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Preface

This volume contains the papers presented at ICLA2013: 5th Indian Conference on
Logic and its Applications (ICLA), held at the Institute of Mathematical Sciences,
Chennai, during January 10–12, 2013.

The ICLA series is a biennial conference organized by the Association for Logic
in India. It aims to bring together researchers from a wide variety of fields in which
formal logic plays a significant role: mathematicians, philosophers, computer
scientists, and logicians. ICLA also welcomes papers on the history of logic.

The papers in the volume span a wide range of themes. We have contribu-
tions to decision theory, communication theory and set theory, to proof theory
and modeling systems. We thank the authors who submitted to the conference
for their contributions, and those whose papers appear here for their work in
preparing the final versions.

Like the previous conferences (IIT-Bombay, 2005 and 2007; Jadavpur Uni-
versity, Kolkata, 2007; IMSc, 2009; and Delhi University, 2011), at the fifth con-
ference, too, we were fortunate to have a number of highly eminent researchers
giving plenary talks. It gives me great pleasure to thank Mirna Džamonja, Joseph
Halpern, Agi Kurucz, Martin Otto, Mark Reynolds, Adriane Rini, and Gabriel
Sandu for agreeing to give invited talks and for contributing to this volume. In
spite of our approaching him very late, Max Cresswell was gracious and kindly
agreed to give an invited talk.

I would like to thank the Program Committee (PC): for their cooperation
in finding many external reviewers, who put in a great deal of hard work along
with the PC members in generating at least three review reports for each paper.
I express my gratitude to all PC members for making discussing and selecting
the papers an easy job, and thank all the reviewers for their invaluable help. We
used the EasyChair system which, streamlined the whole process.

The conference was held at the Institute of Mathematical Sciences (IMSc),
Chennai. I thank IMSc and the administration for immediately agreeing to take
on the responsibility, and the Organizing Committee members (Sujata Ghosh, R.
Ramanujam, S.P. Suresh) and the IMSc volunteers for taking on the work load.
Ramanujam helped both with the programmatic and with the organizational
work, he deserves a special thank you.

I thank the Editorial Board of Springer for agreeing to publish this volume
in their LNCS series.

November 2012 Kamal Lodaya
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Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259



Constructive Decision Theory�

(Extended Abstract)

Lawrence E. Blume1, David A. Easley1, and Joseph Y. Halpern2

1 Economics Department
Cornell University

Ithaca, NY 14853, USA
2 Computer Science Department

Cornell University
Ithaca, NY 14853, USA

Most models of decisionmaking under uncertainty describe a decision environ-
ment with a set of states and a set of outcomes. Objects of choice are acts,
functions from states to outcomes. The decision maker (DM) holds a preference
relation on the set of all such functions. Representation theorems characterize
those preference relations with utility functions on acts that separate (more or
less) tastes on outcomes from beliefs on states. The canonical example is Sav-
age’s [11] characterization of those preference relations that have a subjective
expected utility (SEU) representation: Acts are ranked by the expectation of
a utility payoff on their outcomes with respect to a probability distribution on
states. Choquet expected utility [12] maintains the separation between tastes and
beliefs, but does not require that beliefs be represented by an additive measure.
Tversky and Kahneman’s [13] cumulative prospect theory relaxes the taste-belief
separation by assessing gains and losses with different belief measures; Wakker
and Tversky [15] discuss generalizations of SEU from this point of view. Mod-
ern attempts to represent ambiguity in choice theory relax both the meaning of
likelihood and the separation of tastes and beliefs that characterize SEU. All of
these generalizations of SEU, however, maintain the state-outcome-act descrip-
tion of objects of choice and, moreover, take this description of choice problems
as being given prior to the consideration of any preference notion.

We, on the other hand, follow Ellsberg [4] in locating the source of ambiguity
in the description of the problem. For Savage [11, p. 9], the world is ‘the object
about which the person is concerned’ and a state of the world is ‘a description of
the world, leaving no relevant aspect undescribed.’ But what are the ‘relevant’
descriptors of the world? Choices do not come equipped with states. Instead they
are typically objects described by their manner of realization, such as ‘buy 100
shares of IBM’ or ‘leave the money in the bank,’ ‘attack Iraq,’ or ‘continue to

� Work supported in part by NSF under grants CTC-0208535, ITR-0325453, and IIS-
0534064, by ONR under grants N00014-00-1-03-41 and N00014-01-10-511, and by the
DoD Multidisciplinary University Research Initiative (MURI) program administered
by the ONR under grant N00014-01-1-0795. A preliminary version of this paper
entitled “Redoing the foundations of decision theory” appeared in the Proceedings
of Tenth International Conference on Principles of Knowledge Representation and
Reasoning, 2006.

K. Lodaya (Ed.): ICLA 2013, LNAI 7750, pp. 1–4, 2013.
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negotiate.’ In Savage’s account [11, sec. 2.3] it is clear that the DM ‘constructs
the states’ in contemplating the decision problem. In fact, his discussion of the
rotten egg foreshadows this process. Subsequently, traditional decision theory has
come to assume that states are given as part of the description of the decision
problem. We suppose instead that states are constructed by the DM in the
course of deliberating about questions such as ‘How is choice A different from
choice B?’ and ‘In what circumstances will choice A turn out better than choice
B?’. These same considerations apply (although here Savage may disagree) to
outcomes. This point has been forcefully made by Weibull [16].

There are numerous papers in the literature that raise issues with the state-
space approach of Savage or that derive a subjective state space. Machina [10]
surveys the standard approach and illustrates many difficulties with the the-
ory and with its uses. These difficulties include the ubiquitous ambiguity over
whether the theory is meant to be descriptive or normative, whether states are
exogenous or constructed by the DM, whether states are external to the DM,
and whether they are measurable or not. Kreps [9] and Dekel, Lipman, and Rus-
tichhini [3] use a menu choice model to deal with unforeseen contingencies—an
inability of the DM to list all possible states of the world. They derive a subjec-
tive state space that represents possible preference orders over elements of the
menu chosen by the DM. Ghirardato [5] takes an alternative approach to un-
foreseen contingencies and models acts as correspondences from a state space to
outcomes. Gilboa and Schmeidler [6] and Karnhi [7] raise objections to the state
space that are similar to ours and develop decision theories without a state space.
Both papers derive subjective probabilities directly on outcomes. Ahn [1] also
develops a theory without a state space; in his theory, the DM chooses over sets
of lotteries over consequences. Ahn and Ergin [2] allow for the possibility that
there may be different descriptions of a particular event, and use this possibility
to capture framing. For them, a ‘description’ is a partition of the state space.
They provide an axiomatic foundation for decision making in this framework,
built on Tversky and Koehler’s [14] notion of support theory.

Our approach differs significantly from these mentioned above. The inspiration
for our approach is the observation that objects of choice in an uncertain world
have some structure to them. Individuals choose among some simple actions:
‘buy 100 shares of IBM’ or ‘attack Iraq’. But they also perform various tests on
the world and make choices contingent upon the outcome of these tests: ‘If the
stock broker recommends buying IBM, then buy 100 shares of IBM; otherwise
buy 100 shares of Google.’ These tests are written in a fixed language (which we
assume is part of the description of the decision problem, just as Savage assumed
that states were part of the description of the decision problem). The language
is how the DM describes the world. We formalize this viewpoint by taking the
objects of choice to be (syntactic) programs in a programming language.

The programming language is very simple—we use it just to illustrate our
ideas. Critically, it includes tests (in the context of if . . . then . . . else state-
ments). These tests involve syntactic descriptions of the events in the world,
and allow us to distinguish events from (syntactic) descriptions of events.
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In particular, there can be two different descriptions that, intuitively, describe
the same event from the point of view of the modeler but may describe different
events from the point of view of the decision maker. Among other things, this
enables us to capture framing effects in our framework, without requiring states
as Ahn and Ergin [2] do, and provides a way of dealing with resource-bounded
reasoners.

In general, we do not include outcomes as part of the description of the de-
cision problem; both states and outcomes are part of the DM’s (subjective)
representation of the problem. We assume that the DM has a weak preference
relation on the objects of choice; we do not require the preference relation to be
complete. The set of acts for a decision problem is potentially huge, and may
contain acts that will never be considered by the DM. While we believe that
empirical validity requires considering partial orders, there are also theoretical
reasons for considering partial orders. Our representation theorems for partial
orders require a set of probabilities and utility functions (where often one of
the sets can be taken to be a singleton). Schmeidler [12, p. 572] observes that
using a set of probability distributions can be taken as a measure of a DM’s
lack of confidence in her likelihood assessments. Similarly, a set of utilities can
be interpreted as a lack of confidence in her taste assessments (perhaps because
she has not had time to think them through carefully).

In the full paper, we describe the syntactic programs that we take as our
objects of choice, discuss several interpretations of the model, and show how
syntactic programs can be interpreted as Savage acts. We then provide a number
of postulates on preference, and prove a representation theorem (essentially, a
sound and complete axiomatization). The key postulate is an analogue of Krantz
et al.’s [8] cancellation axiom. We also discuss how our framework can model
boundedly rational reasoning.

References
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Bisimulation and Coverings

for Graphs and Hypergraphs

Martin Otto

Department of Mathematics
Technische Universität Darmstadt

Abstract. We survey notions of bisimulation and of bisimilar coverings
both in the world of graph-like structures (Kripke structures, transition
systems) and in the world of hypergraph-like general relational struc-
tures. The provision of finite analogues for full infinite tree-like unfold-
ings, in particular, raises interesting combinatorial challenges and is the
key to a number of interesting model-theoretic applications.

1 Introduction

Bisimulation provides the fundamental back&forth methodology to capture dy-
namic notions of behavioural equivalence in terms structural similarity. On
one hand, bisimulation stands in the tradition of model-theoretic comparison
games and may be viewed as a specialisation and adaptation of the classical
Ehrenfeucht–Fräıssé method to a specifically modal context in the analysis of
transition systems and graph-like structures, cf. [10]. On the other hand, bisim-
ulation captures the quintessential notion of game equivalence, and can be seen
as a general framework for the wider family of back&forth games that pertain
to various other types of structures with their specific notions of observable
configurations (game positions) and accessibility (transitions/moves) [21]. With
respect to such generalisations, a very natural and seemingly basic, yet also very
powerful, generalisation step takes us

– from graph-like structures (vertices linked by edges) to hypergraphs (subsets
linked by their overlaps/intersections);

– from ordinary bisimulation to hypergraph or guarded bisimulation;
– from modal logics to guarded logics.

This generalisation, and the interesting parallels as well as the combinatorial
and model-theoretic challenges it entails are at the heart of this presentation.

Both for graphs and for hypergraphs, bisimulation equivalence supports a
natural process of tree unfolding [8,10,12]:

– ordinary tree unfoldings of transition systems or graphs into tree structures
of finite edge-labelled paths from a designated root vertex;

– tree-like hypergraph unfoldings of hypergraphs (or relational structures) into
acyclic hypergraphs (or relational structures).

K. Lodaya (Ed.): ICLA 2013, LNAI 7750, pp. 5–16, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



6 M. Otto

These unfoldings are linked to the original structures not just by some bisim-
ulation, but they provide bisimilar coverings,1 which project homomorphically
to the original structure and allow for lifts of all available links to related loci in
the covering structure. In other words, the bisimulation that links the covering
to the base structure is induced by the homomorphic projection of the cover: the
homomorphism condition guarantees the forth-property for the bisimulation re-
lationship, while the back -property corresponds to the lifting requirement. The
resulting unfoldings are acyclic in the ordinary sense of graph theory (no cy-
cles, not even undirected ones) or of hypergraph theory (α-acyclic, the strongest
notion of hypergraph acyclicity).

The mere existence of acyclic bisimilar unfoldings has strong model-theoretic
and algorithmic consequences for related logics – in fact for any logic whose
semantics is preserved in the process of unfolding. The tree model property [8]
for modal logics and the generalised tree model property [11] of guarded logics
account for various decidability and complexity results for modal and guarded
logics; they stand behind the applicability of tree automata to their algorith-
mic model theory; they support model-theoretic characterisations of modal and
guarded fragments of first-order and second-order logics; and, even though the
unfoldings themselves are typically infinite, they also point us in the right direc-
tion for understanding certain approaches to the finite model property and the
combinatorial challenges posed by the finite model theory of modal and guarded
logics [10,19,26,23,11,13].

2 Bisimulations and Coverings

A the combinatorial level, we speak of graphs and hypergraphs. A hypergraph
is a structure of the format A = (A,S) with vertex set A and set of hyperedges
S ⊆ P(A); the case of graphs is the special case in which all hyperedges have
cardinality � 2 (so these are undirected, but not necessarily loop-free, graphs).
The graphs and hypergraphs of interest arise as combinatorial abstractions of
relational structures:

– transition systems or Kripke structures (relational structures of width � 2)
as graph-like structures, in which vertices and edges carry labels (edge- and
vertex-coloured graphs) and edges may be directed; the graph abstraction is
the underlying undirected link pattern between vertices, including loops.

– relational structures A = (A, (RA)) with relations R of arbitrary, fixed
arities; the hypergraph abstraction is the hypergraph of guarded subsets,
which has, for each tuple a = (a1, . . . , ar) ∈ RA, the set of its components
[a] := {a1, . . . , ar} as one of its hyperedges, and in addition, every singleton
set. It is often convenient to close the set of hyperedges under downward
inclusion.

1 I prefer this classical term to the more idiosyncratic terminology of ‘bounded mor-
phisms’ in the modal logic tradition [8].
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We define bisimulations and coverings for graphs and hypergraphs. They natu-
rally arise in the study of relational structures, in which case the homomorphism
needs to respect relational content: colour of vertices and colours and direction
of edges in the case of graph-like structures;2 and the full isomorphism type of
the induced substructures on hyperedges in the general case. We leave this to
the imagination of the reader and just note that coverings of the underlying
graph or hypergraph structures of relational structures can always be lifted to
proper coverings of those relational structures in a canonical manner. For graph-
like structures one may also wish to disentangle multiple edges (edges between
the same vertices that are of different colours). The traditional modal variant
of bisimulation equivalence for transition systems of Kripke structures is, more-
over, directional; and for this, one would formulate the back&forth requirements,
in a setting of directed graph-like structures, as a lifting condition for forward
extensions only.

Definition 2.1. [graph covering] A covering of a graph A = (A,E) by a graph
Â = (Â, Ê) is a homomorphism π : Â −→ A such that, for every â ∈ Â and edge
e = (a, a′) ∈ E incident at a = π(â), there is some edge ê ∈ Ê with π(ê) = e (we
regard ê as a lifting of e to â). The covering is faithful if it preserves incidence
degrees in the sense that there always is a unique lifting of e to â.

Definition 2.2. [hypergraph covering] A covering of a hypergraph A = (A,S)
by a hypergraph Â = (Â, Ŝ) is a map (hypergraph homomorphism) π : Â −→ A
such that the restrictions π � ŝ of π to the hyperedges ŝ ∈ Ŝ are bijections onto
hyperedges π(ŝ) = s ∈ S, and such that, for every ŝ ∈ Ŝ above s = π(ŝ) and every
s′ ∈ S, there is some hyperedge ŝ′ ∈ Ŝ with π(ŝ′) = s′ and π �(ŝ ∩ ŝ′) = s ∩ s′.

Note that the back -condition in hypergraph coverings says that the overlap be-
tween s and s′ can be lifted to any ŝ above s.

The following notions of acyclicity are the natural ones; for hypergraphs we
concentrate on the strongest of the common notions of acyclicity, also known as
α-acyclity [6,5]. The formulation below, in terms of conformality and chordality,
is one of several equivalent ones [5]: in particular, it is equivalent to the existence
of a tree decomposition whose bags are the hyperedges.

It is convenient to associate with a hypergraph A = (A,S) an induced graph
G(A) on the same vertex set A in which distinct vertices a and a′ are linked
by an edge if they are elements of the same hyperedge s ∈ S, i.e., G(A) is a
superposition of cliques replacing the hyperedges of A.

Definition 2.3. [acyclicity] A graph is acyclic if it does not have any cycles; a
hypergraph A = (A,S) is acyclic if it is both

(i) conformal: each clique in G(A) is contained in a single hyperedge, and
(ii) chordal: every cycle in G(A) of length greater than 3 has a chord, i.e., G(A)

has no induced subgraphs isomorphic to the k-cycle for k > 3.

2 Note that a loop in a transition system is bisimilar to, and may be covered by, a
non-trivial cycle or an infinite chain; in this sense, the graph case is not quite the
immediate specialisation of the hypergraph case.
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Every graphA = (A,E) possesses natural coverings by acyclic graphs A∗
a, whose

nodes are the paths from some designated root vertex a; these coverings can be
made faithful by restriction to non-degenerate edge-labelled paths, i.e., to edge-
labelled paths that do not reverse onto themselves. It is immediate that all
acyclic coverings of a graph that is itself not acyclic must be infinite.

It is not hard to see that, similarly, every hypergraphA = (A,S) admits cover-
ings by acyclic hypergraphs. Such coverings can be based on acyclic graph unfold-
ings of the associated intersection graph I(A) = (S,Δ) where Δ = {(s, s′) : s �=
s′, s ∩ s′ �= ∅}. Again, acyclic coverings of a hypergraph that is itself not acyclic
must be infinite.

We note that non-trivial coverings of hypergraphs can in general not pre-
serve incidence degrees, i.e., they are usually branched coverings and there is no
immediate analogy to faithful coverings, which are generally available only for
graphs.

2.1 Model-Theoretic Applications

The availability of (maybe necessarily infinite) acyclic unfoldings, implies special
model properties for logics whose semantics in invariant under corresponding
notions of bisimulation. Many facets of model-theoretic and algorithmic well-
behavedness of modal and guarded logics can be attributed more or less di-
rectly to their characteristic invariances under bisimulation equivalence. We here
concentrate on special model properties and issues of expressive completeness.
For background on the logics involved, modal logics (including many variants
and extensions of basic modal logic ML, e.g., in the spirit of epistemic or tem-
poral logics) and guarded logics like the guarded fragment of first-order logic
GF, we refer the reader to textbook sources and surveys [8,10] and the original
papers [2,11,14,12].

Theorem 2.1. All bisimulation-invariant logics of graph-like structures, and in
particular basic modal logic ML and the modal μ-calculus Lμ, have the tree model
property: every satisfiable formula is satisfiable in a tree-like model.

All guarded bisimulation-invariant logics of relational structures, and in par-
ticular the guarded fragment GF and its fixpoint extension μGF, have the gen-
eralised tree model property: every satisfiable formula is satisfiable in a model
whose hypergraph of guarded subsets is acyclic.

Suitable tree-like models and their analysis, and the theory of tree automata
that can be employed for model checking purposes, account also for charac-
terisation theorems that characterise Lμ and μGF as expressively complete for
bisimulation-invariant properties that can be expressed in monadic second-order
logic and guarded second-order logic respectively. For the following see the fun-
damental paper by Janin and Walukiewicz [17] and, for a reduction to [17] that
extends the result to the hypergraph setting and guarded logics, [12].
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Theorem 2.2. A monadic second-order definable property of pointed transition
systems is expressible in the modal μ-calculus if, and only if, it is invariant under
modal bisimulation equivalence.

A guarded second-order definable property of relational structures is expressible
in guarded fixpoint logic if, and only if, it is invariant under guarded bisimulation
equivalence.

The classical variants of these characterisations for the bisimulation-invariant
fragments of first-order logic can be proved classically, by means of compactness
arguments and saturated models. These results are due to van Benthem [28] and
Andréka, van Benthem and Németi [2], respectively.

Theorem 2.3. A first-order definable property of pointed transition systems is
expressible in basic modal logic ML if, and only if, it is invariant under modal
bisimulation equivalence.

A first-order definable property of relational structures is expressible in the
guarded fragment GF if, and only if, it is invariant under guarded bisimulation
equivalence.

Returning to special model properties, it is interesting that basic modal logic
ML, many of its first-order variants (and even the modal μ-calculus, but only as
long as only forward modalities are considered), and also the guarded fragment
(but not guarded fixpoint logic) have the finite model property, see textbook
sources [8,10] for ML, and [11] for GF. Finite tree models for formulae of ML can
be obtained by pruning from tree-unfoldings of arbitrary models; finite models
for formulae of GF can be obtained as natural combinatorial completions (w.r.t.
extension properties for partial isomorphisms based on Herwig’s Theorem [15])
from truncations of (tree-unfoldings of) arbitrary models according to [11].

3 Acyclicity versus Finiteness

As outlined above, acyclic coverings of finite structures are necessarily infinite if
the given finite structure is not itself acyclic – both in the world of graphs and
of hypergraphs. However, graphs and hypergraphs admit finite coverings that
are acyclic as far as size-bounded induced sub-configurations in the covering
structure are concerned.

Definition 3.1. [N -acyclicity] ForN ∈ N, a graph or hypergraphA isN -acyclic
if every induced subtructure of A of size up to N is acyclic.

The (induced) sub-hypergraph A � B of A = (A,S), for some B ⊆ A, is the
hypergraph structure obtained by restricting both the vertex set and each indi-
vidual hyperedge to B: A�B = (B,S �B) where S �B = {s ∩B : s ∈ S}.

A graph is N -acyclic if its girth is greater than N . Also note that an N -
acyclic graph for N � 2� + 1 is �-locally acyclic in the sense that the induced
subgraph on the �-neighbourhood of any vertex is acyclic. This does not hold for
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ŝ1ŝ2
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Fig. 1. Local unfoldings of a sub-divided triangle, 2-fold and 4-fold

hypergraphs: consider the hypergraph formed by the subdivision of a triangle
with central vertex into the three triangles formed by the central vertex together
with one edge each, of the outer triangle; it is clear that any non-trivial covering
of this simple hypergraph will have a vertex above the central one whose 1-
neighbourhood contains a chordless cycle of some length 3k or is infinite.

The discrepancy between locality in the associated graph G(A) and locality
in the intersection graph I(A) is a characteristic feature of hypergraphs that
account for their much more challenging combinatorics w.r.t. degrees of acyclicity
in finite covers.

3.1 Cayley Groups and Finite Graph Coverings

N -acyclic graph covers can easily be obtained as direct products with highly
regular, generic N -acyclic graphs that arise as Cayley graphs of suitable groups.
Cayely graphs are a well-known source for regular graphs of large girth [1,7].

If G is a finite group generated by the finite set of non-trivial involutive group
elements {e : e ∈ E} ⊆ {g ∈ G : g2 = 1 �= g} ⊆ G, then the Cayley graph of
G w.r.t. this generator set E is the undirected loop-free E-edge-coloured graph
formed by the group elements with an edge of colour e ∈ E precisely between
all pairs of group elements of the form (g, g · e).

Conversely, let A = (A, (Re)e∈E) be any finite E-edge-coloured undirected
graph in which each Re is a partial matching. We here call such graphs E-
graphs; if we add an e-coloured loop at every vertex not incident with an e-
coloured edge, then we obtain a complete E-graph with the property that every
vertex is incident with precisely one edge (or loop) of colour e, for every e ∈ E.

A finite complete E-graph A = (A, (Re)) induces a finite Cayley group that
arises as a subgroup sym(A) ⊆ Sym(A) of the symmetric group Sym(A) on the
set A. For this, each edge colour e ∈ E is associated with a generator e ∈ sym(A)
according to

e : A −→ A
a �−→ a′ if (a, a′) ∈ Re,

which is a non-trivial involution provided A has at least one e-coloured edge
that is not a loop.
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It is not hard to see that the girth of the Cayley graph of this group sym(A)
w.r.t. the generators e ∈ E is at least 4k+2 if A is chosen to be (the completion
of) the full E-coloured tree of depth k.

To obtain an N -acyclic finite covering of an arbitrary finite graph A = (A,E),
let G be a Cayley group of girth greater than N with involutive generators e ∈ E
(the edge set of A, where we now think of each undirected edge, or loop, as the
set of incident vertices, so that e−1 = e). We obtain a faithful N -acyclic covering
by the natural direct product of A and (the Cayley graph of) G:

A⊗G :=
(
A×G,E ⊗G)

where E ⊗G =
{
((a, g), (a′, g · e)) : {a, a′} = e ∈ E

}
.

This direct product provides a covering with the natural projection onto the first
factor as the covering homomorphism. For details of the following we refer the
reader to [18,23]. Several specialisations to special classes of graph-like structures
are discussed in [9].

Proposition 3.1. For every N ∈ N, every finite graph-like structure A admits
faithful coverings by finite N -acyclic structures.

Cayley groups of much more than just large girth in the above sense are con-
structed in [23]. An iteration of amalgamation steps that produce more and more
highly acyclic E-graphs and passages from these E-graphs A to induced Cayley
groups sym(A) produces Cayley groups without coset cycles of length up to N
(rather than just no generator cycles of length up to N , see Definition 3.2 below).

In a Cayley group with generator setE, and for subsets α ⊆ E, we writeG[α] ⊆
G for the subgroup generated by α ⊆ E, and, for a group element g ∈ G, gG[α] =
{g · h : h ∈ G[α]} for its coset w.r.t. this subgroup. In terms of the Cayley graph,
gG[α] consists of those vertices that are reachable from g on α-coloured paths.

••

G[αi−1] G[αi] G[αi+1]

gi gi+1

hi

��

Fig. 2. Coset cycles: local view

Definition 3.2. [coset cycles] Let G be a Cayley group with involutive genera-
tors e ∈ E. A coset cycle of length n in G consists of a tuple (gi)i∈Zn in G and
a tuple of subsets (αi)i∈Zn of E (cyclically indexed in Zn) such that for all i:
(i) hi := g−1

i · gi+1 ∈ G[αi];
(ii) giG[αi ∩ αi−1] ∩ gi+1G[αi ∩ αi+1] = ∅.

G is called N -acyclic if it does not have any coset cycles of length up to N .
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Proposition 3.2. For every N ∈ N and every finite set E there are finite N -
acyclic Cayley groups with involutive generator set E.

For the proof see [23], where such Cayley groups are used as auxiliary ingredients
in the construction of N -acyclic hypergraph covers as we shall discuss in the next
section.

3.2 Finite Hypergraph Coverings

An intricate iterative construction in [23], which involves finite truncated pieces
of just locally finite N -acyclic coverings and their completion through gluing
operations that do not create new short cycles, yields the following. In that con-
struction, reduced products with N -acyclic Cayley groups (as discussed further
below, see Lemma 3.1) are used as part of the completion steps needed to repair
deficiencies along the boundaries where necessary extensions got cut off in the
truncation.

Proposition 3.3. For every N ∈ N, every finite hypergraph (or relational struc-
ture) admits coverings by finite N -acyclic hypergraphs (relational structures
whose hypergraph of guarded subsets is N -acyclic).

The role of the N -acyclic Cayley graphs from Proposition 3.2 in this construction
lies in the following preservation property in reduced products – which is quite
unlike the role of Cayley groups of large girth towards the construction of N -
acyclic graph covers.

Let A = (A,S) be a hypergraph and σ : E → P(A) a finite family of regions
σ(e) to be used as glueing sites in A. If G is a Cayley group with involutive
generators e ∈ E, we define the reduced product of A with G (over σ) to be the
hypergraph A⊗σ G = (Â, Ŝ), as follows.

The vertex set Â of A ⊗σ G is obtained from the direct product A × G by
identifications w.r.t. the equivalence relation ≈ induced by

(a, g) ≈ (a′, g · e) if a = a′ ∈ σ(e).

The set of hyperedges Ŝ of A ⊗σ G consists simply of those subsets that are
represented by subsets of the form s× {g} in the direct product, for s ∈ S. The
natural projection π onto the first factor is well defined and turns π : Â −→ A
into a hypergraph cover. This construction and the following lemma are part of
the rather involved route to N -acyclic hypergraph coverings in [23] that support
Proposition 3.3.

Lemma 3.1. If A = (A,S) is an N -acyclic hypergraph and if the finite set E
parametrises glueing sites σ(e) ⊆ A that are guarded by hyperedges of A in the
sense that σ(e) ⊆ s for some s ∈ S, then the reduced product A ⊗σ G with any
N -acyclic Cayley group G with involutive generator set E is again N -acyclic.
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A much more transparent construction of finite hypergraph coverings, which
also achieves feasible size bounds, is obtained in [3], where the following weaker
degrees of acyclicity are explored.

Definition 3.3. [weak N -acyclicity] Let N ∈ N and consider two hypergraphs
Â = (Â, Ŝ) and A = (A,S) in a hypergraph covering π : Â −→ A. This covering
is weakly N -acyclic if every induced sub-hypergraph of Â of size up to N can
be augmented by extra hyperedges which project onto singletons or subsets of
hyperedges of A so as to become acyclic: for Â0 ⊆ Â with |Â0| � N there is
some Ŝ′ ⊆ {ŝ′ ⊆ Â0 : π(ŝ

′) ⊆ s ∈ S or |π(ŝ′)| = 1} such that (Â0, Ŝ � Â0 ∪ Ŝ′) is
acyclic.

The width w(A) of a hypergraph A = (A,S) is defined to be the maximal size
of hyperedges in S. The following core result from [3] was inspired by previous
constructions in [25] as well as earlier and cruder approximations in [20]. Essen-
tially, N -acyclic coverings are realised in [3] by finite quotients of suitable term
structures that are designed to satisfy exactly the back -requirements imposed by
the overlap pattern of the desired hypergraph.

Proposition 3.4. For every N ∈ N, every finite hypergraph A admits weakly
N -acyclic coverings by finite hypergraphs whose size can be bounded polynomially
in |A| for fixed N and width of A.

In fact, for fixed width, the construction in [3] also produces coverings by con-
formal hypergraphs of size polynomial in the given hypergraph, thus improving
on a simpler but less succinct construction in [16].

3.3 Model-Theoretic Applications

The following strengthenings of the finite model property for the guarded frag-
ment GF are almost immediate as corollaries to Propositions 3.3 and 3.4, re-
spectively. Details as well as interesting ramifications are presented in [23,3].

In the following, a class of structures defined in terms of finitely many forbid-
den finite substructures is specified by a finite set of finite structures, and consists
of all structures in which the specified structures do not occur as induced sub-
structures, up to isomorphism. A class of structures defined in terms of forbidden
homomorphisms from finitely many finite structures is similarly defined.

Corollary 3.1. GF has the finite model property in restriction to any class of
relational structures that is defined in terms of finitely many forbidden finite
cyclic substructures.

Corollary 3.2. GF has the finite model property in restriction to any class of
relational structures that is defined in terms of forbidden homomorphisms from
finitely many finite structures.

Among the many other consequences of the core construction of weaklyN -acyclic
coverings in [3] are improved bounds on the sizes of small finite models for sen-
tences of the guarded fragment GF and its generalisation to the clique guarded
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fragment, and a further application that shows that finite relational structures
admit polynomial time canonisation w.r.t. guarded bisimulation equivalence.

The primary model-theoretic goal in [23], on the other hand, is the analogue of
the expressive completeness result in Theorem 2.3 for the guarded fragment, in
the sense of finite model theory. Just as for basic modal logic ML, the assertion
of expressive completeness in restriction to finite model theory does not follow
(in any meaningful direct way, that is) from the classical fact, and its proof must
follow very different, more constructive lines.

The finite N -acyclic coverings of [23] can be saturated w.r.t. branching be-
haviour so as to produce finite structures for which guarded bisimulation equiv-
alence to sufficiently high finite depth entails first-order equivalence up to some
given quantifier rank. See [23,22] for details and the general context. This yields
the following.

Theorem 3.1. A first-order definable property of finite (!) relational structures
is expressible in GF if, and only if, it is invariant among finite structures (!)
under guarded bisimulation equivalence.

4 Outlook

Among the latest developments in the directions outlined above are the following.

Restricted back&forth homomorphism equivalences: Back&forth equivalences
that combine modal or guarded bisimulation (of graph-like or hypergraph-like
relational structures, respectively) with local homomorphisms (of bounded size)
under the name of unary negation bisimulation [27] and guarded negation bisim-
ulation [4], have been investigated as the underlying semantic invariances of yet
more expressive well-behaved fragments of first-order logic:

Unary and guarded negation fragments: The unary negation fragment UN and
guarded negation fragment GN of first-order logic are based on unconstrained
(or just size-constrained) positive existential quantification and the limitation of
negation to formulae that have just a single free variable (unary negation) or an
explicitly guarded tuple of free variables (guarded negation). These fragments es-
sentially extend modal logic and the guarded fragment, respectively, and display
very similar model-theoretic and algorithmic properties, see [27] and [4]. Techni-
cally, the generalisation of good model-theoretic features, and especially of the
finite model property, involves reductions to Corollary 3.2 above. An analogue
of Theorem 3.1 has recently been outlined in [22].

Improved hypergraph constructions: New, as yet unpublished constructions based
on groupoids and their analogue of Cayley graphs allow for far more generic and
direct constructions of suitably acyclic hypergraps and hypergraph coverings by
means of reduced products [24].
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Abstract. We survey some classical and some recent results in the the-
ory of forcing axioms, aiming to present recent breakthroughs and in-
terest the reader in further developing the theory. The article is written
for an audience of logicians and mathematicians not necessarily familiar
with set theory.
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1 Introduction

We shall work within the axioms of the Zermelo-Fraenkel set theory with Choice
(ZFC). These axioms were introduced basically starting from 1908 and improving
to a final version in the 1920s as an attempt to axiomatize the foundations of
mathematics. There have been other such attempts at about the same time and
later, but it is fair to say that for the purposes of much of modern mathematics
the axioms of ZFC represent the accepted foundation (see [13] for a detailed
discussion of foundational issues in set theory). Gödel’s Incompleteness theorems
[16] prove that for any consistent theory T which implies the Peano Axioms and
whose axioms are presentable as a recursively enumerable set of sentences, so
for any reasonable theory one would say, there is a sentence ϕ in the language
of T such that T does not prove or disprove ϕ. In some sense the discussion
of which axioms to use is made less interesting by these theorems, which can
be interpreted as saying that a perfect choice of axioms does not exists. We
therefore do like the most, we concentrate on the axioms that correctly model
most of mathematics, and for the rest, we try to understand the limits and
how we can improve them. For us ZFC is a basis for a foundation which in some
circumstances can be extended to a larger set of axioms which provide an insight
into various parts of mathematics. In here we concentrate on the forcing axioms
(and their negations).

2 The Discovery of Forcing

The proof of Gödels’ Incompleteness theorems is not constructive and in partic-
ular it does not construct an independent sentence ϕ, it only proves its existence.
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It is therefore quite amazing that for the theory of ZFC such a sentence ϕ turned
out to be the following simple statement formulated by Cantor as early as 1878
[8] (as an implicite conjecture only at that point):

Continuum Hypothesis (CH): For every infinite subset A of the reals R, either
there is a bijection between A and R or there is a bijection between A and N.

This statement tormented Cantor, who could not prove it or disprove it. With
a good reason, since it was finally proved by Cohen in [9] that if ZFC is consistent
then so is ZFC with the negation of CH. Since Gödel [17] had proved that if ZFC
is consistent then so is ZFC along with CH, it follows that CH is independent
of ZFC. To obtain his proof Cohen introduced the technique of forcing. It is a
technique to extend a universe V of set theory to another one, V[G], so that
V[G]:

– has the same ordinals

– (most often) has the same cardinals and

– satisfies a desired formula φ.

One way to think of this technique is to imagine that we are actually working
within some large ambient model of ZFC and seeing only a small submodel which
we call V. This submodel may even be assumed to be countable. Being so small,
V has a rather particular opinion of the reality, for example it esteems that every
infinite cardinal ℵα is some ordinal β(ℵα) among the ordinals β that actually
belong to V (we denote this by ℵVα ). For Cohen’s proof we may also assume that
V satisfies CH- since if it does not we have already violated CH. What we aim to
do is to extend V to a larger model which will contain ℵV2 many reals from our
ambient universe, while V[G] and V will actually agree on their opinion of what
is ℵ1 and ℵ2 (they will have the same cardinals). Then in V[G] we can choose
any set A of only ℵV1 reals to demonstrate that A is not bijective with either N or
R, hence CH fails. This construction rests upon a combinatorial method which
adds these new reals while preserving the cardinals. We may imagine this as a
sort of inductive construction, but one in which the desired object is not added
using a linearly ordered set of approximations but rather a partially ordered set.
For example, thinking of a real as a function from ω to 2 (as there is a bijection
between R and P(ω)), we may add a real by considering the partial order of finite
partial functions from ω to 2 in their increasing order, some coherent subset of
which will be glued together to give us a total function from ω to 2. The coherent
subset is our G, the generic filter. The fact that such a subset can be chosen is
one of the main ingredients of the method. The actual proof of the negation of
CH requires us to work with functions from ω2×ω to 2, but the idea is the same.

Partial orders considered in the theory of forcing have the property of having
the smallest element and are often called forcing notions. Elements of a forcing
notion are usually called conditions. As we are looking for coherent subsets of
a forcing notion, an important point is to consider for given two conditions if
they are coherent, which means that they have a common extension. We say
that conditions having such an extension are compatible, otherwise they are in-
compatible. A set of conditions is called an antichain if it consists of pairwise
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incompatible conditions.1 The moral opposite of an antichain is a filter, which
is a set in which every two conditions are compatible, moreover with a common
extension in the filter itself. We also assume that filters are closed under weak-
enings of the conditions within the filter. The generic then is a very special kind
of filter.

We digress to say that many authors consider forcing notions as partial or-
ders which have the largest element and in which smaller elements give more
information than the larger ones. The intuition may be that at the beginning
we have a misty view of what our generic object is going to be, and that with
every stronger condition we clear the myst and restrict the vision to a smaller
relevant part, leading in the end to a single object which is the generic. The
former approach was used by Cohen who discovered forcing, the latter was used
by Solovay who quickly took over from Cohen to become a leading figure of set
theory for many years. The two approaches are obviously equivalent, here we
shall use the former one.

Cohen’s discovery led to a large number of independence results, leading to
many mathematical and philosophical developments. We shall concentrate on
the mathematical ones. In particular we shall discuss the notion of a forcing
axiom and the related concept of iterations of forcing. We shall often discuss the
situation of relative consistency of a statement ϕ, that is to say the situation
that if ZFC is consistent then so is the conjunction of ZFC and our statement
ϕ. We shorten this description by saying “ϕ is consistent”, and leave it to the
reader to remember that this in fact only relates to relative consistency.

3 Iterated Forcing and Martin’s Axiom

We have described in §2 that CH is independent of ZFC, but it turns out that
so are various other statements coming from a large number of fields of mathe-
matics. For example, the statement that every ccc2 Boolean algebra of size less
than the continuum supports a measure and that CH fails, is consistent with
ZFC. Call this statement BA. To prove this we need more than just a single step
forcing extension described in the introduction and used for the failure of CH.
The reader may imagine trying to prove this statement by going through some
list of “small” ccc Boolean algebras and generically adding a measure to each of
them. So we need to iterate the method described in the introduction. Only, this
is not completely trivial as it can be shown that if we proceed naively, taking
one generic after another and unions at the limit, already after ω many steps we
shall no longer have a model of ZFC. Another issue which is more subtle is that
even if we manage to preserve ZFC, it is easy to destroy the cardinals, in the
sense that our final model will have learned that what V in its restricted opinion
had considered to be cardinals, in fact are just bare small ordinals. For example,
it might have learned that the ω1 of V is countable, so the final theorem will not

1 Note that the notion of an antichain here differs from that one in the theory of order,
where the conditions in an antichain are simply required to be pairwise incomparable.

2 This means that every family of pairwise disjoint elements in the algebra is countable.
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be about ω1. A forcing which does not put us in this situation is said to preserve
cardinals. An example of such a forcing is the so called ccc forcing, where the
word ccc is used to denote the fact that every antichain is countable.

The way out of these difficulties is the iterated forcing. We shall not describe it
in detail, but we may imagine it as a huge forcing notion consisting of sequences
of elements where each coordinate corresponds to a name for an element of a
forcing notion, not in V but in some extension of it intermediate between V and
V[G]. Every sequence in this object has a set of nontrivial coordinates, which
is to say places in where it is not equal to the trivial smallest element of the
corresponding forcing notion. This set is called the support of a condition. A
major advance in the theory was the following theorem:

Theorem 3.1 (Martin and Solovay) An iteration with finite supports of ccc
forcing is ccc.

The history of this theorem is that Solovay and Tennebaum in [31] proved the
consistency of the Souslin Hypothesis (i.e. there are no Souslin lines, meaning
that the reals are characterised by being a complete order dense set with no
first or last element in which every family of pairwise disjoint sets is countable)
using the technique of iterating a certain forcing. Their original result was an
iteration of the specific forcing destroying Souslin lines. However, Martin realised
that their technique could be extended to prove Theorem 3.1 and introduced the
Martin’s Axiom (see below), which appears in Section 6 of [31] and the paper
[22] by Martin and Solovay. The point is that iterated forcing is quite a complex
technique and there is no reason to expect that a mathematician not working in
set theory but interested in the possible independence of some concrete statement
in mathematics should be learning the technique of iterated forcing, or of course
that a set theorist will be able to work in any given part of mathematics to
answer the question- although many examples of both the former and the latter
are known in the literature. However, this is exactly where the forcing axioms
come in, and the first one was discovered thanks to Theorem 3.1. It is Martin’s
Axiom:

Martin’s Axiom (MA): For every ccc forcing notion P and every family F of
< c many dense sets in P, there is a filter in P which intersects all elements of
F .

A dense set in a forcing notion is a subset such that every condition in the
forcing notion has an extension in the dense set. Intersecting dense sets is what
corresponds to genericity, because in fact the definition of a generic filter (over
V) is that it intersects every dense set which is in V. Martin’s Axiom actually
follows from CH, as can be proved by induction, but the point is that it is
also consistent with the negation of CH, in fact with CH being as large as we
wish. This has had far reaching consequences. The point is that formulating this
axiom separates the two parts of the technique of forcing: the logical one and the
combinatorial one, to the extent that the “end user” of this axiom does not need
to know anything about logic, it suffices to concentrate on the combinatorics
involved. This in fact is often not too difficult and a careful reader of this article
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could easily now go away and prove for himself the consistency of the statement
BA above, simply using MA + ¬ CH. This is why MA has had a large success in
the mathematical community and a large number of independence results were
obtained using it. Many of these developments are documented in Fremlin’s book
[19], and new developments come up regularly.

4 Beyond ccc

Many nice forcing notions are not ccc. An example is Sacks forcing which adds
a real of a minimal Turing degree [27]. In fact, some very natural statements
in mathematics are known to be independent of set theory but it is also known
that these independence results cannot be shown using MA. An example is the
following: say that a subset A of the reals is ℵ1-dense if for every a < b in A there
are ℵ1-many reals in the intersection A ∩ (a, b). Baumgartner proved in [4] that
it is consistent that every two such sets are order isomorphic and CH fails. Yet,
Abraham and Shelah [3] proved that this statement does not follow from MA+¬
CH. Baumgartner’s proof uses PFA, the proper forcing axiom. Properness is a
more general notion than that of ccc and is expressed in a less combinatorial way.
It was invented by Shelah in the 1980s (see [30] for the majority of references
relating to proper forcing in this section), in a response to a growing need of the
set theorists to have an iterable notion of forcing which preserves cardinals (or
at least ℵ1) and is not necessarily ccc.

The history of this development is that Laver showed in [21] the consistency
of the Borel conjecture, which postulated that all sets of reals which have strong
measure zero are countable. Laver showed that this is the case in a model ob-
tained by adding ℵ2 many Laver reals to a model of GCH, using countable
supports in the iteration. It is exactly this notion of a countable support that is
used in the proper forcing axiom. Namely,

Theorem 4.1 (Shelah) An iteration with countable supports of proper forcing
is proper.

Shelah also showed that Theorem 4.1 is not true when countable supports are
replaced by the finite ones. It should be noted that Laver’s forcing also inspired
the notion of Property A, introduced by Baumgartner [5], which is a notion
implied by ccc and implying properness, and which is iterable using countable
support. Proper forcing is a more general notion and hence more useful. Shelah’s
iteration theorem is a step in Baumgartner’s proof [5] that from the assumption
of the consistency of the existence of one supercompact cardinal, one can prove
the consistency of a forcing axiom he formulated, the proper forcing axiom PFA.
PFA is the statement

Proper Forcing Axiom (PFA): For every proper forcing notion P and every
family F of ℵ1 many dense sets in P, there is a filter in P which intersects all
elements of F .

A careful reader may wonder why in the formulation of Martin’s Axiom we
have the possibility to use< cmany dense sets and in the PFA we can only use ℵ1
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many. In fact, the two boil down to same, since Veličković and Todorčević proved
in [34] and [7] that PFA implies c = ℵ2. Proper forcing has many applications, in
the set theory of the reals, combinatorial properties of ω1 and topology, algebra
and analysis. Many of these developments can be found in Shelah’s monumental
book mentioned above [30] and Baumgartner’s article [6]. Let us give a definition
of properness for those readers who would like to see the details. It is a somewhat
complicated definition, involving the use of elementary models - which exactly
was behind the revolution that it has created, as it was a totally new way of
looking at forcing.

Let χ be a regular cardinal, which means that H(χ)3 models all the (finitely)
many instances of the axioms of set theory that will be used in our argument
and that it contains all objects we need4.

Definition 4.2 Let P be a forcing notion and suppose that N is a countable
elementary submodel of H(χ) such that P ∈ N . We say that q ∈ P is an (N,P)-
generic condition if for every dense subset D of P with D ∈ N , we have that
D ∩N is dense above q.

P is said to be proper if for every N and p as above with p ∈ N , there is q ≥ p
which is (N,P)-generic.

The interested reader should plan to spend a few happy hours reading either
[30] or [5], where excellent introductions are given. Good questions to test the
understanding of the topic is to prove that every ccc forcing is proper and that
proper forcing preserves ω1.

5 Away from Properness

Proper forcing preserves ω1 and the stationary subsets of it, but it is not the
only forcing with these preservation properties. For example, the Prikry forcing
changing the cofinality of a measurable cardinal to ω preserves stationary sub-
sets of ω1 and is not proper. Shelah (see [30]) defined a larger class of forcing,
the semiproper forcing, which does preserve ω1 and includes the class of proper
forcing and the Prikry forcing. Then one can formulate the semiproper forcing
axiom SPFA in a similar way as PFA and prove it consistent from a supercom-
pact cardinal using a proof simillar to that of Baumgartner for PFA. With one
major difference: the iteration has to be done with the so called revised countable

3 This is the set of all sets whose transitive closure under ∈ has size < χ.
4 The reader should recall that there are infinitely many axioms of set theory, as the
Axiom of Replacement and the Axiom of Comprehension are actually infinite axioms
schemes, giving one axiom for each formula of set theory. Any given argument will
only use finitely many axioms and for any such finite portion ZFC∗ of ZFC there
is a χ such that H(χ) models ZFC∗. The way to think of the argument to come
is similar to the choice of ε in the continuity arguments in analysis: we know the
argument works independently of the choice of ε, or χ in our case, and we know that
the ε could have been chosen so that it works for the situation in question- hence
the proof follows.
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support. This is quite an involved concept, going way beyond the scope of this
article. Foreman, Magidor and Shelah studied in [12] a similar forcing axiom,
where the entries are all forcings that preserve stationary subsets of ω1, so it is
called the Martin Maximum. In fact, it turns out that SPFA and MM are the
same axiom, as was proved by Shelah in [29].

The word Maximum in some sense also indicates the outlook of the subject
after the invention of MM. Clearly, stronger axioms than MM could not be
invented, or at least not in an obvious way, and hence research concentrated for
some years on studying the weakenings of these axioms, especially weakenings
of PFA. Some of the popular choices are OCA, the open colouring axiom (it has
two versions, introduced respectively by Abraham, Rubin and Shelah in [1] and
Todorčević in [33]), BPFA, which is the bounded PFA, introduced by Goldstern
and Shelah in [18], MPR introduced by Moore in [24] and, of particular interest,
PID, the P -ideal dichotomy which has the surprising feature to be consistent
with the continuum hypothesis, as shown by Abraham and Todorčević in [2].
The interest of these axioms is exactly in their relative weakness, as they allow
us to get the relative consistency of statements that are seemingly contradictory,
such as CH and certain consequences of PID.

Another direction suggesting itself here are the forcing axioms on cardinals
above ω1. Generalised Martin Axioms were developed by Baumgartner in [5] and
Shelah in [28] and their basic form is that they apply to κ+ for some cardinal κ
satisfying κ = κ<κ and to forcing satisfying some strong version of the κ+-chain
condiion (the ordinary version won’t do), being (< κ)-closed5 or some similar
condition, and some condition like well-metness: every two compatible conditions
have the least upper bound. The version of the κ+-chain condition appearing
in Shelah’s work is called stationary κ+-cc. The consistency of these axioms is
proved by a proof similar to that of the consistency of Martin’s Axiom, but using
supports of size (< κ). The situation with the generalisation of proper focing
is much more complicated, and in spite of a series of papers by Ros�lanowski
and Shelah (see e.g. [26]) where partial solutions are found, it is fair to say that
the right geneeralisation does not exist for the moment. Exciting new work by
Neeman seems to be able to obtain exactly that, as we discuss in the next section.

Before leaving this section let us also discuss forcing axioms at another kind of
cardinals, the successor of a singular cardinal. Work by Džamonja and Shelah in
[11] gives, modulo a supercompact cardinal, the consistency of a forcing axiom
at a supercompact cardinal that will be made to have cofinality ω by a certain
Prikry extension. The axiom has a different form than the ones that we have seen
so far, as it applies in the universe before we do the Prikry extension, rather than
the final universe. It states that 2κ is large (can be made as large as we like it),
there is a normal measureD on κ which is obtained as an increasing union of κ++

filters (which allows for a very nice prediction of Pr(D) names for objects on κ+)
and that the Generalised Martin’s Axiom holds for κ+-stationary chain condition
(< κ)-directed closed (every directed system of < κ many conditions has a

5 This means that every increasing sequence of length < κ in the forcing has a common
upper bound.
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common upper bound) well-met forcing notions. Using this axiom Džamonja
and Shelah obtained the consistency (modulo a supercompact cardinal) of the
existence of a family of κ++ graphs on κ+ for κ singular strong limit of cofinality
ω, together with 2κ being as large as we wish. Work in progress by Cummings,
Džamonja, Magidor, Morgan and Shelah promises to extend this to cofinalities
larger than ω as well as to ℵω.

6 Iterating Properness with Finite Supports- It Is
Possible after All

As mentioned above, it is well known that one cannot iterate proper forcing
axiom with finite supports and guarantee that the properness is preserved. Yet
a recent result of Neeman in [25] shows that in some sense we can do exactly this,
as he gave an alternative proof of the consistency of PFA using conditions which
have finite support. Assuming some bookekepping function f coming from the
Laver diamond and giving the list of all proper focings (this is the standard part
of any known proof of the consistency of PFA), Neeman introduced the forcing
which consists of pairs (Mp, wp) whereMp is a finite ∈ −increasing sequence
of elementary submodels of H(χ), each either countable or of the form H(α) for
some α < χ, and the sequence is closed under intersections. The working part
wp is also finite and it has a support of finitely many α satisfying that at any
nontrivial stage α the coordinate wp(α) is forced by Pα to be (MGα , Q

˜
α)-generic

for all M ∈Mp such that Pα ∈M .
Neeman’s work is very revolutionary but it also builds up on some earlier de-

velopments, such as the papers by Friedman [14] and Mitchell [23] in which these
authors independently obtained forcing notions to force a club to ω2 using finite
conditions and certain systems of models. This idea was also used in [10] to add
a square to ω2 , while the idea of using elementary submodels as side conditions
goes back to Todorčević ([32]), with the difference that there only countable
models were used. Koszmider [20] used models organised along a morass to ob-
tain the consistency of the existence of a chain of length ω2 in P(ω1)/fin. A major
ingredient in Neeman’s work is also the notion of strong properness, which was
used by Mitchell in [23]. Applications of Neeman’s method in giving elegant
proofs of several known difficult consistency results can be found in the paper
[35] by Veličković and Venturi. Very new developements inspired by Neeman’s
work include a proof by Gitik and Magidor [15] that SPFA can be obtained
by a sort of “revised finite support”, and Neeman’s yet unwritten work which
shows how a generelisation of his method can be used to obtain a workable larger
cardinal analogue of PFA.

7 Challenges

Some of the main directions of present research are indicated in the above:
generalising PFA to larger cardinals and forcing axioms at the successor of a
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singular cardinal. There are many open questions that arise. Another direction
on which we have not commented on too much and which forms a major line of
research is the search for a forcing axiom on ω1 which would be consistent with
CH and give some concrete combinatorial statements, such as “measuring”. Note
that almost all the forcing we discussed in the context of ω1 adds reals (which is
why it is so interesting that PID is consistent with CH). There is a large theory
behind this and the interested reader may start with [30], especially Chapter V.

Challenges in this field also come from applications to other fields, and without
having more space to spend on the numerous applicatons of the axioms we have
so far, we can just mention that applications have been found in fields as varied as
the theory of Boolean algebras, topology, algebra, Banach space theory, measure
theory and C∗-algebras.
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[10] Dolinar, G., Džamonja, M.: Forcing Squareω1
with finite conditions. Ann. of Pure

and Appl. Logic 164, 49–64 (2013)
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Mathematics, pp. 285–296. Birkhäuser Verlag, Basel (2006)
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Abstract. We analyse the role of the modal axiom corresponding to the
first-order formula “∃y (x = y)” in axiomatisations of two-dimensional
propositional modal logics.

One of the several possible connections between propositional multi-modal logics
and classical first-order logic is to consider finite variable fragments of the latter
as ‘multi-dimensional’ modal formalisms: First-order variable-assignment tuples
are regarded as possible worlds in Kripke frames, and each first-order quantifica-
tion ∃vi and ∀vi as ‘coordinate-wise’ modal operators �i and �i in these frames.
This view is implicit in the algebraisation of finite variable fragments using finite
dimensional cylindric algebras [6], and is made explicit in [15,12].

Here we look at axiomatisation questions for the two-dimensional case from
this modal perspective. (For basic notions in modal logic and its Kripke se-
mantics, consult e.g. [2,3].) We consider the propositional multi-modal language
MLδ2 having the usual Boolean operators, unary modalities �0 and �1 (and
their duals �0, �1), and a constant δ:

MLδ2 : p | ¬ϕ | ϕ ∨ ψ | �0ϕ | �1ϕ | δ

Formulas of this language can be embedded into the two-variable fragment of
first-order logic by mapping propositional variables to binary atoms P (v0, v1)
(with this fixed order of the two available variables), diamonds �i to quantifica-
tion ∃vi, and the ‘diagonal’ constant δ to the equality atom v0 = v1. Semantically,
we look at first-order models as multimodal Kripke frames (fitting to the above
language) of the form

〈U × U,≡0,≡1, Id〉, where, for all u0, u1, v0, v1 ∈ U,

〈u0, u1〉≡0〈v0, v1〉 iff u1 = v1,

〈u0, u1〉≡1〈v0, v1〉 iff u0 = v0, and

Id = {〈u, u〉 : u ∈ U}.

We call frames of this kind square frames. The above embedding is validity-
preserving in the sense that a modalMLδ2-formula ϕ is valid in all square frames
iff its translation ϕ† is a first-order validity.
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In the algebraic setting, the modal logic of square-frames corresponds to the
equational theory of the variety RCA2 of 2-dimensional representable cylindric
algebras. The equational theory of RCA2 is well-known to be finitely axioma-
tisable [6]. By turning this equational axiomatisation to modal MLδ2-formulas,
we obtain a finite axiomatisation of the modal logic of square frames [15]. In
order to ‘deconstruct’ this axiomatisation and to try to analyse which axiom is
responsible for which properties of the modal logic of square frames, below we
list these axioms divided into two groups:

(i) Unimodal properties describing individual modal operators, for i = 0, 1:

�ip→ p �ip→ �i�ip �ip→ �i�ip (1)

These are the (Sahlqvist) axioms of the well-known modal logic S5, saying
that each ≡i is an equivalence relation.

(ii) Multimodal, ‘dimension-connecting’ properties, describing the interactions
between the two diamonds, and between the diamonds and the diagonal
constant:

�0�1p↔ �1�0p (2)

�0δ ∧�1δ (3)(
�0(δ ∧ p)→ �0(δ → p)

)
∧

(
�1(δ ∧ p)→ �1(δ → p)

)
(4)

δ ∧�0(¬p ∧�1p)→ �1(¬δ ∧�0p) (5)

δ ∧�1(¬p ∧�0p)→ �0(¬δ ∧�1p) (6)

These axioms are also Sahlqvist formulas, with easily computable first-order
correspondents: Axiom (2) says that ≡0 and ≡1 commute, (3) says that at
each ‘horizontal’ and ‘vertical’ coordinate, there is at least one ‘diagonal’
point, while (4) says that there is at most one such. Finally, (5) is a kind
of generalisation of (2) when we start from a ‘diagonal’ point: It says that
if we start with a ≡0-step, then move on to a different point by a ≡1-step,
then we can always complete the same journey by taking first a ≡1-step
to a ‘non-diagonal’ point, followed by a ≡0-step. (And (6) says the same
about starting with a ≡1-step, and then taking a ≡0 one.) Note that the
axiomatisation given in [6] contains slightly complicated forms of (5) and
(6). As it is shown by Venema [15], on the basis of (1), (2) and (4), the
‘Henkin-axioms’ are equivalent to (5) and (6).

One of the motivations in the study of so-called two-dimensional modal logics
is to understand how much influence each of the (i)- and (ii)-like properties has
on the resulting logics. Below we consider Kripke structures where

– the set of possible worlds is still a full Cartesian product of two sets, and the
relations between the pairs of points still ‘act coordinate-wise’ (so at least
(2), but possibly further properties in (ii) still hold),

– the accessibility relations between the pairs of points are not necessarily
equivalence relations (so (i) might not hold).
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Note that this direction is kind of orthogonal to the one taken by relativised
cylindric algebras [6,7] and guarded fragments of first-order logic [1], where (i)
is kept unchanged, while generalisations of (ii) are considered.

Let us introduce a ‘product-like’ construction on Kripke frames. This and
similar constructions were first considered by Segerberg [13] and Shehtman [14],
see also [4,9,8]. Given unimodal Kripke frames F0 = 〈U0, R0〉 and F1 = 〈U1, R1〉,
their δ-product is the multimodal frame

F0×δF1 = 〈U0 × U1, R̄0, R̄1, Id〉,

where U0 × U1 is the Cartesian product of sets U0 and U1, the binary relations
R̄0 and R̄1 are defined by taking,

〈u0, u1〉 R̄0〈v0, v1〉 iff u1 = v1 and u0R0v0,

〈u0, u1〉 R̄1〈v0, v1〉 iff u0 = v0 and u1R1v1,

and
Id = {〈u, u〉 : u ∈ U0 ∩ U1}.

Observe that if F = 〈U,U×U〉 is an universal frame, then F×δF is a square frame.
Let us introduce some notation for logics of some special classes of δ-product
frames:

K×δK = {ϕ ∈MLδ2 : ϕ is valid in F0×δF1, Fi are arbitrary frames},
K×sq K = {ϕ ∈ MLδ2 : ϕ is valid in F×δF, F is an arbitrary frame},
S5×δS5 = {ϕ ∈MLδ2 : ϕ is valid in F0×δF1, Fi are equivalence frames},
S5×sq S5 = {ϕ ∈ MLδ2 : ϕ is valid in F×δF, F is an equivalence frame}

= {ϕ ∈ MLδ2 : ϕ is valid in F×δF, F is a universal frame}
= {ϕ ∈ MLδ2 : ϕ is valid in all square frames}.

Using this notation, the finite axiomatisability of RCA2 can be reformulated as
the following:

Theorem 1. [6] S5×sq S5 is finitely axiomatised by the axioms (1)–(6).

In this note we investigate the particular role of axiom (3) in this axiomati-
sation. To begin with, this axiom is quite strong in the sense that it can ‘force’
the S5-properties (1) in the presence of ‘two-dimensionality’, as the following
surprising statement shows:

Theorem 2. [10,11] Let L be any canonical modal logic with

K×δK ⊆ L ⊆ S5×sq S5.

Then S5×sq S5 is finitely axiomatisable over L: S5×sq S5 is the smallest modal
logic containing L and axiom (3).
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In particular, as a consequence we obtain that S5×sqS5 =‘S5×δS5 + (3)’. Here
we show that the remaining axioms indeed do axiomatise S5×δS5:

Theorem 3. S5×δ S5 is finitely axiomatised by the axioms (1), (2), (4)–(6).

On the one hand, these axioms are clearly valid in δ-products of equivalence
frames. On the other hand, since (1), (2), and (4)–(6) are all Sahlqvist-formulas,
the modal logic they axiomatise is determined by a first-order definable class of
frames, and so it has the countable frame property. Therefore, it is enough to
show the following:

Lemma 4. Let G = 〈W,R0, R1, D〉 be a countable rooted frame, validating (1),
(2), and (4)–(6). Then G is a p-morphic image of a δ-product F0×δF1 for some
universal frames Fi = 〈Ui, Ui × Ui〉, i = 0, 1.

Proof. It is a step-by-step argument that is a generalisation of Venema’s [15]
proof showing that countable rooted frames validating (1)–(6) are p-morphic
images of square frames.

One way of presenting such an argument is by defining a ‘p-morphism game’
Gω(G) between two players ∀ (male) and ∃ (female) over G. In this game, ∃ con-
structs step-by-step, (special) homomorphisms from larger and larger δ-products
of universal frames to G, and ∀ tries to challenge her by pointing out possible
‘defects’: reasons why her current homomorphism is not an onto p-morphism
yet.

To this end, we call a triple N = 〈UN
0 , UN

1 , fN 〉 a G-network, if UN
0 , UN

1 are
nonempty sets, and fN : UN

0 × UN
1 → W is a function such that the following

hold, for all ui, vi ∈ UN
i , i = 0, 1:

(nw1) fN (u0, u1)R0f
N (v0, u1) and fN(u0, u1)R1f

N (u0, v1),

(nw2) fN (u0, u1) ∈ D iff u0 = u1 ∈ UN
0 ∩ UN

1 , and

(nw3) if there exists w in D with fN (u0, u1)Riw, then u1−i ∈ UN
i .

The two players build a countable sequence of G-networks

N0 ⊆ N1 ⊆ · · · ⊆ Nk ⊆ . . . .

(Here Nk ⊆ Nk+1 means that UNk

i ⊆ U
Nk+1

i , i = 0, 1, and fNk ⊆ fNk+1.) In
round 0, ∀ picks any point r in D if there is such. If not, then just any point in
W . (As R0 and R1 are equivalence relations and R0 ∪ R1 is rooted, any point
in W is a root in G.) ∃ responds with the G-network UN0

0 = {u0}, UN0
1 = {u1}

and fN0(u0, u1) = r, with u0 = u1 if r ∈ D, and u0 �= u1 otherwise.
In round k (0 < k < ω), some sequence N0 ⊆ · · · ⊆ Nk−1 of G-networks has

already been built. ∀ picks

– a pair 〈x, y〉 ∈ U
Nk−1

0 × U
Nk−1

1 ,

– a point w ∈W , and

– an index i = 0 or i = 1
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such that fNk−1(x, y)Riw holds. Let us consider ∃’s possible responses in the
i = 0 case. (The i = 1 case is symmetrical.) She can respond in two ways. If there

is some u ∈ U
Nk−1

0 with fNk−1(u, y) = w, then she responds with Nk = Nk−1.
Otherwise, she has to respond (if she can) with some G-network Nk ⊇ Nk−1

such that u∗ ∈ UNk
0 and fNk(u∗, y) = w, for some fresh point u∗.

We say that ∃ has a winning strategy in Gω(G) if she can respond in each
round k for k < ω, no matter what moves ∀ take in the rounds. It is not hard to
see that if ∃ has a winning strategy in Gω(G), then G is a p-morphic image of a
a δ-product of universal frames: Consider a play of the game when ∀ eventually
picks all possible pairs and corresponding Ri-connected points in G (since G is
countable and rooted, he can do this). If ∃ uses her strategy, then she succeeds
to construct a countable ascending chain of G-networks whose union gives the
required p-morphism.

We show that if G validates axioms (1), (2), and (4)–(6), then ∃ has a winning
strategy in Gω(G). The case of round 0 is straightforward. Suppose that we are
in round k > 0 and ∀ picks 〈x, y〉, w, and i = 0 as above. We omit the case where
∃’s response is fully determined by the rules of the game, so we may assume that

fNk−1(u, y) �= w, for all u ∈ U
Nk−1

0 . (7)

We claim that

w /∈ D (8)

follows. Indeed, if w ∈ D then y ∈ U
Nk−1

0 ∩ U
Nk−1

1 by (nw3), and therefore
fNk−1(y, y) ∈ D by (nw2). So, by axioms (1) and (4), w = fNk−1(y, y) follows,
contradicting (7).

We let UNk
0 = U

Nk−1

0 ∪ {u∗}, for some fresh point u∗, fNk(u∗, y) = w, and
fNk ⊇ fNk−1 . We consider two cases: either there is no w∗ ∈ D with wR1w

∗, or
there is such a w∗.

Case 1. There is no w∗ ∈ D with wR1w
∗.

Then we let UNk
1 = U

Nk−1

1 . Take some u ∈ U
Nk−1

1 , u �= y. We need to de-
fine fNk(u∗, u) such that (nw1)–(nw3) hold. We have fNk(x, u)R1f

Nk(x, y)R0w
by (nw1). So by axiom (2), there exists wu such that fNk(x, u)R0wuR1w. As
wuR1w, by axiom (1) there is no v ∈ D with wuR1v, in particular, wu /∈ D.
Therefore, fNk(u∗, u) = wu is a good choice.

Case 2. There exists w∗ ∈ D with wR1w
∗.

Then we let UNk
1 = U

Nk−1

1 ∪ {u∗}. We need to define fNk on the new pairs such
that (nw1)–(nw3) hold. There are several cases (see Fig. 1):

– First, let fNk(u∗, u∗) = w∗.
– Next, take some u ∈ U

Nk−1

1 , u �= y.

• Case (a). There is no v ∈ D with fNk(x, u)R0v.
As by (nw1) we have fNk(x, u)R1f

Nk(x, y)R0w, by axiom (2) there exists
wu such that fNk(x, u)R0wuR1w. As f

Nk(x, u)R0wu, by axiom (1) there
is no v ∈ D with wuR0v, and therefore fNk(u∗, u) = wu /∈ D will do.
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U
Nk−1
0

U
Nk−1
0 ∩U

Nk−1
1

U
Nk−1
1

�

�

�

�

�

x

y

u∗

u∗

∗ �→ w

�

�

�

(a)

(b)

� �
(d) (c)

Fig. 1. The subcases in Case 2

• Case (b). There is v ∈ D with fNk(x, u)R0v.

By (nw3) and (nw2), u ∈ U
Nk−1

0 and fNk(u, u) ∈ D. By (7), we have
fNk(u, y) �= w. As by (nw1) we also have fNk(u, u)R1f

Nk(u, y)R0w, by
axiom (6) there is wu /∈ D with fNk(u, u)R0wuR1w, and so fNk(u∗, u) =
wu /∈ D will do.

– Finally, take some u ∈ U
Nk−1

0 .

• Case (c). There is no v ∈ D with fNk(u, y)R1v.
As by (nw1) we have fNk(u, y)R0wR1f

Nk(u∗, u∗), by axiom (2) there is
wu such that fNk(u, y)R1wuR0f

Nk(u∗, u∗). As fNk(u, y)R1wu, by axiom
(1) there is no v ∈ D with wuR1v, and so fNk(u, u∗) = wu /∈ D will do.

• Case (d). There is v ∈ D with fNk(u, y)R1v.

By (nw3) and (nw2), u ∈ U
Nk−1

1 and fNk(u, u) ∈ D. On the one hand,
we have fNk(u∗, u) �= fNk(u∗, u∗), as fNk(u∗, u) /∈ D by Case (b) and
(8), while fNk(u∗, u∗) ∈ D by definition. On the other hand, by (nw1)
we have fNk(u, u)R0f

Nk(u∗, u)R1f
Nk(u∗, u∗). So by axiom (5), there is

wu /∈ D with fNk(u, u)R1wuR0f
Nk(u∗, u∗). Thus fNk(u, u∗) = wu /∈ D

will do,

completing the proof of Lemma 4.

The role of (3)-like axioms in two-dimensional logics without the individual
S5-properties is far from clear. Unlike axioms (2) and (4)–(6), axiom (3) does
not hold in K×sq K. In fact, it is not known whether, say, K×sq K is finitely
axiomatisable over K×δK. Also, though a general argument of [5] can be used
to show that both logics are recursively enumerable, no explicit axiomatisations
for them are known. Such axiomatisations should be infinite however: As it is
shown by Kikot [8], neither K×sqK nor K×δK can be axiomatised using finitely
many propositional variables.
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Abstract. This paper is a part of a larger project with my New Zealand
colleagues, E.D. Mares and M.J. Cresswell, both of Victoria University
of Wellington. Our project is to write A Natural History of Necessity,
investigating the ways in which philosophers’ notions of necessity devel-
oped and then tracing the changes that notion undergoes throughout
philosophical history. Our aim is to take an historical approach to the
question ‘Where does necessity comes from?’ My focus in the present
paper is Aristotle’s invention of the simple deductive system of syllo-
gistic logic set out in Prior Analytics. What I want to illustrate is the
extent to which we can say that Aristotle, writing some 2400 years ago,
understood logical consequence as a modal notion.

Keywords: History of logic, necessity, consequence, Aristotle, syllogis-
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1 Introduction

Aristotle tells us in Prior Analytics A1 what a deduction (a syllogism) is1:

(1) A deduction is a discourse in which, certain things having been sup-
posed, something different from the things supposed results of necessity
because these things are so. (Prior Analytics A1, 24b18–22)2

Because Aristotle explicitly describes the conclusion of a valid syllogism as ‘re-
sulting of necessity’, it looks, on the face of it at least, as if the necessity that he
has in mind here is a modal notion. One might even say that because Aristotle
uses the word ‘necessity’ his definition just is modal. That might be too loose a
sense of modality for some, but it nonetheless seems plausible. And it is at least
plausible that this sense of necessity is all that we should suppose Aristotle has
in mind in (1). But is his use of the word ‘necessity’ in (1) really so simple? This

� This research is funded by a Marsden Grant from the Royal Society of New Zealand
(2011–2013). Parts of the project also received support from the Royal Flemish
Academy for Science and the Arts (2010).

1 This definition appears also in Topics I.1, 100a25-27.
2 I have used Robin Smith’s translation [1] for all passages from Prior Analytics.
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paper looks at how to answer the question: Can we say with any certainty what
it is that Aristotle understands by ‘necessity’ in his definition (1)?

The following might help to make my question clearer. When Aristotle says
a syllogism is valid, does he mean

(2) that from true premises you cannot have false conclusion?

– where that ‘cannot’ is a genuine modal. Or does he mean simply

(3) that no matter how you choose the subject and predicate terms in a
syllogistic schema, you will never in fact have true premises and false
conclusion?

Of course, you might say that (3) represents all there is to logical necessity, in
which case you will want to say that (3) does describe a modal notion. Perhaps
this was what logicians like Carnap (or the writers of many introductory logic
textbooks) might have supposed. In this paper I use ‘modal’ in a more robust
sense – that is, when I describe (2) as genuinely modal, all I mean is that (2)
requires a move beyond the actual facts of the matter in a way which (3) does
not. In other words, for something to count as genuinely modal we have to
consider how things might have been – not just how things are. My question
concerns whether Aristotle might only have the idea that in a valid schema
any substitution of terms preserves truth. If that is all that he means, then
the necessity he describes in (1) might not involve what I am calling genuine
modality. Hence the question – can we say with any surety whether Aristotle
understands ‘resulting of necessity’ as a modal notion?3

2 Some Recent Answers

Richard Sorabji [2] asks precisely this question. He is inclined to say that it is not
a modal notion, but he doesn’t claim to base this inclination on hard evidence.4

My aim is to look at what evidence we have that might help to elucidate what

3 The larger project of which this paper is just a small and early part looks at the
history of logic to see how the nature of logical consequence has been understood by
philosophers. We use this Etchemendy-style distinction as the focus for our study.
Because Aristotle is the first philosopher to actually study and catalogue patterns of
human reasoning, he seems to be the first we can ask such questions of. There is, to
be sure, earlier evidence of counterfactual reasoning in philosophy – e.g., Zeno used
reductio proofs; similarly, the sophists. Ancient geometry employed reductio proofs
as well. But Aristotle gave us the Prior Analytics, the first treatise on logic itself,
and my question is about whether Aristotle understood validity to be determined
solely by form.

4 Sorabji sometimes sounds like he thinks it is modal: “One example of an impossible
compound would be the truth of the premises and the falsity of the conclusion in a
valid syllogism.” [3, p.223] But this example seems to me to emphasize how difficult
it is to see and to articulate the distinction between (2) and (3).
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it is that Aristotle himself understood about the necessity of the consequent of
a (valid) syllogism. But first, consider Sorabji’s approach. He points out that
the word ‘necessity’ and its various cognate expressions are ubiquitous in Aris-
totle’s philosophy. And Sorabji finds the wide variety of examples of necessity
in Aristotle’s works provide good reason for supposing that Aristotle’s use of
the term is ad hoc. If we take this view, then it looks as if the best we might
be able to do is enumerate the various uses, and this is just what Sorabji does.
In Necessity, Cause, and Blame [3], Sorabji constructs a list of necessities (pp.
222–224) which includes as many as ten senses of necessity in Aristotle’s works.
The necessity of the consequent is simply included as one among all the different
cases. This list-making approach is not without justification – Aristotle himself
does pretty much the same thing, describing various senses of necessity in Meta-
physics V.5 and 12 – though none of Aristotle’s lists are as fulsome as Sorabji’s.
Sorabji pays close attention to ‘logical’ necessity and describes what he sees as
“Aristotle’s habit of jumbling together logical and non-logical necessities with
apparent indifference”. (Sorabji, [3, 134]) He suggests that “Aristotle did not re-
gard logical necessity as a distinct kind of necessity.” (p. 133) These themes are
further developed in Sorabji [3], where he emphasizes a difference between the
ways that Aristotle and modern logicians treat necessity: “Modern philosophers
have tended to be very parsimonious in their recognition of distinct kinds [of ne-
cessity]... In contrast with this parsimony, Aristotle recognizes a rich collection
of cases. Moreover, his system of classification is refreshing to study, precisely
because it does not mesh with ours.” (p. 222) When he says this Sorabji has in
mind philosophers such as �Lukasiewicz and Quine, and the debates about the
analysis of necessity that characterized much of twentieth century philosophy.

Since Aristotle does construct his own lists we can look at them to see what
they suggest about the necessity which grounds Aristotle’s logic. Consider Aris-
totle’s own lists of necessities, from the ‘lexicon’ in Metaphysics V.5.

We call the necessary (1) that without which, as a condition, a thing
cannot live, e.g. breathing and food are necessary for an animal; for it
is incapable of existing without these. — (2) The conditions without
which good cannot be or come to be, or without which we cannot get
rid or be freed of evil, e.g. drinking the medicine is necessary in order
that we may be cured of disease, and sailing to Aegina is necessary in
order that we may get our money. — (3) The compulsory and com-
pulsion, i.e. that which impedes and hinders contrary to impulse and
choice. For the compulsory is called necessary; that is why the necessary
is painful, as Evenus says: ‘For every necessary thing is ever irksome’.
And compulsion is a form of necessity, as Sophocles says: ‘Force makes
this action a necessity’. And necessity is held to be something that
cannot be persuaded – and rightly, for it is contrary to the movement
which accords with choice and with reasoning. — (4) We say that that
which cannot be otherwise is necessarily so. And from this sense of
necessity all the others are somehow derived; for as regards the com-
pulsory we say that it is necessary to act or to be acted on, only when
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we cannot act according to impulse because of the compelling force, –
which implies that necessity is that because of which the thing cannot
be otherwise; and similarly as regards the conditions of life and of good,
when in the one case good, in the other life and being, are not possible
without certain conditions, these are necessary, and this cause is a kind
of necessity. — Again, (5) demonstration is a necessary thing, because
the conclusion cannot be otherwise, if there has been demonstration in
the full sense; and the causes of this necessity are the first premises,
i.e. the fact that the propositions from which the deduction proceeds
cannot be otherwise. [4]

On Aristotle’s account all these kinds of necessities are linked. The fourth and
fifth senses in particular bear on our question here. The fourth sense is primary
(1015a35-6) and the fourth sense fits Aristotle’s usual definition of necessity – it
is ‘what cannot be otherwise’, or ‘what is not possibly not’. The primacy of the
fourth sense explains the ways in which the other senses are themselves kinds of
necessities. Of course, the emphasis here is on what is common to the necessities
listed in this passage. The emphasis is not on their distinctness.

The fifth sense listed in Met V.5 concerns ‘necessity’ in a special kind of syllo-
gism – called a demonstration – in which both premises are themselves necessary
propositions. Aristotle seems to have in mind the syllogisms described earlier in
An Pr A8, where he explains that whenever we have a (valid) syllogism from
‘premises of belonging’, we also have a syllogism from premises about ‘belonging
of necessity’. Here is how Aristotle puts the point in An Pr A8:

In the case of necessary premises, then, the situation is almost the same
as with premises of belonging: that is, there either will or will not be
a deduction with the terms put in the same way, both in the case of
belonging and in the case of belonging or not belonging of necessity,
except that they will differ in the addition of ‘belonging (or not belong-
ing) of necessity’ to the terms (for the privative premise converts in the
same way, and we can interpret ‘being in as a whole’ and ‘predicated
of all’ in the same way).

The question is how to interpret this. Both the Met V.5 and An Pr A8 passages
appear to be saying that since we have, e.g.,

(4) All B are A
All C are B
∴ All C are A (Barbara)

then we also have

(5) All B are A by necessity
All C are B by necessity
∴ All C are A by necessity (Barbara LLL)
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This has suggested to some interpreters that Aristotle has a logical principle
about necessitation (the K-principle) which takes us from L(p ⊃ q) to (Lp ⊃ Lq),
and so from a valid syllogism such as Barbara (4) where there is a necessary
connection between premises and conclusion, to a valid syllogism, Barbara LLL,
where a modal conclusion follows from modal premises. If this is what Aristotle
means then we need to ask how he arrives at such a principle? But that is
never made entirely clear in either text. (For further discussion of this see Ebert
and Nortmann [5].) Of course, the modern logician’s K-principle, L(p ⊃ q) ⊃
(Lp ⊃ Lq), is a genuinely modal principle – specifically, the antecedent must be
modalized since (p ⊃ q) ⊃ (Lp ⊃ Lq) is not a theorem of a (non-trivial) modal
logic – i.e., the antecedent which represents the validity of the syllogism must
be modalized. So if there is something like K at work in Aristotle’s logic, then
we can say that his reasoning does involve genuine modality. The difficulty is
that without an account from Aristotle to show that he means in these passages
the same thing that we do when we say L(p ⊃ q) ⊃ (Lp ⊃ Lq), and without an
account of how he arrives at such a principle, then we cannot be certain that
his reasoning here is genuinely modal. Indeed, it is possible to give an analysis
of the move from (4) to (5) which does not require genuinely modal reasoning,
but which requires only modally qualified terms. Here is what I mean. If the
necessity in (5) Barbara LLL is the kind of Aristotelian necessity that qualifies
a term – i.e., what we represent today via de re modals – then (5) Barbara LLL
looks like a special instance of Barbara (4). It might be that the right way to
interpret (5) is as follows:

(6) Every B is a necessary-A
Every C is a necessary-B
∴ Every C is a necessary-A

Or, the right way to interpret (5) Barbara LLL might even be:

(6’) Every necessary-B is a necessary-A
Every necessary-C is a necessary-B
∴ Every necessary-C is a necessary-A

Both (6) and (6’) are special instances of (4) Barbara. The difference comes with
the kind of terms which are specified. (6’) has modally qualified terms uniformly
substituted for non-modal terms. But that means that the reasoning involved
in (6’) is the same non-modal reasoning at work in (4). (6) is a little tricker
– since in order to prove its validity we need the T-principle: Lφ ⊃ φ – i.e.,
that whatever is necessary is so. The T-principle tells us, e.g., where B is ‘man’,
anything that is a necessary man is also a man. The upshot of this is that when
the question is how to interpret Aristotle’s move from (4) to (5), it appears that
there are two quite different answers available. There might be a principle like K
at work which is genuinely modal, or there might be a principle like T at work
in Aristotle’s logic, which if used as Rini [6] suggests is not strongly modal. And,
at this stage there is no clear textual evidence to decide between these two.
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Both Hintikka [7] and Mignucci [8] identify a line of reasoning within Aris-
totle’s work according to which anything that is always true is necessarily true.
This is known as the principle of plenitude. Its status in Aristotle’s philosophy is
controversial. (See for example Judson [9].) But it bears directly on my question
in this paper because of the way in which plenitude affects the syllogistic. If
anything which is always true is necessarily true, then anytime we have a true
Aristotelian proposition of the form, e.g.,

(7) All B are A

then we have a true proposition of the form

(8) All B are A by necessity.

In the Prior Analytics, Aristotle appears to treat (7) and (8) as different propo-
sitional forms. Plenitude, however, does not. Hintikka [7] sees this as evidence of
a deep confusion permeating Aristotle’s modal syllogistic. Rini [10] argues that
plenitude’s disastrous effect on the syllogistic is better understood as evidence
against plenitude, not as evidence against the syllogistic. For if (7) and (8) are
not distinct propositions then we cannot capture the difference which Aristotle
describes between the validity of

(9) All B are A by necessity
All C are B
∴ All C are A by necessity (Barbara LXL)

and the invalidity of

(10) All B are A
All C are B by necessity
∴ All C are A by necessity (Barbara XLL)

Without a distinction between these, quite a lot of the force of Aristotle’s log-
ical system is forfeited. While there are passages in Aristotle’s works that look
like good evidence that plenitude is part of his thinking, there is little textual
evidence in An Pr that plenitude is at work in the syllogistic. Plenitude itself is
clearly a notion which does involve genuine modality – it is a claim that there
is nothing in the world which you could say can happen but never will happen.
Its effect is to trivialize the modal syllogisms.5 But, of course, if we do not have
textual evidence that plenitude is involved in the syllogistic, then plenitude does
not provide good reason to suppose that Aristotle’s syllogistic requires genuine
modality. And so, returning to the question proposed at the start about whether
Aristotle has something like (2) or (3) in mind, whatever we say about plenitude,
it just does not help with the logic of the syllogistic. Plenitude does not decide
between (2) and (3).

5 Rini [6] suggests that much of the modal syllogistic is trivially modal, though for
different reasons.
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The question of a distinction between (2) and (3) is one that arises squarely
within logic, and so it seems to me that the obvious place to look for an answer
is in Aristotle’s syllogistic logic. I want to look at what evidence can we find
in Prior Analytics – where Aristotle is most directly studying syllogistic logic –
which indicates how Aristotle understands the necessity in (1).

3 Non-modal Reasoning in An Pr (the Assertoric
Syllogistic)

Is there any textual evidence from An Pr to indicate whether Aristotle’s notion
of necessity in (1) goes beyond simple matters of fact? One way to begin is by
looking at the counter-examples that Aristotle offers, to see whether – when he
puts terms in place of variables – his own examples ever involve anything more
than actual, real world truths and falsehoods. Aristotle’s counter-examples have
frequently come in for criticism – there are a variety of reasons why. Sometimes it
seems Aristotle is simply too swift and not careful enough in his explanations of
the counter-examples. But to be fair, Aristotle, several times, suggests the same,
telling us that terms should be better chosen than the terms that he offers in the
text. But perhaps the more serious criticism of his counter-examples comes from
scholars who worry that they give a hint that Aristotle might be working mainly
by trial and error, trying to see whether he can come up with terms to illustrate
invalidity. If so, then there is a happenstance quality to the syllogistic which
suggests that (3) rather than (2) better captures Aristotle’s understanding of
logical necessity. (Ross [11] and �Lukasiewicz [12] seem to take this point further,
worrying whether Aristotle’s approach to logic might have involved quite a lot
of trial and error.)

It helps to see just how Aristotle deals with counter-examples. Here is one
example. It is the first of the counter-examples Aristotle offers. It is from An Pr
A4, where he is explaining why a premise pair does not produce a syllogism:

However, if the first extreme [A] follows all of the middle [B] and the
middle [B] belongs to none of the last [C], there will not be a deduction
of the extremes [C,A], for nothing necessary results in virtue of these
things being so. For it is possible for the first extreme to belong to all
as well as to none of the last. Consequently, neither a particular nor a
universal conclusion becomes necessary; and, since nothing is necessary
because of these, there will not be a deduction. Terms for belonging
to every are animal, man, horse; for belonging to none, animal, man,
stone. (An Pr A.4, 26a2-10) (Italics are mine.)

This passage illustrates how Aristotle explains those cases where a given premise
pair does not yield a syllogism – that is, where we have no guarantee of a unique
conclusion. An important point to note about his method is that he is looking
for a conclusion of a specified form – any conclusion here must be a proposition
linking the two terms which each occur only once in the premises. So, in the
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passage above, he is looking for a conclusion which links a C subject to an A
predicate. (He calls these terms the extremes, and he calls the term which occurs
twice in the premises the middle. The middle term drops out and does not occur
in the conclusion.) So the premises we are considering are ‘All B are A’ and ‘No
C is B’. And Aristotle is attempting to show that no conclusion follows which
expresses a relation between C and A.

All B are A
No C is B
Some C is A / Some C is not A

Although Aristotle does not explicitly state this, it clearly suffices for him to show
that neither a particular affirmative nor a particular negative can be obtained.
That is, he must show that you cannot get ‘Some C is A’ (since one set of terms
allows ‘No C is A’) and you cannot get ‘Some C is not A’ (since another set
of terms allows ‘All C are A’). If you cannot get a particular conclusion, you
cannot get a universal. When we put the terms Aristotle recommends into this
schema, we get the following:

All men are animals All men are animals
No horse is a man No stones are men

All horses are animals No stones are animals

Aristotle explains why these examples show that there is no syllogism from these
premises. No conclusion ‘becomes necessary’ because, as his examples show,
different terms give different results. One set of terms gives true premises and
an affirmative ‘conclusion’. The other set of terms gives true premises and a
privative ‘conclusion’. So there is no unique form for a conclusion relating C and
A. So Aristotle says there is no syllogism.

This is the method at play right through the non-modal, assertoric syllogistic
of An Pr A4-6. In an appendix (which I can make available on request), I have
listed counter-examples for each set of terms that Aristotle recommends to us
in the non-modal, assertoric syllogistic. Nearly all of these counter-examples
involve only actual, real world truths and falsehoods. I have highlighted those
cases – marking them with a ‘*’ – where it seems that something more than
simple real world truths and falsehoods might be at play. But those cases are
few, and most arise only in passages where Aristotle gives a very sweeping and
complicated synopsis – i.e., they occur in passages where he does not seem to
‘sweat the details’.6 Also, where we find such examples, Aristotle always can
choose terms which give real life counter-examples. By far the main evidence of
these counter-examples would seem to show that Aristotle’s assertoric syllogistic
does not require modal reasoning. And so the vast majority of the examples that
Aristotle offers are examples which cannot definitively decide between (2) and
(3), and that leaves open the possibility that Aristotle understands the necessity

6 The apparently loose and casual style of some of Aristotle’s counterexamples has led
some interpreters to overlook them.
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in his definition of a syllogism as indicating only that any substitution of terms
in a (valid) schema which gives true premises will also give a true conclusion.
It is of course possible, however, that the examples which I have starred in the
appendix really are evidence of genuinely modal reasoning. But such examples
seem to me too few and, as they appear in An Pr A5-6, far too sketchily thought
out to stand as decisive evidence of genuinely modal reasoning.

Can we find any clearer evidence in the text? Aristotle intends the definition
(1) to cover all (valid) syllogisms, and so in addition to the assertoric, non-modal
syllogisms, it also covers what are known as the apodeictic syllogisms –these are
syllogisms in which at least one of the premises is about necessity. (As noted
above, the fifth kind of necessity in the Metaphysics V.5 discussion deals with
the special sort of syllogism – demonstration – where both of the premises are
themselves propositions about necessity.) Aristotle’s definition (1) also covers
what are known as the problematic syllogisms – syllogisms in which at least one
of the premises is about possibility. These apodeictic and problematic syllogisms
each raise different considerations and so it will help to look at each in turn.
The next section looks at the apodeictic syllogisms, and what is involved in an
Aristotelian premise about necessity.

4 Deductions Involving Necessary Premises in An Pr
(the Apodeictic Syllogistic)

When we move to Aristotle’s modal syllogistic we get additional textual evi-
dence which bears on the question about how to understand the necessity in (1).
Consider the following passage from the apodecitic syllogistic in An Pr A10:

And moreover, it would be possible to prove by setting out terms that
the conclusion is not necessary without qualification, but only necessary
when these things are so. For instance, let A be animal, B man, C white,
and let the premises have been taken in the same way (for it is possible
for animal to belong to nothing white). Then, man will not belong to
anything white either, but not of necessity: for it is possible for a man to
become white, although not so long as animal belongs to nothing white.
Consequently, the conclusion will be necessary when these things are
so, but not necessary without qualification. (An Pr A.10, 30b31-40)

The schema that Aristotle is studying here is usually taken to be the following:

All B are by necessity A
All C are not A
All C are by necessity not B (Camestres LXL)

With terms in place of variables we get:

All men are necessary animals
All white things are not animals
All white things are by necessity not men
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Aristotle wants to explain why Camestres LXL is not a valid syllogism. His
parenthetical remark is crucial to his explanation. Here, he is drawing on the
fact that when we put his terms in place of variables, then we get a premise
‘all white things are not animals’. But on the face of it, this is a false premise,
since there are in fact many things that are animals but which are nonetheless
white. Aristotle clearly understands this, but he reasons that we can at least
suppose that the premises are true. And we can suppose so because ‘it is possible
for animal to belong to nothing white’. Today, we might explain this point by
saying simply that even though the second premise is in fact false, it could have
been true since it could have been the case that no animals are white. That is,
it could have been true, but it is not in fact true. Aristotle reasons that we can,
therefore, suppose that our premises are true and, when we do so, we can in fact
syllogize from them. When we do, we do not reach a modal conclusion ‘All C are
by necessity not B’, but we do reach a non-modal conclusion ‘All C are not B’.
When we suppose the premises are true then the conclusion is necessary when
these things are so – that is to say, the conclusion follows of necessity supposing
the premises are true. But the conclusion is not itself a modal proposition – it
is not ‘necessary without qualification’, or as it is usually described, it is not
necessary in an absolute sense. Aristotle is aware of the potential for confusion
about the uses of ‘necessity’ here. There is in fact quite a lot written about his
interest in distinguishing ‘absolute’ and ‘relative’ necessity.7 Absolute necessity
is the necessity that is involved in a modal proposition like the first premise, ‘All
men are necessary animals’. It is the necessity that describes the essentialism
in Aristotle’s metaphysics. Relative necessity is the necessity of the consequent
– relative because the conclusion is necessary when we suppose that the given
premises are true. As the passage from A10 illustrates, Aristotle does not want his
reader to confuse the absolute necessity that is involved in a modal proposition,
with the necessity common to all valid syllogisms whether they are modal or
not.

From the point of view of this paper, the more important point about this
passage is that when Aristotle tells us we have to suppose the truth of a premise
such as ‘All white things are not animals’, he is telling us to move beyond actual,
real world examples. We have, instead, to suppose that the facts were different
from what they in fact are. That is the kind of thing that we often need to do in
the modal syllogistic, and it is I think the first textual evidence in An Pr that
the passage from premises to conclusion is genuinely modal. In fact, we can tell
precisely where the need for such counterfactual reasoning will typically arise.
Any time Aristotle’s examples involve an accident term in the subject position
of a universal proposition, then we might need to use counterfactual reasoning.
We have to look closely in such cases to see whether supposing the premise is
true is to make a supposition which takes us beyond simple actual truth.

7 Patzig [13, pp.16–42] and Maier [14, vol 2, pp.242–244] both deal with it at length,
but their interest is different and there seems to me little in their discussion which
bears strongly on the question in the present paper. Indeed Sorabji seems to be the
first to have asked it.
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5 Deductions Involving Premises about Possibility in An
Pr (the Problematic Syllogistic)

As Aristotle continues to explain the modal syllogistic, his proof methods become
more sophisticated and sometimes involve what seem to be further examples of
genuinely modal reasoning. In the problematic syllogistic, Aristotle considers
schema involving premises about possibility. He wants to prove that there are
cases where there is a syllogism even if one of the premises involves only a
possibility. One of the ways he does this is to take a premise which says something
is possible, and then to suppose that the possibility really is actual. So the
proof involves a supposition that might be true, but might be false. Aristotle
understands that if something is possible then it might be true, and that if it
is possible, then supposing that it really is true might lead to a falsehood, but
it cannot lead to an absurdity. That looks like further evidence that what he
means by ‘necessity’ in (1) is for him a modal notion.

The idea is this. Given a premise that something is possible, assume that the
possibility is realized, and then reason non-modally. Any non-modal proposition
obtained in this way may then be concluded to be possible. Aristotle explains this
in An Pr A.15: “when something false but not impossible is assumed, then what
results through that assumption will also be false but not impossible” (34a25-
27).8 In fact, this is modal in a way which is beginning to approach something
like a modern ‘possible worlds’ analysis, because of the way that it involves
counterfactuals. Here is an example of what you find in the Prior Analytics :

Now, with these determinations made, (11) let A belong to every B
and (12) let it be possible for B to belong to every C. Then (13) it is
necessary for it to be possible for A to belong to every C. (14) For let
it not be possible, and (15) put B as belonging to every C (this is false
although not impossible). Therefore, if (14) it is not possible for A to
belong to every C9 and (15) B belongs to every C, then (16) it will not
be possible for A to belong to every B (for a deduction comes about
through the third figure). But it was assumed that it is possible for A
to belong to every B. Therefore, it is necessary for it to be possible for
A to belong to every C (for when something false but not impossible
was supposed, the result is impossible). (An.Pr. A15, 34a34-b2)

(11) Every B is A
(12) Every C is contingently-B
(13) Every C is possibly-A

Suppose

8 We find evidence of a related discussion in De Caelo I.12, where Aristotle very care-
fully considers such contrary-to-fact propositions as ‘Sitting is possible to Socrates even
though he is standing’. And such examples clearly require a genuinely modal analysis.

9 Aristotle’s text suggests that he thinks that the reductio hypothesis is really a uni-
versal. In the discussion of the present passage I give the reductio hypothesis as a
particular. From a modern point of view, this is not correct.
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(14) Some C is not possibly-A
(15) Every C is B

Then
(16) Some B is not possibly-A

But (16) and (11) cannot both be true, so Aristotle wants to say the reduc-
tio shows we can syllogize to (13). That is, Aristotle counts Barbara XQM or
(11)(12)(13) as valid.

As Aristotle explains, the proof requires actualizing the possibility in (12).
This is captured in the move from (12) to (15). But the difficulty about this is
that some choices of terms appear to generate counterexamples. For example,
let A be ‘horse’, B be ‘in the paddock’ and C be ‘man’:

(11’) Everything in the paddock is a horse
(12’) Every man could be in the paddock
(13’) Every man could be a horse

Even supposing the premises are true, the conclusion is false because for Aristotle
no man could be a horse. The terms make it easier to see the nature of the
problem. If we try actualizing the possibility in (12’), then we get ‘every man is
in the paddock’ but if that is true, then the truth value of our initial premise (11’)
has to change. We cannot both suppose (12’) actual and still have (11’) true. In
An.Pr. A15 Aristotle tries to explain how to avoid making such a mistake by
telling us not to choose terms as I have here. Here are his own instructions:

One must take ‘belonging to every’ without limiting it with respect to
time, e.g., ‘now’ or ‘at this time’, but rather without qualification. For it
is also by means of these sorts of premises that we produce deductions,
since there will not be a deduction if the premise is taken as holding
only at a moment. For perhaps nothing prevents man from belonging to
everything in motion at some time (for example, if nothing else should
be moving), and it is possible for moving to belong to every horse,
but yet it is not possible for man to belong to any horse. Next, let
the first term be animal, the middle term moving, the last term man.
The premises will be in the same relationship, then, but the conclusion
will be necessary, not possible (for a man is of necessity an animal). It
is evident, then, that the universal should be taken as holding without
qualification, and not as determined with respect to time. (An.Pr. A15,
34b7-18)10

Premise (11) is only true at a time and not true without qualification. What
results is not a syllogism. Premise (11) changes its meaning – it becomes false
when premise (12) is realized. Aristotle’s instructions in An.Pr. A15 are a caution
against choosing terms in such a way.

10 Some interpreters are suspicious about the authenticity of An.Pr. 34b7-18. See Pat-
terson [15, pp.167–174] and Malink [16, p. 102, n. 19].
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We can give a proof that Barbara XQM – that is, (11)(12)(13) – is a valid
syllogistic schema, but it is an odd sort of proof from a modern point of view
because it depends upon the introduction of a semantic restriction which affects
our choice of terms, and this is odd because we normally think of logic as immune
to semantic restrictions. But our project is to try to explain Aristotle’s method,
not modern methods. Consider how things go if we restrict the B term so that
anything which is B is necessarily-B.

(11) Every B is A
(12) Every C is possibly-B
(13) Every C is possibly-A

Start with the conclusion (13). The only way to have a false conclusion here is
to produce a C which cannot possibly be A. In other words, for (13) to be false
A must be necessary and cannot be an accident. So, A as well as B must be
restricted. But A occurs as a term in premise (11), and so premise (11) will be
affected too. If A must be restricted in this way then premise (11) is not really
an ordinary non-modal premise – (11) is really a premise involving (hidden)
necessity. Next consider premise (12). Aristotle’s proof of (11)(12)(13) depends
upon being able to realize the possibility expressed in premise (12). When we
actualize ‘every C is possibly-B’ we get ‘every C is B’. In De Caelo I.12, it is
just such a procedure that generates the monstrous error that Judson [9] calls
the insulated realization (IR) manoeuvre. But it is an error that can only occur
when B is an accidental term – and such an error is blocked by our supposition
at the start of the proof that anything that is B is necessarily-B, and so an
accidental term B is prohibited.

I have argued that this distinction between terms about what is accidental
(e.g., ‘sitting’, ‘being in the paddock’, ‘moving’) and what is necessary (e.g.,
‘man’, ‘animal’) is crucial to understanding parts of Aristotle’s logic. And this
distinction between kinds of terms comes into play when we actualize (12). If
B signifies something which is possible because it is a matter of mere chance
or coincidence, then premise (11) only happens to be true at a given time. For
example, if B is ‘in the paddock’ and A is ‘horse’, then premise (11) will be
‘everything in the paddock is a horse.’ (Or, following Aristotle’s example, if
B is ‘moving’ and A is ‘horse’, then premise (11) will be ‘everything moving
is a horse.’) These premises hold at a time; they are true at a moment. But
they are not true always, without respect to a time. The nature of the B term
guarantees this because in these examples the B term signifies something whose
possibility arises because of chance, happenstance, mere coincidence. Aristotle
tells us not to choose premises like this. They get us into trouble and make a
mess of syllogistic. The reason they cause trouble is that they can change too
easily from true to false, and in fact they do change from true to false when
the possibility in premise (12) is realized. If we actualize the possibility ‘all men
are possibly in the paddock’, we get ‘all men are in the paddock’ and then it
is not true that everything in the paddock is a horse. This makes premise (11)
false when (12) is actualized. This is the IR manoeuvre and if Aristotle were
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to allow it then he would be making a monstrous error. But we might take his
comment (An.Pr. A15, 34b7-18) about not choosing premises which hold only
at a moment as Aristotle’s attempt to avoid this error – since (11)(12)(13) is
guaranteed to be valid provided the B term is restricted to terms about what is
necessary.

Semantic restrictions on terms are a matter of interpretation and so invite
a certain controversy. But that is not my point here. Here, my concern is with
Aristotle’s basic method of proof through the realization of a possibility. This
method might suggest to us something like a modern possible world semantics,
because very clearly his reasoning in several cases does go beyond mere matters
of fact. In these proofs Aristotle is reasoning not just about what is the case,
but about what might be the case even if in fact it is not. What this illustrates
is Aristotle’s genius at work, rising to meet the demands of a logic about pos-
sibility. He devises a new proof method – proof through realization – in order
to accommodate what his new logic of possibilities requires. This proof method
is unmistakably modal and indicates that by this stage in Aristotle’s logical
development he has something like (2) in mind.

Interpreters, however, always have to be sensitive to shifts in the text, and
there is a shift in the discussion of proof through realization. As I have explained,
there is clear textual evidence that Aristotle uses proof through realization. But
it may be that we don’t have to hang much on this sort of proof because in later
parts of the modal syllogistic Aristotle seems to abandon it for other methods. He
does not, however, explain why. But where he could just as well use realization,
he switches, without comment, to more direct proofs in which he establishes a
non-modal conclusion (from premises about necessity and contingency). He then
uses a version of what modern modal logicians call the T-principle (φ ⊃Mφ) to
argue from a non-modal conclusion to one about possibility: “And it is evident
that a deduction of being possible not to belong also comes about, given that
there is one of not belonging.” (36a17) So, for example, after he establishes a
conclusion ‘A belongs to no C’, he also claims ‘A possibly does not belongs to
no C.’ Representing this in modal predicate logic, when we reach a conclusion
of the form ∀x(Cx ⊃ ¬Ax), then we also have ∀x(Cx ⊃ M¬Ax). This new
method comes into play in An Pr A16, 36a7-17 (with syllogisms whose premises
involve necessity and contingency), and continues through the final chapters of
the modal syllogistic.) This new proof method also involves modal reasoning
since it depends upon the T-principle, but it lacks the full counterfactual force
of proof through realization. Still, it is clear that Aristotle does in some cases
require counterfactual reasoning, and the fact that he got there at all helps to
answer my initial question about whether he understood logical consequence as
a modal notion.

6 Conclusion

When we look specifically at An Pr, at Aristotle’s logical discussions, we can
trace a growing sophistication in his treatment of necessity and we can to a
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certain extent ‘benchmark’ points of change. For a start, we saw that in the
non-modal syllogistic there is too little for us to decide conclusively whether
Aristotle’s sense of necessity in (1) is closer to (2) or to (3). But his modal
logic presents some more complicated challenges, and in his treatment of the
modal cases we can see how Aristotle devises sophisticated solutions. In the
syllogistic involving necessity, his proof methods shift to include counterfactual
reasoning. And so they are in an important sense modal – modal in what I
am calling the genuine sense described in (2). Even if we are reasoning from
premises which do not in fact hold, we can suppose that they hold, and then
syllogize to a conclusion which follows of necessity from that supposition. In the
syllogistic about possibility, when Aristotle wants to syllogize from premises that
involve contingency, he again brings in a sophisticated modal tool– proof through
realization. And so we do find in the modal syllogistic evidence of the kind of
genuinely modal reasoning which indicates that Aristotle does sometimes have
something like (2) in mind. The sense of necessity described in (3) is not adequate
to describe these sorts of counterfactual reasoning. This of course leaves open
the possibility that this genuine modality might be implicit in the non-modal,
assertoric cases, too. On the basis of the evidence presented here we can safely
say that he got there – he got to (2), to a modal notion of logical consequence.11

A final unanswered question: That still does not tell us whether Aristotle
understood the necessity required by his essentialist metaphysics (absolute ne-
cessity) and the necessity that binds a conclusion to the premises of a valid
deduction (relative necessity) as the same necessity. This marks a significant
point of difference between Aristotle’s logic and modern logic. Today we have
the individual variable, a univocal necessity operator, and the notion of scope,
which together allow us to explain) the necessity involved in logical consequence
and the necessity required by essentialism as the same. What we do not have is
any evidence that Aristotle could understand them in terms of the same, uni-
vocal necessity operator. This is perhaps the best way of appreciating Sorabji’s
remarks about the lack of parsimony of Aristotle.
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Abstract. We consider the task of model building and model checking
for temporal logic specifications over general linear flows of time.

We present a new notation for giving a detailed description of the
compositional construction of such a model and an efficient procedure
for finding it from the temporal specification.

We then also present an algorithm for checking whether a particular
temporal formula holds in a general linear model.

Applications include reasoning about distributed and concurrent sys-
tems, multi-agent systems, and understanding natural language.

1 Introduction

Temporal logic is a widely used formalism for reasoning about the correctness of
hardware and software systems. For many applications there are good reasons
to use a logic based on some sort of dense model of time rather than the tradi-
tional discrete natural numbers model and its standard temporal logic [Pnu77].
Examples include multi-agent systems, AI, concurrency and refinement.

In contrast to the solid understanding of the reasoning tasks for discrete time
temporal logics, the development of techniques for working with continuous and
more general linear flows of time have been rather patchy.

General Until and Since connectives were introduced in [Kam68] for use over
various linear flows. We can make a variety of different but related logics by
taking this temporal language and restricting the semantics to operate on certain
classes of linear flows. Other connectives have been added when there is cause
and we will look at the so-called Stavi connectives [GPSS80] later in this paper.

The most natural and well-established “indiscrete” temporal logic is RTL,
propositional temporal logic over real-numbers time using Kamp’s Until and
Since connectives. We know from [Kam68] that, as far as defining properties
is concerned, this logic is as expressive as the first-order monadic logic of the
real numbers order, and so RTL is at least as expressive as any other standard
temporal logic which could be defined over real-numbers time.

Reasoning in RTL is fairly well understood: complete, Hilbert-style axioms
systems for RTL are given in [GH90] and [Rey92]. Satisfiability and validity in
RTL is decidable [BG85]. However, the decision procedure in [BG85] uses Ra-
bin’s non-elementarily complex decision procedure for the second-order monadic
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logic of two successors, and so is far from practical. Furthermore, deciding va-
lidity in the equally expressive first-order monadic logic of the real order is a
non-elementary problem [Sto74]. More recently, there has been some more pos-
itive news as [Rey10a] showed that deciding (validity or satisfiability in) RTL is
PSPACE-complete.

Reasoning in other general linear logics is less well-understood although it has
been shown recently [Rey10b] that many are in PSPACE including deciding the
logic USLIN of Until and Since over the class of all linear flows of time.

Satisfiability checking is not the only reasoning task. The synthesis, or model
building task is a harder problem than satisfiability checking. It requires an
algorithm which can output a complete description of a specific model of the
input formula, whenever the input formula is satisfiable. This paper reviews the
recent first synthesis result for RTL from [FMDR12a] and then builds on that.

Towards this end, we first present a new suitable notation for describing mod-
els in a concrete way. The compositional approach first presented in detail in
[FMDR12a] was hinted at in [Rey01], and traces back to pioneering work in
[LL66] and [BG85]. It uses a small number of distinct operations for putting
together a larger model from one or more smaller ones, or copies thereof. For ex-
ample, the shuffle construct makes a new linear structure from a dense mixture
of copies of a finite number of simpler ones. A good overview of the mathematics
of linear orders may be found in [Ros82].

We introduce a formal model expression language for defining a model via
these inductive operations. In fact, we first give a language for making general
linear structures in this way and then define a restricted sub-language (the real
model expression language) capable of specifying structures with the real number
flow of time. Having a formal model building language opens up the possibility
for workable definitions of such tasks as synthesis and model checking for real-
flowed structures. It also allows us to formalise questions of expressibility and to
assess the computational complexity of these reasoning tasks.

A theorem in [FMDR12a], echoing the earlier work of [LL66], [BG85] and
others states that the real model expression language is able to describe some
real-flowed model of every satisfiable RTL formula. The major novel contribu-
tion of the recent work is that an EXPTIME procedure is presented for finding
the real model expression of a model from any given satisfiable RTL formula.
EXPTIME is best possible. The real model expression tells us exactly how to
construct a specific real-flowed model of the formula. This is our RTL synthesis
result.

The current paper adds results in two new directions to [FMDR12a]. We show
how techniques from [Rey10b] can be used to define general linear models inside
real-flowed models (in a certain sense) and give us a synthesis result for general
linear time. Furthermore, this works for the more expressive Stavi language.

The other new results concern the associated model checking problems for
RTL and general linear time: yet another reasoning task. Given a model expres-
sion and a formula as input, decide whether or not that formula is true at some
point in the model described by the expression. We sketch a model checking
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procedure for U, S over general linear time and say how it can be modified for
RTL.

More details of the results to do with RTL from here were published in
[FMDR12a] while full details of other proofs will be found in [FMDR12b].

In section 2 we present our main logics: RTL, USLIN, the Stavi logic and
monadic logic. In section 3 we introduce the compositional approach to building
linear models. In section 4 we remind ourselves of useful properties of mosaics
from [Rey10a] and real-time synthesis from [FMDR12a]. In section 5 we build on
the RTL results for USLIN. In section 6 we tackle the associated model checking
problem before we conclude in section 7.

2 The Logics

In this section we will introduce the several main logics that we will be consid-
ering: RTL, USLIN. L(U,S,U’,S’)/LIN and the monadic logic of order.

Fix a countable set L of atoms. Here, frames (T,<), or flows of time, will be
irreflexive linear orders. Structures T = (T,<, h) will have a frame (T,<) and
a valuation h for the atoms i.e. for each atom p ∈ L, h(p) ⊆ T . Of particular
importance will be real structures T = (R, <, h) which have the real numbers
flow (with their usual irreflexive linear ordering).

The language L(U, S) is generated by the 2-place connectives U and S along
with classical ¬ and ∧. That is, we define the set of formulas recursively to
contain the atoms and for formulas α and β we include ¬α, α ∧ β, U(α, β) and
S(α, β).

Formulas are evaluated at points in structures T = (T,<, h). We write T, x |=
α when α is true at the point x ∈ T . This is defined recursively as follows. Sup-
pose that we have defined the truth of formulas α and β at all points of T. Then
for all points x:

T, x |= p iff x ∈ h(p), for p atomic;
T, x |= ¬α iff T, x �|= α;
T, x |= α ∧ β iff both T, x |= α and T, x |= β;
T, x |= U(α, β) iff there is y > x in T such that T, y |= α and for all z ∈ T

such that x < z < y we have T, z |= β; and
T, x |= S(α, β) iff there is y < x in T such that T, y |= α and for all z ∈ T

such that y < z < x we have T, z |= β.

In most of the literature on temporal logics for discrete time, the “until” con-
nective is written in an infix manner: βUα rather than U(α, β). This corresponds
to the natural language reading “I will be here until I become hungry” rather
than our alternative “until I am hungry, I will be here”. We choose to use the
prefix notation for until (and since) because it agrees with important previous
work on the language for dense time such as [Kam68], [BG85] and [GHR94] and
because the infix until connective seen with discrete time is usually a slightly
different connective, the non-strict until connective which we mention below.
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The language is discussed more fully in [Rey03], [Rey10a] and [Rey09], for
example. See those references for investigations of the “strict” versus “non-strict”
connectives, infix versus postfix operators, various abbreviations, etc.

We use the following abbreviations in illustrating the logic: Fα = U(α,�),
“alpha will be true (sometime in the future)” ; Gα = ¬F (¬α), “alpha will always
hold (in the future)”; and their mirror images P and H . Particularly for dense
time applications we also have: Γ+α = U(�, α), “alpha will be constantly true
for a while after now”; and K+α = ¬Γ+¬α, “alpha will be true arbitrarily
soon”. They have mirror images Γ− and K−.

2.1 RTL

A formula φ is R-satisfiable if it has a real model: i.e. . there is a real structure
S = (R, <, h) and x ∈ R such that S, x |= φ. A formula is R-valid iff it is true
at all points of all real structures. Of course, a formula is R-valid iff its negation
is not R-satisfiable. We will refer to the logic of L(U,S) over real structures as
RTL.

Let RTL-SAT be the problem of deciding whether a given formula of L(U, S)
is R-satisfiable or not. The main result of [Rey10a] is:

Theorem 1. RTL-SAT is PSPACE-complete.

In order to help get a feel for the sorts of formulas which are valid in RTL it is
worth considering a few formulas in the language. U(�,⊥) is a formula which
only holds at a point with a discrete successor point so G¬U(�,⊥) is valid in
RTL. Fp→ FFp is a formula which can be used as an axiom for density and is
also a validity in RTL.

(Γ+p ∧ F¬p) → U(¬p ∨ K+(¬p), p) was used as an axiom for Dedekind
completeness (in [Rey92]) and is valid. Recall that a linear order is Dedekind
complete if and only if each non-empty subset which has an upper bound has
a least upper bound. The formula says that if p is true constantly for a while
but not forever then there is an upper bound on the interval in which it remains
true. This formula is not valid in the temporal logic with until and since over
the rational numbers flow of time.

One of the most interesting valid formulas of RTL is Hodkinson’s axiom “Sep”
(see [Rey92]). It is

K+p ∧ ¬K+(p ∧ U(p,¬p))→ K+(K+p ∧K−p).

This can be used in an axiomatic completeness proof to enforce the separability
of the linear order:

Definition 1. A linear order is separable iff it has a countable suborder which
is spread densely throughout the order: i.e. between every two elements of the
order lies an element of the suborder.

The fact that the rationals are dense in them shows that the reals are separable.
There are dense, Dedekind complete linear orders with end points which are not
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separable (eg, see [Rey92]). The negation of Sep will be satisfiable over them but
not over the reals.

As we have noted in the introduction, there are complete axiom systems for
RTL in [GH90] and in [Rey92]: the former using a special rule of inference and
the latter just using orthodox rules.

Rabin’s decision procedure for the second-order monadic logic of two succes-
sors [Rab69] is used in [BG85] to show that RTL is decidable. One of the two
decision procedures in that paper just gives us a non-elementary upper bound
on the complexity of RTL-SAT.

2.2 USLIN

If we use the L(U, S) language over the class LIN of all linear structures, instead,
then we obtain the logic which we will call USLIN. This has been axiomatised
by Burgess in [Bur82] and shown to be decidable in PSPACE by Reynolds in
[Rey10b].

2.3 Stavi Connectives

The question of a temporal language for general linear time is important here.
We will see shortly that it is appropriate to use the expressively complete Stavi
language [GPSS80, GHR94] with connectives {U, S, U ′, S′} which we will shortly
define.

First, we need to define gaps in a linear order and say where they fit into the
order.

Definition 2. A gap γ in a linear order (T,<) is a set γ ⊆ T such that: 1)
γ �= T ; 2) for all t ∈ T , for all s ∈ γ, if t < s then t ∈ γ; 3) for all t ∈ γ there is
s ∈ γ such that t < s; and 4) for all t ∈ T \ γ there is s ∈ T \ γ such that s < t.

If γ is a gap in (T,<) and t ∈ T then we may extend the < operator by applying
it to gaps as well and also write t < γ iff t ∈ γ and write γ < t iff t ∈ T \ γ. If γ
and δ are gaps in (T,<) then we write γ ≤ δ iff γ ⊆ δ.

Stavi U ′: U ′(p, q) holds now if there is a gap in the future such that 1) q holds
constantly between now and the gap, 2) q is false arbitrarily soon after the gap
and 3) p is constantly true for a while after the gap. See the diagram Figure 1.

To define the semantics formally in the most direct way we need to use a
subset of the linear order to define the “gap”. So (T,<, h), t |= U ′(α, β) iff there
is a subset γ ⊆ T such that t ∈ γ, for all r < s ∈ T , if s ∈ γ then r ∈ γ; T \ γ
is non-empty; for all s ∈ γ, if t < s then (T,<, h), s |= β; for all s �∈ γ, there is
r �∈ γ such that t < r and (T,<, h), r �|= β; and there is some r �∈ γ such that
t < r and for all s ∈ T , if s �∈ γ and s < r then (T,<, h), s |= α.

We also have the past, since, version, S′ of U ′, i.e., with past and future
swapped. Definitions and results obtained by swapping past and future are usu-
ally called mirror images.

Despite involving a gap, U ′ is in fact a first-order connective and its table is
given by:
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Fig. 1. A typical Stavi Until situation

αU ′(p,q)(t) =
∃s (t < s)
∧ ∀u(t < u < s→

( [ ∃v(u < v ∧ ∀w(t < w < v → Q(w))]
∨ [ ∀v(u < v < s→ P (v))
∧ ∃v(t < v < u ∧ ¬Q(v))]))

∧ ∃u [ t < u < s ∧ ¬Q(u)]
∧ ∃u [ t < u < s ∧ ∀v(t < v < u→ Q(v))]

That this is so is left as an exercise.

2.4 Monadic Logic

The first-order monadic language of order, FOMLO, is a first order language
which can describe the structures we are dealing with and it is useful to translate
between it and the temporal language.

The relation symbols of FOMLO are 2-ary < and 1-ary, or monadic, P0,
P1, P2, . . . each corresponding respectively to the atoms p0, p1, p2, . . . of L. So
atomic propositions are xi < xj and Pk(xj) for each variable symbol xi and each
1-ary relation symbol Pk. Formulas of the language are built up from the atoms
as follows: ¬α, α ∧ β, and ∀xiα.

The notions of free and bound variables and sentences are as usual.
Given a temporal structure (T,<, g) we can evaluate monadic formulas in it

by interpreting the 1-ary predicates Pi as 1-ary relations on (i.e. subsets of) T
using the valuation g(pi) to tell us where the interpretation of Pi holds as follows:

(T,<, g), μ |= Pi(xj) iff tj ∈ g(pi)
(T,<, g), μ |= xi < xj iff ti < tj
(T,<, g), μ |= ¬α iff it is not the case that (T,<, g), μ |= α
(T,<, g), μ |= α1 ∧ α2 iff (T,<, g), μ |= α1 and (T,<, g), μ |= α2

(T,<, g), μ |= ∀xiα iff for every d ∈ T , (T,<, g), μ[xi �→ d] |= α

Here μ is a (possibly partial) map from {x1, x2, . . . } to T and μ[xi �→ d] is the
map which is the same as μ except that xi is mapped to d. We require that μ
is defined on all the free variables of α. The truth of (T,<, g), μ |= α does not
depend on the value of μ(xi) if xi is not free in α.
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Definition 3. We say that the temporal language L(B) is expressively complete
over class K of linear orders iff for every FOMLO formula α(t), there is some
φ of the temporal language such that φ is equivalent to α over K.

Kamp showed in [Kam68] that L(U, S) is expressively complete over R and over
N.

An expressive completeness result for the Stavi language over the class LIN
of all linear orders was announced in [GPSS80] but detailed proofs can be found
in [GHR94].

Theorem 2. The temporal language with connectives {U, S, U ′, S′} is expres-
sively complete over the class of all linear orders.

Thus, each formula of the first-order monadic language of order with one free
time variable, has an equivalent expression in the Stavi language, a formula true
at exactly the same times in any linear model. This also means that any formula
of any usual temporal logic which can be defined over linear temporal structures
can be easily translated into an equivalent formula in the Stavi language. See
[Rey10b] for details.

Here we should also briefly mention a stronger monadic logic, the Monadic
Second-oder logic, MSO, which has also played a role in this area: in this exten-
sion we can qualify over the monadic predicates.

3 Building Structures

We introduce a notation which allows the description of a temporal structure in
terms of simple basic structures via a small number of ways of putting structures
together to form larger ones.

The general idea is simple: using singleton structures (the flow of time is one
point), we build up to more complex structures by the recursive application of
four operations. They are:

– concatenation or sum of two structures, consisting of one followed by the
other;

– ω repeats of some structure laid end to end towards the future;
– ω repeats laid end to end towards the past;
– and making a densely thorough shuffle of copies from a finite set of structures.

These operations are well-known from the study of linear orders (see, for exam-
ple, [BG85]).

Model Expressions (MEs) are an abstract syntax to define models that are
constructed using the follow set of primitive operators:

I ::= a ∈ 2L | Λ |I + J | ←−I | −→I | 〈I0, ..., In〉

We refer to these operators, respectively, as a letter, the empty order, concate-
nation, lead, trail, and shuffle.

We relate MEs to structures via a simple relation called correspondence which
we define inductively in a straightforward way, given the intuitions for the op-
erators:
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Definition 4. [Correspondence] A model expression I corresponds to a struc-
ture as follows:

– Λ is the empty sequence and corresponds to the empty structure, (∅, <, h)
where < and h are empty relations.

– a corresponds to any single point model ({x}, <, h) where < is the empty
relation and h(p) = x if and only if p ∈ a.

The inductive cases:

– I + J corresponds to a structure (T,<, h) if and only if T is the disjoint
union of two sets U and V where ∀u ∈ U , ∀v ∈ V , u < v and I corre-
sponds to (U,<U , hU ) and J corresponds to (V,<V , hV ). (<U , hU refers to
the restriction of the relations < and h to apply only to elements of U).

–
←−I corresponds to the structure (T,<, h) if and only if T is the disjoint union
of sets {Ui|i ∈ ω} where for all i, for all u ∈ Ui, for all v ∈ Ui+1, v < u, and
I corresponds to (Ui, <

Ui , hUi).

–
−→I corresponds to the structure (T,<, h) if and only if T is the disjoint union
of sets {Ui|i ∈ ω} where for all i, for all u ∈ Ui, for all v ∈ Ui+1, u < v, and
I corresponds to (Ui, <

Ui , hUi).
– 〈I0, ..., In〉 corresponds to the structure (T,<, h) if and only if T is the dis-

joint union of sets {Ui|i ∈ Q} where
1. for all i ∈ Q (Ui, <

Ui , hUi) corresponds to some Ij for j ≤ n,
2. for every j ≤ n, for every a �= b ∈ Q, there is some k ∈ (a, b) where Ij

corresponds to (Uk, <
Uk , hUk),

3. for every a < b ∈ Q for all u ∈ Ua, for all v ∈ Ub, u < v.

We will give an illustration of the non-trivial operations below. The lead op-

eration, I =
←−I1 corresponds ω submodels, each corresponding to I, and each

preceding the last, as illustrated in Figure 2.

. . .
I1I1I1

Fig. 2. The lead operation, where I =
←−I1

The trail operator is the mirror image of the lead operation, whereby I =
−→I1

corresponds to ω structures, each corresponding to I1 and each proceeding the
earlier structures.

The shuffle operator is harder to represent with a diagram. The model ex-
pression I = 〈I1, . . .Im〉 corresponds to a dense, thorough mixture of intervals
corresponding to I1, . . . , In, without endpoints. We define the shuffle operation
using the rationals, Q as they are a convenient linear order with the required
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I1 I2
. . .

In

I1
. . .

...

In I1
. . .

...

In I1
. . .

...

In I1
. . .

...

In I1
. . .

...

In

Fig. 3. The shuffle operation, where I = 〈I1, ..., In〉

properties. We will see below that and dense linear order is equivalent up to
isomorphism for the purposes of the shuffle operator.

Model expressions give us a grammar whose elements correspond to general
linear structures in a similar manner to the way regular expressions match words
over a given alphabet. The definition of model expression correspondence is
not deterministic: each particular expression corresponds to each member of
an isomorphism class of structures. Furthermore, the construct for the shuffle
〈I1, ..., In〉 does not specify how the structures corresponding to I1, ..., In are
mapped to the rationals. As the mapping is dense for each i from 1 to n, the
resulting structures will be isomorphic.

To start with, our particular interest in this paper are frames that are iso-
morphic to the real numbers. A simple argument via the Löwenheim-Skolem
theorem, tells us that any formula satisfiable in a real-framed structure is also
satisfiable in a countable structure. Further, our model expressions can describe
such a countable model of a formula. However, for an RTL synthesis procedure
we need a way of describing a real-flowed model of a given formula: one in which
the underlying frame is the real numbers themselves. To address this we:

1. (non-deterministically) define a Dedekind closure of a structure; and
2. show that there is a sublanguage of model expressions that correspond

to dense, separable structures without endpoints, which agree with their
Dedekind closures on the interpretation of L(U, S) formulas.

As every real valued structure is isomorphic to a dense, separable, Dedekind
complete structure without end-points, and vice-versa (see [Rey92]) this is suf-
ficient to justify the use of model expressions as the base artifact for synthesis
and model checking results.

To define a sublanguage of separable, dense structures without endpoints, we
must address the fact that some of the operators of model expressions, such as
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concatenation, naturally imply a discrete gap in the linear order. We build real
model expressions (RMEs) via induction using the definitions above:

R ::= 〈a0, ..., am,R1, ...,Rn〉 | R0 + a+R1|
←−−−
a+R | −−−→R+ a

where a, ai ∈ 2L, and m,n ≥ 0. The letter a0 is used as a sort of background
filler to ensure that the shuffle is Dedekind complete. The abstract syntax for real
model expressions is a direct sub-language for the abstract syntax for general
model expressions. We note that their syntax will always define open intervals
and that the base element of this recursion is a shuffle containing only points.
This will define a dense, separable linear order with all the letters homogeneously
distributed across the linear order.

Such a sublanguage is suggested in [BG85] where similar refinements of the
[LL66] operations were applied to provide a decidability result for the monadic
theory of the reals. The following lemma is suggested by that work. See [FMDR12b]
for details.

Lemma 1. Every real model expression corresponds to some structure whose
frame is dense, separable and without end-points.

It is important to note that the corresponding structures are not based on a
real frame. In fact, any structure corresponding to a model expression I must
be countable and therefore cannot be isomorphic to the reals. However, we will
show this is sufficient for our purposes as every formula that is satisfied by a
structure over the reals, is satisfied by a structure over some dense separable
Dedekind complete linear order.

To address this we define a Dedekind closure of a structure, and show that
any model corresponding to a real model expression agrees with its Dedekind
closures on the interpretation of L(U, S) formulae.

Definition 5. Given a structure T = (T,<, h), we say that a gap γ is curable
iff for all s < γ < t there are u, v ∈ T such that s < u < γ < v < t and for all
p ∈ L, u ∈ h(p) iff v ∈ h(p).

If every gap in T is curable, a Dedekind closure of T is a structure T∗ =
(T ∪X,<∗, h∗) where:

1. X is a set of new points, one for each Dedekind gap of T,

2. <∗ is the extension of < such that the new point corresponding to each gap
is in the right place in the order;

3. h∗ is the extension of h such that for each new point x, p holds at x iff p
holds at points of T arbitrarily closely on each side of x.

Note that not every structure has a Dedekind closure. However, we have defined
real model expressions in such a way that they guarantee that every Dedekind
gap will be curable, and furthermore, the cure will not affect the interpretation
of any formula.
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Lemma 2 ([FMDR12b]). Every structure agrees with its Dedekind closures
on the interpretation of L(U, S) formulae, i.e. at every point of the structure,
every formula true (or false) there in the original structure, is true (or false,
respectively) there in the Dedekind closure.

Finally we must show that every real model expression corresponds to some real
valued structure.

Lemma 3. Every structure corresponding to a real model expression is dense,
separable, without endpoints and agrees with it’s Dedekind closure on the inter-
pretation of L(U, S) formulae.

Proof. We can see every structure, T, corresponding to a real model expression
has a Dedekind closure by construction. Every concatenation, lead and trail
operation in a real model expression explicitly includes a single point between the
two sub-expressions, so the only place a Dedekind gap may occur is in the shuffle
operation. As every shuffle must include at least one single point structure, and
the shuffle is dense, then there is a dense set of points in a structure corresponding
to the shuffle, where each point has a consistent context. These points can be
used to cure all Dedekind defects in T without affecting the interpretation of
any L(U, S) formulae. From Lemma 1 we have that T is dense separable and
without end-points so the result follows.

It is straightforward to make the notation completely formal in the case of a
finite set of atoms, and this is the case when we are considering a particular
temporal formula. For example, let [p,¬q] represent a singleton structure with
the obvious valuation. We might then suggest 〈([p, q])〉+[p, q]+〈([p, q], [p,¬q])〉+
[p, q] + 〈([p, q])〉 , as a model expression for Gp ∧ U(q,¬U(q,¬q) ∧ ¬U(q, q)).

Definition 6. We say that a real-flowed structure (R, <, h) is a compositional
real structure (or model) iff it is isomorphic to the Dedekind closure of a struc-
ture which corresponds to some real model expression. In that case, we say that
it realizes the expression.

Thus, a compositional real structure is real-flowed by definition. Note also that
the real model expression tells us exactly what the model looks like (up to
isomorphism).

An important result from [FMDR12a] is that an RTL formula has a real-
flowed model iff it has a compositional real model. In the next section we briefly
describe the proof which uses the mosaic technique for temporal logics.

Before we do so it may be worth noting that there is a similar sort of result
in [BG85] where it is shown that an RTL formula has a real-flowed model iff it
has a model with the valuation of each atom being a Borel set, i.e. one obtained
from open sets by iterated application of complementation and countable union.

The second half of that paper [BG85] presents a series of operations corre-
sponding to those of the real model expressions, to show the decidability of the
monadic theory of the reals.
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In other related work, [Thom86], it is shown how Rabin’s result, that a satis-
fiable MSO-formula over trees is satisfied by a regular tree, generates what are
essentially model expressions for orders which satisfy the formula.

The important advantages of our new result over these previous results, are
that we provide an explicit notation that is adequate for representing real struc-
tures, we are able to give a finite representation in this notation for a model that
supports a given satisfiable L(U, S) formula, and we are able to give an efficient
means for finding it.

4 Mosaics and Synthesis for U and S over the Reals

Much of the hard work for us is done by a theorem showing that deciding RTL
is in PSPACE [Rey10a]. There, we decided the satisfiability of formulas by con-
sidering sets of small pieces of real structures. The idea is based on the mosaics
seen in [Nem95] and applied to modal logics. Satisfiability can be decided by
checking to see if there exists a finite set of mosaics sufficient to build a model
of the formula.

For us, a mosaic is a small piece of a model consisting of three sets of formulas
representing those true at each of two points (called the start and end of the
mosaic) and those true at all points in-between (called the cover of the mosaic).
There are coherence conditions on the mosaic which are necessary for it to be
part of a model. Note that in the context of a particular formula, φ say, (whose
satisfiability we might be investigating) we can limit our attention to a finite
closure set of formulas and so make these mosaics finite in size. The set of
subformulas of φ and their negations are a sufficient closure set and will be
denoted Clφ.

p p p p
p

q q
q qa dense mixture

of q and ¬q

Fig. 4. Diagram representing: 〈([p, q])〉+ [p, q] + 〈([p, q], [p,¬q])〉 + [p, q] + 〈([p, q])〉

The main result from [FMDR12a], built on top of the mosaic proof, is that we
can use the recursively closed nature of the set (or RMS) of mosaics to describe
a model in our new notation.

Theorem 3. A formula φ from L(U, S) is R-satisfiable iff there is a composi-
tional real model of φ. There is some c such that, in that case, a model can be
described by an expression of shuffles, leads, trails and sums of length < 2c|φ|

2

(this bound is best possible).
Furthermore, there is an EXPTIME procedure for finding such an expression.
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Note that thanks to the expressive completeness result in [Kam68], we know
that any satisfiable sentence of the first-order monadic logic of the reals also has
a compositional real model. To find a description of a model from the sentence
must be a hard problem as deciding validity in this logic is non-elementarily
complex [Sto74]. One could use the separation technique of [GHR94] to first
find an equivalent temporal formula and then use the procedure above. The
translation to the temporal formula may be a time-consuming process.

Other results from [Rey10a] allow us to conclude that if we find all possible
starting points (i.e. relativized mosaics in the RMS) and follow all possible ways
of decomposing the mosaics (as given in the RMS) then we will eventually output
a list of possible models of the formula which is in a certain sense exhaustive.
Any real model of φ will be back-and-forth equivalent to one of the compositional
models which is listed.

5 General Linear Time

In this section we leverage off the synthesis result (Theorem 3) for the reals and
show how to obtain a synthesis procedure for general linear time.

To do this, we show that if a temporal formula has a general linear model then
a closely related RTL formula has a real-flowed model which is closely related to
a linear model of the original formula. We will show that a model expression for
a general linear model of the original temporal formula can be easily extracted
from the real model expression for a model of the RTL formula. Many things
are left to be defined below but the idea is that the translation from the original
formula into RTL is quite straightforward as is the translation between the model
expressions.

In order to translate between results about general linear orders and results
about the reals, we use the idea seen in [GHR94, Rey10b] of indicating a more
general linear structure as a subset of a real-structure by using an extra atom
to say which times belong to the substructure.

Thus we define a map α �→ αc from L(U, S, U ′, S′) to Lc(U, S) (i.e. the tem-
poral language built using U and S from a set of propositions being L ∪ {c}
where c is some atom c not from L).

This map is intended to evaluate the Stavi connectives on a linear order which
is the sub-order of the reals identified by the atom c. However, we will not see
the map in action until lemma 4 below when we have some more machinery
defined.

We could define the desired translation directly recursively but due to the
desire to keep the translation in PTIME and to limit the size of the resulting
formula, we work with fresh atoms only on the subformulas of the one formula
we are interested in.

Suppose that we wish to translate α of L(U, S, U ′, S′). Let cl(α) = {β ∈
L(U, S, U ′, S′)|β ≤ α} be the closure set of α that is the set of all subformulas
of α. The size of this set will be at most the length of α.
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The translation ρ will be defined only on the formulas in cl(α). For each
formula β ∈ cl(α) in turn, choose a new atom pβ ∈ L not used in α and not used
already.

We define ρ(β) as follows:

ρ(p) = c ∧ p
ρ(¬β) = c ∧ ¬(pβ)
ρ(β ∧ γ) = c ∧ pβ ∧ pγ
ρ(U(β, γ)) = c ∧ U(c ∧ pβ, c→ pγ)
ρ(S(β, γ)) = c ∧ S(c ∧ pβ, c→ pγ)

For U ′, it is a bit more complicated as we have to allow for long gaps, that is,
extended intervals of constant ¬c.

Thus we put ρ(U ′(β, γ)) = c ∧ U(¬c ∧ (δ1 ∨ δ2), c→ pγ) where δ1 = Γ+(c →
pβ) ∧K+(c ∧ ¬pγ) and δ2 = U(¬c ∧ δ1,¬c).

ρ(S′) is the mirror image.
Now just put αc = pα ∧

∧
β∈cl(α)GH(pβ ↔ ρ(β)), where G and H are abbre-

viations for those connectives in L(U, S).

Definition 7. If (R,≤, g) is a structure then (g(c),≤, g|L) is the structure as
follows.

The domain is g(c) the set of points from R where the atom c holds in (R,≤, g).
The ordering ≤ on g(c) is just inherited from standard ≤ on R.
The atom p from L (so not including c) is true (under g|L) at t ∈ g(c) iff

t ∈ g(p).

Lemma 4. Any α of L(U, S, U ′, S′) is satisfiable in a linear model iff αc is
satisfiable in the reals.

Furthermore, if αc is true in (R,≤, g) then α is true in (g(c),≤, g|L).

Proof. Say that α is satisfiable in some linear order. By Löwenheim-Skolem
applied to the first-order equivalent of α there is a countable model of α. Fur-
thermore, via a back and forth argument we can suppose that the flow of time
is a subset of the rationals, and thus also of the reals.

Make a real-structure (R,≤, g) to include that structure as a substructure.
Make c true at the points of the substructure. Make all the normal atoms true
just where they are true in the substructure.

By induction on the construction of formulas in Cl(α) we can show, for all
x ∈ g(c), (R,≤, g), x |= βc iff (g(c),≤, g|L), x |= β.

Consideration of the length of the formulas used in our construction of αc gives
us a simple polynomial bound on its length in terms of the length of α.

Lemma 5. The length of αc is at most 120|α| and αc can be computed in poly-
nomial time in the length of α.

Given a formula φ of L(U, S, U ′, S′). We have defined φc. Using the RTL synthesis
result we can get a real model expression I for a real-flowed model (R, <, g) of
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φc. If we look at the submodel (g(c), <, g|L) where c is true then we will have
a model for the original φ. It remains to see if we can find a general model
expression for the submodel of an RME where c is true.

First, we define a translation from MEs to MEs:

Definition 8. Say I is a real model expression in which the letters are Σ =
℘(L ∪ {c}).

Define translation τ recursively as follows:
τ(a) = a \ {c} (if c ∈ a)
τ(a) = Λ (if c �∈ a)
τ(I + J ) = τ(I) + τ(J )

τ(
←−I ) =

←−−
τ(I)

τ(
−→I ) =

−−→
τ(I)

τ(〈I0, ..., In〉) = 〈τ(I0), ..., τ(In)〉

Then a fairly straightforward but messy proof by induction on the construction
of I allows us to prove the following lemma.

Lemma 6. Suppose that I is a real model expression in which the letters are
Σ = ℘(L ∪ {c}).

Suppose (T,<, g) corresponds to I.
Then (g(c),≤, g|L) corresponds to τ(I).

Details of the proof are in [FMDR12b].
Thus we can now put together our synthesis result for general linear time.

Theorem 4. There is an EXPTIME procedure which given a formula φ from
L(U, S, U ′, S′) will decide whether φ is satisfiable in a linear model or not, and
if so, will provide a model expression corresponding to a model of φ.

Proof. Given φ, use the RTL synthesis algorithm (above) to try to find a model
expression I such that there is a real-flowed model (R, <, g) of φc which realises
I.

RTL synthesis makes its decision in exponential time.
If there is no real-flowed model of φc then φ is not satisfiable in any linear

order (by Lemma 4 above).
If there is a real model of φc then the algorithm finds I such that there is a

real-flowed model (R, <, g) of φc which realises I. We thus know that there is a
linear model (T,<, g) which corresponds to I and which is a model of φc. Now
compute τ(I).

By Lemma 6 and Lemma 4 this will be a model expression for a linear model
of φ as required.

6 Model Checking

In this section we will define a model checking procedure:
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Definition 9. We define the model checking problem as follows: given an ME
I and formula φ of L(U,S), determine whether there exists a structure T =
(T,<, h) and point x ∈ T such that T, x � φ.

At a high level the model checking procedure uses the traditional approach of
iteratively replacing formulas with atoms. The result of adding a formula α as an
atom to an ME I is “add atomα (I)” which will be defined later in this section.

Definition 10. The model checking procedure takes as input an ME I and
formula φ. We enumerate the subformulas φ1, . . . , φn of φ from shortest to
longest (so φn = φ). We let I0 = I, and let Ii = add atomφi (Ii−1) for each
i ∈ {0, . . . , n}. We return “true” if there exists a letter a within In such that
φ ∈ a, and “false” otherwise.

It is common to define the model checking problem as determining whether a
formula φ is true at a given point. To solve this variation of the problem, with
our model checking procedure, we can add a special atom t0 and model check
the formula t0 → φ.

Since add atom is only used on formulas where all subformulas have been
replaced with atoms, we only need to consider the following forms: p ∧ q, ¬p,
U(p, q) and S (p, q). We define add atomp∧q (I) as being the ME that results
when each letter within I that contains both p and q has p ∧ q added and
likewise we define add atom¬p (I) as being the ME that results when each letter
within I that does not contain p has ¬p added. We will now consider the less
simple case of U(p, q) and S (p, q).

Given any Boolean � and an ME K we will now define a Boolean pre (K,�).
Say that K corresponds to an interval TK of T. Informally, � represents whether
U(p, q) would be true at a point added immediately after TK, and pre (K,�)
represents whether U(p, q) would be true at a point added immediately prior to
TK. In the proof of correctness this will be formalised in terms of presatisfaction.

Definition 11. We define a function “pre” from Booleans and MEs to Booleans
such that: for any Boolean � and pair of MEs I,J

1. pre (I + J ,�) = pre (I, pre (J ,�))
2. pre

(
−→I ,�

)
= pre (I,�)

3. pre (a,�) = p ∈ a ∨ (� ∧q ∈ a)
4. pre (J ,�) = (� ∨∃l ∈ L (J ) s.t. p ∈ l)∧∀l ∈ L (J ) , q ∈ l; where J is of the

form
←−I or 〈. . .〉 and L (J ) is the set of letters within J .

Note that for any I and � it is the case that pre (I,�) = pre (I, pre (I,�)). This
may make the definition of add atomU(p,q) below easier to understand.

Definition 12. We define add atomU(p,q) (I) as t (I,⊥): where t is a function
that takes an ME and a Boolean as input, and outputs an ME as follows: for
any Boolean � and pair of MEs I,J
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1. t (I + J ,�) = t(I, pre (J ,�)) + t (J ,�)
2. t

(
←−I ,�

)
=
←−−−−−−−−−−
t(I, pre (I,�)) + t (I,�)

3. t

(
−→I ,�

)
=
−−−−−−−−−−→
t(I, pre (I,�))

4. t (K,�) = 〈t (I0,�′) , . . . , t (In,�′)〉 where K = 〈I0, . . . , In〉
and �′= pre (K,�)

5. t (a,�) = { a if ¬ �
a ∪ {U(p, q)} if �

Note that t

(
←−I ,�

)
unwinds an I out of the

←−I . This important because, in an

ME such as
←−−−
{p, q} we have U(p, q) true everywhere except the rightmost point

and so when we add U(p, q) as an atom we want to get
←−−−−−−−−−
{p, q, U(p, q)}+{p, q}; not

←−−−−−−−−−
{p, q, U(p, q)} which has U(p, q) even at the rightmost point, nor

←−−−
{p, q} which

does not have U(p, q) true anywhere.
As the Since operator is simply the mirror image of the Until operator, it is

easy to similarly define add atomS(p,q) (I).
The full details of the model checking procedure will be presented in a future

paper currently in preparation. Correctness is shown:

Theorem 5. Given an ME I and formula φ, the model-checking procedure halts,
and it returns true iff there exists a structure T = (T,< h) and point x ∈ T
such that I corresponds to T and T, x |= φ.

A prototype implementation is already available at
http://www.csse.uwa.edu.au/∼mark/research/Online/mechecker.html.

The complexity is similar to that of model-checking LTL. Adding atoms has

a simple recursive definition. However, each time we process an Until each
←−I

is replaced with something of the form
←−I0 + I1. After u Until operators have

been processed this gives us something of the form
←−I0+I1+ · · ·+In, potentially

increasing the size of the ME n + 1 times. With nested Untils (and/or Sinces)
the ME can expand to size of order |I|φ|I|. Note though that the size of this ME
is largely due to duplicated submodels. By storing and processing each unique
submodel only once we get an algorithm that requires only time and space of
order O (|I||φ| 2|φ|). Like the commonly used model checker [HKV96] for LTL,
this is linear in the length of the model and singly exponential in the length of the
formula. By not storing the model generated we can produce a simple polynomial
space (though inefficient) algorithm, and we can get PSPACE-completeness from
a reduction from Quantified Boolean Form ulas. The basis of this reduction is

to take a sequence of MEs such that Ii =
←−−−−−−−−
{pi}+ Ii−1 + {qi}, replace the ith

atom ri in a prenex normal form QBF with U (pi,¬qi), iteratively replace the
quanfiers as follows: replace ∀riψi−1 with U (qi, pi → ψi−1) and replace ∃riψi−1

with ¬ (U (qi,¬ (pi ∧ ψi−1))).
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This model checking procedure can be used over the reals (when we limit
ourselves to RMEs) or general linear flows. To get expressive completeness over
general linear flows, we can translate the Stavi connectives using a special atom
to represent “gaps” in the reals as in the previous section.

7 Conclusion

We have investigated a compositional approach to building linear temporal struc-
tures as a way of working with models on general linear flows of time. Structures
are built by putting together smaller structures in a recursive way, with copies
of the smaller ones occupying successive intervals of time. We have formalised
the approach so that such models can be described clearly and efficiently.

We have identified a sub-language of the formal compositional model building
language which can be used (in a slightly modified way) to build real-flowed
structures. Any RTL formula satisfiable in the reals is satisfiable in such a com-
positional real-flowed model. We presented an efficient method for building a
real-flowed model of any given a satisfiable formula.

Building on that result we have also given a general linear synthesis result.
Given a formula of the expressive Stavi language, or its U, S sublanguage, we can
decide whether it is satisfiable over linear time, and, if so, output a compositional
model expression for a particular model of the formula.

In a separate result we have also introduced a model checking procedure for
general linear time. The inputs are a model expression, describing a structure,
and a temporal formula. The procedure decides whether that formula is true
anywhere in the structure. This seems to be the first such procedure.

Future work includes model building constructions for important sub-classes
of linear flows, such as dense ones, or for example just {Z}. We also want to
provide publicly usable implementation of our model checker.
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[LL66] Läuchli, H., Leonard, J.: On the elementary theory of linear order. Fun-
damenta Mathematicae 59, 109–116 (1966)
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Probabilistic IF Logic
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1 Introduction

In a seminal paper Goldfarb (1979) points out that "The connection between
quantifiers and choice functions or, more precisely, between quantifier-dependence
and choice functions, is at the heart of how classical logicians in the twenties
viewed the nature of quantification." (Goldfarb 1979, p. 357). For a less histori-
cal but more systematic point of view, Terence Tao (2007), notices that we know
how to render in first-order logic statements like:

1. For every x, there exists a y depending on x such that B(x, y) is true

and

2. For every x, there exists a y independent of x such that B(x, y) is true

The first one can be rendered by

∀x∃yB(x, y)

and the second one by

∃y∀xB(x, y).

(Here B(x, y) is a binary relation holding of two objects x, y). Things become
more complicated when four quantifiers and a ternary relation Q(x, x′, y, y′) are
involved. We can express in first-order logic statements like

3. For every x and x′, there exists a y depending only on x and a y′ depending
on x and x′ such that Q(x, x′, y, y′) is true

and

4. For every x and x′, there exists a y depending on x and x′ and a y′ depending
only on x′ such that Q(x, x′, y, y′) is true

by

∀x∃y∀x′∃y′Q(x, x′, y, y′)

and

∀x′∃y′∀x∃yQ(x, x′, y, y′)

respectively. However, one cannot always express the statement

K. Lodaya (Ed.): ICLA 2013, LNAI 7750, pp. 69–79, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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5. For every x and x’, there exists a y depending only on x and a y′ depending
only on x′ such that Q(x, x′, y, y′) is true.

His conclusion is that

It seems to me that first order logic is limited by the linear (and thus
totally ordered) nature of its sentences; every new variable that is in-
troduced must be allowed to depend on all the previous variables in-
troduced to the left of that variable. This does not fully capture all of
the dependency trees of variables which one deals with in mathematics.
(Tao, 2007)

2 Independence-Friendly Logic

Independence-friendly logic (IF logic), introduced in Hintikka and Sandu (1989),
is intended to represent patterns of dependence and independence of quantifiers
like those exemplified by 5 which go beyond those expressible in ordinary first-
order logic. More exactly, the syntax of IF logic contains quantifiers of the form

(∃x/W ) (∀x/W )

where W is a finite set of variables. The intended interpretation of (∃x/W ) is:
the existential quantifier ∃x is independent of the quantifiers which bind the
variables in W. The notion of independence involved here is a game-theoretical
one and corresponds to the mathematical notion of uniformity. The example (5)
above will be rendered in the new formalism by:

∀x∀x′(∃y/{x′})(∃y′/{x, y})Q(x, x′, y, y′).

Here are few examples from the mathematical literature which involve the new
quantifiers.

The continuity of a function f : R → R is expressed by the sentence

∀x∀ε∃δ∀y[| x− y |< δ →| f(x) − f(y) |< ε].

In this case the value of δ depends on both the value of x and the value of ε but
is independent of the value of y.

However it turns that for certain functions f the value of δ does not depend
on the value of x. In this case we say that f is uniformly continuous. The uniform
continuity of f is captured by the IF sentence

∀x∀ε(∃δ/x)∀y[| x− y |< δ →| f(x) − f(y) |< ε].

This sentence is (truth-) equivalent (under the interpretation to be given below)
to the first-order sentence

∀ε∃δ∀x∀y[| x− y |< δ →| f(x) − f(y) |< ε].
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However, as pointed out by Tao, it is not always so that an IF-formula is equiv-
alent to an ordinary first-order formula. Here is one example out of many (cf.
Mann, Sandu, and Sevenster, 2011).

An involution is a function f that satisfies f(f(x)) = x, for all x in its domain.
A finite structure has an even number of elements if and only if there is a way
of pairing the elements without leaving any element out, i.e., if there exists an
involution without a fixed point. Let ϕeven be the IF sentence

∀x∀y(∃u/{y})(∃v{x, u})
[(x = y → u = v) ∧ (u = y → v = x) ∧ u �= x].

The truth of this sentence turns out to be equivalent with that of a second-order
sentence which asserts the existence of a function f such that

∀x[f(f(x)) = x ∧ f(x) �= x].

In other words, ϕeven is true if and only if there is a function f which is an
involution without a fixed point.

The original interpretation of IF formulas in Hintikka and Sandu (1989) and
Hintikka (1996) is given by semantical games of imperfect information. An alter-
native, equivalent interpretation is by skolemization. Mann, Sandu and Sevenster
(2011) establishes the equivalence of all interpretations. We shall adopt here the
interpretation by Skolem functions.

3 Truth in IF Logic

Let ϕ be a formula of IF logic in a given vocabulary L and U a finite set of
variables which contains the free variables of ϕ. We expand the vocabulary L of
ϕ to L∗ = L∪{fψ : ψ is a subformula of ϕ}. The skolemized form or skolemization
of ϕ with variables in U is defined by the following clauses:

SkU (ψ) = ψ, for ψ an atomic subformula of ϕ or its negation
SkU (ψ ◦ θ) = SkU (ψ) ◦ SkU (θ), for ◦ ∈ {∨,∧}
SkU ((∀x/W )ψ) = ∀xSkU∪{x}(ψ)
SkU ((∃x/W )ψ) = Subst(SkU∪{x}(ψ), x, f∃x(y1, ..., yn))

where y1, ..., ynenumerate all the variables in U −W. We notice that if W = ∅

the last clause becomes

SkU ((∃x)ψ) = Subst(SkU∪{x}(ψ), x, f∃x(y1, ..., yn))

where y1, ..., ynenumerate all the variables in U . That is, we recover the notion
of skolemization for the standard quantifiers. We abbreviate Sk∅(ϕ) by Sk(ϕ).
An interpretation of f∃x(y1, ..., yn) is called a Skolem function.

For an example, the Skolem form of ϕeven is

∀x∀y
[(x = y → f(x) = g(y)) ∧ (f(x) = y → g(y) = x) ∧ f(x) �= x].
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Let ϕ be an L-sentence of IF logic and M an L-structure. We say that ϕ is true
in M, M �+ ϕ, if and only if there exist functions g1, ..., gn of appropriate arity
in M to be the interpretations of the new function symbols fx1 , ..., fxn in Sk(ϕ)
such that

M, g1, ..., gn � Sk(ϕ).

4 Falsity in IF Logic

In order to deal with falsity, we shall define another translation procedure,
KrU (ϕ):

KrU (ψ) = ¬ψ, for ψ an atomic subformula or its negation
KrU (ψ ∨ θ) = KrU (ψ) ∧KrU (θ),
KrU (ψ ∧ θ) = KrU (ψ) ∨KrU (θ)
KrU ((∃x/W )ψ) = ∀xKrU∪{x}(ψ)
KrU ((∀x/W )ψ) =Subst(KrU∪{x}(ψ), x, f∀x(y1, ..., ym)

where y1, ..., ym are all the variables in U−W . We call the value of interpretation
of f∀x(y1, ..., ym)) a Kreisel counter-example.

By analogy with the truth definition, we stipulate that an IF sentence ϕ is
false in a structure M, M �− ϕ if and only if there exist functions h1, ..., hm of
appropriate arity in M to be the interpretations of the new function symbols
fx1 , ..., fxm in Kr(ϕ) such that

M, h1, ..., hm � Kr(ϕ).

5 Expressive Power

Here we give another example of an IF sentence which is not first-order definable.
It will be used later on. A set M is (Dedekind) infinite iff there is a function
h : M →M which is an injection and in adition there is an element in M which
is not the the image under h of any element of M . The IF sentence ϕinf

∃w∀x(∃y/{w})(∃z/{w, x})(x = z ∧ w �= y)

defines the infinity of the underling domain. The Solem form of ϕinf is

∀x(x = g(f(x)) ∧ c �= f(x))

and its Kreisel form is

∀w∀y∀z(h(w) �= z ∨ w = y).

It can be checked that ϕinf is true in a model iff the function f is an injection
which range is not the entire universe. On the other side, if M is finite, it can be
checked that we have both M �+ ϕinf and M �− ϕinf .



Probabilistic IF Logic 73

An IF formula is in Hintikka normal form if it is in prenex normal form, every
universal quantifier is superordinate to every existential quantifier, and all of its
universal quantifiers are unslashed, i.e., it has the form

∀y1...∀ym(∃ym+1/Wm+1)...(∃yn/Wn)ϕ

where ϕ is quantifier free. In Mann, Sandu and Sevenster (2011) it is shown that
every IF sentence is (truth-) equivalent with an IF sentence which is in Hintikka
normal form.

6 Model-Theoretical Properties

The Compactness Theorem which in its standard form holds that a theory Γ
is satisfiable if every finite subtheory of Γ is satisfiable holds for IF logic. The
proof is straightforward: when Γ is a set of IF sentences, it is enough to consider
the set Γ ∗ = {Sk(ϕ) : ϕ ∈ Γ}.

However, there is a stronger version of compactness which holds in first-order
logic but not in IF logic: every first-order theory Γ ∪ {ϕ} has the property that
Γ |= ϕ iff there is a finite Δ ⊆ Γ such that Δ |= ϕ. By contrast, there is an IF
theory Γ ∪ {ϕ} for which we have Γ |=+ ϕ but � �+ ϕfor every finite Δ ⊆ Γ .
It is enough to take Γ to be the infinite set of sentences {ϕn : n ≥ n} where
each ϕi asserts that the universe contains at least i individuals, and ϕ to be
the sentence ϕinf . From this it follows that there is no sound and semantically
complete proof system for IF logic.

Craig’s Interpolation Theorem says that ϕ is a first-order sentence in the
vocabulary L and ψ′ is a first-order sentence inthe vocabulary L′ such that
ϕ � ψ there is a first-order interpolant θ in the vocabulary L ∩ L′ such that
ϕ � θand θ � ψ. We can use this theorem to prove a Separation Theorem for
IF logic. We say that two IF sentences are contraries if there is no model in
which they are both true. One can easily prove that any two IF sentences ϕ
and ψ which are contraries can be separated by an ordinary first-order sentence,
that is, there is a first-order sentence θ such that ϕ �+ θ and ψ �+ ¬θ. Other
model-theoretical properties are detailed in Mann, Sandu and Sevenster (2011).

7 Strategic IF Games

7.1 Indeterminacy

Consider the IF sentence ϕ = ∀x(∃y/{x})x = y and a finite structure M which
contains at least two elements. This sentence is neither true nor false in M.
The most straightforward way to establish this is by considering its Skolem and
Kreisel form:

Sk(ϕ) = ∀xx = c
Kr(ϕ) = ∀y¬d = y.

Obviously there is no expansion of M which satisfies Sk(ϕ) and no expansion of
M which satisfies Kr(ϕ).
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We consider the set S∃ of Skolem functions of Eloise in M, i.e. the set of all
possible values of the function symbols of Sk(ϕ). In this case, S∃ = M. We also
consider the set S∀ of all possible Kreisel counter-examples in M: In this case
S∀ = M. We can now formulate a two player win-lose strategic game Γ (M, ϕ) =
({∃, ∀}, S∃, S∀, u∃, u∀). The two players ∃ and ∀ choose simultaneously s ∈ S∃
and t ∈ S∀, respectively. The payoff of the outcome is determined in a very
simple way: if s and t satisfy the equation c = d in M, then ∃ wins (1 euro). If
they satisfy ¬c = d, ∀ wins. Here is the complete matrix of the game for the case
in which M = {1, 2, 3}:

1 2 3
1 (1, 0) (0, 1) (0, 1)
2 (0, 1) (1, 0) (0, 1)
3 (0, 1) (0, 1) (1, 0)

The rows represent the strategies of Eloise and the colums the strategies of
Abelard. In (m,n), m ∈ {0, 1} is the payoff of Eloise, i.e. u∃(m,n) = m, and n
is the payoff for Abelard for the corresponding strategies.

It is interesting to compare this game to the one associated with ψ =
∀x(∃y/{x})x �= y and M = {1, 2, 3}:

1 2 3
1 (0, 1) (1, 0) (1, 0)
2 (1, 0) (0, 1) (1, 0)
3 (1, 0) (1, 0) (0, 1)

Obviously the notion of strategic IF game can be generalized to every IF sentence
ϕ and structure M. Given a strategic IF game Γ (M, ϕ) = ({∃, ∀}, S∃, S∀, u∃, u∀),
s′ ∈ S∃ and t′ ∈ S∀, we say that (s′, t′) is an equilibrium in the game Γ (M, ϕ) if
the following two conditions are fulfilled:

– u∃(s′, t′) ≥ u∃(s, t′) for every s ∈ S∃
– u∀(s′, t′) ≥ u∀(s′, t) for every t ∈ S∀

We can check that in our earlier strategic IF games Γ (M, ∀x(∃y/{x})x = y) and
Γ (M, ∀x(∃y/{x})x �= y) where M = {1, 2, 3}, there are no equilibria.

We overcome the indeterminacy of such IF sentences by considering mixed
strategy equilibria. The procedure is due to Sevenster (2006) and was fully ex-
plored in Mann, Sandu, and Sevenster (2011).

7.2 Mixed Strategies Equilibria in IF Games

There is an equilibrium in every IF game if, instead of pure strategies, we switch
to mixed strategies. Let Γ (M, ϕ) be a finite IF strategic game. A mixed strategy
ν for player i in this strategic game is a probability distribution over Si, that is,
a function ν : Si → [0, 1] such that

∑
τ∈Si

ν(τ) = 1. ν is uniform over S′
i ⊆ Si

if it assigns equal probability to all strategies in S′
i and zero probability to all

the strategies in Si − S′
i. Obviously we can simulate a pure strategy s with a
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mixed strategy ν such that ν assigns s probability 1. Given a mixed strategy μ
for player ∃ and a mixed strategy ν for player ∀, the expected utility for player
i is given by:

Ui(μ, ν) =
∑
s∈S∃

∑
t∈S∀

μ(s)ν(t)ui(s, t).

When s ∈ S∃ and ν is a mixed strategy for player ∀, we let

Ui(s, ν) =
∑
t∈S∀

ν(t)ui(s, t).

Similarly if t ∈ S∀ and μ is a mixed strategy for player ∃, we let

Ui(μ, t) =
∑
s∈S∃

μ(s)ui(s, t).

Von Neumann’s well known Minimax Theorem shows that every finite, constant
sum, two player game has an equilibrium in mixed strategies. It is also well known
that every two equilibria in such a game returns the same expected utility to the
two players. Thus we can talk about the expected utility returned to player ∃ by
an IF strategic game. This justifies the next definition:

Definition. Let ϕ be an IF sentence and M a finite structure. When 0 ≤ r ≤ 1
we define:

M �eqr ϕ iff the expected utility returned to player ∃ by the strategic game
Γ (M, ϕ) is r.

Recall our earlier examples Γ (M, ∀x(∃y/{x})x = y) and Γ (M, ∀x(∃y/{x})x �=
y) whereM = {1, 2, 3}. In both cases the uniform strategies μ∗(1) = μ∗(2) =

μ∗(3) =
1
3

and ν∗(1) = ν∗(2) = ν∗(3) =
1
3

form an equilibrium. The value of the

first game is
1
3

and that of the second game is
2
3
. Thus M �eq1

3
∀x(∃y/{x})x = y

and M �eq2
3
∀x(∃y/{x})x �= y. A more complex argument shows that for M a finite

model with n elements we have M |=eq
n−1

n

ϕinf . Thus when n grows to infinity
the value of ϕinf approaches 1, as desired.

The above definition gives us the (probabilistic) value of an IF sentence ϕ on a
given finite structure M. It can be shown that this interpretation is a conservative
extension of the earlier interpretation:

Proposition. For every IF sentence ϕ and finite model M we have: M �+ ϕ iff
M �eq1 ϕ; and M �− ϕ iff M �eq0 ϕ.

The next proposition is often useful for checking that a pair of mixed strategies
is an equilibrium.

Proposition. Let μ∗be a is a mixed strategy for player ∃ and ν∗is a mixed
strategy for player ∀ in the strategic IF game Γ . The pair (μ∗, ν∗) is an
equilibrium in Γ if and only if the following conditions hold:
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1. U∃(μ∗, ν∗) = U∃(σ, ν∗) for every σ ∈ S∃ in the support of μ∗
2. U∀(μ∗, ν∗) = U∀(μ∗, τ) for every τ ∈ S∀ in the support of ν∗
3. U∃(μ∗, ν∗) ≥ U∃(σ, ν∗) for every σ ∈ S∃ outside the support of μ∗
4. U∀(μ∗, ν∗) ≥ U∀(μ∗, τ) for every τ ∈ S∀ outside the support of ν∗.

It is interesting to compare the probabilistic interpretation of IF logic with other
probabilistic interpretations.

8 Statistical Information: Randomizing over Individuals

Bacchus (1990) and Halpern (1990), among others, analyze statements which
express empirical generalizations like “20% of the provinces of Canada are west
to Saskatchewan”. Such generalizations further serve to justify statements which
express proportions or relative frequencies like “The probability that a random
chosen flies is greater than 0.9”. It has been pointed out that the second statement
is about a chance set up: given some statistical information (that 90% of the
individuals in a population have property P ), then we may imagine a chance set
up in which a randomly chosen individual has probability 0.9 of having property
P .

To analyze this kind of statements, Halpern, following Bacchus, considers

an extension of first-order logic with formulas of the form wx(ϕ) ≥ 1
2

to be
interpreted as “the probability that a randomly chosen x in the domain satisfies

ϕ is greater or equal to
1
2
”. Here wx(ϕ) is a term, in which the variable x in ϕ

is bound by the quantifier wx. This formulation is extended to allow arbitrary
sequences of distinct variables in the subscript.

Such statements are interpreted in probability structures, that is, triples
(D, I, μ) where (D, I) is a first-order structure and μ is a discrete probabil-
ity function on D. That is, μ is a mapping from D to the real interval [0, 1] such
that

∑
d∈D μ(d) = 1. For any A ⊆ D one defines: μ(A) =

∑
d∈A μ(d). Given

such a probability function μ one can then define a discrete probability function
μn on Dn by letting

μn(d1, ..., dn) = μ(d1) × ...× μ(dn).

The evaluation of formulas in probability structures follows the standard lines.
The clause which interests us is:

– [w(x1,...,xn)(ϕ)]M,v = μn({(d1, ..., dn) : (M, v[x1/d1, ..., xn/dn]) |= ϕ})
We write M |= ϕ if (M, v) |= ϕ for all valuations v.

Both Bacchus and Halpern consider issues of axiomatizability that will not
interest me in this paper. It is worth pointing out that the term w−→x (ϕ) which
expresses statistical randomness obeys the Kolmogorov probability axioms:

Ax1 w−→x (ϕ) ≥ 0
Ax2 w−→x (ϕ) + w−→x (¬ϕ) = 1
Ax3 w−→x (ϕ) + w−→x (ψ) ≥ w−→x (ϕ ∨ ψ)
Ax4 w−→x (ϕ ∧ ψ) = 0 → w−→x (ϕ) + w−→x (ψ) = w−→x (ϕ ∨ ψ)
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9 Degree of Belief: Randomizing over Possible Worlds

Both Bacchus (1990) and Halpern (1990) pointed out that unlike the statement
“The probability that a random chosen flies is greater than 0.9” which expresses
a fact about one (real) world, the statement “The probability that (the partic-
ular bird) Tweety flies is greater than 0.9” expresses a degree of belief. In other
words, the second statement seems to implicitly assume a number of possibilities
(possible worlds), in some of which Tweety flies, while in others it does not fly,
and some probability distribution over these possibilities.

To analyze the second kind of statements, Halpern (1990) considers extensions
of first-order languages with formulas of the form w(Flies(Tweety)) ≥ 0.9. These
are now interpreted on probability structures which have the form (D,S, π, μ),
where D is a domain, S is a set of possible worlds, and for each s ∈ S, π(s)
assigns to the predicate and function symbols of the language predicates and
functions of the right arity over D. μ is a discrete probability function on S.
For emphais, we note that in the earlier section, the probability is taken over
individuals, while in this case it is taken over possible worlds. The few clauses
which interest us are:

– (M, s, v) � P (x) iff v(x) ∈ π(s)(P )
– (M, s, v) � ∀xϕ iff (M, s, v(x/d)) � ϕ for each d ∈ D
– [w(ϕ)](M,v,s] = μ({s′ ∈ S : (M, s, v) |= ϕ})

The “operator like” term w(ϕ) which expresses the degree of belief in ϕ obeys, like
his relative w−→x (ϕ), the Kolmogorov probability axioms. When the probabilities
are all 0 and 1, then the resulting probability logic reduces to ordinary logic.
However, when ϕ is a sentence (closed formula), then for any vector −→x of distinct
object variables we have

|= w−→x (ϕ) = 0 ∨ w−→x (ϕ) = 1.

This means that a close sentence like Flies(Tweety) cannot take intermediate
values between 0 and 1. Thus it is inconsistent in the context of the first ap-
proach to assert formulas like 0.95 ≥ wx(ϕ) ≥ 0.9. This is not any longer so in
the possible world approach where 0.95 ≥ w(Flies(Tweety)) ≥ 0.9 is perfectly
consistent.

10 Randomizing over Strategies

We considered earlier an extension of first-order logic, IF logic, whose syntax
contains sentences of the form

ϕMP = ∀x(∃y/{x})x = y

ϕIMP = ∀x(∃y/{x})x �= y

ϕinf = ∃w∀x(∃y/{w})(∃z/{w, x})(x = z ∧ w �= y)
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All these sentences, indetermined on finite structures, receive probabilistic val-
ues: the expected utility returned to ∃ by the relevant mixed strategy equilibrium.
We can lift this interpretation into the syntax by extending IF languages with
formulas of the form

NE(ϕ) = r

with the interpretation:

M � NE(ϕ) = r ⇔ M �eqr ϕ.

Thus, when M = {1, ..., n}, we have

M � NE(ϕMP ) = 1/n

M � NE(ϕIMP ) = n−1/n

M � NE(ϕinf ) = n−1/n.

In Mann, Sandu and Sevenster (2011) it is shown that the following principles
are valid

P1 NE(ϕ ∨ ψ) = max(NE(ϕ), NE(ψ))
P2 NE(ϕ ∧ ψ) = min(NE(ϕ), NE(ψ))
P3 NE(¬ϕ) = 1 −NE(ϕ)

Thus the probabilistic values of IF sentences obey the Kolmogorov probability
axioms. Notice, however, that NE(ϕ ∨ ¬ϕ) = 1 is not valid, but one should
remember that ¬ϕ is not always the contradictory of ϕ. For instance, when
M = {1, ..., n}

M � NE(ϕMP ) = 1/n

from which we get, by (P3)

M � NE(¬ϕMP ) = n−1/n.

Thus for n > 2
M � NE(ϕMP ∨ ¬ϕMP ) = n−1/n.

11 Conclusions

w−→x (ϕ), w(ϕ) and NE(ϕ) obey all the Kolmogorov probability axioms. w−→x (ϕ)
expresses randomization over the individuals of a given domain, w(ϕ) over pos-
sible worlds, and NE(ϕ) over the verifying and falsifying strategies in a given
domain. However, unlike w−→x (ϕ) and w(ϕ), NE(ϕ) does not assume a prior
probability distribution: the probabilistic distribution over the relevant strate-
gies arises from the equilibrum in the underlying game.

One can reduce probability distributions over strategies to probability distri-
butions over individuals in a domain in the sense of the following example.

Recall the Matching Pennies sentence ϕMP = ∀x(∃y/{x})x = y and the
structure M = {1, ..., n}. Recall that the value of the game is computed from the
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equilibrium (μ, ν) where μ and ν are the uniform probability distributions μ(i) =
ν(i) = 1/n. Thus M � NE(ϕMP ) = 1/n. The Skolem form of ∀x(∃y/{x})x = y
is ∀x(x = c). We replace the universal quantifier by wx to obtain the sentence
wx(x = c). Finally we form the model (M, cM , τ) where cM is any arbitrary
cM ∈ {1, ..., n} andτ is ν. The first clause of the last Proposition of section 7
ensures us that

U∃(cM , ν) = 1/n

It should be clear that

U∃(cM , ν) =
ν({a : (M, cM , τ) � (x = c)[a]}) =

[wx(x = c)](M,cM ,τ).
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Abstract. Temporal epistemic logics are known, from results of Halpern
and Vardi, to have a wide range of complexities of the satisfiability
problem: from PSPACE, through non-elementary, to highly undecidable.
These complexities depend on the choice of some key parameters speci-
fying, inter alia, possible interactions between time and knowledge, such
as synchrony and agents’ abilities for learning and recall. In this work
we develop practically implementable tableau-based decision procedures
for deciding satisfiability in single-agent synchronous temporal-epistemic
logics with interactions between time and knowledge. We discuss some
complications that occur, even in the single-agent case, when interactions
between time and knowledge are assumed and show how the method of
incremental tableaux can be adapted to work in EXPSPACE, respec-
tively 2EXPTIME, for these logics, thereby also matching the upper
bounds obtained for them by Halpern and Vardi.

1 Introduction

Knowledge and time are among the most important aspects of agency. Various
temporal-epistemic logics, proposed as logical frameworks for reasoning about
these aspects of single- and multi-agent systems were actively studied in a num-
ber of publications during the 1980’s, eventually summarized and uniformly pre-
sented in a comprehensive study by Halpern and Vardi [4]. In [4], the authors
considered several essential characteristics of temporal-epistemic logics: one vs.
several agents, synchrony vs. asynchrony, (no) learning, (no) forgetting (aka,
perfect recall or no recall), linear vs. branching time, and existence (or not) of
a unique initial state. Based on these, they identified and analyzed a total of
96 temporal-epistemic logics and obtained lower bounds for the complexity of a
satisfiability problem in them. In [5] matching upper bounds were claimed for all,
and established for most of these logics. It turned out that most of the logics that
involve more than one agents, whose knowledge interacts with time (e.g., who
do not learn or do not forget) – are undecidable (with common knowledge), or
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decidable but with non-elementary time lower bound (without common knowl-
edge). Even in the single-agent case the interaction between knowledge and time
proved to be quite costly, pushing the complexities of deciding satisfiability up to
EXPSPACE and 2EXPTIME. These complexity lower bounds were established
in [4] and the matching upper bounds are claimed and proved for all synchronous
cases in [5]. For the single-agent synchronous cases, these results follow from the
non-elementary upper bounds for the multi-agent cases. However, we are not
aware of both optimal and practically implementable decision methods developed
for these logics so far (but, see further discussion on related work). By “practi-
cally implementable decision method” we mean one that would only hit the worst
case complexity in ‘really bad’ cases – usually seldom occurring in practice – but
would perform reasonably well in most of the practically occurring input in-
stances, whereas a non-practically implementable method is one that essentially
always – or, always when the answer is e.g., ‘no’ – would perform with the theo-
retically worst case complexity. For instance, the method of semantic tableau for
testing tautologies in classical propositional logic is practically implementable,
whereas the method using explicitly constructed truth-tables is not.

In this paper we develop such theoretically optimal and practically imple-
mentable (modulo the established complexities, of course) tableau-based proce-
dures for deciding satisfiability in single-agent synchronous temporal-epistemic
logics with interactions between time and knowledge, by building on the incre-
mental tableau construction, described in [3] for both synchronous and asyn-
chronous multi-agent temporal-epistemic logics with common and distributed
knowledge, but with no interactions between time and knowledge (other than
synchrony). The method developed there works in EXPTIME, which is the op-
timal complexity for the logics considered there. It was not clear whether and
how that method could be adapted to produce optimal decision procedures for
the cases of interacting time and knowledge, where complications arise even in
the single-agent case. Here we discuss and illustrate these complications and
then extend and adapt the incremental tableaux-based decision method to the
single-agent case over linear time synchronous systems, for all cases of interac-
tion between knowledge and time involving combinations of assumptions of ‘no
learning’, ‘no forgetting’ and ‘unique initial state’, that are not easily covered by
the tableau method from [3]. The basic procedure developed here works in 2EX-
PTIME and we describe in Section 7 how it is optimized to work in EXPSPACE,
thereby also matching the EXPSPACE upper bounds obtained for these logics
in [5]. For lack of space some of the technical details and proofs are omitted from
this text and can be found in the technical report [1].

In order to delineate the contribution of this paper, we should put it in the
context of related works. On the one hand, as discussed above, Halpern and Vardi
have established in [5] theoretically optimal upper bounds (for the multi+agent
cases), by means of essentially combinatorial estimates of the size of ‘small’
tree-like models satisfying models, but that proof is far from a practically imple-
mentable method as it requires enumerating and checking all models within the
prescribed size. On the other hand, a non-optimal, yet apparently implementable
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tableau method for the cases of single-agent synchronous temporal-epistemic log-
ics with no learning or with no forgetting is developed by Dixon et al in [2], where
many of the concepts used here (states, pre-bubbles and bubbles, etc.) have close
analogies. That method works by first transforming the input formula into a cer-
tain clausal normal form that employs a number of new atoms, used for renaming
of subformulae, and then applying a tableau-like method to the resulting set. It
uses double exponential space in the number of logical connectives (except nega-
tions) in the formula and does not cover the cases with unique initial state. A
resolution based approach to the logics has been developed in [7], while [6] de-
velops tableaux for first-order temporal logics, covering (under constant domain
assumption) some single-agent temporal epistemic logics, too.

The tableau method developed here originates from the incremental tableaux,
first developed by Pratt for PDL [8] and later by Wolper for LTL [9], and is an
adaptation of the tableau for the linear time multi-agent temporal epistemic logic
with no time-knowledge interaction in [3], to which we refer the reader for fur-
ther references. Besides combining optimality and implementability, we believe
that our tableau method is also somewhat more intuitive and more flexible and
amenable to further extensions, incl. covering multi-agent logics and asynchrony.

2 Preliminaries

For lack of space, we only provide here the very basic preliminaries on the logics
under consideration and on the incremental tableau method. For further details
the reader is referred to [4], [5], [3].

2.1 The Single-Agent Linear Time Temporal Epistemic Logic
TEL1(LT)

Syntax and Semantics. The language of TEL1(LT) contains a set AP of atomic
propositions, the Booleans ¬ (“not”) and ∧ (“and”), the temporal operators X
(“next”) and U (“until”) of the logic LTL, as well as the epistemic operator K.
The formulas of TEL1(LT) are defined as follows:

ϕ := p | ¬ϕ | (ϕ1 ∧ ϕ2) | Xϕ | (ϕ1 Uϕ2) | Kϕ

where p ranges over AP. All other standard Boolean and temporal connectives
can be defined as usual. Formulas of the type Kϕ or their negations will be called
knowledge formulas and formulas of the type Xϕ, ϕ1 Uϕ2 or their negations will
be called temporal formulas. We omit parentheses when this does not result in
ambiguity.

Definition 1 (Temporal-epistemic frames and models). A (single-agent)
temporal-epistemic frame (TEF) is a tuple S = (S,R,R), where S is a non-
empty set of states; R ⊆ SN is a non-empty set of runs; and R ⊆ (R × N)2 is
an equivalence relation, representing the epistemic uncertainty of the agent. A
temporal-epistemic model (TEM) is a tuple M = (F, L), where F is a TEF and
L : R× N → P(AP) is a labeling function.
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We denote the set R×N by P (S). An element (r, n) ∈ P (S) is called a point. We
note that the points and not the states of a model are the elements of interest in
a model, since both the epistemic relation and the labelling function are defined
with respect to points and not states.

Truth and Satisfiability. Truth of formulas at a point of a TEM is defined
recursively as usual, by combining the semantics for LTL and that of the standard
epistemic logic:

M, (r, n) � Xϕ iff M, (r, n+ 1) � ϕ;
M, (r, n) � ϕ Uψ iff M, (r, i) � ψ for some i ≥ n such that M, (r, j) � ϕ for

every n ≤ j < i;
M, (r, n) � Kϕ iff M, (r′, n′) � ϕ for every ((r, n), (r′, n′)) ∈ R;

A formula ϕ is satisfiable (resp., valid) if M, (r, n) � ϕ for some (resp., every)
TEM M and a point (r, n) in it. Satisfiability and validity in a class of models
is defined likewise.

Remark 1. Our definition of a temporal epistemic frame (and model) can obvi-
ously be extended to the multiagent case by including a relation Ra for all agents
and extending the definition of truth and satisfiability in a model similarly. Note
that in both the multi- and single agent case, our notion of temporal-epistemic
model is somewhat more general than the semantical structure in [4] and [5],
called an ‘interpreted system’. In an interpreted system the (global) system states
are tuples of local states of all agents, and runs are defined as functions from N to
the set of global states. The epistemic relations in [4] and [5] are defined between
states, not between points, although one could infer otherwise from the notation
used there: (r, n) ∼a (r′, n′), but that means by definition r(n) ∼a r′(n′), which
again is defined to mean that the current local state of r(n) and r′(n′) w.r.t.
agent a is the same. Thus, every interpreted system as defined in [4] and [5] can
obviously be redefined as a TEM in our sense, by lifting the epistemic relation
from states to points. Our semantics, where runs are defined as more abstract
entities, is mentioned in [4] and [5] too, and it is stated in these papers that the
semantics are equivalent, but without providing arguments. This is true since ev-
ery TEM M in our sense can be transformed into an equi-satisfiable interpreted
system M̂, where the local states for each agent are the respective equivalence
classes of the points in M. Then, for each run r in M a corresponding run r′ in
M̂ is defined canonically, and the labeling from M is transferred canonically to
M̂. If there are no r and s in M for which ((r, n), (s,m)) ∈ Ra for all agents,
then there is a bijection between the runs in M and M̂, and it is easy to show
that satisfiability of formulas in M and M̂ coincide. If there are such runs r and
s one can do a ‘trick’, by adding a new starting point to each new run r′ which
is unique for r; these new starting points can then be labelled with ∅. Thus, the
notions of satisfiability (at some point of a run in some model) in both semantics
coincide.
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2.2 Some Important Properties of Temporal-Epistemic Models

Definition 2 (Properties of TEF and TEM). A TEF S = (S,R,R) has
the property of:

– Indistinguishable_Initial_States (iis), if for all runs r, r′ ∈ R, ((r, 0), (r′, 0)) ∈
R.

– No_Learning (nol), if whenever ((r, n), (r′, n′)) ∈ R, for every k ≥ n there
exists a k′ ≥ n′ such that ((r, k), (r′, k′)) ∈ R.

– No_Forgetting (nof), if whenever ((r, n), (r′, n′)) ∈ R, for every 0 ≤ k ≤ n
there exists a 0 ≤ k′ ≤ n′ such that ((r, k), (r′, k′)) ∈ R.

– Synchrony (sync), if ((r, n), (r′, n′)) ∈ R implies n = n′.

A TEM M = (F, L) has the property of x ∈ {nol, nof, sync, iis} if F does so.

The meaning of iis (corresponding to “unique initial state” in [4]) is clear; sync
means that the agent can perceive time, i.e., has a clock; nol means that the
agent does not learn over time in the sense that if it cannot distinguish two runs
at any given time instance, it will not be able to do so later on. Likewise, nof
means that if at a given time instance the agent can tell two different runs apart,
the agent must have been able to do so at any previous time instance. We notice
that if a TEF or TEM has the properties nol and iis, then it follows that it has
the property nof too.

We denote the classes of all TEMs satisfying property x ∈ {nol, nof, sync, iis} by
TEMx, and we further denote TEMX = ∩x∈X TEMx for X ⊆ {nol, nof, sync, iis}.

Extensions of TEL1(LT). We denote the extension of the logic TEL1(LT)
with semantics restricted to the class TEMX , by TEL1(LT)X for all X ⊆
{nol, nof, sync, iis}. Thus, validity/ satisfiability in TEL1(LT)X means valid-
ity/satisfiability in a model from TEMX . In this paper we focus on the logics for
synchronous models TEL1(LT)X (i.e. sync ∈ X) and either nol ∈ X or nof ∈ X .
For convenience, we also denote TEL1(LT) = TEL1(LT)∅ in cases where we want
to emphasize that no interaction conditions are assumed.

Remark 2. The properties of sync, iis, nol and nof are all preserved when trans-
forming a (single- or multi-agent) interpreted system into a model as in Re-
mark 1. On the other hand, consider a (single- or multi-agent) model M. If
there are no two runs r and s in M such that ((r, n), (s, n)) ∈ Ra for all agents
a, then the transformation described in Remark 1 without the additional ‘trick’
preserves the properties of sync, uis, nol and nof. If there are such r and s, one
can in most cases of combinations of the interaction properties perform suitable
modifications that enable us to still find an equi-satisfiable interpreted system
with the same interaction properties.

However, this is not the case for the single- or multiagent tem-
poral epistemic logic with interaction properties X , where X ∈
{ {sync, nol, nof}, {sync, nol, nof, iis}, {sync, nol, iis}, {sync, nof, iis} }. In these
cases the two semantics differ, since e.g. the formula θ = p ∧ ¬Kap is sat-
isfiable in our semantics, while it is unsatisfiable in the semantics presented
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in [4] and [5]. This is due to the fact that the interaction properties implies
that if M, (r, n) � θ for a point (r, n) in the interpreted system M, then if
((s, n), (r, n)) ∈ Ra then ((s, n′), (r, n′)) ∈ Ra for all n′, and hence r = s
since R according to the definition is a set of runs. Thus we must have that
M, (r, n) � p,¬p which is a contradiction. Note, however, that the formula is
satisfiable if e.g. the property sync is dropped.

3 Temporal Epistemic Hintikka Structures

Even though we are ultimately interested in testing formulas of TEL1(LT) for
satisfiability in a TEM, the tableau procedure we will present here tests for satis-
fiability in a more general kind of semantic structures, namely temporal epistemic
Hintikka structures (TEHS). The important aspect of a Hintikka structure for a
formula θ is that it contains just as much semantic information about the sat-
isfying model of θ as it is necessary, and no more. More precisely, while a TEM
provides the truth value of every formula of the language at every state, a Hin-
tikka structure only determines the truth of formulas that are directly involved
in the evaluation of the input formula θ.

Some terminology: we distinguish conjunctive formulas, also called �-formulas
and disjunctive formulas, also called �-formulas, each with a respective set of
components, as in the tables below:

�-formula Set of � -components
¬¬ϕ {ϕ}
ϕ ∧ ψ {ϕ, ψ}
Kϕ {Kϕ,ϕ}

�-formula Set of � -components
¬(ϕ ∧ ψ) {¬ϕ,¬ψ}
(ϕ Uψ) {ψ, ϕ ∧ X (ϕ Uψ)}
¬(ϕ Uψ) {¬ψ ∧ ¬ϕ,¬ψ ∧ ¬X (ϕ Uψ)}

It can be easily shown, that any �-formula is equivalent to the conjunction
of its �-components, and that any �-formula is equivalent to the disjunction of
its �-components.

Definition 3 (Fully expanded sets). A set of formulae Δ of TEL1(LT) is
fully expanded if:

1. Δ is not patently inconsistent, i.e. if ϕ ∈ Δ then ¬ϕ /∈ Δ.
2. If α ∈ Δ is a �-formula, then all of its �-components are in Δ,
3. If β ∈ Δ is a �-formula, then at least one of its �-components are in Δ,

Definition 4 (Temporal Epistemic Hintikka Structure). A
temporal-epistemic Hintikka structure (TEHS) is a tuple (H, H), where H =
(S,R,R) is a TEF, and H is a labeling of points in P (H) with sets of formulae,
satisfying the following conditions, for all (r, n) ∈ P (H):

1. H(r, n) is fully expanded.
2. If ¬Kϕ ∈ H(r, n) then ¬ϕ ∈ H(r′, n′) for some (r′, n′) ∈ P (H) such that

((r, n), (r′, n′)) ∈ R.
3. If ((r, n), (r′, n′)) ∈ R, then Kϕ ∈ H(r, n) iff Kϕ ∈ H(r′, n′).
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4. If Xϕ ∈ H(r, n), then ϕ ∈ H(r, n + 1) and if ¬Xϕ ∈ H(r, n), then ¬ϕ ∈
H(r, n+ 1).

5. If ϕ Uψ ∈ H(r, n), then there exists i ≥ n such that ψ ∈ H(r, i) and ϕ ∈
H(r, j) holds for every n ≤ j < i.

(H, H) has the property x ∈ {nol, nof, sync, iis} if H has the property x.

It was proved in [3] that any temporal-epistemic formula of the multi-agent linear
time temporal epistemic logic with synchrony but without interaction of time
and knowledge, is satisfiable in a TEM iff it is satisfiable in a TEHS. Adding
any combination of the interaction conditions nol, nof or iis does not affect the
truth of this claim in the 1-agent case, so we can from now on restrict attention
to satisfiability in TEHS.

4 Tableaux for Synchronous TEL1(LT) with Interaction
Conditions

4.1 Overview of the Tableau Procedure for TEL1(LT)∅

The tableaux method for testing the satisfiability of an input formula θ of
TEL1(LT)∅ is used as a starting point for the procedure for TEL1(LT)X where
X �= ∅. To aid the presentation of the procedure for TEL1(LT)X , we first outline
the essentials of the tableau procedure for TEL1(LT)∅ developed for multi-agent
case in [3]; the reader is referred to the latter for more detail.

The tableauxprocedure forTEL1(LT)∅ consists of threemajor phases: pretableau
construction, prestate elimination, and state elimination. It constructs a directed
graph T θ (called a tableau) with nodes labelled by finite sets of formulas, and di-
rected edges between nodes, representing temporal, epistemic, or label-expansion
relations.

The pretableau construction phase produces the so-called the pretableau Pθ
for the input formula θ, where the nodes are of two kinds: states and prestates.
States are fully expanded sets, meant to represent states of a TEHS, while
prestates are finite sets of formulas and play a temporary role in the construction
of T θ. The pretableau phase consists of alternative constructions of epistemic
and temporal successor prestates of a given state, and expanding a given prestate
Γ into fully expanded sets, denoted by states(Γ ), which label new or existing
states.

The prestate elimination phase creates a smaller graph T θ
0 out of Pθ, called

the initial tableau for θ, by eliminating all the prestates from Pθ and accordingly
redirecting its edges.

Finally, the state elimination phase removes, in successive steps, all the states,
if any, that cannot be satisfied in a TEHS, because they lack necessary successors
(epistemic or temporal) or because they contain unrealized eventualities. When
no more states can be removed, the elimination procedure produces a (possibly
empty) subgraph T θ of T θ

0 , called the final tableau for θ. If some state Δ of T θ

contains θ, the procedure declares θ satisfiable and a TEHS satisfying θ can be
extracted from it; otherwise it declares θ unsatisfiable.
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4.2 Complications Arising with Interacting Temporal and Epistemic
Operators

In the tableau construction for the basic logic TEL1(LT)∅, when identifying the
set of formulas that must be put in the label of a temporal successor-prestate
Γ for a state Δ, the procedure only has to take into account formulas that
come from Δ. When the logic assumes time-knowledge interaction, e.g. nol, this
is no longer the case because there will also be formulas coming from other
states that are epistemically related to the immediate predecessor state Δ, that
will be relevant for defining the successor (pre)state Γ . For instance, if two
states are epistemically related, then they need respective successors that are
epistemically related, and therefore it is necessary that these successors contain
the same knowledge formulas. Likewise for the logic assuming nof: if a state (that
is not in the ‘first’ temporal layer) is epistemically related to another state, then
both states need to have predecessor-states which are also epistemically related.
Therefore, the procedure has to create enough states at any temporal layer so
that the states needed in the next temporal layer have respective predecessor
states.

4.3 Bubbles and Bubble-Paths

Here we call any set of formulas Δ of TEL1(LT) a prestate. A fully expanded
prestate will be called a state. For any set of formulas Γ , we denote by states(Γ )
the set of full expansions of Γ that are produced by the tableau- procedure for
TEL1(LT)∅.

We let K(Δ) := {Kϕ | Kϕ ∈ Δ }, Epi(Δ) := K(Δ) ∪ {¬Kϕ | ¬Kϕ ∈ Δ }
and Next(Δ) := {ϕ | Xϕ ∈ Δ } ∪ { negϕ | ¬Xϕ ∈ Δ }, where negϕ = ϕ if the
main-connective of ϕ is ¬ and negϕ = ¬ϕ otherwise. Note that in the tableaux
for TEL1(LT)∅, the set {¬ϕ}∪Epi(Δ)\{¬Kϕ} is the epistemic successor prestate
for the state Δ created for the diamond formula ¬Kϕ ∈ Δ, while Next(Δ) is the
temporal prestate created for Δ.

In order to deal with the complications discussed above, the tableau procedure
presented here will act not on single states but on special kinds of sets of states
representing possible epistemic clusters, which we will call bubbles, formally de-
fined below. Any finite set of states will be called a pre-bubble.

Definition 5 (Bubbles). A bubble B is a pre-bubble such that:

– for all Δ ∈ B and all ¬Kϕ ∈ Δ there exists a Δ′ ∈ B such that ¬ϕ ∈ Δ′.
– B is knowledge-consistent, i.e. K(Δ) = K(Δ′) for all Δ,Δ′ ∈ B.

Definition 6 (Successor and predecessor sets). A set of states S is a
successor-set for a bubble B if for all Δ ∈ B there is a Δ′ ∈ S s.t. Next(Δ) ⊆ Δ′.
In that case, we write B →∀∃ S. Respectively, S is a predecessor-set for B if for
all Δ ∈ B there is a Δ′ ∈ S s.t. Next(Δ′) ⊆ Δ. In that case we write S →−1∀∃ B.
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Definition 7 (Bubble-paths). A sequence of bubbles B = (Bi)0≤i≤m is a
called a bubble-path. It is a successor-bubble-path, if Bi →∀∃ Bi+1 for all
0 ≤ i < m. It is a predecessor-bubble-path if Bi →−1∀∃ Bi+1 for all 0 ≤ i < m.

A sequence of states π = (Δi)0≤i≤m is a temporal path if Next(Δi) ⊆ Δi+1

for all 0 ≤ i < m. The temporal path π = (Δi)0≤i≤m follows the bubble-path
B = (Bi)0≤i≤m if Δi ∈ Bi for all 0 ≤ i ≤ m.

The tableau-procedure will construct bubble-paths. For logics that satisfy nol,
these bubble-paths will be successor-bubble-paths, and for logics that satisfy nof,
they will be predecessor-bubble-path. If the logic satisfies both nol and nof, the
bubble-paths will be both successor-and predecessor-bubble-paths at the same
time.

Definition 8 (Realization of eventualities). Let Δ be a state in a bubble B.
Let ϕ Uψ be an eventuality in Δ. Then ϕ Uψ ∈ Δ is realized on a bubble-path
B in a tableau T by a temporal path π if B equals the first bubble in B, Δ equals
the first state in π, π follows B, and there is a subpath π′ of π starting in Δ,
where ψ belongs to the last state of π′, while ϕ belongs to all previous states in
π′.

We need the next technical notion in order to define satisfaction of a bubble-path
in a TEM M.

Definition 9 (State-point-assignment). Let B = (Bk)0≤k≤m be a bubble-
path. Let M be a TEM with a point (r, n). Then a state-point-assignment for
M, (r, n) and B is a set

A ⊆
⋃

0≤k≤m

(
Bk × { (r′, n′) | ((r′, n′), (r, n+ k)) ∈ R}

)
.

We imagine the states in the bubbles in the specified bubble-path being assigned
to points of the model, so that the states in the first bubble are assigned to points
epistemically related to the specified point (r, n), and states in the second bubble
are assigned to points in M that are epistemically realted to (r, n + 1), and so
on.

Definition 10 (Satisfiability of a bubble-path). Let M be a TEMX and
(r̄, n) a point in P (M). Let B = (Bi)0≤i≤m be a bubble-path. Then we say that
M satisfies B at (r̄, n) by A, and write M, (r̄, n) �A B, if A is a states-point
assignment for M, (r̄, n) and B, such that

– (Δ, (r, n+ k)) ∈ A implies that M, (r, n+ k) � Δ.
– if nol ∈ X then for all 0 ≤ k < m and all Δ ∈ Bk there is a run r, such that

(Δ, (r, n + k)) ∈ A and (Δ′, (r, n + k + 1)) ∈ A for some Δ′ ∈ Bk+1 with
Next(Δ) ⊆ Δ′.

– if nof ∈ X then for all 0 < k ≤ m and all Δ ∈ Bk there is a run r such that
(Δ, (r, n + k)) ∈ A and (Δ′, (r, n + k − 1)) ∈ A for some Δ′ ∈ Bk−1 with
Next(Δ′) ⊆ Δ′.
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4.4 Construction of the Pretableau

For the logic TEL1(LT)X where sync ∈ X and either nol ∈ X or nof ∈ X , the
procedure splits into three construction parts: (i) of the pretableau, where pre-
bubbles and bubbles are added to the tableau; (ii) of the initial tableau, where
the pre-bubbles are removed; and (iii) of the final tableau, where bubbles are
eliminated. The construction of the pretableau for θ works as follows:

1. For all Δ ∈ states({θ}), make {Δ} a pre-bubble in T .
2. Expand each not yet expanded pre-bubble A into bubbles by applying the

procedure ExpandPrebubble(A, X), outlined further. For every returned
bubble B produce an arrow A ��� B.

3. Produce temporal successor-prebubbles for each bubble B for which this has
not been done so far, by applying the procedure TempSuccessorPrebub-

bles(B, X) outlined further. Add any such pre-bubble A to T if it is not
already there and produce an arrow B X �� A.

4. Repeat step 2 and 3 in cycles until no new bubbles or pre-bubbles are created.

When producing successor-pre-bubbles and expanding pre-bubbles, we use the
procedures from the basic algorithm for TEL1(LT)∅ for expanding prestates into
states and producing temporal successor-prestates and epistemic alternatives for
the states in the bubbles. These operations are performed ‘on the side’, and are
not part of the bubble-based tableau construction itself. Yet, for efficiency we
keep the expanded states on the side, so that we do not have to recompute full
expansions of a state. We describe below first 3 procedures that do not depend
on X and then the procedures ExpandPrebubble and TemporalSucces-

sorPrebubbles that depend on X .

MakeKnowledgeConsistent takes a set of states S as input, and returns
a set L of all knowledge-consistent ‘alternatives’ of S. That is, if S′ is in the
returned set L, then S′ is knowledge-consistent and there is a surjective func-
tion f : S → S′ such that if Δ ∈ S then Δ ⊆ f(Δ), i.e. some formulas might
be added to every state in S. If S is already knowledge consistent, L = {S} is
returned. Otherwise, for every state Δ in S we collect in KΔ the K-formulas
in the states in S which are not in Δ, and the ¬K-formulas in the states of S
are collected in nK. Then the method returns L = { {Δ0 ∪ Σ0, . . . , Δn ∪ Σn} |
Σi ∈ states(KΔi), Δi∪Σi and Σi∪nK are not patently inconsistent for all i },
where Δ0, . . . , Δn are the states in S. However, if there is a Δ ∈ S such that
Δ ∪Σj or Σj ∪ nK is patently inconsistent for all Σj ∈ KΔ, then ∅ is returned.

The procedure LocalBubble(A, Δ) (where Δ ∈ A and A is a prebubble)
returns a set L consisting of epistemic alternatives for all formulas ¬Kϕ inΔ ( i.e.
diamond formulas), for which there is no Δ′ ∈ A that contains ¬ϕ, i.e. it returns
L = { {Δ0, . . . , Δn} | Δi ∈ states(Γi) for all i }, where ¬Kϕ0, . . . ,¬Kϕn are
the ‘unfulfilled’ epistemic diamond formulas in Δ and Γi = {¬ϕi} ∪ Epi(Δ) \
{¬Kϕi} for all i. Though, if any of the sets states(Γi) = ∅, then ∅ is returned.

ExpandToBubble takes as input a knowledge-consistent prebubble S, and
returns a set L consisting of bubbles, each containing S. That set is constructed
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by first adding S to L, and then repeatedly replacing a set S′ in L (which is not
marked ‘closed’) with S′∪L1, . . . , S

′∪Ln, where {L1, . . . , Ln} is the set returned
by LocalBubble(S′, Δ) for an unmarked Δ ∈ S′ (after which Δ ∈ S′ ∪ Li is
marked). If LocalBubble(S′, Δ) returns ∅, then S′ is marked ‘closed’. When
each set in L is either marked ‘closed’ or all states in the set are marked, the
‘closed’ sets are removed from L, and L is returned.

TemporalSuccessorPrebubbles(B, X) returns a set L of temporal succes-
sor pre-bubbles for a bubble B. When nol ∈ X , all states in B needs to have
successor-states in the same bubble, so the method returns L = { {Δ′

0, . . . , Δ
′
n} |

Δ′
i ∈ states(Next(Δi)) for all i }, whereΔ0, . . . , Δn are the states in B. Though,

if states(Next(Δi)) = ∅ for any Δi ∈ B, the method returns ∅. When nol /∈ X ,
the successors of the states in B need not be in the same bubble but there
should be a successor-bubble for every state in B. Thus, the returned set is
L = { {Δ′} | Δ′ ∈ states(Next(Δ)) for a Δ ∈ B }. If states(Next(Δ)) = ∅ for
any Δ ∈ B, then L = ∅ is returned.

When nof ∈ X or {nol, iis} ⊆ X , the expansion of a prestate (that is not in the
first temporal layer) is done with respect to the immediate predecessor bubble,
for which the pre-bubble was created. Thus, in these cases we annotate any cre-
ated successor-pre-bubble with the bubble that created it, and two pre-bubbles
are not considered the same, unless they have the same annotation. There are
thus 22·#stsθ possible pre-bubbles, where #stsθ are the number of possible states
belonging to a bubble in the tableau for a formula θ. The number of prebubbles
is, however, still double-exponential in the length of the input-formula.

Before describing the next procedure, we note that the expanding procedure
for prestates into states in the tableau method for TEL1(LT)∅ uses analytic cuts
to ensure that if Δ ¬Kϕ−→ Δ′ and Kψ ∈ Δ′, then Kψ ∈ Δ. That is, for any α ∈ Δ
where α = Kψ or α = ¬Kψ, if Kϕ ∈ Sub(α) and there are no X s on the parse
tree between α and Kϕ, then Kϕ ∈ Δ or ¬Kϕ ∈ Δ.

ExpandPrebubble(A,X) works as follows: When nof /∈ X and {iis, nol} �⊆ X
(in which case nof is implied) the method first considers all knowledge-consistent
versions of A (as returned by MakeKnowledgeConsistent), and then expand
these to bubbles (by calls to ExpandToBubble). However, when nof ∈ X or
{iis, nol} ⊆ X (in which case nof is implied) things are more complicated. First
of all, every state in a bubble B constructed as described above needs to have a
predecessor in the bubble B′ that created A (i.e. the annotation of A); of course,
in the first temporal layer (when the annotation of A = ∅) this is not required.
Secondly, we might later on encounter a state in a bubble that needs predecessors
in the bubble B in question, so we have to ensure there are ‘enough’ states in B.
Any state that can possibly be added to B needs to contain, as a minimum, the
K-formulas of any other state in B, and thus the states in states(K(B)) contain
the ‘minimal’ formulas for a state belonging to B. Adding a Σ ∈ states(K(B))
with K(Σ) = K(B) to B will still yield a bubble, because if Σ contains a
diamond-formula ¬Kϕ, then there will be a state in B containing ¬Kϕ (because
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of the cuts). In temporal layers different from the first, there might have to be
added more formulas to these states, but in any case, these states are denoted
as the ‘minimal’ states of B, Bmin.

The method thus works as follows. To keep the method working within double-
exponential time, it builds a ‘mini-tableau’ on the side: pre-bubbles A′, are ex-
panded into knowledge-consistent pre-bubbles (to which A′ is linked by a KC−→-
arrow). The knowledge-consistent pre-bubbles S are then expanded into bubbles
(to which S is linked by Bubble−→ ). For any of these bubbles B̃, it might be the
case that not every state Δ in B̃ has a potential predecessor in B′, the bub-
ble creating A, i.e. there is no state Δ′ ∈ B′ where Next(Δ′) ⊆ Δ. So for all
states Δ ∈ B̃ that do not have a potential predecessor in B′ we take any of
the ‘minimal’ states Σ ∈ B′

min, and try to make this the predecessor of Δ; this
step is of course omitted when expanding prebubbles in the first temporal layer.
This is done by modifying a copy of B̃, where each Δ without a predecessor
has been replaced with Δ ∪ Ω for a Ω ∈ states(Next(Σ)) where Δ ∪ Ω is not
patently inconsistent. B̃ is then linked to each of these ‘copies’ with an arrow pred−→.
These pre-bubbles are not necessarily knowledge-consistent, so the outlined steps
are repeated. We always reuse pre-bubbles, knowledge-consistent pre-bubbles
and bubbles whenever possible. At some point, no new pre-bubbles, knowledge-
consistent pre-bubbles or bubbles are produced. The bubbles in the mini-tableau,

where all states have predecessors, i.e. B̃s for which B̃
KC �� B̃

Bubble�� B̃
pred.

�� , now

needs to have the ‘minimal’ states added to them. For each such bubble B̃ and
each Y ∈ P({Δ ∈ states(K(B̃)) | K(Δ) = K(B̃) }) we therefore add B̃ ∪ Y to
the mini-tableau as a knowledge-consistent pre-bubble, if it is not already there,
and we let the states in Y be ‘minimal’; if B̃ ∪ Y is present with another set
of ‘minimal’ states, we just add the states in Y as ‘minimal’. Then we expand
the mini-tableau again, until no new pre-bubbles are added. Whenever we add
formulas to a ‘minimal’ state (in making it knowledge-consistent or adding pre-
decessors), we let the modified ‘minimal’ state be ‘minimal’ in the resulting pre-

bubble. At saturation, we return the bubbles B̃ for which B̃
KC �� B̃

Bubble�� B̃
pred.

�� .

We note that the procedures are so constructed that if B X �� A ��� B̃, then
B̃ is a successor of B if nol ∈ X , and B is a predecessor of B̃ if nof ∈ X .

The concept of bubbles and our use of them in the tableau procedure is
similar to the assignment of states to equialence classes, that the procedure in
[2] makes use of. However, our procedure does not require the input formula to
be transformed initially, and instead it uses the bubbles as the main entities in
the procedure and construct the temporal relation between bubbles (and thereby
points) directly such that the required interaction properties will hold for the
model that will be extracted from it. The direct use of bubbles as the main
enitites of the tableau further allows for an easy adaption of the method to the
asynchronous case (i.e. where sync is not required).
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Example 1. Figure 1 contains the pretableau for θ = ¬X
(
¬(¬Kp ∧ K¬r) ∧

¬(X q ∧ Ku)
)
∧ ¬K

(
¬X (XK¬q ∧ Kp) ∧ ¬X (r ∧ ¬K¬v)

)
in TEL1(LT)sync,nol.

To help readability, the bubbles are framed with rounded boxes while the pre-
bubbles are not. The pretableau is the part containing the bubbles, while the
part consisting of states and prestates just are intermediate results; here, the
expanded (pre)states are marked in bold.

{Δ0} �����

������ Δ0, Δ1
�� ��
�� �	 X ��

X��� ����
{Δ4, Δ5} ����� Δ4 ∪ Σ0, Δ5 ∪ Σ1

�� ��
�� �	 X �� {Δ8, Δ9}

{Δ3, Δ5} {Δ3, Δ6} Δ10
�� ��
�� �	

X ��
{Δ10}�� ���

Δ0, Δ2
�� ��
�� �	

X����������
�����������

X �� {Δ4, Δ6} X �� Δ4, Δ6 ∪ Σ0, Δ7
�� ��
�� �	 X �� {Δ8, Δ10} ����� Δ8, Δ10

�� ��
�� �	

X
��

——————————

Γ0 ������ Δ0

δ0 ��
X��

Γ1 ����� 		� 	 � 
 � � �  �
Δ2

X��

Δ1

X��

Ω0 ����� Σ0

Δ4

X
��

��
�



�
��

��

Γ2��� � � � ����� Δ3 Γ4 ������ Δ6 Γ3 ������ Δ5 Ω1 ����� Σ1

Δ4 ∪ Σ0

X
���

������
Δ7
X
��

Γ5��� � � Δ6 ∪ Σ0
X��

������������

δ2�� Δ5 ∪ Σ1

X��

Ω2 ����� Σ2

Δ8
X

��Γ6��� � � � Γ8 ����� Δ10
X�� Δ9 Γ7��� � � � Ω3 ����� Σ3

δ0 = ¬K(¬X (XK¬q ∧ Kp) Δ0 = {θ,¬X (¬(¬Kp ∧ K¬r) ∧ ¬(Xq ∧ Ku)), Ω0 = K(Δ4, Δ5) \K(Δ4)
Γ0 = {θ} ¬K(¬X (XK¬q∧Kp)∧¬X (r∧¬K¬v)),} = K(Δ3, Δ5) \K(Δ3)
Γ1 = {¬(¬X (XK¬q ∧ Kp) Δ1 = Γ1 ∪ {¬¬X (XK¬q ∧ Kp), = K(Δ4, Δ6) \K(Δ6) = {Kp}

∧ ¬X (r ∧ ¬K¬v))} X (XK¬q ∧ Kp),} Σ0 = {Kp, p,X,}
Γ2 = {¬(¬(¬Kp ∧ K¬r) Δ2 = Γ1 ∪ {¬¬X (r ∧ ¬K¬v),X (r ∧ ¬K¬v,} Ω1 = K(Δ4, Δ5) \K(Δ5) = {Ku}

∧ ¬(Xq ∧ Ku))} Δ3 = Γ2 ∪ {¬¬(¬Kp ∧ K¬r),¬Kp ∧ K¬r,¬Kp, Σ1 = {Ku, u,X,}
Γ3 = {XK¬q ∧ Kp)} K¬r,¬r,X,} Ω2 = K(Δ3, Δ5) \K(Δ5) = {K¬r}
Γ4 = {r ∧ ¬K¬v} Δ4 = Γ2 ∪{¬¬(Xq∧Ku),Xq∧Ku,Xq,Ku, u,} Σ2 = {K¬r,¬r}
Γ5 = {v,Ku} Δ5 = Γ3 ∪ {XK¬q,Kp, p,} Ω3 = K(Δ8, Δ9) \K(Δ8) = {K¬q}
Γ6 = {q} Δ6 = Γ4 ∪ {r,¬K¬v,X,} Σ3 = {K¬q,¬q,X,}
Γ7 = {K¬q} Δ7 = {v,Ku, u,X,} Δ9 = {K¬q,¬q,}
Γ8 = {} Δ8 = {q,X,} Δ10 = {,X}

Fig. 1. The pretableau for θ in Example 1

Example 2. Figure 2 contains the pretableau for θ = KXp ∧ ¬XKp in
TEL1(LT)sync,nof. A pretableau’s annotation is written in superscript next to it,
and minimal states denoted with a m. When e.g., trying to expand {Δ2}B0 , the
produced ‘mini-tableau’ is

{Δ2} KC−→ {Δ2} Bubble−→ {Δ2, Δ4}.
{Δ2, Δ4} cannot be expanded to a set of states where all elements have prede-
cessors, because the only ‘minimal’ state in B0 is Δ1, and the only state Δ′ for
which Δ1 X �� ∗ ��� Δ′ is Δ3, and Δ3 ∪Δ4 is patently inconsistent.

4.5 Construction of the Initial and Final Tableau

After having constructed the pretableau, the initial tableau is then produced
from the pretableau by taking each pre-bubble A in the pretableau, redirect-
ing the arrows to and from A and then deleting A. I.e., for every bubbles B
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{Δ0} ����� ��� � 	 � � � 
 � � � � �  �
B0 = {Δ0, Δ1

m}�� ��
�� �	 X ��

X
��{Δ2}B0 {Δ3}B0 B1 = {Δ0}�� ��

�� �	 X �� {Δ2}B1

——————————

Γ0 ����� Δ0 X �� Γ2 ����� Δ2

¬Kp �� Γ4 ����� Δ4 Γ1 ����� Δ1 X �� Γ3 ����� Δ3

Γ0 = {KXp ∧ ¬XKp}, Δ0 = {KXp ∧ ¬XKp,KXp,¬XKp,Xp,}, Γ1 = K(Δ0) = {KXp}, Δ1 = {KXp,Xp,},
Γ2 = {¬Kp, p}, Δ2 = {¬Kp, p,}, Γ3 = {p}, Δ3 = {p,},
Γ4 = {¬p}, Δ4 = {¬p,}.

Fig. 2. The pretableau for θ = KXp ∧ ¬XKp in Example 2

and B′, where B X �� A and A ��� B′, we let B X �� B′ and delete A. To
ease the checking for realization of eventualities, we then add arrows between
the individual states in two successive bubbles: if Δ ∈ B and Δ′ ∈ B′, and
Next(Δ) ⊆ Δ′, then we add an arrow Δ �� Δ′ between Δ in B and Δ′ in
B′, though, technically, the individual states are not entities in the tableaux.

Finally, the phase of building the final tableau from the initial tableau works
by repeatedly making calls to two procedures, Elim-NoTempSuc(B) and Elim-

UnrealEven(B), for all bubbles B in the tableau, until no bubble gets deleted
in a loop. We define these procedures as follows:

Elim-NoTempSuc(bubble B): If there is no bubble B′ in the current tableau
such that B X �� B′, then delete B and all arrows associated with it.

Elim-UnrealEven(bubble B): If the condition (E), defined below, is not sat-
isfied in the current tableau, then delete B and all arrows associated with it.

(E) For any Δ ∈ B and any eventuality ξ ∈ Δ there exists a bubble-path
B = (Bi)0≤i≤m with B0 = B and a temporal path π such that ξ is realized
on B by π.

Definition 11. The tableau T for a formula θ is open if there is a bubble B ∈ T
and a Δ ∈ B such that θ ∈ Δ.

Example 3. Figure 3 shows the initial tableau for the formula θ from Ex. 1. In
the final tableau, the two leftmost bubbles are deleted. The tableau is open since
θ ∈ Δ0 and Δ0 ∈ {Δ0, Δ2}.

The initial tableau for θ in Example 2 simply consists of two bubbles:

Δ0, Δ1
�� ��
�� �	 Δ0

�� ��
�� �	

In the elimination-procedure, the two bubbles get deleted in the first round,
and the initial tableau is empty. Thus, the tableau closes and θ is declared
unsatisfiable.
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Δ0,
�� ��

�� �	

�� Δ4 ∪ Σ0,
�� ��

�� �	

Δ0,
�� ��

�� �	

�� Δ4,
�� ��

�� �	

�� Δ8,
�� ��

�� �	
��

Δ1 �� Δ5 ∪ Σ1 Δ2 �� Δ6 ∪ Σ0, ��
��
Δ10 �� Δ10

�� ��
�� �	��

��

X��
Δ7

��
��

X 		 X 		 X ��
X ��

Fig. 3. The initial for θ from Example 1

5 Soundness

Theorem 1. The tableaux procedure for each TEL1(LT)X is sound.

Soundness of the tableaux method means that if the input formula is satisfiable,
then the procedure will indeed produce an open tableau. The argument in a
nutshell is that if the input formula θ is satisfiable, then there is also a satisfiable
state Δ in states({θ}), and the pre-bubble {Δ} will be expanded to a number
of bubbles. At least one of them ‘survives’ in the final tableau. A proof sketch
can be found in [1].

6 Completeness

Theorem 2. The tableaux procedure for each TEL1(LT)X is complete.

Completeness of the procedure means that an open tableau can be turned into
a model, or equivalently into a temporal-epistemic Hintikka structure. In some-
what simplified terms, this is done by making runs corresponding to the ‘realiz-
ing’ temporal path of the states in the bubble B, that ensures that the tableau
is open, and then doing the same for each state in the bubbles that these paths
pass by. A proof sketch can be found in [1].

7 Complexity

Recall that #stsθ denotes the number of possible states in the bubbles in the
tableaux for a formula θ, which is exponential in the length of the input formula,
while #Bs := 2#stsθ is the possible number of bubbles in the tableau.

Theorem 3. The tableaux procedure for each TEL1(LT)X runs in 2EXPTIME.

The proof (see details in [1]) relies on the fact that all presented methods run
in time polynomial in the number of bubbles in the tableau, i.e. the procedure
runs in double-exponential time.

Theorem 4. For TEL1(LT)X where nol ∈ X, the tableaux-procedure can be mod-
ified to work in EXPSPACE.

Proof. If nol ∈ X , the bubble-path constructed in Section 5 can be shortened to
a suitable size. In the construction we several times find a bubble-path B starting
in a bubble B, so that a state Δ ∈ B has an associated path πΔ such that a given
eventuality ξ ∈ Δ is realized on B by πΔ. B and π can now be shortened so that
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π does not pass through the same state in the same bubble, i.e. the length of π
and B will be at most #Bs ·#stsθ; if Bi, Bj ∈ B with Bi = Bj and πi = πj , then
we just remove the bubbles in between Bi and Bj−1 (including both). The new
bubble-path emerging from this operation will be satisfied by possibly another
model and state-point-assignment.

In this way, we can obtain a bound on the indexes ρ andm of the ultimately pe-
riodic bubble-path B X �� . . . X �� Bρ X �� . . . X �� Bm−1

X�� . These bounds
can now be used to turn the procedure into a procedure that runs in NEX-
PSPACE=EXPSPACE. This procedure is similar to the one for LTL with an
‘exponential step’ added to it. If θ is a satisfiable formula, then the following
procedure finds the ultimately periodic bubble-path with indexes ρ and m, and
if not, “false” is returned. The procedure works as follows:

1. Guess ρ,m and the starting bubble which is kept in the variable CurB; check
that CurB is a bubble. Return “false” if this is not the case. Set k = 0.

2. Guess the successor-bubble of CurB, which is stored in the variable NextB;
check that NextB is a bubble and that it is a successor-set for CurB, and
return “false” otherwise. If nof ∈ X , also check that CurB is a predecessor-
set for NextB, and return “false” otherwise. Assign NextB to CurB, and
add one to k.

3. Repeat step 2 until k = ρ (CurB now corresponds to Bρ). Let the variable
RepB store the bubble CurB. For allΔ ∈ CurB and all eventualities ϕ Uψ ∈
Δ, add ϕ Uψ to the set RealΔ (create RealΔ if it does not already exist).

4. Guess the successor-bubble of CurB, and store it in NextB. Check that
NextB is a bubble, that it is a successor-set for CurB, and if nof ∈ X ,
check that CurB is a predecessor-set for NextB. If not, return “false”, else
for all Δ′ ∈ NextB create a new RealΔ′ . For all states Δ ∈ CurB, guess the
successor Δ′ ∈ NextB of Δ. For all eventualities ϕ Uψ in RealΔ, add ϕ Uψ
to RealΔ′ if ψ /∈ Δ′. Then delete RealΔ, assign NextB to CurB, and add 1
to k.

5. Repeat step 4 until k = m − 1 (CurB now corresponds to Bm−1). Check
that RepB is a successor-set of CurB, and if nof ∈ X , check that CurB is a
predecessor-set for RepB. For all Δ ∈ CurB, guess the successor Δ′ ∈ RepB
of Δ. Check that all eventualities ϕ Uψ ∈ RealΔ are realized in Δ′, i.e.
ψ ∈ Δ′. If not, return “false”.

6. If the algorithm has not terminated so far, return “true”.

At any point in time the procedure only keeps 3 bubbles in memory (which takes
3 ·#stsθ space) and the number of variables RealΔ is at most 2 ·#stsθ, and the
length of each RealΔ is at most |θ|, where |θ| is the length of the input-formula
θ. Thus, the procedure runs in space O(poly(#stsθ)).

8 Concluding Remarks

We have substantially extended and adapted the incremental tableau proce-
dure sketched in [3] to work for all cases of single-agent synchronous temporal-
epistemic logics with interactions between time and knowledge considered in
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[4] and [5] and have thus developed a uniform, optimal and practically im-
plementable method for deciding satisfiability in these logics. The method is
amenable to easy adaptations to systems where the synchrony-assumption is
dropped, and to 1-agent branching-time temporal epistemic logics. It can fur-
ther be extended to the multiagent case, however, it will work in non-elementary
time (due to the complexity of these logics). Tableaux for these and other related
cases are part of the future agenda of this project.
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Abstract. A minor change to the standard epistemic logical language,
replacing Ki with K〈i,t〉 where t is an explicit time instance, gives rise
to a generalized and more expressive form of knowledge and common
knowledge operators. We investigate the communication structures that
are necessary for such generalized epistemic states to arise, and the inter-
agent coordination tasks that require such knowledge. Previous work has
established a relation between linear event ordering and nested knowl-
edge, and between simultaneous event occurrences and common knowl-
edge. In the new, extended, formalism, epistemic necessity is decoupled
from temporal necessity. Nested knowledge and event ordering are shown
to be related even when the nesting order of the operators does not
match the temporal order of occurrence. The generalized form of common
knowledge does not correspond to simultaneity. Rather, it corresponds
to a notion of tight coordination, of which simultaneity is an instance.

1 Introduction

We have recently embarked on an in-depth inquiry concerning the relation be-
tween knowledge, coordination and communication-based causality in multi-
agent systems [4,5,3]. This study uncovered new structural connections between
the three in synchronous systems, where agents have accurate clocks, and there
are (commonly known) bounds on the time it may take messages to be delivered
along any given communication channel. In such a setting, one often reasons
about what agents know at particular points in time. Furthermore, one may rea-
son about what an agent knows at one time about what other agents will know
(or have known) at various other times. This leads us to consider a formalization
in which epistemic operators are indexed by an agent-time pair 〈i, t〉, called a
node. Thus, K〈i,t〉 refers to what agent i knows at time t, whereas the more
traditional epistemic operator Ki refers to what agent i knows at the current
time. The new formalism is called node-based (or nb- for short).

The node-based operators give rise to natural proper generalizations of nested
knowledge and of common knowledge. Of particular interest is node-based com-
mon knowledge, which is represented by an epistemic operator CA, in which
A is a set of agent-time pairs 〈i, t〉. For example, C{〈i,t〉,〈j,t+3〉}ϕ indicates,
among other things, that agent i at time t knows that agent j at time t+ 3 will
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know that i at time t knew that ϕ holds. While nb-common knowledge strictly
generalizes classical common knowledge, it shares many of the typical proper-
ties of common knowledge. However, whereas (traditional) common knowledge
is intimately related to simultaneity, nb-common knowledge is not! Rather, nb-
common knowledge precisely captures what we call tightly-timed coordination.
Thus, for example, nb-common knowledge arises when agents are coordinated
so that they perform their respective actions within exactly pre-specified time
differences from each other (e.g., Alice is guaranteed to act precisely 3 time steps
before Bob). Simultaneity is a particular instance of tightly-timed coordination.

Statements made using nb-based knowledge operators can be naturally ex-
pressed in a temporal-epistemic modal logic containing standard knowledge op-
erators and (future and past) next-time modal operators (similar to the KLn
logic of [11]). Being based on explicit-time operators, the nb-logic is a less use-
ful specification language than such a temporal-epistemic logic would be. The
nb-formalism is used in this paper as a tool for capturing the causal structure
underlying specific types of distributed coordination. In particular, the notion of
tightly-timed coordination is captured by nb-common knowledge. Interestingly,
while standard common knowledge can be defined in an epistemic logic that is
enriched by a standard fixed-point operator (see [8,10]), there does not appear to
be a simple way to define nb-common knowledge by applying such a fixed-point
operator in the temporal-epistemic modal framework.1

We follow the pattern of investigation presented in [4], where an epistemic
analysis is the formal link between a coordination task and the necessary causal
structure it requires. Thus, on one hand, epistemic states (such as nb-nested
knowledge or nb-common knowledge) are shown to be necessary for perform-
ing actions in a coordination task and on the other, causal structures involving
communication and time that are required for attaining the epistemic state are
identified. As nb-knowledge operators generalize the standard agent-based ones,
the results we obtain here generalize and extend the ones of [4,3]. Relating knowl-
edge to communication, we present two “knowledge-gain” theorems (in the spirit
of Chandy and Misra’s result for systems without clocks [6]). Nb-nested and nb-
common knowledge are shown to require more flexible variants of the centipede
and the broom communication structures of [4]. The node-based statements have
a fairly intuitive and transparent semantic meaning. The statements that serve
to characterize natural coordination tasks provide further insight into what these
forms of coordination require. Thus, the node-based formalism and agent-time
semantics allow us to non-trivially extend the causal theory of multi-agent co-
ordination.

2 Interpreted Systems, Knowledge and Communication

We operate within the interpreted systems framework of [8]. In this framework, a
set P = {1, . . . , n} of agents is connected by a communication network, modeled

1 Following the current work, however, Gonczarowski and Moses introduced a notion
of a vectorial fixed point that does allow this, at a nontrivial technical cost [9].
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as a graph, which serves as the exclusive means by which the agents interact
with each other.

We assume that, at any given point in time, each agent in the system is in some
local state. A global state is a tuple g = 〈�e, �1, . . . , �n〉 consisting of local states
of the agents, together with the state �e of the environment. The environment’s
state accounts for everything that is relevant to the system that is not contained
in the state of the agents. A run r is a function from time to global states.
Intuitively, a run is a complete description of what happens over time in one
possible execution of the system. We use ri(t) to denote agent i’s local state �i
at time t in run r, for i = 1, . . . , n. For simplicity, time is taken to range over the
natural numbers (time is discrete). Round t in run r occurs between time t− 1
and t. Agents follow a deterministic protocol (P = P1, . . . , Pn), in which every Pi

is a function specifying a unique action for each local state of agent i. A system
R = R(P, γ) is an exhaustive set of all possible runs of the agents’ protocol P
in the context γ. Here the context determines underlying characteristics of the
environment as a whole (see [8]).

As mentioned, we focus on synchronous environments where the clocks of the
individual agents are all synchronized, and there are commonly known bounds
on message delivery times. For ease of exposition, we assume that agents have
perfect recall, so that their local states keeps track of all local events that they
have experienced.

In order for a well defined system of runs R to emerge, the context γ needs to
be rigorously defined as well. We define a specific context γmax, within which the
agents are operating. Most notably, γmax specifies that (a) agents share a univer-
sal notion of time and of the network’s topology, (b) the communication network
has upper bounds on delivery times, (c) there are four kinds of events: message
send and receive events, internal actions, and external inputs. The latter occur
when a signal is received by an agent from “outside” the system. Finally, (d) all
nondeterminism is deferred to the environment agent, which is responsible for
message deliveries and external inputs to all other agents. Formally, since all of
the agents are following a deterministic protocol, nondeterminism is only intro-
duced into the system by the environment. Moreover, we assume that external
inputs are spontaneous, or nondeterministic, events, in the sense defined in [4];
they are independent of any other action of the environment, and of any action
of the agents preceding the occurrence of such an event.

The standard agent-based epistemic logic of knowledge L0 is defined by:

L0 : ψ ::= occ′d(e) | ψ ∧ ψ | ¬ψ | Kiψ | EGψ | CGψ,

where e is a local (external input or message receive) event, occ′d(e) is a propo-
sition that is true once e has occurred, i is an agent, and G is a set of agents.
Satisfaction of L0 formulas is defined w.r.t. a triple (R, r, t). For its semantics in
interpreted systems, see [8]. In this paper, we make use of a node-based propo-
sitional epistemic language:

L1 : ϕ ::= occurst(e) | ϕ ∧ ϕ | ¬ϕ | Kαϕ | EAϕ | CAϕ,
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where α denotes an agent-time node and A denotes a set of such nodes. The
occurst(e) formulas are the only primitive propositions in L1. As noted, events
occur at particular agents, and these occurrences are recorded in the local states
of both the site of occurrence and the environment agent. Notice that all state-
ments in L1 are “time-stamped,” in that they refer to explicit times at which the
stated facts should hold. They are thus time-invariant, and state facts about the
run, rather than facts whose truth depends on the time of evaluation. Therefore,
semantics for formulas of L1 are given with respect to a system R and a run
r ∈ R. The semantics is as follows (omitting the standard propositional clauses
for ∧ and ¬ ).

Definition 1 (L1 semantics). The truth of a formula ϕ ∈ L1 is defined with
respect to a pair (R, r).

– (R, r) � occurst(e) iff event e occurs in r by time t
– (R, r) � K〈i,t〉ϕ iff (R, r′) � ϕ for all runs r′ s.t. ri(t) = r′i(t).
– (R, r) � EAϕ iff (R, r) � Kαϕ for every α ∈ A.
– (R, r) � CAϕ iff (R, r) � (EA)

kϕ for every k ≥ 1.

In principle, the node-based semantics, as proposed here, can be seen as a simpli-
fied version of a real-time temporal logic with an explicit clock variable [1], and
more generally of a hybrid logic [2]. In a precise sense, the node-based frame-
work and L1 extend the traditional standard framework and L0. It is possible to
define a “timestamping” operation [[]] : L0 × Time → L1 transforming a formula
ψ ∈ L0 and a time t to a formula [[ψ]]

t ∈ L1, such that the following holds:2

Lemma 1. (R, r, t) � ψ iff (R, r) � [[ψ]]t holds for every ψ ∈ L0 and time t.

In particular, [[CGψ]]
t
= CA[[ψ]]

t
for A = {〈i, t〉 : i ∈ G}. It is easy to see that

L1 is strictly more expressive than L0. For example, while [[KiKjocc
′d(e)]]3 =

K〈i,3〉K〈j,3〉occurs3(e), the formula K〈i,3〉K〈j,7〉ϕ is not equivalent to an L0 for-
mula, since L0 does not allow for the temporal reference point to be shifted when
switching from the outer knowledge operator to the inner one. There is a natural
connection between L1 and temporal-epistemic modal languages that extend L0
by adding temporal operators (see, e.g., [11]). If (R, r) � K〈i,3〉K〈j,7〉occurs2(e) is
true, then (R, r, 3) � Ki©4Kj©−5 occ′d(e). The times involved are explicit in
the L1 formula, while in the latter formula they are implicit, derivable from the
current time 3 and the multiplicity of the next operators (in this case, for exam-
ple, 2 = 3+4−5). It appears that node-based common knowledge statements such
as C{〈i,3〉,〈j,7〉}occurs2(e) cannot be expressed even in the temporal-epistemic lan-
guage, with the standard common knowledge operator CG, or even with standard
fixed-point operators. Our aim in this paper is to utilize the node-based formal-
ism, rather than explore it. Hence, issues of completeness and tractability are
left unattended, to be explored at a future date. (We conjecture, however, that
deciding satisfiability will be more tractable than in the temporal-epistemic cases
studied in [11].)

2 Due to space limitations, all proofs are deferred to the full paper.
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It is well-known that common knowledge is closely related to simultaneity
[8,7,10]. Indeed, both CGψ ⇒ EGCGψ and KiCGψ ⇒ CGψ are valid formulas.
(Recall that a formula ψ ∈ L0 is valid if (R, r, t) � ψ for all choices of R, run
r ∈ R and time t.) Thus, the first instant at which CGψ holds must involve
a simultaneous change in the local states of all members of G. In contrast,
simultaneity is not an intrinsic property of node-based common knowledge. As
an example, consider the node set A = {〈i, 3〉, 〈j, 6〉}. Although we still have that
both K〈i,3〉CAϕ⇒ CAϕ and CAϕ⇒ K〈j,6〉CAϕ are valid formulas, if the current
time is t = 3 and i knows that CAϕ holds, this does not mean that j currently
knows this too. The bond with simultaneity has been broken. As we shall see
in Section 4, however, a notion of tight temporal coordination that generalizes
simultaneity is intrinsic to node-based common knowledge.

In the spirit of the treatment in [8], for a formula ϕ ∈ L1 we write R � ϕ and
say that ϕ is valid in (the system) R if (R, r) � ϕ for all r ∈ R. A formula is
valid if it is valid in all systems. Node-based common knowledge manifests many
of the logical properties shown by the standard notion of common knowledge.

Lemma 2. – Both K〈i,t〉 and CA are S5 modalities.
– CAϕ⇒ EA(ϕ ∧CAϕ) is valid.
– If R � ϕ⇒ EA(ϕ ∧ ϕ′) then R � ϕ⇒ CAϕ

′

The second clause of Lemma 2 generalizes the so-called “fixed-point” axiom of
common knowledge, while the third clause generalises to the “induction (infer-
ence) rule” [8].

Our main goal in this paper is to characterize coordination tasks in terms
of the underlying inter-agent communications that they necessitate, and the
node-based epistemic language will play an important part in tying in coordi-
nation and causal communication. In this our approach follows [4] which, in
turn, extends the findings of Lamport [12] and of Chandy and Misra [6]. In [4]
we defined syncausality, which formalizes information flow via message chains
in synchronous systems, extending Lamport’s notion of potential causality. The
relation is defined pairs of agent-time nodes.

Definition 2 (Syncausality [4]). Fix r ∈ R. Syncausality is the smallest re-
lation � over the nodes of a run r satisfying the following four conditions:

1. If t ≤ t′ then 〈i, t〉� 〈i, t′〉;
2. If a message is sent at 〈i, t〉 in r and received at 〈j, t′〉, then 〈i, t〉� 〈j, t′〉;
3. If no message is sent at 〈i, t〉 in r over the channel i �→ j, then
〈i, t〉� 〈j, t+maxij〉; and

4. If both 〈i, t〉� 〈h, t′′〉 and 〈h, t′′〉� 〈j, t′〉, then 〈i, t〉� 〈j, t′〉.

Syncausality captures direct flow of information between agent-time nodes via
communication. The first three clauses coincide with Lamport’s happened-before
relation from asynchronous systems, and the third clause accounts for the possi-
bility of information to flow due to a receiver observing that a message was not
sent, in synchronous systems, based on its clocks and the bounds on message
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transmission times. In synchronous systems, agents can come to know about re-
mote events without direct information flow. Thus, if Alice sends Bob a message
at time t she can know that he received it once after an amount of time equal
to the upper bound on transmission from her to Bob. In fact, if Charlie hears
about Alice’s message, he can also attain knowledge about Bob without direct
information flow from Bob to him. Such indirect knowledge is governed by a
second relation, called bound guarantee:

Definition 3 (Bound guarantee [4]). Fix synchronous context γmax. The
bound guarantee relation ��	 over runs r in systems R = R(P, γmax) is the
smallest relation satisfying the following three conditions:

1. If t ≤ t′ then 〈i, t〉 ��	 〈i, t′〉;
2. If i �→ j is a channel, then 〈i, t〉 ��	 〈j, t+maxij〉; and
3. If 〈i, t〉 ��	 〈h, t′′〉 and 〈h, t′′〉 ��	 〈j, t′〉, then 〈i, t〉 ��	 〈j, t′〉.

3 Nested Knowledge and Weak Bounds

Spontaneous events, communication, and the passage of time combined form
the means by which agents’ knowledge evolves [10]. Syncausality and bound
guarantees allow us to formalize central aspects of this connection in synchronous
systems. The emergence of nested knowledge in L0 formulas such as KiKjKhψ
was captured in terms of a causal structure called a centipede in [4]. This time
we consider nb-formulas such as K〈i,7〉K〈j,3〉K〈h,15〉ϕ. To capture such formulas,
we consider the following generalisation of centipedes:

Definition 4 (Uneven centipede). Let r ∈ R, and let A = 〈α0, α1, . . . , αk〉
be a sequence of nodes. An (uneven) centipede for A in r is a sequence B =
〈θ0, θ1, . . . , θk〉 of nodes such that θ0 = α0, θk = αk, θ0 � θ1 � · · · � θk, and
θh ��	 αh holds for h = 1, . . . , k − 1.

We remark that syncausality is a reflexive relation, so that θ � θ is guaranteed
to hold. As a result, the nodes θ0, . . . , θk of B need not be distinct.

Denote αh = 〈ih, th〉 for h = 0, . . . , k. Figure 1a shows an uneven centipede,
with wavy arrows depicting syncausal links between nodes, and dashed arrows
(the “legs” of the centipede) standing for bound guarantees. The syncausal links
may depend on the actually realized transmission times of messages, while bound
guarantees are based on the a priori bounds maxij . This type of centipede is
termed uneven because the “legs” of the centipede end at nodes at a variety of
different times, whereas in the original centipedes of [4] all legs ended at nodes
〈i1, tk〉, 〈i2, tk〉, . . . with the same time component tk. Intuitively, each of the
nodes θh ∈ B can serve as a “witness” to the fact that information available
at θh can be guaranteed to reach αh’s agent ih by time th. Observe that the
node α2 temporally precedes α1 in Fig. 1a. Roughly speaking, the centipede can
be used to establish that α2 will know that α1 will know about events at α0

(under a suitable protocol). In this case, node α2 occurs at t2 < t1, temporally
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α0

θ1
θ2

θk−1

α1

α2

αk−1

αk

(a) An uneven centipede

αo

θb

αb

αs

ts ≥ tb + 5

(b) Vendor example

Fig. 1.

preceding α1. Causally, or epistemically, it is node α1 that “precedes” α2. Events
at α2 may causally depend on those that (will) occur at α1.

In order to illustrate the connection between distributed coordination, nested
nb-knowledge, and uneven centipedes, consider the following simplified exam-
ple. The online purchase of a book consists of three events: arrival of the or-
der eo, billing, and shipping, occurring at three distinct agents Oren (o), Bill
(b) and Sharon (s). working for the vendor. Suppose, moreover, that the ven-
dor is conservative, and specifies that shipping must take place at least 5 time
units after billing. Clearly, billing will not occur before the order has been re-
ceived, and an efficient system would bill immediately upon learning about the
order. In order to ship at ts, agent s must know that al least 5 time units have
elapsed since the billing action was performed. Intuitively, the run must satisfy
K〈s,ts〉K〈b,ts−5〉occursts−5(eo). Our results will show that this can be true only
if an uneven centipede as in Figure 1b exists, with ts ≥ tb − 5: Agent s must
receive direct information, by a syncausal chain from some node θ, with proof
that b would surely have enough information by ts − 5 to perform the billing
action. The latter comes from the bound guarantee relation between θ to αb.

An interesting variant is the case in which a competing vendor chooses to be
more trusting and to favour fast service as a top priority. Rather than shipping
the book at least 5 units after billing, this vendor requires shipping to occur
at most 5 time units after billing, possibly even before billing occurs. It may
appear natural that this would require a similar centipede, just with the modified
requirement that ts ≤ tb−5. This, however, is not the case. Even though shipping
will still typically occur later than billing does, there is a precise sense in which,
in causal or epistemic terms, shipping now precedes billing: Sharon can now
ship when she learns about the order, but Bill must wait until he knows that
Sharon will be able to ship within at most 5 time units. The earlier action
causally depends on the later one. In other words, billing at time tb requires
K〈b,tb〉K〈s,tb+5〉occurstb+5(eo). The corresponding uneven centipede is the one in
Figure 2a, in which the epistemic, or causal, ordering is the opposite of the one
in Figure 1b.
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We now turn to a formal analysis relating coordination with uneven cen-
tipedes. The first step is to show that uneven centipedes are the necessary causal
structures underlying nested nb-knowledge gain regarding spontaneous events,
in the spirit of Chandy and Misra’s celebrated knowledge gain theorem from [6]:

Theorem 1. Let r ∈ R = R(P, γmax), and let es be a (spontaneous) external
input occurring at α0 = 〈i0, t0〉 in r. If (R, r) � Kαk

Kαk−1
· · ·Kα1occurst0(es)

then there is an uneven centipede for 〈α0, . . . , αk〉 in r.

Theorem 1 is a proper generalization of the knowledge gain theorem for nested
knowledge in [4]. Interestingly, its proof is the same in both cases. The more ex-
pressive language L1 thus allows us to obtain a strictly stronger characterization
than was possible with L0. The same will be true for Theorem 3 regarding com-
mon knowledge gain in the next section. This is a case where our understanding
of what is going on has been limited purely by the expressivity of the formal
apparatus of which we made use.

αo
θs

αs

αb

tb ≥ ts − 5

(a) Epistemic vs. temporal precedence

α0

θ

α1

α2 α3

αk

(b) An uneven broom

Fig. 2.

We now provide a formal definition for a class of coordination tasks that
require nb-nested knowledge. As in our book purchase example above, we are
interested in transactions, or patterns of coordinated actions, that are trigerred
by a spontaneous external input. The particular pattern considered here is a
temporally ordered sequence of response events α1, . . . ,αk, where each αh is a
particular action, and an agent ih that should perform it. Moreover, there are
bounds δ1, . . . , δk such that α1 must take place at least δ1 time after the trigger,
and for each j = 2, . . . , k the response αj must occur at least δj units after αj−1.

Definition 5 (Weakly Timed Response). Let es be the arrival of a par-
ticular spontaneous external input. A protocol P solves the instance WTR =
〈es,α1 : δ1,α2 : δ2, . . . ,αk−1 : δk−1,αk〉 of the Weakly Timed Response problem
if it guarantees that each of its runs satisfies
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1. every response αh, for h = 1, . . . , k, occurs in the run iff the trigger event
es occurs in the run, and

2. if es occurs at time t0 and for all h = 1, . . . , k the response αh occurs at
node αh = 〈ih, th〉, then th+1 ≥ th + δh for h = 0, . . . , k − 1.

Before formally relating the WTR problem to nb-nested knowledge, another nu-
ance should be observed. Even though agent ik may not know the exact time at
which responses are performed by other agents based on the problem definition,
it can work out an upper bound on the time of responses carried out by agents
i1 to ik−1. For example, response αk−1 gets carried out at tk−1 which is no
later than tk − δk−1. Response αk−2 is then bounded with respect to αk by
tk−2 ≤ tk−1 − δk−2 ≤ tk − δk−1 − δk−2 , etc. We will use

βk
h = 〈ih, tkh〉 where tkh = tk −

k−1∑
j=h

δj

to denote this upper limit: the latest possible node at which response αh gets
carried out, given that response αk is performed at time tk. Note that th ≤ tkh
since by definition tkh is an upper bound on th. We can now show:

Theorem 2. Let WTR = 〈es,α1 : δ1,α2 : δ2, . . . ,αk−1 : δk−1,αk〉 be an instance
of WTR, and assume that WTR is solved in a system R = R(P, γmax). Assume
that es occurs in r ∈ R, and that αk takes place at time tk in r. Then

(R, r) � Kαk
Kβk

k−1
· · ·Kβk

1
occurstk1 (es).

Thus, every protocol that coordinates responses according to WTR must, in par-
ticular, ensure that a specific nested nb-knowledge formula will hold. Indeed,
observe that if WTR = 〈es,α1 : δ1,α2 : δ2, . . . ,αk−1 : δk−1,αk〉 is satisfied in the
system R, then every sub-instance WTRi = 〈es,α1 : δ1, . . . ,αi−1 : δi−1,αi〉 with
i < k of WTR is also satisfied in R. Hence, Theorem 2 ensures that

(R, r) � KαiKβi
i−1
· · ·Kβi

1
occursti1(es)

must similarly hold, for all i = 1, . . . , k.
Theorem 2 shows that coordinating a solution to a WTR coordination prob-

lem requires realising particular nested nb-knowledge formulas at each respond-
ing agent. Theorem 1 showed that such nested formulas can be attained only by
constructing a corresponding uneven centipede. Combining the two yields the
following corollary, directly establishing uneven centipedes as necessary commu-
nication patterns for solving WTR problems. Note that the epistemic formalism
has played its part and is no longer required in order to state the result.

Corollary 1. Let WTR = 〈es,α1 : δ1,α2 : δ2, . . . ,αk−1 : δk−1,αk〉 be an instance
of WTR, and assume that P solves WTR in γmax. Assume that es occurs at node α0

in r ∈ R = R(P, γmax), and, for h = 1, . . . , k let αh = 〈ih, th〉 be the node at
which response αh is performed. Using the notation of Theorem 2, there is an
uneven centipede for 〈α0, β

i
1, . . . , β

i
i−1, αi〉 in r, for every i = 1, . . . , k.
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4 Common Knowledge and Tight Bounds

In [4], a causal structure called a broom was defined and shown to be necessary
and sufficient for attaining common knowledge. In this section we examine nb-
common knowledge and its relation to communication and coordination. Just
as nb-nested knowledge requires an extension to the centipede structure, nb-
common knowledge can only arise if the uneven broom communication structure,
seen in Figure 2b and defined below, is realized in the run. (“Uneven” again
comes from the broom’s uneven legs.)

Definition 6 (Uneven broom). Let α0 be a node and A = {α1, . . . , αk} a set
of nodes. Node θ is an (uneven) broom for 〈α0, A〉 in r if θ ��	 αh holds for

all h = 1, .., k, and α0 � θ̂.

The case in which the time components in all nodes of A are identical gives rise to
the broom structures of [4], where gaining common knowledge is shown to require
the construction of a broom. Since coordinating simultaneous actions requires
common knowledge [8,7,10], brooms were shown to be necessary for ensuring
simultaneity. We now show that the uneven broom captures a necessary causal
structure underlying nb-common knowledge to arise.

Theorem 3. Let es be an external input occurring at α0 in r, and let t ≥ 0. If
(R, r) � CAoccurst(es), then there is a uneven broom θ for 〈α0, A〉 in r.

This theorem shows that attaining nb-common knowledge regarding the occur-
rence of a spontaneous event can only be done based on a particular individual
pivotal node (possibly a different node in different runs).

Whereas common knowledge is closely related to simultaneity, nb-common
knowledge can be shown to be related to a notion of tightly-timed coordination:

Definition 7 (Tightly Timed Response). Let es be an external input non-
deterministic event. A protocol P solves the instance

TTR = 〈es,α1 : δ1,α2 : δ2, . . . ,αk : δk〉

of the Tightly Timed Response problem if it guarantees that

1. every response αh, for h = 1, . . . , k, occurs in a run iff the trigger event es
occurs in that run.

2. For every h, g ≤ k the relative timing of the responses is exactly the difference
in the associated delta values: th − tg = δh − δg

Observe that simultaneous coordination (i.e., the simultaneous response problem
of [4]) can be specified by a TTR instance in which δ1 = · · · = δk = 0. Intuitively,
a TTR specification determines exact time differences between the times at which
any two responses occur. Thus, when an agent performs a response it knows when
all other responses occur. As a result, responses in TTR give rise to nb-common
knowledge.
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Theorem 4. Assume that P solves an instance TTR with trigger es, in γmax,
and let R = R(P, γmax). Let r ∈ R be a run in which es occurs, and let A =
{α1, . . . , αk} be the nodes at which the responses of TTR occur in r. Let αh =
〈ih, th〉 be the earliest node in A. Then (R, r) � CA occursth(es).

This theorem reduces tight coordination to nb-common knowledge. Combining
it with Theorem 3, we can show that uneven brooms are necessary for tight
coordination:

Corollary 2. Assume that P solves an instance TTR with trigger es in γmax,
and let R = R(P, γmax). Let r ∈ R be a run in which es occurs at α0, and let A be
the nodes at which responses are performed. The time differences between nodes
of A conform with TTR and there is an uneven broom θ for 〈α0, A〉 in r.

We remark that while Corollaries 1 and 2 state necessary causal conditions
for distributed coordination, these are in a precise sense both necessary and
sufficient. Employing a full-information protocol, in which agents send their
whole history to all neighbors in every round, proofs that mimic those in [5] show
that the agents they can act precisely when the appropriate centipede or broom
is realized in the run. The analysis thus provides provably optimal solutions to
weakly-timed coordination and tightly-timed coordination, two natural classes
of distributed coordination tasks.

5 Discussion

This paper explores the implications of a new formalism for epistemic statements
upon the notions of nested and common knowledge. The formalism is used as
an intermediate representation, enabling us to relate communication patterns to
coordination tasks along the lines of [3,4].

A minor change to the standard epistemic formalism, using node-based for-
mulas and agent-time semantics, allows a proper extension of the state of the art.
The fact that the L0-based analysis of [3,4] carries over smoothly to L1 shows
the very close connection between nested knowledge and nested nb-knowledge,
and similarly between common knowledge and nb-common knowledge. Moreover,
it yields genuine insight into distributed coordination, by exposing the logical
connections between linear ordering and weakly-timed ordering, and between
simultaneity and tightly-timed coordination.

Our causal analysis of weakly timed coordination can clearly be carried out
using a temporal-epistemic formalism, although the analysis of tightly-timed co-
ordination cannot. Node-based common knowledge is not expressible in L0. In
a follow-up to the current paper, Gonczarowski and Moses define a more gen-
eral variant of common knowledge, based on a vectorial fixedpoint operator [9].
They use a relative-time formalism to show more general connections between
distributed coordination and epistemic states than shown here.

In conclusion, this paper uses an extended logic of knowledge as a tool for
analysing causality in distributed and multi-agent systems. It provides further
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evidence for the strong connection between epistemic formalisms, causality and
coordination. Many issues remain open to future exploration, including the log-
ical properties of L1 and agent-time semantics: Expressiveness, completeness,
and complexity.
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Abstract. This paper studies channel-based agent communication in terms of
dynamic epistemic logic. First, we set up two sorted syntax which can deal with
not only each agent’s belief but also agents and channels between them. Second,
we propose a context-sensitive ‘inform’-action operator whose effectivity always
assumes the existence of channel between agents. Its context-sensitivity can be
achieved by downarrow binder from hybrid logic. Third, we provide complete
Hilbert-style axiomatizations for both static and dynamic parts of our logic.

1 Introduction

It has been long since the notion of agent became the prevalent idea to represent arti-
ficial intelligence, where we mean by agent a computer system, situated in some en-
vironment, that is capable of flexible autonomous action in order to meet its design
objectives [1, p.8]. Since the communication is the most distinguished feature of the
presence of intelligence, its logical formalization in rational agents has commonly been
accepted as an important research goal. For example, based on the mobile agents plat-
form by FIPA/ACL [2], [3] has added communication channel in multi-agent interaction
to represent communicability between agents. [4] proposed a research program to in-
vestigate how knowledge, belief, and preferences are influenced by social relationship,
and set up Facebook Logic for an analysis of knowledge in a social network.

In the above history of formalization of agent communication, we raise the following
three requirements for our logical study of agent-communication.

(i) An informing action is basically initiated locally; thus, when information is cor-
rectly transferred, a sender should have a communication channel to the recipient.

(ii) An existence of channel may vary through a given state.
(iii) An effect of informing action at a state should be valid only on the state.

In this paper, we propose two-dimensional semantics satisfying (ii) and the informing
action operator possessing three indices to implement the context-sensitivity, together
with a sender and a recipient agent ((i) and (iii)). A semantic core of our paper shared
with [4] can be summarized as in the following diagram:

w |= Ba(a is in India) ���������������� (w, a) |= B( - is in India).

We incorporate the information ‘a’ of agents into the Kripke semantics of
Ba(a is in India) (the agent a believes that a is in India) and regard B( - is in India) as

K. Lodaya (Ed.): ICLA 2013, LNAI 7750, pp. 109–120, 2013.
© Springer-Verlag Berlin Heidelberg 2013
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a state-dependent property of the agent a, i.e., ‘- believes that he/she has the property:
- is in India’.

We proceed as follows. Section 2 introduces our static syntax and its two-dimensional
semantics, which is the same one as in [4]. Unlike [4], however, we also add a machin-
ery of hybrid logic (nominals, satisfaction operators, and downarrow binder, for readers
unfamiliar with hybrid logic, see, e.g., [5]) to the dimension of possible worlds. Section
3 introduces running examples of this paper. Section 4 introduces a dynamic inform-
ing action operator and Section 5 investigates its semantic consequences. Section 6.1
gives a complete axiomatization of two-dimensional hybrid logic with frame axioms
and global assumptions on models (Theorem 1). As far as the authors know, this is an
unknown result of a hybrid expansion of Facebook Logic. Section 6.2 employs reduc-
tion axioms for our dynamic operator to give a complete axiomatization of our dynamic
logic (Theorem 2). Section 7 concludes this paper.

2 Two-Dimensional Semantics for Agent Beliefs via Channels

Our syntax consists of the set N1 = { i, j, ... } of state nominals, the set N2 = { n,m, ... } of
agent nominals, the set P = { p, q, ... } of unary properties of agents (or, concept names
in description logics [6]), the belief operator B for agents, the channel operator C, the
boolean connectives ¬, ∧, the satisfaction operator @, and the downarrow binder ↓. The
set F of all formulas of our syntax is defined inductively as follows:

ϕ ::= i | n | p | ¬ϕ | ϕ ∧ ψ | Bϕ |Cϕ |@iϕ |@nϕ | ↓ i. ϕ | ↓ n. ϕ,

where i ∈ N1, n ∈ N2 and p ∈ P. We define 〈C〉ϕ := ¬C ¬ϕ and 〈B〉ϕ := ¬ B¬ϕ.
We also introduce the Boolean connectives as ordinary abbreviations. We can read the
following formulas intuitively as:

p ‘the current agent has a property p’.
C p ‘all the agents accessible via channels from the current agent satisfy p’.

@n 〈C〉m ‘there is a channel relation from n to m’.
〈C〉 B@n p ‘some agents accessible via channels from the current agent

believe that the agent n satisfies p’.

For the above property (or concept name) p in P, the readers can take Father, Mother,
Parents, etc. More examples can be found in [6,4].

Let us move to the semantics. Roughly speaking, we need to incorporate channel
structures between agents into Kripke frames of logic of belief. It is also natural to
assume that channel structures may vary through worlds from a given Kripke frame.
We also reflect this aspect into our semantics. A social Kripke frame (s-frame, in short)
F = (W, A,R,�) consists of a non-empty set W of possible worlds, a non-empty set A of
agents, A-indexed family R = (Ra)a∈A of binary relations on W 1 , and W-indexed family

1 This paper does not assume any assumption on R, but one can impose positive and/or negative
introspection as frame conditions, whose corresponding axioms are Bp → BBp and ¬ Bp →
B¬ Bp, respectively. As for the consistency 〈B〉	 of agents’ belief, one can add it in a static
setting, but our dynamic operator may destroy the corresponding frame condition (the seriality
of Ra). See Definition 8.
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� = (�w)w∈W of binary relations on A. Ra is the same concept as an accessibility relation
for the agent a in Kripke semantics for logic of belief, while �w⊆ A×A reflect the idea of
channel structures varying through worlds 2. Define Ra(w) := {w′ ∈ W |wRaw

′ }, i.e., all
the Ra-accessible worlds from w. A social Kripke model (s-model, in short)M = (F,V)
is a pair of s-frame F and a valuation V : N1 ∪ N2 ∪ P → P(W × A) satisfying V(i) =
{w } × A for some w ∈ W (i ∈ N1), and V(n) = W × { a } for some a ∈ A (n ∈ N2). If we
regard W×A as a two-dimensional space and W and A as x-axis and y-axis respectively,
then the denotation V(i) is a vertical line and the denotation V(a) is a horizontal line
over W ×A. When V(i) = {w }×A, we usually write i to mean w, and so, V(i) = { i }×A.
Similarly, we use the notation n as V(n) =W × { n }. Given any s-frame F = (W, A,R,�)
and a valuation V on F, we define a satisfaction relation |= as follows:

M, (w, a) |= i iff i = w,
M, (w, a) |= n iff n = a,
M, (w, a) |= p iff (w, a) ∈ V(p),
M, (w, a) |= ¬ϕ iff M, (w, a) |= ϕ,
M, (w, a) |= ϕ ∧ ψ iff M, (w, a) |= ϕ andM, (w, a) |= ψ,
M, (w, a) |= Bϕ iff wRaw

′ impliesM, (w′, a) |= ϕ, for all w′ ∈ W,
M, (w, a) |= Cϕ iff a �w a′ impliesM, (w, a′) |= ϕ, for all a′ ∈ A,
M, (w, a) |=@iϕ iff M, (i, a) |= ϕ,
M, (w, a) |=@nϕ iff M, (w, n) |= ϕ,
M, (w, a) |=↓ i. ϕ iff (F,V[i := w]), (w, a) |= ϕ,
M, (w, a) |=↓ n. ϕ iff (F,V[n := a]), (w, a) |= ϕ,

where V[i := w] (or V[n := a]) is the same valuation as V except V(i) = {w }×A (or V(n)
= W × { a }, respectively). ↓ i. and ↓ n. allow us to ‘bookmark’ the current world and
agent with the labels i and n, respectively. In order to avoid complication of notations,
we keep using nominals for bound variables of downarrow binders.

In the literatures of logic of belief, it is common to use the belief operator Bn p (read:
‘the agent n believes that ϕ’). In our setting, we can express the similar content by @nBϕ
whose semantics is calculated as

M, (w, a) |= @nBϕ iff wRnw
′ impliesM, (w′, n) |= ϕ, for all w′ ∈ W.

However, there is also a difference from epistemic/doxastic logics. For example, con-
sider @iB( - is in India). We can regard this formula as the property of agents that he/she
believes that he/she is in India at the state i. Therefore, we can talk about properties of
agents as well as properties of states.

Note that B@nϕ is different from @nBϕ, because the former tells the belief of the
current agent but the latter is concerned with the belief of the agent n. We read B@nϕ
as ‘the current agent believes that the agent n satisfies ϕ’.

Given any s-modelM and any set Γ of formulas,M, (w, a) |= Γ means thatM, (w, a) |=
ϕ for all ϕ ∈ Γ. Γ is valid onM (written:M |= Γ) ifM, (w, a) |= Γ for all (w, a) ofM. Γ
is valid on F if Γ is valid on (F,V) for all valuations V on F.

2 We do not impose any assumption on � = (�w)w∈W in this paper. For example, however, it
might be non-symmetric (the negation of symmetry). If we (informally) define � by a �w b
if the agent a have a phone number of the agent b at a state w, then we can regard �w as
non-symmetric.
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3 Running Examples of This Paper

Let us consider the following scenario: Ann just signed up Facebook and has no friend
yet. She is very interested in a new mobile (say, iPhone5) but does not decide to buy it.
She wants to get more friends in Facebook to listen to opinions from the others. Assume
that P = { p }, where ‘p’ means ‘- will buy a mobile’.

Definition 1. Define an ordinary Kripke model (S ,R, v) where S := { su, st, sf }, R :=
{ (su, st), (su, sf) } ∪ { (x, x) | x ∈ S } and v(p) := { st }.
We can regard (S ,R, v) as a s-model for a single agent, say Ann, as follows. Let A =
{ a } (a means ‘Ann’) and define W := S , Ra := R, �x := ∅ for all x ∈ S , and V(p) =
{ (st, a) }. Then, one can easily verify that Ann does not believe at su that she will buy a
mobile and that she will not buy it (i.e., neither Bp nor B¬ p is true at (su, a)), while she
believes at st (or sf) that she will buy a mobile (or will not buy it, respectively). This is
a reason why we employ the indices u, t, and f in the elements of S .

Suppose that Ann now got a friend, whose name is Bea. Bea and Cate, another user,
are friends, but Ann and Cate are not friends yet. In syntactic side, let us set up N2 =

{AN,BE,CA }. How can we construct s-model from the Kripke model (S ,R, v) above?
We regarded (S ,R, v) as modeling a single agent. In order to model a community of
three agents, it is natural to prepare three copies of (S ,R, v).
Definition 2. Define M1 = (W, A,R,�,V) as follows. Let W = S × S × S and A =
{ a, b, c }. When (xa, xb, xc) ∈ W, we assume that xa, xb, and xc represent the cur-
rent state of Ann (a), Bea (b), and Cate (c), respectively. As for R, we define Ra by
(xa, xb, xc)Ra(xa, xb, xc) iff xaRya, Rb by (xa, xb, xc)Rb(xa, xb, xc) iff xbRyb, and sim-
ilarly for Rc. Define �(xa,xb,xc) = { (a, b), (b, a), (b, c), (c, b) } for all (xa, xb, xc) ∈ W.
Finally, define a valuation V so as V(AN) = W × { a }, V(BE) = W × { b }, V(CA) =
W × { c } and ((xa, xb, xc), a) ∈ V(p) iff xa = st, ((xa, xb, xc), b) ∈ V(p) iff xb = st, and
((xa, xb, xc), c) ∈ V(p) iff xc = st. (remark that we assume P = { p }, and an arbitrary
valuation suffices for any i ∈ N1.)

An underlying idea of, e.g., Ra is that Ann cannot guess how Bea and Cate can imagine
their possible states from the current state.

Example 1. Suppose that all the agents except Cate will not buy a mobile, i.e.,
(su, su, st) ∈ W is a current tuple of states.

(i) Ann and Bea can see the state sf from su, while Cate cannot do that. Then, each of
Ann and Bea does not believe that she will buy a mobile, but Cate believes so. In
M1, Bea is a friend of Cate, and so,M1, ((su, su, st), b) |= 〈C〉 Bp (Bea has a friend
who believes that she will buy a mobile).

(ii) Let us also check an example of iterated belief: it is true that Bea does not be-
lieve that Ann believes that she will buy a mobile at (su, su, st) of M1. Let us see
why. Since Ann’s belief state is su, we obtain M1, ((su, su, st), a) |= ¬ Bp, which
impliesM1, ((su, su, st), b) |= ¬@ANBp. Since (su, su, st)Rb(su, su, st) holds, we fi-
nally obtain M1, ((su, su, st), b) |= ¬ B@ANBp. At (su, su, st) of M1, we can also
verify that Cate does not believe that Ann believes that she will buy a mobile:
M1, ((su, su, st), c) |= ¬ B@ANBp. �
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Consider the following modifications toM1: Later Bea and Cate are no longer friends,
but Ann and Bea are still friends. This gives us another s-modelM2.

Definition 3. Define s-model M2 as the same models as M1 except that we replace �
ofM1 with ≈(xa,xb,xc) = { (a, b), (b, a) } for all (xa, xb, xc) ∈ W.

Example 2. Now, in M2, Bea can no longer access Cate, and so, M2, ((su, su, st), b) |=
¬ 〈C〉 Bp (Bea does not have a friend who believes that she will buy a mobile). As for
the iterated beliefs above, we can still say that Bea and Cate do not believe that Ann
believes that she will buy a mobile at (su, su, st) of M2, because the truth of them is
independent of channel structures. �

Note that both of � ofM1 and ≈ ofM2 are constant or rigid, i.e., �(xa,xb,xc) is always the
same for all (xa, xb, xc) ∈ W and similarly for ≈ (we will consider a channel relation
depending on an element of W later in Example 3).

4 Dynamic Semantics for Context-Sensitive Agent Communication

When an agent informs one of the other agents of something, our basic assumption
is that we need a (context-dependent) channel between those agents. The notion of
channel was formalized in terms of �-relation in our s-model.

When the agents cooperate to achieve one goal, they need to communicate with each
other. Moreover, we assume that it is important to specify when agents communicate,
since each agent’s surroundings are ever changing. Even if a message to an agent a from
an agent b is useful to a at an instance t, it may become useless to a at an instant t + 1.
This is the difference from public announcement logic (PAL) by Plaza [7]. Rather, we
share the semantic idea with [8], where time-dependent command was proposed.

For this aim, what we want to do is to introduce the action operator [ϕ!m], whose
meaning is ‘after the current agent informs the agent m of “the current agent satisfies ϕ”
in the current state.’ If there is a channel from the current agent to m, this action [ϕ!m]
will change m’s belief only at the current state. Otherwise, the action [ϕ!m] will not
change m’s belief. If ϕ is @nψ, then [(@nψ)!m] means ‘after the current agent informs,
at the current state, the agent m of “the agent n satisfies ϕ”.’

There is a technical problem to introduce [ϕ!m] into our static syntax. We cannot
reduce the occurrences of [ϕ!m] when our syntax has two kinds of satisfaction operators
@i and @n. That is, [ϕ!m]@iψ ↔ @i[ϕ!m]ψ and [ϕ!m]@nψ ↔ @n[ϕ!m]ψ do not hold in
general. Let us concentrate on the first one. Since an inform-action [ϕ!m] occurs at the
world i in @i[ϕ!m]ψ, but it occurs at the current world in [ϕ!m]@iψ, the effects of two
actions should be different in terms of worlds.

In order to define [ϕ!m], we borrow the idea of [4, pp.184-6] to define an indexical
public announcement operator into this context. That is, we first introduce [ϕ!i

(n,m)] (‘af-
ter the agent n informs, in the state i, the agent m of “n is ϕ”, ψ’) for context-sensitive
agent communication, and then define our intended operator [ϕ!m] with the help of two
kinds of downarrow binders.

Let us expand our static syntax with a new dynamic operator [ϕ!i
(n,m)] and denote the

set of all formulas of this new syntax by F +. Given any s-modelsM = (W, A,R,�,V),
we can provide the semantic clause for [ϕ!i

(n,m)]ψ as follows.
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Table 1. Reduction Axioms for [ϕ!i
(n,m)]

[ϕ!i
(n,m) ]ψ ↔ ψ (ψ ∈ P ∪ N1 ∪ N2)

[ϕ!i
(n,m) ]¬ψ ↔ ¬[ϕ!i

(n,m) ]ψ
[ϕ!i

(n,m) ]ψ ∧ θ ↔ [ϕ!i
(n,m) ]ψ ∧ [ϕ!i

(n,m)]θ
[ϕ!i

(n,m) ]Cψ ↔ C[ϕ!i
(n,m) ]ψ

[ϕ!i
(n,m) ]Bψ ↔ ((m ∧ @n 〈C〉 m ∧ i) → B(@nϕ → [ϕ!i

(n,m) ]ψ))∧
(¬(m ∧ @n 〈C〉 m ∧ i) → B[ϕ!i

(n,m)]ψ)
[ϕ!i

(n,m) ]@ jψ ↔ @ j[ϕ!i
(n,m)]ψ ( j ∈ N1)

[ϕ!i
(n,m) ]@lψ ↔ @l[ϕ!i

(n,m) ]ψ (l ∈ N2)
[ϕ!i

(n,m) ] ↓ j. ψ ↔ ↓ j. [ϕ!i
(n,m) ]ψ ( j ∈ N1 is fresh in ϕ)

[ϕ!i
(n,m) ] ↓ l. ψ ↔ ↓ l. [ϕ!i

(n,m)]ψ (l ∈ N2 is fresh in n, m, and ϕ)

[ϕ!i
(n,m) ][ψ! j

(l,e) ]θ ↔ ((m ∧ @n 〈C〉 m ∧ i ∧ e ∧ @l 〈C〉 e ∧ j) → [(ϕ ∧ @l[ϕ!i
(n,m) ]ψ)!i

(n,m)]θ)∧
(¬(m ∧ @n 〈C〉 m ∧ i) ∧ e ∧ @l 〈C〉 e ∧ j) → [(@l[ϕ!i

(n,m)]ψ)!i
(n,m)]θ)∧

(¬(e ∧ @l 〈C〉 e ∧ j) → [ϕ!i
(n,m)]θ) (n,m, l, e ∈ N2)

M, (w, a) |= [ϕ!i
(n,m)]ψ iff Mϕ!i

(n,m) , (w, a) |= ψ,

whereMϕ!i
(n,m) = (W, A,Rϕ!i

(n,m) ,�,V) and R
ϕ!i

(n,m)
a is defined by

R
ϕ!i

(n,m)
a (w) =

{
Rm(w) ∩ �ϕ�n if a = m and n �w m and w = i;

Ra(w) o.w.

where �ϕ�a = {w ∈ W |M, (w, a) |= ϕ } for all a ∈ A.
Similarly to the static syntax, let us define the notion of validity for F +. Now, we

can define the following operators for context-sensitive agent communication:

[ϕ!(n,m)]ψ := ↓ i. [ϕ!i
(n,m)]ψ.

(‘after the agent n informs m of “n satisfies ϕ” in the current state, ψ’).
[ϕ!m]ψ := ↓ n. ↓ i. [ϕ!i

(n,m)]ψ.
(‘after the current agent informs m of “I satisfy ϕ” in the current state, ψ’).

Proposition 1. All the reduction axioms in Table 1 are valid on all s-frames.

5 Running Examples in Dynamic Context

In order to demonstrate that the action [ϕ!(n,m)] captures our motivation, let us consider
the following three successive inform-actions in Example 1 of section 3. Suppose that
the current world is (su, su, st) ofM1.

(i) Bea informs Ann that Ann will buy a mobile: [(@AN p)!(BE,AN)]
(ii) Ann informs Bea that Ann believes that she will buy a mobile: [(Bp)!(AN,BE)]

(iii) Bea informs Cate that Ann believes that she will buy a mobile: [(@ANBp)!(BE,CA)]

Recall from Example 1 that, at (su, su, st) ofM1, Ann does not believe that she will buy
a mobile (¬@ANBp). Recall also that Bea and Cate do not believe that Ann believes
that she will buy a mobile (¬@BEB@ANBp and ¬@CAB@ANBp). Let us see each effect
of the inform-actions above one by one.
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After the first inform action [(@AN p)!(BE,AN)] (this succeeds, since there is a channel
from Bea to Ann), Ann’s accessible worlds from (su, su, st) becomes { st } × S × S =
Ra((su, su, st)) ∩ �@AN p�b

3. Therefore, after the first action, Ann changes her belief,
i.e., she now believes that she will buy a mobile (@ANBp).

Since there is a channel from Ann to Bea in M1, the second action [(Bp)!(AN,BE)]
changes Bea’s accessible worlds from (su, su, st) into { st, su }×S ×S (note that the first
action does not change Bea’s accessibility relation). After the second inform-action,
Bea changes her belief on Ann , i.e., Bea now believes that Ann believes that she will
buy a mobile (@BEB@ANBp) at (su, su, st).

Because there is a channel from Bea to Cate inM1, the third action [(@ANBp)!(BE,CA)]
also succeeds in changing Cate’s accessible worlds from (su, su, st) into { st, su }×S ×S .
Then, after the above successive inform-actions, Cate changes her belief on Ann, i.e.,
Cate believes that Ann believes that she will buy a mobile (@CAB@ANBp) at (su, su, st).
This example demonstrates that, even if there is no direct channel between Ann and
Cate, message passing via channels can change Cate’s belief on Ann.

For comparison, consider the effect of the successive actions above at (su, su, st) of
M2 from Example 2 of section 3, where there is no channel from Bea to Cate. At this
world of M2, recall from Example 2 that Cate still does not believe that Ann believes
that she will buy a mobile (¬@CAB@ANBp). Unlike the case of M1, the third action
does not succeed in changing Cate’s accessible worlds from (su, su, st). Therefore, Cate
does not change her belief on Ann, i.e., Cate still does not believe that Ann believes that
she will buy a mobile (¬@CAB@ANBp) at (su, su, st).

Example 3 (Informing Channels). In our running example, channel relations ofM1 and
M2 are rigid, i.e., channel relations are invariant through all elements of W = S ×S ×S .
Let us consider non-rigid channels in this example and see an effect of informing a
channel itself between agents. Let us take the following requirement on a relationship
on Bea and Cate: Bea and Cate are friends in Facebook only when they have the same
opinion for deciding to buy a mobile. Following this requirement, define a new chan-
nel relation ∼ by: ∼(xa,xb,xc) = { (a, b), (b, a), (b, c), (c, b) } (if xb = xc) and ∼(xa,xb,xc) =

{ (a, b), (b, a) } (if xb � xc). We defineM3 as the same s-models except we use ∼ instead
of �. Note that channels between Ann and Bea are still rigid. Throughout this example,
we always assume that our current state is (su, su, st). Then, we can say at (su, su, st) of
M3 that Bea does not believe that she has a friend who will buy a mobile:

M3, ((su, su, st), b) |= ¬ B 〈C〉 p.

This is because (su, su, st)Rb(su, su, st) and Bea does not have a friend who will buy a
mobile at (su, su, st) ofM3 (note that Bea’s belief state su is different from Cate’s belief
state st).

Suppose that Ann and Cate are not friends in Facebook, but they are so in real life.
Cate told Ann that she will buy a mobile and that she wants to be a friend of Bea in
Facebook. After chatting with Cate, Ann made the following successive inform-actions
in Facebook:

3 Note that �@AN p�b = �p�a = { st } × S × S inM1 and Ra((su, su, st)) = S × S × S .
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(i) Ann informs of Bea that Cate will buy a mobile: [(@CA p)!(AN,BE)].
(ii) Ann informs of Bea that Cate is a friend of Bea: [(@CA 〈C〉BE)!(AN,BE)].

After the first action at (su, su, st) of M3 (note that there is always a channel between
Ann and Bea), Bea’s accessible worlds from (su, su, st) become S × S × { st }. Fur-
thermore, the second action will change Bea’s accessible worlds from (su, su, st) into
S ×{ st }× { st }. After these two actions, Bea can only access to the tuple of states where
both Bea and Cate will buy a mobile, i.e., Bea and Cate are friends by our definition of
∼. Therefore, after the above successive inform-action, Bea now believes that she has a
friend who will buy a mobile. That is,

M3, ((su, su, st), b) |= [(@CA p)!(AN,BE)][(@CA 〈C〉BE)!(AN,BE)]B 〈C〉 p.

In this way, an action of informing a channel itself can also change agents’ belief. �

6 Complete Axiomatizations of Static and Dynamic Logics

6.1 Hilbert-Style Axiomatization of Static Logic with Global Assumptions

This section gives a complete axiomatization of our intended logic in the static syntax.
If concept names Mother, Father, Parents are in P, it is natural to assume the equiv-

alence (Mother∨ Father) ↔ Parents (regarded as ‘TBox’ in description logic [6]). We
want to validate this particular equivalence at all agents and worlds in a given s-model.
In this sense, we call it a global assumption. A global assumption could be any formula
of F but it should be regarded as axioms in the level of s-model but not in the level of
s-frame. In what follows, we will give a semantic consequence relation and a deducibil-
ity relation of our static syntax under the existence of global assumptions, which will
increase an applicability of our framework.

Definition 4. Given a set Φ of global assumptions and a class F of s-frames, ϕ is a
local consequence of Ψ under global assumptions Φ for F (notation: Φ;Ψ |=F ϕ) if,
for all F = (W, A,R,�) ∈ F and all valuations V on F such that (F,V) |= Φ holds,
(F,V), (w, a) |= Ψ implies (F,V), (w, a) |= ϕ for all (w, a) ∈ W × A.

Note that we restrict our attention to the set of valuations V on F such that Φ is valid on
s-model (F,V) in this definition.

Let us move to the corresponding proof-theoretic derivability relation to Φ;Ψ |=F ϕ.
First of all, we do not allow the following uniform substitutions to global assumptions.

Definition 5. σ is a uniform substitution if it is the inductive extension of a mapping
sending p ∈ P to a formula and a nominal of Nu to a nominal of Nu (u = 1, 2).

If we allows global assumptions to be closed under uniform substitutions, we can derive
from (Mother∨Father) ↔ Parents that (Woman∨Man) ↔ Parents, which is undesir-
able. On the other hand, we want to allow uniform substitutions to logical axioms such
as tautologies, basic axioms of modal logic. Therefore, in order to incorporate global
assumptions to a deducibility relation, we need to restrict the use of uniform substitu-
tions carefully. First, we define the theoremhood under frame axioms (to capture the
information of F in Φ;Ψ |=F ϕ) and global assumptionsΦ, and then define our intended
deducibility relation.
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Table 2. Axioms and Rules of Two-dimensional Hybrid Logic for Agent Beliefs via Channels

Modal Axioms
CT all classical tautologies
K �(p → q) → (�p → �q) (� ∈ { B,C }).

Hybrid Axioms for Nominals and Satisfaction Operators
K@ @α(p → q) → (@αp → @αq), where α = i or n.
Dual ¬@αp ↔ @α ¬ p, where α = i or n.
Ref @αα, where α = i or a.
Intro α ∧ p → @αp, where α = i or n.
Agree @α@βp → @βp, where (α, β) = (i, j) or (n,m).
BackB @i p → B@i p.
BackC @n p → C@n p.

Hybrid Axioms for Downarrow Binders
DA1 @ j(↓ j. ϕ ↔ ϕ[i/ j])
DA2 @n(↓ m. ϕ ↔ ϕ[n/m])

Interaction Axioms
Com@ @n@i p ↔ @i@n p
Red@1 @ia ↔ a
Red@2 @ni ↔ i
DcomB@2 @nBp ↔ @nB@n p
DcomC@1 @iCp ↔ @iC@i p

Rules
MP ϕ → ψ, ϕ/ψ
Nec� ϕ/�ϕ (� ∈ { B,C }).
Nec@ ϕ/@αϕ (α ∈ N1 ∪ N2).
Name α→ ϕ/ϕ, where α ∈ N1 ∪ N2 does not occur in ϕ.
BGB @i 〈B〉 j → @ jϕ/@iBϕ,where i, j ∈ N1 and j � i does not appear in ϕ.
BGC @n 〈C〉 m → @nϕ/@nCϕ,where n,m ∈ N2 and m � n does not appear in ϕ.

Definition 6. Given any set A of formulas, regarded as the frame axioms, we write
Φ �A ϕ if ϕ in the smallest set of formulas that contains Φ and all the substitution
instances of both A and all the axioms listed in Table 2 and is closed under all the
rules of Table 2. We say that ϕ is derivable from Ψ under global assumptions Φ and
frame axioms A (written: Φ;Ψ �A ϕ) if there is a finite subset Ψ ′ ⊆ Ψ such that
Φ �A ∧Ψ ′ → ϕ, where

∧
Ψ ′ is the conjunction of all finite elements of Ψ ′.

Remark that we do not require global assumptions Φ to be closed under uniform sub-
stitutions in this definition, while we require frame axioms A and the axioms in Ta-
ble 2 to be closed under uniform substitutions. Therefore, B(ϕ → ψ) → (Bϕ →
Bψ) is derivable (from ∅) under any global assumptions and any frame axioms, but
(Woman ∨ Man) ↔ Parents is not derivable (from ∅) under a global assumption
(Mother ∨ Father) ↔ Parents and no frame axioms.

Definition 7. We say that a set Γ of formulas defines a class F of s-frames if, for all
F ∈ F, Γ is valid on F iff F ∈ F.

In what follows in this paper, we denote the class of all s-frames by Fall.

Proposition 2 (Soundness). Let A, Φ, Ψ ∪{ϕ } ⊆ F and A define F. Then, Φ;Ψ �A ϕ
implies Φ;Ψ |=F ϕ. In particular, Φ;Ψ �∅ ϕ implies Φ;Ψ |=Fall ϕ.

Proof. Let us only check the validity of @nBp ↔ @nB@n p. Fix any s-model M and
any (w, a) of M. Then, M, (w, a) |= @nBp iff M, (w, n) |= Bp iff wRnw

′ implies
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M, (w′, n) |= p for all w′ ∈ W iff wRnw
′ impliesM, (w′, n) |= @n p for all w′ ∈ W iff

M, (w, n) |= B@n p iff M, (w, a) |= @nB@n p, as required. ��

Let us say that ϕ ∈ F is a pure formula if it does not contain any symbol from P.

Theorem 1 (Strong Completeness). Let A be a set of pure formulas and A define a
class F of s-frames. Given any sets Φ, Ψ ∪ {ϕ } ⊆ F , Φ;Ψ |=F ϕ implies Φ;Ψ �A ϕ. In
particular, Φ;Ψ |=Fall ϕ implies Φ;Ψ �∅ ϕ.

Proof (Sketch). A basic idea of the proof is a combination of completeness arguments
in [9] (to deal with global assumptions) and [10] (to handle two-dimensionality of our
static syntax). We show the contrapositive implication. Let us say that Ψ is (A, Φ)-
consistent ifΦ;Ψ �A ⊥. SupposeΦ;Ψ �A ϕ, i.e.,Ψ∪{¬ ϕ } is (A, Φ)-consistent. A key
idea for global assumptions here is to employ the following ‘doubly’ @-prefixed for-
mulas: Given any set Σ ⊆ F , we define @Σ := {@i@nϕ | ϕ ∈ Σ and (i, n) ∈ N1 × N2 }.
A subset of @F is called an ABox (we followed the terminology of [9]). A maximally
(A, Φ)-consistent ABox is a ⊆-maximal element among (A, Φ)-consistent ABoxes. By
Lindenbaum construction, we use fresh nominals as if Henkin-constants in FOL and
construct a maximally (A, Φ)-consistent ABox Σ such that @i@nΨ ∪ {¬ϕ } ⊆ Σ
for some nominals (i, n). Then, we define the Henkin-style canonical model MΣ =

(WΣ, AΣ,RΣ,�Σ,VΣ) consisting of:

– WΣ := { |i| | i ∈ N1 }, where |i| := { j |@i@n j ∈ Σ for some n ∈ N2 }.
– AΣ := { [n] | n ∈ N2 }, where [n] := {m |@i@m j ∈ Σ for some i ∈ N1 }.
– |i|RΣ

[n]| j| iff @i@n 〈B〉 j ∈ Σ
– [n] �Σ

|i| [m] iff @i@n 〈C〉m ∈ Σ.
– (|i|, [n]) ∈ V(ϕ) iff @i@nϕ ∈ Σ (ϕ ∈ P ∪ N1 ∪ N2).

By @i@nΨ ∪ {¬ϕ } ⊆ Σ, we can show MΣ, (|i|, [n]) |= Ψ but MΣ, (|i|, [n]) |= ϕ (here
we need interaction axioms of Table 2). By construction, we can assure that MΣ |= Φ.
Moreover, (WΣ, AΣ,RΣ,�Σ) is in F, since A defines F and A is a set of pure formulas
and all points of WΣ and AΣ are named by some nominals. Therefore, Φ;Ψ |=F ϕ, as
required. ��

Example 4. (i) A1 = {@n ¬ 〈C〉 n,@n 〈C〉m → @m 〈C〉 n } de-
fines irreflexivity and symmetry of �w and A2 =

{@i 〈B〉 i,@i 〈B〉 j → @ j 〈B〉 i, (@i 〈B〉 j ∧ @ j 〈B〉 k) → @i 〈B〉 k } defines that
Ra is an equivalence relation. By Theorem 1, the union of those pure axioms
provides a complete axiomatization of a hybrid expansion of Facebook Logic [4].

(ii) Global axioms Φ1 = { (Mother ∨ Father) ↔ Parents } assure us that concept
name Parents has an intended definition in the level of s-model. Φ2 =

{@AN 〈C〉BE,@BE 〈C〉AN } assure us that we can restrict our attention to the s-
models where there are two-way channels between Ann and Bea. We can augment
our logic with global assumptions Φ1 ∪ Φ2 and frame axioms A1 ∪ A2 without
losing our completeness result. �
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6.2 Complete Axiomatization of Dynamic Logic via Reduction Axioms

Similarly to the static syntax, we define the notions of definability, semantic conse-
quence relation Φ;Ψ |=F ϕ, etc. also for the set F + of all formulas in the static syntax
with [ϕ!i

(n,m)]. Given any Φ,Ψ ⊆ F +, let us define Φ;Ψ �+A ϕ if there exists some finite
subset Ψ ′ such that

∧
Ψ ′ → ϕ is in the smallest set of F + such that it contains Φ, all

reduction axioms of Table 1 and all the substitution instances of both A and the ax-
ioms of Table 2 and that it is closed under all the rules of Table 2. Note that we do not
require that global assumptions Φ and the reduction axioms are closed under uniform
substitutions. Note that we do not require that global assumptions Φ and the reduction
axioms are closed under uniform substitutions. Let us introduce one terminology, which
is important for a completeness result of our dynamic logic.

Definition 8. We say that Σ ⊆ F is invariant under informing actions ifM |= Σ implies
Mϕ!i

(m,n) |= Σ, for all s-modelM and all dynamic operators [ϕ!i
(m,n)].

Global assumptions Φ1 ∪ Φ2 of Example 4 is invariant under informing actions, since
all formulas in the set contain no occurrence of the operator B. One can also check
that frame axioms A1 ∪ A2 of Example 4 is invariant under informing actions, since
the corresponding frame properties of the axioms are preserved under informing ac-
tions. However, the axiom 〈B〉	 (consistency of agents’ belief) is not invariant under
informing actions.

Theorem 2 (Strong Completeness). Let Φ ⊆ F and a set A ⊆ F of pure formulas
define a class F of s-frames. Suppose that Φ and A are invariant under informing
actions. Then, for any Ψ ∪ {ϕ } ⊆ F +, Φ;Ψ �+A ϕ iff Φ;Ψ |=F ϕ. In particular,
Φ;Ψ �+∅ ϕ iff Φ;Ψ |=Fall ϕ.

Proof. Here we only establish the right-to-left direction (completeness), since sound-
ness follows Proposition 1. By reduction axioms of Table 1, let us fix a translation
τ : F + → F such that ϕ ↔ τ(ϕ) is valid on F for all ϕ ∈ F +. For our goal, let us as-
sume that Φ;Ψ |=F ϕ. We can show Φ; t[Ψ ] |=F t(ϕ) in the syntax of F as follows. Take
any s-frame F ∈ F and any valuation V such thatM |= Φ, whereM = (F,V). Moreover,
assume that M, (w, a) |= t[Ψ ]. We need to establish M, (w, a) |= t(ϕ). Then, also in the
syntax of F +, we obtain M |= Φ and M, (w, a) |= t[Ψ ], which implies M, (w, a) |= Ψ
by definition of τ. By assumption, M, (w, a) |= ϕ hence M, (w, a) |= t(ϕ), as desired.
Then, we can proceed as follows: Φ; t[Ψ ] |=F t(ϕ) iff Φ; t[Ψ ] �A t(ϕ) by Proposition
2 and Theorem 1. By definition of �+A in F +, Φ; t[Ψ ] �+A t(ϕ). By the translation τ by
reduction axioms, this is equivalent with Φ;Ψ �+A ϕ, as required. ��

7 Conclusion

In connection with our three requirements: (i), (ii), and (iii) in the introduction, our con-
tribution can be summarized as follows. (i) First, we employed the notion of local an-
nouncement, contrary to the public announcement operator [7], assuming the existence
of channels between agents for the individual announcement. (ii) Next, we proposed
that agents’ communicability should depend on agents’ belief situation. As preceding
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works, [11] assumed that the social network relations were context-independent. How-
ever, we regarded that communicability might change dependent on environments in
which the agent is embedded. (iii) Finally, we contended that an effect of informing
action at a given state should be valid only on the state. In order to realize the require-
ment (iii) (locality of an effect of an announcement), we have employed the downarrow
binders. One might wonder if this choice is essential for (iii). Moreover, some reader
might want not to add nominals for states to epistemic/doxastic logic. It would be inter-
esting to find an alternative way without state-nominals to realize (iii).

We have provided sound and complete axiomatizations of static and dynamic parts
of our logic. Here, let us comment on a decidability question. A satisfiability problem
for hybrid logic with the downarrow binder is undecidable (cf. [5]). Therefore, we con-
jecture that a satisfiability problem of our two-dimensional syntax with the downarrow
binder is also undecidable. Even if we restrict our attention to the fragment without the
downarrow binder, it is still unknown that the satisfiability problem of the fragment is
decidable (see [10]). We leave these satisfiability questions for our further investigation.
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On Kripke’s Puzzle about Time and Thought
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Kripke [Kp] formulates the following puzzle.
At any moment of time, Kripke might be thinking of a certain set of times.1

For example, the set of all times when TV was unknown. Or the set of all times
when interplanetary travel will be commonplace and the like. Kripke proceeds.

However, there is a problem: suppose I think at a certain time t0 of the
set S0 where S0 contains all times t at which I’m thinking of a given set
St of times, and St does not include t itself. In conventional notation:

S0 = {t|St exists & t �∈ St}
Now, I am thinking of S0 at a certain time t0. Is t0 a member of S0 or
not? The reader can fill in the resulting paradox for herself.

Before addressing Kripke’s problem, let us turn to another Harvard philosopher,
namely Hilary Putnam who is famous for not being able to distinguish a beech
from an elm. Suppose that Putnam is looking at a tree in a friend’s backyard
and says, “I think that tree might be a beech.”

� Research supported in part by a grant from CUNY’s FRAP program.
1 One question which might be raised here is What does thinking of something amount
to? It is not clear to me what Kripke’s notion of ‘thinking of something’ is. I have
used an approach where syntax is an intermediary to semantics which is then used
to think of things. Thus I shall take the point of view that thinking of some X is
mentally repeating some words intended to denote X. If there is such an X, and is
denoted by the expression one has mentally repeated then in normal circumstances
one has succeeded in thinking of X. However, surely that is not the only way. Perhaps
one thinks of someone by having a picture of him in one’s mind. So I might think
of Quine, not by saying the word to myself but remembering him. But remembering
how? In his office? Giving a lecture at CUNY? If I remember him giving a lecture and
someone else remembers him walking through Harvard yard, then are we thinking
of different persons? If I read Borges’ The Aleph in English and Adriana reads it in
Spanish then when we think about The Aleph are we thinking of the same book? I
shall avoid such questions by simply assuming that thinking of Quine amounts to
saying the word to oneself provided one satisfies the required conditions viz: one has
met Quine or read one of his papers or met someone who knew Quine, or whatever.
A second reason for going the linguistic route is that while at least a weak case can
be made that one can think of Quine by having a mental image of him, it seems
implausible that one can think of S0 without going the linguistic route. [Sm] discusses
some of these questions though in a different context.

K. Lodaya (Ed.): ICLA 2013, LNAI 7750, pp. 121–126, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



122 R. Parikh

The friend responds, “Do you mean to say that my tree is a member of the
set of all beech trees?”, and Putnam responds, “Yes, just that. I think your tree
is a member of the set of beech trees.”

Now Putnam does not know whether the tree in question is a beech or not.
May we nonetheless say that Putnam is thinking of the set B of beech trees and
wondering if the tree in question belongs to B?

Surely yes. Putnam does not need to be able to tell a beech tree by sight in
order to think of the set B, just as we can think of Aristotle without having the
ability to recognize him by sight. Here is the quote from Putnam:

Suppose you are like me and cannot tell an elm from a beech tree. We
still say that the extension of ‘elm’ in my idiolect is the same as the
extension of ‘elm’ in anyone else’s, viz., the set of all elm trees, and
that the set of all beech trees is the extension of ‘beech’ in both of our
idiolects. Thus ‘elm’ in my idiolect has a different extension from ‘beech’
in your idiolect (as it should). Is it really credible that this difference
in extension is brought about by some difference in our concepts? My
concept of an elm tree is exactly the same as my concept of a beech tree
(I blush to confess).

And again:

The last two examples depend upon a fact about language that seems,
surprisingly, never to have been pointed out: that there is division of
linguistic labor. We could hardly use such words as ‘elm’ and ‘aluminum’
if no one possessed a way of recognizing elm trees and aluminum metal;
but not everyone to whom the distinction is important has to be able
to make the distinction. Let us shift the example; consider gold. Gold
is important for many reasons: it is a precious metal; it is a monetary
metal; it has symbolic value (it is important to most people that the
“gold” wedding ring they wear really consist of gold and not just look
gold); etc. Consider our community as a “factory”: in this “factory” some
people have the “job” of wearing gold wedding rings; other people have
the “job” of selling gold wedding rings; still other people have the job of
telling whether or not something is really gold. It is not at all necessary
or efficient that every one who wears a gold ring (or a gold cufflink, etc.),
or discusses the “gold standard,” etc., engage in buying and selling gold.
Nor is it necessary or efficient that every one who buys and sells gold be
able to tell whether or not something is really gold in a society where
this form of dishonesty is uncommon (selling fake gold) and in which
one can easily consult an expert in case of doubt. And it is certainly not
necessary or efficient that every one who has occasion to buy or wear
gold be able to tell with any reliability whether or not something is really
gold.

The foregoing facts are just examples of mundane division of labor
(in a wide sense). But they engender a division of linguistic labor: every
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one to whom gold is important for any reason has to acquire the word
‘gold’; but he does not have to acquire the method of recognizing whether
something is or is not gold.

Thus a chain extending from us to Aristotle enables us to think of him, (see
[Kn]), and the community of horticulturists enables Putnam to think of the set
B. He can just say the word “beech” or think it, and he thinks of B.

The work of deciding on the denotation of the word “beech” is done by society
and it is society which helps Putnam “think of” the set of beech trees by just
using the word “beech”. There is a linguistic division of labor. Putnam thinks
the word “beech” and the community sees to it that he is thinking of the set of
beeches.

For another example, I can speak about (and think of) the set of physicists
currently at CERN without knowing whether my friend Pran Nath is currently
at CERN or not. If he is, then he is a member of the set I am thinking about
and if not then not. I do not need a mental image of all the physicists lined up
in a row, nor do I need to know whether Pran is at Cern. The community does
part of the work for me by deciding who is to be counted as a physicist and Pran
does part of the work by being at CERN or by not being at CERN. All I need
is the phrase “the set of physicists currently at CERN.

In Putnam’s case, Putnam does not play any role in deciding what a beech
tree is and in my case I do not play a role in deciding what the word “physicist”
means or who is at CERN. And it is Putnam’s non-interference with the meaning
of “beech” and my non-interference (as we shall see) with physicisthood that
enables us to use the word or the phrase to think of something.

Before returning to Kripke’s puzzle, let us consider another, practical problem.
Mr. Smith wants to listen to a lecture by Kripke, but it turns out that the room
in which Kripke is speaking is full. However, CUNY has considerately provided
rooms A and B in which a video transmission of the lecture can be heard.
Smith goes into room A and starts listening when he suddenly realizes that
there a problem. It is Thursday evening, and Smith belongs to a religion which
allows him to listen to a lecture on a Thursday only if the room in which he is
doing the listening has an odd number of people in it (including Smith himself).
Unfortunately (and Smith counts) there are 20 people in room A including Smith.
Clearly Smith cannot stay in room A.

But then he looks across the hall and sees that room B only has 11 people in
it. “Aha!” says Smith and proceeds to room B. He sits down and starts to listen.
But after a minute or two his conscience starts to trouble him and he counts the
number of people in room B. The number, alas, is 12. Clearly Smith cannot stay
in B and proceeds back to A which, he can now see, only has 19 people. We need
not trouble ourselves more with Smith’s quandary. Perhaps he just goes home.
Or perhaps he pays someone in A to move to room B.

Smith’s problem is a convoluted version of a simpler problem. Can I enter
an empty elevator? Yes, if all I ask is that the elevator be empty prior to my
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entering it. But if I demand that the elevator be empty after I have entered it,
then I am going to be frustrated.2

We do have occasion to worry that we are not able to enter a full elevator,
especially if we are late for class. But not many of us worry about not being
able to enter an empty elevator. “Empty elevator”, in common usage means an
elevator which is empty when seen from outside.

As for Smith, it is quite likely that had Russell written to Frege about Smith,
Frege might not have been particularly concerned. He might just have advised
Smith to convert to a more practical religion.

Let us now return to Kripke’s problem. Let us assume that at each moment
of time, Kripke is mentally uttering a word or phrase to himself. Perhaps the
phrase is, “the set of all times when TV was unknown.” Let p be the phrase and
TVU be that set. The meaning M(p) of p is TVU and by thinking p, Kripke can
think of TVU.

Very possibly Kripke does not know exactly when TV became known (known
to how many?) but (as I have argued) he can think of the set TVU just by
mentally uttering the phrase p.

The meaning function M such that M(p) = TVU is determined by society,
i.e., by people including Kripke, but many many others as well, and certain facts
about television.

But now what happens if Kripke utters “S0 ” to himself at time t0? What
set is he thinking of? The answer to that is presumably, M(S0). We have the
expression “S0” and all we need now is the function M. We can then look to see
if t0 ∈M(S0).

The trouble is that if at time t0 Kripke had not thought “S0” but thought
p instead, then t0 would have been in the value M(S0). For M(p) as a set of
times would have been empty. But Kripke unwisely did not think p. Instead, he
thought “S0” and by thinking “S0” he put t0 out of M(S0). But no, by putting
t0 out, he put it back in, etc. etc.

The fact that Kripke is thinking “S0” is not the problem. The problem lies
in the fact that Kripke is interfering with the meaning function M by thinking
“S0”.

In particular, if Kripke is uttering “S0” to himself at time t0, does M(S0) have
the property of containing t0? Clearly the rest of us cannot help Kripke here. He
will have to make up his own mind about M, just as Mr. Smith had to make up
his mind whether to go home or pay someone to move from room A to room B,
or perhaps convert to some other religion.3

In sum, are Kripke’s troubles any worse than Smith’s? I am not convinced that
they are. Let me now present a baby result which generalizes Kripke’s examples

2 For an even more alarming example, if a man cannot marry a married woman, and
he cannot marry an unmarried woman, then marriage would come to an end. It is
clever of mankind to decide that “an unmarried woman” means a woman who is
unmarried before she says “I do”.

3 Or he could go to a room with an even number of people in it, knowing that the
number would be odd when he went in.
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of TV and interplanetary travel. In both cases, Kripke was able to make use of
society’s denotation of certain phrases by leaving the meaning function alone.

Let M be a function which takes a moment t of time and a phrase p to
produce a set. M may not depend on t at all. For example M(p,t) where p
is “the set of all times when TV was unknown” does not depend on t at all
– it is not indexical. But we will allow indexicality. Thus if Humpty Dumpty
says, “from now on ‘horse’ means a cow” and we allow him this indulgence, then
after Humpty Dumpty’s remark, we can think of the set of cows just by using the
word “horse”. So we allow M to depend on certain data, like Humpty Dumpty’s
remark about the word “horse”. If Kripke uses the function M to think of
some set, he can use his own behavior prior to the moment of his use of some
phrase p.

So let M be such a meaning function M(p,t,d) where p is a noun phrase, t
is a time, and d are some data about the world (but only prior to times before
t) and the thoughts of everyone including Kripke prior to time t. If two sets of
data d and d’ agree on all sets of times up to but not including t, then M(p,t,d)
and M(p,t,d’) are required to be the same.

Definition 1. Suppose that at time t, some agent a is thinking some expression
p, and the meaning function of a’s community at time t is M(t, . ) then agent a
is said to be thinking of the object M(t,p).4

Suppose now that Kripke decides to think “S0” at time t0. That fact is not part
of the data at time t. So M(S0, t0, d) is already determined and either contains t0
or does not. What Kripke thinks at time t0 is not part of the data, and does not
affect M, but he certainly is free to use an already existing M to think whatever
he likes. That Kripke is thinking “S0” is certainly allowed to be an argument to
M, but is not allowed to interfere with M itself.5

Conclusion: Can I enter an empty room? Yes, I can, provided that I decide
beforehand that “empty” means “empty before I enter.”

One can think of other, more benign cases as well. For instance, suppose
Kripke thinks at a certain time t0 of the set T0 where T0 contains all times t
at which he is thinking of a given set Tt of times, and Tt does include t itself.

4 I am ignoring issues where what the agent intends to think of is not denoted by
the expression that the agent is actually using. For instance suppose Paul says to
Shyamasundar, “How is the weather in Madras these days?” Then Shyamasundar
might respond, “There is no such place as Madras. You are probably thinking of
Chennai. The weather in Chennai is fine”. Here we would say that in using the
expression “Madras” Paul is actually thinking of Chennai. I will ignore this problem
since it is not germane to Kripke’s worries in [Kp]. That issue is, however, addressed
by Kripke under speaker meaning [Ks]. See also [D].

5 What if we want M to be able to depend on physical facts like the sun turning into
a giant red star, after time t? We can accomodate such a need by making M depend
on two kinds of data, linguistic data dl up to but not including time t, and physical
facts dp including those from times after t.
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Is t0 then a member of T0? Here, instead of no solution, we have two consistent
solutions, rather like the situation with Henkin’s problem.

Henkin [H] asked if the formula of Peano Arithmetic which “says”, “I am
provable” is provable. The formula could be true and provable or it could be
false and unprovable. Unlike the Gödel formula which said “I am not provable”,
Henkin’s formula gives no such trouble but leaves us with a choice. Löb [L]
eventually gave a positive answer, the Henkin formula is provable. But before
Löb did so, both answers, positive and negative, were plausible. Kripke’s theory
of truth [Kt] goes into similar issues in great depth, but we shall simply stop
here.

Acknowledgements. Thanks to Jim Cox, Paul Pedersen, Hilary Putnam, Gra-
ham Priest, Noson Yanofsky and the referees for comments.

References

[D] Donnellan, K.: Refererence and definite descriptions. The Philosophical Review 75,
281–304 (1966)

[H] Henkin, L.: A problem concerning provability. J. Symbolic Logic 17, 160 (1952)
[Kt] Kripke, S.: Outline of a theory of truth. Journal of Philosophy 17, 690–716 (1975)
[Kn] Kripke, S.: Naming and Necessity. Harvard University Press (1980)
[Ks] Kripke, S.: Speaker’s reference and semantic reference. Midwest Studies in Phi-

losophy, 255–276 (1977)
[Kp] Kripke, S.: A puzzle about time and thought. In: Philosophical Troubles, ch. 13.

Oxford University Press (2011)
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Abstract. We investigate the properties of Yablo sentences and for-
mulas in theories of truth. Questions concerning provability of Yablo
sentences in various truth systems, their provable equivalence, and their
equivalence to the statements of their own untruth are discussed and
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1 Introduction

In 1993 Stephen Yablo presented a new paradox, belonging to the liar-type
group, but, as it was claimed, importantly different from the liar (see [12], but
cf. also [11] for a similar reasoning). Let T (x) abbreviate “x is true”. Consider
an infinite sequence of sentences Y0, Y1, Y2, . . . such that

Y0 states : ∀z > 0 ¬T (Yz),

Y1 states : ∀z > 1 ¬T (Yz),

Y2 states : ∀z > 2 ¬T (Yz),

...

In effect Yn states that all sentences which appear after stage n in the series are
not true. Assume now that Yk is true. Then for any i > k, Yi is not true, and in
particular Yk+1 is not true. But also for any i > k + 1, Yi is not true, so Yk+1,
therefore Yk+1 is true after all, which is impossible. Since the reasoning goes for
an arbitrary k, we know at this point that all Yk-s are not true. Therefore Y0

must be true and in this way we obtain a contradiction.
The above reasoning has been presented by Stephen Yablo as a “paradox

without self-reference”: apparently it involves no direct or indirect self-referential
loops, since on the face of it all the Yn-s say something only about sentences
which appear later in the sequence (i.e. after stage n). The question whether the
paradox is really self-reference free has been much debated in recent literature.1

However, the possibility of giving here a general, unanimous verdict seems very
problematic: the main obstacle is that at present we do not seem to have a clear

1 In particular, Sorensen in [9] defends the non-circularity of Yablo’s paradox; but see
also [8] and [1] for the criticism of the non-circularity claim.
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concept of self-reference or (more generally) of ’aboutness’, against which the
issue of self-referentiality of Yablo sentences could be decided.2

In view of that, I will avoid here the notion of self-referentiality, adopting
instead a different approach. The central notion will be that of provability in
various systems of truth; the plan is to consider the following main questions:
(1) which Yablo sentences are provable/disprovable in a given truth theory? (2)
are all Yablo sentences provably equivalent in a given theory? (3) are Yablo
sentences like the liars - are they (provably in a given theory) equivalent to the
statements of their own untruth? (4) to what extent does the answer to (1)–(3)
depend on our choice of a Yablo formula Y (x)?

Question (1) is perhaps the most basic one – we want to know after all whether
a given theory settles in any way the issue of Yablo sentences. Questions (2) and
(3) are motivated by discussions of (non)self-referentiality of Yablo sentences.
While the notion of a self-referential sentence remains vague, one can use precise,
formal tools in order to investigate whether all Yablo sentences are one and the
same up to provability in a given theory,3 and also whether they all fit into
(again, up to provability) the familiar Liar-type pattern. Question (4) relates
to the fact that in general it is possible to obtain sentences with quite different
properties satisfying one and the same formal constraint. We ask in effect if the
Yablo condition by itself (corresponding roughly to a general specification of
what is stated by each Yablo sentence) is enough to determine the answers to
(1) – (3).4

2 Preliminaries

We start with introducing the notions of a Yablo formula and a Yablo sentence
with respect to a theory S. In what follows we will always assume that S is a
theory formulated in the language LT , specified as the language of first order
arithmetic extended with a one place predicate T (x). We will use Feferman’s
dot notation, so e.g. if ϕ is a formula with one free variable, the expression
“∀xT (
ϕ(ẋ)�)” gets a reading: “for all natural numbers x, the result of substi-
tuting a numeral denoting x for a variable free in ϕ is true”. In practice if there
is no danger of ambiguity, we will often suppress both the dots and the square
corners.

2 This observation was made by Leitgeb. After analysing various unsuccessful attempts
to express the notion of self-referentiality, he even voices the suspicion that “the talk
of self-referentiality is to be banished from scientific contexts” (see [7], p. 13; but see
also [10] for a defence of this notion).

3 The real issue concerns implications “Y (n) → Y (k)” for n > k, since for n < k the
implication is trivial given sufficiently strong background theory.

4 A similar approach was adopted in [3] – a paper devoted to the analysis of Yablo’s
reasoning with various provability predicates substituted for truth. One of the main
issues is then which variants of Yablo sentences are provably equivalent over a back-
ground arithmetical theory.
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Definition 1. Let S be a theory in the language LT . We say that Y (x) is a
Yablo formula in S iff it satisfies (provably in S) the Yablo condition, i.e. iff
S ! ∀x[Y (x) ≡ ∀z > x¬T (
Y (ż)�)]. Yablo sentences are obtained by substituting
numerals for x in Y (x).

Using familiar diagonal techniques, it is easy to prove the existence of Yablo
formulas for all theories extending Robinson’s arithmetic.5

Theorem 2. For every theory S in LT extending Robinson’s arithmetic, there
is a Yablo formula in S.

In the proof we employ the diagonal lemma in the following form:

Lemma 3. Let S be a theory in LT extending Robinson’s arithmetic. Then for
every ϕ(x, y) ∈ LT there is a formula ψ(x) such that:

S ! ψ(x) ≡ ϕ(x, 
ψ(x)�)

The proof mimics the usual proof of the diagonal lemma for formulas with one
free variable.

With the lemma at hand, the argument for Theorem 2 proceeds as follows.

Proof. Fix:

ϕ(x, y) := ∀z > x¬T (sub(y, name(z))).

with “sub(y, s)” representing the substitution function (which produces the re-
sult of substituting s for a free variable in y) and “name(x)” representing a
function which for an argument x produces as a value a numeral denoting x.6

By the diagonal lemma, take Y (x) such that:

S ! Y (x) ≡ ∀z > x¬T (sub(
Y (x)�, name(z))).

Then the formula Y (x) as constructed above is a Yablo formula in S.

Further properties of Y (x) will depend on the choice of S – in particular, on the
axioms governing the use of the predicate T . To clear the ground, consider for
a start the theory PAT, which is obtained from PA by extending the language
with a new predicate “T ”. This predicate will be permitted to appear in formulas
substituted for schematic axioms of PA.7 Since by Theorem 2 Yablo formulas in
PAT do exist, one can consider their properties. For PAT the following result
holds.

5 This method of constructing Yablo sequences was employed by Priest, see [8]; cf.
also Ketland’s paper [5].

6 Strictly speaking, in the context of arithmetic with addition and multiplication, both
expressions (i.e. sub and name) should be treated not as function symbols, but as
arithmetical formulas representing appropriate functions on natural numbers.

7 As defined, PAT is not really a theory of truth, with “T” being just a new predicate,
without any substance to it, but we find it useful to consider it as a borderline case.



130 C. Cieśliński

Fact 4. Let Y (x) be a Yablo formula in PAT. Then:

(a) PAT � ∃xY (x)
(b) PAT � ∃x¬Y (x)
(c) If Y (x) contains a free variable x, then for all natural numbers n and k, if

n > k, then PAT � Y (n)→ Y (k)

Proof. Since T in PAT functions just as a new predicate, PAT � ∃xT (x) and
also PAT � ∃x¬T (x), therefore both (a) and (b) follow trivially. For (c), assume
that Y (x) contains a free variable x. Then for every n and k, if n �= k, then

Y (k)� �= 
Y (n)�. Consider a model (N, T ) obtained by expanding the standard
model N with the set T = {Y (n)}. Obviously (N, T ) |= PAT and since n > k,
we have: (N, T ) |= Y (n); (N, T ) � Y (k).

To sum it up: Yablo sentences are neither provable, nor disprovable in PAT; they
are also not provably equivalent in this theory (assuming that they are different). In
fact Y (0), Y (1)... is a sequence of weaker and weaker sentences independent from
PAT. It’s also worth noting that Fact 4 is obtained independently of our choice of
the formula Y (x), as long as (for condition (c)) it contains a free variable x.

The next sections contain a discussion of the status of Yablo sentences in two
truth theories: Friedman-Sheard system FS and Kripke-Feferman theory KF.

3 The Theory FS

We proceed now to the discussion of the Friedman-Sheard system FS, which is
obtained by adding to PAT compositional truth axioms for negation, binary
connectives and quantifiers, together with the rules of necessitation (NEC) and
conecessitation (CONEC). We will denote by FS− a theory just like FS, but
with induction restricted to arithmetical formulas only. In effect FS is defined as
the system extending PAT with the following truth-theoretic axioms and rules
(Tmc is the set of constant terms and SentT denotes the set of sentences of LT ):

• ∀s, t ∈ Tmc
(
T (s= t) ≡ val(s)=val(t)

)
• ∀x

(
SentT (x)→ (T¬x ≡ ¬Tx)

)
• ∀x∀y

(
SentT (x ∧ y)→ (T (x ∧ y) ≡ (Tx ∧ Ty))

)
• ∀x∀y

(
SentT (x ∨ y)→ (T (x ∨ y) ≡ (Tx ∨ Ty))

)
• ∀v ∀x

(
SentT (∀vx)→ (T (∀vx) ≡ ∀tT (x(t/v)))

)
• ∀v ∀x

(
SentT (∃vx)→ (T (∃vx) ≡ ∃tT (x(t/v)))

)
Additional rules of inference are:

NEC φ
Tφ

Tφ
φ CONEC

For more information about FS we refer the reader to [4], where both semantics
and proof theory of this system is discussed.

As it turns out, results concerning Yablo sentences in FS do not depend on
the choice of a Yablo formula Y (x). Let Y (x) be an arbitrary Yablo formula in
FS− (analogously for full FS). We start with the following observation.
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Fact 5. FS− ! ∀xz[x < z → (Y (x)→ Y (z))]

The proof is immediate, from the assumption that Y (x) is a Yablo formula in
FS−.

Now we will show, that all Yablo sentences are provably equivalent in FS−.
In fact a uniform equivalence of Yablo sentences is a theorem of FS−:

Theorem 6. FS− ! ∀xz[Y (x) ≡ Y (z)].

Proof. Working in FS−, fix x and z. Assume (wlog) that x < z. Then we know
(Fact 5) that Y (x) → Y (z). For the opposite implication, assume Y (z), i.e.
∀s > z¬T (Y (s)). For an indirect proof, assume also ¬Y (x), i.e. ∃s > xT (Y (s)).
Therefore ∃s ≤ zT (Y (s)); fix such an s. Since Y (z), we have also: ¬T (Y (z+1)).
By applying NEC and compositional axioms to Fact 5, we obtain (as a theorem
of FS−): ∀xz[x < z → (T (Y (x))→ T (Y (z)))]. Since s < z + 1 and T (Y (s)), we
get: T (Y (z + 1)), which is a contradiction ending the proof.

Now we present the following two corollaries.

Corollary 7. FS− ! ∀xz[T (Y (x)) ≡ T (Y (z))].

The proof is immediate, by applying NEC and compositional axioms to Theorem
6. We have also:

Corollary 8. FS− ! ∀x[Y (x) ≡ ¬T (Y (x))].

Proof. From left to right, the assumption Y (x) gives us ¬T (Y (x + 1)), so
¬T (Y (x)) by Corollary 7. For the opposite implication, assuming ¬T (Y (x)) we
obtain ∀z¬T (Y (z)) by Corollary 7; therefore ∀z > x¬T (Y (z)), which gives us
Y (x).

Corollary 8 shows that in FS each Yablo sentence is a liar - it expresses (up to
a provable equivalence) its own untruth. The corollary states that this insight
can be proved in FS− in a uniform manner. Finally we obtain:

Fact 9. If FS is consistent, then:

(a) FS � ∃xY (x) (b) FS � ∃x¬Y (x)

Proof. For (a), assume that FS ! ∃xY (x), therefore by Theorem 6 FS ! ∀xY (x),
so in particular FS ! Y (0). An application of NEC and the compositional ax-
iom for general quantifier gives us: FS ! ∀xT (Y (x)), so FS ! T (Y (1)), but also
FS ! ¬T (Y (1)) (because Y (0) is provable in FS), contradicting the consistency
of FS.

For (b), assume that FS ! ∃x¬Y (x), therefore by Theorem 6 FS ! ∀x¬Y (x).
Applying NEC and compositional axioms, we obtain: FS ! ∀x¬T (Y (x)). But
then FS ! ∀xY (x), which together with the first assumption leads to the con-
clusion that FS is inconsistent.
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4 The Theory KF

We proceed now to the Kripke-Feferman theory, denoted as KF. The truth
theoretic axioms are listed below. In what follows they will be denoted as KF1-
KF13.

(1) ∀s ∀t
(
T (s = t) ≡ val(s) = val(t)

)
(2) ∀s ∀t

(
T (¬s = t) ≡ val(s) �=val(t)

)
(3) ∀x

(
SentT (x)→ (T (¬¬x) ≡ Tx)

)
(4) ∀x∀y

(
SentT (x ∧ y)→ (T (x ∧ y) ≡ Tx ∧ Ty)

)
(5) ∀x∀y

(
SentT (x ∧ y)→ (T¬(x ∧ y) ≡ T¬x ∨ T¬y)

)
(6)-(7) Similarly for disjunction

(8) ∀v ∀x
(
SentT (∀vx)→ (T (∀vx) ≡ ∀tT (x(t/v)))

)
(9) ∀v ∀x

(
SentT (∀vx)→ (T (¬∀vx) ≡ ∃tT (¬x(t/v)))

)
(10)-(11) Similarly for the existential quantifier

(12) ∀t (T (T t) ≡ T (val(t))
(13) ∀t

(
T¬T t ≡ (T (¬val(t)) ∨ ¬SentT (val(t)))

)
When discussing KF, two additional axioms are often introduced:

CONS ∀x
(
SentT (x)→ ¬(Tx ∧ T¬x)

)
COMPL ∀x

(
SentT (x)→ (Tx ∨ T¬x)

)
However, we will denote as KF the theory with just the axioms KF1-KF13
added to PAT. Whenever we discuss a theory with Cons or Compl, we are
going to stipulate it explicitly.

In order to characterize the behaviour of Yablo sentences in KF, we will need
some basic facts about this theory.

4.1 Basic Properties of KF

The presentation in this section relies heavily on Cantini’s paper [2]; the modi-
fications are introduced in order to handle our specific choice of axiomatization
for KF.

KF has been proposed as a formalization of Kripkean notion of truth, based
on strong Kleene evaluation scheme (see [6]). In Kripke’s fixed point construction,
truth is interpreted as a partial predicate – its interpretation is given by a pair of
sets T+, T− called the extension and the antiextension. Given a classical model
M of Peano arithmetic, we will consider structures M = (M,T+, T−), with
T+ and T− being the subsets of the domain of M – such structures are called
partial models for the language LT (we assume that only the predicate T (x)
is partially interpreted; arithmetical expressions are interpreted classically.) For
partial models a satisfaction relation can be defined in the following way (the
subscript in “|=sk” is for “strong Kleene”):8

8 For the purposes of Definition 10, it is convenient to extend LT to the language of
the model M , i.e. we add constants for all elements of M . In effect for every a ∈ M ,
ϕ(a) is a formula (or a sentence) of the extended language.
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Definition 10

• M |=sk s = t iff val(s) = val(t); similarly for negated identities.
• M |=sk T t iff val(t) ∈ T+.
• M |=sk ¬T t iff val(t) ∈ T− or ¬Sent(val(t)).
• M |=sk ¬¬ϕ iff M |=sk ϕ.
• M |=sk ϕ ∧ ψ iff M |=sk ϕ andM |=sk ψ.
• M |=sk ¬(ϕ ∧ ψ) iff M |=sk ¬ϕ or M |=sk ¬ψ.
• Similarly for disjunction and its negation.
• M |=sk ∀xϕ(x) iff for all a ∈M M |=sk ϕ(a).
• M |=sk ¬∀xϕ(x) iff for some a ∈M M |=sk ¬ϕ(a).
• Similarly for the existential quantifier.

Since KF is a classical theory, its models will be two valued, not partial. How-
ever, each model of KF can be turned into a partial model with some nice
properties.

Definition 11. For (M,T ) |= KF , we denote:

• T+ = T
• T− = {z : ¬z ∈ T+}
• M∗ = (M,T+, T−)

It turns out that M∗, as characterized by Definition 11, satisfies the following:

Theorem 12. If (M,T ) |= KF , then ∀ϕ ∈ LT [M∗ |=sk ϕ iff M∗ |=sk T (ϕ)].

Idea of the proof. The proof is by induction on positive complexity of ϕ (see [4],
p. 205).9 For sentence of positive complexity 0 e.g. of the form ¬T (t) we have:
M∗ |=sk ¬T (t) iff val(t) ∈ T− ∨ ¬Sent(val(t)) iff ¬val(t) ∈ T+ ∨ ¬Sent(val(t))
iff (M,T ) |= T (¬t)∨¬Sent(t) iff (M,T ) |= T (¬T (t)) iff ¬T (t) ∈ T+ iff M∗ |=sk

T (¬T (t)). The rest follows by induction.

Adding Compl or Cons to KF produces a theory which is truth-theoretically
(although not arithmetically) stronger than KF. It can be shown that both
directions of the uniform T-schema (i.e. “∀x1...xn[T (ϕ(x1...xn)) ≡ ϕ(x1...xn)]”)
are provable in theories with Cons and Compl respectively.

Fact 13. For every ϕ(x1...xn):

(a) KF +Cons ! ∀x1...xn[T (ϕ(x1...xn))→ ϕ(x1...xn)]
(b) KF +Compl ! ∀x1...xn[ϕ(x1...xn))→ T (ϕ(x1...xn))]

9 Roughly, the idea is to define the notion of a complexity of a formula in such a way as
to guarantee that: atomic and negated atomic formulas have the complexity 0; con-
junctions, disjunctions and quantified sentences have the level of complexity greater
by one than their disjuncts/conjuncts/formulas after the quantifier; the same for
negated conjunctions/disjunctions/quantified sentences; double negation increases
the level of complexity by one.
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Accordingly, we can’t extend KF consistently with both Cons and Compl (the
full T-schema is known to be inconsistent); it is possible however to add consis-
tently each of this axioms separately.

Idea of the proof. The fact is proved by induction on positive complexity of
LT -formulas. We show only the parts where Cons and Compl are used. This
happens in the case when ϕ := ¬T (x). Then we argue as follows.

(a) Working inKF+Cons, assume T (¬T (a)), assume also T (a). Then by KF12,
T (T (a)), which contradicts Cons.

(b) Working in KF +Compl, assume ¬T (a), assume also ¬T (¬T (a)). Then by
Compl, T (T (a)), so by KF12, T (a) - a contradiction.

From Fact 13 the following conclusion about the liar sentence L can be very
easily obtained:10

Corollary 14. KF +Cons ! L; KF +Compl ! ¬L

Finally, we introduce the notion of a dual model. It is obtained from a model
(M,T ) of KF by redefining the extension of the truth predicate. The new ex-
tension is defined as the set of all M -sentences, whose negations are not in T
(cf. Definition 11).

Definition 15. For (M,T ) |= KF , we define:

• T d = Sent− T−

• Md = (M,T d)

Note that T d may be different from T : in particular, it will contain all sentences
which were left indeterminate in the original model (i.e. sentences ϕ such that
neither ϕ nor ¬ϕ belonged to T ).

Useful properties of dual models are described by the theorem below.

Theorem 16

(a) If (M,T ) |= KF , then (M,T d) |= KF1-KF12
(b) If (M,T ) |= KF +Cons, then (M,T d) |= KF +Compl

Proof (chosen cases). Assuming that (M,T ) |= KF +Cons, we show:

1 Md |= KF13, i.e. ∀t
(
T¬T t ≡ (T (¬val(t)) ∨ ¬SentT (val(t)))

)
.

2 Md |= Compl.

For 1, we show only (←). Assume that Md |= T¬t ∨ ¬Sent(t), so ¬val(t) /∈
T− ∨ ¬Sent(val(t)); assume also that Md |= ¬T¬T t, so ¬T t ∈ T−. Then we
reason as follows:

(i) T (t) ∈ T+ (definition of T−)
(ii) val(t) ∈ T+ (we know that (M,T ) |= TT t ≡ T t)
(iii) ¬val(t) ∈ T− (definition of T−)
10 Corollary 14 is in fact valid about an arbitrary sentence L provably (in KF +Cons

or KF +Compl, respectively) equivalent to the statement of its own untruth.
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(iv) ¬Sent(val(t)) (previous line and our first assumption)
(v) (M,T ) |= T (¬T t) (by KF13 and the previous line)
(vi) (M,T ) |= ¬T (T t) (by Cons)

So by KF12, (M,T ) |= ¬T (t), which means that val(t) /∈ T+ - a contradiction.
For 2, we must show:Md |= ∀ψ[Sent(ψ)→ (T (ψ)∨T (¬ψ))]. Fixing a sentence

ψ, assume that ψ /∈ T d. Then ψ ∈ T−, so ¬ψ ∈ T+. By Cons, ¬ψ /∈ T−, so
¬ψ ∈ T d as required.

4.2 Yablo Sentences in KF and Some Related Theories

In this section we investigate properties of formulas which are Yablo in KF, in
KF+Cons and in KF+Compl (cf. Definition 1). Our first observation states
that the theory KF+Compl uniformly decides its Yablo sentences.

Theorem 17. Let Y (x) be such that KF +Compl ! Y (x) ≡ ∀z > x¬T (Y (z)).
Then KF +Compl ! ∀x¬Y (x).

Proof. Working in KF + Compl, assume Y (x), so ∀z > x¬T (Y (z)), therefore
∀z > x + 1¬T (Y (z)), so Y (x + 1), but also ¬T (Y (x + 1)). By Fact 13(b),
T (Y (x+ 1)) – a contradiction.

When moving to KF +Cons, things look a bit different. Unlike in the case of
KF+Compl (or FS, for that matter) there is no uniform answer to the question
“assuming that Y (x) is a Yablo formula in KF+Cons, does KF+Cons prove
Y (n)?” It turns out that the answers will vary, depending on our choice of Y (x).

Theorem 18. For every natural number n, there are formulas Y0(x), Y1(x) such
that:

(a) Both Y0(x) and Y1(x) are Yablo formulas in KF+Cons.
(b) KF+Cons ! Y0(n); KF+Cons ! ¬Y1(n)

Proof. Let n be fixed; let L be the liar sentence. Define:

• Y0(x) := x = n ∨ (x > n ∧ L)
• Y1(x) := x = n+ 1 ∨ (x > n+ 1 ∧ L)

Then (b) is obviously satisfied. For the proof of (a), we show only that Y0(x) is a
Yablo formula in KF+Cons (the argument for Y1(x) is very similar). Working
in KF+Cons, fix x and consider two cases:

Case 1 : x < n. Then ¬Y0(x), and since we also have: T (n = n ∨ (n > n ∧ L),
we obtain: ∃z > xT (z = n ∨ (z > n ∧ L)). In effect in Case 1 both sides of the
Yablo condition are false, which makes the condition true.

Case 2 : x ≥ n. Since L is provable in KF + Cons (Corollary 14), we obtain
Y0(x). And we obtain also the right side of the Yablo condition by the following
reasoning: fix z > x and assume T (Y0(z)), i.e. T (z = n ∨ (z > n ∧ L)). Then by
compositional principles ofKF T (z = n)∨(T (z > n)∧T (L)). But by assumption
z > n; in efect T (L) and therefore ¬L – a contradiction, because L is a theorem
of KF+Cons.
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We see in effect, that questions like “does KF + Cons prove Y (n)?” do not
admit a single answer, independent of our choice of a Yablo formula. In view
of this result, narrower classes of Yablo formulas are worth considering. And
indeed it turns out that KF +Cons decides a certain narrower, but still quite
comprehensive class of Yablo sentences, namely those, which are Yablo in KF
itself (without Cons):

Theorem 19. Let Y (x) be such that KF ! Y (x) ≡ ∀z > x¬T (Y (z)). Then
KF +Cons ! ∀xY (x).

Proof. Let (M,T ) |= KF + Cons. (Then Md |= KF + Compl – see Theorem
16(b).) For an indirect proof, assume that (M,T ) |= ¬Y (a). Fix b >M a such
that (M,T ) |= T (Y (b)). So Y (b) ∈ T+; ¬Y (b) ∈ T−; ¬Y (b) /∈ T d. Now we show
that:

(*) ∀z >M bY (z) ∈ T−.

Assume that z >M b and Y (z) /∈ T−. So Y (z) ∈ T d, and (since z >M b)
Md |= ¬Y (b). Therefore (by Fact 13(b) and Theorem 16(b)) Md |= T (¬Y (b));
in effect ¬Y (b) ∈ T d, which is a contradiction.

From (*) it follows that ∀z >M bY (z) /∈ T d, which means that Md |= Y (b).
Therefore Md |= Y (b + 1), so Md |= T (Y (b + 1)); but (since Md |= Y (b)) it
follows also that Md |= ¬T (Y (b + 1)) – a contradiction.

From Theorem 19 it follows directly that if Y (x) is a Yablo formula in KF, then
KF +Cons ! ∀x > 0¬T (Y (x)). In fact it is possible to show that the formula
Y (0) is no exception.

Theorem 20. If Y (x) is a Yablo formula inKF, thenKF+Cons ! ∀z¬T (Y (z)).

Proof. Define Y ∗(x) as the formula: (x = 0∧∀z¬T (Y (z)))∨ (x �= 0∧Y (x− 1)).
The theorem is obtained as a direct corollary from Theorem 19 and the fact that
Y ∗(x) is a Yablo formula in KF, i.e. it satisfies provably in KF, the usual Yablo
condition, i.e.: Y ∗(x) ≡ ∀z > x¬T (Y ∗(z)).

Given the fact that Y ∗(x) is a Yablo formula in KF, we can argue as follows.
By Theorem 19, KF+Cons ! ∀xY ∗(x), so in particularKF+Cons ! ∀xY ∗(0),
therefore (by the definition of Y ∗(x)) KF + Cons ! ∀z¬T (Y (z)). In effect for
the proof of Theorem 20 it is enough to show that we have indeed the Yablo
condition for Y ∗(x).

For the direction from left to right, assume Y ∗(x) and fix z > x. Assume
T (Y ∗(z)); then by the definition of Y ∗(x) (and by the fact that z > 0) we
obtain: T (Y (z − 1)). Then x cannot equal 0, because otherwise by Y ∗(x) we
would have: ∀z¬T (Y (z)). Since x �= 0, we obtain Y (x − 1). But x − 1 < z − 1
(because z > x, x �= 0), so ¬T (Y (z − 1)) - a contradiction.

For the opposite direction, assume ∀z > x¬T (Y ∗(z)); assume also ¬Y ∗(x),
i.e. ¬[x = 0 ∧ ∀z¬T (Y (z))] ∧ ¬[x �= 0 ∧ Y (x− 1)]. Now we consider two cases.
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Case 1 : x = 0. So ∃zT (Y (z)). Fixing such a z and putting a = z + 1 we obtain:
T (a �= 0 ∧ Y (a − 1)), so T (Y ∗(a)), which (since x = 0) contradicts our main
assumption.

Case 2 : x �= 0. So ¬Y (x − 1), i.e. ∃z ≥ xT (Y (z)). Fixing such a z and putting
a = z+1 we obtain again T (a �= 0∧Y (a−1)), i.e. T (Y ∗(a)), which (since a > x)
contradicts our main assumption.

From Theorems 19 and 20 it follows easily that every Yablo formula is a liar in
KF +Cons.

Corollary 21. If Y (x) is a Yablo formula in KF, then KF+Cons ! ∀x[Y (x) ≡
¬T (Y (x))].

Finally, we are going to look at what happens in the theory KF itself. The first
observation is that it doesn’t decide any Yablo sentence:

Corollary 22. Let Y (x) be a Yablo formula in KF . Then KF � ∃xY (x) and
KF � ∃x¬Y (x).

Proof. By Theorem 17, the first conjunct is verified by an arbitrary model for
KF +Compl. By Theorem 19, the second conjunct is verified by an arbitrary
model for KF +Cons.

In effect each sentence Y (n) is independent of KF .
Does KF (without Cons or Compl) settle the issue of equivalence of Yablo

sentences? We will show that it does, but for a restricted class of those Yablo
sentences, which are well behaved in partial models.

Theorem 23. Let Y (x) be a Yablo formula in KF such that for every (M,T ) |=
KF we have (see Definition 11):

∀a ∈M [M∗ |=sk Y (a) iff M∗ |=sk ∀z > a¬T (Y (z))].

Then KF ! ∀xY (x) ∨ ∀x¬Y (x).

Proof. Fix a, b such that (M,T ) |= Y (a) ∧ ¬Y (b). So we have: (M,T ) |= ∀z >
a¬T (Y (z)), and also: (M,T ) |= ∃z > bT (Y (z)).

Let z be the largest number in M such that (M,T ) |= T (Y (z)). Then M∗ |=sk

T (Y (z)), so (Theorem 12) M∗ |=sk Y (z), therefore by the assumptions of the
theorem, M∗ |=sk ∀s > z¬T (Y (s)). From this we obtain M∗ |=sk ∀s > z +
1¬T (Y (s)), and so M∗ |=sk Y (z + 1) and also M∗ |=sk T (Y (z +1)). Eventually
(M,T ) |= T (Y (z + 1), which contradicts our choice of z.

From Theorem 23 the following corollary can be easily obtained.

Corollary 24. For Y (x) satisfying the assumptions of the previous theorem:

KF ! ∀xy [Y (x) ≡ Y (y)]

Finally, we observe that the assumptions of Theorem 23 (and Corollary 24) apply
to a class of formulas, which are quite important in the discussions concerning
Yablo’s paradox (cf. Theorem 2 and its proof).



138 C. Cieśliński

Observation 25 Let Y (x) be the formula obtained by diagonalization from the
condition ϕ(x, y) := ∀z > x¬T (sub(y, name(z)) (cf. proof of Theorem 2). Then
Y (x) satisfies the assumptions of Theorem 23.

Idea of the proof. As in the standard proof of the diagonal lemma, let F (x, y)
be ϕ(x, subst(y, 
y�, name(y))); then specify m = 
F (x, y)� and define Y (x) as
F (x,m). In effect Y (x) becomes: ϕ(x, subst(m, 
y�, name(m)). By performing
the substitution operations (interpretation of the truth predicate being irrelevant
for the results) it can be verified that M∗ |=sk Y (a) iff M∗ |=sk ϕ(a, 
Y (x)�),
which corresponds to the Yablo condition for partial models, as required.

5 Summary

We analysed the behaviour of Yablo formulas in truth theories FS and KF.
It turns out that FS proves the equivalence of all Yablo sentences in FS. In
addition, FS treats Yablo formulas as liars: they can be shown to be provably
equivalent to the statements of their own untruth.

Theories KF + Cons and KF + Compl both uniformly decide sentences
which are Yablo in KF (Theorems 17 and 19), although important properties of
formulas which are Yablo in KF + Cons depend on the choice of the formula
in question (Theorem 18). Yablo formulas obtained by diagonalization in PAT
are provably equivalent in KF.
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Abstract. We investigate themodal logic of the generic multiverse which
is a bimodal logic with operators corresponding to the relations “is a forc-
ing extension of” and “is a ground model of”. The fragment of the first
relation is the modal logic of forcing and was studied by the authors in
earlier work. The fragment of the second relation is the modal logic of
grounds and will be studied here for the first time. In addition, we discuss
which combinations of modal logics are possible for the two fragments.

1 Introduction

1.1 The Generic Multiverse

Recently, the generic multiverse has become a concept of great interest to set
theorists and philosophers of mathematics alike:

The generic multiverse is generated from each universe of the collection
by closing under generic extensions (enlargements) and under generic
refinements (inner models of a universe which the given universe is a
generic extension of). (W. Hugh Woodin, [21])

If you fix a universe of set theory V and iteratively build all set forcing exten-
sions and ground models—and throughout this article unless stated specifically
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otherwise we shall mean always set forcing when discussing forcing—you nat-
urally produce a Kripke structure GM�V � consisting of these worlds together
with the accessibility relation M � N (“N is a forcing extension of M”) and
its converse relation N � M (“M is a ground of N”). Hugh Woodin has inves-
tigated multiverse truth, that is, truth in all models of the generic multiverse,
in connection with his programme to solve the alethic status of the continuum
hypothesis. The first author has proposed a philosophy of mathematics based
on a broader multiverse perspective, where we have many different legitimate
concepts of set (not merely those arising by set forcing), and these are instanti-
ated in their corresponding set-theoretic universes, which relate in diverse ways
as forcing extensions, large cardinal ultrapowers, definable inner models and so
on [9]. Although the generic multiverse of a model of set theory is merely a local
neighborhood within the broader multiverse, nevertheless we take it that our
project in this article, to study the forcing modalities of the generic multiverse,
surely engages with the multiverse perspective.

Due to the fact that the relations � and � are converses of each other, the
bimodal logic of the Kripke structure �GM�V �,�,�� is similar to temporal logics
where the modality F (“there is a time in the future”) is converse to the modality
P (“there is a time in the past”) [20]. It is our overall aim to investigate this
bimodal logic of the general multiverse and find out which validities hold in
general (provably in ZFC) or in the multiverse generated from specific universes.

1.2 The Modal Logic of Forcing and Related Work

In our previous paper [11], we introduced the modal logic of forcing and proved
that the ZFC-provably valid principles of forcing were exactly those in the modal
theory known as S4.2. The modal logic of forcing corresponds to the monomodal
fragment of the modal logic discussed in § 1.1 that only uses the relation �; or
to the part of the generic multiverse that is generated only by the operation of
taking forcing extensions and not ground models.

In [11], we not only consider the ZFC-provable modal logic of forcing, but
also the modal logic of forcing of particular universes V . We show that this
modal logic always lies between S4.2 and S5 and that the two extreme values
are realized (for more details, cf. § 1.4). Various other aspects of the modal logic
of forcing are considered in [15,12,3,4,16,19,2,1,10]. The paper [8] presented at
ICLA 2009 gives an overview of the status of research and creates a connection
between the modal logic of forcing and “set-theoretic geology”, i.e., going down
from a universe to its ground models. This connection is further developed in
this paper.

1.3 The Results of This Paper

As stated above, our overall aim is to understand the bimodal logic of the generic
multiverse. However, we know rather little about the general status of the bi-
modal logic (cf. Footnote 3). Instead of the bimodal theory, we consider the



Moving Up and Down in the Generic Multiverse 141

two monomodal fragments (the modal logic of forcing and the modal logic of
grounds) and their possible combinations.

The main result of this paper is Theorem 6, constructing a model of set theory
whose modal logic of grounds is S4.2. This theorem is the downward analogue
of the main result in [11], where we showed that the modal logic of forcing over
L is S4.2. Based on the proof idea of the main result, we then make a foray into
the bimodal world, by considering which combinations are possible for the two
monomodal fragments; i.e., for which pairs �Λ,Λ�� can we find a model V such
that ML��, V � � Λ and ML��, V � � Λ�. We consider all possible combinations
with Λ,Λ� � �S4.2, S5�.

The paper is organized as follows: in § 1.4, we give the necessary definitions
in order to discuss the basic properties of the modal logic of grounds (and how
it differs from the modal logic of forcing) in § 2. In § 3, we finally consider the
various combinations of upward and downward modal logics. The paper is not
self-contained and uses ideas and concepts from the papers [11,18]; the proofs
of our theorems are sketches and will be presented in more detail in a planned
journal version of the paper.

1.4 Definitions

In the following, we denote by P a countable set of propositional letters; for modal
operators � and �, L� and L�,� are the monomodal and bimodal propositional

languages with the appropriate operators. We assume that the reader is familiar
with the standard axioms and systems of monomodal logic, in particular, .2, S4,
S4.2, and S5 (if not, there is a summary in [11, § 1]).

By L�, we denote the first-order language of set theory with its set of sen-
tences Sent�L��. Any function I : P � Sent�L�� is called an interpretation. An
interpretation I generates a valuation of any Kripke structure �F,R� in which
the worlds consist of models M of set theory and R is any relation between them:
via

I��M� :� �p ; M �	 I�p��,

�F,R, I�� becomes a Kripke model (similarly, for the bimodal language if we
have two relations on F ).

Note that in our special case (when R � �), the validity of a modal formula
at a world of the Kripke model is not just a meta-theoretic property of the
Kripke model, but can be expressed in the language of set theory: e.g., �ϕ is
interpreted by “for all generic extensions, ϕ holds” which by the Forcing Theorem
[13, Theorem 14.6] is equivalent to “for all Boolean algebras B, we have that
�ϕ�B � 1”. Similarly, if R � �, we can use a theorem of Laver’s (cf. [14]) that
the ground model is definable with parameters in the forcing extension, in order
to see that “for all ground models, ϕ holds” is expressible in the language of set
theory (this observation is due to Reitz, cf. [5, Theorem 8]).

These observations are closely related to Woodin’s result about multiverse
truth:
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Theorem 1 (Woodin, 2009). There is a recursive transformation ϕ 
� ϕ�

such that M �	 ϕ� is equivalent to the statement “for every model N in the
generic multiverse generated by M , ϕ is true”.

The fact that the modalities are expressible in the language of set theory allows
us to move from interpretations to translations : We call a function H : L�,� �

Sent�L�� a translation if

– H�ϕ� ψ� � H�ϕ� �H�ψ�,
– H��ϕ� � �H�ϕ�,
– H��ϕ� is the sentence stating “for all forcing extensions M , we have M �	

H�ϕ�”, and
– H��ϕ� is the sentence stating “for all grounds M , we have M �	 H�ϕ�”.

Now, we can define the modal logic of the multiverse and two of its fragments:
fixing a universe V , we call

ML��,�, V � :� �ϕ � L�,� ; for all translations H , V �	 H�ϕ��

the modal logic of the generic multiverse generated by V . Similarly,

ML��, V � :� �ϕ � L� ; for all translations H , V �	 H�ϕ��, and

ML��, V � :� �ϕ � L� ; for all translations H , V �	 H�ϕ��

are the modal logic of forcing and the modal logic of grounds at V , respectively.
Metaphorically, we think of forcing extensions going upwards and thus the rela-
tion being a ground model going downwards. We therefore use the words “up-
ward” and “downward” to indicate which modalities we are talking about: e.g.,
if we say that a model V satisfies upward S4.2, we mean that ML��, V � � S4.2;
similarly, we talk of “upward buttons” and “downward buttons” (see below).

As mentioned, in [11, Theorem 21], we proved that for any universe V , we get
that

S4.2 ML��, V �  S5,

and that the two extreme values are obtained. This immediately implies that
the ZFC-provable modal logic of forcing

�ϕ � L� ; for all translations H , ZFC � H�ϕ��

is exactly S4.2. Two facts about forcing are crucial for this result: the first is that
the axiom .2 is always a validity for the modal logic of forcing over any universe
V (cf. [15] and [10, Theorem 7] for the theoretical background), providing the
lower bound; the second is the existence of independent switches over each model
of set theory [11, Theorem 17]. We shall see that the situation is quite different
for the modal logic of grounds. Note that it is not known whether the modal
logic of forcing can obtain any other value than S4.2 or S5 [11, Question 19].

In order to show upper bounds for a modal logic, we used certain control
statements called buttons and switches : a switch is a statement ϕ such that ϕ
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and �ϕ are both necessarily possible. A button is a statement ϕ that is neces-
sarily possibly necessary. These controls are independent if they can be operated
independently, without affecting the status of the others (cf. [11, p. 1789] or
[10, § 4] for more detail). We shall use the abstract results that produce upper
bounds from the existence of control statements in the proof sketches in this
paper. For this we call a function σ : P � L� a substitution (this is the purely
modal version of our notion of interpretation above); every substitution induces
a function σ̂ on the entire set of modal formulas. If �F,R, v, w� is a pointed
Kripke model, we let ML�F,R, v, w� :� �ϕ � L� ; for all substitutions σ, we have
that F,R, v, w �	 σ̂�ϕ��.

Theorem 2. If a pointed reflexive and transitive Kripke model �F,R, v, w� has
arbitrarily large finite independent families of buttons and switches, then

ML�F,R, v, w�  S4.2

[10, Theorem 13].

Theorem 3. If a pointed reflexive and transitive Kripke model �F,R, v, w� has
arbitrarily large finite independent families of switches, then

ML�F,R, v, w�  S5

[10, Theorem 10].

2 The Modal Logic of Grounds

2.1 Basic Observations

It is easy to see that every S4 assertion is downward valid (since a ground of a
ground is a ground), but things are not as easy with the axiom .2. This axiom
would be valid if the answer to the following question is “Yes”:

Question 4. Let V be a model of set theory, and M and N two grounds of
V , i.e., V � M �G� � N �H� for some generic filters G and H. Is there some
model K which is a ground of both M and N , i.e., there are K-generic filters G�

and H� such that K�G�� � M and K�H�� � N? In other words, is � directed
among the grounds of V ?

However, we do not know the answer to this question. We shall say that a universe
V in whose generic multiverse the answer to Question 4 is “Yes” satisfies the
axiom of downward directedness of grounds (DDG). In all universes for which
we can determine the truth value of DDG, it is true.

The upper bound for the modal logic of forcing was S5, but the situation
for the modal logic of grounds is different. We denote by PL (for “propositional
logic”) the modal logic satisfying �p� ♦p� p, i.e., the modal logic of a single
reflexive point. By GA, we denote the ground axiom of [18] stating that the
universe is not a non-trivial forcing extension of an inner model.1 Clearly, the
constructible universe satisfies GA.

Observation 5. If V �	 GA, then ML��, V � � PL.

1 The ground axiom is jointly due to Reitz and the first author; cf. [7,17].
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2.2 S4.2 as the Modal Logic of Grounds

The following theorem provides us with a model in which we can determine the
modal logic of grounds. Its proof will serve as the underlying idea for the results
in § 3.

Theorem 6. If ZFC is consistent, then there is a model of ZFC whose ground
valid assertions are exactly those in the modal theory S4.2.

Proof sketch. The idea of this proof is to use the bottomless model of [18]: Let
RegL denote the class of regular L-cardinals. Force over L with

P �
�

γ�RegL

Add�γ, 1�,

where we use Easton support and we use Add�γ, 1� as defined in L. Let V �
L�G�, where G is L-generic for this forcing.

First, following Reitz, we argue that every ground model of V contains a tail
L�Gα�, where Gα � G�Pα, and Pα � P��α,��. That is, Pα is the tail forcing,
using only the factors from α onward. Suppose that W is a ground of V , so that
W �H� � V � L�G�. If the filter Gα is not in W , then it has a name there, and
the Boolean value of the statement that this name is decided in certain ways
compatible with the actual values of Gα will be a strictly descending sequence
of Boolean values in the W -forcing, which violates the chain condition of that
forcing (when α is much larger than that forcing). So, for large α, Gα is an
element of W .

In [18], Reitz used this to show that V has no bedrock, and we use the same
argument to show that for any two grounds M and N , we find α and β such that
L�Gα� is a ground of M and L�Gβ� is a ground of N . Then if μ :� max�α, β�,
L�Gμ� is a ground of both M and N . This proves that DDG holds in V , and
thus .2.

We now show that there are no additional modal validities by using Theo-
rem 2: Divide the regular cardinals above ℵω into ω many disjoint classes Γn, each
containing unboundedly many cardinals. Enumerate each class Γn � �γn

α ; α �
Ord� in order. Let sn be the statement “the least α such that there exists an
L-generic subset of γn

α is even.” These statements are all true in V , since the
corresponding α is 0 in every case, as the forcing G explicitly adds an L-generic
subset of every γn

α, including α � 0. In any ground model W of V , we can go
to a deeper ground which is a tail extension, and then selectively remove addi-
tional factors of G on indices in each Γn so as to realize any desired configuration
of the switches in L. So the sn’s are independent switches. Now let bn be the
statement: “there is no L-generic subset of ℵLn”. This statement is false in V ,
but true in any ground model of V omitting the factor at ℵLn . Furthermore, once
true, the statement remains true in any deeper ground. Thus, each bn is a button.
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Finally, all these buttons and switches are independent, because each is con-
trolled by removing disjoint factors of G.2 Thus, Theorem 2 yields that
ML��, V � � S4.2. �

It follows that the ZFC-provably valid principles of the modal of logic of grounds
is a theory containing S4 and contained within S4.2. If DDG is a theorem of ZFC,
the ZFC-provable modal logic of grounds is exactly S4.2.

3 Combinations

So far, we have looked at the modal logic of forcing and the modal logic of grounds
in isolation, but ultimately, we are interested in determining the entire bimodal
logic of the multiverse. Currently, we know almost nothing about the validity of
mixed bimodal formulas beyond those validities that follow from the fact that
the modal operators � and � are defined by converse relations.3 However, we
can say something about possible combinations of modal logics of forcing with
modal logics of grounds (in the case of Theorems 8 and 9 under mild large
cardinal assumptions).

Theorem 7. If ZFC is consistent, then there is a model of ZFC whose modal
logic of forcing and modal logic of grounds are both S4.2.

Proof sketch. In fact, this is themodelV constructed in theproof ofTheorem6: since
S4.2 is a general lower bound for the modal logic of forcing, we only have to show
that independent upward buttons and switches exist.We have such a family forL,4

and by observing that the forcing to add G was cardinal-preserving and the GCH
holds, we can use the buttons proposed by Rittberg [19] or Friedman, Fuchino and
Sakai [2] or, alternatively, our stationary buttons from [11, Theorem 29] (provided
that we start the other forcing above ω1). The switches are GCH at ℵω�n. �

Theorem 8. If ZFC�“there is an inaccessible cardinal δ in L such that Lδ � L”
is consistent, then there is a model of set theory whose modal logic of forcing is
S4.2 and whose modal logic of grounds is S5.

Proof sketch. This proof is a combination of the construction in Theorem 6 and
an idea from [6, Theorem 5]. We start with an inaccessible cardinal δ in L such
that Lδ � L and force as in the proof of Theorem 6 with the Easton support
product P :�

�
γ�RegL Add�γ, 1� to obtain L�G�. Since δ was inaccessible in

L, Pδ is just P as defined in Lδ and we took a direct limit at δ; thus, we still

2 Note that L-generic Cohen subsets of different regular cardinals in L are necessarily
mutually generic.

3 E.g., we know that p� ����p and p� ����p hold.
4 Note that the buttons provided in the proof of [11, Lemma6.1] are problematic since we
do not know how to prove their independence, but there are other independent buttons
in that paper. Cf. the discussion at the end of [10, § 4].
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have Lδ�Gδ� � L�G�. We claim that V :� L�Gδ� satisfies the conclusion of the
theorem.

Upward S4.2 follows as in the proof of Theorem 7. Let us show that all down-
ward buttons are pushed (this will establish S5 as a lower bound for the modal
logic of grounds): If there is a ground pushing a downward button, then this fact
is expressible, and so there must be a ground of Lδ�Gδ� pushing that button,
and so this same forcing works with L�G�. So there is a small forcing pushing
that button. And this small forcing ground will contain L�Gδ�, so it is already
pushed in L�Gδ�.

In order to show that we have exactly S5 as the modal logic of grounds, we
use Theorem 3 and observe that the switches of the proof of Theorem 6 still
work. �

We remark that if a universe has an independent family of upward switches

and buttons, then so does any ground of that universe. This means that upward
S4.2 is downwards necessary. Similarly, if a model has downward buttons and
switches, then this remains upward necessary.5

Now, we consider the dual situation to that of Theorem 8: upward S5 and
downward S4.2.

Theorem 9. If ZFC�“there is an inaccessible cardinal δ in L such that Lδ � L”
is consistent, then there is a model of set theory whose modal logic of forcing is
S5 and whose modal logic of grounds is S4.2.

Proof sketch. Again, this proof is a combination of the constructions in Theorem 6
and [6, Theorem 5]. Start in L with Lδ � L and δ inaccessible in L. Force to
L�G� with the Easton support product P :�

�
γ�RegL Add�γ, 1�, as in Theorem

6. As before in the proof of Theorem 8, we still have Lδ�Gδ� � L�G� (as δ was
inaccessible in L). We can now appeal to the definability of forcing relation and
the fact that Lδ � L: anything a condition p forces over L with P is the same
as what it forces over Lδ with Pδ.

Finally, we perform the forcing to obtain upwards S5 from [6, Theorem 5] to
obtain L�G��h�. This forcing is the same as the Lévy collapse making δ into ω1.
In L�G��h�, we have upward S5. However, we also have downward .2: any ground
of L�G��h� will contain some tail L�Gα� just as in Theorem 6, and thus we can
take maximums as there to verify .2. But now we also have downward buttons
and switches, just as in Theorem 6. �

Theorems 7, 8, and 9 take care of three of the four possible distributions of the
theories S4.2 and S5 to the upward and downward modal logics. This naturally
raises the question whether it is possible to have S5 in both directions. We’ll
close this paper with the simple proof of the negative answer to this question:

Theorem 10. There is no model of set theory such that both its modal logic of
forcing and its modal logic of grounds are S5. Thus, the upward and downward
maximality principles are inconsistent with each other. �

5 Unfortunately, we cannot conclude that downward S4.2 is upwards necessary, since
we do not know whether downward .2 is valid in every model of set theory.
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Proof. Let us call an ordinal α a ground cardinal if there is a ground in which
α is a cardinal. Let γ be the least infinite ground cardinal; clearly, γ � ω1. The
statement “γ � ω1” is a downward button, but its negation is an upward button.
So, if we had a model V with ML��, V � � S5 � ML��, V �, then γ � ω1 would
have to be true by downward S5, but false by upward S5.
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Abstract. We consider a general format for sequent rules for not necessarily nor-
mal modal logics based on classical or intuitionistic propositional logic and pro-
vide relatively simple local conditions ensuring cut elimination for such rule sets.
The rule format encompasses e.g. rules for the boolean connectives and transitive
modal logics such as S4 or its constructive version. We also adapt the method of
constructing suitable rule sets by saturation to the intuitionistic setting and pro-
vide a criterium for translating axioms for intuitionistic modal logics into sequent
rules. Examples include constructive modal logics and conditional logic VA.

1 Introduction

It can hardly be disputed that cut elimination theorems are at the foundation of both the-
oretical investigation and practical implementation of automated reasoning techniques:
the ensuing subformula property implies not only decidability of many logical systems,
but also lies – mostly in the form of tableau methods – at the heart of the vast majority of
implementations of various logics. Achieving cut elimination is usually a two stage pro-
cess. First, a (sound and complete) set of sequent rules needs to be exhibited. Second,
cut elimination is established. Both steps are equally laborious: finding the ’right’ set of
rules requires ingenuity and (syntactic) proofs of cut elimination rely on the judicious
analysis of a large number of cases. Given the growth of logical systems of interest
in particular in computer science, both generic methods with efficient tools for design-
ing cut-free calculi, and meta-theorems that guarantee cut-elimination, decidability, and
complexity bounds are therefore increasingly important.

This paper explores the method of cut elimination by saturation and extends previous
work into two important directions. First, we can now also allow for the propositional
base logic to be intuitionistic which allows us to treat a range of logics that have at-
tracted interest in computer science [17,2]. Second, we generalise the approach to log-
ics given by axioms of arbitrary modal rank. This is achieved by considering sequent
rules with context restrictions where each premiss only propagates context formulae of
a specific form. A prime example for this rule format are e.g. the rules of modal logic
S4, where a premiss e.g. copies only boxed formulae on the left hand side. This ex-
tended rule format necessitates an extension of the previous characterisation of cut-free
systems to deal with additional cases in the proof of cut elimination. In order to make
full use of the extended rule format we investigate a method for translating axioms into
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rules which works uniformly for classical and intuitionistic logics. The rules so con-
structed are by construction sound and complete (in the presence of cut) and give rise to
unlabelled sequent systems that are amenable to saturation under cuts between rules. In
case the resulting rules fulfil our criteria for cut elimination and are also tractable they
give rise to a generic Exptime decision algorithm for the logic. Our main contributions
are the following: we formalise the notion of a rule with context restrictions (Definition
3), give a general criterion for cut elimination to obtain for a large class of modal logics
extending classical or intuitionistic propositional logic (Theorem 16), and show how to
construct sequent systems satisfying these requirements from axioms of a certain form
(Section 3.2). We illustrate these techniques by reconstructing known cut-free sequent
systems for constructive S4, constructive K and access control logic CDD, and also ob-
tain a new cut-free calculus for Lewis’ conditional logic VA. The techniques used are
easily modified to treat e.g. minimal logic [9] or the {∧,∨}-fragment of intuitionistic
logic as base logics, but since we are not aware of modal logics based on either of these
we restrict ourselves to the classical and intuitionistic cases.

Related Work: The method of cut elimination by saturation for extensions of classical
logic with non-nested axioms was explored e.g. in [16,10]. The idea of contraction
closed rule sets for first order and modal logics seems to have been formulated for the
first time in [15,14], where also translations of axioms into rules of a labelled sequent
system are given. Our rules with context restrictions are weaker versions of the rules
with context relations from [3], which also allow the context formulae to change. While
context relations are more general than context restrictions, apparently no syntactical
criteria for cut elimination in such systems have been established yet. Our translations
of axioms for intuitionistic modal logics into rules are motivated by the translations of
(non-modal) axioms into structural rules for substructural logic in [6].

2 Preliminaries

Throughout, V denotes a denumerable set of propositional variables and Λ is a set of
connectives with associated arities. We write p for finite sequences of propositional
variables. The set of Λ-formulae is defined by F (Λ) � A1, . . . , An ::= p | ♥(A1, . . . , An)
for p ∈ V and ♥ ∈ Λ with arity n. We write Λ(S ) = {♥(A1, . . . , An) | ♥ ∈
Λ n-ary, A1, . . . , An ∈ S } for the set of formulae constructed from S using a single
connective in Λ. Uniform substitution of all propositional variables in a formula A us-
ing a substitution σ : V → F (Λ) is denoted by Aσ. The set S(F) of (symmetric)
sequents over F consists of tuples of multisets Γ, Δ of formulae in F, written Γ ⇒ Δ.
When dealing with extensions of intuitionistic propositional logic we consider asym-
metric sequents, in which the right hand side Δ consists of at most one formula. The
formulae in Γ occur negatively in the sequent, those in Δ positively. The multiset union
of two multisets Γ and Δ is written Γ, Δ and we identify formulae with singleton mul-
tisets. Substitution extends to both multisets of formulae and sequents in the obvious
way (perserving multiplicity), e.g. (A1, A2 ⇒ B)σ = A1σ, A2σ ⇒ Bσ. We use the sys-
tems G2cp and G2ip of [18] with axioms Γ, A ⇒ Δ, A (where A ranges over the set of

formulae) and the intuitionistic left implication rule
Γ ⇒ A Γ, B ⇒ C
Γ, A → B ⇒ C

as basis for all
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systems that extend classical respectively intuitionistic propositional logic and write G
resp. Gi for these sets of rules. Our structural rules are

Γ ⇒ Δ
Σ, Γ ⇒ Δ, Π

W,
Γ, A, A ⇒ Δ

Γ, A ⇒ Δ
ConL,

Γ ⇒ Δ, A, A
Γ ⇒ Δ, A ConR,

Γ ⇒ Δ, A A, Σ ⇒ Π

Γ, Σ ⇒ Δ, Π
Cut .

3 Generic Cut Elimination and Construction of Cut-Free Systems

We start our investigation with the observation that while standard sequent rules for the
boolean connectives carry over the whole context to the premisses, in standard sequent
systems for many modal logics such as K or S4 [19] either no or only modalised context
formulae are propagated from conclusion to premisses. At the same time exactly one
layer of modalities is added to the principal formulae. In order to fit these different
formats into a unified framework we now generalise the notion of a shallow rule [10]
using the notion of context restrictions, a weaker form of the context relations in [3].

Definition 1. If F is a set of formulae, a context restriction C over F (or simply a
restriction) is given by a tuple of sets of formulae in F, i.e. C = 〈F1, F2〉 with F1, F2 ⊆
F. We write C(F) for the set of context restrictions over F. For a restriction C = 〈F1, F2〉
and a sequent Γ ⇒ Δ we write (Γ ⇒ Δ) �C or Γ �F1⇒ Δ �F2 for the sequent consisting
of the restriction of Γ (resp. Δ) to substitution instances of formulae A with A ∈ F1

(resp. A ∈ F2) on the left (resp. right) hand side. An occurrence of a formula in a
sequent Γ ⇒ Δ satisfies context restriction C if it also occurs in (Γ ⇒ Δ) �C, and a
sequent Γ ⇒ Δ satisfies C if (Γ ⇒ Δ) �C= Γ ⇒ Δ. Finally, a context restriction C′
satisfies C if every sequent which satisfies C′ also satisfies C.

Example 2. 1. The trivial restriction Cid := 〈{p}, {p}〉 does not restrict a sequent at
all, we always have (Γ ⇒ Δ) �Cid= Γ ⇒ Δ.

2. The empty restriction C∅ := 〈∅, ∅〉 deletes every formula in a sequent: (Γ ⇒
Δ) �C∅= ⇒ .

3. The restriction C4� := 〈{�p}, ∅〉 deletes the right side of a sequent and restricts
the left side to boxed formulae. E.g.: (A,C∧D,�(A∨B) ⇒ �D, B) �C4�= �(A∨B) ⇒ .

Definition 3. A rule with context restrictions (or simply a rule) is a tuple
( P;Σ ⇒ Π

)
where P ⊆ S(V)×C(F ) is the set of premisses with associated context restrictions, and
Σ ⇒ Π ∈ S(Λ(V)) are the principal formulae, such that no variable occurs twice in the
principal formulae and every variable occurs in the principal formulae if it occurs in at
least one of the premisses. An instance of a rule R is given by a substitutionσ : V → F
and a context Γ ⇒ Δ ∈ S(F ) and is written as

{
Γ �F1 , Θσ ⇒ Δ �F2 , Υσ | (Θ ⇒ Υ; 〈F1, F2〉) ∈ P }

Γ, Σσ⇒ Δ, Πσ
.

Whenever we mention a set of rules we assume that it is closed under injective renaming
of variables and for all n-ary ♥ ∈ Λ and p = (p1, . . . , pn) and q = (q1, . . . , qn) includes
the congruence rules

({(pi ⇒ qi;C∅) | i ≤ n} ∪ {(qi ⇒ pi;C∅) | i ≤ n};♥p ⇒ ♥q
)
.
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Table 1. Some sequent rules as rules with context restrictions and in standard notation [18,19]

RKn :=
({(p1, . . . , pn ⇒ q;C∅)};�p1, . . . ,�pn ⇒ �q

) A1, . . . , An ⇒ B
Γ,�A1, . . . ,�An ⇒ Δ,�B

RT� :=
({(p ⇒ ;Cid)};�p ⇒) Γ, A ⇒ Δ

Γ,�A ⇒ Δ

R4� :=
({( ⇒ p ;C4�)}; ⇒ �p

) �Σ ⇒ A
Γ,�Σ ⇒ Δ,�A

Thus if a formula A is in the left component of a restriction associated with a premiss of
a rule, then in an instance of this rule the premiss carries over all substitution instances
of A from the left hand side of the context, and dually for the right hand side.

Example 4. The rules of G as well as the rules RK := {RKn | n ≥ 0} of modal logic K
and RS4 := {RT�,R4�} of modal logic S4 from Table 1 are rules with context restrictions.

Definition 5. Let R be a set of rules and S ⊆ S(F ) a set of sequents. We use the
standard notion of derivations [18] and say that a sequent Γ ⇒ Δ is R-derivable from
S if there is a derivation of Γ ⇒ Δ from S using only instances of rules in R. We then
write S �R Γ ⇒ Δ. If we consider rules for asymmetric sequents we will indicate this
by writing �i

R, and we write �[i]
R if a result holds in both settings. Derivability from ∅ is

denoted by �[i]
R Γ ⇒ Δ and derivability in R1 ∪ R2 by �[i]

R1R2
. We write R[CutCon] if a

statement holds for R and extensions with Cut and / or Con.

Admissibility of Weakening is shown by a standard induction on the derivations:

Lemma 6. For every set R of rules and (asymmetric) sequent Γ ⇒ Δ we have �[i]
R[CutCon]

Γ ⇒ Δ whenever �[i]
RW[CutCon] Γ ⇒ Δ.

3.1 Cuts between Rules and Cut Elimination

The main tool in the construction of cut free rule sets is the notion of cuts between rules
from [10,11] that we need to adapt to handle context restrictions. Cut between rules is a
two-stage process: first we replace a pair of rules by the rule arising from performing a
cut between the conclusions. In a second step we modify the premisses so that variables
that no longer appear in the conclusion of the cut are eliminated.

Definition 7. If P ⊆ S(V) × C(F ) is a set of premisses with context restrictions, then
for p ∈ V the p-elimination of P is the set

P � p := { (Γ, Σ ⇒ Δ, Π ; C1 ∪ C2) | (Γ ⇒ Δ, p; C1) ∈ P, (p, Σ ⇒ Π ; C2) ∈ P }
∪ { (Γ ⇒ Δ; C) | (Γ ⇒ Δ; C) ∈ P, p � Γ, Δ } ,

where for restrictions C1 = 〈F1, F2〉 and C2 = 〈G1,G2〉 we write C1 ∪ C2 for 〈F1 ∪
G1, F2 ∪ G2〉. Iterated elimination of variables p = p1, . . . , pn is denoted by P � p. For
rules R = (PR;Γ ⇒ Δ,♥p) and Q = (PQ;♥p, Σ ⇒ Π) the cut between R and Q on ♥p
is the rule cut(R,Q,♥p) :=

(
(PR ∪PQ)� p; Γ, Σ ⇒ Δ, Π

)
. A rule set R is principal-cut

closed if it is closed under cuts between rules.
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Example 8. 1. The rule sets G[i] are principal-cut closed, since cuts between rules
can be replaced by the identity rule Rid :=

({( ⇒ ;Cid)}; ⇒ ).
2. The rule set RK is principal-cut closed, since cut(RKn ,RKm ,�q) = RKn+m−1 ∈ RK .
3. The rule set RS4 is principal-cut closed, since cut(R4�,RT�,�p) = Rid.

Since in the presence of the rules for (intuitionistic) propositional logic it is possible to
re-construct the cut formula from the premisses of the cut between two rules, saturating
a rule set under cuts between rules does not change the set of derivable sequents:

Lemma 9. If R is a set of rules and R is a cut between two rules from R, then �[i]
G[i]CutConRR

Γ ⇒ Δ iff �[i]
G[i]CutConR Γ ⇒ Δ.

Cuts between rules provide us with a means of eliminating cuts on principal formulae
of two rules by replacing the cut with an instance of the cut between the two rules and a
number of cuts on formulae of lower complexity. Moreover, Lemma 9 guarantees that
we may simply add missing cuts to a rule set without jeopardising soundness. While this
is enough for axioms without nested modalities [10], in the more general setting with
context restrictions we need additional criteria for cuts involving context formulae:

Definition 10. Two restrictions C1 = 〈F1, F2〉,C2 = 〈G1,G2〉 overlap if there are for-
mulae A1 ∈ F2, A2 ∈ G1 and substitutions σ1, σ2 with A1σ1 = A2σ2. A rule set R is

1. context-cut closed if whenever R0,R1 ∈ R and there are context restrictions C0 of
R0 and C1 of R1 which overlap, then there is i ∈ {0, 1} such that all context restrictions
of Ri which overlap C1−i and the principal formulae of Ri satisfy C1−i.

2. mixed-cut closed if whenever R,Q ∈ R and a principal formula A of R satisfies a
context restriction of Q, then all context restrictions of R and all principal formulae of
R except for A satisfy all those context restrictions of Q satisfied by A.

Intuitively, these conditions allow pushing cuts involving context formulae into the pre-
misses of one of the rules and eliminating them by induction on the cut level.

Example 11. 1. The rule sets G[i] are context- and mixed-cut closed because all the
rules involve only the restriction Cid or its asymmetric version Ci

id := 〈{p}, ∅〉. Hence
every restriction is satisfied by every principal formula and every other restriction.

2. The rule set RK is trivially context- and mixed-cut closed.

3. The rule set RS4 is mixed-cut closed, since the restriction C4� satisfies Cid. Since
the principal formula of R4� also satisfies Cid, the set is furthermore context-cut closed.

Since in general rules are not invertible and we need to take care of Contraction we will
follow Gentzen’s original strategy [8] when proving cut elimination and eliminate mul-

ticuts
Γ ⇒ Δ, An Am, Σ ⇒ Π

Γ, Σ ⇒ Δ, Π
instead of cuts. Thus we also need to deal with multiple

principal occurrences of the same formula. We do this by elevating contraction to the
level of derivation rules and considering rule sets closed under this operation.

Definition 12 ([11]). If P is a set of premisses with restrictions and p = (p1, . . . , pn)
and q = (q1, . . . , qn) are n-tuples of variables, then P[q ← p] is the result of replacing
every occurrence of qi in a sequent occurring in a premiss in P by pi for all i = 1, . . . , n
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and contracting duplicate instances of p1, . . . , pn. Let R = (P;Γ,♥p,♥q ⇒ Δ) be a
rule. The left contraction of R on ♥p and ♥q is the rule ConL(R,♥p,♥q) = (P[q ←
p];Γ,♥p ⇒ Δ). The right contraction ConR(R,♥p,♥q) is defined dually. A rule set R
is contraction closed if for every rule R ∈ R instances of the rules ConL(R,♥p,♥q)
and ConR(R,♥p,♥q) can be simulated by applications of Weakening and Contraction,
followed by at most one application of a rule R′ ∈ R and Weakening. A set of rules is
saturated if it is contraction, principal-cut, context-cut, and mixed-cut closed.

Example 13. 1. The rules of G[i] and RS4 are trivially contraction closed.

2. RK is contraction closed because ConL(RKn ,�pn−1,�pn) = RKn−1 ∈ RK .
Thus each of G[i],RK ,RS4 are saturated.

Theorem 14 (Cut Elimination). For every saturated set R of rules and (asymmetric)
sequent Γ ⇒ Δ we have �[i]

RCon Γ ⇒ Δ whenever �[i]
RConCut Γ ⇒ Δ.

While saturated rule sets allow for cut elimination, we are also interested in decision
procedures via backwards proof search. For this we also need admissibility of Contrac-
tion. While contraction closure of the rule set takes care of contractions of two principal
formulae of a rule, for contractions of principal and context formulae we use the stan-
dard method of copying the relevant principal formulae into the premisses. This might
seem a bit coarse but again is necessary because in general the rules are not invertible.

Definition 15. For a rule R = (P;Σ ⇒ Π) a modified instance
{

(Γ, Σσ) �F1 , Θσ ⇒ (Δ, Πσ) �F2 , Υσ | (Θ⇒ Υ; 〈F1, F2〉) ∈ P }
Γ, Σσ⇒ Δ, Πσ

of R is given by a substitution σ : V → F and a context Γ ⇒ Δ ∈ S(F ). We write �R∗

for derivability using modified instances instead of instances of rules in R.

Theorem 16 (Admissibility of Contraction). For every set R of rules and (asymmet-
ric) sequent Γ ⇒ Δ we have �[i]

RCon Γ ⇒ Δ iff �[i]
R∗Con Γ ⇒ Δ iff �[i]

R∗ Γ ⇒ Δ.

If the rule set is furthermore tractable in the sense that given a sequent the rules with
this sequent as conclusion have codes of size polynomial in the size of the sequent,
which can be recognised in space polynomial in the size of the sequent, and given the
code of a rule its premisses can be recognised in space polynomial in the code, we get
a generic complexity bound for deciding derivability using modified instances. Due to
the more general rule format this bound is slightly higher than the Pspace bound in [10].
Whether this can be improved in general is subject of ongoing work.

Theorem 17. For a saturated and tractable set R of rules, derivability in R∗ is decid-
able in Exptime.

3.2 Construction of Cut-Free Sequent Systems from Axioms

With Theorems 14 and 16 we have presented a general criterion for a sequent system
with context restrictions to admit both cut and contraction. Of course now we need to
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construct sequent systems satisfying this criterion. As in the case without context re-
strictions [10] these results suggest constructing saturated rule sets by saturation: start-
ing with a set of rules with context restrictions simply add missing cuts and contractions
until no more new rules are found. In the presence of context restrictions, however, we
then need to check that the resulting rule set is also context-cut closed and mixed-cut
closed. The following well-known example shows that this need not be the case.

Example 18. The rule set RS5 :=
{

({(p ⇒ ;Cid)};�p ⇒ ), ({( ⇒ p;C5�)}; ⇒ �p)
}

with C5� := 〈{�p}, {�p}〉 is contraction closed and principal- and context-cut closed.
It is not mixed-cut closed, since the occurrence of the principal formula �p of RT�

satisfies the restriction C5� of R5�, but the restriction Cid does not.

The method of constructing cut-free rule sets by saturation works reasonably well if
we start with a set of sequent rules, but often the modal logics of interest are given in
a Hilbert-style system by a set of axioms. Thus the first step in constructing a cut free
sequent system from such axioms is to translate the axioms into sequent rules. While
this can alway be done if the axioms are non-nested, i.e. without nested modalities, and
the underlying propositional logic is classical, in the general case we need to be more
careful. The notion of cuts between rules will be a useful tool in this step as well.

We assume that the underlying propositional logic is classical or intuitionistic. In
a first step we extend the method for converting non-nested axioms from [10] to the
asymmetric setting using notions from [6]. The main idea is to first treat the modal
subformulae in a non-nested axiom like propositional variables, use invertibility of the
underlying rule set to break the axiom into a finite number of sequents, and then resolve
propositional logic under the modalities by introducing new variables and premisses
stating that these variables are equivalent to the original formulae. Finally, these pre-
misses are again broken up using invertibility of the underlying rules. To identify the
axioms which can be broken up we loosely follow the idea of the substructural hierarchy
from [6] and consider the notions of left resolvable and right resolvable formulae. In-
tuitively, if a right resolvable formula occurs positively in a sequent, its main (boolean)
connective can be broken up. We introduce these notions in a generic form which al-
lows treating classical and intuitionistic logics in the same framework. Also this shows
that they are easily adapted to other logics such as minimal or distributive logic.

Definition 19. The sets Fr of right resolvable formulae and F� of left resolvable for-
mulae and their intuitionistic versions Fr

i and F�
i are defined recursively by

1. if p ∈ V then p ∈ Fr
[i] and p ∈ F�

[i];

2. ⊥ ∈ Fr
[i] and ⊥ ∈ F�

[i];

3. if A1, A2 ∈ Fr
[i] then A1 ∧ A2 ∈ Fr

[i] and A1 ∨ A2 ∈ Fr;

4. if A1, A2 ∈ F�
[i] then A1 ∧ A2 ∈ F�

[i] and A1 ∨ A2 ∈ F�
[i];

5. if A1 ∈ F�
[i] and A2 ∈ Fr

[i] then A1 → A2 ∈ Fr
[i];

6. if A1 ∈ Fr and A2 ∈ F� then A1 → A2 ∈ F�

where again we write Fr
[i] if a clause applies both to Fr and Fr

i.

Example 20. The formula p ∧ ((p ∨ q) → r) is intuitionistically right resolvable. Both
p ∨ q and (p → q) → ⊥ are classically right resolvable, but not intuitionistically.



Constructing Cut Free Sequent Systems with Context Restrictions 155

Since the premisses of the right (left) rule for the main connective of a right (left)
resolvable formula can be derived from its conclusion in G[i]Cut, we may decompose

an axiom ⇒ A for A ∈ Fr into a number of sequents over V, similar to computing the
regular normal form [15] of a formula:

Lemma 21. Let Γ ⊆ F�
[i] and Δ ⊆ Fr

[i]. Then there are unique sequents Γi ⇒ Δi ∈
S(V) such that the axiomΓ ⇒ Δ is equivalent in G[i]CutCon to Γ1 ⇒ Δ1, . . . , Γn ⇒ Δn.

This Lemma is used to break modal axioms into sequents by treating the modalised sub-
formulae as variables. Then the propositional variables are moved into the premisses:

Lemma 22. For Γ ⇒ Δ ∈ S(V) and Σ ⇒ Π ∈ S(Λ(V)) the axiom Γ, Σ ⇒ Δ, Π is

equivalent in G[i]CutCon to the rule ({( ⇒ p;C[i]
id ) | p ∈ Γ} ∪ {(p ⇒ ;Cid) | p ∈

Δ};Σ ⇒ Π).

In the case of axioms with modal nesting depth one we now eliminate propositional
logic under the modalities by adding new variables for the immediate subformulae and
new premisses stating that the variables are equivalent to the original subformulae. Un-
fortunately the result of this operation is not necessarily a rule in our sense, since the
sequents occurring in the premisses do not only include variables. Fortunately, if the
modality in question is monotone or antitone (see below), we can cut this “rule” with
the monotonicity rule (or its antitone counterpart) to eliminate one of the new premisses.
We call the newly introduced premisses the premisses for the subformula A and say that
the premisses for a subformula can be resolved if there are equivalent premisses con-
sisting of sequents over variables. The following Definition and Lemma give criteria on
when the premisses can be resolved.

Definition 23. Let R be a set of rules, p = p1, . . . , pn and q = q1, . . . , qn. For k ≤ n
a n-ary modality ♥p is monotone in the k-th argument if the rule Rmonk = ({(pk ⇒
qk;C∅)} ∪ {(p� ⇒ q�;C∅) | k � � ≤ n} ∪ {(q� ⇒ p�;C∅) | k � � ≤ n};♥p ⇒ ♥q) is in R.
It is antitone in the k-th argument if the rule Rantk with premiss (qk ⇒ pk;C∅) instead of
(pk ⇒ qk;C∅) is in R.

Lemma 24. Let R be a rule set. Then for a sequent Γ ⇒ Δ,♥(. . . , Ak, . . . ) the pre-
misses for Ak can be resolved if: Ak ∈ F�

[i] and ♥ is monotone in the k-th argument; or
Ak ∈ Fr

[i] and ♥ is antitone in the k-th argument; or Ak ∈ F�
[i] ∩ Fr

[i]. For a sequent
♥(. . . , Ak, . . . ), Γ ⇒ Δ we have the analogous result with F�

[i] and Fr
[i] exchanged.

The previous Lemmata yield general criteria as to which axioms are translatable into
rules. For the sake of brevity we only state the result for unary monotone modalities;
The generalisations to non-monotone modalities and higher arities are straightforward.

Definition 25. For A ∈ Fr
[i] and p ∈ V we say that p is positive (resp. negative) in A, if

it occurs positively (resp. negatively) in a sequent of the decomposition of the sequent
⇒ A according to Lemma 21.

Theorem 26. Let A be a propositional formula with variables p1, . . . , pn, q1, . . . , qm,
and for i = 1, . . . ,m let the modality ♥i be unary monotone and Ai a propositional
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formula with variables in p1, . . . , pn such that: qi is only positive in A and Ai ∈ F�
[i]; or

qi is only negative in A and Ai ∈ Fr
[i]; or A ∈ F�

[i] ∩ Fr
[i]. Then there is a rule which is

equivalent in G[i]CutCon to the axiom ⇒ Aσ where σ(qi) = ♥i(Ai) and σ(pi) = pi.

Remark 27. Since for classical propositional logic all propositional formulae are both
right and left resolvable, the previous Theorem yields the translation result for non-
nested axioms from [10] as a Corollary.

For axioms with nested modalities we may sometimes use a similar procedure if a
modalised formula occurs both on the top level of the axiom and under a modality.
The idea is to introduce a fresh variable for this formula and apply the methods above
to resolve propositional logic under the modalities, but without moving the top level
occurrences of the variable into the premisses with Lemma 22. If now the occurrences
of this variable in the premisses and the conclusion are all negative (resp. positive), we
may it replace it again with the original formula. Since this formula now occurs both in
the premisses and the conclusion this often gives rise to a context restriction. We will
illustrate this method using examples in the next section.

4 Applications

Example 28 (Constructive K). Constructive modal logic K from [4,13] is based on
intuitionistic propositional logic and has rules Reg� =

({(p ⇒ q;C∅)};�p ⇒ �q
)

and Reg♦ =
({(p ⇒ q;C∅)}; ♦p ⇒ ♦q

)
and axioms (FS1) �	, (FS2) (�(p ∧ q) →

(�p ∧ �q)) ∧ ((�p ∧ �q) → �(p ∧ q)) and (FS6) ♦(p → q) → (�p → ♦q). Since
the propositional part is intuitionistic we base our treatment on the asymmetric setting.
The rules Reg� and Reg♦ ensure that both modalities � and ♦ are monotone in the sense
of Definition 23. Treating modalised subformulae as variables and using Lemma 21
and the fact that A → B is intuitionistically left resolvable to break up axiom (FS6)

first yields the axiom ♦(p → q),�p ⇒ ♦q. Now introducing a new variable rp→q and
premisses for subformula p → q yields

rp→q ⇒ p → q p → q ⇒ rp→q

♦rp→q,�p ⇒ ♦q .

But now a cut with rule Reg♦ on ♦rp→q and resolving the remaining premiss gives the

rule
s, p ⇒ q
♦s,�p ⇒ ♦q RFS6. The analogous treatment for axioms (FS2) and (FS1) gives

the well-known rules RFS2 :=
({(p, q ⇒ r;C∅)};�p,�q ⇒ �r

)
and RFS1 :=

({( ⇒
p;C∅)}; ⇒ �p

)
. Now saturating the rule set under cuts yields the rule set

RCK :=
{ p1, . . . , pn ⇒ q
Γ,�p1, . . . ,�pn ⇒ �q

RCKn | n ≥ 0
}
∪
{ p1, . . . , pn, q ⇒ r
Γ,�p1, . . . ,�pn, ♦q ⇒ ♦r | n ≥ 0

}
.

Of course this rule set is not new [4]. The point here is that we constructed it in a purely
syntactical way from the axioms of the Hilbert-system.

To illustrate the use of Lemma 22 let us add the T -axioms (T�) �p → p and
(T♦) p → ♦p. Again, the axioms are first broken up into �p ⇒ p and p ⇒ ♦p. Then
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they are transformed into equivalent rules RT� =
({(p ⇒ ;Cid)};�p ⇒ )

and RT♦ =({( ⇒ p;Ci
id)}; ⇒ ♦p

)
. Now saturation under cuts would yield the additional rules({(p1, . . . , pn ⇒ ;Cid)};�p1, . . . ,�pn ⇒ ) and

({(p1, . . . , pn ⇒ r;Ci
id)};�p1, . . . ,�pn ⇒

♦r
)

for n ≥ 0, but these are simulated by repeated applications of RT� and RT♦. Thus it
is easy to see that the rule sets RCK and RCK ∪ {RT�,RT♦} are saturated.

Note that these constructions do not give rise to context restrictions apart from C∅ and
C[i]

id . For this we need to consider axioms with nested modalities. Unfortunately, if we
are dealing with nested modalities the translation becomes more involved and much less
automatic. Nonetheless, as mentioned before in some cases we can still use the method
of cutting rules on principal formulae to construct rules with context restrictions. The
main idea is to make use of formulae occurring both under a modality and on the top
level of the sequent and to construct a context restriction out of this formula.

Example 29 (Constructive S4). Constructive modal logic CS4 from [17,2] contains
the rules RCK ∪{RT�,RT♦} and additional axioms (4�) �p → ��p and (4♦) ♦♦p → ♦p.
We make use of the fact that in these we have the same modalised formula occurring on
the top level and under a modality as follows: Take axiom (4�) and in a first step replace
the occurrence of �p under the modality by a fresh variable q. The resulting axiom
�p → �q is broken up into the sequent �p ⇒ �q. Then adding the premisses for q we

get
�p ⇒ q q ⇒ �p
�p ⇒ �q and a cut with the monotonicity rule Reg� yields

�p ⇒ q
�p ⇒ �q. Now

computing principal cuts of a number of instances of this rule with rule RCKn yields

�p1, . . . ,�pm, q1, . . . , qk ⇒ r
Γ,�p1, . . . ,�pm,�q1, . . . ,�qk ⇒ �r .

But since the �pi occur both in conclusion and premiss of the rule, this is exactly
the rule R4� =

({(q1, . . . , qk ⇒ r;C4�)};�q1, . . . ,�qk ⇒ �r
)
. Moreover, the rule

�p ⇒ q
�p ⇒ �q is sound by the methods of the last section, and since R4� was constructed

from this rule and RCKn by means of principal cuts, Lemma 9 ensures that it is sound
as well. A similar process for axiom (4♦) yields the rules R4♦ :=

({(p1, . . . , pn, q ⇒
C4♦)};�p1, . . . ,�pn, ♦q ⇒ ) with context restriction C4♦ = 〈∅, {♦p}〉. Now adding the
missing principal cuts again yields a rule set which is principal-cut closed. It is triv-
ially context-cut closed, and easily checked to be mixed-cut and contraction closed and
therefore saturated. Again, the rules are not new, but we constructed them in a purely
syntactical way, and their soundness and completeness is guaranteed by construction.

This method can also be applied if the subformula occurs under a modality more than
once, or if it is more complex. In the latter case in general this gives rise to more com-
plex context restrictions. The following example shows how sometimes more complex
restrictions can be simplified and how context restrictions C[i]

id may arise other than as a
consequence of Lemma 22.

Example 30 (Access Control Logic CDD). Access control logic CDD from [1] is
based on intuitionistic propositional logic and has indexed normal (and thus mono-
tone) modalities ©kA which are interpreted as principal k says A. For this example
we consider the axiomatisation with the axioms [unit] p → ©k p and [GHO] ©k

(p → ©kq) → (p → ©kq) (see [1]). The first axiom straightforwardly translates into
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the rule R[unit] =
( {( ⇒ p;Ci

id)}; ⇒ ©k p
)
. For the latter axiom we first introduce a

variable r for the formula (p → ©kq) under the modality and apply the methods above
to obtain

r ⇒ p → ©kq
Γ,©kr ⇒ p → ©kq

.

But now instead of turning this into a rule with context restriction 〈∅, {p → ©kq}〉 we

break up the boolean part to arrive at
r, p ⇒ ©kq

Γ,©kr, p ⇒ ©kq
. Since disjunctions are intuition-

istically left resolvable the variable p can be taken to be the context on the left hand
side, and this is equivalent to the rule R[GHO] =

( {(r ⇒ ;Ccdd,k)};©kr ⇒ ) with restric-
tion Ccdd,k := 〈{p}, {©k p}〉. Since the rules RKn for ©k are simulated by applications of
R[unit] and R[GHO], this yields the rule set RCDD :=

{
R[unit],R[GHO]

}
which again is easily

seen to be saturated and thus have cut elimination. Of course again this rule set is not
new (see e.g. [7,5]) and there are other ways to construct it, but it nicely illustrates how
context restrictions arise.

Example 31 (Conditional Logic with Absoluteness). As a final example let us con-
struct a cut-free set of rules with context restrictions for a logic based on classical
propositional logic, namely for Lewis’ conditional logic VA from [12]. The language
for this logic contains the binary modality � called comparative plausibility opera-
tor with the intuitive reading “A is at least as plausible as B” for A � B. The logic
VA is given as an axiomatic extension of the logic V, where the latter is charac-
terised by non-nested axioms only and does not necessitate the use of rules with con-
text restrictions. For this reason we concentrate on the new axioms and make use of
the rules RV = {Rn,m | n ≥ 1,m ≥ 0

}
from [11] for the logic V, where rule Rn,m

in our notation is given as
( {(sk ⇒ r1, . . . , rn, q1, . . . , qm;C∅) | k ≤ n} ∪ {(pk ⇒

r1, . . . , rn, q1, . . . , qk−1;C∅) | k ≤ m}; p1 � q1, . . . , pm � qm ⇒ r1 � s1, . . . , rn � sn
)
.

For VA we need to add the two absoluteness axioms (p � q) → (⊥ � ¬(p � q)) and
¬(p � q) → (⊥ � (p � q)). We use the fact that the formula (p � q) occurs both on the
top level and under a modality, and in a first step using monotonicity of � in the second

argument convert the two axioms into
p ⇒ q ⇒ r � s
⇒ p � q, r � s

and
p ⇒ r � s, q ⇒

r � s ⇒ p � q
. Now

computing a principal cut between the first of these rules and a rule Rn,m effectively
replaces one negative principal formula of Rn,m with a positive contextual formula r �
s. Repeating this process we get arbitrarily many positive context formulae rk � sk

and thus arrive at the context restriction 〈∅, {r � s}〉. Similarly, principal cuts with
the second rule replace negative principal formulae of Rn,m with negative contextual
formulae r � s, yielding the context restriction CVA := 〈{r � s}, {r � s}〉. As usual, since
all the cuts involved were cuts on principal formulae, Lemma 9 guarantees soundness
of the resulting rule set. Setting RVA = {R′

n,m | n ≥ 1,m ≥ 0} with R′
n,m given as( {(sk ⇒ r1, . . . , rn, q1, . . . , qm;CVA) | k ≤ n} ∪ {(pk ⇒ r1, . . . , rn, q1, . . . , qk−1;CVA) |

k ≤ m}; p1 � q1, . . . , pm � qm ⇒ r1 � s1, . . . , rn � sn
)

thus gives a sound and complete
rule set for VA, which is easily checked to be saturated and thus cut-free. As far as we
are aware this rule set is new. This yields the following Theorem.
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Theorem 32. The rule set GRVAConCut is sound and complete forVA. Moreover, it is
saturated and therefore has cut elimination. Since RVA is tractable, derivability in this
system can be checked in Exptime.

5 Conclusion

We presented a generic cut elimination result for symmetric and asymmetric sequent
systems consisting of rules with context restrictions which are saturated, i.e. closed un-
der cuts and contractions. This not only extends previous methods to modal axioms of
nesting depth greater than one, but also to logics based on intuitionistic logic. Further-
more, we introduced techniques to translate axioms of a Hilbert style system into se-
quent rules. All the results and techniques are easily adapted to other base logics such as
minimal or distributive logic. Examples included the reconstruction of already known
sequent systems for constructive modal logics and the construction of an apparently
new sequent system for Lewis’ conditional logic VA in the entrenchment language.
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Abstract. We provide a natural formulation of the sequent calculus
with equality and establish the cut elimination theorem. We also briefly
outline and comment on its application to the logic of partial terms,
when “existence” is formulated as equality with a (bound) variable.
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1 Introduction

The usual sequent calculus formulations of the predicate calculus with equality
(no matter whether classical or intuitionistic) suggested by its, probably better
known, formulations as axiomatic systems, which include the axiom ∀x(x = x)
and the axiom schema ∀(x = y → (F{v/x} → F{v/y})), satisfy the cut elimi-
nation theorem only for cut-formulae which do not contain equalities1. See [13]
and [14] for example. As part of a broader program of absorbing (mathematical)
axioms into rules, while preserving cut eliminability, [7] introduces a structural
rule free sequent calculus with equality for which the full cut elimination the-
orem holds. We will show that a similar result can be obtained by extending
Gentzen’s original systems with very natural rules not covered by the general
schema adopted in [7], which leads to rules with active formulae in the antecedent
of a sequent only. We will focus attention on the systems in Gentzen’s celebrated
”Untersuchungen” [12], which have the ∀ ⇒ and⇒ ∃ rules restricted to variable,
rather than arbitrary terms, as they are now commonly understood, when the
notation LJ and LK are used2. However it will be clear that our treatment and
results apply to the extended systems as well. We will denote by L and Lc the
current versions of LJ and LK, with the exception that the restricted forms of

� Work supported by funds PRIN-/MIUR of Italy. The authors are grateful to the
referees for helpful comments and suggestions.

1 More precisely, every derivation in such systems can be transformed into one which
contains only inessential cuts, namely cuts on equalities.

2 It is only in his subsequent “ Die Widerspruchsfreiheit der reinen Zahlentheorie”,
namely in a context in which all terms are denoting, that Gentzen introduces the
extended version of the ∀ ⇒ and ⇒ ∃ rules.
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∀ ⇒ and ⇒ ∃ are adopted. A specific motivation to take L= and Lc= as basic
systems is that it is on their ground, as we will show in a sequel to the present
work, that one can develop a satisfactory proof theoretic analysis of partial logic,
with existence of a reference for a term t expressed by ∃x(t = x), as originally
suggested in [5] and [3], in agreement with Quine’s Thesis.3 As we will show it
will suffice to add to L and Lc the reflexivity axiom RFL : ⇒ t = t, and the
following right congruence rule CNG:

Γ ⇒ F{v/r} Γ ⇒ r = s
Γ ⇒ F{v/s}

to have adequate sequent calculi L= and Lc=, for which the cut elimination
theorem holds in full generality4. While RFL can be considered as a rule which
introduces = on the right side of a sequent, such calculi lack a rule which intro-
duces = on the left side. Actually CNG is more of a natural deduction style rule
in that, as all the current natural deduction rules, when formulated in the sequent
calculus format, it does not introduce a logical constant in the antecedent. A rule
which is more in tune with those in L, is the following monic version CNGM of
CNG, which does introduce = on the left:

Γ ⇒ F{v/r}
Γ, r = s⇒ F{v/s}

However the following left symmetry rule SYML :

Γ, r = s⇒ Δ
Γ, s = r ⇒ Δ

basic to our proof-theoretic analysis, is not admissible in the cut-free part of the
systems obtained by adding CNGM to L or Lc. Thus to have systems for which
cut elimination holds we have to add to L or Lc, besides CNGM , also SYML.
We will denote by L=

M and Lc=
M the systems so obtained. If in Lc=

M the rule ∀ ⇒
and ⇒ ∃ are extended to arbitrary terms, we obtain a system which is related,
actually equivalent, to the system Ge introduced in [6], in its turn inspired by
[4].5 We will prove the cut elimination theorem for L=

M and Lc=
M by using in a

crucial way the admissibility of CNG in such systems, and then we will transfer
the result to the systems L= and Lc=. In the extended case, the result can be
transfered to the system Ge as well, since CNG is a special case of the rule
R2 of Ge and SYML is easily seen to be admissible in the cut free part of Ge.

3 So christened in [3] and expressed by Quine’s dictum from [10] “to be is to be the
value of a variable”.

4 We use the term congruence rule to avoid confusion with the substitution rule,
which leads from Γ ⇒ Δ to Γ{v/t} ⇒ Δ{v/t}. The congruence rule for function
and relation symbols, leading from Γ ⇒ r = s to Γ ⇒ fr = fs and to Γ,Rr ⇒ Rs
respectively, are easily derivable from RFL and CNG.

5 [6] announces a proof of cut elimination for Ge to be published as part II of the
work, but apparently such a part II has never appeared in print.
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The overall strategy is to reduce the cut elimination problem, as well as other
significant proof-theoretic properties, for the full systems to the same problem for
their purely equational part, which is common to the intuitionistic and classical
systems. Once the results, obtained for the equational systems, are extended to
L=, they become instrumental in giving a syntactic proof of the conservativity of
the addition of partial selection functions in the framework of L=, supplemented
by the assumption of the determinateness of equality, expressed by the axiom
⇒ ∀x∀y(x = y∨x �= y). No such extension is needed as far as the conservativity
of the addition of partial description functions is concerned6.

The above treatment of partial logic relies on the adoption of RFL and CNG,
which concerns arbitrary terms. We believe that has well grounded motivations.
If it appears reasonable to assume as logical an equality like t = t even if t is
a non denoting term, in a given context of course, that is expecially so when it
comes to the development of the mathematical discourse. Think for example of
the identity 1−2 = 1−2 or the congruence 1+1 = 2→ (1+1)−3 = 2−3 when
integers are not (yet) around. A different view is usually taken, (see [11], [14], [1]
and [2]), when the existence predicate, which, applied to a term t, means that t
is a denoting term, is taken as primitive. In that connection a ”strict” equality
= is introduced with the intended meaning: r = s if and only if r and s are
both defined and are equal, together with a ”lax” equality ∼= with the intended
meaning: r ∼= s if and only if, r is defined if and only if s is defined, and if they
are both defined, then they are equal, which identifies all non denoting terms,
like 1−2 and 1−3 in the positive integers, thus conflicting with the introduction
of the negative ones. On that respect it is of particular interest to note that the
restriction of RFL to variables only and of CNG to the case in which one at
least among r and s is a variable, together with the addition of the left symmetry
rule, with the same restriction, yield systems which appear to be particularly
well motivated, when dealing with terms which need not be denoting. As it
can be shown that the full systems, with the reflectiom axioms and congruence
rules extended to arbitrary terms, are conservative extensions of the ones so
obtained, as far as equalities between a term and a variable are concerned, the
former systems seem to appropriately formalize the logic surrounding Quine’s
Thesis. However the content of this paper will be limited to the proof of the cut
elimination theorem and to a few of its more immediate applications.

2 The Systems L= and Lc=

Given any terms t and s and variable x, t{x/s} denotes the term obtained from
t by replacing all occurences of x by s. Similarly F{x/t} denotes the formula
obtained from F by replacing all the free occurrences of x by t. L= and Lc= are
obtained from (the current version of) the Gentzen’s sequent calculi LJ and LK
by restricting the right ∀- introduction rule and the left ∃-introduction rule to
the following form:

6 For the classical case a semantic proof using truth-value semantics can be found in
[9].
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Γ, F{x/y} ⇒ Δ Γ ⇒ Δ,F{x/y}
Γ, ∀xF ⇒ Δ Γ ⇒ Δ, ∃xF

and adding the RFL axiom: ⇒ t = t and the following congruence rule CNG:

Γ ⇒ Δ,F{v/r} Γ ⇒ Δ, r = s
Γ ⇒ Δ,F{v/s}

with the appropriate restrictions on |Δ| for L=, namely |Δ| ≤ 1 in the former
two rules and Δ = ∅ in CNG. F{v/s} is said to be the principal formula of the
displayed congruence rule.

3 The Systems L=
M and Lc=

M

L=
M and Lc=

M are obtained from L= and Lc= by replacing CNG with the following
rule CNGM :

Γ ⇒ Δ,F{v/r}
Γ, r = s⇒ Δ,F{v/s}

and by adding the following left symmetry rule SYML:

Γ, r = s⇒ Δ
Γ, s = r ⇒ Δ

with the restrictions |Δ| ≤ 1 for L=
M .

4 Reduction of the Congruence Rules to Atomic
Formulae

An atomic formula is either an equality r = s or a formula of the form p(t1, . . . , tn),
for some n-ary relation symbol p and n-tuple of terms t1, . . . , tn.

Proposition 1. In L=, and Lc= the rule CNG is derivable from its restriction
to atomic principal formulae. Similarly for L=

M and Lc=
M

Proof. By induction on the complexity of formulae, using the cut rule. "#

Warning. In view of the previous proposition we will henceforth refer exclu-
sively to the restriction of CNG and CNGM to atomic principal formulae, but
maintain the notations L=, Lc=, L=

M and Lc=
M for the resulting systems.
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5 Reduction of the Cut Rule to Atomic Cut Formulae

In the following S will indicate any of the previously introduced systems and
cf.S the system obtained by leaving out the cut rule from S.

Proposition 2. Every derivation in S can be transformed into a derivation
having only atomic cuts, namely cuts whose cut formula is atomic.

Proof. It suffices to apply Gentzen’s original argument, to show that if a mix
inference has a mix formula which is non atomic, then it can be either eliminated,
or reduced to mix inferences on formulae of lower height, or moved upward,
treating the case in which one of the two subderivations ends with a CNG-
inference as if it were a logical inference. "#

6 Separated Derivations

Definition 1. Logical axioms are those of the form F ⇒ F . They are said to be
atomic if F is atomic. A derivation is said to be separated if its logical axioms,
and cuts are atomic and no logical inference precedes some cut or congruence
inference.

Notation. Γ�A will denote any sequence of the form Γ (1), . . . A, Γ (n−1), A, Γ (n)

such that Γ coincides with Γ (1), . . . , Γ (n−1), Γ (n). In other words, Γ�A denotes
any sequence of formulae from which Γ can be obtained by erasing occurences
of A.

Proposition 3. Every derivation in S can be transformed into a separated
derivation of the same end-sequent.

Proof. Axioms can be reduced to their atomic form (without using the cut rule).
Atomic cut and congruence inferences can be either eliminated or moved upward
through any application of the logical rules. In more detail, one shows that
if Γ ⇒ Δ1�A and Λ�A ⇒ Δ2 have separated derivations, then also Γ,Λ ⇒
Δ1, Δ2, has a separated derivation, and that if Γ ⇒ Δ1�F{v/r} and Λ ⇒
Δ1� r = s have separated derivations, then also Γ,Λ ⇒ Δ1.Δ2, F{v/s} has a
separated derivation. The claim then follows by an easy induction on the height
of derivations. "#

Note 1. The argument works unchanged also for the extended version of the
∀ ⇒ and the ⇒ ∃ rules.7

7 That one can make the congruence inferences precede the logical inferences in the
system cf.Ge, denoted there by Ge

1, was noted in [6].
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7 Cut Elimination for the Purely Equational Systems
EQ and EQM

Thanks to the previous proposition, cut elimination for S follows from cut elim-
ination for the purely equational subsystem of S, which retains only the axioms,
the structural rules and the congruence rule of S, to be denoted with EQ in
case S is L= or Lc= and with EQM in case S is L=

M or Lc=
M . We can therefore

turn our attention to EQ and EQM . The equational subsystems do not depend
on whether the system is classical or intuitionistic, despite the fact that, since
classical logic is subsumed by the use of sequents with more than one formula in
the consequent, the equational subsystems of Lc= and Lc=

M would also refer to
such generalized sequents. However they can be referred to the simple sequents
framework without any loss, as shown by the following fact.

Proposition 4. Γ ⇒ Δ is derivable in EQ (EQM) if and only if for some D in
Δ, there is a derivation of Γ ⇒ D in EQ (EQM), which contains only sequents
with exactly one formula in the consequent. In particular if Γ ⇒ Δ is derivable
in EQ (EQM), then Δ cannot be empty!

Proof. By induction on the height of a derivation of Γ ⇒ Δ. In the base case
Γ ⇒ Δ reduces to an axiom and the claim is obvious, since axioms have either
the form D ⇒ D or⇒ D. Coming to the inductive step, if, for example, Γ ⇒ Δ
has the form Γ ⇒ Δ−, F{v/s} and is obtained by a CNG-inference from Γ ⇒
Δ−, F{v/r} and Γ ⇒ Δ−, r = s, then by induction hypothesis either there is a
formula D in Δ−, hence also in Δ, such that Γ ⇒ D has a derivation with the
desired property, or both Γ ⇒ F{v/r} and Γ ⇒ r = s have such derivations. In
the latter case it suffices to apply a CNG-inference to establish the claim with
F{v/s} taken as D. "#

Warning. From now on we will therefore assume that EQ and EQM are sequent
calculi dealing with sequents in which all formulae are atomic and there is at
most one formula in the consequent.

7.1 Admissibility of CNG in EQM

Let SYM denote the following right symmetry rule:

Γ ⇒ r = s
Γ ⇒ s = r

Lemma 1. SYM is admissible in cf.EQM

Proof. By induction on the height of a derivations D of Γ ⇒ r = s. In the base
case, either Γ = ∅ and r coincides with s or Γ is r = s. In the former case the
conclusion is trivial, in the latter we note that the following is a derivation of
Γ ⇒ s = r, namely of r = s⇒ s = r:

⇒ r = r
r = s⇒ s = r
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As for the inductive step, the only non trivial case occurs when D has the form:

D0

Γ ⇒ r◦{v/p} = s◦{v/p}
Γ, p = q ⇒ r◦{v/q} = s◦{v/q}

By inductive hypothesis applied to D0, Γ ⇒ s◦{v/p} = r◦{v/p} is derivable in
cf.EQ, from which, thanks to a CNGM -inference, it follows that also

Γ, p = q ⇒ s◦{v/p} = r◦{v/p} is derivable in cf.EQM . "#

Let CNGL
M denote the following left congruence rule:

Γ, F{v/r} ⇒ D
Γ,F{v/s}, r = s⇒ D

Lemma 2. The rule CNGL
M is admissible in cf.EQM

Proof. Due to the presence of the rules of contraction and exchange we have to
prove the following more general statement: if a sequent of the form

Γ�F{v/r} ⇒ D

is cut free derivable in EQM , then also the sequent Γ, F{v/s}, r = s ⇒ D is
cut free derivable in EQM . The proof is by induction on the height of a given
derivation D of Γ�F{v/r} ⇒ D. If D consists of a single axiom, we can assume
that it is of the form F{v/r} ⇒ F{v/r}, and the claim is proved by considering
the following derivation:

CNGL
M

F{v/s} ⇒ F{v/s}

SYML
F{v/s}, s = r ⇒ F{v/r}
F{v/s}, r = s⇒ F{v/r}

If D ends with a proper inference, the less trivial case occurs when D ends with
a CNGM -inference which introduces on the left the formula F{v/r}, which
is therefore an equality, say p{v/r} = q{v/r}. In this case D is of the form
G{u/q{v/r}}, and the premiss of the last inference of D is of the form

Γ�p{v/r} = q{v/r} ⇒ G{u/p{v/r}}. We have to prove that
Γ, p{v/s} = q{v/s}, r = s ⇒ G{u/q{v/r}} is derivable in cf.EQM . By in-

ductive hypothesis Γ, p{v/s} = q{v/s}, r = s ⇒ G{u/p{v/r}} is derivable in
cf.EQM . Then the desired derivation can be obtained by applying the following
further inferences (which subsumes the appropriate exchanges and contractions):

CNGL
M

Γ, p{v/s} = q{v/s}, r = s⇒ G{u/p{v/r}}

CNGL
M

Γ, p{v/s} = q{v/s}, r = s⇒ G{u/p{v/s}}

CNGL
M

Γ, p{v/s} = q{v/s}, r = s⇒ G{u/q{v/s}}

SYML
Γ, p{v/s} = q{v/s}, r = s, s = r ⇒ G{u/q{v/r}}

Γ, p{v/s} = q{v/s}, r = s⇒ G{u/q{v/r}}
.

"#
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Note 2. A somewhat simpler argument shows that also the following CNGL

rule:
Γ, F{v/r} ⇒ D Γ ⇒ r = s

Γ, F{v/s} ⇒ D

is admissibile in cf.EQ. Notice that CNGL
M and CNGL are derivable, by means

of the cut rule, in EQM and EQ respectively

A further, quite useful, reduction, already exploited in [6], that one can make
regarding the congruence rules, is expressed in the following definition and prop-
erty.

Definition 2. An application

Γ ⇒ F{v/r}
Γ, r = s⇒ F{v/s}

of CNGM is said to be singular if F has exactly one free occurrence of v.

Lemma 3. CNGM is derivable by singular applications of CNGM .

Lemma 4. If the sequent Λ⇒ r = s is derivable in cf.EQM , then, for any for-
mula F , also the sequent Λ,F{v/r} ⇒ F{v/s} is derivable in the same system.

Proof. We proceed by induction on the height of a cut-free derivation D of
Λ⇒ r = s. If D consists of a single axiom, we have the following two possibilities:

a) D consists of the RFL axiom ⇒ r = r, so that Λ is empty and s coincides
with r,

b) D consists of the logical axiom r = s⇒ r = s, so that Λ is r = s.
In case a) the assertion is trivial, since Λ,F{v/r} ⇒ F{v/s} is the logical

axiom F{v/r} ⇒ F{v/r}. In case b) the assertion is proved by the following
derivation:

CNGL
M

F{v/r} ⇒ F{v/r}
r = s, F{v/r} ⇒ F{v/s}

As for the inductive step, the only non trivial case occurs when D ends with a
CNGM -inference of the form:

Λ− ⇒ r◦{u/p} = s◦{u/p}
Λ−, p = q ⇒ r◦{u/q} = s◦{u/q}

so that Λ is Λ−, p = q, r is r◦{u/q}, s is s◦{u/q}. By the inductive hypothesis,
Λ−, F{v/r◦{u/p}} ⇒ F{v/s◦{u/p}} is cut-free derivable. Such a derivation

can be prolonged into a cut-free derivation of the desired sequent as follows:

CNGM
Λ−, F{v/r◦{u/p}} ⇒ F{v/s◦{u/p}}

CNGL
M

Λ−, F{v/r◦{u/p}}, p = q ⇒ F{v/s◦{u/q}}
Λ−, F{v/r◦{u/q}}, p = q, p = q ⇒ F{v/s◦{u/q}}

Λ−, p = q, F{v/r◦{u/q}} ⇒ F{v/s◦{u/q}}

which uses CNGL
M . The conclusion follows by the admissibility of CNGL in

cf.EQM given by Lemma 2 "#
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Theorem 1. CNG is admissible in cf.EQM

Proof. By Lemma 3, it suffices to show the result for the singular versions of the
rules with respect to the singular version of the corresponding cut-free system.
Furthermore it is convenient to deal with the non context sharing version of those
rules. Thus we have to prove that if two sequents Γ ⇒ F{v/r} and Λ ⇒ r = s
are cut free derivable in the singular version of cf.EQM , and v has a single
free occurrence in F , then also the sequent Γ,Λ⇒ F{v/s} is cut-free derivable
in EQM . We proceed by induction on the height of a cut-free derivation D of
Γ ⇒ F{v/r}, associated with an arbitrary cut-free derivation of Γ ⇒ r = s.

If D consists of a single axiom, we have the following possibilities:
a) D consists of the single axiom ⇒ r = r, thus Γ is empty and F{v/r} is

r = r.
b) D consists of the single axiom F{v/r} ⇒ F{v/r}, thus Γ is F{v/r}.
In case a), since, in F , v has a single occurrence, F itself can have one of the

following forms: r = v, v = r, (v not in r), so that F{v/s} takes one of the two
forms r = s, s = r. In the former case the conclusion holds since Λ ⇒ r = s is
assumed to be cut-free derivable. In the latter case it suffices to apply SYM ,
which is admissible by Lemma 1, to Λ ⇒ r = s. In case b) it suffices to apply
the previous lemma.

As for the inductive step, the only non trivial case occurs when D ends with
a CNGM -inference:

Γ− ⇒ G{u/p}
Γ−, p = q ⇒ G{u/q}

so that Γ is Γ−, p = q and F{v/r} is G{u/q}. Furthermore u, which has a unique
free occurrence in G, can be assumed to be distinct from v, since G{u/q} is the
same as G′{u′/q}, where G′ is obtained from G by replacing the occurrence of
u, by a new variable u′. We have three possible cases.

1). The unique relevant occurrence of r and the unique relevant occurrence
of q in the same formula F{v/r}, namely G{u/q} do not overlap. Then we
can write G as G◦{v/r}, G{u/p} as G◦{v/r, u/p} and G{u/q} as G◦{v/r, u/q}.
Since Λ ⇒ r = s is cut-free derivable and Γ− ⇒ G◦{v/r, u/p} admits a cut-
free derivation in EQM with height less than the height of D, by inductive
hypothesis, Γ− ⇒ G◦{v/s, u/p} admits a cut-free derivation in EQM . By an
application of a final CNGM to such a derivation we obtain a cut-free derivation
of Γ−, p = q ⇒ G◦{v/s, u/q}, as desired, since its succedent coincides with
F{v/s}.

2) The unique relevant occurrence of r is a part of the unique relevant occur-
rence of q (we do not exclude that the two coincide). Then q can be written as
q◦{v/r} and v does not occur in G. Thus F coincides with G{u/q◦} and F{v/r}
with G{u/q◦{v/r}}. Since Λ⇒ r = s is cut-free derivable in EQM , by the previ-
ous lemma, Λ, p = q◦{v/r} ⇒ p = q◦{v/s} is cut-free derivable in EQM as well.
Therefore by the inductive hypothesis, Γ−, Λ, p = q◦{v/r} ⇒ G{u/q◦{v/s}},
namely Γ−, Λ, p = q ⇒ F{v/s} is cut-free derivable, as we had to show.
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3) 1) and 2) do not apply. Then the unique relevant occurrence of q is a proper
part of the unique relevant occurrence of r. Thus r can be written as r◦{u/q}
and u does not occur free in F . Therefore G coincides with F{v/r◦} and, for
evey term t, G{u/t} coincides with F{v/r◦{u/t}}. By assumption

Λ⇒ r◦{u/q} = s has a cut-free derivation. By applying CNGM and SYML

to a cut-free derivation of Λ ⇒ r◦{u/q} = s we obtain a cut-free derivation of
Λ, p = q ⇒ r◦{u/p} = s. Therefore, by the inductive hypothesis applied to such
a sequent and to the cut-free derivable sequent Γ− ⇒ F{v/r◦{u/p}}, it follows
that also Γ−, Λ, p = q ⇒ F{v/s} is cut-free derivable in EQM . "#

7.2 Cut Elimination for EQM

Theorem 2. The cut rule is admissible in cf.EQM , equivalently, if Γ ⇒ D
is derivable in EQM , then Γ ⇒ D is derivable in cf.EQM . Briefly stated: cut
eliminability holds for EQM .

Proof. We prove the following more general result: If Γ ⇒ A and Λ�A⇒ D are
derivable in cf.EQM , then also the sequent Γ,Λ ⇒ D is derivable in cf, EQM .
The proof is by induction on the height of a cut-free derivation D of Λ�A⇒ D.
In the base case D necessarily consists of a single logical axiom A⇒ A and our
claim trivially follows from the assumption that Λ ⇒ A is derivale in cf.EQM .
As for the inductive step, the only non trivial case occurs when D ends with a
CNGM -inference which introduces A on the left, so that A has the form r = s, D
has the form G{v/s} and the premiss of the last CNGM -inference of D has the
form Λ�r = s ⇒ G{v/r}. By induction hypothesis Γ,Λ ⇒ G{v/r} is derivable
in cf.EQM . Since Γ ⇒ r = s, is also assumed to be derivable in cf.EQM , also
Γ,Λ⇒ r = s is derivable in cf.EQM . Therefore by the admissibility of CNG in
cf.EQM , given by Theorem 1, the sequent Γ,Λ ⇒ D is derivable in cf.EQM ,
as we had to prove. "#

Note 3. The admissibility of CNG for cf.EQM is essential for the proof.

Lemma 5. SYML is admissible in cf.EQ

Proof. By induction on the height of a derivation D of Γ�r = s⇒ D in cf.EQ.
In the base case Γ�r = s⇒ D reduces to the logical axiom r = s⇒ r = s. Then
it suffices to note that the following is a derivation in cf.EQ of s = r⇒ r = s:

CNG
⇒ s = s

s = r ⇒ s = s s = r ⇒ s = r
s = r⇒ r = s

The inductive step is also very easy, and we omit the details. "#

Corollary 1. Cut eliminability holds for EQ.

Proof. Since CNG is derivable (using a cut) from CNGM , any derivation D in
EQ can be transformed into a derivation D′ of the same end-sequent in EQM .
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By Theorem 2, cuts can be eliminated from D′. Then, by using weakening and
exchanges, the applications of CNGM can be replaced by applications of CNG
and finally, by the previous Lemma, the applications of SYML can be eliminated.

"#

7.3 Cut Elimination for the Full Systems

From the previous results we have the following:

Theorem 3. Cut eliminability holds for L=
M , Lc=

M as well as for L= and Lc=

Proof. By Theorem 3 every derivation can be tranformed into a derivation in
which cut-inferences appear only in subderivations which belong to EQ or EQM .
Then it suffices to apply Theorem 2, in the case of L=

M and Lc=
M , or Corollary 1,

in the case of L= and Lc=, to obtain a cut free derivation. "#

8 First Consequences of Cut Elimination

Proposition 5. Conservatity of logic with equality over logic without equality
If = does not occur in Γ,Δ and Γ ⇒ Δ is derivable in L= then Γ ⇒ Δ is

derivable already in L. The same hols for Lc=, L=
M and Lc=

M

Proof. Here we apply the cut elimination theorem for L=
M or Lc=

M . It suffices to
observe that no rule of such systems, different from a cut, eliminates equalities.

"#
Note 4. For systems with rules which eliminate equalities, the proof may become
more involved. For example, that is the case if the system, as the one in [7], has
the left reflexivity rule, allowing the elimination of t = t from the antecedent of
a sequent, (see [8] pp. 139-141).

Given a sequence Γ of formulae, let Γ= be obtained from Γ by suppressing all
the formulae in Γ which are not equalities. The following are easy corollary of
Theorem 3.

Proposition 6. Let Γ be a sequence of atomic formulae. Then
Γ ⇒ r = s is derivable in L= if and only if Γ= ⇒ r = s is derivable in cf.EQ.

The same holds for Lc=.

Proposition 7. Let Γ be a sequence of atomic formulae and R be an n-ary
relation symbol different from =. Then Γ ⇒ Rs1 . . . sn is derivable in L= if and
only if in Γ there is a formula Rr1 . . . rn such that for 1 ≤ i ≤ n, Γ= ⇒ ri = si
has a cut-free derivation in EQ. The same holds for Lc=.

Note 5. Letting LJ= and LK= differ from L=
M and Lc=

M only for the adoption of
∀ ⇒ and ⇒ ∃ extended to arbitrary terms, we have that the last two properties
hold for LJ= and LK= as well. In fact, as an immediate consequence of cut
elimination, if Γ is a sequence of atomic formulae, then Γ ⇒ r = s and Γ ⇒
Rs1 . . . sn are derivable in LJ= or in LK= if and only if they are derivable in
EQM , equivalently in EQ.
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Abstract. We propose a monotonic logic of internalised non-monotonic
or instant interactive proofs (LiiP) and reconstruct an existing mono-
tonic logic of internalised monotonic or persistent interactive proofs (LiP)
as a minimal conservative extension of LiiP. Instant interactive proofs
effect a fragile epistemic impact in their intended communities of peer
reviewers that consists in the impermanent induction of the knowledge
of their proof goal by means of the knowledge of the proof with the in-
terpreting reviewer: If my peer reviewer knew my proof then she would
at least then know that its proof goal is true. Their impact is fragile and
their induction of knowledge impermanent in the sense of being the case
possibly only at the instant of learning the proof. This accounts for the
important possibility of internalising proofs of statements whose truth
value can vary, which, as opposed to invariant statements, cannot have
persistent proofs. So instant interactive proofs effect a temporary trans-
fer of certain propositional knowledge (knowable ephemeral facts) via the
transmission of certain individual knowledge (knowable non-monotonic
proofs) in distributed systems of multiple interacting agents.

Keywords: agents as proof- and signature-checkers, constructive Kripke-
semantics, interpreted communication, multi-agent distributed systems,
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1 Introduction

The subject matter of this paper is modal logic of interactive proofs, i.e., a
novel logic of non-monotonic or instant interactive proofs (LiiP) [1] as well as
an existing logic of monotonic or persistent interactive proofs (LiP) [2]. (We ab-
breviate interactivity-related adjectives with lower-case letters.) The goal here
is to define LiiP axiomatically and semantically as well as to reconstruct LiP
as a minimal conservative extension of LiiP. So for distributed and multi-agent
systems, whose states and thus truth of statements about states can vary, proof
non-monotonicity (as in LiiP) is in a logical sense more primitive than proof
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monotonicity (as in LiP). In contrast, proof monotonicity is perhaps more intu-
itive than proof non-monotonicity within formal physical theories validated by
experiment and surely within mathematical theories known to be consistent.

Rephrasing [3, Section 1.1] model-theoretically, the proof modality of LiiP
internalises a non-monotonic notion of proof in the sense that it can happen
that a proposition φ can be proved with a (non-monotonic) proof M to an
agent a in some system state s, but not anymore in some subsequent state s′ in
which a will have learnt additional or lost previously learnt data M ′. See [1] for
formal application examples. Like in LiP [2], we understand interactive proofs
as sufficient evidence to intended resource-unbounded (though unable to guess)
proof- and signature-checking agents (designated verifiers).

Instant interactive proofs effect a fragile epistemic impact in their intended
communities C of peer reviewers that consists in the impermanent induction of
the (propositional) knowledge (not only belief) of their proof goal φ by means
of the (individual) knowledge of the proof (the sufficient evidence) M with the
designated interpreting reviewer a : If a knew my proof M of φ then she would
at least then know that the proof goal φ is true. By individual knowledge we
mean knowledge in the sense of the transitive use of the verb “to know,” here to
know a message, such as the plaintext of an encrypted message. Notation: a kM
for “agent a knows message M” (cf. Definition 1). This is the classic concept
of knowledge de re (“of a thing”) made explicit for messages, meaning taking
them apart (analysing) and putting them together (synthesising). Whereas by
propositional knowledge we mean knowledge in the sense of the use of the verb
“to know” with a clause, here to know that a statement is true, such as that the
plaintext of an encrypted message is (individually) unknown to potential adver-
saries. Notation: Ka(φ) for “agent a knows that φ (is true)” (cf. Fact 1). This
is the classic concept of knowledge de dicto (“of a fact”).1 (We distinguish in-
dividual and propositional knowledge with respect to the “object” of knowledge
[the known], i.e., with respect to a message and clause, respectively. However,
individual as well as propositional knowledge can both be individual with re-
spect to the subject of knowledge [the knower ], i.e., an [individual] agent.) With
respect to belief, propositional knowledge essentially differs in that it is neces-
sarily true whereas belief is possibly false, as commonly known and accepted
[4]. The epistemic impact of our instant interactive proofs is fragile and their
induction of knowledge impermanent in the sense of being the case possibly only
at the instant of learning the proof. This accounts for the important possibility
of internalising proofs of statements, whose truth value can vary, such as state-
ments about system states, which, as opposed to invariant statements, cannot
have persistent proofs. Proofs must (not) prove true (false) statements! Standard
examples of statements of variable truth value are contingent (e.g., elementary)
facts (expressed as atomic formulas) and characteristic formulas of states [5].

In contrast [2], the epistemic impact of persistent interactive proofs is durable
in the sense of being the case necessarily at the instant of learning the proof
and henceforth, where time can be present implicitly (such as here) or explicitly

1 In a first-order setting, knowledge de re and de dicto can be related in Barcan-laws.
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(in future work). In other words, when a persistent proof can prove a certain
statement, the proof will always be able to robustly do so, independently of
whether or not more messages (data) than just the proof are learnt.

In sum, our instant interactive proofs effect a transfer of propositional knowl-
edge (knowable ephemeral facts) via the transmission of certain individual knowl-
edge (knowable non-monotonic proofs) in multi-agent distributed systems. That
is, L(i)iP is a formal theory of (temporary) knowledge transfer. The overarching
motivation for L(i)iP is to serve in an intuitionistic foundation of interactive
computation. See [2] for a programmatic and methodological motivation.

1.1 Contribution

Our technical contribution in this paper is fourfold. For LiiP, we provide an ad-
equate axiomatisation of its oracle-computational and knowledge-constructive
Kripke-semantics, and a minimal conservative extension LiiP+ with a single
monotonicity axiom schema making LiiP+ isomorphic to LiP. For LiP, we pro-
vide a substantially simplified semantic interface and a slightly simplified ax-
iomatisation, which is a nice side-effect of obtaining LiiP+.

The Kripke-semantics for LiiP (like for LiP [2]) is knowledge-constructive in
the sense that (cf. Fact 1) our interactive proofs induce the knowledge of their
proof goal (say φ) in their intended interpreting agents (say a) such that the in-
duced knowledge (Ka(φ)) is knowledge in the sense of the standard modal logic
of knowledge S5 [6,4,7]. Note that our agents here are still resource-unbounded
with respect to individual and propositional knowledge, though they are still
unable to guess that knowledge. (Recall that S5-agents are resource-unbounded,
i.e., logically omniscient.) Thus we give an epistemic explication of proofs, i.e.,
an explication of proofs in terms of the epistemic impact that they effect in their
intended interpreting agents (i.e., the knowledge of their proof goal). Techni-
cally, we endow the proof modality with a standard Kripke-semantics [5], but
whose accessibility relation MRC

a we first define constructively in terms of el-
ementary set-theoretic constructions, namely as MRC

a , and then match to an
abstract semantic interface in standard form (which abstractly stipulates the
characteristic properties of the accessibility relation [5]). We will say that MRC

a

exemplifies (or realises) MRC
a . (A simple example of a constructive definition of

a modal accessibility is the well-known definition of epistemic accessibility as
state indistinguishability defined in terms of equality of state projections [6].)
Recall, set-theoretically constructive is different from intuitionistically construc-
tive! The Kripke-semantics for LiiP is oracle-computational in the sense that (cf.
Definition 3) the individual proof knowledge (say M) can be thought of as being
provided by an imaginary computation oracle, which thus acts as a hypothetical
provider and imaginary epistemic source of our interactive proofs. The semantic
interface of LiP here is simplified in the sense that we are able to eliminate all
a posteriori constraints from the semantic interface in [2] and thus to manage
with only standard, a priori constraints, i.e., stipulations.
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1.2 Roadmap

In the next section, we introduce our Logic of instant interactive Proofs (LiiP)
axiomatically by means of a compact closure operator that induces the Hilbert-
style proof system that we seek and that allows the simple generation of applica-
tion-specific extensions of LiiP [1]. We then state some useful deducible laws
within the obtained system. Next, we introduce the set-theoretically constructive
semantics and the abstract semantic interface for LiiP, and state the axiomatic
adequacy of the proof system with respect to this interface. (See [1] for formal
proofs.) In the construction of the semantics, we again make use of a closure
operator, but this time on sets of proof terms. Finally in Section 3, we reconstruct
LiP as a minimal conservative extension of LiiP.

2 Logic of Instant Interactive Proofs

The Logic of instant interactive Proofs (LiiP) provides a modal formula language
over a generic message term language. The formula language offers the propo-
sitional constructors, a relational symbol ‘ k ’ for constructing atomic proposi-
tions about individual knowledge (e.g., a kM), and a modal constructor ‘ :: ’
for propositions about proofs (e.g., M ::Ca φ). The message language offers term
constructors for message pairing and (not necessarily, but possibly cryptograph-
ically implemented) signing. (Cryptographic signature creation and verification
is polynomial-time computable [8]. See [2] for other cryptographic constructors
such as encryption and hashing.) In brief, LiiP is a minimal modular extension of
classical propositional logic with an interactively generalised additional operator
(the proof modality) and proof-term language (only two constructors, agents as
proof- and signature-checkers). Note, the language of LiiP is identical to the one
of LiP [2] modulo the proof-modality notation, which in LiP is ‘ : ’.

Definition 1 (The language of LiiP). Let

– A �= ∅ designate a non-empty finite set of agent names a, b, c, etc.

– C ⊆ A denote (finite and not necessarily disjoint) communities (sets) of
agents a ∈ A (referred to by their name)

– M $ M ::= a
∣∣ B ∣∣ {[M ]}a

∣∣ (M,M) designate our language of message
terms M over A with (transmittable) agent names a ∈ A, application-specific
data B (left blank here), signed messages {[M ]}a, and message pairs (M,M)

(Messages must be grammatically well-formed, which yields an induction
principle. So agent names a are logical term constants, the meta-variable
B just signals the possibility of an extended term language M, {[·]}a with
a ∈ A is a unary functional symbol, and (·, ·) a binary functional symbol.)

– P designate a denumerable set of propositional variables P constrained such
that for all a ∈ A and M ∈ M, (a kM) ∈ P (for “a knows M”) is a distin-
guished variable, i.e., an atomic proposition, (for individual knowledge)

(So, for a ∈ A, a k · is a unary relational symbol.)
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– L $ φ ::= P
∣∣ ¬φ ∣∣ φ∧φ ∣∣ M ::Ca φ designate our language of logical formulas

φ, where M ::Ca φ reads “M is a C ∪ {a}-reviewable proof of φ” in that “M
can prove φ to a (e.g., a designated verifying judge) and this is commonly
accepted in the pointed community C ∪ {a} (e.g., for C being a jury).”

Then LiiP has the following axiom and deduction-rule schemas, with grey-
shading indicating the difference to LiP.

Definition 2 (The axioms and deduction rules of LiiP). Let

– Γ0 designate an adequate set of axioms for classical propositional logic
– Γ1 := Γ0 ∪ {
• a k a (knowledge of one’s own name string)
• a kM → a k {[M ]}a (personal [the same a] signature synthesis)
• a k {[M ]}b → a k (M, b) (universal [any a and b] signature analysis)
• (a kM ∧ a kM ′)↔ a k (M,M ′) ([un]pairing)

• (M ::Ca (φ→ φ′))→ ((M ::Ca φ)→M ::Ca φ
′) (Kripke’s law, K)

• (M ::Ca φ)→ (a kM → φ) (epistemic truthfulness)

•
∧

b∈C∪{a}(((M, b) ::Ca φ︸ ︷︷ ︸
can prove

)→ {[M ]}a ::
C∪{a}
b (a kM ∧M ::Ca φ︸ ︷︷ ︸

does prove

))

(nominal [in b] peer review)
• (M ::C∪C′

a φ)→M ::Ca φ (group decomposition) }
designate a set of axiom schemas.

Then, LiiP := Cl(∅) :=
⋃

n∈N
Cln(∅), where for all Γ ⊆ L :

Cl0(Γ ) := Γ1 ∪ Γ

Cln+1(Γ ) := Cln(Γ ) ∪
{ φ′ | {φ, φ→ φ′} ⊆ Cln(Γ ) } ∪ (modus ponens, MP)
{ M ::Ca φ | φ ∈ Cln(Γ ) } ∪ (necessitation, N)

{ (M ::Ca φ)↔M ′ ::Ca φ | (a kM ↔ a kM ′) ∈ Cln(Γ ) }
(epistemic bitonicity).

We call LiiP a base theory, and Cl(Γ ) an LiiP-theory for any Γ ⊆ L.

Notice the logical order of LiiP, which is, due to propositions about (proofs
of) propositions, higher-order propositional. Further, observe that we assume
the existence of a dependable mechanism for signing messages, which we model
with the above synthesis and analysis axioms. In trusted multi-agent systems,
signatures are unforged, and thus such a mechanism is trivially given by the
inclusion of the sender’s name in the sent message, or by the sender’s senso-
rial impression on the receiver when communication is immediate. In distrusted
multi-agent systems (e.g., the open Internet), a practically unforgeable signature
mechanism can be implemented with classical certificate-based or, more directly,
with identity-based public-key cryptography [8]. We also assume the existence
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of a pairing mechanism modelling finite sets. Such a mechanism is required by
the important application of communication (not only cryptographic) protocols
[9, Chapter 3], in which concatenation of high-level data packets is associative,
commutative, and idempotent. The key to the validity of K is that we under-
stand interactive proofs as sufficient evidence for intended resource-unbounded
proof-checking agents (who are though still unable to guess), see [2, Section 3.2.2]
for more details. Next, the significance of epistemic truthfulness to interactiv-
ity is that in truly distributed multi-agent systems, not all proofs are known
by all agents, i.e., agents are not omniscient with respect to messages. Other-
wise, why communicate with each other? So there being a proof does not imply
knowledge of that proof. When an agent a does not know the proof and the
agent cannot generate the proof ex nihilo herself by guessing it, only communi-
cation from a peer, who thus acts as an oracle, can entail the knowledge of the
proof with a. That is, provability and truth are necessarily concomitant in the
non-interactive setting, whereas in interactive settings they are not necessarily
so [2]. In nominal peer review, “can prove” suggests the proof potentiality of
(M, b) : “if a were to know, e.g., receive, (M, b)” (and thus know her potential
interlocutor b’s name). Whereas given {[M ]}a to b, e.g., in an acknowledgement
from a, “does prove” suggests the proof actuality of M : “a does know, e.g., did
receive, (M, b)”, otherwise a could not have signed M . See the proof of Corol-
lary 2.5 for a semantic justification of the raison d’être of b in (M, b). Then, the
justification for the necessitation rule (schema) is that in interactive settings,
validities, and thus a fortiori tautologies (in the strict sense of validities of the
propositional fragment), are in some sense trivialities [2]. To see why, recall that
modal validities are true in all pointed models [1], and thus not worth being
communicated from one point to another in a given model, e.g., by means of
specific interactive proofs. (Nothing is logically more embarrassing than talking
in tautologies.) Therefore, validities deserve arbitrary proofs. What is worth be-
ing communicated are truths weaker than validities, namely local truths in the
standard model-theoretic sense [1], which may not hold universally. Otherwise
why communicate with each other? Finally, observe that epistemic bitonicity
is a rule of logical modularity that allows the modular generation of structural
modal laws from equivalence term laws (cf. Theorem 1).

The grey-shading in Definition 2 indicates that the axioms and rules of LiiP
differ from those of LiP in exactly Kripke’s law, nominal peer review, and epis-
temic bitonicity (cf. [2] and Section 3). In LiP, these three LiiP-laws correspond
to the generalised Kripke-law (M :Ca (φ → φ′)) → ((M ′ :Ca φ) → (M,M ′) :Ca φ

′),
(plain) peer review (M :Ca φ) →

∧
b∈C∪{a}({[M ]}a :

C∪{a}
b (a kM ∧ M :Ca φ)), and

epistemic antitonicity “from a kM → a kM ′ deduce (M ′ :Ca φ) → M :Ca φ”, re-
spectively. The addition of the axiom schema

(M ::Ca φ)→ (M,M ′) ::Ca φ

to LiiP will result in a logic LiiP+ that is isomorphic to LiP (cf. Theorem 4).
So in some sense, the essential difference between instant proofs (proofs for at
least an instant) and persistent proofs (proofs for eternity) is distilled in this
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single additional law. Following Artëmov in [10], this law can be interpreted as
Lehrer and Paxson’s indefeasibility condition for justified true belief [2]. In sum,
while both LiP-proofs and LiiP-proofs are indefeasible in the instant when they
are learnt (they induce knowledge, not only belief), LiiP-proofs (LiP-proofs) are
possibly (necessarily) (in)defeasible in the future of the instant in which they
are learnt.

Now note the following macro-definitions: � := a k a, ⊥ := ¬�, φ ∨ φ′ :=
¬(¬φ ∧ ¬φ′), φ → φ′ := ¬φ ∨ φ′, and φ ↔ φ′ := (φ → φ′) ∧ (φ′ → φ). In the
sequel, “:iff” abbreviates “by definition, if and only if”.

Proposition 1 (Hilbert-style proof system). Let

– Φ !LiiP φ :iff if Φ ⊆ LiiP then φ ∈ LiiP
– φ �!LiiP φ′ :iff {φ} !LiiP φ′ and {φ′} !LiiP φ
– !LiiP φ :iff ∅ !LiiP φ.

In other words, !LiiP ⊆ 2L × L is a system of closure conditions. For example:

1. for all axioms φ ∈ Γ1, !LiiP φ
2. for modus ponens, {φ, φ→ φ′} !LiiP φ′

3. for necessitation, {φ} !LiiP M ::Ca φ
4. for epistemic bitonicity, {a kM ↔ a kM ′} !LiiP (M ::Ca φ)↔M ′ ::Ca φ.

(In the space-saving, horizontal Hilbert-notation “Φ !LiiP φ”, Φ is not a set of
hypotheses but a set of premises, cf. modus ponens, necessitation, and epistemic
bitonicity.) Then !LiiP can be viewed as being defined by a Cl-induced Hilbert-
style proof system. In fact Cl : 2L → 2L is a standard consequence operator,
i.e., a substitution-invariant compact closure operator.

Proof. See [1].

We are now going to present some useful, deducible structural laws of LiiP.
Here, “structural” means “deducible exclusively from term axioms”. The laws are
enumerated in a (total) order that respects (but cannot reflect) their respective
proof prerequisites. The laws are also deducible in LiP, in the same order [2].
(All LiiP-deducible laws are also LiP-deducible, but not vice versa.)

Theorem 1 (Some useful deducible structural laws)

1. !LiiP a k (M,M ′)→ a kM (left projection, 1-way K-combinator property)
2. !LiiP a k (M,M ′)→ a kM ′ (right projection)
3. !LiiP a k (M,M)↔ a kM (pairing idempotency)
4. !LiiP a k (M,M ′)↔ a k (M ′,M) (pairing commutativity)
5. !LiiP (a kM → a kM ′)↔ (a k (M,M ′)↔ a kM) (neutral pair elements)
6. !LiiP a k (M,a)↔ a kM (self-neutral pair element)
7. !LiiP a k (M, (M ′,M ′′))↔ a k ((M,M ′),M ′′) (pairing associativity)
8. !LiiP ((M,M) ::Ca φ)↔M ::Ca φ (proof idempotency)
9. !LiiP ((M,M ′) ::Ca φ)↔ (M ′,M) ::Ca φ (proof commutativity)

10. {a kM → a kM ′} !LiiP ((M,M ′) ::Ca φ)↔M ::Ca φ (neutral proof elements)
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11. !LiiP ((M,a) ::Ca φ)↔M ::Ca φ (self-neutral proof element)
12. !LiiP ((M, (M ′,M ′′)) ::Ca φ)↔ ((M,M ′),M ′′) ::Ca φ (proof associativity)
13. !LiiP ({[M ]}a ::Ca φ)↔M ::Ca φ (self-signing idempotency)

Proof. See [1].

Like in LiP [2], the preceding 1-way K-combinator property and the following
simple corollary of Theorem 1 jointly establish the important fact that our com-
municating agents can be viewed as combinators in the sense of Combinatory
Logic viewed in turn as a (non-equational) theory of (message or proof) term
reduction [11]. (The converse of the above K-combinator property does not hold.)

Corollary 1 (S-combinator property)

1. !LiiP a k ((M,M ′),M ′′)↔ a k (M, (M ′′, (M ′,M ′′)))
2. !LiiP (((M,M ′),M ′′) ::Ca φ)↔ (M, (M ′′, (M ′,M ′′))) ::Ca φ

Proof See [1].

We are going to present also some useful deducible logical laws of LiiP. Here,
“logical” means “not structural” in the previously defined sense. Also these laws
are enumerated in an order that respects their respective proof prerequisites,
and are deducible in LiP in the same order [2].

Theorem 2 (Some useful deducible logical laws)

1. {φ→ φ′} !LiiP (M ::Ca φ)→M ::Ca φ
′ (regularity)

2. {a kM ↔ a kM ′, φ→ φ′} !LiiP (M ::Ca φ)→M ′ ::Ca φ′ (biepistemic regul.)
3. !LiiP ((M ::Ca φ) ∧M ::Ca φ

′)↔M ::Ca (φ ∧ φ′) (proof conjunctions bis)
4. !LiiP ((M ::Ca φ) ∨M ::Ca φ

′)→M ::Ca (φ ∨ φ′) (proof disjunctions bis)
5. !LiiP M ::Ca � (anything can prove tautological truth)

6. !LiiP {[M ]}b ::
C∪{b}
a b kM (authentic knowledge)

7. !LiiP M ::∅a a kM (self-knowledge)
8. !LiiP (M ::C∪C′

a φ)→ ((M ::Ca φ) ∧M ::C
′

a φ) (group decomposition bis)

9. !LiiP (M ::
C∪{a}
a φ)↔ (M ::Ca φ) (self-neutral group element).

10. !LiP M ::Ca ((M ::Ca φ)→ φ) (self-proof of truthfulness)
11. !LiP M ::Ca (¬(M ::Ca ⊥)) (self-proof of proof consistency)
12. !LiP (M ::Ca (M ::Ca φ))↔M ::Ca φ (modal idempotency)

Proof Like in LiP [2].

Like in LiP, the key to the validity of modal idempotency is that each agent
(e.g., a) can act herself as proof-checker, see [2, Section 3.2.2] for more details.

We now continue to present the constructive semantics for LiiP (cf. [2, Sec-
tion 2.2]) and state some important new and further-used results about it. (See
[1] for formal proofs.) The essential differences to the semantics of LiP are grey-
shaded.
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Definition 3 (Semantic ingredients). For the knowledge-constructive model-
theoretic study of LiiP let

– S designate the state space—a set of system states s
– msgsa : S → 2M designate a raw-data extractor that extracts (without

analysing) the (finite) set of messages from a system state s that agent a ∈ A
has either generated (assuming that only a can generate a’s signature) or else
received as such (not only as a strict subterm of another message); that is,
msgsa(s) is a’s data base in s

– clsa : 2M → 2M designate a data-mining operator such that clsa(D) :=
cla(msgsa(s) ∪ D) :=

⋃
n∈N

clna(msgsa(s) ∪D), where for all D ⊆M:

cl0a(D) := {a} ∪ D
cln+1

a (D) := clna(D) ∪
{ (M,M ′) | {M,M ′} ⊆ clna(D) } ∪ (pairing)
{ M,M ′ | (M,M ′) ∈ clna(D) } ∪ (unpairing)
{ {[M ]}a | M ∈ clna(D) } ∪ (personal signature synthesis)
{ (M, b) | {[M ]}b ∈ clna(D) } (universal signature analysis)

– <M
a ⊆ S×S designate a data preorder on states such that for all s, s′ ∈ S,

s <M
a s′ :iff clsa({M}) = cls

′
a (∅), were M can be viewed as oracle input in

addition to a’s individual-knowledge base clsa(∅) (cf. also [2, Section 2.2])

– <M
C := (

⋃
a∈C <

M
a )++, where ‘++’ designates the closure operation of so-

called generalised transitivity in the sense that <M
C ◦<M ′

C ⊆ <
(M,M ′)
C

– ≡a := <a
a designate an equivalence relation of state indistinguishability

– MRC
a ⊆ S ×S designate a concretely constructed accessibility relation—

short, concrete accessibility—for the proof modality such that for all s, s′ ∈
S,

s MRC
a s′ :iff s′ ∈

⋃
s <M

C∪{a} s̃ and

M ∈ cls̃a(∅)

[s̃]≡a

(iff there is s̃ ∈ S s.t. s <M
C∪{a} s̃ and M ∈ cls̃a(∅) and s̃ ≡a s′).

Fact 1 establishes the knowledge-constructiveness of our Kripke-model for
LiiP (cf. Definition 5).

Fact 1 (Kripke-model knowledge-constructiveness)

for all s′ ∈ S, if s MRC
a s′ then (S,V), s′ |= φ if and only if

for all š ∈ S, if s <M
C∪{a} š then (S,V), š |= a k M︸︷︷︸

sufficient

evidence

→ Ka( φ︸︷︷︸
induced

knowledge

),

where the standard epistemic modality Ka is defined like in [4] as

(S,V), š |= Ka(φ) :iff for all s′ ∈ S, if š ≡a s′ then (S,V), s′ |= φ.
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Table 1. Satisfaction relation

(S,V), s |= P :iff s ∈ V(P )

(S,V), s |= ¬φ :iff not (S,V), s |= φ

(S,V), s |= φ ∧ φ′ :iff (S,V), s |= φ and (S,V), s |= φ′

(S,V), s |= M ::Ca φ :iff for all s′ ∈ S , if s MRC
a s′ then (S,V), s′ |= φ

Proof. By elementary-logical transformations of the definiens of MRC
a .

Definition 4 (Message ordering and equivalence)

– M &s
a M ′ :iff if M ∈ clsa(∅) then M ′ ∈ clsa(∅)

– M ≡s
a M ′ :iff M &s

a M ′ and M ′ &s
a M

– M &a M ′ :iff for all s ∈ S, M &s
a M ′

– M ≡a M ′ :iff for all s ∈ S, M ≡s
a M ′

Corollary 2 (Concrete accessibility)

1. If C ⊆ C′ then MR
C
a ⊆ MRC′

a (communal monotonicity).
2. If M ≡a M ′ then MRC

a = M ′RC
a (conditional stability).

3. If M ∈ clsa(∅) then s MRC
a s (conditional reflexivity).

4. If s {[M ]}b
RC

a s′ then M ∈ cls
′

b (∅) (signature property).

5. For all b ∈ C∪{a}, ({[M ]}a
R

C∪{a}
b ◦MRC

a) ⊆ (M,b)R
C
a (communal transitivity).

Proof. See [1].

Definition 5 (Kripke-model). We define the satisfaction relation ‘|=’ for
LiiP in Table 1, where

– V : P → 2S designates a usual valuation function, yet partially predefined
such that for all a ∈ A and M ∈ M,

V(a kM) := { s ∈ S | M ∈ clsa(∅) }

(If agents are Turing-machines then a knowing M can be understood as a
being able to parse M on its tape.)

– S := (S, {MRC
a}M∈M,a∈A,C⊆A) designates a (modal) frame for LiiP with an

abstractly constrained accessibility relation — short, abstract accessi-
bility — MRC

a ⊆ S × S for the proof modality such that — the semantic
interface:
• if C ⊆ C′ then MRC

a ⊆ MRC′
a

• if M ≡a M ′ then MRC
a = M ′RC

a

• if M ∈ clsa(∅) then s MRC
a s

• if s {[M ]}b
RC

a s′ then M ∈ cls
′

b (∅)

• for all b ∈ C ∪ {a}, ({[M ]}a
RC∪{a}

b ◦MRC
a) ⊆ (M,b)RC

a

– (S,V) designates a (modal) model for LiiP.
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Looking back, we recognise that Corollary 2 actually establishes the important
fact that our concrete accessibility MRC

a in Definition 3 realises all the properties
stipulated by our abstract accessibility MRC

a in Definition 5; we say that

MRC
a exemplifies (or realises) MRC

a .

Further, observe that LiiP (like LiP) has a Herbrand-style semantics, i.e., logi-
cal constants (agent names) and functional symbols (pairing, signing) are self-
interpreted rather than interpreted in terms of (other, semantic) constants and
functions. This simplifying design choice spares our framework from the addi-
tional complexity that would arise from term-variable assignments [5], which
in turn keeps our models propositionally modal. Our choice is admissible be-
cause our individuals (messages) are finite. (Infinitely long “messages” are non-
messages; they can never be completely received, e.g., transmitting irrational
numbers as such is impossible.)

Theorem 3 (Axiomatic adequacy). !LiiP is adequate for |=, i.e.,:

1. if !LiiP φ then |= φ (axiomatic soundness)
2. if |= φ then !LiiP φ (semantic completeness).

Proof. Both parts can be proved with standard means: soundness follows as
usual from the admissibility of the axioms and rules; and completeness follows
by means of the classical construction of canonical models, using Lindenbaum’s
construction of maximally consistent sets (see [1]).

3 LiP as an Extension of LiiP

In this section, we reconstruct LiP syntactically, as a minimal conservative ex-
tension of LiiP with one simplified and one additional axiom schema, as well as
semantically, with a simplified semantic interface that has none of the a posteriori
constraints from [2] but only standard, a priori constraints, i.e., stipulations.

Theorem 4. Define the LiiP-theory

LiiP+ := Cl({(M ::Ca φ)→ (M,M ′) ::Ca φ︸ ︷︷ ︸
proof extension

}),

where Cl is as in Definition 2. Then LiiP+ is isomorphic to LiP, in symbols,

LiiP+ ∼= LiP.

In particular, the generalised Kripke law GK as mentioned before and below is de-
ducible in LiiP+, and thus we need only stipulate the simpler standard Kripke law
K for LiP, like for LiiP. Moreover, alternatively to adding the axiom schema of
proof extension to LiiP, we could equivalently replace the primitive rule schema
of epistemic bitonicity in LiiP with the stronger one of epistemic antitonicity.

Proof. See [1].



184 S. Kramer

Corollary 3 (Simplified semantic interface for LiP). A simplified seman-
tic interface for LiP is given by the one for LiiP in Definition 5 but with the
abstract accessibility MRC

a ⊆ S × S being constrained

– such that if M &a M ′ then MRC
a ⊆ M ′RC

a (proof monotonicity)

instead of being constrained by conditional stability;

– or alternatively such that (M,M ′)RC
a ⊆ MRC

a (pair splitting)

in addition to being constrained by conditional stability.

Proof. It is straightforward to check that the semantic constraints of proof mono-
tonicity and pair splitting correspond to the syntactic laws of epistemic antitonic-
ity and proof extension, respectively, which are interdeducible (cf. Theorem 4).

4 Conclusion

We have proposed LiiP with as main contributions those described in Section 1.1.
The notion of non-monotonic proofs captured by LiiP has the advantage of being
not only operational thanks to our proof-theoretic definition but also declara-
tive thanks to our complementary model-theoretic definition, which gives a con-
structive epistemic semantics to these proofs in the sense of explicating what
(knowledge) they effect in agents in the instant of their reception, complement-
ing thereby the (operational) axiomatics, which explicates how they do so.

We conclude by mentioning [12] as a piece of related work, discussed in [1].
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Noninterference for Intuitionist Necessity

Radha Jagadeesan, Corin Pitcher, and James Riely

DePaul University

Abstract. We study indexed necessity modalities in intuitionist S4. These pro-
vide the logical foundation required by a variety of applications, such as capa-
bility-based policy languages for access control and type theories for exceptional
computation. We establish noninterference properties capturing the limitations on
information flow between formulas under the scope of necessity modalities with
different indices.

1 Introduction

Classical S4 is standard textbook material [11]. The intuitionist versions of S4 are also
well explored [6,14,5,10]. We recall briefly. For any formula α , �α is also a formula.
The necessity modality1 satisfies the following three axioms and rule of inference.

�(α ⇒ β )⇒ �α ⇒�β (K: distribution)
�α ⇒ α (T: reflexivity)
�α ⇒ ��α (4: transitivity)

If α is a theorem, so is �α (N: necessitation)

In this paper, we investigate the metatheory of indexed intuitionist S4 necessity modal-
ities. Let (L ,') be a preorder and let a, b range over elements of L . We consider a
family of modalities, indexed by elements of L , such that:

For each a, the modality �a satisfies [K,T,4,N] above (Necessity modality)
If b' a, then �bα ⇒�aα (Principal naturality)

Such indexed necessity operators arise naturally in a variety of settings. We consider
two examples from the literature below.

Security Policies. In this example, (L ,') is a lattice whose elements are security
principals. In different applications, principals might represent users, roles, locations,
or processes, etc. The ordering in the lattice is the security order: if b' a, then b is less
secure than a.

The indexed necessitation operator is used to capture the possession of capabili-
ties [8,7]. Let object references, o, be atomic formulas. Then, �ao is intended to spec-
ify that a is permitted to possess object reference o. The formula �b(o⇒ o′) specifies
a guarded object, such as a ciphertext. By distribution (K), b gets the capability to the
plaintext, written �bo′, whenever it gets the key, written �bo.

In this application, principal naturality captures the idea that more secure principals
have access to more capabilities.

1 The modality has highest precedence; eg. �α ⇒ β stands for (�α)⇒ β .

K. Lodaya (Ed.): ICLA 2013, LNAI 7750, pp. 185–196, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



186 R. Jagadeesan, C. Pitcher, and J. Riely

Exceptional computations. The elements of the lattice are sets of exceptions. The or-
dering in the lattice is the subset order, i.e., b' a if b⊆ a.

The necessity operator is used in the type theory to capture the names of the excep-
tions that can be raised in evaluating an expression [13,12]. For example, consider �aα
for a modality-free intuitionist formula α . An expression has this type if the follow-
ing conditions hold: if its evaluation terminates normally, it results in a value of type
α; and, any exception that it raises during an abnormal evaluation is contained in the
set a. Thus, a is an upper bound on the exceptions that can be raised in evaluating an
expression of this type; e.g., a pure functional program of type α that does not raise
any exceptions is given the type � /0α . Since all types are (at least implicitly) under the
scope of an indexed modality, axiom (T) plays a limited role in this treatment.

Principal naturality is a conservative coercion that permits us to increase the upper
bound on the set of exceptions that could be raised in evaluating an expression.

Noninterference. Noninterference is the idea that there is no information flow between
differently indexed modalities. Let α be a modality free formula. The intuitive idea
behind noninterference is that if �aα is derivable from some deductively closed set of
hypotheses, then it is derivable from a subset of those hypotheses that are in the scope
of the modality indexed by a, i.e. the formulas of the form �a. Thus, computations
of values of a types are isolated from types that are not in the scope of an a indexed
modality.

Noninterference implies the non-provability of some simple formulas. Let p be a
proposition, and b �' a. Then, the following formulas are not provable.

�!�b p⇒�a p
�! ((�a p⇒ q) & �b p)⇒�aq

Noninterference is essential to justify the use of indexed necessity modalities in the
modeling of both motivating examples.

– The policies for capabilities are used in access control in a distributed system. The
unprovability of �b p⇒ �a p ensures that the logical reasoning does not permit ca-
pabilities to be transferred unrestrictedly between principals. The unprovability of
((�a p⇒ q) & �b p)⇒ �aq ensures that the acquisition of new capabilities (p) by
another principal (b) does not create new capabilities for a principal (a) by purely
logical reasoning.

– In the modeling of exceptions, the consequences of noninterference are best seen in
computational terms using the Curry-Howard isomorphism. The unprovability of the
two formulas above captures the intuitive idea that there are no pure terms that can
catch and handle the exceptions in b \ a. More generally, noninterference identifies
the computations that can be queried during the evaluation of a pure expression in
the scope of a �a; clearly, any computation of a type �b cannot be queried if a �⊆ b.

Results. We describe an intuitionist logic with indexed necessity operators. Our sequent
calculus is a multi-principal variant of the sequent calculus for intuitionist S4 described
by Bierman and de Paiva [6]. Our particular design is guided by Abadi’s formalization
of the “says” monad [1] and games models of this monad [4] .
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Our statement of noninterference follows Abadi’s statement for monadic logics [1].
We describe a translation of logical formulas into intuitionist propositional logic. The
main technical result is that the translation preserve provability, i.e., if the source for-
mula is a theorem in our logic (with indexed modalities), the target formula is provable
in standard intuitionist propositional logic. This preservation validates the intuitive idea
that the proof of a formula �aα does not essentially use formulas that are not in the
scope of �a.

As simple illustrations of the power of this approach, we show how this result is used
to establish the non provability of formulas, including the two unprovable formulas
considered earlier in this introduction.

Our noninterference theorem has the form, “for all valid proofs, there exists a trans-
lated proof that is valid in intuitionist propositional logic.” Consequently, our results
hold for any stricter logic that supports fewer proofs. In particular, our results hold for
the canonical presentation of the Intuitionist S4 necessity modality. Thus, our nonin-
terference theorem is robust: it is independent of our particular modeling of indexed
intuitionist necessity.

Related Work. Intuitionist S4 is well explored. For example, Bierman and de Paiva [6]
and Alechina, Mendler, de Paiva and Ritter [5] study categorical models of proof and
provability. Pfenning and Wong [14] study the proof theory. We do not present a nat-
ural deduction system; the above papers discuss the subtle accommodations needed to
facilitate the commutative conversions. Goubault-Larrecq and Goubault [10] study the
geometry of the proofs of intuitionist S4 using tools from algebraic topology. None of
this prior work studies principal-indexed modalities, nor does it address noninterfer-
ence.

Our exploration of noninterference results is inspired by the modeling of access con-
trol using “says” monads and the study of the meta theory of these logics [2,3,9,1,15].
Our proof of noninterference builds on the translation-based proof pioneered in this
research [1,15]. Our adaptation of these methods uses normal forms inspired by game
semantics of monads [4]. This adaptation perforce has some new ingredients because
the necessity modality is not “dual” to monads. The dual of the necessity modality in
classical S4 is the possibility modality and not the says modality; the says modalities
distributes over conjunction and the possibility modality does not.

Rest of the Paper. In section 2 we describe a sequent calculus for the logic. The follow-
ing section 3 describes our treatment of non interference. We conclude in section 4. In
appendix A, we explicate the internal structure of our translation by a factorization result.

2 Logic

Let p, q range over a set of atomic propositions. Let (L ,') be a preorder, and let a, b,
c range over elements of L .

We consider intuitionist propositional logic with necessity modalities indexed by
elements of L . We include conjunction and implication but not disjunction. Formulas
are defined inductively as follows.

α,β ,γ ::= tt | p | α & β | α ⇒ β | �aα
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2.1 a-available

The following definition impacts the modality introduction rule on the right. Formally,
the format of the definition shadows Abadi’s treatment in logics for monads [1].

Definition 1. a-available formulas are inductively defined as follows.

– tt is a-available.
– �bα is a-available if either b' a or α is a-available
– (β ⇒ α) is a-available if α is a-available.
– (α & β ) is a-available if both α and β are a-available.

This definition extends to sets, multisets, and sequences of formulas Γ =α1 . . .αn point-
wise. Γ = α1, . . . ,αn is a-available if all α1, . . . ,αn are a-available. �

It will turn out that an a-available formula α is one that satisfies α⇒�aα . In standard
presentations, these are the formulas of form �a. We motivate our more liberal presen-
tation using game semantics2 [4]: a formula is a-available if the first move in the game
happens in the context of a principal lower in ' than a. Thus, �bα is a-available if
b' a or α is a-available. The first move in (β ⇒ α) comes from α , so it is a-available
if α is. The first moves of (α & β ) comes from either α or β , so it is a-available if both
α,β are. tt is trivially a-available since it has no moves.

Lemma 2. If b' a and α is b-available, then α is a-available. �

2.2 Sequent Calculus

The sequent calculus for the logic is given in Figure 1. Our sequent calculus is a multi-
principal variant of the necessity fragment of the sequent calculus of Bierman and De
Paiva [6]. The only modification is in the PROMOTE rule that uses our more generous
variation of a-available.

Remark 3. Weakening is admissible [6]. This is the motivation for the weakening built
into AXIOM and PROMOTE. We do not present a natural deduction system; subtle ac-
commodations are needed to facilitate the commutative conversions [6,14]. �

Remark 4 (Standard theorems). The standard ingredients for intuitionist necessity are
derivable standardly. None of the following derivations use the third or fourth cases of
the Definition 1.

�aα !�a�aα (Comultiplication)

β ! α
�aβ !�aα

(Functoriality)

�bα !�aα b' a (Principal naturality)

2 Abramsky and Jagadeesan [4] describe game semantics for monads in a form that is easily
adapted to the current setting. Merely invert the inequality in the definition of condition (p6)
in that paper.
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(AXIOM)

Γ ,α ! α

(CUT)

Γ ! α Δ ,α ! β
Γ ,Δ ! β

(EXCHANGE)

Γ ,γ ,β ,Δ ! α
Γ ,β ,γ ,Δ ! α

(WEAKENING)

Γ ! α
Γ ,β ! α

(CONTRACTION)

Γ ,β ,β ,Δ ! α
Γ ,β ,Δ ! α

(&-L)

Γ ,β ,γ ,Δ ! α
Γ ,β & γ ,Δ ! α

(&-R)

Γ ! α Γ ! β
Γ ! α & β

(tt-L)

Γ ! α
Γ ,tt ! α

(tt-R)

Γ ! tt
(⇒-R)

Γ ,β ! γ
Γ ! β ⇒ γ

(⇒-L)

Γ ! β Γ ,γ ! α
Γ ,β ⇒ γ ! α

(COUNIT)

Γ ,β ! α
Γ ,�aβ ! α

(PROMOTE)

Γ ! α
Γ ,Δ !�aα

Γ a-available

Fig. 1. Sequent calculus

Comultiplication is derived using AXIOM on �aα followed by PROMOTE. Functori-
ality is derived using cut against COUNIT followed byPROMOTE. Principal naturality
is derivable starting with AXIOM on α , using cut against COUNIT (on b) followed by
PROMOTE. �

Remark 5 (Non-standard theorems). Sequences of nested modalities without interven-
ing connectives can be exchanged, providing commutativity of principals.

�b�aα ! �a�bα

COUNIT yields �a�bα ! α . The second case of definition 1 ensures that �a�bα is
a-available, so use of PROMOTE yields �a�bα ! �aα . The third case of definition 1
ensures that �a�bα is b-available, so use of PROMOTE yields the required result.

Let A = {a0,a1, . . . ,an} be a set of principals. Using commutativity of principals, we
can define, without ambiguity, �Aα 

=�a0�a1 · · ·�anα .
Another nonstandard new theorem is:

α ⇒ �aβ !�a(α ⇒�aβ )

Start with AXIOM on α⇒�aβ . The third case of definition 1 ensures that α⇒�aβ is
a-available since �aβ is, so use of PROMOTE yields the required result. �

3 Noninterference

We prove noninterference in this section. Our proofs rely on normal forms for formu-
las. These normal forms are inspired by game semantics. A unique result formula is one
whose game has a unique starting move. A multiple result formula may have multiple
starting moves. In syntactic terms, a unique result formula does not have any conjunc-
tion at the ultimate result type.

δ ::= tt | p,q | μ ⇒ δ | �aδ (Unique result formulas)

μ ::= δ | μ & δ | δ & μ (Multiple result formulas)
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Any formula α is equivalent to a multiple result formula. This is proved by using the
following distributivity laws:

�a(α & β ) ⇔ �aα & �aβ
α⇒ (β & γ) ⇔ (α⇒ β ) & (α ⇒ γ)

Remark 6. Moving to multiple result formulas does not affect a-availability. Thus, �b

(α & β ) is a-available if and only if �bα & �aβ is a-available. Similarly, α⇒ (β & γ)
is a-available if and only if (α ⇒ β ) & (a⇒ γ) is a-available.

Moving to multiple result formulas does not affect provability if axioms are used
only on propositions. We use the following basic facts. An induction on the length of
the proofs shows that if Γ ,β & γ ! α is provable, then so is Γ ,β ,γ ! α by a proof of
smaller length. Similarly, if Γ ! β & γ is provable, then so are Γ ! β and Γ ! γ by
proofs of smaller length.

For any formula α , let (α)mr be the equivalent multiple result formulas. Similarly,
for any multiset of formulas Γ , let (Γ )mr be the equivalent multiset of multiple result
formulas. A simple induction on the length of the proof shows that if Γ ! α is prov-
able, then there is a proof (Γ )mr ! (α)mr containing only multiple result formulas. As a
sample case, consider the case when the last rule is⇒-R, so we have the following.

(⇒-R)

Γ ,β ! γ1 & γ2

Γ ! β ⇒ (γ1 & γ2)

In this case, we also have proofs of Γ ,β ! γ1 and Γ ,β ! γ2 of smaller length. So, by
induction hypothesis, we have proofs of (Γ ,β )mr ! (γ1)

mr and (Γ ,β )mr ! (γ2)
mr . Using

⇒-R on each of these proofs followed by an application of &-R yields the required
proof of (Γ )mr ! (β ⇒ γ1)

mr & (β ⇒ γ2)
mr. �

In the rest of this section, without loss of generality, we will assume that all the formulas
are multiple result formulas and axioms are used only on propositions.

3.1 Translations of Formulas

We describe two translations 〈α〉+a and 〈α〉−a on multiple-result formulas by mutual
recursion. Both translations yield pure IPL formulas without any modalities. The trans-
lation 〈·〉−a is closest in spirit to the extant treatment of the says monad [1], albeit
with modifications designed to accommodate the differences arising from the neces-
sity modality.

The translations share some common features: Both are structural and remove all
modalities. Both “delete” information by replacing some chosen subformulas by tt.

The intuition is that both translations try to ensure that results of a-available formulas
are not influenced by formulas that are not a-available. This is illustrated by considering
the translation of α⇒ β when β is a-available. In this case, the translations ensure that
all the subformulas of α that are not a-available are replaced by tt. Viewing via the
lens of game semantics, the translations replace the non a-available formulas by the
empty game that interprets tt. Thus, the Opponent cannot move in these subformula
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occurrences. The upcoming preservation theorem (Theorem 13) shows that the proof
also does not need to make moves in this proposition instance, i.e. this subformula
instance is expendable to the proof.
〈·〉−a enforces more constraints: it also replaces the results that are not a-available by

tt.

Definition 7. For a formula α in multiple result normal form, define 〈α〉+a ,〈α〉−a in IPL
as follows.

〈tt〉+a = tt 〈tt〉−a = tt

〈p〉+a = p 〈p〉−a = tt

〈α & β 〉+a = 〈α〉+a & 〈β 〉+a 〈α & β 〉−a = 〈α〉−a & 〈β 〉−a
〈�bα〉+a = 〈α〉+a 〈�bα〉−a =

{
〈α〉−a , b �' a
〈α〉+a , b' a

〈α ⇒ β 〉+a =

{
〈α〉−a ⇒ 〈β 〉+a , β a− available
〈α〉+a ⇒ 〈β 〉+a , otherwise

〈α ⇒ β 〉−a = 〈α〉−a ⇒ 〈β 〉−a

These definitions extend pointwise to sets/multisets/sequences of formulas.

〈α1, . . . ,αn〉+a = 〈α1〉+a , . . . ,〈αn〉+a
〈α1, . . . ,αn〉−a = 〈α1〉−a , . . . ,〈αn〉+a

Consider propositions p. 〈p〉+a is p since there are no constraints that need to be en-
forced. However, since p is not a-available, 〈p〉−a is tt.
〈·〉+a is fully compositional for all cases except implication α ⇒ β when β is a-

available. In this case, we switch to 〈α〉−a to ensure that only a-available formulas influ-
ence a-available results.
〈·〉−a is fully compositional for all cases except �bα when b ' a. In this case, we

switch to 〈α〉+a because the enclosing modality�b intuitively has satisfied the constraint
of making the formula available to a, so we only need to enforce the constraints of 〈·〉+a .

Example 8. (a) 〈p⇒ q〉+a = (p⇒ q). (b) 〈p⇒ q〉−a = tt. (c) 〈p⇒ �aq〉+a = 〈p⇒
�aq〉−a = (tt⇒ q) �

Remark 9. The translations 〈·〉+a and 〈·〉−a are not semantically robust. They do not re-
spect equivalence of formulas. They have the desired properties explicated below only
on formulas in multiple result normal form. �

The translations coincide on a-available formulas. This confirms the intuition that they
differ only in the availability of the top-level formula.

Lemma 10. If α is a-available, then 〈α〉+a = 〈α〉−a . �

PROOF. By structural induction on α . The base cases for the induction are when α is
of the form tt and �bβ with b' a. In these cases, 〈α〉+a = 〈α〉−a by definition.
If β ,γ are a-available: 〈β & γ〉+a = 〈β 〉+a & 〈γ〉+a = 〈β 〉−a & 〈γ〉−a = 〈β & γ〉−a
If γ is a-available: 〈β ⇒ γ〉+a = 〈β 〉−a ⇒ 〈γ〉+a = 〈β 〉−a ⇒ 〈γ〉−a = 〈β ⇒ γ〉−a
If b �' a and β is a-available: 〈�bβ 〉+a = 〈β 〉+a = 〈β 〉−a = 〈�bβ 〉−a �
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The next two lemmas are the key technical drivers that motivate the consideration of
normal forms for formulas in this proof. If the sole result of a single result formula is
not a-available, the 〈·〉−a translation removes all non trivial information from it.

Lemma 11. If a unique result formula δ is not a-available, then 〈δ 〉−a ⇔ tt. �

PROOF. By structural induction on δ . If δ is of the form tt or p, 〈δ 〉−a = tt by defi-
nition. If δ is not a-available, for any α 〈α ⇒ δ 〉−a = 〈α〉−a ⇒ 〈δ 〉−a = 〈α〉−a ⇒ tt; the
result follows. If b �' a and δ is not a-available: 〈�bδ 〉−a = 〈δ 〉−a ; the result follows by
the induction hypothesis. �

We are now able to confirm that the 〈·〉−a translation is more restrictive than the 〈·〉+a
translation.

Lemma 12. For all μ in multiple result form , 〈μ〉+a ! 〈μ〉−a is provable. �

PROOF.
Single Result Formulas: Consider first the case when μ is a formula δ in single result
form. We prove the result by structural induction on the construction of δ .
If δ is of the form tt or p. In these cases, result follows since 〈δ 〉−a = tt .
If δ is a-available: 〈β ⇒ δ 〉+a = 〈β 〉−a ⇒ 〈δ 〉+a ⇒ 〈β 〉−a ⇒ 〈δ 〉−a = 〈β ⇒ δ 〉−a
If δ is not a-available, β ⇒ δ is not a-available and result follows since 〈β ⇒ γ〉−a = tt

by lemma 11.
If b �' a: 〈�bδ 〉+a = 〈δ 〉+a ⇒ 〈δ 〉−a = 〈�bδ 〉−a
If b' a: 〈�bδ 〉+a = 〈δ 〉+a = 〈�bδ 〉−a
Multiple result formulas. Given the result for single-result formulas, the proof for mul-
tiple result formulas μ follows by structural induction on the formation of μ . �

3.2 Noninterference Theorem

Theorem 13. Let Γ ,α be formulas in multiple result form. If Γ ! α , then:

〈Γ 〉+a ! 〈α〉+a , and
〈Γ 〉−a ! 〈α〉−a

are provable in intuitionist propositional logic. �

PROOF. Proof by induction on the structure of the proof of Γ ! α .

Induction step for 〈Γ 〉−a ! 〈α〉−a . The proofs for the inductive case when the last rule is
any rule except COUNIT or PROMOTE are all similar. In each of these cases, the inductive
step to show 〈Γ 〉−a ! 〈α〉−a follows because the translation 〈(·)〉−a is compositional on
the structure of the propositional connectives and the universal quantifier.

For example consider the case when the last step in the proof of Γ ! α is &-R. So,
we have α = β & γ and the following proof structure:

Γ ! β Γ ! γ
Γ ! β & γ
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By inductive hypothesis, we deduce a proof of 〈Γ 〉−a ! 〈β 〉−a and 〈Γ 〉−a ! 〈γ〉−a . An
application of &-R yields 〈Γ 〉−a ! 〈β 〉−a & 〈γ〉−a thus completing this case since 〈α〉−a =
〈β 〉−a & 〈γ〉−a .

If the last rule is COUNIT, i.e.

Γ ,β ! α
Γ ,�bβ ! α

by induction hypothesis, we have a proof of 〈Γ 〉−a ,〈β 〉−a ! 〈α〉−a . There are two cases
depending on the order between b,a.

b' a By definition, 〈�bβ 〉−a = 〈β 〉+a . From lemma 12, 〈β 〉+a ! 〈β 〉−a is provable, so
we get required result by use of CUT with the proof above yielded by the induction
hypothesis.

b �' a . By definition, 〈�bβ 〉−a = 〈β 〉−a . Hence, the induction hypothesis yields the re-
quired result.

If the last rule is PROMOTE, i.e.

Γ ! α
Γ !�bα

Γ is b-available

There are two cases depending on the order between b,a.

b' a By induction hypothesis on the 〈·〉+a translation, we have a proof of

〈Γ 〉+a ! 〈α〉+a

Since b ' a, by lemma 2, Γ is also a-available. So, by lemma 10, 〈Γ 〉+a = 〈Γ 〉−a .
Also, by definition, 〈�bα〉−a = 〈α〉+a .

b �' a . By induction hypothesis, we have a proof of

〈Γ 〉−a ! 〈α〉−a

By definition, 〈�bα〉−a = 〈α〉−a .

In either case, the required proof of 〈Γ 〉−a ! 〈�bα〉−a coincides with the proof yielded
by the induction hypothesis. The additional formulas Δ on the left are added using
weakening.

Induction step for 〈Γ 〉+a ! 〈α〉+a . The translation 〈(·)〉+a is compositional on the structure
of & and the modality. So, if the last rule is any except⇒-R or⇒-L, the inductive step
to show that 〈Γ 〉+a ! 〈α〉+a holds follows immediately.

For example, consider the case when the last step in the proof of Γ ! α is &-R. So,
we have α = β & γ and the following proof structure:

Γ ! β Γ ! γ
Γ ! β & γ
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By inductive hypothesis, we deduce a proof of 〈Γ 〉+a ! 〈β 〉+a and 〈Γ 〉+a ! 〈γ〉+a . An
application of &-R yields 〈Γ 〉+a ! 〈β 〉+a & 〈γ〉+a . This completes this case of the proof
since 〈α〉+a = 〈β 〉+a & 〈γ〉+a .

If the last rule is ⇒-R or ⇒-L and the implication formula in question is β ⇒ γ ,
there are two cases based on whether γ is a-available or not.

If γ is not a-available, the 〈·〉+a translation is still compositional, i.e. 〈β ⇒ γ〉+a =
〈β 〉+a ⇒ 〈γ〉+a and the proof is similar to case above.

If γ is a-available, 〈β ⇒ γ〉+a = 〈β 〉−a ⇒ 〈γ〉+a .

⇒-R: The last rule is:

Γ ,β ! γ
Γ ! β ⇒ γ

From induction hypothesis, we deduce the existence of a proof of

〈Γ 〉−a ,〈β 〉−a ! 〈γ〉−a

and hence using 〈β ⇒ γ〉−a = 〈β 〉−a ⇒ 〈γ〉−a , a proof of:

〈Γ 〉−a ! 〈β ⇒ γ〉−a

Since β ⇒ γ is a-available, 〈β ⇒ γ〉−a = 〈β ⇒ γ〉+a by lemma 10. So, we deduce :

〈Γ 〉−a ! 〈β ⇒ γ〉+a

From lemma 12, the sequents 〈α〉+a ! 〈α〉−a are provable for each α ∈ Γ . So, by
multiple uses of cut, we get a proof of: 〈Γ 〉+a ! 〈β ⇒ γ〉+a as required.

⇒-L: The last rule is:

Γ ! β Γ ,γ ! α
Γ ,β ⇒ γ ! α

From induction hypothesis, we deduce the existence of proofs:

〈Γ 〉−a ! 〈β 〉−a 〈Γ 〉+a ,〈γ〉+a ! 〈α〉+a

From lemma 12, the sequents 〈α〉+a ! 〈α〉−a are provable for each α ∈ Γ . So, by
multiple uses of cut with the left proof, we get a proof of:

〈Γ 〉+a ! 〈β 〉−a

Using⇒-L with the right proof above yields a proof of:

〈Γ 〉+a ,〈β 〉−a ⇒ 〈γ〉+a ! 〈α〉+a

Required result follows since 〈β ⇒ γ〉+a = 〈β 〉−a ⇒ 〈γ〉+a . �

The main use of this theorem is to prove that certain sequents are not provable. We
illustrate with very simple examples.
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Example 14. In all the following examples, we use theorem 13 for 〈·〉−a .

– If p !�a p is provable, so is tt ! p .
– Let b �' a. If �b p ! �a p is provable , so is tt ! p in IPL.
– Let b �' a. If �b p,�a(p⇒ q) !�aq is provable, so is tt, p⇒ q ! q.

Since tt ! p and p⇒ q ! q are unprovable in IPL, all the above three sequents are
unprovable. �

4 Conclusions

Recent research in both type theories and security have used indexed necessity modal-
ities of intuitionist S4 as the logical foundations. Noninterference between the differ-
ent indices is a key metatheoretic property that is essential to the soundness of this
modeling. In this paper, we establish noninterference for indexed intuitionist necessity
modalities.

Our work is inspired by noninterference theorems for monads—logically speaking,
the “says” modality from logics for access control. However, to the best of our knowl-
edge, noninterference has not been investigated for the necessity modality. The dual
of the necessity modality is not the says modality but the possibility modality. So, our
proof incorporates novelties in the form of normal forms for intuitionist S4 inspired by
game semantics.

Our desire is to ultimately build a similar metatheory for a modal logic that incorpo-
rates both kinds of modalities. Such logics are already used for security policies and in
type theories for functional languages.

This research was supported by NSF CCF-0915704.
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A Factoring the Translation

The translations 〈·〉+a and 〈·〉−a can be factored into two pieces:

– Translations (| · |)+a and (| · |)−a remove principals and result in formulas in the frag-
ment of our logic that uses modalities indexed only by a. Thus, the target of this
translation is a variant of Intutionist S4.

– The standard forgetful translation from Intuitionist S4 into intuitionist propositional
logic simply erases all modalities.

For a formula α in multiple result normal form, define (|α|)+a ,(|α|)−a as follows. The
only differences are in the cases for the modality.

(|tt|)+a =tt (|tt|)−a =tt

(|p|)+a =p (|p|)−a =tt

(|α & β |)+a =(|α|)+a & (|β |)+a 〈α & β 〉−a =(|α|)−a & (|β |)−a
(|�bα|)+a =

{
(|α|)+a , b �' a
�a(|α|)+a , b' a

(|�bα|)−a =

{
(|α|)−a , b �' a
�a(|α|)+a , b' a

(|α ⇒ β |)+a =
{
(|α|)−a ⇒ 〈β 〉+a , β a− available
(|α|)+a ⇒ 〈β 〉+a , otherwise

〈α ⇒ β 〉−a =〈α〉−a ⇒ 〈β 〉−a

We are able to prove the analogue of theorem 13. If Γ ! α , then:

(|Γ |)+a ! (|α|)+a , and
(|Γ |)−a ! (|α|)−a

are provable. The proof uses the analogues for Lemmas 10–12 that are listed below.

1. If α is a-available, then (|α|)+a = (|α|)−a ; furthermore, (|α|)+a is a-available.
2. If a single result formula δ is not a-available, then (|δ |)−a = tt.
3. For all μ in multiple result form , (|μ |)+a ! (|μ |)−a is provable.
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Abstract. In this paper a comparative study of many-valued logics,
fuzzy logics and the theory of graded consequence has been made fo-
cussing on consequence, inconsistency and sorites paradox.

1 Introduction

What brings many-valued logic, fuzzy logic and theory of graded consequence
(GCT) on a common platform is that each considers bivalence inadequate and
embraces multivalence for interpreting their proposed theories. Traditionally,
different systems of many-valued logic admitted values other than truth and
falsehood from different motivations. The second and the third decade of the
last century saw a sprouting of different systems of many-valued logic. However,
treatment of vagueness was far from the original motive behind any of these
many-valued systems [18]. Generally the set of truth values admitted in different
systems of many-valued logic is some subset of the real interval [0, 1].

For Zadeh’s proposed system of fuzzy logic based on fuzzy set theory [21], the
unit interval [0, 1] was a natural choice for interpreting vague sentences which
occur either as premises or as conclusions of inferences in most cases of human
reasoning. A further development of fuzzy logic in a more formal way was carried
out in [10–14, 16].

A general set up for generating a system of logics with a notion of graded con-
sequence was proposed by Chakraborty [3, 4] to gauge the strength of ‘derivabil-
ity’ of a conclusion from a set of premises which may hold in degrees. Where the
approach of GCT differs from other many-valued and fuzzy logical approaches
is that it admits degrees of truth not only of predications at the object level, but
of predications at the meta-level and if required at a level higher than that also.

In this paper a comparative study of many-valued logics, fuzzy logics and the
theory of graded consequence has been made focussing on consequence, inconsis-
tency and sorites paradox. We arrange the content of the paper in three different
sections; the fisrt two focus on the notions of ‘consequence’, ‘inconsistency’, and
the last one on the treatment of ‘Sorites paradox’.
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2 Notion of Consequence: A Comparative Appraisal

Existing approaches towards reasoning with imprecise concepts allow the object
level to be many-valued, while maintaining meta-level statements to be of yes/no
type. A comment made by Pelta [17] is relevant in this regard: “Until now the
construction of superficial many-valued logics, that is, logics with an arbitrary
number (bigger than two) of truth values but always incorporating a binary con-
sequence relation, has prevailed in investigations of logical many-valuedness”.

In contrast, the philosophy behind GCT is: ‘if object level formulae are hav-
ing many-valued truth values then it generally cannot be denied that meta-level
sentences also happen to be so’ [3].

One may wonder what could be the motivation for incorporating grade in
metalanguage. After all metalinguistic sentences are of mathematical nature.
One immediate answer may be given from the standard of mathematics itself
viz., generalization, which is a usual motivation behind mathematical research,
and that has been echoed in the above quote. We may recall the history of
many-valued logics itself. Though for incorporation of a third value there had
been various extraneous reasons e.g. inclusion of future contingents, or taking
‘undecided’ and ‘unknown’ also as (truth) values of sentences, there had been no
apparent reason for extension to an infinite set of truth values. This was simply
generalization as done in mathematical practice. The infinite value set obtained a
meaning only in mid-sixties after the advent of fuzzy set theory [21] and incorpo-
ration of vague predicates also in logic and computer applications. But a more
down-to-earth reason may be given. Since seventies, primarily because of the
needs of computer scientists the classical notion of consistency was being felt to
be inadequate for application. Notions of partial consistency, and inconsistency
tolerant systems were brought in within the discourse [8, 2]. In traditional logic
consistency is a hard notion yielding either ‘yes’ or ‘no’ answers. Thus consis-
tency to a certain degree was a concept quite naturally waiting at the door steps
in search of a theory. Linking consistency with consequence is a long-practised
methodology in classical logic. A similar approach with graded (in)consistency
automatically leads to graded consequence. Apart from all these, if we examine
the nature of actual (not normative) inferences made by human brain we notice
that from certain premises the brain often makes inferences not very strongly.
The procedure itself might have weakness, tentativeness and vagueness. Cases
of medical decision making offer ample instances.

2.1 Theory of Graded Consequence Relation

A graded consequence relation is a fuzzy relation, say |∼ between the power set
of formulae P (F ) and F satisfying the following set of axioms [3, 4].

(GC1) If α ∈ X then gr(X |∼ α) = 1 (Reflexivity).
(GC2) If X ⊆ Y then gr(X |∼ α) ≤ gr(Y |∼ α) (Monotonicity).
(GC3) infβ∈Y gr(X |∼ β) ∗ gr(X ∪ Y |∼ α) ≤ gr(X |∼ α) (Cut).
The intended meaning of ‘gr(X |∼ α)’ is the truth value of the meta-linguistic

sentence ‘α is a consequence of X ’. This value is not necessarily the topmost (1)
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or the least (0) of the lattice, the value set, and it is read as ‘the degree to which
α is a consequence of X ’. The ‘∗’ and ‘inf’ used in (GC3) are the operators for
computing the meta-linguistic ‘and’ and ‘for all’ present in the statement ‘for
all β ∈ Y , X ! β and X ∪ Y ! α imply X ! α’, the classical cut condition.
|∼ is the many-valued counterpart of !, the two-valued notion of ‘consequence’.
To elucidate, let us consider formulae α, β, . . . and sets of formulae X,Y , . . . as
object level entities. Then in meta level, one can form sentences of the form
‘X’ |∼ ‘α’, ‘X’|∼ x, x ∈‘X’, where ‘X’, ‘α’ are the terms of the meta level
language representing the names of the respective object level entities, x is a
meta level variable ranging over object level formulae, and ∈, |∼ are predicates
of the meta level language. So, the cut condition, which is a meta-meta level
statement, in symbols can be presented as imply(�∀x(if x ∈ ‘Y ’then ‘X’ |∼ x)
and ‘X ∪ Y ’|∼‘α’ �, � ‘X’|∼‘α’ �), where expressions within � � are meta level
sentences and at meta-meta level those sentences are named is in quotes � �. So,
expressions with � � are meta-meta linguistic terms and ‘imply’ is a meta-meta
linguistic predicate. The lattice order relation ‘≤’ takes care of the meta-meta
level relation ‘imply’. Hence, in graded context (GC3) ascertains that the truth
value of the meta level sentence ∀x(if x ∈ ‘Y ’then ‘X’ |∼ x) and ‘X ∪ Y ’|∼‘α’
is less or equal to the truth value of the sentence ‘X’ |∼ ‘α’. The value set
say, L along with the operators for meta linguistic connectives forms a complete
residuated lattice (L, ∗,→, 0, 1).

That logic activity, generally, comprises of three levels, namely, object, meta
and meta-meta, and proper distinction between them plays a crucial role in
establishing well-formedness of a sentence pertaining to a specific level have
been discussed elaborately in [7].

From the semantic angle the graded counterpart of the notion of consequence
is a generalization of the notion of semantic consequence proposed by Shoesmith
and Smiley [19]. Classically, ‘α is a semantic consequence of X ’ is defined by
the meta-linguistic sentence ‘for all Ti belonging to the collection of all state-of-
affairs, if all members of X are true under Ti, then α is true under Ti’. In [19],
the definition has been generalized by replacing the constraint of ‘all state-of-
affairs’ by ‘any collection of state-of-affairs’, say {Ti}i∈I . A rationale for taking
an arbitrary collection of state-of-affairs according to [19] is: ‘the necessity with
which conclusions follow is relative to the presuppositions of an argument, and
different argument may have different presuppositions. But whatever idea of ne-
cessity is involved there is a corresponding idea of possibility ’. This leads to the
new version viz., ‘To say that a conclusion follows from a given set of premises is
to say that each possible state-of-affairs in which all the premises are true is one
in which the conclusion is true’ [19]. Instead of presuppositions we prefer to use
the more general word ‘context’. So each {Ti}i∈I constitutes a context, which
may be treated as a collection of worlds of Kripke semantics. Besides, from the
angle of pure mathematics, a passage from all valuations to arbitrary number of
valuations is an elegant generalization.

In GCT, {Ti}i∈I represents any collection of fuzzy sets assigning values to the
formulae. Thus, the proposed logic turns out to be context dependent. The
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meta-level sentence for semantic consequence, i.e., (Σ) ∀Ti{X ⊆ Ti →m α ∈
Ti}, is evaluatedby the expression infi{infγ∈X Ti(γ)→ Ti(α)},where infγ∈X Ti(γ),
Ti(α) are the respective values of the meta level sentences ‘X ⊆ Ti’ and ‘α ∈ Ti’
(see [4, 6]), and → is the residuum of ∗, the monoidal operator of (L, ∗,→, 0, 1),
computing →m, the meta-linguistic ‘if-then’. It is to be noted that the value as-
signed to the meta-linguistic sentence ‘α is a semantic consequence ofX ’ can also
be explained maintaining the proper distinction between levels [7].

So, in graded context ‘α is a semantic consequence of X ’, denoted by X |≈ α,
is not a crisp notion; rather, it is a matter of grade and the value of X |≈ α, i.e.,
gr(X |≈ α) = infi{infγ∈X Ti(γ)→ Ti(α)}. In [4], a soundness-completeness like
result has been proved connecting a graded consequence relation |∼ axiomatized
by (GC1) to (GC3) with |≈, the semantic counterpart.

The notion of axiomatic graded consequence [5], is determined with respect to
A, a logical base of axioms and R, rules. A context, say {Ti}i∈I , determining the
truth values of the basic formulae needs to be prefixed also. The tautologihood
degree of the axioms present in A and degree of the rules present in R depend on
{Ti}i∈I . The tautologihood degree of an axiom α is infiTi(α), which is the value
of the meta-linguistic sentence ‘∀T (α ∈ T )’. To illustrate the degree of a rule, let
us consider the rule Modus Ponens (MP). For all instances of ({α, α ⊃ β}, β),
the degree to which β is related to {α, α ⊃ β} is infα,βgr({α, α ⊃ β} |≈ β)
i.e., infα,βinfi{(Ti(α) ∧ Ti(α ⊃ β)) → Ti(β)}, which is the degree of the rule
MP. Now, given a pair (A,R), where say, R consists of MP only, a derivation
of a formula αn from a set of formulae X , is an ordered pair of sequences viz.
(〈α1, α2, . . . , αn〉, 〈| α1 |, | α2 |, . . . , | αn |〉). In this pair of sequences the first
sequence consists of formulae used in the derivation and the second sequence
indicates the values associated with each step. The value associated with i-th
step will be 1 if αi comes from the premise X . The value will be tautologihood
degree of αi if αi is taken from A \ X and |αi| will be the degree of MP if αi

is obtained by applying MP on the previous formulae {α1, α2, . . . , αi−1}. The
value of the meta-linguistic sentence ‘〈α1, α2, . . . , αn〉 is a derivation of αn from
X ’, formally written as 〈α1, α2, . . . , αn〉D(X,αn), is | α1 | ∗ | α2 | ∗ . . . ∗ | αn |.
Finally, the value of the meta level sentence ‘αn is an axiomatic consequence of
X ’, that is ‘there is a sequence of formulae which is a derivation of αn from X ’, is
computed by sup〈α1,α2,...,αn〉〈α1, α2, . . . , αn〉D(X,αn). This notion of axiomatic
graded consequence satisfies (GC1)-(GC3) [5].

The above discussion explains that in GCT assignment of values to sentences
like, ‘α is a consequence of X ’, whether it be axiomatic or semantic, is not
arbitrary; it depends on the sentence unfolding the meaning of the concept.

2.2 Notion of Consequence in Many-Valued Logics

In many-valued logics, the notion of semantic consequence is defined usually in
two ways; one, say ‘|=1’, is defined in terms of a designated subset of the set of
values of the wffs and the other, say ‘|=2’, is defined in terms of the order relation
present in the value set and a composition operator conjoining the values of the
premises. Let us now concentrate on the definition of |=1.
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According to the definition of |=1, X |=1 α iff for the collection of all val-
uations, say {Ti}i∈I mapping formulae to [0, 1], for all γ ∈ X , Ti(γ) ∈ D i.e.
Ti(X) ⊆ D, implies Ti(α) ∈ D, where D, the designated set of values, is a proper
subset of [0, 1] not containing 0.

There is no ambiguity regarding the two-valued nature of the notion of seman-
tic consequence of many-valued logics. Let us see how this notion of semantic
consequence is placed in the proposed scheme for graded semantic consequence.
In order to cast the definition in our sense, let us do the following construction.
Let for each Ti, T

D
i be a mapping defined by, TD

i (α) = 1, if Ti(α) ∈ D
= 0, otherwise.

Identifying, the function TD
i with the set it determines, the above definition

reduces to ‘for all TD
i , X ⊆ TD

i implies α ∈ TD
i ’.

Theorem. Given the collection of all valuations, say {Ti}i∈I , |≈ generated by
{TD

i }i∈I with the operator →c, defined by a→c b = 1, if a ≤ b
= 0 otherwise,

computing the meta-level implication →m of (Σ) coincides with |=1.

Theorem. |≈ generated by {TD
i }i∈I , in the above mentioned sense, is a graded

consequence relation.
These two theorems give a general scheme for reproducing the completeness

theorem of many-valued logics in terms of GCT by fixing {TD
i }i∈I to be the

context determining the tautologihood degrees and degrees of rules of (A,R),
the axiomatic base of the particular logic of concern.

2.3 Notion of Consequence in Fuzzy Logics

Most of the mainstream fuzzy logics frequently use the term ‘degree of conse-
quence’, but does not really mean the notion of consequence is graded. The idea
of approximate rule prevalent in fuzzy logics may illustrate the point.

2.3.1 Modus Ponens as a Special Case of Derivation in Fuzzy Logics
As introduced by Goguen [12] the approximate rule Modus Ponens is such that
“If you know P is true at least to the degree a and P ⊃ Q at least to the degree
b then conclude that Q is true at least to the degree a.b.”

Assuming the value set for formulae as [0, 1] and ‘.’ as the usual product
operation, the above-mentioned approximate rule takes the form:

(P , a)
(P ⊃ Q, b)
(Q, a.b)

Fig. 1.
That is, as proposed by Goguen, a many-valued rule of inference can be viewed
as a crisp relation from P (F × [0, 1]) to (F × [0, 1]).

Pavelka’s [16] interpretation of a many-valued rule of inference is as follows.
A many-valued rule of inference r consists of two components 〈r′, r′′〉, where the
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first (grammatical) component r′ operates on formulae and the second (evalua-
tion) component r′′ operates on truth values and says how the truth value of the
conclusion is to be computed from the truth values of the premises.

So, it is clear from Pavelka’s own words that the value, which is being attached
to the concluding formula, is the truth value of the conclusion - not of the ‘so
called’ many-valued rule. Pavelka, himself puts a many-valued rule MP in a form
which is similar to the form presented above.

‘From partially true premises partially true conclusion can be deduced’- this
is the central idea of Peter Haj́ek’s [14] fuzzy logical system, known as Rational
Pavelka Logic (RPL). Identifying the pair (P , a) with the formula a ⊃ P , where
a is the wff denoting the truth value a, it can be shown that the many-valued
rule MP mentioned in Fig. 1 can be obtained as a derived rule in RPL.

So, from the above discussion it is evident that neither Goguen, nor Pavelka,
nor Haj́ek considered a rule of inference in fuzzy context as a fuzzy relation
between a set of formulae and a single formula. And this is clearly not the
case in the context of graded consequence (see section 2.1). One can argue that
presentation of a fuzzy rule in the form of Fig. 1 is nothing but a variant form
of writing the same rule as a fuzzy relation say, MP ({(α, a)(α ⊃ β, b)} β) with
relatedness grade a.b or r′′(a, b). In this connection readers are referred to [7]
where it has been observed that if the principle of ‘use and mention’ of a symbol
is to be maintained then this correspondence gives rise to a difficulty in placing
a rule as a well-formed concept of the meta level language.

Rule being a special case of derivation, it can be guessed that ‘consequence’ in
fuzzy logic is such that given a set of formulae, along with their truth values, a
formula with certain truth value either can be derived or not derived. However,
the way ‘C(X)(α)’ is read in fuzzy logic creates a confusion.

This becomes more visible if one goes through the distinction of levels main-
taining the principle of ‘use’ and ‘mention’ of a symbol in a logical discourse [7].
A formula α, a set of formulaeX - all these are linguistic elements of level-0. ‘α’ is
a consequence of ‘X’, ‘X’ is inconsistent - these are level-1 statements, and value
of these statements should be computed by a reasonable, definite method as it
is maintained for computing values of level-0 formulae. This is exactly lacking
in the understanding of the meta level concepts of the existing fuzzy logics.

2.3.2 Notion of Provability in Haj́ek’s Rational Pavelka Logic
According to Haj́ek [14] the notion of ‘provability degree of a formula α from a
set of formulae X ’ is given by the value sup{r : X ! (α, r)} . . . (A).

In RPL, (α, r) is a level-0 formula and hence one can place X ! (α, r) in
level-1. For a crisp set X of formulae, given a crisp set of axioms and crisp rules
of inference, a formula of the form ‘(α, r) is a derivation of X ’, is a two-valued
notion. So what does this ‘provability degree of α from X ’ mean? The definition
(A) suggests to compute the supremum of all those r for which (α, r) is derived
from X . This leads to a number of problems.
1. It should be natural to think that, the provability degree of a formula α from
a set of formulae X would be the truth value of the statement ‘α is provable
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from X ’ i.e., ‘there is a derivation of α from X ’. But expression (A) does not
seem to compute this sentence.
2. As ‘sup’ usually is meant to compute meta-linguistic ‘there exists’ to make
the definition of ‘α is provable from X ’ closer to the expression (A) if we assume
that (A) is assumed to compute the sentence ‘there is a derivation of (α, r) from
X ’, then also difficulty arises because, X ! (α, r) is a two-valued notion. So, how
does this ‘r’ come in the scenario to get counted under ‘sup’?
3. Semantically, X ! (α, r) means in every model of X , the value of α should be
at least r. This fact can not be unfolded at the same level where X ! (α, r) lies.

2.3.3 Notion of Proof in the Context of Pavelka’s Fuzzy Logic
The notion of proof, as introduced by Pavelka [16], also has some difficulties.
Given a fuzzy set A of formulae, interpreted as axioms and a set R of rules of
inference, an R-proof is defined as a finite non-empty string ω = 〈ω1, ω2, . . . , ωn〉
over F ∪ ( F × { 0 } ) ∪ ( F × R × N+ ). That is for each ωi (i = 1, 2, . . . , n)
either ωi is (x) or (x, 0) or (x, r, 〈i1, i2, . . . , in〉), where x = *ωi, the formula under
consideration at the i-th term of ω.

If ωi = (x, r, 〈i1, i2, . . . , in〉), (i = 1, 2, . . . , n) then x = r′ (*ωi1 , *ωi2 , . . . , *ωin)
where r′ is the grammatical component of the rule r (see Section 2.3.1). For an
R-proof ω = 〈ω1, ω2, . . . , ωn〉 of *ωn from a fuzzy set of formulae X there is a
function ω̂ : LF �→ L such that (i) if length of ω is 1, then either ω = (x) or
(x, 0). If ω = (x) then ω̂(X) = Xx i.e. the membership degree of x in the fuzzy
subset X and if ω = (x, 0) then ω̂(X) = Ax i.e. the membership degree of x in
the fuzzy set of axioms A. (ii) If ω = 〈ω1, ω2, . . . , ωn〉 then
ω̂(X) = Xx if ωn = (x)

= Ax if ωn = (x, 0)
= r′′(ω̂i1(X), ω̂i2(X), . . . , ω̂in(X)) if ωn = (x, r, 〈i1, . . . , in〉), i1, . . . , in < n.
So, it can be noticed that the value of 〈ω1, ω2, . . . , ωn〉, a proof of *ωn from

X , only takes care of the value of the last step of the derivation. This does not
seem to be the value of the sentence ‘〈ω1〉 is a proof of *ω1 from X and 〈ω1, ω2〉
is a proof of *ω2 from X and . . . and 〈ω1, ω2, . . . , ωn〉 is a proof of *ωn from X ’.

Like any definition by recursion, in Pavelka’s definition of proof also value of
each step is computed with the help of the value of a segment of the proof pre-
ceeding that particular step. But ‘proof’ as a whole should refer to the complete
chain of steps and the same applies to the value of proof too. In the context of
graded consequence value of a proof is not computed by recursion.

2.3.4 �Lukasiewicz Fuzzy Propositional Logic
In �Lukasiewicz fuzzy propositional logic [1] concepts like Fuzzy�L entailment,
degree entailment, n-degree entailment, fuzzy consequence are introduced.

A formula α is a Fuzzy�L entailment of a set of formulae Γ if for every fuzzy
truth-value assignment, which is a fuzzy set from the set of all formulae to the
set [0, 1], if every member of Γ gets the value 1 then α gets the value 1. It is
quite clear that the notion of Fuzzy�L degree entailment is actually the same as
the |=1 where the designated set is {1}, and |=1 is a two-valued concept.
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On the other hand, α is said to be a degree entailment of Γ if for any fuzzy
truth-value assignment, the infimum of the values assumed by all members of Γ
is less or equal to the value obtained by α. This coincides with the definition of
|=2 when the lattice meet is taken to be the composition operator conjoining the
premises. An argument is said to be degree valid if its premises degree entails its
conclusion. So, degree entailment and degree valid both are ‘yes/no concepts’.

Then in [1], for an argument which is not degree valid, a notion like approx-
imate degree of validity has been introduced. Given an argument having Γ as
the set of premises and α as the conclusion, and a fuzzy truth-value assignment
V , a function say dV , called downward distance, has been defined by
dV (Γ, α) = infγ∈Γ V (γ)− V (α), if infγ∈Γ V (γ)− V (α) > 0

= 0, otherwise.
Now the argument is said to be n-degree valid if n = 1− supV dV (Γ, α). So, here
an attempt to attach a value to the meta-linguistic notion ‘an argument is valid’
is found. But this again proposes a method of computation which does not have
any connection with the defining criterion of the concept ‘an argument is valid’.
Also presence of ‘−’ implies that the definition only applies in [0, 1].

The notion of fuzzy consequence defined in [1], is exactly the same as the
notion of semantic consequence defined by Pavelka [16]. Given a fuzzy set of
formulae Γ , the fuzzy consequence of Γ , denoted by FC(Γ ), is a fuzzy set such
that for any formula α, FC(Γ (α)) = infT {T (α) : Γ ⊆ T }. In [7], it has been
discussed that in presenting FC(Γ (α)) according to the scheme (Σ), given in
section 2.1, one needs to have two implication operators to compute the meta-
linguistic connective ‘if-then’ present in the notion viz., ‘[if for all T , (for all γ
(if γ ∈ Γ then γ ∈ T )) then α ∈ T ]’. So, one may be skeptic in accepting
FC(Γ )(α) as a proper reading for ‘degree of consequence of α from Γ ’.

So, in GCT the value of ‘α is a consequence of X ’ happens to be the value
of its defining sentence, while the other existing fuzzy logics proposed to attach
such a value which cannot be claimed as the value of its defining sentence.

3 Notion of Inconsistency: A Comparative Appraisal

If object level formulae are accepted to assume values other than 0 and 1, then
it is quite immediate that a formula and its negation need not be false together.
So, one can think of a non-zero threshold for a formula of the form α ∧ ¬α. For
instance, in �Lukasiewicz logic [18] this value is 1

2 . Then what about the notions
like, ‘for any α, {α,¬α} ! β for any β’ or ‘{α,¬α} is inconsistent’? Let us briefly
revisit the notion of inconsistency in the logics of our present concern.

3.1 Inconsistency in the Theory of Graded Consequence

The classical notion of inconsistency, in the graded context, has been assumed [5]
as a fuzzy subset INCONS of P (F ). Given any set of formulaeX , INCONS(X),
read as the inconsistency degree of X , is postulated [5] by the following axioms.
(I1) If X ⊆ Y then INCONS(X) ≤ INCONS(Y ).
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(I2) INCONS(X ∪{¬α}) ∗ INCONS(X ∪ Y ) ≤ INCONS(X) for any α ∈ Y .
(I3) There is some k > 0 such that for any α, INCONS({α,¬α}) ≥ k.

This notion of graded inconsistency is equivalent to the notion of graded
consequence, extended with the axioms (GC4) and (GC5)[5].
(GC4) There is some k > 0 such that for any α, infβ gr({α,¬α} |∼ β) ≥ k.
(GC5) gr(X ∪ {α} |∼ β) ∗ gr(X ∪ {¬α} |∼ β) ≤ gr(X |∼ β).

So, the point to be noted here is that the classical connection between conse-
quence and inconsistency is preserved in this context too, where both the notions
of consequence and inconsistency are matters of grades.

3.2 Notion of Inconsistency in Many-Valued/fuzzy Logics

In Pavelka’s fuzzy logical system though C(X)(α) has been regarded as the
degree to which α is a consequence ofX , the notion of consistency (inconsistency)
has been introduced absolutely crisply. According to Pavelka [16], a fuzzy set of
formulae X is said to be consistent if C(X) �= F , and inconsistent otherwise. So,
no question of grade arises here.

On the other hand, in Haj́ek’s fuzzy logic [14], a set of formulae X is said to
be inconsistent if X ! 0 i.e. X ! 0 ⊃ 1 or in other words, X ! (0, 1).

At this point, the question which arises is that if, for some set X of formulae,
X ! (0, r), where r �= 1, whether the underlying logic of Haj́ek accepts the set
X as a partially inconsistent set. As understood from [14], the answer seems to
be ‘no’. This definition reflects that Haj́ek also intended to introduce the notion
of inconsistency as a two-valued concept. This attitude towards the notion of in-
consistency, found in both of these fuzzy logical systems, poses question. Because
there are tacit mentions of the terms like, ‘degree of consequence’, ‘provability
degree’ etc., in both of these systems and if these terms are really genuine in
addressing many-valuedness of ‘the notion of consequence’ then how can they be
commensurable to ‘the notion of inconsistency’ which is a two-valued concept.

4 Solution to Sorites Paradox: A Comparative Appraisal

A sorites paradox involving a vague predicate P can be stated as follows.
One starts with Px1 and a collection of conditional premises of the form ‘if Pxi,
then Pxi+1’, for 1 ≤ i ≤ n. Then, by repetitive application of MP, one arrives
at the obviously false conclusion Pxn, for some suitably large n.

4.1 Sorites Paradox: In the Context of Tye’s Many-Valued Logic

Michael Tye [20] adopts a three-valued semantics framed after Kleene’s three-
valued logic. The third value is called ‘indefinite’. Tye observed that there are
borderline bald men with say, n hairs, who would not cease to be bald by addition
of one hair on his head. Thus, there is some n, for which both the statements
‘a man with n hairs on his head is bald’ and ‘a man with n + 1 hairs on his
head is bald’ are indefinite. Hence according to Kleene’s three-valued matrix for
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‘if-then’ (‘⊃’), for such n, the conditional statement ‘if a man with n hairs on his
head is bald then a man with n+ 1 hairs on his head is bald’ will be indefinite.

According to Tye, the initial few statements in the array, having the form ‘a
man with n hairs on his head is bald’, where n ranges from 0 to 1,000,000, are
true, also the last few statements of the same form are false, and in between
somewhere in the array, there are statements that are indefinite. But one could
never say where in the array, the statements of the form ‘a man with n hairs on
his head is bald’ cease to be true and become indefinite, and also at which point
in the array indefinite statements end and false statements begin.

Tye’s approach respects tolerance of a vague predicate to minute changes. But
by admitting one of the premises to be non-true he dissolves the paradox instead of
giving any solution to the paradoxical situation where starting from true premises,
following a valid rule(s) of inference, one arrives at a false conclusion.

4.2 Sorites Paradox: in the Context of Goguens’s Fuzzy Logic

As an example of fuzzy logical approach to the sorites paradox, we present
Goguen’s [12] approach based on fuzzy set theory. According to Goguen, the
conditional statements of the form ‘if a man with i hairs on his head is bald then
a man with j hairs on his head is bald’ should provide a way so that from the
truth value of ‘a man with i hairs on his head is bald’ one can derive the truth
value of the statement’ a man with j hairs on his head is bald’. He suggested
to represent the conditional premise by a fuzzy relation H(i, j), read as, ‘the
relative baldness of a man with j hairs on his head with respect to the baldness
of a man with i hairs on his head’ so that H(i, j) satisfies the following equation.
B(j) = H(i, j) . B(i), where ‘B’ denotes a fuzzy set corresponding to ‘bald’. That

is, H(i, j) = B(j)
B(i) . Now, as the fuzzy set B, representing ‘bald’ is continuous and

monotone decreasing in nature, for some k,H(k−1, k) is non-unit. Hence, if B(0)
is 1, then for the series of natural numbers, from 0 to 1,000,000, B(1, 000, 000) =∏1,000,000

i=1 H(i−1, i), which is a result of repetitive product of non-unit numbers
and that might be close to zero as the number of steps increases. This explains
why the conclusion of the sorites appears to be false.

There are two problems in this solution. The first is the same as in Tye’s case,
where one of the premises is admitted to be non-true. The second is the case
where it is admitted that for some k,H(k−1, k) is non-unit, i.e. B(k−1) < B(k).
This goes against the idea that a vague predicate is tolerant to mintue changes.

4.3 Sorites Paradox: In the Context of Graded Consequence

According to GCT, solution to the Sorites paradox can be presented as below.
1. A man with 1 hair on his head is bald. . . . 1
2. A man with 1 hair on his head is bald ⊃ A man with 2 hairs on his head is
bald. . . . 1
3. A man with 2 hairs on his head is bald. . . . |MP |
...
2×1,000,000 +1. A man with 1,000,000 hairs on his head is bald. . . . |MP |
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Hence from the given premises, the conclusion ‘A man with 1,000,000 hairs
on his head is bald’ can be derived to the degree |MP | ∗ |MP | ∗ . . . ∗ |MP |,
taking the value associated with each step under consideration. Now, to compute
the truth value of the conditional sentence of the form ‘A man with m hairs on
his head is bald ⊃ A man with m + 1 hairs on his head is bald’ an implication
operator, say →o is needed. Any standard fuzzy implication operator satisfies
a →o b ≥ b. Now, to compute the degree of the rule MP, all possible cases
of {α, α ⊃ β} implies β have to be considered. As Ti’s are the fuzzy subsets
interpreting the vague predicate ‘bald’ for some α representing a sentence of
the form ‘A man with m hairs on his head is bald’ and some β representing a
sentence, say ‘A man with n hairs on his head is bald’ for some m < n, Ti(α) >
Ti(β). So, as Ti(α)→o Ti(β) ≥ Ti(β) we have Ti(α)∧ (Ti(α)→o Ti(β)) ≥ Ti(β).
It is to be noted that not for all →o, a ∧ (a →o b) is necessarily b. Hence for
some α, β, {Ti(α) ∧ (Ti(α) →o Ti(β))} → Ti(β) is not equals to 1. That is, the
calculation for the grade of MP given in Section 2.1 indicates that |MP | is not
necessarily 1. So, in this context, as indicated by the calculation above, the value
of the derivation of the conclusion approaches to zero as the number of steps
increases. And the point to be noted here is that, the conditional statements of
the form ‘A man with m hairs on his head is bald ⊃ A man with m + 1 hairs
on his head is bald’ need not get a non-unit truth value; more specifically, the
truth value 1 may be assigned to them, always.

Edgington [9] also embraces a degree-theoretic approach to give an account of
reasoning in vague context. What distinguishes her approach from other degree
theories, including GCT, is that it uses probability theory as providing a general
structure for calculating logical compositions (not necessarily truth functional)
of different degrees of verity of sentences. In her approach, each conditional
premise of the form ‘Pxn ⊃ Pxn+1 has a degree of verity slightly less than
clearly true (1). However, as the deduction proceeds small unverities (1 - degree
of verity) of the premises mount up to yield a conclusion which is clearly false (0).
Yet each step of the argument is valid; because, the unverity of the conclusion
never exceeds the sum of the unverities of the premises. This is how Edgington
distinguishes arguments, where fall in the values of the conclusion is constrained
by the values of the premises, from ‘genuinely invalid’ arguments, where such
constraint does not work.

Hence, in opposition to Tye’s many-valued approach, Goguen’s fuzzy ap-
proach, and Edgington’s degree-theoretic approach, GCT neither needs to as-
sume one of the premises to be non-true, nor needs to assume existence of a cut
off point violating the linguistic rule for vague predicates.

5 Conclusion

In summing up we can say, in many-valued and fuzzy logics, ‘consequence’ is
either a crisp notion or it has been assigned a grade which does not seem to be
the ‘truth value’ of the concept underlying it, or it fails to preserve the classical
consequence-inconsistency connection. GCT makes a point of difference here.
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Sorites, a long chain of arguments involving a vague predicate is a paradoxical
phenomenon in the context of reasoning in vague/imprecise context. In section 4,
we have seen that the idea of a ‘paradox’ is getting distorted in both Tye’s three
valued approach and Goguen’s fuzzy set theoretic approach to sorites paradox.
Besides, Goguen’s proposal of assigning a non-unit truth value to some of the
conditional premises seems to negate that vague predicates are tolerant to minute
changes. The same is the case with Edgington’s approach.

Before ending, we would like to quote a line from Parikh [15] who in a dif-
ferent manner proposed a system of logic dealing with vague sentences. As a
point of note against the ‘so called’ fuzzy approach to deal with observationality
(property of a vague predicate, whose impreciseness cannot even be removed
theoretically) he commented “. . . we seem to have come no closer to observa-
tionality by moving from two valued logic to real valued, fuzzy logic. A possible
solution . . . is to use continuous valued logic not only for the object language but
also for the metalanguage.”

In addition to the above, the theory of graded consequence insists that the
method of assigning grades to the meta concepts needs to respect the underlying
meanings of these concepts.
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Abstract. The purpose of this work is to show that the observations
made regarding fuzzy transition systems can be easily obtained by using
the fuzzy preordered and fuzzy topological concepts.

1 Introduction and Preliminaries

The study of fuzzy automata was initiated by Wee [25] and Santos [21] in 1960’s
after the introduction of fuzzy set theory by Zadeh [26]. Much later, a consid-
erably simpler notion of a fuzzy finite state machine (which is almost identical
to a fuzzy automaton) was introduced by Malik, Mordeson and Sen [14, 15].
Somewhat different notions were introduced subsequently in [6, 7, 8, 9, 10, 18].
In these studies, the membership values in the closed interval [0, 1] were consid-
ered. During the recent years, the researchers began to work on fuzzy automata
with membership values in complete residuated lattices, lattice-ordered monoids
and some other kind of lattices [4, 11, 12, 16, 17, 19, 20].

Recently, in [5] the concept of fuzzy transition systems (fuzzy finite automata
over residuated lattice, in the sense of [14]) were introduced and studied. The
concept of subsystems of a fuzzy transition system proposed in [5] is a natural
generalization of the concept of subsystem introduced in [14], whose topological
study was done in [2, 24].

In this paper, we introduce and study the concepts of fuzzy preordered set and
fuzzy topology (in which the fuzzy sets have the membership values in resiadu-
ated lattice) and then show that the results shown in [5] are easy consequences
of results shown for fuzzy preordered set and fuzzy topology. Also, we point out
that some new results for fuzzy transition systems can be obtained with the help
of fuzzy preordered sets. In [5] the concept of direct sum of fuzzy transition sys-
tems were proposed. Here, in this paper, chiefly inspired from [23], we introduce
the concept of product of fuzzy transition systems and show that this product
is a categorical product.

Now, we recall the following concepts of residuated lattice from [1].

Definition 1. A residuated lattice is an algebra L = (L,∧,∨,⊗,→, 0, 1) such
that
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(i) (L,∧,∨, 0, 1) is a lattice with the least element 0 and the greatest element 1,
(ii) (L,⊗, 1) is a commutative monoid with unit 1, and
(iii) ⊗ and → form an adjoint pair, i.e., for all x, y, z ∈ L, x ⊗ y ≤ z ⇔ x ≤

y → z.

If, in addition (L,∨,∧, 0, 1) is a complete lattice, then L is called a complete
residuated lattice.

The precomplement on L is the mapping ¬ : L −→ L such that ¬x = x →
0, ∀x ∈ X . Some of the basic properties of complete residuated lattices, which
we use, are as follows:

(i) a⊗ b ≤ c⇔ a ≤ b→ c;
(ii) 1→ a = a;
(iii) (a→ b)⊗ (b→ c) ≤ a→ c;
(iv) a⊗ b→ c = a→ (b→ c);
(v) a⊗ (∨i∈Jbi) = ∨i∈J (a⊗ bi).

The concepts of fuzzy sets, fuzzy relations, fuzzy topologies and fuzzy transition
systems, we study in this paper, have the membership values in a complete
residuated lattice. For example, a fuzzy subset of a nonempty set X is a function
fromX to L and a fuzzy relation onX is a function fromX×X to L. Throughout,
LX denotes the family of all fuzzy subsets of X and α denotes the α-valued
constant fuzzy subset of X .

2 Fuzzy Preordered Set and Fuzzy Topology

The concept of fuzzy topology induces by upper sets of a fuzzy preordered sets
with the membership values in [0, 1] has been introduced and studied in [27]. In
this section, we study the concepts associated with upper(lower) sets of a fuzzy
preordered set with the membership values in a complete residuated lattice. We
show that the collection of upper(lower) sets of a fuzzy preordered set form a
fuzzy topology. We begin with the following concept of fuzzy preordered set.

Definition 2. [22] Let R be a fuzzy relation on X. Then R is called

(i) reflexive if ∀x ∈ X,R(x, x) = 1, and
(ii) transitive if ∀x, y, z ∈ X,R(x, y)⊗R(y, z) ≤ R(x, z).

A reflexive and transitive fuzzy relation is called a fuzzy preorder. If R is a
fuzzy preorder on X , then the pair (X,R) is called a fuzzy preordered set.

Given a fuzzy preordered set (X,R), let Rop ∈ LX×X such that Rop(x, y) =
R(y, x). Then (X,Rop) is also a fuzzy preordered set.

Definition 3. Let (X,R) be a fuzzy preorderd set. Then λ ∈ LX is called an
upper set of (X,R) if λ(x) ⊗ R(x, y) ≤ λ(y), ∀x, y ∈ X. Dually, λ ∈ LX is
called a lower set of (X,R) if λ(y)⊗R(x, y) ≤ λ(x), ∀x, y ∈ X.
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Upper sets of a fuzzy preorderd set appear under several different names in the
literature (cf., [27]). One can easily observe that λ ∈ LX is an upper set of fuzzy
preordered set (X,R) if and only if λ is a lower set of (X,Rop).

Proposition 1. Let (X,R) be a fuzzy preordered set. Then λ ∈ LX is an upper
set of (X,R) if and only if λ : (X,R) −→ (L,→) is an order preserving map.

Proof. Let λ ∈ LX be an upper set of fuzzy preordered set (X,R). Then λ(x)⊗
R(x, y) ≤ λ(y), ∀x, y ∈ X , or that R(x, y) ≤ λ(x) → λ(y), ∀x, y ∈ X . Thus
λ : (X,R) −→ (L,→) preserves order. Converse follows similarly.

Proposition 2. λ ∈ LX is a lower set of a fuzzy preordered set (X,R) if and
only if λ : (X,Rop) −→ (L,→) is an order preserving map.

Proof. Similar to that of Proposition 1.

Proposition 3. Let (X,R) be a fuzzy preordered set and z ∈ X. Then [z]R ∈ LX

such that [z]R(x) = R(z, x) is an upper set of (X,R) and [z]R ∈ LX such that
[z]R(x) = R(x, z) is a lower set of (X,R)

Proof. Follows from the transitivity of R.

Proposition 4. Let λ be an upper(lower) set in a fuzzy preordered set (X,R).
Then for each a ∈ L, λ→ a is a lower (upper) set in (X,R).

Proof. Let λ be an upper set of a fuzzy preordered set (X,R). Then λ(x) ⊗
R(x, y) ≤ λ(y), ∀x, y ∈ X . To show that λ → a is a lower set, it is enough
to show that (λ(y) → a) ⊗ R(x, y) ≤ λ(x) → a, ∀x, y ∈ X , or that (λ(y) →
a)⊗R(x, y)⊗λ(x) ≤ a, ∀x, y ∈ X . Now, (λ(y)→ a)⊗R(x, y)⊗λ(x) ≤ (λ(y)→
a)⊗ λ(y) ≤ a. Thus λ → a is a lower set. Similarly, it can be prove that if λ is
a lower set of a fuzzy preordered set (X,R), then for each a ∈ L, λ → a is an
upper set of (X,R).

Proposition 5. Let λ be an upper(lower) set in a fuzzy preordered set (X,R).
Then for each a ∈ L, a⊗ λ is a upper (lower) set in (X,R).

Proof. Let λ be an upper set of a fuzzy preordered set (X,R) and a ∈ L. Then
λ(x) ⊗ R(x, y) ≤ λ(y), ∀x, y ∈ X , which implying that a ⊗ λ(x) ⊗ R(x, y) ≤
a⊗λ(y), ∀x, y ∈ X . Thus a⊗λ is an upper set in (X,R). The proof for the case
of lower set follows similarly.

The following is the concept of fuzzy topology in the sense of Lowen [13].

Definition 4. A fuzzy topology τ on X is a subset of LX , which is closed
under arbitrary suprema and finite infima and which contains all constant fuzzy
sets. The fuzzy sets in τ are called open.

Proposition 6. If (X,R) is a fuzzy preordered set then the family τ of its all
upper sets satisfies the following conditions, ∀λi ∈ τ and ∀α ∈ L:
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(i) α ∈ τ ,
(ii) ∨i∈Jλi ∈ τ ,
(iii) ∧i∈Jλi ∈ τ .

Proof. (i) is obvious. Let λi ∈ τ, i ∈ J . Then λi(x) ⊗ R(x, y) ≤ λi(y), ∀x, y ∈ X
and ∀i ∈ J . Now, (∨i∈Jλi(x)) ⊗ R(x, y) = ∨i∈J (λi(x) ⊗ R(x, y)) ≤ ∨i∈Jλi(y).
Thus ∨i∈Jλi ∈ τ . Also, (∧i∈Jλi(x))⊗R(x, y) ≤ λi(x)⊗R(x, y) ≤ λi(y), ∀i ∈ J .
Thus (∧i∈Jλi(x)) ⊗R(x, y) ≤ ∧i∈Jλi(y). Hence ∧i∈Jλi ∈ τ .

Thus the family of upper sets of a fuzzy preordered set (X,R) forms a fuzzy
topology on X , which we shall denoted by τR. The family of lower sets of a
fuzzy preordered set also form a fuzzy topology, which is given below.

Proposition 7. If (X,R) is a fuzzy preordered set then the family τ of its all
lower sets satisfies the following conditions, ∀λi ∈ τ and ∀α ∈ L:

(i) α ∈ τ ,
(ii) ∨i∈Jλi ∈ τ ,
(iii) ∧i∈Jλi ∈ τ .

The following gives the characterization of fuzzy relation of fuzzy preordered set
through it’s upper sets.

Proposition 8. Let F be the family of all upper sets of a fuzzy preordered set
(X,R). Then R(x, y) = ∧{λ(x)→ λ(y) : λ ∈ F}, ∀x, y ∈ X.

Proof. Let λ be an upper set of fuzzy preordered set (X,R). Then for all
x, y ∈ X,λ(x) ⊗ R(x, y) ≤ λ(y), or that R(x, y) ≤ λ(x) → λ(y), i.e., R(x, y) ≤
∧{λ(x) → λ(y) : λ ∈ F}. Also for z ∈ X , as zR(x) is an upper set in (X,R),
∧{zR(x) → zR(y) : z ∈ X} ≤ R(x, x) → R(x, y) = 1 → R(x, y) = R(x, y).
Thus ∧{λ(x) → λ(y) : λ ∈ F} ≤ R(x, y). Hence R(x, y) = ∧{λ(x) → λ(y) : λ ∈
F}, ∀x, y ∈ X .

Proposition 9. Let F ′ be the family of all lower sets of a fuzzy preordered set
(X,R). Then R(x, y) = ∧{λ(y)→ λ(x) : λ ∈ F ′}, ∀x, y ∈ X.

Proof. Similar to that of Proposition 8.

Proposition 10. Let λ be an upper (lower) set of a fuzzy preordered set (X,R).
Then for each a ∈ L, a→ λ is an upper(lower) set in (X,R).

Proof. Let x, y ∈ X . Then (a → λ(x)) ⊗ (λ(x) → λ(y)) ≤ (a → λ(y), or that
(λ(x)→ λ(y)) ≤ (a→ λ(x))→ (a→ λ(y)). Thus R(x, y) ≤ (a→ λ(x))→ (a→
λ(y)) (cf., Proposition 8), whereby (a → λ(x)) ⊗ R(x, y) ≤ a → λ(y). Hence
a→ λ is an upper set in (X,R).

Before stating next, recall from [5] that for fuzzy relations R,S ∈ LX×X , their
composition R ◦ S is a fuzzy relation on X given by (R ◦ S)(x, y) = ∨{R(x, z)⊗
S(z, y) : z ∈ X}.
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Proposition 11. Given a fuzzy preordered set (X,R), λ ∈ LX is an upper set
if and only if λ is a solution to a fuzzy relational equation χ ◦ R = χ, where
χ ∈ LX is an unknown.

Proof. Let λ be an upper set of a fuzzy preordered set (X,R). Then λ ◦R ≤ λ.
Also, from the reflexivity of R, λ ≤ λ◦R. Thus λ◦R = λ, or that λ is a solution
of fuzzy relational equation χ ◦R = χ. Converse is trivial.

Proposition 12. Given a fuzzy preordered set (X,R), λ ∈ LX is a lower set if
and only if λ is a solution to a fuzzy relational equation R◦χ = χ, where χ ∈ LX

is an unknown.

Proof. Similar to that of Proposition 11.

Proposition 13. Let (X,R) be a fuzzy preordered set and λ ∈ LX. Then

(i) if λ is an upper set, ¬λ is a lower set, and
(ii) if λ is a lower set, ¬λ is an upper set.

Proof. (i) Let λ be an upper set in fuzzy preordered set (X,R). Then for all
x, y ∈ X,λ(x) ⊗ R(x, y) ≤ λ(y), or that ¬(λ(x) ⊗ R(x, y)) ≥ ¬λ(y). Now,
¬(λ(x)⊗R(x, y)) ≥ ¬λ(y)⇒ (λ(x)⊗R(x, y)) → 0 ≥ ¬λ(y)⇒ (R(x, y)⊗λ(x)) →
0 ≥ ¬λ(y) ⇒ R(x, y) → (λ(x)) → 0) ≥ ¬λ(y) ⇒ R(x, y) → ¬λ(x) ≥ ¬λ(y) ⇒
¬λ(y)⊗R(x, y) ≤ ¬λ(x). Thus ¬λ is a lower set.

(ii) The proof is similar as above.

Remark 1. Let ¬ be involutive. Then λ ∈ LX is an upper set if and only if ¬λ
is a lower set.

Definition 5. A map f : (X,R) −→ (Y, S) between fuzzy preordered sets is
called order preserving if R(x, y) ≤ S(f(x), f(y)), ∀x, y ∈ X.

Proposition 14. Let the map f : (X,R) −→ (Y, S) between fuzzy preordered
sets be order preserving. Then inverse image of an upper(lower) set of (Y, S) is
an upper(lower) set of (X,R).

Proof. Let x, y ∈ X and λ ∈ LY be an upper set of (Y,R). Then f−1(λ)(x) ⊗
R(x, y) ≤ λ(f(x)) ⊗ R(x, y) ≤ λ(f(x)) ⊗ S(f(x), f(y)) ≤ λ(f(y)) ≤ f−1(λ)(y).
Thus f−1(λ) is an upper set of (X,R).

3 Fuzzy Topology and Fuzzy Transition System

In this section, we show that the results for fuzzy transition systems introduced
in [5] are easy consequences of the results shown in the previous section for
fuzzy preordered sets and fuzzy topologies. Finally, we introduce the concept
of product of fuzzy transition systems and show that this product is a categor-
ical product. We begin with the following concept of fuzzy transition system
introduced in [5].
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Definition 6. A fuzzy transition system is a triple T = (Q,X, δ), where
Q is a nonempty set (of states of T ), X is a monoid (the input monoid of T )
whose identity shall be denoted as e, and δ is an L-valued subset of Q×X ×Q,
i.e., a map δ : Q ×X ×Q→ L such that ∀p, q ∈ Q,

δ(q, e, p) =

{
1 if q = p
0 if q �= p

and, δ(q, xy, p) = ∨{δ(q, x, r) ⊗ δ(r, y, p) : r ∈ Q}, ∀x, y ∈ X.

We now introduce the following concept of homomorphism between fuzzy tran-
sition systems (which is identical to homomorphism between fuzzy automata
introduced in [14]).

Definition 7. A homomorphism from a fuzzy transition system (Q,X, δ) to
a fuzzy transition system (R, Y, λ) is a pair (f, g) of maps, where f : Q→ R and
g : X → Y are functions such that

∀(q, x, p) ∈ Q×X ×Q, λ(f(q), g(x), f(p)) ≥ δ(q, x, p).

It can be seen that the class of all fuzzy transition systems and their homomor-
phisms forms a category FTS (under obvious composition of maps).

Definition 8. A reverse fuzzy transition system of a fuzzy transition sys-
tem T = (Q,X, δ) is a fuzzy transition system T̄ = (Q,X, δ̄), where δ̄ : Q×X×
Q→ L is a map such that δ̄(p, x, q) = δ(q, x, p), ∀p, q ∈ Q and ∀x ∈ X.

Definition 9. Let T = (Q,X, δ) be a fuzzy transition system. Then λ ∈ LQ is
called

(i) a subsystem of T if λ(p)⊗ δ(p, x, q) ≤ λ(q), ∀p, q ∈ Q and ∀x ∈ X;
(ii) a reverse subsystem of T if λ(q) ⊗ δ(p, x, q) ≤ λ(p), ∀p, q ∈ Q and
∀x ∈ X.

(iii) a double subsystem of T if it is both subsystem and reverse subsystem
of T .

Let T = (Q,X, δ) be a fuzzy transition system. Define Rδ(p, q) = ∨{δ(p, x, q) :
x ∈ X}, p, q ∈ Q. Then Rδ is a fuzzy preorder on Q. Now, we have the following.

Proposition 15. Let T = (Q,X, δ) be a fuzzy transition system and λ ∈ LQ.
Then the following are equivalent:

(i) λ is a subsystem of T .
(ii) λ is τRδ

-open.
(iii) λ is a solution to a fuzzy relational equation χ ◦ Rδ = χ, where χ ∈ LQ is

an unknown.

Proof. Follows from Propositions 6 and 11.

Proposition 16. Let T = (Q,X, δ) be a fuzzy transition system and λ ∈ LQ.
Then the following are equivalent:
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(i) λ is a reverse subsystem of T .
(ii) λ is τRδ

-open.

(iii) λ is a solution to a fuzzy relational equation Rδ ◦ χ = χ, where χ ∈ LQ is
an unknown.

Proof. Follows from Propositions 7 and 12.

Proposition 17. Let T = (Q,X, δ) be a fuzzy transition system and λ ∈ LQ.
Then

(i) if λ is a reverse subsystem, then ¬λ is a subsystem.
(ii) if λ is a subsystem, then ¬λ is a reverse subsystem.

Proof. Follows from Proposition 13.

Proposition 18. Let T = (Q,X, δ) be a fuzzy transition system and λ ∈ LQ.
Then

(i) λ is a double subsystem of T .
(ii) λ is both τRδ

and τRδ
-open.

Proof. Follows from Propositions 6 and 7.

Proposition 19. Let (Q,X, δ) and (R, Y, μ) be fuzzy transition systems. If f :
Q −→ R is a homomorphism, then f : (Q, τδ) −→ (R, τμ) is fuzzy continuous.

Proof. Follows from Proposition 14.

Some other results for subsystems and reverse subsystems of fuzzy transition
systems can also be derived from Propositions 1, 2, 3, 4 and 5.

In the remaining part of this section, we give an example to indicate that the
approach outlined here can also lead to some ‘new’ concepts for fuzzy transi-
tion systems. Specifically, we try to introduce the concept of product of fuzzy
transition systems.

An examination of the ‘categorical product’ in the category FTS leads to a
concept of ‘product’ of fuzzy transition systems, which we illustrate here for two
fuzzy transition systems T = (Q,X, δ) and S = (R, Y, λ) as follows.

(X×Y , appearing below is the ‘direct product’ of the monoids X and Y . Thus
it is the cartesian product of X and Y , considered as a monoid, whose binary
operation is defined as (x, y)(x′, y′) = (xx′, yy′), for (x, y), (x′, y′) ∈ X × Y , and
whose identity element is (eX , eY ), where eX and eY are the identities of X and
Y respectively.)

Define

ν : (Q×R)× (X × Y )× (Q ×R)→ L

as

ν((q, r), (x, y), (q′, r′)) = δ(q, x, q′)⊗ λ(r, y, r′)

∀((q, r), (x, y), (q′, r′)) ∈ (Q×R)× (X × Y )× (Q×R).
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Then
ν((q, r), (eX , eY ), (q

′, r′)) = δ(q, eX , q′)⊗ λ(r, eY , r
′)

=

{
1 if (q, r) = (q′, r′)
0 if (q, r) �= (q′, r′).

Next, for (x′, y′) ∈ X × Y ,
ν((q, r), (x, y)(x′, y′), (q′, r′))
= ν((q, r), (xx′ , yy′), (q′, r′))
= δ(q, xx′, q′)⊗ λ(r, yy′, r′)
= [∨{δ(q, x, s) ⊗ δ(s, x′, q′) : s ∈ Q}]⊗ [∨{λ(r, y, t)⊗ λ(t, y′, r′) : t ∈ R}]
= ∨{(δ(q, x, s) ⊗ δ(s, x′, q′))⊗ (λ(r, y, t)⊗ λ(t, y′, r′)) : s ∈ Q, t ∈ R}.

On the other hand,
∨{ν((q, r), (x, y), (s, t)) ⊗ ν((s, t), (x′, y′), (q′, r′)) : s ∈ Q, t ∈ R}
= ∨{(δ(q, x, s) ⊗ λ(r, y, t))⊗ (δ(s, x′, q′)⊗ λ(t, y′, r′)) : s ∈ Q, t ∈ R}
= ∨{(δ(q, x, s) ⊗ δ(s, x′, q′))⊗ (λ(r, y, t)⊗ λ(t, y′, r′)) : s ∈ Q, t ∈ R}.
Thus, ν((q, r), (x, y)(x′ , y′), (q′, r′))
= ∨{ν((q, r), (x, y), (s, t)) ⊗ ν((s, t), (x′, y′), (q′, r′)) : s ∈ Q, t ∈ R}.

This shows that (Q × R,X × Y, ν) is a fuzzy transition system, which we
shall refer to as the product of the fuzzy transition systems T = (Q,X, δ) and
S = (R, Y, λ) and will denote it as T × S.

Remark 2. This product may be interpreted as the ‘parallel composition’ of T
and S cf., e.g., Dörfler [3].

Proposition 20. The product T × S of T ,S ∈ FTS is the categorical product
in FTS.

Proof. : We first need to identify the two ‘projection morphisms’ from T ×S to T
and S in FTS. Let T = (Q,X, δ) and S = (R, Y, λ). Let h1 : Q×R→ Q, h2 : Q×
R→ R, k1 : X×Y → X and k2 : X×Y → Y be the projection maps associated
with the cartesian products Q×R and X×Y . We show that (h1, k1) : T ×S → T
and (h2, k2) : T × S → S are FTS-morphisms. Let ((p1, q1), (x, y), (p2, q2)) ∈
(Q×R)×(X×Y )×(Q×R). Then δ(h1(p1, q1), k1(x, y), h1(p2, q2)) = δ(p1, x, p2) ≥
δ(p1, x, p2) ⊗ λ(q1, y, q2) = ν((p1, q1), (x, y), (p2, q2)). Thus δ(h1(p1, q1), k1(x, y),
h1(p2, q2)) ≥ ν((p1, q1), (x, y), (p2, q2)), ∀((p1, q1), (x, y), (p2, q2)) ∈ (Q × R) ×
(X × Y ) × (Q × R), whereby (h1, k1) : T × S → T is an FTS-morphism.
Similarly, (h2, k2) : T × S → S can be seen to be an FTS-morphism. Next,
let T ′ = (Q′, X ′, δ′) ∈ FTS and two FTS-morphisms (f1, g1) : M ′ → M and
(f2, g2) : M

′ → N be given. We show that there exists a unique FTS-morphism
(f, g) : M ′ →M ×N such that the following diagram commutes.

�
�

�
�

�
���

(h1, k1) (h2, k2)

M ′

(f1, g1)

�
(f, g)

M M ×N� �

�
�
�
�
�
���

(f2, g2)

N
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Here, (h1, k1) : M×N →M and (h2, k2) : M×N → N are the projection maps.
We choose the f and g in following way.

Let f : Q′ → Q × R and g : X ′ → X × Y be the maps given by f(q′) =
(f1(q

′), f2(q′)) and g(x′) = (g1(x
′), g2(x′)), ∀(q′, x′) ∈ Q′ ×X ′. Let (q′, x′, r′) ∈

Q′×X ′×Q′. As both (f1, g1) and (f2, g2) are FTS-morphisms, δ(f1(q
′), g1(x′), f1

(r′)) ≥ δ′(q′, x′, r′) and λ(f2(q
′), g2(x′), f2(r′)) ≥ δ′(q′, x′, r′), whereby δ(f1(q

′)
, g1(x

′), f1(r′))⊗λ(f2(q′), g2(x′), f2(r′)) ≥ δ′(q′, x′, r′) . Thus ν(f(q′), g(x′), f(r′))
= ν((f1(q

′), f2(q′)), (g1(x′), g2(x′)), (f1(r′), f2(r′))) = δ(f1(q
′), g1(x′), f1(r′)) ⊗

λ(f2(q
′), g2(x′), f2(r′)) ≥ δ′(q′, x′, r′). Hence (f, g) is an FTS-morphism. Also,

the definitions of f and g are such that we obviously have (h1, k1) ◦ (f, g) =
(f1, g1) and (h2, k2) ◦ (f, g) = (f2, g2).

To prove the uniqueness of (f, g), let there exist another FTS-morphism
(f ′, g′) : M ′ →M×N such that (h1, k1)◦(f ′, g′) = (f1, g1) and (h2, k2)◦(f ′, g′) =
(f2, g2), i.e., h1 ◦f ′ = f1, k1 ◦g′ = g1, h2 ◦f ′ = f2, and k2 ◦g′ = g2. We then have
h1 ◦ f ′ = h1 ◦ f, k1 ◦ g′ = k1 ◦ g, h2 ◦ f ′ = h2 ◦ f , and k2 ◦ g′ = k2 ◦ g, whereby
f = f ′ and g = g′. Thus (f ′, g′) = (f, g), proving the uniqueness of (f, g). Hence
M ×N is the categorical product.

4 Conclusion

In this paper, we have tried to study the concept of upper sets and lower sets of
a fuzzy preordered set. We showed that their collection form fuzzy topologies.
Finally, we have used such concepts for the study of fuzzy transition systems.
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Abstract. A public announcement is the most basic form of commu-
nication between agents. The effects of such action have been studied
within the field of dynamic epistemic logic, in particular, in the so called
public announcement logic. Nevertheless, being a direct extension of epis-
temic logic, what public announcement logic has studied is actually the
effect of a public announcement on the knowledge of an omniscient agent.
The present work studies different forms of public announcement and
how they affect the knowledge of non-omniscient agents. More precisely,
we recall the definitions of the so called implicit and explicit public an-
nouncements and present some of their properties in our setting. Then,
after arguing that these definitions still assume some form of logical omni-
science, we introduce two forms of non-omniscient public announcements
that fit better the intuition behind the involved agents.

1 Introduction

Public announcement logic (PAL; [1,2]) studies the effect of the most basic com-
municative action on the knowledge of epistemic logic agents, and it has served
as the basis for the study of more complex announcements [3] and other forms
of epistemic changes [4,5]. The framework relies on a natural interpretation of
what the public announcement of a given formula χ does: it eliminates those
epistemic possibilities that do not satisfy χ. Despite its simplicity, PAL has
proved to be a fruitful field for interesting research, like the characterisation of
successful formulas (those that are still true after being truthfully announced:
[6,7]), the characterisation of schematic validities [8] and many others [9].

Being based on epistemic logic (EL; [10,11]), PAL inherits many of its proper-
ties, including the fact that every agent knows every validity and their knowledge
is closed under implications. Thus, what PAL studies is actually the way a public
announcement affects the knowledge of omniscient agents.

But we also have non-omniscient agents: those that might not know every
validity, or that might know some ϕ and ϕ→ ψ without knowing ψ. They repre-
sent more faithfully not only human agents (after all, the purpose of disciplines
like Mathematics and Computer Science is to fill in the logical consequences of
what we already know) but also computational ones (they might lack of space
and/or time to derive all the logical consequences of their information). Different
forms of public announcements affect these kind of agents in a different way.

K. Lodaya (Ed.): ICLA 2013, LNAI 7750, pp. 220–232, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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The present work studies different forms of public announcements and the
different ways they affect the knowledge of a non-omniscient agent. We start in
Section 2 by recalling an awareness-like extension of the EL framework in order
to represent the knowledge of such an agent. Then in Section 3 we recall the
definitions of the so called implicit and explicit public announcements, presenting
also the way they affect our defined explicit and implicit knowledge. In Section
4 we argue that such public announcements still assume some form of logical
omniscience, and we present an operation that is more adequate: what we call
a non-omniscient public announcement in two versions, plain and attentive. For
each one of them we introduce a modality in order to describe its effects within
the formal language, and we also provide a sound and complete axiom system for
both. We finish on Section 5 with our conclusions and further lines of research.

Related Works. As we will see, our approach assumes that the lack of logical
omniscience comes from the fact that the agent has not acknowledged as true
every formula that is so in each possible world: she has not performed yet every
possible inference step. This is, of course, just one of the many reasons why
an agent might not be logically omniscient: she might be unaware of certain
propositions [12], she might not have the needed inferences abilities [13], or she
might not have enough resources [14]. Public announcements and in general
epistemic actions affect particular kind of agents in different ways [15].

2 Representing Non-omniscient Agents

The framework we will use for representing the knowledge of non-omniscient
agents is based on the idea of distinguishing between the agent’s implicit knowl-
edge, what she can eventually get, and her explicit knowledge, what she actually
has. This framework follows the lines of the awareness logic of [12], but there
will be a change in the main intuition.

The key idea in awareness logic is that an agent might not be logically om-
niscient because she might not be aware of (she might not entertain) some
formulas. Thus, in order to know a given ϕ explicitly, it is not enough for ϕ to
be the case in all the agent’s epistemic possibilities: she also needs to be aware
of ϕ.1 In the present work we will use another idea. We assume that the agent
is aware of every formula of the language, but she might be non-omniscient
because she might not have realised that some formulas are the case in a given
world. Thus, she might know explicitly some ϕ and ϕ → ψ without knowing
ψ explicitly simply because she has not performed the needed inference step to
acknowledge ψ. (See [16] for a framework that involves both ideas.)

This intuition affects the definition of explicit knowledge, which will be pro-
vided and discussed after presenting the formal language, the semantic model
and the formulas’ semantic interpretation.

1 Note that, under some reasonable definitions of the notion of awareness of, like
awareness closed under sub-formulas or based on atomic propositions, the agent is
still a perfect reasoner: she knows explicitly every validity she is aware of, and if she
knows explicitly some ϕ and ϕ → ψ, then she also knows ψ explicitly.
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Definition 1 (Language). Let P be a set of atomic propositions. Formulas ϕ, ψ
of the language L are built according to the rule

ϕ ::= p | Aϕ | ¬ϕ | ϕ ∨ ψ | �ϕ

with p ∈ P. Other connectives (∧,→,↔) as well as the existential modal operator
(�) are defined in the standard way (�ϕ := ¬�¬ϕ for the latter).

Formulas of the form �ϕ are read not as “the agent knows ϕ” (as in classical
EL), but rather as “the agent knows ϕ implicitly”. Formulas of the form Aϕ are
read not as “the agent is aware of ϕ” (as in awareness logic), but rather as “the
agent has acknowledged that ϕ is the case”.

Definition 2 (Semantic model). Let P be the set of atomic propositions. A
semantic model is a tuple M = 〈W,R, V,A〉 where (1) W is a non-empty set
of so-called possible worlds; (2) R ⊆ (W ×W ) is the agent’s epistemic indis-
tinguishability equivalence relation; (3) V : W → ℘(P) is an atomic valuation;
(4) A : W → ℘(L) is the acknowledgement set function, returning the set of
formulas of L that the agent has acknowledged as true at each possible world.

The pair (M,w), consisting of a semantic model M and a distinguished world
w in it is called a pointed semantic model.

Definition 3 (Semantic interpretation). Let (M,w) be a pointed semantic
model with M = 〈W,R, V,A〉. Atomic propositions, negations and disjunctions
are evaluated as usual. For the rest,

(M,w) � Aϕ iff ϕ ∈ A(w)

(M,w) � �ϕ iff for all u ∈ W , Rwu implies (M,u) � ϕ

When (M,w) � ϕ, we say that ϕ is true at w in M . We will denote by �ϕ�M the
set of worlds in M in which ϕ is true (i.e., �ϕ�M := {w ∈W | (M,w) � ϕ}).

Implicit and Explicit Knowledge. An important consequence of the main
idea behind the framework is that, given a world w and a formula ϕ, the agent
might not be able to tell whether ϕ is true at w.2 In fact, for her there are not
only worlds that she identifies as satisfying ϕ (those where ϕ ∧ Aϕ holds) and
worlds she identifies as satisfying ¬ϕ (those where ¬ϕ ∧ A¬ϕ holds): there are
also ‘ϕ-uncertain’ worlds (those where neither ϕ∧Aϕ nor ¬ϕ∧A¬ϕ hold). This
gives us the following definitions of implicit and explicit knowledge.

Definition 4. The agent knows ϕ implicitly, KImϕ, when ϕ is the case in every
epistemically possible world. She knows ϕ explicitly, KExϕ, when she recognises
every epistemically possible world as a ϕ-world (i.e., as a world satisfying ϕ).

KImϕ := �ϕ KExϕ := � (ϕ ∧ Aϕ)

2 This is different from standard EL where, given any w and any ϕ, the agent can
always tell ϕ’s truth-value at w. An EL-agent’s uncertainty comes not from her not
knowing whether a given formula holds at a certain world, but rather from her not
knowing which one the real world is.
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If a given ϕ is known explicitly, then it is also know implicitly, as � (ϕ ∧ Aϕ)
implies �ϕ. An agent is logically omniscient when the other direction holds, i.e.,
when �ϕ implies � (ϕ ∧ Aϕ). This happens when she has acknowledged as true
the formulas that are so in every epistemically possible world (� (ϕ→ Aϕ)).

The formula that characterises the worlds the agent recognises as satisfying
ϕ, ϕ ∧ Aϕ, will be useful later; hence we will abbreviate it as ϕAg.

We can also define notions of implicit and explicit epistemic possibility:

K̂Imϕ := �ϕ K̂Exϕ := � (ϕ ∧Aϕ)

Different from the relation between implicit possibility (�ϕ) and implicit knowl-
edge (�ϕ), explicit possibility (� (ϕ ∧ Aϕ)) is not the modal dual of explicit
knowledge (� (ϕ ∧Aϕ)). Still, the definition is proper: ϕ is explicitly possible
for an agent when she has an epistemic possibility she identifies as satisfying ϕ.

Axiom System. The standard S5 axiom system schema (propositional tau-
tologies, the K, T, 4 and B axioms, modus ponens and necessitation) is sound
and complete for the language L with respect to our semantic models. We do
not need special axioms for formulas of the form Aϕ (the only novel primitive)
because (1) they are evaluated simply as atoms of a special signature, and (2)
their ‘valuation function’ A does not need to satisfy any particular property.

3 Implicit and Explicit Public Announcements

With the ‘static’ framework defined, we can turn our attention to the definition of
a public announcement for these kind of agents. Here are two known possibilities.

3.1 Implicit Public Announcement

The simplest way for representing a public announcement in this setting is to
use the PAL approach directly: the announcement simply discards those worlds
where the announced χ does not hold, restricting the epistemic indistinguisha-
bility relation to the new domain and leaving unaffected the other model com-
ponents. This is what an implicit public announcement [17] does.

Definition 5 (Implicit public announcement). Let M = 〈W,R, V,A〉 be
a semantic model and let χ be a formula in L. The semantic model Mχ!Im =
〈W ′, R′, V ′,A′〉 is given by W ′ := W \�¬χ�M , R′ := R∩(W ′×W ′) and, for every
w ∈ W ′, V ′(w) := V (w) and A′(w) := A(w). An implicit public announcement
of χ simply discards worlds where χ fails, i.e., worlds satisfying ¬χ. Note how
this operation (as all the others subsequently introduced) preserves equivalence
relations and thus keeps us in our relevant model class.

In order to describe the effects of an implicit public announcement within the
formal language we introduce an existential modality 〈χ!Im〉 for every formula
χ (its universal counterpart is defined as its modal dual, as usual: [χ!Im]ϕ :=
¬〈χ!Im〉 ¬ϕ). The semantic interpretation of these modalities as follows.
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Definition 6. Let (M,w) be a pointed semantic model.

(M,w) � 〈χ!Im〉ϕ iff (M,w) � χ and (Mχ!Im , w) � ϕ

Note the precondition: in order for χ to be announced, it needs to be true.

Axiom System. We follow the reduction axioms approach, providing axioms
that allow us to translate formulas with the new modalities into formulas without
them. Soundness follows from the validity of these axioms; completeness follows
from the fact that we can translate any formula of the extended language into a
provably equivalent one without the new modalities, for which the ‘static’ axiom
system S5 is complete. We refer to [4] for details of this technique.

Theorem 1 ([17]). The axiom system S5 plus the axioms and rules of Table 1
form a sound and complete axiom system for the language L plus the implicit
public announcement modality with respect to our semantic models.

The reduction axioms for atomic propositions, negations, disjunctions and the
universal modality � are standard. The new one, for formulas of the form Aϕ,
simply establishes that an implicit public announcement after which the agent
has acknowledged that ϕ is the case is possible (〈χ!Im〉Aϕ) iff the announcement
is possible (χ) and the agent has already acknowledged ϕ (Aϕ).

Table 1. Axioms and rules for implicit public announcement.

!Imp � 〈χ!Im〉 p ↔ (χ ∧ p) !ImA � 〈χ!Im〉Aϕ ↔ (χ ∧Aϕ)

!Im¬ � 〈χ!Im〉 ¬ϕ ↔ (
χ ∧ ¬〈χ!Im〉ϕ) !ImN From � ϕ infer � [χ!Im]ϕ

!Im∨ � 〈χ!Im〉 (ϕ ∨ ψ) ↔ (〈χ!Im〉ϕ ∨ 〈χ!Im〉ψ)

!Im� � 〈χ!Im〉�ϕ ↔ (
χ ∧ � (χ → [χ!Im]ϕ)

)

How an Implicit Public Announcement Affects the Agent’S Knowl-
edge. Axiom !Im� already describes the way an implicit announcement affects im-
plicit knowledge: it is possible to announce χ so that afterwards the agent knows ϕ
implicitly exactly when χ is the case and the agent already knows implicitly that
ϕ will be the case after a truthful implicit public announcement of χ.

〈χ!Im〉KImϕ ↔
(
χ ∧KIm(χ→ [χ!Im]ϕ)

)
(1)

The effect of the operation is better understood when we focus on its effects on
the knowledge of formulas γ whose truth-value is not affected by the announce-
ment.3 In such cases (i.e., when we have γ ↔ [χ!Im] γ, like when γ is purely
propositional) the agent only needs to know implicitly that χ implies γ.

〈χ!Im〉KImγ ↔
(
χ ∧KIm(χ→ γ)

)
(2)

3 Announcements affect the agent’s knowledge, and so the truth-value of formulas
describing it can change. The best known examples are ‘Moore-like’ formulas that
become false after being truthfully announced [6,7].
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If besides being unaffected by the announcement, γ is the announced formula,
then we only need the precondition of the action.

〈γ!Im〉KImγ ↔ γ (3)

In other words, under the given conditions (the action does not affect γ’s truth-
value), the agent will know γ implicitly after its truthful implicit public an-
nouncement: exactly what one would expect from such operation.

The case of explicit knowledge is different. In order for the agent to know
explicitly a given ϕ after an implicit announcement of χ, she needs to know
implicitly that both ϕ and Aϕ will be the case after the announcement. But
the action does not affect A-sets, so she needs to know implicitly that a truthful
announcement of χ will make ϕ true and that if χ is the case, so is Aϕ.

〈χ!Im〉KExϕ ↔
(
χ ∧KIm(χ→ [χ!Im]ϕ) ∧KIm(χ→ Aϕ)

)
(4)

In the case of the knowledge of formulas γ whose truth-value is not affected by
the announcement, the second and third conjunct of the right-hand side can be
combined (cf. validity (2)).

〈χ!Im〉KExγ ↔
(
χ ∧KIm(χ→ (γ ∧A γ))

)
(5)

If, additionally, γ is the announced formula, then the agent only needs to know
implicitly that γ implies A γ. In other words, in order for the agent to know
explicitly any such formula γ after its announcement, before the announcement
she should have acknowledged every epistemically possible γ-world as such:

〈γ!Im〉KExγ ↔ (γ ∧KIm(γ → A γ)) (6)

3.2 Explicit Public Announcement

An implicit announcement does not affect what the agent has acknowledged as
true. Still, one would expect for a public announcement not only to allow the
agent to discard situations where the announcement does not hold, but also to
make her realise that the announced formula is the case in every surviving world.
This is what an explicit public announcement [18,17] does.

Definition 7 (Explicit public announcement). Let M = 〈W,R, V,A〉 be
a semantic model and let χ be a formula in L. The semantic model Mχ!Ex =
〈W ′, R′, V ′,A′〉 differs from Mχ!Im (Definition 5) only in the definition of A′,
which is now given, for every w ∈ W ′, by A′(w) := A(w) ∪ {χ}.

Definition 8. Let (M,w) be a pointed semantic model.

(M,w) � 〈χ!Ex〉ϕ iff (M,w) � χ and (Mχ!Ex , w) � ϕ

Theorem 2 ([18,17]). The axiom system S5 plus the axioms and rules of Table
2 form a sound and complete axiom system for the language L plus the explicit
public announcement modality with respect to our semantic models.
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Again, reduction axioms for atomic propositions, negations, disjunctions and the
universal modality are standard. The one for acknowledgement formulas comes
now in two parts. An explicit public announcement of χ after which the agent
has acknowledged a different ϕ is possible (〈χ!Ex〉Aϕ) iff the announcement
is possible (χ) and the agent has already acknowledged ϕ (Aϕ). If ϕ is the
announced χ, then we only need for the announcement to be possible (χ).

Table 2. Axioms and rules for explicit public announcement

!Ex
p � 〈χ!Ex〉 p ↔ (χ ∧ p) !Ex

A � 〈χ!Ex〉Aϕ ↔ (χ ∧Aϕ) for ϕ �= χ

!Ex
¬ � 〈χ!Ex〉 ¬ϕ ↔ (

χ ∧ ¬〈χ!Ex〉ϕ) !Ex
A � 〈χ!Ex〉Aχ ↔ χ

!Ex
∨ � 〈χ!Ex〉 (ϕ ∨ ψ) ↔ (〈χ!Ex〉ϕ ∨ 〈χ!Im〉ψ) !Ex

N From � ϕ infer � [χ!Ex]ϕ

!Ex
� � 〈χ!Ex〉�ϕ ↔ (

χ ∧� (χ → [χ!Ex]ϕ)
)

How anExplicit Public AnnouncementAffects theAgent’SKnowledge.
An explicit public announcement affects the agent’s implicit knowledge just like
the implicit public announcement does. In the general case, it is possible to
announce χ explicitly so that afterwards the agent knows ϕ implicitly exactly
when χ is the case and the agent already knows implicitly that ϕ will be the
case after a truthful explicit public announcement of χ (cf. validity (1)).

〈χ!Ex〉KImϕ ↔
(
χ ∧KIm(χ→ [χ!Ex]ϕ)

)
(7)

For knowledge about formulas γ whose truth-value is not affected by the action,
the agent only needs to know χ→ γ implicitly (cf. validity (2)).

〈χ!Ex〉KImγ ↔
(
χ ∧KIm(χ→ γ)

)
(8)

If additionally γ is the announced formula, then the agent will know it implicitly
after the formula’s truthful explicit announcement. (cf. validity (3)).

〈γ!Ex〉KImγ ↔ γ (9)

With respect to the action’s effect on explicit knowledge in the general case, an
explicit public announcement works like an implicit one (cf. validity (4)).

〈χ!Ex〉KExϕ ↔
(
χ ∧KIm(χ→ [χ!Ex]ϕ) ∧KIm(χ→ Aϕ)

)
(10)

For formulas γ whose truth-value is not affected by the announcement we also
get a similar behaviour (cf. validity (5)).

〈χ!Ex〉KExγ ↔
(
χ ∧KIm(χ→ (γ ∧ A γ))

)
(11)

What distinguishes an explicit announcement from an implicit one is how it
affects the explicit knowledge of the announced formula. If the action does not
change γ’s truth-value, the agent will know it after its truthful explicit announce-
ment (cf. validity (6)).

〈γ!Ex〉KExγ ↔ γ (12)
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4 Non-omniscient Public Announcements

The two recalled public announcements behave properly, but they still make an
omniscience assumption: an announcement of χ makes the agent discard those
worlds where χ does not hold, i.e., worlds satisfying ¬χ. This is reasonable for
an omniscient agent, who can always tell whether χ holds at any given state.
But for our non-omniscient agent there might be worlds in which she cannot
tell whether χ holds. When χ is announced, she cannot discard every world
that satisfies ¬χ; the best she can do is to discard those worlds she identifies as
satisfying ¬χ, i.e., worlds satisfying (¬χ)Ag

[19].
We also have two options about the way this form of announcement affects the

formulas the agent has acknowledged: the announced formula is acknowledged
or it is not. Interestingly, these two possibilities can be now related to whether
the agent will remember later that the announcement took place.

4.1 Non-omniscient Public Announcement

This public announcement is similar to the implicit one (Definition 5) in that
it does not affect A-sets. Still, it differs in that it eliminates worlds that satisfy
(¬χ)Ag

(i.e., ¬χ ∧ A¬χ), rather than those that satisfy only ¬χ.

Definition 9 (Non-omniscient public announcement). Take a semantic
model M = 〈W,R, V,A〉 and let χ be a formula in L. The semantic model Mχ+! =
〈W ′, R′, V ′,A′〉 differs from Mχ!Im (Definition 5) only in the definition of its set

of possible worlds, given now by W ′ := W \ �(¬χ)Ag�M .

Definition 10. Let (M,w) be a pointed semantic model.

(M,w) � 〈χ+!〉ϕ iff (M,w) � χ and (Mχ+!, w) � ϕ

Theorem 3. The axiom system S5 plus the axioms and rules of Table 3 form a
sound and complete axiom system for the language L plus the 〈χ+!〉 modalities
with respect to our semantic models.

The axiom for � is the interesting one. Different from the previous cases, the
precondition of the action and the condition a world should satisfy to survive
the operation are not the same: in order to announce χ we still need for it to be
true, but now the worlds that will survive are not those that satisfy it but rather
those that the agent does not recognise as satisfying its negation: ¬(¬χ)Ag

.4

The Effect of a Non-omniscient Public Announcement. This operation
has some effects that may look counter-intuitive at first. It allows the agent to
discard epistemic possibilities recognised as satisfying ¬χ, so one could expect
for the announcement to create explicit knowledge about the announced formula,
but this is not the case, even when the truth-value of the announced formula

4 To put it in a simpler way, from the operation’s definition we can see that the worlds
that will be eliminated are those satisfying (¬χ)Ag; then the surviving ones are those
that do not satisfy such formula, that is, those that satisfy its negation.
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Table 3. Axioms and rules for non-omniscient announcement

+!p � 〈χ+!〉 p ↔ (χ ∧ p) +!A � 〈χ+!〉Aϕ ↔ (χ ∧ Aϕ)
+!¬ � 〈χ+!〉 ¬ϕ ↔ (

χ ∧ ¬〈χ+!〉ϕ) +!N From � ϕ infer � [χ+!]ϕ
+!∨ � 〈χ+!〉 (ϕ ∨ ψ) ↔ (〈χ+!〉ϕ ∨ 〈χ+!〉ψ)
+!� � 〈χ+!〉�ϕ ↔ (

χ ∧� (¬(¬χ)Ag → [χ+!]ϕ)
)

is not affected by the operation. The reason is that the agent might not have
recognised every ¬χ-world as such before χ’s announcement, and hence some of
them might survive the operation. And even if the agent recognised every ¬χ-
world (i.e., even if the operation eliminate all such worlds), this does not imply
that the agent has acknowledged that χ is the case in every surviving world: even
though the operation might give her implicit knowledge of χ (only χ-worlds are
left), this knowledge does not need to be explicit. To put it shortly, [γ+!]KExγ
is not valid, even when γ is a formula whose truth-value is not affected by the
announcement.

So what does a non-omniscient announcement of χ achieve? It has a very
simple effect: it only eliminates ¬χ from the agent’s explicit possibilities. More
precisely, if γ’s truth-value is not affected by the operation, after its announce-
ment the agent does not consider ¬γ explicitly possible anymore:

[γ+!]¬K̂Ex¬γ
That this formula is valid follows from the fact that the operation eliminates
every world satisfying ¬γ ∧A¬γ. Since the operation does not change γ’s truth-
value, after it there will be no world satisfying ¬γ∧A¬γ (that is, � (¬γ ∧A¬γ),
precisely the definition of K̂Ex¬γ, will not be the case).5

Still, some readers might find this operation odd: intuitively, a public an-
nouncement of a given χ should allow the agent to discard every ¬χ-possibility.
And indeed this should be the case. Even a non-omniscient agent should be able
to discard every-¬χ possibility after χ is publicly announced; we just need to be
precise about when each one of these possibilities will be eliminated.

Here is a more detailed analysis of the full process. After χ is announced, an
omniscient agent discards immediately every ¬χ-world because she can identify
every one of them. A non-omniscient agent, on the other hand, will only discard
immediately those ¬χ-worlds she identifies ; the rest should be discarded only
after they are recognised as such, that is, only after the agent has recognised
that the world contradicts the announcement.

Now, even though a non-omniscient public announcement eliminates those
worlds the agent recognises as satisfying ¬χ, it does not give her any tool to take
care of the ¬χ-worlds that had not been recognised when the announcement took
place (and hence are still epistemically possible). In other words, after using the

5 The fact that there are γ’s for which [γ+!]¬K̂Ex¬γ is valid while [γ+!]KExγ is not
only emphasises that explicit possibility is not the modal dual of explicit knowledge.
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announcement to eliminate some epistemic possibilities, the agent ‘forgets’ that
such epistemic action took place and then she will not be able to eliminate the
surviving ¬χ-worlds even after she recognises them as such.

An attentive non-omniscient public announcement, on the other hand, allows
the agent to ‘keep track’ of the announcements that have been made, and there-
fore allows her to take care of worlds that should have been eliminated before
once that they are properly identified.

4.2 Attentive Non-omniscient Public Announcement

Definition 11 (Attentive non-omniscient public announcement). Let
M = 〈W,R, V,A〉 be a semantic model and let χ be a formula in L. The seman-
tic model Mχ×! = 〈W ′, R′, V ′,A′〉 differs from Mχ+! (Definition 9) only in the
definition of A′, which is now given, for every w ∈W ′, by A′(w) := A(w) ∪ {χ}.

Definition 12. Let (M,w) be a pointed semantic model.

(M,w) � 〈χ×!〉ϕ iff (M,w) � χ and (Mχ×!, w) � ϕ

Theorem 4. The axiom system S5 plus the axioms and rules of Table 4 form a
sound and complete axiom system for the language L plus the 〈χ×!〉 modalities
with respect to our semantic models.

Table 4. Axioms and rules for attentive non-omniscient announcement

×!p � 〈χ×!〉 p ↔ (χ ∧ p) ×!A � 〈χ×!〉Aϕ ↔ (χ ∧Aϕ) for ϕ �=χ
×!¬ � 〈χ×!〉 ¬ϕ ↔ (

χ ∧ ¬〈χ×!〉ϕ) ×!A � 〈χ×!〉Aχ ↔ χ
×!∨ � 〈χ×!〉 (ϕ ∨ ψ) ↔ (〈χ+!〉ϕ ∨ 〈χ×!〉ψ) ×!N From � ϕ infer � [χ×!]ϕ
×!� � 〈χ×!〉�ϕ ↔ (

χ ∧ � (¬(¬χ)Ag → [χ×!]ϕ)
)

The axioms are exactly like those for the plain non-omniscient public an-
nouncement (Table 3) except in the case of formulas of the form Aϕ. Just like
in the explicit public announcement case here (Table 2) we have two cases, in-
dicating that the only new acknowledged formula is the just announced one.

The Effect of an Attentive Non-omniscient Public Announcement.
Again, consider formulas γ whose truth-value is not affected by the announce-
ment. As we have seen, a plain non-omniscient announcement does not give the
agent explicit knowledge of γ, even if she has recognised every epistemically
possible ¬γ-world as such. An attentive non-omniscient public announcement
behaves similarly in the general case, but if the agent has recognised every ¬γ-
world as such, then after γ’s announcement the agent will know γ explicitly:

[γ×!]KExγ

This is because the agent recognises every ¬γ-world, so after γ’s announcement
every ¬γ-world will be discarded. The action does not change γ’s truth-value so
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every remaining world will still satisfy γ and, because of the action, the agent
will recognise each one of them as a γ-world.

But even if the agent has not recognised every ¬χ-world as such, this form of
announcement gives the agent the possibility to deal with them as soon as they
are identified. By acknowledging χ in the surviving worlds the agent knows that
they should satisfy it. Then, if at a later stage the agent identifies a surviving
¬χ-world as such6, this world will satisfy both A¬χ (because of its recent iden-
tification) and Aχ (because of the announcement’s effect). Such ‘contradicting’
worlds can then be safely eliminated by the proper depuration action

Definition 13 (Depuration). Let M = 〈W,R, V,A〉 be a semantic model and
let χ be a formula in L; define Cχ := Aχ ∧ A¬χ, the formula characterising
χ-contradicting worlds. The semantic model Mχ = 〈W ′, R′, V ′,A′〉 is given by
W ′ := W \ �Cχ�M , R′ := R∩ (W ′×W ′) and, for every w ∈ W ′, V ′(w) := V (w)
and A′(w) := A(w).

Definition 14. Let (M,w) be a pointed extended possible worlds model.

(M,w) � 〈χ�〉ϕ iff (M,w) � ¬Cχ and (Mχ�, w) � ϕ

Theorem 5. The axiom system S5 plus the axioms and rules of Table 5 form
a sound and complete axiom system for the language L plus the 〈χ�〉 modalities
with respect to our semantic models.

Table 5. Axioms and rules for the depuration action

�p � 〈χ�〉 p ↔ (¬Cχ ∧ p) �A � 〈χ�〉Aϕ ↔ (¬Cχ ∧Aϕ)

�¬ � 〈χ�〉 ¬ϕ ↔ (¬Cχ ∧ ¬〈χ�〉ϕ) �N From � ϕ infer � [χ�]ϕ

�∨ � 〈χ�〉 (ϕ ∨ ψ) ↔ (〈χ+!〉ϕ ∨ 〈χ�〉ψ)

�� � 〈χ+!〉�ϕ ↔ (¬Cχ ∧� (¬Cχ → [χ�]ϕ)
)

The axioms are exactly like those for a standard public announcement (e.g.,
those for implicit public announcement: Table 1), with ¬Cχ being both the ac-
tion’s precondition and what each world needs to satisfy to survive the operation.

This operation takes care of removing the worlds that have been found to
be inconsistent. With its help we can now sketch the full story of the effect of
an attentive non-omniscient public announcement. After χ is announced, a non-
omniscient agent eliminates immediately those ¬χ-worlds she has identified so
far. Some ¬χ-worlds will survive, but the announcement also makes the agent
acknowledge χ in the remaining worlds (Aχ will be true in all of them). Then,
whenever further actions make the agent recognise some ¬χ-worlds as such, she
will realise that they contradict the previous announcement. At this point she
can perform a depuration, allowing her to discard these worlds, as expected.

6 E.g., via an inference, a change in awareness or the creation of a justification.
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5 Conclusions and Further Work

We have recalled the effect of two known forms of public announcements on the
knowledge of a non-omniscient agent. Then we have introduced another two that
fit better the intuition behind the involved agents.

Further Work. (a) A study of the effect of this action on agents that are not
logically omniscience for other reasons ([20] already explores the effect in agents
that do not satisfy the perfect recall property). (b) An exploration of the multi-
agent case, in particular, of the way an agent sees how a public announcement
affects the knowledge of others. (c) A study of model update operations in which
the precondition is not the same as what the worlds should satisfy to survive.

References

1. Plaza, J.: Logics of public communications. In: Proc. of the 4th Int. Symposium
on Methodologies for Intelligent Systems, ORNL/DSRD-24, pp. 201–216 (1989)

2. Gerbrandy, J., Groeneveld, W.: Reasoning about information change. Journal of
Logic, Language, and Information 6(2), 147–196 (1997)

3. Baltag, A., Moss, L., Solecki, S.: The logic of public announcements, common
knowledge and private suspicions. Tech. Rep. SEN-R9922, CWI (1999)

4. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Springer
(2007)

5. van Benthem, J.: Logical Dynamics of Information and Interaction. CUP (2011)
6. van Ditmarsch, H., Kooi, B.: The secret of my success. Synthese 151(2), 201–232

(2006)
7. Holliday, W.H., Icard, T.F.: Moorean phenomena in epistemic logic. In: Advances

in Modal Logic, pp. 178–199. College Publications (2010)
8. Holliday, W.H., Hoshi, T., Icard III, T.F.: Schematic Validity in Dynamic Epistemic

Logic: Decidability. In: van Ditmarsch, H., Lang, J., Ju, S. (eds.) LORI 2011. LNCS,
vol. 6953, pp. 87–96. Springer, Heidelberg (2011)

9. van Benthem, J.: Open problems in logical dynamics. In: Mathematical Problems
from Applied Logic I, pp. 137–192. Springer, New York (2006)

10. Hintikka, J.: Knowledge and Belief. Cornell University Press, Ithaca (1962)
11. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about knowledge. The

MIT Press, Cambridge (1995)
12. Fagin, R., Halpern, J.Y.: Belief, awareness, and limited reasoning. Artificial Intel-

ligence 34(1), 39–76 (1988)
13. Jago, M.: Epistemic logic for rule-based agents. Journal of Logic, Language and

Information 18(1), 131–158 (2009)
14. Alechina, N., Logan, B., Whitsey, M.: A complete and decidable logic for resource-

bounded agents. In: AAMAS, pp. 606–613. IEEE Computer Society (2004)
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Abstract. In this paper we introduce public announcements to Subset
Space Logic (SSL). In order to do this we have to change the original
semantics for SSL a little and consider a weaker version of SSL without
the cross axiom. We present an axiomatization, prove completeness and
show that this logic is PSPACE-complete. Finally, we add the arbitrary
announcement modality which expresses “true after any announcement”,
prove several semantic results, and show completeness for a Hilbert-style
axiomatization of this logic.

1 Introduction

Subset Space Logic (SSL) was introduced in [6] as logic of knowledge and efforts.
The language of SSL includes two modalities K (correspond to knowledge, Kϕ
reads as “the agent knows that ϕ is true”) and � (correspond to efforts, �ϕ =
¬�¬ϕ reads as “ϕ is true after some efforts”). A formula in this setting evaluates
in a pair (x, U), where x is “the actual state of the world” and U is “the epistemic
state”: the set of states of the world indistinguishable from the real one by the
agent. In this context making an effort correspond to shrinking the epistemic
state.

Over the years several ways to extend this language were suggested. For ex-
ample multiple agents were introduced in [13], and the overlap operator in [12].
Another very natural way to extend SSL is with the public announcements op-
erators. The effect of public announcement that ϕ is that the subset space is
reduced to all pairs (x, U) that satisfy the formula ϕ. In other words, this mod-
els some form of external information being provided to the system, that is
considered reliable (and thus taken to be true), which results in uncertainty re-
duction for the knowing agent, but also in uncertainty reduction for the amount
of effort needed to make a proposition true or get to know if after that effort:
public announcement affects both the K and the � formulas.

It is intriguing and somewhat of a challenge to distinguish the “♦ϕ”, inter-
preted as “ϕ is true after some effort”, from the quantifier ’〈!〉ϕ’, interpreted
as “ϕ is true after some announcement”. Isn’t an announcement also a form of
effort? We do not have a conclusive answer to what the difference is, but two
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suggestions. Firstly, note that the ϕ in ♦ϕ is interpreted in the same model, not
in a changed model, unlike the ϕ in 〈!〉ϕ that is interpreted in a model restriction,
a changed model. Therefore, the ♦ has more the flavor of a conditional logical
interpretation (conditional on the agent doing some effort, ϕ is true), unlike the
public announcement version. Let “ψ” incorporate the effort; as known, “ϕ is
true conditional on ψ” is very different from “ϕ is true after announcement of
ψ’. Secondly, we could imagine an application wherein the ♦ in ♦ϕ represents a
form of agency in contrast to 〈!〉ϕ that represents the effects of externally driven
changes. As known, in public announcement logic there is no clear parallel for
agency.

Our main motivation for this logic was to demonstrate that one can fruit-
fully add a dynamic aspect similar to that in dynamic epistemic logic to a very
different logic, and “make it work”.

A first attempt to extend SSL with public announcements was by Can Başkent
in his master thesis [3]. We think that this semantics for public announcement
in SSL is not well-defined; and also other intrinsic problems are not easy to
overcome (see Appendix). To address these issues we propose a weaker version
of SSL (wSSL) without the cross axiom; and to prove completeness we also
modified the semantics somewhat.

We further extended this public announcement SSL with the arbitrary/any
announcement operator of [2]. This models what can be known and which further
effort still needs to be taken (in the SSL setting) after any announcement, i. e.,
after any external information has been incorporated.

We should also mention the work of Ågotnes and Wáng [1] where they take
a different approach. Instead of adding public announcements operators to SSL
they give an alternative semantics for PAL, using subset spaces instead of model
updates.

2 Subset Space Logic

2.1 Syntax and Semantics

Let Var be a countable set of propositional variables (with typical members
denoted p, q, etc). The set For of all formulas over Var (with typical members
denoted ϕ, ψ, etc) is defined by the rule

ϕ ::= p | ⊥ | ¬ϕ | (ϕ ∨ ψ) | Kϕ | �ϕ.

It is usual to omit parentheses if this does not lead to any ambiguity. We shall say
that a formula ϕ is Boolean iff ϕ contains neither the modal connective K, nor
the modal connective �. The notion of a subformula is standard. We adopt the
standard definitions for the remaining Boolean connectives. As usual, we define
K̂ϕ ::= ¬K¬ϕ and �ϕ ::= ¬�¬ϕ. We inductively define the degree of a formula
ϕ (denoted deg(ϕ)) as follows: (i) deg(p) = 0; (ii) deg(⊥) = 0; (iii) deg(¬ϕ) =
deg(ϕ); (iv) deg(ϕ ∨ ψ) = max({deg(ϕ), deg(ψ)}); (v) deg(Kϕ) = deg(�ϕ) =
deg(ϕ) + 1.

Let |ϕ| denote the length of ϕ and Var(ϕ) be the set variables in ϕ.
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Definition 1. A (wSSL-)frame is a structure of the form F = (X,S,W ) where
X is a nonempty set of states (denoted x, y, etc), S ⊂ P(X) is a nonempty set
of nonempty subsets of X (denoted U , V , etc) and W is a nonempty set of pairs
(x, U) such that x ∈ X, U ∈ S and x ∈ U . Given a frame F = (X,S,W ), let→F

K

and →F
� be the binary relations on W defined as follows: (i) (x, U) →F

K (y, V )
iff U = V ; (ii) (x, U)→F

� (y, V ) iff x = y and U ⊇ V .

Note that in this definition set S does not play any significant role and can be
replaced with P(X) without any effect on validity.

We show first that

Lemma 1. 1. →F
K is an equivalence relation.

2. →F
� is reflexive and transitive.

Definition 2. Given a frame F = (X,S,W ), a valuation on F is a function θ
assigning to each p ∈ Var a subset θ(p) of X. We inductively define the satis-
faction of a formula ϕ in a frame F = (X,S,W ) with respect to a valuation θ
on F at (x, U) ∈W (denoted F , θ, (x, U) |= ϕ) as follows:

– F , θ, (x, U) |= p iff x ∈ θ(p);
– all logical connectives are treated as usual;
– F , θ, (x, U) |= Kϕ iff ∀(y, V ) ∈ W

(
(x, U)→F

K (y, V )⇒ F , θ, (y, V ) |= ϕ
)
;

– F , θ, (x, U) |= �ϕ iff ∀(y, V ) ∈W
(
(x, U)→F

� (y, V )⇒ F , θ, (y, V ) |= ϕ
)
.

Remark. If for some S ⊆ 2X we take W = {(x, U) |x ∈ X, x ∈ U ∈ S} then
frame (X,S,W ) is equivalent to (validates the same formulas) the classical subset
space (X,S, θ) (see [6]). So these models can be viewed at as a generalization
of subset spaces. Consider the cross axiom (CA = ♦K̂p→ K̂♦p) which is valid
in any classical subset space and can be false in a wSSL-model. Indeed consider
two sets V ⊂ U and two points x, y ∈ V such that {(x, V ), (x, U), (y, V )} = W
and (y, V ) |= p, then (x, U) |= ♦K̂p ∧ ¬K̂♦p.

We shall say that a formula ϕ is universally satisfied in a frame F = (X,S,W )
with respect to a valuation θ on F (denoted F , θ |= ϕ) iff for all (x, U) ∈ W ,
F , θ, (x, U) |= ϕ. A formula ϕ is said to be valid in a frame F = (X,S,W )
(denoted F |= ϕ) iff for all valuations θ on F , F , θ |= ϕ. We shall say that a
formula ϕ is valid (denoted |= ϕ) iff for all frames F = (X,S,W ), F |= ϕ. So,
by Lemma 1 and standard arguments we have

Proposition 1. 1. |= Kϕ→ ϕ, |= ϕ→ KK̂ϕ and |= Kϕ→ KKϕ.
2. |= �ϕ→ ϕ and |= �ϕ→ ��ϕ.

Proposition 2. If ϕ is a Boolean formula then |= ϕ→ �ϕ.

2.2 Axiomatization and Completeness

The axioms of wSSL are all instances of Boolean tautologies plus the following
formulas: (i) K(ϕ → ψ) → (Kϕ → Kψ); (ii) �(ϕ → ψ) → (�ϕ → �ψ);
(iii) Kϕ → ϕ; (iv) ϕ → KK̂ϕ; (v) Kϕ → KKϕ; (vi) �ϕ → ϕ; (vii) �ϕ →
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��ϕ; (viii) if ϕ is a Boolean formula then ϕ → �ϕ. The rules of inference of
wSSL are: (i) modus ponens (from ϕ and ϕ→ ψ infer ψ); (ii) K-generalization
(from ϕ infer Kϕ); (iii) �-generalization (from ϕ infer �ϕ). A formula ϕ is said
to be wSSL-provable iff ϕ belongs to the least set of formulas containing all
axioms of wSSL and closed with respect to all rules of inference of wSSL.

Using induction one can easily prove

Proposition 3. Let ϕ be a formula. If ϕ is wSSL-provable then |= ϕ.

The following result is expected but more difficult to prove.

Proposition 4. Let ϕ be a formula. If |= ϕ then ϕ is wSSL-provable.

We shall say that a set Γ of formulas is a wSSL-theory iff it satisfies the following
conditions: (i) Γ contains the set of all wSSL-provable formulas; (ii) Γ is closed
under the rule of inference of modus ponens. Obviously, the least wSSL-theory
is the set Pr(wSSL) of all wSSL-provable formulas whereas the greatest wSSL-
theory is the set of all formulas. A wSSL-theory Γ is said to be consistent iff
⊥ �∈ Γ . Let us remark that the only inconsistent wSSL-theory is the set of all
formulas. We shall say that a wSSL-theory Γ is maximal iff for all formulas
ϕ, ϕ ∈ Γ , or ¬ϕ ∈ Γ . Let Γ be a wSSL-theory. For all formulas ϕ, let Γ + ϕ
be the set of all formulas ψ such that ϕ → ψ ∈ Γ . It is a simple matter to
check that Γ + ϕ is a wSSL-theory. Moreover, Γ + ϕ is consistent iff ¬ϕ �∈ Γ .
The proposition below is a variant of well known Lindenbaum’s lemma. See [5,
Lemma 4.17] for the proof of a similar result.

Proposition 5. Let Γ be a wSSL-theory. If Γ is consistent then there exists a
maximal consistent wSSL-theory Δ such that Γ ⊆ Δ.

Let Γ be a wSSL-theory. Let: (i) KΓ be the set of all formulas ϕ such that
Kϕ ∈ Γ ; (ii) �Γ be the set of all formulas ϕ such that �ϕ ∈ Γ . It is easy to
prove that KΓ is a wSSL-theory and �Γ is a wSSL-theory using distribution
axioms and �- and K-generalization rules.

Our first task is to define the canonical model of wSSL. The canonical model
of wSSL is the structureMc = (Sc, Rc

K , Rc
�, θ

c) defined as follows: (i) Sc is the
set of all maximal consistent wSSL-theories; (ii) Rc

K is the binary relation on
Sc defined by ΓRc

KΔ iff KΓ ⊆ Δ; (iii) Rc
� is the binary relation on Sc defined

by ΓRc
�Δ iff �Γ ⊆ Δ; (iv) θc is the function assigning to each p ∈ Var the

subset θc(p) of Sc defined by Γ ∈ θc(p) iff p ∈ Γ . It is worth noting at this point
the following:

Lemma 2. 1. Rc
K is an equivalence relation.

2. Rc
� is reflexive and transitive.

ConsideringMc as a Kripke model where the modal connectives K and � are
interpreted by means of the binary relations Rc

K and Rc
�, the proposition below

contains a result that can be proved by induction on ϕ. See [5, Lemma 4.21] for
the proof of a similar result.

Proposition 6. Let ϕ be a formula. For all Γ ∈ Sc, we have Mc, Γ |= ϕ iff
ϕ ∈ Γ .
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Let Γ0 be a maximal consistent wSSL-theory. Our second task is to unravel
Mc around Γ0. The unraveling of Mc around Γ0 is the structure Mu =
(Su, Ru

K , Ru
�, θ

u) defined as follows: (i) Su is the set of all finite sequences
(i1, Γ1, . . . , im, Γm) such that m is a nonnegative integer, i1, . . . , im ∈ {K,�}
and Γ1, . . . , Γm ∈ Sc are such that Γ0R

c
i1
Γ1, . . ., Γm−1R

c
im
Γm; (ii) Ru

K is the
binary relation on Su defined by (i1, Γ1, . . . , im, Γm)Ru

K(j1, Δ1, . . . , jn, Δn) iff
there exists a nonnegative integer o such that o ≤ m, o ≤ n, (i1, Γ1, . . . , io, Γo) =
(j1, Δ1, . . . , jo, Δo), io+1 = . . . = im = K and jo+1 = . . . = jn = K; (iii) Ru

� is
the binary relation on Su defined by (i1, Γ1, . . . , im, Γm)Ru

�(j1, Δ1, . . . , jn, Δn)
iff m ≤ n, (i1, Γ1, . . . , im, Γm) = (j1, Δ1, . . . , jm, Δm) and jm+1 = . . . = jn = �;
(iv) θu is the function assigning to each p ∈ Var the subset θu(p) of Su de-
fined by (i1, Γ1, . . . , im, Γm) ∈ θu(p) iff p ∈ Γm. We adopt the convention that
an empty sequence (say, when m = 0, or n = 0 above) has value Γ0. For all
(i1, Γ1, . . . , im, Γm) ∈ Su, let ��(i1, Γ1, . . . , im, Γm) = Card({α: α is a positive
integer such that α ≤ m and iα = �}). By Lemma 2, we infer immediately the
following.

Lemma 3. 1. Ru
K is an equivalence.

2. Ru
� is reflexive and transitive.

ConsideringMu as a Kripke model where the modal connectives K and � are
interpreted by means of the binary relations Ru

K and Ru
�, the proposition below

contains a result that can be proved by induction on ϕ.

Proposition 7. Let ϕ be a formula. For all (i1, Γ1, . . . , im, Γm) ∈ Su, we have
Mu, (i1, Γ1, . . . , im, Γm) |= ϕ iff Mc, Γm |= ϕ.

Proof. See [5, Lemma 4.52] for the proof thatMc is a bounded morphic image
ofMu and [5, Proposition 2.14] for the proof that modal satisfaction is invariant
under bounded morphisms.

Let ≡u be the symmetric and transitive closure of Ru
� and 'u be the transitive

closure of Ru
K ◦ Ru

�. Obviously, ≡u is reflexive, symmetrical and transitive and
'u is reflexive and transitive. Let Γ ∈ Su. The equivalence class modulo ≡u

with Γ as its representative is denoted [Γ ]≡u . The set of all equivalence classes
of Su modulo ≡u is denoted Su/ ≡u. Let us define function f : Su → P(Su/ ≡u)
defined as follows

f(Γ ) = {[Γ ]≡u |Γ 'u Δ} .
To continue, another technical lemma is necessary.

Lemma 4. Let Γ ,Δ ∈ Su.

1. If f(Γ ) = f(Δ) then ΓRu
KΔ.

2. If Γ ≡u Δ and f(Γ ) ⊇ f(Δ) then ΓRu
�Δ.

Our third task is to spatialize Mu. The spatialization of Mu consists of the
frame Fs = (Xs, Ss,W s) and the valuation θs on Fs defined as follows:
(i) Xs = Su/ ≡u; (ii) Ss is the range of f ; (iii) W s = {([Γ ]≡u , f(Γ )) |Γ ∈ Su};
(iv) valuation θs is as follows θs(p) = {[Γ ]≡u |Γ ∈ θu(p)}. The interesting result
is the following
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Proposition 8. Let ϕ be a formula. For all Γ ∈ Su, we have
Fs, θs, ([Γ ]≡u , f(Γ )) |= ϕ iff Mu,Γ |= ϕ.

Now, we can proceed to the

Proof of Proposition 4. Suppose ϕ is not wSSL-provable. Hence, Pr(wSSL)+¬ϕ
is a consistent wSSL-theory. Thus, by Proposition 5, there exists a maximal
consistent wSSL-theory Γ0 such that Pr(wSSL) + ¬ϕ ⊆ Γ0. Obviously, ϕ �∈
Γ0. Therefore, by Proposition 6, Mc, Γ0 �|= ϕ. Consequently, by Proposition 7,
Mu, Γ0 �|= ϕ. Hence, by Proposition 8, Fs, θs, ([Γ0]≡u , f(Γ0)) �|= ϕ. Thus, �|= ϕ.
�

2.3 Decidability and Complexity

Fix a formula ϕ with deg(ϕ) = k. Let ϕ� be the conjunction of the following
formulas: (i) ¬ϕ; (ii) for all p ∈ Var(ϕ), (K�)k(p → �p); (iii) for all p ∈
Var(ϕ), (K�)k(¬p→ �¬p). In the above formulas, (K�)k means K� repeated
k times. We first prove a simple lemma.

Lemma 5. The following conditions are equivalent:

1. ϕ� is satisfied in a Kripke model of the form M = (S,RK , R�, θ) where RK

is reflexive, symmetrical and transitive, R� is reflexive and transitive and the
modal connectives K and � are interpreted by means of the binary relations
RK and R�.

2. �|= ϕ.

Proposition 9. The membership problem in the set of all valid formulas is in
PSPACE.

Proof. By Lemmas 5, the membership problem in the set of all valid formulas is
reducible to the membership problem in S5⊗S4. Since the membership problem
in S5 ⊗ S4 is in PSPACE [14, Theorem 7], then the membership problem in
the set of all valid formulas is in PSPACE.

Let Q1p1 . . . Qnpnϕ(p1, . . . , pn) be a QBF and consider the new propositional
variables q0, q1, . . . , qn. Let [Q1p1 . . . Qnpnϕ(p1, . . . , pn)] be the conjunction of
the following formulas: (i) q0; (ii) K�(qi−1 → K̂�(qi ∧Kpi)∧ K̂�(qi ∧K¬pi))
for each positive integer i such that i ≤ n and Qi = ∀; (iii) K�(qi−1 →
K̂�(qi ∧ Kpi) ∨ K̂�(qi ∧ K¬pi)) for each positive integer i such that i ≤ n
and Qi = ∃; (iv) K(qn → ϕ). The next lemma explains the relationship be-
tween [Q1p1 . . . Qnpnϕ(p1, . . . , pn)] and Q1p1 . . .Qnpnϕ(p1, . . . , pn).

Lemma 6. A Q A = Q1p1 . . .Qnpnϕ(p1, . . . , pn) holds iff [A] is satisfied.

Proposition 10. The membership problem in the set of all valid formulas is
PSPACE-hard.

Proof. By Lemma 6, the QBF-validity problem is reducible to the member-
ship problem in the set of all valid formulas. Since the QBF-validity problem is
PSPACE-hard [16, Theorem 19.1], then the membership problem in the set of
all valid formulas is PSPACE-hard.
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3 Subset Space Logic with Announcements

3.1 Syntax and Semantics

We consider an extension wSSLa of wSSL with announcements operators.
The set Fora of all formulas with announcements over Var (with typical

members denoted ϕ, ψ, etc) is defined by the rule

ϕ ::= p | ⊥ | ¬ϕ | (ϕ ∨ ψ) | Kϕ | �ϕ | [ϕ]ψ.

We define 〈ϕ〉ψ ::= ¬[ϕ]¬ψ.
The definition of the satisfiability of the formula [ϕ]ψ in a frame F =

(X,S,W ) with respect to a valuation θ on F at (x, U) ∈ W is defined as fol-
lows: F , θ, (x, U) |= [ϕ]ψ iff if F , θ, (x, U) |= ϕ then (X,S,W|ϕ), θ, (x, U) |= ψ
where W|ϕ = {(y, V ): (y, V ) ∈ W is such that F , θ, (y, V ) |= ϕ}. The following
propositions are basic.

Proposition 11. The following formulas are valid: [ϕ]p ↔ (ϕ → p), [ϕ]⊥ ↔
¬ϕ, [ϕ]¬ψ ↔ (ϕ→ ¬[ϕ]ψ), [ϕ](ψ ∨χ)↔ ([ϕ]ψ∨ [ϕ]χ), [ϕ]Kψ ↔ (ϕ→ K[ϕ]ψ),
[ϕ]�ψ ↔ (ϕ→ �[ϕ]ψ), [ϕ][ψ]χ↔ [〈ϕ〉ψ]χ.

Let tr: Fora → For be the standard meaning-preserving translation from Fora
to For . It can be defined inductively in a standard way using equivalences from
Proposition 11. This translation has been considered in several places (cf. [7]).

Proposition 12. For all formulas ϕ in Fora, there exists a formula ψ(= tr(ϕ))
in For such that |= ϕ↔ ψ.

3.2 Axiomatization/Completeness

The axioms of wSSLa are all axioms of wSSL plus all the formulas from Propo-
sition 11. The rules of inference of wSSLa are all rules of inference of wSSL
plus the following rule of inference: [ϕ]-generalization (from ψ infer [ϕ]ψ).

For our purpose, the following crucial property of the translation tr can be
proved by induction.

Proposition 13. Let ϕ be a formula in Fora. tr(ϕ) ↔ ϕ is wSSLa-provable.
And if ϕ is wSSLa-provable then |= ϕ.

Referring to Proposition 4, we obtain the

Proposition 14. Let ϕ be a formula in Fora. If |= ϕ then ϕ is wSSLa-provable.

Proof. Suppose ϕ is not wSSLa-provable. Hence, by Proposition 13, tr(ϕ) is
not wSSLa-provable. Thus, tr(ϕ) is not wSSL-provable. Therefore, by Propo-
sition 4, �|= tr(ϕ). Consequently, by Proposition 12, �|= ϕ.



240 P. Balbiani, H. van Ditmarsch, and A. Kudinov

3.3 Decidability and Complexity

We will following the line of reasoning suggested in [15]. Proof details are omitted.

Proposition 15. The membership problem in the set of all valid formulas is in
PSPACE.

Proposition 16. The membership problem in the set of all valid formulas is
PSPACE-hard.

Proof. By Proposition 10.

4 Subset Space Logic with Arbitrary Announcements

4.1 Syntax and Semantics

We consider an extension wSSLaa of wSSLa wherein we can express what be-
comes true without explicit reference to announcements realizing that.

The set Foraa of all formulas with arbitrary announcements over Var (with
typical members denoted ϕ, ψ, etc) is defined by the rule

ϕ ::= p | ⊥ | ¬ϕ | (ϕ ∨ ψ) | Kϕ | �ϕ | [ϕ]ψ | [!]ϕ.

We define 〈!〉ϕ ::= ¬[!]¬ϕ. For the definition of the [!]-special rule of inference in
section 4.2, we will need formulas of a special form, called admissible forms. Let
� be a new propositional variable. The set AF (Var) of all admissible forms over
Var (with typical members denoted A, B, etc) is defined by the rule

A ::= � | ϕ→ A | KA | �A.

Note that in each admissible form A, � has a unique occurrence. Given an admis-
sible form A(�) and a formula ϕ, let A(ϕ) be the result of the replacement of � in
its place in A with ϕ. The definition of the satisfiability of the formula [!]ϕ in a
frame F = (X,S,W ) with respect to a valuation θ on F at (x, U) ∈W is defined
as follows: F , θ, (x, U) |= [!]ϕ iff for all formulas ψ in Fora, if F , θ, (x, U) |= ψ
then (X,S,W|ψ), θ, (x, U) |= ψ. The following propositions are basic.

Proposition 17. The following formulas are valid: [!]ϕ → ϕ, [!]ϕ → [!][!]ϕ,
[!]〈!〉ϕ→ 〈!〉[!]ϕ, 〈!〉[!]ϕ→ [!]〈!〉ϕ.

The following proposition can be proved similar to Proposition 3.9 in [2].

Proposition 18. |= K[!]ϕ→ [!]Kϕ.

Although for all formulas ϕ, K[!]ϕ→ [!]Kϕ is valid, there exists formulas ϕ such
that [!]Kϕ→ K[!]ϕ is not valid.

Example 1. For example, one may consider the formula ϕ = �K̂p. In the
frame F = (X,S,W ) where X = {x, y}, S = {{x}, {x, y}} and W =
{(x, {x}), (x, {x, y}), (y, {x, y})}, with respect to a valuation θ on F such that
θ(p) = {x}, (x, {x, y}) does not satisfy [!]Kϕ→ K[!]ϕ.
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Let us show that there exists a formula that is equivalent to no formula in Fora.

Example 2. To illustrate the truth of this, take the case of the formula ϕ =
[!](�K̂�Kp→ �Kp) and assume that [!]-free formula ψ is equivalent to ϕ and
let q is a new variable q /∈ Var(ψ). Consider the frame F = (X,S,W ) where
X = {x, y}, S = {{x, y}} and W = {(x, {x, y}), (y, {x, y})}, the valuation θ on
F such that θ(p) = {x}, θ(q) = ∅ and θ(r) = ∅ for each propositional variable
r �= p, q, the frame F ′ = (X ′, S′,W ′) where

X ′ = {x′
1, x

′
2, y

′
1, y

′
2},

S′ = {{x′
1, y

′
1}, {x′

1, x
′
2, y

′
1, y

′
2}},

W ′ = {(x′
1, {x′

1, y
′
1}), (x′

1, X
′), (y′1, {x′

1, y
′
1}), (y′1, X ′), (x′

2, X
′), (y′2, X

′)}

and the valuation θ′ on F ′ such that θ′(p) = {x′
1, x

′
2}, θ′(q) = {x′

1, y
′
1} and

θ(r) = ∅ for each propositional variable r �= p, q.
It easy to check that M and M ′ = (F ′, θ′) are bisimilar in the language with-

out q (bisimilation connects elements without prime and corresponding elements
with prime and an index). So ψ is true or false at all bisimilar pairs simultane-
ously. Formula �K̂�Kp→ �Kp is true inM and after any restriction and hence
M, (x,X) |= ϕ and M, (x,X) |= ψ and M ′, (x′

1, X
′) |= ψ. But M ′, (x′

1, X
′) � ψ

because M ′, (x′
1, X

′) � [p ∨ ¬q](�K̂�Kp→ �Kp).

4.2 Axiomatization and Completeness

The axioms of wSSLaa are all axioms of wSSLa plus the following formulas:
[!]ϕ→ [ψ]ϕ for all formulas ψ in Fora. The rules of inference of wSSLaa are all
rules of inference of wSSLa plus the following rule of inference: [!]-special rule
(from {A([ψ]ϕ): ψ is a formula in Fora} infer A([!]ϕ)). A formula ϕ is said to be
wSSLaa-provable iff ϕ belongs to the least set of formulas containing all axioms
of wSSLaa and closed with respect to all rules of inference of wSSLaa. Here,
the first result is

Proposition 19. Let ϕ be a formula. If ϕ is wSSLaa-provable then |= ϕ.

Proof. It suffices to demonstrate the following properties: (i) the axioms of
wSSLaa are valid; (ii) the rules of inference of wSSLaa preserve validity. The
proof is left to the reader, we only describe the case of the [!]-special rule of
inference. Let A be an admissible form and ϕ be a formula such that �|= A([!]ϕ).
Hence, there exists a frame F = (X,S,W ) such that F �|= A([!]ϕ). Thus, there
exists a valuation θ on F such that F , θ �|= A([!]ϕ). Therefore, there exists
(x, U) ∈ W such that F , θ, (x, U) �|= A([!]ϕ). By induction on A, one easily
sees that there exists a formula ψ in Fora such that F , θ, (x, U) �|= A([ψ]ϕ).
Consequently, F , θ �|= A([ψ]ϕ). Hence, F �|= A([ψ]ϕ). Thus, �|= A([ψ]ϕ).

Proposition 20. Let ϕ be a formula. If |= ϕ then ϕ is wSSLaa-provable.
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Proposition 20 is more difficult to establish than Proposition 19 and we defer
proving it till the end of the section. In the meantime, we present some useful
results. We shall define wSSLaa-theories as sets Γ of formulas satisfying the
following conditions: (i) Γ contains the set of all wSSLaa-provable formulas;
(ii) Γ is closed under the rule of inference of modus ponens; (iii) Γ is closed
under the [!]-special rule. Of course, the analogue for wSSLaa-theories of Propo-
sition 5 holds. See [2, Lemma 4.12] for the proof of a similar result. We shall
define the canonical model of wSSLaa in the same way as we have defined the
canonical model of wSSL. Of course, the analogue for the canonical model of
wSSLaa of Lemma 2 holds. LetMc = (Sc, Rc

K , Rc
�, θ

c) be the canonical model
of wSSLaa. ConsideringMc as a Kripke model where the modal connectives K
and � are interpreted by means of the binary relations Rc

K and Rc
� and where

the modal connective [!] is interpreted as in APAL (PAL with arbitrary an-
nouncements) [2], the proposition below contains a result that can be proved by
induction on ϕ. See [2, Lemma 4.13] for the proof of a similar result.

Proposition 21. Let ϕ be a formula. For all Γ ∈ Sc, we have for all finite
sequences (ψ1, . . . , ψn) of formulas,Mc, Γ |= [ψ1] . . . [ψn]ϕ iff [ψ1] . . . [ψn]ϕ ∈ Γ .

We shall define the unraveling of the canonical model of wSSLaa in the same way
as we have defined the unraveling of the canonical model of wSSL. Of course, the
analogue for the unraveling of the canonical model of wSSLaa of Lemma 3 holds.
Let Γ0 be a maximal consistent wSSLaa-theory andMu = (Su, Ru

K , Ru
�, θ

u) be
the unraveling ofMc around Γ0. ConsideringMu as a Kripke model where the
modal connectives K and � are interpreted by means of the binary relations Ru

K

and Ru
� and where the modal connective [!] is interpreted as in APAL [2], the

proposition below contains a result that can be proved by induction on ϕ.

Proposition 22. Let ϕ be a formula. For all (i1, Γ1, . . . , im, Γm) ∈ Su, we
have for all finite sequences (ψ1, . . . , ψn) of formulas,Mu, (i1, Γ1, . . . , im, Γm) |=
[ψ1] . . . [ψn]ϕ iff Mc, Γm |= [ψ1] . . . [ψn]ϕ.

Let ≡u be the symmetric and transitive closure of Ru
� and 'u be the transitive

closure of Ru
K ◦ Ru

�. Obviously, ≡u is reflexive, symmetrical and transitive and
'u is reflexive and transitive. Let Γ ∈ Su. The equivalence class modulo ≡u with
Γ as its representative is denoted [Γ ]≡u . The set of all equivalence classes of Su

modulo ≡u is denoted Su/ ≡u. Let f be the function assigning to each Γ ∈ Su

the subset f(Γ ) of Su/ ≡u defined by [Δ]≡u ∈ f(Γ ) iff Γ 'u Δ. Since 'u is
reflexive, then [Γ ]≡u ∈ f(Γ ). We shall spatializeMu in the same way as we have
spatialized the unraveling of the canonical model of wSSL. The spatialization of
Mu consists of the frame Fs = (Xs, Ss,W s) and the valuation θs on Fs defined
as follows: (i) Xs is the set of all equivalence classes of Su modulo ≡u; (ii) Ss

is the range of f ; (iii) W s is the set of all pairs ([Γ ]≡u , f(Γ )) such that Γ ∈ Su;
(iv) θs is the function assigning to each p ∈ Var the subset θs(p) of Xs defined
by [Γ ]≡u ∈ θs(p) iff Γ ∈ θu(p). The interesting result is the following

Proposition 23. Let ϕ be a formula. For all Γ ∈ Su, we have for all fi-
nite sequences (ψ1, . . . , ψn) of formulas, Fs, θs, ([Γ ]≡u , f(Γ )) |= [ψ1] . . . [ψn]ϕ
iff Mu,Γ |= [ψ1] . . . [ψn]ϕ.
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4.3 Decidability/Complexity

As for the membership problem in the set of all valid formulas, we do know
whether it is decidable or not. Remark that the membership problem in the set
of all valid formulas defined in the Section 4 of [2] was proved to be undecidable
by French and van Ditmarsch [9].

5 Variants and Open Problems

There are several ways to continue this research. One way is by adding overlap
operator or (and) by considering multiple agents, as in the interesting recent [1].
The other way is to try to return to the classical subset spaces, in particular we
can ask what formulas can be announced so that the restricted model would still
be a classical subset space.
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Appendix

A Counterexample to PAL SSL

In the original text [3] by Can Başkent the definition is inconsistent. In a more
recent text (see [4]) this definition has been corrected, but unfortunately other
problems remain. In the following text we will try to present the intrinsic diffi-
culties of introducing public announcements to SSL.

Let us consider the following subset space (in classical sense, see [6]) M =
(X,O, V ), where X = {x, y}, O = P (X) — all subsets of X , and the valuation
is such that V (p) = {y}. Then consider formula ϕ = K¬p ∨ �p. The list of all
neighborhood situations where ϕ is true is following

(ϕ) = {(x, {x}), (y,X), (y, {y})}

So as suggested in [3] to construct the restricted model Mϕ = (Xϕ, Oϕ, Vϕ) we
need to take

Xϕ = (ϕ)1 = {x | ∃U((x, U) ∈ (ϕ))} , Oϕ = {U ∩Xϕ | ∃x((x, U) ∈ (ϕ))}

In our case
Xϕ = X Oϕ = O and Mϕ = M.

So the restricted model after the announcement of formula ϕ which is not valid in
M is Mϕ = M . This is a problem because formula [ϕ]Kϕ↔ (ϕ→ K[ϕ]ϕ which
should be an axiom of PAL is not universally true. In particular (y,X) � [ϕ]Kϕ
and (y,X) � K[ϕ]ϕ.

The problem as we see it is that subset space frame has inner structure sim-
ilar to product of frames and the set of situations where a formula is true not
always preserves this structure. One way to confront this problem is to consider
generalized subset spaces. In this paper we explore this way.
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Abstract. The logic of public announcements has received great interest in re-
cent years. In this paper we give an account of public announcements in terms of
the semantics of subset space logic (SSL). In particular, we give a natural inter-
pretation of the language of public announcement logic (PAL) in subset models,
and show that it embeds PAL. We give sound and complete axiomatisations of
different variants of the logic. Unlike in other work combining PAL and SSL, the
goal is not to import PAL operators with update semantics into SSL, but to give
an alternative semantics for PAL: using neighborhoods instead of model updates.

Keywords: subset space logic, epistemic logic, public announcement logic, ex-
pressivity, arbitrary announcements, topology.

1 Introduction

Epistemic logics [1, 2] formalise reasoning about knowledge. In recent years there has
been a great interest in dynamic epistemic logics [3]; extension of epistemic logics for
reasoning about the epistemic pre- and post-conditions of different types of events. The
simplest, and most well-understood, dynamic epistemic logic is public announcement
logic (PAL) [4], where events are taken to be truthful public announcements. From the
logical point of view, standard epistemic logic is the modal logic S5, and occurrences
of events are modeled by updating (i.e., modifying) the S5 models.

A different approach to making epistemic logic dynamic is subset space logic, orig-
inally due to Moss and Parikh [5]. In this logic the semantics of knowledge modalities,
as well as modalities modeling potentially information-changing effort, is a topolog-
ical one in terms of so-called subset structures. Different from standard topological
semantics for modal logic originating in [6, 7], however, this logic uses a variant of
the semantics where a state is not merely a (full information) point, but rather what is
called an epistemic scenario consisting of a point together with an epistemic range. The
epistemic range is not fixed: it can shrink as the result of an effort made by the agent.
The possible consequences of efforts are modeled explicitly in the semantic structures.
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That there are close conceptual relationships between dynamic epistemic logics and
subset space logic is obvious: both model knowledge dynamics. In this paper we study
one aspect of the relationship between PAL and subset space logic. In particular, we give
a natural interpretation of the language of PAL in subset structures, explaining changes
made by public announcements in terms of the explicitly modeled subset space rather
than using model updates. The resulting logic embeds public announcement logic.

The idea of interpreting public announcement operators in subset structures is not
entirely new. Baskent [8, 9] gives an interpretation of the combined PAL and subset
logic language in subset structures, and proves completeness of PAL with respect to
this semantics. However, the interpretation of public announcement operators is de-
fined in terms of updates on subset structures. The goal of the current paper is to give
an interpretation of the PAL language in subset structures that is closer to the key con-
ceptual idea of subset space logic, namely that all the possible consequences of efforts
are explicitly represented in the semantic structures, as an alternative to update seman-
tics, which is very different from extending subset space logic with update semantics
for public announcement logic as done in [8, 9]. Recent work in [10] also uses the same
type of update semantics as in [8, 9]. We discuss related work further in Section 6.

Our resulting logic is weaker than PAL; not all subset models correspond to PAL
models. We give a sound and complete axiomatisation of the resulting logic. Suitably
restricting the class of subset models, we also get soundness and completeness of PAL
with respect to our interpretation in subset structures. Thus, we obtain a new and al-
ternative semantics for traditional public announcement logic, as well as a weaker and
conceptually interesting logic. We also investigate some other variants of the logical
language, and discuss expressive power.

In this paper we only consider the single-agent version of PAL (see also Section 6).
The remainder of the paper is organised as follows. In the next section we briefly

review public announcement logic and subset space logic. In Section 3 we give the
interpretation of the PAL language in subset structures, and discuss the expressivity
of different variants of the language. Then, in Section 4, we investigate translations
between Kripke semantics and subset space semantics, and, in Section 5, we study
axiomatisations of the resulting logics. We conclude with a discussion in Section 6.
Some proofs are unfortunately sketched or omitted due to lack of space.

2 Background

Let PROP be a countable set of propositional variables.

2.1 Public Announcement Logic

Public announcement logic (PAL) [4] extends classical (static) epistemic logic (EL)
with an operator which can be used to express public announcements. It is one of the
simplest dynamic epistemic logics, and has been investigated extensively in the past few
decades. We introduce below some basic definitions and results of classical epistemic
logic and public announcement logic which we will use later. For a full introduction we
refer to [3]. The definition of PAL is normally parameterised by a set of agents, but in
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this paper we will only be concerned with the single-agent case and when we refer to
PAL in the following we implicitly mean that variant.

Definition 1 (Languages). The languages of (single-agent) classical epistemic logic,
EL, and of (single-agent) public announcement logic, PAL, are:

(EL) ϕ ::= ⊥ | p | ¬ϕ | ϕ ∧ ϕ |Kϕ
(PAL) ϕ ::= ⊥ | p | ¬ϕ | ϕ ∧ ϕ |Kϕ | [ϕ]ϕ,

where p ∈ PROP. We write K̂ϕ as a shorthand for ¬K¬ϕ, and 〈ϕ〉ψ for ¬[ϕ]¬ψ.

Interpretation of these languages is defined in terms of epistemic (Kripke, S5) models
M = (M,∼, V ) consisting of a set of states/points M , an indistiguishability relation
∼ which is an equivalence relation on M , and a valuation function V : PROP →M .

Definition 2 (Kripke semantics). Given an epistemic model M = (M,∼, V ) and a
point m ∈M , the satisfaction relation, �, is defined as follows. M,m �� ⊥, and:

M,m � p iff m ∈ V (p)
M,m � ¬ϕ iff M,m �� ϕ
M,m � ϕ ∧ ψ iff M,m � ϕ & M,m � ψ
M,m � Kϕ iff ∀n ∈M. (m ∼ n⇒M, n � ϕ)
M,m � [ϕ]ψ iff M,m � ϕ⇒M|ϕ,m � ψ,

In the above, M|ϕ is the submodel of M having �ϕ�M , where �ϕ�M = {n |M, n � ϕ}
is the truth set of ϕ in M, as states and where ∼ and V are restricted to �ϕ�M . Validity
is defined as usual. �

PAL is as expressive as EL [4]. A sound and complete axiomatisation for EL is the
well-known Hilbert system S5 (Fig. 1). The axiomatisation PAL for PAL (Fig. 1) is
obtained by adding to S5 reduction axioms for the public announcement operators [4,
11, 12].

(PC) Instances of tautologies (MP) � ϕ & � ϕ → ψ ⇒� ψ
(N) � ϕ ⇒� Kϕ (K) K(ϕ → ψ) → Kϕ → Kψ
(T) Kϕ → ϕ (5) ¬Kϕ → K¬Kϕ
(AP) [ϕ]p ↔ (ϕ → p), p ∈ PROP (AN) [ϕ]¬ψ ↔ (ϕ → ¬[ϕ]ψ)
(AC) [ϕ](ψ ∧ χ) ↔ ([ϕ]ψ ∧ [ϕ]χ) (AK) [ϕ]Kψ ↔ (ϕ → K[ϕ]ψ)
(AM) [ϕ][ψ]χ ↔ [ϕ ∧ [ϕ]ψ]χ

Fig. 1. PAL, the axiomatisation of public announcement logic, and the sub-system S5 consist-
ing of (PC), (MP), (N), (K), (T) and (5). The 4 axiom, i.e., Kϕ → KKϕ, meaning positive
introspection, is often also included, but technically redundant — it can be derived in S5.
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2.2 Subset Space Logic

The study of subset space logic (SSL) was initiated in [5]. One of the main motiva-
tions was to characterise epistemic efforts in a reasonably simple framework. Below we
briefly introduce the classical subset space logic, and we refer to [13] for more details.

Definition 3 (Language). The language SSL has the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ |Kϕ | �ϕ,

where p ∈ PROP. We write K̂ϕ as a shorthand for ¬K¬ϕ, and ♦ϕ for ¬�¬ϕ.

Intuitively, Kϕ reads as “ϕ is known in the current situation”, while ♦ϕ reads as “there
is a refinement of knowledge (e.g., a new evidence) under which ϕ is true”. One of
the most interesting SSL-sentences is ¬Kϕ ∧ ♦Kϕ, which reads as “ϕ is not known
under the current situation, but there is a refinement of knowledge to make ϕ known”.
Formally the semantics is defined as follows.

Definition 4 (Subset structures). A pair (X,O) is called a subset space, if X is a
non-empty set andO ⊆ ℘(X). A subset model is a tuple X = (X,O, V ) where (X,O)
is a subset space and V : PROP → ℘(X) is an evaluation function.

For historical reasons, elements of O are called open sets or simply opens. For any
subset model X = (X,O, V ), we take a point x ∈ X as a factual state, and an O ∈ O
as an epistemic range or evidence. A pair (x,O) is called an epistemic scenario (or
simply scenario) of X if it holds that x ∈ O. The set of all epistemic scenarios of X
is denoted by ES(X ). A pointed subset space (resp. pointed subset model) is a subset
space (resp. subset model) together with an epistemic scenario of it.

Definition 5 (Semantics). LetX = (X,O, V ) be a subset model, and (x,O) ∈ ES(X ).
The satisfaction relation, |=, is given as follows:

X , x, O |= p iff x ∈ V (p)
X , x, O |= ¬ϕ iff X , x, O �|= ϕ
X , x, O |= ϕ ∧ ψ iff X , x, O |= ϕ & X , x, O |= ψ
X , x, O |= Kϕ iff ∀y ∈ O. X , y, O |= ϕ
X , x, O |= �ϕ iff ∀U ∈ O. (x ∈ U ⊆ O ⇒ X , x, U |= ϕ).

We stress that satisfaction is undefined for a pair (x,O) with x /∈ O. We write X |= ϕ
(read as “ϕ is globally true in the subset model X”), if X , (x,O) |= ϕ holds for all
(x,O) ∈ ES(X ). In a similar fashion, we can define the validity of ϕ in a subset space
(X,O) (notation: X,O |= ϕ), global validity (notation: |= ϕ), and so on. �

A sound and complete [5, 14] axiomatisation SSL of subset space logic is given in Fig.
2. Among the axioms and rules, PC, K•, T•, 5•, N• and MP compose an S5 system for
the knowledge operator K , while PC, K◦, T◦, 4◦, N◦ and MP compose an S4 system
for the refinement operator �. There are two extra axioms: AP which stands for atomic
persistence and Cr for cross.



Subset Space Public Announcement Logic 249

(PC) Instances of tautologies (MP) � ϕ & � ϕ → ψ ⇒� ψ
(K•) K(ϕ → ψ) → Kϕ → Kψ (K◦) �(ϕ → ψ) → �ϕ → �ψ
(T•) Kϕ → ϕ (T◦) �ϕ → ϕ
(5•) ¬Kϕ → K¬Kϕ (4◦) �ϕ → ��ϕ
(N•) � ϕ ⇒ � Kϕ (N◦) � ϕ ⇒� �ϕ
(Cr) K�ϕ → �Kϕ (AP) (p → �p) ∧ (¬p → �¬p), p ∈ PROP

Fig. 2. The axiomatisation SSL of subset space logic

3 Incorporating Public Announcements into SSL

The key question related to incorporating public announcements into subset space logic
is: how to model changes made by public announcements in terms of subset models?
As discussed in the introduction, the goal is to give an interpretation of the public an-
nouncement operators using neighborhood refinement in place of model updates.

3.1 How to Model Public Announcements in SSL?

Observe that the interpretation of the formula [ϕ]ψ in PAL is in the following pattern:

M,m � [ϕ]ψ iff M,m � pre(ϕ)⇒M′,m � ψ

where pre(ϕ) stands for the precondition for announcing ϕ, while M′ is the model
resulting from publicly announcing ϕ in the current model M. In classical public an-
nouncement logic, pre(ϕ) is ϕ merely itself; only announcements of true formulae can
result in a (possible) change of a model. The above pattern has been used in various
dynamic epistemic logics, such as arbitrary public announcement logic [15], group an-
nouncement logic [16], and action model logic [17]. Subset space logics with public
announcements introduced in [9, 10] are in this pattern as well.

Following this pattern, we propose the following definition, using the subset space
instead of model updates:

X , x, O |= [ϕ]ψ iff X , x, O |= pre(ϕ)⇒ X , x, �ϕ�O |= ψ,

where �ϕ�O = {y ∈ O | X , y, O |= ϕ}, and X , x, O |= pre(ϕ) iff x ∈ �ϕ�O ∈ O. In
other words, an announcement can be made only when the truth set of the announced
formula under the current neighborhood is indeed a valid sub-neighborhood.

We have a few more remarks on the formula pre(ϕ). The definition of the meaning
of pre(ϕ) (i) makes it a precondition stronger than merely ϕ, (ii) behaves like an exe-
cutability check of ϕ in the sense of [18–20], and (iii) is in the flavor of the �-operator
under the classical neighborhood semantics for modal logic.

3.2 Logics and Expressivity

We will work with the languages EL and PAL, of course, reinterpreted in the subset
semantics (defined below).
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Definition 6 (Subset semantics). The following is a simultaneous definition of satis-
faction for EL and PAL. Given a subset model X and a scenario (x,O),

X , x, O �|= ⊥
X , x, O |= p iff x ∈ V (p)
X , x, O |= ¬ϕ iff X , x, O �|= ϕ
X , x, O |= ϕ ∧ ψ iff X , x, O |= ϕ & X , x, O |= ψ
X , x, O |= Kϕ iff ∀y ∈ O. X , y, O |= ϕ
X , x, O |= [ϕ]ψ iff x ∈ �ϕ�O ∈ O ⇒ X , x, �ϕ�O |= ψ

where �ϕ�X,O = {y ∈ O | X , y, O |= ϕ} is the truth set of ϕ in X at O. We often
hide the parameter X of �ϕ�X,O (and simply write �ϕ�O ), as it is usually clear from the
context. Validity is defined as usual. Note that �ϕ�O ⊆ O always holds. �
We shall call the above defined semantics subset semantics, in comparison to Kripke
semantics. As discussed in Section 3.1, we are interested in the sentence pre(ϕ), which
is interpreted in subset semantics by

X , x, O |= pre(ϕ) iff x ∈ �ϕ�O ∈ O.
It is easy to verify that pre(ϕ) is definable in PAL by ¬[ϕ]⊥. We treat pre(ϕ) as an
abbreviation of ¬[ϕ]⊥, as long as it is not primitive in the language.

Proposition 7. For any ϕ, ψ ∈ PAL, the following hold:

1. |= ¬pre(⊥)
2. |= pre(ϕ)→ ¬pre(¬ϕ)
3. |= pre(ϕ)→ ϕ

4. |= pre(ϕ)→ pre(pre(ϕ))
5. |= Kϕ→ pre(ϕ)
6. |= ϕ implies |= Kϕ

7. |= pre(ϕ)→ K(ϕ→ pre(ϕ))
8. |= ¬(ϕ→ pre(ϕ))→ K¬pre(ϕ)
9. |= (ϕ↔ ψ)→ (pre(ϕ)↔ pre(ψ))

10. �|= pre(ϕ→ ψ)→ (pre(ϕ)→ pre(ψ))
11. |= ϕ implies |= pre(ϕ)

Proof. 1 through 3 are easy. We first show 4 here. For any X = (X,O, V ) and any
epistemic scenario (x,O), suppose X , x, O |= pre(ϕ). Then, �ϕ�O ∈ O, and therefore
�pre(ϕ)�O = {y ∈ O | X , y, O |= pre(ϕ)} = {y ∈ O | y ∈ �ϕ�O ∈ O} = �ϕ�O .
Hence, X , x, O |= pre(pre(ϕ)) iff x ∈ �pre(ϕ)�O ∈ O iff x ∈ �ϕ�O ∈ O iff
X , x, O |= pre(ϕ). Thus, we have X , x, O |= pre(pre(ϕ)) under the supposition.
Now we show 5. X , x, O |= Kϕ iff ∀y ∈ O. X , y, O |= ϕ. Therefore �ϕ�O = O, and
so x ∈ �ϕ�O ∈ O. Hence X , x, O |= pre(ϕ). Other proofs are omitted. "#
We now move on to discussing the expressive power of the defined languages.

Definition 8 (Partial bisimulation). Given any two subset models, X = (X,O, V )
and X ′ = (X ′,O′, V ′), a non-empty relation �p between ES(X ) and ES(X ′) is
called a partial bisimulation between X and X ′, if the following hold for all (x,O) ∈
ES(X ) and (x′, O′) ∈ ES(X ′) such that (x,O) �p (x′, O′):
Atom For any propositional variable p, x ∈ V (p) iff x′ ∈ V (p);
K-forth If y ∈ O, then there is y′ ∈ O′ such that (y,O) �p (y′, O′);
K-back If y′ ∈ O′, then there is y ∈ O such that (y,O) �p (y′, O′).
We write (X , x, O) �p (X ′, x′, O′), if X �p X ′ links (x,O) and (x′, O′). �
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Proposition 9 (EL-invariance of partial bisimulation). Partial bisimulation implies
EL-equivalence. Namely, for any subset models X and X ′, any (x,O) ∈ ES(X ) and
(x′, O′) ∈ ES(X ′),

(X , x, O) �p (X ′, x′, O′) ⇒ ∀ϕ ∈ EL. (X , x, O |= ϕ⇔ X ′, x′, O′ |= ϕ).

Theorem 10. PAL is strictly more expressive than EL (in subset semantics).

Proof. We show that thePAL-formula pre(p) is not equivalent to any EL-formula. By
Proposition 9, it suffices to show that pre(p) can distinguish two subset models which
are partially bisimilar. Consider two subset models X = ({x, y}, {{x}, {x, y}}, V )
and Y = ({x, y}, {{x}}, V ) with V (p) = {x, y}. The relation {((x, {x, y}), (x, {x})),
((y, {x, y}), (x, {x}))} reveals (X , x, {x, y}) �p (Y, x, {x}). But X , x, {x, y} |=
pre(p) while Y, x, {x} �|= pre(p). "#

Theorem 11. The following PAL-formulae are valid (with p ∈ PROP):

[ϕ]⊥ ↔ ¬pre(ϕ)
[ϕ]p ↔ pre(ϕ)→ p
[ϕ]¬ψ↔ pre(ϕ)→ ¬[ϕ]ψ

[ϕ](ψ ∧ χ)↔ [ϕ]ψ ∧ [ϕ]χ
[ϕ]Kψ ↔ pre(ϕ)→ K[ϕ]ψ
[ϕ][ψ]χ ↔ [pre(ϕ) ∧ [ϕ]pre(ψ)]χ.

4 Translations between Kripke Semantics and Subset Semantics

We work in the languagePAL. As a convention, we denote by PALK the logic resulting
from interpreting PAL in Kripke models (i.e., standard public announcement logic),
and by PALS the result of interpreting the same language in subset models. We write K
for the set of all S5 Kripke models, and S the set of all subset models.

It is well known that in the single-agent setting, everyS5model is equivalent to an S5
model whose component relation is a universal relation, i.e., a model (M,∼, V ) such
that ∼= M ×M . In this section we implicitly assume (without loss of generalisation)
that all S5 models are of this kind. The reason is that it simplifies the presentation, in
particular because these S5 models are quite similar to standard subset models, as the
reader will see.

Definition 12 (K-S-translation). We define a translation κ : K → S as follows. Let
M = (M,∼, V ) be an S5 model. Its translation, κ(M), is the subset model (X,O, ν),
such that X = M , O = {�ϕ�M|ψ |ϕ, ψ ∈ PAL}, and ν = V . �

Theorem 13 (κ-equivalence). Given an S5 model M = (M,∼, V ), and m ∈ M ,
for any PAL-formulae ϕ and α such that M,m � α, it holds that M|α,m � ϕ iff
κ(M),m, �α�M |= ϕ.

Proof. By induction on ϕ. Let κ(M) = (X,O, ν). Note that i) for any ϕ, �ϕ�M|� =
�ϕ�M , and ii) X ∈ O, since X = ���M . The base case and Boolean cases are easy to
verify.
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M|α,m � Kψ iff ∀n ∈ �α�M . M|α, n � ψ (note that ∼= M ×M)
iff ∀n ∈ �α�M . κ(M), n, �α�M |= ψ (IH)
iff κ(M),m, �α�M |= Kψ.

M|α,m � [χ]ψ
iff M|α,m � χ⇒M|α|χ,m � ψ
iff M|α,m � χ⇒M|(α ∧ [α]χ),m � ψ (cf. [3, Proposition 4.17])
iff κ(M),m, �α�M |= χ⇒ κ(M),m, �α ∧ [α]χ�M |= ψ (IH)
iff m ∈ �χ��α�M ∈ O ⇒ κ(M),m, �χ��α�M |= ψ (∗)
iff κ(M),m, �α�M |= [χ]ψ.

We show (∗) in the above. First show that the antecedents match. Bottom up is clear;
from top down, m ∈ �χ��α�M is also clear. From �χ�M|α = �χ��α�M which is guar-
anteed by IH, it follows that �χ��α�M ∈ O by the definition of κ. Then we show that
the consequents are equivalent. It suffices to show �α ∧ [α]χ�M = �χ��α�M under the
condition M,m � α. This is easy from definitions and IH. "#

Corollary 14. Given an S5 model M = (M,∼, V ), and m ∈ M , for any PAL-
formula ϕ, M,m � ϕ iff κ(M),m,X |= ϕ, where X is the domain of κ(M).

Corollary 15. PALK is not weaker than PALS , i.e., all validities of PALS are also
validities of PALK .

But is PALK (strictly) stronger than PALS , namely, is there a PAL-formula which is
valid in PALK but not in PALS? The answer is yes. Recall that the K-axiom for pre,
i.e., pre(ϕ→ ψ)→ (pre(ϕ)→ pre(ψ)), is not valid in PALS (Proposition 7.10). This
formula is valid in PALK , since in PALK it is equivalent to (ϕ → ψ) → (ϕ → ψ).
This translation illustrates a similarity between the pre-operator under subset semantics
and the �-operator under neighborhood semantics (as we already mentioned in Section
3.1), giving weaker logical principles than under Kripke semantics.

We obtain standard public announcement logic by restricting the class of subset mod-
els. Let X = (X,O, V ) be a subset model. We say X is a public announcement subset
model (PASM for short), if O = {�ϕ��ψ�X |ϕ, ψ ∈ PAL}. Namely, X being a PASM
requires that:

– (“All evidence is announceable”) for all O ∈ O, there exists PAL-formulae ϕ and
ψ such that O = {x | X , x, �ψ�X |= ϕ}, i.e., O = �ϕ��ψ�X ; and

– (“All announcements are evidence”) for all ϕ and ψ, �ϕ��ψ�X ∈ O.

Theorem 16 (Correspondence). Every S5 model is equivalent to a PASM, and vice
versa. That is, given a pointed S5 model, there exists a pointed PASM satisfying exactly
the same PAL-formulae; and given a pointed PASM, there exists a pointed S5 model
satisfying exactly the same PAL-formulae.

Proof. Given an S5 model M, let κ(M) = (X,O, V ). It suffices to show that κ(M)
is a PASM. We show that �ϕ�M|ψ = �ϕ��ψ�X for every PAL-formulae ϕ and ψ. First,
�ψ�M = �ψ�X , for m ∈ �ψ�M iff M,m � ψ iff (by Corollary 14) κ(M),m,X |=
ψ iff m ∈ �ψ�X . Therefore, m ∈ �ϕ�M|ψ iff M|ψ,m � ϕ iff (by Theorem 13)
κ(M),m, �ψ�M |= ϕ iff κ(M),m, �ψ�X |= ϕ iff m ∈ �ϕ��ψ�X .
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Given a PASM X = (X, {�ϕ��ψ�X |ϕ, ψ ∈ PAL}, V ), it suffices to show that
there exists an S5 model M such that κ(M) = X . Let M = (X,X × X,V ), then
κ(M) = (X, {�ϕ�M|ψ |ϕ, ψ ∈ PAL}, V ). We get κ(M) = X as �ϕ�M|ψ = �ϕ��ψ�X

is already shown above. "#

We immediately get soundness and completeness of the standard axiomatisation of
PAL, with respect to public annuouncement subset models:

Corollary 17. The axiomatisation PAL (Fig. 1) is sound and complete with respect to
the class of all PASMs.

In the next section we study axiomatisations of the full class of subset models.

5 Axiomatisations

We introduce axiomatisations for public announcement logic under subset semantics,
and show that they are sound and complete with respect to all subset models. Similarly
to the notations PALK and PALS , we denote by ELK and ELS the static epistemic
logic (for the language EL) interpreted in Kripke semantics and subset semantics, re-
spectively.

5.1 Axiomatisation of EL
In Section 2.1 we noted that S5 axiomatises ELK . In this section we show that it also
axiomatises ELS . Namely, we show that S5 is sound and complete with respect to the
class of all subset models.

Theorem 18 (Soundness of S5). S5 is sound with respect to the class of all subset
models. That is, for all EL-formula ϕ, !S5 ϕ implies |= ϕ.

Proof. !S5 ϕ implies !SSL ϕ, and the theorem follows from soundness of SSL. "#

Completeness is also straightforward. Consider a subset model (X,O, V ) with a sce-
nario (x,O). Since there is no update operator in the language, the set O of all opens is
equivalent to the singleton set {O} for no other opens are accessible. Thus the neighbor-
hoodO is simply an equivalence relation. The pointed subset model ((X,O, V ), (x,O))
can therefore be truth-preservingly translated into a pointed S5 model. We leave out the
formal proof of the following theorem.

Theorem 19 (Completeness of S5). The axiomatisation S5 is strongly complete with
respect to the class of all subset models. "#

5.2 Axiomatisation of PAL
We introduce a new language EL+ for technical reasons. It adds to EL the clause
pre(ϕ) explicitly, i.e., it has the following grammar rule:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ |Kϕ | pre(ϕ).
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Satisfaction is defined just as that for EL and PAL (in subset semantics; Section 3),
except that the pre-operator is now primitive. Clearly, EL+ is as expressive as PAL
(see the reduction principles in Theorem 11).

The axiomatisation EL+ of EL+ (Fig. 3) is obtained by adding to S5 the axioms
Tpre, 4pre, Int1, Int2, KP and Cl.

(PC) Instances of all tautologies (K) K(ϕ → ψ) → Kϕ → Kψ
(T) Kϕ → ϕ (5) ¬Kϕ → K¬Kϕ
(Tpre) pre(ϕ) → ϕ (4pre) pre(ϕ) → pre(pre(ϕ))
(Int1) pre(ϕ) → K(ϕ → pre(ϕ)) (Int2) ¬(ϕ → pre(ϕ)) → K¬pre(ϕ)
(KP) Kϕ → pre(ϕ) (Cl) (ϕ ↔ ψ) → (pre(ϕ) ↔ pre(ψ))
(MP) � ϕ & � ϕ → ψ ⇒� ψ (N) � ϕ ⇒ � Kϕ

Fig. 3. EL+. Some axioms are redundant. E.g., T can be derived from KP and Tpre.

Theorem 20 (Soundness of EL+). EL+ is sound with respect to the class of all subset
models. That is, for any EL+-formula ϕ, !EL+ ϕ implies |= ϕ.

Proof. For any axiom of EL+, if it is an EL-formula, then we can see that it is also an
axiom of S5. Therefore, its validity follows from the soundness of S5. The validity of
all the extra axioms are shown in Proposition 7. "#

For completeness of EL+, given a consistent set Φ of EL+-formulae, it suffices to find
a subset model for it. For S5 the canonical model method can be used, but this does not
work for EL+ because the pre-operator has impact on the open sets in a subset model.
Therefore, we use a more flexible model construction method. Instead of building a
canonical model which uses the set of all maximal consistent sets of formulae (MCSs)
as it domain, we rather pick up the MCSs that we need, and build a model stepwise. This
method is derived from the step-by-step method (see, e.g., [21, Chapter 4]), although we
construct a model “row by row” rather than a countable series of finite approximations
of a desired model. Using this method, we get the following:

Theorem 21 (Completeness of EL+). The axiomatisation EL+ is strongly complete
with respect to the class of all subset models.

We now move on to PAL. The axiomatisation PAL is given in Fig. 4. It contains all
axioms and rules of EL+, together with the reduction principles introduced in Theorem
11 as axioms. A subtlety is that we need to make sure that the reduction axioms are not
circular. This is shown by the following.

Definition 22 (Complexity of PAL-formulae). The complexity c : PAL → N is
defined as follows:
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(PC) Instances of all tautologies (K) K(ϕ → ψ) → Kϕ → Kψ
(T) Kϕ → ϕ (5) ¬Kϕ → K¬Kϕ
(Tpre) pre(ϕ) → ϕ (4pre) pre(ϕ) → pre(pre(ϕ))
(Int1) (pre(ϕ) → K(ϕ → pre(ϕ)) (Int2) ¬(ϕ → pre(ϕ)) → K¬pre(ϕ)
(Cl) (ϕ ↔ ψ) → (pre(ϕ) ↔ pre(ψ)) (KP) Kϕ → pre(ϕ)
(MP) � ϕ & � ϕ → ψ ⇒� ψ (N) � ϕ ⇒� Kϕ
([]p) [ϕ]p ↔ (pre(ϕ) → p) ([]¬) [ϕ]¬ψ ↔ (pre(ϕ) → ¬[ϕ]ψ)
([]∧) [ϕ](ψ ∧ χ) ↔ ([ϕ]ψ ∧ [ϕ]χ) ([]K) [ϕ]Kψ ↔ (pre(ϕ) → K[ϕ]ψ)
([][]) [ϕ][ψ]χ ↔ [pre(ϕ) ∧ [ϕ]pre(ψ)]χ

Fig. 4. Axiomatisation PAL, where any formula of the form pre(ϕ) is a shorthand for ¬[ϕ]⊥

c(⊥) = 0
c(p) = 1
c(¬ϕ) = 1 + c(ϕ)

c(ϕ ∧ ψ) = 1 +max(c(ϕ), c(ψ))
c(Kϕ) = 1 + c(ϕ)
c([ϕ]ψ) = (4 + c(ϕ)) · c(ψ).

Proposition 23. i) c(ϕ) > c(ψ) if ψ is a subformula of a PAL-formula ϕ; and ii) for
all the five reduction axioms of the form α↔ β, c(α) > c(β). "#

Now, by Theorem 11 and the soundness of EL+, we easily get soundness of PAL.
Completeness of PAL is also easy: from the completeness of EL+, any SSL validity
is an EL+-theorem, and thus also a PAL-theorem (of course, in terms of the language
PAL). We state these results as follows.

Theorem 24 (Soundness and completeness). PAL is sound and strongly complete
with respect to the class of all subset models. "#

6 Discussion

In this paper we defined a natural interpretation of the language of public announcement
logic in subset models. The resulting logic is strictly weaker than PAL. We studied the
expressivity of some variants of the language, and proved completeness with respect to
the complete model class. On a suitably restricted model class it coincides with PAL,
giving an alternative semantics for this logic.

As mentioned in the introduction, there is existing work [8–10] which is seemingly
close to the work presented in this paper, in that public announcement operators are
interpreted in subset space structures, but this closeness is only superfiscial. In partic-
ular, the subset space plays no role in the interpretation of the public announcement
operators in [8–10]; it is only used to interpret the effort modality, while the public an-
nouncement operators are interpreted by updates on the current epistemic range. If the
language used in these papers is restricted to the PAL language, as in the current paper,
the subset space plays no role at all. The goal of the current paper is, on the other hand,
exactly to give an account of public announcements in terms of subset spaces.

In this paper we considered only the single-agent variant of PAL. This is both for
simplicity of presentation, and because although there have been several proposals for
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multi-agent extensions of subset space logic [9, 22–24] none of them seem adequate,
having problems with the semantics of nested formulae [9, 24] or not being extensions
of standard multi-agent epistemic logic with a knowledge operator for each agent [22,
23]. However, we believe that the results of this paper can be relatively easily extended
to a suitably defined multi-agent version of subset space logic. The classical subset
space logic is known to be decidable [14], or more precisely, PSPACE-complete [10].
We are interested in a complexity result for PAL (in subset semantics). Also of interest
for future work is extensions with arbitrary refinement operators and the relationship to
arbitrary public announcement logic [15] and group announcement logic [16], as well
as action model logic [17].
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