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Abstract. Verification of closed timed models by explicit state-space
exploration methods is an alternative to the wide-spread symbolic tech-
niques based on difference bound matrices (DBMs). A few experiments
found in the literature confirm that for the reachability analysis of timed
automata explicit techniques can compete with DBM-based algorithms,
at least for situations where the constants used in the models are rel-
atively small. To the best of our knowledge, the explicit methods have
not yet been employed in the verification of liveness properties in Petri
net models extended with time. We present an algorithm for liveness
analysis of closed Timed-Arc Petri Nets (TAPN) extended with weights,
transport arcs, inhibitor arcs and age invariants and prove its correct-
ness. The algorithm computes optimized maximum constants for each
place in the net that bound the size of the reachable state-space. We
document the efficiency of the algorithm by experiments comparing its
performance with the state-of-the-art model checker UPPAAL.

1 Introduction

TAPAAL [7] is a an efficient, open-source tool for modelling and verification
of Timed-Arc Petri Nets (TAPN) extended with transport/inhibitor arcs and
age invariants. The timing information (age) is attached to tokens and intervals
on input arcs restrict the ages of tokens suitable for transition firing. The ver-
ification techniques implemented in the tool include four different translations
to UPPAAL timed automata [11], supporting both reachability and liveness
properties, and its own verification engine for reachability analysis. The actual
verification in any of those approaches rely on searching the abstracted state-
space represented via zones and using the data structure called Difference Bound
Matrix (DBM) [8].

Unfortunately, for the verification of liveness questions, neither of the meth-
ods return error traces (loops in this case) with concrete time delays and not all
requested features, like weighted arcs, are currently supported. As in the general
case with both open and closed intervals the concrete error traces do not neces-
sarily form a finite loop, we restrict ourselves to the large and practically relevant
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subclass of TAPNs with only closed intervals. It is a folklore result that the con-
tinuous and discrete-time semantics coincide on the class of closed systems (see
e.g. [6]). In nowadays tools the discretization is not sufficiently exploited, perhaps
due to its simplicity as remarked by Lamport [12]. Nevertheless, a few existing
studies show that discretization of the state-space may be beneficial [6,14,12], at
least in the situations with sufficiently small constants that appear in the model.

We suggest an efficient algorithm for verification of liveness properties on
closed TAPNs extended with weighted transport/inhibitor arcs and age invari-
ants. The main contributions include a detailed analysis of the maximum con-
stants individually computed for each place in the net, the complete proof of
soundness and completeness of the proposed algorithm and last but not least
an efficient C++ implementation and its full integration into the model checker
TAPAAL. The efficiency is documented by experiments ranging from standard
academic examples for testing the performance of tools like Fischer’s protocol for
mutual exclusion to larger case-studies from the health-care domain. We compare
the CPU-time performance of our discretized algorithm with the efficient DBM-
based engines, including the state-of-the-art model checker UPPAAL [1]. The
main conclusion is that our algorithm can outperform the DBM-based methods
as long as the constants in the model are not too large. Moreover, the discrete
method scales very well in the size of the problems, allowing us to solve problems
with constants that grow more than linearly while increasing the problem size.
As a bonus, our algorithm always returns loop-like counter examples with con-
crete time delays, a feature that allows the user to easily debug possible design
flaws in the models.

Related Work. Lamport [12], Bozga et al. [6], Beyer [4,3] and Popova-
Zeugmann [14] present different methods for discrete model checking of timed
systems. The first three papers present explicit methods for the model of timed
automata, while the third one studies discretization for Time Petri Nets (TPN),
a Petri net model that is substantially different from ours (timing information is
attached to transitions and not to tokens like in TAPNs). While reachability is
in general undecidable for TAPNs [16], a time-bounded reachability for TAPNs
with discrete semantics was shown decidable in [15]. The technique, however,
does not apply for verification of liveness properties because we search here for
the presence of an infinite execution satisfying certain invariant properties and
such executions are often time-diverging. Our liveness algorithm is instead pa-
rameterized by a number k allowing us to explore markings with at most k tokens
(after the removal of dead tokens that cannot be used for transition firing). In
case of bounded nets it always provides conclusive answers while for unbounded
nets (where the liveness problem is undecidable) the answer is conclusive only
in the cases where a loop (counter example) can be found among markings with
at most k tokens (the number k is a part of the input).

To the best of our knowledge, there are no published experiments for discrete
verification of liveness properties on TAPNs, moreover extended with the ad-
ditional modelling features that require a nontrivial static analysis in order to
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Fig. 1. Producer-Consumer Example

minimize the size of maximum constants relative to the individual places in the
net. We assess the performance of our approach by performing a comparison
against the state-of-the-art model checker UPPAAL and the results are encour-
aging as documented in Section 5.

2 Timed-Arc Petri Nets

Let us first informally introduce the TAPN model. Figure 1 shows an example
of a producer-consumer system. The circles represent places and rectangles rep-
resent transitions. A marking of the net is given by the distribution of timed
tokens; in our case there is one token of age 0 in P0, three tokens of age 1 and
one of age 3 in P2 and one token of age 5 in P4.

Places and transitions are connected by arcs and input arcs to transitions are
labelled by time intervals. The arc from T 1 to P2 has the weight 2, denoted by
2x, meaning that two tokens will be produced by firing the transition. Similarly
the arc from P2 to T 2 has the weight 3, meaning that three tokens of age between
1 and 3 must be consumed when firing T 2, while at the same time there may not
be any token in place P1 (denoted by the inhibitor arc with the circle head). In
our example the transition T 2 can fire, consuming three tokens from the place
P2 (these can be either {1, 1, 1} or {1, 1, 3}) and one token from place P4, while
depositing a new token of age 0 to the place P3. The pair of arcs from P3 to P4
with a diamond head are called transport arcs and they always come in pairs
(in our example with the index :1). They behave like normal arcs but when a
token is consumed in P3 and produced to P4, its age is preserved. Places can
also have age invariants like the one denoted by “inv: ≤ 3” in the place P2. This
restricts the maximum age of tokens present in such places. In our example,
there is already a token of age 3 in P2, meaning that we cannot wait any more
and are without any delay forced to fire some transition.

Let us now give a formal definition of the TAPN model. Let N0 = N ∪ {0}
and N

∞
0 = N0 ∪ {∞}. A discrete timed transition system (DTTS) is a triple

(S ,Act ,→) where S is the set of states, Act is the set of actions and →⊆ S ×
(Act∪N0)×S is the transition relation written as s

a→ s′ whenever (s, a, s′) ∈→.
If a ∈ Act then we call it a switch transition, if a ∈ N0 we call it a delay
transition. By →∗ we denote the reflexive and transitive closure of the relation

→def
=

⋃
a∈Act

a→ ∪ ⋃
d∈N0

d→.
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We define the set of well-formed time intervals as I def
= {[a, b] | a ∈ N0, b ∈

N
∞
0 , a ≤ b} and a subset of I used in invariants as I inv = {[0, b] | b ∈ N

∞
0 }. For an

interval [a, b] we define [a, b]L = a and [a, b]R = b in order to denote the lower and
upper bound of the interval, respectively. Let maxBound(I) denote the largest
bound different from infinity in the interval I, formally maxBound([a, b]) = a if
b = ∞, and maxBound([a, b]) = b otherwise.

We can now define the closed TAPN model with weighted arcs.

Definition 1 (Closed Timed-Arc Petri Net). A closed TAPN is an 8-tuple
N = (P, T, IA,OA, g,w ,Type , I ) where

– P is a finite set of places,

– T is a finite set of transitions such that P ∩ T = ∅,
– IA ⊆ P × T is a finite set of input arcs,

– OA ⊆ T × P is a finite set of output arcs,

– g : IA → I is a time constraint function assigning guards to input arcs,

– w : IA ∪OA → N is a function assigning weights to input and output arcs,

– Type : IA ∪ OA → Types is a type function assigning a type to all arcs,
where Types = {Normal , Inhib} ∪ {Transportj | i ∈ N} such that

• if Type(a) = Inhib then a ∈ IA,

• if Type((p, t)) = Transport j for some (p, t) ∈ IA then there is exactly
one (t, p′) ∈ OA such that Type((t, p′)) = Transport j and w((p, t)) =
w((t, p′)),

• if Type((t, p′)) = Transport j for some (t, p′) ∈ OA then there is exactly
one (p, t) ∈ IA such that Type((p, t)) = Transport j and w((p, t)) =
w((t, p′)),

– I : P → Iinv is a function assigning age invariants to places.

The preset of input places of a transition t ∈ T is defined as •t = {p ∈ P |
(p, t) ∈ IA,Type((p, t)) 
= Inhib}. Similarly, the postset of output places of t is
defined as t• = {p ∈ P | (t, p) ∈ OA}.

Let N = (P, T, IA,OA, g,w ,Type, I ) be a TAPN and let B(N0) be the set of
all finite multisets over N0. A marking M on N is a function M : P −→ B(N0)
where for every place p ∈ P and every token x ∈ M(p) we have x ∈ I (p). The
set of all markings over N is denoted by M(N).

We use the notation (p, x) to denote a token at a place p with the age x ∈ N0.
We write M = {(p1, x1), (p2, x2), . . . , (pn, xn)} for a marking with n tokens of
ages xi located at places pi and we define size(M) =

∑
p∈P |M(p)|. A marked

TAPN (N,M0) is a TAPN N together with an initial marking M0 with all tokens
of age 0.

Definition 2 (Enabledness). Let N = (P, T, IA,OA, g,w ,Type, I ) be a
TAPN. We say that a transition t ∈ T is enabled in a marking M by the

multisets of tokens In = {(p, x1
p), (p, x

2
p), . . . , (p, x

w((p,t))
p ) | p ∈ •t} ⊆ M and

Out = {(p′, x1
p′), (p′, x2

p′), . . . , (p′, xw((t,p′))
p′ ) | p′ ∈ t•} if
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– for all input arcs except the inhibitor arcs the tokens from In satisfy the age
guards of the arcs, i.e.

∀(p, t) ∈ IA.Type((p, t)) 
= Inhib ⇒ xi
p ∈ g((p, t)) for 1 ≤ i ≤ w((p, t))

– for any inhibitor arc pointing from a place p to the transition t, the number
of tokens in p satisfying the guard is smaller than the weight of the arc, i.e.

∀(p, t) ∈ IA.Type((p, t)) = Inhib ⇒ |{x ∈ M(p) | x ∈ g((p, t))}| < w((p, t))

– for all input arcs and output arcs which constitute a transport arc the age of
the input token must be equal to the age of the output token and satisfy the
invariant of the output place, i.e.

∀(p, t) ∈ IA.∀(t, p′) ∈ OA.Type((p, t)) = Type((t, p′)) = Transport j

⇒ (
xi
p = xi

p′ ∧ xi
p′ ∈ I (p′)

)
for 1 ≤ i ≤ w((p, t)).

– for all output arcs that are not part of a transport arc the age of the output
token is 0, i.e.

∀(t, p′) ∈ OA.Type((t, p′) = Normal ⇒ xi
p′ = 0 for 1 ≤ i ≤ w((p, t)).

In Figure 1 the transition T 2 is enabled by In =
{(P2, 1), (P2, 1), (P2, 1), (P4, 5)} and Out = {(P3, 0)}. As the tokens in
the place P2 have different ages, T 2 is also enabled by an alternative multiset
of tokens In = {(P2, 1), (P2, 1), (P2, 3), (P4, 5)}.

A given TAPN N = (P, T, IA,OA, g,w ,Type , I ) defines a DTTS T (N)
def
=

(M(N), T,→) where states are the markings and the transitions are as follows.

– If t ∈ T is enabled in a marking M by the multisets of tokens In and Out
then t can be fire and produce the marking M ′ = (M � In) �Out where �
is the multiset sum operator and � is the multiset difference operator; we

write M
t→ M ′ for this switch transition.

– A time delay d ∈ N is allowed in M if (x + d) ∈ Inv(p) for all p ∈ P and
all x ∈ M(p), i.e. by delaying d time units no token violates any of the age
invariants. By delaying d time units in M we reach the marking M ′ defined
as M ′(p) = {x + d | x ∈ M(p)} for all p ∈ P ; we write M

d→ M ′ for this
delay transition.

A computation of the net M0 → M1 → · · · → Mn is denoted by {Mi}ni=0 and
we call it a run. If the sequence is infinite, we write {Mi}i≥0.

2.1 Liveness Verification Problem

The liveness question asks about the existence of a maximal run where every
marking satisfies some proposition referring to the distribution of tokens. For
that purpose let the set of propositions Φ be given by the abstract syntax ϕ ::=
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Fig. 2. Example of TAPN

p �� n | ϕ1 ∧ ϕ2 | ¬ϕ where �� ∈ {≤, <,=, 
=,≥>}, p ∈ P and n ∈ N0. The
satisfaction relation M |= ϕ is defined in the expected way where M |= p �� n
iff |M(p)| �� n.

Given a TAPN (N,M0), a maximal run is either an infinite run {Mi}i≥0

or a finite run {Mi}ni=0 with Mn �, meaning that Mn does not allow for any
switch or positive-delay transition. A maximal run (finite or infinite) is denoted
by {Mi}.
Definition 3 (The Liveness Problem (EGϕ)). Given a marked TAPN
(N,M0) and a proposition ϕ ∈ Φ, the liveness problem is to decide whether
there is a maximal run {Mi} starting in M0 such that Mi |= ϕ for all i.

We can define the standard dual operator AF by AFϕ
def
= ¬EG¬ϕ, meaning

that eventually the property ϕ will be satisfied on any execution of the net.

3 State-Space Reduction

The state-space of TAPNs is infinite in two dimensions: the number of tokens
can be unbounded and the ages of tokens range over natural numbers. Indeed,
the model (extended with inhibitor arcs and age invariants) has the full Turing
power (see e.g. [16,10]). In order to enable automatic verification, we restrict
ourselves to bounded TAPNs where the maximum number of tokens in any
reachable marking is a priori bounded by some constant k. For restricting the
ages of tokens, we do not need to remember the concrete ages of tokens in a place
that are older than the maximum constant relevant for that place. This idea was
suggested in [16,9] for the basic TAPN model without any additional features.
We shall now refine the technique for the more general class of extended TAPNs
that contain age invariants, transport and inhibitor arcs and we further enhance
it with the reduction of dead tokens in order to optimize its performance.

To motivate the technical definitions that follow, let us consider the net in
Figure 2. Note that in place P3 the relevant ages of tokens are 0 and 1. Any
token of age 2 or more cannot be used for transition firing and can be safely
removed from the net. We shall call P3 the dead-token place with the maximum
constant 1. Any place that contains an invariant, like P1 in our example, will
fall into the category invariant places and the maximum constant will be the
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Carc((p, t)) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min([I (p′)]R, [g((p, t))]R) if Type((p, t)) = Transport j ,

Type((t, p′)) = Transport j , and

I (p′) �= [0,∞]

maxBound(g((p, t))) otherwise

(1)

Cplace(p) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[I (p)]R if [I (p)]R �= ∞
−1 if I (p) = [0,∞] and

∀(p, t) ∈ IA.(g((p, t)) = [0,∞]

max(p,t)∈IA(Carc((p, t))) otherwise.

(2)

Fig. 3. Definitions of Carc and Cplace

upper-bound of the respective invariant. Clearly, no tokens can be older that this
constant but at the same time we may not just remove the tokens that cannot
be used for any transition firing as they could restrict delay transitions in the
future. The remaining places are called standard places meaning that instead of
the ages of tokens that exceed the maximum constant for a given place, we only
need to remember how many there are, but not their exact ages. For example
in the place P0 all outgoing arcs have the guard [0,∞], so it may look like that
we only need to remember the number of tokens, not their ages. Indeed, if there
were no transport arcs this would be the case. However, in our example the
pair of transport arcs moving tokens to P1 increase the maximum constant for
the place P0 to 5 as the concrete age is relevant up to this number in order to
avoid breaking of the age invariant in P1. In general, there might be a series of
transport arcs that can influence the maximum constant for a place and we show
how to optimize such constants to be as small as possible while still preserving
the liveness property we want to verify.

We start by the definition of causality function. The causality function finds
the causality set of places that are linked with the place p by a chain of transport
arcs with the right endpoints of the guard intervals equal to ∞.

Let p ∈ P . The set cau(p) is the smallest set of places such that

– p ∈ cau(p), and
– if p′ ∈ cau(p) and (p′, t) ∈ IA, (t, p′′) ∈ OA such that Type(p′, t) =

Transport j , Type(t, p
′′) = Transport j with [g((p′, t))]R = ∞ and I (p′) = ∞

then p′′ ∈ cau(p).

In the net from Figure 2 we get that for example cau(P0) = {P0, P1}, cau(P1) =
{P1} and cau(P2) = {P2, P1}.

Next we define the maximum relevant constants for input arcs by Equation (1)
in Figure 3 as a function Carc : IA → N0. The first case deals with the situation
when the arc is a transport arc that moves tokens to a place with a nontrivial
age invariant; here it is enough to consider the minimum of the invariant upper-
bound and the largest constant in the guard different from infinity. If this is not
the case, we consider just the maximum bound in the guard.
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Arc Type Carc

P0 → T0 Transport 1 5
P0 → T1 Normal 0
P1 → T2 Transport1 0
P2 → T3 Transport1 10
P2 → T4 Transport1 10

Place Cplace Cmax cat

P0 −1 5 Std
P1 5 5 Inv
P2 10 10 Std
P3 1 1 Dead
P4 −1 −1 Std

Fig. 4. Calculation of Carc, Cplace, Cmax and cat for the TAPN in Figure 2

The constant of a place (without considering any causality) is defined by
Equation (2) in Figure 3 as a function Cplace : P → N0 ∪ {−1}. The constant
is either the upper-bound of a nontrivial age invariant in the place, or −1 if all
arcs from p only have trivial guards; in this case we do not care about the ages
of the tokens in p. Otherwise the constant for p is the largest constant of any
arc starting at p.

We are now ready to divide places into three categories and compute the
maximum relevant constants taking into account the causality set of places. In
liveness verification, the query will also influence the category of places, so we
consider the function Places : Φ → P(P ) that for a given proposition ϕ returns
the set of places that syntactically appear in ϕ. We can now calculate the function
Cmax : P → N0 ∪ {−1} returning the maximum constant for each place (taking
into account also the transport arcs) and the function cat : P → {Inv ,Dead , Std}
returning the category for each place p ∈ P as follows.

– If I (p) 
= [0,∞] then Cmax(p) = [I (p)]R and cat(p) = Inv .
– Otherwise Cmax(p) = max{Cplace(p

′) | p′ ∈ cau(p)} and if either

(i) there is t ∈ T such that (p, t) ∈ IA and Type((p, t)) = Inhib), or
(ii) there is t ∈ T such that (p, t) ∈ IA and [g((p, t))]R = ∞], or
(iii) p ∈ Places(ϕ))

then cat(p) = Std , else cat(p) = Dead .

The conditions (i)–(iii) list all situations where we are not allowed to remove
tokens above the maximum constant as the concrete number of these tokens is
relevant for the behaviour of the net or for the the proposition ϕ. An example of
the calculation of Cmax and cat is given in Figure 4, assuming Places(ϕ) = {P1}.

3.1 Bounded Marking Equivalence

Given the maximum constants and categories of places, we can now define an
equivalence relation on markings that will have a finite number of equivalence
classes and can be used in the liveness checking algorithm.

Let Cmax and cat be computed as above and let M be a marking. We split M
into two markings M> and M≤ as follows: M>(p) = {x ∈ M(p) | x > Cmax(p)}
and M≤(p) = {x ∈ M(p) | x ≤ Cmax(p)} for all places p ∈ P . Clearly, M =
M> �M≤.
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Definition 4 (Bounded Marking Equivalence). Let M and M ′ be markings
on a TAPN N . We say that M and M ′ are equivalent, written M ≡ M ′, if

– M≤(p) = M ′
≤(p) for all p ∈ P , and

– |M>(p)| = |M ′
>(p)| for all p ∈ P where cat(p) = Std.

The equivalence relation implies that in Dead places we do not care about the
tokens with ages greater than Cmax and that in Std places we do not care about
tokens with ages greater than Cmax, as long as there are equally many of them
in both markings. An important correctness argument is the fact that that the
relation ≡ is a timed bisimulation where delays on one side and matched by
exactly the same delays on the other side (see e.g. [13]). The proof is done by a
detailed case analysis and can be found in the full version of the paper.

Theorem 1. The relation ≡ is a timed bisimulation.

In order to calculate a representative marking for each ≡-equivalence class, we
define the function cut and present Lemma 1 that is proved in the full version
of the paper.

Definition 5 (Cut). The function cut : M(N) → M(N) is given by

cut(M)(p) =

⎧
⎨

⎩

M≤(p) if cat(p) ∈ {Inv ,Dead}
M≤(p) �

{
Cmax(p) + 1, . . . ,Cmax(p) + 1
︸ ︷︷ ︸

|M>(p)| times

}
if cat(p)=Std

for all p ∈ P . We call the marking cut(M) canonical.

Lemma 1 (Properties of Canonical Markings)

1. For any marking M we have M ≡ cut(M).
2. Given two markings M1 and M2 if M1 ≡ M2 then cut(M1) = cut(M2).
3. Let M be a marking and ϕ ∈ Φ be a proposition then M |= ϕ iff cut(M) |= ϕ.

4 Liveness Algorithm

We can now present Algorithm 1 answering the liveness verification problem.
It is essentially a depth-first search algorithm where the Waiting stack stores
the currently unexplored successors that satisfy the invariant property ϕ. In the
Trace stack we keep track of the run from the initial marking to the currently
explored marking. A counter recording the number of unexplored successors
for each marking on the Trace stack is used for the coordination between the
Trace and Waiting stacks. The main loop contains a boolean variable indicating
whether the current marking is the end of a maximal run (in case no further
successors exist). If this is the case, the algorithm terminates as a maximal run
satisfying ϕ has been found. Otherwise new canonical successors (by transition
firing and one-unit delay) are added by calling the function AddToPW , making
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1 input: A TAPN (N,M0), proposition ϕ ∈ Φ and k ∈ N s.t. size(cut(M0)) ≤ k.
2 output: True if there is a maximal run {Mi} s.t. Mi |= ϕ and

size(cut(Mi)) ≤ k, false otherwise.
3 begin
4 Passed := ∅;Waiting.InitStack(); Trace .InitStack();M ′

0 := cut(M0);
5 if M ′

0 |= ϕ then
6 Waiting .push(M ′

0);
7 while ¬Waiting.isEmpty() do
8 M := Waiting .pop();
9 if M �∈ Passed then

10 Passed := Passed ∪ {M}; M.successors :=0;
11 Trace .push(M); endOfMaxRun := true;

12 foreach M ′ s.t. M t→ M ′ do
13 AddToPW(M ,M ′); endOfMaxRun := false;

14 if min(p,x)∈M([I (p)]R − x) > 0 then

15 AddToPW(M ,M ′) where M
1→ M ′; endOfMaxRun := false;

16 if endOfMaxRun then
17 return true /* terminate and return the Trace stack */ ;

18 else
19 Trace .top().successors−−
20 while ¬Trace .isEmpty() ∧ Trace .top().successors = 0 do
21 Trace .pop();
22 if Trace .isEmpty() then
23 return false /* terminate the whole algorithm *.;
24 Trace .top().successors−−;

25 return false;

26 AddToPW(M ,M ′): begin
27 M ′′ := cut(M ′);
28 if M ′′ ∈ Trace then
29 return true /* terminate and return the loop on the Trace stack */;
30 if M ′′ /∈ Passed ∧M ′′ |= ϕ ∧ size(M ′′) ≤ k then
31 Waiting .push(M ′′);
32 M.successors++;

Algorithm 1. Liveness algorithm

sure that only markings that satisfy ϕ are added to the Waiting list. The func-
tion also checks for the presence of a loop on the Trace stack, in which case the
algorithm terminates and returns true. A bound k is also an input to the algo-
rithm, making sure that only canonical markings with no more than k tokens
are explored during the search. If the net is k-bounded, this has no effect on the
actual search. For unbounded nets, our algorithm still terminates and provides
a suitable under-approximation of the net behaviour, giving conclusive answers
if a loop is found and inconclusive answers otherwise.
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Table 1. Fischer’s protocol scaled by the number of processes (rows) and the size of
maximum constant (columns). First line is a native UPPAAL model, second line is the
fastest translation to timed automata and using the UPPAAL engine, and third line is
our discrete TAPAAL engine. The symbol � stands for more than 900 seconds.

Processes \ Constants 3 5 7 9 11 13 15

5
0.1
0.1
0.1

0.1
0.1
0.1

0.1
0.1
0.3

0.1
0.1
0.7

0.1
0.1
1.8

0.1
0.1
3.7

0.1
0.1
7.9

6
0.2
0.9
0.1

0.2
0.9
0.1

0.2
0.9
0.5

0.2
0.9
1.8

0.2
0.9
5.3

0.2
0.9

13.3

0.2
0.9

29.6

7
4.6

47.5
0.1

4.6
47.2
0.2

4.6
47.0
1.1

4.6
47.1
4.5

4.6
47.2
14.4

4.6
47.4
40.7

4.6
47.1
99.3

8
422.5�
0.1

422.6�
0.4

421.5�
2.4

422.4�
10.5

421.9�
37.8

422.1�
115.2

422.3�
309.8

9
��

0.1

��
0.7

��
4.5

��
22.4

��
90.5

��
300.4

��
888.2

10
��

0.1

��
1.1

��
8.2

��
45.9

��
202.2

��
733.5

���
Table 2. Blood transfusion case study scaled by the number of patients; time is seconds

Patients Translations TAPAAL

1 0.11 0.04
2 28.08 0.93
3 >5400.00 30.47
4 >5400.00 1072.50

Theorem 2 (Correctness). Let TAPN (N,M0) be a closed TAPN, ϕ ∈ Φ
a proposition and k ∈ N a number such that size(cut(M0)) ≤ k. Algorithm 1
terminates, and it returns true if there is a maximal run {Mi} such that Mi |= ϕ
and size(cut(Mi)) ≤ k and false otherwise.

Proof (sketch). Termination follows from the fact that we only store markings
after applying the function cut , giving us together with at most k tokens in the
net a finite state-space. The soundness and completeness part of Theorem 2 rely
on Lemma 1 and Theorem 1 and details are given the full version of the paper.

��

5 Experiments

The liveness algorithm has been implemented and fully integrated into the ver-
ification tool TAPAAL [7] and it can be downloaded (as a beta-release) from
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http://www.tapaal.net. We performed a number of experiments1 and due to
the space limitation mention only two of them. The results of verification of Fis-
cher’s algorithm for mutual exclusion are given in Table 1. We asked here an EG
query checking whether there is an infinite schedule allowing us to repeatedly
enter the critical section within a given time interval. The query is not satisfied
and hence the whole state-space where the proposition holds is searched. The
table shows the verification times for a native UPPAAL model of the protocol
(first line), the best time for a translation (see [7] for details) to timed automata
and then using the UPPAAL engine (second line) and our discretized algorithm
(third line). The gray cells mark the experiments where our method was the
fastest one. The reader can observe that the DBM-based methods in the first
two lines are immune to scaling of constants. On the other hand, our algorithm
scales significantly better with increasing the number of processes. Hence for
larger instances, we can handle larger and larger constants while still outper-
forming the DBM-based methods. In fact, the size of the constants we can deal
with for the given time limit grows more than linearly as we increase the num-
ber of processes. We have observed similar behaviour in other case studies too,
like e.g. in the Lynch-Shavit protocol that is presented in the full version of the
paper.

In order to test the performance on a realistic case-study, we verified sound-
ness (AF query) of a blood transfusion medical workflow (details can be found
in [2]) where the maximum constant is of size 90 and it considerably outper-
forms the translation approach verified via UPPAAL engine. Results are given
in Table 2 and we compare our engine with the fastest translation to UPPAAL
timed automata.

6 Conclusion

We presented a discrete algorithm for verification of liveness properties on ex-
tended timed-arc Petri nets and provided its implementation and integration into
the model checker TAPAAL. The main technical contribution is the partitioning
of the places in the net to three categories and an optimized computation of
the individual maximum constants, allowing us to design an efficient loop detec-
tion algorithm based on depth-first search. We proved the algorithm correct and
demonstrated on several examples its applicability as an alternative to DBM-
based search algorithms. The techniques can be easily adapted to work also for
reachability analysis.

Our approach is well suited for larger models with relatively small constants.
Due to an on-the-fly removal of dead tokens that appear in the net, we were able
to successfully verify models that are in general unbounded and where DBM-
based methods give inconclusive answers (for example in case of the Alternating
Bit Protocol (ABP) with perfect communication channels presented as the stan-
dard example in the TAPAAL distribution). In the future work we shall focus

1 We report here the data obtained on MacBook Pro 2.7GHz INTEL Core i7 with 8
GB RAM and 64-bit versions of UPPAAL and TAPAAL.

http://www.tapaal.net
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on space-optimization of the proposed technique, on a symbolic computation
of the delay operator and on comparing the method to BDD-based state space
exploration (as exploited e.g. in the tool Rabbit [5]).
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