

Lecture Notes in Computer Science 7721
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Antonín Kučera Thomas A. Henzinger
Jaroslav Nešetřil Tomáš Vojnar
David Antoš (Eds.)

Mathematical and
Engineering Methods
in Computer Science
8th International Doctoral Workshop, MEMICS 2012
Znojmo, Czech Republic, October 25-28, 2012
Revised Selected Papers

13

Volume Editors

Antonín Kučera
Masaryk University, Faculty of Informatics
Botanická 68a, 602 00 Brno, Czech Republic
E-mail: tony@fi.muni.cz

Thomas A. Henzinger
Institute of Science and Technology Austria
Am Campus 1, 3400 Klosterneuburg, Austria
E-mail: tah@ist.ac.at

Jaroslav Nešetřil
Charles University in Prague, Faculty of Mathematics and Physics
Malostranské nám. 25, 118 00 Praha 1, Czech Republic
E-mail: nesetril@kam.mff.cuni.cz

Tomáš Vojnar
Brno University of Technology, Faculty of Information Technology
Božetěchova 2, 612 66 Brno, Czech Republic
E-mail: vojnar@fit.vutbr.cz

David Antoš
Masaryk University, Institute of Computer Science
Botanická 68a, 602 00 Brno, Czech Republic
E-mail: antos@ics.muni.cz

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-36044-2 e-ISBN 978-3-642-36046-6
DOI 10.1007/978-3-642-36046-6
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013930169

CR Subject Classification (1998): D.2.4, C.2.0, F.2.2, G.2.2, C.2.4, K.6.3, K.6.5,
K.4.4

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in ist current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the proceedings of the 8th Doctoral Workshop on Math-
ematical and Engineering Methods in Computer Science (MEMICS 2012) held
in Znojmo, Czech Republic, during October 25–28, 2012.

The aim of the MEMICS workshop series is to provide an opportunity for
PhD students to present and discuss their work in an international environment.
The scope of MEMICS is broad and covers many fields of computer science and
engineering. In 2012, submissions were invited especially in the following (though
not exclusive) areas:

– Computer-aided analysis and verification
– Applications of game theory in computer science
– Networks and security
– Modern trends of graph theory in computer science
– Electronic systems design and testing
– Quantum information processing

There were 31 submissions from 9 countries. Each submission was thoroughly
evaluated by at least three Program Committee members who also provided
extensive feedback to the authors. Out of these submissions, 13 papers were
selected for publication in these proceedings.

In addition to regular papers, MEMICS workshops also invite PhD stu-
dents to submit a presentation of their recent research results that have already
undergone a rigorous peer-review process and have been presented at a high-
quality international conference or published in a recognized journal. A total of
28 presentations out of 32 submissions from 11 countries were included in the
MEMICS 2012 program.

The MEMICS 2012 program was further enriched by six keynote lectures.
The speakers were

– Dirk Beyer from University of Passau with a talk on “CPAchecker: The
Configurable Software-Verification Platform”

– Dieter Gollmann from Technische Universität Hamburg-Harburg with a talk
on “Security for Cyber-Physical Systems”

– Said Hamdioui from Delft University of Technology with a talk on “Testing
Embedded Memories in the Nano-Era: From Defects to Built-In-Self Test”

– Colin McDiarmid from Corpus Christi College Oxford with a talk on“Quick-
sort and Large Deviations”

– Peter Bro Miltersen from Aarhus University with a talk on “Recent Result
on Howard’s Algorithm”

– Simon Perdrix from Laboratoire d’Informatique de Grenoble (LIG), CNRS
and Université de Grenoble with a talk on “Graph-Based Quantum Secret
Sharing”

VI Preface

The MEMICS tradition of best paper awards continued also in 2012. The best
regular papers were selected at the end of the workshop by the MEMICS 2012
Best Paper Award Committee consisting of Jozef Gruska, Dušan Kolář, Mojmı́r
Křet́ınský, and Tomáš Vojnar. The winners were:

– Michal Mikuš, STU Bratislava, Slovakia, for the paper “Ciphertext-Only At-
tack on Gentry-Halevi Implementation of Somewhat Homomorphic Scheme”

– Petr Novotný, MU Brno, Czech Republic, for the paper “Determinacy in
Games with Unbounded Payoff Functions”

The awards consisted of a diploma accompanied by a financial prize of approx-
imately 400 Euro. The money were donated by Red Hat Czech Republic and
Y Soft, the MEMICS 2012 Industrial Sponsors.

The MEMICS 2012 workshop was financially supported by the doctoral grant
project 102/09/H042 Mathematical and Engineering Approaches to Developing
Reliable and Secure Concurrent and Distributed Computer Systems from the
Czech Science Foundation.

We thank the Program Committee members and the external reviewers for
their careful and constructive work. We thank Organizing Committee mem-
bers who helped to create a unique and relaxed atmosphere which distinguishes
MEMICS from other computer science meetings. We also gratefully acknowledge
the support of the EasyChair system and the fine cooperation with the Lecture
Notes in Computer Science team of Springer.

November 2012 Antońın Kučera
Thomas A. Henzinger

Jaroslav Nešeťril
Tomáš Vojnar

Organization

Workshop Organization

The 8th Doctoral Workshop on Mathematical and Engineering Methods in Com-
puter Science (MEMICS 2012) took place in Znojmo, Czech Republic, on the
premises of the Loucký Monastery during October 25–28, 2012. The workshop
was attended by 115 participants from 12 countries. More information about the
MEMICS workshop series is available at http://www.memics.cz.

General Chair

Antońın Kučera Masaryk University, Brno, Czech Republic

Program Committee Chairs

Thomas A. Henzinger Institute of Science and Technology, Austria
Jaroslav Nešeťril Charles University in Prague, Czech Republic
Tomáš Vojnar Brno University of Technology, Brno,

Czech Republic

Program Committee

Andris Ambainis University of Latvia
Jǐŕı Barnat Masaryk University, Brno, Czech Republic
Jan Bouda Masaryk University, Brno, Czech Republic
Patricia Bouyer-Decitre CNRS, France
Sergio Cabello University of Ljubljana, Slovenia
Krishnendu Chatterjee Institute of Science and Technology Austria
Zdeněk Dvořák Charles University, Prague, Czech Republic
Javier Esparza TU München, Germany
Rusins Freivalds University of Latvia
Görschwin Fey Universität Bremen, Germany
Dieter Gollmann TU Hamburg-Harburg, Germany
Erich Grädel RWTH Aachen, Germany
Gregory Z. Gutin Royal Holloway, University of London, UK
Peter Habermehl LIAFA, University Paris Diderot, France
Said Hamdioui TU Delft, The Netherlands
Petr Hanáček Brno University of Technology, Czech Republic
Holger Hermanns Saarland University, Germany
Petr Hliněný Masaryk University, Brno,

Czech Republic

VIII Organization

Keijo Heljanko Aalto University, Finland
Richard Jozsa University of Cambridge, UK
Zdeněk Kotásek Brno University of Technology, Brno,

Czech Republic
Hana Kubátová Czech Technical University, Prague,

Czech Republic
Gerald Luttgen University of Bamberg, Germany
Dániel Marx Hungarian Academy of Sciences, Budapest,

Hungary
Václav Matyáš Masaryk University, Brno, Czech Republic
Luděk Matyska Masaryk University, Brno, Czech Republic
Michal Pěchouček Czech Technical University in Prague,

Czech Republic
Jaco van de Pol CTIT, University of Twente, The Netherlands
Joachim Posegga University of Passau, Germany
Geraint Price Royal Holloway, University of London, UK
Lukáš Sekanina Brno University of Technology, Brno,

Czech Republic
Martin Stanek Comenius University Bratislava, Slovakia
Andreas Steininger TU Vienna, Austria
Stefan Szeider Vienna University of Technology, Vienna,

Austria
Ondřej Šerý University of Lugano, Switzerland and D3S,

Charles University in Prague,
Czech Republic

Shin Yoo CREST, University College London, UK

Steering Committee

Milan Češka Brno University of Technology, Brno,
Czech Republic

Zdeněk Kotásek Brno University of Technology, Brno,
Czech Republic

Mojmı́r Křet́ınský Masaryk University, Brno, Czech Republic
Antońın Kučera Masaryk University, Brno, Czech Republic
Luděk Matyska Masaryk University, Brno, Czech Republic
Tomáš Vojnar Brno University of Technology, Brno,

Czech Republic

Organizing Committee

Jan Bouda chair, Masaryk University, Brno,
Czech Republic

Milan Češka Masaryk University, Brno, Czech Republic
Dana Komárková Masaryk University, Brno, Czech Republic

Organization IX

Zbyněk Mayer Masaryk University, Brno, Czech Republic
Ada Nazarejová Masaryk University, Brno, Czech Republic
Adam Rambousek Masaryk University, Brno, Czech Republic
Šimon Suchomel Masaryk University, Brno, Czech Republic

Additional Reviewers

Miklos Bona
Bastian Braun
Mafalda Cortez
Robert Crowston
Mehdi Dehbashi
Vladimı́r Drábek
Zbyněk Falt
Stefan Frehse
Stephan Huber
Jǐŕı Jaroš

Mark Jones
Syab Khan
Jan Křet́ınský
Peng Liu
Ashley Montanaro
Rameez Naqvi
Arash Rafiey
Heinz Riener
Sadia Sharmin

Table of Contents

BDD-Based Software Model Checking with CPAchecker 1
Dirk Beyer and Andreas Stahlbauer

Security for Cyber-Physical Systems (Extended Abstract) 12
Dieter Gollmann

Quantum Secret Sharing with Graph States . 15
Sylvain Gravier, Jérôme Javelle, Mehdi Mhalla, and Simon Perdrix

Testing Embedded Memories: A Survey . 32
Said Hamdioui

Quicksort and Large Deviations . 43
Colin McDiarmid

Recent Results on Howard’s Algorithm . 53
Peter Bro Miltersen

Advantage of Quantum Strategies in Random Symmetric XOR
Games . 57

Andris Ambainis, Jānis Iraids, Dmitry Kravchenko, and
Madars Virza

Verification of Liveness Properties on Closed Timed-Arc Petri Nets 69
Mathias Andersen, Heine Gatten Larsen, Jǐŕı Srba,
Mathias Grund Sørensen, and Jakob Haahr Taankvist

Fast Algorithm for Rank-Width . 82
Martin Beyß

Determinacy in Stochastic Games with Unbounded Payoff Functions . . . 94
Tomáš Brázdil, Antońın Kučera, and Petr Novotný

Strategy Complexity of Finite-Horizon Markov Decision Processes
and Simple Stochastic Games . 106

Krishnendu Chatterjee and Rasmus Ibsen-Jensen

Controllable-Choice Message Sequence Graphs . 118
Martin Chmeĺık and Vojtěch Řehák

A Better Way towards Key Establishment and Authentication
in Wireless Sensor Networks . 131

Filip Jurnečka and Vashek Matyáš

XII Table of Contents

Parameterized Algorithms for Stochastic Steiner Tree Problems 143
Denis Kurz, Petra Mutzel, and Bernd Zey

Action Investment Energy Games . 155
Kim G. Larsen, Simon Laursen, and Jǐŕı Srba

Ciphertext-Only Attack on Gentry-Halevi Implementation of Somewhat
Homomorphic Scheme . 168

Michal Mikuš and Marek Sýs

Grover’s Algorithm with Errors . 180
Andris Ambainis, Artūrs Bačkurs, Nikolajs Nahimovs, and
Alexander Rivosh

On WQO Property for Different Quasi Orderings of the Set
of Permutations . 190

Sandra Ose and Juris Viksna

Towards User-Aware Multi-touch Interaction Layer for Group
Collaborative Systems . 200

Vı́t Rusňák, Lukáš Ručka, and Petr Holub

Author Index . 213

BDD-Based Software Model Checking

with CPAchecker

Dirk Beyer and Andreas Stahlbauer

University of Passau, Germany

Abstract. In symbolic software model checking, most approaches use
predicates as symbolic representation of the state space, and SMT solvers
for computations on the state space; BDDs are sometimes used as auxil-
iary data structure. The representation of software state spaces by BDDs
was not yet thoroughly investigated, although BDDs are successful in
hardware verification. The reason for this is that BDDs do not efficiently
support all operations that are needed in software verification. In this
work, we evaluate the use of a pure BDD representation of integer vari-
able values, and focus on a particular class of programs: event-condition-
action systems with limited operations. A symbolic representation using
BDDs seems appropriate for this particular class of programs. We imple-
ment a program analysis based on BDDs and experimentally compare
three symbolic techniques to verify reachability properties of ECA pro-
grams. The results show that BDDs are efficient, which yields the insight
that BDDs could be used selectively for some variables (to be determined
by a pre-analysis), even in general software model checking.

1 Introduction

The internal representation of sets of reachable abstract states is an important
factor for the effectiveness and efficiency of software model checking. Binary deci-
sion diagrams (BDD) [10] are an efficient data structure for manipulation of large
sets, because they represent the sets in a compressed representation, and opera-
tions are performed directly on the compressed representation. BDDs are used,
for example, to store the state sets in tools for hardware verification [11,12], for
transition systems in general [16], for real-time systems [8, 13], and push-down
systems [14]. There are programming systems for relational programming [2]
based on BDDs, and the data structure is used for points-to program analy-
ses [1]. The current state-of-the-art approaches to software verification [3] are
either based on satisfiability (SAT) and SAT-modulo-theories (SMT) solving,
or on abstract domains from data-flow analysis. BDDs were so far not used as
main representation for the state space of integer variables (only as auxiliary
data structure). For example, software verifiers based on predicate analysis [4,6]
use BDDs for storing truth values of predicates. There exists a version of Java
PathFinder that supports the annotation of boolean variables in the program
such that the analyzer can track the specified boolean variables using BDDs,
which was shown to be efficient for the verification of software product lines [19].

A. Kučera et al. (Eds.): MEMICS 2012, LNCS 7721, pp. 1–11, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 D. Beyer and A. Stahlbauer

This paper applies BDDs as representation of state sets in the verification of
C programs, with a focus on event-condition-action (ECA) systems that use a
very limited set of operations. Such ECA programs were used as benchmarks in
a recent verification challenge [15] 1. For such a special sub-class of ECA pro-
grams, BDDs seem to be promising as representation for two reasons. First, the
programs that we consider consist of a single loop in which many conditional
branches occur. In each of those branches, a condition is a boolean combina-
tion of equalities and negated equalities between variables and values, and an
action is a sequence of assignments of values to variables. This means that all
required operations are in fact efficiently supported by BDDs, and a symbolic
representation using BDDs seems indeed appropriate for this particular class of
programs. Second, due to the complex control and data flow of these programs,
they are challenging verification tasks for traditional techniques. The formulas
that are used as representation in predicate-based approaches represent many
paths with a complicated control structure, which are sometimes overwhelming
for the SMT solver.

Contribution. We implement a configurable program analysis (CPA) based on
BDDs and experimentally compare three symbolic techniques to verify reacha-
bility properties of ECA programs. The contribution of this work is not to use
BDDs for software verification (which was done before, e.g., in Moped [14]), but
to experimentally show that using BDDs as representation for certain variables
(which are used in a restricted way) can be more efficient than other (more ex-
pressive, but also more expensive) encodings. The insight is that it could be a
promising approach to software verification to analyze the usage of each vari-
able in a pre-analysis and then determine for each variable the most efficient
representation based on the result.

2 Preliminaries

In order to define a verifier, we need an iteration algorithm and a configurable
program analysis, which defines the abstract domain, the transfer relation, as
well as the merge and stop operators. In the following, we provide the definitions
of the used concepts and notions from previous work [5].

Programs. We consider only a simple imperative programming language, in
which all operations are either assignments or assume operations, and all vari-
ables are of type integer.2 We represent a program by a control-flow automaton
(CFA), which consists of a set L of program locations (models the program
counter pc), an initial program location pc0 (models the program entry), and a
set G ⊆ L×Ops×L of control-flow edges (models the operation that is executed
when control flows from one program location to another). The set X of program

1 http://leo.cs.tu-dortmund.de:8100/isola2012/
2 The framework CPAchecker [6], which we use to implement the analysis, accepts
C programs and transforms them into a side-effect free form [18]; it also supports
interprocedural program analysis.

http://leo.cs.tu-dortmund.de:8100/isola2012/

BDD-Based Software Model Checking with CPAchecker 3

variables contains all variables that occur in operations from Ops. A concrete
state of a program is a variable assignment c : X ∪ {pc} → Z that assigns to
each variable an integer value. The set of all concrete states of a program is
denoted by C. A set r ⊆ C of concrete states is called a region. Each edge g ∈ G
defines a (labeled) transition relation

g→ ⊆ C×{g}×C. The complete transition
relation→ is the union over all control-flow edges:→ =

⋃
g∈G

g→. We write c
g→c′

if (c, g, c′) ∈ →, and c→c′ if there exists a g with c
g→c′. A concrete state cn is

reachable from a region r, denoted by cn ∈ Reach(r), if there exists a sequence
of concrete states 〈c0, c1, . . . , cn〉 such that c0 ∈ r and for all 1 ≤ i ≤ n, we
have ci−1→ci. Such a sequence is called feasible program path. In order to de-
fine an efficient program analysis, we need to define abstract states and abstract
transitions.

Configurable Program Analysis. We use the framework of configurable pro-
gram analysis (CPA) [5] to formalize our program analysis. A CPA specifies
the abstract domain and a set of operations that control the program analysis.
A CPA is defined independently of the analysis algorithm, and can be plugged
in as a component into the software-verification framework without working on
program parsers, exploration algorithms, and other general data structures. A
CPA C = (D,�,merge, stop) consists of an abstract domain D, a transfer re-
lation � (which specifies how to compute abstract successor states), a merge
operator merge (which defines how to merge abstract states when control flow
meets), and a stop operator stop (which indicates if an abstract state is cov-
ered by another abstract state). The abstract domain D = (C, E , [[·]]) consists
of a set C of concrete states, a semi-lattice E over abstract-domain elements,
and a concretization function that maps each abstract-domain element to the
represented set of concrete states. The abstract-domain elements are also called
abstract states.

Using this framework, program analyses can be composed of several compo-
nent CPAs. We will now give the definition of a location analysis; our complete
analysis will be the composition of the location analysis with the BDD-based
analysis that we will define later.

CPA for Location Analysis. The CPA for location analysis L =
(DL,�L,mergeL, stopL) tracks the program counter pc explicitly [5].

1. The domain DL is based on the flat semi-lattice for the set L of program
locations: DL = (C, EL, [[·]]), with EL = ((L ∪ {	}),
), l
 l′ if l = l′ or l′ = 	,
[[]] = C, and for all l in L, [[l]] = {c ∈ C | c(pc) = l}.
2. The transfer relation �L has the transfer l

g�Ll
′ if g = (l, ·, l′).

3. The merge operator does not combine elements when control flow meets:
mergeL(l, l

′) = l′.
4. The termination check returns true if the current element is already in the
reached set: stopL(l, R) = (l ∈ R).

Analysis Algorithm. Algorithm 1 shows the core iteration algorithm that
is used to run a configurable program analysis, as implemented by tools like
CPAchecker. The algorithm is started with a CPA and two sets of abstract

4 D. Beyer and A. Stahlbauer

Algorithm 1. CPA(D, R0,W0) (taken from [5])

Input: a CPA D = (D,�,merge, stop),
a set R0 ⊆ E of abstract states,
a subset W0 ⊆ R0 of frontier abstract states,
where E denotes the set of elements of the semi-lattice of D

Output: a set of reachable abstract states,
a subset of frontier abstract states

Variables: two sets reached and waitlist of elements of E
1: reached := R0;
2: waitlist := W0;
3: while waitlist �= ∅ do
4: choose e from waitlist; remove e from waitlist;
5: for each e′ with e�e′ do
6: for each e′′ ∈ reached do
7: // Combine with existing abstract state.
8: enew := merge(e′, e′′);
9: if enew �= e′′ then
10: waitlist :=

(
waitlist ∪ {enew}

) \ {e′′};
11: reached :=

(
reached ∪ {enew}

) \ {e′′};
12: // Add new abstract state?
13: if ¬ stop(e′, reached) then
14: waitlist := waitlist ∪ {e′};
15: reached := reached ∪ {e′};
16: return (reached,waitlist)

states as input: the set R0 (reached) contains the so far reached abstract states,
and the set W0 (waitlist) contains abstract states that the algorithm needs to
process. The algorithm terminates if the set waitlist is empty (i.e., all abstract
states are processed) and returns the two sets reached and waitlist. We start the
algorithm with two singleton sets that contain only the initial abstract state. In
each iteration of the ‘while’ loop, the algorithm processes and removes one state e
from the waitlist, by computing all abstract successors and further processing
them as e′.

Next, the algorithm checks (lines 6–11) if there is an existing abstract state
in the set of reached states with which the new state e′ has to be merged (e.g.,
where control flow meets after completed branching). If this is the case, then the
new, merged abstract state is substituted for the existing abstract state in both
sets reached and waitlist. (This operation is sound because the merge operation
is not allowed to under-approximate.) In lines 12–15, the stop operator checks
if the new abstract state is covered by a state that is already in the set reached,
and inserts the new abstract state into the work sets only if it is not covered.

Binary Decision Diagrams. A binary decision diagram (BDD) [10] represents
a set of assignments for a set of boolean variables. In our analysis, we need to
consider integer variables. We encode the integer assignments as bit vectors, and
the integer variables as vectors of boolean variables, and thus, can represent data
states of integer programs by BDDs.

BDD-Based Software Model Checking with CPAchecker 5

A BDD is a rooted directed acyclic graph, which consists of decision nodes
and two terminal nodes (called 0-terminal and 1-terminal). Each decision node
is labeled by a boolean variable and has two children (called low child and
high child). A BDD is maximally reduced according to the following two rules:
(1) merge any isomorphic sub-graphs, and (2) eliminate any node whose two
children are isomorphic. Every variable assignment that is represented by a BDD
corresponds to a path from the root node to the 1-terminal. The variable of a
node has the value 0 if the path follows the edge to the low child, and the
value 1 if it follows the edge to the high child. A BDD is always ordered, which
means that the variables occur in the same order on any path from the root to
a terminal node. For a given variable order, the BDD representation of a set of
variable assignments is unique.

3 BDD-Based Program Analysis

For implementing the BDD-based analysis, we define a configurable program
analysis (CPA) that uses BDDs to represent abstract states, and implement it
in the open-source tool CPAchecker.

Let X be the set of program variables. Given a first-order formula ϕ over X ,
we use Bϕ to denote the BDD that is constructed from ϕ, and [[ϕ]] to denote all
variable assignments that fulfill ϕ. Given a BDD B over X , we use [[B]] to denote
all variable assignments that B represents ([[Bϕ]] = [[ϕ]]).

The BDD-based program analysis is a configurable program analysis BPA =
(DBPA,�BPA,mergeBPA, stopBPA) that represents the data states of the program
symbolically, by storing the values of variables in BDDs. The CPA consists of
the following components:

1. The abstract domain DBPA = (C, E , [[·]]) is based on the semi-lattice EB of
BDDs, i.e., every abstract state consists of a BDD. The concretization func-
tion [[·]] assigns to an abstract state B the set [[B]] of all concrete states that
are represented by the BDD. Formally, the lattice EB = (B,
) —where B
is the set of all BDDs, Btrue is the BDD that represents all concrete states
(1-terminal node), and Bfalse is the BDD that represents no concrete state
(0-terminal node)— is induced by the partial order
 that is defined as:
B
 B

′ if [[B]] ⊆ [[B′]]. (The join operator � yields the least upper bound;
Btrue is the top element 	 of the semi-lattice.)

2. The transfer relation �BPA has the transfer B
g�B

′ with

B
′ =

{
B ∧ Bp if g = (l, assume(p), l′)
(∃w : B) ∧ Bw=e if g = (l, w := e, l′) .

3. The merge operator is defined by mergeBPA(B,B
′) = B ∨ B

′.
4. The termination check is defined by stopBPA(B, R) = ∃B′ ∈ R : B
 B

′.

We construct the complete program analysis by composing the CPA BPA for
BDD-based analysis with the CPA L for location analysis, in order to also track
the program locations. For further details on CPA composition, we refer to [5].

6 D. Beyer and A. Stahlbauer

(a) Control-flow autom. (CFA) (b) Abstract reachability graph (ARG)

Fig. 1. Example program with verification certificate

Example. Consider the program represented by the control-flow automaton
(CFA) in Fig. 1(a). The error location (location 18, indicated by label ’ER-
ROR’) is not reachable in this simple example program, i.e., the program is safe.
Figure 1(b) represents the corresponding abstract-reachability graph (ARG),
which could serve as verification certificate for this analysis. The nodes in the
ARG represent abstract states, which are initial abstract states or constructed
by computing abstract successor states according to the edges of the CFA, using
the CPA algorithm and composition of CPAs as described above. The edges in
the ARG represent successor computations along the control-flow edges of the
corresponding CFA. We label each node of the ARG with the program location
and the BDD that represents the abstract data state. The set of states that are
represented by the nodes of the ARG shown in Fig. 1(b) equals the set reached
after the CPA algorithm has terminated.

BDD-Based Software Model Checking with CPAchecker 7

The analysis starts at the initial program location pc0 = 1 with the initial
abstract data state e0, which is represented by the BDD Btrue. The analysis then
computes the abstract successor states by applying the transfer relation�; in our
example the abstract data state for location pc = 2 is computed by quantifying
the assigned variable in the BDD of the previous abstract state, create a BDD
for the constraint of control-flow edge int a=0 (assignment) and conjunct it
with the former BDD. The transition along the edge (2, int in, 4) does not
change the abstract data state because the variable that is declared by this edge
was not known before; also the transition along (4, in = nondet(), 4) does not
change the data state because it does not restrict the possible concrete states (the
return value of nondet() is non-deterministic). Transitions whose operations are
assumptions, for example, (5, [in != 1], 9) are encoded by conjuncting the BDD
B of the abstract data state of the predecessor location (pc = 5) with the BDD
for the respective assumption (in != 1), i.e., the successor state B′ is computed
as B′ = Ba=0 ∧ Bin != 1. Now we consider, for example, location pc = 14, which
has the BDD Ba=0 ∧ in=1 as abstract data state, and process the control-flow
edge (14, a = 3, 6) (assignment). Assignment operations are processed by first
existential quantifying the variable that gets a new value assigned (a); then the
intermediate BDD Bin=1 is conjuncted with the BDD that represents the new
value of the variable: B′ = Bin=1 ∧ Ba=3.

Abstract states that were computed for the same program location are —as
defined by the CPA operator merge— joined by computing the disjunction of
the BDDs; the abstract data state B(a=0 ∧ in != 1)∨(false)∨(a=3 ∧ in=1) at location
pc = 6 is such a result of a join. After the analysis has terminated, the set reached
of reached states contains at most one abstract state for each program location.

The computation of successors of a given abstract state e stops (the abstract
state is not added to the sets waitlist and reached for further processing), when-
ever the abstract data state is already covered by (implies) an existing abstract
data state; this check is performed by the CPA operator stop. The analysis does
not process successors of locations 11 and 17, because the BDDs evaluate to
false. Thus, the error location 18 is not reached.

4 Evaluation

In order to demonstrate that the BDD-based analysis yields a significant per-
formance improvement on a set of C programs with restricted operations on
integer variables, we compare our simple analysis with two other approaches for
symbolic software model checking.

Experimental Setup. All experiments were performed on machines with a 3.4GHz
Quad Core CPU and 16GB of RAM. The operating system was Ubuntu 12.04
(64 bit), using Linux 3.2.0-30 and OpenJDK 1.6.0 24. A time limit of 5 min and
a memory limit of 15GB were used. We took CPAchecker from revision 6607 of
the trunk in the repository, and MathSAT 4.2.17 as SMT solver; for the BDD-
based analysis we configured it with a Java heap size of 13GB, for the other
analyses we configured it with 10GB, in order to leave RAM for the SMT solver.

8 D. Beyer and A. Stahlbauer

Fig. 2. Quantile functions for the three different approaches

The configuration of the BDD-based analysis is specified in the configuration file
fsmBddAnalysis.properties.

Verification Tasks. For the evaluation of our approach, we use Problems 1 to 6
from the recent RERS challenge, because those programs are in the restricted
class of C programs that we described earlier. Tables with detailed results and
the benchmark programs are publicly available on the accompanying web page
at http://www.sosy-lab.org/∼dbeyer/cpa-bdd.

Compared Verification Approaches. We restrict the comparison to three sym-
bolic techniques that are all implemented in the same verification tool, in or-
der to eliminate influence of the used solver, libraries, parser front-ends, etc.
The first approach is an Impact-based analysis [17]. This analysis is based on
counterexample-guided abstraction refinement (CEGAR) and computes abstrac-
tions using interpolation along infeasible error paths. In contrast to predicate ab-
straction, this analysis does not compute strongest post-conditions and abstracts
those to more abstract formulas, but uses a conjunction of the obtained inter-
polants as abstract states. A detailed comparison of the approach with predicate
abstraction can be found in the literature [9]. The second approach is based on
CEGAR and predicate abstraction, together with adjustable-block encoding [7].
The third approach is the BDD-based analysis that was introduced in this paper.

Discussion. Figure 2 gives an overview over the results using a quantile plot
of the verification times (all verification tasks, no separation between satisfied
and violated properties). A quantile plot orders, for each approach separately,
the verification runs by the run time that was needed to obtain the correct
verification result on the x-axis (n-th fastest result). A data point (x, y) of the
graph means that x verification tasks were successfully verified each in under y

http://www.sosy-lab.org/~dbeyer/cpa-bdd/

BDD-Based Software Model Checking with CPAchecker 9

Table 1. Detailed results for the verification tasks with result ’UNSAFE’

Impact Algorithm Predicate Abstraction BDD-Based Analysis

Problem #
P
ro
p
er
ti
es

S
o
lv
ed

p
ro
p
er
ti
es

T
im

e
(t
o
ta
l)

T
im

e
(m

ea
n
)

S
o
lv
ed

p
ro
p
er
ti
es

T
im

e
(t
o
ta
l)

T
im

e
(m

ea
n
)

S
o
lv
ed

p
ro
p
er
ti
es

T
im

e
(t
o
ta
l)

T
im

e
(m

ea
n
)

Problem 1 14 14 86 6.2 14 100 7.4 14 65 4.6
Problem 2 8 8 37 4.7 8 48 6.0 8 33 4.2
Problem 3 14 10 120 12 14 190 13 14 110 8.2
Problem 4 25 1 14 14 25 2600 100 25 490 20
Problem 5 25 25 3600 150 25 3200 130 25 520 21
Problem 6 26 2 100 52 26 2200 85 26 520 20

Table 2. Detailed results for the verification tasks with result ’SAFE’

Impact Algorithm Predicate Abstraction BDD-Based Analysis

Problem #
P
ro
p
er
ti
es

S
o
lv
ed

p
ro
p
er
ti
es

T
im

e
(t
o
ta
l)

T
im

e
(m

ea
n
)

S
o
lv
ed

p
ro
p
er
ti
es

T
im

e
(t
o
ta
l)

T
im

e
(m

ea
n
)

S
o
lv
ed

p
ro
p
er
ti
es

T
im

e
(t
o
ta
l)

T
im

e
(m

ea
n
)

Problem 1 47 47 270 5.8 47 310 6.7 47 260 5.5
Problem 2 53 53 320 6.0 53 320 6.0 53 240 4.5
Problem 3 47 17 230 14 47 660 14 47 420 9.0
Problem 4 36 36 950 27 36 2500 70 36 820 24
Problem 5 36 6 790 130 36 2700 75 36 800 22
Problem 6 35 1 51 51 35 2800 80 35 840 24

seconds of CPU time. The integral below the graph illustrates the accumulated
verification time for all solved verification tasks. The Impact-based analysis is
not able to solve all verification tasks (it solves 220 instances), the predicate-
abstraction-based analysis can verify each property within 300 s of CPU time.
The BDD-based analysis, which we introduced earlier in this paper, is able to
solve each of the properties within 25 s.

Table 1 shows more detailed results for the violated properties, i.e., the verifi-
cation tasks for which the verification result is ’UNSAFE’, and Table 2 shows the
details for the satisfied properties. The verification time (total and mean) values
are given in seconds of CPU time with two significant digits. The Impact-based
analysis can solve the verification tasks of the programs Problem 1 and Problem 2

10 D. Beyer and A. Stahlbauer

completely; performance and precision decrease dramatically for Problems 3 to 6.
The predicate-abstraction-based analysis and the BDD-based analysis can both
verify all properties; but the BDD-based analysis is significantly more efficient.
The BDD-based analysis scales best with the problem size (assuming that the
verification tasks for the program ‘Problem n+ 1’ are harder than the tasks for
the program ‘Problem n’).

5 Conclusion

We extended the standard software-verification tool CPAchecker by a config-
urable program analysis (CPA) that uses BDDs as data structure to represent
sets of data states (variable assignments). We have compared the effectiveness
and efficiency of this analysis to other approaches that use symbolic techniques:
a program analysis that computes abstract successor states using predicate ab-
straction after every successor computation [7], and a program analysis that
computes abstract states along paths using interpolation [9, 17] — both being
state-of-the-art approaches for symbolic software verification.

The experiments show that the BDD-based approach is the most efficient
verification approach (by an order of magnitude) for the considered class of pro-
grams. However, as soon as the programs use more general operations, BDDs
would be prohibitively less efficient. This means that BDDs can be more effi-
cient than other representations for certain types of variables (the ones that are
involved in simple operations only). This is an important insight and motiva-
tion for future work: It would be promising to pre-analyze the program in order
to find out for each variable how it is used, and then determine —based on its
usage-type— the most efficient abstract domain to track this variable. The other
variables can be analyzed by an explicit-value analysis or a predicate-analysis;
using a configuration program analysis (CPA) with adjustable precisions; such
combinations of program analyses are easy to construct in CPAchecker.

References

1. Berndl, M., Lhoták, O., Qian, F., Hendren, L., Umanee, N.: Points-to Analysis
using BDDs. In: Proc. PLDI, pp. 103–114. ACM (2003)

2. Beyer, D.: Relational Programming with CrocoPat. In: Proc. ICSE, pp. 807–810.
ACM (2006)

3. Beyer, D.: Competition on Software Verification (SV-COMP). In: Flanagan, C.,
König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 504–524. Springer, Heidelberg
(2012)

4. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The Software Model Checker
Blast. Int. J. Softw. Tools Technol. Transfer 9(5-6), 505–525 (2007)

5. Beyer, D., Henzinger, T.A., Théoduloz, G.: Configurable Software Verification:
Concretizing the Convergence of Model Checking and Program Analysis. In:
Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 504–518.
Springer, Heidelberg (2007)

BDD-Based Software Model Checking with CPAchecker 11

6. Beyer, D., Keremoglu, M.E.: CPAchecker: A Tool for Configurable Software Ver-
ification. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806,
pp. 184–190. Springer, Heidelberg (2011)

7. Beyer, D., Keremoglu, M.E., Wendler, P.: Predicate Abstraction with Adjustable-
Block Encoding. In: Proc. FMCAD, pp. 189–197 (2010)

8. Beyer, D., Lewerentz, C., Noack, A.: Rabbit: A Tool for BDD-Based Verification
of Real-Time Systems. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS,
vol. 2725, pp. 122–125. Springer, Heidelberg (2003)

9. Beyer, D., Wendler, P.: Algorithms for Software Model Checking: Predicate Ab-
straction vs. IMPACT. In: Proc. FMCAD (2012)

10. Bryant, R.E.: Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers C-35(8), 677–691 (1986)

11. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L.: Sequential Circuit Verifica-
tion using Symbolic Model Checking. In: Proc. DAC, pp. 46–51. ACM (1990)

12. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic Model
Checking: 1020 States and Beyond. In: Proc. LICS, pp. 428–439. IEEE (1990)

13. Campos, S.V.A., Clarke, E.M.: The Verus Language: Representing Time Effi-
ciently with BDDs. In: Rus, T., Bertrán, M. (eds.) ARTS 1997. LNCS, vol. 1231,
pp. 64–78. Springer, Heidelberg (1997)

14. Esparza, J., Kiefer, S., Schwoon, S.: Abstraction Refinement with Craig Inter-
polation and Symbolic Pushdown Systems. In: Hermanns, H., Palsberg, J. (eds.)
TACAS 2006. LNCS, vol. 3920, pp. 489–503. Springer, Heidelberg (2006)

15. Howar, F., Isberner, M., Merten, M., Steffen, B., Beyer, D.: The RERS Grey-Box
Challenge 2012: Analysis of Event-Condition-Action Systems. In: Margaria, T.,
Steffen, B. (eds.) ISoLA 2012, Part I. LNCS, vol. 7609, pp. 608–614. Springer,
Heidelberg (2012)

16. McMillan, K.L.: The SMV System. Technical Report CMU-CS-92-131, Carnegie
Mellon University (1992)

17. McMillan, K.L.: Lazy Abstraction with Interpolants. In: Ball, T., Jones, R.B. (eds.)
CAV 2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006)

18. Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: CIL: Intermediate Language
and Tools for Analysis and Transformation of C Programs. In: Horspool, R.N. (ed.)
CC 2002. LNCS, vol. 2304, pp. 213–228. Springer, Heidelberg (2002)

19. von Rhein, A., Apel, S., Raimondi, F.: Introducing Binary Decision Diagrams in
the Explicit-State Verification of Java Code. In: Proc. Java Pathfinder Workshop
(2011)

Security for Cyber-Physical Systems

(Extended Abstract)

Dieter Gollmann

Institute for Security in Distributed Applications
Hamburg University of Technology

Hamburg, Germany
diego@tu-harburg.de

Abstract. Cyber-physical systems are characterized by an IT infras-
tructure controlling effects in the physical world. Attacks are intentional
actions trying to cause undesired effects in the physical world. We exam-
ine to which extent traditional IT security techniques can protect against
attacks on cyber-physical systems and which additional measures could
be deployed to strengthen their security. Properties relevant in this con-
text are the veracity and plausibility of the data being processed.

Keywords: Critical infrastructures, security in cyber-physical systems,
veracity, plausibility.

All science is either physics or stamp collecting. [Ernest Rutherford]

Cyber-physical systems, a.k.a. embedded systems, are IT systems “embedded”
in an application in the physical world. They consist of sensors, actuators, the
processors that are part of the control system, and communication networks.
Some of these systems are critical because they are part of an infrastructure
critical for society. Critical infrastructure protection has been a high profile topic
for a decade at least.

There exists, for example, a considerable body of work on SCADA (Supervi-
sory Control and Data Acquisition) systems. Investigations into SCADA security
are often motivated by the observation that critical systems which were once iso-
lated installations using proprietary protocols are now being connected to the
Internet (which we all know to be terribly insecure). The focus is thus very much
on securing the communications infrastructure, and partly also on software in
control systems. Most of these papers are surveys by nature, applying known
security techniques to known security problems. Such reports are undoubtedly
justified as warnings to an industry new to the Internet, but novel research
challenges are hardly identified.

What is then missing? The physical world, the sensors and actuators, are not
part of the picture. The Stuxnet worm [1] did not reach its target on the Internet
but on a physical device (USB stick). Stuxnet came with a digital certificate and
was injected by a “trusted” party, i.e. a contractor with legitimate access to the

A. Kučera et al. (Eds.): MEMICS 2012, LNCS 7721, pp. 12–14, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Security for Cyber-Physical Systems 13

site. The standard armoury in network security, viz. firewalls, secure tunnels,
digital signatures, and access control, provided no defence.

Cryptography belongs to cyber space. “Trusting” sensor data just because
they have been digitally signed does not help when the sensor readings have
been manipulated before reading. “Trusting” code just because it has been dig-
itally signed does not help when the code is vulnerable or outright malicious1.
Encrypting sensor data does not help much when the adversary can take the
same environmental readings with moderate effort2.

We have to include the physical world in our considerations. In this respect,
we should not look at the cyber-part of the cyber-physical system as an infras-
tructure that needs protection from attacks in cyber space. We would miss the
view on what happens in the physical world. The cyber-part of a cyber-physical
system is better treated as a control system. This view encourages us to think
about effects in the physical world and about ways of tampering with inputs
before they are handed to the IT infrastructure.

We have arrived at an old problem in a new setting. How can we be sure
that the inputs from sensor readings faithfully capture reality? We will call
this property veracity. In the past research on reliability had been concerned
with accidental sensor failures. Replication (redundancy) and consistency checks
such as majority voting had been used to detect components reporting wrong
data. These defences build on the assumption of the statistical independence of
component failures.

With intentional attacks the efficacy of defences cannot be argued on the ba-
sis of statistical independence. We may then use models of the physical space
to be controlled that relate different types of sensor inputs (different aspects of
the physical world) and perform plausibility checks that judge to which extent
individual sensor readings are consistent with the general view on the system
derived from all the readings. A security argument would then have to show how
difficult it is to deceive the control system about the state of the system being
controlled. Attacks may be launched in the physical world – by manipulating
sensors or the environment around a sensor – and in the control system (here
we are back to traditional IT security). The laws of physics may help the de-
fender by excluding impossible sensor readings or flagging implausible readings
as suspicious. Tamper resistance (hardware and software) and physical security
are other familiar principles that can be part of the defence.

In a cyber-physical systems we further have to ensure that actuators are
working as instructed. The established approach places sensors in the system
to observe the actions of actuators. We are then back to verifying the verac-
ity of sensor readings. In the “old” days where controllers communicated with
actuators via analogue signals there was not much more that could be done.

1 This is old news. It was argued in the late 1990s that digitally signed code, e.g.
Microsoft’s Authenticode, does not provide relevant security guarantees whereas
sandboxing could do so.

2 Much work on WSN security fails to justify why the attacker has no viable alterna-
tives to intercepting WSN traffic to obtain information from the physical world.

14 D. Gollmann

Today, with layered software architectures we may check whether instructions
issued at a higher layer are faithfully translated into a lower layer language
understood by smart instruments.

Measures to secure critical cyber-physical systems have to go beyond securing
the IT infrastructure and check the veracity of the inputs used for controlling
the system. We have sketched some generic principles but concrete solutions are
likely to be specific, building on physical aspects of the system being controlled.

Reference

1. Langner, R.: Stuxnet: Dissecting a cyberwarfare weapon. IEEE Security & Privacy
3(9), 49–51 (2011)

Quantum Secret Sharing with Graph States

Sylvain Gravier1,2, Jérôme Javelle3, Mehdi Mhalla1,3, and Simon Perdrix1,3

1 CNRS
2 Institut Fourier, University of Grenoble, France

3 LIG, University of Grenoble, France

Abstract. We study the graph-state-based quantum secret sharing pro-
tocols [24,17] which are not only very promising in terms of physical
implementation, but also resource efficient since every player’s share is
composed of a single qubit. The threshold of a graph-state-based proto-
col admits a lower bound: for any graph of order n, the threshold of the
corresponding n-player protocol is at least 0.506n. Regarding the upper
bound, lexicographic product of the C5 graph (cycle of size 5) are known
to provide n-player protocols which threshold is n − n0.68. Using Paley
graphs we improve this bound to n−n0.71. Moreover, using probabilistic
methods, we prove the existence of graphs which associated threshold is
at most 0.811n. Albeit non-constructive, probabilistic methods permit
to prove that a random graph G of order n has a threshold at most
0.811n with high probability. However, verifying that the threshold of a
given graph is acually smaller than 0.811n is hard since we prove that
the corresponding decision problem is NP-Complete. These results are
mainly based on the graphical characterization of the graph-state-based
secret sharing properties, in particular we point out strong connections
with domination with parity constraints.

Keywords: Quantum Information, Graph Theory, Quantum Cryptog-
raphy, NP-Completeness.

1 Introduction

1.1 Quantum Secret Sharing

Secret sharing schemes were independently introduced by Shamir [33] and Blak-
ley [3] and extended to the quantum case by Hillery [14] and Gottesman [8,10]. A
quantum secret sharing protocol consists in encoding a secret into a multipartite
quantum state. Each of the players of the protocol has a share which consists of
a subpart of the quantum system and/or classical bits. Authorized sets of play-
ers are those that can recover the secret collectively using classical and quantum
communications. A set of players is forbidden if they have no information about
the secret. The encrypted secret can be a classical bit-string or a quantum state.

A threshold ((k, n)) quantum secret sharing protocol [14,8,10] is a protocol by
which a dealer distributes shares of a quantum secret to n players such that any
subset of at least k players is authorized, while any set of less than k players is
forbidden. It is assumed that the dealer has only one copy of the quantum secret

A. Kučera et al. (Eds.): MEMICS 2012, LNCS 7721, pp. 15–31, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

16 S. Gravier et al.

he wants to share. A direct consequence of the no-cloning theorem [36] is that
no ((k, n)) quantum secret sharing protocol can exists when k ≤ n

2 – otherwise
two distinct sets of players can reconstruct the secret implying a cloning of the
quantum secret. On the other hand, for any k > n

2 a ((k, n)) protocol has been
introduced in [8] in such a way that the dimension of each share is proportional to
the number of players. The unbounded size of the share is a serious drawback of
the protocol, as a consequence several schemes of quantum secret sharing using
a bounded amount of resources for each player have been introduced [24,4,20].

1.2 Graph-State-Based Quantum Secret Sharing

In [24] a quantum secret sharing scheme using particular quantum states, called
graph states [12], and such that every player receives a single qubit, has been
introduced. The graph-state-based protocols are also of interest because graph
states are at the forefront in terms of implementation and have emerged as a
powerful and elegant family of entangled states [13,30].

As introduced in [24], only one non-trivial graph (the cycle of size 5) corre-
sponds to a threshold protocol. In [17], the graph-state-based protocol has been
extended to ensure that any graph correspond to a threshold protocol. Given a
graph G, the threshold of the corresponding protocol is κQ(G). This threshold is
characterized graphically by the notion of weak odd domination. In [17], it has
been proved that for any graph G of order n, κQ(G) > 0.506n, refining the no-
cloning theorem. This bound is not known to be tight. All known constructions
of graph-state-based quantum secret sharing protocols lead to quasi-uninimity
protocols (i.e. the threshold is n− o(n), where n is the number of players). The
best known construction is based on the lexicographic product of graphs, and
leads to protocols with a threshold n− n0.68 [17].

We improve this threshold to n−n0.71 using Paley graphs. Moreover, we show,
using probabilistic methods, that for any (large enough) n there exists a graph
G of order n such that κQ(G) ≤ 0.811n. The proof is not constructive, but it
crucially shows that graph-state based quantum secret sharing protocols are not
restricted to quasi-unanimity thresholds. We actually prove that almost all the
graphs have such a ‘small’ κQ: if one picks a random graph G of order n (every
edge occurs with probability 1/2), then κQ(G) ≤ 0.811n with probability greater
than 1 − 1

n . We also prove that, given a graph G and a parameter k, deciding
whether κQ(G) ≥ k is NP-complete. As a consequence, one cannot efficiently
verify that a particular randomly generated graph has actually a ‘small’ κQ.

1.3 Combinatorial Properties of Graph States

The development and the study of graph-based protocols [24,20,17,31,16] have
already pointed out deep connections between graph theory and quantum infor-
mation theory. For instance, it has been shown [19] that a particular notion of
flow [9,5,26,25] in the underlying graph captures the flow, during the protocol, of
the information contained in the secret from the dealer – who encodes the secret
and sends the shares – to the authorized sets of players. The results presented in

Quantum Secret Sharing with Graph States 17

this paper contribute to these deep connections: we show that weak odd domina-
tion is a key concept for studying the properties of graph-based quantum secret
sharing protocols.

The study of graph-state-based protocols also contributes, as a by-product, to
a better understanding of the combinatorial properties of the graph states. The
graph state formalism is a very powerful tool which is used in several areas of
quantum information processing. Graph states provide a universal resource for
quantum computing [30,34,27] and are also used in quantum correction codes
[32,6] for instance. They are also used to define pseudo-telepathy games [1].
Moreover, they are very promissing in terms of physical implementation [29,35].
As a consequence, progresses in the knowledge of the fundamental properties of
graph states can potentially impact not only quantum secret sharing but a wide
area of quantum information processing.

2 Graph State Secret Sharing

2.1 Graph States

For a given graph G = (V,E) with vertices v1, . . . , vn, the corresponding graph
state |G〉 is a n-qubit quantum state defined as

|G〉 = 1√
2n

∑
x∈{0,1}n

(−1)q(x) |x〉

where q(x) is the number of edges in the induced subgraphG[x] = ({vi ∈ V | xi =
1}, {(vi, vj) ∈ E | xi = xj = 1}).

Graph states have the following fundamental fixpoint property: given a graph
G, for any vertex u ∈ V ,

XuZN(u) |G〉 = |G〉

where N(u) is the neighborhood of u in G, X = |x〉 �→ |x̄〉, Z = |x〉 �→ (−1)x |x〉
are one-qubit Pauli operators and ZA =

⊗
u∈A Zu is a Pauli operator acting on

the qubits in A.

2.2 Sharing a Classical Secret Using a Graph State

Graph-state-based classical sharing protocols have been introduced in [24]. In
these protocols a classical secret is shared by means of a quantum state. The
authorized sets of players are those which are satisfying the following graphical
property, called c-accessibility:

Definition 1. Given a graph G = (V,E), a set B ⊆ V of vertices is c-accessible
if ∃D ⊆ B such that |D| = 1 mod 2 and Odd(D) ⊆ B, where Odd(D) := {v ∈
V | |N(v) ∩D| = 1 mod 2}.

18 S. Gravier et al.

Given a graph G = (V,E) of order n, the graph state-based protocol for
sharing a classical secret s ∈ {0, 1} among n players is defined as:

1. Encryption. The dealer prepares the graph state |G〉. If s = 1 the dealer
applies ZV on the qubits of the graph state. The resulting state is

|Gs〉 := Zs
V |G〉

2. Distribution. Player j’s share is qubit j of |Gs〉.
3. Reconstruction. Let B be a c-accessible set of player, with D ⊆ B such

that |D| = 1 mod 2 and Odd(D) ⊆ B.
– The players in Odd(D) apply S = |x〉 �→ ix |x〉 on their qubit.
– The players in D apply H = |x〉 �→ 1√

2
(|0〉+(−1)x |1〉) on their qubit.

– Each player j ∈ D∪Odd(D) measures his qubit in the {|0〉 , |1〉}-basis
and broadcasts his result si ∈ {0, 1} to the players in B.

– The reconstructed secret is

|GD|+
∑

j∈D∪Odd(D)

sj mod 2

where |GD| is the size (i.e. the number of edges) of the subgraph
induced by D.

Proof of the protocol [Sketch]. The proof that the reconstructed secret is the ac-
tual secret relies on the fact that for any D ⊆ V , (−1)|GD|XDZOdd(D) |G〉 = |G〉,
as a consequence (−1)|GD|XDZOdd(D) |Gs〉 = (−1)s |Gs〉, so a measurement ac-
cording to XDZOdd(D) produces the classical outcome s+ |GD| mod 2. Finally,
the non local measurement according to XDZOdd(D) can be decomposed into
local measurements such that the parity of the local measurements is the same
as the outcome of the non-local measurement. �

Sharing a classical bit can be done using a classical scheme, like [33], instead of
using a quantum state. Moreover the above protocol can be simulated by purely
classical graph-based schemes [16]. However, the study of the graph-state-based
classical secret sharing, and in particular the characterization of their authorized
structure are essential for the next sections where the sharing of a quantum secret
is considered.

The graph-state-based classical secret sharing protocol is perfect, i.e. any set
of players is either c-accessible, or has no information about the secret [17]. The
proof of perfectness has two steps: using graph theory arguments, one can prove
that if a set B of players is not c-accessible in a graph, then B is a WOD set
(WOD stands for weak odd domination), i.e. there exists C ⊆ V \ B such that
B ⊆ Odd(C). The second part of the proof consists in proving that the reduced
density matrix of a WOD set of players does not depend on the secret, thus the
players in this set have no information about the secret [19].

Since any subset of a WOD set is a WOD set and that any superset of a
c-accessible is a c-accessible set, the important quanties for a graph state-based

Quantum Secret Sharing with Graph States 19

classical secret sharing protocol are the largest WOD set and the smallest c-
accessible set by considering the following quantities:

Definition 2. For a given graph G, let

κ(G) = max
B WOD

|B| κ′(G) = min
B c-accessible

|B|

For instance, for a C5 graph, i.e. a cycle of size 5, κ(C5) = 2 and κ′(C5) = 3. So
it means that any set of at least 3 players can recover the secret whereas any set
of at most 2 players have no information about the secret. In other words, the
C5 graph induces a threshold protocol. Another example is the complete graph
Kn. Since κ(Kn) = n − 1 and κ′(Kn) = n, complete graphs induce unanimity
protocol.

We consider a third example: for any p, q ∈ N, let Gp,q be the complete q-
partite graph where each independent set is of size p: the vertices of Gp,q are
pairs (i, j), with 0 ≤ i < p, 0 ≤ j < q, two vertices (i, j), (i′, j′) are connected if
and only if j �= j′. Gp,q is of order n = pq.

Lemma 1. For any p, q ∈ N,

κ(Gp,q) = n− p and κ′(Gp,q) = q if q = 1 mod 2
κ(Gp,q) = max(n− p, n− q) and κ′(Gp,q) = p+ q + 1 if q = 0 mod 2

Proof. If q = 1 mod 2

– [κ(Gp,q) ≥ n− p]: The subset B composed of all the vertices but a maximal
independent set (MIS) – i.e. an independent set of size p – is in the odd
neighborhood of each vertex in V \B. Therefore B is WOD and |B| = n−p.
Consequently κ(Gp,q) ≥ n− p.

– [κ(Gp,q) ≤ n − p]: Any set B such that |B| > n − p contains at least one
vertex from each of the q MIS, i.e. a clique of size q. Let D ⊆ B be such a
clique of size |D| = q = 1 mod 2. Every vertex v outside D is connected to
all the elements of D but the one in the same MIS as v. Thus Odd(D) = ∅.
As a consequence, B is non-WOD.

– [κ′(Gp,q) ≤ q]: B composed of one vertex from each MIS is a non-WOD set
(see previous item).

– [κ′(Gp,q) ≥ q]: If |B| < q then B does not intersect all the MIS of size p, so
B is in the odd neighborhood of each vertex of such a MIS. So B is WOD.

If q = 0 mod 2

– [κ(G) ≥ max(n − p, n − q)]: For κ(G) ≥ n − p, see previous lemma. The
subset B composed of all the vertices but a clique of size q (one vertex from
each MIS) is in the odd neighborhood of V \ B. Indeed each vertex of B is
connected to q − 1 = 1 mod 2 vertices of V \B. So B of size n− q is WOD,
as a consequence κ(G) ≥ n− q.

20 S. Gravier et al.

– [κ(G) ≤ max(n − p, n − q)]: Any set B such that |B| > max(n − p, n − q)
contains at least one vertex from each MIS and moreover it contains a MIS
S of size q. Let D ⊆ B \ S be a clique of size q − 1 = 1 mod 2. Every vertex
u in V \B is connected to all the vertices in D but one, so Odd(D) ⊆ B.

– [κ′(G) ≤ p+q−1]: Let S be an MIS. Let B be the union of S and of a clique
of size q. Let D = B \ S. |D| = q − 1 = 1 mod 2. Every vertex u in V \B is
connected to all the vertices of D but one, so Odd(D) ⊆ B.

– [κ′(G) ≥ p+ q − 1]: Let |B| < p+ q − 1. If B does not intersect all the MIS
of size p, then B is in the odd neighborhood of each vertex of such a non
intersecting MIS. If B intersects all the MIS then it does not contain any
MIS, thus there exists a clique C ⊆ V \B of size q. Every vertex in B is in
the odd neighborhood of C. �

2.3 Sharing a Quantum Secret

Graph state based classical secret sharing can be extended to the quantum case
as follows (the encryption method has been introduced in [24], and for the re-
construction method in [17]):

Given a graph G of order n, the graph state-based protocol for sharing
a quantum secret |φ〉 = α |0〉+ β |1〉 among n players is:

1. Encryption. The dealer prepares the quantum state α |G0〉+β |G1〉 where
|G0〉 := |G〉 and |G1〉 := ZV |G〉.

2. Distribution. Player i’s share is qubit i of α |G0〉+ β |G1〉.
3. Reconstruction. Let B be a c-accessible set of players such that V \ B

is WOD. So ∃C,D ⊆ B such that V \ B ⊆ Odd(C), |D| = 1 mod 2, and
Odd(D) ⊆ B.
– Players in B choose u ∈ B who will reconstruct the secret. Every

player in B \ {u} sends his qubit to u.

– u applies the unitary 1√
2

(
I U
−U I

)
where U = (−1)|GD|XDZOdd(D)

on the (|B| + 1)-qubit system composed of an ancillary qubit |0〉+|1〉√
2

and the received qubits. The resulting state of the (n+1)-qubit system
is

α |0〉 ⊗ |G0〉+ β |1〉 ⊗ |G1〉

– u applies the unitary

(
I 0
0 U ′

)
where U ′ = (−1)|GC |XCZV \Odd(C). The

resulting state of the (n+ 1)-qubit system is

(α |0〉+ β |1〉)⊗ |G〉

Thus the secret is reconstructed on the first qubit.

Quantum Secret Sharing with Graph States 21

In this protocol of graph-state based quantum secret sharing, the authorized
sets of players are c-accessible such that their complementary sets are WOD.
Intuitively the c-accessibility allows the players to extend the superposition to
an ancillary qubit (i.e. to transform the state α |G0〉 + β |G1〉 to α |0〉 ⊗ |G0〉 +
β |1〉 ⊗ |G1〉). Notice that if the secret is classical (either α or β is equal to 0),
then the state of the ancillary qubit is nothing but the secret. In the general
case, when the secret is a superposition, the ancillary qubit is entangled with
the rest of the system. The second requirement, namely that the complementary
set V \B is WOD allows the players in B to make the ancillary qubit separable
from the rest of system, producing the state (α |0〉+ β |1〉)⊗ |G〉.

Since authorized players are c-accessing such that their complementary are
WOD, the important quantity for graph-state based quantum secret sharing
protocols is

κQ(G) = max(κ(G), n− κ′(G))

Indeed any setB of players such that |B| > κQ(G) is c-accessing since |B| > κ(G)
and its complementary set is WOD since |V \B| < κ′(G).

2.4 Threshold Schemes

Notice that the graph-state based quantum secret sharing are not perfect in
general. One can prove that the authorized sets are those which are c-accessible
such that their complementary set is WOD [17]. On the otherhand, if a set is
WOD and its complementary is c-accessible, then such a set has no information
about the secret. But all sets which are not of that kind, for instance those such
that both B and V \B are c-accessible, have some partial information about the
secret.

To make the protocol perfect, and even to obtain a threshold protocol, a
variant of the previous protocol has heen introduced in [17]. The idea is to add
a one-time padding of the secret to ensure that the sets of players which size
is below the threshold have no information about the secret. To implement this
one-time padding the previous protocol is coupled with a classical protocol for
sharing the classical key of the one-time padding.

22 S. Gravier et al.

Given a graph G and an integer k > κQ(G) the threshold graph state-
based protocol for sharing a quantum secret |φ〉 = α |0〉+ β |1〉 among
n players is:

1. Encryption. The dealer chooses uniformly at random two bits p, q ∈
{0, 1} and applies XpZq to the secret. The resulting state is α |p〉 +
β(−1)q |1− p〉. Then, the dealer prepares the quantum state α |Gp〉 +
(−1)qβ |G1−p〉.

2. Distribution. Player i’s share is qubit i of α |Gp〉+(−1)qβ |G1−p〉. More-
over p and q are shared among the n players using a classical secret sharing
protocol (not described here) with threshold k.

3. Reconstruction. For any B such that |B| ≥ k, since |B| > κQ(G),
∃C,D ⊆ B such that V \B ⊆ Odd(C), |D| = 1 mod 2, and Odd(D) ⊆ B.
– Players in B choose u ∈ B who will receive the secret. Every player

in B \ {u} sends his qubit to u.

– u applies 1√
2

(
I U
−U I

)
where U = (−1)|GD|XDZOdd(D) and then(

I 0
0 U ′

)
where U ′ = (−1)|GC |XCZV \Odd(C). The resulting state is

(α |p〉+ β(−1)q |1− p〉)⊗ |G〉

– Using the classical secret sharing protocol, the players in B recon-
structs the classical bits p and q.

– u applies ZqXp to the ancillary qubit. The resulting state is α |0〉 +
β |1〉.

This protocol is a ((k, n)) threshold quantum secret sharing protocol. Indeed
for any set of at most k−1 players, they have no information about the classical
keys p and q which garantees that they have no information about the quantum
secret. For the sets of at least k players, since k > κQ(G), they can reconstruct
the state α |p〉+β(−1)q |1− p〉, like in the previous protocol, moreover they have
access to the keys p and q, so they can reconstruct the quantum secret.

2.5 Lower Bound and Quasi-unanimity Protocols

Graph-state-based secret sharing protocols are very promising in terms of physi-
cal implementations [29,35], moreover, contrary to the family of quantum secret
sharing introduced by Gottesman [10], the size of each quantum share does not
depend on the number of players. The drawback is that some threshold protocols
cannot be implemented using a graph-state-based protocol:

Lemma 2 (Lower bound [17]). For any graph G of order n > 5,

κQ(G) > 0.506n

Notice that for any quantum secret sharing scheme, if there is a threshold, this
threshold must be larger than n/2. This bound [10] is a direct application of the

Quantum Secret Sharing with Graph States 23

no-cloning theorem: if k < n/2 then two distinct sets of k players can recover the
quantum secret, leading to a cloning of the quantum secret. The lower bound
for graph-state-based protocols is not known to be tight.

Regarding the upper bound, all known constructions of graph-state-based
quantum secret sharing protocols are quasi-unanimity protocols. In the next
section, we will prove using non constructive methods that for any n there exists
a graph G of order n such that κQ(G) < 0.811n.

Thanks to lemma 1, for any p, q ∈ N, the complete q-partite graph Gp,q of
order n = pq (see section 2.2), κQ(Gp,q) = max(n−p, n−q). Thus, for any square
number n, κQ(G√

n,
√
n) = n−

√
n. The corresponding secret sharing protocol is

a quasi-unanimity protocol since the ratio k/n tends to 1 as n tends to infinity.
The best known construction is based on the lexicographic product of graphs:

Given G = (V,E) G • G = (V ′, E′) is defined as V ′ := V × V and E′ :=
{((u1, u2), (v1, v2)) | (u1, v1) ∈ E or (u1 = v1 ∧ (u2, v2) ∈ E)}.

Lemma 3 ([17]). For any graph G, of order n

κQ(G •G) ≤ 2n.κQ(G)− κQ(G)2

Graphs-state-based quantum secret sharing protocols with threshold n− n0.68,
where n is the number of players, can be obtained using inductively the lexico-
graphic product of C5 graph (cycle on five vertices) [17].

In fact, the C5 graph is a particular case of a family of graphs called Paley
graphs, that have been used recently in [18] to provide the best known upper
bound for the minimum degree up to local complementation which can be defined
as minD⊆V,D �=∅ |D ∪Odd(D)| − 1.

For any prime p such that p = 1 mod 4, the Paley graph Palp is a graph on
p vertices where each vertex is an element of Fp. There is an edge between two
vertices i and j if and only if i− j is a square in Fp.

Graphs-state-based quantum secret sharing protocols with n players and
threshold n− n0.71 is obtained using the lexicographic product of Pal29 graphs.
This is, up to our knowledge, the best known constructive threshold.

Theorem 1. For any i > 0,

κQ(Pal29
•i

) ≤ n− n
log(11)
log(29) ≈ n− n0.71

where Pal29
•1

= Pal29, Pal29
•i

= Pal29
•i−1

• Pal29
•i−1

and n = 292
i

is the
order of the graph.

Proof. κQ(Pal29) is computed taking benefits of the symmetries of the Paley
graphs (strong regularity, vertex transitivity, edge transitivity, self complemen-
tarity). The evolution with the lexicographic product is given by lemma 3. �

It is significant and interesting to notice that the conjecture of the existence of
an infinite family of Paley graphs leading to non quasi-unanimity protocols is
related to the Bazzi-Mitter conjecture [2].

24 S. Gravier et al.

3 Graphs with Small κQ

In this section, we prove the existence of graph-state-based secret sharing proto-
cols which are not quasi-unanimity. More precisely, using the asymmetric Lovász
Local Lemma [23] we show that there exists an infinite family of graphs {Gi} such
that κQ(Gi) ≤ 0.811ni where ni is the order ofGi. Moreover, we prove that a ran-
dom graph G(n, 1/2) (graph on n vertices where each pair of vertices have prob-
ability 1/2 to have an edge connecting them) satisfies κQ(G(n, 1/2)) ≤ 0.811n
with high probability.

First we prove the following lemma:

Lemma 4. Given k and G = (V,E), if for any non empty set D ⊆ V , |D ∪
Odd(D)| > n− k and |D ∪ (V \Odd(D))| > n− k then κQ(G) < k.

Proof. Since ∀D ⊆ V |D∪Odd(D)| > n−k, κ′(G) > n−k. Let B ⊆ V , |B| ≥ k, if
B is not WOD then ∃C ⊆ V \B such that B ⊆ Odd(C), so (V \Odd(C)) ⊆ V \B
which implies |C ∪ (V \Odd(C))| ≤ n− k. �

We use the asymmetric form of the Lovász Local Lemma that can be stated as
follows:

Theorem 2 (Asymmetric Lovász Local Lemma, no independency
case). Let A = {A1, · · · , An} be a set of bad events in an arbitrary probabil-
ity space. If for every Ai there exists w(Ai) ∈ [0, 1) such that Pr(Ai) ≤ w(Ai).p,
where p =

∏
Aj∈A(1 − w(Aj)) then Pr(A1, · · · , An) ≥ p

Theorem 3. There exists an infinite family of graphs {Gi} such that κQ(Gi) ≤
0.811ni where ni is the order of Gi.

Proof. Let G(n, 1/2) = (V,E) be a random graph. We use the asymmetric
Lovász local lemma to show that the probability that for all non empty set
D ⊆ V |D ∪Odd(D)| > (1− c)n and |D ∪ (V \ Odd(D))| > (1− c)n is positive
for some constant c. This ensures by Lemma 4 that κQ(G) < cn.

We consider the “bad” events AD : |Odd(D) ∪ D| ≤ (1 − c)n and A′
D :

|Odd(D)∪(V \Odd(D))| ≤ (1−c)n. When |D| > (1−c)n, Pr(AD) = Pr(A′
D) =

0, therefore the previous events are defined for all D such that |D| ≤ (1− c)n.
For allD such that |D| ≤ (1−c)n, we want to get an upper bound on Pr(AD).

Let |D| = dn for some d ∈ (0, 1− c]. For all u ∈ V \D, Pr(“u ∈ Odd(D)”) = 1
2 .

If D is fixed, the events “u ∈ Odd(D)” when u is outside D are independent.
Therefore, if the event AD is true, any but at most (1−c−d)n vertices outside D
are contained in Odd(D). There are (1−d)n vertices outside D, then Pr(AD) =(
1
2

)(1−d)n∑(1−c−d)n
k=0

(
(1−d)n

k

)
≤
(
1
2

)(1−d)n
2(1−d)nH(1−c−d

1−d) = 2(1−d)n[H(c
1−d)−1]

where H : t �→ −t log2(t) − (1 − t) log2(1 − t) is the binary entropy function.

Similarily, Pr(A′
D) ≤ 2(1−d)n[H(c

1−d)−1].
We consider that all the events can be dependent. For any D ⊆ V such

that 0 < |D| ≤ (1 − c)n, we define w(AD) = w(A′
D) = 1

r(n
|D|)

. First,

we verify that Pr(AD) ≤ w(AD)
∏

D′⊆V,|D|≤(1−c)n(1 − w(AD′))(1 − w(A′
D′)).

Quantum Secret Sharing with Graph States 25

The product of the right-hand side of the previous equation can be written

p =
∏(1−c)n

|D′|=1

(
1− 1

r(n
|D′|)

)2(n
|D′|)

=

[∏(1−c)n
|D′|=1

(
1− 1

r(n
|D′|)

)r(n
|D′|)

] 2
r

. The func-

tion f : x �→
(
1− 1

x

)x
verifies f(x) ≥ 1

4 when x ≥ 2, therefore p ≥
(
1
4

) 2
r (1−c)n

=

2−
4(1−c)n

r for any r ≥ 2. Thus, it is sufficient to have 2(1−d)n[H(c
1−d)−1] ≤

1

r(n
dn)

2−
4(1−c)n

r . Rewriting this inequality gives r
(
n
dn

)
2(1−d)n[H(c

1−d)−1]+ 4(1−c)n
r ≤

1. Thanks to the bound
(
n
dn

)
≤ 2nH(

dn
n) and after applying the logarithm func-

tion and dividing by n, it is sufficient that (1 − d)
[
H
(

c
1−d

)
− 1

]
+ H(d) +

4(1−c)
r + log2 r

n ≤ 0. If we take r = n, the condition becomes asymptotically

(1− d)
[
H
(

c
1−d

)
− 1

]
+H(d) ≤ 0.

Numerical analysis shows that this condition is true for any c > 0.811 and for
all d ∈ (0, 1− c]. Thus, thanks to the Lovász Local Lemma, for any c > 0.811,

Pr(κQ(G) < cn) ≥ p ≥
(
1
4

) 2
r (1−c)n

> 0, therefore there exists an infinite family
of graphs {Gi} such that κQ(Gi) ≤ 0.811ni where ni is the order of Gi for
ni ≥ N0 for some N0 ∈ N. �

Recently [31], Sarvepalli proved that quantum secret sharing protocols based on
graph states are equivalent to quantum codes. Combining this result with the
Gilbert Varshamov bounds on quantum stabilizer codes [11], we can provide an
alternative proof of theorem 3. However, we believe the use of the Lovász Local
Lemma offers several advantages: the proof is a purely graphical proof with a
potential extension to the construction of good quantum secret sharing schemes
using the recent development in the algorithmic version [28] of the Lovász Local
Lemma. Moreover, the use of the probabilistic methods already offers a way
of generating good quantum secret sharing protocols with high probability by
adjusting the parameters of the Lovász Local Lemma:

Theorem 4. There exists n0 such that for any n > n0, a random graph G(n, 1
2)

has a κQ smaller than 0.811n with high probability:

Pr

(
κQ(G(n,

1

2
)) < 0.811n

)
≥ 1− 1

n

Proof. The proof of the theorem is done as in the proof of theorem 3, by tak-
ing c = 0.811 and r = 4 ln(2)(1 − c)n2. It guarantees that for n ≥ 26681,

(1 − d)
[
H
(

c
1−d

)
− 1

]
+ H(d) + 4(1−c)

r + log2 r
n ≤ 0. Thus, for any D ⊆ V

such that 0 < |D| ≤ (1 − c)n, Pr(AD) ≤ w(AD)
∏

D′⊆V,|D|≤(1−c)n(1 −
w(AD′))(1 − w(A′

D′)). Moreover the probability that none of the bad events

occur is Pr
(
κQ(G(n, 1

2)) < 0.811n
)
≥
(
1
4

) 2
r (1−c)n

=
(
1
4

) 1
2n ln(2) = e−

1
n ≥ 1− 1

n .

�

26 S. Gravier et al.

4 Complexity of Computing the Threshold
of Graph-State-Based Protocols

According to Theorem 4, a random graph G(n, 1/2) induces a secret shar-
ing protocol with a threshold smaller than 0.811n with high probability:
Pr

(
κQ(G(n, 1

2)) < 0.811n
)
≥ 1 − 1

n . So even if the Lovász local Lemma is
not constructive, one can pick uniformly at random a graph G of order n, if
κQ(G) ≥ 0.811n, he picks another one and so on. Since the probability that
κQ(G) ≥ 0.811n this procedure seems to be efficient, however the crucial point
here is the complexity of deciding whether κQ(G) ≥ 0.811n or not. In this section
we consider the complexity of this problem and show that the problem is NP-
complete (Theorem 10). To prove this result we introduce several bounds and
complexity results on weak odd domination, and in particular on the quantities
κ(G), κ′(G) and κQ(G) of a graph G.

First, we show that the sum of κ(G) and κ′(G) is always greater than the order
of the graph G. The proof is based on the duality property that the complement
of a non-WOD set in G is a WOD set in G, the complement graph of G.

Lemma 5. Given a graph G = (V,E), if B ⊆ V is not a WOD set in G then
V \B is a WOD set in G.

Proof. Let B be a non-WOD set in G. ∃D ⊆ B such that |D| = 1 mod 2 and
OddG(D) ⊆ B. As a consequence, ∀v ∈ V \ B, |NG(v) ∩ D| = 0 mod 2. Since
|D| = 1 mod 2, ∀v ∈ V \B, |NG(v) ∩D| = 1 mod 2. Thus, V \B is a WOD set
in G. �

Theorem 5. For any graph G of order n, κ′(G) + κ(G) ≥ n.

Proof. There exists a non-WOD set B ⊆ V such that |B| = κ′(G). According to
Lemma 5, V \B is WOD in G, so n− |B| ≤ κ(G), so n− κ′(G) ≤ κ(G). �

For any vertex v of a graph G, its (open) neighborhood N(v) is a WOD set,
whereas its closed neighborhood (i.e. N [v] = {v} ∪N(v)) is a non-WOD set, as
a consequence:

κ(G) ≥ Δ κ′(G) ≤ δ + 1

where Δ (resp. δ) denotes the maximal (resp. minimal) degree of the graph G.
In the following, we prove an upper bound on κ(G) and a lower bound on

κ′(G).

Lemma 6. For any graph G of order n and degree Δ, κ(G) ≤ n.Δ
Δ+1 .

Proof. Let B ⊆ V be a WOD set. ∃C ⊆ V \ B such that B ⊆ Odd(C). |C| ≤
n − |B| and |B| ≤ |Odd(C)| ≤ Δ.|C|, so |B| ≤ Δ.(n − |B|). It comes that
|B| ≤ n.Δ

Δ+1 , so κ(G) ≤ n.Δ
Δ+1 . �

In the following we prove that this bound is reached only for graphs having a
perfect code. A graph G = (V,E) has a perfect code if there exists C ⊆ V such
that C is an independent set and every vertex in V \C has exactly one neighbor
in C.

Quantum Secret Sharing with Graph States 27

Theorem 6. For any graph G of order n and degree Δ, κ(G) = n.Δ
Δ+1 if and

only if G has a perfect code C such that ∀v ∈ C, d(v) = Δ.

Proof. (⇐) Let C be a perfect code of G such that ∀v ∈ C, δ(v) = Δ. V \ C is
a WOD set since Odd(C) = V \ C. Moreover |V \ C| = nΔ

Δ+1 , so κ(G) ≥ n.Δ
Δ+1 .

According to Lemma 6, κ(G) ≤ nΔ
Δ+1 , so κ(G) = nΔ

Δ+1 .

(⇒) Let B be a WOD set of size n.Δ
Δ+1 . There exists C ⊆ V \ B such that B ⊆

Odd(C). Notice that |C| ≤ n− n.Δ
Δ+1 = n

Δ+1 . Moreover |C|.Δ ≥ |Odd(C)| ≥ |B|,
so |C| = n

Δ+1 . It comes that |B| = |B ∩ Odd(C)| ≤
∑

v∈C d(v) ≤ Δ. n
Δ+1 = |B|.

Notice that if C is not a perfect code the first inequality is strict, and if ∃v ∈ C,
d(v) < Δ, the second inequality is strict. Consequently, C is a perfect code and
∀v ∈ C, d(v) = Δ. �

Corollary 1. Given a Δ-regular graph G, κ(G) = nΔ
Δ+1 if and only if G has a

perfect code.

We consider the problem MaxWOD which consists in deciding, given a graph
G and an integer k ≥ 0, whether κ(G) ≥ k.

Theorem 7. MaxWOD is NP-Complete.

Proof. MaxWOD is in the class NP since a WOD set B of size k is a YES
certificate. Indeed, deciding whether the certificate B is WOD or not can be
done in polynomial time by solving for X the linear equation ΓV \B.X = 1B
in F2, where 1B is a column vector of dimension |B| where all entries are 1,
and ΓV \B is the cut matrix, i.e. a submatrix of the adjacency matrix of the
graph which columns correspond to the vertices in V \ B and rows to those
in B. In fact, X ⊆ V \ B satisfies ΓV \B.X = 1B if and only if (X ⊆ V \ B
and B ⊆ Odd(X)) if and only if B is WOD. For the completeness, given a 3-
regular graph, if κ(G) ≥ 3

4n then κ(G) = 3
4n (since κ(G) ≤ nΔ

Δ+1 for any graph).

Moreover, according to Corollary 1, κ(G) = 3
4n if and only if G has a perfect

code. Since the problem of deciding whether a 3-regular graph has a perfect code
is known to be NP complete (see [22] and [21]), so is MaxWOD. �

Now we introduce a lower bound on κ′.

Lemma 7. For any graph G, κ′(G) ≥ n
n−δ where δ is the minimal degree of G.

Proof. According to Theorem 5, κ′(G) ≥ n−κ(G). Moreover, thanks to Lemma

6, n− κ(G) ≥ n− nΔ(G)

Δ(G)+1
= n− n(n−1−δ(G))

n−δ(G) = n
n−δ . �

This bound is reached for the regular graphs for which their complement graph
has a perfect code, more precisely:

Theorem 8. Given G a δ-regular graph such that n
n−δ is odd, κ′(G) = n

n−δ if

and only if G has a perfect code.

28 S. Gravier et al.

Proof. (⇐) Let C be a perfect code of G. Since |C| = n
Δ(G)+1

= n
n−δ = 1 mod 2,

OddG(C) ⊆ C, thus C is a non-WOD set in G, so κ′(G) ≤ n
n−δ . Since κ′(G) ≥

n
n−δ for any graph, κ′(G) = n

n−δ
(⇒) Let B be a non-WOD set of size n

n−δ in G. ∃D ⊆ B such that |D| = 1 mod 2
and OddG(D) ⊆ B. According to Lemma 5, V \B ⊆ OddG(D), so |OddG(D)| ≥
Δ(G) n

n−δ , which implies that |D|.Δ(G) ≥ Δ(G) n
n−δ . As a consequence, |D| =

n
n−δ and since every vertex of V \B (of size Δ(G) n

n−δ) in G is connected to D,
D must be a perfect code. �

We consider the problem Min¬WOD which consists in deciding, given a graph
G and an integer k ≥ 0, whether κ′(G) ≤ k?

Theorem 9. Min¬WOD is NP-Complete.

Proof. Min¬WOD is in the class NP since a non-WOD set of size k is a YES
certificate. For the completeness, given a 3-regular graph G, if n

4 is odd then

according to Theorem 8, G has a perfect code if and only if κ′(G) = n
4 . If

n
4 is

even, we add a K4 gadget to the graph G. Indeed, G ∪K4 is a 3-regular graph
and n+4

4 = n
4 + 1 is odd. Moreover, G has a perfect code if and only if G ∪K4

has a perfect code if and only if κ′(G ∪K4) =
n
4 + 1. Since deciding whether a

3-regular graph has a perfect code is known to be NP complete, so is Min¬WOD

�

In the following, we prove that deciding, given a graph G and k ≥ 0, whether
κQ(G) ≥ k is NP complete (Theorem 10). The proof consists in a reduction
from the problem Min¬WOD, which is based on the evaluation of κ and κ′ for
particular graphs consisting of multiple copies of a same graph:

Lemma 8. For any graph G and any r > 0, κ(Gr) = r.κ(G) and κ′(Gr) = κ′(G)
where G1 = G and Gr+1 = G ∪Gr.

Proof.
– [κ(Gr) = r.κ(G)]: Let B be a WOD set in G of size κ(G). B is in the odd
neighborhood of some C ⊆ V . Then the set Br ⊆ V (Gr) which is the union of
sets B in each copy of the graphG is in the odd neighborhood of Cr ⊆ V (Gr), the
union of sets C of each copy of G. Therefore Br is WOD and κ(Gr) ≥ r.κ(G).
Now if we pick any set B0 ⊆ V (Gr) verifying |B0| > r.κ(G), there exists a
copy of G such that |B0 ∩ G| > κ(G). Therefore B0 is a non-WOD set and
κ(Gr) ≤ r.κ(G).
– [κ′(Gr) = κ′(G)]: Let B be a non-WOD set in G of size κ′(G). If we consider
B as a subset of V (Gr) contained in one copy of the graph G, B is a non-WOD
set in Gr. Therefore κ′(Gr) ≤ κ′(G). If we pick any set B ⊆ V (Gr) verifying
|B| < κ′(G), its intersection with each copy of G verifies |B ∩ G| < κ′(G).
Thus, each such intersection is in the odd neighborhood of some Ci. So B is in
the odd neighborhood of

⋃
i=1..r Ci. Consequently, B0 is a WOD set in Gr and

κ′(Gr) ≥ κ′(G). �

Quantum Secret Sharing with Graph States 29

We consider the problem QuantumThreshold which consists in deciding, for
a given graph G and k ≥ 0, whether κQ(G) ≥ k, i.e. κ(G) ≥ k or κ′(G) ≤ n−k?

Theorem 10. QuantumThreshold is NP-Complete.

Proof. QuantumThreshold is in NP since a WOD set of size k or a non-WOD
set of size n − k is a YES certificate. For the completeness, we use a reduction
to the problem Min¬WOD. Given a graph G and any k ≥ 0, κQ(G

k+1) ≥
(k + 1)n− k ⇔

(
κ(Gk+1) ≥ (k + 1)n− k or κ′(Gk+1) ≤ k

)
⇔
(
κ(G) ≥ n− 1 +

1
k+1 or κ′(G) ≥ k

)
⇔
(
κ(G) > n− 1 or κ′(G) ≥ k

)
. In the last disjunction, the

first inequality κ(G) > n − 1 is always false since for any graph G of order n
we have κ(G) ≤ n− 1. Thus, the answer of the oracle call gives the truth of the
second inequality κ′(G) ≥ k which corresponds to the problem Min¬WOD. As
a consequence, QuantumThreshold is NP-complete. �

5 Conclusion

In this paper, we have studied secret sharing with graph states which lead to the
analysis of the combinatorial quantity κQ that can be computed on graphs. We
have studied and computed these quantities on some specific families of graphs,
providing the best known constructive threshold protocols for graph-state based
secret sharing. Then, we have proven using probabilistic methods that there
exist graphs that allow non-quasi-unanimity protocols and that a random graph
G of order n satisfies κQ(G) ≤ 0.811n with high probability. Finally, we have
shown that given a graph G and an integer k, deciding whether κQ(G) ≥ k is
NP-Complete. Recently, in [7], the analysis of this problem has been refined by
considering its parameterized complexity: the problem belongs to W[2] and is
hard for W[1].

It is very interesting to see that the best known protocols use Paley graph
states and that they seem promising candidates to have even better bounds.
Paley graph states have also been used in [18] to provide the best known family
in terms of minimum degree up to local complementation, which is related to
the complexity of graph state preparation [15]. Paley graph states also form
an optimal family in terms of multipartie nonlocality [1]. Thus, these states
seem very interesting in terms of entanglement and might be useful for other
applications in quantum information theory.

Acknowledgements. This work has been funded by the ANR-10-JCJC-0208
CausaQ grant.

30 S. Gravier et al.

References

1. Anshu, A., Mhalla, M.: Pseudo-telepathy games and genuine NS n-way nonlocality
using graph states arxiv:1207.2276

2. Bazzi, L.M.J., Mitter, S.K.: Some randomized code constructions from group ac-
tions. IEEE Transactions on Information Theory 52(7), 3210–3219 (2006)

3. Blakley, G.R.: Safeguarding cryptographic keys. In: AFIPS Conference Proceed-
ings, vol. 48, pp. 313–317 (1979)

4. Broadbent, A., Chouha, P.R., Tapp, A.: The GHZ state in secret sharing and
entanglement simulation. arXiv:0810.0259 (2008)

5. Browne, D.E., Kashe, E., Mhalla, M., Perdrix, S.: Generalized ow and determinism
in measurement-based quantum computation. New Journal of Physics (NJP) 9(8)
(2007)

6. Beigi, S., Chuang, I., Grassl, M., Shor, P., Zeng, B.: Graph concatenation for
quantum codes. Journal of Mathematical Physics 52(2), 022201 (2011)

7. Cattanéo, D., Perdrix, S.: Parametrized Complexity of Weak Odd Domination
Problems. arXiv:1206.4081 (2012)

8. Cleve, R., Gottesman, D., Lo, H.-K.: How to Share a Quantum Secret. Phys. Rev.
Lett. 83, 648–651 (1999)

9. Danos, V., Kashe, E.: Determinism in the one-way model. Physical Review
A 74(052310) (2006)

10. Gottesman, D.: Theory of quantum secret sharing. Phys. Rev. A 61, 042311 (2000)
11. Feng, K., Ma, Z.: A finite Gilbert-Varshamov bound for pure stabilizer quantum

codes. IEEE Transactions on Information Theory 50, 3323–3325 (2004)
12. Hein, M., Dür, W., Eisert, J., Raussendorf, R., Van den Nest, M., Briegel, H.J.:

Entanglement in graph states and its applications. In: Proceedings of the Inter-
national School of Physics “Enrico Fermi” on “Quantum Computers, Algorithms
and Chaos” (2005)

13. Hein, M., Eisert, J., Briegel, H.J.: Multi-party entanglement in graph states. Phys-
ical Review A 69, 062311, quant-ph/0307130 (2004)

14. Hillery, M., Buzek, V., Berthiaume, A.: Quantum Secret Sharing. Phys. Rev. A 59,
1829, arXiv/9806063 (1999)

15. Høyer, P., Mhalla, M., Perdrix, S.: Resources required for preparing graph states.
In: 17th International Symposium on Algorithms and Computation (2006)

16. Javelle, J., Mhalla, M., Perdrix, S.: Classical versus Quantum Graph-based Secret
Sharing. eprint:arXiv:1109.4731 (2011)

17. Javelle, J., Mhalla, M., Perdrix, S.: New protocols and lower bound for quan-
tum secret sharing with graph states. In: Theory of Quantum Computa-
tion, Communication and Cryptography (TQC 2012). LNCS (to appear, 2012)
eprint:arXiv:1109.1487

18. Javelle, J., Mhalla, M., Perdrix, S.: On the Minimum Degree Up to Local Com-
plementation: Bounds and Complexity. In: Golumbic, M.C., Stern, M., Levy, A.,
Morgenstern, G. (eds.) WG 2012. LNCS, vol. 7551, pp. 138–147. Springer, Heidel-
berg (2012)

19. Kashefi, E., Markham, D., Mhalla, M., Perdrix, S.: Information flow in secret shar-
ing protocols. EPTCS 9, 87–97 (2009)

20. Keet, A., Fortescue, B., Markham, D., Sanders, B.C.: Quantum secret sharing with
qudit graph states. Phys. Rev. A 82, 062315 (2010)

21. Klavzar, S., Milutinovic, U., Petr, C.: 1-perfect codes in sierpinski graphs. Bulletin
of the Australian Mathematical Society 66, 369–384 (2002)

Quantum Secret Sharing with Graph States 31

22. Kratochvil, J.: Perfect codes in general graphs. In: 7th Hungarian colloqium on
combinatorics, Eger (1987)

23. Lovász, L.: Problems and results on 3-chromatic hypergraphs and some related
questions. In: Colloquia Mathematica Societatis Janos Bolyai, pp. 609–627 (1975)

24. Markham, D., Sanders, B.C.: Graph states for quantum secret sharing. Physical
Review A 78, 042309 (2008)

25. Mhalla, M., Murao, M., Perdrix, S., Someya, M., Turner, P.: Which graph states are
useful for quantum information processing? In: Theory of Quantum Computation,
Communication and Cryptography (TQC 2011). LNCS (2011) (to appear)

26. Mhalla, M., Perdrix, S.: Finding Optimal Flows Efficiently. In: Aceto, L., Damg̊ard,
I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.)
ICALP 2008, Part I. LNCS, vol. 5125, pp. 857–868. Springer, Heidelberg (2008)

27. Mhalla, M., Perdrix, S.: Graph States, Pivot Minor, and Universality of (X,Z)-
measurements. International Journal of Unconventional Computing (to be pub-
lished, 2012)

28. Moser, R.A., Tardos, G.: A constructive proof of the general Lovász Local Lemma.
Journal of the ACM (JACM) 57(2), 1–15 (2010)

29. Prevedel, R., Walther, P., Tiefenbacher, F., Bohi, P., Kaltenbaek, R., Jennewein,
T., Zeilinger, A.: High-speed linear optics quantum computing using active feed-
forward. Nature 445(7123), 65–69 (2007)

30. Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Physical Review
Letters 86(22), 5188–5191 (2001)

31. Sarvepalli, P.: Non-Threshold Quantum Secret Sharing Schemes in the Graph State
Formalism eprint:arXiv:1202.3433 (2012)

32. Schlingemann, D., Werner, R.F.: Quantum error-correcting codes associated with
graphs. Phys. Rev. A 65, 012308 (2001)

33. Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613
(1979)

34. Van den Nest, M., Miyake, A., Dür, W., Briegel, H.J.: Universal resources for
measurement-based quantum computation. Phys. Rev. Lett. 97, 150504 (2006)

35. Walther, P., Resch, K.J., Rudolph, T., Schenck, E., Weinfurter, H., Vedral, V.,
Aspelmeyer, M., Zeilinger, A.: Experimental one-way quantum computing. Na-
ture 434(7030), 169–176 (2005)

36. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299,
802–803 (1982)

Testing Embedded Memories: A Survey

Said Hamdioui

Computer Engineering Lab
Delft Univeristy of Technology
Mekelweg 4, 2628CD, Delft

The Netherlands
S.Hamdioui@tudelft.nl

http://www.ce.ewi.tudelft.nl/hamdioui/

Abstract. According to the International Technology Roadmap for
Semiconductors, embedded memories will continue to dominate the in-
creasing system on chips (SoCs) content in the future, approaching 90%
in in some cases. Therefore, the memory yield and quality will have a
dramatic impact on the overall SoC cost and outgoing product quality.
Meeting a high memory yield and quality requires understanding mem-
ory designs, modeling their faulty behaviors in appropriate and accurate
way, designing adequate tests and diagnosis strategies as well as efficient
Design-for-Testability and Built-In-Self-Test (BIST) schemes. This pa-
per presents the state of art in memory testing including fault modeling,
test design and BIST. Further research challenges and opportunities are
discussed in enabling testing (embedded) memories in the nano-era.

Keywords: MemoryTest,FaultModeling, test algorithmdesign,MBIST.

1 Introduction

The semiconductor memory development over the years can be classified in three
phases [1]: (a) the stand-alone, (b) memory integrated with logic and (c) scaled
embedded memory. In the first phase, typically from about 1980 to 1990, the
ideal MOS memory was a standardized stand-alone part, with its small cell size,
good array efficiency, adequate performance, noise and soft error resistance, and
met an external I/O standard. In the second phase, occurred from 1990 to 2000,
where memories began to be integrated onto the logic chip; however, embedded
DRAM and Flash were hindered by the historical divergence of the memory and
logic technologies. In the third phase, from 2000 on, the era of true embedded
memory has begun. Nowadays, embedded memories represent the great major-
ity of embedded electronics in Systems on Chip (SoC). It is very common to
find SoCs with hundreds of memories representing more than 50% of the overall
chip area. According to the ITRS, today’s SoCs have been moving from logic-
dominant to memory-dominant chips in order to deal with the requirements of
todays and future applications. Consequently, embedded memory test challenges
will significantly impact the overall testability of SoC. Solving such challenges

A. Kučera et al. (Eds.): MEMICS 2012, LNCS 7721, pp. 32–42, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.ce.ewi.tudelft.nl/hamdioui/

Testing Embedded Memories: A Survey 33

for memories will substantially contribute to the resolution of electronic system
test problems in the future; hence, supporting the continuation of the semicon-
ductor technology revolution and the manufacturability of future highly complex
systems (’gigascale’) and highly integrated technologies (’nano-scale’).

The cost of memory testing increases with every generation of new memory
chips [2]. Precise fault modeling to design efficient tests, in order to keep the test
cost and test time within economically acceptable limits, is therefore essential.
The quality of the tests, in terms of defect/fault coverage, is strongly dependent
on the used fault models. Therefore, fault models reflecting the real defects
of the new memory technologies are crucial for developing higher quality test
algorithms and therefore providing products with low Defect-Per-Million (DPM)
level driven by the market.

It is difficult, if not impossible, to test an embedded memory simply by apply-
ing test patters directly to the chip’s I/O pins, because the embedded memory’s
address, data, and control signals are usually not directly accessible through the
I/O pins. Therefore, Memory Built-In-Self Test (MBIST) is used for memory
testing. The basic philosophy behind the MBIST technique is: ”let the hardware
test itself ”; i.e. enhance the functionality of the memory to facilitate self-test.
Large (and expensive) external tests cannot provide the needed test stimuli to
enable high speed, nor high quality tests [3]. BIST therefore is the only practical
and cost-effective solution for embedded SoC memories.

This paper addresses the state-of the art of the three major aspects related to
embedded memory testing; these are fault modeling, test algorithm design and
MBIST. In addition, future challenges and trends will be covered.

2 Memory Fault Modeling

As already mentioned, the quality of fault models used to develop test algorithms
is very crucial in providing high outgoing product quality measured in DPM
level. The concept of memory fault model appeared first in early 1980’s. Many
fault models have been developed targeting different fault behaviors. Memory
fault models can be classified into two classes: (a) static faults, developed mainly
between 1980 and 2000, and (d) dynamic faults, have been developed since begin
2000.

Static Faults

During the early 1980’s many memory functional fault models have been in-
troduced, allowing the fault coverage of a certain test to be provable. Some
important fault models introduced in that time are [4,5,6]: Stuck-at-Faults and
Address-Decoder-Faults. These are abstract fault models and are not based on
any real memory design and/or real defects. To reflect the faulty behavior of the
real defects in real designs, Inductive Fault Analysis (IFA) was introduced. IFA
allows for the establishment of the fault models based on simulated defects at
the physical layout level of the design. In addition, IFA is capable of determining

34 S. Hamdioui

the occurrence probability and the importance of each fault model. The result
was that new fault models were introduced [7]: State-Coupling Fault and Data-
Retention Fault. In the late 1990’s, experimental results based on DPM screening
of a large number of tests applied to a large number of memory chips indicated
that many detected faults cannot be explained with the well-known fault models
[8,9], which suggested the existence of additional faults. This stimulated the in-
troduction of new fault models, based on defect injection and SPICE simulation
[10,11]: Read Destructive Fault, Write Disturb Fault, Transition Coupling Fault,
Read Destructive Coupling Fault, etc.

All the memory fault modeling described above focuses on faults sensitized
by performing at most one operation. For instance, Read Destructive Coupling
Fault is sensitized by applying a read operation to the victim cell, while the
aggressor cell is put in a certain state (i.e., the required number of operations is
1). Memory faults sensitized by performing at most one operation are referred
to as static faults.

Dynamic Faults

Many work published since early 2000 have revealed the existence and the im-
portance of another class of faults in the new memory technologies. It was shown
that another kind of faulty behavior can take place in the absence of static faults
[12]-[21]. This faulty behavior has been attributed to dynamic faults, which re-
quire more than one operation to be performed sequentially in time in order to
be sensitized. For example, a write 1 operation followed immediately by a read
1 operation will cause the cell to flip to 0; however, if only a single write 1
or a single read 1, or a read 1 which is not immediately applied after write 1
operation is performed, then the cell will not flip. [12] observed the existence
of dynamic faults in the new embedded DRAMs based on defect injection and
SPICE simulation. [13,14] observed the presence of dynamic faults in embedded
caches of Pentium processors during a detailed analysis of the DPM screening re-
sults of a large number of tests. [15,16] showed the importance of dynamic faults
for new SRAM technologies by analyzing DPM screening results of Intel and
STMicroelectronics products, and concluded that current and future SRAMs
tests need to consider dynamic faults or leave substantial DPM on the table.
[17] showed the existence of dynamic memory cell array faults for SRAMs using
defect injection and circuit simulation. The work of [18,19] proved the existing
of dynamic faults in the peripheral circuits of a memory (such as sense ampli-
fiers, pre-charge circuits, etc.), while the work of [20,21] showed the existence of
this class of faults in the address decoders. Due to the importance of covering
dynamic faults in order to realize the required product quality (as it has been
show by measured data [14]-[16], [22]), tests for such faults become an integral
part of memory test programs used within industry [23,24,25]. Dynamic faults
are becoming even more important for the future technologies [26].

Testing Embedded Memories: A Survey 35

3 Test Algorithm Design

Tests and fault detection for semiconductor memories have experienced a long
evolutionary process, starting before 1980’s. Overall, memory test algorithms
can be classified into three classes: (a) Ad-hoc tests, (b) March tests, and (b)
Fault primitive based tests; they are explained next.

Ad-hoc Tests: The are the early tests (typically before the 1980’s). They are
classified as Ad-Hoc because of the absence of formal fault models and proofs.
Tests as Scan, Checkerboard, Galpat and Walking 1/0 [5,27] belong to this class.
They have further the property of either having a low fault coverage (as it is the
case for Scan and Checkerboard) or requiring a very long test time (as it is the
case for Galpat and Walking), which make them very uneconomical for larger
memories.

March Tests: After the introduction of fault models during the early of 1980’s,
march tests became the dominant type of tests. The advantages of march tests
lay in two facts. First, the fault coverage of the considered/known models could
be mathematically proven, although one could not have any idea about the cor-
relation between the models and the defects in the real chips. Second, the test
time for march tests is typically linear with the size of the memory, which made
them acceptable from an industrial point of view. Some well-known march tests,
that have been shown to be efficient, are: Mats+ [28], March C- [29], PMOVI
[30], IFA 13n [7], etc.

Fault Primitive Based Tests: As new fault models have been introduced
in the late 1990’s, based on defect injection and SPICE simulation, other new
tests have been developed to deal with them. In addition, the concept of Fault
Primitive (FP) was introduced to better describe a single fault behavior [31]; it
made it easier to analyze the failure mechanisms in deep-sub micron technology
and to develop realistic fault models and thereafter optimal test algorithms using
defect-oriented testing. This approach allows for the realization of high defect
coverage as the algorithm can be optimized for each design/layout. Some of the
introduced FP based tests are targeting static faults; examples are March SS
[32] and March MSS[33] for detecting all possible static faults, March SR [11]
for detecting faults realistic for the design under consideration, etc. However,
most of the developed FP based tests are targeting dynamic faults, including
memory cell array faults [13]-[16], peripheral circuits faults [18,19] and address
decoder faults [20,21,34].

It is worth noting that the state-of-the art in memory fault modeling and test
design typically assumes the presence of a single fault at a time; memory tests
assuming the presence of multiple faults at a time have got limited attention in
the past [35,36] and they seems to become more important with further tech-
nology scaling [37]. Fault modeling and test design have to consider not only
the presence of a single defect/fault at a time, but also the presence of multiple
weak-faults/defects simultaneously (this is particularly important in the nano-

36 S. Hamdioui

era). A weak fault is not able to fully sensitize a fault, but it partially sensitizes
it; e.g., due to a partial open defect that creates a small delay. However, a fault
can be fully sensitized (i.e., becomes strong) when two (or more) weak faults are
sensitized simultaneously since their fault effects can be additive.

4 Memory Built-In-Self Test

As already mentioned, it is difficult to test an embedded memory simply by
applying test patters directly to the chip’s I/O pins, because the embedded
memory’s address, data, and control signals are usually not directly accessible
through the I/O pins. Therefore, BIST is the only practical and cost-effective
solution for embedded SoC memories.

BIST engines, no matter what kind, can use pseudo-random or determinis-
tic test patterns/algorithm. A pseudo-random pattern is basically very helpful
to test logic circuits. A memory, however, has a regular structure and typically
requires the application of regular and deterministic test patterns as those dis-
cussed in the previous section. In the early days of BIST (typically before 1990’s),
it was not unusual to see pseudo-random techniques applied to memory [38,39].
However, this approach has been hardly used from 1990 on due to its low fault
coverage.

MBIST based on deterministic patterns is dominant for testing memories
today. Deterministic patterns means that the patters are generated according
to specified predetermined values (such as march tests). When implementing
MBIST engines, trade-offs are made depending on: (a) the number of supported
algorithms, (b) the flexibility of the MBIST engine (in order to cope with the
unexpected), (c) the implementation speed, and (d) the area overhead. In ad-
dition, when MBIST performs tests, memory accesses have to be done at-speed
using Back-to-Back memory cycles in order to detect dynamic faults [14]-[25].
Systems require large, high speed memories, while the technology scaling ex-
hibits a large spread in implementation parameters, resulting in speed related
(dynamic) faults.

Many papers have been published on deterministic based MBIST; examples
are [40]- [50]. Let’s assume that every memory test algorithm can be described
using an extended notation of March algorithms [27], including the non-linear
algorithms such as Galpat and Walking 1/0. A march test consists of a finite
sequence of March Elements (MEs) [4]; a march element is a finite sequence of
operations applied to every cell in the memory before proceeding to the next cell.
Based on the level at which memory algorithms are specified, MBIST engines
can be classified into four classes.

Algorithm Based MBST: Only a single (or few) algorithms can be specified;
they are implemented in hardware using a state machine [40,41]. This MBIST
is generally used in industry to generate a single pattern (e.g., a single march
test). However, a better memory test solution requires a suite of patterns; this
makes the design of the state machine complex. The major limitation of algo-
rithm based MBIST lays in its quite restricted flexibility; modifying the patterns

Testing Embedded Memories: A Survey 37

requires changing the MBIST design. This MBIST implementation was used in
the early days of MBIST, where the fault behavior was still considered simple
and mainly static, while the implementation cost was very important. Perform-
ing at speed-testing was not a crucial issue for such MBIST class.

March Element Based MBIST: Applying an algorithm consists of succes-
sively scanning-in each of the algorithm’s MEs, together with its algorithm stress
combination. In order to be able to perform memory tests at-speed, it is suffi-
cient that each of the individual MEs is performed at-speed [42,45,49,50]. For
this MBIST class, not the algorithms are hard-wired, but only the MEs. Recent
publications [49,50] show that such MBIST class can provide higher flexibility
at extremely small command memory, which makes this MBIST class very at-
tractive for embedded applications whereby the tests have to be stored within
the MBIST engine. Moreover, all information required to support an at-speed
implementation is contained in the specified MEs. Hence, the required detailed
information to control the memory, such as whether a read or write has to be
performed, can be decoded from the ME prior to its application. This prevent
the complex implementation (costly hardware) which typically uses complex
schemes such as pipelining and prefetching to apply at speed-testing.

ME operations Based MBIST: In this case, at speed of only the opera-
tions within a single ME can be performed; elapsed time between MEs is not
critical. Typically each ME can use a certain stress combination (such as data-
background). Therefore this class can be easy implemented using two registers
(one for ME and one for the stress combination) and a register controlled state-
machine; the two register can be scanned via a low speed tester. Because of its
low cost implementation, such MBIST is very popular within the industry. Note
that ME operations based MBIST requires more test time than March Element
Based MBIST; in the latter all MEs are hard-wired and no external scanning is
needed for MEs to perform the tests.

Individual Operations Based MBIST: This class of MBIST engines allows
for the specification of algorithms by specifying each of the algorithm opera-
tions. Obviously, this can be very flexible. However, the implementation cost
is effectively determined by the size of the algorithm memory and the sup-
ported addressing scheme(s) [46]-[48], [51]. The more algorithms and addressing
schemes, the more hardware overhead. In addition, it typically explores expen-
sive prefetching and pipelining techniques to perform at speed-testing, which
makes the implementation costly. This class is mainly suitable for higher end
products.

5 Future Challenges

This section addresses some major challenges and trends wrt embedded mem-
ory testing and gives some research directions. First, the technology technology

38 S. Hamdioui

threats due to continue scaling will be discussed. Thereafter, the business pres-
sure will be covered. Finally, the requirements for future memory test solutions
will be described.

5.1 Technology Threats

Progressive technology scaling, as tracked by the ITRS and encapsulated by
Moore’s law, has driven the phenomenal success of the semiconductor industry.
Silicon technology has now entered the nano-era and the 10nm transistors are
expected to be in production by 2018, allowing the integration of a wider variety
of functions. However, it is well recognized that many challenges are emerging:

– Extreme variations: The increasing variability in device characteristics and
its impact on the overall quality and reliability represent major challenges
to scaling and integration for future nanotechnology generations [26] (cross
talk, interferences, leakages, Vth mismatch, degraded Read/Write margins,
...). What is more, newly emerging complex failure mechanisms in the nano-
era (which are not understood yet), are causing the fault mode of the chips to
be dominated by transient, intermittent, parametric and weak faults rather
than hard and permanent faults; hence causing more reliability problems
than quality problems [52]-[54] .

– Reduced voltages: Although the supply voltage is not scaling at the same scale
as the technology, the reduced voltages are contributing to the emergence
of many new failure mechanisms that may impact either the quality and/or
the reliability of memories; examples are: reduced signal strength, reduced
SNM (higher soft error rates) and increased sensitivity to delay (parametric)
faults.

– Speed related faults: The increasing clk speed of each memory generation
poses new challenges. For instance, a 10ps delay for a memory running at
100MHz is only 1% of the Clk speed. However, this is 10% for a memory
running at 1GHz! What is used to be known as marginal delays can cause
timing failures for today and future technologies. Hence testing for at-speed
related faults is becoming a must. Not to mention that other emerging failure
mechanisms also contribute to speed related faults.

– Wearout: The aggressive technology scaling does not only cause new failure
mechanisms, but also increases the level of transient errors (during device
lifetime) and reduces the device lifetime, causing major reliability challenges.

5.2 Business Pressure

The continuous increases in SoCcomplexity in general and the simultaneous higher
competitive semiconductor industry pose many business pressure challenges.

– Higher customer requirements: irrespective of the business pressure, cus-
tomers always require a higher product quality, lower cost and higher reliable
chips. Higher customer satisfaction requires therefore higher fault coverage,
even for unknown faults. Hence, large set of tests and stresses are needed,
making test cost higher (reducing benefits).

Testing Embedded Memories: A Survey 39

– Shorter time-to-volume (TTV)/market: TTV consist of two parts: (a) design
time and (b) production ramp-up time [1]. IP reuse is a common practice
used to reduce the design time. Reducing production ramp-up time is what
is causing the real bottleneck. Traditionally, one had sufficient learning time
for test cost and DPM level reduction, starting at low volume with a large
number of tests used to detect, analyze and correct yield problems. Today,
and due to time-to-market pressure, the time-to-market is reduced causing a
severe reduction in the learning curve. Due to the very short to no learning
curve, understanding of all faults for each new technology is impossible.
Hence, the test program may provide a low fault coverage, which contradicts
the customer requirements.

5.3 Requirements for Future Test Solutions

Given the challenges mentioned above, the future solutions have to provide an-
swers to both the customer requirements (higher quality, reliability and fault
coverage for all emerging faults) and the short time-to-market (higher yield).
Today’s solutions are going in the following direction:

– Manufacturing Test: Use effective test set. Development of new tests may
require new approaches. To optimize cost v quality (wrt time-to-volume),
this test may not detect all faults (economically undetectable faults escape).
In addition, use a programmable BIST at module level to enhance shorter
time to market

– In field Test: Use Error Correction codes (ECC) to compensate for incom-
plete fault coverage and to detect soft errors and new (unexpected) failures.
In addition, use dynamic Built-In-Self-Repair to maintain the effectives of
ECC and increase yield and product lifetime.

6 Conclusion

This paper has discussed three major aspects related to embedded memory test-
ing and has provided some future challenges. The approach based on single defect
a time causing a strong fault, on which the traditional fault modeling and test
design are based, may need refinement as memories in nano-era may suffer from
different small disturbances (weak faults) at the same time; these weak faults can
together create a strong fault if sensitize simultaneously during the application.
Therefore a new memory test paradigm may be needed.

References

1. Marinissen, E.J., et al.: Challenges in Embedded Memory Design and Test. In: Pro-
ceedings of the Design, Automation and Test in Europe Conference and Exhibition
(2005)

2. Inoue, M., et al.: A New Test Evaluation Chip for Lower Cost Memory Tests. IEEE
Design and Test of Computers 10(1), 15–19 (1993)

40 S. Hamdioui

3. Mookerjee, R.: Segmentation: A Technique for Adapting High-Performance Logic
ATE to Test High-Density, High-Speed SRAMs. In: IEEE Workshop on Memory
Test, pp. 120–124 (1993)

4. Suk, D.S., Reddy, S.M.: A March Test for Functional Faults in Semiconductors
Random-Access Memories. IEEE Transactions on Computers C-30(12), 982–985
(1981)

5. Abadir, M.S., Reghbati, J.K.: Functional Testing of Semiconductor Random Access
Memories. ACM Computer Surveys 15(3), 175–198 (1983)

6. Papachistou, C.A., Saghal, N.B.: An Improved Method for Detecting Functional
Faults in Random-Access Memories. IEEE Trans. on Computers C-34(2), 110–116
(1985)

7. Dekker, R., et al.: A Realistic Fault Model and Test Algorithms for Static Random
Access Memories. IEEE Trans. on Computers 9(6), 567–572 (1990)

8. Schanstra, I., van de Goor, A.J.: Industrial evaluation of Stress Combinations for
March Tests Applied to SRAMs. In: Proc. IEEE Int. Test Conference, pp. 983–992
(1999)

9. van de Goor, A.J., de Neef, J.: Industrial Evaluation of DRAMs Tests. In: Proc.
of Design Automation and Test in Europe, pp. 623–630 (1999)

10. Adams, D., Cooley, E.S.: Analysis of Deceptive Read Destructive Memory Fault
Model and Recommended Testing. In: Proc. of IEEE NATW (1999)

11. Hamdioui, S., van de Goor, A.J.: Experimental Analysis of Spot Defects in SRAMs:
Realistic Fault Models and Tests. In: Proc. of Ninth Asian Test Symposium,
pp. 131–138 (2000)

12. Al-Ars, Z., van de Goor, A.J.: Static and Dynamic Behavior of Memory Cell Array
Opens and Shorts in Embedded DRAMs. In: Proc. of Design Automation and Test
in Europe, pp. 401–406 (2001)

13. Hamdioui, S., Al-ars, Z., van de Goor, A.J.: Testing Static and Dynamic Faults in
Random Access Memories. In: Proc. of IEEE VLSI Test Symposium, pp. 395–400
(2002)

14. Hamdioui, S., van de Goor, A.J., Reyes, J.R., Rodgers, M.: Memory Test Exper-
iment: Industrial Results and Data. IEE Proceedings of Computers and Digital
Techniques 153(1), 1–8 (2006)

15. Hamdioui, S., et al.: Importance of Dynamic Faults for New SRAM Technologies.
In: Proc. of European Test Workshop, pp. 29–34 (2003)

16. Hamdioui, S., Wadsworth, R., Reyes, J.D., Van De Goor, A.J.: Memory Fault Mod-
eling Trends: A Case Study. Journal of Electronic Testing 20(3), 245–255 (2004)

17. Dilillo, L., et al.: Dynamic read destructive fault in embedded-SRAMs: analy-
sis and march test solution. In: Proc. Ninth IEEE European Test Symposium,
pp. 140–145 (2004)

18. Van de Goor, A.J., Hamdioui, S., Wadsworth, R.: Detecting faults in the peripheral
circuits and an evaluation of SRAM tests. In: Proc. of Inter. Test Conference,
pp. 114–123 (2004)

19. Dilillo, L., et al.: Resistive-Open Defect Influence in SRAM Pre-Charge Circuit:
Characterization and Analysis. In: 10th European Test Symposium on IEEE ETS
2005 (2005)

20. Hamdioui, S., Al-Ars, Z., van de Goor, A.J.: Opens and Delay Faults in CMOS
RAM Address Decoders. IEEE Trans. on Computers 55(11), 1630–1639 (2006)

21. Dilillo, L., et al.: ADOFs and Resistive-ADOFs in SRAM Address Decoders: Test
Conditions and March Solutions. Jour of Electronic Testing: Theory and Applica-
tions 22(3), 287–296 (2006)

Testing Embedded Memories: A Survey 41

22. Hamdioui, S., Al-Ars, Z., Jimenez, J., Calero, J.: PPM Reduction on Embed-
ded Memories in System on Chip. In: IEEE Proc. of European Test Symposium,
Freiburg, Germany, pp. 85–90 (May 2007)

23. Al-Ars, Z., Hamdioui, S., Gaydadjiev, G.N., Vassiliadis, S.: Test Set Development
for Cache Memory in Modern Microprocessors. IEEE Trans. Very Large Scale
Integration (VLSI) Systems 16(6), 725–732 (2008)

24. Powell, T., Kumar, A., Rayhawk, J., Mukherjee, N.: Chasing Subtle Embedded
RAM Defects for Nanometer Technologies. In: Proc. of the IEEE Int. Test Conf.,
paper 33.4, vol. 23(5) (October 2007)

25. Mukherjee, N., Pogiel, A., Rajski, J., Tyszer, J.: High Volume Diagnosis in Memory
BIST Based on Compressed Failure Data. IEEE Trans. on Computer-Aided Design
of Integrated Circuits and Systems 29, 441–453 (2010)

26. Bhavnagarwala, A., et al.: The semiconductor industry in 2025. In: IEEE Inter-
national Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp.
534–535 (2010)

27. van de Goor, A.J.: Testing Semiconductor Memories, Theory and Practice, 2nd
edn. ComTex Publishing, Gouda (1998)

28. Nair, R.: An Optimal Algorithm for Testing Stuck-at Faults Random Access Mem-
ories. IEEE Trans. on Computers C-28(3), 258–261 (1979)

29. Marinescu, M.: Simple and Efficient Algorithms for Functional RAM Testing. In:
Proc. of IEEE International Test Conference, pp. 236–239 (1982)

30. De Jonge, J.H., Smeulders, A.J.: Moving Inversions Test Pattern is Thorough, Yet
Speedy. In: Comp. Design, pp. 169–173 (1979)

31. van de Goor, A.J., Al-Ars, Z.: Functional fault models: A formal notation and
taxonomy. In: Proc. IEEE VLSI Test Symp., pp. 281–289 (2000)

32. Hamdioui, S., van de Goor, A.J., Rodgers, M.: March SS: A Test for All Static
Simple RAM Faults. In: Proc. of IEEE International Workshop on Memory Tech-
nology, Design, and Testing, Bendor, France, pp. 95–100 (2002)

33. Harutunvan, G., Vardanian, V.A., Zorian, Y.: Minimal March tests for unlinked
static faults in random. In: Proc. of IEEE VLSI Test Symposium, pp. 53–59 (2005)

34. van de Goor, A.J., Hamdioui, S., Gaydadjiev, G.N., Al-Ars, Z.: New Algorithms
for Address Decoder Delay Faults and Bit Line Imbalance Faults. In: 18th IEEE
Asian Test Symposium, Taichung, Taiwan, pp. 391–397 (November 2009)

35. van de Goor, A.J., et al.: March LA: A test for linked memory faults. In: Eur.
Design Test Conf., p. 627 (1999)

36. Hamdioui, S., et al.: Linked faults in random access memories: concept, fault mod-
els, test algorithms, and industrial results. IEEE Trans. on CAD of Integrated
Circuits and Systems 23(5), 737–757 (2004)

37. Hamdioui, S., et al.: A New Test Paradigm for Semiconductor Memories in the
Nano-Era. In: Proc. of Asian Test Symposium, pp. 347–352 (2011)

38. McAnney, et al.: Random Testing for Stuck-At Storage Cells in an Embedded
Memory. In: Proc. of Intern. Test Conference, pp. 157–166 (1984)

39. David, R., Fuentes, A., Courtois, B.: Random Patterns Testing Versus Determin-
istic Testing of RAMs. IEEE Trans. on Computers 5, 637–650 (1989)

40. Dekker, R., Beenker, F., Thijssen, L.: Realistic built-in self-test for static RAMs.
Design & Test of Computers 6(1), 26–34 (1989)

41. Dreibelbis, J.H., Hedberg, E.L., Petrovic, J.G.: Built-In Self-Test for Integrated
Circuits, US Patent, Number 5,173,906 (December 22, 1992)

42. Zarrineh, K., et al.: A new framework for generationg optimal March tests for
memeory arrays. In: Proc. of the Int. Test Conf., pp. 73–82 (1998, 2001)

42 S. Hamdioui

43. Powell, T.J., et al.: BIST for Deep Submicron ASIC Memories with High Perfor-
mance Application. In: Proc. of the IEEE Int. Test Conf., pp. 386–392 (2003)

44. Appello, D., et al.: Exploiting Programmable BIST For The Diagnosis of Embedded
Memory Cores. In: Int. Test Conference, p. 379 (2003)

45. Aitken, R.C.: A Modular Wrapper Enabling High Speed BIST and Repair for Small
Wide Memories. In: Proc. of the IEEE Int. Test Conf., paper 35.2, pp. 997–1005
(2004)

46. Du, X., Mukherjee, N., Cheng, T.M.: Full-Speed Field-Programmable Memory
BIST Architecture. In: Proc. of the IEEE Int. Test Conf., paper 45.3 (2005)

47. Du, X., Mukherjee, N., Cheng, W.-T., Reddy, S.M.: A Field-Programmable Mem-
ory BIST Architecture Supporting Algorithms and Multiple Nested Loops. In:
Proc. of the Asian Test Symposium, paper 45.3 (2006)

48. van de Goor, A.J., Jung, C., Gaydadjiev, G.: Low-cost, Flexible SRAM MBIST
Engine. In: IEEE International Symposium on Design and Diagnostics of Electronic
Circuits and Systems (April 2010)

49. van de Goor, A.J., Hamdioui, S., Gaydadjiev, G., Alars, Z.: Generic March Element
Based Memory Built-In Self-Test, Dutch Patent Application; Filing Number NL
2004407, Filed date (January 2010)

50. van de Goor, A.J., Hamdioui, S., Kukner, H.: Generic, orthogonal and low-cost
March Element based memory BIST. In: Inter. Test Conference, pp. 1–10 (2011)

51. Khare, J.B., Shah, A.B., Raman, A., Rayas, G.: Embedded Memory Field returns
- Trials and Tribulations. In: Proc. IEE Int. Test Conf., Paper 26.3 (2006)

52. Borkar, S.: Design and Test Challenges for 32 nm and Beyond. Keynote speech at
IEEE International Test Conference, p. 13 (2009)

53. Hamdioui, S., Al-Ars, Z., Mhamdi, L., Gaydadjiev, G.N., Vassiliadis, S.: Trends in
Tests and Failure Mechanisms in Deep Sub-micron Technologies. In: IEEE Proc. of
Int. Conference on Design and Test of Integrated Systems in Nanoscale Technology,
pp. 216–221 (September 2006)

54. Vermeulen, B., Hora, C., Kruseman, B., Marinissen, E.J., van Rijsinge, R.: Trends
in Testing Integrated Circuits. In: Proc. IEEE Int’l Test Conf., pp. 688–697 (2004)

Quicksort and Large Deviations

Colin McDiarmid

University of Oxford

Abstract. Quicksort may be the most familiar and important
randomised algorithm studied in computer science. It is well known that
the expected number of comparisons on any input of n distinct keys is
Θ(n lnn), and the probability of a large deviation above the expected
value is very small. This probability was well estimated some time ago,
with an ad-hoc proof: we shall revisit this result in the light of further
work on concentration.

1 Introduction

Quicksort was introduced in the 1960’s by Hoare [7,8], and has established itself
as one of the classic algorithms of computer science. There are several reasons
for this: it is efficient and useful in practice; it illustrates two key ideas in algo-
rithm design, namely divide and conquer, and randomization; and the study of
quicksort and its variants has become a model for the analysis of algorithms in
general.

Let us focus on the number of comparisons required for sorting, as is usual.
As we shall see below, the expected number of comparisons is suitably small.
The aim of this paper is to revisit the rather precise estimation in Hayward and
McDiarmid [13,14] on

the probability that the number of comparisons of a random execution of
quicksort will have a large deviation from the expected number of com-
parisons.

The original proof for the upper bound on the probability involved adapting,
in a rather ad-hoc way, parts of the proofs from the then recently popularised
combinatorial approach known as the “method of bounded differences” for es-
tablishing concentration [11]. We shall rework the proof, in the light of further
general work on concentration.

Before introducing the definitions we need in order to state our theorems
precisely, let us discuss the two variants of quicksort we shall refer to in this
paper. First, by “basic” quicksort (and unless otherwise stated, that is the version
we will be referring to) we mean the original, unadorned version:

A partitioning key is selected uniformly at random from the list of un-
sorted keys, and used to partition the keys into two sublists. The algo-
rithm is called recursively on remaining unsorted sublists, until sublists
have size one or zero.

A. Kučera et al. (Eds.): MEMICS 2012, LNCS 7721, pp. 43–52, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

44 C. McDiarmid

One common variant is to use a different sorting algorithm (usually insertion
sort) for lists whose size is not greater than a certain threshold value M . We refer
to this variant as “cutting at length M”. Another common variant is to select
the partitioning key as the median of 2t+ 1 keys selected uniformly at random
from the list of unsorted keys. For an introduction to the study of quicksort
see for example Cormen, Leiserson and Rivest [1]: for a comprehensive survey
and comparative analysis of common variants see Sedgewick [17]. For some more
recent relevant results on the analysis of quicksort, see [6], [10], [15], [16].

We now introduce some notation. Let Qn be the random number of key com-
parisons made when (basic) quicksort sorts n keys. We make the usual assump-
tion that the n keys are distinct. (Alternatively, we could assume that all n!
linear orders are equally likely, and then our results apply to a suitable deter-
ministic version of quicksort.) A straightforward and well known analysis shows
that the expected number qn = E[Qn] of key comparisons satisfies q0 = 0 and
for n ≥ 1

qn = n− 1 +
1

n

n∑
j=1

(qj−1 + qn−j) . (1)

The harmonic numbers Hn are defined by H0 = 0 and Ht =
∑t

j=1 1/j for all
integers t ≥ 1. It follows easily from Equation (1) that qn = 2(n + 1)Hn − 4n.
Since Hn = lnn+ γ + O(1/n) as n → ∞ (where γ ≈ 0.577 is Euler’s constant)
it follows that

qn = 2n lnn − (4− 2γ)n + 2 lnn + O(1) .

Of course one attaches more credibility to an average case result if it is known
that there is a strong concentration of probability around the mean. In particular,
given ε > 0, what bounds can be placed on the quantity

P[|Qn

qn
− 1| > ε] ?

We want to show tight bounds for the above probability, as in [13,14], but with
a less ad-hoc proof for the upper bound. There were previous bounds known.
For instance, from the fact that the variance of Qn is Θ(n2) (see [9] or [17]), it
follows using Chebyshev’s inequality that for each ε > 0

P[|Qn

qn
− 1| > ε] = O((ε lnn)−2) .

Hennequin [6] used Chebyshev’s inequality with fourth moments to show that
for each ε > 0 the above probability is O((ε lnn)−4). Then Rösler [16] much im-
proved these upper bounds, and showed that for each fixed ε > 0 this probability
is O(n−k) for any fixed k.

The probability of such deviations is even smaller than this. For each fixed
ε > 0 we shall see that

P[|Qn

qn
− 1| > ε] = n−(2 + o(1)) ε ln(2) n (2)

Quicksort and Large Deviations 45

as n→∞. Note that here we use lnn to denote loge n. Also, we use the notation

ln(k) n, where ln(1) n = lnn and ln(k+1) n = ln(ln(k) n). The main result here for
basic quicksort is a more precise version of the equation (2).

Theorem 1. (Hayward and McDiarmid [13,14])
Let ε = ε(n) satisfy 1/ lnn < ε ≤ 1. Then as n→∞,

P[|Qn

qn
− 1| > ε] = n−2ε(ln

(2) n− ln(1/ε) +O(ln(3) n)) .

This result is quite precise for ε > 0 fixed or tending to 0 very slowly, though it
says little when ε = O(ln(2) n/ lnn).

Theorem 1 is stated above for the most basic form of quicksort. However,
the difference between the number of comparisons required by this version of
quicksort and the corresponding number for the more efficient “cutting at length
M” variant is only O(n). This small term does not affect the result, and the
theorem just stated (as well as the one that is to follow) also holds for the
“cutting at length M” variant.

Now consider the ‘median of (2t+ 1)’ variants of quicksort. Recall that these
are the variants in which the partitioning key is chosen as the median of (2t+1)
keys. Here t is a fixed non-negative integer, t = 0 corresponds to basic quicksort,
and t = 1 is perhaps most common in practice.

We need more notation before stating the second and final theorem. Let Q
(t)
n

be the random number of comparisons taken to sort a list of length n, and let

q
(t)
n = E[Q

(t)
n]. Thus Q

(0)
n is Qn. For j = 1, 2, . . . let κj = (H2j+2 − Hj+1)

−1.
Thus for example κ0 = 2 and κ1 = 12/7. It is well known ([19] and [17]) that

q(t)n = κt n lnn + O(n) as n→∞ .

We can now state the ‘median of (2t+ 1)’ extension of the first theorem:

Theorem 2. (Hayward and McDiarmid [13,14])
Let ε = ε(n) satisfy 1/ lnn < ε ≤ 1. Then as n→∞,

P[|Q
(t)
n

q
(t)
n

− 1| > ε] = n−(t+ 1)κtε(ln
(2) n− ln(1/ε) +O(ln(3) n)) .

In the next section we give some fundamental lemmas about basic quicksort, and
after that we introduce the concentration result, Lemma 6, which we shall use in
the proof of the upper bound in Theorem 1. A similar proof using Lemma 6 will
yield the upper bound in Theorem 2 for median of (2t+1) quicksort, though the
‘fundamental lemmas’ are more involved, see [14]: we will not pursue this here.

Recall that the results for basic quicksort apply to the analysis of binary search
trees, via a well known correspondence which we now describe. An execution of
quicksort may be associated with a ‘partition tree’, namely the tree whose root
is the initial partitioning key, and whose two subtrees are the trees of the two
recursive calls. Given a fixed number of keys, there is a one-to-one correspon-
dence between partition trees and binary search trees (binary trees in which

46 C. McDiarmid

each left/right child is lesser/greater than its parent). Thus the distribution of
the number of key comparisons of a quicksort execution is the same as the dis-
tribution of the number of key comparisons of a binary search tree construction,
assuming that binary search trees are constructed by repeated equi-probable in-
sertion of keys not yet in the tree. Thus Theorem 1 can be interpreted as a result
on binary search trees, by letting Qn be the number of key comparisons made
when a binary search tree on n keys is constructed.

We close this section by giving a quick overview on large deviations for basic
quicksort and how the upper and lower bound proofs work. In this paper we
focus only on the upper bound, but it helps also to see how the lower bound
proof works. We associate with an execution of quicksort a binary tree like the
partition tree above, where the root contains the original unsorted list, and the
children of any node contain the sublists obtained by splitting the list at the
parent node.

Firstly, when will we get a large deviation? For a suitable integer k (of order
lnn) consider the first k nodes on the leftmost path from the root in the binary
tree, and consider the set of their right children. For a suitable integer (of order
a little less than n/ lnn) let A be the event that the list length at each of these
right children is at most (so we have a succession of k bad splits). Then P[A]
is as on the right side of the equation in Theorem 1. Using the fact that the
variance of Qn is O(n2) we may see that P[Qn > (1 + ε)qn|A] = 1 + o(1); and
thus

P[Qn > (1 + ε)qn] ≥ P[Qn > (1 + ε)qn|A]P[A] = (1 + o(1))P[A].

How do we obtain the upper bound? As we move from the root through the
binary tree, think of step j as choosing the partitioning key for the list at node
j (and performing the relevant comparisons). Let Xj be the conditional expec-
tation of Qn given what we have seen up to step j. We will see that |Xj −Xj−1|
is at most the length of the list at node j. Thus the sum of these values over all
the nodes j at a given depth is at most n; and once we are well down the tree
(depth of order lnn) with very high probability the list lengths are all small,
and then the conditional range of Xj is small. This allows us to use a martingale
concentration inequality to obtain the upper bound as required.

2 Basic Quicksort

In this section we present the fundamental lemmas about basic quicksort which
we use in the proof of the upper bound in Theorem 1, with sketch proofs. For full
proofs see [14]. Let us first describe more precisely the correspondence mentioned
above between an execution of quicksort and an appropriate binary tree.

Consider the infinite binary tree, with nodes numbered 1, 2, 3, . . . level by level
and left to right in the usual manner. (So for instance, the path from the root
down the left side is 1, 2, 4, 8, . . .). Each execution of (basic) quicksort yields a
labelling of a subtree of this tree, corresponding to the recursive structure of
quicksort. The root, node 1, is labelled with the unsorted list of n keys, and

Quicksort and Large Deviations 47

its ‘list length’ L1 is n. A partitioning key is chosen, and after partitioning an
(unsorted) list of those keys less than the partitioning key forms the label for the
left child (node 2) which then acts like the root of a new tree. Similarly, those
keys greater than the partitioning key are sent to the right child of the root.

For each j = 1, 2, . . . let Lj be the length of the list to be sorted at node j. Thus
L1 = n and only n of the Lj are non-zero. The first lemma below shows that as
we move down the tree, the list lengths shorten suitably with high probability.
Let Mn

k be the maximum value of the list length Lj over the 2k nodes j at
depth k, that is

Mn
k = max{L2k+i : i = 0, 1, . . . , 2k − 1} .

Lemma 1. For any 0 < α < 1 and any integer k ≥ ln(1/α)

P[Mn
k ≥ αn] ≤ α

(
2e ln(1/α)

k

)k

.

Proof. (Sketch.) The key observation is that we can obtain the exact joint distri-
bution of (L1, L2, . . .) as follows. Here we are developing an idea of Devroye [2].

Let the random variables X1, X2, . . . be independent with each uniformly dis-
tributed on the interval (0,1). Define random variables L̃1, L̃2, . . . as follows. Let
L̃1 = n and for i ≥ 1 let L̃2i = �XiL̃i� and L̃2i+1 = �(1 − Xi)L̃i�. Then it is
easily seen that (L1, L2, . . .) and (L̃1, L̃2, . . .) have the same joint distribution.
Also, let M̃n

k be the maximum value of L̃j over the nodes j at depth k. Then it

follows that Mn
k and M̃n

k have the same distribution.
Now define further random variables Z1, Z2, . . . from X1, X2, . . . as follows.

Let Z1 = 1 and for i ≥ 1 let Z2i = XiZi and Z2i+1 = (1−Xi)Zi. Then we have
L̃i ≤ nZi for each i = 1, 2, Let Z∗

k be the maximum value of Zj over the 2k

nodes j at depth k. Then
M̃n

k ≤ nZ∗
k .

Now the conclusion follows from a series of routine probability inequalities and
arguments involving Z∗

k .

The fundamental property of (basic) quicksort that makes the proofs work is
given in the following lemma, which may be proved by manipulations of the
recurrence (1).

Lemma 2. Let n be a positive integer and let

An = {n− 1 + qk−1 + qn−k − qn : k = 1, 2, . . . , n} .

Then |x| ≤ n for all x ∈ An.

3 Filters, Martingales and Concentration

First we give here a very brief introduction to the language of filters and mar-
tingales, focussing on the case when the underlying probability space is finite.
(For a much fuller introductions see for example [5] or [20].)

48 C. McDiarmid

The starting point is a probability space (Ω,F ,P). Thus Ω is the non-empty
set of all ‘elementary outcomes’, the σ-field F is the set of events, and P is the
probability measure. In many applications, as here, we may take the underlying
set Ω to be finite: let us assume this here for simplicity.

Corresponding to any σ-field G on Ω there is a partition of Ω into non-empty
sets, the blocks of the partition, such that the σ-field G is the collection of all sets
which are unions of blocks. Suppose that we have a σ-field G contained in F .
A function on Ω which is constant on the blocks of G is called G-measurable. A
random variable is an F -measurable real-valued function X defined on Ω. Thus
in the case when F consists of all subsets of Ω, each real-valued function on Ω
is a random variable.

The expectation of X conditional on G, E[X | G], is the G-measurable function
where the constant value on each block of the corresponding partition is the
average value of X on the block. The supremum sup(X | G) of X conditional
on G is the G-measurable function where the constant value on each block is the
maximum value ofX on that block. The range ofX conditional on G, ran(X | G),
is the G-measurable function sup(X | G) + sup(−X | G).

A nested increasing sequence {∅, Ω} = F0 ⊆ F1 ⊆ · · · ⊆ Fn of σ-fields
contained in F is called a filter. This corresponds to a sequence of increasingly
refined partitions of Ω, starting with the trivial partition into one block. We may
think of the filter as corresponding to acquiring information as time goes on: at
time k, we know which block of the partition corresponding to Fk contains our
random elementary outcome ω.

Given a filter as above, a sequenceX0, X1, X2, . . . of random variables is called
a martingale if E[Xk+1 | Fk] = Xk for each k = 0, 1, Now let X be a random
variable and let Xk = E(X | Fk) for k = 0, 1, . . . , n. Then X0, X1, . . . , Xn is a
martingale, with X0 = EX and Xn = X if X is Fn-measurable. (This is called
Doob’s martingale process, and for finite filters all corresponding martingales
may be obtained in this way.)

Example 1. Let Ω = {0, 1}n, let F be the collection of all subsets of Ω, let
0 < p < 1, and for each ω = (ω1, . . . , ωn) let P({ω}) = pj(1 − p)n−j where
j =

∑
k ωk. This defines our probability space. For each k = 1, . . . , n define

Zk(ω) = ωk for each ω ∈ Ω. Then Z1, . . . , Zn are independent random variables
with P(Zk = 1) = 1 − P(Zk = 0) = p for each k. Also let Yk = Zk − p, so
that E[Yk] = 0. Let Xk = Y1 + · · ·+ Yk. Let Fk be the σ-field corresponding to
the partition of Ω into the 2k blocks {ω ∈ Ω : ω1 = z1, . . . , ωk = zk} for each
(z1, . . . , zk) ∈ {0, 1}k. Then E(Xn | Fk) = Xk and ran(Xk | Fk−1) = ran(Yk |
Fk−1) = 1 (for each ω ∈ Ω).

There is a natural filter here, namely

{Ω, ∅} = F0 ⊆ F1 ⊆ · · · ⊆ Fn = F ,

which corresponds to learning the values of the co-ordinates of ω one after an-
other. The σ-field Fk is the σ-field generated by the random variables Z1, . . . , Zk.
Also E(Xk | Fk−1) = Xk−1, and so the random variables Xk form a martingale.

Quicksort and Large Deviations 49

Example 2. Suppose that quicksort acts on a given input of n distinct keys.
Consider the infinite binary tree, with nodes numbered 1, 2, 3, . . . level by level
and left to right, as before (down to depth n). Let X = Qn. For each k =
0, 1, 2, . . . let Fk be the sigma-field generated by all the events for nodes 1, . . . , k,
and let Xk = E[X | Fk]. Note that for each k ≥ 1 the list length Lk at node k
is Fk−1-measurable. By Lemma 2, for each k ≥ 1

ran(Xk | Fk−1) = ran(Xk −Xk−1 | Fk−1) ≤ 2Lk (for each ω ∈ Ω).

But the sum of the list lengths over all nodes at any given depth is at most n;
and so the sum of the values ran(Xk | Fk−1) over all nodes k at any given depth
is at most n.

Let {∅, Ω} = F0 ⊆ F1 ⊆ · · · ⊆ Fn be a filter in F . Consider a random variable
X , and let X0, X1, . . . , Xn be the martingale obtained by setting Xk = E(X |
Fk). For 1 ≤ k ≤ n, we define the conditional range rank of Xk given Fk−1 by
setting rank = ran(Xk | Fk−1) (which also is ran(Xk −Xk−1 | Fk−1)).

Now we come to the concentration result we shall use to prove the upper
bound in Theorem 1. To set this result in context, let us first recall the ‘bounded
differences inequality’ for independent random variables (in two-sided form), see
for example Theorem 3.1 of [12].

Lemma 3. Let X = (X1, X2, . . . , Xn) be a family of independent random vari-
ables with Xk taking values in a set Ak for each k. Suppose that the real-valued
function f defined on

∏
k Ak satisfies

|f(x)− f(x′)| ≤ ck

whenever the vectors x and x′ differ only in the kth co-ordinate. Then for each
x ≥ 0,

P(|f(X)− Ef(X)| ≥ x) ≤ 2 e−2x2/
∑

c2k .

Next we state an extension of the above result involving martingales, see for
example Theorem 3.13 of [12].

Lemma 4. Let {∅, Ω} = F0 ⊆ F1 ⊆ · · · ⊆ Fn be a filter in F , and let the
random variable X be Fn-measurable. Let X0, X1, . . . , Xn be the martingale ob-
tained by setting Xk = E(X | Fk), Suppose that ak ≤ Xk−Xk−1 ≤ bk for each k,
for suitable constants ak, bk. Then for each x ≥ 0,

P(|X − EX | ≥ x) ≤ 2e−2x2/
∑

(bk−ak)
2

.

Note that the conditional range rank here is at most the constant bk − ak. In
fact it will suffice to have an Fk−1-measurable upper bound on rank. Indeed,
there is an extension of the last result to the case when we do not necessarily
have upper bounds on each conditional range, but we have an upper bound on
the sum of squared conditional ranges.

50 C. McDiarmid

Lemma 5. Let {∅, Ω} = F0 ⊆ F1 ⊆ · · · ⊆ Fn be a filter in F , and let the
random variable X be Fn-measurable. Then for each x ≥ 0 and r2 ≥ 0,

P
[
(|X − EX | ≥ x) ∧ (R2 ≤ r2)

]
≤ 2 e−

2x2

r2

where R2 =
∑n

j=1 ran
2
j is the sum of conditional ranges.

This result follows from [4] or from Theorem 3.14 of [12]. (The theorem in [12]
is a ‘one-sided’ result: to obtain Lemma 5 we consider also −X .) From the last
lemma we easily obtain the concentration result we shall use to prove Theorem 1.

Lemma 6. Let {∅, Ω} = F0 ⊆ F1 ⊆ · · · ⊆ Fn be a filter in F , let the random
variable X be Fn-measurable, and let Xj = E[X | Fj−1] for each j = 0, . . . , n.

Let 0 ≤ t ≤ n and τ ≥ 0, and assume that
∑t

j=1 ranj ≤ τ . Then for each x ≥ 0
and v ≥ 0,

P
[
(|X − EX | ≥ τ + x) ∧ (R̃2 ≤ r2)

]
≤ 2 e−

2x2

r2

where R̃2 =
∑n

j=t+1 ran
2
j .

Proof. Since

|Xt − EX | = |
t∑

j=1

(Xj −Xj−1)| ≤
t∑

j=1

|Xj −Xj−1| ≤
t∑

j=1

ranj ≤ τ

it follows that

P
[
(|X−EX | ≥ τ+x) ∧ (R̃2≤r2)

]
≤ P

(
(|X−Xt| ≥ x) ∧ (R̃2≤r2)

)
.

We shall show that

P
[
(|X−Xt| ≥ x) ∧ (R̃2≤r2) | Ft

]
≤ 2 e−

2x2

r2 (3)

from which the lemma will follow easily. Consider then any block Ω̃ of the
partition corresponding to Ft. Let X̃ be the restriction of X to Ω̃; and for each
j = 0, . . . , n − t let F̃j be the restriction of Ft+j to Ω̃. Now we may apply

Lemma 5 to X̃ and the filter F̃0 ⊆ F̃1 ⊆ · · · ⊆ F̃n−t to see that (3) holds, and
we are done.

4 Proof of Upper Bound in Theorem 1

We shall apply Lemma 6. We choose parameters carefully, as in [14] (where more

detailed computations are given). It suffices to assume that ε(n) ≥ 2 ln(2) n/ lnn,
since if ε > 0 is less than this value then the upper bound is at least 1 (for large
n). Let

x = x(n) = � ε n lnn

ln(2) n
� and k = k(n) = �2ε lnn− 2x/n�.

Quicksort and Large Deviations 51

Also let

α = α(n) = ε2(ln(2) n)−5 and k1 = k1(n) = �(lnn)(ln(2) n)�,

and let r2 = r2(n) = 4k1αn
2.

Consider the infinite binary tree, with nodes numbered 1, 2, 3, . . . level by level
and left to right, as before. Let X = Qn, let Fj be the sigma-field generated by
all the choices up to node j, and let Xj = E[X | Fj]. In fact we need consider
the tree only to depth n, since each node at depth at least n must have an empty
list.

The sum of the list lengths over all nodes at any given depth is at most n;
and so the sum of the conditional ranges over all nodes at any given depth is at
most n, see Example 2. Now t = 2k+1 − 1 is the last node at depth k. Thus the
sum of conditional ranges over the nodes 1, . . . , t is at most τ , where τ = kn;
that is,

∑t
j=1 ranj ≤ τ . It may be checked that τ + x ≤ ε qn for n sufficiently

large, and then

P[|Qn − qn| ≥ εqn]

≤ P[|X − EX | ≥ τ + x]

≤ P[(|X − EX | ≥ τ + x) ∧ (R̃2 ≤ r2)] + P[R̃2 > r2]

≤ 2e−2x2/r2 + P[R̃2 > r2]

by Lemma 6. The first term is negligibly small, since x2/r2 = Ω((lnn) (ln(2) n)2).
So it remains to deal with the term P[R̃2 > r2].

If 0 ≤ i ≤ αn for each i and
∑

i i ≤ n then
∑

i
2
i ≤ αn2. Hence if Mn

k ≤ αn
then the sum of the squared conditional ranges over all the nodes at any given
depth at least k is at most 4αn2. Also, if Mn

k1
< 1 then all lists at depth k1 are

empty, and so the sum of squared ranges over all nodes at depth at least k1 is
0. Thus

P[R̃2 > r2] ≤ P[Mn
k > αn] + P[Mn

k1
≥ 1].

But k(n) ≥ ln(1/α) for n sufficiently large, so we can apply Lemma 1. We find
that P[Mn

k ≥ αn] is as on the right side of the equation in Theorem 1, and
P[Mn

k1
≥ 1] is negligibly small; and we are done.

References

1. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms, 2nd edn.
MIT Press, McGraw Hill (2001)

2. Devroye, L.: A note on the height of binary search trees. Journal of the ACM 33,
489–498 (1986)

3. Durrett, R.: Probability: Theory and Examples, 4th edn. Cambridge University
Press (2010)

4. Freedman, D.A.: On tail probabilities for martingales. Ann. Probab. 3, 100–118
(1975)

5. Grimmett, G.R., Stirzaker, D.R.: Probability and Random Processes, 3rd edn.
Oxford University Press (2001)

52 C. McDiarmid

6. Hennequin, P.: Combinatorial analysis of quicksort algorithm. Theoretical Infor-
matics and Applications 23, 317–333 (1989)

7. Hoare, C.A.R.: Partition (algorithm 63), quicksort (algorithm 64), and find (algo-
rithm 65). J. ACM 7, 321–322 (1961)

8. Hoare, C.A.R.: Quicksort. Computer J. 5, 10–15 (1962)
9. Knuth, D.: The Art of Computer Programming vol. 3: Sorting and Searching, 3rd

edn. Addison-Wesley (1997)
10. Mahmoud, H.M.: Evolution of Random Search Trees. Wiley, New York (1992)
11. McDiarmid, C.: On the method of bounded differences. In: Siemons, J. (ed.) Sur-

veys in Combinatorics. London Math Society (1989)
12. McDiarmid, C.: Concentration. In: Habib, M., McDiarmid, C., Ramirez, J., Reed,

B. (eds.) Probabilistic Methods for Algorithmic Discrete Mathematics, pp. 195–248.
Springer (1998)

13. McDiarmid, C., Hayward, R.: Strong concentration for quicksort. In: Proceedings
of the Third Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pp. 414–421 (1992)

14. McDiarmid, C., Hayward, R.: Large deviations for Quicksort. J. Algorithms 21,
476–507 (1996)

15. Régnier, M.: A limiting distribution for quicksort. Theoretical Informatics and
Applications 23, 335–343 (1989)

16. Rösler, U.: A limit theorem for quicksort. Theoretical Informatics and Applica-
tions 25, 85–100 (1991)

17. Sedgewick, R.: Quicksort, 1st edn. Garland Publishing Inc. (1980)
18. Shiryaev, A.N.: Probability, 2nd edn. Graduate Texts in Mathematics, vol. 95.

Springer (1996)
19. VanEmden, M.H.: Increasing the efficiency of quicksort. Communications of the

ACM 13, 563–567 (1970)
20. Williams, D.: Probability with Martingales. Cambridge University Press (1991)

Recent Results on Howard’s Algorithm

Peter Bro Miltersen�

Department of Computer Science
Aarhus University

Abstract. Howard’s algorithm is a fifty-year old generally applicable
algorithm for sequential decision making in face of uncertainty. It is rou-
tinely used in practice in numerous application areas that are so impor-
tant that they usually go by their acronyms, e.g., OR, AI, and CAV.
While Howard’s algorithm is generally recognized as fast in practice,
until recently, its worst case time complexity was poorly understood.
However, a surge of results since 2009 has led us to a much more satis-
factory understanding of the worst case time complexity of the algorithm
in the various settings in which it applies. In this talk, we shall survey
these recent results and the open problems that remains.

Howard’s algorithm, a.k.a. policy iteration, policy improvement, strategy itera-
tion or strategy improvement, is a generally applicable algorithm for sequentical
decision making, subject to an infinite horizon and in face of uncertainty. The un-
certainty might come from random behavior of “nature”, from the presence of an
adversary, or from both. The algorithm was devised by Ron Howard in his PhD
thesis from 1960 [13]. In its most basic incarnation, the algorithm is a procedure
for solving finite state and action space discounted Markov decision processes. It
has since its invention been adapted to solve, e.g., undiscounted Markov decsion
processes [1,15], two-player discounted payoff games (turn-based or concurrent)
[16], two-player parity games [17], two-player recurrent concurrent mean-payoff
games [12], simple stochastic games [2], and concurrent reachability games [2],
and even certain well-structured infinite-state versions of many of the above
models [4].

Each model in any of the above families is given by a set of states S, and for
each state i ∈ S, a set of actions Ai at the disposal of the decision maker. The
action chosen by the decision maker in the current state determines (perhaps
stochastically) which state is the next one and also, in some cases, a reward or
penalty to the decision maker. Then, the next state becomes the current one,
the decision maker again has to make a choice, and so on and so forth, forever,

� The author acknowledge support from the Danish National Research Foundation
and The National Science Foundation of China (under the grant 61061130540) for
the Sino-Danish Center for the Theory of Interactive Computation, within which
this work was performed. The authors also acknowledge support from the Center for
Research in Foundations of Electronic Markets (CFEM), supported by the Danish
Strategic Research Council.

A. Kučera et al. (Eds.): MEMICS 2012, LNCS 7721, pp. 53–56, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

54 P.B. Miltersen

i.e, the decisions are made with an infinite horizon. The computational problem
we consider is to find, for each state i ∈ S, a single preferred action ai ∈ Ai

for the decision maker or in some cases a probability distribution πi on such
actions. The family π = (ai)i∈S or π = (πi)i∈S is called a policy or strategy
for the decision maker. We seek to find a policy that satisfies some qualitative
objective or optimizes some quantitative objective, the nature of which depend
on the type of model under consideration. As a side product, we also typically
compute a value vi for each state i ∈ S which measures quantitatively how well
the decision maker will do if he adopts the policy for play starting with state i
being the current one.

In its basic generic form (which is directly applicable without modification
to many but not all of the above-mentioned models), Howard’s algorithm works
as follows. We start with an arbitrary current policy π and compute the values
vj , j ∈ S associated with this particular policy. Then, for each state i ∈ S,
we make a thought experiment. We pretend that the objective is to compute
a new policy π′ that we will adopt for just one time step. That is, we pretend
that we will make just one action choice according to π′, after which we will
revert to π. With the values vj , j ∈ S associated with π at hand, we are able
to find the optimal π′ under this pretense, by solving a relatively easy “local”
optimization problem for each state i, finding the optimal deterministic choice
a′i (or the optimal distribution π′

i) to use in state i, and gluing those choices
together to make up a policy1. Having computed the new policy π′, we forget
our pretense and the thought experiment and simply consider π′ as a policy to
use not just once but throughout play, and make it our current policy, i.e, we
replace π with π′. Now we iterate this procedure, either until termination (i.e.,
π′ = π, in which case the current policy is in fact optimal) or until the current
values are “satifactory”.

The worst case number of iterations performed until termination or until the
values are “satisfactory” is a natural measure for the worst case time complexity
of Howard’s algorithm. During the talk, we shall discuss the following families
of recent results on this worst case time complexity:

– For discounted Markov decision processes and discounted turn-based two-
player games with a constant discount factor, Howard’s algorithm is very fast
in the worst case. More precisely, the number of iterations before termination
is O(mN logN) where N is the number of states of the process and m the
number of actions available in each state. This follows from work by Ye [18]
who gave a weaker bound for the case of Markov decision processes and
work by Hansen, Miltersen and Zwick [10] who improved the bound and
generalized it to the two-player case. An interesting problem is to improve
the bound to O(mN), matching a lower bound of Hansen and Zwick [11].

1 An important detail for ensuring termination or convergence of the algorithm is the
following: if the choice ai (or πi) of the current policy π is already optimal under
the pretense, we stick to it, by letting a′

i equal to ai (or π
′
i equal to πi) rather than

picking some different optimal action.

Recent Results on Howard’s Algorithm 55

– Howard’s algorithm solves simple stochastic games [3] with few coin toss
positions rather fast: The algorithm terminates after O(r2rN) iterations,
where r is the number of “coin toss states” and N the total number of states
[14].

– For undiscounted Markov Decision Processes, discounted Markov Decision
Processes with non-constant discount factor and parity games, Howard’s
algorithm is rather slow: The worst case number of iterations is exponential
in the number of states. The first result along these lines was a breakthrough
result by [6] for the case of parity games that was adapted by Fearnley [5]
to the Markov decision process setting.

– For concurrent reachability games, Howard’s algorithm is very slow: for some
games with N states and m actions per state, Howard’s algorithm needs

(1/ε)m
Ω(N)

iterations to have computed a strategy with values with additive
distances at most ε to the optimal values [9,7]. This is also an upper bound:

(1/ε)m
O(N)

iterations of Howard’s algorithm is sufficient to arrive at such
a strategy [7,8]. Rather surprisingly, the only proof of the latter fact that
we are aware of uses rather non-trivial real algebraic geometry, including
separation bounds on algebraic numbers.

References

1. Blackwell, D.: Discrete dynamic programming. Ann. Math. Stat. 33, 719–726 (1962)
2. Chatterjee, K., de Alfaro, L., Henzinger, T.A.: Strategy improvement for concur-

rent reachability games. In: Third International Conference on the Quantitative
Evaluation of Systems, QEST 2006, pp. 291–300. IEEE Computer Society (2006)

3. Condon, A.: The complexity of stochastic games. Information and Computation 96,
203–224 (1992)

4. Etessami, K., Yannakakis, M.: Recursive Concurrent Stochastic Games. In:
Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006, Part II.
LNCS, vol. 4052, pp. 324–335. Springer, Heidelberg (2006)

5. Fearnley, J.: Exponential Lower Bounds for Policy Iteration. In: Abramsky, S.,
Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP
2010, Part II. LNCS, vol. 6199, pp. 551–562. Springer, Heidelberg (2010)

6. Friedmann, O.: An exponential lower bound for the parity game strategy improve-
ment algorithm as we know it. In: Proceedings of the 24th Annual IEEE Symposium
on Logic in Computer Science, LICS 2009, Los Angeles, CA, USA, August 11-14,
pp. 145–156 (2009)

7. Hansen, K.A., Ibsen-Jensen, R., Miltersen, P.B.: The Complexity of Solving Reach-
ability Games Using Value and Strategy Iteration. In: Kulikov, A., Vereshchagin,
N. (eds.) CSR 2011. LNCS, vol. 6651, pp. 77–90. Springer, Heidelberg (2011)

8. Hansen, K.A., Koucký, M., Lauritzen, N., Miltersen, P.B., Tsigaridas, E.P.: Exact
algorithms for solving stochastic games: extended abstract. In: Proceedings of the
43rd ACM Symposium on Theory of Computing, STOC 2011, San Jose, CA, USA,
June 6-8, pp. 205–214. ACM (2011)

9. Hansen, K.A., Koucky, M., Miltersen, P.B.: Winning concurrent reachability games
requires doubly exponential patience. In: 24th Annual IEEE Symposium on Logic
in Computer Science (LICS 2009), pp. 332–341. IEEE (2009)

56 P.B. Miltersen

10. Hansen, T.D., Miltersen, P.B., Zwick, U.: Strategy iteration is strongly polynomial
for 2-player turn-based stochastic games with a constant discount factor. In: In-
novations in Computer Science - ICS 2010, January 7-9, pp. 253–263. Tsinghua
University Press, Beijing (2011)

11. Hansen, T.D., Zwick, U.: Lower Bounds for Howard’s Algorithm for Finding Min-
imum Mean-Cost Cycles. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC
2010, Part I. LNCS, vol. 6506, pp. 415–426. Springer, Heidelberg (2010)

12. Hoffman, A.J., Karp, R.M.: On nonterminating stochastic games. Management
Science, 359–370 (1966)

13. Howard, R.A.: Dynamic Programming and Markov Processes. MIT Press, Cam-
bridge (1960)

14. Ibsen-Jensen, R., Miltersen, P.B.: Solving Simple Stochastic Games with Few Coin
Toss Positions. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501,
pp. 636–647. Springer, Heidelberg (2012)

15. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. John Wiley & Sons, Inc., New York (1994)

16. Rao, S.S., Chandrasekaran, R., Nair, K.P.K.: Algorithms for discounted games.
Journal of Optimization Theory and Applications, 627–637 (1973)

17. Vöge, J., Jurdziński, M.: A Discrete Strategy Improvement Algorithm for Solving
Parity Games. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855,
pp. 202–215. Springer, Heidelberg (2000)

18. Ye,Y.: The simplex and policy-iteration methods are strongly polynomial for the
markov decision problem with a fixed discount rate (2010),
www.stanford.edu/~yyye/SimplexMDP4.pdf

 www.stanford.edu/~yyye/SimplexMDP4.pdf

Advantage of Quantum Strategies

in Random Symmetric XOR Games

Andris Ambainis�, Jānis Iraids��, Dmitry Kravchenko���, and Madars Virza†

Faculty of Computing, University of Latvia

Abstract. Non-local games are known as a simple but useful model
which is widely used for displaying nonlocal properties of quantum me-
chanics. In this paper we concentrate on a simple subset of non-local
games: multiplayer XOR games with 1-bit inputs and 1-bit outputs which
are symmetric w.r.t. permutations of players.

We look at random instances of non-local games from this class. We
prove a tight bound for the expected performance on the classical strate-
gies for a random non-local game and provide numerical evidence that
quantum strategies achieve better results.

1 Introduction

Non-local games [CHTW04] are studied in quantum information, with the goal of
understanding the differences between quantum mechanics and classical physics.
An example of non-local game is the CHSH (Clauser-Horne-Shimoni-Holt) game
[CHSH69, CHTW04]. This is a game played by two parties against a referee. The
referee prepares two uniformly random bits x, y and gives one of them to each
of two parties. The two parties cannot communicate but can share common
randomness or a common quantum state that is prepared before the beginning
of the game. The parties reply by sending bits a and b to the referee. They win
if a⊕ b = x ∧ y.

The maximum winning probability that can be achieved in the CHSH game
is 0.75 classically and 1

2 + 1
2
√
2
= 0.85... quantumly. This is interesting because

it provides a simple experiment for testing the validity of quantum mechanics.
Assume that we implement the referee and the players by devices so that the
communication between the players is clearly excluded. If the experiment is
repeated m times and players win substantially more than 0.75m times, then
the results of experiment can be explained using quantum mechanics but not
through classical physics.

More generally, we can study non-local games with N players. The referee pre-
pares inputs x1, . . . , xN by picking (x1, . . . , xN) according to some probability

� Supported by ESF project 2009/0216/1DP/1.1.1.2.0/09/APIA/VIAA/044.
�� Supported by FP7 FET-Open project QCS.

��� Supported by ESF graduate fellowship.
† Since September 2011, at the Department of EECS, Massachussets Institute for
Technology. Supported by FP7 FET-Open project QCS during this research.

A. Kučera et al. (Eds.): MEMICS 2012, LNCS 7721, pp. 57–68, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

58 A. Ambainis et al.

distribution and sends xi to the ith player. The ith player replies to sending an
answer yi to the referee. Players win if their answers y1, . . . , yN satisfy some win-
ning condition P (x1, . . . , xN , y1, . . . , yN). Similarly as before, the players cannot
communicate but can use shared random bits or a common quantum state that
has been prepared before receiving x1, . . . , xN from the referee.

Non-local games have been a very popular research topic (often, under the
name of Bell inequalities [Be64]). Many non-local games have been studied and
large gaps between classical and quantum winning probabilities have been dis-
covered (e.g., [Me90, BV11, BRSW11]).

In this paper, we study non-local games for which the winning condition
P (x1, . . . , xN , y1, . . . , yN) is chosen randomly from some class of possible win-
ning conditions. This direction of study was started by [ABB+12] which studied
random XOR games with 2 players (players receive inputs x1, x2 ∈ {1, . . . ,m}
and provide outputs y1, y2 ∈ {0, 1}, the winning condition depends on x1, x2 and
y1 ⊕ y2) and showed that, for a random game in this class, its quantum value1

is between 1.2011... and 1.5638... times its classical value.
We look at a different class of games: N player symmetric XOR games with

binary inputs [AKNR09]. For games in this class, both inputs x1, . . . , xN and
outputs y1, . . . , yN are binary. The winning condition may depend on the number
of i : xi = 1 and the parity of all outputs ⊕N

i=1yi. This class of non-local games
contains some games with a big quantum advantage. For example, Mermin-
Ardehali inequality [Me90, Ar92] can be recast into an N -partite symmetric

XOR game whose quantum value is 2�
N
2 −1�− 1

2 times bigger than its classical
value.

We show that quantum strategies have some advantage even for a random
non-local game from this class:

– We present results of computer experiments that clearly indicate an advan-
tage for quantum strategies.

– We prove that the expected classical value of a random N -player symmetric
XOR game is 0.8475...

4√N
.

– We provide a non-rigorous argument that the quantum value is Ω(
√
logN
4√N

),

with a high probability.

This quantum advantage is, however, much smaller than the maximum advan-
tage achieved by the Mermin-Ardehali game.

2 Definitions

We consider non-local games of N players. We assume that players are informed
about the rules of the game and are allowed to have a preliminary discussion.
When the game is started, players receive a uniformly random input x1, . . . , xN ∈
1 Quantum (classical) value of a game is the maximum difference between the winning
probability and the losing probability that can be achieved by quantum (classical)
strategies.

Advantage of Quantum Strategies in Random Symmetric XOR Games 59

{0, 1} with the ith player receiving xi. The ith player then produces an output
yi ∈ {0, 1}. No communication is allowed between the players but they can
use shared randomness (in the classical case) or quantum entanglement (in the
quantum case).

In an XOR game, the winning condition P (x1, . . . , xN , y1, . . . , yN) depends
only on x1, . . . , xN and the overall parity of all the output bits ⊕N

i=1yi. A game
is symmetric if the winning condition does not change if x1, . . . , xN are permuted.

If an XOR game is symmetric, the winning condition depends only on
∑N

i=1 xi

and ⊕N
i=1yi. Thus, we can define the rules of a game as a sequence of N +1 bits

G = G0G1 . . .GN , where Gj defines a “winning” value of ⊕N
i=1yi for input with∑N

i=1 xi = j.
By a random N -player symmetric XOR game we shall mean a game defined

by the (N + 1)-bit string G = G0G1 . . . GN picked uniformly at random.
Let Prwin(S) and Prloss(S) be the probabilities that players win (lose) the

game when playing according to a strategy S (which can be either a classical
or a quantum strategy). The value of a strategy S for a game is V al (S) =
Prwin(S)− Prloss(S).The value of a game V al (G) = maxS V al (S) is the value
of an optimal (or a best) strategy for this game.

We use V alC to denote the classical value (maximum of the value over classical
strategies) and V alQ to denote the quantum value (maximum of the value over
classical strategies). We omit the subscript C or Q if it is clear from the context
whether we are considering quantum or classical value.

3 Optimal Strategies

3.1 Classical Games

Without a loss of generality, we can assume that in a classical game all players
use deterministic strategies. (If a randomized strategy is used, we can fix the
random bits to the values that achieve the biggest winning probability. Then, a
randomized strategy becomes deterministic.)

Then, each player has four different choices — (00), (01), (10), (11). (The first
bit here represents the answer on input 0, and second bit represents the answer
on input 1. Thus, (ab) denotes a choice to answer a on input 0 and answer b on
input 1.)

We use (00)
k0 (01)

k1 (10)
k2 (11)

k3 to denote a strategy for N players in which
k0 players use (00), k1 players use (01), k2 players use (10) and k3 players use
(11).

Let S be an arbitrary strategy for N players. If exactly one of the players
inverts his choice of a strategy bitwise (e.g. (11) → (00), or (10) → (01)), this
leads to the parity of output bits ⊕N

i=1yi always being opposite compared to the
original strategy. Hence, if S is the new strategy, then S wins whenever S loses
and S loses whenever S wins. Therefore,

V al (S) = Prwin(S)− Prloss(S) = Prloss(S)− Prwin(S) = −V al
(
S
)
.

60 A. Ambainis et al.

From now on, we consider such strategies S and S (with exactly one player’s
choice bitwise inverted) together with a positive value |V al (S)| =

∣∣V al
(
S
)∣∣.

Theorem 1. [AKNR09] Let S be any classical strategy for a symmetric XOR
game with binary inputs. Then, V al(S) is the same as the value of one of N +1
following strategies:

(00)k (01)N−k ,where k ∈ {0, 1, . . . , N}. (1)

This allows to restrict the set of strategies considerably. In fact, the most use-
ful strategies are (00)N and (01)N . In our computer experiments, one of these
strategies is optimal for ≈ 99% symmetric XOR games. Our rigorous results
in Section 5 imply that asymptotically (in the limit of large N) the fraction of
games for which one of these strategies is optimal is 1− o(1).

3.2 Quantum Games

The setting in quantum game is identical to the classical one except that the
players are allowed to use a quantum system which is potentally entangled before
the start of the game. There are two notable results that significantly help the
further analysis.

Firstly, it was shown by Werner and Wolf in [WW01] and [WW01a] that in
the more general setting where games are not necessarily symmetric the value
of the game is described by a simple expression. Let the game be specified by

cx1,x2,...,xN =

{
1, if players win when y1 ⊕ . . .⊕ yN = 1

−1, if players win when y1 ⊕ . . .⊕ yN = 0

Theorem 2

V alQ(G) = max
λ1,...,λN∈C,

|λ1|=...=|λN |=1

∣∣∣∣∣∣
∑

x1,...,xN∈{0,1}

cx1,...,xNλ
x1
1 · · ·λxN

N

2N

∣∣∣∣∣∣
Secondly, for symmetric games the expression was simplified further in
[AKNR09]. Denoting again for convenience cj = (−1)Gj :

Theorem 3

V alQ(G) = max
λ∈C,
|λ|=1

∣∣∣∣∣∣
N∑
j=0

cj
(
N
j

)
λj

2N

∣∣∣∣∣∣
4 Computer Experiments

On the ground of Theorems 1 and 3 we have built efficient optimization algo-
rithms in order to show the difference between classical and quantum versions
of symmetric XOR games.

Advantage of Quantum Strategies in Random Symmetric XOR Games 61

�

�

0 10 20 30 40 50 60 70 80 90 100
N0.0

0.2

0.4

0.6

0.8

1.0

Prwin −Prloss

E [V alQ (Γ)]

E [V alC (Γ)]

Fig. 1. Expected values of quantum and classical XOR games + classical bound

The Figure 1 shows the expected classical and quantum values for a randomly
chosen symmetric XOR game with binary inputs, with the number of players N
ranging between 2 and 1012. Dashed graph corresponds to the function f(N) =
0.8475...

4√
N

derived from Theorem 4.

We see that there is a consistent quantum advantage for all N .

�

�

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

V alC (G)
0%

2%

5%

7%

10%

12%

�

�

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

V alQ (G)
0%

6%

12%

18%

24%

30%

�

�

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

V alQ (G) − V alC (G)
0%

6%

12%

18%

24%

30%

Fig. 2. Histograms of values of random 64-player symmetric XOR games

In the Figure 2, we provide some statistical data on the distribution of the
game values (from 106 randomly selected games for N = 64). The first two

2 For N ≤ 16 graphs are precise, as for small number of players it was possible to
analyze all 2N+1 games. For N > 16 we picked 105 games at random for each N .

62 A. Ambainis et al.

histograms show the distribution of classical and quantum values, respectively.
The last one shows the distribution of biases between the values of classical and
quantum versions of a game.

We see that the quantum value of a game is more sharply concentrated than
the classical value. There is a substantial number (around 30%) of games which
have no quantum advantage (or almost no quantum advantage)3. For the re-
maining games, the gap between quantum and classical values is quite uniformly
distributed over a large interval.

5 Bounding Classical Game Value

5.1 Results

In this section we first obtain a tight bound on the value of strategies (00)N and
(01)N .

Theorem 4. For a random N -player symmetric XOR game with binary inputs,

E
[
max

(∣∣∣V al
(
(00)N

)∣∣∣ , ∣∣∣V al
(
(01)N

)∣∣∣)] = 0.8475...+ o(1)
4
√
N

.

We then show that any other strategy from (1) gives a weaker result, with a high
probability.

Theorem 5. For any c > 0,

Pr

[
max

k:1≤k≤N−1

∣∣∣V al
(
(00)

k
(01)

N−k
)∣∣∣ ≥ c

4
√
N

]
= O

(
1

N

)
.

5.2 Proof of Theorem 4

We first consider the strategy (00)
N
. As all players always answer 0, the value

of this strategy is equal to

V al
(
(00)

N
)
=

N∑
j=0

(−1)Gj
(
N
j

)
2N

(2)

For the strategy (01)
N
, we have

V al
(
(01)N

)
=

∣∣∣∣∣∣
N∑
j=0

(−1)Gj+j (N
j

)
2N

∣∣∣∣∣∣ (3)

We need to find a bound for

E
[
max

(∣∣∣V al
(
(00)N

)∣∣∣ , ∣∣∣V al
(
(01)N

)∣∣∣)]
3 However, our results in the next sections indicate that the fraction of such games will
tend to 0 for larger N .

Advantage of Quantum Strategies in Random Symmetric XOR Games 63

= E

⎡
⎣max

⎛
⎝
∣∣∣∣∣∣

N∑
j=0

(−1)Gj
(
N
j

)
2N

∣∣∣∣∣∣ ,
∣∣∣∣∣∣
N∑
j=0

(−1)Gj+j (N
j

)
2N

∣∣∣∣∣∣
⎞
⎠
⎤
⎦ (4)

Among the summands of these two sums let us first evaluate those which are
equal for both of sums, i.e. for even j’s, and then for remaining summands, which
have opposite values in these sums, i.e. for odd j’s:

E
[
max

(∣∣∣V al
(
(00)

N
)∣∣∣ , ∣∣∣V al

(
(01)

N
)∣∣∣)]

= E

⎡
⎢⎢⎣max

⎛
⎜⎜⎝± ∑

0≤j≤N,
j is even

(−1)Gj
(
N
j

)
2N

±
∑

0≤j≤N,
j is odd

(−1)Gj
(
N
j

)
2N

⎞
⎟⎟⎠
⎤
⎥⎥⎦

= E

⎡
⎢⎢⎣
∣∣∣∣∣∣∣∣
∑

0≤j≤N,
j is even

(−1)Gj
(
N
j

)
2N

∣∣∣∣∣∣∣∣

⎤
⎥⎥⎦+ E

⎡
⎢⎢⎣
∣∣∣∣∣∣∣∣
∑

0≤j≤N,
j is odd

(−1)Gj
(
N
j

)
2N

∣∣∣∣∣∣∣∣

⎤
⎥⎥⎦ (5)

Let Σeven and Σodd be the two sums in (5). Then, we have

Var [Σeven] =
∑

0≤j≤N,
j is even

((
N
j

)
2N

)2

=

(
2N
N

)
2 · 4N .

Similarly, Var [Σodd] =
(2NN)
2·4N . From the central limit theorem, in the limit of

large N , each of random variables Σeven and Σodd can be approximated by
a normally distributed random variable with the same mean (which is 0) and
variance. If X is a normally distributed random variable with E[X] = 0, then

E[|X |] =
√

2
π

√
Var[X]. Hence, (5) is equal to

E [|Σeven|] + E [|Σodd|]

=

√
2

π
(1 + o(1))

√
Var [Σeven] +

√
2

π
(1 + o(1))

√
Var [Σodd]

= (1 + o(1))

√
2

π

√
2
(
2N
N

)
4N

= (1 + o(1))
4

√
16

π3

1
4
√
N

=
0.8475...+ o(1)

4
√
N

where the second-to-last equality follows from the approximation of the binomial

coefficients
(
2N
N

)
= (1 + o(1)) 4N√

πN
.

64 A. Ambainis et al.

5.3 Variance of Other Strategies

We now consider other strategies S, with the goal of proving Theorem 5. To do
that, we first compute the variances for their values V al(S). (Our goal is to prove
Theorem 5 by Chebyshev’s inequality, which we do in the next subsection.)

We start with the variance of V al((00)N). Because of (2), the variance of
V al((00)N) can be calculated as

Var
[
V al

(
(00)

N
)]

=

N∑
j=0

Var

[
(−1)Gj

(
N
j

)
2N

]
=

N∑
j=0

(
N
j

)2
4N

=

(
2N
N

)
4N

≈ 1√
πN

(6)

We note that V al
(
(00)

N
)
for the game G0G1G2G3G4 . . . is exactly the same

as V al
(
(01)

N
)
for the game G0G1G2G3G4 . . ., with all odd bits inverted.

More generally, assume that we have a strategy (00)
k
(01)

N−k
. We can invert

the answers by all players for the case xi = 1. Then, the overall parity of answers
⊕N

i=1yi stays the same if an even number of players have received xi = 1 and
changes to opposite value if an odd number of players have received xi = 1. If
we simultaneously invert all odd-numbered bits Gi in the winning condition, the
game value does not change. From this, we conclude that for each k,

V al
(
(00)k (01)N−k

)
= V al

(
(00)N−k (01)k

)
(7)

We now consider the value for the second strategy from (1), (00)
N−1

(01), for a
random symmetric XOR game.

Probability distribution of ⊕N
i=0yi when

∑N
i=0 xi = j is the following:

j 0 1 2 3 4 5 6 7 . . .

Pr
[⊕N

i=0yi = 0
]

1 1
N

N−2
N

3
N

N−4
N

5
N

N−6
N

7
N

. . .

Pr
[⊕N

i=0yi = 1
]

0 N−1
N

2
N

N−3
N

4
N

N−5
N

6
N

N−7
N

. . .

Given input with
∑N

i=0 xi = j, the strategy outputs even or odd answer, de-
pending on whether or not the last player has received 1, i.e. with probabilities
N−j
N and j

N (unlike 1 and 0 in the case of symmetric strategies).

Therefore, variance of the strategy (00)
N−1

(01) for input with
∑N

i=0 xi = j

is
(

N−j
N − j

N

)2
=
(

N−2j
N

)2
.

Summing up variances for all possible j’s, we get

Var
[
V al

(
(00)

N−1
(01)

)]
=

N∑
j=0

Var

[
±N−2j

N

(
N
j

)
2N

]

=
N∑
j=0

(
±N−2j

N

(
N
j

)
2N

)2

=

(
2N
N

)
4N (2N − 1)

≈ 1√
πN (2N − 1)

,

(8)

Advantage of Quantum Strategies in Random Symmetric XOR Games 65

with the third equality following from Lemma 1 in the appendix (Notation
±N−2j

N denotes a random variable with equiprobable values +N−2j
N and−N−2j

N .)

Due to (7), the value of strategy (00) (01)N−1 has the same variance.

Other strategies of type (00)
N−k

(01)
k
where 2 ≤ k ≤ N−2 have much smaller

variances, which can be expressed as follows:

Var
[
V al

(
(00)N−k (01)k

)]
=

N∑
j=0

⎛
⎜⎜⎝
(∑j

l=0 (−1)
l (kl)(

N−k
j−l)

(Nj)

)(
N
j

)
2N

⎞
⎟⎟⎠

2

=

∑N
j=0

(∑j
l=0 (−1)

l (k
l

)(
N−k
j−l

))2
4N

(9)

The expression
∑j

l=0 (−1)
l (k

l

)(
N−k
j−l

)
inside (9) is well known Kravchuk poly-

nomial Kj (k), whose square can be bounded by strict inequality provided in
[Kr01]: (

j∑
l=0

(−1)l
(
k

l

)(
N − k

j − l

))2

= (Kj (k))
2
< 2N

(
N

j

)(
N

k

)−1

. (10)

This inequality implies that

Var
[
V al

(
(00)

N−k
(01)

k
)]

=

∑N
j=0 (Kj (k))

2

4N

<

∑N
j=0 2

N
(
N
j

)(
N
k

)−1

4N
=

(
N

k

)−1

.

(11)

5.4 Proof of Theorem 5

Among the strategies (00)k(01)N−k, k ∈ {1, . . . , N−1}, two strategies (for k = 1
and k = N − 1) have variance ≈ 1√

πN(2N−1)
, and the remaining N − 3 strategies

have variance less than 1

(Nk)
.

We now apply Chebyshev inequality, using those two bounds on the variance.
We have

Pr

[∣∣∣V al
(
(00)

N−1
(01)

)∣∣∣ ≥ λ
4
√
πN
√
2N − 1

]

= Pr

[∣∣∣V al
(
(00) (01)

N−1
)∣∣∣ ≥ λ

4
√
πN
√
2N − 1

]
≤ 1

λ2
,

and, for 2 ≤ k ≤ N − 2:

Pr

⎡
⎣∣∣∣V al

(
(00)

N−k
(01)

k
)∣∣∣ ≥ λ√(

N
k

)
⎤
⎦ ≤ 1

λ2
.

(12)

66 A. Ambainis et al.

We now combine the bounds (12) into one upper bound.

Pr

[
max

0≤k≤N

∣∣∣V al
(
(00)

N−k
(01)

k
)∣∣∣ ≥ B

]
≤

≤ 2× 1(
B 4
√
πN

√
(2N − 1)

)2 +

N−2∑
k=2

1(
B
√(

N
k

))2

=
2

B2
√
πN (2N − 1)

+O

(
1

B2N3

)
, (13)

with the last equality following from
(
N
k

)
≥
(
N
2

)
and the fact that we are summing

over N − 3 values for k: k ∈ {2, . . . , N − 2}. Taking B = c
4√
N

proves theorem 5.

6 Bounding Quantum Game Value

So far we have not been able to find a tight lower bound on the mean value of
the game in quantum case. However, we provide some insights which could lead
to a solution to the problem. We can bound the value from below by

max
λ∈C,
|λ|=1

∣∣∣∣∣∣
N∑
j=0

cj
(
N
j

)
λj

2N

∣∣∣∣∣∣ ≥ max
α

∣∣∣∣∣∣
N∑
j=0

cj
(
N
j

)
cos(αj)

2N

∣∣∣∣∣∣ (14)

The sum
∑N

j=0 cj cos(αj) where cj are indepedent random variables with mean
0 and variance 1 has been extensively studied under the name “random trigono-
metric polynomials” by Salem and Zygmund[SZ54] and others. Their results
imply that there exist constants A and B such that

lim
M→∞

Pr

⎡
⎣A√M logM ≤ max

α

∣∣∣∣∣∣
M∑
j=0

cj cos(αj)

∣∣∣∣∣∣ ≤ B
√
M logM

⎤
⎦ = 1 (15)

To apply (15), the crucial step is to reduce a sum cj
(
N
j

)
cos(αj) with binomial

coefficients to a sum cj cos(αj) not containing binomial coefficients.
We propose a following non-rigorous approximation. We first drop the terms

with j ≤ N
2 −

√
N and j ≥ N

2 −
√
N . For the remaining terms, we replace(

N
j

)
with

(
N

N/2

)
(since

(
N
j

)
= Θ(

(
N

N/2

)
) for j ∈ [N2 −

√
N, N

2 +
√
N]). If this

approximation can be justified, it reduces (14) to (15) with M = 2
√
N . This

would lead to a lower bound of

EG[V alQ(G)] = Ω

(√
logM√
M

)
= Ω

(√
logN
4
√
N

)
.

We are currently working on making this argument rigorous.

Advantage of Quantum Strategies in Random Symmetric XOR Games 67

7 Conclusion

We studied random instances of symmetric N -player XOR games with binary
inputs, obtaining tight bounds for the classical value of such games. We also
presented a non-rigorous argument bounding the quantum value. Our results
indicate that quantum strategies are better than classical for random games in
this class, by a factor of Ω(

√
logN). An immediate open problem is to make our

bound for quantum strategies precise, by bounding the error introduced by our
approximations.

A more general question is: can we analyze random instances of other classes
of non-local games? We currently know how to analyze random games for 2-
player XOR games with N -valued inputs and for symmetric N -player games
with binary inputs.

Can we analyze, for example, 3-player XOR games with N -valued inputs? In
a recent work, Briët and Vidick [BV11] have shown big gaps between quantum
and classical strategies for this class of games. However, methods of analyzing
such games are much less developed and this makes analysis of random games
quite challenging. Developing tools for it is an interesting direction for future
work.

References

[ABB+12] Ambainis, A., Bačkurs, A., Balodis, K., Kravčenko, D., Ozols, R., Smotrovs,
J., Virza, M.: Quantum Strategies Are Better Than Classical in Almost
Any XOR Game. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer,
R. (eds.) ICALP 2012. LNCS, vol. 7391, pp. 25–37. Springer, Heidelberg
(2012)

[AKNR09] Ambainis, A., Kravchenko, D., Nahimovs, N., Rivosh, A.: Nonlocal Quan-
tum XOR Games for Large Number of Players. In: Kratochv́ıl, J., Li, A.,
Fiala, J., Kolman, P. (eds.) TAMC 2010. LNCS, vol. 6108, pp. 72–83.
Springer, Heidelberg (2010)

[Ar92] Ardehali, M.: Bell inequalities with a magnitude of violation that grows
exponentially with the number of particles. Physical Review A 46, 5375–
5378 (1992)

[Be64] Bell, J.: On the Einstein-Podolsky-Rosen paradox. Physics 1(3), 195–200
(1964)

[BV11] Briët, J., Vidick, T.: Explicit lower and upper bounds on the entangled
value of multiplayer XOR games. arXiv:1108.5647

[BRSW11] Buhrman, H., Regev, O., Scarpa, G., de Wolf, R.: Near-Optimal and Ex-
plicit Bell Inequality Violations. In: Proceedings of CCC 2011, pp. 157–166
(2011)

[CHSH69] Clauser, J., Horne, M., Shimony, A., Holt, R.: Physical Review Letters 23,
880 (1969)

[CHTW04] Cleve, R., Høyer, P., Toner, B., Watrous, J.: Consequences and limits of
nonlocal strategies. In: Proceedings of CCC 2004, pp. 236–249 (2004); Also
quant-ph/0404076

68 A. Ambainis et al.

[Kr01] Krasikov, I.: Nonnegative Quadratic Forms and Bounds on Orthogo-
nal Polynomials. Journal of Approximation Theory 111, 31–49 (2001),
doi:10.1006/jath.2001.3570

[Me90] Mermin, D.: Extreme Quantum Entanglement in a Superposition of Macro-
scopically Distinct States. Physical Review Letters 65(15) (1990)

[SZ54] Salem, R., Zygmund, A.: Some properties of trigonometric series whose
terms have random signs. Acta Math. 91, 245–301 (1954)

[WW01] Werner, R.F., Wolf, M.M.: Bell inequalities and Entanglement. Quantum
Information and Computation 1(3), 1–25 (2001)

[WW01a] Werner, R.F., Wolf, M.M.: All multipartite Bell correlation inequalities for
two dichotomic observables per site. Physical Review A 64, 32112 (2001)

A Appendix

Lemma 1
N∑
j=0

(
N − 2j

N

(
N

j

))2

=

(
2N
N

)
2N − 1

Proof

N∑
j=0

(
N − 2j

N

(
N

j

))2

=

N∑
j=0

(
1− 4

j

N
+ 4

j2

N2

)(
N

j

)2

=
N∑
j=0

(
N

j

)2

− 4
N∑
j=1

(
N − 1

j − 1

)(
N

j

)
+ 4

N∑
j=1

(
N − 1

j − 1

)2

=

(
2N

N

)
− 4

(
2N − 1

N − 1

)
+ 4

(
2N − 2

N − 1

)

=

(
2N

N

)
− 2

(
2N

N

)
+

2N

2N − 1

(
2N

N

)

=

(
2N
N

)
2N − 1

Verification of Liveness Properties

on Closed Timed-Arc Petri Nets�

Mathias Andersen, Heine Gatten Larsen, Jǐŕı Srba, Mathias Grund Sørensen,
and Jakob Haahr Taankvist

Department of Computer Science, Aalborg University,
Selma Lagerlöfs Vej 300, 9220 Aalborg East, Denmark

Abstract. Verification of closed timed models by explicit state-space
exploration methods is an alternative to the wide-spread symbolic tech-
niques based on difference bound matrices (DBMs). A few experiments
found in the literature confirm that for the reachability analysis of timed
automata explicit techniques can compete with DBM-based algorithms,
at least for situations where the constants used in the models are rel-
atively small. To the best of our knowledge, the explicit methods have
not yet been employed in the verification of liveness properties in Petri
net models extended with time. We present an algorithm for liveness
analysis of closed Timed-Arc Petri Nets (TAPN) extended with weights,
transport arcs, inhibitor arcs and age invariants and prove its correct-
ness. The algorithm computes optimized maximum constants for each
place in the net that bound the size of the reachable state-space. We
document the efficiency of the algorithm by experiments comparing its
performance with the state-of-the-art model checker UPPAAL.

1 Introduction

TAPAAL [7] is a an efficient, open-source tool for modelling and verification
of Timed-Arc Petri Nets (TAPN) extended with transport/inhibitor arcs and
age invariants. The timing information (age) is attached to tokens and intervals
on input arcs restrict the ages of tokens suitable for transition firing. The ver-
ification techniques implemented in the tool include four different translations
to UPPAAL timed automata [11], supporting both reachability and liveness
properties, and its own verification engine for reachability analysis. The actual
verification in any of those approaches rely on searching the abstracted state-
space represented via zones and using the data structure called Difference Bound
Matrix (DBM) [8].

Unfortunately, for the verification of liveness questions, neither of the meth-
ods return error traces (loops in this case) with concrete time delays and not all
requested features, like weighted arcs, are currently supported. As in the general
case with both open and closed intervals the concrete error traces do not neces-
sarily form a finite loop, we restrict ourselves to the large and practically relevant

� This work is partially supported by the research center IDEA4CPS.

A. Kučera et al. (Eds.): MEMICS 2012, LNCS 7721, pp. 69–81, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

70 M. Andersen et al.

subclass of TAPNs with only closed intervals. It is a folklore result that the con-
tinuous and discrete-time semantics coincide on the class of closed systems (see
e.g. [6]). In nowadays tools the discretization is not sufficiently exploited, perhaps
due to its simplicity as remarked by Lamport [12]. Nevertheless, a few existing
studies show that discretization of the state-space may be beneficial [6,14,12], at
least in the situations with sufficiently small constants that appear in the model.

We suggest an efficient algorithm for verification of liveness properties on
closed TAPNs extended with weighted transport/inhibitor arcs and age invari-
ants. The main contributions include a detailed analysis of the maximum con-
stants individually computed for each place in the net, the complete proof of
soundness and completeness of the proposed algorithm and last but not least
an efficient C++ implementation and its full integration into the model checker
TAPAAL. The efficiency is documented by experiments ranging from standard
academic examples for testing the performance of tools like Fischer’s protocol for
mutual exclusion to larger case-studies from the health-care domain. We compare
the CPU-time performance of our discretized algorithm with the efficient DBM-
based engines, including the state-of-the-art model checker UPPAAL [1]. The
main conclusion is that our algorithm can outperform the DBM-based methods
as long as the constants in the model are not too large. Moreover, the discrete
method scales very well in the size of the problems, allowing us to solve problems
with constants that grow more than linearly while increasing the problem size.
As a bonus, our algorithm always returns loop-like counter examples with con-
crete time delays, a feature that allows the user to easily debug possible design
flaws in the models.

Related Work. Lamport [12], Bozga et al. [6], Beyer [4,3] and Popova-
Zeugmann [14] present different methods for discrete model checking of timed
systems. The first three papers present explicit methods for the model of timed
automata, while the third one studies discretization for Time Petri Nets (TPN),
a Petri net model that is substantially different from ours (timing information is
attached to transitions and not to tokens like in TAPNs). While reachability is
in general undecidable for TAPNs [16], a time-bounded reachability for TAPNs
with discrete semantics was shown decidable in [15]. The technique, however,
does not apply for verification of liveness properties because we search here for
the presence of an infinite execution satisfying certain invariant properties and
such executions are often time-diverging. Our liveness algorithm is instead pa-
rameterized by a number k allowing us to explore markings with at most k tokens
(after the removal of dead tokens that cannot be used for transition firing). In
case of bounded nets it always provides conclusive answers while for unbounded
nets (where the liveness problem is undecidable) the answer is conclusive only
in the cases where a loop (counter example) can be found among markings with
at most k tokens (the number k is a part of the input).

To the best of our knowledge, there are no published experiments for discrete
verification of liveness properties on TAPNs, moreover extended with the ad-
ditional modelling features that require a nontrivial static analysis in order to

Verification of Liveness Properties on Closed Timed-Arc Petri Nets 71

P0

0

P1

P2

inv: ≤ 3

1 1
1 3

P3

P4

5

T0

T1

T2

T3

[0,∞)
2x 3x [1, 3]

[0,∞) : 1

[0,∞) :1[0,∞)

Fig. 1. Producer-Consumer Example

minimize the size of maximum constants relative to the individual places in the
net. We assess the performance of our approach by performing a comparison
against the state-of-the-art model checker UPPAAL and the results are encour-
aging as documented in Section 5.

2 Timed-Arc Petri Nets

Let us first informally introduce the TAPN model. Figure 1 shows an example
of a producer-consumer system. The circles represent places and rectangles rep-
resent transitions. A marking of the net is given by the distribution of timed
tokens; in our case there is one token of age 0 in P0, three tokens of age 1 and
one of age 3 in P2 and one token of age 5 in P4.

Places and transitions are connected by arcs and input arcs to transitions are
labelled by time intervals. The arc from T 1 to P2 has the weight 2, denoted by
2x, meaning that two tokens will be produced by firing the transition. Similarly
the arc from P2 to T 2 has the weight 3, meaning that three tokens of age between
1 and 3 must be consumed when firing T 2, while at the same time there may not
be any token in place P1 (denoted by the inhibitor arc with the circle head). In
our example the transition T 2 can fire, consuming three tokens from the place
P2 (these can be either {1, 1, 1} or {1, 1, 3}) and one token from place P4, while
depositing a new token of age 0 to the place P3. The pair of arcs from P3 to P4
with a diamond head are called transport arcs and they always come in pairs
(in our example with the index :1). They behave like normal arcs but when a
token is consumed in P3 and produced to P4, its age is preserved. Places can
also have age invariants like the one denoted by “inv: ≤ 3” in the place P2. This
restricts the maximum age of tokens present in such places. In our example,
there is already a token of age 3 in P2, meaning that we cannot wait any more
and are without any delay forced to fire some transition.

Let us now give a formal definition of the TAPN model. Let N0 = N ∪ {0}
and N

∞
0 = N0 ∪ {∞}. A discrete timed transition system (DTTS) is a triple

(S ,Act ,→) where S is the set of states, Act is the set of actions and →⊆ S ×
(Act∪N0)×S is the transition relation written as s

a→ s′ whenever (s, a, s′) ∈→.
If a ∈ Act then we call it a switch transition, if a ∈ N0 we call it a delay
transition. By →∗ we denote the reflexive and transitive closure of the relation

→def
=
⋃

a∈Act
a→ ∪

⋃
d∈N0

d→.

72 M. Andersen et al.

We define the set of well-formed time intervals as I def
= {[a, b] | a ∈ N0, b ∈

N
∞
0 , a ≤ b} and a subset of I used in invariants as I inv = {[0, b] | b ∈ N

∞
0 }. For an

interval [a, b] we define [a, b]L = a and [a, b]R = b in order to denote the lower and
upper bound of the interval, respectively. Let maxBound(I) denote the largest
bound different from infinity in the interval I, formally maxBound([a, b]) = a if
b =∞, and maxBound([a, b]) = b otherwise.

We can now define the closed TAPN model with weighted arcs.

Definition 1 (Closed Timed-Arc Petri Net). A closed TAPN is an 8-tuple
N = (P, T, IA,OA, g,w ,Type , I) where

– P is a finite set of places,

– T is a finite set of transitions such that P ∩ T = ∅,
– IA ⊆ P × T is a finite set of input arcs,

– OA ⊆ T × P is a finite set of output arcs,

– g : IA→ I is a time constraint function assigning guards to input arcs,

– w : IA ∪OA→ N is a function assigning weights to input and output arcs,

– Type : IA ∪ OA → Types is a type function assigning a type to all arcs,
where Types = {Normal , Inhib} ∪ {Transportj | i ∈ N} such that

• if Type(a) = Inhib then a ∈ IA,

• if Type((p, t)) = Transport j for some (p, t) ∈ IA then there is exactly
one (t, p′) ∈ OA such that Type((t, p′)) = Transport j and w((p, t)) =
w((t, p′)),

• if Type((t, p′)) = Transport j for some (t, p′) ∈ OA then there is exactly
one (p, t) ∈ IA such that Type((p, t)) = Transport j and w((p, t)) =
w((t, p′)),

– I : P → Iinv is a function assigning age invariants to places.

The preset of input places of a transition t ∈ T is defined as •t = {p ∈ P |
(p, t) ∈ IA,Type((p, t)) �= Inhib}. Similarly, the postset of output places of t is
defined as t• = {p ∈ P | (t, p) ∈ OA}.

Let N = (P, T, IA,OA, g,w ,Type, I) be a TAPN and let B(N0) be the set of
all finite multisets over N0. A marking M on N is a function M : P −→ B(N0)
where for every place p ∈ P and every token x ∈ M(p) we have x ∈ I (p). The
set of all markings over N is denoted by M(N).

We use the notation (p, x) to denote a token at a place p with the age x ∈ N0.
We write M = {(p1, x1), (p2, x2), . . . , (pn, xn)} for a marking with n tokens of
ages xi located at places pi and we define size(M) =

∑
p∈P |M(p)|. A marked

TAPN (N,M0) is a TAPN N together with an initial marking M0 with all tokens
of age 0.

Definition 2 (Enabledness). Let N = (P, T, IA,OA, g,w ,Type, I) be a
TAPN. We say that a transition t ∈ T is enabled in a marking M by the

multisets of tokens In = {(p, x1
p), (p, x

2
p), . . . , (p, x

w((p,t))
p) | p ∈ •t} ⊆ M and

Out = {(p′, x1
p′), (p′, x2

p′), . . . , (p′, xw((t,p′))
p′) | p′ ∈ t•} if

Verification of Liveness Properties on Closed Timed-Arc Petri Nets 73

– for all input arcs except the inhibitor arcs the tokens from In satisfy the age
guards of the arcs, i.e.

∀(p, t) ∈ IA.Type((p, t)) �= Inhib ⇒ xi
p ∈ g((p, t)) for 1 ≤ i ≤ w((p, t))

– for any inhibitor arc pointing from a place p to the transition t, the number
of tokens in p satisfying the guard is smaller than the weight of the arc, i.e.

∀(p, t) ∈ IA.Type((p, t)) = Inhib ⇒ |{x ∈M(p) | x ∈ g((p, t))}| < w((p, t))

– for all input arcs and output arcs which constitute a transport arc the age of
the input token must be equal to the age of the output token and satisfy the
invariant of the output place, i.e.

∀(p, t) ∈ IA.∀(t, p′) ∈ OA.Type((p, t)) = Type((t, p′)) = Transport j

⇒
(
xi
p = xi

p′ ∧ xi
p′ ∈ I (p′)

)
for 1 ≤ i ≤ w((p, t)).

– for all output arcs that are not part of a transport arc the age of the output
token is 0, i.e.

∀(t, p′) ∈ OA.Type((t, p′) = Normal ⇒ xi
p′ = 0 for 1 ≤ i ≤ w((p, t)).

In Figure 1 the transition T 2 is enabled by In =
{(P2, 1), (P2, 1), (P2, 1), (P4, 5)} and Out = {(P3, 0)}. As the tokens in
the place P2 have different ages, T 2 is also enabled by an alternative multiset
of tokens In = {(P2, 1), (P2, 1), (P2, 3), (P4, 5)}.

A given TAPN N = (P, T, IA,OA, g,w ,Type , I) defines a DTTS T (N)
def
=

(M(N), T,→) where states are the markings and the transitions are as follows.

– If t ∈ T is enabled in a marking M by the multisets of tokens In and Out
then t can be fire and produce the marking M ′ = (M � In) !Out where !
is the multiset sum operator and � is the multiset difference operator; we

write M
t→M ′ for this switch transition.

– A time delay d ∈ N is allowed in M if (x + d) ∈ Inv(p) for all p ∈ P and
all x ∈ M(p), i.e. by delaying d time units no token violates any of the age
invariants. By delaying d time units in M we reach the marking M ′ defined
as M ′(p) = {x + d | x ∈ M(p)} for all p ∈ P ; we write M

d→ M ′ for this
delay transition.

A computation of the net M0 → M1 → · · · → Mn is denoted by {Mi}ni=0 and
we call it a run. If the sequence is infinite, we write {Mi}i≥0.

2.1 Liveness Verification Problem

The liveness question asks about the existence of a maximal run where every
marking satisfies some proposition referring to the distribution of tokens. For
that purpose let the set of propositions Φ be given by the abstract syntax ϕ ::=

74 M. Andersen et al.

P0

0.0

P1

inv: ≤ 5

P2 P3

P4T0

T1

T2

T3

T4

T5
[0,∞]

[0,∞]
[0,∞]:1

:1

[0,∞]:1

:1

[10,∞]:1

:1

[0, 10]:1 :1

[1, 1]

Fig. 2. Example of TAPN

p �� n | ϕ1 ∧ ϕ2 | ¬ϕ where �� ∈ {≤, <,=, �=,≥>}, p ∈ P and n ∈ N0. The
satisfaction relation M |= ϕ is defined in the expected way where M |= p �� n
iff |M(p)| �� n.

Given a TAPN (N,M0), a maximal run is either an infinite run {Mi}i≥0

or a finite run {Mi}ni=0 with Mn �, meaning that Mn does not allow for any
switch or positive-delay transition. A maximal run (finite or infinite) is denoted
by {Mi}.

Definition 3 (The Liveness Problem (EGϕ)). Given a marked TAPN
(N,M0) and a proposition ϕ ∈ Φ, the liveness problem is to decide whether
there is a maximal run {Mi} starting in M0 such that Mi |= ϕ for all i.

We can define the standard dual operator AF by AFϕ
def
= ¬EG¬ϕ, meaning

that eventually the property ϕ will be satisfied on any execution of the net.

3 State-Space Reduction

The state-space of TAPNs is infinite in two dimensions: the number of tokens
can be unbounded and the ages of tokens range over natural numbers. Indeed,
the model (extended with inhibitor arcs and age invariants) has the full Turing
power (see e.g. [16,10]). In order to enable automatic verification, we restrict
ourselves to bounded TAPNs where the maximum number of tokens in any
reachable marking is a priori bounded by some constant k. For restricting the
ages of tokens, we do not need to remember the concrete ages of tokens in a place
that are older than the maximum constant relevant for that place. This idea was
suggested in [16,9] for the basic TAPN model without any additional features.
We shall now refine the technique for the more general class of extended TAPNs
that contain age invariants, transport and inhibitor arcs and we further enhance
it with the reduction of dead tokens in order to optimize its performance.

To motivate the technical definitions that follow, let us consider the net in
Figure 2. Note that in place P3 the relevant ages of tokens are 0 and 1. Any
token of age 2 or more cannot be used for transition firing and can be safely
removed from the net. We shall call P3 the dead-token place with the maximum
constant 1. Any place that contains an invariant, like P1 in our example, will
fall into the category invariant places and the maximum constant will be the

Verification of Liveness Properties on Closed Timed-Arc Petri Nets 75

Carc((p, t)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min([I (p′)]R, [g((p, t))]R) if Type((p, t)) = Transport j ,

Type((t, p′)) = Transport j , and

I (p′) �= [0,∞]

maxBound(g((p, t))) otherwise

(1)

Cplace(p) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[I (p)]R if [I (p)]R �= ∞
−1 if I (p) = [0,∞] and

∀(p, t) ∈ IA.(g((p, t)) = [0,∞]

max(p,t)∈IA(Carc((p, t))) otherwise.

(2)

Fig. 3. Definitions of Carc and Cplace

upper-bound of the respective invariant. Clearly, no tokens can be older that this
constant but at the same time we may not just remove the tokens that cannot
be used for any transition firing as they could restrict delay transitions in the
future. The remaining places are called standard places meaning that instead of
the ages of tokens that exceed the maximum constant for a given place, we only
need to remember how many there are, but not their exact ages. For example
in the place P0 all outgoing arcs have the guard [0,∞], so it may look like that
we only need to remember the number of tokens, not their ages. Indeed, if there
were no transport arcs this would be the case. However, in our example the
pair of transport arcs moving tokens to P1 increase the maximum constant for
the place P0 to 5 as the concrete age is relevant up to this number in order to
avoid breaking of the age invariant in P1. In general, there might be a series of
transport arcs that can influence the maximum constant for a place and we show
how to optimize such constants to be as small as possible while still preserving
the liveness property we want to verify.

We start by the definition of causality function. The causality function finds
the causality set of places that are linked with the place p by a chain of transport
arcs with the right endpoints of the guard intervals equal to ∞.

Let p ∈ P . The set cau(p) is the smallest set of places such that

– p ∈ cau(p), and
– if p′ ∈ cau(p) and (p′, t) ∈ IA, (t, p′′) ∈ OA such that Type(p′, t) =

Transport j , Type(t, p
′′) = Transport j with [g((p′, t))]R =∞ and I (p′) =∞

then p′′ ∈ cau(p).

In the net from Figure 2 we get that for example cau(P0) = {P0, P1}, cau(P1) =
{P1} and cau(P2) = {P2, P1}.

Next we define the maximum relevant constants for input arcs by Equation (1)
in Figure 3 as a function Carc : IA→ N0. The first case deals with the situation
when the arc is a transport arc that moves tokens to a place with a nontrivial
age invariant; here it is enough to consider the minimum of the invariant upper-
bound and the largest constant in the guard different from infinity. If this is not
the case, we consider just the maximum bound in the guard.

76 M. Andersen et al.

Arc Type Carc

P0 → T0 Transport 1 5
P0 → T1 Normal 0
P1 → T2 Transport1 0
P2 → T3 Transport1 10
P2 → T4 Transport1 10

Place Cplace Cmax cat

P0 −1 5 Std
P1 5 5 Inv
P2 10 10 Std
P3 1 1 Dead
P4 −1 −1 Std

Fig. 4. Calculation of Carc, Cplace, Cmax and cat for the TAPN in Figure 2

The constant of a place (without considering any causality) is defined by
Equation (2) in Figure 3 as a function Cplace : P → N0 ∪ {−1}. The constant
is either the upper-bound of a nontrivial age invariant in the place, or −1 if all
arcs from p only have trivial guards; in this case we do not care about the ages
of the tokens in p. Otherwise the constant for p is the largest constant of any
arc starting at p.

We are now ready to divide places into three categories and compute the
maximum relevant constants taking into account the causality set of places. In
liveness verification, the query will also influence the category of places, so we
consider the function Places : Φ→ P(P) that for a given proposition ϕ returns
the set of places that syntactically appear in ϕ. We can now calculate the function
Cmax : P → N0 ∪ {−1} returning the maximum constant for each place (taking
into account also the transport arcs) and the function cat : P→ {Inv ,Dead , Std}
returning the category for each place p ∈ P as follows.

– If I (p) �= [0,∞] then Cmax(p) = [I (p)]R and cat(p) = Inv .
– Otherwise Cmax(p) = max{Cplace(p

′) | p′ ∈ cau(p)} and if either

(i) there is t ∈ T such that (p, t) ∈ IA and Type((p, t)) = Inhib), or
(ii) there is t ∈ T such that (p, t) ∈ IA and [g((p, t))]R =∞], or
(iii) p ∈ Places(ϕ))

then cat(p) = Std , else cat(p) = Dead .

The conditions (i)–(iii) list all situations where we are not allowed to remove
tokens above the maximum constant as the concrete number of these tokens is
relevant for the behaviour of the net or for the the proposition ϕ. An example of
the calculation of Cmax and cat is given in Figure 4, assuming Places(ϕ) = {P1}.

3.1 Bounded Marking Equivalence

Given the maximum constants and categories of places, we can now define an
equivalence relation on markings that will have a finite number of equivalence
classes and can be used in the liveness checking algorithm.

Let Cmax and cat be computed as above and let M be a marking. We split M
into two markings M> and M≤ as follows: M>(p) = {x ∈M(p) | x > Cmax(p)}
and M≤(p) = {x ∈M(p) | x ≤ Cmax(p)} for all places p ∈ P . Clearly, M =
M> !M≤.

Verification of Liveness Properties on Closed Timed-Arc Petri Nets 77

Definition 4 (Bounded Marking Equivalence). Let M and M ′ be markings
on a TAPN N . We say that M and M ′ are equivalent, written M ≡M ′, if

– M≤(p) = M ′
≤(p) for all p ∈ P , and

– |M>(p)| = |M ′
>(p)| for all p ∈ P where cat(p) = Std.

The equivalence relation implies that in Dead places we do not care about the
tokens with ages greater than Cmax and that in Std places we do not care about
tokens with ages greater than Cmax, as long as there are equally many of them
in both markings. An important correctness argument is the fact that that the
relation ≡ is a timed bisimulation where delays on one side and matched by
exactly the same delays on the other side (see e.g. [13]). The proof is done by a
detailed case analysis and can be found in the full version of the paper.

Theorem 1. The relation ≡ is a timed bisimulation.

In order to calculate a representative marking for each ≡-equivalence class, we
define the function cut and present Lemma 1 that is proved in the full version
of the paper.

Definition 5 (Cut). The function cut :M(N)→M(N) is given by

cut(M)(p) =

⎧⎨
⎩
M≤(p) if cat(p) ∈ {Inv ,Dead}
M≤(p) !

{
Cmax(p) + 1, . . . ,Cmax(p) + 1︸ ︷︷ ︸

|M>(p)| times

}
if cat(p)=Std

for all p ∈ P . We call the marking cut(M) canonical.

Lemma 1 (Properties of Canonical Markings)

1. For any marking M we have M ≡ cut(M).
2. Given two markings M1 and M2 if M1 ≡M2 then cut(M1) = cut(M2).
3. Let M be a marking and ϕ ∈ Φ be a proposition then M |= ϕ iff cut(M) |= ϕ.

4 Liveness Algorithm

We can now present Algorithm 1 answering the liveness verification problem.
It is essentially a depth-first search algorithm where the Waiting stack stores
the currently unexplored successors that satisfy the invariant property ϕ. In the
Trace stack we keep track of the run from the initial marking to the currently
explored marking. A counter recording the number of unexplored successors
for each marking on the Trace stack is used for the coordination between the
Trace and Waiting stacks. The main loop contains a boolean variable indicating
whether the current marking is the end of a maximal run (in case no further
successors exist). If this is the case, the algorithm terminates as a maximal run
satisfying ϕ has been found. Otherwise new canonical successors (by transition
firing and one-unit delay) are added by calling the function AddToPW , making

78 M. Andersen et al.

1 input: A TAPN (N,M0), proposition ϕ ∈ Φ and k ∈ N s.t. size(cut(M0)) ≤ k.
2 output: True if there is a maximal run {Mi} s.t. Mi |= ϕ and

size(cut(Mi)) ≤ k, false otherwise.
3 begin
4 Passed := ∅;Waiting.InitStack(); Trace .InitStack();M ′

0 := cut(M0);
5 if M ′

0 |= ϕ then
6 Waiting .push(M ′

0);
7 while ¬Waiting.isEmpty() do
8 M := Waiting .pop();
9 if M �∈ Passed then

10 Passed := Passed ∪ {M}; M.successors :=0;
11 Trace .push(M); endOfMaxRun := true;

12 foreach M ′ s.t. M t→ M ′ do
13 AddToPW(M ,M ′); endOfMaxRun := false;

14 if min(p,x)∈M([I (p)]R − x) > 0 then

15 AddToPW(M ,M ′) where M
1→ M ′; endOfMaxRun := false;

16 if endOfMaxRun then
17 return true /* terminate and return the Trace stack */ ;

18 else
19 Trace .top().successors−−
20 while ¬Trace .isEmpty() ∧ Trace .top().successors = 0 do
21 Trace .pop();
22 if Trace .isEmpty() then
23 return false /* terminate the whole algorithm *.;
24 Trace .top().successors−−;

25 return false;

26 AddToPW(M ,M ′): begin
27 M ′′ := cut(M ′);
28 if M ′′ ∈ Trace then
29 return true /* terminate and return the loop on the Trace stack */;
30 if M ′′ /∈ Passed ∧M ′′ |= ϕ ∧ size(M ′′) ≤ k then
31 Waiting .push(M ′′);
32 M.successors++;

Algorithm 1. Liveness algorithm

sure that only markings that satisfy ϕ are added to the Waiting list. The func-
tion also checks for the presence of a loop on the Trace stack, in which case the
algorithm terminates and returns true. A bound k is also an input to the algo-
rithm, making sure that only canonical markings with no more than k tokens
are explored during the search. If the net is k-bounded, this has no effect on the
actual search. For unbounded nets, our algorithm still terminates and provides
a suitable under-approximation of the net behaviour, giving conclusive answers
if a loop is found and inconclusive answers otherwise.

Verification of Liveness Properties on Closed Timed-Arc Petri Nets 79

Table 1. Fischer’s protocol scaled by the number of processes (rows) and the size of
maximum constant (columns). First line is a native UPPAAL model, second line is the
fastest translation to timed automata and using the UPPAAL engine, and third line is
our discrete TAPAAL engine. The symbol � stands for more than 900 seconds.

Processes \ Constants 3 5 7 9 11 13 15

5
0.1
0.1
0.1

0.1
0.1
0.1

0.1
0.1
0.3

0.1
0.1
0.7

0.1
0.1
1.8

0.1
0.1
3.7

0.1
0.1
7.9

6
0.2
0.9
0.1

0.2
0.9
0.1

0.2
0.9
0.5

0.2
0.9
1.8

0.2
0.9
5.3

0.2
0.9

13.3

0.2
0.9

29.6

7
4.6

47.5
0.1

4.6
47.2
0.2

4.6
47.0
1.1

4.6
47.1
4.5

4.6
47.2
14.4

4.6
47.4
40.7

4.6
47.1
99.3

8
422.5�
0.1

422.6�
0.4

421.5�
2.4

422.4�
10.5

421.9�
37.8

422.1�
115.2

422.3�
309.8

9
��

0.1

��
0.7

��
4.5

��
22.4

��
90.5

��
300.4

��
888.2

10
��

0.1

��
1.1

��
8.2

��
45.9

��
202.2

��
733.5

���
Table 2. Blood transfusion case study scaled by the number of patients; time is seconds

Patients Translations TAPAAL

1 0.11 0.04
2 28.08 0.93
3 >5400.00 30.47
4 >5400.00 1072.50

Theorem 2 (Correctness). Let TAPN (N,M0) be a closed TAPN, ϕ ∈ Φ
a proposition and k ∈ N a number such that size(cut(M0)) ≤ k. Algorithm 1
terminates, and it returns true if there is a maximal run {Mi} such that Mi |= ϕ
and size(cut(Mi)) ≤ k and false otherwise.

Proof (sketch). Termination follows from the fact that we only store markings
after applying the function cut , giving us together with at most k tokens in the
net a finite state-space. The soundness and completeness part of Theorem 2 rely
on Lemma 1 and Theorem 1 and details are given the full version of the paper.

#�

5 Experiments

The liveness algorithm has been implemented and fully integrated into the ver-
ification tool TAPAAL [7] and it can be downloaded (as a beta-release) from

80 M. Andersen et al.

http://www.tapaal.net. We performed a number of experiments1 and due to
the space limitation mention only two of them. The results of verification of Fis-
cher’s algorithm for mutual exclusion are given in Table 1. We asked here an EG
query checking whether there is an infinite schedule allowing us to repeatedly
enter the critical section within a given time interval. The query is not satisfied
and hence the whole state-space where the proposition holds is searched. The
table shows the verification times for a native UPPAAL model of the protocol
(first line), the best time for a translation (see [7] for details) to timed automata
and then using the UPPAAL engine (second line) and our discretized algorithm
(third line). The gray cells mark the experiments where our method was the
fastest one. The reader can observe that the DBM-based methods in the first
two lines are immune to scaling of constants. On the other hand, our algorithm
scales significantly better with increasing the number of processes. Hence for
larger instances, we can handle larger and larger constants while still outper-
forming the DBM-based methods. In fact, the size of the constants we can deal
with for the given time limit grows more than linearly as we increase the num-
ber of processes. We have observed similar behaviour in other case studies too,
like e.g. in the Lynch-Shavit protocol that is presented in the full version of the
paper.

In order to test the performance on a realistic case-study, we verified sound-
ness (AF query) of a blood transfusion medical workflow (details can be found
in [2]) where the maximum constant is of size 90 and it considerably outper-
forms the translation approach verified via UPPAAL engine. Results are given
in Table 2 and we compare our engine with the fastest translation to UPPAAL
timed automata.

6 Conclusion

We presented a discrete algorithm for verification of liveness properties on ex-
tended timed-arc Petri nets and provided its implementation and integration into
the model checker TAPAAL. The main technical contribution is the partitioning
of the places in the net to three categories and an optimized computation of
the individual maximum constants, allowing us to design an efficient loop detec-
tion algorithm based on depth-first search. We proved the algorithm correct and
demonstrated on several examples its applicability as an alternative to DBM-
based search algorithms. The techniques can be easily adapted to work also for
reachability analysis.

Our approach is well suited for larger models with relatively small constants.
Due to an on-the-fly removal of dead tokens that appear in the net, we were able
to successfully verify models that are in general unbounded and where DBM-
based methods give inconclusive answers (for example in case of the Alternating
Bit Protocol (ABP) with perfect communication channels presented as the stan-
dard example in the TAPAAL distribution). In the future work we shall focus

1 We report here the data obtained on MacBook Pro 2.7GHz INTEL Core i7 with 8
GB RAM and 64-bit versions of UPPAAL and TAPAAL.

http://www.tapaal.net

Verification of Liveness Properties on Closed Timed-Arc Petri Nets 81

on space-optimization of the proposed technique, on a symbolic computation
of the delay operator and on comparing the method to BDD-based state space
exploration (as exploited e.g. in the tool Rabbit [5]).

References

1. Behrmann, G., David, A., Larsen, K.G., Hakansson, J., Petterson, P., Yi, W.,
Hendriks, M.: Uppaal 4.0. In: QEST 2006, pp. 125–126 (September 2006)

2. Bertolini, C., Liu, Z., Srba, J.: Verification of timed healthcare workflows using
component timed-arc Petri nets. In: FHIES 2012. Springer (to appear, 2012)

3. Beyer, D.: Efficient Reachability Analysis and Refinement Checking of Timed Au-
tomata Using BDDs. In: Margaria, T., Melham, T.F. (eds.) CHARME 2001. LNCS,
vol. 2144, pp. 86–91. Springer, Heidelberg (2001)

4. Beyer, D.: Improvements in BDD-Based Reachability Analysis of Timed Automata.
In: Oliveira, J.N., Zave, P. (eds.) FME 2001. LNCS, vol. 2021, pp. 318–343.
Springer, Heidelberg (2001)

5. Beyer, D., Lewerentz, C., Noack, A.: Rabbit: A Tool for BDD-Based Verification
of Real-Time Systems. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS,
vol. 2725, pp. 122–125. Springer, Heidelberg (2003)

6. Bozga, M., Maler, O., Tripakis, S.: Efficient Verification of Timed Automata Using
Dense and Discrete Time Semantics. In: Pierre, L., Kropf, T. (eds.) CHARME
1999. LNCS, vol. 1703, pp. 125–141. Springer, Heidelberg (1999)

7. David, A., Jacobsen, L., Jacobsen, M., Jørgensen, K.Y., Møller, M.H., Srba, J.:
TAPAAL 2.0: Integrated Development Environment for Timed-Arc Petri Nets.
In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 492–497.
Springer, Heidelberg (2012)

8. Dill, D.L.: Timing Assumptions and Verification of Finite-state Concurrent Sys-
tems. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 197–212. Springer, Hei-
delberg (1990)

9. Hanisch, H.M.: Analysis of Place/transition Nets with Timed Arcs and its Ap-
plication to Batch Process Control. In: Ajmone Marsan, M. (ed.) ICATPN 1993.
LNCS, vol. 691, pp. 282–299. Springer, Heidelberg (1993)

10. Jacobsen, L., Jacobsen, M., Møller, M.H.: Undecidability of Coverability and
Boundedness for Timed-Arc Petri Nets with Invariants. In: Proc. of MEMICS
2009, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2009)

11. Jacobsen, L., Jacobsen, M., Møller, M.H., Srba, J.: Verification of timed-arc Petri
nets. In: SOFSEM 2011, pp. 46–72 (2011)

12. Lamport, L.: Real-Time Model Checking Is Really Simple. In: Borrione, D., Paul,
W. (eds.) CHARME 2005. LNCS, vol. 3725, pp. 162–175. Springer, Heidelberg
(2005)

13. Larsen, K.G., Wang, Y.: Time-abstracted bisimulation: Implicit specifications and
decidability. Information and Computation 134(2), 75–101 (1997)

14. Popova-zeugmann, L.: Essential states in time Petri nets. Informatik-Berichte 96
(1998)

15. de Frutos Escrig, D., Ruiz, V.V., Marroqúın Alonso, O.: Decidability of Properties
of Timed-Arc Petri Nets. In: Nielsen, M., Simpson, D. (eds.) ICATPN 2000. LNCS,
vol. 1825, pp. 187–206. Springer, Heidelberg (2000)

16. Ruiz, V.V., Cuartero Gomez, F., de Frutos Escrig, D.: On non-decidability of reach-
ability for timed-arc Petri nets. In: Proceedings of the 8th International Workshop
on Petri Net and Performance Models (PNPM 1999), pp. 188–196 (1999)

Fast Algorithm for Rank-Width

Martin Beyß

RWTH Aachen University

Abstract. Inspired by the heuristic algorithm for boolean-width by
Telle et. al. [1], we develop a heuristic algorithm for rank-width. We com-
pare results on graphs of practical relevance to the established bounds of
boolean-width. While the width of most graphs is lower than the known
values for tree-width, it turns out that the boolean-width heuristic is
able to find decompositions of significantly lower width. In a second step
we therefore present a further algorithm that can decide if for a graph G
and a value k exists a rank-decomposition of width lower than k. This
enables to show that boolean-width is in fact lower than or equal to
rank-width on many of the investigated graphs.

1 Introduction

Many interesting problems on graphs like TSP or Hamiltonian path are
NP -complete. Thus, there is no fast way to solve them in general unless of course
P =NP . Width parameters of graphs like tree-width, clique-width or rank-width
can be used to construct fixed parameter tractable (FPT) algorithms for many
of these problems. This means if the input graphs are restricted to have width
at most k, a solution can be calculated in time at most f(k) · p(n) where f is a
computable function, n the size of the graph and p a polynomial independent of
k. For small k this provides a realistic chance of solving these problems even on
large graphs. Many of those algorithms use dynamic programming and need a
decomposition of the graph. Hence, practical methods of calculating decompo-
sitions of low width are of crucial importance.

A major result is Courcelles theorem [2] which states that every graph problem
that is expressible as a MSO2 formula can be decided in linear time for graphs
of fixed tree-width. A similar theorem exists for rank-width and clique-width
and a formula in MSO1 [3]. Recent research shows that these theorems are not
just of theoretical interest but also of practical applicability [4]. Accordingly,
an algorithm that is able to calculate rank-decompositions gives a possibility to
solve many hard problems on graphs. As [5] shows, there are several algorithms
that can compute reasonably small tree-decompositions, but tree-width is only
low for sparse graphs. Consequently, for dense graphs other width-measures have
to be considered. An overview of different width-measures other than tree-width
and their algorithmic applications can be found, e.g. in [6].

Although rank-width has been extensively researched over the last years, there
are only few practical results. For example in [7], Oum proposed an O(|V |3)
algorithm that for a fixed k either returns a rank-decomposition of width at

A. Kučera et al. (Eds.): MEMICS 2012, LNCS 7721, pp. 82–93, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Fast Algorithm for Rank-Width 83

most 3k − 1 or confirms that the rank-width is larger than k. Nevertheless, no
implementation is known and actual rank-decompositions only exist for very few
graphs.

In [1] Hvidevold et. al. presented a novel approach to find decompositions of
low boolean-width even on dense graphs. We can reuse their work and develop
a heuristic algorithm to calculate rank-decompositions. Moreover, our algorithm
is able to build rank-decompositions on graphs for which no bounds of other
width-measures are known in particular many graphs where the boolean-width
heuristic failed. This reveals the main weakness of boolean-width for practical
application. Calculating the boolean-width of a given decomposition is costly
especially in comparison with rank-width.

As an extension, an additional algorithm is implemented that decides for a
given k if a graph has rank-width less than k. This allows the calculation of lower
bounds for rank-width. These lower bounds can provide a quality estimation for
the heuristic algorithm. Furthermore, we are able to compare results for boolean-
width and rank-width on graphs from real life application, i.e. treewidthLIB [8].

2 Preliminaries

Graphs in this work are simple, undirected and loop free. A graph G is a tuple
(V,E) where V is a set and E ⊂ [V]2 and [V]2 is the set of all two-element subsets
of V . An element v ∈ V is called a vertex, e ∈ E is called edge. Instead of writing
v ∈ V , we may write v ∈ G; the same goes for e ∈ E. As a shorthand we write
|G| for |V | and ‖G‖ for |E|. For G = (V,E) we define functions V (G) = V and
E(G) = E, which assign a graph to its vertex and edge sets.

For a graph G = (V,E) and a set V ′ ⊂ V we define the induced subgraph as
G[V ′] = (V ′, E′) where E′ ⊂ E so that {v1, v2} ∈ E′ if v1, v2 ∈ V ′. For a Tree
T = (VT , ET), n ∈ VT is called a node.

Tree-width[9] is most likely the best studied and understood width measure
for graphs. It measures how similar a graph is to a tree. Hence, a tree has tree-
width 1 while a complete graph with n vertices has tree-width n− 1.

Definition 1. Let G = (V,E) be a graph, T = (VT , ET) a tree and V : VT →
2V , t �→ Vt a function. We call (T,V) a tree-decomposition of G if it fulfils the
following three conditions

1. V =
⋃

t∈VT
V(t)

2. For each e = {u, v}, e ∈ E there is a node t ∈ VT so that u, v ∈ V(t)
3. For nodes t1, t2, t3 ∈ VT where t2 lies on a path from t1 to t3 there is always
V(t1) ∩ V(t3) ⊆ V(t2)

The width of a tree-decomposition (T,V) is max{|V(t)|−1 ; t ∈ VT }. The lowest
width of all possible tree-decompositions is the tree-width of G or tw(G).

Branch-width is a width measure that was introduced in [10]. Since its invention
it has been generalized, and here the definition of [11] is used and extended to
suit our needs.

84 M. Beyß

Definition 2. Let V be a finite set and f : 2V → R a function. If for any set
X ⊆ V f has the property that f(X) = f(V \X), it is symmetric.

A subcubic tree is a tree in which every node has degree at most three. If T
is a subcubic tree and L : V → {v ; v is a leaf in T } a surjective function, then
(T, L) is called a partial branch-decomposition of f . If f is bijective, (T, L) is a
total branch-decomposition of f .

For an edge e ∈ T , T \{e} induces a partition (X,Y) of the leaves of T . The
value of f(L−1(X)) is the width of the edge e of the partial branch-decomposition
(T, L). The maximum width over all edges of T is the width of the partial
branch-decomposition (T, L). The minimum width over all possible total branch-
decompositions of f is called the branch-width of f , denoted by bw(f).

If f(X) > f(Y), we say X is wider than Y or analogously, Y is narrower
than Y . Consequently, that term can be applied to branch-decompositions.

Rank-width[11] is a recent width measure which is built on branch-width.

Definition 3. Let G = (V,E) be a simple, connected, undirected graph without
loops and M its adjacency matrix over GF (2). By MX

Y we denote the submatrix
of M with rows in X and columns in Y , for X,Y ⊆ V . For X ⊂ V we define
the cut-rank as cutrk(X) = rk(MX

X
) where rk is the standard matrix rank and

X is the set complement of X in V .
Obviously, the cut-rank function is symmetric, for that reason we can define

the branch-width of the cut-rank function of a graph G as the rank-width of G,
denoted as rw(G). Analogously, the term (partial) rank-decomposition can be
defined.

Like rank-width, boolean-width[12] is the branch-width of a special function, in
this case the cut-bool function.

Definition 4. Let G = (V,E) be a graph and let N(a) be the set of vertices ad-
jacent to a ∈ G. For X ⊂ V we define UN(X) to be the union of neighbourhoods
of subsets of X in X.

UN(X) = {S ⊆ X ; ∃ A ⊆ X ∧ S = X ∩
⋃
a∈A

N(a)} (1)

With this the cut-bool function can be defined.

cutbool : 2V → R, X �→ log2 |UN(X)| (2)

The branch-width of the cut-bool function of a graph G is called boolean-width
of G, denoted by boolw(G).

Remark 1. The set of GF (2)-sums of neighbourhoods of subsets of X in X is
called SN(X).

SN(X) = {S ⊆ X ; ∃ A ⊆ X ∧ S = X ∩
∧
a∈A

N(a)} (3)

We can easily see ([12])that cutrk(X) = log2 |SN(X)|, which shows that boolean-
width and rank-width are quite closely related.

Fast Algorithm for Rank-Width 85

3 An Upper Bound Algorithm

This Section describes a heuristic algorithm for rank-width, which is an im-
proved version of the boolean-width algorithm presented in [1]. Adapting their
algorithm for rank-width is easily possible as both width measures are closely
related branch-widths (c.f. Remark 1). However, this algorithm does not carry
some of the limitations of its boolean-width variant because the cut-rank func-
tion is much easier and faster to calculate than the cut-bool function.

3.1 Overview

The goal of this algorithm is to heuristically finda narrow total rank-decomposition
for a given graph.At the beginning an initial rank-decomposition is calculated, and
then attempts to improve it are made. In a first step we assume that there already
exists a total rank-decompositionR = (T, L).

Algorithm 1. Main loop

Input: a graph G = (V,E)
Output: a total decomposition R = (T,L) of G
1: Let T be an empty tree and L : ∅ → ∅
2: best ← ∞
3: R ← (T,L)
4: while algorithm should keep running do
5: e = (n1, n2) ← first edge of R
6: ImproveSubtree(n1)
7: ImproveSubtree(n2)
8: if R is total then
9: Ropt ← R � new best decomposition
10: best ← Width(R)
11: else
12: R ← Ropt � reset decomp.
13: end if
14: end while
15: return Ropt

Consequently, we skip the initialisation and start at line 4 of Algorithm 1.
Inside the while loop it is tried to improve the given rank-decomposition.
ImproveSubtree returns a total decomposition if and only if an improvement
could be made. Accordingly, the next steps depend on whether R is total or
not. If a better decomposition is found, it is saved along with its width (line 9).
Otherwise R is reset. This is repeated for a certain amount of time.

For initialisation an empty decomposition is created. This has to be considered
for the ImproveSubtree routine. The first rank-decomposition is calculated
greedily while later calculations use a mix of greedy and random decisions.

86 M. Beyß

Algorithm 2. ImproveSubtree

Input: a subtree rooted at n
Output:
1: if n is a leaf then
2: (X,Y) ← Split(n)
3: else
4: (X,Y) ← RandomSwap(n)
5: end if
6: if max(cutrk(X), cutrk(Y)) < best then
7: remove subtrees rooted at n (if any)
8: add children n1, n2 to n
9: ∀x ∈ X : L(x) ← n1, ∀y ∈ Y : L(y) ← n2

10: end if
11: if n has children n1 and n2 of width < best then
12: ImproveSubtree(n1), ImproveSubtree(n2)
13: end if

Algorithm 2 shows the functionality of the ImproveSubtree routine. If the
root of the subtree is an internal node, a good split is already known and we try
to randomly improve it. Otherwise a good split has to be calculated greedily.
Assume that the node n has some children, and thus the RandomSwap routine
is called. In Algorithm 2.6 it is now checked if the new cuts are narrow enough. If
this is the case, the new split is assigned to the children n1 and n2. Thereby the
subtrees rooted at them become meaningless and are removed. Then in line 12
the ImproveSubtree routine is called for the new split. In case no sufficiently
narrow split could be found, the old one is reused, provided that it is narrow
enough.

If the subtree consists just of the node n, a whole new partition has to be cal-
culated with the call to the Split function in line 2. In case a sufficiently narrow
one is found, two new leaves are added to n and labelled with the split. Then
for these nodes ImproveSubtree is called. If the ImproveSubtree function is
called with the initial rank-decomposition, there is always a new split calculated
because it does not exist an old one that could be altered. As already mentioned,
the first run always returns a total rank-decomposition. Later this may not al-
ways be the case. If Split is not able to find a good partition, or the old one
is not good enough and RandomSwap does not find a better one, the node n
does not have any children. Hence, ImproveSubtree stops there and returns
a partial rank-decomposition.

Splitting a leaf (Split) is done in a greedy way. We start with the partition
(X,Y) = (∅, L−1(n)) and then greedily move on element at a time from Y to X .
To be precise we exchange that y ∈ Y that leads to a minimal max{cutrk(X ∪
{y}), cutrk(Y \ {y})}. If there are several such y we chose one randomly. In
the end, we pick that pair (X,Y) so that max{cutrk(X), cutrk(Y)} becomes
minimal. Again, there may be more than one partition with equally low width
and we have to chose one randomly

Fast Algorithm for Rank-Width 87

There are some constraints for the partition (X,Y), namely X and Y are not
allowed to be too small, i.e. ≥ c ·

∣∣L−1(n)
∣∣ (and ≥ 1 of course). Later in this

work c is referred to as the split factor.
Swapping labels (RandomSwap) is done if the node n has children n1, n2.

Basically, there is an exchange of elements, i.e. n1 gets labels from n2 and n2

gets labels from n1. Let X be L−1(n1) and Y = L−1(n2). Then the random
subsets X ′ ⊂ X and Y ′ ⊂ Y are moved to the other set. The subsets have some
size constraints so that the partition (X,Y) still fulfils the size constraints of the
Split function.

Pseudo code implementations of Split and RandomSwap are not shown
here for conciseness. Moreover, they are extremely similar to those in [1].

3.2 Results and Discussion

To get real life results, graphs from TreewidthLIB [8] are investigated. Treewidth-
LIB is a collection of 710 graphs from many different fields like computanional
biology, probabilistic networks, TSP instances and more. Taking these graphs
also enables to compare results for boolean-width calculated in [1], tree-width
and rank-width on the same graph. We only use graphs that have between 25
and 256 nodes. The algorithm is able to handle much bigger graphs, but only
some are tried, mainly because the algorithm that is presented in Section 4 only
works on graphs up to that size. Moreover, results for boolean-width were only
found for smaller graphs, so a comparison would not be possible.

For many graphs there exist preprocessed versions for tree-width. These are
only used if the original graph is too big. That reduction leaves 193 graphs.
For 114 of them results for boolean-width exist, for 167 an upper-bound for
tree-width is known.

For every graph several runs with different configurations were made and we
use the best result that any of this runs could produce. In general, a low split-
factor and a high amount of greedy choices lead to better results.

Figure 1 shows a comparison of our results with known upper bounds for tree-
width and boolean-width. The dotted line in both Figures marks the equality of
both parameters.

In theory, rank-width can be as high as 2k on a graph with boolean-
width k [12]. While rank-width is sometimes almost equal to or better than
boolean-width, in most of the cases boolean-width is significantly lower. The
ratio between boolean-width and rank-width is between 1.33 and 0.32 with an
average of 0.57.

In [13] a tight bound connecting tree-width and rank-width is established:
rw(G) ≤ tw(G) − 1. This bound is beaten by most of the results the algorithm
could produce. On average the known upper bound for tw(G)− 1 is 70% higher
than our bound for rank-width. We are also able to find rank-decompositions
for graphs on which no bounds for tree-width are known.

Some results are shown in Table 1. The first graph 1bkf is from the field
of computational biology. The graph miles1500 is converted from the stanford
graph base [14]. The myciel6 graph is a Mycielskian graph from the second

88 M. Beyß

0 10 20 30 40 50 60
0

50

100

150

200

Rank−width

T
re

e−
w

id
th

(a) Tree-width

0 5 10 15 20 25 30 35 40
0

5

10

15

20

Rank−width

B
oo

le
an

−
w

id
th

(b) Boolean-width

Fig. 1. Comparison of the results with known upper bounds for tree-width and boolean-
width

Table 1. Selected results comparing upper bounds for rank-width, boolean-width and
tree-width

Graph G |G| ‖G‖ rw(G) boolw(G) tw(G)

1bkf 106 1264 28 11.69 36
celar08 458 1655 22 N/A 16
eil51.tsp 51 140 7 5.78 9
fpsol2.i.1 496 11654 8 N/A 66
miles1500 128 5198 15 4.86 77
mulsol.i.1 197 3925 3 4.00 50
myciel6 95 755 24 13.40 35
queen7 7 49 952 12 10.36 35

DIMACS implementation challange [15]. This is also the origin of fpsol2.i.1
and mulsol.i.1 which are based on register allocation of real code. A Delaunay
triangulation of a travelling salesperson problem is the basis for the eil51.tsp

graph. The queen7 7 graph is the graph for a n-queens problem [16]. Finally,
celar08 is a frequency assignment instance [17].

The two examples for a bigger graph, celar08 and fpsol2.i.1, show that
the algorithm can also work successfully on bigger graphs.

We used a standard Desktop Computer with a 2.5 GHz Phenom II processor
and 16GB of Ram. The algorithm ran until it could not make an improvement
for 500 iterations in a row but at most 300 seconds. The actual runtime is in
most cases significantly lower. Hvidevold et al. obviously allowed much longer
runtimes (c.f. Table 1 in [1]). For queen8 12 they showed a boolean-width bound
of 16.7 in 3055s, whereas we could find a rank-decomposition of width 21 in 69s
on that graph. Although they state that they did not aim for “fast benchmark
results”, this difference is definitely noteworthy.

4 A Lower Bound Algorithm

In order to evaluate the quality of the results in Section 3, one has to know the
actual rank-width of the investigated graphs. As it is not known, the algorithm

Fast Algorithm for Rank-Width 89

that is presented here tries to calculate it, or to be more precise, it decides if for
a given k, there exists a rank-decomposition narrower than k.

The next Section provides an overview on how the algorithm works in princi-
ple, before the results are presented in Section 4.2.

4.1 Overview

The algorithm tries to calculate a lower bound by enumerating all possible
rank-decompositions for an induced subgraph, then growing the graph and re-
calculating the new rank-decompositions on the basis of the ones built in the last
step. As it is given a maximal width k, which no rank-decomposition may reach,
those with a higher width can be excluded. Thereby the search space can be
drastically reduced. If at some point no decomposition has a low enough width,
the algorithm is stopped because the bound k is a lower bound for the rank-
width of the given graph. This is possible because the rank-width of a graph is
at most as high as the rank-width of any of its induced subgraphs.

A problem that arises is the very quickly growing number of differ-
ent rank-decompositions. As there have to be at least 2u vertices in a
rank-decomposition before any cut possibly reaches the width of the upper bound
u, no rank-decomposition can be discarded before they have 2u vertices. To dras-
tically reduce the number of rank-decompositions that have to be considered,
we only use partial rank-decompositions with exactly two leaves.

Algorithm 3 depicts this in pseudo code. A rank-decomposition that contains
only two leaves defines exactly one cut. Therefore, we only store one set per
rank-decomposition. When we grow the graph by a vertex v in line 4, two new
possible rank-decompositions Rnew and R are created. One with v in the set and
one without it. The set R stays unchanged, for that reason it is important to
adapt the Width function in line 7.

Algorithm 3. Main loop

Input: set of vertices V
1: v1 ∈ V, V ← V \ {v1}
2: Rinit ← {v1}
3: R ← {Rinit}, R′ ← ∅
4: for all v ∈ V do
5: while R �= ∅ do
6: R ∈ R
7: if Width(R) < k then � Width function applies to current subgraph
8: Rnew ← R ∪ {v}
9: R′ ← R′ ∪ {Rnew , R}
10: end if
11: R ← R \ {R}
12: end while
13: R ← R′, R′ ← ∅
14: end for

90 M. Beyß

The graph is grown until either all vertices in V have been inserted or R is
empty. If R is empty, no rank-decomposition has a width lower than k. Other-
wise, the algorithm can not make a decision.

Obviously, there are always decompositions narrower than k in particular all
that have a set of size smaller than k. We can show that if a graph has n vertices
only those two-leafed rank-decompositions with at least 1

3n labels in each leaf
represent some unique total rank-decompositions. We can therefore safely ignore
them but we have to keep them for the next step of the algorithm, because by
adding labels to the right leaf it may fulfil the size constraint.

4.2 Results and Discussion

As in Section 3.2, the algorithm was checked against graphs from the treewidth-
LIB. For some graphs no upper bound could be found in the time we provided.
Contrary to that, we were capable of finding very good lower bounds in only a
few minutes on other graphs. In some rare cases, we could even show that the
known rank-decomposition is optimal. Surprisingly, we were able to find many
lower bounds for rank-width which are above the upper bound for boolean-width.

In total, a lower bound could be found for 179 of the 194 graphs, 10 of which
match the upper bound. For 104 graphs there also exists an upper bound for
the boolean-width. In 49 cases the upper bound for boolean-width is at most as
high as the lower bound for rank-width. This is a remarkable result because it
provides a practical evidence that the boolean-width of a graph is in many cases
lower than its rank-width.

Theoretical results have already indicated this by claiming that rw ≤ 2boolw.
While this bound is known to be tight, it remains unanswered how practically
relevant it is especially as on the other hand boolw ≤ 1

4rw
2. Accordingly, it would

be possible that for many instances rank-width is the lower width measure. The
results in this work allow to say that at least for a part of the investigated graphs
boolean-width is lower than rank-width.

Figure 2a shows the relation of boolean-width to the upper bound for rank-
with in a histogram. For 104 graphs there exist an upper bound for boolean-width
and a lower bound for rank-width. The median of their ratio is 0.95. So for 50%
of the graphs we can safely say that its boolean-width is at worst 5% higher than
its rank-width. The lower bound algorithm still suffers from limitations. Due to
memory restriction we were for example not able to prove a lower bound above
10. Thus, for many graphs the optimal rank-width is significantly higher than
the lower bound. Contrariwise, the values for boolean-width are the results of
the first attempt to find boolean-decompositions.

The comparison to the upper bounds for rank-width is more difficult,
mainly because the calculation of high lower bounds demands more resources
than we are able to provide. Nevertheless, we can show the optimality of 10
rank-decompositions. The median of the ratio of lower bound and upper bound
is 0.41. Moreover, for 67% of the graphs we can guarantee a 3-approximation.
The algorithm by Oum [7] is able to find a 3-approximation for every graph, but
there does not exist an implementation until now.

Fast Algorithm for Rank-Width 91

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

5

10

15

20

boolwUB/rwLB

nu
m

be
r

of
 in

st
an

ce
s

(a) Ratio of boolean-width to the lower
bound for rank-width

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

40

rwUB/rwLB

nu
m

be
r

of
 in

st
an

ce
s

(b) Ratio of the rank-width upper bound
to the lower bound

Fig. 2. Histograms for the lower bound

Table 2. Selected results for the lower bound algorithm, UB: upper bound, LB: lower
bound

graph G |G| ‖G‖ rw UBs rw LBs boolw UBs

1bx7 41 195 8 8 4.91
1kw4 67 672 22 10 9.39
BN 12 90 481 24 8 N/A
celar03 200 721 10 5 N/A
celar06 100 350 5 5 3.81
graph01 100 358 19 5 14.61
miles750 128 2113 24 4 N/A
mulsol.i.2 188 3885 6 N/A 4.81
myciel7 191 2360 54 7 N/A

Besides the mentioned limitations, we are able to calculate many good lower
bounds and to find some astonishing results. The results should however not be
interpreted as the best achievable. Rather, they merely show a small part of the
possibilities.

Table 2 shows a selection of graphs with very different results for the lower
bound algorithm. The first two graphs, 1bx7 and 1kw4, are from the field of
computanional biology. BN 12 is a Bayesian network from evaluation of proba-
bilistic inference systems [18]. Both celar graphs as well as graph01 are fre-
quency assignment instances from the EUCLID CALMA project [17]. Finally,
the mulsol.i.2 graph is a colouring problem generated from a register allocation
problem based on real code from the second DIMACS challenge [15].

It was not tried to check if 2 is a lower bound of any graph, as this is only the
case if a graph is distance hereditary [19]. This could be checked much easier and
does most likely not apply to any of the available graphs. Thus, we can safely
assume a lower bound of 2.

92 M. Beyß

5 Conclusion and Outlook

A heuristic algorithm for the calculation of rank-decompositions was developed
and tested against multiple graphs of TreewidthLIB. The algorithm is able to
find rank-decompositions in a fast way. Unfortunately, their width is only low
for a few graphs and in most cases significantly worse than the known bounds
for boolean-width. As it was not clear if this is caused by the high rank-width
of these graphs or by a bad result of the algorithm, a second algorithm was
developed, which is able to decide if a graph has a rank-decomposition of width
lower than k. Runtime and memory usage increase significantly with k, therefore
tight bounds could not be found in most cases. However, we were often able to
push it near or even above the known boolean-width. This evidence suggests
that boolean-width is on graphs from real life application in fact a better, i.e.
lower parameter.

Both algorithms use a rather simple approach and are presumably the first
practical algorithms for upper and lower bounds of rank-width. Nevertheless,
the results are to some extent exceptional, e.g. a rank-decomposition of width 8
on the large fpsol2.i.1 graph or rank-width exactly 5 on the graph celar06 .

The results presented in this work encourage further research on boolean-
width. It would be of particular interest to find a fast and memory-efficient
way to calculate |UN(X)| (see equation 1). Both algorithms which we developed
could then be adapted for boolean-width. Concerning the heuristic algorithm,
even better values would be reachable, assuming that changing the parameters
of the algorithm has a similar effect as for rank-width. Furthermore, a possibility
to calculate lower bounds would be at hand.

Apart from that, this results also suggests further theoretical work as boolean-
width seems to outperform the known width-measures. A strong theoretical
background and access to good decompositions will enable to practically solve
many hard problems on graphs.

References

1. Hvidevold, E.M., Sharmin, S., Telle, J.A., Vatshelle, M.: Finding Good Decompo-
sitions for Dynamic Programming on Dense Graphs. In: Marx, D., Rossmanith, P.
(eds.) IPEC 2011. LNCS, vol. 7112, pp. 219–231. Springer, Heidelberg (2012)

2. Courcelle, B.: The monadic second-order logic of graphs i. recognizable sets of finite
graphs. Information and Computation, 12–75 (1990)

3. Courcelle, B., Makowsky, J., Rotics, U.: Linear time solvable optimization problems
on graphs of bounded clique width. Theory of Computing Systems 33, 125–150
(1999)

4. Langer, A., Reidl, F., Rossmanith, P., Sikdar, S.: Recent progress in practical
aspects of mso model-checking (in preparation, 2012)

5. Bodlaender, H.L., Koster, A.M.: Treewidth computations i. upper bounds. Infor-
mation and Computation 208(3), 259–275 (2010)

6. Hliněny, P., Oum, S.I., Seese, D., Gottlob, G.: Width parameters beyond tree-width
and their applications. Computer Journal, 10–1093 (2007)

Fast Algorithm for Rank-Width 93

7. Oum, S.I.: Approximating rank-width and clique-width quickly. ACM Trans. Al-
gorithms 5(1), 10:1–10:20 (2008)

8. Bodlaender, H., van den Broek, J.W.: Treewidthlib: A benchmark for algorithms
for treewidth and related graph problems (2004),
http://www.cs.uu.nl/research/projects/treewidthlib/

9. Robertson, N., Seymour, P.: Graph minors. iii. planar tree-width. Journal of Com-
binatorial Theory, Series B 36(1), 49–64 (1984)

10. Robertson, N., Seymour, P.: Graph minors. x. obstructions to tree-decomposition.
Journal of Combinatorial Theory, Series B 52(2), 153–190 (1991)

11. Oum, S.I., Seymour, P.: Approximating clique-width and branch-width. J. Comb.
Theory Ser. B 96, 514–528 (2006)

12. Bui-Xuan, B.M., Telle, J.A., Vatshelle, M.: Boolean-width of graphs. Theoretical
Computer Science 412(39), 5187–5204 (2011)

13. Oum, S.I.: Rank-width is less than or equal to branch-width. Journal of Graph
Theory 57(3), 239–244 (2008)

14. Knuth, D.E.: The Stanford GraphBase: a platform for combinatorial computing.
ACM, New York (1993)

15. Johnson, D.J., Trick, M.A. (eds.): Cliques, Coloring, and Satisfiability: Second
DIMACS Implementation Challenge, Workshop, October 11-13, 1993. American
Mathematical Society, Boston (1996)

16. Bell, J., Stevens, B.: A survey of known results and research areas for n-queens.
Discrete Mathematics 309(1), 1–31 (2009)

17. Rlfap, E., Eindhoven, T.U., Group, R.: Euclid calma radio link frequency assign-
ment project technical annex t-2.3.3: Local search (1995)

18. Bilmes, J.: Uai 2006 inference evaluation results. Technical report, University of
Washington, Seattle (2006)

19. Oum, S.I.: Rank-width and vertex-minors. J. Comb. Theory Ser. B 95(1), 79–100
(2005)

http://www.cs.uu.nl/research/projects/treewidthlib/

Determinacy in Stochastic Games
with Unbounded Payoff Functions�

Tomáš Brázdil��, Antonı́n Kučera��, and Petr Novotný��

Faculty of Informatics, Masaryk University
{xbrazdil,kucera,xnovot18}@fi.muni.cz

Abstract. We consider infinite-state turn-based stochastic games of two play-
ers, � and �, who aim at maximizing and minimizing the expected total reward
accumulated along a run, respectively. Since the total accumulated reward is un-
bounded, the determinacy of such games cannot be deduced directly from Mar-
tin’s determinacy result for Blackwell games. Nevertheless, we show that these
games are determined both for unrestricted (i.e., history-dependent and random-
ized) strategies and deterministic strategies, and the equilibrium value is the same.
Further, we show that these games are generally not determined for memoryless
strategies. Then, we consider a subclass of �-finitely-branching games and show
that they are determined for all of the considered strategy types, where the equi-
librium value is always the same. We also examine the existence and type of
(ε-)optimal strategies for both players.

1 Introduction

Turn-based stochastic games of two players are a standard model of discrete systems
that exhibit both non-deterministic and randomized choice. One player (called � or
Max in this paper) corresponds to the controller who wishes to achieve/maximize some
desirable property of the system, and the other player (called � or Min) models the
environment which aims at spoiling the property. Randomized choice is used to model
events such as system failures, bit-flips, or coin-tossing in randomized algorithms.

Technically, a turn-based stochastic game (SG) is defined as a directed graph where
every vertex is either stochastic or belongs to one of the two players. Further, there is a
fixed probability distribution over the outgoing transitions of every stochastic vertex. A
play of the game is initiated by putting a token on some vertex. Then, the token is moved
from vertex to vertex by the players or randomly. A strategy specifies how a player
should play. In general, a strategy may depend on the sequence of vertices visited so
far (we say that the strategy is history-dependent (H)), and it may specify a probability
distribution over the outgoing transitions of the currently visited vertex rather than a
single outgoing transtion (we say that the strategy is randomized (R)). Strategies that
do not depend on the history of a play are called memoryless (M), and strategies that
do not randomize (i.e., select a single outgoing transition) are called determinisctic (D).
Thus, we obtain the MD, MR, HD, and HR strategy classes, where HR are unrestricted
strategies and MD are the most restricted memoryless deterministic strategies.

� The full version of this paper can be found at http://arxiv.org/abs/1208.1639
�� The authors are supported by the Czech Science Foundation, grant No. P202/12/G061.

A. Kučera et al. (Eds.): MEMICS 2012, LNCS 7721, pp. 94–105, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://arxiv.org/abs/1208.1639

Games with Unbounded Payoffs 95

A game objective is usually specified by a payoff function which assigns some real
value to every run (infinite path) in the game graph. The aim of Player � is to maximize
the expected payoff, while Player � aims at minimizing it. It has been shown in [22]
that for bounded and Borel payoff functions, Martin’s determinacy result for Blackwell
games [23] implies that

sup
σ∈HR�

inf
π∈HR�

E
σ,π
v [Payoff] = inf

π∈HR�
sup
σ∈HR�

E
σ,π
v [Payoff] (1)

where HR� and HR� are the classes of HR strategies for Player � and Player �, respec-
tively. Hence, every vertex v has a HR-value ValHR(v) specified by (1). A HR strategy is
optimal if it achieves the outcome ValHR(v) or better against every strategy of the other
player. In general, optimal strategies are not guaranteed to exist, but (1) implies that
both players have ε-optimal HR strategies for every ε > 0 (see Section 2 for precise
definitions).

The determinacy results of [23,22] cannot be applied to unbounded payoff functions,
i.e., these results do not imply that (1) holds if Payoff is unbounded, and they do not
say anything about the existence of a value for restricted strategy classes such as MD
or MR. In the context of performance analysis and controller synthesis, these questions
rise naturally; in some cases, the players cannot randomize or remember the history of a
play, and some of the studied payoff functions are not bounded. In this paper, we study
these issues for the total accumulated reward payoff function and infinite-state games.

The total accumulated reward payoff function, denoted by Acc, is defined as follows.
Assume that every vertex v is assigned a fixed non-negative reward r(v). Then Acc as-
signs to every run the sum of rewards of all vertices visited along the run. Obviously,
Acc is unbounded in general, and may even take the ∞ value. A special case of a total
accumulated reward is the termination time, where all vertices are assigned reward 1,
except for terminal vertices that are assigned reward 0 (we also assume that the only
outgoing transition of every terminal vertex t is a self-loop on t). Then, Eσ,πv [Acc] cor-
responds to the expected termination time under the strategies σ, π. Another special
(and perhaps the simplest) case of a total accumulated reward is reachability, where the
target vertices are assigned reward 1 and the other vertices have zero reward (here we
assume that every target vertex has a single outgoing transition to a special state s with
zero reward, where s→ s is the only outgoing transition of s). Although the reachability
payoff is bounded, some of our negative results about the total accumulated reward hold
even for reachability (see below).

The reason for considering infinite-state games is that many recent works study var-
ious algorithmic problems for games over classical automata-theoretic models, such
as pushdown automata [15,16,17,14,9,8], lossy channel systems [3,2], one-counter au-
tomata [7,5,6], or multicounter automata [18,11,10,21,13,4], which are finitely rep-
resentable, but for which the underlying game graph is infinite and sometimes even
infinitely-branching (see, e.g., [11,10,21]). Since the properties of finite-state games do
not carry over to infinite-state games in general (see, e.g., [20]), the above issues need
to be revisited and clarified explicitly, which is the main goal of this paper.

Our Contribution: We consider general infinite-state games, which may contain ver-
tices with infinitely many outgoing transitions, and �-finitely-branching games, where

96 T. Brázdil et al.

every vertex controlled by player� has finitely many outgoing transitions, with the total
accumulated reward objective. For general games, we show the following:

– Every vertex has both a HR and a HD-value, and these values are equal1.
– There is a vertex v of a game G with a reachability objective such that v has neither

MD nor MR-value. Further, the game G has only one vertex (belonging to Player�)
with infinitely many outgoing transitions.

It follows from previous works (see, e.g., [8,20]) that optimal strategies in general
games may not exist, and even if they do exist, they may require infinite memory. Inter-
estingly, we observe that an optimal strategy for Player � (if it exists) may also require
randomization in some cases.

For �-finitely-branching games, we prove the following results:

– Every vertex has a HR, HD, MR, and MD-value, and all of these values are equal.
– Player � has an optimal MD strategy in every vertex.

It follows from the previous works that Player � may not have an optimal strategy and
even if he has one, it may require infinite memory. Let us note that in finite-state games,
both players have optimal MD strategies (see, e.g., [19]).

Our results are obtained by generalizing the arguments for reachability objectives
presented in [8], but there are also some new observations based on original ideas and
new counterexamples. In particular, this applies to the existence of a HD-value and the
non-existence of MD and MR-values in general games.

Due to the space constraints, most proofs are omitted. They can be found in the full
version of this paper [12].

2 Preliminaries

In this paper, the sets of all positive integers, non-negative integers, rational numbers,
real numbers, and non-negative real numbers are denoted by N, N0, Q, R, and R≥0,
respectively. We also use R≥0∞ to denote the set R≥0 ∪ {∞}, where∞ is treated according
to the standard conventions. For all c ∈ R≥0∞ and ε ∈ [0,∞), we define the lower and
upper ε-approximation of c, denoted by c � ε and c ⊕ ε, respectively, as follows:

c ⊕ ε = c + ε for all c ∈ R≥0∞ and ε ∈ [0,∞),
c � ε = c − ε for all c ∈ R≥0 and ε ∈ [0,∞),
∞� ε = 1/ε for all ε ∈ (0,∞),
∞ � 0 = ∞ .

Given a set V , the elements of (R≥0∞)V are written as vectors x, y, . . ., where xv denotes
the v-component of x for every v ∈ V . The standard component-wise ordering on (R≥0∞)V

is denoted by
.

1 For a given strategy type T (such as MD or MR), we say that a vertex v has a T value if
supσ∈T� infπ∈T� E

σ,π
v [Payoff] = infπ∈T� supσ∈T� E

σ,π
v [Payoff], where T� and T� are the classes

of all T strategies for Player � and Player �, respectively.

Games with Unbounded Payoffs 97

For every finite or countably infinite set M, a binary relation→ ⊆ M × M is total if
for every m ∈ M there is some n ∈ M such that m → n. A finite path inM = (M,→)
is a finite sequence w = m0, . . . ,mk such that mi → mi+1 for every i, where 0 ≤ i < k.
The length of w, i.e., the number of transitions performed along w, is denoted by |w|.
A run in M is an infinite sequence ω = m0,m1, . . . every finite prefix of which is a
path. We also use ω(i) to denote the element mi of ω. Given m, n ∈ M, we say that n is
reachable from m, written m →∗ n, if there is a finite path from m to n. The sets of all
finite paths and all runs inM are denoted by Fpath(M) and Run(M), respectively. For
every finite path w, we use Run(M,w) and Fpath(M,w) to denote the set of all runs
and finite paths, respectively, prefixed by w. IfM is clear from the context, we write
just Run, Run(w), Fpath and Fpath(w) instead of Run(M), Run(M,w), Fpath(M) and
Fpath(M,w), respectively.

Now we recall basic notions of probability theory. Let A be a finite or countably
infinite set. A probability distribution on A is a function f : A → R

≥0 such that
∑

a∈A f (a) = 1. A distribution f is positive if f (a) > 0 for every a ∈ A, Dirac if f (a) = 1
for some a ∈ A, and uniform if A is finite and f (a) = 1

|A| for every a ∈ A. A σ-field over
a set X is a set F ⊆ 2X that includes X and is closed under complement and countable
union. A measurable space is a pair (X,F) where X is a set called sample space and F
is a σ-field over X. A probability measure over a measurable space (X,F) is a function
P : F → R≥0 such that, for each countable collection {Xi}i∈I of pairwise disjoint ele-
ments of F , P(

⋃
i∈I Xi) =

∑
i∈I P(Xi), and moreover P(X) = 1. A probability space is a

triple (X,F ,P) where (X,F) is a measurable space and P is a probability measure over
(X,F).

Definition 1. A stochastic game is a tuple G = (V, → , (V�,V�,V©),Prob) where V is
a finite or countably infinite set of vertices, → ⊆ V × V is a total transition relation,
(V�,V�,V©) is a partition of V, and Prob is a probability assignment which to each
v ∈ V© assigns a positive probability distribution on the set of its outgoing transitions.
We say that G is �-finitely-branching if for each v ∈ V� there are only finitely many
u ∈ V such that v→ u.

Strategies. A stochastic game G is played by two players, � and �, who select the
moves in the vertices of V� and V�, respectively. Let � ∈ {�,�}. A strategy for Player �
in G is a function which to each finite path in G ending in a vertex v ∈ V� assigns a
probability distribution on the set of outgoing transitions of v. We say that a strategy τ
is memoryless (M) if τ(w) depends just on the last vertex of w, and deterministic (D)
if it returns a Dirac distribution for every argument. Strategies that are not necessarily
memoryless are called history-dependent (H), and strategies that are not necessarily
deterministic are called randomized (R). Thus, we obtain the MD, MR, HD, and HR
strategy types. The set of all strategies for Player � of type T in a game G is denoted
by TG� , or just by T� if G is understood (for example, MR� denotes the set of all MR
strategies for Player �).

Every pair of strategies (σ, π) ∈ HR� × HR� and an initial vertex v determine a
unique probability space (Run(v),F ,Pσ,πv), where F is the smallest σ-field over Run(v)
containing all the sets Run(w) such that w starts with v, and Pσ,πv is the unique prob-
ability measure such that for every finite path w = v0, . . . , vk initiated in v we have

98 T. Brázdil et al.

that Pσ,πv (Run(w)) = Πk−1
i=0 xi, where xi is the probability of vi→ vi+1 assigned either by

σ(v0, . . . , vi), π(v0, . . . , vi), or Prob(vi), depending on whether vi belongs to V�, V�, or
V©, respectively (in the case when k = 0, i.e., w = v, we put Pσ,πv (Run(w)) = 1).

Determinacy, Optimal Strategies. In this paper, we consider games with the total ac-
cumulated reward objective and reachability objective, where the latter is understood
as a restricted form of the former (see below).

Let r : V → R≥0 be a reward function, and Acc : Run → R≥0∞ a function which to
every run ω assigns the total accumulated reward Acc(ω) =

∑∞
i=0 r(ω(i)). Let T be a

strategy type. We say that a vertex v ∈ V has a T-value in G if

sup
σ∈T�

inf
π∈T�
E
σ,π
v [Acc] = inf

π∈T�
sup
σ∈T�
E
σ,π
v [Acc] ,

where Eσ,πv [Acc] denotes the expected value of Acc in (Run(v),F ,Pσ,πv). If v has a
T -value, then ValT (v, r,G) (or just ValT (v) if G and r are clear from the context) de-
notes the T-value of v defined by this equality.

Let G be a class of games. If every vertex of every G ∈ G has a T -value for every
reward function, we say thatG is T-determined. Note that Acc is generally not bounded,
and therefore we cannot directly apply the results of [23,22] to conclude that the class
of all games is HR-determined. Further, these results do not say anything about the
determinacy for the other strategy types even for bounded objective functions.

If a given vertex v has a T -value, we can define the notion of ε-optimal T strategy
for both players.

Definition 2. Let v be a vertex which has a T-value, and let ε ≥ 0. We say that

– σ ∈ T� is ε-T -optimal in v if Eσ,πv [Acc] ≥ ValT (v) � ε for all π ∈ T�;
– π ∈ T� is ε-T -optimal in v if Eσ,πv [Acc] ≤ ValT (v) ⊕ ε for all σ ∈ T�.

A 0-T -optimal strategy is called T -optimal.

In this paper we also consider reachability objectives, which can be seen as a restricted
form of the total accumulated reward objectives introduced above. A “standard” defini-
tion of the reachability payoff function looks as follows: We fix a set R ⊆ V of target
vertices, and define a function Reach : Run → {0, 1} which to every run assigns either
1 or 0 depending on whether or not the run visits a target vertex. Note that Eσ,πv [Reach]
is the probability of visiting a target vertex in the corresponding play of G. Obviously,
if we assign reward 1 to the target vertices and 0 to the others, and replace all outgo-
ing transitions of target vertices with a single transition leading to a fresh stochastic
vertex u with reward 0 and only one transition u→ u, then Eσ,πv [Reach] in the origi-
nal game is equal to Eσ,πv [Acc] in the modified game. Further, if the original game was
�-finitely-branching or finite, then so is the modified game. Therefore, all “positive”
results about the total accumulated reward objective (e.g., determinacy, existence of
T -optimal strategies, etc.) achieved in this paper carry over to the reachability objec-
tive, and all “negative” results about reachability carry over to the total accumulated
reward.

Games with Unbounded Payoffs 99

v : 0

q1 : 2 q2 : 4 q3 : 8 q4 : 16

t : 0

Fig. 1. Player � has an MR-optimal strategy in v, but no HD-optimal strategy in v. All vertices
are labelled by pairs of the form vertex name:reward.

3 Results

Our main results about the determinacy of general stochastic games with the total ac-
cumulated reward payoff function are summarized in the following theorem:

Theorem 3. Let G be the class of all games. Then

a) G is both HR-determined and HD-determined. Further, for every vertex v of every
G ∈ G and every reward function r we have that ValHR(v) = ValHD(v).

b) G is neither MD-determined nor MR-determined, and these results hold even for
reachability objectives.

An optimal strategy for Player � does not necessarily exist, even if G is a game with
a reachability payoff function such that V� = ∅ and every vertex of V� has at most
two outgoing transitions (see, e.g., [8,20]). In fact, it suffices to consider the vertex v of
Fig. 2 where the depicted game is modified by replacing the vertex u with a stochastic
vertex u′, where u′ → u′ is the only outgoing transition of u′, and u′ is the only target
vertex (note that all vertices in the first two rows become unreachable and can be safely
deleted). Clearly, ValHR(v) = 1, but Player � has no optimal strategy.

Similarly, an optimal strategy for Player � may not exist even if V� = ∅ [8,20]. To
see this, consider the vertex u of Fig. 2, where t is the only target vertex and the depicted
game is modified by redirecting the only outgoing transition of p back to u (this makes
all vertices in the last two rows unreachable). We have that ValHR(u) = 0, but Player �
has no optimal strategy.

One may be also tempted to think that if Player � (or Player �) has some optimal
strategy, then he also has an optimal MD strategy. However, optimal strategies generally
require infinite memory even for reachability objectives (this holds for both players).
Since the corresponding counterexamples are not completely trivial, we refer to [20] for
details. Interestingly, an optimal strategy for Player � may also require randomization.
Consider the vertex v of Fig. 1. Let σ∗ ∈ MR� be a strategy selecting v→ qn with
probability 1/2n. Since V� = ∅, we have that infπ∈HR� E

σ∗ ,π
v [Acc] = ∞ = ValHR(v).

However, for every σ ∈ HD� we have that infπ∈HR� E
σ,π
v [Acc] < ∞.

100 T. Brázdil et al.

For �-finitely-branching games, the situation is somewhat different, as our second
main theorem reveals.

Theorem 4. Let G be the class of all �-finitely-branching games. Then G is HR-
determined, HD-determined, MR-determined, and MD-determined, and for every ver-
tex v of every G ∈ G and every reward function r we have that

ValHR(v) = ValHD(v) = ValMR(v) = ValMD(v) .

Further, for every G ∈ G there exists an MD strategy for Player � which is optimal in
every vertex of G.

An optimal strategy for Player �may not exist in �-finitely-branching games, and even
if it does exist, it may require infinite memory [20].

Theorems 3 and 4 are proven by a sequence of lemmas presented below. For the rest
of this section, we fix a stochastic game G = (V, → , (V�,V�,V©),Prob) and a reward
function r : V → R≥0. We start with the first part of Theorem 3 (a), i.e., we show that
every vertex has a HR-value. This is achieved by defining a suitable Bellman operator L
and proving that the least fixed-point of L is the tuple of all HR-values. More precisely,
let L : (R≥0∞)V → (R≥0∞)V , where y = L(x) is defined as follows:

yv =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

r(v) + supv→v′ xv′ if v ∈ V�
r(v) + infv→v′ xv′ if v ∈ V�
r(v) +

∑
v→v′ xv′ · Prob(v)(v, v′) if v ∈ V©.

A proof of the following lemma can be found in the full version of this paper. Some
parts of this proof are subtle, and we also need to make several observations that are
useful for proving the other results.

Lemma 5. The operator L has the least fixed point K (w.r.t.
) and for every v ∈ V we
have that

Kv = sup
σ∈HR�

inf
π∈HR�

E
σ,π
v [Acc] = inf

π∈HR�
sup
σ∈HR�

E
σ,π
v [Acc] = ValHR(v) .

Moreover, for every ε > 0 there is πε ∈ HD� such that for every v ∈ V we have that
supσ∈HR� E

σ,πε
v ≤ ValHR(v) ⊕ ε.

To complete our proof of Theorem 3 (a), we need to show the existence of a HD-value
in every vertex, and demonstrate that HR and HD values are equal. Due to Lemma 5,
for every ε > 0 there is πε ∈ HD� such that πε is ε-HR-optimal in every vertex. Hence,
it suffices to show the same for Player �. The following lemma is proved in the full
version.

Lemma 6. For every ε > 0, there is σε ∈ HD� such that σε is ε-HR-optimal in every
vertex.

The next lemma proves Item (b) of Theorem 3.

Games with Unbounded Payoffs 101

Lemma 7. Consider the vertex v of the game shown in Fig. 2, where t is the only target
vertex and all probability distributions assigned to stochastic states are uniform. Then

(a) supσ∈MD� infπ∈MD� E
σ,π
v [Reach] = supσ∈MR� infπ∈MR� E

σ,π
v [Reach] = 0;

(b) infπ∈MD� supσ∈MD� E
σ,π
v [Reach] = infπ∈MR� supσ∈MR� E

σ,π
v [Reach] = 1.

Proof. We start by proving item (a) for MD strategies. Let σ∗ ∈ MD�. We show that
infπ∈MD� E

σ∗ ,π
v [Reach] = 0. Let us fix an arbitrarily small ε > 0. We show that there

is a suitable π∗ ∈ MD� such that Eσ
∗ ,π∗

v [Reach] ≤ ε. If the probability of reaching
the vertex u from v under the strategy σ∗ is at most ε, we are done. Otherwise, let ps

be the probability of visiting the vertex s from v under the strategy σ without passing
through the vertex u. Note that ps > 0 and ps does not depend on the strategy chosen by
Player �. The strategy π∗ selects a suitable successor of u such that the probability pt

of visiting the vertex t from u without passing through the vertex v satisfies pt/ps < ε
(note that pt can be arbitrarily small but positive). Then

E
σ∗ ,π∗
v [Reach] ≤

∞∑

i=1

(1 − ps)i pt =
(1 − ps)pt

ps
≤ ε .

For MR strategies, the argument is the same.
Item (b) is proven similarly. We show that for all π∗ ∈ MD� and 0 < ε < 1 there

exists a suitable σ∗ ∈ MD� such that Eσ
∗ ,π∗

v [Reach] ≥ 1 − ε. Let pt be the probability
of visiting t from u without passing through the vertex v under the strategy π∗. We
choose the strategy σ∗ so that the probability ps of visiting the vertex s from v without
passing through the vertex u satisfies ps/pt < ε. Note that almost all runs initiated in v
eventually visit either s or t under (σ∗, π∗). Since the probability of visiting s is bounded
by ε (the computation is similar to the one of item (a)), we obtain Eσ

∗ ,π∗
v [Reach] ≥ 1−ε.

For MR strategies, the proof is almost the same. ��
We continue by proving Theorem 4. This theorem follows immediately from Lemma 5
and the following proposition:

Proposition 8. If G is �-finitely-branching, then

1. for all v ∈ V and ε > 0, there is σε ∈ MD� such that σε is ε-HR-optimal in v;
2. there is π ∈ MD� such that π is HR-optimal in every vertex.

As an immediate corollary to Proposition 8, we obtain the following result:

Corollary 9. If G is�-finitely-branching, V� is finite, and every vertex of V� has finitely
many successors, then there is σ ∈ MD� such that σ is HR-optimal in every vertex.

Proof. Due to Proposition 8, for every vertex v and every ε > 0, there is σε ∈ MD� such
that σε is ε-HR-optimal in v. Since V� is finite and every vertex of V� has only finitely
many successors, there are only finitely many MD strategies for Player �. Hence,
there is a MD strategy σ that is ε-HR-optimal in v for infinitely many ε from the set
{1, 1/2, 1/4, . . . }. Such a strategy is clearly HR-optimal in v. Note that σ is HR-optimal
in every vertex which can be reached from v under σ and some strategy π for Player �.
For the remaining vertices, we can repeat the argument, and thus eventually produce a
MD strategy that is HR-optimal in every vertex. ��

102 T. Brázdil et al.

v

s

u

t

p

Fig. 2. A game whose vertex v has neither MD-value nor MR-value

Hence, if all non-stochastic vertices have finitely many successors and V� is finite,
then both players have HR-optimal MD strategies. This can be seen as a (tight) gener-
alization of the corresponding result for finite-state games [19].

The rest of this section is devoted to a proof of Proposition 8. We start with Item 1.
The strategy σε is constructed by employing discounting. Assume, w.l.o.g., that re-
wards are bounded by 1 (if they are not, we may split every state v with a reward r(v)
into a sequence of �r(v)� states, each with the reward r(v)/�r(v)�). Given λ ∈ (0, 1),
define Accλ : Run → R≥0 to be a function which to every run ω assigns Accλ(ω) =
∑∞

i=0 λ
i · r(ω(i)).

Lemma 10. For λ sufficiently close to one we have that

sup
σ∈HR�

inf
π∈HR�

E
σ,π
v (Accλ) ≥ ValHR(v) � ε

2
.

Proof. We show that for every ε > 0 there is n ≥ 0 such that the expected reward that
Player � may accumulate up to n steps is ε-close to ValHR(v) no matter what Player �
is doing. Formally, define Acck : Run → R≥0 to be a function which to every run ω
assigns Acck(ω) =

∑k
i=0 r(ω(i)). The following lemma is proved in the full version of

this paper.

Lemma 11. If G is �-finitely-branching, then for every v ∈ V there is n ∈ N such that

sup
σ∈HR�

inf
π∈HR�

E
σ,π
v (Accn) > ValHR(v) � ε

4
.

Clearly, if λ is close to one, then for every run ω we have that

Accλ(ω) ≥ Accn(ω) − ε
4
.

Games with Unbounded Payoffs 103

Thus,

sup
σ∈HR�

inf
π∈HR�

E
σ,π
v (Accλ) ≥ sup

σ∈HR�
inf
π∈HR�

E
σ,π
v (Accn) − ε

4
≥ ValHR(v) � ε

2
.

This proves Lemma 10. ��
So, it suffices to find an MD strategy σε satisfying

inf
π∈HR�

E
σε,π
v (Accλ) ≥ sup

σ∈HR�
inf
π∈HR�

E
σ,π
v (Accλ) − ε

2
.

We define such a strategy as follows. Let us fix some
 ∈ N satisfying

λ

1 − λ ·max
v∈V

r(v) <
ε

8
.

Intuitively, the discounted reward accumulated after
 steps can be at most ε8 . In a given
vertex v ∈ V�, the strategy σε chooses a fixed successor vertex u satisfying

sup
σ∈HR�

inf
π∈HR�

E
σ,π
u (Accλ) ≥ sup

v→u′
sup
σ∈HR�

inf
π∈HR�

E
σ,π
u′ (Accλ) − ε

 · 4
Now we show that

inf
π∈HR�

E
σε,π
v (Accλ) ≥ sup

σ∈HR�
inf
π∈HR�

E
σ,π
v (Accλ) − ε

2
.

which finishes the proof of Item 1 of Proposition 8.
For every k ∈ N we denote by σk a strategy for Player � defined as follows: For the

first k steps the strategy behaves similarly to σε, i.e., chooses, in each state v ∈ V�, a
next state u satisfying

sup
σ∈HR�

inf
π∈HR�

E
σ,π
u (Accλ) ≥ sup

v→u′
sup
σ∈HR�

inf
π∈HR�

E
σ,π
u′ (Accλ) − ε

k · 4 .

From k+1-st step on, say in a state u, the strategy follows some strategy ζ satisfying

inf
π∈HR�

E
ζ,π
u (Accλ) ≥ sup

σ∈HR�
inf
π∈HR�

E
σ,π
u (Accλ) − ε

8
.

A simple induction reveals that σk satisfies

inf
π∈HR�

E
σk ,π
v (Accλ) ≥ sup

σ∈HR�
inf
π∈HR�

E
σ,π
v (Accλ) − 3ε

8
. (2)

(Intuitively, the error of each of the first k steps is at most εk·4 and thus the total error of
the first k steps is at most k · εk·4 = ε4 . The rest has the error at most ε8 and thus the total
error is at most 3ε

8 .)

We consider k =
 (recall that λ

1−λ ·maxv∈V r(v) < ε8). Then

inf
π∈HR�

E
σε,π
v (Accλ) ≥ inf

π∈HR�
E
σk ,π
v (Accλ) − ε

8
≥ sup

σ∈HR�
inf
π∈HR�

E
σ,π
v (Accλ) − ε

2
.

104 T. Brázdil et al.

Here the first equality follows from the fact that σk behaves similarly to σε on the first
k =
 steps and the discounted reward accumulated after k steps is at most ε8 . The second
inequality follows from Equation (2).

It remains to prove Item 2 of Proposition 8. The MD strategy π can be easily con-
structed as follows: In every state v ∈ V�, the strategy π chooses a successor u minimiz-
ing ValHR(u) among all successors of v. We show in the full version that this is indeed
an optimal strategy.

4 Conclusions

We have considered infinite-state stochastic games with the total accumulated reward
objective, and clarified the determinacy questions for the HR, HD, MR, and MD strat-
egy types. Our results are almost complete. One natural question which remains open
is whether Player � needs memory to play ε-HR-optimally in general games (it follows
from the previous works, e.g., [8,20], that ε-HR-optimal strategies for Player � require
infinite memory in general).

References

1. Proceedings of FST&TCS 2010, Leibniz International Proceedings in Informatics, vol. 8.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik (2010)

2. Abdulla, P.A., Ben Henda, N., de Alfaro, L., Mayr, R., Sandberg, S.: Stochastic Games
with Lossy Channels. In: Amadio, R.M. (ed.) FoSSaCS 2008. LNCS, vol. 4962, pp. 35–49.
Springer, Heidelberg (2008)

3. Baier, C., Bertrand, N., Schnoebelen, P.: On Computing Fixpoints in Well-Structured Regular
Model Checking, with Applications to Lossy Channel Systems. In: Hermann, M., Voronkov,
A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp. 347–361. Springer, Heidelberg (2006)

4. Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N., Srba, J.: Infinite Runs in Weighted
Timed Automata with Energy Constraints. In: Cassez, F., Jard, C. (eds.) FORMATS 2008.
LNCS, vol. 5215, pp. 33–47. Springer, Heidelberg (2008)

5. Brázdil, T., Brožek, V., Etessami, K.: One-counter stochastic games. In: Proceedings of
FST&TCS 2010 [1], pp. 108–119

6. Brázdil, T., Brožek, V., Etessami, K., Kučera, A.: Approximating the Termination Value of
One-Counter MDPs and Stochastic Games. In: Aceto, L., Henzinger, M., Sgall, J. (eds.)
ICALP 2011, Part II. LNCS, vol. 6756, pp. 332–343. Springer, Heidelberg (2011)

7. Brázdil, T., Brožek, V., Etessami, K., Kučera, A., Wojtczak, D.: One-counter Markov deci-
sion processes. In: Proceedings of SODA 2010, pp. 863–874. SIAM (2010)

8. Brázdil, T., Brožek, V., Forejt, V., Kučera, A.: Reachability in recursive Markov decision
processes. Information and Computation 206(5), 520–537 (2008)

9. Brázdil, T., Brožek, V., Kučera, A., Obdržálek, J.: Qualitative reachability in stochastic BPA
games. Information and Computation 208(7), 772–796 (2010)

10. Brázdil, T., Chatterjee, K., Kučera, A., Novotný, P.: Efficient Controller Synthesis for Con-
sumption Games with Multiple Resource Types. In: Madhusudan, P., Seshia, S.A. (eds.) CAV
2012. LNCS, vol. 7358, pp. 23–38. Springer, Heidelberg (2012)

11. Brázdil, T., Jančar, P., Kučera, A.: Reachability Games on Extended Vector Addition Systems
with States. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis,
P.G. (eds.) ICALP 2010, Part II. LNCS, vol. 6199, pp. 478–489. Springer, Heidelberg (2010)

Games with Unbounded Payoffs 105

12. Brázdil, T., Kučera, A., Novotný, P.: Determinacy in stochastic games with unbounded payoff
functions. CoRR abs/1208.1639 (2012)

13. Chatterjee, K., Doyen, L., Henzinger, T., Raskin, J.F.: Generalized mean-payoff and energy
games. In: Proceedings of FST&TCS 2010 [1], pp. 505–516

14. Etessami, K., Wojtczak, D., Yannakakis, M.: Recursive Stochastic Games with Positive Re-
wards. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A.,
Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 711–723. Springer, Heidel-
berg (2008)

15. Etessami, K., Yannakakis, M.: Recursive Markov Decision Processes and Recursive Stochas-
tic Games. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.)
ICALP 2005. LNCS, vol. 3580, pp. 891–903. Springer, Heidelberg (2005)

16. Etessami, K., Yannakakis, M.: Efficient Qualitative Analysis of Classes of Recursive Markov
Decision Processes and Simple Stochastic Games. In: Durand, B., Thomas, W. (eds.) STACS
2006. LNCS, vol. 3884, pp. 634–645. Springer, Heidelberg (2006)

17. Etessami, K., Yannakakis, M.: Recursive Concurrent Stochastic Games. In: Bugliesi, M.,
Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 324–335.
Springer, Heidelberg (2006)

18. Fahrenberg, U., Juhl, L., Larsen, K.G., Srba, J.: Energy Games in Multiweighted Automata.
In: Cerone, A., Pihlajasaari, P. (eds.) ICTAC 2011. LNCS, vol. 6916, pp. 95–115. Springer,
Heidelberg (2011)

19. Filar, J., Vrieze, K.: Competitive Markov Decision Processes. Springer (1996)
20. Kučera, A.: Turn-based stochastic games. In: Apt, K.R., Grädel, E. (eds.). Lectures in Game

Theory for Computer Scientists, pp. 146–184. Cambridge University Press (2011)
21. Kučera, A.: Playing Games with Counter Automata. In: Finkel, A., Leroux, J., Potapov, I.

(eds.) RP 2012. LNCS, vol. 7550, pp. 29–41. Springer, Heidelberg (2012)
22. Maitra, A., Sudderth, W.: Finitely additive stochastic games with Borel measurable payoffs.

International Journal of Game Theory 27, 257–267 (1998)
23. Martin, D.: The determinacy of Blackwell games. Journal of Symbolic Logic 63(4),

1565–1581 (1998)

Strategy Complexity of Finite-Horizon Markov Decision
Processes and Simple Stochastic Games�

Krishnendu Chatterjee1 and Rasmus Ibsen-Jensen2

1 IST Austria
krish.chat@ist.ac.at

2 Department of Computer Science, Aarhus University, Denmark
rij@cs.au.dk

Abstract. Markov decision processes (MDPs) and simple stochastic games
(SSGs) provide a rich mathematical framework to study many important prob-
lems related to probabilistic systems. MDPs and SSGs with finite-horizon ob-
jectives, where the goal is to maximize the probability to reach a target state
in a given finite time, is a classical and well-studied problem. In this work we
consider the strategy complexity of finite-horizon MDPs and SSGs. We show
that for all ε > 0, the natural class of counter-based strategies require at most
log log(1

ε
)+n+1 memory states, and memory of size Ω(log log(1

ε
)+n) is re-

quired, for ε-optimality, where n is the number of states of the MDP (resp. SSG).
Thus our bounds are asymptotically optimal. We then study the periodic property
of optimal strategies, and show a sub-exponential lower bound on the period for
optimal strategies.

1 Introduction

Markov Decision Process and Simple Stochastic Games. The class of Markov de-
cision processes (MDPs) is a classical model for probabilistic systems that exhibit
both stochastic and and deterministic behavior [4]. MDPs have been widely used to
model and solve control problems for stochastic systems [3]: there, non-determinism
represents the freedom of the controller to choose a control action, while the probabilis-
tic component of the behavior describes the system response to control actions. Sim-
ple stochastic games (SSGs) enrich MDPs by allowing two types of non-determinism
(angelic and demonic non-determinism) along with stochastic behavior [1]. MDPs
and SSGs provide a rich mathematical framework to study many important problems
related to probabilistic systems.

Finite-Horizon Objective. One classical problem widely studied for MDPs and SSGs
is the finite-horizon objective. In a finite-horizon objective, a finite time horizon T is

� Work of the second author supported by the Sino-Danish Center for the Theory of Interactive
Computation, funded by the Danish National Research Foundation and the National Science
Foundation of China (under the grant 61061130540). The second author acknowledge support
from the Center for research in the Foundations of Electronic Markets (CFEM), supported
by the Danish Strategic Research Council. The first author was supported by FWF Grant No
P 23499-N23, FWF NFN Grant No S11407-N23 (RiSE), ERC Start grant (279307: Graph
Games), and Microsoft faculty fellows award.

A. Kučera et al. (Eds.): MEMICS 2012, LNCS 7721, pp. 106–117, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Strategy Complexity of Finite-Horizon Markov Decision Processes 107

given and the goal of the player is to maximize the payoff within the time horizon T in
MDPs (in SSGs against all strategies of the opponent). The complexity of MDPs and
SSGs with finite-horizon objectives have been well studied, with book chapters dedi-
cated to them [3,7]. The complexity results basically show that iterating the Bellman
equation for T steps yield the desired result [3,7]. While the computational complexity
have been well-studied, perhaps surprisingly the strategy complexity has not received
great attention. In this work we consider several problems related to the strategy com-
plexity of MDPs and SSGs with finite-horizon objectives, where the objective is to
reach a target state within a finite time horizon T .

Our Contribution. In this work we consider the memory requirement for ε-optimal
strategies, for ε > 0, and a periodic property of optimal strategies in finite-horizon
MDPs and SSGs. A strategy is an ε-optimal strategy, for ε > 0, if the strategy ensures
within ε of the optimal value against all strategies of the opponent. For finite-horizon ob-
jectives, the natural class of strategies are counter-based strategies, which has a counter
to count the number of time steps. Our first contribution is to establish asymptotically
optimal memory bounds for ε-optimal counter-based strategies, for ε > 0, in finite-
horizon MDPs and SSGs. We show that ε-optimal counter-based strategies require at
most memory of size log log(1ε) + n + 1 and memory of size Ω(log log(1ε) + n) is
required, where n is the size of the state space. Thus our bounds are asymptotically op-
timal. The upper bound holds for SSGs and the lower bound is for MDPs. We then con-
sider the periodic (or regularity) property of optimal strategies. The period of a strategy
is the number P such that the strategy repeats within every P steps (i.e., it is periodic
with time step P). We show a sub-exponential lower bound on the period of optimal
strategies for MDPs with finite-horizon objectives, by presenting a family of MDPs

with n states where all optimal strategies are periodic and the period is 2Ω(
√

n·log(n)).

Organization of the Paper. The paper is organized as follows: In Section 2 we present
all the relevant definitions related to stochastic games and strategies. In Section 3
we show that Θ(n + log log ε−1) number of bits are necessary and sufficient for ε-
optimal counter-based strategies, for all ε > 0, in both finite-horizon MDPs and
SSGs. In Section 4 we show that there are finite-horizon MDPs where all optimal
strategies are periodic and have a period of 2Ω(

√
n logn). Detailed proofs available at

http://arxiv.org/abs/1209.3617.

2 Definitions

The class of infinite-horizon simple stochastic games (SSGs) consists of two player,
zero-sum, turn-based games, played on a (multi-)graph. The class was first defined by
Condon [1]. Below we define SSGs, the finite-horizon version, and the important sub-
class of MDPs.

SSGs, finite-horizon SSGs, and MDPs. An SSG G = (S1, S2, SR,⊥
, (As)s∈S1∪S2∪SR , s0) consists of a terminal state ⊥ and three sets of disjoint
non-terminal states, S1 (max state), S2 (min states), SR (coin toss states). We will
use S to denote the union, i.e., S = S1 ∪ S2 ∪ SR. For each state s ∈ S, let As be a
(multi-)set of outgoing arcs of s. We will use A =

⋃
s As to denote the (multi-)set of

108 K. Chatterjee and R. Ibsen-Jensen

all arcs. Each state s ∈ S has two outgoing arcs. If a is a arc, then d(a) ∈ S ∪ {⊥}
is the destination of a. There is also a designated start state s0 ∈ S. The class of
finite-horizon simple stochastic games (FSSGs) also consists of two player, zero-sum,
turn-based games, played on a (multi-)graph. An FSSG (G, T) consists of an SSG
G and a finite time limit (or horizon) T ≥ 0. Let G be an SSG and T ≥ 0, then we
will write the FSSG (G, T) as GT . Given an SSG G (resp. FSSG GT), for a state s,
we denote by Gs (resp. GT

s) the same game as G (resp. GT), except that s is the start
state. The class of infinite (resp. finite) horizon Markov decision processes (MDPs and
FMDPs respectively) is the subclass of SSGs (resp. FSSGs) where S2 = ∅.
Plays and objectives of the players. An SSG G is played as follows. A pebble is moved
on to s0. For i ∈ {1, 2}, whenever the pebble is moved on to a state s in Si, then
Player i chooses some arc a ∈ As and moves the pebble to d(a). Whenever the pebble
is moved on to a state s in SR, then an a ∈ As is chosen uniformly at random and the
pebble moves to d(a). If the pebble is moved on to ⊥, then the game is over. For all
T ≥ 0 the FSSG GT is played like G, except that the pebble can be moved at most
T + 1 times. The objective of both SSGs and FSSGs is for Player 1 to maximize the
probability that the pebble is moved on to⊥ (eventually in SSGs and with in T +1 time
steps in FSSGs). The objective of Player 2 is to minimize this probability.

Strategies. Let S∗ be the set of finite sequences of states. For all T , let S≤T ⊂ S∗ be
the set of sequences of states, which have length at most T . A strategy σi for Player i
in an SSG is a map from S∗ × Si into A, such that for all w ∈ S∗ and s ∈ S we have
σi(w · s) ∈ As. Similarly, a strategy σi for Player i in an FSSG GT is a map from
S≤T × Si into A, such that for all w ∈ S≤T and s ∈ S we have σi(w · s) ∈ As.
In all cases we denote by Πi the set of all strategies for Player i. If Si = ∅, we will
let ∅ denote the corresponding strategy set. Below we define some special classes of
strategies.

Memory-based, counter-based and Markov strategies. Let M = {0, 1}∗ be the set of
possible memories. A memory-based strategy σi for Player i consists of a pair (σu, σa),
where (i) σu, the memory-update function, is a map from M × S into M ; and (ii) σa,
the next-action function, is a map from M × Si into A, such that for all m ∈ M and
s ∈ Si we have σa(m, s) ∈ As. A counter-based strategy is a special case of memory-
based strategies, where for all m ∈ M and s, s′ ∈ S we have σu(m, s) = σu(m, s′).
That is the memory can only contain a counter of some type. We will therefore write
σu(m, s) as σu(m) for all m, s and any counter-based strategy σ. A Markov strategy σi

for Player i is a special case of strategies where

∀p, p′ ∈ S≤T : |p| = |p′| ∧ p|p| = p′|p′| ∈ Si ⇒ σ(p′, p′|p′|) = σ(p, p|p|).

That is, a Markov strategy only depends on the length of the history and the current
state. Let Π ′

i be the set of all Markov strategies for Player i.

Following a strategy. For a strategy, σi, for Player i we will say that Player i follows σi

if for all n given the sequence of states (pi)i≤n the pebble has been on until move n and
that pn ∈ Si, then Player i chooses σ((pi)i≤n, pn). For a memory-based strategy for
Player i σi, we will say that Player i follows σi if for all n given the sequence of states

Strategy Complexity of Finite-Horizon Markov Decision Processes 109

(pi)i≤n the pebble has been on until move n, that pn ∈ Si and that mi = σu(m
i−1, pi)

and that m0 = ∅, then Player i chooses σa(m
n, pn).

Space required by a memory-based strategy. The space usages of a memory-based strat-
egy is the logarithm of the number of distinct states generated by the strategy at any
point, if the player follows that strategy. A memory-based strategy is memoryless if
there is only one memory used by the strategy. For any FSSG GT with n states it is
clear that the set of strategies is a subset of memory-based strategies that uses memory
at most T logn, since for any strategy σ we can construct a memory-based strategy σ′

by using the memory for the sequence of states and then choose the same action as σ
would with that sequence of states. Hence we will also talk about ε-optimal memory-
based strategies. Also note that for any FSSG GT it is clear that the set of Markov
strategies is a subset of the set of counter-based strategies that uses space at most logT .

Period of a counter-based strategy. We will distinguish between two kinds of memories
for a counter-based strategy σ. One kind is only used once (the initial phase) and the
other kind is used arbitrarily many times (the periodic phase). Let m0 = ∅ and mi =
σu(m

i−1). Then if mi = mj for some i < j, we also have that mi+c = mj+c and
mi = mi+c(j−i). Hence if a memory is used twice, it will be reused again. We will let
the number of memories that are only used once be N and the number of memories used
more than once be p, which we will call the period. The number N is mainly important
for ε-optimal strategies and period is mainly important for optimal strategies.

Probability measure and values. A pair of strategies (σ1, σ2), one for each player
(in either an SSG or an FSSG), defines a probability that the pebble is eventually
moved to ⊥. Let the probability be denoted as P σ1,σ2 . For all SSGs G (resp. FSSGs
GT) it follows from the results of Everett [2] that supσ1∈Π′

1
infσ2∈Π2 P

σ1,σ2 =
infσ2∈Π′

2
supσ1∈Π1

P σ1,σ2 . We will call this common value as the value of G (resp.
GT) and denote it val(G) (resp. val(GT)).

ε-optimal and optimal strategies. For all ε ≥ 0, we will say that a strategy σ1

is ε-optimal for Player 1 if infσ2∈Π2 P
σ1,σ2 + ε ≥ supσ′

1∈Π′
1
infσ2∈Π2 P

σ′
1,σ2 .

Similarly, a strategy σ2 is ε-optimal for Player 2 if supσ1∈Π1
P σ1,σ2 − ε ≤

infσ′
2∈Π′

2
supσ1∈Π1

P σ1,σ
′
2 . A strategy σ is optimal for Player i if it is 0-optimal. Con-

don [1] showed that there exist optimal memoryless strategies for any SSG G that are
also optimal for Gs for all s ∈ S. This also implies that there are optimal Markov
strategies for FSSGs that are also optimal for Gs for all s ∈ S.

3 Bounds on ε-Optimal Counter-Based Strategies

We will first show an upper bound on size of the memory used by a counter-based
strategy for playing ε-optimal in time limited games. The upper bound on memory size
is by application of a result from Ibsen-Jensen and Miltersen [5]. The idea of the proof
is that if we play an optimal strategy of G in GT for sufficiently high T , then the value
we get approaches the value of G.

Theorem 1. (Upper bound) For all FSSGs GT with n states and ε > 0, there is an
ε-optimal counter-based strategy for both players such that memory size is at most
log log ε−1 + n+ 1

110 K. Chatterjee and R. Ibsen-Jensen

Proof. Since there is an optimal Markov strategy, there is a counter-based strategy,
which uses memory at most logT . As shown by Ibsen-Jensen and Miltersen [5] for any
game GT , if the horizon is greater than 2 log ε−12n, the value of GT approximates the
value of G with in ε. It is clear that the value of all states are the same in an infinite-
horizon game if either player is forced to play an optimal strategy. Hence, if T ≥
2 log ε−12n and either player plays an optimal strategy of G in GT , then the value
of all states are within ε of the value of the game. But there are optimal memoryless
strategies in G as shown by Condon [1]. Therefore we have that in the worst case
T < 2 log ε−12n. Since logT is an upper bound, log log ε−1 + n + 1 is also an upper
bound and hence the result. #�

We will now lower bound the size of the memory needed for a counter-based strategy
to be ε-optimal. Our lower bound will be divided into two parts. The first part will
show that log log ε−1 is a lower bound on the memory required even for some MDPs
with constantly many states. The second part will show that even for fixed ε, an ε-
optimal counter-based strategy will need to use a memory of size O(n). Both lower
bounds will show explicit MDPs with the required properties. See Figure 1 and Figure 2
respectively.

⊥

�

1 2

x start

h

Fig. 1. An MDP G, such that for all ε > 0 there is a T , such that all ε-optimal memory-based
strategies for GT require memory size of at least Ω(log log ε−1). Circle vertices are the coin toss
states. The triangle vertex is the max state. The vertex ⊥ is the terminal state.

MDP for the lower bound of log log ε−1. Our first lower bound shows that in the MDP
M (Figure 1) all ε-optimal memory-based strategies require at least log ε−1 distinct
memory states, i.e., the size of memory is at least log log ε−1. The MDP M is defined
as follows. There is one state x in S1, the rest are in SR.

– The state 	 ∈ SR has A� = {(,), (,)}.
– The state h ∈ SR has Ah = {(h,), (h,⊥)}.
– The state 1 ∈ SR has A1 = {(1,⊥), (1,⊥)}.
– The state 2 ∈ SR has A2 = {(2, 1), (2, 1)}.
– The state x ∈ S1 has Am = {(x, 2), (x, h)}.
– The state start∈ SR has Astart = {(start, start), (start, x)}.

Strategy Complexity of Finite-Horizon Markov Decision Processes 111

Lemma 1. All ε-optimal memory-based strategies in MT , for T = log ε−1 − 1, re-
quire at least log ε−1 − 2 distinct states of memory, i.e., the size of memory is at least
log log ε−1.

Proof. We will first show the proof for counter-based strategies. At the end we will then
extend it to memory-based strategies.

It is clear that val(M2
x) =

1
2 and for all T > 2 we have val(MT

x) = 1. If Player 1
chooses (x, h) in M2

x , then he gains 1
2 , otherwise, if he chooses (x, 2), then he gains 0.

Also for all T > 2, if Player 1 chooses (x, 2) in MT
x , then he gains 1, otherwise, if he

chooses (x, h), then he gains 1
2 .

In Mstart we end up at x after precisely k ≥ 2 moves of the pebble with probability
2−k+1. Therefore, by the preceding any optimal memory-based strategy σ must be able
to find out if T minus the length of the history is greater than 2 from the memory.

Let ε > 0 be given. For simplicity we will assume that ε = 2−k for some k > 0. Let
c = log ε−1. Assume now that there is a counter-based strategy σ = (σu, σa) that uses
c−3 states of memory in M c−1

start. The pebble ends up at m after c−3 moves with proba-
bility 2−(c−3)+1 = 4ε. Let the sequences of memories until then be m0,m1, . . . ,mc−3.
Since σ was ε-optimal we must have that σ(mc−3, x) = (x, h). On the other hand for
all i < c − 3 we must also have that σ(mi, x) = (x, 2). Therefore mc−3 differs from
mi for i < c − 3. Now assume that mi = mj for i < j and i, j < c − 3. But then
σu(m

i) = σu(m
j) and hence mi+1 = mj+1 and then by repeating this argument we

have that mk = mc−3 for k < c − 3. Therefore mi differs from mj for i �= j and
i, j ≤ c− 3 and hence we need at least c− 2 different memory states.

For general memory-based strategies the proof remains the same. This is because we
can note that if the pebble ends up at x after c − 3 moves, we have that m0 = ∅ and
mi = σu(m

i−1, start) for 1 ≤ i ≤ c − 3 and hence they must all differ by the same
argument as before. #�

For our second lower bound we will use an infinite family of MDPs H =
{H(1), H(2), . . . , H(i), . . . }, such that H(i) contains 2i + 4 states, one of which is
a max state, and all ε-optimal counter-based strategies require space at least i − 4, for
some fixed ε.

Family of MDPs for the lower bound of n. The MDP H(i) is defined as follows. There
is one state x in S1, the rest are in SR.

– The state 	 ∈ SR has A� = {(,), (,)}.
– The state h ∈ SR has Ah = {(h,), (h,⊥)}.
– The state 1 ∈ SR has A1 = {(1,⊥), (1, i)}.
– For j ∈ {2, . . . , i}, the state j ∈ SR has Aj = {(j, i), (j, j − 1)}.
– The state x ∈ S1 has Am = {(x, i), (x, h)}.
– The state 1∗ ∈ SR has A1∗ = {(1∗, i∗), (1∗, x)}.
– For j ∈ {2, . . . , i}, the state j∗ ∈ SR has Aj∗ = {(j∗, i∗), (j∗, (j − 1)∗)}.

There is a illustration of H(4) in Figure 2.
Let i be some number. It is clear that val(H(i)2x) = 1

2 . It is also easy to see that
val(H(i)i) = 1, but that the time to reach⊥ from i is quite long. Hence, one can deduce
that there must be a k (k depends on i) such that for all k′ ≥ k it is an optimal strategy

112 K. Chatterjee and R. Ibsen-Jensen

in H(i)k
′

x to choose (x, i) and for all 2 ≤ k′′ < k it is an optimal strategy in H(i)k
′′

x to
choose (x, h). In case there are multiple such numbers, let k be the smallest. The number
k − 1 is then the smallest number of moves of the pebble to reach ⊥ from i, such that
that occurs with probability≥ 1

2 (to simplify the proofs we will assume equality).
Let pt be the probability for the pebble to reach x from i∗ in t or less moves (note that

this is also the probability to reach⊥ in t moves or less from i). It is clear that pt is equal
to the probability that a sequence of t fair coin tosses contains i consecutive tails. This is
known to be exactly 1−F

(i)
t+2/2

t, where F (i)
t+2 is the (t+2)’nd Fibonacci i-step number,

i.e. the number given by the linear homogeneous recurrenceF (i)
c =

∑i
j=1 F

(i)
c−j and the

boundary conditions F (i)
c = 0, for c ≤ 0, F (i)

1 = F
(i)
2 = 1 (this fact is also mentioned

in Ibsen-Jensen and Miltersen [5]). We establish several properties of pt, F (i)
a and k

(omitted due to lack of space) and establish the following key result that shows k is
exponential in i.

Lemma 2. For all i, we have that k ≥ 2i−2 + i.

Proof. We will first show that pa ≤ pa−1 + 2−i. We can divide the event that there are
i consecutive tails into two possibilities out of t fair coin tosses. Either the first i coin
tosses were tails or there are i consecutive tails in the last t − 1 coin tosses (or both).
The first case happens with probability 2−i and the last with probability pa−1. We can
then apply union bounds and get that pa ≤ pa−1 + 2−i. Clearly we have that pi−1 = 0
and that pa is increasing in a. But we also have that

pk ≤ 2i−22−i + pk−2i−2 ⇒ 1

2
≤ 1

4
+ pk−2i−2 ⇒ 1

4
≤ pk−2i−2

,

which means that k > 2i−2 + i− 1. #�

Lemma 3. There is an ε such that for all i ≥ 12, there is a time-bound T such that all
ε-optimal counter-based strategies for H(i)T require memory size at least i− 5.

The proof basically goes as follows: The pebble starts at i∗ with 2k+1moves remaining.
First we show that there is a super-constant probability for the pebble to reach x using
somewhere between k

5 and 4k
5 moves. In that case there is at least 6k

5 +1 moves left. We
then show that there is some number p > 1

2 independent of i such that the probability
to reach⊥ from i in 6k

5 is more than p. Secondly we show that there is a super-constant
probability for the pebble to reach x using somewhere between 6k

5 and 9k
5 moves. In

that case there is at most 4k
5 + 1 moves left. We then show that there is some number

q < 1
2 independent of i such that the probability to reach ⊥ from i in 4k

5 is less than
q. We can then pick ε such that any ε-optimal strategy must distinguish between plays
that used between k

5 and 4k
5 moves to reach x from i∗ and plays that used between 6k

5

and 9k
5 moves to reach x from i∗. We then show that that requires at least O(k) distinct

states of memory, and the result then follows from k being exponential in i, by Lemma
2. Thus from from Lemma 1 and Lemma 3 we have the following result.

Theorem 2. (Lower bound) For all sufficiently small ε > 0 and all n ≥ 5, there is a
FMDP with n states, where all ε-optimal counter-based strategies require memory size
at least Ω(log log ε−1 + n).

Strategy Complexity of Finite-Horizon Markov Decision Processes 113

⊥�

1

2

3

4

x

h

1∗

2∗

3∗

4∗

Fig. 2. The MDP H(4). It is the fourth member of a family that will show that there exist FSSGs
where, for a fixed ε, all ε-optimal counter-based strategies require memory size to be at least
Ω(i). Circle vertices are the coin toss states. The triangle vertex is the max state. The vertex ⊥ is
the terminal state.

4 A Lower Bound on the Period of Optimal Strategies in MDPs

In this section we will show that there exist FMDPs G, with n states, such that all
optimal strategies can be implemented using a counter-based strategy, and the period
is greater than 2Ω(

√
n log n). We will create such FMDPs in two steps. First we will

construct a family, such that the i′th member requires that one state uses one action
every Θ(i) steps and in all other steps uses the other action. There is an illustration
of a member of that family in Figure 3. Afterwards we will play many such games in
parallel, which will ensure that a large period is needed for all optimal strategies. There
is an illustration of such a game in Figure 4.

Let Gp, p ∈ {2, 3, . . .} be the following FMDP, with 2p − 1 coin toss states and
one max state. The coin toss states are divided into the sets {1∗, 2∗, . . . , (p − 1)∗} and
{1, 2, . . . , p}. To simplify the following description let state 0∗ denote the ⊥ terminal
state. A description of G (an illustration of G5 in Figure 3) is then as follows:

114 K. Chatterjee and R. Ibsen-Jensen

⊥

1*

2*

3*

4*

5 4 3 2 1

Fig. 3. The MDP G5. Circle vertices are the coin toss states. The triangle vertex is the Max state.
The vertex ⊥ is the terminal state.

– State i∗ has state (i− 1)∗ as both its successors.
– State i has state (i− 1)∗ and (i− 1) as successors, except state 1 which has ⊥ and

state p as successors.
– The max state has 1 and 2 as successors.

Lemma 4. Let p ≥ 2 be given. State i has value 1 − 2−fi(k) in Gk
p for k > 0, where

fi(k) is the function fi(k) = maxk′≤k∧k′ mod p=i(k
′, 0).

Proof. It is easily seen by induction that i∗ has value 1 in Gi
p. Note that fi(k) = i for

k mod p = i. The proof will be by induction in k. There will be one base case and two

Strategy Complexity of Finite-Horizon Markov Decision Processes 115

induction cases, one for 1 < k ≤ p and one for k > p. It is easy to see that state 1 has
value 1

2 = 1− 1
2 = 1− 2−f1(1) in G1

p and state j for j �= 1 has value 0. That settles the
base case.

For 1 < k ≤ p. Neither of the successors of state j, for j �= k, has changed values
from Gk−2

p to Gk−1
p . For state k, both its successors has changed value. The value of

state k − 1∗ has become val(Gk−1
p)k−1∗ = 1 and the value of state k − 1 has become

val(Gk−1
p)k−1 = 1− 2−fk−1(k−1). The value of state k is then

val(Gk
p)k =

1 + 1− 2−fk−1(k−1)

2
=

1 + 1− 2−(k−1)

2
= 1−2−(k−1)−1 = 1−2−fk(k).

For p < k. Let i be k mod p. Neither of the successors of state j, for j �= i, has
changed values from Gk−2

p to Gk−1
p . The value of state i′ = i − 1 mod p, in iteration

k − 1 is val(Gk−1
p)i′ = 1− 2−fi′(k−1). The value of state i is then

val(Gk
p)i =

1 + 1− 2−fi′(k−1)

2
=

1 + 1− 2−(k−1)

2
= 1− 2−(k−1)−1 = 1− 2−fi(k).

The desired result follows. #�

The idea behind the construction of Fk is that to find the state of the largest value among
1 and 2, in GT

p , for p ≥ 2 and T ≥ 1, we need to know if T mod p = 1 or not. Let
pi be the i’th smallest prime number. The FMDP Fk is as follows: Fk consists of a
copy of Gpi for i ∈ {1, . . . , k}. Let the max state in that copy of Gpi be mi. There is a
illustration of F2 in Figure 4.

We will now show that all optimal strategies for Fk are subsets of counter-based
strategies with a period defined by k. Afterwards we will show that the number of states
in Fk can also be expressed in terms of k. At the end we will use those two lemmas to
get to our result.

Lemma 5. Any optimal strategy σ(k, T ′) in Fk is an finite memory counter-based
strategies with period P =

∏
i∈{1,...,k} pi, where pi is the i’th smallest prime

number.

Proof. Let i be some number in {1, . . . , k}. The lone optimal choice for mi and T ′ > 0
is to use the action that goes to state 1 in Gpi if T mod pi = 1 and otherwise to use
the action that goes to state 2 in Gpi by Lemma 4. Hence, by the Chinese remainder
theorem there are precisely P steps between each time any optimal strategy uses the
action that goes to 1 in all mi’s. That is, any optimal strategy must do the same action
at least every P steps. Furthermore it is also easy to see that any optimal strategy must
do the same at most every P steps, by noting that T + P mod pi is 1 if and only if T
mod pi is 1 and again applying Lemma 4. A strategy that does the same every P steps
can be expressed by a counter-based strategy with period P , which also uses memory
at most P . #�

Lemma 6. The number of states in Fk is 2
∑

i∈{1,...,k} pi.

Proof. For any i, Gpi consists of 2pi states. Fk therefore consists of 2
∑

i∈{1,...,k} pi
states. #�

116 K. Chatterjee and R. Ibsen-Jensen

⊥

m1

m2

Fig. 4. The FMDP F2. Circle vertices are the coin toss states. Triangle vertices are the max states.
The vertex ⊥ is the terminal state.

Theorem 3. There are FMDPs G, with n states, where all optimal strategies are finite
memory counter-based strategies with period 2Ω(

√
n logn).

Proof. (Sketch). Let n be such that there exists a game Fk with n states. Note that for
any number there is always a larger number, a, such that Fb has a states for some
b. By Lemma 6, we have that n = 2

∑
i∈{1,...,k} pi. By the prime number theo-

rem (see e.g. Newman [6]) we have that
∑

i∈{1,...,k} pi =
∑

i∈{1,...,k} o(k log k) =

o(k2 log k). Let f(x) = x2 log x for x > 1. The function f(x) is strictly mono-
tone increasing and hence, has an inverse function. Let that function be f−1(y). We

have that f−1(y) ≥
√

y
log y , for y ≥ 2. Therefore, let g(k) = 2

∑
i∈{1,...,k} pi, then

g−1(n) = Ω(
√

n
log n). By Lemma 5, we have that the period is

∏
i∈{1,...,k} pi. Triv-

ially we have that
∏

i∈{1,...,k} pi ≥
∏

i∈{1,...,k} i = k! = 2Ω(k log k). We now insert

Ω(
√

n
log n) in place of k and get the desired result. #�

5 Conclusion

In the present paper we have considered properties of finite-horizon Markov decision
processes and simple stochastic games. The ε-optimal strategies considered in Section 3

Strategy Complexity of Finite-Horizon Markov Decision Processes 117

indicates the hardness of playing such games with a short horizon. The concept of period
from Section 4 indicates the hardness of playing such games with a long horizon. Along
with our lower bound from Section 4 we conjecture the following:

Conjecture 1. All FSSGs have an optimal strategy, which is an finite memory counter-
based strategy, with period at most 2n.

References

1. Condon, A.: The complexity of stochastic games. Information and Computation 96, 203–224
(1992)

2. Everett, H.: Recursive games. In: Kuhn, H.W., Tucker, A.W. (eds.) Contributions to the Theory
of Games Vol. III. Annals of Mathematical Studies, vol. 39. Princeton University Press (1957)

3. Filar, J., Vrieze, K.: Competitive Markov Decision Process, ch. 2.2, pp. 16–22. Springer
(1997)

4. Howard, R.A.: Dynamic Programming and Markov Processes. M.I.T. Press (1960)
5. Ibsen-Jensen, R., Miltersen, P.B.: Solving simple stochastic games with few coin toss posi-

tions. European Symposia on Algorithms (to appear, 2012)
6. Newman, D.J.: Simple analytic proof of the prime number theorem. The American Mathemat-

ical Monthly 87(9), 693–696 (1980)
7. Puterman, M.L.: Markov Decision Processes, ch. 4, pp. 74–118. John Wiley & Sons, Inc.

(2008)

Controllable-Choice Message Sequence Graphs

Martin Chmeĺık1,� and Vojtěch Řehák2,��

1 Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
martin.chmelik@ist.ac.at

2 Faculty of Informatics Masaryk University, Brno, Czech Republic
rehak@fi.muni.cz

Abstract. We focus on the realizability problem of Message Sequence
Graphs (MSG), i.e. the problem whether a given MSG specification is
correctly distributable among parallel components communicating via
messages. This fundamental problem of MSG is known to be undecid-
able. We introduce a well motivated restricted class of MSG, so called
controllable-choice MSG, and show that all its models are realizable and
moreover it is decidable whether a given MSG model is a member of this
class. In more detail, this class of MSG specifications admits a deadlock-
free realization by overloading existing messages with additional bounded
control data. We also show that the presented class is the largest known
subclass of MSG that allows for deadlock-free realization.

1 Introduction

Message Sequence Chart (MSC) [16] is a popular formalism for specification of
distributed systems behaviors (e.g. communication protocols or multi-process
systems). Its simplicity and intuitiveness come from the fact that an MSC de-
scribes only exchange of messages between system components, while other as-
pects of the system (e.g. content of the messages and internal computation steps)
are abstracted away. The formalism consists of two types of charts: (1) basic Mes-
sage Sequence Charts (bMSC) that are suitable for designing finite communica-
tion patterns and (2) High-level Message Sequence Charts (HMSC) combining
bMSC patterns into more complex designs. In this paper, we focus on the fur-
ther type reformulated as Message Sequence Graphs (MSG) that has the same
expressive power as HMSC but a simpler structure, and hence it is often used
in theoretical computer science papers, see, e.g. [2,4,6,14,23].

Even such incomplete models as MSG can indicate serious errors in the de-
signed system. The errors can cause problems during implementation or even
make it impossible. Concerning verification of MSC models, researchers have
studied a presence of a race condition in an MSC [3,7,11,23], boundedness of

� The author was supported by Austrian Science Fund (FWF) Grant No P 23499-N23
on Modern Graph Algorithmic Techniques in Formal Verification, FWF NFN Grant
No S11407-N23 (RiSE), ERC Start grant (279307: Graph Games), and Microsoft
faculty fellows award.

�� The author is supported by the Czech Science Foundation, grant No. P202/12/G061.

A. Kučera et al. (Eds.): MEMICS 2012, LNCS 7721, pp. 118–130, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Controllable-Choice MSG 119

the message channels [4], the possibility to reach a non-local branching node
[6,20,14,17,18,12,21], deadlocks, livelocks, and many more. For a recent overview
of current results see, e.g. [10].

In this paper, we focus on the realizability problem of MSG specifications, i.e.
implementation of the specification among parallel machines communicating via
messages. This problem has been studied in various settings reflecting parame-
ters of the parallel machines, the environment providing message exchanges as
well as the type of equivalence considered between the MSG specification and
its implementation. Some authors restricted the communication to synchronous
handshake [14,13], needed several initial states in the synthesized machines [5], or
considered language equivalence with global accepting states in the implementa-
tion (the implementation accepts if the components are in specific combinations
of its states) [22]. From our point of view, the crucial aspect is the attitude to
non-accepted executions of the implementation. When language equivalence is
taken into account, an intentional deadlock can prevent a badly evolving exe-
cution from being accepted [14]. In our setting every partial execution can be
extended into an accepting one. Therefore, we focus on a deadlock-free imple-
mentation of a given MSG into Communicating Finite-State Machines (CFM)
with FIFO communicating channels and distributed acceptance condition, i.e. a
CFM accepts if each machine is in an accepting state. In [19], it has been shown
that existence of a CFM realizing a given MSG without deadlocks is undecid-
able. When restricted to bounded MSG (aka regular MSG, i.e. communicating
via finite/bounded channels, and so generating a regular language), the problem
is EXPSPACE-complete [19].

In later work [14,5], a finite data extension of messages was considered when
realizing MSG. This is a very natural concept because message labels in MSG
are understood as message types abstracting away from the full message con-
tent. Hence, during implementation, the message content can be refined with
additional (finite) data that helps to control the computation of the CFM in or-
der to achieve the communication sequences as specified in the given MSG. The
main obstacle when realizing MSG are nodes with multiple outgoing edges —
choice nodes. In a CFM realization, it is necessary to ensure that all Finite-State
Machines choose the same successor of each choice node. This can be hard to
achieve as the system is distributed.

In [14], a class of so called local-choice MSG [18,6] was shown to include
only MSG realizable in the above mentioned setting. Local-choice specifica-
tions have the communication after each choice node initiated by a single pro-
cess — the choice leader. Intuitively, whenever a local-choice node is reached,
the choice leader machine attaches to all its outgoing messages the information
about the chosen node. The other machines pass the information on. This con-
struction is sufficient to obtain a deadlock-free realization, for details see [14].
Another possible realization of local-choice MSG is presented in [17]. Due to [12],
it is also decidable to determine whether a given MSG is language equivalent
to some local-choice MSG and, moreover, each equivalent MSG can be algorith-
mically realized by a CFM. To the best of our knowledge, this is the largest

120 M. Chmeĺık and V. Řehák

class of deadlock-free realizable specifications in the standard setting, i.e. with
additional data, FIFO channels, and local accepting states.

In this paper, we introduce a new class of controllable-choice MSG that ex-
tends this large class of realizable MSG. The crucial idea of controllable-choice
MSG is that even some non-local-choice nodes can be implemented, if the pro-
cesses initiating the communication after the choice can agree on the successor
node in advance. This is achieved by exchanging bounded additional content
in existing messages. We call choice nodes where such an agreement is possible
controllable-choice nodes, and show that the class of MSG with these nodes is
more expressive than the class of MSG that are language equivalent to local-
choice MSG.

2 Preliminaries

In this section, we introduce the Message Sequence Chart (MSC) formalism
that was standardized by the International Telecommunications Union (ITU-T)
as Recommendation Z.120 [16]. It is used to model interactions among parallel
components in a distributed environment. First, we introduce the basic MSC.

Basic Message Sequence Charts (bMSC). Intuitively, a bMSC identifies
a single finite execution of a message passing system. Processes are denoted as
vertical lines — instances. Message exchange is represented by an arrow from
the sending process to the receiving process. Every process identifies a sequence
of actions — sends and receives — that are to be executed in the order from
the top of the diagram. The communication among the instances is not syn-
chronous and can take arbitrarily long time.

Definition 1. A basic Message Sequence Chart (bMSC) M is defined by a tuple
(E,<,P , T , P,M, l) where:
– E is a finite set of events,
– < is a partial ordering on E called visual order,
– P is a finite set of processes,
– T : E → {send,receive} is a function dividing events into sends and receives,
– P : E → P is a mapping that associates each event with a process,
– M : T −1(send) → T −1(receive) is a bijective mapping, relating every send

with a unique receive, such that a process cannot send a message to itself,
we refer to a pair of events (e,M(e)) as a message, and

– l is a function associating with every message (e, f) a label m from a finite
set of message labels C, i.e. l(e, f) = m.

Visual order < is defined as the reflexive and transitive closure of M∪
⋃

p∈P <p

where <p is a total order on P−1(p).

We require the bMSC to be first-in-first-out (FIFO), i.e., the visual order satisfies
for all messages (e, f), (e′, f ′) and processes p, p′ the following condition

Controllable-Choice MSG 121

e <p e′ ∧ P (f) = P (f ′) = p′ ⇒ f <p′ f ′.

Every event of a bMSC can be represented by a letter from an alphabet

Σ = {p!q(m) | p, q ∈ P ,m ∈ C} ∪ {q?p(m) | p, q ∈ P ,m ∈ C}.

Intuitively, p!q(m) denotes a send event of a message with a label m from a pro-
cess p to a process q, and q?p(m) represents a receive event of a message with
a label m by q from a process p. We define a linearization as a word over Σ
representing a total order of events that is consistent with the partial order <.
For a given bMSC M , a language L(M) is the set of all linearizations of M .

Message Sequence Graphs. It turns out that specifying finite communica-
tion patterns is not sufficient for modelling complex systems. Message Sequence
Graphs allow us to combine bMSCs into more complex systems using alternation
and iteration. An MSG is a directed graph with nodes labeled by bMSCs and
two special nodes, the initial and the terminal node. Applying the concept of
finite automata [15], the graph represents a set of paths from the initial node to
the terminal node. In MSG, every such a path identifies a sequence of bMSCs.
As every finite sequence of bMSCs can be composed into a single bMSC, an
MSG serves as a finite representation of an (infinite) set of bMSCs.

Definition 2. A Message Sequence Graph (MSG) is defined by a tuple G =
(S, τ, s0, sf ,L), where S is a finite set of states, τ ⊆ S × S is an edge relation,
s0 ∈ S is the initial state, sf ∈ S is the terminal state, and L : S → bMSC is
a labeling function.

W.l.o.g., we assume that there is no incoming edge to s0 and no outgoing edge
from sf . Moreover, we assume that there are no nodes unreachable from the
initial node and the terminal node is reachable from every node in the graph.

Given an MSG G = (S, τ, s0, sf ,L), a path is a finite sequence of states
s1s2 . . . sk, where ∀ 1 ≤ i < k : (si, si+1) ∈ τ . A run is defined as a path
with s1 = s0 and sk = sf .

Intuitively, two bMSCs can be composed to a single bMSC by appending
events of every process from the latter bMSC at the end of the process from
the precedent bMSC. Formally, the sequential composition of two bMSCs M1 =
(E1, <1,P , T1, P1,M1, l1) and M2 = (E2, <2,P , T2, P2,M2, l2) such that the
sets E1 and E2 are disjoint (we can always rename events so that the sets become
disjoint), is the bMSC M1 ·M2 = (E1∪E2, <,P , T1∪T2, P1∪P2,M1∪M2, l1∪l2),
where < is a transitive closure of <1 ∪ <2 ∪

⋃
p∈P(P

−1
1 (p)×P−1

2 (p)). Note that
we consider the weak concatenation, i.e. the events from the latter bMSC may
be executed even before some events from the precedent bMSC.

Now, we extend the MSG labeling function L to paths. Let σ = s1s2 . . . sn be
a path in MSG G, then L(σ) = L(s1) · L(s2) · . . . · L(sn). For a given MSG G,
the language L(G) is defined as

⋃
σ is a run in G

L(L(σ)). Hence, two MSG are said

to be language-equivalent if and only if they have the same languages.

122 M. Chmeĺık and V. Řehák

Communicating Finite-State Machines. A natural formalism for imple-
menting bMSCs are Communicating Finite–State Machines (CFM) that are used
for example in [3,1,14]. The CFM consists of a finite number of finite-state ma-
chines that communicate with each other by passing messages via unbounded
FIFO channels.

Definition 3. Given a finite set P of processes and a finite set of message
labels C, the Communicating Finite-State Machine (CFM) A consists of Finite-
State Machines (FSMs) (Ap)p∈P . Every Ap is a tuple (Sp, Ap,→p, sp, Fp), where:
– Sp is a finite set of states,
– Ap ⊆ {p!q(m) | q ∈ P ,m ∈ C} ∪ {p?q(m) | q ∈ P ,m ∈ C} is a set of actions,
– →p⊆ Sp ×Ap × Sp is a transition relation,
– sp ∈ Sp is the initial state, and
– Fp ⊆ Sp is a set of local accepting states.

We associate an unbounded FIFO error-free channel Bp,q with each pair of FSMs
Ap,Aq. In every configuration, the content of the channel is a finite word over
the label alphabet C.
Whenever an FSM Ap wants to send a message with a label m ∈ C to Aq,
it enqueues the label m into channel Bp,q. We denote this action by p!q(m).
Provided there is a message with a label m in the head of channel Bp,q, the
FSM Aq can receive and dequeue the message with the label m. This action
is represented by q?p(m). A configuration of a CFM A = (Ap)p∈P is a tuple
C = (s,B), where s ∈

∏
p∈P(Sp) and B ∈ (C∗)P×P — local states of the FSMs

together with the contents of the channels. Whenever there is a configuration
transition Ci

ai→ Ci+1, there exists a process p ∈ P such that the FSM Ap

changes its local state by executing action ai ∈ Ap and modifies the content of
one of the channels.

The CFM execution starts in an initial configuration s0 =
∏

p∈P{sp} with
all the channels empty. The CFM is in an accepting configuration, if every FSM
is in some of its final states and all the channels are empty. We will say that
a configuration is a deadlock, if no accepting configuration is reachable from it.
A CFM is deadlock-free if no deadlock configuration is reachable from the initial
configuration. An accepting execution of a CFM A is a finite sequence of config-

urations C1
a1→ C2

a2→ . . .
an−1→ Cn such that C1 is the initial configuration and Cn

is an accepting configuration. The word a1a2 · · · an−1 is then an accepted word
of A. Given a CFM A, the language L(A) is defined as the set of all accepted
words of A.

3 Controllable-Choice Message Sequence Graphs

For a given MSG we try to construct a CFM such that every execution specified
in the MSG specification can be executed by the CFM and the CFM does not
introduce any additional unspecified execution.

Definition 4 ([1]). An MSG G is realizable iff there exists a deadlock-free CFM
A such that L(G) = L(A).

Controllable-Choice MSG 123

One of the most natural realizations are projections. A projection of a bMSC
M on a process p, denoted by M |p, is the sequence of events that are to be
executed by the process p in M . For every process p ∈ P , we construct a FSM
Ap that accepts a single word M |p. This construction is surprisingly powerful
and models all of the bMSC linearizations.

Proposition 1. Let M be a bMSC, then CFM A = (M |p)p∈P is a realization,
i.e. L(M) = L(A).

It turns out that the main obstacle when realizing MSG are nodes with multiple
outgoing edges — choice nodes. It is necessary to ensure that all FSMs choose
the same run through the MSG graph. This can be hard to achieve as the system
is distributed.

In what follows, we present a known class of local-choice MSG specifications
that admits a deadlock-free realization by adding control data into the messages.
Then, we define a new class of controllable-choice MSG and compare the expres-
sive power of the presented classes.

Local-Choice MSG. is a Class Studied by Many Authors [6,20,14,17,18,12].
Let M be a bMSC, we say that a process p ∈ P initiates the bMSC M if there
exists an event e in M , such that P (e) = p and there is no other event e′ in
bMSC M such that e′ < e. For a given MSG, every node s ∈ S identifies a set
triggers(s), the set of processes initiating the communication after the node s.
Note that it may not be sufficient to check only the direct successor nodes in
the MSG.

Definition 5. Let G = (S, τ, s0, sf ,L) be an MSG. For a node s ∈ S, the set
triggers(s) contains process p if and only if there exists a path σ = σ1σ2 . . . σn

in G such that (s, σ1) ∈ τ and p initiates bMSC L(σ).

Definition 6. A choice node u is a local-choice node iff triggers(u) is a sin-
gleton. An MSG specification G is local-choice iff every choice node of G is
local-choice.

Local-choice MSG specifications have the communication after every choice node
initiated by a single process — the choice leader. In [14] a deadlock-free realiza-
tion with additional data in messages is proposed. It is easy to see that every
MSG specification G is deadlock-free realizable if there is a local-choice MSG
G′ such that L(G) = L(G′). Note that the equivalence can be algorithmically
checked due to [12].

Controllable Specifications. The difficulties when realizing MSG are intro-
duced by choice nodes. In local-choice MSG, the additional message content is
used to ensure a single run through the graph is executed by all FSMs. In case
of controllable-choice MSG, the additional content serves the same purpose but
besides informing about the node the FSMs are currently executing the FSMs
also attach a prediction about its future execution.

124 M. Chmeĺık and V. Řehák

This allows us to relax the restriction on choice nodes and allows certain non-
local choice nodes to be present in the specification. However, it is necessary to
be able to resolve every occurrence of the choice node, i.e. make the decision in
advance and inform all relevant processes.

Definition 7. Let M = (E,<,P , T , P,M, l) be a bMSC and P ′ ⊆ P be a subset
of processes. A send event e ∈ E is a resolving event for P ′ iff

∀p ∈ P ′ ∃ep ∈ P−1(p) such that e < ep.

Intuitively, resolving events of M for P ′ can distribute information to all pro-
cesses of P ′ while executing the rest of M , provided that other processes are
forwarding the information.

Definition 8. Let G = (S, τ, s0, sf ,L) be an MSG. A choice node u is said to
be controllable-choice iff it satisfies both of the following conditions:

– For every path σ from s0 to u there exists a resolving event in bMSC L(σ)
for triggers(u).

– For every path σ = s1s2 . . . u such that (u, s1) ∈ τ , there exists a resolving
event in bMSC L(σ) for triggers(u).

Intuitively, a choice node is controllable-choice, if every path from the initial node
is labeled by a bMSC with a resolving event for all events initiating the commu-
nication after branching. Moreover, as it is necessary to attach only bounded
information, the same restriction is required to hold for all cycles contain-
ing a controllable-choice node. In [9] we propose an algorithm that determines
whether a given choice node is a controllable-choice node.

Definition 9. An MSG specification G is controllable-choice iff every choice
node is either local-choice or controllable.

Note that there is no bound on the distance between the resolving event and
the choice node it is resolving.

Local-Choice vs. Controllable-Choice MSG. In the following, we show
that the controllable-choice MSG are more expressive than local-choice MSG. It
is easy to see that every local-choice MSG is also a controllable-choice MSG and
that not every controllable-choice MSG is local-choice. In the following theorem,
we strengthen the result by stating that the class of MSG that are language
equivalent to some controllable-choice MSG is more expressive than the class of
MSG that are language-equivalent to some local-choice MSG.

Theorem 1. The class of MSG that are language-equivalent to some local-
choice MSG, forms a proper subset of MSG that are language-equivalent to some
controllable-choice MSG.

Proof. Consider a MSG G = (S, τ, s0, sf ,L) with three nodes s0, sf and s, such
that (s0, s), (s, s), (s, sf) ∈ τ and the only non–empty bMSC is L(s) with two

Controllable-Choice MSG 125

processes p, q. The projection of events on p is p!q(m), p?q(m′) and similarly for q
the projection is q!p(m′), q?p(m). Note that the only choice node s is controllable
as both send events are resolving events for both of the processes.

The MSG G violates a necessary condition to be language equivalent to a
local-choice specification. Intuitively, the condition states that its language must
be a subset of a language of a generic local-choice equivalent MSG (for more
details see [12]).

4 Realizability of Controllable-Choice MSG

In this section we present an algorithm for realization of controllable-choiceMSG.
The class of local-choice specifications admits a natural deadlock-free realization
because every branching is controlled by a single process.

As the triggers set for controllable-choice nodes can contain multiple pro-
cesses, we need to ensure that all of them reach a consensus about which branch
to choose. To achieve this goal, we allow the FSMs in certain situations to add
a behavior prediction into its outgoing messages. Those predictions are stored
in the finite-state control units and are forwarded within the existing communi-
cation to other FSMs.

The length of the prediction should be bounded, as we can attach only
bounded information to the messages and we need to store it in the finite-state
control unit. Therefore, it may be necessary to generate the behavior predictions
multiple times. As the realization should be deadlock-free, we must ensure that
the predictions are not conflicting — generated concurrently by different FSMs.
To solve this we sometimes send together with the prediction also an event where
the next prediction should be generated.

Definition 10. A prediction for an MSG G = (S, τ, s0, sf ,L) is a pair (σ, e) ∈
S∗×(E∪⊥), where E is the set of all events of bMSCs assigned by L, the path σ
is called a prediction path, and e, called a control event, is an event from L(σ).
A prediction path must satisfy one of the following conditions:
– The prediction path σ is the longest common prefix of all MSG runs. This

special initial prediction path is named initialPath.
– The prediction path σ is the shortest path σ = σ1σ2 . . . σn in G satisfying

1. σn ∈ L, or
2. σn ∈ U ∧ ∃ 1 ≤ i < n : σi = σn, or
3. σn = sf ,
where L ⊆ S is the set of all local-choice nodes and U ⊆ S is the set of all
controllable-choice nodes.

We refer to the first node and to the last node of a prediction path σ by
firstNode(σ) and lastNode(σ), respectively.

Lemma 1. If the prediction path σ ends with a controllable-choice node u,
the bMSC L(σ) contains a resolving event for triggers(u) on L(σ).

Proof. There are two cases to consider

126 M. Chmeĺık and V. Řehák

– If σ = initialPath, then firstNode(σ) = s0 and as node u is controllable-
choice, the path σ contains a resolving event for triggers(u).

– Otherwise, the controllable-choice node u occurs twice in the path σ. As
every cycle containing a controllable-choice node has to contain a resolving
event for the node, there is a resolving event for triggers(u) on path σ.

As there are no outgoing edges allowed in sf , the terminal node sf �∈ U . #�

Note, that the number of events in a given MSG is finite and the length of
each prediction path is bounded by 2 · |S|.

When the CFM execution starts, every FSM is initialized with an initial
prediction — (initialPath, ei) — and starts to execute the appropriate projec-
tion of L(initialPath). The value of ei depends on the initialPath. Let lastN-
ode(initialPath) = σn. In case of σn ∈ U , the event ei is an arbitrary resolving
event from L(initialPath) for triggers(σn). It follows from Lemma 1 that there
exists such an event. If σn ∈ L ∪ {sf}, we set ei = ⊥.

Every FSM stores two predictions, one that is being currently executed and
a future prediction that is to be executed after the current one. Depending on
the lastNode of the current prediction, there are the following possibilities where
to generate the future prediction.

– If lastNode of the current prediction is in L, the future prediction is generated
by the local-choice leader, while executing the first event after branching.

– If lastNode of the current prediction is in U , the future prediction is generated
by an FSM that executes the control event of the current prediction, while
executing the resolving event.

– If the lastNode of the current prediction is sf , no further execution is possible
and so no new prediction is generated.

When an FSM generates a new prediction, we require that there exists a tran-
sition in the MSG from the last node of the current prediction path to the first
node of the future prediction path, as the concatenation of prediction paths
should result in a path in the MSG. If an FSM generates a future prediction
ending with a controllable-choice node u, it chooses an arbitrary resolving event
for triggers(u) to be the resolving event in the prediction. The existence of such
an event follows from Lemma 1. To ensure that other FSMs are informed about
the decisions, both predictions are attached to every outgoing message. The
computation ends when no FSM is allowed to generate any future behavior.

4.1 Algorithm

In this section, we describe the realization algorithm. All the FSMs execute
the same algorithm, an implementation of the FSM Ap is described in Algo-
rithm 1. We use an auxiliary function path that returns a prediction path for
a given prediction. Every FSM stores a queue of events that it should execute
— eventQueue. The queue is filled with projections of bMSCs labeling projec-
tion paths — L(prediction path)|p for FSM Ap. The execution starts with filling
the queue with the projection of the initialPath.

Controllable-Choice MSG 127

Algorithm 1. Process p implementation

1: Variables: currentPrediction, nextPrediction, eventQueue;
2: currentPrediction ← (initialPath, ei);
3: nextPrediction ← ⊥;
4: eventQueue ←push(L(initialPath)|p);
5: while true do
6: if eventQueue is empty then
7: getNextNode();
8: e ← pop(eventQueue);
9: if e is a send event then
10: if e is the resolving event in currentPrediction then
11: node ← lastNode(path(currentPrediction));
12: nextPrediction ← guessPrediction(node);
13: send(e, currentPrediction, nextPrediction);
14: if e is a receive event then
15: receive(e, cP, nP);
16: if nextPrediction = ⊥ then
17: nextPrediction ← nP ;

Function 2. getNextNode function for process p

1: Function getNextNode()
2: node ← lastNode(path(currentPrediction));
3: if node ∈ U ∧ p ∈ triggers(node) then
4: currentPrediction ← nextPrediction;
5: nextPrediction ← ⊥;
6: eventQueue ←push(L(path(currentPrediction))|p);
7: else if node ∈ L ∧ p ∈ triggers(node) then
8: currentPrediction ← guessPrediction(node);
9: nextPrediction ← ⊥
10: eventQueue ←push(L(path(currentPrediction))|p);
11: else
12: currentPrediction ← ⊥;
13: nextPrediction ← ⊥;
14: polling();
15: end function

Function 3. Polling function for process p

1: Function polling()
2: while true do
3: if p has a message in some of its input buffers then
4: receive(e, cP, nP);
5: currentPrediction ← cP ;
6: nextPrediction ← nP ;
7: eventQueue ←push(L(path(currentPrediction))|p);
8: pop(eventQueue);
9: return;
10: end function

128 M. Chmeĺık and V. Řehák

The FSM executes a sequence of events according to its eventQueue. In order
to exchange information with other FSMs, it adds its knowledge of predictions to
every outgoing message, and improves its own predictions by receiving messages
from other FSMs.

When the FSM executes a control event of the current prediction, it is re-
sponsible for generating the next prediction. The function guessPrediction(u)
behaves as described in the previous section. It chooses a prediction (σ, e), such
that (u, firstNode(σ)) ∈ τ . If lastNode(σ) ∈ U , then e is a chosen resolving event
in bMSC L(σ) for the triggers set of the lastNode(σ). Otherwise, we leave e = ⊥.

If the eventQueue is empty, the FSM runs the getNextNode function to
determine the continuation of the execution. If the lastNode of the current pre-
diction is a controllable-choice node and p is in the triggers set of this node, it
uses the prediction from its variable nextPrediction as its currentPrediction.
The variable nextPrediction is set to ⊥.

If the lastNode of the currentPrediction is a local-choice node and p is the
leader of the choice, it guesses the prediction and assigns it to the appropriate
variables. Otherwise, the FSM forgets its predictions and enters a special polling
state. This state is represented by the Polling function. Whenever the FSM
receives a message, it sets its predictions according to the message. The pop
function on line 8 ensures the consistency of the eventQueue.

An execution is finished successfully if all the FSMs are in the polling state
and all the buffers are empty. The correctness proof of the following theorem
can be found in the full version [8].

Theorem 2. Let G be a controllable-choice MSG. Then the CFM A constructed
by Algorithm 1 is a deadlock-free realization i.e. L(G) = L(A).

5 Conclusion

In this work we studied the message sequence graph realizability problem, i.e.,
the possibility to make an efficient and correct distributed implementation of
the specified system. In general, the problem of determining whether a given
specification is realizable is undecidable. Therefore, restricted classes of realizable
specifications are in a great interest of software designers.

In recent years, a promissing research direction is to study deadlock-free re-
alizability allowing to attach bounded control data into existing messages. This
concept turns out to be possible to realize reasonable specifications that are not
realizable in the very original setting. In this work we introduced a new class of
so called controllable-choice message sequence graphs that admits a deadlock-
free realization with additional control data in messages. In other words, we have
sucesfully extended the class of MSG conforming in the established setting of
realizability. Moreover, we have presented an algorithm producing realization for
a given controllable-choice message sequence graphs.

Controllable-Choice MSG 129

References

1. Alur, R., Etessami, K., Yannakakis, M.: Inference of message sequence charts. In:
Proc. of ICSE, pp. 304–313 (2000)

2. Alur, R., Etessami, K., Yannakakis, M.: Realizability and verification of MSC
graphs. Theor. Comp. Science 331(1), 97–114 (2005)

3. Alur, R., Holzmann, G.J., Peled, D.: An Analyzer for Message Sequence Charts. In:
Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS, vol. 1055, pp. 35–48. Springer,
Heidelberg (1996)

4. Alur, R., Yannakakis, M.: Model Checking of Message Sequence Charts. In: Baeten,
J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 114–129. Springer,
Heidelberg (1999)

5. Baudru, N., Morin, R.: Safe implementability of regular message sequence chart
specifications. In: Proc. of ACIS, pp. 210–217 (2003)

6. Ben-Abdallah, H., Leue, S.: Syntactic Detection of Process Divergence and Non-
local Choice in Message Sequence Charts. In: Brinksma, E. (ed.) TACAS 1997.
LNCS, vol. 1217, pp. 259–274. Springer, Heidelberg (1997)

7. Chen, C.-A., Kalvala, S., Sinclair, J.E.: Race Conditions in Message Sequence
Charts. In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 195–211. Springer,
Heidelberg (2005)

8. Chmeĺık, M., Řehák, V.: Controllable-choice message sequence graphs. CoRR,
abs/1209.4499 (2012)

9. Chmeĺık, M.: Deciding Non–local Choice in High–level Message Sequence Charts
Bachelor thesis, Faculty of Informatics, Masaryk University, Brno (2009)

10. Dan, H., Hierons, R.M., Counsell, S.: A framework for pathologies of message
sequence charts. Information and Software Technology (in press, 2012)

11. Elkind, E., Genest, B., Peled, D.A.: Detecting Races in Ensembles of Message
Sequence Charts. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424,
pp. 420–434. Springer, Heidelberg (2007)

12. Genest, B., Muscholl, A.: The Structure of Local-Choice in High-Level Message
Sequence Charts (HMSC). Technical report, LIAFA, Université Paris VII (2002)

13. Genest, B., Muscholl, A., Kuske, D.: A Kleene Theorem for a Class of Communi-
cating Automata with Effective Algorithms. In: Calude, C.S., Calude, E., Dinneen,
M.J. (eds.) DLT 2004. LNCS, vol. 3340, pp. 30–48. Springer, Heidelberg (2004)

14. Genest, B., Muscholl, A., Seidl, H., Zeitoun, M.: Infinite-State High-Level MSCs:
Model-Checking and Realizability. Journal of Computer and System Sciences 72(4),
617–647 (2006)

15. Gill, A.: Introduction to the Theory of Finite-state Machines. McGraw-Hill (1962)
16. ITU Telecommunication Standardization Sector Study group 17. ITU recomman-

dation Z.120, Message Sequence Charts, MSC (2004)
17. Jard, C., Abdallah, R., Hélouët, L.: Realistic Implementation of Message Sequence

Charts. Rapport de recherche RR-7597, INRIA (April 2011)
18. Ladkin, P.B., Leue, S.: Interpreting Message Flow Graphs. Formal Aspects of Com-

puting 7(5), 473–509 (1995)
19. Lohrey, M.: Realizability of high-level message sequence charts: closing the gaps.

Theoretical Computer Science 309(1-3), 529–554 (2003)

130 M. Chmeĺık and V. Řehák

20. Mooij, A.J., Goga, N., Romijn, J.M.T.: Non-local Choice and Beyond: Intricacies of
MSC Choice Nodes. In: Cerioli, M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 273–288.
Springer, Heidelberg (2005)

21. Mousavi, A., Far, B., Eberlein, A.: The Problematic Property of Choice Nodes in
high-level Message Sequence Charts. Tech. report, University of Calgary (2006)

22. Mukund, M., Narayan Kumar, K., Sohoni, M.: Synthesizing Distributed Finite-
State Systems from MSCs. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS,
vol. 1877, pp. 521–535. Springer, Heidelberg (2000)

23. Řehák, V., Slovák, P., Strejček, J., Hélouët, L.: Decidable Race Condition and
Open Coregions in HMSC. Elect. Communications of the EASST 29, 1–12 (2010)

A Better Way towards Key Establishment

and Authentication in Wireless Sensor Networks

Filip Jurnečka and Vashek Matyáš

Faculty of Informatics
Masaryk University
Brno, Czech Republic

{xjurn,matyas}@fi.muni.cz

Abstract. In this paper, we show that a previously published paper
proposing both key establishment and node authentication protocols ac-
tually fails to provide the much needed security. In particular, we show
a number of ways to compromise these protocols. To overcome flaws of
these protocols, we propose novel protocols that remedy all the found
security problems of the previous ones. Additionally, our proposals are
by the state of the art computationally, energy and memory efficient.

1 Introduction

Wireless sensor networks (WSNs) are multi-hop networks composed of low-end
devices called nodes or motes usually equipped with sensors monitoring some
physical phenomena. Additionally, there can be one or more higher-class devices
called base stations (BSs) that serve as managers of the WSN and gateways to
other networks. Sensor nodes are generally very limited devices with restricted
computational, energy and storage resources. The nodes are often deployed in
an unaccessible environment, only powered by a set of batteries and expected to
last up to several years. It is known that the most significantly power consuming
component of a WSN node is the radio [12].

A critical security issue within WSNs is the issue of key management. A key
management scheme [6,5] was presented claiming to have near perfect properties.
It uses only a single shared global key during an initialization phase, performs
minimum computations and communication by broadcasting a single random
nonce for a short period of time and using only symmetric primitives. It results
in neighboring nodes sharing pairwise keys and enables safe authentication and
key exchange with a newcoming node into the network.

However, we have identified a number of weaknesses that render the protocol
very insecure as well as energy inefficient even when considering an attacker
weaker then assumed by authors.

The contribution of our paper is twofold:

1. We perform a security and efficiency analysis of a recent scheme proposed
in [6] and suggest multiple attack vectors.

A. Kučera et al. (Eds.): MEMICS 2012, LNCS 7721, pp. 131–142, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

132 F. Jurnečka and V. Matyáš

2. We propose our own schemes providing the same security objectives and
perform the security and efficiency analysis of the proposals.

The paper is organized as follows. We first describe our goals, assumptions under
which these goals are to be achieved, and the attacker model we are using in Sect.
2. In Sect. 3 we describe the scheme proposed in [6] and perform a brief analysis
and pinpoint its drawbacks in Sect. 4. In Sect. 5, we propose two protocols for
key management and node authentication that overcome the weaknesses found
in [5] and [6] while supporting delayed joining the network. The efficiency and
security of our proposals is discussed in Sect.6. We conclude the paper with
Sect. 7.

1.1 Related Work

Over the last decade various schemes have been suggested. As discussed in [15],
they can be classified in three categories, based on the encryption techniques
used: symmetric, asymmetric and hybrid. Additionally, unencrypted techniques
should be also considered, as Anderson et al. [1] made a stand for the key ex-
change in clear in their key infection mechanism. Due to the computational,
storage and communicational effectiveness, we focus our attention on the sym-
metric schemes.

In 2001, Perrig et al. [13] proposed the SPINS scheme, where the base station
shares a pairwise key with each node in the network. When two nodes need a
pairwise key, they request one from the base station. To address the scalability
issues, Chan and Perrig [3] proposed the PIKE scheme that distributes the load
to third node for each pair of nodes. A master key based protocol called BROSK
was proposed in 2002 [10] that was further elaborated on in [9].

Another work by Eschenauer and Gligor [8] (EG) proposed the random key
predistribution, where each node is preloaded with a subset of random keys
from a large pool. After deployment, nodes try to find a shared key with their
neighbours from their subsets of the pool. This work was extended in [4] by Chan
et al. by requiring q > 1 common keys to be shared instead of just 1. In turn,
this approach increases node capture resiliency of the scheme.

Du et al. [7] proposed a pairwise key pre-distribution scheme based on the
Blom’s matrix-based key scheme [2] and random key pre-distribution scheme.
As WSNs can be seen as random graphs, this scheme assigns keys only to con-
nected graph links unlike Blom’s complete graph links. Hence this scheme is
scalable and more resilient to node capture. Another category is the tree-based
predistribution. In 2005 Lee and Stinson [11] presented deterministic multiple
space Blom’s schemes. By weakening the connectivity of the graph, they im-
proved the resiliency and improved the results of [7]. Recently, [14] presented a
hierarchical tree-based key management scheme that supports real-time rekeying
to provide resiliency to node capture attack.

A Better Way towards Key Establishment and Authentication in WSNs 133

2 Goals and Assumptions

In this section we describe the initial goals of our scheme, the attacker model
and assumptions taken into consideration while designing the scheme.

In the area of WSN security, there is an abundant list of possible security ob-
jectives. These include node capture resiliency, protection against eavesdropping
or message modification and others. Preventing unauthorized nodes from moni-
toring and influencing the communication can be done later by, e.g., encryption
and obfuscation. The primary goals of our scheme follow:

– Scalability not tightly (linearly) bound to the size of the network.
– Provide node capture resiliency, that is only links with the captured node

are compromised or random additional links are compromised.
– Provide neighbouring node to node authentication.
– Allow new nodes to join the network after the deployment phase is over.
– Be communicationally efficient by keeping the length and number of mes-

sages to a minimum as well as avoid using multi-hop communication.

As we were inspired by [6], we keep their assumptions with the addition of
partially secure initialization phase. The list follows:

– No prior knowledge of network topology.
– The initial size and density of the network known in advance but arbitrary.
– Static topology with possible future addition and removal of nodes.
– Usage of symmetric and other computationally efficient cryptography only.
– A single preinstalled network-wide keying material (key) for the initialization

phase.
– Partially secure initialization phase of at least several seconds right after the

deployment, when the attacker can not acquire the network-wide key.

The assumption of a static network comes from [5] and is actually quite im-
portant, yet it was mentioned only in the second publication of the paper. The
assumption of partially secure initialization phase also applies to the newly added
nodes during lifetime of the network.

2.1 Attacker Model

We assume the “real world” attacker model as defined in [1] with extended
property of low attacker presence during network initialization. We apply this
property also to the newcoming nodes to the network.

– Attacker is present in the deployment area prior to deployment, but is able
to monitor only small areas of the network during initialization phase.

– Attacker can perform all passive and active attacks during the initialization
phase except the node capture.

– After the initialization phase, an attacker can become global and execute
any attack, including the node capture.

Unlike in [1], we assume the attacker to be able to execute small scale active
attacks during the initialization phase, i.e. attacks limited to the areas of the
network where the attacker has been already present.

134 F. Jurnečka and V. Matyáš

3 Delgado-Mohatar et al. Scheme

The Delgado-Mohatar et al. proposal [6] is a candidate scheme for satisfying
our goals. The actual scheme consists of two protocols, the key establishment
protocol and the node authentication protocol. In this section, we briefly describe
these protocols as proposed by authors.

We use the notation as follows:

Symbol Meaning Symbol Meaning

IDA identifier of node A h(m) hash of message m
nA a nonce generated by node A hi(m) i chained hashes of message m
nA|nB concatenation of nA and nB hk(m) MAC of message m under key k
kM network-wide master key ek(m) encryption of message m under key k
kA an encryption key of node A ki

auth authentication key in i-th cycle
kAB a pairwise key betw. A and B ∇i

A auth. operator of node A in i-th cycle

3.1 Key Establishment Protocol

The key establishment protocol takes place before and right after deployment of
the network. Before the network is distributed to the target location, each node
is preloaded with a common network-wide master key kM .

During the network initialization phase, node A generates a random encryp-
tion key kA. The encryption key is calculated as kA = h(kM |nA). Then, each
node broadcasts its random value nA for a short period of time. All neighboring
nodes able to hear this value can compute the encryption key of the sender and
use it in future communication.

3.2 Authentication Protocol

This protocol serves for authenticating new nodes joining the network. Delgado-
Mohatar et al. propose an authentication protocol based on master key, yet
without actually storing it. It is based on so called authentication operators
(authenticators for short) and hashes of the master key.

In this paper, we solve ambiguities of the original paper, hence our description
is not completely identical to the proposal.

Definition 1. The authentication key is updated in “cycles” and the i-th cycle
is obtained as a hashed master key as kiauth = hi(kM).

In this manner, the master key can be seen as kM = k0auth.

Definition 2. An authenticator ∇j is a set of x pairs of a random value and an
image of it generated by hash protected with an authentication key in j-th cycle:

∇j = {(ni, hkj
auth

(ni))}, i = 0, . . . , x− 1.

The number of pairs is usually small, e.g., 5.

A Better Way towards Key Establishment and Authentication in WSNs 135

A node generates ∇0 and the first authentication key k1auth and erases the
master key kM . Note that the stored authentication key should always be by one
cycle further from the authenticator. That concludes the network initialization
phase.

When a new node A wants to join the network, it is loaded with the master key
kM and a classical challenge/response mechanism is employed to authenticate A
and to provide it with keys shared with neighbours.

The protocol can be summarized as follows:

– The fresh node A challenges node B with a new random nonce nA.
– Node B responds with nonce nB taken as the first unused nonce from ∇j ,

image of the challenge hkj+1
auth

(nA), its encryption key encrypted under au-

thentication key ekj+1
auth

(kB) and the current cycle j.

– Node A computes kj+1
auth and verifies the image of nA, replies with the image

of nB, i.e., hkj
auth

(nB) and its encryption key kA encrypted under kj+1
auth as

ekj+1
auth

(kA).

– Node B verifies A’s knowledge of kM by verifying the image of nB.

In short, the protocol looks like this:

1)A→ B : nA

2)B → A : nB |hkj+1
auth

(nA) | ekj+1
auth

(kB) | j

3)A→ B : hkj
auth

(nB) | ekj+1
auth

(kA)

At this point, nodes A and B have successfully authenticated each other as
well as exchanged their encryption keys. Once the fresh node considers all links
established or a timer runs out, its own authenticator is generated and the master
key replaced by the first authentication key.

Authenticator generation. Each pair is used only for one requester. Once a node
runs out of the unused pairs, a new set ∇j+1 is generated. For this iteration
a new set of random values is generated. Finally, the node computes a new
authentication key kj+2

auth, deletes the old one and increases the cycle counter j.

4 Analysis of Degado-Mohatar et al. Protocols

In this section, we describe the most problematic issues with the proposed pro-
tocols. Besides minor problems in the original paper such as wrong iterations of
the key, there are some protruding security issues with the proposal even for the
attacker model specified in this paper.

The attacker model for these Degado-Mohatar et al. protocols is only specified
in [5] and not in [6]. They allow for a global active attacker prior to deployment
with the possibility to capture a node. Obviously, that is an immensely strong
attacker and as argued in [1], not completely realistic. However, the following
discussion holds true even for our weaker attacker model.

136 F. Jurnečka and V. Matyáš

4.1 Key Establishment Protocol Problems

Authors claim that each neighbouring pair of nodes would now share a pairwise
encryption key. In fact, they share (at least) two keys, the one of node A as well
as the one of node B. But these are not pairwise as pairwise means no other
party shares this key. Still, node C hearing both nA and nB would have also
computed the same encryption keys.

Furthermore, according to authors, their protocols provide perfect resilience
against node capture, meaning that when compromising a node, only links that
this node is involved in are compromised. However, in the proposed scheme,
attackers successfully compromise an entire surrounding subnetwork and they
have already some knowledge of the extent of such an attack.

Finally, there is no authentication of parties in this protocol, thus a resource
exhaustion attack is easily executable by an unauthenticated node. In the cur-
rent settings, a malicious node can impersonate multiple nodes during key es-
tablishment phase. While failing to successfully compute authenticated node’s
encryption key, it can severely deplete its memory by forcing it to compute and
store large number of encryption keys.

4.2 Authentication Protocol Problems

Authors claim that the proposed protocol is designed for basically static networks
with a minimum of new nodes joining the network. Therefore, the j in ∇j should
be always very small and a fresh node should be forced to compute only small
number of hashes of the master key to receive kj+1

auth.
However, even an unauthorized attacker Eve can reply to this fresh node’s

challenge with response :
E → A : nE , j,

where nE is only sufficiently long and in the required format to mimic the ex-
pected message format

nB, hkj+1
auth

(nA), ekj+1
auth

(kBenc), j.

Then j can be set extremely high and thus force the fresh node to calculate an
immense number of hashes, thus waste its battery before realizing that the data
is nonsense.

The other issue with this protocol relates again to the node capture attack.
Once an attacker captures a node and recovers an authentication key kjauth, he
can authenticate new nodes against any current node in the m-th cycle with
kmauth, where m ≥ j. All he needs to be able to do is to synchronize the authen-
tication cycle, i.e., hashing the acquired key m− j times.

According to authors, a node capture attacker obtains only the authenticator
of the current cycle and is therefore not able to compromise the authentica-
tion and exchange of keys performed using previous cycles. We stress that by
capturing the node he captures the already stored keys with the authenticated
nodes.

A Better Way towards Key Establishment and Authentication in WSNs 137

5 Proposed Protocols

In this section we give our suggestions for alternative protocols that are compu-
tationally efficient and have substantially better security properties.

One major difference to [6] is that we omit usage of the authentication oper-
ators as we consider them redundant. All the authentication information stored
in them can be generated on the fly and thus lead to reductions in the storage
needed as well as in the length of the messages exchanges.

5.1 Key Establishment Protocol, Proposal I

In this section we propose a key establishment protocol loosely based on [6],
combined with key infection [1]. Our protocol provides truly pairwise keys for
neighbouring nodes and achieves the security objectives.

In order to provide the functionality for future authentication of nodes joining
the network, we establish also the authentication key.

Definition 3. The authentication key kA of node A is constructed as kA =
h(kM |nA).

Note that the nonce nA is fresh, i.e., different to the one broadcasted during the
pairwise key establishment.

The protocol can be described in these steps:

1. A common network-wide symmetric key kM and an unique identifier is
loaded to each node prior to deployment of the network.

2. After deployment, during the initialization phase each node broadcasts

A→ ∗ : IDA|ekM (IDA|nA),

where IDA is used to differentiate from random messages early on.
3. Each node contains a set of similar messages from the surrounding nodes

and can compute a new unique shared key with each of them as

kAB = h(kM |nA|nB).

4. At the end of the initialization phase, node A generates its authentication
key kA, saves nA and deletes the master key kM .

Note that A does not store the information needed to recover the link key of two
neighbouring nodes B and C.

To authenticate a new node A after the initialization phase, it is loaded with
the master key kM . Node B is old and has only the authentication key. The
protocol can be described in these steps:

1. Node A generates a random challenge nA and sends it to B.
2. Node B replies with nA concatenated with the material nKB encrypted

under kB to generate the new pairwise key, and a nonce nB used to generate
its authentication key.

138 F. Jurnečka and V. Matyáš

3. Node A computes the key kB from nB and kM , verifies B’s previous knowl-
edge of kM by decrypting ekB (nA|nKB) and verifying value of nA, recovers
the nonce nKB, and responds with its part of the pairwise key nKA concate-
nated with nKB and encrypted under kB as ekB (nKA|nKB). Node A then
erases kB.

4. Node B verifies the value nKB to authenticate node A.
5. Both parties compute the new pairwise key kAB = h(nKA|nKB).
6. Once the new node authenticates with each neighbour or the timer runs out,

the node computes its own authentication key and erases kM .

In short, the messages exchanged look like this:

1)A→ B : nA

2)B → A : ekB (nA|nKB) |nB

3)A→ B : ekB (nKA|nKB)

Once the new node authenticates with each neighbour or the timer runs out, the
node computes its own authentication key and erases kM .

Yet, as we realized later, the initialization phase part of the protocol is very
similar to the BROSK scheme [9], with an improvement of slightly reducing
the length of the message. The difference to BROSK is that instead of sending
IDA|nA|hkM (IDA|nA), we reduce the size of the message as it is the main pa-
rameter for the power consumption. However, this strongly depends on chosen
algorithms and sizes of variables. Aditionally, in [9], the master key treatment
after key establishment is missing. Thus the master key either stays in the nodes,
which makes it vulnerable to a node capture attack or it gets deleted after some
time and no delayed join to the network is possible.

Finally, it turns out that the entire proposal is almost identical to the one
in LEAP protocol [16]. In LEAP, authors use BROSK scheme and follow it up
with the same idea of using an “authentication key” of their own.

5.2 Key Establishment Protocol, Proposal II

Another alternative solution achieving given goals is built as a combination of
the EG random key predistribution [8] and a preloaded network-wide key. In
this protocol, we utilize random key predistribution as the primary method of
pairwise key establishment. Additionally, we utilize the master key to improve
the security of the EG scheme as well as for postprocessing to establish keys
between nodes, where there has been no match of preloaded keys.

The protocol goes as follows:

1. Nodes broadcast preloaded key indexes encrypted under the master key.
2. Nodes establish pairwise keys with neighbours based on the shared keys.
3. Nodes establish pairwise keys with neighbours where there have been no

shared keys found using the master key.

The addition of new nodes can be done in three ways, i.e., (a) the mechanism
with local authentication keys as in 5.1; (b) the node can be loaded with another
subset of the random key pool; and (c) a combination of (a) and (b).

A Better Way towards Key Establishment and Authentication in WSNs 139

6 Performance and Security Evaluation

In this section, we provide a discussion on the performance, from both memory
and computational point of view. Also, we evaluate the security parameters of
our proposals, especially in comparison to [6].

The memory requirements of our first proposal are significantly better to the
ones provided in [6]. The results are summarized in table 1 for our proposal and
table 2 for the previous work. The main difference here is the lack of the private
key, addition of the nonce used to generate the authentication key and most
importantly lack of the authentication operator.

In our settings, we use an 8-byte long nonce and a standard 16-byte long hash.
Following the example from [6], in a network of 5 neighbours we come to 104
bytes of memory used for storage of keying material in comparison to the 352
bytes used in [6]. The second proposal’s memory effeciency completely depends
on the mechanism for future authentication chosen.

Table 1. Memory organization after initialization phase

Element Notation Size

Pairwise key with a neighbour kAB 16 bytes
Pairwise key with a neighbour kAC 16 bytes

...
Authentication key kA 16 bytes
Nonce to generate auth. key nA 8 bytes

Table 2. Delgado-Mohatar et al. scheme’s memory organization after initialization
phase

Element Notation Size

Node encryption key kA 16 bytes
Neighbour encryption key kB 16 bytes

...
First authentication key k1

auth 16 bytes
First cycle authenticator ∇0 x× 24 bytes

6.1 Proposal I

We provide authentication by encryption. Consequently, unauthorized nodes can
not exhaust the receiver’s memory.

Our messages are longer and encrypted over the [6] scheme. However, the
encryption process brings only a small overhead and if the length of the nonce
nA is chosen carefully, we can end up with similar length of the encrypted data
block, bringing again only a small overhead to the communication process.

140 F. Jurnečka and V. Matyáš

In our settings, we use 2-byte long identifiers and the AES encryption with
a 16 byte long block, thus resulting in an 18-byte long message. In [6], authors
need only the 8-byte long nonce. Using the BROSK scheme, i.e., with MAC over
encryption, the message length depends on the shortening of the MAC to receive
required security. With the entire MAC being transported, 160 bit HMAC would
result in a 30-byte long message.

Note that the original key infection paper [1] argues it unnecessary to encrypt
this communication as an attacker who later recovers the master key anyway
would be able to recover all previous communication intercepted. The attacker
still needs some time to recover the key, for which all communication is secure,
unlike for the case without encryption. Furthermore, an attacker might not even
be able to recover the key, in which case we would unnecessarily disclose part of
the communication. We allow for an active attacker, while in [1] no such attacker
is allowed. This decision is based on the assumptions from [6].

An attacker capturing a node after the initialization phase is completed is
able to recover only the actual keys used by that node. Therefore, all the other
nodes such an attacker would try to add to the network would be authenticated
only with the captured nodes.

If we omit the requirement of secured initialization phase for the newcoming
node, we could further differentiate the master key used after network deploy-
ment. Instead of generating the authentication key directly from the original
master key, we can first hash the master key then use it to construct our au-
thentication key as

kA = h(h(kM), nA).

In this manner, the newcoming nodes would contain only hash of the original
master key. Although all the link keys established using this hashed key would be
compromised, the original network built using the unhashed master key would
keep all the link keys secret.

Similarly to [6], an attacker spamming challenges is dealt with using a simple
timeout for each response. Thus, the implying DoS attack is no longer possible.

Our delayed authentication mechanism is also better with respect to the length
of the messages exchanged over the authentication protocol from [6]. In our
settings, the first message is just the same. The second message is 24 bytes long,
while in [6] it is 45 bytes long. For the third message it is 16 and 36 bytes,
respectively.

6.2 Proposal II

Scalability is an issue, but a managable one. However, the protocol provides good
security properties based on the building blocks. The evaluation of the protocol
depends on those. The EG scheme is a well known one. The case of delayed
authentication done by EG scheme therefore as well. The case of our previous
proposal is described in previous subsection.

A Better Way towards Key Establishment and Authentication in WSNs 141

7 Conclusions

We analyzed the scheme proposed in [6] and [5]. We have shown a number of
its flaws and how they affect the security and energy efficiency of the entire
network. We proposed simple attacks that make the network vulnerable even to
an unauthorized attacker.

We presented two key establishment protocols, hopefully fixing all the prob-
lems found. These protocols allow for mutual key establishment during the ini-
tialization phase using a shared network-wide key and, after deletion of this key,
authentication of new nodes joining the network.

We gave a performance and security analysis of our results, especially com-
paring it to [6]. In some ways like memory requirements or exchanged messages
length, our protocols also exceed results from [6]. As for memory requirements,
our proposal requires over 70% less memory when compared to the [6] given
specified setup. Although the message broadcasted during key establishment is
longer than the one in [6], it is authenticated. Finally, in the first proposal, we
save up to 41 bytes in the length of messages exchanged.

Acknowledgment. We are grateful to Jǐŕı Kůr for useful discussions and sug-
gestions. Also, we thank the anonymous reviewers for their valuable comments
and suggestions that improved the paper. This work was supported by the
project GAP202/11/0422 and Vashek Matyas has undertaken most work on
this paper as a Fulbright-Masaryk Visiting Scholar at Harvard University.

References

1. Anderson, R., Chan, H., Perrig, A.: Key infection: Smart trust for smart dust.
In: Proceedings of the 12th IEEE International Conference on Network Protocols,
pp. 206–215. IEEE Computer Society, Washington, DC (2004)

2. Blom, R.: An Optimal Class of Symmetric Key Generation Systems. In: Beth, T.,
Cot, N., Ingemarsson, I. (eds.) EUROCRYPT 1984. LNCS, vol. 209, pp. 335–338.
Springer, Heidelberg (1985)

3. Chan, H., Perrig, A.: Pike: peer intermediaries for key establishment in sensor
networks. In: Proceedings of 24th Annual Joint Conference of the IEEE Computer
and Communications Societies, INFOCOM 2005, vol. 1, pp. 524–535 (March 2005)

4. Chan, H., Perrig, A., Song, D.: Random key predistribution schemes for sensor
networks. In: 2003 Symposium on Security and Privacy, pp. 197–213 (May 2003)

5. Delgado-Mohatar, O., Fúster-Sabater, A., Sierra, J.M.: A light-weight authentica-
tion scheme for wireless sensor networks. Ad Hoc Networks 9(5), 727–735 (2011)

6. Delgado-Mohatar, O., Sierra, J.M., Brankovic, L., Fúster-Sabater, A.: An Energy-
Efficient Symmetric Cryptography Based Authentication Scheme for Wireless Sen-
sor Networks. In: Samarati, P., Tunstall, M., Posegga, J., Markantonakis, K.,
Sauveron, D. (eds.) WISTP 2010. LNCS, vol. 6033, pp. 332–339. Springer, Hei-
delberg (2010)

7. Du, W., Deng, J., Han, Y.S., Varshney, P.K., Katz, J., Khalili, A.: A pairwise
key predistribution scheme for wireless sensor networks. ACM Trans. Inf. Syst.
Secur. 8, 228–258 (2005)

142 F. Jurnečka and V. Matyáš

8. Eschenauer, L., Gligor, V.D.: A key-management scheme for distributed sensor
networks. In: Proceedings of the 9th ACM Conference on Computer and Commu-
nications Security, CCS 2002, pp. 41–47. ACM, New York (2002)

9. Lai, B.C.C., Hwang, D.D., Kim, S.P., Verbauwhede, I.: Reducing radio energy con-
sumption of key management protocols for wireless sensor networks. In: Proceed-
ings of the 2004 International Symposium on Low Power Electronics and Design,
ISLPED 2004, pp. 351–356. ACM, New York (2004)

10. Lai, B., Kim, S., Verbauwhede, I.: Scalable session key construction protocol for
wireless sensor networks. In: IEEE Workshop on Large Scale RealTime and Em-
bedded Systems (LARTES), p. 7 (2002)

11. Lee, J.-Y., Stinson, D.R.: Deterministic Key Predistribution Schemes for Dis-
tributed Sensor Networks. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS,
vol. 3357, pp. 294–307. Springer, Heidelberg (2004)

12. Perla, E., Catháin, A.O., Carbajo, R.S., Huggard, M., Mc Goldrick, C.: Power-
tossim z: realistic energy modelling for wireless sensor network environments. In:
Proceedings of the 3nd ACM Workshop on Performance Monitoring and Measure-
ment of Heterogeneous Wireless and Wired Networks, PM2HW2N 2008, pp. 35–42.
ACM, New York (2008)

13. Perrig, A., Szewczyk, R., Tygar, J.D., Wen, V., Culler, D.E.: Spins: security pro-
tocols for sensor networks. Wirel. Netw. 8, 521–534 (2002)

14. Rasul, K., Nuerie, N., Pathan, A.: An enhanced tree-based key management scheme
for secure communication in wireless sensor network. In: 2010 12th IEEE Interna-
tional Conference on High Performance Computing and Communications (HPCC),
pp. 671–676 (September 2010)

15. Zhang, J., Varadharajan, V.: Wireless sensor network key management survey and
taxonomy. Journal of Network and Computer Applications 33(2), 63–75 (2010)

16. Zhu, S., Setia, S., Jajodia, S.: Leap: efficient security mechanisms for large-scale
distributed sensor networks. In: Proceedings of the 10th ACM Conference on Com-
puter and Communications Security, CCS 2003, pp. 62–72. ACM, New York (2003)

Parameterized Algorithms for Stochastic Steiner
Tree Problems

Denis Kurz, Petra Mutzel, and Bernd Zey

Department of Computer Science, TU Dortmund, Germany
{denis.kurz,petra.mutzel,bernd.zey}@tu-dortmund.de

Abstract. We consider the Steiner tree problem in graphs under uncer-
tainty, the so-called two-stage stochastic Steiner tree problem (SSTP).
The problem consists of two stages: In the first stage, we do not know
which nodes need to be connected. Instead, we know costs at which we
may buy edges, and a set of possible scenarios one of which will arise
in the second stage. Each scenario consists of its own terminal set, a
probability, and second-stage edge costs. We want to find a selection of
first-stage edges and second-stage edges for each scenario that minimizes
the expected costs and satisfies all connectivity requirements. We show
that SSTP is in the class of fixed-parameter tractable problems (FPT),
parameterized by the number of terminals. Additionally, we transfer our
results to the directed and the prize-collecting variant of SSTP.

1 Introduction

The Steiner tree problem in graphs (STP) plays a central role in network design
[14]. It asks for a minimum-cost subgraph of an undirected, weighted graph G
that interconnects a given set of terminal nodes in G. It has applications in
VLSI design [15,20], various communication systems, and often appears as a
sub-problem of other network design problems [14].

The Steiner tree problem belongs to Karp’s classical 21 NP-complete problems
[16]. It is known to be NP-hard even if the input graph is unweighted and
bipartite, i.e., containing only edges between terminal and non-terminal nodes
[14]. Bern and Plassmann showed that the Steiner tree problem is Max-SNP-
hard [1]. Therefore, there is no polynomial-time approximation scheme for STP.
The best known constant-factor approximation was introduced by Byrka et al.
[5] and guarantees an approximation factor of 1.39.

The most popular parameterized algorithm for STP is due to Dreyfus and
Wagner [9]. In 1971, they introduced an algorithm that solves STP instances with
n nodes, m edges, and t terminals in time O(3tn3), placing it in the complexity
class FPT (for an introduction to the field of parameterized complexity see, e.g.,
[8,17]). Björklund et al. [3] were able to speed up the classical Dreyfus-Wagner
algorithm to achieve a running time of O(2tn2M +nm log M) if all edge weights
are in {1, . . . , M}. At the same time, Fuchs et al. [10] published an algorithm
with running time (2 + δ)tnO(1/(δ/ ln(1/δ))ζ) for any 1

2 < ζ ≤ 1 and sufficiently

A. Kučera et al. (Eds.): MEMICS 2012, LNCS 7721, pp. 143–154, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

144 D. Kurz, P. Mutzel, and B. Zey

small δ > 0. With respect to the graph’s treewidth tw the best parameterized
algorithm is due to Chimani et al. [7] and requires running time O(B2

tw+2 ·tw ·n),
where Bk is the k-th Bell number.

In the directed Steiner tree problem (DSTP), we are given a directed, weighted
graph, a root node and a set of terminals. The objective is to find a minimum-cost
subgraph that provides a directed path from the root node to each terminal. This
problem is of theoretical interest as there are approximation-preserving reductions
from many other problems to DSTP [6]. Unfortunately, there is no polylogarithmic
approximation algorithm for DSTP unless NP ⊆ ZTIME(npolylog(n)) [13].

In practice, we often have to face uncertainty. For example, a telecommuni-
cation company has to deal with volatile cable costs or an unpredictable set of
customers. One approach to tackle uncertainty is (two-stage) stochastic opti-
mization, cf. e.g. [2]. In the two-stage stochastic Steiner tree problem (SSTP),
we do not know which terminal nodes have to be connected. Instead of buying
edges to connect a given terminal set, we may buy edges that seem to be a good
choice given a set of future scenarios one of which will eventually arise. We have
to pay the current costs in this so-called first stage.

In a second stage, one of the scenarios is drawn at random, based on a pre-
viously known distribution. Each scenario is characterized by its terminal set,
second-stage edge costs and a probability. We have to buy edges at second-stage
costs to extend the first-stage edges to a Steiner tree for the scenario’s terminal
set. The expected cost of a solution is the sum of first-stage edge costs plus the
weighted sum of second-stage edge costs of all scenarios. The weights correspond
to the scenario’s probability.

Obviously, the edges that have to be bought in the second stage depend on
the edges bought in the first stage. We want to find a set of first-stage edges that
minimizes the expected cost.

The first constant-factor approximation for SSTP was introduced by Gupta
et al. [12]. Their approach requires the second-stage costs to be globally uniform
over the different scenarios. They also require an inflation factor, i.e., a fixed
ratio between first- and second-stage costs for all edges. Further approximation
algorithms for the SSTP were provided by Gupta et al. [11] and by Swamy and
Shmoys [19]. Chimani et al. [4] introduced an ILP-based exact algorithm for
SSTP.

2 Definitions

A directed graph G = (V, E) consists of a finite set V of nodes and a set E ⊂
V ×V of edges. In an undirected graph, edges are considered to have no direction,
and hence (v, w) = (w, v).

A weighted graph G = (V, E, c) is a graph with an additional edge cost func-
tion c : E �→ R

+
0 . It is symmetrical for undirected graphs, i.e., c((v, w)) =

c((w, v)) for each (v, w) ∈ E.
The optimization problems defined below are minimization problems accord-

ing to [18]. We characterize them by giving their set of instances, the set of
feasible solutions for each instance, and a value function for selected elements.

Parameterized Algorithms for Stochastic Steiner Tree Problems 145

The undirected and directed version of the Steiner tree problem differ slightly.
We will focus on the undirected case first, which is also the most special variant.

Let G = (V, E) be an undirected graph. A Steiner tree S for a terminal set
T ⊆ V in G is a connected subgraph of G that spans T . We allow S to contain
non-terminal nodes of G. Such nodes are then called Steiner nodes. Note the
difference between non-terminal and Steiner nodes: You can tell whether a node
is a non-terminal node by just looking at the input. In contrast, a Steiner node
is part of the solution. Every Steiner node is also a non-terminal node.

An instance of the Steiner tree problem (STP) consists of an undirected,
weighted graph G = (V, E, c) and a terminal set T ⊆ V . Feasible solutions
are subsets of E that form the edge set of a Steiner tree for T in G. Edge values
are their costs c. The cost c(S) of S is the sum of costs of its edges.

The cost of a Steiner tree is used as a quality measure when considering
Steiner optimization problems. Since it only depends on the edges, we will iden-
tify Steiner trees with their corresponding edge sets.

Now, let G = (V, E) be a directed graph with designated root node r ∈ V
and T ⊆ V a terminal set in G. A Steiner arborescence is a subgraph S of G
such that for every terminal t ∈ T there exists a directed path from r to t in S.
As the name suggests, minimal Steiner arborescences are arborescences rooted
in r. Steiner nodes and costs are defined analogously to the undirected case.

An instance of the Steiner arborescence problem (directed Steiner tree problem,
DSTP) consists of a directed, weighted graph G = (V, E, c) with designated root
node r ∈ V , and a terminal set T ⊆ V . Feasible solutions are subsets of E that
form the edge set of a directed Steiner tree for T in G rooted in r. Edge values
are their costs c.

An instance of the prize-collecting Steiner tree problem (PCSTP) consists of
an undirected, weighted graph G = (V, E, c) and node profits g : V �→ R

+
0 . The

set of nodes with positive profit is denoted by T := {v ∈ V | g(v) > 0}. Feasible
solutions consist of a terminal set T̃ ⊂ T and a Steiner tree F ⊆ E for T̃ in G.
The value of a terminal t ∈ T is given as −g(t), while the value of an edge is its
cost c. Therefore, the value of a solution is

∑
e∈F c(e) −

∑
t∈T̃ g(t).

A stochastic Steiner tree combines several Steiner trees for different terminal
sets. Let G = (V, E) be a graph, r ∈ V a designated root node, T 0 = {r}, and
T = {T k | 1 ≤ k ≤ K} a set of K terminal sets. A stochastic Steiner tree
for T in G rooted in r consists of first stage edges F 0 ⊆ E and second stage
edges F k ⊆ E for each scenario k that meet the following requirements. For each
0 ≤ k ≤ K, there must exist a connected Steiner tree for T k in G whose edge
set is F 0 ∪F k. Note that this requires the first stage edges to be connected and
to include the root node if there are any first stage edges.

An instance of the two-stage stochastic Steiner tree problem (SSTP) consists of
an undirected, weighted graph G = (V, E, c0) with designated root node r ∈ V ,
and a set of scenarios {(T k, ck, pk) | 1 ≤ k ≤ K}, each consisting of a terminal
set T k, an edge-cost function ck, and the scenario’s probability pk, satisfying∑K

k=1 pk = 1. Feasible solutions are stochastic Steiner trees for {T k | 1 ≤ k ≤ K}
in G rooted in r. The value function v1 is given as

146 D. Kurz, P. Mutzel, and B. Zey

v1(e) :=

{
c0(e), if e ∈ F 0

pk · ck(e), if e ∈ F k.

In other words, we ask for a stochastic Steiner tree (F 0, . . . , FK) that minimizes
the expected cost ∑

e∈F 0

c0(e) +
K∑

k=1

pk
∑

e∈F k

ck(e).

Analogously to the SSTP, we define a stochastic variant of PCSTP. An instance
of the two-stage stochastic prize-collecting Steiner tree problem (SPCSTP) con-
sists of an undirected, weighted graph G = (V, E, c0) rooted in r ∈ V and a set
of K scenarios. Each scenario consists of a node profit function gk : V �→ R

+
0 ,

edge costs ck and a probability pk with
∑K

k=1 pk = 1. The set of nodes with
positive profit in scenario k is denoted by T k := {v ∈ V | gk(v) > 0}. Feasible
solutions consist of terminal sets T = {T̃ k ⊆ T k | 1 ≤ k ≤ K} and a stochastic
Steiner tree for T in G rooted in r. The value function v2 is given as

v2(x) :=

{
v1(x), if x ∈ E

−(pk · gk(x)), if x ∈ T̃ k.

Intuitively, we do not force the solution to connect all terminals, but only the
most profitable ones. Therefore, we subtract the profit of the nodes that are
connected from the cost of the corresponding stochastic Steiner tree. Again,
node profits gk have to be weighted by pk.

3 Solving SSTP

In the following section we describe an algorithm to solve the two-stage stochastic
Steiner tree problem with a running time that is parameterized by the number
of terminals summed up over the single scenarios. The approach is based on the
algorithm by Dreyfus and Wagner [9], which can be described as follows:

The classical algorithm by Dreyfus and Wagner utilizes the method of dynamic
programming: Solve a problem by formulating it recursively and solving the sub-
problems in increasing order. In fact, Dreyfus and Wagner realized the following
recursive nature of the Steiner tree problem. Let S be an optimal Steiner tree
for a given weighted, undirected graph G = (V, E, c), and p ∈ T ⊆ V, |T | ≥ 3, a
terminal. There exists a joining node q in S and a partition (T1, T2) of T that
meets the following requirement. The Steiner tree S can be split into three sub-
trees S1, S2, S3, where S1, S2 are Steiner trees for T1∪{q}, T2∪{q}, respectively,
and S3 is a shortest path from p to q.

The Steiner tree problem is solved by populating a table M of values of sub-
solutions (p, T ′). The subsolutions are solved in increasing order. For |T ′| = 1,
optimal Steiner trees connecting T ′ ∪ {p} are shortest paths. For |T ′| > 1, a

Parameterized Algorithms for Stochastic Steiner Tree Problems 147

v0

w0

v1

w1

v2

w2

c0((v,w))

p1c1((v, w))

p2c2((v, w))

0

0

0

0

G0

G1

G2

Fig. 1. Schematic diagram of the reduction from SSTP to DSTP with an example edge
(v, w)

joining node and a partition of T is found by enumerating the nodes in V and
the power set of T , respectively.

This approach can be carried over to the directed Steiner tree problem with
designated root by constructing the optimal solution starting from the root. For
a subproblem (p, T ′), p serves as the root node.

We use these results to solve some stochastic versions of the Steiner tree
problem. Let G = (V, E, c) be a weighted, undirected graph with dedicated root
node r ∈ V , and T := {(T k, ck, pk) | 1 ≤ k ≤ K} a set of K scenarios. We
construct an instance of the DSTP that has the same optimal value as the SSTP
instance (G, r, T). An optimal solution to the transformed instance also implies
an optimal solution to the SSTP instance, and vice versa.

The directed graph G′ = (V ′, E′, c′) of this instance contains K + 1 copies
of G, cf. Figure 1. Its node set V ′ is the union of all V k := {vk | v ∈ V },
0 ≤ k ≤ K. The edge set E′ includes the corresponding edge sets of G, i.e.,
Ek := {(vk, wk), (wk, vk) | (v, w) ∈ E} for 0 ≤ k ≤ K.

Terminals of scenario k in G also become terminals in the new graph. Further,
the root node becomes a terminal in the first-stage copy of G. This yields T ′ =
{r0} ∪ {vk | v ∈ T k \ {r}, 1 ≤ k ≤ K}.

We will interpret the copies like this: Whenever we buy an edge (v0, w0) in
the transformed version, we also buy this edge in the original SSTP instance,

148 D. Kurz, P. Mutzel, and B. Zey

namely in the first stage. Accordingly, buying an edge (vk, wk), k > 0, suggests
buying the corresponding edge in scenario k. We call (V 0, E0) the first-stage
copy and (V k, Ek), 1 ≤ k ≤ K, the second stage copy of the k-th scenario.

Now we have to make sure that there is a way to switch between the different
copies of G in H . To accomplish this, we simply add edges between them. As
two scenarios k and k′ only interact in the first stage, it should not be allowed to
switch from k to k′ directly. Therefore, we only add transition edges between the
first-stage copy on the one side and the various second stage copies on the other
side. This yields E′ = Ẽ ∪

⋃K
k=0 Ek with Ẽ := {(v0, vk) | v ∈ V, 1 ≤ k ≤ K}.

Note that we only add edges from the first- to the second-stage copies, but not
in the reverse direction.

The edge weights c′ for the edges in E′ are applied straightforwardly. Every
edge weighs as much as its corresponding edge in E contributes to the value
of the stochastic Steiner tree. Hence, first-stage edges remain unchanged, i.e.,
c′((v0, w0)) = c((v, w)) for (v, w) ∈ E. Second-stage edges have to regard the
probability pk of the scenario k they belong to, i.e., c′((vk, wk)) = pk · ck((v, w))
for 1 ≤ k ≤ K, (v, w) ∈ E. We do not want to restrict the number of transitions
between first- and second-stage edges and therefore, we assign cost 0 to edges
(v0, vk), for all v ∈ V .

We can now use the classical Dreyfus-Wagner algorithm to compute a solution
S′ to the DSTP instance (G′, T ′). This solution can be used to derive a solution
S = (F 0, . . . , FK) to the SSTP instance (G, r, T). We simply choose the edges
that were also chosen in the corresponding copy of G in S′. Hence, we buy the
edges F k := {(v, w) ∈ E | (vk, wk) ∈ S′} in the k-th scenario for 1 ≤ k ≤ K, or
in the first stage for k = 0.

We have to make sure that for each optimal solution to an SSTP instance
there exists an equivalent solution to the transformed STP instance. Let S =
(F 0, . . . , FK) be a stochastic Steiner tree for {(T k, ck, pk) | 1 ≤ k ≤ K} in the
undirected, weighted graph G = (V, E, c0). Let G′ be the graph that results
from the transformation from G as described before, and T ′ the corresponding
terminal set.

As S is optimal, there is exactly one path P (t) = (r = v1, . . . , v� = t) from r
to a terminal t of scenario k that only uses edges in E0 ∪ Ek. If this path uses
first-stage edges, they are all grouped together at the beginning of the path.
Otherwise, P (t) would contain alternating fragments of first- and second-stage
paths. But since the first stage is connected, this would induce a cycle, which
contradicts our assumption that S is optimal. We denote by τ(t) the index of the
transition from first- to second-stage edges, i.e., if i < τ(t) then (vi, vi+1) ∈ P (t)
is a first-stage edge and otherwise, (vi, vi+1) ∈ P (t) is a second-stage edge.

The deterministic solution S′ to (G′, T ′) can be derived as follows. For each
path P (t) = (r = v1, . . . , v� = t), t ∈ T k, 1 ≤ k ≤ K, we add the edges (v0

i , v0
i+1)

from the first-stage copy to S′ if i < τ(t). If i ≥ τ(t), we add the edge (vk
i , vk

i+1)
from the second-stage copy instead. Further, we add the required transition edge
(v0

τ(t), v
k
τ(t)).

Parameterized Algorithms for Stochastic Steiner Tree Problems 149

For every edge e in S, we added an edge e′ that contributes as much to the
value of S′ as e contributes to the value of S. The edges (v0, vk) do not contribute
to the value of the solution at all. Therefore, the values of S and S′ are equal.

In an analogous way an optimum solution to the DSTP instance can be trans-
formed to an SSTP instance with the same objective value.

The new graph G′ = (V ′, E′) has exactly |V | · (K + 1) nodes and 2 · |E| ·
(K + 1) + K · |V | edges. We need to connect t∗ :=

∑K
k=1 |T k| terminals. Using

the algorithm by Dreyfus and Wagner to solve the resulting DSTP instance, we
obtain a running time of O(3t∗ · (K · |V |)3). We summarize the previous results
in the following theorem.

Theorem 1. The stochastic Steiner tree problem is fixed parameter-tractable by
the number of terminals. It can be solved in time O(3t∗ · (K · |V |)3), where t∗ is
the sum of the number of terminals over all scenarios.

Since DSTP is harder to approximate than STP, the question arises whether
the reduction above would work in a similar way if the transition edges were
undirected.

While transferring solutions from SSTP to a transformed (undirected) STP
instance works without any problems, this is not true for the other way. Consider
the STP solution that buys a minimum spanning tree of G with respect to c1

and every undirected transition edge, i.e., S′ = {(v0, vk) | v0 ∈ V, 1 ≤ k ≤ K} ∪
{(v1, w1) | (v1, w1) ∈ MST(G, c1)}. This solution is feasible for the constructed
STP instance. The path from the root r to a terminal t = vk

� starts by switching
to the second-stage copy of scenario 1 using the edge (r = v0

1 , v
1
1). Following the

unique path from v1
1 to v1

� provided by the minimum spanning tree, we reach vk
�

by using (v1
� , v0

�) and (v0
� , vk

�).
In practice, this solution might even be a good candidate for an optimal

solution. Edges in second-stage copies are weighted by a scenario’s probability.
Thus, they are often cheaper than their counterparts in the first-stage copy,
especially if the probability of scenario 1 is very low.

However, transferring S′ to the SSTP instance in a way analogous to the one
above yields an infeasible SSTP solution S. It only contains edges in the second
stage of scenario 1. The terminals of other scenarios remain unconnected.

4 Improvements

So far, we only considered solving SSTP by using the algorithm by Dreyfus and
Wagner. This algorithm can be replaced by any other one that solves DSTP.

One way to improve the running time is to use the dynamic programming
algorithm by Fuchs et al. [10]. It solves the Steiner tree problem for a terminal
set T ⊆ V in a weighted graph G = (V, E, c). First, it adds a portion of 1

ε |T |
terminals to the terminal set. An optimal Steiner tree for the new terminal set can
then be split into optimal Steiner trees for at most ε|T |+1 terminals. Obviously,
this only works for a suitable selection of 1

ε |T | new terminals. Therefore, every
possible selection is considered.

150 D. Kurz, P. Mutzel, and B. Zey

This approach yields an algorithm for STP with running time (2 + δ)|T |

nO(1/(δ/ ln(1/δ))ζ) for any 1
2 < ζ ≤ 1 and sufficiently small δ > 0 if we allow

the Steiner tree to be constructed from parts of varying size. To utilize this algo-
rithm to solve SSTP, we first need to show that it is capable of finding optimal
directed Steiner trees.

Directed Steiner trees can be decomposed at inner terminals just like undi-
rected Steiner trees. In contrast to the undirected STP, where sub-problems are
fully characterized by their terminal sets, we also have to determine a root node
within each terminal set for DSTP. Consider the directed Steiner tree problem
for a terminal set T ⊆ V in a weighted graph G = (V, E, c) with designated root
node r ∈ T , and a fixed partition T into subproblems. The following scheme
provides us with a suitable choice of the root node for a given sub-problem with
terminal set U .

Let (T1, . . . , T�) be a sequence of sub-problems with Ti ∈ T for 1 ≤ i ≤ �,
Ti ∩ Ti+1 �= ∅ and Ti �= T� for 1 ≤ i ≤ � − 1, r ∈ T1, and T� = U . In other
words, the sequence is a path of sub-problems that starts in the sub-problem
that contains r and ends in U , where adjacent sub-problems share at least one
terminal.

If � = 1, we may choose r as the new root. Otherwise, there is exactly one
node r′ in the cut set T�−1 ∩ T�. If this cut set contained more than one node,
combining the Steiner trees of all sub-problems would induce a cycle. This node
r′ has to be chosen as the root node for the sub-problem U .

Another way to speed up the computation of stochastic Steiner trees is to
speed up the Dreyfus-Wagner algorithm itself. The fast subset convolution in-
troduced by Björklund et al. [3] is one way to achieve this. A careful implemen-
tation of an underlying min-sum semiring allows them to compute an optimal
Steiner tree in time Õ(2kn2 + nm) if edge weights are bounded by a constant,
where Õ hides polylogarithmic factors.

Björklund et al. described how to apply their fast subset convolution to
solve STP. However, they utilize the same recursive nature of the Steiner tree
problem as Dreyfus and Wagner did. Therefore, the modifications made to
the Dreyfus-Wagner algorithm to solve DSTP can also be applied to their
approach.

5 Extensions

5.1 Directed SSTP

The reduction technique introduced in Section 3 can not only be used to solve
the undirected SSTP. As the resulting graph is directed anyway, we might as
well start with a directed graph. It is easy to see that a directed version of SSTP
that asks for an arborescence for every scenario can be solved in much the same
way as SSTP itself.

Parameterized Algorithms for Stochastic Steiner Tree Problems 151

5.2 Prize-Collecting SSTP

To solve the prize-collecting version of the Steiner tree problem with the algo-
rithm by Dreyfus and Wagner it needs some modifications. First, in contrast to
the Steiner tree problems that connect terminals instead of collecting prizes, we
do not have to connect every node of a given set. Instead, we may concentrate
on the most profitable ones. Second, the value of a solution not only depends on
the selected edges, but also on their incident nodes.

The first difference does not seem to be a problem at all. The Dreyfus-Wagner
algorithm computes the value of every sub-problem, anyway. On this problem,
every sub-solution that contains the root node is a feasible solution to the prob-
lem itself. Therefore, we have to memorize the value of the best solution we
have seen so far. This value is only updated if the currently considered sub-
problem connects the root node. Notice that it is very well possible that we get
to see the optimal solution very early in the computation; This is not possible
for terminal-connecting Steiner tree problems.

The latter difference requires some modifications to the Dreyfus-Wagner algo-
rithm. We propose a modification that does not necessarily compute the correct
values for every sub-solution. It does, however, compute correct values for the
relevant subset of these sub-solutions.

The original Dreyfus-Wagner algorithm computes values M(v, T ′) of sub-
solutions, where v is an arbitrary node of the input graph and T ′ is a subset of
its terminal set T . This value is computed as

M(v, T ′) = min
q∈V

T1⊂T\{v}
(dG(v, q) + M(q, T1) + M(q, T \ T1)),

where dG denotes distances in G.
To make this work for PCSTP, we need to consider the profit of connected

nodes. Instead of detecting which profitable nodes with respect to a node-profit
function g have been connected, we simply ignore the nodes that were included
accidentally. In other words, we only consider profits of nodes that we intended
to connect, but not those that were connected by default rather than by design.
This yields the following recursive form to compute the values of sub-solutions:

MPC(v, T̃) = min
q∈V

T1∪T2=T̃\{q}

(MPC(v, {q}) + MPC(q, T1) + MPC(q, T2)) + 2g(q))

The profit g(q) of the joining node q has to be added twice because it would
otherwise have been subtracted thrice, once for each MPC that q is involved in.

The initialization of M has to be adjusted, too. Dreyfus and Wagner initialize
M(v, {t}) for each node v and each terminal t. We also need MPC(v, {q}) for
arbitrary node pairs v, q. Further, we have to consider the node profits of the
involved nodes. Therefore, we initialize MPC with MPC(v, {q}) = dG(v, q) −
g(v) − g(q) for each v, q ∈ V , v �= q, and MPC(v, {v}) = −g(v) for each v ∈ V .

Consider the value of MPC(e, {a, b}) in the example in Figure 2. It is com-
puted as the sum of three sub-solutions, minimized over all joining nodes and

152 D. Kurz, P. Mutzel, and B. Zey

a : 2

b : 2

d : 2 e : 2c : 0

1

1

1 1

Fig. 2. PCSTP instance that includes sub-problems whose optimal values are not com-
puted correctly; nodes are labelled with their name and their profit; edges are labelled
with their cost

all partitions of {a, b} with exactly two non-empty sets. Obviously, it can only
be split into the sets {a} and {b}. The sum of all sub-solutions for joining node
q is MPC(e, {q}) + MPC(q, {a}) + MPC(q, {b}) + 2g(q). This sum evaluates to
-2 or -3 for q = c or q = d, respectively. In the first case, the edge (d, c) is
used twice. In the second case, the profit of node d is ignored. In either case,
the computed value is not optimal although the optimal selection of profitable
nodes is connected.

However, the correct value of the optimal solution is still computed. We make
sure that d is not ignored by including it in the set of nodes we want to connect.
Although d is ignored when trying to connect e to {a, b} without using it as a
joining node, we do not ignore it when we try to connect e to {a, b, d}. In this
case, the value of MPC(e, {a, b, d}) would be computed as -4, which is the correct
value of the optimal solution that connects all nodes in this example.

This observation can be formulated more general. Let MPC(v, T̃) be a table
entry that has not been computed correctly. The only way MPC(v, T̃) can be
incorrect is by ignoring profits of nodes that have actually been included. Let
w be such a node. Then, the value of MPC(v, T̃ ∪ {w}) is smaller than that of
MPC(v, T̃). This argument can be applied repeatedly until there are no ignored
nodes left. The optimal set of profitable nodes is clearly found as we consider
every subset of T .

These modifications also work for the directed case. They can thus be used in
combination with the reduction technique from Section 3 to solve SPCSTP.

5.3 SSTP without a Root Node

One last extension allows us to provide not only one root for an SSTP instance,
but a set of root candidates or no root at all. To allow for this, we do not add
r0 as a terminal during our reduction to the DSTP. Instead, we add a new node
ρ that does not correspond to any node in the input graph G. This new node is
then connected to the equivalent of each root candidate in the first-stage copy.
These unidirectional edges are then equipped with high edge costs with the result
that only one of the candidates is chosen.

Parameterized Algorithms for Stochastic Steiner Tree Problems 153

These three extensions can be combined freely. It is therefore possible to solve,
e.g., a directed stochastic prize-collecting Steiner tree problem using the classical
algorithm and its modifications.

6 Conclusion and Outlook

We showed that SSTP is fixed-parameter tractable by the number of termi-
nals. This result was subsequently extended to cover the directed and the prize-
collecting SSTP.

It remains an open question whether SSTP and its variants can be parameter-
ized by other parameters. One interesting parameter is the treewidth of the input
graph. There exist parameterized algorithms for STP that utilize the treewidth.
We have yet to investigate if these algorithms can be transferred to SSTP.

Another promising parameter is the number of non-terminals: A simple algo-
rithm for STP tests every subset of non-terminals as the set of Steiner nodes
and computes the corresponding minimum spanning tree. This approach might
be transferable to the SSTP.

References

1. Bern, M.W., Plassmann, P.E.: The Steiner problem with edge lengths 1 and 2.
Information Processing Letters 32(4), 171–176 (1989)

2. Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming. Springer, New
York (1997)

3. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets Möbius: Fast
subset convolution. In: STOC, pp. 67–74. ACM (2007)

4. Bomze, I., Chimani, M., Jünger, M., Ljubić, I., Mutzel, P., Zey, B.: Solving Two-
Stage Stochastic Steiner Tree Problems by Two-Stage Branch-and-Cut. In: Cheong,
O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010, Part I. LNCS, vol. 6506, pp. 427–439.
Springer, Heidelberg (2010)

5. Byrka, J., Grandoni, F., Rothvoß, T., Sanitá, L.: An improved LP-based approxi-
mation for Steiner tree. In: STOC, pp. 583–592. ACM (2010)

6. Charikar, M., Chekuri, C., Cheung, T., Dai, Z., Goel, A., Guha, S., Li, M.: Approx-
imation algorithms for directed Steiner problems. In: SODA, pp. 192–200. SIAM
(1998)

7. Chimani, M., Mutzel, P., Zey, B.: Improved Steiner Tree Algorithms for Bounded
Treewidth. In: Iliopoulos, C.S., Smyth, W.F. (eds.) IWOCA 2011. LNCS, vol. 7056,
pp. 374–386. Springer, Heidelberg (2011)

8. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer (1999)
9. Dreyfus, S.E., Wagner, R.A.: The Steiner problem in graphs. Networks 1(3), 195–

207 (1971)
10. Fuchs, B., Kern, W., Mölle, D., Richter, S., Rossmanith, P., Wang, X.: Dynamic

programming for minimum Steiner trees. Theory Computing Systems 41(3), 493–
500 (2007)

11. Gupta, A., Hajiaghayi, M.T., Kumar, A.: Stochastic Steiner Tree with Non-uniform
Inflation. In: Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P. (eds.) AP-
PROX/RANDOM 2007. LNCS, vol. 4627, pp. 134–148. Springer, Heidelberg (2007)

154 D. Kurz, P. Mutzel, and B. Zey

12. Gupta, A., Pál, M., Ravi, R., Sinha, A.: Boosted sampling: Approximation algo-
rithms for stochastic optimization. In: STOC, pp. 417–426. ACM (2004)

13. Halperin, E., Krauthgamer, R.: Polylogarithmic inapproximability. In: STOC, pp.
585–594. ACM (2003)

14. Hwang, F., Richards, D., Winter, P.: The Steiner tree problem. Annals of discrete
mathematics, vol. 53. North-Holland (1992)

15. Kahng, A.B., Robins, G.: On Optimal Interconnections for VLSI. Kluwer Academic
Publishers (1995)

16. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Com-
puter Computations, pp. 85–103. Plenum (1972)

17. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Habilitation, Univer-
sität Tübingen (2002)

18. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and
Complexity. Dover Publications (1998)

19. Swamy, C., Shmoys, D.B.: Approximation Algorithms for 2-Stage Stochastic Op-
timization Problems. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS,
vol. 4337, pp. 5–19. Springer, Heidelberg (2006)

20. Uchoa, E., de Aragão, M.P., Ribeiro, C.C.: Preprocessing Steiner problems from
VLSI layout. Networks 40(1), 38–50 (2002)

Action Investment Energy Games�

Kim G. Larsen, Simon Laursen, and Jǐŕı Srba

Aalborg University, Department of Computer Science, Denmark
{kgl,simlau,srba}@cs.aau.dk

Abstract. We introduce the formalism of action investment energy
games where we study the trade-off between investments limited by given
budgets and resource constrained (energy) behavior of the underlying
system. More specifically, we consider energy games extended with costs
of enabling actions and fixed budgets for each player. We ask the question
whether for any Player 2 investment there exists a Player 1 investment
such that Player 1 wins the resulting energy game. We study the ac-
tion investment energy game for energy intervals with both upper and
lower bounds, and with a lower bound only, and give a complexity results
overview for the problem of deciding the winner in the game.

1 Introduction

Embedded systems are often executed on hardware with limited resources and
they interact with uncontrollable or even hostile environments. By adding on
top of this the ever increasing demand on software functionality and reliability
for the lowest possible price, several interesting computational and optimization
problems emerge. We introduce the formalism of action investment energy games
where we study the trade-off between investments limited by given budgets and
resource constrained (energy) behavior of the underlying system.

An action investment energy game (AIEG) is a two player game, played by
Player 1 and Player 2, each having a finite investment budget. The game consists
of two independent phases: the investment-configuration phase and the energy-
game phase. It is played on a finite multi-graph where transitions are labeled
with action names and integers, representing energy changes. Furthermore each
action has its own investment cost. In the investment-configuration phase, each
player makes an investment by choosing a set of actions costing less than his/her
budget. The result of these investments configures the board where an energy
game is played on in the second energy-game phase. An energy game [3] is a turn
based game, played on a finite multi-graph labeled with integer energy weights
created in the investment-configuration phase. Player 1 wins the energy game if
she has a strategy such that the accumulated energy along any play according
to the strategy is within a given interval.

Player 1 wins an AIEG if for any Player 2 investment costing him less than his
budget, it is possible for her to choose an investment costing less than her budget

� Supported by VKR Center of Excellence MT-LAB and the research center
IDEA4CPS.

A. Kučera et al. (Eds.): MEMICS 2012, LNCS 7721, pp. 155–167, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

156 K.G. Larsen, S. Laursen, and J. Srba

Player 1 actions coffee coco

Action cost 2 4

Player 2 actions MEMICS CAV

Action cost 4 6

Fig. 1. Example of an action investment energy game

such that she wins the resulting energy game. Our focus is on the complexity
of the decision problem asking whether Player 1 has a winning strategy in the
given AIEG.

An example of an action investment energy game is given in Figure 1. Here the
nodes that have a circle shape belong to Player 1 (she, young PhD student) and
the squares are nodes that belong to Player 2 (he, PhD supervisor who likes to
stress PhD students to their limits). Every edge (transition) is labelled with the
action name and a weight (energy change). The student repeatedly buys a drink
of her choice after which she asks her adviser if she should keep writing a paper
or prepare slides and present them at a conference. Having a drink increases
her energy level while inserting a coin, writing a paper, preparation of slides
and a trip to CAV or MEMICS cost energy. In order to survive, the student
must always have a nonnegative energy level, while increasing the energy above
a given upper-bound makes the student to quit. The thick transitions in the
graph are always present while the thin ones can be enabled by the players in
the first phase of the game, depending on their budgets. The student’s budget
gives her the opportunity to rent a drink-machine and configure the available
drinks as long as they are within her budget. The supervisor has a travel budget
allowing him to send the student to different conferences, provided it does not
exceed the financial limit. In our example this means that Player 1 can enable
the actions coffee and coco, if her budget B1 is sufficient for this and Player 2
is in control of the actions CAV and MEMICS, relative to his budget B2.

The game starts by Player 2 investing in actions within his budget B2. Then
Player 1 buys her actions up to the total cost B1. All transitions under the
selected actions are then included into the final graph. Now the players start
moving a pebble across the graph such that Player 1 selects her next move
(edge) from any circle and Player 2 from any square node. Starting with energy
level 0, the energy weight on the selected edge is added to the so far accumulated
energy. The question is whether for a given interval [a, b], a ≤ 0 ≤ b where b can

Action Investment Energy Games 157

be an infinity, Player 1 has a winning strategy so that the accumulated energy
stays within the interval [a, b].

For example if the budget of Player 1 is B1 = 4 and the budget of Player 2
is B2 = 5, we can see that Player 1 wins in the interval [0, 9]. The reason is that
Player 2 can choose only to invest in the action MEMICS as CAV is beyond
the travel budget. Player 1 then responds by buying the action coffee staying
within her budget. The board of the game is now configured and the players start
the energy-game phase. After getting a grant, inserting a coin and choosing the
coffee transition, the student ends up in the situation with the accumulated
energy equal to 8. Now Player 2 can force the student to prepare the slides for
a presentation and travel to MEMICS, reaching the accumulated energy 3 and
returning the student to the configuration that already appeared (and hence it
is winning for Player 1), or he can decide that the student should first write a
paper, ending up with energy level 4. Now Player 1 can insert a coin and choose
to drink coffee again, increasing her accumulated energy to 9. Should Player 2
decide to ask her to prepare slides and go to MEMICS now, the energy drops to
4. This is again a winning situation for Player 1 as it has been reached before.
If on the other hand Player 2 decides that she should continue to work on the
paper, the energy level reaches 5. Now Player 1 can decide to drink a cup of tea,
giving her the accumulated energy 8 that we have already seen before. Hence
Player 1 has a winning strategy in the game.

In fact the reader can verify that Player 1 has a different winning strategy
even in the interval [0, 7] but if her budget does not allow to invest into neither
coffee or coco, then Player 1 losses for any given interval.

The main contribution of our work is the definition of action investment energy
games and a detailed complexity analysis of the decision problem determining
the winner of the game. In a work [1] related to ours, a similar trade-off sce-
nario was studied where a dual-price schema for modal transition systems was
introduced. Here the authors study the trade-off between a long-run average exe-
cution cost and a hardware investment cost, but they do not consider constrained
resources and do not model uncontrollable environments. Several problems re-
lated to energy games were recently studied in [6,10,5,4], including extensions
to real-time games [3,2] and imperfect information [9] but none of these works
considered the investment phase. Another related formalism of feature transition
systems [8,7] studies the problem of CTL/LTL model checking of the transition
systems configured via a set of available features. However, features do not have
any associated costs, the checked property is different from our energy condition
and the game is restricted to 1-player only.

Proofs that are missing due to the space limitations can be found in the full
version of the paper.

2 Definitions

We shall now present the definition of the action investment energy games. We
start by recalling the notion of energy games.

158 K.G. Larsen, S. Laursen, and J. Srba

2.1 Energy Game

Our notion of energy games is based on the definition from [3] where we consider
general energy intervals [a, b] instead of only [0, b].

Definition 1 (Energy Game). An Energy Game (EG) is defined as a tuple
G = (Q1, Q2, Σ,→, q0) where

– Q1, Q2 are finite disjoint sets of states, we denote Q = Q1 !Q2,

– Σ is a finite set of actions,

– →⊆ Q×Σ×Z×Q is the successor relation where (q, σ, z, q′) ∈→ is written

as q
σ,z−−→ q′, and

– q0 ∈ Q is the initial state.

An energy game can be depicted as a graph where each node represents a state
such that circled nodes belong to Q1 and squared ones to Q2. Edges represent a
transition between states and each edge is labeled with an action name and its
weight. The energy game is played by moving a token around on the graph. The
token starts in the initial state q0. If the token is in a circle state, then Player 1
moves the token to a successor state. Likewise, if the token is in a square state
then Player 2 moves the token to one of its successor states. The sequence on
which the token moves is called a run, and it is defined as a finite or infinite
sequence of transitions

r = q0
σ0,z0−−−→ q1

σ1,z1−−−→ q2
σ2,z2−−−→ . . .

where qi ∈ Q and qi
σi,zi−−−→ qi+1 ∈→ for all i. Given a finite run r = q0

σ0,z0−−−→
. . .

σn−1,zn−1−−−−−−−→ qn, let the last state of the run be denoted by Last(r) = qn. A
run r is maximal if it is infinite, or finite and Last(r) has no successors.

Definition 2 (Valid Run). A maximal run r is valid in a given interval [a, b],
a ∈ Z, b ∈ Z ∪ {∞}, a ≤ 0 ≤ b, if a ≤

∑n
i=0 zi ≤ b for all n.

A play of the game can produce different runs depending on what strategy each
player uses. A strategy δi for Player i, where i = {1, 2}, maps each finite non-

maximal run r where Last(r) = qn ∈ Qi to its successor qn
σn,zn−−−−→ qn+1.

Problem 1 (Interval Bounded Energy Game). Given an EG G and an
interval [a, b], does there exist a strategy δ1 for Player 1 such that any play on
G using the strategy δ1 produces a run valid in the interval [a, b]?

Player 1 wins and Player 2 looses in the interval [a, b] if the answer to Problem 1
in the interval [a, b] is positive. There is also a more relaxed version of the interval
bounded energy game called the lower-bound problem where the interval is of
the form [a,∞].

Action Investment Energy Games 159

2.2 Action Investment Energy Game

Let us split a given action alphabet Σ into three disjoint action sets Σ0 ! Σ1 !
Σ2 = Σ and call it the action investment alphabet. The action set Σi, i = {1, 2},
belongs to Player i, while Σ0 is the set of default actions that are always present.

Definition 3 (Action Investment Energy Game). An action investment
energy game (AIEG) is a tuple, A = (Q1, Q2, Σ,→, q0, actCost, B1, B2) where,

– (Q1, Q2, Σ,→, q0) is an energy game,
– Σ is an action investment alphabet,
– actCost : Σ1 ∪ Σ2 → N is a function assigning positive cost to the actions,

and
– B1, B2 ∈ N0 are two nonnegative budgets.

An investment is a subset of actions I ⊆ Σ1∪Σ2. The cost of an investment is the
sum of the cost of the actions in the investment invCost(I) =

∑
σ∈I actCost(σ).

An investment for Player i, denoted by Ii, satisfies Ii ⊆ Σi.

Problem 2 (AIEG Problem). Given an AIEG A and an interval [a, b], does
there for any Player 2 investment I2 ⊆ Σ2 where invCost(I2) ≤ B2 exist a
Player 1 investment I1 ⊆ Σ1 where invCost(I1) ≤ B1, such that Player 1 wins
the energy game G′ = (Q,Q1, Q2, Σ

′,→′, q0) in the interval [a, b], where Σ′ =
Σ0 ∪ I1 ∪ I2 and →′=→ ∩ (Q ×Σ′ × Z×Q)?

The AIEG problem can be understood as a two-phase game: an investment-
configuration phase and an energy-game phase. In the investment-configuration
phase, Player 2 starts by choosing his investment I2 ⊆ Σ2 costing less than
his budget invCost(I2) ≤ B2, then Player 1 chooses her investment I1 ⊆ Σ1

costing less than her budget invCost(I1) ≤ B1. This ends the first phase and the
energy-game phase starts. In the energy-game phase the energy game is played
on the reconfigured board where only actions in the two investments I1, I2 and
the default actions from Σ0 are present.

It is clear that for an AIEG problem where Σ1 = ∅ and Σ2 = ∅, or where
B1 = 0 and B2 = 0, the AIEG problem reduces to the classical energy game as
none of the players can make any investment.

3 Gadgets for Complexity Bounds

Our main contribution is a detailed complexity analysis of the general action
investment energy game problem and some of its prominent subclasses. For this
reason, we start by establishing several gadgets (basically instances of AIEG)
that will be used in the next section in order to prove complexity lower-bounds
by reductions from different variants of quantified boolean formulae satisfiability
problem. Let us assume a set of n boolean variables x1, . . . , xn for which we
consider the action alphabet {xj , x

′
j | 1 ≤ j ≤ n}. We start by the definition of

a valid investment.

160 K.G. Larsen, S. Laursen, and J. Srba

(a) Construction (b) Representation

Fig. 2. Gadget G∀(x) where x = (x1, . . . , xn)

Definition 4 (Valid Investment). Let i ∈ {1, 2} and let Σi = {xj , x
′
j | 1 ≤

j ≤ n}. An investment Ii ⊆ Σi is valid for Player i if for all j, 1 ≤ j ≤ n, either
xj ∈ Ii or x′

j ∈ Ii and {xj , x
′
j} �⊆ Ii.

Hence a valid investment represents an assignment of truth values to the boolean
variables such that if xj ∈ Ii then the value of xj is true and if x′

j ∈ Ii then
xj takes the value false. It is clear that each player needs a sufficient budget to
make a valid investment. This is defined in the next definition.

Definition 5 (Sufficient Budget). A budget Bi is sufficient for Player i,
where i = {1, 2}, if actCost(Ii) ≤ Bi for any valid investments Ii ⊆ Σi.

3.1 Gadget G∀(x)

The gadget G∀ is used by Player 2 to enforce a valid truth assignment of the vari-
ables {x1, . . . , xn} of his choice. In this gadget we let Σ2 = {x1, . . . xn, x

′
1 . . . x

′
n},

and all states belong to Player 1. Let τ ∈ Σ0 be a default action that is always
present. The construction of G∀ and its graphical representation is given in Fig-
ure 2. The construction ensures that Player 2 needs to make a valid investment
otherwise Player 1 has a strategy to win. In addition if Player 2 chooses a
valid investment then any play starting from qin reaches qout or it is loosing for
Player 1. The following lemma formalizes this fact, assuming that Player 2 has
a sufficient budget to make a valid investment.

Lemma 1 (Properties of the Gadget G∀)

(a) If I2 is a valid investment for Player 2, then any play starting from qin
is either loosing for Player 1 or reaches qout and Player 1 has moreover a
strategy to ensure that any play from qin reaches qout.

(b) If I2 is not a valid investment for Player 2, then Player 1 has a strategy to
win any play starting from qin.

Action Investment Energy Games 161

(a) Construction (b) Representation

Fig. 3. Gadget G∃(x) where x = (x1, . . . , xn)

3.2 Gadget G∃(x)

The gadget G∃(x) is used by Player 1 to fix her truth assignment of variables
{x1, . . . , xn}. We let Σ1 = {x1, . . . xn, x

′
1 . . . x

′
n} and fix the budget for Player 1

to correspond to the number of variables, in other words B1 = n. We also assume
that the cost of any action in Σ1 is equal to 1 so that it is possible for Player 1 to
make a valid investment. Let τ ∈ Σ0 be a default action that is always present.
The gadget and its graphical representation is depicted in Figure 3. The point
is that Player 1 needs to choose a valid investment, otherwise Player 2 has a
winning strategy. Note that all nodes in the gadget belong to Player 1, so she is
the only one that decides the moves in this gadget.

Lemma 2 (Properties of the Gadget G∃)

(a) If I1 is a valid investment for Player 1, then any play starting from qin
is either loosing for Player 1 or reaches qout and Player 1 has moreover a
strategy to ensure that any play from qin reaches qout.

(b) If I1 is not a valid investment for Player 1, then any play from qin is winning
for Player 2.

3.3 Gadget Gϕ

After introducing gadgets that allow the players of the AIEG game to choose
valid investments that correspond to truth assignments of boolean variables, we
need to make a gadget that will check if a boolean formula ϕ is true under the
selected assignment. Such a gadget Gϕ is defined inductively in Figure 4 where
the dotted lines represents subgadgets already constructed for the subformulae.

For the proof of correctness, recall that Σ1 ∩ Σ2 = ∅ and that τ ∈ Σ0 is a
default action always present in the game.

Lemma 3 (Properties of the Gadget Gϕ)
Let I be a valid investment and let

υ(x) =

{
true if x ∈ I
false if x′ ∈ I

162 K.G. Larsen, S. Laursen, and J. Srba

(a) Positive literal (b) Negative literal (c) Conjunction (d) Disjunction (e) Representation

Fig. 4. Gadget Gϕ

be the corresponding truth assignment.

(a) If ϕ is true under the assignment υ then Player 1 has a strategy to win any
play starting from qin in Gϕ.

(b) If ϕ is false under the assignment υ then Player 2 has a strategy to win any
play starting from qin in Gϕ.

3.4 Linking Gadgets

For the purpose of our complexity proofs in the following section, gadgets can be
linked together in a sequence and thereby create a combined AIEG. This is done
via a transition labelled with τ, 0 starting from qout in one gadget and leading to
the state qin of the other gadget. The shorthand notation for linking gadgets is
an arrow such that for example G∀(x) → G∃(y) → Gϕ corresponds to an AIEG
starting with the universal gadget over the vector of variables x, followed by
the existential gadget over the vector of variables y and finished by the gadget
checking the validity of a formula under the generated truth assignment. It is
necessary to rename the states of the linked gadgets to avoid name clashes and
to update the successor relation accordingly. This can be done in the expected
way, so we omit the details here.

4 Complexity Results

We shall now present an overview of complexity results for different subclasses
of the AIEG problem. The new results in Table 1 are listed in bold font and we
consider the action investment energy game problem as well as its well-studied
existential variant where all states belong to Player 1. We moreover study the
variants of the game where one of the players has a zero budget (the case when
both of them have zero budget corresponds to classical energy games) and we
distinguish intervals that are closed or open to the right.

Some of the bounds in Table 1 use complexity classes from the polynomial
hierarchy. We refer the reader to some classical textbook like [11] for more details

Action Investment Energy Games 163

Table 1. Complexity Overview for AIEG Problems

Budget Interval Energy game type
restrictions Existential Game

B1 = 0, B2 = 0 [a,∞] ∈ P [3] ∈ UP ∩ coUP [3]

[a, b] NP-Hard, ∈ PSPACE [3] EXPTIME-complete [3]

B2 = 0 [a,∞] NP-Complete, Lem. 4 NP-Complete Lem. 10

[a, b] NP-Hard, EXPTIME-complete
∈ PSPACE, Lem. 5 Lem. 13

B1 = 0 [a,∞] co-NP-complete, Lem. 6 co-NP-Complete 11

[a, b] ΠP
2 -hard, EXPTIME-complete

∈ PSPACE, Lem. 7 Lem. 13

− [a,∞] ΠP
2 -complete, Lem. 8 ΠP

2 -complete 12

[a, b] ΠP
2 -hard EXPTIME-complete

∈ PSPACE, Lem. 9 Lem. 13

about the hierarchy. Most of the complexity bounds are a direct application
of our gadgets presented in the previous section, apart from Lemma 7 that is
considerably more involved as an additional binary encoding of multiple weights
into a single integer is needed there.

Lemma 4. The AIEG problem for the interval [a,∞] where Q2 = ∅ and B2 = 0
is NP-complete.

Proof (sketch). For the lower bound let ∃xϕ(x) be an instance of the NP-
complete SAT problem over the vector of variables x = (x1, x2 . . . xn). We con-
struct in polynomial time the AIEG A given by G∃(x)→ Gϕ and fix the budget
for Player 1 to B1 = n. It is now clear that ∃xϕ(x) is true iff Player 1 is the
winner of the AIEG problem A. For the upper bound, an algorithm for solving
the problem guesses a Player 1 investment and solves in polynomial time [3] the
interval bound problem of the resulting energy game. #�

Lemma 5. The AIEG problem for the interval [a, b] where Q2 = ∅ and B2 = 0
is NP-Hard and in PSPACE.

Lemma 6. The AIEG problem for the interval [a,∞] where Q2 = ∅ and B1 = 0
is co-NP-complete.

Proof (Sketch). For the lower bound let ∀xϕ(x) be an instance of ΠP
1 -SAT (co-

NP complete problem). We construct in polynomial time the AIEG A given by
G∀(x)→ Gϕ and letB2 be any sufficient budget. It is now easy to see that ∀xϕ(x)
is true iff Player 1 is the winner in the AIEG problemA. An algorithm for solving
the problem in co-NP enumerates using universal branching all possible Player 2
investments and for each investment solves in polynomial time [3] the interval
bound problem of the resulting energy game. #�

164 K.G. Larsen, S. Laursen, and J. Srba

Lemma 7. The AIEG problem for the interval [a, b] where Q2 = ∅ and B1 = 0
is ΠP

2 -hard and in PSPACE.

Proof (sketch). For the lower bound let ∀x∃yϕ(x,y) be an instance of ΠP
2 -

SAT. We construct an AIEG A, illustrated on Figure 5. The first part of the
construction is the gadget G∀(x) that ensures that Player 2 is forced to select
a valid investment over the variables {x1, x

′
1, . . . , xn, x

′
n} (assuming we select

the budget B2 as a sufficient one). It would be intuitive to link this gadget
with the gadget G∃(y) to force Player 1 to choose her valid investment over the
variables {y1, y′1, . . . , yn, y′n}, however, B1 = 0 and Player 1 can not make any

Fig. 5. AIEG used in proof of Lemma 7

Action Investment Energy Games 165

investment. Therefore we need to make an alternative construction. We shall use
2n counters in order to record how many times the actions yi and y′i were seen
while traversing the modified gadget Gϕ. The counters are encoded in binary,
and the number of bits needed for each counter is given by c = �log(|ϕ| + 1)�
where |ϕ| is the number of literals that appear in the boolean formula ϕ. We
need two counters for each boolean variable yi such that the counter i counts the
number of positive occurrences of the variable yi and the counter i+n counts the
number of negative occurrences. All counters will be stored in a single integer.
To ensure that counters do not get ‘entangled’ by under- or overflow, we add
two separator bits 10 between any two neighboring counters, giving us that in
total we need 2n(c + 2) bits. We define k =

∑2n
i=1 2

i(2+c) as the initial counter
value where all counter are 0 and with the separator bits between them. For an
example if n = 2 and c = 3 then k is defined (in binary notation) as follows:

k =

20 bits︷ ︸︸ ︷
10 000︸︷︷︸

counter 4

10 000︸︷︷︸
counter 3

10 000︸︷︷︸
counter 2

10 000︸︷︷︸
counter 1

.

Incrementing and decrementing of counters is done via weights on transitions,
therefore we need a way to address each counter. Counter , 1 ≤ ≤ 2n, is
addressed by 〈〉 where 〈〉 = 2(2+c)(−1). In this way if a transition with weight
〈〉 is taken, the counter is incremented by one, and similarly when a transition
with weight −〈〉 is taken, the counter is decremented by one. We set b =
22n(c+2)+1− 1 which is the highest possible number on 2n(c+ 2) bits (where all
bits are 1) and will consider the resulted energy game in the interval [0, b].

Now we can construct an alternative Gϕ which is linked after the G∀(x) gad-
get as illustrated in Figure 5. The alternative Gϕ gadget is as defined before,
with the exception that every yi literal gives rise to the yi, 〈i〉 transition, and
every ¬yi literal gives gives rise to y′i, 〈i + n〉 transition, while assuming that
{y1, y′1, . . . yn, y′n} ⊆ Σ0. By taking a path from the start to the end state of this
gadget, we will record in the counters how many times each literal has been seen
on such a path. The initial G∀(x) gadget is linked via a τ, k transition to this
new Gϕ gadget, ensuring that all counters are initialized to 0 by adding only the
separator bits. At the end of the construction, we add a series of gadgets for
each variable yi, allowing Player 1 to decrement at most |ϕ|-many times either
the counter i or n+ i but not both at the same time. If the assignment recorded
in the counters is a valid one, Player 1 can decrease all counter values to zero,
such that after removing the separator bits by the transition τ,−k we get the
accumulated weight 0 and it is possible to add the upper bound b without vio-
lating the energy game interval [0, b]. It can now be shown that ∀x∃yϕ(x,y) is
true iff Player 1 is the winner of the AIEG problem A for the interval [0, b].

For the upper bound, an algorithm for solving the problem in PSPACE enu-
merates all possible Player 2 investments and for each investment solves the
interval bound problem of the resulting energy game. The interval bound prob-
lem in the existential case, Q2 = ∅, for an interval [a, b] is in PSPACE, implying
that the problem remains in PSPACE. #�

166 K.G. Larsen, S. Laursen, and J. Srba

Lemma 8. The AIEG problem for the interval [a,∞] where Q2 = ∅ is
ΠP

2 -complete.

Proof (sketch). For the lower bound let ∀x∃yϕ(x,y) be a ΠP
2 -complete instance

of QSAT where x = (x1, x2 . . . xn) and y = (y1, y2 . . . ym). We construct the
AIEG A given by G∀(x) → G∃(y) → Gϕ(ϕ) and fix the budget B1 = n and let
B2 be any sufficient budget for Player 2. It is now easy to see that ∀x∃yϕ(x,y)
is true iff Player 1 is the winner of the AIEG problem A. An algorithm for
solving the problem enumerates via universal branching all possible Player 2
investments and for each such investment guesses a Player 1 investment and
solves in polynomial time the resulting energy game. #�

Lemma 9. The AIEG problem for the interval [a, b] where Q2 = ∅ is ΠP
2 -hard

and in PSPACE.

Lemma 10. The AIEG problem for the interval [a,∞] where B2 = 0 is NP-
complete.

Proof. The lower bound follows from Lemma 4. An algorithm for solving the
problem guesses a Player 1 investment and solves the interval bound problem
of the resulting energy game which is in UP ∩ coUP, implying that the problem
is in NP. #�

Lemma 11. The AIEG problem for the interval [a,∞] where B1 = 0 is co-NP-
complete.

Proof. The lower bound follows from Lemma 6. An algorithm for solving the
problem enumerates via universal branching all possible Player 2 investments
and for each investment solves the interval bound problem of the resulting energy
game which is in UP ∩ coUP, implying that the problem is in co-NP. #�

Lemma 12. The AIEG problem for the interval [a,∞] is ΠP
2 -complete.

Proof. The lower bound follows from Lemma 8. An algorithm for solving the
problem enumerates via universal branching all possible Player 2 investments
and for each such investment guesses a Player 1 investment and solves the in-
terval bound problem of the resulting energy game. The interval bound problem
for an open interval [a,∞] is in UP ∩ coUP, implying that the problem is in
ΠP

2 . #�

Lemma 13. The AIEG problem for an interval [a, b] is EXPTIME-complete.

5 Conclusion

We have provided a complexity characterization of action investment energy
games. The problem combines the action-investment phase with the energy-
game phase and for many cases we proved matching complexity lower and upper
bounds. Thanks to the general definition of our gadgets that can be combined

Action Investment Energy Games 167

using linking into different variants of the game, we were able to give intuitive
constructions for most of the complexity results. A notable result is that for
the interval problems with lower and upper bound, apart from the case where
both budgets are zero, the complexity of the existential case and the general
game setting remain the same. The few problems where we did not close the
complexity bounds depend on the open problem of the existential energy game
in the interval [a, b], which is so far only known to be between NP and PSPACE.

We studied a version of AIEG where Player 2 chooses his investment before
Player 1. It is natural to consider also the opposite order in which the investment
is established or even a turn-based investment phase. This will be studied in our
future work.

References

1. Beneš, N., Křet́ınský, J., Guldstrand Larsen, K., Møller, M.H., Srba, J.: Dual-
Priced Modal Transition Systems with Time Durations. In: Bjørner, N., Voronkov,
A. (eds.) LPAR-18 2012. LNCS, vol. 7180, pp. 122–137. Springer, Heidelberg (2012)

2. Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N.: Timed automata with ob-
servers under energy constraints. In: HSCC 2010, pp. 61–70 (2010)

3. Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N., Srba, J.: Infinite Runs in
Weighted Timed Automata with Energy Constraints. In: Cassez, F., Jard, C. (eds.)
FORMATS 2008. LNCS, vol. 5215, pp. 33–47. Springer, Heidelberg (2008)

4. Chatterjee, K., Doyen, L.: Energy Parity Games. In: Abramsky, S., Gavoille, C.,
Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS,
vol. 6199, pp. 599–610. Springer, Heidelberg (2010)

5. Chatterjee, K., Doyen, L.: Energy and Mean-Payoff Parity Markov Decision
Processes. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907,
pp. 206–218. Springer, Heidelberg (2011)

6. Chatterjee, K., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Generalized mean-payoff
and energy games. In: FSTTCS. LIPIcs, vol. 8, pp. 505–516. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik (2010)

7. Classen, A., Heymans, P., Schobbens, P.-Y., Legay, A.: Symbolic model checking
of software product lines. In: ICSE, pp. 321–330. ACM (2011)

8. Classen, A., Heymans, P., Schobbens, P.-Y., Legay, A., Raskin, J.-F.: Model check-
ing lots of systems: efficient verification of temporal properties in software product
lines. In: ICSE (1), pp. 335–344. ACM (2010)

9. Degorre, A., Doyen, L., Gentilini, R., Raskin, J.-F., Toruńczyk, S.: Energy and
Mean-Payoff Games with Imperfect Information. In: Dawar, A., Veith, H. (eds.)
CSL 2010. LNCS, vol. 6247, pp. 260–274. Springer, Heidelberg (2010)

10. Fahrenberg, U., Juhl, L., Larsen, K.G., Srba, J.: Energy Games in Multiweighted
Automata. In: Cerone, A., Pihlajasaari, P. (eds.) ICTAC 2011. LNCS, vol. 6916,
pp. 95–115. Springer, Heidelberg (2011)

11. Papadimitriou, C.H.: Computational complexity. Addison-Wesley (1994)

Ciphertext-Only Attack on Gentry-Halevi

Implementation of Somewhat Homomorphic
Scheme�

Michal Mikuš and Marek Sýs

Institute of Mathematics and Applied Informatics,
Faculty of Electrical Engineering and Information Technology,

Slovak University of Technology in Bratislava,
Ilkovičova 3, 812 19 Bratislava, Slovak Republic

{michal.mikus,marek.sys}@stuba.sk

Abstract. In this paper we examine the first working implementation
of a fully homomorphic scheme from C.Gentry and S.Halevi. We imple-
mented the ciphertext-only attack from [2] using the NTL library and
show that only dimensions up to 128 are feasible for common compu-
tational power. We propose also two improvements of this attack that
enable us to use the fastest variant of LLL from NTL and compare the
results.

1 Introduction

The area of homomorphic cryptosystems is one of the most focused topics in
cryptography. The first reason behind this is their wide application scope. How-
ever, main interest was caused by Gentry’s work [6], [7], where he introduced the
idea of the first working fully homomorphic cryptosystem. Subsequent works in
this area were either instantiantions of his idea [19], [5], [1], [8], improvements
[20],[4] or cryptanalysis [11], [16], [2].

Our Contribution. The goal of this paper is to examine the somewhat homomor-
phic scheme from [8] and implement the attack introduced in [2]. The cryptanal-
ysis in [2] concludes that the Gentry’s cryptosystem is not secure for dimensions
up to 8192, but we show that the proposed attack is not practical for dimen-
sions higher than 256. We also propose two improvements of the attack that
significantly reduce the running time for dimensions up to 128.

Related Work. A similar attack on Gentry’s scheme using the lattice reduction
algorithms was described in [16]. Its goal, however, was to recover the secret key
and the attack used only standard LLL and BKZ algorithms for the reduction.
The attack was also successful for dimensions up to 128.

� This work was supported by the grant APVV-0586-11.

A. Kučera et al. (Eds.): MEMICS 2012, LNCS 7721, pp. 168–179, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

COA on Gentry-Halevi Implementation of SHS 169

2 Preliminaries

In this paper we consider vectors b1, b2, b3 as rows and matrices as columns of the
corresponding vectors B = (b1, b2, b3)

T . By ‖b‖ we denote the usual Euclidean
norm of a vector b.

For any a, b ∈ Z, [a]b denotes the reduction modulo b mapped into the interval
[−b/2, b/2). For example 8 mod 3 = 2, but [8]3 = −1. For any real number x ∈ R,
the rounding of x to the nearest integer is denoted by �x�. The number 1/2 is
rounded up. These notations are naturally generalized to vectors and matrices:
for a vector v the expression �v� denotes the rounding operation applied to every
coefficient of v.

2.1 Homomorphic Cryptosystems

A cryptosystem is called homomorphic if it provides a way how to perform
some computations on the plaintexts using only the corresponding ciphertexts.
This computations can involve addition or multiplication or both. Formally,
homomorphic cryptosystem was defined in [14] as follows:

Definition 1. [14] Let the message space (M, ◦) be a finite (semi-)group and let
σ be the security parameter. A homomorphic public-key encryption scheme (or
homomorphic cryptosystem) on M is a quadruple (K,E,D,A) of probabilistic,
expected polynomial time algorithms, satisfying:

Key generation: On input1 1σ algorithm K outputs an encryption/decryption
key pair k = (ke, kd) ∈ K where K denotes the key space.

Encryption: On inputs 1σ, ke and m ∈M the encryption algorithm E outputs
a ciphertext c ∈ C where C denotes the ciphertext space.

Decryption: The decryption algorithm D is deterministic. On inputs 1σ, k and
c ∈ C it outputs m ∈M so that:

∀m ∈M : if c = E(1σ, ke,m) then P [D(1σ, k, c) �= m] is negligible.

Homomorphic property: A is an algorithm that on inputs 1σ, ke and elements
c1, c2 ∈ C outputs an element c3 ∈ C so that

∀m1,m2 ∈M : if m3 = m1 ◦m2 and c1 = E(1σ, ke,m1) and c2 = E(1σ, ke,m2)
then P [D(1σ, k, c3) �= m3] is negligible.

The operation ◦ defined in the plaintext space M is addition or multiplication
in practice. Then the homomorphic cryptosystem is called additively, resp. mul-
tiplicatively homomorphic and we denote the homomorphic algorithms A+ and
A× respectively.

1 The notation 1σ has pure formal purpose, since the running time of algorithm is
derived from the length of the input.

170 M. Mikuš and M. Sýs

Definition 2. A tuple (K,E,D,A+, A×) of probabilistic, expected polynomial
time algorithms is called fully (or algebraically) homomorphic cryptosystem,
(K,E,D,A+) is additively homomorphic and quadruple (K,E,D,A×) is multi-
plicatively homomorphic cryptosystem.

The first proposal of a fully homomorphic cryptosystemwas published by C.Gentry
in [6]. Gentry’s new idea was to construct first a ”somewhat homomorphic cryp-
tosystem” (SHS), that can support both additions and multiplications, but only
a limited number of them. Gemtry further showed how to use the SHS to con-
struct a fully homomorphic scheme (FHS), that can support unlimited number
of additions and multiplications. This construction of FHS from SHS is called
bootstrapping.

The basic idea of such a somewhat homomorphic scheme was described in
[6]. The scheme was based on ideal lattices2 with the implementation details
omitted. In [8] the first working implementation of SHS was described.

We describe the basic idea of the scheme first. The somewhat homomorphic
scheme is a lattice based cryptosystem described in [9]. The underlying structure
is a lattice L over integers, the secret key is a ”near orthogonal” basis Bs of L and
the public key is the Hermite normal form of the secret basis Bp = HNF (Bs).
The encryption procedure encodes the message into a small error vector, picks
a random vector of the lattice and outputs the sum of these two vectors as the
ciphertext. The decryption algorithm then finds the closest lattice vector to the
ciphertext, computes the error vector and outputs the message. The success of
the decryption procedure is based on the orthogonality of the secret basis and on
the fact, that the error vector is small enough. To be precise we define rdec as the
radius of the largest n-dimensional ball that can be fitted to the parallelepiped
P(Bs) (n is the dimension of the lattice). When the error vector is smaller than
rdec, then the ciphertext can be simply mapped to the parallelepiped P(Bs) and
its coefficients rounded to zero.

It can be easily seen that sum of two ciphertexts c1, c2 produces again a
ciphertext c3, whose error vector e3 is the sum of the two corresponding error
vectors. When the new error e3 is still smaller than rdec, then the decryption will
output the message m3 corresponding to e3. The multiplication of two lattice
points is not defined, so the authors extended this lattice based scheme to the
ideal lattices and defined multiplication naturally in the corresponding ring.

In the followingwedescribe theproposedSHS.Theplaintext-space of the scheme
is P = {0, 1}, the parameters of the SHS are integersN , t, whereN is some power
of two and t represents the bitlength of the underlying polynomial v(x). The se-
cret and public keys should be two bases of the same N -dimensional lattice, but
authors showed how to effectively represent these bases. The public key consists
of two numbers d and r and the secret key is a single number wi. The bitlength of
these numbers is approxN · t. The ciphertext-space is the ring Zd.

2 The notion ”ideal lattice” means simply some ideal I of some ringZ[x]/(f(x)), for suit-
able polynomial f(x) of degreen. As everymember of the ideal is a fixed-degree polyno-
mial, it can be represented by its vector of coefficients. In this way it represents a point
in the vector space Zn and all members of the ideal I represent some discrete lattice.

COA on Gentry-Halevi Implementation of SHS 171

Authors recommend a small, medium and large parameter settings (with N =
2048, N = 8192 and N = 32768 respectively and a common choice t = 380),
but in this paper we focus only on the toy versions of the system with N ∈
{64, 128, 256} and t ∈ {64, 96, 128}. The basic algorithms of the scheme are:

Keygen(N, t)

1. set f(x) = xN + 1
2. choose a random polynomial v(x) of degree (N −1), with a t-bit coefficients,

s.t. v(x) and f(x) have a single root r in common
3. compute w(x) s.t. w(x)v(x) ≡ d mod f(x), where d = resultant(f(x), v(x))
4. output PK = (N, t, d, r) and SK = (wi0), where wi0 ≡ 1 mod 2 is some

coefficient of w(x)

Authors also provided an effective algorithm that implemented the computation
of w(x) in the third step and a way how to check the common root of the random
v(x) and f(x). We omit the technical details here.

Encrypt(PK,m, q)

1. choose random u(x) ∈ Z[x] of degree (N−1) where ui = ±1 with probability
(1− q) and ui = 0 with probability q

2. set c(x) = m+ 2 · u(x)
3. output c = [c(r)]d

The input parameter q ∈ (0, 1) of the encryption procedure controls the mapping
of the message m ∈ P to the error polynomial u(x). The recommended value
of this parameter is q = 1− 20/N , so that approximately 20 coefficients will be
±1 and the rest zero. This ensures that the initial error vector is small and the
scheme can support a higher number of additions and multiplications.

Decrypt(SK, c)

1. m = [c · wi0]d
2. output m mod 2

This simple computation of the first step represents the mapping of the cipher-
text vector (c, 0, . . . , 0) to the initial parallelepiped P(Bs) and the second step
extraction of the message from the error vector. The detailed proof can be seen
in [8].

Add(c1, c2, d)

1. c = c1 + c2
2. output [c]d

Multiply(c1, c2, d)

1. c = c1 · c2
2. output [c]d

172 M. Mikuš and M. Sýs

3 Ciphertext-Only Attack on SHS

In this section we describe our ciphertext-only attack on Gentry’s somewhat
homomorphic scheme. The somewhat homomorphic scheme is based on discrete
lattices [13]. We explain the necessary notions also in appendix A.

3.1 Gu’s Attack

The attack described in [2] is based on the observation that the encryption al-
gorithm can be rewritten as c = m + 2

∑
uir

i + k · d for some integer k. The
attack is a standard search for an integer combination using a lattice reduction
algorithm. The plaintext m, coefficients ui ∈ {−1, 0, 1} and k are the only un-
knowns in the encryption equation. Since the public key contains r, the attacker
knows ri for every i and needs to find ”only” an integer combination3 of c, d,
2 · ri that sums to 0 or 1 (i.e., the plaintext).

The attack from [2] used the following (N + 1)× (N + 2) matrix:⎛
⎜⎜⎜⎜⎜⎜⎜⎝

c 1 0 0 . . . 0
α1 0 1 0 . . . 0
α2 0 0 1 . . . 0
... 0

. . . 0
αN−1 0 0 0 . . . 0
d 0 0 0 . . . 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where αi = [2 · ri]d.
The rows of the matrix form a basis of some lattice L. It can be shown that

vector a = (m, 1, u1, . . . , uN−1, k) belongs to the lattice. Further m ∈ {0, 1},
ui ∈ {−1, 0, 1} (where approximately 20 coefficients ui are nonzero) and k ∈ N
is symmetrically distributed around 0 with maximal value of 20. The vector
a is therefore very short when compared to the initial vectors of the lattice.
Moreover, its length is much smaller than the theoretical bound that is proved
for both LLL and BKZ algorithms. Therefore, there is a non-zero probability
that the LLL algorithm finds this vector and assuming that a is actually the
shortest vector of the lattice, the probability is known to be quite high for small
dimensions.

The paper [2] omitted any practical results and simply concluded that the
Gentry’s system is insecure up to N = 8192.

3.2 Our Approach

For our attack, we use an (N + 1)× (N + 1) matrix:

3 The situation is essentially the same as in the knapsack cryptosystem.

COA on Gentry-Halevi Implementation of SHS 173

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

c 0 0 . . . 0
α1 1 0 . . . 0
α2 0 1 . . . 0
...

. . . 0
αN−1 0 0 . . . 0
d 0 0 . . . 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where αi = [2·ri]d. It can be seen thatB can be obtained from the one used by Gu
by omission of the second column. As the special vector a = (m,u1, . . . , uN−1, k)
is in the lattice generated by the matrix, this modification does not affect the
performance of the attack.

The idea of the attack is the same as in [2], to find the vector a by employing
reduction algorithms. The success of any reduction algorithm depends on how
many short vectors other than a are within the proved bounds of the algorithm
(1.02n · det(L)1/n for the LLL algorithm). The number of such short vectors is
generally unknown, so we tested various algorithms and their settings.

Our experiments are based on the widely established NTL library [15] which
offers optimized versions of both BKZ and LLL algorithms. As the LLL algorithm
is faster4 than BKZ and we still expect the LLL algorithm to find the vector a
we will use only the LLL algorithm in our experiments.

Experiment setting. We generated nine instances of the cryptosystem for three
”toy” dimensions 64, 128 and 256 with t ∈ {64, 96, 128}. For each instance
of the cryptosystem we generated several PT-CT pairs along with the private
encryption data u(x). The coefficients of the polynomial u(x) will be used for a
correctness check of the reduced vector b1. The attack scenario is following:

– generate matrix B from public parameters and ciphertext (the first column
entries have 4000 – 33000 bitlength)

– reduce B with a reduction algorithm
– check the correctness of the first vector of the reduced matrix

It should be noted that the bitlength of numbers in the first column is propor-
tional to N · t and that the determinant of the lattice is equal to the ciphertext
c ≈ 2N ·t.

We say that the attack is successful when the first vector of the reduced matrix
b1 contains all the coefficients of u(x) and that the attack fails otherwise. We
check also the case when the vector b1 contains all negated coefficients of u(x)
(multiplied by −1). We didn’t base the evaluation of the success rate on the
computed plaintexts, because the plaintext space is {0, 1} and thus the correct
plaintext is still obtained in approximately half of the failed attempts.

Standard LLL Attack. At first we tested the standard LLL algorithm for the
reduction. As expected, the LLL was successful but slow: the dimension N = 64

4 The BKZ is expected to output bases of better quality, i.e. shorter and more orthog-
onal vectors.

174 M. Mikuš and M. Sýs

and t = 64 had success rate 16/16 and average running time 5200 seconds ≈ 1.44
hours on a standard desktop computer (2.6GHz Intel processor, 4GB RAM). A
single attack in the dimension N = 128 and t = 64 took about 160 000 seconds
≈ 44 hours (with success). The expected running time for dimension 256 is about
55 days on our desktop computer. For a comparison this attack on dimension
256 was also successfully performed by Gu with running time of 22 days in their
supercomputing center [3].

Floating Point Versions. To reduce the running time of the LLL algorithm we
tested the floating point variants of LLL from the NTL library, namely LLL_XD

and LLL_FP versions. These two variants differ only in the used precision. The
LLL_FP is faster, but can cause some round-off errors and overflows and accepts
only numbers up to 500 bits as an input. The LLL_XD version works for large
numbers (more than 20000 bitlength) and was chosen as a trade-off between the
precise LLL algorithm and the fast LLL_FP variant.

1. LLL_FP_cut: because the bitlength of the initial matrix coefficients was too
long even for our small experiments, we further simplified the FP-attack.
The first idea is to shorten each vector of the initial matrix by the same
factor and let the algorithm find the shortest vector in the modified lattice.
If the shortening could be done with exact precision, we would of course
obtain the same shortest vector in the modified lattice (divided by the same
factor as every vector in the basis). However, this would not shorten the
bitlength of the numbers in the matrix. Therefore, we cut-off the (lmax−500)
least significant digits of each number in the first column, where lmax is the
maximal bitlength in the matrix and we hope that the error introduced by
the cutting would not be too large. We denote this variant as LLL_FP_cut
attack and we expect it to have the lowest success rate.

2. LLL_FP_block: the second idea is to split the large numbers in the first col-
umn into several blocks of 500 bits and modify the lattice so that the shortest
vector in the modified lattice corresponds to the shortest vector of the orig-
inal one. We believe that this idea is new to the area of lattice reduction
and our results will inspire further ideas and more effective algorithms. We
illustrate this idea of splitting large numbers on the following example.

Example 1. For simplicity assume, that the bitlength of the matrix entries
varies between 1200 and 1400, so we split the numbers into 3 blocks. We
obtain this (N + 3)× (N + 3) matrix:⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c1 c2 c3 0 0 . . . 0
α1,1 α1,2 α1,3 1 0 . . . 0
α2,1 α1,2 α2,3 0 1 . . . 0
...

...
...

. . . 0
αN−1,1 αN−1,2 αN−1,3 0 0 . . . 0

d1 d2 d3 0 0 . . . 1
−1 2500 0 0 0 . . . 0
0 −1 2500 0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

COA on Gentry-Halevi Implementation of SHS 175

The last two vectors in the matrix can be used to compensate the carry
between blocks i and i + 1. Let c1 be the most significant block of the
number c. It can be shown that the linear combination of vectors selected by
the coefficients of u(x) results into a vector a′ = (0, 0,m, u1, u2, . . . , uN−1, k)
in this modified matrix and therefore this vector can be found by the LLL_FP
algorithm.

We call this modification a LLL_FP_block variant and we expect it to have
lower running time than the LLL_XD algorithm.

3.3 Results

In this section we display the obtained results. We categorize the results by the
dimension, as it has the biggest impact on the running time. We begin with the
dimension N = 64:

dimension bitlength t reduction method avg.time(s) success rate
64 64 LLL XD 49 30/30
64 96 LLL XD 100 30/30
64 128 LLL XD 172 30/30
64 64 LLL FP block 24 16/30
64 96 LLL FP block 50 16/30
64 128 LLL FP block 88 17/30
64 64 LLL FP cut 0.5 30/30
64 96 LLL FP cut 0.5 30/30
64 128 LLL FP cut 0.5 30/30

We can see that the methods fulfilled the expectations in the running times.
The LLL_XD is 100× faster than the precise LLL algorithm and the LLL_FP_cut
variant is even 100× faster than the XD algorithm. The LLL_FP_block variant
is only two times faster than LLL_XD, this may stem from the slightly increased
dimension of the matrix.

The success rate was determined from 30 attempts with different ciphertexts.
Both LLL_XD and LLL_FP_cut have a 100% success rate. This is surprising in
the case of LLL_FP_cut method, we conclude that the computation of the LLL
algorithm hadn’t too many steps and the error didn’t grow too big during the
execution of the algorithm. We note that the time for LLL_FP_cut method is
constant for various t, because the matrix entries are cut to a constant length of
500.

The LLL_FP_blockmethod has a success rate only little over 50% and further
examination of the obtained results showed that in the cases of failure a com-
pletely different vector were found. These vectors were small enough to satisfy
the theoretical expectation, but bigger than the desired vector a. We speculate
that this is the case when the reduction algorithm doesn’t output the shortest
vector.

176 M. Mikuš and M. Sýs

Next we display the results for dimension N = 128, the success rate was de-
termined from 20 (resp. 12 for the largest setting) attempts:

dimension bitlength t reduction method avg.time(s) success rate
128 64 LLL XD 1580 20/20
128 96 LLL XD 3800 20/20
128 128 LLL XD 7800 12/12
128 64 LLL FP block 515 9/20
128 96 LLL FP block 1090 9/20
128 128 LLL FP block 1980 10/20
128 64 LLL FP cut 4.2 3/20
128 96 LLL FP cut 4.2 3/20
128 128 LLL FP cut 4.2 3/20

The results show the expected increase in the average time for the LLL_XD

method. The success rate is still 100%.
More interesting are the results for the LLL_FP_block variant. The running

time compared to the XD variant is three times shorter, which is improvement
from the case N = 64. The success rate is still about 50%.

The LLL_FP_cutmethod has the lowest running time, only 8 times slower than
in the dimension N = 64 and still has a non-zero probability of finding a correct
solution. This makes it the best candidate for a parallel attack in the dimension
N = 128: we can generate K permutations of the original basis vectors, try to
solve each problem separately and see, if we get a solution. It is known that the
LLL algorithm (and its variants) behaves differently on a permutation of the
input vectors. Under the assumption that each run of the LLL algorithm on a
permutation of the basis vectors is independent from the previous, the success
rate is expected to be 1 − (17/20)K for dimension N = 128, with an overall
running time of 4 seconds.

We don’t display the results for dimension N = 256, because both the float-
ing point versions LLL_XD and LLL_FP_block failed to reduce even the lowest
setting (with t = 64). The error messages indicate that a too low precision was
selected and the algorithm ended in an infinite loop. We conclude that for higher
dimensions a slower and more precise algorithm has to be created. The attack
with LLL_FP_cut method finished in 30 seconds, but the success rate was zero.

4 Conclusions and Open Questions

We presented practical results of a ciphertext-only attack on a somewhat homo-
morphic scheme of Gentry-Halevi. The attack was inspired by the paper [2]. Since
the average running times were obtained from a standard desktop computer, we
use them only to compare the effectiveness of the proposed variants. We showed
that the two modifications of the general attack(LLL_FP_cut and LLL_FP_block)
considerably improved the attack statistics for the toy dimensions 64 and 128.

The modifications that reduce the running time at the expense of a lower
success rate can be further combined with parallelization techniques. These ideas

COA on Gentry-Halevi Implementation of SHS 177

can be also applied to another variant of the LLL algorithm and we believe that
this kind of attack can be successful also for higher dimensions.

A Discrete Lattices

Definition 3. Let n,m ∈ N, n ≤ m, further let b1, . . . , bn ∈ Rm be n linearly
independent vectors and B = (b1, . . . , bn)

T a corresponding matrix. Then lattice
L spanned by these vectors is defined as

L = L(B) =

{
n∑

i=1

xibi : xi ∈ Z

}
,

and we say that the lattice L has dimension n and basis B.

A lattice can have more that one basis. For any two bases B1 and B2 of the same
lattice holds that B1 = U1 ·B2 and B2 = U2 ·B1 for some integer matrices U1, U2.
From these equations follows that det(B1) = det(U1)·det(B2) = det(U1)·det(U2)·
det(B1) and since det(Ui) ∈ Z, then det(Ui) = ±1 and therefore |det(B1)| =
|det(B2)|. The determinant of lattice L(B) is defined as

√
det(BBT). If for a

lattice L n = m then we say L is full-rank lattice and det(L) = |det(B)| for any
basis B of L.
Definition 4. Let L be a lattice and B some basis. Then a basic parallelepiped
of the basis B is defined as

P(B) =

{
n∑

i=1

xibi : xi ∈ 〈−1/2, 1/2)
}
.

The volume of the basic parallelepiped corresponds to the determinant of the
lattice. Although the volume of P(B) is invariant for any basis, the geometrical
shape of P(B) depends on the basis.

For any full-rank lattice L holds that the lattice tiles the vector space Rn

into parallelepipeds of the same shape that are only transitions of the basic
parallelepiped by some lattice vector. This tiling induces mapping that maps
arbitrary x ∈ Rn into the basic parallelepiped of L by addition of some lattice
vector. For any point x ∈ Rn and for any full-rank lattice L with a basis B
it is easy to compute the image of x in the basic parallelepiped P(B), x′ =
x−B · �B−1 · x�. This x′ is unique and it is usually denoted by x mod B.

For a lattice L, the most interesting vector from cryptanalytic point of view
is the shortest nonzero vector of L5, denoted as λ1(L).

The problem of finding the shortest vector (SVP) of an arbitrary lattice is
known6 to be NP-hard [12].

There are two approximation versions of the SVP where the goal is to find a
vector v ∈ L such that:
5 Because it usually represents a solution to some cryptosystem, e.g. secret key or
plaintext message.

6 It was first conjectured to be NP-hard in 1981 by van Emde Boas, but remained
open problem for 20 years.

178 M. Mikuš and M. Sýs

– ‖v‖ ≤ γλ1(L), where γ is some approximation factor. This problem is de-
noted as γ-SVP

– ‖v‖ ≤ γdet(L)1/n, γ is again some approximation factor. This problem is
called an Hermite-SVP and it is commonly used when the length of the
shortest vector is not known.

Both these approximation problems were successfully solved in [10] with the
famous LLL algorithm. The LLL algorithm returns a reduced basis of a lattice,
where ‖bi‖ ≤ ‖bi+1‖ for every i. The LLL algorithm is also used for finding
the shortest vector and for it was showed that ‖b1‖ ≤ 1.02n · det(L)1/n, so
the LLL algorithm solves the Hermite-SVP with approximation factors that are
exponential in the lattice dimension. The running time of the LLL algorithm is
O(m5n log3(B∗)), where n is the dimension of the lattice and m is the dimension
of each vector and B∗ is the maximum of the Euclidean norm of the input vectors
bi.

Later [18] was developed the Block-Korkin-Zolotarev (BKZ) algorithm that
is a blockwise variant of the LLL algorithm and is currently known as best
algorithm for lattice reduction. The running time of BKZ is greater than of
LLL, but it generally outputs better basis, i.e. shorter and more orthogonal basis
vectors. BKZ has an additional parameter β – the blocksize and it is shown [17]

that ‖b1‖ ≤ (γβ)
n−1
β−1 , where γβ is the Hermite constant for dimension β. Higher

blocksize β leads to shorter basis vectors, but it also increases the running time
of the algorithm.

References

1. Gu, C.: New Fully Homomorphic Encryption over the Integers. Cryptology ePrint
Archive, Report 2011/118, (September 21, 2011),
http://eprint.iacr.org/2011/118

2. Gu, C.: Cryptanalysis of the Smart-Vercauteren and Gentry-Halevis Fully Homo-
morphic Encryption. IACR Cryptology ePrint Archive 2011: 328 (2011)

3. Gu, C.: Personal Communication (2012)
4. Coron, J.S., Naccache, D., Tibouchi, M.: Public Key Compression and Modulus

Switching for Fully Homomorphic Encryption over the Integers. Cryptology ePrint
Archive, Report 2011/440 (2011), http://eprint.iacr.org/2011/440 (July 29,
2012)

5. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully Homomorphic
Encryption over the Integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 24–43. Springer, Heidelberg (2010)

6. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings
of the 41st Annual ACM Symposium on Theory of Computing (STOC 2009),
Bethesda, USA, pp. 169–178 (2009)

7. Gentry, C.: A fully homomorphic encryption scheme. Dissertation Thesis, Stanford
University (September 2009)

8. Gentry, C., Halevi, S.: Implementing Gentry’s Fully-Homomorphic Encryp-
tion Scheme. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632,
pp. 129–148. Springer, Heidelberg (2011)

http://eprint.iacr.org/2011/118
 http://eprint.iacr.org/2011/440

COA on Gentry-Halevi Implementation of SHS 179

9. Goldreich, O., Goldwasser, S., Halevi, S.: Public-Key Cryptosystems from Lattice
Reduction Problems. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294,
pp. 112–131. Springer, Heidelberg (1997)

10. Lenstra, A., Lenstra, H., Lovasz, L.: Factoring polynomials with rational coeffi-
cients. Mathematische Annalen 4, 515–534 (1982)

11. Loftus, C., May, A., Smart, N.P., Vercauteren, F.: On CCA-Secure Fully Ho-
momorphic Encryption. Cryptology ePrint Archive, Report 2010/560 (2010),
http://eprint.iacr.org/2010/560 (September 21, 2011)

12. Micciancio, D.: The shortest vector problem is NP-hard to approximate to within
some constant. SIAM Journal on Computing 30(6), 2008–2035 (2001)

13. Nguyen, P.Q., Valée, B.: LLL algorithm, Survey and Applications. Springer (2010)
14. Rappe, D.K.: Homomorphic cryptosystems and their applications. PhD Thesis,

University of Dortmund, Dortmund, Germany (2004)
15. Shoup, V.: A library for doing Number Theory, v.5.5.2. New York University, New

York (July, 29, 2012), http://shoup.net/ntl/
16. Schmidt, P.: Fully Homomorphic Encryption - Overview and Cryptanalysis.

Diploma Thesis, University of Dortmund, Dortmund, Germany (2011)
17. Schnorr, C.P.: Block reduced lattice bases and successive minima. Combinatorics,

Probability & Computing 3, 507–552 (1994)
18. Schnorr, C.P., Euchner, M.: Lattice basis reduction: Improved practical algorithms

and solving subset sum problems. Mathematical Programming 66, 181–199 (1994)
19. Smart, N.P.,Vercauteren, F.: Fully Homomorphic Encryption with Relatively Small

Key and Ciphertext Sizes. Cryptology ePrint Archive, Report 2009/571 (2009),
http://eprint.iacr.org/2009/571 (September 21, 2011)

20. Stehlé, D., Steinfeld, R.: Faster Fully Homomorphic Encryption. In: Abe, M. (ed.)
ASIACRYPT 2010. LNCS, vol. 6477, pp. 377–394. Springer, Heidelberg (2010)

http://eprint.iacr.org/2010/560
http://shoup.net/ntl/
http://eprint.iacr.org/2009/571

Grover’s Algorithm with Errors

Andris Ambainis, Artūrs Bačkurs, Nikolajs Nahimovs, and Alexander Rivosh�

Faculty of Computing, University of Latvia, Raina bulv. 19, Riga, LV-1586, Latvia

Abstract. Grover’s algorithm is a quantum search algorithm solving
the unstructured search problem of size n in O(

√
n) queries, while any

classical algorithm needs O(n) queries [3].
However, if query has some small probability of failing (reporting that

none of the elements are marked), then quantum speed-up disappears:
no quantum algorithm can be faster than a classical exhaustive search
by more than a constant factor [8].

We study the behaviour of Grover’s algorithm in the model there
query may report some marked elements as unmarked (each marked
element has its own error probability, independent of other marked ele-
ments).

We analyse the limiting behaviour of Grover’s algorithm for a large
number of steps and prove the existence of limiting state ρlim. Interest-
ingly, the limiting state is independent of error probabilities of individual
marked elements. If we measure ρlim, the probability of getting one of
the marked states i1, . . . , ik is k

k+1
. We show that convergence time is

O(n).

1 Introduction

Grover’s algorithm is a quantum search algorithm solving the unstructured
search problem. The algorithm works in the following model. We have an un-
structured search space of n elements in which some elements have a certain
property. We call these elements marked. We are given a procedure (an oracle)
for checking whether an element is marked. This procedure is given as a black
box that answers queries. It receives i and answers whether the ith element is
marked. In the quantum case, the algorithm is allowed to input superposition
consisting of multiple i.

Grover’s algorithm solves the unstructured search problem in O(
√
n) queries.

It is known that any deterministic or randomized algorithm needs linear time
(number of queries) to solve the above problem. Thus, Grover’s algorithm pro-
vides a significant speed-up over any classical algorithm.

There has been a number of papers studying Grover’s algorithm in the pres-
ence of errors of various forms. Regev and Schiff have shown [8] that if query
has some small probability of failing (reporting that none of the elements are

� AA, NN and AR are supported by the European Social Fund within the project
2009/0216/1DP/1.1.1.2.0/09/APIA/VIAA/044. AB is supported by FP7 FET-
Open project QCS.

A. Kučera et al. (Eds.): MEMICS 2012, LNCS 7721, pp. 180–189, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Grover’s Algorithm with Errors 181

marked), then quantum speed-up disappears: no quantum algorithm can be
faster than a classical exhaustive search by more than a constant factor.

In this paper we study the behaviour of Grover’s algorithm in the model there
query may report some marked elements as unmarked. In our case each marked
element has its own probability of failing, independent of other marked elements.
We assume that faults are one-sided. That is, if the ith element is not marked,
the black box always answers that it is not marked. If the ith element is marked,
the black box may give the correct answer (with probability 1−pi) or mistakenly
answer that the element is not marked (with probability pi).

Given the importance of Grover’s algorithm, we think that it is interesting to
find out what exactly happens if we run Grover’s algorithm in this model.

Let k be the number of marked elements. We show that if Grover’s algorithm
is run for a large number of steps, then the state of the algorithm converges to a
mixed state that is a mixture of |i〉 for each marked i with probability 1

k+1 each

and the uniform superposition of all non-marked elements with probability 1
k+1 .

Surprisingly, the final state is independent of the error probabilities of different
marked elements. Initially, the probabilities of finding the elements with higher
probabilities of correct answer grow faster but, in the limit for a large number of
steps the probabilities of finding all elements i converge to the same value 1

k+1 .
We also quantify the speed of convergence: it happens in O(n) steps. This

matches the lower bound of [8]1.

Related Work. The work of Regev and Schiff [8] mentioned above is the paper
that is most closely related to our work.

Several authors [5,9,10] have studied the effect of random imperfections in
either diffusion transformation or black box query on the performance of Grover’s
algorithm, showing that such type of noise can completely destroy the advantage
of Grover’s algorithm over classical exhaustive search. The difference between
their work and our work is that they consider small random imperfections that
occur in every step of the algorithm while we consider the case there query
is performed correctly for some marked elements and not performed at all for
others.

Buhrman et al. [2] have looked at a coherent noise model in which the algo-
rithm has access to a set of unitary procedures Ai that check whether the ith

element is marked and have some probability of error. The algorithm is allowed
to run both Ai and A−1

i multiple times. This model is sufficiently general to
enable a fault-tolerant computation and allows to simulate any noise-free quan-
tum algorithm that makes T queries by a noisy algorithm that makes O(T logT)
queries. In some cases, a constant overhead instead of a logarithmic one is suffi-
cient. The difference between coherent noise and our models is that in coherent
noise model the state after query is still a pure state, while in our model query
leads to a mixes state.

1 Technically, the lower bound of [8] is for a slightly different model but the difference
between the models is not important in this case.

182 A. Ambainis et al.

2 Technical Preliminaries

We use the standard notions of quantum states, density matrices, etc., as de-
scribed in [6] or [7].
Grover’s algorithm[3]

Suppose we have an unstructured search space of size n. Grover’s algorithm
starts with a starting state |ψstart〉 = 1√

n

∑n
i=1 |i〉. Each step of the algorithm

consists of two transformations: Q and D. Here, Q is a query to a black box
defined by

– Q|i〉 = −|i〉 if i is a marked element;
– Q|i〉 = |i〉 if i is not a marked element.

D is the diffusion transformation described by the following n× n matrix:

D =

⎛
⎜⎜⎝
−1 + 2

n
2
n . . . 2

n
2
n −1 + 2

n . . . 2
n

.
2
n

2
n . . . −1 + 2

n

⎞
⎟⎟⎠ .

We refer to |ψt〉 = (DQ)t|ψstart〉 as the state of Grover’s algorithm after t time
steps.

Grover’s algorithm has been analysed in detail and many facts about it are
known [1]. If there is one marked element i, the probability of finding it by
measuring |ψt〉 reaches 1− o(1) for t = O(

√
n). If there are k marked elements,

the probability of finding one of them by measuring |ψt〉 reaches 1 − o(1) for
t = O(

√
n/k).

Frobenius norm[4]
Let ρ = (ρij) be an n× n matrix. The Frobenius norm (also called Euclidean

norm or l2-norm) of ρ is defined as

‖ρ‖F =

√√√√ n∑
i=1

n∑
j=1

|ρij |2.

Frobenius norm is unitarily invariant: if U unitary, then ‖Uρ‖F = ‖ρ‖F = ‖ρU‖F
[4, chapter 5.6]. Also, ‖ρ‖F ≥ 0 and ‖ρ1 + ρ2‖ ≤ ‖ρ1‖+ ‖ρ2‖, as for any matrix
or vector norm.

3 Grover’s Algorithm with Errors

We assume that a search space of size n contains k marked elements i1, i2, . . . , ik.
In each step, instead of the correct query Q, we apply a faulty query (faulty
oracle) Q′ defined as follows:

– Q′|ij〉 = |ij〉 with probability pj ;
– Q′|ij〉 = −|ij〉 with probability 1− pj ;
– Q′|i〉 = |i〉 if i is not a marked element.

Grover’s Algorithm with Errors 183

For different elements ij , faults occur independently one from another. Also, for
different steps faults are independent.

We show

Theorem 1. Let ρt be the density matrix of state of Grover’s algorithm with a
faulty oracle after t queries. Then, the sequence ρ1, ρ2, . . . converges to

ρlim =
1

k + 1

k∑
j=1

|ij〉〈ij |+
1

k + 1
|φ〉〈φ|

where |φ〉 = 1√
n−k

∑
i�=ij

|i〉 is the uniform superposition over all non-marked i.

If we measure ρlim, the probability of getting one of the marked states i1, . . . , ik
is k

k+1 . Interestingly, the final state is independent of the error probabilities
p1, . . . , pk. Initially the probabilities of finding the elements with higher proba-
bilities of correct answer grow faster but, in the limit for a large number of steps,
the probabilities of finding all elements ij converge to the same value 1

k+1 .
The next result quantifies the speed of convergence to the limiting state ρlim.

Theorem 2. Assume that errors occur with the same probability p1 = . . . =
pk = p for all marked elements. Then, for every ε > 0, there exists t = O(n) such
that if we run Grover’s algorithm with a faulty oracle for t steps and measure the
result, we get one of the marked elements with probability in [k

k+1 − ε, k
k+1 + ε].

4 Limiting Behaviour of Grover’s Algorithm with Errors

In this section we will study limiting behaviour of Grover’s algorithm with errors
for large number of steps and will prove the Theorem 1.

Consider the density matrix ρt of the quantum state of Grover’s algorithm
after t queries. Due to symmetry, we can assume that the first k basis states
correspond to the marked elements. Note that Grover’s algorithm acts in the
same way on all unmarked elements. Therefore, the state of the algorithm is a
probabilistic mixture of pure states of the form

α1|1〉+ . . .+ αk|k〉+
n∑

i=k+1

β|i〉, (1)

with the amplitudes of all unmarked states being equal. The density matrix ρt,
then, takes the form

ρt =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 b1,2 b1,3 . . . c1 . . . c1

b1,2 a2 b2,3 . . .
...
. . .

...

b1,3 b2,3 a3 . . .
...
. . .

...
...

...
...

. . . ck . . . ck
c1 ck d . . . d
...

. . .
. . .

...
...
. . .

...
c1 ck d . . . d

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

184 A. Ambainis et al.

because the density matrix for every pure state (1) in the mixture ρt is of this
form.

Let pi be the error probability for the ith marked element. The effect of the
faulty query Q′ on the density matrix ρt is:

ai �→ ai
bi,j �→ (2pi − 1)(2pj − 1)bi,j
ci �→ (2pi − 1)ci
d �→ d

. (2)

Let us prove bi,j �→ (2pi − 1)(2pj − 1)bi,j . Consider the corresponding entry
(Q′ρtQ′)ij of the density matrix, after the faulty query Q′ is applied. If Q′

changes the sign of either |i〉 or |j〉, the entry is equal to −bij . This happens
with probability pi(1 − pj) + pj(1 − pi). If Q

′ changes the sign of both |i〉 and
|j〉 or none of them, the entry is equal to bij . This happens with probability
pipj + (1 − pi)(1 − pj). Hence,

(Q′ρtQ′)ij = −bij(pi(1− pj) + pj(1− pi)) + bij(pipj + (1− pi)(1− pj)) =

= (1− 2pi)(1 − 2pj)bij .

Similarly, we can prove that ci �→ (2pi − 1)ci, ai �→ ai and d �→ d.
Consider the Frobenius norm of the density matrix. If we multiply the density

matrix by the unitary diffusion matrix, its Frobenius norm does not change. Since
the faulty query transformation decreases the Frobenius norm (if 0 < pi < 1)
and the Frobenius norm takes non-negative values, the limt→∞ ‖ρt‖ = C exists.

If limt→∞ bi,j �= 0 we obtain a contradiction, because the Frobenius norm
decreases infinitely. Analogously, we can prove that limt→∞ ci = 0.

Let us prove limt→∞(ai − aj) = 0 for each i �= j. Assume it is not true, i.e.
there exist i �= j and δ > 0 so that |ai − aj | > δ for infinitely many t. Consider
t′ so that for all t > t′ and all m, l inequalities bm,l < ε and cm < ε hold. After
right multiplying the density matrix by the diffusion matrix

ρtD =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 . . . O(ε) O(ε) . . . O(ε)
...

. . .
...

...
. . .

...

O(ε) . . . ak O(ε)
. . . O(ε)

O(ε) . . . O(ε) d . . . d
...

. . .
...

...
. . .

...
O(ε) . . . O(ε) d . . . d

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣
−1 + 2

n
2
n . . . 2

n
2
n −1 + 2

n . . . 2
n

.
2
n

2
n . . . −1 + 2

n

⎤
⎥⎥⎦ ,

the last column contains values 2a1

n +O(ε), . . . , 2ak

n +O(ε) and d(n−2k)
n +O(ε)

(n− k times). After left multiplying this matrix by the diffusion matrix, each of
the first k elements in the last column takes the value 2v − 2ai

n +O(ε), where v
is the arithmetic mean of the last column of ρtD. We obtain a contradiction by
choosing a sufficiently small ε, because at least two of these values differ by at
least 2δ

n +O(ε).

Grover’s Algorithm with Errors 185

For an arbitrary ε we can choose t′ so that for every t > t′ the inequalities
bm,l < ε, cm < ε and |am−al| < ε hold for all m and l. Since a1+ . . .+ak+d(n−
k) = 1 (a property of the density matrix), it follows that ai =

1−d(n−k)
k +O(ε).

So, the arithmetic mean of the last column of ρtD is

v =
2(a1 + . . .+ ak) + d(n− 2k)(n− k)

n2
+O(ε) =

=
2 + d(n− 2k − 2)(n− k)

n2
+O(ε).

After left and right multiplying the density matrix by the diffusion matrix, the
last column’s i-th value is

2v − 2ai
n

+O(ε) = 2v − 2− 2d(n− k)

nk
+O(ε) =

=
4 + 2d(n− 2k − 2)(n− k)

n2
− 2− 2d(n− k)

nk
+O(ε) =

=
2(n− 2k)(d(k + 1)(n− k)− 1)

kn2
+O(ε).

Since this sum must be O(ε), it follows that d(k+1)(n−k)−1 = O(ε), assuming
n �= 2k. Choosing ε arbitrarily small, we obtain limt→∞ d = 1

(k+1)(n−k) and

limt→∞ ai =
1

k+1 . #�

5 Convergence Speed of Grover’s Algorithm with Errors

In this section we will study how fast Grover’s algorithm with errors converges
to its limiting state and will prove the Theorem 2.

We describe the quantum state of Grover’s algorithm after t queries by the
density matrix

ρt =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 b1,2 b1,3 . . . c1 . . . c1

b1,2 a2 b2,3 . . .
...
. . .

...

b1,3 b2,3 a3 . . .
...
. . .

...
...

...
...

. . . ck . . . ck
c1 ck d . . . d
...

. . .
. . .

...
...
. . .

...
c1 ck d . . . d

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

In this section we assume that errors occur with the same probability p1 = . . . =
pk = p for all marked elements. Thus, the density matrix takes the much simpler
form

186 A. Ambainis et al.

ρt =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a b b . . . c . . . c

b a b . . .
...
. . .

...

b b a . . .
...
. . .

...
...

...
...

. . . c . . . c
c c d . . . d
...
. . .

. . .
...

...
. . .

...
c c d . . . d

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

In the further analysis we use the square of the Frobenius norm of the density
matrix:

‖ρ‖2F =

n∑
i=1

n∑
j=1

|ρij |2.

We will also need the function

S(ρ) = k(k − 1)b2 + 2k(n− k)c2, (3)

which gives the sum of squares of all b and c elements of the density matrix.
According to (2), the faulty query transformation Q′ decreases the square of

the Frobenius norm of the density matrix by

k(k − 1)b2 + 2k(n− k)c2 − k(k − 1)(b(2p− 1)2)2 − 2k(n− k)(c(2p− 1))2 =

= k(k − 1)b2(1 − (2p− 1)4) + 2k(n− k)c2(1− (2p− 1)2) >

> (k(k − 1)b2 + 2k(n− k)c2)(1 − (2p− 1)2) = S(ρ)(4p− 4p2). (4)

Before the first application of the query transformation, the Frobenius norm is
1. Each further application of the query transformation decreases the Frobenius
norm. We have proved that the Frobenius norm has a limit of 1√

k+1
(Frobenius

norm of the limiting state ρlim). Thus, total decrease of the Frobenius norm is
1 − 1√

k+1
. Similarly, the square of the Frobenius norm decreases from 1 to 1

k+1

and has the total decrease of k
k+1 .

Among first 2m applications of the query transformation, there exist two
sequential applications which decrease the square of the Frobenius norm by
less than 1

m . Let ρ1 and ρ2 be density matrices before these applications. Let
a1, b1, c1, d1 and a2, b2, c2, d2 be a, b, c, d values of ρ1 and ρ2 respectively.

From (4) we have

S(ρ1) <
1

m(4p− 4p2)
and S(ρ2) <

1

m(4p− 4p2)
. (5)

In the further proof we use the following straightforward-to-prove lemma:

Grover’s Algorithm with Errors 187

Lemma 1 If S = k(k − 1)b2 + 2k(n− k)c2 < R and k ≥ 2 hold then |c| <
√

R
n

and |b| <
√
R also hold.

We also use the notation δ(a, b) = {x|a− b < x < a+ b}.
Lemma 1 and the equation (5) implies

c1 ∈ δ

(
0,

√
R

n

)
,

b1 ∈ δ
(
0,
√
R
)
,

c2 ∈ δ

(
0,

√
R

n

)
,

b2 ∈ δ
(
0,
√
R
)
,

where R = 1
m(4p−4p2) .

The diffusion matrix changes each element a of a vector to 2v − a, where v
is the arithmetic mean of all elements. We will call this the diffusion matrix
property.

The arithmetic mean of each of the first k columns of the matrix ρ′1 (after the
first application of the query transformation) is

v ∈ δ

(
a1
n
,
√
R
k − 1

n
+

√
R

n

n− k

n

)
⊆ δ

(
a1
n
,
k

n

√
R+

√
R

n

)
.

Because of the diffusion matrix property, the value of the last elements of the
first k columns of the matrix Dρ′1 is

c′1 = 2v − c1 ∈ δ

(
2
a1
n
,
2k

n

√
R+ 3

√
R

n

)
.

The arithmetic mean of each of the last n− k columns of the matrix ρ′1 is

v ∈ δ

(
d1

n− k

n
,
k

n

√
R

n

)
.

Hence, the value of the last elements of the last n−k columns of the matrix Dρ′1
is

d′1 = 2v − d1 ∈ δ

(
d1

n− 2k

n
,
2k

n

√
R

n

)
.

The arithmetic mean of the last row of the matrix Dρ′1 is

v ∈ δ

(
a1

2k

n2
+ d1

(n− k)(n− 2k)

n2
,
2k2

n2

√
R+

5nk − 2k2

n2

√
R

n

)
.

188 A. Ambainis et al.

Assuming n > 2k and using the definition of the diffusion matrix, we obtain

c2 = 2v − c′1 ∈

∈ δ

(
−2a1

n− 2k

n2
+ 2d1

(n− k)(n− 2k)

n2
,
4k2

n2

√
R+

10nk − 4k2

n2

√
R

n
+

2k

n

√
R+ 3

√
R

n

)
⊆

⊆ δ

(
−2a1

n− 2k

n2
+ 2d1

(n− k)(n− 2k)

n2
,
4k

n

√
R+ 13

√
R

n

)
=

= δ

(
2(d1(n− k)− a1)(n− 2k)

n2
,
4k

n

√
R + 13

√
R

n

)
.

As c2 ∈ δ
(
0,
√

R
n

)
,
∣∣∣ 2(d1(n−k)−a1)(n−2k)

n2

∣∣∣ < 4k
n

√
R+ 14

√
R
n holds.

As ka1 + d1(n− k) = 1, it follows that d1(n− k)− a1 = 1− (k + 1)a1. Using
the inequality ∣∣∣∣ k

k + 1
− ka1

∣∣∣∣ < |1− (k + 1)a1| ,

we obtain ∣∣∣∣ k

k + 1
− ka1

∣∣∣∣ <
(
2k

n
+

7√
n

)
n2

n− 2k

√
R.

The left side of this inequality is the absolute value of the difference between the
probability of finding any of the marked elements and k

k+1 .
For an arbitrary ε the inequality(

2k

n
+

7√
n

)
n2

n− 2k

√
R < ε

holds if

m >
1

4p(1− p)ε2

(
2k

n
+

7√
n

)2
n4

(n− 2k)2
= O(n)

(substituting R = 1
4mp(1−p)). #�

References

1. Ambainis, A.: Quantum search algorithms. SIGACT News 35(2), 22–35 (2004)

2. Buhrman, H., Newman, I., Röhrig, H., de Wolf, R.: Robust Polynomials and Quan-
tum Algorithms. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404,
pp. 593–604. Springer, Heidelberg (2005)

3. Grover, L.: A fast quantum mechanical algorithm for database search. In: Proceed-
ings of the 28th ACM STOC, Philadelphia, Pennsylvania, pp. 212–219. ACM Press
(1996)

4. Horn, R., Johnson, C.: Matrix Analysis. Cambridge University Press (2006)

Grover’s Algorithm with Errors 189

5. Long, G.L., Li, Y.S., Zhang, W.L., Tu, C.C.: An intrinsic limitation on the size
of quantum database. Physical Review A 61, 042305 (2000); Also arXiv:quant-
ph/9910076

6. Kaye, P., Laflamme, R., Mosca, M.: An Introduction to Quantum Computing.
Cambridge University Press (2007)

7. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cam-
bridge University Press (2000)

8. Regev, O., Schiff, L.: Impossibility of a Quantum Speed-Up with a Faulty Oracle.
In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A.,
Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 773–781. Springer,
Heidelberg (2008)

9. Shapira, D., Mozes, S., Biham, O.: The effect of unitary noise on Grover’s quan-
tum search algorithm. Physical Review A 67, 042301 (2003); Also arXiv:quant-
ph/0307142

10. Shenvi, N., Brown, K.R., Whaley, K.B.: Effects of Noisy Oracle on Search Algo-
rithm Complexity. Physical Review A 68, 052313 (2003); Also quant-ph/0304138

On WQO Property for Different Quasi

Orderings of the Set of Permutations

Sandra Ose and Juris Viksna

Institute of Mathematics and Computer Science, University of Latvia,
Rainis boulevard 29, Riga LV 1459, Latvia

sandra.ose.z@gmail.com, juris.viksna@lumii.lv

Abstract. The property of certain sets being well quasi ordered (WQO)
has several useful applications in computer science – it can be used to
prove the existence of efficient algorithms and also in certain cases to
prove that a specific algorithm terminates.

One of such sets of interest is the set of permutations. The fact that
the set of permutations is not WQO has been rediscovered several times
and a number of different permutation antichains have been published.
However these results apply to a specific ordering relation of permuta-
tions �, which is not the only ’natural’ option and an alternative ordering
relation of permutations � (more related to ’graph’ instead of ’sorting’
properties of permutations) is often of larger practical interest. It turns
out that the known examples of antichains for the ordering � can’t be
used directly to establish that � is not WQO.

In this paper we study this alternative ordering relation of permuta-
tions � and give an example of an antichain with respect to this ordering,
thus showing that � is not WQO. In general antichains for � cannot be
directly constructed from antichains for �, however the opposite is the
case – any antichain for � allows to construct an antichain for �.

1 Introduction

The property of certain sets being well quasi ordered (WQO) has a number of
well known and useful applications in computer science. Firstly, it can be used
as a very powerful tool to prove that for a specific problem efficient algorithms
exist (for a comprehensive overview see [5]). The most widely used WQO for
proving that an efficient algorithm exists is graph minor ordering. The fact that
this ordering is WQO is highly nontrivial, the proof has been obtained by N.
Robertson and P. Seymour and published in a series of more than 20 papers
[14]. They also have shown that for any (fixed) graph H there is an algorithm
for checking whether H is a minor of G in time polynomial of size of G.

However assuming these facts as known we have a ’trivial’ proof that there is a
polynomial time algorithm e.g. for Graph Planarity problem – it is sufficient
just to note that a minor of planar graph is also planar (in this particular case it
is even possible to obtain a concrete, albeit completely impractical, polynomial
algorithm by using the method of self-reduction [6]; whilst in general WQO based

A. Kučera et al. (Eds.): MEMICS 2012, LNCS 7721, pp. 190–199, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

On WQO Property for Different Quasi Orderings of the Set of Permutations 191

arguments can give just a nonconstructive proof of algorithm’s existence). Most
often howeverWQO based proofs are used to show the existence of parameterized
algorithms – e.g. Graph Planarity can be viewed as a sub-case of Graph

Genus problem (embedding graph on a surface of genus k) with a particular
value of parameter k = 0; for any fixed k the same argument shows the existence
of a polynomial algorithm for the corresponding Graph Genus problem.

Another useful WQO is immersion ordering (also shown to be WQO by the
authors of [14]). For certain graph problems (e.g. Graph Cutwidth) it can
provide at least simpler proofs of algorithm’s existence than graph minor order-
ing. One can also note that substring ordering of finite strings (the notion of well
quasi orderings was introduced in [8], where WQO property of finite strings was
shown by Higman’s Lemma) provides an easy proof of existence of parameter-
ized algorithm for the Closest String problem (a practical algorithm for the
problem was given by J. Gramm et al. in [7]). There is an ongoing research of
orderings that in general are not WQO, but hold such a property for specific
classes of sets or graphs and we expect that a number of them could be useful
for providing algorithm existence proofs.

Although WQO based approaches never provide an algorithm of any use in
practice, the knowledge that an efficient algorithm exists provides good motiva-
tion for designing a practical one. Whilst there seem to be some discussion [11]
that for some problems we might have only algorithms that are good asymptoti-
cally, but not of practical use, in most cases however attempts to design practical
algorithms seem to be fruitful.

Another important application of well quasi orderings in computer science is
the use of WQO property to prove that a certain algorithm terminates. This is a
somewhat more specialized area and the method applies to algorithms used for
symbolic verification of infinite state transition systems (lossy channel systems,
Petri nets, relational automata etc.); the WQO property here is used to prove
that the state backward reachability problem is algorithmically decidable. A
comprehensive survey of these methods is given by P. Abdulla and B. Jonsson
[4], the authors have also some very recent publications [3,1] explicitly focused
on application of different well quasi orderings for analysis of transition systems.

One of the first WQOs applied in this area is substring ordering of finite
strings [2], but there are many WQOs of interest [1], for example the ordering
of powersets, which is shown to be WQO if and only if the initial sets do not
contain Rado structures [9,13]. Our interest of WQO property of the particular
ordering of the set of permutations also stems from applications in verification
of transition systems.

The fact that the set of permutations is not well quasi ordered has been known
since early 70-s, the first examples of infinite antichains of permutations being
published by R. Tarjan [16] and V. Pratt [12] and according to surveys such
examples have been known even earlier [10]. These early results however are not
stated in very explicit form, leading to several rediscoveries of this fact – a very
recent example of an infinite antichain of permutations has been published as
recently as in 2000 by D. Spielman and M. Bona [15]. This appears to be the

192 S. Ose and J. Viksna

only published example that can be easily traced by a non-expert without doing
deeper research in the topic.

As already discussed one of the reasons for being interested in well quasi
orderings of sets are applications of WQO property in computer science. From
the perspective of such applications of significance is WQO property of the set
of permutations with respect to an ordering relation (denoted here by �), which
is different from the ordering relation (denoted here by �) used in published
examples referenced above.

Hence it turns out that there are at least two natural definitions of a quasi
ordering relation in the set of permutations. The relations � and � generally
are incomparable, thus the fact that permutations are not WQO with respect to
� does not provide an answer whether permutations are WQO with respect to
�. However it turns out that there also exists an infinite antichain of permuta-
tions with respect to the ordering relation �, therefore proving that the set of
permutations is not WQO with respect to �.

In this paper we give an example of such an antichain. Although some ideas
for construction of this antichain have been borrowed from the published ex-
amples cited above, these antichains cannot be at least directly transformed to
antichains for � relation. On the other hand, any example of antichain for �
relation, although not being an antichain for � itself, easily allows to construct
an antichain that works for the � relation.

2 Quasi Orderings of Permutations

We assume that the reader is familiar with the notion of well quasi orderings and
give just very brief definitions: a set X is well quasi ordered (WQO) with respect
to a quasi ordering ≤ if for any infinite sequence of X elements x1, x2, x3, . . .
there exist such indexes i and j that i < j and xi ≤ xj . It is a well known result
that this definition is equivalent with the statement that there does not exist an
infinite sequence of X elements x1, x2, x3, . . . such that xi �≤ xj and xj �≤ xi for
all i �= j (a sequence with such a property is called an antichain).

We define a permutation p of length n as a bijective mapping p : {1, 2, . . . , n} →
{1, 2, . . . , n}. There are two widely used notations for permutations: most fre-
quently a permutation p of length n is written using so called one-line notation
as [p(1), p(2), . . . , p(n)], however a cycle notation is also often used. A cycle in a
permutation is a sequence x1, x2, . . . , xk of distinct elements from {1, 2, . . . , n}
such that p(xk) = x1 and p(xi) = xi+1 for all i = 1 . . . k − 1. Each permuta-
tion can be decomposed into one or several disjoint cycles and can be written as
p = (x11 , x12 , · · · , x1k1

) · · · (xl1 , xl2 , · · · , xlkl
). Permutation is cyclic if it consists

of a single cycle. For convenience, unless stated otherwise, we will further consider
only cyclic permutations (since our antichain example contains only cyclic per-
mutations whilst obviously serving also as an antichain example for the whole set
of permutations). It is easy to see that each permutation has only one representa-
tion in one-line notation, but n different cyclic notations (where n is permutation’s
length): e.g. permutation [3, 4, 2, 1] in cyclic notation can be written as (1, 3, 2, 4),

On WQO Property for Different Quasi Orderings of the Set of Permutations 193

(3, 2, 4, 1), (2, 4, 1, 3) or (4, 1, 3, 2). (The seeming redundancy of one-line notation
is compensated by the fact that not all permutations are cyclic, e.g. a cyclic nota-
tion for [2, 1, 4, 3] is (1, 2)(3, 4).)

The only quasi ordering relation of permutations � that we know to have
been considered previously is defined in terms of one-line notation as follows.

Definition 1. Let p and q be two permutations of length respectively m and n.
Then p � q iff there exists an injective mapping φ : {1, 2, . . . ,m} → {1, 2, . . . , n}
such that for all i, j ∈ {1, 2, . . . ,m}:

1. φ(i) < φ(j) iff i < j,

2. p(i) < p(j) iff q(φ(i)) < q(φ(j)).

For example [2, 3, 1] � [3, 4, 2, 1] since the mapping φ(1) = 1, φ(2) = 2, φ(3) = 4
satisfies the required properties. If p � q permutation p is sometimes called a
pattern of permutation q.

It is easy to see that the relation � defines a quasi ordering in the set of
permutations (the relation is both transitive and reflexive). Informally we can
think of pattern of a permutation as of permutation obtained by removal of some
elements from the set {1, 2, . . . , n} and by renumbering the remaining elements
with consecutive integers starting from 1 in such a way that the order of elements
is preserved.

This ordering relation is very natural if we regard permutations as reorderings
of elements of some ordered set S – given p � q, permutation p corresponds to
a reordering, which is consistent with reordering of q for a particular subset
of S. However the relation � generally does not preserve cycle structures of
permutations, for example [1, 2] � [2, 3, 1], whilst [2, 3, 1] is cyclic but [1, 2] is
not.

Nevertheless, sometimes it is much more natural to require that cycle structure
should be preserved by an ordering relation. This probably can be best illustrated
by regarding permutations as vertex-ordered graphs with vertex set {1, 2, . . . , n}
and each vertex having exactly one incoming and exactly one outgoing edge. In
such a representation we would like to consider permutation p to be ’smaller’ than
q if it can be obtained by contraction of a number of q edges (this is probably
somewhat similar to a graph minor operation in a very restricted subset of
directed graphs). The concept is illustrated in Figure 1.

Fig. 1. Ordering relation � preserves cycle structure

194 S. Ose and J. Viksna

Let p be a permutation of length n. We say that (x, y) is an edge of p if
p(x) = y and we say that the sequence P (x1, xk) = x1, . . . , xk is a path of length
k in p if p(xi) = p(xi+1) for all i = 1 . . . k−1. Using this notation we can formally
define the ordering relation described above as follows.

Definition 2. Let p and q be two permutations of length respectively m and n.
Then p � q iff there exists an injective mapping ψ : {1, 2, . . . ,m} → {1, 2, . . . , n}
such that for all i, j ∈ {1, 2, . . . ,m}:

1. ψ(i) < ψ(j) iff i < j,
2. (i, j) is an edge in p iff there exists a path x1 = ψ(i), x2 . . . , xk−1, xk = ψ(j)

in q such that for all s = 2 . . . k − 1 there does not exist y with ψ(y) = xs.

Although injective mappings in both definitions look similar, we have used dif-
ferent letters on purpose. The mapping φ has to be thought of as a function
that maps positions in sequences representing permutations, whilst ψ has to be
thought of as a function that maps values of these sequences.

For example (1, 2, 7, 8, 5, 6, 3, 4) � (1, 2, 11, 12, 9, 10, 7, 8, 5, 6, 3, 4) (define
ψ(1) = 1, ψ(2) = 2 and ψ(i) = i + 4 otherwise).

However (1, 2, 7, 8, 5, 6, 3, 4) �� (1, 2, 11, 12, 9, 10, 7, 8, 5, 6, 3, 4) (in one-line no-
tation these are permutations [2, 7, 4, 1, 6, 3, 8, 5], [2, 11, 4, 1, 6, 3, 8, 5, 10, 7, 12, 9]
and actually come from the Tarjan’s antichain example for �). If p � q we will
say that p is a subpermutation of q.

We have already seen that [1, 2] � [2, 3, 1] and [1, 2] �� [2, 3, 1], thus in general
the ordering relations � and � are incomparable (but we do not know whether
there are cyclic permutations for which holds �, but not �; our antichain for �
can be shown to be also an antichain for �).

However we can look at the definitions for these ordering relations just as
at syntactic requirements that some sequences of natural numbers have to sat-
isfy certain properties, without taking care what permutations (if any) these
sequences define. From such a perspective it turns out that the relation � is
stronger than �.

Let Cp,i be a cyclic notation for permutation p that starts with a number
i. If the permutation p has length n then it has n different cyclic notations
Cp,1, . . . , Cp,n. For a given cyclic notation C = (y1, . . . , yn) let C(i) denote its
i-th element yi. For permutation of length n and its cyclic notation C by P (C)
we denote the permutation [C(1), . . . , C(n)] (i.e. we assume that the sequence of
numbers in cyclic notation actually describes a permutation in one-line notation).

Theorem 1. Let p and q be two permutations of length respectively m and n.
Then p � q iff for each i ∈ {1, . . . ,m} there exists j ∈ {1, . . . , n} such that
P (Cp,i) � P (Cq,j).

Proof. (⇒). Let p � q, let ψ be a mapping that validates this relation and
let i ∈ {1, . . . ,m}. We consider Cp = Cp,i, Cq = Cq,ψ(i) and will show that
P (Cp) � P (Cq) by defining φ recursively as follows: φ(1) = 1, φ(k) = φ(k− 1)+
length(ψ(Cp(k− 1)), ψ(Cp(k))) for k > 1, where length(ψ(Cp(k− 1)), ψ(Cp(k)))
denotes the length of path between ψ(Cp(k − 1)) and ψ(Cp(k)) in Cq.

On WQO Property for Different Quasi Orderings of the Set of Permutations 195

Since φ(1) = 1 and length(ψ(Cp(k − 1)), ψ(Cp(k))) ≥ 1 for all k > 1 we have
φ(k) < φ(l) for all k < l, i.e. property 1 of Definition 1 holds.

We need to prove the second property that Cp(k) < Cp(l) iff Cq(φ(k)) <
Cq(φ(l)). Notice that ψ(Cp(1)) = ψ(i) = Cq(1) = Cq(φ(i)) and from a sim-
ple proof by induction it follows that ψ(Cp(k)) = Cq(φ(k)) (actually the im-
plicit motivation behind our choice of φ is to ensure that this property holds).
Therefore Cp(k) < Cp(l) iff ψ(Cp(k)) < ψ(Cp(l)) (by the definition of ψ), and
Cp(k) < Cp(l) iff Cq(φ(k)) = ψ(Cp(k)) < Cq(φ(l)) = ψ(Cp(l)) Q.E.D.

(⇐). Let P (Cp) � P (Cq), where Cp = Cp,i, Cq = Cq,j for some i and j,
and let φ be a mapping that validates this relation. We will use the mapping
ψ(Cp(k)) = Cq(φ(k)) to show that p � q holds (since {Cp(k)|k = 1, . . . ,m} =
{1, . . . ,m} the mapping ψ is completely defined).

Due to the second property of Definition 1 Cp(k) < Cp(l) iff Cq(φ(k)) <
Cq(φ(l))) and thus Cp(k) < Cp(l) iff ψ(Cp(k)) = Cq(φ(k)) < ψ(Cp(l)) =
Cq(φ(l)), i.e. property 1 of Definition 2 holds.

We need to show that property 2 from Definition 2 holds for all edges of p.
There are m such edges: (Cp(k), Cp(k + 1)) for k = 1 . . .m − 1 and an edge
(Cp(m), Cp(1)).

Consider an edge (Cp(k), Cp(k + 1)) in p. Then for ψ(Cp(k)) = Cq(φ(k)) =
Cq(s) and ψ(Cp(k + 1)) = Cq(φ(k)) = Cq(t) we should have s < t (due to
property 1 of Definition 1) and by the definition of cyclic permutation there is a
path Cq(s) = ψ(Cp(k)), Cq(s+ 1), . . . , Cq(t) = ψ(Cp(k + 1)) in q (notice that in
cyclic notation all elements of a path should appear in consecutive positions).

We have to show that for all x = s + 1, . . . , t − 1 there are no ψ preimages
for Cq(x). Assume this is not the case and Cq(x) = ψ(Cp(y)) for some x ∈
{s+ 1, . . . , t− 1} and y ∈ {1, 2, . . . ,m}.

Since ψ(Cp(k)) = Cq(s) and ψ(Cp(k + 1)) = Cq(t) we should have either
y < k or y > k + 1. If y < k we will have Cq(x) = ψ(Cp(y)) = Cq(φ(y)) <
Cq(s) = Cq(φ(k)) and due to property 2 of Definition 1 x < s contradicting
x ∈ {s+ 1, . . . t − 1}. In an analogous way for y > k + 1 we obtain x > t again
contradicting x ∈ {s+ 1, . . . t− 1}.

For the remaining edge (Cp(m), Cp(1)) in a similar way we can show that
there are no preimages for q elements in positions smaller than s or larger than
t, where Cq(s) = ψ(Cp(1)) and Cq(t) = ψ(Cp(m)).

Whilst the proof is notationally somewhat complicated, the motivating idea
beyond the result of Theorem 1 is simple and is informally illustrated in Figure 2.

Finally, note that p � q does not require that P (Cp,i) � P (Cq,j) for all cyclic
representations of p and q, e.g. (1, 2, 3) � (2, 3, 1) (these permutations are equal),
however [1, 2, 3] �� [2, 3, 1].

This result implies that any antichain with respect to the ordering relation
� easily allows to obtain an antichain for the ordering relation � (for a given
antichain C1, C2, . . . simply consider the antichain P (C1), P (C2), . . .), however
the converse is not necessarily true.

196 S. Ose and J. Viksna

Fig. 2. In cyclic notation permutations ’unfold’ and the relation � between two cyclic
permutations can be thought of as a mapping between sets of vertices placed on borders
of two circles without any crossings of ’edges’ of the mapping. By making a ’cut’ that
breaks both circles, but not any of mapping’s ’edges’, we obtain two strings of numbers
that can be regarded as permutations ordered by �.

3 Antichain of Permutations for the Ordering �

As can be seen from the previous chapter the antichain example:
[2, 7, 4, 1, 6, 3, 8, 5], [2, 11, 4, 1, 6, 3, 8, 5, 10, 7, 12, 9],
[2, 15, 4, 1, 6, 3, 8, 5, 10, 7, 12, 9, 14, 11, 16, 13], . . .

given by R. Tarjan [16] does not work for the ordering relation �. V. Pratt’s
example [12] is similar. A different construction is given by D. Spielman and M.
Bona [15], however it too does not work for the ordering relation �. This also
remains true if we simply try to ’interpret’ these examples as sets of permutations
written in cyclic notation, instead of one-line notation they were intended to
be. Still in the antichain example we provide for � ordering relation we have
borrowed some ’patterns’ from Spielman’s and Bona’s construction.

We define the set of permutations P as follows.

Definition 3. P = {pi|i = 5, 6, 7 . . .}, where pi = (4, 1, 6, 3, 8, . . ., 2n−5, 2n, 2n−
3, 2, 2n − 1), where the underlined part corresponds to sequence a0, b0, a1, b1,
. . . , ak, bk with ai = 3 + 2i, bi = 8 + 2i and k ≥ 0.

The set P consists of permutations p5, p6, p7, . . . with permutations pi having
length 2i. For example p6 = (4, 1, 6, 3, 8, 5, 10, 7, 12, 9, 2, 11). Permutations p6
and p7 are shown in Figure 3.

We will prove that the set of permutations P contains an antichain p5, p6, p7,
p8, We start with two simple lemmas.

Lemma 1. Let p and q be two permutations of length respectively m and n, such
that p � q holds via an injective mapping ψ. Then for any a, b ∈ {1, . . . ,m},
s, t ∈ {1, . . . , n}, such that a < b and ψ(a) = s, ψ(b) = t, the following holds:

1. b− a ≤ t− s,
2. if a = s, then ψ(x) = x for all x ≤ a,
3. if m− b = n− t, then ψ(x) = x+ (n−m) for all x ≥ b,
4. if b− a = t− s, then ψ(x) = s+ (x− a) for all x = a . . . b.

On WQO Property for Different Quasi Orderings of the Set of Permutations 197

Fig. 3. Permutations p6 and p7

Proof. All these are trivial properties of any increasing injective mapping ψ :
{1, 2, . . . ,m} → {1, 2, . . . , n}.

Lemma 2. Let p and q be two permutations of length respectively m and n,
such that p � q holds via an injective mapping ψ. Let a, b ∈ {1, . . . ,m}, s, t ∈
{1, . . . , n} and ψ(a) = s, ψ(b) = t. If x1 = a, x2, . . . , xk = b is a path in p and
y1 = s, y2, . . . , yk = t is a path in q then ψ(xi) = yi for all i = 1 . . . k.

Proof. Assume this is not the case and ψ(xi) �= yi for some i. Then there are
two possibilities:

1. There exist i1 < i2 and j1 > j2 such that ψ(xi1) = yj1 and ψ(xi2) = yj2 .
Then the path xi2 , . . . , xk, not containing xi1 , should be mapped by ψ to the
path yj2 , . . . , yj1 , . . . , yk containing yj1 = ψ(xi1). This contradicts property
2 of Definition 2.

2. There exists i such that ψ(xi) is mapped to an element z not in y1, y2, . . . , yk.
Then the path xi . . . , xk, not containing x1, should be mapped by ψ to the
path z, . . . , y1, . . . , yk containing y1 = ψ(x1), again giving a contradiction.

Our main result is a proof that the sequence of permutations p5, p6, p7, p8, . . .
from P is an antichain with respect to the ordering relation �.

Theorem 2. For any m,n ≥ 5, if m �= n then permutations pm, pn ∈ P are
incomparable with respect to the ordering �.

Proof. By definition pm has length 2m and pn has length 2n. Without the loss
of generality we can assume m < n. Then the fact pn �� pm is trivial.

Otherwise assume the converse holds and pm � pn via mapping ψ. We will
try to deduce some constraints on ψ.

Let us consider the value of ψ(4). Due to Lemma 1 we cannot map element 4
to any of the elements 1, 2, 3, 2n− 4, 2n− 3, 2n− 2, 2n− 1, 2n.

Consider the option of mapping 4 to an odd element 2k−1, where k = 3 . . . n−
2. The edge (4, 1) from pm has to be mapped to a path y1 = 2k − 1, y2, . . . , yl
in pn, such that yl = ψ(1) < ψ(4) = 2k − 1 and there are no preimages for
elements y2, . . . , yl−1. The shortest path with such a property has yl = 2 and

198 S. Ose and J. Viksna

contains all the elements from the set {2k − 1, . . . , 2n} except 2k, 2k + 2 and
2n− 1. Thus ψ should map the set {5, 6, . . . , 2m} having at least 6 elements to
the set {2k, 2k + 1, 2n− 1} of 3 elements, which is impossible.

Now consider the option of mapping 4 to an even element 2k, where k =
3 . . . n−3. If additionally ψ(1) = 2k−3, then also ψ(2) = 2k−2 and ψ(3) = 2k−1
(by Lemma 1). Then the edge (2, 2m − 1) in pm should be mapped to a path
y1 = 2k−2, y2, . . . , yl in pn such that yl > ψ(4) = 2k and there are no preimages
for elements y2, . . . , yl−1. However all such paths contain an element yi = ψ(2k)
making this impossible.

Alternatively, if ψ(1) �= 2k−3 we should map (4, 1) to a path y1 = 2k, y2, . . . , yl
with yl = ψ(1) < ψ(4) = 2k, ψ(1) �= 2k−3 and ψ(1) �= 2k−1 (due to Lemma 1).
The shortest path with such a property again has yl = 2 and contains all the
elements from the set {2k, . . . , 2n} except 2n− 1, making ψ impossible.

Thus we must have ψ(4) = 4 as well as ψ(1) = 1, ψ(2) = 2, ψ(3) = 3. We will
show that in this case ψ(i) = i for all i = 1 . . . 2m− 4.

Consider the path 1, 6, 3 in pm. Since ψ(1) = 1, 6, ψ(3) = 3 is a path in pn, by
Lemma 2 we should have ψ(6) = 6 leading to ψ(5) = 5 (by Lemma 1). Applying
the same argument to path 3, 8, 5, then to path 5, 10, 7 etc. we can prove by
induction that ψ(i) = i for all i = 1 . . . 2m− 4

We can apply the reasoning above also by starting from the other ’end’ of
permutations – firstly, showing that ψ(2m − 3) = 2n− 3 and then that ψ(i) =
i+ (2n− 2m) for all i = 5, . . . , 2m.

With all these constraints on ψ what can be the value of ψ(5)? Since 2m ≥ 10
the 5 < 2m− 4, and so (see two paragraphs above) ψ(5) = 5. But we also have
shown that ψ(5) = 5 + (2n− 2m) > 5 (see the last paragraph). Hence we have
a contradiction and the assumption that pm � pn is false.

4 Conclusions

We have to admit that contrary to some initial expectations the result we are
presenting here is negative, i.e. the set of permutations is not WQO also for the
relation �, thus does not lead to any practical applications. Still we think that
this result might be of interest to other researchers, taking into account that we
ourselves were quite surprised to find that the ’folklorized’ result of permutations
not being WQO does not really apply to seemingly the most natural ordering
relation we were considering.

On a broader perspective, there appears to be certain lack of good surveys
about WQO and/or non-WQO sets, which might be of direct interest to com-
puter science as well as about the problems to which WQO based proof tech-
niques can be applied. E.g. the fact that Higman’s Lemma gives an easy proof of
the existence of a parameterized algorithm Closest String is very simple and
probably known by many; however whilst this application may not be unique,
we are not aware of any published results regarding the lemma’s applications to
algorithm design for string related problems.

On WQO Property for Different Quasi Orderings of the Set of Permutations 199

Acknowledgments. The authors would like to thank the anonymous reviewer
#1 for suggesting improved formulation of statement and proof of Theorem 1.

The research was partially supported by Latvian Council of Science grant
09.1578.

References

1. Abdulla, P.: Well (and better) quasi-ordered transition systems. Bulletin of Sym-
bolic Logic 16(4), 457–515 (2010)

2. Abdulla, P., Cerans, K., Jonsson, B., Tsay, Y.: General decidability theorems for
infinite-state systems. In: Proceedings of 11th Annual IEEE Symposium on Logic
in Computer Science, LICS 1989, pp. 313–321 (1996)

3. Abdulla, P., Chen, Y.-F., Hoĺık, L., Mayr, R., Vojnar, T.: When Simulation Meets
Antichains. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015,
pp. 158–174. Springer, Heidelberg (2010)

4. Abdulla, P., Jonsson, B.: Ensuring completeness of symbolic verification methods
for infinite-state systems. Theoretical Computer Science 256(1-2), 145–167 (2001)

5. Downey, R., Fellows, M.: Parameterized complexity. Springer (1999)
6. Fellows, M., Langston, M.: On search, decision and the efficiency of polynomial-

time algorithms. In: Proceedings of the 21st Annual ACM Symposium on Theory
of Computing, STOC 1989, pp. 501–512 (1989)

7. Gramm, J., Niedermeier, R., Rossmanith, P.: Fixed-parameter algorithms for clos-
est string and related problems. Algorithmica 37, 25–42 (2003)

8. Higman, G.: Ordering by divisibility in abstract algebras. Proceedings of London
Mathematical Society 2(7), 326–336 (1952)

9. Jancar, P.: A note on well quasi-orderings for powersets. Information Processing
Letters 72 (1999)

10. Jenkyns, T., Nash-Williams, C.: Counter-examples in the theory of well-quasi-
ordered sets, Mimeographed (1968)

11. Niedermeier, R.: Invitation to fixed-parameter algorithms. Oxford University Press
(2006)

12. Pratt, V.: Computing permutations with double-ended queues, parallel stacks and
parallel queues. In: Proceedings of the Fifth Annual ACM Symposium on Theory
of Computing, STOC 1973, pp. 268–277 (1973)

13. Rado, R.: Partial well-ordering of sets of vectors. Mathematika 1, 89–95 (1954)
14. Robertson, N., Seymour, P.: Graph minors. XX. wagner’s conjecture. JCTB: Jour-

nal of Combinatorial Theory, Series B 92, 2004
15. Spielman, D., Bóna, M.: An infinite antichain of permutations. The Electronic

Journal of Combinatorics 7(N2) (2000)
16. Tarjan, R.: Sorting using networks of queues and stacks. Journal of the ACM 19(2),

341–346 (1972)

Towards User-Aware Multi-touch Interaction

Layer for Group Collaborative Systems

Vı́t Rusňák1, Lukáš Ručka1, and Petr Holub2,3

1 Faculty of Informatics
2 Institute of Computer Science,

Masaryk University, Botanická 68a, 602 00 Brno, Czech Republic
3 CESNET z.s.p.o., Zikova 4, 162 00 Prague, Czech Republic

{xrusnak,xrucka}@fi.muni.cz, hopet@ics.muni.cz

Abstract. State-of-the-art collaborative workspaces are represented ei-
ther by large tabletops or wall-sized interactive displays. Extending bare
multi-touch capability with metadata for association of touch events to
individual users could significantly improve collaborative work of co-
located group. In this paper, we present several techniques which enable
development of such interactive environments. First, we describe an al-
gorithm for scalable coupling of multiple touch sensors and a method al-
lowing association of touch events with users. Further, we briefly discuss
the Multi-Sensor (MUSE) framework which utilizes the two techniques
and allows rapid development of touch-based user interface. Finally, we
discuss the preliminary results of the prototype implementation.

1 Introduction

Recent advances in multi-touch technology promoted the development of medium
and large-sized interactive surfaces both horizontal (i.e., tabletops) and vertical
(interactive display walls). Opposed to personal devices such as smart-phones or
tablets, these are suitable for multi-user co-located collaboration with large-scale
data [1] – e.g., geospatial imagery, scientific visualizations. While association of
input actions to individual users could significantly improve a way of interac-
tion [2], only limited attention has been paid to this problem so far.

We focus on utilisation of form-factor multi-touch monitor overlays or moni-
tors with multi-touch sensor embedded to enable direct touch-based interaction
in large-sized interactive systems. Autonomous overlay sensors are able only
to recognize touch points but cannot associate them with users. We integrate
gaming depth sensors such as MS Kinect as additional source of input data to
address this issue. The integration of various sensor devices (e.g., touch sensors
and depth sensors) opens a range of possibilities to enhance existing multi-touch
systems with context-aware and proxemic interaction with only low additional
costs.

The rest of the paper is structured as follows. Section 2 reviews related work.
In Section 3 we present several techniques enabling a) coupling of multi-touch

A. Kučera et al. (Eds.): MEMICS 2012, LNCS 7721, pp. 200–212, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Towards User-Aware Multi-touch Interaction Layer 201

overlay panels which behave as a single seamless surface, b) a method to distin-
guish users and associate them with operations they performed using low-priced
off-the-shelf devices. Brief description of Multi-Sensor (MUSE) Framework which
implements these techniques is in Section 4. The evaluation methodology and
results of the prototype implementation are discussed in Section 5. Section 6
summarizes the findings and outlines future work.

2 Related Work

In this section, we address research topics related to touch-based user interaction
augmented with association of input actions with users.

The most used technologies behind the touch-based surface are capacitive and
resistive sensors and systems based on IR illumination such as FTIR (Frustrated
Total Internal Reflection) or DI (Diffused Illumination) [3]. Some of the tech-
nologies become commercially available in a form of overlay frames. For instance,
Cyber-Commons [1] uses large multi-touch overlay frame from PQLabs provid-
ing up to 32 concurrent touch points allowing multi-user interaction. Although
multi-touch technologies enable multi-user capability, none of them are able to
provide user tracking feature by themselves.

Interaction spaces [4] installation combines touch-less gesture recognition im-
plemented by a camera array placed along the display wall with acoustic control
for windows positioning triggered via snapping. DiamondTouch [5] uses capac-
itive coupling through the users touching the sensor. Both the systems require
users to stay at the same place to distinguish users. HandsDown technique [6]
allows user identification and further tracking based on hand contour analysis.
However, when a hand of a user leaves the surface area, the tracking is lost. Inex-
pensive proximity sensors placed around the tabletop [7,8] enable continuous user
tracking around and above a tabletop. The main weakness is their vulnerability
to reflective materials, resulting in reporting false positives. Another weakness
is the recognition precision, if two users overlap hands over the same area and
one of them touches the surface, the wrong user could be associated [8]. Boot-
strapper [9] project utilises MS Kinect to distinguish users according to their
shoes. This requires them to wear still the same shoes. LightSpace [10] is a small
room installation where up to 6 users are able to interact between several unin-
strumented surfaces (standard office desk or projection screen). User tracking
is realized by three depth cameras. Although multi-touch capability is basically
supported on level of hand tracking, finger tracking is hardly achievable due to
low resolution of depth sensors. WILD Room project [11] and CGLXTouch [12]
represent multi-surface environments where several users can work using multi-
ple hand-held devices (e.g., tablets and cell-phones) and tabletop. Direct Inter-
action Manager (DIM) [13], an extension to the SAGE middleware [14], utilises
gyromouse and Nintendo Wii Remote as pointing devices.

Several frameworks and tools enabling rapid prototyping of multi-user systems
with touch interface have appeared recently. ReacTIVision [15] is a computer vi-
sion toolkit for development of table-based multi-touch interactive surfaces based

202 V. Rusňák, L. Ručka, and P. Holub

on DI and FTIR technologies. EBITA [16] and T3 [17] are software toolkits for
development of tiled tabletops and their applications. Component-based frame-
work OpenInterface [18] for prototyping and building multi-modal user interfaces
from commodity devices (e.g., Nintendo Wii Remote or iPhone). It is focused on
single-user applications of two categories: navigation in large information spaces
(e.g., maps) and gaming. More general InTml [19] is a XML-based tool for de-
scription of applications with different types of input and output devices, and
3D interaction techniques. It is suitable only for high-level design of interactive
system.

Discussed group collaborative systems just pointed out possible research di-
rections. We explore possibility of combining less precise IR camera based user
tracking with very accurate data from multi-touch surface to enable such associ-
ation. We utilise off-the-shelf touch overlay sensors together with gaming depth
sensors (e.g., MS Kinect) which can provide more accurate image data than sim-
ple proximity sensors. We envision building an environment where users can start
working without any obtrusive orchestration or obscure initialization procedure.

3 Design Patterns for Building Interactive Systems from
Commodity HW

In this section, we propose design patterns that we considered for building afford-
able interactive display walls and tabletops. First, we discuss coupling method
for multi-touch overlay panels. Then, we describe the user tracking using low-
cost depth sensors suitable for tabletop setups. Last, but not least, the approach
for association of touch input events with user’s hand is presented.

3.1 Virtual Sensor

The virtual sensor concept allows coupling of individual overlay touch panels in
order to emulate single seamless multi-touch surface. The underlying time syn-
chronisation and gesture concatenation are hidden, which enable to use existing
gesture recognition algorithms in further processing. The algorithm consists of
two operations: a) remapping of touch events from received messages to dimen-
sions of virtual sensor, and b) concatenation of those touch events which are
performed over two or more overlay panels as a single stroke.

First or last
coordinate of event
is up close to bezel

Event concatenation
algorithm

End

No

Yes

Event ID remapping

Coordinate remapping

Fig. 1. Top-level block diagram of virtual sensor algorithm

Towards User-Aware Multi-touch Interaction Layer 203

Block diagram of the algorithm is listed in Fig. 1. Each message represents
a touch event (i.e., touch point or continuous stroke). The message has five
parameters – event ID, identification of overlay panel on which the event was
performed (deviceID), startTime and endTime event time stamps and a list of
coordinates of the touch sensor where the event occurred (position). Parameters
of each overlay sensor – such as physical dimensions, resolution, width of bezels
and position relative to other panels – are stored in a separate configuration
file. These parameters describe also virtual sensor properties given by merged
dimensions of individual physical sensor panels.

When received a touch event message which starts and ends not too close
to bezels (i.e., there is still some distance from the touch point to the bezel)
the coordinates of the touch event are remapped according to dimensions of
the virtual sensor. This distance is derived from physical parameters of given
sensor. Events which end or begin close to the surface bezel are considered as
parts of cross-sensor stroke and marked for further processing in concatenation
algorithm. Since a trajectory of finger crossing bezels is inaccurate, the concate-
nation algorithm estimates position of follow-up stroke using time and spatial
thresholds. Δt represents time threshold given in milliseconds. Δs is a diameter
of an area in which the gesture might continue on adjacent sensor given in pix-
els. The concatenation operation creates a new event message from the messages
given as its parameters. The new message has event ID and startTime identical
to the first input message and endTime from the last one. Position list of the
output message is concatenation of position lists of all events.

3.2 User Tracking with Commodity Devices

Autonomous touch sensors provide only touch input information. To enable user
tracking, it is necessary to combine more information about the workspace and its
surrounding – e.g., distinguish users interacting with the system, their positions
and what they do. Camera-based depth sensors can track individual users, but
lack precision of touch sensors [10].

MS Kinect body-tracking algorithms (e.g., [20]) work well only for front-view
setups and require the full body to be visible. In tabletop setups, where the
sensor is placed above the surface, such algorithms fail. We propose a relaxed
user tracking algorithm which overcomes the issue. The main idea is to describe
image blobs which represent hands and associate them with the particular user
using their skeletal descriptions. The block structure is shown in Fig. 2. The
algorithm processes a video stream captured by a depth sensor and returns a
list of blobs with their descriptions detected in each frame. Blobs represent body

Skeleton-blob
mapping

Connected
Component
Analysis Blob Tracking

Skeletonization
Background
Subtraction

Fig. 2. Relaxed user tracking algorithm

204 V. Rusňák, L. Ručka, and P. Holub

parts of users. They are described by their position, contour, deflection angle,
bounding box, type (i.e., right or left hand) and association to user.

First, the background subtraction extracts foreground objects in a previously
defined volume in front of touch surface. We deployed the component-labeling
algorithm by Chang et al. [21] to detect individual blobs in the frame. Blob track-
ing in consecutive frames is realized by two-tiered tracking algorithm by Senior
et al. [22]. And Zhang-Suen [23] algorithm is adapted to detect 2D skeleton of
each blob with supplementary depth parameter. The depth value could be also
utilized in further processing to resolve hand occlusions (e.g., user’s hand over-
laps the hand of another). Skeleton descriptions of blobs are used to construct
skeletons of individual users according to their mutual positions and orientations.
Fig. 3 illustrates the results generated by blob detection and skeletal detection
algorithms executed on the same depth image frame.

Fig. 3. Blob detection and skeletonization algo-
rithms executed on the same source – from left
to right: left hand, part of the head, right hand

Directed vector

Border

Palm area ellipse

Border
distance

Fig. 4. Visualization of the di-
rected vector and the palm area

Towards User-Aware Multi-touch Interaction Layer 205

3.3 Touch Point Matching

Initial Calibration. Precise mutual calibration of depth sensor and touch surface
is crucial for correct matching. Utilizing retro-reflective markers [10] at sensor
edges allows easy identification of touch surface position within image frames
captured by depth sensor. Moreover, this approach enables automation of cali-
bration procedure.

Touch-point matching algorithm links touch events from virtual sensor with
corresponding blobs given by aforementioned user tracking. In the first step,
coordinates of touch points from the virtual sensor and position of blobs are
transformed to a common corresponding coordinate system. For each blob rep-
resenting user’s hand, the palm area is determined. Due to low-resolution of
depth sensors is hard to recognize individual fingers so the algorithm represents
the palm as an ellipse. Matching function is simplified to specifying mutual po-
sition of touch point and this ellipse defined according to the standard form
equation:

(x−m)2

a2
+

(y − n)2

b2
= f(z). (1)

The match is recognized when touch point coordinates are at an arbitrary point
inside the ellipse (f(z) < 1). When touch event is matched with one of the blobs,
its description is extended with identification of the corresponding user.

Algorithm 1. Palm Area Detection

1: for all hand-blobs in the frame do
2: border := surface border which intersects blob
3: for all blob.skeleton.node = leaf node do
4: endpoints := endpoints

⋃
(blob.skeleton.node

⋂
surface area)

5: end for
6: for all endpoints do
7: MAX CRD DIST := dist(blob.centroid, endpoints.node)
8: MAX BDR DIST := dist(border, endpoints.node)
9: endpoint := node
10: if (dist(blob.centroid, node) > MAX CRD DIST) &&
11: (dist(border, node) > MAX BDR DIST) then
12: endpoint := node
13: end if
14: end for
15: dirVect.start := centroid; dirVect.end := endpoint
16: blob.palmEllipse := estimateEllipse(dirVect, blob.depth, blob.boundingBox)
17: end for

Palm area detection algorithm is shown in Alg. 1. First, a subset of blob
skeleton leaf nodes which are within the surface is produced. Then, the endpoint
node is selected – the node with maximum distance from a) blob centroid (central
point of the blob), and b) touch surface border which intersects the blob. To

206 V. Rusňák, L. Ručka, and P. Holub

determine the palm area, we set a directed vector of a blob. The palm ellipse
size is estimated from maximum width of the blob along the directed vector. An
illustration of the directed vector and palm area are in Fig. 4.

Summary. Virtual sensor algorithm can be used separately to provide an alter-
native to expensive commercial solutions. By combination of input data from
virtual touch sensor and user tracking data (descriptions of blobs) we can cre-
ate user-aware interactive input layer for tiled display walls or tabletops. The
implementation and evaluation of the algorithms is discussed further.

4 MUSE Framework Design

We developed a Multi-Sensor (MUSE) framework as an environment for evalu-
ation of designed algorithms and proposed concept of interactive input layer for
high-resolution visualization systems from low-cost touch and depth sensors. The
modular structure of the framework allows us to use it as a tool for rapid devel-
opment of such interactive input layers. In this section we describe its three-layer
structure and features.

The communication is supplied with TUIO 2.0 protocol [24] which provides
comprehensive description of touch-based and tangible environments. Fig. 5
shows the framework structure in particular setup that we used for our ex-
periments.

Wrapper Layer. The lowest layer is the interface between various physical sensor
devices and unified environment of the MUSE framework. Wrappers convert
incoming signals from devices to TUIO 2.0 messages. Each physical device is
represented by a single wrapper module. Depending on the type of the input
device, wrapper may perform additional processing of the input data. For depth
sensor device, the wrapper performs object detection or skeleton tracking to
find and distinguish individuals. For touch sensor panel, the wrapper processes
coordinates of touch points only.

Virtual Sensor Layer. The middle layer provides the functionality for assembling
virtual sensors from sensor wrappers of the same kind. Outgoing message stream
from each virtual sensor module contains the information from relevant physical
devices but represented as a single seamless sensor. The general idea of virtual
sensors is also applicable to other devices than touch sensors (e.g., depth sensors)
and we will explore it in future. Also, the modular architecture of the framework
allows for an easy development of new virtual sensor modules.

Aggregating Layer. The top layer consists of two main modules – touch-point
matching and message generator for output messages. Touch-point matching
ensures association of input events from virtual touch sensors to individual users
described by linked blobs. Matching algorithm is discussed in Section 3. Finally,
output message generator produces outgoing messages which are passed to the
application. Messages contain the information about position, where the touch
event occurred within the virtual touch sensor and a tag representing association
to user who performed it.

Towards User-Aware Multi-touch Interaction Layer 207

MT
sensor 1

MT
sensor 2

MT
sensor 3

MT
sensor 4

Depth
sensor 1

Virtual
Touch
Sensor

Virtual
Camera
Sensor

Wr
app

ers
Vir

tua
l se

nso
rs

A
gg

re
ga

to
r

Application

TUIO 2.0 messages

Raw data

T
U

IO
 2

.0
 L

ib
ra

ry

Output
Message Generator

Matching function

Fig. 5. The MUSE framework diagram
for the tiled-tabletop with 4 touch sen-
sors and one depth sensor

Fig. 6. Prototype of our 2×2 tiled table-
top

5 Experimental Results and Discussion

We constructed a tilting tiled tabletop prototype and developed an initial im-
plementation of the main parts of the MUSE framework – wrappers for touch
panels and MS Kinect, virtual sensor and touch point matching modules. The
modules were evaluated with focus on their processing speed and accuracy.

5.1 Prototype Implementation

Tabletop Prototype. Our tiled tabletop prototype (see Fig. 6) consists of four 22“
LCDs connected to a single PC running Ubuntu Linux 10.10.We used distributed
rendering middleware SAGE for visualization. Each display is equipped with
overlay touch sensor panel with frame rate up to 15 Hz. Tabletop was furnished
with MS Kinect depth sensor placed above. HW configuration of the desktop
PC was as follows: 2× Quad-Core AMD Opteron 2354AM @ 2.2 GHz, 11GB
DDR2 RAM, Gigabit Ethernet, 2× GPU nVidia GeForce 9600 GT.

MUSE Framework Implementation. The MUSE framework is implemented in
C++. So far, we have implemented a universal wrapper for touch-based devices
(e.g., various capacitive and resistive touch overlays, Apple Magic Trackpad or
multi-touch touchpads) and corresponding virtual touch sensor module, wrapper

208 V. Rusňák, L. Ručka, and P. Holub

for MS Kinect depth sensor and its clones, and touch event matching module.
The touch sensor wrapper (Mwtouch) uses Linux kernel input API and sup-
ports various single and multi-touch devices. Raw events received from a sen-
sor are transformed to TUIO 2.0 messages. Mwkinect wrapper processes depth
data from MS Kinect depth sensor and provides blob tracking on them. To ex-
tract blob description data we used OpenCV image processing library. Since
the skeleton-related messages of TUIO 2.0 library were not implemented yet,
the initial implementation of the user tracking algorithm does not involve skele-
tonization part. Thus, the ellipse for matching algorithm represented the whole
hand-blob instead of palm area only. Rendering application processed data re-
ceived from wrappers and rendered gesture strokes and blobs representing users’
hands. For each touch point and blob we randomly generated color. When touch
point was matched, its color changed according to corresponding blob.

5.2 Methodology and Evaluation

Table 1 summarizes processing speed of individual parts of the MUSE frame-
work. Wrappers. For both wrapper modules we measured the time elapsed from
receiving data (touch event/image frame) from the device to the moment when
TUIO 2.0 messages were dispatched. The mwkinect wrapper is nearly twice as
slow as mwtouch wrapper. This is caused by many complex operations which
are performed to obtain blob description whereas mwtouch transforms input raw
data into TUIO 2.0 messages only. Although the average processing time for a
single frame is about 23ms, the processing is still realtime. Frame rate of MS
Kinect is up to 30Hz so there is still ≈10ms reserve for further improving of the
user tracking algorithm.

Virtual touch sensor module processing time was measured in two scenarios:
a) Localhost – all sensors were connected to a single PC, no networking. b) Net-
work connection – each sensor was connected to a different PC and these were
connected over local area network (LAN). We performed several types of touch
events that were spread across two, three and four sensors. Due to very short
distance we observed no significant slowdown using network connection (see Ta-
ble 1) and the rest of the concatenation accuracy benchmarks were done with
the single station setup.

Touch point matching was benchmarked from two perspectives – processing
time of the whole MUSE framework aggregator layer and matching algorithm
processing speed itself. The aggregator layer processed messages sequentially

Table 1. Processing speed of the MUSE framework modules in [ms]

Wrapper modules Virtual sensor module Aggregation module
mwtouch mwkinect localhost LAN total matching alg.

12.5 ± 8.6 22.6± 8.4 0.063 ± 0.003 0.066 ± 0.004 0.3± 0.1 0.044 ± 0.02

Towards User-Aware Multi-touch Interaction Layer 209

which resulted in higher computational overhead. Further performance improve-
ment will be realized by batch processing in future version.

Concatenation accuracy. We also investigated the influence of time (Δt) and
spatial (Δs) threshold values (see 3.1) on concatenating function since these in-
fluence the concatenation algorithm accuracy. Proper threshold values depend
on physical parameters of sensor overlays (e.g., frame rate, width of inactive
bezel area) and have to be obtained by experimental calibration for each instal-
lation. To determine the threshold values we conducted an informal experiment
based on drawing lines across the bezels. The measured concatenation algorithm
accuracies for 9 combinations of both threshold values are shown in Table 2.

For values of Δs < 450 px and Δt < 1 s approx. 80% of errors were false
negatives (non-concatenated gestures) caused by low frame rate of the touch
sensors (up to 15Hz). Other source of errors produced touch events whose career
forms an acute angle < 20◦ with the sensor bezel and the continuous event
started out of the Δs range. We experienced approx. 15% of false positive errors
(i.e. two gestures made by different users) when one user has finished the stroke
near the bezel while the other has begun the stroke at the adjacent sensor within
the range of Δs. Since we benchmarked only the concatenation accuracy, this
type of error should disappear with additional touch point matching.

This benchmark pointed out the weak points of the initial version of the virtual
sensor algorithm. Thus the future versions of the concatenation algorithm will
have to keep tracking not only each contact position, but also the direction vector
and the velocity.

Matching Accuracy. Due to using only the depth sensor of MS Kinect (which
provides resolution only up to 640×480 pixels) we struggled with inaccurate
positions of blobs. This resulted in reduced matching precision and occurrence
of approx. 10% of false negatives for touch points that were close to the edge of
an ellipse (approx. 10-pixel diameter).

In future versions we are going to combine data from both depth sensor and
VGA camera which will increase the accuracy and will reduce the loss of blob
details (e.g., fingers). Further improvement would come with the next generation
of depth sensors equipped with higher resolution IR-sensors. The other issue was
the occlusion of hands resulting in merging the relevant blobs into a single (and
bigger) one. We identified the problem in the blob tracking algorithm which will
be one of the focal points of our future research too.

Table 2. Concatenation algorithm accuracy for various Δt and Δs [%]

Δs\Δt 0.3 s 0.5 s 1 s

300 px 65 70 68
375 px 69 67 72
450 px 68 78 89

210 V. Rusňák, L. Ručka, and P. Holub

Summary. Although only the key modules of the framework were implemented
so far, our initial observations are quite encouraging. The key parts of the frame-
work – sensor coupling with concatenation algorithm and touch point matching
(even the naive implementation) are very fast (approx. 1000× faster than wrap-
per processing speed). We reached real-time processing speed with enough time
and spare resource capacity for future extensions.

6 Conclusion and Future Work

In this paper, we presented techniques for a) assembling touch overlay panels
into a nearly seamless multi-touch input layer called virtual sensor and b) track-
ing users with further association of input events they performed, which consist
of user tracking algorithm and touch point matching algorithm To overcome the
bad performance of the existing body tracking algorithm in top-view tabletop
setup, we designed the relaxed user tracking algorithm. We integrated these into
the MUSE framework which allows rapid development of interactive input lay-
ers for high-resolution visualization systems. Existing commercial solutions focus
mainly on bare multi-touch capability. Our approach enables building scalable
multi-touch surface with additional user distinguishing and association of input
actions with the users. These features are crucial for building user-aware inter-
active environments for the next generation of group collaborative systems. The
evaluation of our prototype implementation confirmed usability of commodity
devices in such systems.

We continue in improving algorithms and remaining parts of the framework.
Virtual sensor algorithm will be extended to dynamic adjustment of time and
spatial threshold variables, which will improve the concatenation precision. Re-
laxed user tracking will be extended with additional blob-contour recognition
using both depth sensor and VGA camera to avoid blob-merging noted in previ-
ous section. The missing part of the algorithm using skeletonization is currently
being implemented as well. Last but not least, we are going to improve the touch
point matching algorithm to exclude matches in unexpected areas, such as in
the middle of user’s palm or at wrist, where usually no one touches the surface
(it could also mean the user touches the surface under the arm of another).
Concurrently, we are going to adopt the MUSE framework for several graphic
rendering platforms, e.g., SAGE [25].

The principles of the framework and algorithms are not limited to touch-based
interaction only, but may serve as complex multi-modal interaction input layer.
For example, besides coupling multiple touch sensors, it is possible to couple sev-
eral depth sensor to increase provided image resolution. The algorithms showed
to be promising for further exploration and they open a wide range of possible
directions for future work, some of which we only touched upon in the paper.

Acknowledgments. This work has been kindly supported by CESNET Large
Infrastructure Project (LM2010005).

Towards User-Aware Multi-touch Interaction Layer 211

References

1. Leigh, J.: Cyber-commons: merging real and virtual worlds. Communications of
the ACM 51(1), 82–85 (2008)

2. Schmidt, G., et al.: A Survey of Large High-Resolution Display Technologies, Tech-
niques, and Applications. In: Virtual Reality Conference 2006, pp. 223–236 (2006)

3. Teiche, A., et al.: Multitouch Technologies. NUI Group (2009),
http://nuicode.com/projects/wiki-book/files

4. Stødle, D.: Device-Free Interaction and Cross-Platform Pixel Based Output to
Display Walls. Ph.d. thesis, Uni. of Tromsø (2009)

5. Dietz, P., et al.: DiamondTouch: A Multi-User Touch Technology. In: User Interface
Software and Technology 2001, pp. 219–226 (2001)

6. Schmidt, D., et al.: HandsDown: Hand-contour-based user identification for inter-
active surfaces. In: Nordic Human-Computer Interaction 2010, pp. 432–441 (2010)

7. Tanase, C.A., et al.: Detecting and Tracking Multiple Users in the Proximity of
Interactive Tabletops. Advances in Electrical and Computer Engineering 8(2), 61–
63 (2008)

8. Annett, M., et al.: Medusa: A Proximity-Aware Multi-Touch Tabletop. In: User
Interface Software and Technology 2011, pp. 337–346 (2011)

9. Richter, S., Holz, C., Baudisch, P.: Bootstrapper: Recognizing Tabletop Users by
their Shoes. In: Human Factors in Computing Systems 2012, p. 4 (2012)

10. Wilson, A.D., Hrvoje, B.: Combining multiple depth cameras and projectors for
interactions on, above and between surfaces. In: User Interface Software and Tech-
nology 2010 (2010)

11. Gjerlufsen, T., et al.: Shared Substance: developing flexible multi-surface applica-
tions. In: Human Factors in Computing Systems 2011, pp. 3383–3392 (2011)

12. Ponto, K., et al.: CGLXTouch: A multi-user multi-touch approach for ultra-high-
resolution collaborative workspaces. Future Generation Computer Systems 27(6),
649–656 (2010)

13. Jagodic, R., et al.: Enabling multi-user interaction in large high-resolution dis-
tributed environments. Future Generation Computer Systems, 914–923 (2010)

14. Renambot, L., et al.: SAGE: the Scalable Adaptive Graphics Environment. In:
Workshop on Advanced Collaborative Environments 2004, p. 8 (2004)

15. Kaltenbrunner, M., Bencina, R.: reacTIVision (2012),
http://reactivision.sourceforge.net/

16. Kim, M., et al.: Design and Development of a Distributed Tabletop System using
EBITA Framework. Digital Media, 1–6 (2009)

17. Tuddenham, P., Robinson, P.: T3: A Toolkit for High-Resolution Tabletop Inter-
faces. In: Computer Supported Cooperative Work 2006, pp. 3–4 (2006)

18. Serrano, M., et al.: The OpenInterface Framework: a tool for multimodal interac-
tion. In: Human Factors in Computing Systems, pp. 3501–3506 (2008)

19. Figueroa, P., et al.: InTml: a description language for VR applications. In: Inter-
national Conference on 3D Web Technology 2002, pp. 53–58 (2002)

20. Shotton, J., et al.: Real-time human pose recognition in parts from single depth
images. In: Computer Vision and Pattern Recognition 2011, pp. 1297–1304 (2011)

21. Chang, F., Chen, C., Lu, C.: A linear-time component-labeling algorithm using
contour tracing technique. Comput. Vis. Image Underst. 93(2), 206–220 (2004)

http://nuicode.com/projects/wiki-book/files
http://reactivision.sourceforge.net/

212 V. Rusňák, L. Ručka, and P. Holub

22. Senior, A., et al.: Appearance models for occlusion handling. Image and Vision
Computing 24(11), 1233–1243 (2006)

23. Zhang, T.Y., Suen, C.Y.: A fast parallel algorithm for thinning digital patterns.
Communications of the ACM 27(3), 236–239 (1984)

24. Kaltenbrunner, M.: TUIO 2.0 (2011), http://www.tuio.org/?tuio20
25. Leigh, J., et al.: SageCommons (2012), http://www.sagecommons.org/

http://www.tuio.org/?tuio20
http://www.sagecommons.org/

Author Index

Ambainis, Andris 57, 180
Andersen, Mathias 69

Bačkurs, Artūrs 180
Beyer, Dirk 1
Beyß, Martin 82
Brázdil, Tomáš 94

Chatterjee, Krishnendu 106
Chmeĺık, Martin 118

Gatten Larsen, Heine 69
Gollmann, Dieter 12
Gravier, Sylvain 15
Grund Sørensen, Mathias 69

Haahr Taankvist, Jakob 69
Hamdioui, Said 32
Holub, Petr 200

Ibsen-Jensen, Rasmus 106
Iraids, Jānis 57

Javelle, Jérôme 15
Jurnečka, Filip 131

Kravchenko, Dmitry 57
Kučera, Antońın 94
Kurz, Denis 143

Larsen, Kim G. 155
Laursen, Simon 155

Matyáš, Vashek 131
McDiarmid, Colin 43
Mhalla, Mehdi 15
Mikuš, Michal 168
Miltersen, Peter Bro 53
Mutzel, Petra 143

Nahimovs, Nikolajs 180
Novotný, Petr 94

Ose, Sandra 190

Perdrix, Simon 15

Řehák, Vojtěch 118
Rivosh, Alexander 180
Ručka, Lukáš 200
Rusňák, Vı́t 200

Srba, Jǐŕı 69, 155
Stahlbauer, Andreas 1
Sýs, Marek 168

Viksna, Juris 190
Virza, Madars 57

Zey, Bernd 143

	Title
	Preface
	Organization
	Table of Contents
	BDD-Based Software Model Checking with CPAchecker
	Introduction
	Preliminaries
	BDD-Based Program Analysis
	Evaluation
	Conclusion
	References

	Security for Cyber-Physical Systems
	Reference

	Quantum Secret Sharing with Graph States
	Introduction
	Quantum Secret Sharing
	Graph-State-Based Quantum Secret Sharing
	Combinatorial Properties of Graph States

	Graph State Secret Sharing
	Graph States
	Sharing a Classical Secret Using a Graph State
	Sharing a Quantum Secret
	Threshold Schemes
	Lower Bound and Quasi-unanimity Protocols

	Graphs with Small Q
	Complexity of Computing the Threshold of Graph-State-Based Protocols
	Conclusion
	References

	Testing Embedded Memories: A Survey
	Introduction
	Memory Fault Modeling
	Test Algorithm Design
	Memory Built-In-Self Test
	Future Challenges
	Technology Threats
	Business Pressure
	Requirements for Future Test Solutions

	Conclusion
	References

	Quicksort and Large Deviations
	Introduction
	Basic Quicksort
	Filters, Martingales and Concentration
	Proof of Upper Bound in Theorem
	References

	Recent Results on Howard’s Algorithm
	References

	Advantage of Quantum Strategies in Random Symmetric XOR Games
	Introduction
	Definitions
	Optimal Strategies
	Classical Games
	Quantum Games

	Computer Experiments
	Bounding Classical Game Value
	Results
	Proof of Theorem 4
	Variance of Other Strategies
	Proof of Theorem 5

	Bounding Quantum Game Value
	Conclusion
	References

	Verification of Liveness Properties on Closed Timed-Arc Petri Nets
	Introduction
	Timed-Arc Petri Nets
	Liveness Verification Problem

	State-Space Reduction
	Bounded Marking Equivalence

	Liveness Algorithm
	Experiments
	Conclusion
	References

	Fast Algorithm for Rank-Width
	Introduction
	Preliminaries
	An Upper Bound Algorithm
	Overview
	Results and Discussion

	A Lower Bound Algorithm
	Overview
	Results and Discussion

	Conclusion and Outlook
	References

	Determinacy in Stochastic Games with Unbounded Payoff Functions
	Introduction
	Preliminaries
	Results
	Conclusions
	References

	Strategy Complexity of Finite-Horizon Markov Decision Processes and Simple Stochastic Games
	Introduction
	Definitions
	Bounds on -Optimal Counter-Based Strategies
	A Lower Bound on the Period of Optimal Strategies in MDPs
	Conclusion
	References

	Controllable-Choice Message Sequence Graphs
	Introduction
	Preliminaries
	Controllable-Choice Message Sequence Graphs
	Realizability of Controllable-Choice MSG
	Algorithm

	Conclusion
	References

	A Better Way towards Key Establishment and Authentication in Wireless Sensor Networks
	Introduction
	Related Work

	Goals and Assumptions
	Attacker Model

	Delgado-Mohatar et al. Scheme
	Key Establishment Protocol
	Authentication Protocol

	Analysis of Degado-Mohatar et al. Protocols
	Key Establishment Protocol Problems
	Authentication Protocol Problems

	Proposed Protocols
	Key Establishment Protocol, Proposal I
	Key Establishment Protocol, Proposal II

	Performance and Security Evaluation
	Proposal I
	Proposal II

	Conclusions
	References

	Parameterized Algorithms for Stochastic Steiner Tree Problems
	Introduction
	Definitions
	Solving SSTP
	Improvements
	Extensions
	Directed SSTP
	Prize-Collecting SSTP
	SSTP without a Root Node

	Conclusion and Outlook
	References

	Action Investment Energy Games
	Introduction
	Definitions
	Energy Game
	Action Investment Energy Game

	Gadgets for Complexity Bounds
	Gadget G(x x x x)
	Gadget G(x x x x)
	Gadget G
	Linking Gadgets

	Complexity Results
	Conclusion
	References

	Ciphertext-Only Attack on Gentry-Halevi Implementation of Somewhat Homomorphic Scheme
	Introduction
	Preliminaries
	Homomorphic Cryptosystems

	Ciphertext-Only Attack on SHS
	Gu's Attack
	Our Approach
	Results

	Conclusions and Open Questions
	References

	Grover’s Algorithm with Errors
	Introduction
	Technical Preliminaries
	Grover's Algorithm with Errors
	Limiting Behaviour of Grover's Algorithm with Errors
	Convergence Speed of Grover's Algorithm with Errors
	References

	On WQO Property for Different Quasi Orderings of the Set of Permutations
	Introduction
	Quasi Orderings of Permutations
	Antichain of Permutations for the Ordering
	Conclusions
	References

	Towards User-Aware Multi-touch Interaction Layer for Group Collaborative Systems
	Introduction
	Related Work
	Design Patterns for Building Interactive Systems from Commodity HW
	Virtual Sensor
	User Tracking with Commodity Devices
	Touch Point Matching

	MUSE Framework Design
	Experimental Results and Discussion
	Prototype Implementation
	Methodology and Evaluation

	Conclusion and Future Work
	References

	Author Index

