Parameterized Algorithms for Stochastic Steiner
Tree Problems

Denis Kurz, Petra Mutzel, and Bernd Zey

Department of Computer Science, TU Dortmund, Germany
{denis.kurz,petra.mutzel,bernd.zey}@tu-dortmund.de

Abstract. We consider the Steiner tree problem in graphs under uncer-
tainty, the so-called two-stage stochastic Steiner tree problem (SSTP).
The problem consists of two stages: In the first stage, we do not know
which nodes need to be connected. Instead, we know costs at which we
may buy edges, and a set of possible scenarios one of which will arise
in the second stage. Each scenario consists of its own terminal set, a
probability, and second-stage edge costs. We want to find a selection of
first-stage edges and second-stage edges for each scenario that minimizes
the expected costs and satisfies all connectivity requirements. We show
that SSTP is in the class of fixed-parameter tractable problems (FPT),
parameterized by the number of terminals. Additionally, we transfer our
results to the directed and the prize-collecting variant of SSTP.

1 Introduction

The Steiner tree problem in graphs (STP) plays a central role in network design
[14]. Tt asks for a minimum-cost subgraph of an undirected, weighted graph G
that interconnects a given set of terminal nodes in G. It has applications in
VLSI design [I520], various communication systems, and often appears as a
sub-problem of other network design problems [14].

The Steiner tree problem belongs to Karp’s classical 21 NP-complete problems
[16]. It is known to be NP-hard even if the input graph is unweighted and
bipartite, i.e., containing only edges between terminal and non-terminal nodes
[14]. Bern and Plassmann showed that the Steiner tree problem is Max-SNP-
hard [I]. Therefore, there is no polynomial-time approximation scheme for STP.
The best known constant-factor approximation was introduced by Byrka et al.
[5] and guarantees an approximation factor of 1.39.

The most popular parameterized algorithm for STP is due to Dreyfus and
Wagner [9]. In 1971, they introduced an algorithm that solves STP instances with
n nodes, m edges, and t terminals in time O(3'n?), placing it in the complexity
class FPT (for an introduction to the field of parameterized complexity see, e.g.,
[8U17]). Bjorklund et al. [3] were able to speed up the classical Dreyfus-Wagner
algorithm to achieve a running time of O(2!n?M +nmlog M) if all edge weights
are in {1,..., M}. At the same time, Fuchs et al. [I0] published an algorithm

with running time (2 + 5)%0(1/(5/“‘(1/5))4) for any é < ¢ <1 and sufficiently

A. Kuéera et al. (Eds.): MEMICS 2012, LNCS 7721, pp. 143 2013.
© Springer-Verlag Berlin Heidelberg 2013

144 D. Kurz, P. Mutzel, and B. Zey

small § > 0. With respect to the graph’s treewidth tw the best parameterized
algorithm is due to Chimani et al. [7] and requires running time O(B3,, ,-tw-n),
where By is the k-th Bell number.

In the directed Steiner tree problem (DSTP), we are given a directed, weighted
graph, a root node and a set of terminals. The objective is to find a minimum-cost
subgraph that provides a directed path from the root node to each terminal. This
problem is of theoretical interest as there are approximation-preserving reductions
from many other problems to DSTP [6]. Unfortunately, there is no polylogarithmic
approximation algorithm for DSTP unless NP C ZTIME(nPo¥1os(m) [T3].

In practice, we often have to face uncertainty. For example, a telecommuni-
cation company has to deal with volatile cable costs or an unpredictable set of
customers. One approach to tackle uncertainty is (two-stage) stochastic opti-
mization, cf. e.g. [2]. In the two-stage stochastic Steiner tree problem (SSTP),
we do not know which terminal nodes have to be connected. Instead of buying
edges to connect a given terminal set, we may buy edges that seem to be a good
choice given a set of future scenarios one of which will eventually arise. We have
to pay the current costs in this so-called first stage.

In a second stage, one of the scenarios is drawn at random, based on a pre-
viously known distribution. Each scenario is characterized by its terminal set,
second-stage edge costs and a probability. We have to buy edges at second-stage
costs to extend the first-stage edges to a Steiner tree for the scenario’s terminal
set. The expected cost of a solution is the sum of first-stage edge costs plus the
weighted sum of second-stage edge costs of all scenarios. The weights correspond
to the scenario’s probability.

Obviously, the edges that have to be bought in the second stage depend on
the edges bought in the first stage. We want to find a set of first-stage edges that
minimizes the expected cost.

The first constant-factor approximation for SSTP was introduced by Gupta
et al. [I2]. Their approach requires the second-stage costs to be globally uniform
over the different scenarios. They also require an inflation factor, i.e., a fixed
ratio between first- and second-stage costs for all edges. Further approximation
algorithms for the SSTP were provided by Gupta et al. [IT] and by Swamy and
Shmoys [19]. Chimani et al. [4] introduced an ILP-based exact algorithm for
SSTP.

2 Definitions

A directed graph G = (V, E) consists of a finite set V of nodes and a set E C
V' xV of edges. In an undirected graph, edges are considered to have no direction,
and hence (v, w) = (w,v).

A weighted graph G = (V, E, ¢) is a graph with an additional edge cost func-
tion ¢ : E + R{. It is symmetrical for undirected graphs, i.e., c((v,w)) =
¢((w,v)) for each (v,w) € E.

The optimization problems defined below are minimization problems accord-
ing to [I8]. We characterize them by giving their set of instances, the set of
feasible solutions for each instance, and a value function for selected elements.

Parameterized Algorithms for Stochastic Steiner Tree Problems 145

The undirected and directed version of the Steiner tree problem differ slightly.
We will focus on the undirected case first, which is also the most special variant.

Let G = (V, E) be an undirected graph. A Steiner tree S for a terminal set
T CV in G is a connected subgraph of G that spans T. We allow S to contain
non-terminal nodes of G. Such nodes are then called Steiner nodes. Note the
difference between non-terminal and Steiner nodes: You can tell whether a node
is a non-terminal node by just looking at the input. In contrast, a Steiner node
is part of the solution. Every Steiner node is also a non-terminal node.

An instance of the Steiner tree problem (STP) consists of an undirected,
weighted graph G = (V,E,c¢) and a terminal set T C V. Feasible solutions
are subsets of E that form the edge set of a Steiner tree for T' in G. Edge values
are their costs ¢. The cost ¢(S) of S is the sum of costs of its edges.

The cost of a Steiner tree is used as a quality measure when considering
Steiner optimization problems. Since it only depends on the edges, we will iden-
tify Steiner trees with their corresponding edge sets.

Now, let G = (V, E) be a directed graph with designated root node r € V
and T C V a terminal set in G. A Steiner arborescence is a subgraph S of G
such that for every terminal ¢ € T there exists a directed path from r to ¢ in S.
As the name suggests, minimal Steiner arborescences are arborescences rooted
in r. Steiner nodes and costs are defined analogously to the undirected case.

An instance of the Steiner arborescence problem (directed Steiner tree problem,
DSTP) consists of a directed, weighted graph G = (V, E, ¢) with designated root
node r € V, and a terminal set T C V. Feasible solutions are subsets of F that
form the edge set of a directed Steiner tree for T in G rooted in r. Edge values
are their costs c.

An instance of the prize-collecting Steiner tree problem (PCSTP) consists of
an undirected, weighted graph G = (V, E, ¢) and node profits g : V — Raﬂ The
set of nodes with positive profit is denoted by T := {v € V' | g(v) > 0}. Feasible
solutions consist of a terminal set T C T and a Steiner tree F C E for T in G.
The value of a terminal ¢ € T is given as —g(t), while the value of an edge is its
cost c. Therefore, the value of a solution is) . pc(e) — > ,c7 9(t).

A stochastic Steiner tree combines several Steiner trees for different terminal
sets. Let G = (V, E) be a graph, r € V a designated root node, 7° = {r}, and
T = {TF | 1 < k < K} aset of K terminal sets. A stochastic Steiner tree
for T in G rooted in 7 consists of first stage edges F° C E and second stage
edges F* C E for each scenario k that meet the following requirements. For each
0 < k < K, there must exist a connected Steiner tree for T in G whose edge
set is 'O U F*. Note that this requires the first stage edges to be connected and
to include the root node if there are any first stage edges.

An instance of the two-stage stochastic Steiner tree problem (SSTP) consists of
an undirected, weighted graph G = (V, E, c°) with designated root node r € V,
and a set of scenarios {(T*, c* p¥) |1 < k < K}, each consisting of a terminal
set T, an edge-cost function c*, and the scenario’s probability p*, satisfying
Zle p¥ = 1. Feasible solutions are stochastic Steiner trees for {T% |1 < k < K}
in G rooted in r. The value function v; is given as

146 D. Kurz, P. Mutzel, and B. Zey

() A (e), if e € FO©
vy (e) :=
! pk-ck(e), ifee FF.
In other words, we ask for a stochastic Steiner tree (F°, ..., FX) that minimizes
the expected cost
K
PIEECED D BEAC)
e€F0 k=1 e€Fk

Analogously to the SSTP, we define a stochastic variant of PCSTP. An instance
of the two-stage stochastic prize-collecting Steiner tree problem (SPCSTP) con-
sists of an undirected, weighted graph G = (V, E, c°) rooted in r € V and a set
of K scenarios. Each scenario consists of a node profit function g% : V — R,
edge costs ¢* and a probability p* with Zle p* = 1. The set of nodes with
positive profit in scenario k is denoted by T* := {v € V | g¥(v) > 0}. Feasible
solutions consist of terminal sets 7 = {T% C T* | 1 < k < K} and a stochastic
Steiner tree for 7 in G rooted in r. The value function vq is given as

v(z) = v1(x), fzekFk
T -0 gh @), ifxe TR

Intuitively, we do not force the solution to connect all terminals, but only the
most profitable ones. Therefore, we subtract the profit of the nodes that are
connected from the cost of the corresponding stochastic Steiner tree. Again,
node profits g* have to be weighted by p*.

3 Solving SSTP

In the following section we describe an algorithm to solve the two-stage stochastic
Steiner tree problem with a running time that is parameterized by the number
of terminals summed up over the single scenarios. The approach is based on the
algorithm by Dreyfus and Wagner [9], which can be described as follows:

The classical algorithm by Dreyfus and Wagner utilizes the method of dynamic
programming: Solve a problem by formulating it recursively and solving the sub-
problems in increasing order. In fact, Dreyfus and Wagner realized the following
recursive nature of the Steiner tree problem. Let S be an optimal Steiner tree
for a given weighted, undirected graph G = (V, E,¢), and pe T CV,|T| > 3, a
terminal. There exists a joining node ¢ in S and a partition (71,75) of T that
meets the following requirement. The Steiner tree S can be split into three sub-
trees S1, S92, S3, where S1, .52 are Steiner trees for T3 U{q}, ToU{q}, respectively,
and Sj is a shortest path from p to q.

The Steiner tree problem is solved by populating a table M of values of sub-
solutions (p,T”). The subsolutions are solved in increasing order. For |T'| = 1,
optimal Steiner trees connecting 7" U {p} are shortest paths. For |T'| > 1, a

Parameterized Algorithms for Stochastic Steiner Tree Problems 147

Fig. 1. Schematic diagram of the reduction from SSTP to DSTP with an example edge
(v, w)

joining node and a partition of T is found by enumerating the nodes in V' and
the power set of T', respectively.

This approach can be carried over to the directed Steiner tree problem with
designated root by constructing the optimal solution starting from the root. For
a subproblem (p,T”), p serves as the root node.

We use these results to solve some stochastic versions of the Steiner tree
problem. Let G = (V, E, ¢) be a weighted, undirected graph with dedicated root
node r € V, and 7 := {(T*,c*p*) | 1 < k < K} a set of K scenarios. We
construct an instance of the DSTP that has the same optimal value as the SSTP
instance (G,r, 7). An optimal solution to the transformed instance also implies
an optimal solution to the SSTP instance, and vice versa.

The directed graph G’ = (V', E’,¢’) of this instance contains K + 1 copies
of G, cf. Figure [l Its node set V' is the union of all V* := {v* | v € V},
0 < k < K. The edge set E’ includes the corresponding edge sets of G, i.e.,
Ek = {(v*,wk), (w®, v*) | (v,w) € E} for 0 <k < K.

Terminals of scenario k in G also become terminals in the new graph. Further,
the root node becomes a terminal in the first-stage copy of G. This yields T" =
{rYu{vf |lveT?\ {r},1 <k < K}.

We will interpret the copies like this: Whenever we buy an edge (v°,w°) in
the transformed version, we also buy this edge in the original SSTP instance,

148 D. Kurz, P. Mutzel, and B. Zey

namely in the first stage. Accordingly, buying an edge (v*,w*), k > 0, suggests
buying the corresponding edge in scenario k. We call (VY EY) the first-stage
copy and (V¥ EF) 1 < k < K, the second stage copy of the k-th scenario.

Now we have to make sure that there is a way to switch between the different
copies of G in H. To accomplish this, we simply add edges between them. As
two scenarios k and &’ only interact in the first stage, it should not be allowed to
switch from k to k’ directly. Therefore, we only add transition edges between the
first-stage copy on the one side and the various second stage copies on the other
side. This yields E' = E U J;_, E* with E := {(°,0%) | v € V,1 < k < K}.
Note that we only add edges from the first- to the second-stage copies, but not
in the reverse direction.

The edge weights ¢’ for the edges in E’ are applied straightforwardly. Every
edge weighs as much as its corresponding edge in E contributes to the value
of the stochastic Steiner tree. Hence, first-stage edges remain unchanged, i.e.,
(0%, w?)) = ¢((v,w)) for (v,w) € E. Second-stage edges have to regard the
probability p* of the scenario k they belong to, i.e., ¢/((v*, w*)) = p* - ((v,w))
for1 <k <K, (v,w) € E. We do not want to restrict the number of transitions
between first- and second-stage edges and therefore, we assign cost 0 to edges
(v0,v%), for all v € V.

We can now use the classical Dreyfus-Wagner algorithm to compute a solution
S’ to the DSTP instance (G’,T"). This solution can be used to derive a solution
S = (F ..., FK) to the SSTP instance (G, r,T). We simply choose the edges
that were also chosen in the corresponding copy of G in S’. Hence, we buy the
edges F* := {(v,w) € E | (v*,wF) € S’} in the k-th scenario for 1 < k < K, or
in the first stage for k = 0.

We have to make sure that for each optimal solution to an SSTP instance
there exists an equivalent solution to the transformed STP instance. Let S =
(F°,...,FK) be a stochastic Steiner tree for {(T*,c* p*) |1 < k < K} in the
undirected, weighted graph G = (V, E,c?). Let G’ be the graph that results
from the transformation from G as described before, and T” the corresponding
terminal set.

As S is optimal, there is exactly one path P(t) = (r = v1,...,v, = t) from r
to a terminal ¢ of scenario k that only uses edges in E° U E*. If this path uses
first-stage edges, they are all grouped together at the beginning of the path.
Otherwise, P(t) would contain alternating fragments of first- and second-stage
paths. But since the first stage is connected, this would induce a cycle, which
contradicts our assumption that S is optimal. We denote by 7(¢) the index of the
transition from first- to second-stage edges, i.e., if i < 7(¢) then (v;,vi41) € P(t)
is a first-stage edge and otherwise, (v;,v;4+1) € P(t) is a second-stage edge.

The deterministic solution S’ to (G’,T") can be derived as follows. For each
path P(t) = (r =wvy,...,v =t),t € T*, 1 < k < K, we add the edges (U?,U?H)
from the first-stage copy to S’ if i < 7(t). If i > 7(t), we add the edge (vF, v, ;)
from the second-stage copy instead. Further, we add the required transition edge
(W20, V7)

Parameterized Algorithms for Stochastic Steiner Tree Problems 149

For every edge e in S, we added an edge ¢’ that contributes as much to the
value of S’ as e contributes to the value of S. The edges (v°, v¥) do not contribute
to the value of the solution at all. Therefore, the values of S and S’ are equal.

In an analogous way an optimum solution to the DSTP instance can be trans-
formed to an SSTP instance with the same objective value.

The new graph G’ = (V', E’) has exactly |V|- (K + 1) nodes and 2 - |E| -
(K +1)+ K - |V| edges. We need to connect t* := Zle |T*| terminals. Using
the algorithm by Dreyfus and Wagner to solve the resulting DSTP instance, we
obtain a running time of O(3"" - (K - |[V|)?). We summarize the previous results
in the following theorem.

Theorem 1. The stochastic Steiner tree problem is fived parameter-tractable by
the number of terminals. It can be solved in time O(3t - (K - |V|)%), where t* is
the sum of the number of terminals over all scenarios.

Since DSTP is harder to approximate than STP, the question arises whether
the reduction above would work in a similar way if the transition edges were
undirected.

While transferring solutions from SSTP to a transformed (undirected) STP
instance works without any problems, this is not true for the other way. Consider
the STP solution that buys a minimum spanning tree of G with respect to ¢!
and every undirected transition edge, i.e., S’ = {(v°,v¥) [* € V1 <k < K} U
{(vt,w!) | (v}, wh) € MST(G, c!)}. This solutlon is fea51ble for the constructed
STP instance. The path from the root r to a terminal ¢t = ”e starts by switching
to the second-stage copy of scenario 1 using the edge (r = v, v}). Following the
unique path from v{ to v} provided by the minimum spanning tree, we reach v[
by using (v},v?) and (v, v}).

In practice, this solution might even be a good candidate for an optimal
solution. Edges in second-stage copies are weighted by a scenario’s probability.
Thus, they are often cheaper than their counterparts in the first-stage copy,
especially if the probability of scenario 1 is very low.

However, transferring S’ to the SSTP instance in a way analogous to the one
above yields an infeasible SSTP solution S. It only contains edges in the second
stage of scenario 1. The terminals of other scenarios remain unconnected.

4 Improvements

So far, we only considered solving SSTP by using the algorithm by Dreyfus and
Wagner. This algorithm can be replaced by any other one that solves DSTP.

One way to improve the running time is to use the dynamic programming
algorithm by Fuchs et al. [I0]. It solves the Steiner tree problem for a terminal
set T'C V in a weighted graph G = (V, E, c). First, it adds a portion of !|T|
terminals to the terminal set. An optimal Steiner tree for the new terminal set can
then be split into optimal Steiner trees for at most £|7|+ 1 terminals. Obviously,
this only works for a suitable selection of i\T | new terminals. Therefore, every
possible selection is considered.

150 D. Kurz, P. Mutzel, and B. Zey

This approach yields an algorithm for STP with running time (2 + §)7!

n@1/(8/n(1/6))%) for any ; < ¢ < 1 and sufficiently small § > 0 if we allow
the Steiner tree to be constructed from parts of varying size. To utilize this algo-
rithm to solve SSTP, we first need to show that it is capable of finding optimal
directed Steiner trees.

Directed Steiner trees can be decomposed at inner terminals just like undi-
rected Steiner trees. In contrast to the undirected STP, where sub-problems are
fully characterized by their terminal sets, we also have to determine a root node
within each terminal set for DSTP. Consider the directed Steiner tree problem
for a terminal set T C V in a weighted graph G = (V| E, ¢) with designated root
node r € T, and a fixed partition 7 into subproblems. The following scheme
provides us with a suitable choice of the root node for a given sub-problem with
terminal set U.

Let (71,...,7¢) be a sequence of sub-problems with 7; € 7 for 1 < i < ¢,
TNTi1 #Dand 7; # Ty for 1 <i<{¢—1,r € Ty, and T, = U. In other
words, the sequence is a path of sub-problems that starts in the sub-problem
that contains r and ends in U, where adjacent sub-problems share at least one
terminal.

If £ = 1, we may choose r as the new root. Otherwise, there is exactly one
node 7’ in the cut set 7y_; N 7p. If this cut set contained more than one node,
combining the Steiner trees of all sub-problems would induce a cycle. This node
r’ has to be chosen as the root node for the sub-problem U.

Another way to speed up the computation of stochastic Steiner trees is to
speed up the Dreyfus-Wagner algorithm itself. The fast subset convolution in-
troduced by Bjorklund et al. [3] is one way to achieve this. A careful implemen-
tation of an underlying min-sum semiring allows them to compute an optimal
Steiner tree in time @(2’%2 + nm) if edge weights are bounded by a constant,
where O hides polylogarithmic factors.

Bjorklund et al. described how to apply their fast subset convolution to
solve STP. However, they utilize the same recursive nature of the Steiner tree
problem as Dreyfus and Wagner did. Therefore, the modifications made to
the Dreyfus-Wagner algorithm to solve DSTP can also be applied to their
approach.

5 Extensions

5.1 Directed SSTP

The reduction technique introduced in Section Bl can not only be used to solve
the undirected SSTP. As the resulting graph is directed anyway, we might as
well start with a directed graph. It is easy to see that a directed version of SSTP
that asks for an arborescence for every scenario can be solved in much the same
way as SSTP itself.

Parameterized Algorithms for Stochastic Steiner Tree Problems 151

5.2 Prize-Collecting SSTP

To solve the prize-collecting version of the Steiner tree problem with the algo-
rithm by Dreyfus and Wagner it needs some modifications. First, in contrast to
the Steiner tree problems that connect terminals instead of collecting prizes, we
do not have to connect every node of a given set. Instead, we may concentrate
on the most profitable ones. Second, the value of a solution not only depends on
the selected edges, but also on their incident nodes.

The first difference does not seem to be a problem at all. The Dreyfus-Wagner
algorithm computes the value of every sub-problem, anyway. On this problem,
every sub-solution that contains the root node is a feasible solution to the prob-
lem itself. Therefore, we have to memorize the value of the best solution we
have seen so far. This value is only updated if the currently considered sub-
problem connects the root node. Notice that it is very well possible that we get
to see the optimal solution very early in the computation; This is not possible
for terminal-connecting Steiner tree problems.

The latter difference requires some modifications to the Dreyfus-Wagner algo-
rithm. We propose a modification that does not necessarily compute the correct
values for every sub-solution. It does, however, compute correct values for the
relevant subset of these sub-solutions.

The original Dreyfus-Wagner algorithm computes values M (v,T”) of sub-
solutions, where v is an arbitrary node of the input graph and T’ is a subset of
its terminal set T'. This value is computed as

M(UaT/) = Igél‘l} (dG(’an) +M(Q,T1) +M((],T\T1)),
T1CT\{v}

where dg denotes distances in G.

To make this work for PCSTP, we need to consider the profit of connected
nodes. Instead of detecting which profitable nodes with respect to a node-profit
function g have been connected, we simply ignore the nodes that were included
accidentally. In other words, we only consider profits of nodes that we intended
to connect, but not those that were connected by default rather than by design.
This yields the following recursive form to compute the values of sub-solutions:

Mpc(v,T) = min (Mpc(v,{q}) + Mpc(q, T1) + Mpc(q, T2)) + 29(q))

qeV.
TUT=T\{q}

The profit g(g) of the joining node ¢ has to be added twice because it would
otherwise have been subtracted thrice, once for each Mpc that ¢ is involved in.
The initialization of M has to be adjusted, too. Dreyfus and Wagner initialize
M (v, {t}) for each node v and each terminal ¢. We also need Mpc(v,{q}) for
arbitrary node pairs v, q. Further, we have to consider the node profits of the
involved nodes. Therefore, we initialize Mpc with Mpc(v,{q}) = da(v,q) —
g(v) — g(q) for each v,q € V, v # q, and Mpc(v, {v}) = —g(v) for each v € V.
Consider the value of Mpc(e,{a,b}) in the example in Figure @l It is com-
puted as the sum of three sub-solutions, minimized over all joining nodes and

152 D. Kurz, P. Mutzel, and B. Zey

Fig. 2. PCSTP instance that includes sub-problems whose optimal values are not com-
puted correctly; nodes are labelled with their name and their profit; edges are labelled
with their cost

all partitions of {a, b} with exactly two non-empty sets. Obviously, it can only
be split into the sets {a} and {b}. The sum of all sub-solutions for joining node
q is Mpc(e,{q}) + Mpc(q,{a}) + Mpc(q,{b}) + 2g(q). This sum evaluates to
-2 or -3 for ¢ = ¢ or ¢ = d, respectively. In the first case, the edge (d,c) is
used twice. In the second case, the profit of node d is ignored. In either case,
the computed value is not optimal although the optimal selection of profitable
nodes is connected.

However, the correct value of the optimal solution is still computed. We make
sure that d is not ignored by including it in the set of nodes we want to connect.
Although d is ignored when trying to connect e to {a,b} without using it as a
joining node, we do not ignore it when we try to connect e to {a,b,d}. In this
case, the value of Mpc(e, {a,b,d}) would be computed as -4, which is the correct
value of the optimal solution that connects all nodes in this example.

This observation can be formulated more general. Let Mpc(v,T) be a table
entry that has not been computed correctly. The only way MPC(U,T) can be
incorrect is by ignoring profits of nodes that have actually been included. Let
w be such a node. Then, the value of Mpc(v, T U {w}) is smaller than that of
Mpc(v, T) This argument can be applied repeatedly until there are no ignored
nodes left. The optimal set of profitable nodes is clearly found as we consider
every subset of T'.

These modifications also work for the directed case. They can thus be used in
combination with the reduction technique from Section [3l to solve SPCSTP.

5.3 SSTP without a Root Node

One last extension allows us to provide not only one root for an SSTP instance,
but a set of root candidates or no root at all. To allow for this, we do not add
r0 as a terminal during our reduction to the DSTP. Instead, we add a new node
p that does not correspond to any node in the input graph G. This new node is
then connected to the equivalent of each root candidate in the first-stage copy.
These unidirectional edges are then equipped with high edge costs with the result

that only one of the candidates is chosen.

Parameterized Algorithms for Stochastic Steiner Tree Problems 153

These three extensions can be combined freely. It is therefore possible to solve,
e.g., a directed stochastic prize-collecting Steiner tree problem using the classical
algorithm and its modifications.

6 Conclusion and Outlook

We showed that SSTP is fixed-parameter tractable by the number of termi-
nals. This result was subsequently extended to cover the directed and the prize-
collecting SSTP.

It remains an open question whether SSTP and its variants can be parameter-
ized by other parameters. One interesting parameter is the treewidth of the input
graph. There exist parameterized algorithms for STP that utilize the treewidth.
We have yet to investigate if these algorithms can be transferred to SSTP.

Another promising parameter is the number of non-terminals: A simple algo-
rithm for STP tests every subset of non-terminals as the set of Steiner nodes
and computes the corresponding minimum spanning tree. This approach might
be transferable to the SSTP.

References

1. Bern, M.W., Plassmann, P.E.: The Steiner problem with edge lengths 1 and 2.
Information Processing Letters 32(4), 171-176 (1989)

2. Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming. Springer, New
York (1997)

3. Bjorklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets Mobius: Fast
subset convolution. In: STOC, pp. 67-74. ACM (2007)

4. Bomze, 1., Chimani, M., Jinger, M., Ljubi¢, 1., Mutzel, P., Zey, B.: Solving Two-
Stage Stochastic Steiner Tree Problems by Two-Stage Branch-and-Cut. In: Cheong,
0., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010, Part I. LNCS, vol. 6506, pp. 427-439.
Springer, Heidelberg (2010)

5. Byrka, J., Grandoni, F., Rothvof, T., Sanita, L.: An improved LP-based approxi-
mation for Steiner tree. In: STOC, pp. 583-592. ACM (2010)

6. Charikar, M., Chekuri, C., Cheung, T., Dai, Z., Goel, A., Guha, S., Li, M.: Approx-
imation algorithms for directed Steiner problems. In: SODA, pp. 192-200. SIAM
(1998)

7. Chimani, M., Mutzel, P., Zey, B.: Improved Steiner Tree Algorithms for Bounded
Treewidth. In: Illiopoulos, C.S., Smyth, W.F. (eds.) IWOCA 2011. LNCS, vol. 7056,
pp. 374-386. Springer, Heidelberg (2011)

8. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer (1999)

9. Dreyfus, S.E., Wagner, R.A.: The Steiner problem in graphs. Networks 1(3), 195—
207 (1971)

10. Fuchs, B., Kern, W., Mélle, D., Richter, S., Rossmanith, P., Wang, X.: Dynamic
programming for minimum Steiner trees. Theory Computing Systems 41(3), 493
500 (2007)

11. Gupta, A., Hajiaghayi, M.T., Kumar, A.: Stochastic Steiner Tree with Non-uniform
Inflation. In: Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P. (eds.) AP-
PROX/RANDOM 2007. LNCS, vol. 4627, pp. 134-148. Springer, Heidelberg (2007)

154

12.

13.

14.

15.

16.

17.

18.

19.

20.

D. Kurz, P. Mutzel, and B. Zey

Gupta, A., Pal, M., Ravi, R., Sinha, A.: Boosted sampling: Approximation algo-
rithms for stochastic optimization. In: STOC, pp. 417-426. ACM (2004)
Halperin, E., Krauthgamer, R.: Polylogarithmic inapproximability. In: STOC, pp.
585-594. ACM (2003)

Hwang, F., Richards, D., Winter, P.: The Steiner tree problem. Annals of discrete
mathematics, vol. 53. North-Holland (1992)

Kahng, A.B., Robins, G.: On Optimal Interconnections for VLSI. Kluwer Academic
Publishers (1995)

Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Com-
puter Computations, pp. 85-103. Plenum (1972)

Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Habilitation, Univer-
sitdt Tiibingen (2002)

Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and
Complexity. Dover Publications (1998)

Swamy, C., Shmoys, D.B.: Approximation Algorithms for 2-Stage Stochastic Op-
timization Problems. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS,
vol. 4337, pp. 5-19. Springer, Heidelberg (2006)

Uchoa, E., de Aragdo, M.P., Ribeiro, C.C.: Preprocessing Steiner problems from
VLSI layout. Networks 40(1), 38-50 (2002)

	Parameterized Algorithms for Stochastic Steiner Tree Problems

	Introduction
	Definitions
	Solving SSTP
	Improvements
	Extensions
	Directed SSTP
	Prize-Collecting SSTP
	SSTP without a Root Node

	Conclusion and Outlook
	References

