, boolean-width and
tree-width

Graph G |G| ‖G‖ rw(G) boolw(G) tw(G)

1bkf 106 1264 28 11.69 36
celar08 458 1655 22 N/A 16
eil51.tsp 51 140 7 5.78 9
fpsol2.i.1 496 11654 8 N/A 66
miles1500 128 5198 15 4.86 77
mulsol.i.1 197 3925 3 4.00 50
myciel6 95 755 24 13.40 35
queen7 7 49 952 12 10.36 35

DIMACS implementation challange [15]. This is also the origin of fpsol2.i.1
and mulsol.i.1 which are based on register allocation of real code. A Delaunay
triangulation of a travelling salesperson problem is the basis for the eil51.tsp

graph. The queen7 7 graph is the graph for a n-queens problem [16]. Finally,
celar08 is a frequency assignment instance [17].

The two examples for a bigger graph, celar08 and fpsol2.i.1, show that
the algorithm can also work successfully on bigger graphs.

We used a standard Desktop Computer with a 2.5 GHz Phenom II processor
and 16GB of Ram. The algorithm ran until it could not make an improvement
for 500 iterations in a row but at most 300 seconds. The actual runtime is in
most cases significantly lower. Hvidevold et al. obviously allowed much longer
runtimes (c.f. Table 1 in [1]). For queen8 12 they showed a boolean-width bound
of 16.7 in 3055s, whereas we could find a rank-decomposition of width 21 in 69s
on that graph. Although they state that they did not aim for “fast benchmark
results”, this difference is definitely noteworthy.

4 A Lower Bound Algorithm

In order to evaluate the quality of the results in Section 3, one has to know the
actual rank-width of the investigated graphs. As it is not known, the algorithm

Fast Algorithm for Rank-Width 89

that is presented here tries to calculate it, or to be more precise, it decides if for
a given k, there exists a rank-decomposition narrower than k.

The next Section provides an overview on how the algorithm works in princi-
ple, before the results are presented in Section 4.2.

4.1 Overview

The algorithm tries to calculate a lower bound by enumerating all possible
rank-decompositions for an induced subgraph, then growing the graph and re-
calculating the new rank-decompositions on the basis of the ones built in the last
step. As it is given a maximal width k, which no rank-decomposition may reach,
those with a higher width can be excluded. Thereby the search space can be
drastically reduced. If at some point no decomposition has a low enough width,
the algorithm is stopped because the bound k is a lower bound for the rank-
width of the given graph. This is possible because the rank-width of a graph is
at most as high as the rank-width of any of its induced subgraphs.

A problem that arises is the very quickly growing number of differ-
ent rank-decompositions. As there have to be at least 2u vertices in a
rank-decomposition before any cut possibly reaches the width of the upper bound
u, no rank-decomposition can be discarded before they have 2u vertices. To dras-
tically reduce the number of rank-decompositions that have to be considered,
we only use partial rank-decompositions with exactly two leaves.

Algorithm 3 depicts this in pseudo code. A rank-decomposition that contains
only two leaves defines exactly one cut. Therefore, we only store one set per
rank-decomposition. When we grow the graph by a vertex v in line 4, two new
possible rank-decompositions Rnew and R are created. One with v in the set and
one without it. The set R stays unchanged, for that reason it is important to
adapt the Width function in line 7.

Algorithm 3. Main loop

Input: set of vertices V
1: v1 ∈ V, V ← V \ {v1}
2: Rinit ← {v1}
3: R ← {Rinit}, R′ ← ∅
4: for all v ∈ V do
5: while R 	= ∅ do
6: R ∈ R
7: if Width(R) < k then � Width function applies to current subgraph
8: Rnew ← R ∪ {v}
9: R′ ← R′ ∪ {Rnew , R}
10: end if
11: R ← R \ {R}
12: end while
13: R ← R′, R′ ← ∅
14: end for

90 M. Beyß

The graph is grown until either all vertices in V have been inserted or R is
empty. If R is empty, no rank-decomposition has a width lower than k. Other-
wise, the algorithm can not make a decision.

Obviously, there are always decompositions narrower than k in particular all
that have a set of size smaller than k. We can show that if a graph has n vertices
only those two-leafed rank-decompositions with at least 1

3n labels in each leaf
represent some unique total rank-decompositions. We can therefore safely ignore
them but we have to keep them for the next step of the algorithm, because by
adding labels to the right leaf it may fulfil the size constraint.

4.2 Results and Discussion

As in Section 3.2, the algorithm was checked against graphs from the treewidth-
LIB. For some graphs no upper bound could be found in the time we provided.
Contrary to that, we were capable of finding very good lower bounds in only a
few minutes on other graphs. In some rare cases, we could even show that the
known rank-decomposition is optimal. Surprisingly, we were able to find many
lower bounds for rank-width which are above the upper bound for boolean-width.

In total, a lower bound could be found for 179 of the 194 graphs, 10 of which
match the upper bound. For 104 graphs there also exists an upper bound for
the boolean-width. In 49 cases the upper bound for boolean-width is at most as
high as the lower bound for rank-width. This is a remarkable result because it
provides a practical evidence that the boolean-width of a graph is in many cases
lower than its rank-width.

Theoretical results have already indicated this by claiming that rw ≤ 2boolw.
While this bound is known to be tight, it remains unanswered how practically
relevant it is especially as on the other hand boolw ≤ 1

4rw
2. Accordingly, it would

be possible that for many instances rank-width is the lower width measure. The
results in this work allow to say that at least for a part of the investigated graphs
boolean-width is lower than rank-width.

Figure 2a shows the relation of boolean-width to the upper bound for rank-
with in a histogram. For 104 graphs there exist an upper bound for boolean-width
and a lower bound for rank-width. The median of their ratio is 0.95. So for 50%
of the graphs we can safely say that its boolean-width is at worst 5% higher than
its rank-width. The lower bound algorithm still suffers from limitations. Due to
memory restriction we were for example not able to prove a lower bound above
10. Thus, for many graphs the optimal rank-width is significantly higher than
the lower bound. Contrariwise, the values for boolean-width are the results of
the first attempt to find boolean-decompositions.

The comparison to the upper bounds for rank-width is more difficult,
mainly because the calculation of high lower bounds demands more resources
than we are able to provide. Nevertheless, we can show the optimality of 10
rank-decompositions. The median of the ratio of lower bound and upper bound
is 0.41. Moreover, for 67% of the graphs we can guarantee a 3-approximation.
The algorithm by Oum [7] is able to find a 3-approximation for every graph, but
there does not exist an implementation until now.

Fast Algorithm for Rank-Width 91

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

5

10

15

20

boolwUB/rwLB

nu
m

be
r

of
 in

st
an

ce
s

(a) Ratio of boolean-width to the lower
bound for rank-width

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

40

rwUB/rwLB

nu
m

be
r

of
 in

st
an

ce
s

(b) Ratio of the rank-width upper bound
to the lower bound

Fig. 2. Histograms for the lower bound

Table 2. Selected results for the lower bound algorithm, UB: upper bound, LB: lower
bound

graph G |G| ‖G‖ rw UBs rw LBs boolw UBs

1bx7 41 195 8 8 4.91
1kw4 67 672 22 10 9.39
BN 12 90 481 24 8 N/A
celar03 200 721 10 5 N/A
celar06 100 350 5 5 3.81
graph01 100 358 19 5 14.61
miles750 128 2113 24 4 N/A
mulsol.i.2 188 3885 6 N/A 4.81
myciel7 191 2360 54 7 N/A

Besides the mentioned limitations, we are able to calculate many good lower
bounds and to find some astonishing results. The results should however not be
interpreted as the best achievable. Rather, they merely show a small part of the
possibilities.

Table 2 shows a selection of graphs with very different results for the lower
bound algorithm. The first two graphs, 1bx7 and 1kw4, are from the field of
computanional biology. BN 12 is a Bayesian network from evaluation of proba-
bilistic inference systems [18]. Both celar graphs as well as graph01 are fre-
quency assignment instances from the EUCLID CALMA project [17]. Finally,
the mulsol.i.2 graph is a colouring problem generated from a register allocation
problem based on real code from the second DIMACS challenge [15].

It was not tried to check if 2 is a lower bound of any graph, as this is only the
case if a graph is distance hereditary [19]. This could be checked much easier and
does most likely not apply to any of the available graphs. Thus, we can safely
assume a lower bound of 2.

92 M. Beyß

5 Conclusion and Outlook

A heuristic algorithm for the calculation of rank-decompositions was developed
and tested against multiple graphs of TreewidthLIB. The algorithm is able to
find rank-decompositions in a fast way. Unfortunately, their width is only low
for a few graphs and in most cases significantly worse than the known bounds
for boolean-width. As it was not clear if this is caused by the high rank-width
of these graphs or by a bad result of the algorithm, a second algorithm was
developed, which is able to decide if a graph has a rank-decomposition of width
lower than k. Runtime and memory usage increase significantly with k, therefore
tight bounds could not be found in most cases. However, we were often able to
push it near or even above the known boolean-width. This evidence suggests
that boolean-width is on graphs from real life application in fact a better, i.e.
lower parameter.

Both algorithms use a rather simple approach and are presumably the first
practical algorithms for upper and lower bounds of rank-width. Nevertheless,
the results are to some extent exceptional, e.g. a rank-decomposition of width 8
on the large fpsol2.i.1 graph or rank-width exactly 5 on the graph celar06 .

The results presented in this work encourage further research on boolean-
width. It would be of particular interest to find a fast and memory-efficient
way to calculate |UN(X)| (see equation 1). Both algorithms which we developed
could then be adapted for boolean-width. Concerning the heuristic algorithm,
even better values would be reachable, assuming that changing the parameters
of the algorithm has a similar effect as for rank-width. Furthermore, a possibility
to calculate lower bounds would be at hand.

Apart from that, this results also suggests further theoretical work as boolean-
width seems to outperform the known width-measures. A strong theoretical
background and access to good decompositions will enable to practically solve
many hard problems on graphs.

References

1. Hvidevold, E.M., Sharmin, S., Telle, J.A., Vatshelle, M.: Finding Good Decompo-
sitions for Dynamic Programming on Dense Graphs. In: Marx, D., Rossmanith, P.
(eds.) IPEC 2011. LNCS, vol. 7112, pp. 219–231. Springer, Heidelberg (2012)

2. Courcelle, B.: The monadic second-order logic of graphs i. recognizable sets of finite
graphs. Information and Computation, 12–75 (1990)

3. Courcelle, B., Makowsky, J., Rotics, U.: Linear time solvable optimization problems
on graphs of bounded clique width. Theory of Computing Systems 33, 125–150
(1999)

4. Langer, A., Reidl, F., Rossmanith, P., Sikdar, S.: Recent progress in practical
aspects of mso model-checking (in preparation, 2012)

5. Bodlaender, H.L., Koster, A.M.: Treewidth computations i. upper bounds. Infor-
mation and Computation 208(3), 259–275 (2010)

6. Hliněny, P., Oum, S.I., Seese, D., Gottlob, G.: Width parameters beyond tree-width
and their applications. Computer Journal, 10–1093 (2007)

Fast Algorithm for Rank-Width 93

7. Oum, S.I.: Approximating rank-width and clique-width quickly. ACM Trans. Al-
gorithms 5(1), 10:1–10:20 (2008)

8. Bodlaender, H., van den Broek, J.W.: Treewidthlib: A benchmark for algorithms
for treewidth and related graph problems (2004),
http://www.cs.uu.nl/research/projects/treewidthlib/

9. Robertson, N., Seymour, P.: Graph minors. iii. planar tree-width. Journal of Com-
binatorial Theory, Series B 36(1), 49–64 (1984)

10. Robertson, N., Seymour, P.: Graph minors. x. obstructions to tree-decomposition.
Journal of Combinatorial Theory, Series B 52(2), 153–190 (1991)

11. Oum, S.I., Seymour, P.: Approximating clique-width and branch-width. J. Comb.
Theory Ser. B 96, 514–528 (2006)

12. Bui-Xuan, B.M., Telle, J.A., Vatshelle, M.: Boolean-width of graphs. Theoretical
Computer Science 412(39), 5187–5204 (2011)

13. Oum, S.I.: Rank-width is less than or equal to branch-width. Journal of Graph
Theory 57(3), 239–244 (2008)

14. Knuth, D.E.: The Stanford GraphBase: a platform for combinatorial computing.
ACM, New York (1993)

15. Johnson, D.J., Trick, M.A. (eds.): Cliques, Coloring, and Satisfiability: Second
DIMACS Implementation Challenge, Workshop, October 11-13, 1993. American
Mathematical Society, Boston (1996)

16. Bell, J., Stevens, B.: A survey of known results and research areas for n-queens.
Discrete Mathematics 309(1), 1–31 (2009)

17. Rlfap, E., Eindhoven, T.U., Group, R.: Euclid calma radio link frequency assign-
ment project technical annex t-2.3.3: Local search (1995)

18. Bilmes, J.: Uai 2006 inference evaluation results. Technical report, University of
Washington, Seattle (2006)

19. Oum, S.I.: Rank-width and vertex-minors. J. Comb. Theory Ser. B 95(1), 79–100
(2005)

http://www.cs.uu.nl/research/projects/treewidthlib/

	Fast Algorithm for Rank-Width
	Introduction
	Preliminaries
	An Upper Bound Algorithm
	Overview
	Results and Discussion

	A Lower Bound Algorithm
	Overview
	Results and Discussion

	Conclusion and Outlook
	References

