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Abstract. The Inspector/Executor is well-known for parallelizing loops
with irregular access patterns that cannot be analyzed statically. The
downsides of existing inspectors are that it is hard to amortize their
high run-time overheads by actually executing the loop in parallel, that
they can only be applied to loops with dependencies that do not change
during their execution and that they are often specifically designed for
array codes and are in general not applicable in object oriented just-in-
time compilation.

In this paper we present an inspector that inspects a loop twice to
detect if it is fully parallelizable. It works for arbitrary memory access
patterns, is conservative as it notices if changing data dependencies would
cause errors in a potential parallel execution, and most importantly, as
it is designed for current multicore architectures it is fast – despite of its
double inspection effort: it pays off at its first use.

On benchmarks we can amortize the inspection overhead and outper-
form the sequential version from 2 or 3 cores onward.

1 Introduction

Just-in-time compiled object-oriented script languages like JavaScript [3] are get-
ting important and heavily used in practice1 and their use is no longer restricted
to small, short-running or interactive applications. But they are not well-suited
for the multicore future as, in general, they do not offer any means to express
parallelism. Sequential JavaScript code runs in every web browser and will there-
fore face the fate of every sequential code in the foreseeable multicore future.
But due to the dynamic typing and due to the fact that such codes in general
are not the typical regular array-based codes known from scientific programs,
well-known results from automatic parallelization of high-performance codes are
hardly applicable. Hence, unless/until there is some way to express parallelism

� For this work the author has spent time at Microsoft Research during his sabbatical.
1 As of March 2011, www.tiobe.com reports that about 35% of today’s code is written
in dynamically typed languages and that in the last five years about half of the most
used programming languages have been scripting languages.
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in those languages, run-time parallelization is the only viable way to go – es-
pecially since the dynamic typing renders even fewer loops amenable to static
parallelization than usual. Consider the following JavaScript example:

var a = [{v:1}, {v:1}, {v:1} ...];
var b = [a[0], a[1], a[2] ...];
for(i = 0; i < 10.000; i++){

a[i].f = 2 * b[i].v;
}

...
...

...

Two complications in this (pseudo-)code cause traditional parallelizers to fail.
The first problem is that a[] and b[] are arrays of references to objects that
reside on the heap instead of arrays of primitive types. As a[i] and b[j] can
refer to the same object parallelizers can no longer work on array indices but
they must consider general memory addresses and data dependences that forbid
parallel execution which are hard to detect by means of alias analysis. The second
problem is that the code writes to the field f of the a-objects. Although there
might be some objects that already have this field; for others the field is created
on demand at the moment of the assignment.

In addition to work on privatization and on detection of reductions [12], most
work on run-time parallelization is based on the inspector/executor idea of Saltz
et al. [13]. Their idea is that in a first loop, an inspector performs a dry-run of
the loop and looks at all array indices that the loop will touch – without actually
executing the operations of the given loop. If certain addresses are touched by
more than one iteration and not just for reading, then there is a data dependence
that requires that these iterations are performed in their original order, i.e., not
in parallel to each other. If there are no such dependencies, then the loop is
fully parallelizable; otherwise the loop is partially parallelizable in so-called wave
fronts. All those iterations of the original loop are scheduled to a single wave
front that can be executed in parallel to each other as they do not have any
cross-iteration dependencies to each other. Dependencies only exist to iterations
that are scheduled to other wave fronts and that are hence separated by at least
one synchronization barrier.

The general problem is that the dry-run takes time as the inspector must
evaluate all addresses and must keep track of each of these addresses in a book-
keeping data structure to detect potential dependencies. The longer this inspec-
tion takes, the more parallelism must be found so that the total time needed
for both the inspector plus the subsequent executor (that executes all the loop’s
iterations in wave fronts) is still smaller than a pure sequential execution of the
original loop. The runtime of the inspector is thus the most important aspect
and the crucial stumbling block of the whole idea.

There are four responses to this challenge. The first is optimistic/speculative,
i.e., to execute the loop in parallel and check whether data dependencies oc-
curred. In that case some form of roll-back purges the wrong effects and restarts
with the original sequential loop. (Check the literature for thread level spec-
ulation [14] or transactional memories [5] for solutions.) Note that the opti-
mistic approach cannot avoid the book-keeping cost for detecting dependencies.
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Book-keeping must still be fast. The second response is an amortization argu-
ment: the inspector/executor approach is only applied for loops with compute
intensive bodies that do much work with few array elements. (In some early
papers [6] the authors added a few (and at that times slow) trigonometric func-
tions for the mere purpose of making their benchmarks look nice.) The third
response is a second-degree amortization argument. If the data dependencies are
not changed by the loop itself, then the inspector can be run once and its result
can later be used for many parallel executions of the loop at hand. This works
well, if for example the parallelized loop is buried in an outer loop. Unfortunately,
such a so-called schedule reuse [10] often does not work in dynamically typed
script languages or on real-world problems [7], since in general no static analysis
can assure that the data dependencies will not change. Finally, the fourth coun-
termeasure is to perform the inspection itself in parallel to save time. However,
when two parallel inspectors try to register in a book-keeping data structure that
a single address is being touched, this will – at least conceptually – require slow
synchronization or critical sections to guard the tracking data structure. Thus,
it is essential to avoid such synchronization wherever possible. This is even more
difficult on modern multicores as their memory systems are typically not sequen-
tially consistent and cores might see changes at different times. And even with
the synchronization demands solved, the individual effort for registering every
single address must be kept tiny and without branches to keep the processor
pipelines busy.

The following section presents such an inspector that detects if a loop can
be fully executed in parallel. The main idea is to inspect the loop twice, but
with only a single synchronization barrier and memory fence in-between. Our
inspector’s book-keeping effort for registering every single address is tiny – just
a few machine instructions with only one conditional branching instruction. It
amortizes easily and its complexity is in the order of the complexity of the loop
to be parallelized (instead of being in the order of the size of the main memory).
We show-case the performance of double inspection in Sec. 3 before we have a
quick look at the related work in Sec. 4 and conclude.

2 Double Inspection

2.1 Basic Idea – Overly Conservative

The main idea of the double inspection is to inspect the loop in two phases, each
of which is done in parallel by a set of inspector threads. To ease understanding
we discuss a simplified and overly conservative version of the double inspection
approach first. This version cannot parallelize loops with loop-independent de-
pendencies.2 The two subsections that follow will remove this restriction and
they will refine and optimize the idea.

2 A loop-independent dependence is a data-flow dependence that already exists in the
loop body even if the loop control structure is taken away.
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We assume that the inspector is deterministic so that each phase will observe
the same sequence of memory accesses. For a formal view on our inspector,
we start with a set of definitions. Let U(I) be the set of all memory addresses
from which iteration I reads. (Note that we talk about addresses and not array
indices.) D(I) is the set of all memory addresses to which iteration I writes.
W (A) is the set of iterations that write to the memory address A.

Foreach iteration I of the loop do (maybe in parallel):
(1): If ∃ u ∈ U(I) with W (u) �= ∅ then there is a flow or anti dependence.

(This is overly conservative as we will discuss in Sec. 2.2.)
(2): If ∃ d ∈ D(I) with |W (d)| �= 1 then there is an output dependence.

Note that it would be possible to find all dependencies of one iteration I by
iterating through the corresponding W set for every address in U(I) and D(I).

We now reduce W (A) to an arbitrarily selected W ′(A). Every W ′(A) holds
only one arbitrary element of W (A). We can use a similar algorithm with these
sets. Step (1) stays unmodified, as we only check whether the set is empty and
do not care about the elements or their number. Step (2) has to change slightly.
As the size of the set W ′(A) is known to be one, we now check whether the
element in W ′(d) is I:

Step (2’): If ∃ d ∈ D(I) with W ′(d) �= I then there is an output dependence.

With the modified sets W ′ we are no longer able to find all dependencies of an
iteration I because the information about some dependency may be discarded.
But we are still able to detect, if there are any dependencies. If W (d) has more
than one element and W ′(d) consists of the element I, Step (2’) will not detect
the dependence for iteration I. But it will of course detect the dependence for
all other elements in W (d).

We represent all sets W ′ by means of an array used. Each used[A] in this
array holds one element of the set W (A). An empty set is represented by the
special value null. Parallel inspector threads fill the array used in the first loop
of the double inspection, the pre-registration loop and register all memory
addresses to which the inspected loop writes. To do so, there is a copy of the
original loop in which each of the writes is replaced by a macro that performs the
book-keeping. After the writes are gone, dead code elimination purges almost
everything expect for the macros (and for the relavent control structures).

In the running example, with thread-specific values for lwb and upb, the pre-
registration loop of the inspector would therefore be:

for(i = lwb; i < upb; i++){
preregister(hash(&a[i].f), i); //only for writes

}

Note that instead of the real addresses, we use hashed versions to make sure
that the book-keeping array stay small. The smaller it is, the more likely are
false positives. In garbage-collected languages that may move around objects the
“hashed” value needs to survive the collector’s activities. Our current prototype
ignores that and uses the hash function (ptr<<3)&0xffff.

The pseudo-code of the inspector’s pre-register macro is:
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int used[]; //shared array, used by all inspector threads
void preregister(int addr_hsh, int iteration){

used[addr_hsh] = iteration;
}

Note, that at one point of time several inspector threads might write to the same
slot of the book-keeping array used. This is fine and one of the main design
principles of double inspection, as our only requirement is that the machine
architecture makes sure that one of the threads will win, i.e., when all inspector
threads have finished, one uncorrupted iteration number will be in the books. It
is irrelevant that write operations will be buffered in the store buffer or in the
caches of the individual cores. We only have to make sure that there is a single
synchronization barrier with a memory fence after this first inspection pass.

After this first pass, the inspector threads perform their second pass over all
the iterations. This time, in a checking loop, we check both for the reading and
writing memory accesses whether they cause dependencies and hence render the
original loop as not fully parallelizable.

Here is the checking loop for the running example (again, everything is re-
moved except for the relevant control structures):

for(i = lwb; i < upb; i++){
read(hash(&b[i].v), i)
write(hash(&a[i].f), i);

}

The macros for checking are shown below.

void write(int addr_hsh, int iteration){
if(used[addr_hsh] != iteration) alert(); //alert, if someone else wrote

}
void read(int addr_hsh, int iteration){
if(used[addr_hsh]) alert(); //alert, if ever written

}

Let’s look at the write first. If an inspector thread is the only one that has
pre-registered that an iteration has written to a certain address, it will find in
the second pass that the iteration number is still in the books, and everything is
fine. If however, there are more than one iterations that write to an a address, at
least one of the inspectors will detect a difference either because the thread itself
has registered two iteration numbers or because its iteration number has been
overwritten by another inspector thread. The asynchronous pre-registrations can
happen without synchronization and in any order, since at least one of the in-
spector threads will find a different value in the second pass. Hence, output
dependencies (= two writes to the same address by different iterations) will be
detected – the alert will flag the loop as not fully parallelizable.

In the same way, the inspector that checks an address for reading will flag a
dependence if that address has been pre-registered (i.e., it is written to) at all.

This basic double inspection is overly conservative, since even loops that only
have loop-independent dependencies will be flagged as not fully parallelizable.
For example, even if a loop iteration just reads a value and updates it with-
out any interference from other iterations, this basic double inspector signals a
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dependence as the updated address has already been pre-registered when the
checking loop tests the read access and finds some non-null entry in the books.

In inspector/executor systems it is crucial that the inspector and the execu-
tor follow the same control paths. Being conservative helps, because data value
dependent execution paths will be recognized.3

Let’s make the inspector more aggressive now. Sec. 2.3 will avoid to re-
initialize the book-keeping array for every inspection.

2.2 First Improvement: Tolerate Flow Dependences

The naive approach to extend the basic version to ignore loop-independent de-
pendencies is to replace the null-check in the read-macro. This “improved” ver-
sion of the macro would only flag a dependence if some other iteration had
written to an address that is read in the current iteration.

void read(int addr_hsh, int iteration){
if(used[addr_hsh] && (used[addr_hsh] != iteration)) alert();

}

Unfortunately, this is too simplistic. The problem are dependencies that are a
result of the computations in the loop itself. Consider the following example:

int A[4] = {0,1,2,3}
for(int i=0; i<3; ++i){

A[i] = i+1;
A[A[i]] = i+1;

}

In this example, just registering and checking the addresses of A[i] and A[A[i]]

will not detect any conflicts as A[A[i]] stays equal to A[i] because the inspector
is a dry-run and does not execute the computations/assignments. The data de-
pendences that prevent full parallelization in this example are however a result of
these modifications. A flow dependence that reads a value and later contributes
to an overwriting of it, is ok as the assignment is in a way the last thing that
happens to that memory address. In contrast, an anti-dependence that writes
a value first and later (re-)reads it (or something it depends on), might change
dependencies. Thus, inspectors that are based on a dry-run can ignore loop-
independent flow dependences but they have to be conservative and signal a
potential threat to parallelizability upon a loop-independent anti-dependence.

The insight for an efficient implementation is that if there is a loop-carried
dependence for a certain memory address, then the checking-loop will find a
mismatch of iteration numbers at some point. If there are only loop-independent
dependencies for that address, then only one inspector thread reads and modifies
the corresponding slot of the book-keeping array. As no synchronization and
memory consistency measures are needed to guard against interfering inspector
threads in the checking loop, we can use a bit of this slot to detect the nature of a
loop-independent dependence. Upon a write, this so-called flow bit is set. When

3 We apply a pre-test to stay away from loops with conditional branches that depend
on loop-external side effects.
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a read finds the flow bit already set, there is an anti-dependence and hence a
threat to full parallelizability. If the read precedes the write, the read finds the
flow bit still un-set and the check remains quiet.

It is crucial to implement this efficiently. To do so, we (for now) use the
least significant bit of the used integer values. The pre-registration registers
2*iteration which shifts all bits to the left and lets the least significant flow
bit un-set. In the checking loop, write ignores the flow bit in the comparison, but
then sets it by assigning 2*iteration+1. The comparison in read is sensitive to
the flow bit. If the loop body has written to an address before, the read-macro
will flag a parallelizability problem. Writes after reads are ok.

We expect the iteration numbers to be non-negative, fitting into 31 bits.
A guard just before the inspector loop checks the lower and upper bounds to
ensure that no overflows occur in the actual inspector.

void preregister(int addr_hsh, int iteration){
used[addr_hsh] = 2 * iteration;

}
void write(int addr_hsh, int iteration){

if((used[addr_hsh] | 1) != (2 * iteration + 1)) alert();
used[addr_hsh] = iteration * 2 + 1;

}
void read(int addr_hsh, int iteration){
if(used[addr_hsh] && (used[addr_hsh] != iteration * 2)) alert();

}

On our benchmarks it has improved the speed of book-keeping by about 2% on
average that write does not compare used[addr hsh]&(~1) to 2*iteration.
The reason is that the compiler can keep 2*iteration+1 in one iteration variable
when unrolling the checking loop, whereas the bitmasking code would need two
iteration variables.

2.3 Second Improvement: Avoid Re-initialization

Up to now the inspectors have to re-initialize the book-keeping array used for
every loop that has to be inspected. To avoid re-initialization, we turn used into
an array of 64 bit values. The upper 32 bits are used for a generation number
plus the extra bit needed to tolerate flow dependencies. The generation counter
base is incremented once for every loop to be inspected. Only after MAX INT/2

inspections, that is almost never, the used-array needs to be re-initialized.

long used[]; //shared array, used by all inspector threads
int base = 0;
void preregister(int addr_hsh, int iteration){

used[addr_hsh] = (base<<33) + iteration;
}
void write(int addr_hsh, int iteration){

if(((int32*)&used[addr_hsh])[0] != iteration) alert();
((int32*)&used[addr_hsh])[1] = 2 * base + 1;

}
void read(int addr_hsh, int iteration){

if(((used[addr_hsh] - (base<<33)) ^ iteration) > 0) alert();
}
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An optimization insight is that write does not have to check whether the value
is from the correct generation, since it has to be since each value a write checks
has been written by a corresponding preregister. Hence write only compares
the lower 32 bit to iteration which automatically also ignores the flow bit.
After the comparison the flow bit is set in the upper int.

Our x86-64 assembler code is fast and only needs five instructions, namely
lea and mov to compute the hash value and to access the booked value, a cmp,
a (short) conditional jump jne, and another mov for the assignment. A register
holds 2*base+1 as it is fixed for the whole inspection.

A straightforward implementation of read would first check whether the value
in the books is from the current generation and only then look at the iteration
numbers. That would result in two conditional jumps per read. On current
pipeline architectures with branch prediction this turns out to be too slow. It is
crucial to avoid the jump on a generation mismatch. To do so, there is the xor

in the read-operation. We first subtract the current base-value from the value
in the book in the upper int (base<<33 is a pre-computed fixed value that is
kept in a register). If the value in the books originated from an earlier version,
then the result is negative, which is ok, as there is no dependence. If the value
is from the same generation but from a different iteration, then the result of the
xor is positive. The value is also positive, if after subtracting base and xor-ing
away the iteration number, only the flow bit remains switched on. Hence, with
a simple subtraction and an xor, we merge the generation test, the iteration
test, and the flow test into a single conditional jump. Moreover, in the case of
x86-64, the result of the comparison to 0 is implicitly remembered in status bits
after the xor operation, so that no explicit machine instruction is needed to
perform the comparison. Thus, the read-macro also needs just five machine
instructions (lea, mov, sub, xor, and jg).

As an alternative to generation numbers one could use two sets of book-
keeping arrays. While one set is being used for inspection the other is cleaned.
However, since current multicore processors do not yet have an abundance of
cores, we need all of them so that inspection plus execution performs faster than
the sequential loop.

3 Benchmarks

For the measurements we have used a single Intel Core i5 760 chip (4 cores) run-
ning at 2.80 GHz with 8 MB shared cache and 8 GB of RAM (DDR-1333). The
machine runs Windows 7 x64. We have used the Visual Studio 2010 compiler.4

We choose four fully parallelizable benchmarks to test our inspector’s per-
formance. The loops under consideration are tiny, i.e., 3–5 lines of code long.
We extracted them from the SunSpider JavaScript benchmarks, where the loops

4 We have also performed measurements on an Intel Xeon X7560 ”Nehalem-Ex” chip
(8 cores + hyperthreading) running at 2.27 GHz with 24 MB shared cache and 512
GB of RAM (DDR3-1333). This machine runs Linux 2.6.32. We have used the GNU
g++ 4.4.3 compiler. We found the same overall behavior and only show i5 times.
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Fig. 1. Sequential performance and parallel performance with double inspection. Num-
bers show the runtimes of the parallelizable loop without framework setup on 1-4 cores.

have significant runtime which we determined with the SPUR tracing JIT [1].
We have implemented them in C/C++ since this made it easier to interact with
our C-based inspection framework. As can be seen in Fig. 1, the pre-registration
loop, the checking-loop, and the executor scale nicely and from two cores on
outperform the sequential execution on a single core. (On em3d, we need 3 cores
to see a speedup.) So even if the benchmark loops are only executed just once,
double inspection and parallel execution are faster than executing the loops se-
quentially. The cost of the inspection is amortized immediately, i.e., without
schedule and schedule reuse or speculation.

Dist calculates the distance between pairs of 2D points. What rules out static
parallelization are the indirections: another array holds pointers to the 2D points
that need to be used in the distance computation. This is similar to traversing a
linked list of objects and applying a side-effect free method to each of the objects.
Although this is parallelizable, there is the underlying container implementation
whose links and pointers are only known at runtime. In Dist there are four read
accesses and one write access per iteration. This explains the relation of the time
spent in the pre-registration versus the checking loop.

Em3d propagates electro magnetic waves that are stored in a bipartite graph
with many indirections. In our benchmarks we have a used an input graph that
can be processed in parallel. Computing the indirections, i.e., the addresses of
the data that is needed at run time is costly. While the sequential execution only
needs to do this computation once, we (currently) re-compute the information in
both inspector loops and in the executor. Hence, two cores are not sufficient to
compensate for the extra cost – we only see speedups from three cores onward.
The checking loop is so much slower here, since there are 20 reads for each write.

Spec-norm calculates the spectrum norm of a parameterized matrix with
a matrix-vector product as the hot loop. We have included this benchmark
to demonstrate that our technique is even applicable and achieves good per-
formance on typical numeric problems. The loop in this benchmarks has 4865
reads for one write. Due to the normalization to the sequential execution time,
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the cost of pre-registration cannot be seen in the graph. Execution takes longer
than inspection, because many computations are irrelevant for the dry-run.

3d-morph is a 3d graphics algorithm that does (slow) trigonometric compu-
tations in its hot loop. This is another worst-case benchmark as a static analysis
could have detected the parallelizability. In contrast to Spec-norm, there are only
write operations. Hence pre-registration and checking take about the same time.

4 Related Work

A number of parallel inspectors have been developed in the past that use a
critical section to guard the book-keeping data structures, for example [9,16]. To
check whether the availability of a highly optimized atomic machine instruction
on today’s multicore machines (like xchg, cmpxchg, . . . ) helps those types of
inspectors, we have designed and optimized such a basic inspector that also only
uses a tiny number of machine instructions for the book-keeping. Whenever this
basic inspector sees a read or a write of an address, it upgrades the state of a
corresponding slot in a used-array by conceptually calling the inlined read- or
write-macro given below in pseudo-code.5 Again, instead of the real addresses,
we use hashed versions to make sure that the book-keeping array remains small.

const int NO_ACCESS = 0;
const int READ = 1;
const int WRITE = 2;

int used[]; //shared array, used by all inspector threads

void read(int addr_hsh) {
if(xchg(&used[addr_hsh], READ) == WRITE)) alert();

}

void write(int addr_hsh) {
if(xchg(&used[addr_hsh], WRITE) != NO_ACCESS)) alert();

}

This inspector is also very conservative as it even signals a dependence if an
address is touched more than once from the same iteration and not just for
reading. An extended version of this inspector that funnels the iteration number
into the slots of the used-array to avoid an alert if an iteration reads and later
writes to the same address was significantly slower.

Again, we added a generation counter to avoid re-initialization cost and found
a way to do the read- and write-macros with just a single conditional jump.
Both macros are very light-weight, except for the atomic xchg instruction, which
dominates execution time due to the necessary synchronization. We feel that
it would be hard to construct a faster inspector that relies on a synchronous
access to a book-keeping data structure. Hence, this xchg-algorithm is the most
competitive representative of this line of related work.

5 An xchg machine instruction (InterlockedExchange on Windows) atomically writes
the second argument into the address given by the first argument. It also returns
the value that has been at that address before the assignment.
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Fig. 2. Comparison to xchg-times. Times of the inspector only, taken on 1-4 cores. The
runtime of the executor is not shown as it would be the same regardless of the type of
inspector used.

int base = 0; //shared

void read(int addr_hsh) {
if(xchg(&used[addr_hsh], READ) == base + WRITE)) alert();

}

void write(int addr_hsh) {
if(xchg(&used[addr_hsh], WRITE) > base + NO_ACCESS)) alert();

}

These results shown in Fig. 2 demonstrate that even on today’s multicore archi-
tectures such types of inspectors are (still?) not fast enough and that parallel
inspectors need to be lock free, as our double inspection is. The benchmark em3d
is missing in Fig. 2, since the xchg-algorithm is overly conservative, detects a
loop independent flow dependence, and hence signals that the loop cannot be
parallelized. On spec-norm the xchg-algorithm does not scale well (even on the
8 core chip). The bottleneck is the bus traffic needed to implement the locking.

Other inspectors try to actually compute wave fronts and deal with partially
parallelizable loops, e.g. [11]. Leung and Zahorjan [8] have introduced the ideas
of sectioning and bootstrapping and have demonstrated that these ideas help
in speeding up parallel inspectors that compute wave fronts. But our double
inspection deliberately stays away from computing wave fronts and just decides
whether a loop is fully parallelizable or not. The reason is, that all the known
wave front computing algorithms spend too much time in their book-keeping.

For a comparison, we have used sectioning to parallelize the wave front algo-
rithm by Yang et al. [15]. This algorithm firstly is straightforward to parallelize,
secondly requires fewer book-keeping data than other wave front algorithms, and
finally can (in contrast to others) also handle all types of dependencies. We have
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Fig. 3. Comparison to wave front algorithm. Times from taken on 1-4 cores.

optimized their algorithm by removing time consuming array dereferencing and
indirection. This also allowed to avoid re-initialization of the book-keeping data
structures. In addition, we have fixed a bug. The appendix gives the resulting
pseudo-code of the fastest wave front algorithm we know.

Fig. 3 also shows that even with our optimizations, computing wave fronts
is slow on those of our benchmarks that have indirect and more read accesses.6

In addition to a slower inspection, execution suffers from extra synchronization
barriers as the resulting wave fronts of all inspectors are concatenated. Even on
fully parallelizable loops there is at least one synchronization barrier per thread.
The result is that the time needed to compute the wave fronts cannot (easily)
be amortized by parallel execution without schedule reuse or large loop bodies.
Hence, our double inspection approach only checks for full parallelizability which
can be done much faster and is universally applicable, even in dynamically typed
codes that are hard to analyze for applicability of schedule reuse.

Other inspectors have used two phases before, e.g., [2,11]. In their first phase,
the threads usually work on a private data structure. The second phase then
merges the results from the first phase. Unfortunately, the merging phase is
usually bounded by the sizes of the arrays, instead of being bounded by the
complexity of the loop to be parallelized. For non-array codes that use heap ob-
jects, the merging phase would have a complexity that scales with the size of the
main memory/the total address space. Moreover, the number p of threads often

6 We are showing the best case for the wave front algorithm here. The code in the
appendix can fail on certain loop-independent dependencies and is not as generally
applicable as our double loop inspector. Moreover, for spec-norm and 3d-morph the
access pattern is the best case for the wave front algorithm, as in contrast to the
first two benchmarks, it causes almost no cache misses.
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comes in as an additional factor (sometimes just as log p). Our double inspection
is different because both its loops scale with the complexity of the original loop.
The number of threads only affects the cost of the single synchronization barrier
and does not come in as a multiplicative factor. Moreover, our book-keeping
data structure does not need to be re-initialized between inspector runs. And it
does not need to be scanned in its entirety in a merging phase.

Although our inspector is presented in this paper for use with a subsequent
executor, it can also be used in speculative parallelism, as suggested in [4,12].
Since the book-keeping effort of our double inspection is tiny, it can easily be
added to the speculative parallel execution without affecting its performance too
much. To implement it, the speculative execution can either be piggy-backed to
the pre-registration loop or to the checking loop of our inspector.

5 Conclusion

In this paper we have presented a fast parallel inspector that detects loops that
can be executed in parallel. The novel idea of this inspector is that parallel
threads inspect segments of the loop asynchronously. And instead of a costly
merging phase, we have those threads inspect the loops again after a single
synchronization barrier. The highly optimized implementation for the double
inspection loops on current multicore architectures makes it possible to amortize
the cost of inspection immediately – there is no longer any need for schedule
reuse. On benchmarks we can amortize the inspection overhead and outperform
the sequential version from 2 or 3 cores onward.

As a by-product, we also suggested optimizations for other types of inspectors
that are known from the related work.

Future work should study the runtime overheads in a just-in-time engine.
While one core could start executing a loop sequentially, the double inspection
could be applied to the tail/the majority of the loop iterations. And if the tail
turns out to be parallelizable, the JIT would switch. This could hide the inspec-
tion overhead. It will also be interesting to see if the technique can be extended
to perform task-level parallelization of function calls or other code regions.

Acknowledgements. We thank Wolfram Schulte and Sebastian Burckhardt
for many discussions and insights on contemporary multicore architectures, and
especially Erez Petrank for an earlier investigation of the problem space.

Appendix: A Parallel Wave Front Inspector without any
Shared Data Structures

With sectioning, we split the iteration space of a given loop into sections, each
of which is handled by a single inspector thread that uses the algorithm of [15]
with our enhancement and the bug fix. The resulting wave fronts of all threads
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are concatenated for execution. Fully parallelizable loops that are inspected and
executed with n threads need n synchronization barriers.

The arrays def and use store in which wave front a value has been writ-
ten/read before.7 The wave front of an iteration is 1 plus the maximum of all
the wave fronts of all the addresses that the iteration touches. This maximum
is computed by the read and write macros and is stored in current wf after
all addresses are touched. Before all the addresses that the iteration touches are
checked again, wf is updated to keep the wave front of the current iteration.

A second pass through all the addresses updates use and def to reflect that
the current iteration reads/writes them. The original algorithm sets the corre-
sponding slot of the use array for every read to the current iteration number.
This is a bug and can lead to wrong results. This update must happen, iff the
wave front number corresponding to the use array entry is smaller than the
wave front number of the current iteration, because when referring to the latest
iteration that reads this address, the new execution order must be considered.

Per read and per write, this algorithm needs about twice as many machine
instructions than our double inspection. And since each of the inspector threads
only works on its private data structures there is no need to synchronize. The
downside is that itis far from optimal to concatenate all the thread-local wave
fronts. The executer pays for this.

int use[]; //private per inspector thread
int def[]; //private
int wf[]; //private

int base_wf; //of inspection
int current_wf; //of iteration
int max_wf; //of inspection

void begin_iteration() {
current_wf = base_wf;

}

void read(int addr_hsh) {
current_wf = max(current_wf, def[addr_hsh]);

}

void write(int addr_hsh) {
current_wf = max(current_wf, def[addr_hsh], use[addr_hsh]);

}

void between(int iteration){
wf[iteration] = ++current_wf;
max_wf = max(max_wf, current_wf);

}

void read_update(int addr_hsh){
use[addr_hsh] = max(use[addr_hsh], current_wf);

}

void write_update(int addr_hsh){
def[addr_hsh] = current_wf;

}

Due to lack of space, we cannot show an extension of this algorithm that reuses
its book-keeping data structures instead of re-initializing it for each inspection.

7 The original algorithm stored the iterations numbers in those arrays and used the
wf array to look up the wave fronts for the iterations. We avoid this indirection.
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Again, a generation number can be funneled into the values that are written to
the arrays.
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