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Preface

On behalf of the organizers of LCPC 2011, it is our pleasure to present the
proceedings of the 24th International Workshop on Languages and Compilers
for Parallel Computing (LCPC), held September 8–10, 2011, at Colorado State
University, Fort Collins Colorado, USA. Since 1988, the LCPC workshop has
emerged as a major forum for sharing cutting-edge research on all aspects of par-
allel languages and compilers, as well as related topics including runtime systems
and tools. The scope of the workshop spans the theoretical and practical aspects
of parallel and high-performance computing, and targets parallel platforms in-
cluding concurrent, multithreaded, multicore, accelerator, multiprocessor, and
cluster systems. With the advent of multicore processors, LCPC is particularly
interested in work that seeks to transition parallel programming into the com-
puting mainstream. This year’s LCPC workshop was attended by 66 registrants
from across the globe. The Third Annual Concurrent Collections Workshop was
also co-located with the conference, and held on Wednesday, September 7, 2011.

This year, the workshop received 52 submissions from institutions all over
the world. Of these, the Program Committee (PC) selected 19 papers for pre-
sentation at the workshop, representing an acceptance rate of 36%. Each selected
paper was presented in a 30-minute slot during the workshop. In addition, 19
submissions were selected for presentation as posters during a 90-minute poster
session. Each submission received at least three reviews. The PC held an all-day
meeting on July 22, 2011, to discuss the papers. During the discussions, PC
members with a conflict of interest with the paper were asked to temporarily
leave the meeting. Decisions for all PC-authored submissions were made by PC
members who were not coauthors of any submissions.

We were fortunate to have two keynote speakers at this year’s LCPC work-
shop. Vikram Adve, University of Illinois, Urbana-Champaign, gave a talk
entitled “Parallel Programming Should Be – And Can Be – Deterministic-by-
Default,” and Vijay Saraswat of IBM Research spoke on “Constrained Types:
What Are They and What Can They Do for You.” Both talks were very well
received and elicited very interesting questions and discussions. In addition,
the technical sessions led to animated and lively discussions. Two papers were
awarded the best student presentation award (tie) and one was selected for
the best student poster award. The winers were Max Grossman (undergradu-
ate student from Rice University) for “Dynamic Task Parallelism with a GPU
Work-Stealing Runtime System” and Aleksandar Prokopec, PhD student at
École Polytechnique Fédérale de Lausanne, Switzerland for “Lock-Free Resize-
able Concurrent Tries.” The best poster award winner was Shreyas Ramalingam,
of the University of Utah, for “Automating Library Specialization Using
Compiler-Based Autotuning.”



VI Preface

We would like to thank the many people whose dedicated time and effort
helped make LCPC 2011 a success. The hard work invested by the PC and
external reviewers in reviewing the submissions helped ensure a high-quality
technical program for the workshop. The Steering Committee members and the
LCPC 2010 Organizing Committee provided valuable guidance and answered
many questions. All participants in the workshop contributed directly to the
technical vitality of the event either as presenters or as audience members. We
would also like to thank workshop sponsors, the National Science Foundation,
the Department of Energy, The Air Force Office of Scientific Research, and our
industrial sponsors, Intel and Google, for supporting the best student paper and
poster presentation awards. Finally, the workshop would not have been possible
without the tireless efforts of the entire local arrangements team at Colorado
State University.

Sanjay Rajopadhye
Michelle Mills Strout
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Automatic Scaling

of OpenMP Beyond Shared Memory�

Okwan Kwon1, Fahed Jubair1, Seung-Jai Min2,
Hansang Bae1, Rudolf Eigenmann1, and Samuel P. Midkiff1

1 Purdue University, USA
2 Lawrence Berkeley National Laboratory, USA

SJMin@lbl.gov, {kwon7,fjubair,baeh,eigenman,smidkiff}@purdue.edu

Abstract. OpenMP is an explicit parallel programming model that of-
fers reasonable productivity. Its memory model assumes a shared address
space, and hence the direct translation - as done by common OpenMP
compilers - requires an underlying shared-memory architecture. Many
lab machines include 10s of processors, built from commodity compo-
nents and thus include distributed address spaces. Despite many efforts
to provide higher productivity for these platforms, the most common pro-
gramming model uses message passing, which is substantially more te-
dious to program than shared-address-space models. This paper presents
a compiler/runtime system that translates OpenMP programs into mes-
sage passing variants and executes them on clusters up to 64 processors.
We build on previous work that provided a proof of concept of such
translation. The present paper describes compiler algorithms and run-
time techniques that provide the automatic translation of a first class of
OpenMP applications: those that exhibit regular write array subscripts
and repetitive communication. We evaluate the translator on represen-
tative benchmarks of this class and compare their performance against
hand-written MPI variants. In all but one case, our translated versions
perform close to the hand-written variants.

1 Introduction

The development of high-productivity programming environments that support
the development of efficient programs on distributed-memory architectures is
one of the most pressing needs in parallel computing, today. Many of today’s
parallel computer platforms have a distributed memory architecture, as most
likely will future multi-cores.

Despite many approaches [1–4] to provide improved programming models, the
state of the art for these platforms is to write explicit message-passing programs,
using MPI. This process is tedious, but allows high-performance applications to

� This work was supported, in part, by the National Science Foundation under grants
No. 0751153-CNS, 0707931-CNS, 0833115-CCF, and 0916817-CCF.

S. Rajopadhye and M. Mills Strout (Eds.): LCPC 2011, LNCS 7146, pp. 1–15, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 O. Kwon et al.

be developed. Because expert software engineers are needed, many parallel com-
puting platforms are inaccessible to the typical programmer. In this paper we
describe the first automatic system that translates OpenMP to MPI, and we in-
troduce the key compiler and runtime techniques used in our system. OpenMP
has emerged as a standard for programming shared memory applications due
to its simplicity. OpenMP programmers often start from serial codes and in-
crementally insert OpenMP directives to obtain parallel versions. Our aim is to
extend this ease of parallel programming beyond single shared-memory machines
to small-scale clusters.

Like OpenMP on SDSMs, this approach supports standard OpenMP, with-
out the need for programmers to deal with the distribution of data, as in HPF,
UPC, and Co-array Fortran. Previous work [5] has shown that programs could
be systematically translated by hand from OpenMP to MPI and achieve good
performance. In this work, we aim to automate this translation, using a novel
split between the compiler and the runtime system. At an OpenMP synchro-
nization point where coherence across threads is required, the compiler informs
the runtime system about array sections written and read before and after the
synchronization point, respectively; from this information the runtime system
computes the inter-thread overlap between written and read array sections and
generates the necessary communication messages. The compiler identifies and
utilizes several properties exhibited by many scientific parallel benchmarks for
efficient generation of MPI code. Our initial goal, and the focus of this paper,
is the class of applications that involve regular array subscripts and repetitive
communication patterns. Our translator accepts the OpenMP version 2 used by
the benchmarks.

This paper makes the following contributions. We

i. introduce an automatic approach for translating shared-address-space pro-
grams, written in OpenMP, into message-passing programs.

ii. introduce a novel compile/runtime approach to generate inter-thread com-
munication messages.

iii. describe the implementation of the translator in the Cetus [6] compiler in-
frastructure.

iv. present the evaluation of five benchmarks’ performance compared to their
hand-written MPI counterpart.

We measured the performance on up to 64 processors. Three out of five bench-
marks (JACOBI, SPMUL and EP) show comparable performance to the hand-
coded MPI counterpart. One benchmark (CG) follows the performance of the
hand-coded MPI version up to 16 processors and reaches 50% of the hand-coded
MPI performance on 64 processors. The fifth benchmark (FT) has superior per-
formance in the hand-coded MPI version, which we study in detail.

The remainder of the paper is organized as follows: Section 2 describes the
translation system, Section 3 presents and discusses performance results and
Section 4 discusses related work, followed by conclusions and future work in
Section 5.
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2 The OpenMP to Message-Passing Translator

The translator converts a C program using OpenMP parallel constructs into a
message-passing program. This is accomplished by first changing the OpenMP
program to a SPMD form; the resulting code represents a node program for each
thread1 that operates on partitioned data. The SPMD-style representation has
the following properties: (i) the work of parallel regions is evenly divided among
the processes; (ii) serial regions are redundantly executed by all participating
processes; and (iii) the virtual address space of shared data is replicated on all
processes. Shared data is not physically replicated - only the data actually ac-
cessed by a process is physically allocated on that process. Next, the compiler
performs array data flow analyses, which collect written and read shared ar-
ray references for the node program in the form of symbolic expressions. The
compiler inserts function calls to pass these expressions to the runtime system.
Finally, at each synchronization point, the runtime system uses the expressions
from the compiler to compute the inter-thread overlap between written and read
data and determines the appropriate MPI communication messages.

The translation system guarantees that shared data is coherent at OpenMP
synchronization constructs only, as defined by OpenMP semantics. A data race
that is not properly synchronized in the input OpenMP program might lead to
unspecified results of the translated code.

The translation system is implemented using the Cetus compiler infrastruc-
ture. We also developed the runtime library. To support interprocedural analy-
sis, we use subroutine inline expansion. Figure 1 shows an example of an input
OpenMP code and the translated code.

2.1 SPMD Generation

The input OpenMP program is converted to an initial SPMD form that is suit-
able for execution on distributed-memory systems. First, the compiler parses
OpenMP directives to identify serial and parallel regions. Second, it identifies
shared variables in these regions. Third, it partitions the iteration space of each
parallel loop among participating processes. The following subsections describe
in detail these three steps.

2.1.1 OpenMP Directives Parsing
The compiler parses OpenMP directives in the input program and represents
them internally as Cetus annotations. Cetus annotations identify code regions
and express information such as shared and private variables as well as reduction
idioms.

The compiler inserts a barrier annotation after every OpenMP work-sharing
construct that is terminated by an implicit barrier, to indicate the presence of
that barrier. No barriers are present at nowait clauses. We refer to the code
executed between two consecutive barriers as a SPMD block. The omp master

and omp single constructs in parallel regions are treated as serial regions.

1 OpenMP thread corresponds to MPI process.
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for (step = 0; step < nsteps; step++) { 

  x = 0; 

 

  /* loop 1 */ 

  #pragma omp parallel for reduction(+:x) 

  for (i = 0; i < M; i++) 

    x += A[i] + A[i-1] + A[i+1]; 

 

  printf("x = %f\n", x); 

 

  /* loop 2 */ 

  #pragma omp parallel for 

  for (i = 0; i < N; i++) 

    A[i] = ...; 

} 

for (id = 0; id < nprocs; id++) { 

  ompd_def(1, id, A, lb2[id], ub2[id]); 

  ompd_use(1, id, A, lb1[id]-1, ub1[id]+1); 

} 

 

for (step = 0; step < nsteps; step++) { 

  x = 0;   

 

  /* loop 1 */ 

  #pragma cetus parallel for shared(A) private(i) 
reduction(+:x) 

  x_tmp = 0; 

  for (i = lb1[proc_id]; i <= ub1[proc_id]; i++) 

    x_tmp = A[i] + A[i-1] + A[i+1]; 

  #pragma cetus DEF() 

  #pragma cetus USE(A[lb1[proc_id]-1:ub1[proc_id]+1]) 

  #pragma cetus barrier /* barrier 0 */ 

  ompd_allreduce(&x_tmp, &x, ...); 

 

  printf("x = %f\n", x); 

 

  /* loop 2 */ 

  #pragma cetus parallel for shared(A) private(i) 

  for (i = lb2[proc_id]; i <= ub2[proc_id]; i++) 

    A[i] = ...; 

  #pragma cetus DEF(A[lb2[proc_id]:ub2[proc_id]]) 

  #pragma cetus USE(A[lb1[proc_id]-1:ub1[proc_id]+1]) 

  #pragma cetus barrier /* barrier 1 */ 

  ompd_ptp(1); 

} 

Fig. 1. Typical code of an OpenMP program and its translated code: The runtime
library functions ompd allreduce and ompd ptp compute and perform the necessary
communication, based on the array sections given by the ompd def/use calls. These
calls have been hoisted before the “step” loop, as they are loop invariant in this example.
Cetus pragma annotations are comments only.

The compiler identifies reduction operations. Explicit omp reduction clauses
in the source program are directly represented by a reduction annotation. A
widely used practice in OpenMP programs is to code array or scalar reductions
using the omp critical or omp atomic directive constructs, where each thread
updates the global copy of the shared data using its own local copy. The compiler
also identifies these reduction patterns and provides the corresponding critical
section with a reduction annotation. The translator uses an existing algorithm in
the Cetus infrastructure to recognize these patterns. The compiler then converts
all these reductions to MPI reduction operations, as described in Section 2.3.1. In
our benchmarks, the compiler recognized all omp critical sections as reduction
patterns. Figure 1 shows how the OpenMP directives in the input code are
represented using Cetus annotations in the translated code.

2.1.2 Shared Data Identification
In preparation for communication analysis, the compiler must identify all shared
data. Variables in OpenMP parallel regions are shared by default - the OpenMP
data clauses, such as omp private and shared are not sufficient to identify
shared variables. The compiler uses an interprocedural algorithm described
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previously [7] for finding shared variables in parallel regions. The compiler up-
dates each Cetus annotation to store the shared variables and private variables
to be used in subsequent translation steps.

2.1.3 Work Partitioning
The compiler uses block distribution to divide the iteration space of a parallel
loop into chunks of approximately equal size, and then associates each chunk with
a process. The compiler inserts the code to perform this partitioning as early
as possible in the program. Under OpenMP semantics, using block distribution,
even in the presence of an OpenMP schedule clause, always leads to correct
results2. Block distribution also simplifies the symbolic expressions representing
the summarization of affine array subscripts. Before partitioning a parallel loop,
the compiler checks if all array subscripts for shared write accesses are affine
expressions. In the presence of a non-affine write array subscript (e.g., an indirect
array access), the parallel loop is not partitioned, i.e., conservatively serialized. In
ongoing work, we are developing techniques for handling irregular write memory
accesses.

2.2 Array Data Flow Analyses

Using Data Flow Analyses, the compiler collects information about written and
read shared array references in the SPMD program that may need to be commu-
nicated. For each barrier N, the compiler symbolically summarizes shared written
array references in the preceding SPMD block that reach barrier N and future,
shared read array references exposed to barrier N. The compiler passes this in-
formation to the runtime system, which generates communication, as explained
in Section 2.3.

The compiler first constructs a parallel control flow graph (PCFG). The PCFG
is essentially the control flow graph (CFG) generated for a node program. Ev-
ery statement is represented by a node in the PCFG. Every Cetus annotation
is attached to its corresponding node, except for barriers, which are converted
into special nodes. The compiler then performs the following data flow analyses:
Reaching-All Definitions analysis to compute DEF sections and Live-Any anal-
ysis to compute USE sections. A DEF section summarizes shared written array
references produced in the SPMD block preceding barrier node N. Because serial
regions are executed redundantly, their produced (written) shared data are avail-
able to all future consumer processes; therefore DEF sections need not include
those references.

The array data flow analyses are based on Cetus array section analysis [6],
which summarizes the set of array elements (i.e., the sub-arrays) that are written
or read by a program statement. The array section analysis makes use of symbolic
range analysis, which collects, at each statement, a map from integer-typed scalar
variables to their symbolic value ranges, which are represented by a symbolic
lower bound (lb) and upper bound (ub). DEF and USE sections are represented

2 See Chapter 2.5.1 of the OpenMP Specification. The other scheduling methods will
be supported in our ongoing work.
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using Cetus section [lb:ub] symbolic expression. Cetus array sections conserva-
tively describe non-affine array subscripts, such as indirect accesses. Live-Any
analysis overestimates by assuming all data is read when summarizing a non-
affine read array subscript using the infinity section expression [-INF:+INF].
Communication is optimized for [-INF:+INF] USE data sections by using MPI
collective communication operations (see Section 2.3.1). Strided affine subscripts
are represented using Cetus unit-stride array section and thus overestimated as
well. Overestimation for USE sections can cause extra communication but no in-
correct behavior. Note that DEF sections are never overestimated; as an omp for

containing irregular write array subscripts is serialized (see section 2.1.3).
After performing the array data flow analyses, the entry and the exit of each

node N in the PCFG have the following information: (i) shared write set(N)
is the set of shared written arrays in the parallel region prior to node N; (ii)
shared read set(N) is the set of shared arrays that is upward exposed at node
N; (iii) tuples of DEF sections 〈DEF i〉V , 0 ≤ i ≤ (p−1), DEFi is the DEF section
computed for process i and p is the total number of participating processes,
∀V ∈ shared write set(N); (iv) tuples of USE sections 〈USE j〉W , 0 ≤ j ≤ (p−1),
USEj is the USE section computed for process j, ∀W ∈ shared read set(N). The
compiler represents a tuple of array sections using one symbolic expression, where
this expression is a function of the processor number (proc id). The compiler
inserts Cetus annotations to show computed DEF and USE sections’ tuples at
barriers in the output code as shown in Figure 1.

2.3 Communication Generation

At a barrier, inter-process communication is needed if the DEF section for one
process overlaps with a USE section for any other process. The compiler has
identified DEF and USE sections for all barriers. The compiler inserts function
calls to pass these sections to the runtime system; it also inserts a function
call at each barrier notifying the runtime system to generate communication.
The runtime system’s role is to compute the inter-process overlapping array
sections and to generate MPI point-to-point communication if the overlap is non-
empty. An exception of this is when generating MPI collective communication;
the compiler recognizes that using collective communication instead of using
point-to-point communication is possible. The following subsections discuss in
detail the process of generating communication for each case.

2.3.1 Collective Communication Generation
The compiler generates collective communication in two cases: at reduction op-
erations and at barriers that have a [-INF:+INF] USE section overlapping with
a DEF section. These cases are recognized at compile time, where the compiler
inserts function calls to generate collective communication at the corresponding
synchronization points. The compiler does not need to inform the runtime about
DEF and USE sections in separate function calls; this information is passed in
the arguments of the collective communication function call.
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The ompd allreduce() call is used for reductions, which invokes
MPI Allreduce() collective communication. In the case of a reduction clause
in an omp for loop, the compiler creates a local copy of the reduction vari-
able, which is updated in the body of the omp for loop. An ompd allreduce()

is inserted after the omp for loop to combine the local copies into the global
reduction variable. Figure 1 shows an example of this case. If a reduction origi-
nates from a critical section (see Section 2.1.1), the compiler replaces the critical
section code with ompd allreduce().

The ompd allgatherv() is used at barriers that have a DEF section overlap-
ping with a [-INF:+INF] USE section, which calls MPI Allgatherv() collective
communication. MPI Allgatherv() gathers the data chunks modified in each
process and distributes them to all processes. Note that the relevant informa-
tion about DEF sections is passed in the arguments of the ompd allgatherv(),
as they are used as arguments for the MPI Allgatherv().

2.3.2 Point-to-Point Communication Generation
For each barrier, the compiler passes DEF and USE symbolic sections to the
runtime system. The runtime system computes the inter-process intersections of
DEF and USE sections and generates the needed MPI point-to-point commu-
nication. At each barrier N, for each shared array V ∈ (shared write set(N) ∩
shared read set(N)) and 〈USE j〉V is not [-INF:+INF], the compiler inserts the
following runtime function calls: (i) ompd def() to pass DEFi section computed
for each process i; (ii) ompd use() to pass USEj section computed for each pro-
cess j; (iii) ompd ptp() to notify the runtime system that a barrier N has been
reached. Each barrier is given a unique integer identifier by the compiler.

The translator exploits the repetitiveness property of DEF and USE sections
to make the final selection of communication at runtime more efficient. A repet-
itive section is a section whose symbolic expression is invariant with respect to
a outer serial loop(s), i.e., the same shared array references are accessed by the
same process during the execution of all iterations of outer serial loops. An algo-
rithm developed in prior work [8] is used at compile-time to verify the repetitive-
ness property of array sections. The compiler inserts function calls ompd def()
and ompd use() prior to the outermost serial loop at which array sections are
repetitive. This information needs to be passed only once; the runtime system
can repetitively reuse these sections. In our tested benchmarks, the compiler has
recognized all array sections as repetitive sections.

When reaching a barrier B, the function call ompd ptp() triggers the runtime
system to determine and generate MPI point-to-point communication. Algo-
rithm 1 depicts the underlying algorithm of this function. In the algorithm, the
intersections 〈send msgj〉 and 〈receive msgi〉 represent array sections that need to
be sent and received by a process. Because DEF and USE sections are repetitive,
the intersections 〈send msgj〉 and 〈receive msgi〉 are also repetitive. The runtime
system utilizes this property to compute these intersections once and then re-
peatedly uses them for subsequent iterations of outer loops. The is updated flag
indicates if DEF or USE sections have changed. The is updated flag is set to
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Algorithm 1. Determining and generating point-to-point communication mes-
sages. The total number of processors is p.

if is updated = TRUE then
for j = 0→ p− 1 do

if j �= proc id then
send msgj ← DEFproc id ∩ USEj

receiverj ← j
end if

end for
for i = 0→ p− 1 do

if i �= proc id then
receive msgi ← USEproc id ∩DEFi

senderi ← i
end if

end for
is updated← FALSE

end if
count← 0
for all send msgj do

if send msgj �= EMPTY then
MPI Isend(send msgj, receiverj, ...)
count← count + 1

end if
end for
for all receive msgi do

if receive msgi �= EMPTY then
MPI Irecv(receive msgi, senderi, ...)
count← count + 1

end if
end for
MPI Waitall(count, ...)

TRUE by the ompd def() and ompd use() functions and set to FALSE when
the intersections are computed. These intersections can be reused as long as
is updated is FALSE, i.e., ompd def() and ompd use() are not re-invoked.

The runtime maintains 〈send msgj〉 and 〈receive msgi〉 sections information
by storing a list of lower and upper bounds and their corresponding barrier
identifier. The translator uses asynchronous point-to-point communication to
overlap the processes’ waiting times. Figure 1 shows the inserted function call
to the runtime library at Barrier1. No function call is inserted at Barrier0
because shared write set(Barrier0) ∩ shared read set(Barrier0) is empty.

3 Performance Evaluation

This section evaluates our translation system on five benchmarks: The JACOBI
and SPMUL kernel benchmarks and CG, EP and FT from the NAS Parallel
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(a) JACOBI
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(b) SPMUL
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(c) CG
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(d) EP
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(e) FT

Fig. 2. Performance comparison between translated and MPI programs: the translated
JACOBI, SPMUL and EP perform very close to the hand-tuned MPI counterparts.
The performance difference in the CG programs results from different data partitioning
schemes of the translator and MPI programs. The FT benchmark exposes opportunities
for future work.
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Benchmarks (NPB) 2.3 [9, 10]. Each translated benchmark is compared to its
hand-tunedMPI counterpart.We use publicly available OpenMP andMPI bench-
marks. For JACOBI, we used an OpenMP version [11] and a fast MPI version [12]
that uses asynchronous communication. For SPMUL, the main computation part
of the OpenMP version is based on an implementation using compressed sparse
rows (CSR) in SPARSKIT [13], and the MPI version is also available online [14].

We performed subroutine inlining and found that it did not significantly af-
fect our performance; the difference in execution time between the original and
inlined programs is less than 0.1% for all benchmarks except for FT, where it is
around 4%.

3.1 Experimental Setup

We evaluated the performance on 32 nodes of a community cluster with two MPI
processes per node, for a total of 64 MPI processes. The nodes are connected
by an InfiniBand network, which provides 10 Gbps of bandwidth. Each node
has two quad-core Intel Xeon E5410 processors running at 2.33Ghz with 6MB
L2 caches per processor and 16GB of memory. The system is running a 64-bit
Linux kernel, version 2.6.18, and MVAPICH2 version 1.5 MPI. We compiled all
programs with gcc64 4.4.0 at optimization level 3.

We timed each benchmark ten times and recorded average, minimum and
maximum execution times. Figure 2 shows the average execution time for each
benchmark, with error bars indicating minimum and maximum times. We at-
tribute the variations primarily to network traffic of other jobs running on dif-
ferent nodes of the system. Graphs have an axis labeled “scalability” – this is
the ratio of the execution time of the serial version of the benchmark running
on one processor to the execution time of the translated benchmark running on
the number of processors indicated on the X axis.

3.2 JACOBI Kernel

JACOBI is a kernel benchmark that solves Laplace equations using Jacobi it-
eration. It uses two 2,048 × 2,048 matrices with 100,000 iterations. Figure 2(a)
compares the performance of the translated program and the hand-tuned MPI
variant. The runtime intersection between USE and DEF data results in the
same communication volume that the MPI version generates. The MPI version
is one of the fast versions that use asynchronous communication among neighbor
processes. Since our runtime system also uses asynchronous communication for
all messages, we are able to match the MPI variant’s performance.

3.3 SPMUL Kernel

SPMUL is a kernel benchmark that performs sparse matrix-vector multiplica-
tions. We used a 100,000 × 100,000 sparse matrix as input. Figure 2(b) compares
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the performance of the translated program and the hand-tuned MPI program.
The former program has two barriers. One causes point-to-point communication
to be generated and the other causes collective communication to be generated.
The communication volume at the first barrier is zero because the intersection
between DEF and USE data sections is empty; no communication is performed.
At the second barrier, the communication is done by ompd allgatherv() be-
cause the code has irregular data reads on arrays via an indirection vector, so the
USE data section is treated conservatively as [-INF:+INF]. The MPI program
uses block-striped partitioning and has one communication point where a collec-
tive communication using MPI Allgatherv() occurs. Even though the translated
program has two barriers while the MPI program has one, the actual runtime
communication patterns of the two programs are identical; the communication
volume at the first barrier is zero.

3.4 CG Benchmark

The CG benchmark implements a conjugate gradient method, with a sparse
matrix-vector multiplication taking most of the time. The benchmark has
irregular reads on arrays via an indirect vector because of its unstructured grid
computations. In addition to the irregular reads, there is an omp for loop that
has irregular writes. Our translator treats this loop as a serial region, as de-
scribed in Section 2.1.3. This serial loop execution does not significantly affect the
benchmark performance because it exists outside of the outermost time-stepping
serial loop.

The OpenMP version of the CG benchmark includes several reduction
clauses in omp for work sharing constructs. The reductions are translated into
ompd allreduce() communication by the translator.

The translated and the MPI programs have different data partitioning
schemes. The MPI version partitions the sparse input matrix using 2-D block
distribution, whereas our translation scheme partitions the input matrix using
a simple 1-D block distribution. This is because only the outer-most loop of
the matrix-vector multiply computation is parallelized in the OpenMP version.
Compared to the 1-D distribution, the 2-D block distribution of the input matrix
requires a smaller number of processors for reduction communication; it comes
at the expense of one additional transpose operation of the input matrix at the
end of the matrix-vector multiplication. The overhead of the 2-D distribution’s
transpose operation is not proportional to the number of processors. Therefore,
the 1-D distribution is superior for small numbers of processors. As the number of
processors increases, however, the 2-D distribution shows better communication
performance.

To further improve the performance of the translated version, optimization
using 2-D distribution of the input matrix is needed, and it requires the recog-
nition of matrix-vector multiplication patterns in the source program.
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3.5 EP Benchmark

The EP benchmark is a highly parallel kernel, often used to explore the upper
limit of floating point performance of a parallel system. The OpenMP version
has one omp critical section that performs an array reduction and our imple-
mentation transforms it into an ompd allreduce() function call. In addition,
one omp for work sharing construct has a reduction clause on scalar variables;
these reductions are translated into two ompd allreduce() functions. The trans-
lated code is similar to the MPI version of the EP benchmark. The MPI version
uses three MPI Allreduce() function calls. The resulting performance of the
translated code is nearly identical to the hand-tuned MPI variant, as shown in
Figure 2(d).

3.6 FT Benchmark

The FT benchmark is a kernel that solves a 3-D partial differential equation
using Fast Fourier Transforms. The code tests the communication performance
of a system because it is very message intensive. As shown in Figure 2(e), the
MPI version outperforms the translated variant substantially. Our version shows
speedup on up to 8 processors, after which the communication overhead domi-
nates.

The input FT code for our translator has a manual modification splitting
dcomplex into real and imaginary variables. This is done because the current
array section analysis does not support structured data types. The split affects
cache behavior and generates two separate MPI communication calls. We mea-
sured the split version and the structured version of the translated FT program
and found that the split version is around 20% slower than the structured version
on one MPI process.

We identified two issues related to communication. First, the MPI version
uses collective communication, but our implementation uses less efficient point-
to-point communication. Thus, making the runtime detection of the collective
communication pattern is one of the next goals of our system development.
Second, the translated code uses two additional communications not present in
the MPI version. Closer analysis revealed that performance could be improved
through partitioning methods on different iteration spaces of nested parallel
loops that consider data affinity between processes. Furthermore, more accurate
analysis of indirect array accesses – including the use of runtime methods – could
improve on the conservative handling of array sections.

We identified compiler transformation and runtime techniques based on the
knowledge above. When we applied them manually, the translated version
achieved almost identical performance of the MPI version. The automation of
those techniques is beyond the scope of this paper.

4 Related Work

An approach to extending the ease of shared memory programming to dis-
tributed memory platforms, such as clusters, is the use of a Software Distributed
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Shared Memory (SDSM) system. SDSM is a runtime system that provides
a shared address space abstraction on distributed memory architectures. Re-
searchers have proposed numerous optimization techniques to reduce remote
memory access latency on SDSM. Many of these optimization techniques aim
to perform pro-active data movement by analyzing data access patterns either
at compile-time or at runtime. In compile-time methods, a compiler performs
reference analysis on source programs and generates information in the form of
directives or prefetch instructions that invoke pro-active data movement at run-
time [15]. The challenges for compile-time data reference analysis are the lack
of runtime information (such as the program input data) or complex access pat-
terns (such as non-affine expressions). By contrast, runtime-only methods predict
remote memory accesses to prefetch data based on recent memory access behav-
ior [16]. These methods learn the communication pattern in all program sections
and thus incur overheads even in those sections that a compiler could recognize
as not being beneficial. The idea of combined compile-time/runtime solutions
has been studied [8, 17–19]. However, all these page-based SDSM approaches
incur inherent overheads when detecting shared data accesses using a page-fault
mechanism. Another drawback of this model is substantial false-sharing due to
the page granularity at which SDSMs operate. Our system does not rely on any
expensive operating system support, such as a page-fault mechanism; it gen-
erates MPI messages to communicate any size of array sections, which avoids
false-sharing.

Another important contribution towards a simpler programming model for
distributed memory machines was the development of High Performance For-
tran (HPF) [1]. There are significant differences between our OpenMP-to-MPI
translation approach and that of HPF. Even though HPF, like OpenMP, pro-
vides directives to specify parallel loops, HPF’s focus is on the data distribution
directives and automatic parallelization guided by those directives. Data par-
titioning is explicitly given by these directives and computation partitioning is
guided by them [20]. Data typically has a single owner, and computation is per-
formed by the owner of written data, i.e., the owner computes rule. In contrast to
HPF, OpenMP has no user-defined data distribution input. Thus, computation
partitioning is not derived from data distribution information. Instead, compu-
tation is distributed among processors based on OpenMP directives. Therefore,
unlike most HPF implementations, our execution model has no concept of the
owner computes rule.

PGAS (Partitioned Global Address Space) languages, such as UPC [3], Co-
array Fortran [4], Titanium [21], and X10 [22], are other programming paradigms
that have been proposed to ease programming effort by providing a global ad-
dress space that is logically partitioned between threads. The programmer needs
to specify the affinity between threads and data. In our work, the programmer
writes a standard OpenMP shared memory program and our system translates
this program into message-passing form for distributed memory platforms.
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5 Conclusions and Future Work

The vision of a programming system that offers a shared address space to the user
and executes applications efficiently on a distributed architecture has been elu-
sive so far. High-Performance Fortran and Software Distributed-Shared-Memory
systems have never received wide-spread acceptance. UPC and Co-array Fortran
are current systems that involve the user in decisions about data placement on
the distributed architecture. By contrast, the presented approach shows that
unmodified OpenMP applications can be translated to execute on a cluster plat-
form at performance levels close to hand-coded MPI. Our system is the first
automatic translator, and supporting runtime system, that proves the value of
automatic translation of shared memory OpenMP programs to execute on dis-
tributed memory machines. The results indicate that a high-productivity and
high-performance programming interface for modern distributed machines is
possible. As with all work on compilers and tools to support high performance
parallel programming, additional research will yield better results on a wider
range of programs.

In ongoing research, we aim to increase the scope of applications that the sys-
tem can handle. As well, immediate benefits can come from improved recognition
of collective operations at both compile time and during the program execution,
and from exploiting data affinity and advanced work partitioning schemes. An
advanced hybrid compiler/runtime technique for improving the accuracy of array
sections is also under development.
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Abstract. JavaScript has long been the dominant language for client-
side web development. The size and complexity of client-side JavaScript
programs continues to grow and now includes applications such as games,
office suites, and image editing tools traditionally developed using high
performance languages. More recently, developers have been expanding
the use of JavaScript with standards and implementations for server-
side JavaScript. These trends are driving a need for high performance
JavaScript implementations. While the performance of JavaScript imple-
mentations is improving, support for creating parallel applications that
can take advantage of now ubiquitous parallel hardware remains primi-
tive. Pipeline, data, and task parallelism are ways of breaking a program
into multiple units of work that can be executed concurrently by paral-
lel hardware. These concepts are made explicit in the stream processing
model of parallelization. Using the streaming model, an algorithm is di-
vided into a set of small independent tasks called kernels that are linked
together using first-in first-out data channels. The advantage of this ap-
proach is that it allows a compiler to effectively map computations to a
variety of hardware while freeing programmers from the burden of syn-
chronizing tasks or orchestrating communication between them. In this
paper we describe Sluice, a library based method for the specification of
streaming constructs in JavaScript applications. While the use of such
a library makes concurrency explicit, it does not easily result in parallel
execution. We show, however, that by taking advantage of the stream-
ing model, we can dynamically re-compile Sluice programs to target a
high performance, multi-threaded stream processing runtime layer. The
stream processing layer executes computations in a different process and
the offloaded tasks communicate with the original program using fast
shared memory buffers. We show that this methodology can result in
significant performance improvements for compute intensive workloads.

1 Introduction

Since its introduction by Netscape in the 1990’s, JavaScript – also known as EC-
MAScript – has been the dominant language for client-side web development.
The size and complexity of client-side JavaScript programs has grown consider-
ably since that time, and now includes applications such as games, office suites,

S. Rajopadhye and M. Mills Strout (Eds.): LCPC 2011, LNCS 7146, pp. 16–30, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Fine-Grained Parallelism in JavaScript Applications 17

and image editing tools traditionally developed using high performance stati-
cally compiled languages. More recently, developers have been expanding the
use of JavaScript with standards and implementations for server-side JavaScript
such as CommonJS [1] and node.js [2]. These trends are driving a need for high
performance JavaScript implementations.

While the performance of JavaScript implementations is improving, support
for creating parallel applications that can take advantage of now ubiquitous
parallel hardware remains primitive. We are aware of only one proposal, Web
Workers [3], which addresses the problem of writing parallel JavaScript software.
Web Workers is a scheme designed for browser based JavaScript where waiting
for expensive computation to complete comes at the price of decreased respon-
siveness in the rest of the user application. It allows a developer to spawn a
JavaScript module as a new thread isolated from both the spawning code and
the browser’s Document Object Model (DOM). The worker communicates with
the original code via message passing.

While the thread or process level parallelism available using a system like Web
Workers is quite useful, there are many applications that benefit from loop or
procedure level parallelism like that provided by OpenMP or Thread Building
Blocks [4] [5]. In this paper we refer to such parallelism as fine-grained paral-
lelism, in contrast to the coarse-grained parallelism provided by thread or process
level mechanisms.

Pipeline, data, and task parallelism are all ways of breaking a program into
fine-grained units of work that can be executed concurrently by parallel hard-
ware. These concepts are made explicit in the stream processing model of paral-
lelization. Using the streaming model, an algorithm is divided into a set of small
independent tasks that are linked together using first-in first-out data channels.
The advantage of this approach is that it allows a compiler to effectively map
computations to a variety of hardware while freeing programmers from the bur-
den of synchronizing tasks or orchestrating communication between them.

The most popular streaming language in the research community is currently
StreamIt [6], a language based on the ideas of synchronous data-flow [7]. Fig-
ure 1 gives a high level view of some of the constructs available in StreamIt.
Figure 1(a), shows a four stage pipeline. Each kernel receives input from the
one above it, does some work, then passes its result to the next kernel. Fig-
ure 1(b) illustrates the split-join construct. In a split-join, an input stream is
divided or duplicated between a number of children kernels and the result of
those kernels is combined into a single output stream. Figure 1(c) makes explicit
the idea that when StreamIt kernels are side effect free, multiple copies of the
same kernel can execute on different parts of the input stream. In contrast to
the split-join pattern, which is specified by the programmer, data parallelism is
handled automatically by the StreamIt compiler.

In the next section, we describe Sluice, a library based method for the spec-
ification of streaming constructs in JavaScript applications. Sluice takes the
basic constructs found in the StreamIt language and makes them available
to JavaScript developers. While the use of such a library makes concurrency
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Fig. 1. Basic streaming constructs found in StreamIt and Sluice

explicit, it does not easily result in parallel execution because of the dynamic
nature of JavaScript.

We show in Section 3, however, that by taking advantage of the characteristics
of streaming computation, we can dynamically re-compile Sluice kernels to target
a high performance stream processing runtime layer. We also show how, despite
running these specialized Sluice kernels in another processes, we can maintain
fast communication of streaming data and program state through the use of fast
shared memory buffers. Finally, in Section 4, we evaluate our implementation,
and demonstrate that our methodology can result in significant performance
improvements for compute intensive workloads.

2 The Sluice Library

In this paper, we introduce a JavaScript library called Sluice that provides several
stream processing abstractions inspired by those found in the StreamIt language.
Using the Sluice library, streaming computations consist of small procedures
called kernels communicating with one another over single input, single output
data channels called streams. Kernels operate on streams using the push and pop

operations. As in StreamIt, Sluice programs are constructed using a combination
of pipeline and split-join programming patterns.

Stream program kernels in Sluice are simply JavaScript objects containing a
method called work. This work function is called to do work on behalf of the
kernel when it is scheduled to run. Once a kernel is executing as part of a stream-
ing computation, its work function is called repeatedly by the Sluice scheduling
algorithm until the kernel finishes executing. A kernel finishes executing when it
becomes blocked on an empty input stream whose source has finished executing
or when its work function returns true. This is the only requirement of a kernel
work function – that it return a value of true if it has finished executing or
return a value of false if it can keep processing input data if more is available.
Two example Sluice kernels are shown in Figure 2.
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function Counter(cnt) {

this.i = 0;

this.cnt = cnt;

this.work = function() {

if (this.i < this.cnt) {

this.push(this.i++);

return false;

}

return true;

};

}

function Adder(arg) {

this.a = arg;

this.work = function() {

var e = this.pop();

e = e + this.a;

this.push(e);

return false;

};

}

Fig. 2. Two simple Sluice kernels. The kernel on the left implements a simple counter.
The kernel on the right adds the same value to each item popped the input stream and
pushes the result to its output stream.

The Sluice library is responsible for implementing stream communication and
for scheduling execution of the kernel work functions. Sluice schedules work
functions in a single thread using a simple round robin algorithm. When an
executing kernel is scheduled to run, its work function is called repeatedly until
it returns true (indicating that it has finished), or until it can’t proceed because
it lacks input data. In the latter case, program control is yielded back to the
scheduler, which then picks another kernel to run. If the kernel has finished, it
is simply removed from the scheduler.

When a work function is called by the Sluice scheduler, the push and pop

functions are available in the kernel’s this scope. These operations have the
same semantics as the JavaScript Array.push and Array.pop functions and by
default Sluice streams are simply mapped onto Arrays. Unlike arrays, streams
are conceptually infinite in size. The fact that they are necessary implemented
using finite buffers is hidden by the push and pop operations. When a blocking
condition is encountered during a push or pop operation, execution is yielded
back to the Sluice scheduler. Once the blocking condition passes, execution can
resume where it left off.

As in StreamIt, Sluice algorithms are constructed using two patterns: pipelines
and split-joins. A pipeline is simply a series of kernels connected together in a
producer consumer relationship. A split-join takes an input stream, distributes
it to some number of kernels, then recombines the results into a single output
stream. Pipelines and split-joins can be constructed from other pipelines and
split-joins as well as from single kernels. The following code shows how we can
create and run a three stage pipeline using the two kernels from Figure 2 and
an additional kernel that simply prints everything in its input stream:

var src = new Counter(10);

var add = new Adder(1);

var snk = new Printer();

var p = Sluice.Pipeline(src,add,snk);

p.run();
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The result of running this code is to print the numbers 1 through 10. We can
obtain the same result in a more complicated way using a split-join:

var add0 = new Adder(1);

var add1 = new Adder(1);

var add2 = new Adder(1);

var sj = Sluice.SplitRR(1, add0, add1, add2).JoinRR(1);

var p = Sluice.Pipeline(new Counter(10), sj, new Printer());

p.run();

In this example, the split-join distributes one element at a time, in a round-robin
fashion, to each of the three Adder kernels. The results of the Adder kernels are
then combined in the same round-robin manner. The entire split-join is then
used as a stage in a three stage pipeline.

The runmethod is used to execute the top level pipeline or split-join in a Sluice
computation. This is an asynchronous method. That is, it does not wait for the
Sluice computation to complete before returning. Instead, it optionally takes
as an argument a callback function that will be called when the computation
finishes. This style of asynchronous programming is very common in JavaScript.

As long as a Sluice kernel contains a workmethod that returns true or false,
the rest of the kernel and kernel work function can contain arbitrary JavaScript
code. However, as we will show in the next sections, it is advantageous for us
follow a few simple coding conventions when creating Sluice kernels. First, we
prefer that program state encapsulated in kernel objects be stored in the this

scope of that kernel object. Second, we prefer that such state be initialized
by the kernel object constructor. These conventions allow the implementation
described in the next section to more easily obtain the program information
it needs to perform optimization. A more mature implementation or one more
tightly integrated into the JavaScript engine could relax these constraints.

3 Sluice Acceleration

A key ingredient for any effective program transformation or optimization is
good program analysis. Software written using streaming patterns tends to have
several characteristics that can greatly aid program analysis. This is also true of
Sluice programs.

Using Sluice, program kernels are written in an object oriented style, encapsu-
lating program state within program kernels. Because of this, we can more easily
inspect and manipulate the state associated with a given program kernel. In ad-
dition, communication and synchronization within the streaming computation is
limited to push and pop operations on streams. Coupled with well encapsulated
state, this provides a great deal of flexibility in deciding where and when code
should execute. Finally, once a streaming computation is started by a program,
the kernels in that computation tend to execute for a long time. This mitigates
the impact of any runtime compilation, analysis, and parallelization mechanisms
which improve the performance of long running kernels.
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In this section we discuss how we can take advantage of these characteristics
to obtain higher performance and parallel execution. We describe how we com-
pile Sluice kernels written in JavaScript to target a high performance stream
processing runtime. We also describe how we provide efficient synchronization
of program state and efficient communication of streaming data between the
stream processing runtime and the JavaScript execution engine. The result is
that we enable specialized code generation and fine-grained parallelization of a
certain class of JavaScript code.

3.1 Code Generation

Specialized code generation for accelerating Sluice kernels takes place in two
steps. First we perform translation from the JavaScript source code to a low
level streaming abstraction, the Stream and Kernel Intermediate Representa-
tion (SKIR). SKIR is an instruction level representation built on top of the
Low Level Virtual Machine (LLVM) instruction set [8]. It includes all of the
LLVM instructions plus several additional instructions used to create and exe-
cute streaming computations. The second step of code generation is to compile
the SKIR representation using a just-in-time compiler provided by a SKIR run-
time layer. A detailed description of this process is outside the scope of this
paper, but it includes transformations and code generation specialized for the
streaming model. The result of the two step code generation process is optimized
machine code.

Because JavaScript applications are distributed as source code, and because
the source code for a particular function is available to the program itself, we
can implement runtime code translation as part of the Sluice user library. For
the purposes of this paper, a kernel to be accelerated is identified to the library
by the programmer. This is equivalent to using program annotations or pragmas
in a statically compiled language. Instances of kernels are translated after they
are allocated (using the new operation), but before they are added to a stream-
ing computation using the pipeline or split-join constructs. The following code
example shows how a Sluice kernel can be translated to SKIR using our current
implementation:

var k = new MyKernel(...);

sluice.toSkir(k,

function(err, ret) {

sluice.Pipeline(..., ret, ...).run();

});

In this code, the kernel k is translated to SKIR using the Sluice library’s toSkir
method. The result is added to a pipeline which is immediately executed by
calling run.

Once a kernel has been identified for optimization, its source code is parsed
and an abstract syntax tree (AST) for its work function is constructed. This
AST is then used to generate SKIR code corresponding to the original Sluice
kernel. The main problem we face in this process is the same one faced by any
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code generation system for JavaScript - mapping dynamic types to static types.
The issue is that the type of a particular variable cannot, in general, be statically
determined by a compiler whereas the machine code generated by a JavaScript
compiler or the SKIR code generated by the Sluice compiler require static types.

All high performance JavaScript implementations obtain that performance
in part by making assumptions about the types contained in a piece of code.
In trace-based compilers, type information is recorded during trace collection.
For types that remain static during trace collection, machine code specialized
to that type can be emitted [9]. In compilers employing direct translation from
JavaScript to machine code, such as the V8 compiler [10], code is emitted for
the first type seen, then patched if the type changes. Both approaches are based
on the observation that although JavaScript supports dynamic types, in practice
types remain fairly stable at runtime. Both approaches must also insert checks
into the generated machine code to make sure assumptions about types are not
violated.

For Sluice kernels written using the coding conventions discussed in Section
2, most types will be known before kernel execution. This is the direct result of
the use of encapsulated program state and the use of the stream communication
abstraction. The use of encapsulated program state means that any program
state used by the kernel is already initialized when a kernel object is passed
to Sluice for translation to SKIR. This in turn means that the Sluice compiler
can simply access the data to determine its type. The type must be rechecked
each time the kernel is executed. However, because the kernel work function
is typically called many times during kernel execution, the cost of these type
checks is very small when compared to the inline checks generated by a typical
JavaScript compiler.

The stream operations pop and push are trivially translated to SKIR as they
are supported directly by the representation. Stream communication is also the
only source of data from outside of the kernel during execution. By definition we
know that the streams contain only a single type. Thus we know that interaction
with stream objects will not result in dynamic type behavior.

A remaining source of dynamic types is from objects created during execution
of the kernel work function. For example, different types could be assigned to the
same variable depending on the path taken through an if-then-else statement.
The Sluice to SKIR compiler does not currently handle this behavior, however
this is a limitation of our current implementation, not of our approach. Existing
mechanisms such as those used in the V8 compiler could be used.

Once static type information is computed for a Sluice kernel, the system
translates the AST form of the kernel work function to SKIR code. Instead of
generating low level SKIR code (i.e. LLVM code) directly, Sluice generates C code
which includes compiler intrinsics corresponding to SKIR operations. Because
JavaScript is syntactically similar to C and because good C to LLVM compilers
already exist, this design decision simplifies our implementation enormously. The
C code is translated to SKIR code using a compiler that understands the SKIR
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intrinsics. A side benefit of this approach is that much of the compilation process
automatically runs in parallel with the Sluice program.

3.2 Offloading Kernel Execution

In addition to providing a just-in-time compiler, the SKIR runtime provides a
high performance multi-threaded scheduler. In this section we describe how the
optimized Sluice kernel generated by the SKIR compiler can be executed using
the SKIR scheduler. This scheduler provides dynamic scheduling of SKIR kernels
and is built on task-based work stealing. It executes in a separate process from
the original JavaScript program.

Because the SKIR scheduler executes as a separate process, our main challenge
is in obtaining high performance communication between offloaded Sluice kernels
and the rest of the JavaScript program. Two things must be communicated
efficiently between the separate parts of the program; these are any program
state used by offloaded kernels and any streaming communication between Sluice
kernels and SKIR kernels.

Stream communication between processes is made efficient by mapping the
streams onto lock free queues in shared memory. In SKIR, this communication is
very fast as the result of specialized code generation which inlines the required in-
structions into the program kernel. For Sluice, this functionality is provided using
stream objects implemented in C++ but made accessible through a JavaScript
module. In both cases, the runtime remapping of the stream implementation
is made possible because the program is written using the stream abstractions
provided by Sluice or SKIR and does not assume any implementation details.

It is more difficult to efficiently communicate non-stream data used by a Sluice
kernel from JavaScript to SKIR. Program state lacks the features that make
implementing streaming communication fairly easy. It is not made structured
or abstract by the programming model itself. Instead, it’s structure depends on
the algorithms used by the programmer and can vary greatly from program to
program.

We can, however, take advantage of the same Sluice programming conven-
tions that make translation feasible in the first place. Because program state is
contained in the this scope, the system can easily look up the data. That is, it
can determine the location, type and contents of a kernel’s state when its work
function is called. We also assume that because the Sluice or SKIR runtime owns
the kernel object during its execution, another part of the JavaScript program
will not attempt to alter the state of a running kernel.

Because it is intractable to figure out what parts of a kernel’s state are read
or written during an execution of its work function, all state must be copied
from Sluice to SKIR when a kernel is called. As long as the kernel is executing,
this data remains in the SKIR runtime. When the kernel finishes, the state is
returned to Sluice.

Copying data between processes can incur high overheads compared to the
granularity of computation the streaming model exposes. To reduce this overhead
as much as possible, we again use shared memory between the processes. The
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first time the program state for a particular kernel is copied, the Sluice runtime
requests a piece of shared memory from the SKIR runtime. The size of this
memory is the same as the C language struct formed by combining all the state
into a single buffer.

Each time a kernel is called to run in the SKIR layer, the kernel’s state is
copied from JavaScript into the shared memory buffer. The kernel executing in
the SKIR runtime interprets the data as a C struct, and can directly address the
data without an additional copy. When the kernel finishes execution, the shared
memory can be translated back into its JavaScript version. Thus the data is
copied twice – once as it is translated from JavaScript to the C struct at the
start of execution, and once as it is translated back to JavaScript data at the
end of execution.

4 Evaluation

In this section we evaluate the performance of our system using compute-intense
JavaScript benchmarks that fit well into the streaming model. Four of the bench-
marks are taken from the Pixastic library of image processing routines [11].
We also include a nbody physics simulation adapted from example code in the
CUDA SDK [12]. This benchmark is similar to code that might be found in a
game engine.

As written, the code found in the Pixastic library is already very close to
the form required by Sluice. We must perform only a few modifications to turn
the image processing routines into Sluice kernel objects. Because these routines
operate at the granularity of an entire image, we identify parameters that only
change between images, such as the image itself. These parameters are re-written
as kernel state that is initialized when the kernel is constructed. The rest of the
function body is placed within a kernel work function. Because the Pixastic
functions operate on an image at a time, there is little need for stream com-
munication in these benchmarks. Nevertheless, SKIR requires that a kernel has
at least one input or output stream. We fulfill this requirement by passing the
image width and height to the kernel using streams.

An example from Pixastic is shown in Figure 3. In this figure, the original
Pixastic code as well as the Sluice version are shown for the invert routine. We
run all of the Pixastic benchmarks on image data that is read from disk into
memory before timing begins. All images are in RGBA format with dimensions
of 2592x1944 (5 Megapixels).

The nbody physics benchmark is written as a three stage pipeline. Almost all
the computation takes place in the middle stage, shown in Figure 4. Each exe-
cution of this stage’s kernel work function computes the forces on single particle
due to all other particles in the system. The computed forces are pushed to the
output stream. Each execution of the entire three stage pipeline corresponds to
a single iteration of the nbody simulation. That is, it computes the force and
updates the positions and velocities (in the third stage) for all the particles in
the system.
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function invert_pixastic(params) {
var data = Pixastic.prepareData(params);
var invertAlpha = !!params.invertAlpha;
var rect = params.options.rect;

var p = rect.width * rect.height;
var pix = p*4, pix1 = pix+1;
var pix2 = pix+2, pix3 = pix+3;

while (p--) {
data[pix-=4] = 255 - data[pix];
data[pix1-=4] = 255 - data[pix1];
data[pix2-=4] = 255 - data[pix2];
if (invertAlpha)

data[pix3-=4] = 255 - data[pix3];
}
return true;

}

function invert_sluice(data, invert_alpha) {
this.data = data;
this.invertAlpha = invert_alpha;

this.work = function () {
var w = this.pop();
var h = this.pop();
var p = w * h;
var pix = p*4, pix1 = pix + 1;
var pix2 = pix + 2, pix3 = pix + 3;

while (p--) {
this.data[pix-=4] = 255-this.data[pix];
this.data[pix1-=4] = 255-this.data[pix1];
this.data[pix2-=4] = 255-this.data[pix2];
if (this.invertAlpha)

this.data[pix3-=4]=255-this.data[pix3];
}
this.push(w); this.push(h);
return false;

};
}

Fig. 3. Comparison of Pixastic code (left) with the same code ported to Sluice (right).
The code that is shown inverts all the pixels in an image.

function CalculateForces(pos_rd, softeningSquared) {
this.m_pos_rd = pos_rd;
this.m_softeningSquared = softeningSquared;
this.work = function () {

var force = [0.0,0.0,0.0];
var i = this.pop()*4;
var N = this.pop()*4;
for (var j=0; j<N; j+=4) {

var r0, r1, r2;
r0 = this.m_pos_rd[j+0] - this.m_pos_rd[i+0];
r1 = this.m_pos_rd[j+1] - this.m_pos_rd[i+1];
r2 = this.m_pos_rd[j+2] - this.m_pos_rd[i+2];
var distSqr = (r0 * r0) + (r1 * r1) + (r2 * r2);
distSqr += this.m_softeningSquared;
var invDist = 1 / Math.sqrt(distSqr);
var invDistCube = invDist*invDist*invDist;
var s = this.m_pos_rd[i+3] * invDistCube;
force[0] += (r0 * s);
force[1] += (r1 * s);
force[2] += (r2 * s);

}
var f = i/4;
this.push(f);
this.push(force[0]);
this.push(force[1]);
this.push(force[2]);
return false;

};
}

Fig. 4. The CalculateForces kernel found in the nbody benchmark. Ported from a C++
version of the benchmark found in the NVidia CUDA Software Development Kit.
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Fig. 5. Performance of Pixastic image processing routines coded as ordinary JavaScript
compared to the performance of the same routines running as Sluice kernels using the
SKIR runtime

We run our implementation of Sluice on node.js, a non-browser JavaScript en-
vironment build on top of the V8 JavaScript execution engine. Node is typically
used in the development of network applications. The single threaded scheduling
algorithm implemented by Sluice also makes use of node-fibers [13], a package
providing fibers/co-routines for node.js. All experiments are run on a 4-core Intel
i7-920 processor under Ubuntu 10.10.

4.1 Single Threaded Offload

We first evaluate the performance of our system when offloading a Sluice kernel
to a single threaded SKIR runtime. Because the Sluice and SKIR layers run as
separate processes, the offloaded kernel still runs in parallel with the rest of the
Sluice program, but we do not attempt to further parallelize the offloaded kernel.

The results of this experiment for the Pixastic kernels can be seen in Figure
5. We measure three cases: “ref” shows the performance of the original image
processing routine called as an ordinary JavaScript function whereas “skir cold”
and “skir warm” show the performance when executing the image processing
routine as a Sluice kernel using the SKIR runtime. The cold version is when
the kernel has never been seen by the SKIR runtime while the warm version is
when the SKIR runtime has already seen, processed, and cached the kernel. We
see good performance improvements for all but the smallest kernel, invert. In
this case, the overhead of acceleration is greater than the benefit. For the other
benchmarks, we see significant performance improvement due to our specialized
code generation.

The results of this experiment for the nbody benchmark can be seen in Fig-
ure 6. The Figure shows the average time per simulation iteration when using a
procedural JavaScript version of the benchmark, the three stage pipeline Sluice
version, and the Sluice version with the CalculateForces kernel offloaded to
SKIR. The results are similar to those for the Pixastic benchmark, with sig-
nificant performance improvements due to our specialized code generation in
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Fig. 6. Performance of the nbody benchmark implemented as procedural JavaScript, as
Sluice code, and as Sluice code with CalculateForces kernel running on SKIR runtime

Fig. 7. Per image processing time for the Pixastic benchmarks implemented when a
varying number of images are processed using Sluice task parallelism

most cases. For the smallest test, a system of only 100 particles, the overhead of
acceleration overwhelms the benefit.

4.2 Parallel Kernel Execution

In this section we evaluate the potential for parallel execution created by our
system.

Task Parallelism. Although we did not parallelize the Pixastic benchmarks,
we can still execute multiple instances of a particular kernel in parallel. This
is the simplest form of task parallelism exposed by Sluice programs. To test
this, we created a Sluice program that sequentially (because JavaScript is single
threaded) creates, compiles, and executes a varying number of image kernels
using the SKIR runtime. We give the runtime 8 worker threads (equal to the
number of hardware threads) to run the kernels, so up to 8 kernel instances
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Fig. 8. Speedup of the nbody benchmark due to data parallelism when the Calcu-
lateForces kernel is run on a multi-threaded SKIR runtime compared to the same
benchmark using a single-threaded SKIR runtime.

can run in parallel. This scenario is similar to what might be encountered in a
compute intense server-side JavaScript application.

Figure 7 shows the results of running a varying number of Pixastic kernels on
different images concurrently using Sluice task parallelism. It shows the mean
time required to process a single image. We observe that as the number of
executing kernel instances increases, the system starts to effectively mask much
of the overhead associated with running Sluice kernels under SKIR. Eventually,
however, the lines on the graph flatten, because the system cannot go faster
than the sequential parts of the program (the individual kernels and the Sluice
runtime). The larger edge detection and sharpen kernels show the best results as
they contain the most computation to overlap with other work. Likewise, invert
and sepia show the worst improvement, because their execution is dominated
by sequential overhead.

Data Parallelism. Stream program kernels are often written so that they
read, but do not modify, their internal state. When this is true – as it is for
the CalculateForces kernel in the nbody benchmark – it may be profitable to
run multiple copies of a single kernel instance on different portions of the input
stream. This is how the stream programming model exposes data parallelism.

Figure 8 shows the results of executing the nbody benchmark with the
CalculateForces kernel offloaded and with data parallelism enabled in the
SKIR runtime. The figure shows results for 1024, 2048, 3072, and 4096 par-
ticles in the simulated system while using 2, 4, or 8 worker threads in the SKIR
runtime. The benchmark runs several hundred iterations of the simulation and
reports mean time per iteration. The speedup versus using a single threaded
SKIR runtime is shown. All of the simulation sizes show performance improve-
ment of 2-2.5x due to parallelism when utilizing the entire test machine. We point
out that because JavaScript fully utilizes one of the cores in our four core test
machine, and because this experiment measures scaling in the non-JavaScript
portion of execution, we don’t expect that the best case speedup is much greater
than 3x.
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5 Related Work

To date, there has been little work on providing programmers with tools to write
parallel JavaScript code. Most efforts, such as TraceMonkey [9] and V8 [10], have
gone into providing increased sequential performance.

Web Workers is an API for browser based JavaScript that allows a program-
mer to spawn JavaScript modules that operate in the background of a web ap-
plication [3]. It provides process-like isolation as well as a basic message passing
mechanism. Web Workers provide parallelism at the script or module level. In
contrast, the system presented in this paper provides parallelism at a much finer
granularity. It allows procedure level parallelism between program kernels as
well as loop level parallelism within side effect free kernels. In addition, our sys-
tem provides a mechanisms for high-performance communication and memory
sharing.

There has been previous work on using the parallelism provided by modern
hardware to speed JavaScript execution. Mehrara, et. al. use speculative par-
allelism to offload guard code to a secondary thread [14] as well as to perform
speculative loop parallelization [15]. Their work has different goals from our
own, as they provide increased sequential performance through automatic par-
allelization, while we provide programming tools for parallelism. A similar, but
higher level approach is taken by Crom [16], a system that speculatively executes
JavaScript in web browsers. Crom seeks to reduce latency in web applications
by speculatively executing event handlers in a parallel thread that is a shadow
copy of the browser context. Like our own system, it requires programmer par-
ticipation.

6 Conclusion

This paper has proposed a methodology for introducing fine-grained parallelism
into JavaScript applications. In particular, it has shown how to take advantage
of the stream processing programming model to isolate program state and ab-
stract inter-task communication in a way that allows parallelization within the
single threaded, dynamically typed, JavaScript execution environment. This pa-
per also introduced Sluice, a software library providing StreamIt-like constructs
for JavaScript. While the approach presented is not applicable to all program-
ming styles and patterns, we have shown it can result in significant performance
improvements for well defined compute-intensive code. These performance im-
provements come from parallelization as well as from specialized code generation.
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Abstract. This paper evaluates an automatic power reduction scheme of
OSCAR automatic parallelizing compiler having power reduction
control capability when multiple media applications parallelized by the
OSCAR compiler are executed simultaneously on RP2, a 8-core multi-
core processor developed by Renesas Electronics, Hitachi, and Waseda
University. OSCAR compiler enables the hierarchical multigrain parallel
processing and power reduction control using DVFS (Dynamic Voltage
and Frequency Scaling), clock gating and power gating for each processor
core using the OSCARmulti-platform API. The RP2 has eight SH4A pro-
cessor cores, each of which has power control mechanisms such as DVFS,
clock gating and power gating. First, multiple applications with relatively
light computational load are executed simultaneously on the RP2. The
average power consumption of power controlled eight AAC encoder pro-
grams, each of which was executed on one processor, was reduced by 47%,
(to 1.01W), against one AAC encoder execution on one processor (from
1.89W) without power control. Second, when multiple intermediate com-
putational load applications are executed, the power consumptions of an
AAC encoder executed on four processors with the power reduction con-
trol was reduced by 57% (to 0.84W) against an AAC encoder execution
on one processor (from 1.95W). Power consumptions of one MPEG2 de-
coder on four processors with power reduction control was reduced by
49% (to 1.01W) against one MPEG2 decoder execution on one processor
(from 1.99W). Finally, when a combination of a high computational load
application program and an intermediate computational load application
program are executed simultaneously, the consumed power reduced by
21% by using twice number of cores for each application. This paper con-
firmed parallel processing and power reduction by OSCAR compiler are
efficient for multiple application executions. In execution of multiple light
computational load applications, power consumption increases only 12%
for one application. Parallel processing being applied to intermediate com-
putational load applications, power consumption of executing one appli-
cation on one processor core (1.49W) is almost same power consumption
of two applications on eight processor cores (1.46W).
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1 Introduction

Multicore processors have been widely used in a variety of applications such
as embedded systems like mobile devices, games, Digital TV, robots and au-
tomobiles, PCs, workstations, and high-performance computers. In embedded
systems, various types of multicore processors, for example IBM Toshiba Sony
CELL/BE[1], Hitachi Renesas Waseda RP1[2], RP2[3] and RPX[4], ARM NEC
MPCore[5], Fujitsu FR1000[5], Panasonic UniPhier and so on, are used for a
wide variety of applications such as image and audio processing, and real-time
controls. In these embedded multicore platforms, the reduction of power con-
sumption is a crucial problem to extend battery life. Currently, many multi-
core supports DVFS and/or Power Gating for each processor coare controled by
OS. However, OS does not control power status inside an application program
pallalelized for multiple cores. The OSCAR compiler has realized an automatic
power control scheme using DVFS and Power Gating for each core on a multicore
with automatic parallelization of an application program under the constraints
of the minimum time execution or the satisfaction of real-time deadline, or real-
time execution. However, no paper has evaluated power consumed by multiple
application programs parallelized and power controlled by a compiler. This paper
evaluates performance and consumed power on a 8-core homegeneous multicore
RP2 integrating eight 600MHz SH4A processor cores with power control func-
tion of 100%, 50%, 25%, 0% of Frequency statuses in a one clock transition time,
1.4V, 1.2V and 1.0V three levels of voltage states and power gating for individual
cores in 5 micro seconds power shut-down and 30 micro seconds power recovery
when multiple media applications parallelized and power-controlled by OSCAR
comoiler are executed simultaneously. Also, the parallel and power controlled C
programs are generated using OSCAR multi-platform API, which are a set of
about 20 directives for C and Fortran programs using 4 directives from OpenMP,
such as Section, Flush, Critical and Thread-private and new directives for power
control, realtime management, DMA transfer, distributed shared memory man-
agement, group barrier synchronization and so on. The generated C or Fortran
parallel program using OSCAR API[6] can be compiled by ordinary OpenMP
compilers. The rest of this paper is organized as follows. Section 2 provides an
overview of the OSCAR compiler and its power reduction scheme. Section 3
describes RP2 low-power multicore and characteristic of evaluated applications.
Section 4 shows the power consumption evaluation of OSCAR compiler power
reduction scheme on RP2. Finally, Section 5 summarizes the main conclusion of
this paper.

2 Multigrain Parallel Processing

The OSCAR compiler exploits multigrain parallelism, coarse grain parallelism,
loop level parallelism and near fine grain parallelism from the whole source pro-
gram. The OSCAR compiler consists of the Fortran77 and restricted C frontend,
middle path for multigrain parallelization and several backbends for different
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target machines. The compiler generates coarse grain tasks called macro-tasks,
analyzes parallelism among the macro-tasks by the earliest executable condi-
tion analysis,schedules macro-tasks to threads or thread groups statically, apply
power reduction scheme, generates parallel code with OSCAR API.

2.1 Macro-Task Generation

In multigrain parallelization, a program is decomposed into three kinds of coarse
grain tasks, ormacrotasks (MTs), such as a block of pseudo assignment statements
(BPA) like a basic block, a repetition block (RB) like a loop and a subroutine block
(SB) like a subroutine [7–11]. Macro-tasks can be hierarchically defined inside each
sequential loop which cant be parallelized, and a subroutine block.

2.2 Earliest Executable Condition

After generation of macro-tasks, data dependencies and control flow among
macro-tasks are analyzed in each nested layer, and hierarchical macro-flow graphs
(MFGs) as shown in Figure 1 (a) representing control flow and data dependencies
among macro-tasks are generated[7, 8]. Next, to extract coarse grain task par-
allelism among macro-tasks, Earliest Executable Condition analysis[7, 8, 12, 13]
is applied to each macro-flow graph. It analyzes control dependencies and data
dependencies among macro-tasks simultaneously and determines the conditions
on which macro-tasks may begin their execution earliest. By this analysis, a
macro-task graph (MTG)[7, 8, 12] as shown in Figure 1 (b) is generated for each
macro-flow graph. This graph represents coarse grain task parallelism among
macro-tasks.

2.3 Macro-Task Scheduling

Static scheduling or dynamic scheduling is chosen for each macro-task graph. If a
macro-task graph has only data dependencies and is deterministic, static schedul-
ing at compilation time is selected. Generally, static scheduling is more effective
than dynamic scheduling since it can minimize data transfer and synchroniza-
tion overhead without runtime scheduling overhead. If a macro-task graph is
non-deterministic by conditional branches among coarse grain tasks, dynamic
scheduling at runtime is selected to handle the runtime uncertainties. Dynamic
scheduling routines for non-deterministic macro-task graphs are generated by
OSCAR compiler and inserted into a parallelized program code to minimize
runtime scheduling overhead.

2.4 Power Reduction Scheme[14]

The power reduction scheme determines suitable voltage and frequency for each
MT after Macro-task scheduling. Figure 2 (a) shows MTs 1, 2 and 5 are assigned
to PE0, MTs 3 and 6 are assigned to PE1, MTs 4, 7 and 8 are assigned to
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Fig. 1. Earliest Executable Condition Analysis

PE2. Edges among tasks show data dependence. OSCAR compiler estimates
execution time of each MTs, then decide critical path which is longest execution
time of the MTG. Defining execution time of the target MTG, parallel processing
of the MTG after DVFS has to satisfy the given deadline. OSCAR compiler with
the power reduction scheme decides optimal frequency and voltage of each MT
to minimize the whole energy consumption. The detail of voltage and frequency
scaling algorithm is described in [14]. After determining voltage and frequency of
MTs, OSCAR compiler with the power reduction scheme tries to apply dynamic
power shutdown, clock gating or frequency scaling to reduce unnecessary energy
consumption including static power consumption by idle processors. OSCAR
compiler recalculates MTGs after DVFS like Figure 2 (b) and selects power
gating, clock gating, frequency scaling or no control for each idle part, considering
the period of idle time and its overhead.

2.5 OSCAR API Code Generation[6]

The OSCAR API is designed on a subset of OpenMP for preserving portabil-
ity over a wide range of multicore architectures. An OpenMP-based design can
support both C and Fortran programs. However, in order to avoid the com-
plexity of a backend compiler and runtime routines, only three directives are
chosen from the OpenMP, such as parallel sections, flush, and critical, which
enable one-time single level thread creation. Note that nested parallelism is not
required for the OSCAR API. In addition to these three directives, one OpenMP
directive (threadprivate) is extended, and 12 directives are newly added to
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Fig. 2. OSCAR compiler’s power control scheme

support the parallel optimizations carried out using the OSCAR compiler, whose
specifications are simple as possible.

3 RP2 Multicore and Characteristic of Applications

This chapter describes RP2, 8-core multicore processor developed by Rene-
sas Electronics, Hitachi and Waseda University and characteristic of evaluated
applications.

3.1 RP2 Multicore

RP2[3] is 8 cores multicore processor developed by Renesas Electronics / Hitachi
/ Waseda University supported by NEDOMulti core processors for realtime con-
sumer electronics project. RP2 integrate eight SH-4A cores. Figure 3 shows the
architecture of RP2. Each processor core has CPU, cache memory, local memory
(ILRAM, OLRAM), distributed shared memory (URAM), and DMAC (DTU).
RP2 guarantee hardware cache coherence by MESI protocol until 4 cores. How-
ever, software must guarantee cache coherence 5 cores and above. Frequency of
each core can be changed to 600MHz, 300MHz, 150MHz, and 75MHz indepen-
dently. In addition supply voltage of entire core can be changed to 1.40V, 1.20V,
and 1.00V. Figure 4 shows RP2 power status. Light Sleep stop CPU clock sup-
ply. Normal Sleep stop clock supply of processor core except URAM and DMAC.
Resume Standby stop URAM clock supply and shutdown processor core except
URAM. CPU off shutdown entire core.
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Fig. 3. Architecture of RP2 Multicore

Status Clock Gating Power Shutdown Power Consumption [W] 

FULL (600MHz,1.40V) - - 5.99 

MID (300MHz, 1.20V) - - 2.61 

LOW (150MHz,1.00V) - - 1.27 

VERYLOW (75MHz, 1.00V) - - 1.00 

Normal Sleep CPU, cache, ILRAM, OLRAM - 0.725 

Resume Standby URAM CPU, cache, ILRAM, OLRAM, DTU 0.563 

CPU off - CPU, cache, ILRAM, OLRAM, DTU, URAM 0.554 

 
Fig. 4. Power Status of RP2 Multicore

3.2 Evaluated Applications

This section describes specifications of evaluated applications.

AAC Encoder. This program read audio data and process Filter bank, MS
stereo, Quantization, and Haffman coding for each frame. Each frame can be
processed parallel. Encoding process are unrolled by number of processor. Dead-
line of power control is 23ms per one frame. This AAC encoder is implemented
by Parallelizable C, which is referred to AAC-LC encoding program of Renesas
Electronics and Hitachi.

MPEG2 Decoder. MPEG2 decoder stages are Variable Length Decoding
(VLD), Motion Compensation, Inverse Quantization and Inverse DCT. MPEG2
decoder has slice parallelism and macroblock parallelism. Each parallelism has
sequential execution on VLD. In this paper, the code of MPEG2 decoder is im-
plemented with reference of MediaBench[15] with the description explained in
Section5.1. Furthermore, VLD for a slice is divided into searching a slice header,



Power Consumption Evaluation of OSCAR Compiler 37

called Prescanning[16], and decoding a slice. Decoding slices is executed in par-
allel, so that parallel execution part is increased. The OSCAR compiler extracts
slice level parallelism. Deadline of power control is 33ms per one frame.

Characteristics of Application. Figure 5 shows characteristics of each ap-
plication. As a light computational load application, AAC encoder is selected.
AAC encoder can fulfill deadline by VERYLOW (75MHz) power status. 19 sec-
onds audio data is inputted. AAC encoder process 19 seconds audio data by
2.7 seconds. AAC encoder has enough waiting time for deadline. As a middle
computational load application, AAC encoder (deadline 3 seconds) and MPEG2
decoder (resolution 352x128) is selected. AAC encoder need 2.7 seconds by one
core, so this AAC encoder must run at FULL power status when using only one
core. MPEG2 decoder process 352 pixel x 128 pixel video by 8.3 seconds by using
one core. In addition continuous I/O has been issued by bit processing of Pres-
canning. As a high computational load application, MPEG2 decoder (resolution
352x240) is selected. MPEG2 decoder process 352 pixel x 240 pixel video by 17.6
seconds by using one core and 11.1 seconds by using two cores. MPEG2 decoder
must use two cores or above to fulfill deadline (15 seconds). This paper execute
these applications multiple and mesure power consumption of entire chip.

Load Application Characteristic 

Low AAC encoder 
deadline 19 seconds  

enough waiting time to deadline 
computational load is relatively light 

Intermediate AAC encoder 
deadline 3 seconds  

no waiting time to deadline 
computational load is relatively light 

Intermediate MPEG2 decoder 
resolution 352x128  

no waiting time to deadline 
computational load is relatively high 
frequent I/O access 

High MPEG2 decoder 
(resolution 352x240) 

parallel processing is need to meat deadline 
computational load is relatively light 
frequent I/O access 

 
Fig. 5. Characteristic of Application

4 Performance of Simultaneous Execution of
Multiple Application Programs Parallelized and
Power-Controlled by OSCAR Compielr

This section evaluates execution performance and consumed power on the RP2
eight core homogeneous multicore with DVFS and power gating capabilities
when multiple media application programs, which are automatically parallelized
and power-controlled by OSCAR compiler, are executed simultaneously sharing
eight cores.
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4.1 Performance of Simultaneous Execution of Multiple
Low-Processing-Load Applications

This sub-section describes consumed power on RP2 when low-processing-load
applications shown in Figure 5 namely each application program is a real-time
AAC encoder to encode a 16 seconds music file in 16 seconds, are executed
in parallel. Figure 6 shows consumed power when one to eight light-load AAC
encoders are executed in parallel using different numbers of processor cores on the
RP2. The vertical axis shows the consumed power and the horizontal axis shows
number of processor cores, or PEs, to execute the two AAC encoders. In each
number of PEs, AAC encoder programs less than number of PEs are executed.
For example, on one PE, just one AAC encoder is executed sequentially with a
non power controlled mode shown in left bar and a power controlled mode shown
in right bar. Also, on eight PEs, the left bar shows consumed power when one
AAC encoder is executed in parallel, each of which uses one PE, with non power
controlled mode. The second left bar shows the consumed power when one AAC
encoder is executed on 8 PEs in parallel with the power control. The third left bar
shows the consumed power when two AAC encoders are executed in parallel each
of which uses 4 PEs respectively. The forth bar shows the power when 4 AAC
encoders are executed in parallel, each of which uses 2 PEs respectively. The fifth
left bar shows the power when 8 AAC encoders are executed in parallel, each of
which uses 1 PE. In other words, if ”N” application programs are executed on
”M” PEs, ”M/N” PEs are assigned to each application programs in each number
of PEs. In this light-load AAC encoder, a PE can easily execute the AAC encoder
keeping real-time deadline. On the1 PE, though one AAC encoder without power
control, or an ordinary single core execution with 100% frequency (600 MHz)
and the highest voltage (1.4V), consumes 1.89 W, the power controlled AAC
encoder just requires 0.59 W since OSCAR compiler chose 1/8 frequency (75
MHz) and the lowest voltage (1.0V) for waiting the dead line. Namely, OSCAR
compiler gives us 69% of power reduction when one AAC encoder is executed
on one PE. On 2 PEs, one AAC encoder parallelized on 2 PEs without power
control consumes 2.19 W. One AAC encoder parallelized to 2 PEs with power
control consumes 0.59 W that is the same as on the 1 PE since OSCAR compiler
applies appropriate DVFS control in nano-second order during execution and
power gating to the second PE and lowest frequency and voltage power states to
the first PE during waiting for the deadline. Also, two AAC encoders on 2 PEs, in
which each AAC encoder is executed on 1 PE with power control, consumed just
0.66 W. In the two AAC encoder real-time execution, OSCAR compiler reduces
power by 70% from 2.19W to 0.66W. On 4 PEs, one AAC encoder parallelized for
4 PEs without power control consumes 2.75 W. One AAC encoder parallelized
to 4 PEs with power control consumes 0.59 W, or the same as on 1 PE. The
two AAC encoders on 4 PEs, in which each AAC encoder is executed on 2 PEs
with power control, consumed just 0.68 W. Also, four AAC encoders on 4 PEs,
in which each AAC encoder is executed on 1 PE with power control, consumed
just 0.78 W. In other words, OSCAR compiler reduces the power by 72% from
2.19W to 0.66W when four AAC encoders are executed on 4PEs. On 8 PEs, one
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Fig. 6. Power Consumption of Low processing-load applications (AAC encoder)

AAC encoder parallelized for 8 PEs without power control consumes 3.47 W.
One AAC encoder parallelized to 8 PEs with power control consumes 0.60 W,
or the almost same as on 1 PE. The two AAC encoders on 8 PEs, in which each
AAC encoder is executed on 4 PEs with power control, consumed just 0.69 W
that is similar to 0.66 W on 2PEs and 0.68 W on 4 PEs. The four AAC encoders
on 8 PEs, in which each AAC encoder is executed on 2 PEs with power control,
consumed 0.82 W that is just 0.04 W larger than on 4 PEs. Also, eight AAC
encoders on 8 PEs, in which each AAC encoder is executed on 1 PE with power
control, consumed just 1.01 W. In other words, OSCAR compiler reduces the
power by 71% from 3.47 W to 0.66 W when eight AAC encoders are executed
on 8 PEs. Here, we should pay attentions that the eight AAC encoder execution
on 8 PEs just requires the just 0.13 W for one AAC encoder though the one
AAC execution on 1 PE without power control consumes 1.89 W, namely the
eight core execution gives us 93% power reduction, and the one AAC execution
on 1 PE with power control consumes 0.59 W, namely the eight core execution
gives us 78% power reduction. These results show the simultaneous execution of
multiple low-load application programs with OSCAR compiler’s power control
gives us huge reduction in a single application average power consumption.

4.2 Performance of Simultaneous Execution of Multiple
Intermediate Processing-Load Applications (AAC encoder)

This sub-sectiondescribes consumedpower onRP2when intermediate- processing-
load applications shown in Figure 5, namely each application program is a
super-real-timeAAC encoder to encode a 16.0 secondsmusic file in 3.0 seconds, are
executed in parallel. In this application, a single PE needs 2.7 seconds to
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process andmanages to satisfy the real-time deadlinewith the almost highest clock
frequency. Figure 7 shows consumed power when one to four intermediate-load
AAC encoders are executed in parallel using different numbers of processor cores
on the RP2. Here, the case of eight AAC encoders is not shown because eight
AAC encoders on 8 PEs exceeds RP2’s memory capacity. The vertical axis shows
the consumed power and the horizontal axis shows number of PEs as Figure 7.
On the1 PE, one AAC encoder without power control consumes 1.95 W and
the power controlled AAC encoder requires 1.78W, namely 9% power reduc-
tion, since in the intermediate-load there is only a 0.3 s to wait for dead line
in which OSCAR compiler can choose 1/8 frequency (75 MHz) and the low-
est voltage (1.0V). On 2 PEs, one AAC encoder parallelized for 2 PEs without
power control consumes 2.27 W. One AAC encoder parallelized to 2 PEs with
power control consumes 1.18 W that is 40% power reduction from 1.95 W on
1 PE without power control and 34% power reduction from 1.78 W on 1PE
with power control since OSCAR compiler applies appropriate DVFS and power
gating automatically. Also, two AAC encoders on 2 PEs, in which each AAC
encoder is executed on 1 PE with power control, consumed 2.20 W. In the two
AAC encoder real-time execution, OSCAR compiler reduces power by 3% from
2.27W to 2.20W. On 4 PEs, one AAC encoder parallelized for 4 PEs without
power control consumes 2.85 W. One AAC encoder parallelized to 4 PEs with
power control consumes 0.84 W, namely 57% power reduction from 1.95 W of
one AAC on 1 PE without power control and 53% power reduction from 2.78W
of one AAC on 1 PE with power control. On 8 PEs, one AAC encoders without
power control consumes 3.59 W. One AAC encoder parallelized to 8 PEs with
power control consumes 0.87 W that is the same as one AAC on 4 PEs. The two
AAC encoders on 8 PEs, in which each AAC encoder is executed on 4 PEs with
power control, consumed just 1.13 W that is 78% reduction from 2.20 W of two
AACs on 2 PEs which is the minimum number of PEs to satisfy the deadline
and 26% reduction from 1.53 W of two AACs on 4PEs. The four AAC encoders
on 8 PEs, in which each AAC encoder is executed on 2 PEs with power control,
consumed 2.21 W that is the same as 2.20W of two AACs on 2PEs. These re-
sults show the simultaneous execution of multiple intermediate-load application
programs with OSCAR compiler’s power control gives us large reduction by par-
allel execution of each application since the parallel processing make chances of
DVFS and power gating during execution.

4.3 Performance of Simultaneous Execution of Multiple
Intermediate-Processing-Load Applications (MPEG2 decoder)

Figure 8 shows power consumption of MPEG2 decoder multiple executions. Hor-
izontal axis indicates sum of processor PEs used by all applications. Vertical
axis indicates power consumption of entire chip. Each bar indicates number
of MPEG2 decoders executed multiple. 1MPEG2 means power consumption
of one MPEG2 decoder execution. 2MPEG2 means power consumption of two
MPEG2 decoders, which is using half number of PEs indicated by X-axis. Power
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Fig. 7. Power Consumption of Intermediate processing-load applications (AAC
encoder)

consumption reduce from 1.99W (one PE) to 1.0W (four PEs) by applying par-
allel processing. Power consumption of 2 MPEG2 decoders (four PEs for each)
is 1.46W. This is almost same power consumption of 1 MPEG2 decoder (one
PE, 1.49W). Middle computational load applications can be reduce power con-
sumption by applying parallel processing and executing multiple applications.
Power consumption of each MPEG2 decoder is 0.73W, which reduce power con-
sumption at 51% against 1 MPEG2 decoder (one PE). MPEG2 decoder has
high bus pressure by Prescanning. MPEG2 decoder should be executed to shift
I/O timing. This is because power consumption reduction ratio of MPEG2 de-
coder is relatively low against AAC encoder. Processors voltage control domain
should be divided to control power effectively when middle computational load
applications are executed.

4.4 Performance of Simultaneous Execution of Multiple
High-Processing-Load Applications (MPEG2 decoder)

Figure 9 shows power consumption of MPEG2 decoder multiple executions. hor-
izontal axis indicates sum of processor PEs used by 352x128 resolution MPEG2
decoder and 352x240 resolution MPEG2 decoder. Vertical axis indicates power
consumption of entire chip. When different resolution MPEG2 decoders are ex-
ecuted multiple, timing of FV control are differ. This is because execution time
of each decode stage are different. Thus, supply voltage (controlled by entire
chip) is hard to down. In addition, power status of each application is different.
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Fig. 8. Power Consumption of Intermediate processing-load applications (MPEG2
decoder)

For example, power status is FULL+MID by 2PE+2PE execution. At this time
supply voltage is 1.40V (FULL), so power consumption is 2.28W. This reduces
only 3% against 2PE+1PE execution. However, power status is MID+LOW by
4PE+2PE execution. At this time supply voltage is 1.20V and power consump-
tion is 1.85W. This reduces 21% against 2PE+1PE execution (2.35W). When
middle computational load application and high computational load application
are executed multiple, hardware co-operation to divide supply voltage domain
is effective to reduce power consumption.

5 Conclusions

This paper has evaluated the power reduction scheme of OSCAR automatic par-
allelizing compiler when multiple media application programs parallelized and
po-wer-controlled by OSCAR compiler are executed simultaneously on the Re-
nesas / Hitachi / Waseda RP2 eight core homogeneous multicore processor. Ex-
ecution performances are almost no differences from a single program execution
when multiple parallelized programs are executed simultaneously since OSCAR
compiler’s cache memory optimization function minimizes main memory, or off-
chip shared memory, accesses and prevents main memory contentions. Power
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Fig. 9. Power Consumption of High processing-load application and Intermediate
processing-load application

consumption of multiple applications with relatively light computational load
was reduces by 68% against non-power controlled applications. When multiple
applications are executed simultaneously, total power consumption was 1.01W
with 8 AAC encoders, each of which was executed on one core. At this time,
an average power consumption of each AAC encoder was 0.13W and this value
was 22% of power compared with one application executed on 8 cores. This
result shows that when we execute 8 AAC encoder (1 core for each), power
consumption reduce at 78% against 1 AAC encoder (8 cores). Light computa-
tional load applications should be executed as much as possible to reduce power
consumption of one application. Average power consumption of multiple appli-
cations with middle computational load reduces at 30% by parallel executions.
In addition, when 4 AAC encoders (2 cores for each) are executed, power con-
sumption is 0.55W by 1 AAC encoder. This power consumption reduces at 37%
against 1 AAC encoder (8 cores), and reduces at 69% against 1 AAC encoder
(1 cores). When multiple meddle computational load applications are executed,
parallel processing can reduce power consumption. Average power consumption
of 2 MPEG2 decoders (4 cores for each) is lower than average power consump-
tion of 1 MPEG2 decoder (1 core). At this time, power consumption of each
MPEG2 decoder (0.73W) reduces at 51% against 1 MPEG2 decoder (1.49W).
However, if voltage control domain is divided by hardware, there is more room
to reduce power consumption. This tendency is more notable at executing both
high computational load application and middle computational load application
multiple. This paper confirmed automatic parallelization and automatic power
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control scheme of OSCAR compiler is effective to reduce power consumption of
multiple applications.
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Abstract. The Inspector/Executor is well-known for parallelizing loops
with irregular access patterns that cannot be analyzed statically. The
downsides of existing inspectors are that it is hard to amortize their
high run-time overheads by actually executing the loop in parallel, that
they can only be applied to loops with dependencies that do not change
during their execution and that they are often specifically designed for
array codes and are in general not applicable in object oriented just-in-
time compilation.

In this paper we present an inspector that inspects a loop twice to
detect if it is fully parallelizable. It works for arbitrary memory access
patterns, is conservative as it notices if changing data dependencies would
cause errors in a potential parallel execution, and most importantly, as
it is designed for current multicore architectures it is fast – despite of its
double inspection effort: it pays off at its first use.

On benchmarks we can amortize the inspection overhead and outper-
form the sequential version from 2 or 3 cores onward.

1 Introduction

Just-in-time compiled object-oriented script languages like JavaScript [3] are get-
ting important and heavily used in practice1 and their use is no longer restricted
to small, short-running or interactive applications. But they are not well-suited
for the multicore future as, in general, they do not offer any means to express
parallelism. Sequential JavaScript code runs in every web browser and will there-
fore face the fate of every sequential code in the foreseeable multicore future.
But due to the dynamic typing and due to the fact that such codes in general
are not the typical regular array-based codes known from scientific programs,
well-known results from automatic parallelization of high-performance codes are
hardly applicable. Hence, unless/until there is some way to express parallelism

� For this work the author has spent time at Microsoft Research during his sabbatical.
1 As of March 2011, www.tiobe.com reports that about 35% of today’s code is written
in dynamically typed languages and that in the last five years about half of the most
used programming languages have been scripting languages.
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in those languages, run-time parallelization is the only viable way to go – es-
pecially since the dynamic typing renders even fewer loops amenable to static
parallelization than usual. Consider the following JavaScript example:

var a = [{v:1}, {v:1}, {v:1} ...];
var b = [a[0], a[1], a[2] ...];
for(i = 0; i < 10.000; i++){

a[i].f = 2 * b[i].v;
}

...
...

...

Two complications in this (pseudo-)code cause traditional parallelizers to fail.
The first problem is that a[] and b[] are arrays of references to objects that
reside on the heap instead of arrays of primitive types. As a[i] and b[j] can
refer to the same object parallelizers can no longer work on array indices but
they must consider general memory addresses and data dependences that forbid
parallel execution which are hard to detect by means of alias analysis. The second
problem is that the code writes to the field f of the a-objects. Although there
might be some objects that already have this field; for others the field is created
on demand at the moment of the assignment.

In addition to work on privatization and on detection of reductions [12], most
work on run-time parallelization is based on the inspector/executor idea of Saltz
et al. [13]. Their idea is that in a first loop, an inspector performs a dry-run of
the loop and looks at all array indices that the loop will touch – without actually
executing the operations of the given loop. If certain addresses are touched by
more than one iteration and not just for reading, then there is a data dependence
that requires that these iterations are performed in their original order, i.e., not
in parallel to each other. If there are no such dependencies, then the loop is
fully parallelizable; otherwise the loop is partially parallelizable in so-called wave
fronts. All those iterations of the original loop are scheduled to a single wave
front that can be executed in parallel to each other as they do not have any
cross-iteration dependencies to each other. Dependencies only exist to iterations
that are scheduled to other wave fronts and that are hence separated by at least
one synchronization barrier.

The general problem is that the dry-run takes time as the inspector must
evaluate all addresses and must keep track of each of these addresses in a book-
keeping data structure to detect potential dependencies. The longer this inspec-
tion takes, the more parallelism must be found so that the total time needed
for both the inspector plus the subsequent executor (that executes all the loop’s
iterations in wave fronts) is still smaller than a pure sequential execution of the
original loop. The runtime of the inspector is thus the most important aspect
and the crucial stumbling block of the whole idea.

There are four responses to this challenge. The first is optimistic/speculative,
i.e., to execute the loop in parallel and check whether data dependencies oc-
curred. In that case some form of roll-back purges the wrong effects and restarts
with the original sequential loop. (Check the literature for thread level spec-
ulation [14] or transactional memories [5] for solutions.) Note that the opti-
mistic approach cannot avoid the book-keeping cost for detecting dependencies.
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Book-keeping must still be fast. The second response is an amortization argu-
ment: the inspector/executor approach is only applied for loops with compute
intensive bodies that do much work with few array elements. (In some early
papers [6] the authors added a few (and at that times slow) trigonometric func-
tions for the mere purpose of making their benchmarks look nice.) The third
response is a second-degree amortization argument. If the data dependencies are
not changed by the loop itself, then the inspector can be run once and its result
can later be used for many parallel executions of the loop at hand. This works
well, if for example the parallelized loop is buried in an outer loop. Unfortunately,
such a so-called schedule reuse [10] often does not work in dynamically typed
script languages or on real-world problems [7], since in general no static analysis
can assure that the data dependencies will not change. Finally, the fourth coun-
termeasure is to perform the inspection itself in parallel to save time. However,
when two parallel inspectors try to register in a book-keeping data structure that
a single address is being touched, this will – at least conceptually – require slow
synchronization or critical sections to guard the tracking data structure. Thus,
it is essential to avoid such synchronization wherever possible. This is even more
difficult on modern multicores as their memory systems are typically not sequen-
tially consistent and cores might see changes at different times. And even with
the synchronization demands solved, the individual effort for registering every
single address must be kept tiny and without branches to keep the processor
pipelines busy.

The following section presents such an inspector that detects if a loop can
be fully executed in parallel. The main idea is to inspect the loop twice, but
with only a single synchronization barrier and memory fence in-between. Our
inspector’s book-keeping effort for registering every single address is tiny – just
a few machine instructions with only one conditional branching instruction. It
amortizes easily and its complexity is in the order of the complexity of the loop
to be parallelized (instead of being in the order of the size of the main memory).
We show-case the performance of double inspection in Sec. 3 before we have a
quick look at the related work in Sec. 4 and conclude.

2 Double Inspection

2.1 Basic Idea – Overly Conservative

The main idea of the double inspection is to inspect the loop in two phases, each
of which is done in parallel by a set of inspector threads. To ease understanding
we discuss a simplified and overly conservative version of the double inspection
approach first. This version cannot parallelize loops with loop-independent de-
pendencies.2 The two subsections that follow will remove this restriction and
they will refine and optimize the idea.

2 A loop-independent dependence is a data-flow dependence that already exists in the
loop body even if the loop control structure is taken away.
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We assume that the inspector is deterministic so that each phase will observe
the same sequence of memory accesses. For a formal view on our inspector,
we start with a set of definitions. Let U(I) be the set of all memory addresses
from which iteration I reads. (Note that we talk about addresses and not array
indices.) D(I) is the set of all memory addresses to which iteration I writes.
W (A) is the set of iterations that write to the memory address A.

Foreach iteration I of the loop do (maybe in parallel):
(1): If ∃ u ∈ U(I) with W (u) 	= ∅ then there is a flow or anti dependence.

(This is overly conservative as we will discuss in Sec. 2.2.)
(2): If ∃ d ∈ D(I) with |W (d)| 	= 1 then there is an output dependence.

Note that it would be possible to find all dependencies of one iteration I by
iterating through the corresponding W set for every address in U(I) and D(I).

We now reduce W (A) to an arbitrarily selected W ′(A). Every W ′(A) holds
only one arbitrary element of W (A). We can use a similar algorithm with these
sets. Step (1) stays unmodified, as we only check whether the set is empty and
do not care about the elements or their number. Step (2) has to change slightly.
As the size of the set W ′(A) is known to be one, we now check whether the
element in W ′(d) is I:

Step (2’): If ∃ d ∈ D(I) with W ′(d) 	= I then there is an output dependence.

With the modified sets W ′ we are no longer able to find all dependencies of an
iteration I because the information about some dependency may be discarded.
But we are still able to detect, if there are any dependencies. If W (d) has more
than one element and W ′(d) consists of the element I, Step (2’) will not detect
the dependence for iteration I. But it will of course detect the dependence for
all other elements in W (d).

We represent all sets W ′ by means of an array used. Each used[A] in this
array holds one element of the set W (A). An empty set is represented by the
special value null. Parallel inspector threads fill the array used in the first loop
of the double inspection, the pre-registration loop and register all memory
addresses to which the inspected loop writes. To do so, there is a copy of the
original loop in which each of the writes is replaced by a macro that performs the
book-keeping. After the writes are gone, dead code elimination purges almost
everything expect for the macros (and for the relavent control structures).

In the running example, with thread-specific values for lwb and upb, the pre-
registration loop of the inspector would therefore be:

for(i = lwb; i < upb; i++){
preregister(hash(&a[i].f), i); //only for writes

}

Note that instead of the real addresses, we use hashed versions to make sure
that the book-keeping array stay small. The smaller it is, the more likely are
false positives. In garbage-collected languages that may move around objects the
“hashed” value needs to survive the collector’s activities. Our current prototype
ignores that and uses the hash function (ptr<<3)&0xffff.

The pseudo-code of the inspector’s pre-register macro is:
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int used[]; //shared array, used by all inspector threads
void preregister(int addr_hsh, int iteration){

used[addr_hsh] = iteration;
}

Note, that at one point of time several inspector threads might write to the same
slot of the book-keeping array used. This is fine and one of the main design
principles of double inspection, as our only requirement is that the machine
architecture makes sure that one of the threads will win, i.e., when all inspector
threads have finished, one uncorrupted iteration number will be in the books. It
is irrelevant that write operations will be buffered in the store buffer or in the
caches of the individual cores. We only have to make sure that there is a single
synchronization barrier with a memory fence after this first inspection pass.

After this first pass, the inspector threads perform their second pass over all
the iterations. This time, in a checking loop, we check both for the reading and
writing memory accesses whether they cause dependencies and hence render the
original loop as not fully parallelizable.

Here is the checking loop for the running example (again, everything is re-
moved except for the relevant control structures):

for(i = lwb; i < upb; i++){
read(hash(&b[i].v), i)
write(hash(&a[i].f), i);

}

The macros for checking are shown below.

void write(int addr_hsh, int iteration){
if(used[addr_hsh] != iteration) alert(); //alert, if someone else wrote

}
void read(int addr_hsh, int iteration){
if(used[addr_hsh]) alert(); //alert, if ever written

}

Let’s look at the write first. If an inspector thread is the only one that has
pre-registered that an iteration has written to a certain address, it will find in
the second pass that the iteration number is still in the books, and everything is
fine. If however, there are more than one iterations that write to an a address, at
least one of the inspectors will detect a difference either because the thread itself
has registered two iteration numbers or because its iteration number has been
overwritten by another inspector thread. The asynchronous pre-registrations can
happen without synchronization and in any order, since at least one of the in-
spector threads will find a different value in the second pass. Hence, output
dependencies (= two writes to the same address by different iterations) will be
detected – the alert will flag the loop as not fully parallelizable.

In the same way, the inspector that checks an address for reading will flag a
dependence if that address has been pre-registered (i.e., it is written to) at all.

This basic double inspection is overly conservative, since even loops that only
have loop-independent dependencies will be flagged as not fully parallelizable.
For example, even if a loop iteration just reads a value and updates it with-
out any interference from other iterations, this basic double inspector signals a
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dependence as the updated address has already been pre-registered when the
checking loop tests the read access and finds some non-null entry in the books.

In inspector/executor systems it is crucial that the inspector and the execu-
tor follow the same control paths. Being conservative helps, because data value
dependent execution paths will be recognized.3

Let’s make the inspector more aggressive now. Sec. 2.3 will avoid to re-
initialize the book-keeping array for every inspection.

2.2 First Improvement: Tolerate Flow Dependences

The naive approach to extend the basic version to ignore loop-independent de-
pendencies is to replace the null-check in the read-macro. This “improved” ver-
sion of the macro would only flag a dependence if some other iteration had
written to an address that is read in the current iteration.

void read(int addr_hsh, int iteration){
if(used[addr_hsh] && (used[addr_hsh] != iteration)) alert();

}

Unfortunately, this is too simplistic. The problem are dependencies that are a
result of the computations in the loop itself. Consider the following example:

int A[4] = {0,1,2,3}
for(int i=0; i<3; ++i){

A[i] = i+1;
A[A[i]] = i+1;

}

In this example, just registering and checking the addresses of A[i] and A[A[i]]

will not detect any conflicts as A[A[i]] stays equal to A[i] because the inspector
is a dry-run and does not execute the computations/assignments. The data de-
pendences that prevent full parallelization in this example are however a result of
these modifications. A flow dependence that reads a value and later contributes
to an overwriting of it, is ok as the assignment is in a way the last thing that
happens to that memory address. In contrast, an anti-dependence that writes
a value first and later (re-)reads it (or something it depends on), might change
dependencies. Thus, inspectors that are based on a dry-run can ignore loop-
independent flow dependences but they have to be conservative and signal a
potential threat to parallelizability upon a loop-independent anti-dependence.

The insight for an efficient implementation is that if there is a loop-carried
dependence for a certain memory address, then the checking-loop will find a
mismatch of iteration numbers at some point. If there are only loop-independent
dependencies for that address, then only one inspector thread reads and modifies
the corresponding slot of the book-keeping array. As no synchronization and
memory consistency measures are needed to guard against interfering inspector
threads in the checking loop, we can use a bit of this slot to detect the nature of a
loop-independent dependence. Upon a write, this so-called flow bit is set. When

3 We apply a pre-test to stay away from loops with conditional branches that depend
on loop-external side effects.
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a read finds the flow bit already set, there is an anti-dependence and hence a
threat to full parallelizability. If the read precedes the write, the read finds the
flow bit still un-set and the check remains quiet.

It is crucial to implement this efficiently. To do so, we (for now) use the
least significant bit of the used integer values. The pre-registration registers
2*iteration which shifts all bits to the left and lets the least significant flow
bit un-set. In the checking loop, write ignores the flow bit in the comparison, but
then sets it by assigning 2*iteration+1. The comparison in read is sensitive to
the flow bit. If the loop body has written to an address before, the read-macro
will flag a parallelizability problem. Writes after reads are ok.

We expect the iteration numbers to be non-negative, fitting into 31 bits.
A guard just before the inspector loop checks the lower and upper bounds to
ensure that no overflows occur in the actual inspector.

void preregister(int addr_hsh, int iteration){
used[addr_hsh] = 2 * iteration;

}
void write(int addr_hsh, int iteration){

if((used[addr_hsh] | 1) != (2 * iteration + 1)) alert();
used[addr_hsh] = iteration * 2 + 1;

}
void read(int addr_hsh, int iteration){
if(used[addr_hsh] && (used[addr_hsh] != iteration * 2)) alert();

}

On our benchmarks it has improved the speed of book-keeping by about 2% on
average that write does not compare used[addr hsh]&(~1) to 2*iteration.
The reason is that the compiler can keep 2*iteration+1 in one iteration variable
when unrolling the checking loop, whereas the bitmasking code would need two
iteration variables.

2.3 Second Improvement: Avoid Re-initialization

Up to now the inspectors have to re-initialize the book-keeping array used for
every loop that has to be inspected. To avoid re-initialization, we turn used into
an array of 64 bit values. The upper 32 bits are used for a generation number
plus the extra bit needed to tolerate flow dependencies. The generation counter
base is incremented once for every loop to be inspected. Only after MAX INT/2

inspections, that is almost never, the used-array needs to be re-initialized.

long used[]; //shared array, used by all inspector threads
int base = 0;
void preregister(int addr_hsh, int iteration){

used[addr_hsh] = (base<<33) + iteration;
}
void write(int addr_hsh, int iteration){

if(((int32*)&used[addr_hsh])[0] != iteration) alert();
((int32*)&used[addr_hsh])[1] = 2 * base + 1;

}
void read(int addr_hsh, int iteration){

if(((used[addr_hsh] - (base<<33)) ^ iteration) > 0) alert();
}
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An optimization insight is that write does not have to check whether the value
is from the correct generation, since it has to be since each value a write checks
has been written by a corresponding preregister. Hence write only compares
the lower 32 bit to iteration which automatically also ignores the flow bit.
After the comparison the flow bit is set in the upper int.

Our x86-64 assembler code is fast and only needs five instructions, namely
lea and mov to compute the hash value and to access the booked value, a cmp,
a (short) conditional jump jne, and another mov for the assignment. A register
holds 2*base+1 as it is fixed for the whole inspection.

A straightforward implementation of read would first check whether the value
in the books is from the current generation and only then look at the iteration
numbers. That would result in two conditional jumps per read. On current
pipeline architectures with branch prediction this turns out to be too slow. It is
crucial to avoid the jump on a generation mismatch. To do so, there is the xor

in the read-operation. We first subtract the current base-value from the value
in the book in the upper int (base<<33 is a pre-computed fixed value that is
kept in a register). If the value in the books originated from an earlier version,
then the result is negative, which is ok, as there is no dependence. If the value
is from the same generation but from a different iteration, then the result of the
xor is positive. The value is also positive, if after subtracting base and xor-ing
away the iteration number, only the flow bit remains switched on. Hence, with
a simple subtraction and an xor, we merge the generation test, the iteration
test, and the flow test into a single conditional jump. Moreover, in the case of
x86-64, the result of the comparison to 0 is implicitly remembered in status bits
after the xor operation, so that no explicit machine instruction is needed to
perform the comparison. Thus, the read-macro also needs just five machine
instructions (lea, mov, sub, xor, and jg).

As an alternative to generation numbers one could use two sets of book-
keeping arrays. While one set is being used for inspection the other is cleaned.
However, since current multicore processors do not yet have an abundance of
cores, we need all of them so that inspection plus execution performs faster than
the sequential loop.

3 Benchmarks

For the measurements we have used a single Intel Core i5 760 chip (4 cores) run-
ning at 2.80 GHz with 8 MB shared cache and 8 GB of RAM (DDR-1333). The
machine runs Windows 7 x64. We have used the Visual Studio 2010 compiler.4

We choose four fully parallelizable benchmarks to test our inspector’s per-
formance. The loops under consideration are tiny, i.e., 3–5 lines of code long.
We extracted them from the SunSpider JavaScript benchmarks, where the loops

4 We have also performed measurements on an Intel Xeon X7560 ”Nehalem-Ex” chip
(8 cores + hyperthreading) running at 2.27 GHz with 24 MB shared cache and 512
GB of RAM (DDR3-1333). This machine runs Linux 2.6.32. We have used the GNU
g++ 4.4.3 compiler. We found the same overall behavior and only show i5 times.
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Fig. 1. Sequential performance and parallel performance with double inspection. Num-
bers show the runtimes of the parallelizable loop without framework setup on 1-4 cores.

have significant runtime which we determined with the SPUR tracing JIT [1].
We have implemented them in C/C++ since this made it easier to interact with
our C-based inspection framework. As can be seen in Fig. 1, the pre-registration
loop, the checking-loop, and the executor scale nicely and from two cores on
outperform the sequential execution on a single core. (On em3d, we need 3 cores
to see a speedup.) So even if the benchmark loops are only executed just once,
double inspection and parallel execution are faster than executing the loops se-
quentially. The cost of the inspection is amortized immediately, i.e., without
schedule and schedule reuse or speculation.

Dist calculates the distance between pairs of 2D points. What rules out static
parallelization are the indirections: another array holds pointers to the 2D points
that need to be used in the distance computation. This is similar to traversing a
linked list of objects and applying a side-effect free method to each of the objects.
Although this is parallelizable, there is the underlying container implementation
whose links and pointers are only known at runtime. In Dist there are four read
accesses and one write access per iteration. This explains the relation of the time
spent in the pre-registration versus the checking loop.

Em3d propagates electro magnetic waves that are stored in a bipartite graph
with many indirections. In our benchmarks we have a used an input graph that
can be processed in parallel. Computing the indirections, i.e., the addresses of
the data that is needed at run time is costly. While the sequential execution only
needs to do this computation once, we (currently) re-compute the information in
both inspector loops and in the executor. Hence, two cores are not sufficient to
compensate for the extra cost – we only see speedups from three cores onward.
The checking loop is so much slower here, since there are 20 reads for each write.

Spec-norm calculates the spectrum norm of a parameterized matrix with
a matrix-vector product as the hot loop. We have included this benchmark
to demonstrate that our technique is even applicable and achieves good per-
formance on typical numeric problems. The loop in this benchmarks has 4865
reads for one write. Due to the normalization to the sequential execution time,
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the cost of pre-registration cannot be seen in the graph. Execution takes longer
than inspection, because many computations are irrelevant for the dry-run.

3d-morph is a 3d graphics algorithm that does (slow) trigonometric compu-
tations in its hot loop. This is another worst-case benchmark as a static analysis
could have detected the parallelizability. In contrast to Spec-norm, there are only
write operations. Hence pre-registration and checking take about the same time.

4 Related Work

A number of parallel inspectors have been developed in the past that use a
critical section to guard the book-keeping data structures, for example [9,16]. To
check whether the availability of a highly optimized atomic machine instruction
on today’s multicore machines (like xchg, cmpxchg, . . . ) helps those types of
inspectors, we have designed and optimized such a basic inspector that also only
uses a tiny number of machine instructions for the book-keeping. Whenever this
basic inspector sees a read or a write of an address, it upgrades the state of a
corresponding slot in a used-array by conceptually calling the inlined read- or
write-macro given below in pseudo-code.5 Again, instead of the real addresses,
we use hashed versions to make sure that the book-keeping array remains small.

const int NO_ACCESS = 0;
const int READ = 1;
const int WRITE = 2;

int used[]; //shared array, used by all inspector threads

void read(int addr_hsh) {
if(xchg(&used[addr_hsh], READ) == WRITE)) alert();

}

void write(int addr_hsh) {
if(xchg(&used[addr_hsh], WRITE) != NO_ACCESS)) alert();

}

This inspector is also very conservative as it even signals a dependence if an
address is touched more than once from the same iteration and not just for
reading. An extended version of this inspector that funnels the iteration number
into the slots of the used-array to avoid an alert if an iteration reads and later
writes to the same address was significantly slower.

Again, we added a generation counter to avoid re-initialization cost and found
a way to do the read- and write-macros with just a single conditional jump.
Both macros are very light-weight, except for the atomic xchg instruction, which
dominates execution time due to the necessary synchronization. We feel that
it would be hard to construct a faster inspector that relies on a synchronous
access to a book-keeping data structure. Hence, this xchg-algorithm is the most
competitive representative of this line of related work.

5 An xchg machine instruction (InterlockedExchange on Windows) atomically writes
the second argument into the address given by the first argument. It also returns
the value that has been at that address before the assignment.
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Fig. 2. Comparison to xchg-times. Times of the inspector only, taken on 1-4 cores. The
runtime of the executor is not shown as it would be the same regardless of the type of
inspector used.

int base = 0; //shared

void read(int addr_hsh) {
if(xchg(&used[addr_hsh], READ) == base + WRITE)) alert();

}

void write(int addr_hsh) {
if(xchg(&used[addr_hsh], WRITE) > base + NO_ACCESS)) alert();

}

These results shown in Fig. 2 demonstrate that even on today’s multicore archi-
tectures such types of inspectors are (still?) not fast enough and that parallel
inspectors need to be lock free, as our double inspection is. The benchmark em3d
is missing in Fig. 2, since the xchg-algorithm is overly conservative, detects a
loop independent flow dependence, and hence signals that the loop cannot be
parallelized. On spec-norm the xchg-algorithm does not scale well (even on the
8 core chip). The bottleneck is the bus traffic needed to implement the locking.

Other inspectors try to actually compute wave fronts and deal with partially
parallelizable loops, e.g. [11]. Leung and Zahorjan [8] have introduced the ideas
of sectioning and bootstrapping and have demonstrated that these ideas help
in speeding up parallel inspectors that compute wave fronts. But our double
inspection deliberately stays away from computing wave fronts and just decides
whether a loop is fully parallelizable or not. The reason is, that all the known
wave front computing algorithms spend too much time in their book-keeping.

For a comparison, we have used sectioning to parallelize the wave front algo-
rithm by Yang et al. [15]. This algorithm firstly is straightforward to parallelize,
secondly requires fewer book-keeping data than other wave front algorithms, and
finally can (in contrast to others) also handle all types of dependencies. We have
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Fig. 3. Comparison to wave front algorithm. Times from taken on 1-4 cores.

optimized their algorithm by removing time consuming array dereferencing and
indirection. This also allowed to avoid re-initialization of the book-keeping data
structures. In addition, we have fixed a bug. The appendix gives the resulting
pseudo-code of the fastest wave front algorithm we know.

Fig. 3 also shows that even with our optimizations, computing wave fronts
is slow on those of our benchmarks that have indirect and more read accesses.6

In addition to a slower inspection, execution suffers from extra synchronization
barriers as the resulting wave fronts of all inspectors are concatenated. Even on
fully parallelizable loops there is at least one synchronization barrier per thread.
The result is that the time needed to compute the wave fronts cannot (easily)
be amortized by parallel execution without schedule reuse or large loop bodies.
Hence, our double inspection approach only checks for full parallelizability which
can be done much faster and is universally applicable, even in dynamically typed
codes that are hard to analyze for applicability of schedule reuse.

Other inspectors have used two phases before, e.g., [2,11]. In their first phase,
the threads usually work on a private data structure. The second phase then
merges the results from the first phase. Unfortunately, the merging phase is
usually bounded by the sizes of the arrays, instead of being bounded by the
complexity of the loop to be parallelized. For non-array codes that use heap ob-
jects, the merging phase would have a complexity that scales with the size of the
main memory/the total address space. Moreover, the number p of threads often

6 We are showing the best case for the wave front algorithm here. The code in the
appendix can fail on certain loop-independent dependencies and is not as generally
applicable as our double loop inspector. Moreover, for spec-norm and 3d-morph the
access pattern is the best case for the wave front algorithm, as in contrast to the
first two benchmarks, it causes almost no cache misses.
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comes in as an additional factor (sometimes just as log p). Our double inspection
is different because both its loops scale with the complexity of the original loop.
The number of threads only affects the cost of the single synchronization barrier
and does not come in as a multiplicative factor. Moreover, our book-keeping
data structure does not need to be re-initialized between inspector runs. And it
does not need to be scanned in its entirety in a merging phase.

Although our inspector is presented in this paper for use with a subsequent
executor, it can also be used in speculative parallelism, as suggested in [4,12].
Since the book-keeping effort of our double inspection is tiny, it can easily be
added to the speculative parallel execution without affecting its performance too
much. To implement it, the speculative execution can either be piggy-backed to
the pre-registration loop or to the checking loop of our inspector.

5 Conclusion

In this paper we have presented a fast parallel inspector that detects loops that
can be executed in parallel. The novel idea of this inspector is that parallel
threads inspect segments of the loop asynchronously. And instead of a costly
merging phase, we have those threads inspect the loops again after a single
synchronization barrier. The highly optimized implementation for the double
inspection loops on current multicore architectures makes it possible to amortize
the cost of inspection immediately – there is no longer any need for schedule
reuse. On benchmarks we can amortize the inspection overhead and outperform
the sequential version from 2 or 3 cores onward.

As a by-product, we also suggested optimizations for other types of inspectors
that are known from the related work.

Future work should study the runtime overheads in a just-in-time engine.
While one core could start executing a loop sequentially, the double inspection
could be applied to the tail/the majority of the loop iterations. And if the tail
turns out to be parallelizable, the JIT would switch. This could hide the inspec-
tion overhead. It will also be interesting to see if the technique can be extended
to perform task-level parallelization of function calls or other code regions.

Acknowledgements. We thank Wolfram Schulte and Sebastian Burckhardt
for many discussions and insights on contemporary multicore architectures, and
especially Erez Petrank for an earlier investigation of the problem space.

Appendix: A Parallel Wave Front Inspector without any
Shared Data Structures

With sectioning, we split the iteration space of a given loop into sections, each
of which is handled by a single inspector thread that uses the algorithm of [15]
with our enhancement and the bug fix. The resulting wave fronts of all threads
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are concatenated for execution. Fully parallelizable loops that are inspected and
executed with n threads need n synchronization barriers.

The arrays def and use store in which wave front a value has been writ-
ten/read before.7 The wave front of an iteration is 1 plus the maximum of all
the wave fronts of all the addresses that the iteration touches. This maximum
is computed by the read and write macros and is stored in current wf after
all addresses are touched. Before all the addresses that the iteration touches are
checked again, wf is updated to keep the wave front of the current iteration.

A second pass through all the addresses updates use and def to reflect that
the current iteration reads/writes them. The original algorithm sets the corre-
sponding slot of the use array for every read to the current iteration number.
This is a bug and can lead to wrong results. This update must happen, iff the
wave front number corresponding to the use array entry is smaller than the
wave front number of the current iteration, because when referring to the latest
iteration that reads this address, the new execution order must be considered.

Per read and per write, this algorithm needs about twice as many machine
instructions than our double inspection. And since each of the inspector threads
only works on its private data structures there is no need to synchronize. The
downside is that itis far from optimal to concatenate all the thread-local wave
fronts. The executer pays for this.

int use[]; //private per inspector thread
int def[]; //private
int wf[]; //private

int base_wf; //of inspection
int current_wf; //of iteration
int max_wf; //of inspection

void begin_iteration() {
current_wf = base_wf;

}

void read(int addr_hsh) {
current_wf = max(current_wf, def[addr_hsh]);

}

void write(int addr_hsh) {
current_wf = max(current_wf, def[addr_hsh], use[addr_hsh]);

}

void between(int iteration){
wf[iteration] = ++current_wf;
max_wf = max(max_wf, current_wf);

}

void read_update(int addr_hsh){
use[addr_hsh] = max(use[addr_hsh], current_wf);

}

void write_update(int addr_hsh){
def[addr_hsh] = current_wf;

}

Due to lack of space, we cannot show an extension of this algorithm that reuses
its book-keeping data structures instead of re-initializing it for each inspection.

7 The original algorithm stored the iterations numbers in those arrays and used the
wf array to look up the wave fronts for the iterations. We avoid this indirection.



60 M. Philippsen, N. Tillmann, and D. Brinkers

Again, a generation number can be funneled into the values that are written to
the arrays.
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Abstract. Array references indexed by non-linear expressions or sub-
script arrays represent a major obstacle to compiler analysis and to au-
tomatic parallelization. Most previous proposed solutions either enhance
the static analysis repertoire to recognize more patterns, to infer array-
value properties, and to refine the mathematical support, or apply expen-
sive run time analysis of memory reference traces to disambiguate these
accesses. This paper presents an automated solution based on static con-
struction of access summaries, in which the reference non-linearity prob-
lem can be solved for a large number of reference patterns by extracting
arbitrarily-shaped predicates that can (in)validate the reference mono-
tonicity property and thus (dis)prove loop independence. Experiments
on six benchmarks show that our general technique for dynamic valida-
tion of the monotonicity property can cover a large class of codes, incurs
minimal run-time overhead and obtains good speedups.

Keywords: monotonicity, access summary, autoparallelization.

1 Introduction

The emergence of multi-core systems as mainstream technology has brought
automatic program parallelization back to the forefront. Classical dependence
analysis, based on distance/direction vectors [1,2], or on algorithms to solve
exactly a system of integer (in)equations [11,20], has achieved somewhat limited
success for the class of small loop nests with linear access patterns.

For larger codes, several studies [4,16,19] have outlined the necessity of interpro-
cedural data-flow analysis that: (i) summarizes array accesses to overcome array
reshaping at call sites and to reduce the number of dependency tests, (ii) exploits
control flow to either improve summary precision or to predicate optimistic re-
sults of statically undecidable access summaries, and that (iii) is capable of disam-
biguating non-linear array accesses, which fall outside Presburger arithmetic [10].
These issues were first investigated in Fortran codes, however the solutions that
have been developed also apply to other languages, such as C++ and Java. In this
paper we will present in some detail the issue of non-linear accesses, such as those
using nonlinear indexing or subscript (index) arrays. These typically appear in
programs with sparse data structures using index arrays and/or are an artifact of
compiler transformations, such as induction variable substitution and/or
multi-dimensional array reshaping at call sites, where merging summaries requires

S. Rajopadhye and M. Mills Strout (Eds.): LCPC 2011, LNCS 7146, pp. 61–75, 2013.
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flattening the original array. Historically there have been two main approaches to
the analysis of such non-linear, irregular memory reference patterns:

(a) Static analysis methods which attempt to prove loop independence at com-
pile time. Solutions either (i) extend the library of recognizable access patterns
and apply interprocedural inference of index-array value properties [14], or (ii)
enhance the mathematical support with more refined symbolic ranges [6,9], or
more encompassing algebras, such as chains of recurrence [8], or extensions of
Presburger arithmetic [21]. If the analysis fails, then the user may be asked to
examine parallelism based on the irreducible result of the corresponding alge-
bra [16,21]. Static techniques are efficient (no overhead) but conservative and
often ineffective in detecting parallelism.
(b) Run-time Analysis techniques which analyze the code memory references
during program execution and decide if an optimization (e.g., parallelization)
can be applied. Notable examples are the TLS (thread-level speculation) [22] and
inspector/executor [23] techniques, which analyze dynamically memory reference
traces to detect data dependencies. Run-time techniques are effective because
they can extract most available parallelism, but exhibit significant overhead.

In this paper we present an automated solution rooted at a mid-point between
the two classical directions: Static interprocedural analysis builds memory access
summaries and extracts arbitrarily-shaped predicates, which can qualify loops
as independent. When these predicates are too complex for the current symbolic
analysis available to us then their evaluation is deferred until program execution-
time where results are exact but overhead may be costly. Our technique repre-
sents a unified framework to optimize the tradeoff between static and dynamic
analysis. We always prefer compile time analysis but we will complement it with
minimal run-time analysis in order to successfully parallelize programs.

We have developed several techniques that can specialize the parallelization
predicates in the most efficient manner. Instead of trying to extract exact con-
ditions (necessary and sufficient) conditions for loop independence we generate
predicates that represent only sufficient conditions for parallelization. The main
contribution of this paper is a technique to extract predicates that can validate
the assertion that memory references take strictly monotonic values (and are
therefore independent). The motivation behind it is that in practice this spe-
cialized condition is easier to formulate than the general independence assertion
and that in practice monotonic references are quite frequent.

For example, with the loop nest:

DO i = 1, N, 1 Output Independence : ∪M
i=1(Si ∩ ∪i−1

k=1 Sk) = ∅
DO j = 1, i, 1 where Si = [M ∗(i2−i)+1, M ∗(i2−i)+i]

DO l = 1, 1 + i - j, 1

XIJRS0(j + l - 1 + (i2 - i)*M) = ...

ENDDO ENDDO ENDDO

an overestimate of the set of written locations of array XIJRS0 in iteration i is
interval Si = [M ∗(i2−i)+1, M ∗(i2−i)+i]. Loop output independence requires
that the writes of iteration i do not overlap with the writes of any iteration
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preceding i, which is formalized via equation ∪N
i=1(Si ∩ ∪i−1

k=1 Sk) = ∅, where
∪ and ∩ denote set union and intersection, respectively. One can observe that
the above (data-flow) equation is satisfied if Si is strictly monotonic – i.e. the
upper bound of Si is less than the lower bound of the iteration i + 1 summary
Si+1, for any i. This leads to the output independence predicate: 2 ∗ M ≥ 1,
which is relatively easier to formulate and verify at run-time.

The extracted predicates, including those testing monotonicity, are then (i)
optimized via common mathematical support, (ii) factored into a sequence of suf-
ficient loop-independence conditions ordered by their estimated run-time com-
plexity, and (iii) evaluated at run time until one (possibly) succeeds. In practice
we were able to often extract predicates of complexity O(1) and O(N) for poly-
nomial and array indexing, respectively, which compares quite favorably (relative
to overhead) to previous run-time techniques.

An evaluation on six perfect Club benchmarks [3] validates our statements
by showing negligible run-time overhead for the predicate evaluation, as well as
speed-ups between 1.54x and 3.72x, with an average of 2.24x on a commodity
four-core system.

2 Preliminary Concepts

Our framework for analyzing non-linear accesses has two main stages: First,
interprocedural data-flow analysis constructs an exact summary, named unified
set reference (usr), of the read-only (ro), read-write (rw) and write-first (wf)
array accesses. Loop independence is reduced to proving that an usr is empty.
This stage has been named hybrid analysis [24], since run-time usr evaluation
can be seen as a continuation of static analysis.

The second stage applies a top-down USR = ∅ factoring algorithm to extract
sufficient predicates for parallelization, which are tested at run-time in the order
of their complexity. If they all fail, an exact answer can be obtained via thread-
level speculation – the lrpd test [7,22] – or via usr run-time evaluation. This
part has been named sensitivity analysis [25] because it models how parallelism
depends on statically unavailable input parameters. Sections 2.1 and 2.2 give the
gist of the two stages and the information needed to understand this paper.

2.1 Hybrid Analysis

Hybrid Analysis builds on linear-memory access descriptors (lmad) [19], which
are denoted [δ1, .., δP ]∨ [σ1, .., σP ]+τ and represent the set of points: {τ+i1∗δ1+
.. + iP ∗ δP | 0 ≤ ik ∗ δk ≤ σk, ∀k ∈ 1..P}. Being uni-dimensional, lmads allow
reshaping at call sites where the dimensions of the formal and actual parameter
differ, but strides δk and spans σk alsomodel “virtual”multi-dimensional accesses.
Summaries are constructed by traversing the call and control dependency (cdg)
graphs in reverse topological order, while within a cdg region nodes are traversed
in program order. During this bottom-up parse, data-flow equations dictate how
summaries are initialized at statement level, merged across branches, translated
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SUMMARIZE(REG1; REG2)

(WF1, RO1, RW1) ← REG1

(WF2, RO2, RW2) ← REG2

WF = WF1 ∪ (WF2 − (RO1 ∪ RW1))

RO = (RO1 − (WF2 ∪ RW2)) ∪
(RO2 − (WF1 ∪ RW1))

RW = RW1 ∪ (RW2 − WF1) ∪
(RO1 ∩ WF2)

RETURN (WF,RO,RW )

(a) Consecutive Region Composition

SUMMARIZE(REGi, i = 1, N)

(WFi, ROi, RWi) ← REGi

WF =
⋃N

i=1(WFi − ⋃i−1
k=1(ROk ∪RWk))

RO =
⋃N

i=1 ROi − ⋃N
i=1(WFi ∪ RWi)

RW =
⋃N

i=1(ROi ∪ RWi) − (WF ∪ RO)

RETURN (WF,RO,RW )

(b) Loop Summary Aggregation

Fig. 1. Building wf, ro and rw summaries across consecutive regions and loops

REAL X(Q, *)

DO i = 1, N, 1

DO j = 1, i, 1

a = 1.0D+00/(i+j)

DO k = 1, i, 1

maxl = k
IF (k+(-i).EQ.0) maxl = j

DO l = 1, maxl, 1

X(IA(i)+j, IA(k)+l) = a + 1.0/(k+l)

X(IA(k)+l, IA(i)+j) = a + 1.0/(k+l)

ENDDO
ENDDO ENDDO ENDDO

(a) Simplified INTGRL do140 Code

USR == VOID
implies

AGGREGATION
TOTAL

INTERSECTION

PARTIAL
AGGREGATION
Loop i = 1, i−1

TOTAL
AGGREGATION

Loop j = 1, i

TOTAL
AGGREGATION
Loop k = 1, i

WFi

[Q]v[Q*(maxl−1)] + IA(i)+j−1+Q*IA(k)
[1]v[−1+maxl] + IA(k) + Q*( IA(i)+j−1 )

Loop i = 1, N

Monotone WFi

(b) Output-Ind. usr of X

Fig. 2. Code and Output-Independence USR for TRFD’s Loop INTGRL do140

across call sites, composed between consecutive regions, and aggregated across
loops. The latter two cases are illustrated in Figures 1(a) and 1(b). For example,
the composition of a read-only region S1 with a write-first region S2 gives RO =
S1 − S2, RW = S1 ∩ S2 and WF = S2 − S1.

We employ an exact (dag) representation, named usr, in which leafs are sets
of lmads and internal nodes are operations that cannot be precisely expressed in
the lmad domain. Internal nodes can represent unsimplifiable set operations (∪,
∩, −), or control flow: gates predicating lmad’s existence, UN-translatable call
sites, or loops that fail exact aggregation. As such, usrs represent memory refer-
ences at a program level, in a scoped and closed-under-composition language. A
loop of iteration summary (WFi, ROi, RWi) has no flow/anti dependencies iff:

{(∪N
i=1WFi) ∩ (∪N

i=1ROi)} ∪ {(∪N
i=1WFi) ∩ (∪N

i=1RWi)} ∪
{(∪N

i=1ROi) ∩ (∪N
i=1RWi)} ∪ {∪N

i=1(RWi ∩ (∪i−1
k=1RWk))} = ∅.

Similarly, output independence can be modeled via equation:

{∪N
i=1(WFi ∩ (∪i−1

k=1WFk))} = ∅.
The privatization and reduction parallelization transformations are also sup-
ported but are outside the scope of this paper.

Figure 2(a) and 2(b) show loop INTGRL do140 of the trfd benchmark and
the associated output independence usr for array X. The WFi usr is shown in
the bottom part of the figure – loop nodes are introduced because exact lmad
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SG FACTOR(D : USR)

// Output: P s.t. P ⇒ (D = ∅)
Case D of:
q#A: P = q ∨ FACTOR(A)

A ∪ B: P = FACTOR(A) ∧ FACTOR(B)

A − B: P = FACTOR(A) ∨ INCLUDED(A,B)

A ∩ B: P = FACTOR(A) ∨ FACTOR(B)
∨ DISJOINT(A,B)

⋃N
i=1(Ai): P =

∧N
i=1 FACTOR(Ai)

A �� CallSite: P =FACTOR(A)��CallSite

SG DISJOINT APPROX(C : USR, D : USR)

(PC , �C�) ← conditional LMAD overestimate ofA

(PD , �D�) ← conditional LMAD overestimate ofD

P = PC ∨ PD∨ DISJOINT LMAD(�C�, �D�)
(a) Extracting Predicates from USR = ∅

SG DISJOINT(C : USR, D : USR)

// Output: P s.t. P ⇒ (C ∩ D = ∅)
P = DISJOINT HALF(C, D) ∨

DISJOINT HALF(D, C) ∨
DISJOINT APPROX(C, D)

SG DISJOINT HALF(C:USR,D:USR)

Case C of:

q#A: P = q ∨ DISJOINT(A, D)

A ∪ B: P = DISJOINT(A, D) ∧
DISJOINT(B, D)

A − B: P = DISJOINT(A, D) ∨
INCLUDED(D,B)

A ∩ B: P = DISJOINT(A, D) ∨
DISJOINT(B, D)

(b) Functions used by FACTOR

Fig. 3. Construction of an Arbitrarily-Shaped Independence Predicate

aggregation fails over loop k due to the non-linear use of IA(k). The output
independence pattern is explicit in the upper part of the figure, where partial
aggregation corresponds to the ∪i−1

k=1WFk term. Even if lmad aggregation would
have succeeded for loop k, it would still fail partial aggregation due to IA(i).

2.2 Sensitivity Analysis

Figure 3(a) and 3(b) give the gist of the top-down FACTOR algorithm. Inference
on set-algebra properties guides a recursive construction of an arbitrary complex
predicate. Its representation, named sensitivity graph (sg), similar to usr, is a
dag in which leafs contain predicate expression, while nodes represent either (i)
logical operators – or (∨) , and (∧) – or (ii) control flow – call sites, loops –
across which predicates cannot be summarized.

For example, from q#A = ∅, where q denotes the branch condition under
which A is defined, we extract the predicate q∨FACTOR(A). Sufficient conditions
for A ∩ B = ∅ are A = ∅ or B = ∅. Additional predicates for this equation are
inferred in DISJOINT HALF by examining the shape of A and B.

Whenever we reach lmad leafs or when we encounter call site or loop nodes
(that end the DISJOINT-based logical inference), DISJOINT APPROX conserva-
tively flattens the problem to the lmad domain. We have found most useful to
represent an overestimate of usr D as a pair (PD, �D�), where PD is a predicate
under which D is empty, while �D� is an lmad-overestimate of D. Building on
the lmad intersection and subtraction algorithms [19], DISJOINT LMAD extracts
the conditions for (i) valid projection on number-of-strides dimensions and for
(ii) the corresponding pairs of resulting 1D-lmads to be disjoint.

The result predicate is brought to disjunctive normal form in which terms are
sorted in increasing order of their estimated complexity. Code is automatically
generated to cascade these tests, and to implement conditional loop paralleliza-
tion. Redundancy is optimized by hoisting calls to these tests inter-procedurally
at the highest dominator point where all the input values are available.



66 C.E. Oancea and L. Rauchwerger

3 Extracting LMAD-Monotonicity Predicates

Section 3.1 answers the question “where and when is monotonicity tested?” Since
our solution to non-linear accesses is intrinsically related to lmad summariza-
tion, Section 3.2 establishes a uniform notation and discusses how lmads are
aggregated across loops. Our strategy applies an incremental effort to proving
monotonicity: Section 3.3 presents a simple test to handle one quasi-linear lmad,
and Sections 3.4 and 3.5 treat the uni and multi-dimensional cases of non-linear
lmads with polynomial and array indexing, respectively. Finally, Section 3.6
discusses the overall design of the monotonicity test, and possible extensions.

3.1 When to Apply Monotonicity Tests?

We try to extract monotonicity predicates wherever the FACTOR algorithm en-
counters the equation ∪N

i=1(Ai ∩ (∪i−1
k=1Ak)) = ∅, for an arbitrary usr Ai. One

can observe that if an overestimate of Ai, named �Ai�, is strictly monotonous,
under some definition of set order ”>”, then the above equation holds, i.e. if
�Ai� > �Ai−1� for any 2 ≤ i ≤ N , then by induction �Ai� > �Aj�, for any
1 ≤ j ≤ i− 1, and hence the intersection Ai ∩ (∪i−1

k=1Ak) is empty for any i. We
also check the monotonicity ofROi∪WFi∪RWi since this is a sufficient condition
for the independence of the loop of index i. The answer to the where question
is thus pattern matching at usr level; this is very different from solutions based
on code pattern recognition in that our matching is less a consequence of the
problem and more an artifact of the proof, i.e. irreducible data-flow equations.

We try to extract monotonicity predicates whenever an lmad overestimate of
Ai, named Li, can be computed, but the aggregation of Li over the loop of index i
is either inexact or fails in the lmad domain. The latter is the sign of an irregular
access, either non-linear: Li exhibits subscripted or polynomial or exponential
indexing, or quasi-linear: the same index appears in two lmad dimensions, or
division operations occlude linearity. Either way, FACTOR is likely to fail. For
example, assuming an lmad overestimate Li exists for WFi in Figure 2(b), Li

would fail partial aggregation over the outermost loop of index i due to the
indirect access IA(i). FACTOR can only try to prove that WFi is empty but
since this is not the case the result will be the predicate false.

3.2 Problem Statement, Notation and LMAD Loop Aggregation

The problem addressed is extracting predicates that are sufficient conditions
for the satisfiability of the usr equation X = ∪N

i=1(Di ∩ (∪i−1
k=1Dk)) = ∅, where

i = 1, N is the range of normalized loop L. We denote with Ai = {A1
i , A

2
i , ..., A

M
i }

a list of lmads that overestimates Di (as a set of points). We recall that:
E = [δ1, δ2, .., δP ] ∨ [σ1, σ2, .., σP ] + τ denotes a P -dimensional lmad repre-

senting the set of points: {i1 ∗ δ1 + i2 ∗ δ2 + ... + iP ∗ δP + τ | 0 ≤ ik ∗ δk ≤
σk, 1 ≤ k ≤ P}, where δk and σk are called the stride and span of dimension k,
respectively.

If for any k, δk > 0, then interval [τ, τ+
∑P

j=1(σj)] overestimates E. Ak
i+1, τi+1

are obtained by replacing i with i+ 1 in Ak
i and τi.
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To compute an lmad overestimate �X� of an usr X we apply a recursively
defined operator on the usr domain. In the top down parse the operator disre-
gards node B in terms such as C − B, C ∩ B, while in the return (bottom-up)
parse it translates, aggregates and adds (union) the encountered lmad leafs over
call site, loop and ∪ nodes, respectively. At the lmad level, aggregation over loop
L succeeds as long as the resulting strides/span/offset are loop invariant (since
the usr language is scoped). The remainder of this section demonstrates at an
intuitive level how lmad’s overestimate and exact aggregation works.

DO i = 1, N DO i = 1, N

DO j = 1, N DO j = 1, i

S1 : Y(j+i*N) = ... Y(j+i*N) = ...

ENDDO ENDDO ENDDO ENDDO

With both loop nests above, the lmad describing the write access of Y at state-
ment S1 is the lmad point (j−1)+N ∗(i−1). Aggregation over the left-hand side
loop of index j creates a new dimension of stride δnew = τj+1 − τj = 1 and span
σnew = τj←N−τj←1 = N−1, since j ∈ [1, N ], giving lmad [1]∨[N−1]+N∗(i−1).
Aggregation over loop i similarly creates a new dimension of stride N and span
N2 − N , giving [1, N ] ∨ [N − 1, N2 − N ] + 0. The left-hand side loop nest ag-
gregation has been exact. Considering the right-hand side loop nest, aggregation
over loop j gives [1] ∨ [i − 1] +N ∗ (i − 1), since j ∈ [1, i], and over loop i gives
[1, N ]∨ [i− 1, N2 −N ] + 0. Since the usr language is scoped, exact aggregation
over loop i fails, because loop-variant symbol i still appears in the lmad. How-
ever, an overestimate can be computed by replacing i with its upper bound N ,
which gives lmad [1, N ] ∨ [N − 1, N2 −N ] + 0.

Intuitively, the strategy for testing monotonicity is to overestimate each lmad

dimension via intervals, and to formulate several kinds of monotonicity which all
reduce to studying interval monotonicity; for example increasing monotonicity
would correspond to the upper bound of the interval corresponding to iteration
i being less than the lower bound of the interval corresponding to iteration i+1.

3.3 Quasi-Linear Case

We consider the case when the overestimate of usr Di is one lmad Ai. Observe
that if overestimate L-aggregation of Ai succeeds and creates a new dimension,
then necessarily the new stride is L invariant, and hence the access is strictly
monotonic in the new dimension. Denoting with A the aggregated lmad, a
sufficient condition for the data-flow equation X = ∅ to hold is that A has non-
zero strides and its “virtual” dimensions do not overlap. Checking non-overlap
requires normalizing A – all strides/spans are made positive and dimensions are

sorted according to strides – and checking that
∑k−1

j=1 σj < δk, for any 2 ≤ k ≤ P .
When the values of δk, σk are not all known statically, an non-overlap predicate
of complexity O(1) is extracted and evaluated at run time.

While this test primarily handles quasi-linear access in which i appears in two
dimensions, it also covers some non-linear cases. For example access Y (j+N2∗i)
in a two-level loops nest of indexes i = 1, N and j = 1, i2 gives after j-aggregation
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SE REDUCE GT 0( expr )

//Input: an int-type expression

//Output: P s.t. P ⇒ (expr > 0)

(a, b, i, L, U, err) =

FIND SYMBOL(expr);

// expr = a*i+b, L ≤ i ≤ U, i /∈ b

// P = (a ≥ 0 ∧ a*L+b>0) ∨ (a < 0 ∧ a*U+b>0)

IF ( err ) THEN RETURN (expr > 0);

ELSE RETURN
[ REDUCE GT 0(a+1) ∧
REDUCE GT 0(a∗L+b) ] ∨

[ REDUCE GT 0(−a) ∧
REDUCE GT 0(a∗U+b) ];

(a) Symbolic Fourier-Motzkin Elimination

L1L3 L2 U3U1 U2

i

L1L3 L2 U3U1 U2

i+1

... ...

L1 U1

i+1i

... ...

L2 U2

i+1i

... ...

L3 U3

i+1i

L2L1 U1U2

i

L2L1 U1U2

i+1

... ...

L3 U3

i+1i

... ...

I.   ALL MONOTONIC

II.  EACH MONOTONIC

III. MIXED MONOTONIC

(b) A Taxonomy of Monotonicity Cases

Fig. 4.

[1] ∨ [i2 − 1] + N2 ∗ (i − 1). Note that σ1 is quadratic in i, but this does not
impede i-aggregation because τ = (i− 1) ∗N2 is linear in i and an upper bound
for i2 is known (N2) leading to [1, N2]∨ [N2−1, N3−N2] which never overlaps.

Loop FTRVMT do109 of the ocean benchmark was solved via such an O(1)
non-overlap test, where the L-aggregated lmad has four symbolic dimensions.

3.4 Nonlinear, Unidimensional (1D) LMAD Case

We consider the case when the per-iteration summary is overestimated via a list
of 1d lmads Ai = {A1

i = [δ1i ]∨[σ1
i ]+τ1i , .., A

M
i = [δMi ]∨[σM

i ]+τMi }, where all M
strides and spans are positive. The intuitive idea is to overestimate each Ak

i to
an interval F k

i = [τki , τ
k
i +σk

i ] and to study monotonicity at interval level, where
we denote the lower and upper bounds of F k

i by Lk
i = τki and Uk

i = τki + σk
i .

Figure 4(b) depicts three main cases: In the all monotonic case, overestimating
the whole per-iteration summaryAi to an interval still forms a strictly monotonic
sequence of intervals in i. This guarantees that the accesses of iteration i do not
overlap with those of iteration i+ 1, for any i, and by induction, with any of an
iteration other than i. More formally, predicate Pall mon =

[∧N−1
i=1 (MAXMk=1(U

k
i ) < MINMk=1(L

k
i+1))] ∨ [∧N−1

i=1 (MAXMk=1(U
k
i+1) < MINMk=1(L

k
i ))]

satisfies our data-flow equation X = ∅, where the first and second terms are the
conditions for strictly increasing and decreasing monotonicity, respectively.

In the each monotonic case, each lmad in list Ai has the property that its
accesses form a strictly monotonic, hence non-overlapping, sequence in the iter-
ation space: i.e. the interval sequence F k

i is strictly monotonic in i. Additionally,
maximizing the M intervals over the range of i gives M pairwise disjoint inter-
vals F k. This is a sufficient condition that satisfies equation X = ∅. Formally,
the predicate for the first condition is PREDeach mon =

[∧N−1
i=1 (U1

i < L1
i+1) ∨ ∧N−1

i=1 (U1
i+1 < L1

i )] ∧ ... ∧
[∧N−1

i=1 (UM
i < LM

i+1) ∨ ∧N−1
i=1 (UM

i+1 < LM
i )].
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The “additional” part requires computing the lower and upper bounds for each
interval F k. We use the assumed monotonicity of F k

i to exactly express the lower
and upper bounds of F k: Lk = MIN(Lk

1 , L
k
N) and Uk = MAX(Uk

1 , U
k
N ). We cre-

ate a predicate PREDsc as a sensitivity graph node, named sorted check, whose
run-time semantic is: sort the M intervals [Lk, Uk] in increasing order of Lk and
return ∧M−1

k=1 (Uk < Lk+1). Thus PREDeach mon ∧PREDsc is another sufficient
condition that satisfies the loop-independence data-flow equation X = ∅.

Finally, in the mixed monotonic case, any combination of the previously dis-
cussed cases would satisfy X = ∅. This leads to too many possible solutions and
hence we restrict our implementation to the first two “extreme” patterns.

While the predicates extracted so far will prove monotonicity at run-time,
they can be significantly optimized via symbolic Fourier-Motzkin elimination of
loop-variant symbols of known bounds, as depicted in Figure 4(a). In the each
monotonic case, we apply it to eliminate L-variant symbols such as i from the
Uk
i < Lk

i+1 and Uk
i+1 < Lk

i inequations. In the all monotonic case, we try to
solve O(M2) inequations, the resulting predicate being:

Pall mon opt = ∧1≤k,j≤M (U j
i < Lk

i+1) ∨ ∧1≤k,j≤M (U j
i+1 < Lk

i ).

Successful elimination gives a loop-invariant predicate of O(1) run-time complex-
ity for both cases. Otherwise, in the all monotonic case, we use the non-optimized
predicate, which has O(N ∗M), rather than O(N ∗M2) complexity.

Array XIJRS0 from loop OLDA do300 of trfd benchmark exhibits a quadratic
per-iteration summary formed by three lmads (M = 3), that gives an O(1)
independence predicate equivalent to1: morb+morb2+(−1)∗num+(−1)∗num2 ≤ 0.

3.5 Nonlinear Multi-dimensional LMAD Case with Index Arrays

When Ai contains P-dimensional lmads of similar shape – i.e. all strides match
across Ak

i , k ∈ [1,M ], then we study monotonicity dimension wise. This requires
to split τ across dimensions, and to extract a well-formedness predicate Pwf .

For example, lmad [1, Q]∨ [i−1, Q∗ (i−1)]+ i+Q∗(i+1) can be interpreted
as a 2D array access that covers intervals [i, 2 ∗ i − 1] and [i + 1, 2 ∗ i] on the
first and second direction, respectively. The decomposition is valid as long as
dimensions do not overlap, hence Pwf is 2 ∗ i − 1 < Q, which, since i ∈ [1, N ],
becomes 2 ∗ N − 1 < Q (by Fourier Motzkin). τ splitting is implemented via
a heuristic that we do not discuss here, but which may fail when there is not
enough confidence that the guess is correct. When splitting fails we approximate
an lmad with the interval [τ, τ+

∑P
j=1 σj ] and apply the technique of Section 3.4.

Intuitively, with the each monotonic case, each lmad monotonicity is estab-
lished by showing monotonicity in one dimension. The all monotonic case is
more complex because the generation of a sufficient condition for increasing
monotonicity, requires that, for any lmad, there exist at least one dimension in
which its lower bound for iteration i + 1 is greater than the iteration-i upper
bounds of all lmads. Formally, denoting by [Lt,j

i , U t,j
i ] the interval overestimate

of dimension t of Aj
i , and

1 Constant propagation could determine morb = num and the decision can be static.
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Peach mon = ∧M
j=1{ ∨P

t=1 [ ∧N−1
i=1 (U t,j

i < Lt,j
i+1) ∨ ∧N−1

i=1 (U t,j
i+1 < Lt,j

i ) ] }
Pall mon = ∧M

j=1{ ∨P
t=1 [ ∧N−1

i=1 (U t,1
i < Lt,j

i+1 ∧ ... ∧ U t,M
i < Lt,j

i+1) ∨
∧N−1
i=1 (U t,1

i+1 < Lt,j
i ∧ ... ∧ U t,M

i+1 < Lt,j
i ) ] },

the all monotonic predicate is Pall mon ∧ Pwf and the each monotonic one is
Peach mon ∧ Psc ∧ Pwf , where we optimize by Fourier-Motzkin all inequations.

To handle complex index-array cases, we refine implementation to allow con-
ditional lmad aggregation based on assumed monotonicity of the index array
that would otherwise hinder aggregation.

We demonstrate the approach on loop INTGRL do140 of trfd benchmark,
where, for clarity, we show only the monotonically increasing case. The code
and WFi usr are shown in Figures 2(a) and 2(b). To compute Ai we need to
aggregate: Bj

k = { [Q] ∨ [Q ∗ (maxl− 1)] + (IA(i) + j − 1) + Q ∗ IA(k),
[1] ∨ [maxl− 1] + Q ∗ (IA(i) + j − 1) + IA(k) }

over loops of indexes k ∈ [1, i] and j ∈ [1, i]. We assume that IA(k) is monotonic
in k, i.e. P i,j

IAmon = ∧i−1
k=1IA(k) < IA(k + 1), and extend this predicate over

the range of i, giving PIAmon = ∧N−1
i=1 IA(i) < IA(i + 1). Using IA’s assumed

monotonicity, the range of IA(k) in loop k becomes [IA(1), IA(i)], and the range
of maxl is [1, i]. Thus, overestimate aggregation over loops k and j succeeds:

Ai = { [1, Q] ∨ [i− 1, Q ∗ (i− 1 + IA(i)− IA(1))] + IA(i) + Q ∗ IA(1),
[1, Q] ∨ [i− 1 + IA(i)− IA(1) , Q ∗ (i− 1)] + Q ∗ IA(i) + IA(1)}.

Projection on the first dimension gives intervals: [IA(i), IA(i)+ i−1], and [IA(1),
IA(i)+ i− 1]; the second dimension is similar, but reversed. After simplification,
the all monotonicity formula gives: Pall mon = ∧N

i=1[ IA(i+ 1) ≥ IA(i) + i].
Finally, the well-formedness predicate that guarantees dimensions do not over-

lap is Pwf = IA(N) + N − 1 < Q, and implication-based reductions, such as
IA(i+1) ≥ IA(i)+ i ⇒ IA(i+1) > IA(i), optimizes away term PIAmon. Overall,
we obtain the output-independence predicate Pall mon ∧ Pwf , whose O(N) run-
time overhead is negligible against the O(N4) complexity of loop INTGRL do140.

3.6 Overall Design and Possible Extensions

We try first the non-overlap test presented in Section 3.3 since it is the cheapest
in terms of both compile and run time complexity – O(1). If a predicate cannot
be extracted this way, we study monotonicity in the more comprehensive form of
Sections 3.4 and 3.5: If Ai contains lmads of similar shape and dimension-wise
projection succeeds, we apply the multi-dimensional test, otherwise lmads are
flattened and predicates are extracted via the 1D test. In practice we encountered
only instances of the all monotonic cases.

Our solution evolves naturally: First, non-linearity is discovered as a conse-
quence of exact aggregation failing on lmads. Second, predicate extraction mod-
els a general form of monotonicity at interval level, and as such is transparent
to the non-linearity shape, i.e., indirect access or polynomial indexing. Finally,
the extracted predicates are aggressively optimized: (i) symbolic Fourier-Motzkin
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elimination is applied on inequations, (ii) the assumedmonotonicity refines ranges
and (iii) implication-based invariants effectively filter the sensitivity graph sg,
e.g., if A ⇒ B then A ∧ B ≡ A. Denoting by N the number of iterations of the
outermost loop, we typically extract predicates of run-time complexity O(1) for
polynomial and O(N) for array indexing, where the O(N) predicate is evaluated
in parallel, giving scalable performance.

4 Related Work

Hoeflinger’s art test [13,19] summarizes accesses via non-linear lmads that
allow strides to contain loop-variant symbols of the aggregated loop, such as
the loop index. The lmad corresponding to the independence test is aggregated
across the to-be-analyzed loop and independence is tested by checking that lmad
dimensions do not overlap. We found that such aggressive aggregation is often
too conservative. We diverge early in our design by keeping lmads quasi linear,
i.e., loop-invariant strides, and using usrs to allow exact summarization, and
FACTOR to extract independence predicates. The test of Section 3.3 is similar with
Hoeflinger’s non-overlap test, the difference being that our lmad algebra requires
checking that aggregation creates a new dimension. While manual application
of art reported success on codes with exponential indexing, such as tfft2, that
we do not cover, art probably cannot handle the codes exhibiting index arrays
and even quadratic indexing, such as INTGRL do140 and OLDA do300. This would
probably require an analysis similar to ours to prove loop-variant strides positive.

The test we described in Section 3.4 intuitively resembles Blume and Eigen-
mann’s Range Test [5], which uses symbolic-range propagation and the mono-
tonicity of a read/write pair of accesses to disprove non-independent direction
vectors. The Range Test covers polynomial and some exponential indexing, but
cannot handle index arrays (e.g., INTGRL do109). Loop index appearing in dif-
ferent dimensions may also be a hindrance in some cases.

Lin and Padua give a code pattern-matching extension of the Range Test,
named Offset-Length Test [14], that handles index-array accesses such as the
ones in INTGRL do140. The solution uses interprocedural analysis to verify invari-
ants on the values stored in the index array and as such, to derive independence
statically. While a static result is always desired, array properties could be im-
possible to establish statically, e.g., array read from a file. In contrast we extract
a O(N) predicate, whose run-time overhead is negligible given that the original
loop has O(N4) complexity, and furthermore our predicate stems naturally from
lmad monotonicity rather than relying on code pattern matching.

Pugh and Wonnacott extend Presburger arithmetic with support for un-
interpreted functions [21] to analyze dependencies of a pair of non-linear ac-
cesses (some control flow included as well). Wherever Presburger-like algebra
cannot prove independence, the irreducible formula is presented to the user for
validation. Several refinements, such as inductive simplification, extract sim-
pler formulas that are sufficient independence conditions. The more complex
index-array loop INTGRL do140 is not reported, and the quadratic indexed loops
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Table 1. Loop and Benchmark Level Properties. The last three columns describe (i)
the type of non-linearity: polynomial indexing (i2), indirect array (IAmon), or index span-
ning multiple dimensions (Non-Overlap), (ii) the complexity of the predicate that proves
flow/output independence (f/o-ind), (iii) the loop contribution to sequential coverage
(weight) and (iv) the predicate overhead as percentage of the parallel loop run time.

Loops with Non-Linear usrs from Several Perfect Benchmarks
Benchmark Bench Properties Non-Linear Loop Successful Pred Type Weight Pred OV

TRFD
sc = 98.5% OLDA do100 o-ind, O(1), i2 68.2% 0.003%
rt-iw, priv, OLDA do300 f/o-ind, O(1), i2 26.8% 0.015%
slv, dlv INTGRL do140 o-ind, O(N), IAmon 3.4% 0.510%

DYFESM

sc = 96.5% MXMULT do10 f/o-ind, O(N), IAmon 62.6% 0.076%
rt-iw, priv, SOLXDD do10 o-ind, O(N), IAmon 12.6% 0.001%
red, rt-red SOLVH do20 f/o-ind, O(N), IAmon 12.1% 0.016%

FORMR do20 f/o-ind, O(N), IAmon 8.1% 0.692%

ARC2D
sc = 96.7% YPENT2 do11 f-ind, O(1) 10.2% 0.084%
priv, slv et al. Non-Overlap

MDG
sc = 99.3% INTERF do1000 STATIC, NONE 91.7% 0%
priv, red, POTENG do2000 STATIC, NONE 7.4% 0%

SPEC77
sc = 91.3% SICDKD do1000 f-ind, O(1) 4.1% 0.007%
priv,red,slv Non-Overlap

OCEAN
sc = 88.8% FTRVMT do109 f-ind, O(1) 63.2% 0.075%
priv,red,slv Non-Overlap

olda do100/300 are (only) observed to form monotonic indexing before induc-
tion variable substitution. Our test extracts parallelism from all reported loops.

Hall et al. use interprocedural summarization [12,16] to give a comprehensive
study of parallelism for the perfect Club and spec2000 benchmarks. Branch
conditions are exploited to enhance summary precision and to predicate opti-
mistic data-flow results. If independence cannot be decided statically, user tools
test an independence predicate. While suif does not seem to target non-linear
accesses, it handles loops olda 100/300 in a way similar to Pugh’s.

Another body of important work includes formulation of powerful symbolic
algebra systems such as the one of Fahringer [9] that among others computes
upper and lower bounds of nonlinear expressions, and the one of Engelen that
uses a more general form of induction variables via recurrence chains [8].

Other work presents pattern matching solutions for code with conditional
induction variables such as Lin’s and Rus’ stack [15] and pushback [26] arrays.
While we handle cases as difficult as TRACK’s extend do400, we do not discuss
them here because there we rely on improving lmad aggregation, while this
paper handles non-linearity that fails (any) aggregation.

Finally, the other main direction of solving irregular accesses has been to an-
alyze memory references at run-time [22,17,18]. These techniques have overhead
proportional to the number of the original-loop accesses, and hence we use them
only as a last resort, once all the lighter independence predicates have failed.

5 Experimental Evaluation

We evaluate our technique on a number of benchmarks known to be rich in
non-linear accesses. Table 1 characterizes several such irregular loops, named in
column 3, and their corresponding benchmark, named in column 1.
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(a) Benchmark Timing on a Quad Core. (b) Loop Timing on a Quad-Core.

Fig. 5. Parallel Normalized Timing on a Quad-Core Machine

Column 2 shows the percentage of the sequential run-time coverage (sc) that
has been parallelized, and the enabling transformations: privatization (priv),
static/dynamic last value (slv/dlv), reduction (red). rt-iw and rt-red corre-
spond to predicates that may eliminate the need for privatization and reduction.

The fourth column classifies non-linear accesses: indirect arrays (IAmon), poly-
nomial indexing (i2), and loop index spanning multiple dimensions, which cor-
responds to the quasi-linear test that checks that dimensions do not overlap.
Predicates typically prove flow/output independence (f/o-ind) in O(N), for
IAmon, and O(1) run-time complexity for the other two. The fifth column shows
the weight of the loop, as percentage of the sequential run time of the entire
program. The sixth column demonstrates that the overhead of the extracted
predicates, seen as a percentage of the concurrent loop run time, is negligible.

Figures 5(a) and 5(b) show the normalized timing for entire benchmarks and
for selected loops (sequential time is 1). The tests and loops are shown in the
order they appear in Table 1. We used ifort version 11.1 to compile the source
file generated by our compiler on a commodity intel quad-core Q9550@2.83GHz
machine. Since the data-sets of these tests are very small, we used the O0 level.
Compilation under O2 gives comparable speed-up for trfd, mdg and spec77

benchmarks, some speed-up for arc2D and significant slowdown for dyfesm and
ocean. The reason for the slowdown is that all important loops in the latter two
benchmarks, while executed many times, have granularity in the range of tens
of microseconds, which is too small to amortize the thread spawning overhead.

We have already discussed TRFD’s irregularities. All important loops from
DYFESM: MXMULT do10, FORMR do20, SOLXDD do4/10/30/50,HOP do20, are proved
flow/output independent via O(N) monotonicity predicates that involve index
arrays. We have found loop SOLVH do20 to be particularly interesting in that it
requires predicates extracted from control flow and from both linear and non-
linear lmads. For example, flow independence of arrays XE and HE is verified
with the 5 ∗NNPED ≥ NDFE ∧ NSYM 	= 0 and 8 ∗NNPES ≥ NSFE predicates, respec-
tively, while output independence of HE is verified via the O(N) predicate:

∧NSS−1
iss=1[−33+NSFE+32 ∗ (IDBEGS(iss)+NEPSS(iss)) < 32 ∗IDEBGS(iss+1)].
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Benchmarks ARC2D, SPEC77 and OCEAN exhibit instances of the non-overlap,
O(1) test. ARC2D’s loops YPENTA do11, XPENT2 do11/15, YPENT2 do11/13 to-
gether have weight 10.2%, while OCEAN’s FTRVMT do109 shows a robust weight of
63.2%. Finally, while monotonicity tests are used on some unimportant loops of
MDG, we included results here mainly because it has been reported non-linear [21].
Both important loops, INTERF do1000, and POTENG do2000 are proved statically
in our framework: the control-flow-based implication necessary to privatize rl

is found true very early at usr aggregation level (otherwise a branch predicate
would be extracted). We also apply run-time reduction and privatization.

In summary, on a four-core commodity system, we get an average speed-up on
entire benchmarks of 2.24x and 2.52x, with maximal values of 3.70x and 3.97x,
and minimal values of 1.54x and 1.40x, even when small data sets with (too)
small granularity are used. The overhead of the monotonicity predicate is on
average a negligible 0.15% of the loop concurrent run time.

6 Conclusions

In this paper we have presented a static analysis technique that can extract
arbitrary predicates that can (in)validate the monotonicity property of mem-
ory reference summaries. These predicates are then simplified using symbolic
elimination algorithms and implications of the assumed monotonicity. Finally,
the predicates are evaluated at run time, where they can (in)validate loop in-
dependence. We have implemented the technique in our compiler and applied
it on six benchmarks with difficult to analyze non-linear array references. The
experimental results show that the dynamic evaluation of predicates represents a
negligible overhead, especially when compared to previous run-time paralleliza-
tion techniques. Our technology enabled the parallelization of the benchmarks
with full coverage and produced scalable speedups.
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Abstract. In this paper, we propose an OpenCL framework for GPU
clusters. The target cluster architecture consists of a single host node
and multiple compute nodes. They are connected by an interconnection
network, such as Gigabit and InfiniBand switches. Each compute node
consists of multiple GPUs. Each GPU becomes an OpenCL compute
device. The host node executes the host program in an OpenCL applica-
tion. Our OpenCL framework provides an illusion of a single system for
the user. It allows the application to utilize GPUs in a compute node as
if they were in the host node. No communication API, such as the MPI
library, is required in the application source. We show that the original
OpenCL semantics naturally fits to the GPU cluster environment, and
the framework achieves both high performance and ease of programming.
We implement the OpenCL framework and evaluate its performance on
a GPU cluster that consists of one host and eight compute nodes using
six OpenCL benchmark applications.

1 Introduction

Open Computing Language (OpenCL)[11] is a unified programming model for
different types of computational units in a single heterogeneous computing sys-
tem. OpenCL provides a common hardware abstraction layer across different
computational units. Programmers can write OpenCL applications once and run
them on any OpenCL-compliant hardware. This portability is one of OpenCL’s
chief advantages. It allows programmers to focus their efforts on the function-
ality of their application rather than the lower-level details of the underlying
architecture. Some industry-leading hardware vendors such as AMD[2], IBM[9],
Intel[10], NVIDIA[17], and Samsung[19] have provided OpenCL implementa-
tions for their hardware. This makes OpenCL a standard for general-purpose,
heterogeneous parallel programming model.

However, one of the limitations of current OpenCL is that it is restricted to a
single node in a cluster system. It does not work for a cluster of multiple nodes
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unless the developer explicitly uses communication libraries, such as MPI. The
same thing is true for CUDA[16]. A GPU cluster contains multiple GPUs across
its nodes to solve bigger problems within an acceptable time frame[4,7,8,18]. As
such clusters widen their user base, application developers for the clusters are
being forced to turn to an incompatible mix of programming models, such as
MPI-OpenCL and MPI-CUDA. Thus, the application becomes a mixture of a
communication API and OpenCL (or CUDA). This makes the application more
complex, less portable, and hard to maintain.

Host node

Interconnection
Network

Compute node

CPU

Main memory

Main memory

GPU

mem

GPU

mem

GPU

mem

GPU

mem

PCI-E

CPU

Fig. 1. The target cluster architecture
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Fig. 2. The OpenCL platform model

In this paper, we propose an OpenCL framework and we show that our
OpenCL framework can be a unified programming model for GPU clusters. The
target cluster architecture is shown in Figure 1. It consists of a single host node
and multiple compute nodes. The nodes are connected by an interconnection
network, such as Gigabit and InfiniBand switches. The host node executes the
host program in an OpenCL application. Each compute node consists of multi-
ple GPUs. A single GPU becomes an OpenCL compute device. A GPU has its
own device memory, up to several gigabytes. Within a compute node, data is
transferred between the GPU device memory and the main memory through a
PCI-E bus.

Our OpenCL framework provides an illusion of a single system for the user.
It allows the application to utilize GPUs in a compute node as if they were
in the host node. Thus, it enables OpenCL applications written for a single
system (i.e., single node) to run on the cluster without any modification. It
makes the application more portable. To achieve an illusion of a single system
for the cluster, our OpenCL runtime hides communication between nodes from
the user. The user can launch a kernel to a GPU or manipulate memory object
using only OpenCL API functions.
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The major contributions of this paper are the following:

– We show that the original OpenCL semantics naturally fits to the GPU
cluster environment.

– We describe the design and implementation of our OpenCL framework (the
OpenCL runtime and source-to-source translators) for GPU clusters.

– We show the effectiveness of our OpenCL framework by implementing the
OpenCL runtime and the source-to-source translators. We evaluate its per-
formance with a GPU cluster that consists of one host node and eight com-
pute nodes using six OpenCL benchmark applications from various sources.

The rest of the paper is organized as follows. Section 3 describes the design and
implementation of the OpenCL framework. Section 4 discusses and analyzes the
evaluation results of our OpenCL framework. Section 5 surveys related work.
Finally, Section 6 concludes the paper.

2 Background

In this section, we briefly introduce OpenCL.

2.1 The OpenCL Platform Model

The OpenCL platform model (Figure 2) consists of a host processor connected
to one or more OpenCL compute devices. A compute device is divided into one
or more compute units (CUs), each of which contains one or more processing
elements (PEs).

An OpenCL application consists of two parts: kernels and a host program.
A kernel is a function and written in OpenCL C. It executes on a compute
device. The host program runs on the host processor and enqueues a com-
mand to a command-queue that is attached to a compute device. A kernel
command executes a kernel on the PEs within the compute device. A mem-
ory command controls a buffer object, and a synchronization command enforces
an ordering between commands. The OpenCL runtime schedules the enqueued
kernel command on the associated compute device and executes the enqueued
memory or synchronization command directly.

When a kernel command is enqueued, an abstract index space has been de-
fined. The index space called NDRange is an N-dimensional space, where N is
equal to 1, 2, or 3. An NDRange is defined by an N-tuple of integers and specifies
the extent of the index space (the dimension and the size). An instance of the
kernel executes for each point in this index space. This kernel instance is called
a work-item, and is uniquely identified by its global ID (N-tuples) defined by its
point in the index space. Each work-item executes the same code but the specific
pathway and accessed data can vary.

A work-group contains one or more work-items. Each work-group has a unique
ID that is also an N-tuple. An integer array of length N (i.e., the dimension of
the index space) species the number of work-groups in each dimension of the
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index space. A work-item in a work-group is assigned a unique local ID within
the work-group, treating the entire work-group as the local index space. The
global ID of a work-item can be computed with its local ID, work-group ID, and
work-group size. Work-items in a work-group execute concurrently on the PEs
of a single CU.

2.2 The OpenCL Memory Model

OpenCL defines four distinct memory regions in a compute device: global, con-
stant, local and private as shown in Figure 2. To distinguish these memory
regions, OpenCL C has four address space qualifiers: global, constant,
local, and private. They are used in variable declarations in the kernel

code.
An OpenCL memory object is a handle to a region of the global memory

in the device. The host program can dynamically create memory objects and
enqueue commands to read from and write to memory objects. A memory object
is not associated with a specific compute device. Thus, different compute devices
can share memory objects. A memory object in the global memory is typically a
buffer object, called a buffer in short. A buffer stores a one-dimensional collection
of elements that can be a scalar data type, a vector data type, or a user-defined
structure. Even though the space for a buffer is allocated in the global memory of
a specific device, the buffer is not bound to the compute device in OpenCL[11].
Binding a buffer and a compute device is implementation dependent.

OpenCL defines a relaxed memory consistency model for consistent memory.
An update to a memory location by a work-item may not be visible to all the
other work-items at the same time. Instead, the local view of memory from
each work-item is guaranteed to be consistent at synchronization points. Syn-
chronization points include work-group barriers, command-queue barriers, and
events.

3 The OpenCL Framework

In this section, we describe the design and implementation of our OpenCL frame-
work for the GPU clusters.

3.1 Organization of the Runtime

Figure 3 shows the organization of our OpenCL runtime. The runtime for the
host node runs two threads: host thread and command scheduler. The run-
time also maintains OpenCL command-queues for each compute device and
a completion-queue in the host node. The completion-queue contains event ob-
jects that are associated with completed kernel-execution or memory commands.
When a user launches an OpenCL application in the host node, the host thread
executes the host program in the application. The command scheduler in the
host node schedules enqueued commands across compute nodes in the cluster.
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The runtime for a compute node maintains a ready-queue for each compute
device and a completion-queue in the compute node. The ready-queue contains
commands that are issued but not launched to the associated compute device yet.
The completion-queue contains event objects that are associated with completed
kernel-execution or memory commands at the compute node side. The runtime
runs a device thread for each compute device in the compute node. The device
thread dequeues a command from its ready-queue and launches the kernel to the
associated compute device when the command is a kernel-execution command
and the compute device is idle. If it is a memory command, the device thread
executes the command directly. The runtime for a compute node also runs a
command scheduler thread. The command scheduler receives commands from
the host node and schedules them across compute devices in the compute node.

The command scheduler in each node repeats scheduling commands and
checking the completion queue in turn until the OpenCL application terminates.
When the completion queue is not empty, the command scheduler dequeues the
completion queue and updates the status of the dequeued events from issued to
completed. It is also in charge of communicating with other nodes. Communica-
tions between different nodes are implemented with a lower-level communication
API, such as MPI. To implement the runtime for each compute node, an existing
CUDA or OpenCL runtime for a single system can be used.

In the host node, the host thread and the command scheduler share the
OpenCL command-queues. A compute device may have one or more command-
queues as shown in Figure 3. The command scheduler dequeues each command-
queue one by one.

Our OpenCL runtime assigns a unique ID to each OpenCL object, such as
context, compute device, memory, program, kernel, event, etc.

OpenCL supports synchronization between work-items in a work-group us-
ing work-group barriers. Every work-item in the work-group must execute the
barrier and cannot proceed beyond the barrier until all other work-items in the
work-group reach the barrier. Between work-groups, there is no synchronization
mechanism available in OpenCL.

Synchronization between commands in a single command-queue can be speci-
fied by a command-queue barrier command. To synchronize commands between
different command-queues, events are used. Each OpenCL API functions that
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enqueues a command return an event object that encapsulates the command
status. Most of OpenCL API functions that enqueue a command take an event
list as an argument. This command cannot be issued for execution until all the
commands associated with the event list complete.

The command scheduler in the host node honors the type (in-order or out-
of-order) of each command-queue and (event) synchronization enforced by the
host program. When the command scheduler dequeues a synchronization com-
mand, the command scheduler uses it for determining execution ordering be-
tween queued commands. It maintains a data structure to store the events that
are associated with queued commands and bookkeeps the ordering between the
commands. When there is no event for which a queued command waits, the
command is dequeued and issued to its target compute node that contains
the target compute device.

When the command scheduler in the host node dequeues a kernel-execution
command from a command-queue, the command scheduler issues the command
by sending a kernel-execution command message to the target compute node
that contains the target compute device associated with the command-queue.

A kernel-execution command message contains the information required to
execute the original command. It contains target compute device ID, kernel ID,
number of kernel arguments, values of the kernel arguments, IDs of buffers that
are accessed by the kernel, and kernel index space information. In addition, it
contains the ID of the event object that is associated with the kernel-execution
command. The command scheduler sends the message to the compute node that
contains the target compute device. The event ID is used later by the command
scheduler in the target compute node to notify the completion of the command
to the host node.

After the command scheduler sends the command message to the target com-
pute node, it calls a non-blocking receive communication API function to wait
for the completion message from the target node. The command scheduler en-
capsulates the receive request in the command event object and adds the event
in the issue list. The issue list contains event objects associated with the com-
mands that have been issued but not completed yet. When the receive request
completes, the associated event object is removed from the issue list and inserted
to the completion queue in the host node.

The command scheduler in the target compute node receives the kernel-
execution command message from the host command scheduler. It creates a
command object and an associated event object from the message. After ex-
tracting the target device ID from the message, the command scheduler enqueues
the command object to the ready-queue of the target device. The target device
thread dequeues the ready-queue and launches the kernel to the device when
the target compute device is idle. When the compute device completes execut-
ing the kernel, the device thread updates the status of the associated event to
completed, and then inserts the event to the completion queue. The command
scheduler in the target compute node dequeues the event and sends a completion
message to the host node.
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When the dequeued command from a command-queue is a memory command,
the host command scheduler sends memory command messages to target com-
pute nodes. Depending on the type of the memory command, the number of
target compute nodes is one or two. The remaining procedure to process the
memory command in the host node and the target compute node is similar to
that of a kernel-execution command. But, the target device thread executes the
memory command directly. In the next section, we elaborate on the memory
management techniques used by our OpenCL runtime.

3.2 Memory Allocation to Buffers

In OpenCL, the host program creates a buffer object by invoking an API function
clCreateBuffer(). Since an OpenCL buffer is not associated with a specific
compute device, clCreateBuffer() has no parameter that specifies a compute
device. This implies that when a buffer is created, the runtime has no information
about which compute device uses the buffer. Thus, our OpenCL runtime does
not allocate any memory space to the buffer when clCreateBuffer() is invoked.
Instead, when the host program enqueues a memory command that manipulates
the buffer or a kernel execution command that uses the buffer, the runtime
allocates a memory space to the buffer.

However, there is an exception to this rule. When the host program invokes
clCreateBuffer() with the CL MEM COPY HOST PTR flag, it wants to allocate a
space to the buffer and copy the data from the host main memory to the buffer.
If the runtime delays the space allocation until the buffer binds to a specific
compute device, the runtime may lose the original data to be copied because the
data may have been changed. Thus, the runtime allocates a temporary space
in the host main memory to the buffer and copies the data to the temporary
space. After the compute device associated with the buffer is known, the run-
time allocates a space in the device’s global memory and copies the data from
the temporary space to the space in the global memory. Then, it discards the
temporary space for the buffer.

Our OpenCL runtime maintains a device list for each buffer. The device list
contains compute devices that have the same latest copy of the buffer in their
global memory. It is empty when the buffer is created. When the host command
scheduler dequeues a memory command or kernel-execution command, it checks
the device list of each buffer that is accessed by the command. If the target
compute device is in the device list of a buffer, the compute device has a copy of
the buffer. Otherwise, the runtime allocates a space for the buffer in the global
memory of the target device. Then, the runtime copies the buffer to the target
device from the nearest compute device in the device list. A device in the same
compute node is preferred to a device in the different compute node to avoid
extra data transfers.

When the command that accesses the buffer completes, the host command
scheduler updates the device list of the buffer. If the buffer contents are modified
by the command, it empties the list and adds the device that has the modified
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copy of the buffer in the list. Otherwise, it just adds in the list the device who
has recently obtained a copy of the buffer due to the command.

3.3 Buffer Manipulation

To copy an array in the host program to a buffer, the host program enqueues
a memory command to a command-queue by invoking an OpenCL API func-
tion clEnqueueWriteBuffer(). When the host command scheduler dequeues
the memory command, the command scheduler sends a buffer-write command
message to the compute node that has the target compute device associated
with the command-queue. The command scheduler of the target compute node
allocates a temporary space in the main memory to receive the data. This is
because the lower-level communication API does not typically support writing
directly to the compute device memory such as GPU memory. After receiving
the data in the temporary space, the command scheduler enqueues a buffer-write
command in the ready-queue of the compute device using the temporary space
as the source. The associated device thread dequeues the buffer-write command
from the ready-queue and copies the data from the temporary space to the com-
pute device memory. When the compute device notifies the completion of the
buffer-write command to the device thread, it updates the status of the event
object of the original buffer-write command from the host node and inserts the
object in the completion queue.

To copy a buffer to an array in the host program, the host program enqueues a
memory command to a command-queue by invoking clEnqueueReadBuffer().
Since the buffer is not bound to a compute device in OpenCL, it is not guaranteed
that the compute device associated with the command-queue has the latest copy
of the buffer. Thus, the host command scheduler first checks the device list of
the buffer when it dequeues the memory command. It selects a device in the list
and sends a buffer-read command message to the compute node that contains
the device. Then, it receives the data from the target compute node through the
lower-level communication API.

By invoking clEnqueueCopyBuffer(), the host program enqueues the buffer-
copy command to a command-queue. The command copies the contents of one
buffer to another buffer. Since the binding between buffers and compute devices
is implementation dependent, our OpenCL framework assumes that the target
buffer is bound to the compute device that is associated with the command-
queue.

When the host command scheduler dequeues the buffer-copy command, it
identifies the nearest device to the target device by checking the device list of
the source buffer. The selected device becomes the source device for the copy
process. There are three cases: (1) The source and target devices are the same.
(2) The source and target devices are different but they are in the same node,
and (3) The source and target devices are in different nodes.

For the first and second cases, the host command scheduler sends a buffer-
copy command message to the compute node that has the source and target
compute devices. When the command scheduler in the compute node receives
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the message, it checks if the source and target devices are the same. If they are the
same, the command scheduler enqueues a buffer-copy command to the ready-
queue of the compute device. Otherwise, the command scheduler allocates a
temporary space in the main memory. Then, it enqueues a buffer-read command
and a buffer-write command to the ready-queues of the source device and the
target device, respectively. The commands are synchronized with an event so
that the buffer-read command finishes before the buffer-write commands starts.
The device thread associated with the source copies the buffer from the source
device memory to the temporary space, and the device thread associated with
the target copies the contents of the temporary space to the target buffer.

For the third case, the host command scheduler sends a buffer-copy command
message to the source compute node and another buffer-copy command message
to the target compute node. When the command scheduler in the source node
receives the message, it copies the buffer from the source device to a temporary
space in the main memory by enqueueing a buffer-read command to the ready-
queue of the source device. Then it sends the copy to the target compute node
using the lower-level communication API.

When the command scheduler in the target compute node receives the buffer-
copy command message, it receives the copy in a temporary space in the main
memory and enqueues a buffer-write command in the ready-queue of the target
device. At the end, the device thread associated with the target device inserts
the event object of the buffer-copy command it in the completion queue. After
dequeueing the event from the completion queue, the command scheduler sends
a completion message to the host node.

__kernel void vec_add(__global float *A, __global float *B, 
__global float *C) {

int id = get_global_id(0);
C[id] = A[id] + B[id];

}

int vec_add_memory_flags[3] = {
CL_MEM_READ_ONLY, // A
CL_MEM_READ_ONLY, // B
CL_MEM_WRITE_ONLY // C

};

__global__ void vec_add(float *A, float *B, float *C) {
int id = blockDim.x * blockIdx.x + threadIdx.x;
C[id] = A[id] + B[id];

}

(a)

(b)

(c)

Fig. 4. (a) An OpenCL kernel. (b) The buffer access information of kernel vec add for
the runtime. (c) The CUDA C code generated for a GPU.
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3.4 Consistency Management

A buffer object can be shared between different compute devices in OpenCL.
Multiple kernel-execution and memory commands can be executed simultane-
ously, and each of them may access a copy of the same buffer. If they update the
same set of locations in the buffer, we may choose any copy as the last update
for the buffer according to the OpenCL memory consistency model. However,
when they update different locations in the same buffer, the problem is similar to
the false sharing problem that occurs in a traditional, page-level software shared
virtual memory system for clusters[3].

One solution to this problem is introducing a multiple-writers protocol[3] that
maintains a twin for each writer of the buffer and updates the original copy
of the buffer by comparing the modified copy with its twin. Each node that
contains a writer device performs the comparison and sends the result (e.g.,
diff) to the host who maintains the original buffer. The host updates the original
buffer with the result. However, this introduces a significant communication and
computation overhead in the cluster environment if the degree of buffer sharing
is high.

Instead, our OpenCL runtime solves this problem by serializing executions
of those commands in addition to keeping the most up-to-date copies using
the device list. When the host command scheduler issues a memory command
or kernel-execution command, it records the buffers that are written by the
command in a list called written-buffer list. When the host command scheduler
dequeues a command, and the command writes to any buffer in the written-buffer
list, it delays issuing the command until the buffers accessed by the command are
removed from the written-buffer list. Whenever a kernel-execution or memory
command completes its execution, the command scheduler removes the buffers
written by the completed command.

To detect the set of buffers written by an OpenCL kernel, our framework per-
forms a conservative pointer analysis on the kernel source code when the kernel is
built. Since OpenCL imposes a restriction on the usage of global memory point-
ers in a kernel[11]. Specifically, a pointer to address space A can only be assigned
to a pointer to the same address space A. Casting a pointer to address space
A to a pointer to address space B (	= A) is illegal. Thus, a simple, conservative
pointer analysis is enough to obtain the buffers written by the kernel.

When the host builds a kernel by invoking clBuildProgram(), our OpenCL-
C-to-C translator at the host node generates the buffer access information for
the runtime from the OpenCL kernel code. Figure 4 (b) shows the information
generated from the OpenCL kernel in Figure 4 (a). It is an array of integer for
each kernel. The Nth element of the array represents the access information of
the Nth buffer argument of the kernel. Figure 4 (b) indicates that the first and
second buffer arguments (A and B) are read, and the third buffer argument (C)
is written by kernel vec add. The runtime uses this information to manage buffer
consistency.
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3.5 Distributing the Kernel Code

When the host finishes building a kernel by invoking clBuildProgram(), it sends
the binary of the kernel to each compute node. The receiver compute node stores
it and accesses it when the kernel-execution command is issued from the host
node. Our OpenCL-C-to-CUDA-C translator (we assume that the runtime in a
compute node is implemented with the CUDA runtime) generates the code for
a GPU. Figure 4 (c) shows the code generated for a GPU device.

4 Evaluation

This section describes the evaluation methodology and results for our OpenCL
framework.

4.1 Methodology

Target Cluster Architecture. We evaluate our OpenCL framework using a
GPU cluster system that consists of one host node and eight compute nodes. The
host node has two Intel Xeon X5680 hexa-core CPUs with 72GB DDR3 main
memory. Each compute node consists of two Intel Xeon X5660 hexa-core CPUs
with 24GB DDR3 main memory and four NVIDIA GTX 480 GPUs, resulting
in total of 32 GPUs across the entire cluster.

Table 1. Applications used

Application Source Description Input Global Mem. Size
BinomialOption AMD Binomial option pricing 65504 samples, 512 steps, 100 iterations 2MB

BlackScholes PARSEC Black-Scholes PDE 33538048 options, 10000 iterations 895.6MB
CP Parboil Coulombic potential 16384x16384, 100000 atoms 1024.1MB
EP NAS Embarrassingly parallel Class D 0.8MB

MatrixMul NVIDIA Matrix multiplication 10752x10752 1323MB
Nbody NVIDIA N-Body simulation 5242880 bodies 320MB

Benchmark Applications. We use six OpenCL applications from various
sources: AMD[1], NAS[14], NVIDIA[15], Parboil[20], and PARSEC[5]. The char-
acteristics of the applications are summarized in Table 1. The applications from
NAS, Parboil and PARSEC are translated to OpenCL applications manually.
For an OpenCL application written for a single GPU, we modify the application
to distribute workload across multiple GPUs and manage data between the host
main memory and multiple GPU device memories.

Runtime and Source-to-Source Translators. We have implemented the
OpenCL runtime and source-to-source translators. The runtime in the compute
node is implemented with CUDA 3.2[16]. We have implemented our OpenCL-
C-to-C and OpenCL-C-to-CUDA-C translators by modifying clang that is a C
front-end for the LLVM compiler infrastructure[13].
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Fig. 7. Speedup of the GPU cluster over a single CPU core

4.2 Results

Figure 5 shows the speedup of our OpenCL framework over a single GPU for
each application. We vary the number of GPUs from 2 to 32 in powers of two.
Since a compute node contains four GPUs, we use up to eight compute nodes.
All applications but MatrixMul scale well. The performance of the applications
is almost proportional to the number of GPUs.

The total execution time of an application mainly consists of computation
(kernel execution) and communication time. The kernel execution time decreases
linearly with the number of GPUs for all applications. This accounts for the even
distribution of the kernel workload across GPUs.

The communication time increases as the amount of data transfer increases.
Figure 6 shows the normalized total amount of data transfer between nodes. The
amount is normalized to that of a singleGPU.The amount of data transfer in Bino-
mialOption, BlackScholes, CP, and EP does not change as the number of GPUs in-
crease. This is because there is no data sharing between work-items in their
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kernels. In MatrixMul and Nbody, work-items share data with each other. Thus,
when the kernel workload is distributed across GPUs, some data items are dupli-
cated in multiple GPU device memories. As a result, the amount of data transfer
between nodes increase as the number of GPUs increases. In turn, the communica-
tion overheadalso increases as the number ofGPUs increases due the data transfer.

Since the communication overhead dominates the performance of MatrixMul,
it does not scale well. Unlike MatrixMul, the kernel execution time of Nbody is
much bigger than the data transfer time. In addition, the absolute amount of
data interchanged between GPUs is small for Nbody. Thus, the reduced kernel
execution time by the multiple GPUs dominates Nbody’s total execution time.

For your reference, Figure 7 shows the speedup of each application over a
single CPU core for different number of GPUs. The sequential CPU version of
each application is obtained from the same source in Table 1. For MatrixMul, we
optimize the sequential CPU version using the tiling technique; this is because
the OpenCL version of MatrixMul exploits the same tiling optimization.

5 Related Work

Heterogeneous computing has been drawn much attention due to its parallelism,
energy efficiency and cost effectiveness. Recently, there have been many studies
done on GPU clusters[8,18,7]. However, there are few literature found that show
a unified programming model for such clusters.

Chen et al.[6] propose new language extensions to Unified Parallel C (UPC)
in order to take advantage of GPU clusters. They extend UPC with hierarchical
data distribution and introduce the implicit thread hierarchy. They implement
the compiler and runtime system, and show that their model has better pro-
grammability than the mixed MPI/CUDA approach, and the model is effective
to achieve good performance on GPU clusters. We, on the other hand, show that
the original OpenCL semantics naturally fits to the GPU clusters, and present
the OpenCL framework for such clusters.

Kim et al.[12] propose an OpenCL framework for multiple GPUs in a system.
The OpenCL framework provides an illusion of a single compute device to the
programmer for the multiple GPUs available in the system. It automatically par-
titions the work-group index space of the kernel at run time. To find an optimal
partition that minimizes data transfer through the PCI-E bus between the host
and GPUs, they use a sampling technique that analyzes the buffer access ranges
in the kernel. To achieve a single compute device image, the runtime maintains
a virtual device memory and copies them to each device memory when required.
While their proposed OpenCL framework provides an illusion of a single compute
device to the programmer, our OpenCL framework provides an illusion of a single
system to the user for the multiple compute nodes available in GPU clusters.

6 Conclusions and Future Work

We introduce the design and implementation of an OpenCL framework that
provides an illusion of a single system to the programmer for GPU clusters. It
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allows the application to utilize GPU devices in a remote node as if they were in
the local node. Thus, it enables OpenCL applications written for a single system
to run on the GPU cluster without any modification and makes the application
more portable. To achieve an illusion of a single system for the GPU cluster, our
OpenCL runtime hides communication between nodes from the user. The user
can launch a kernel to a compute device or manipulate memory using OpenCL
API functions. We implement the OpenCL runtime and source-to-source trans-
lator. The experimental results with six OpenCL benchmark applications and
a GPU cluster that consists of one host and eight compute nodes indicate that
our approach is practical and promising.

There are several avenues for future work. First, we would like to extend our
OpenCL framework to support heterogeneous CPU/GPU clusters. Multicore
CPUs in compute nodes can be compute devices to execute OpenCL kernels.
In addition, we would like to extend OpenCL functionality for copying buffers
between compute devices. Unlike MPI, OpenCL has no APIs for collective com-
munications. With the help of collective communication APIs, the OpenCL
framework can achieve both high performance and ease of programming. Fi-
nally, our longer-term plan is to provide an illusion of a single compute device
to the programmer for the multiple compute devices available in heterogeneous
CPU/GPU clusters.

Acknowledgements. This work was supported in part by grant 2009-0081569
(Creative Research Initiatives: Center for Manycore Programming) from the
National Research Foundation of Korea. This work was also supported in part
by the Ministry of Education, Science and Technology of Korea under the BK21
Project. ICT at Seoul National University provided research facilities for this
study.

References

1. AMD: AMD Accelerated Parallel Processing SDK v2.3,
http://developer.amd.com/gpu/AMDAPPSDK/Pages/default.aspx

2. AMD: AMD Accelerated Parallel Processing (APP) SDK With OpenCL 1.1 Sup-
port (2011), http://developer.amd.com/gpu/atistreamsdk/pages/
default.aspx

3. Amza, C., Cox, A.L., Dwarkadas, S., Keleher, P., Lu, H., Rajamony, R., Yu, W.,
Zwaenepoel, W.: TreadMarks: Shared Memory Computing on Networks of Work-
stations. Computer 29, 18–28 (1996)

4. Barak, A., Ben-nun, T., Levy, E., Shiloh, A.: A Package for OpenCL Based Het-
erogeneous Computing on Clusters with Many GPU Devices. In: Proceedings of
the Workshop on Parallel Programming and Applications on Accelerator Clusters,
PPAAC 2010 (2010)

5. Bienia, C., Kumar, S., Singh, J.P., Li, K.: The PARSEC benchmark suite: charac-
terization and architectural implications. In: Proceedings of the 17th International
Conference on Parallel Architectures and Compilation Techniques, PACT 2008,
pp. 72–81 (2008)

http://developer.amd.com/gpu/AMDAPPSDK/Pages/default.aspx
http://developer.amd.com/gpu/atistreamsdk/pages/default.aspx
http://developer.amd.com/gpu/atistreamsdk/pages/default.aspx


90 J. Kim et al.

6. Chen, L., Liu, L., Tang, S., Huang, L., Jing, Z., Xu, S., Zhang, D., Shou, B.: Unified
Parallel C for GPU Clusters: Language Extensions and Compiler Implementation.
In: Cooper, K., Mellor-Crummey, J., Sarkar, V. (eds.) LCPC 2010. LNCS, vol. 6548,
pp. 151–165. Springer, Heidelberg (2011)

7. Chen, Y., Cui, X., Mei, H.: Large-scale FFT on GPU clusters. In: Proceedings of
the 24th ACM International Conference on Supercomputing, ICS 2010, pp. 315–
324 (2010)

8. Fan, Z., Qiu, F., Kaufman, A., Yoakum-Stover, S.: GPU cluster for high perfor-
mance computing. In: Proceedings of the 2004 ACM/IEEE Conference on Super-
computing, SC 2004, pp. 47–58 (2004)

9. IBM: OpenCL Development Kit for Linux on Power (2011),
http://www.alphaworks.ibm.com/tech/opencl

10. Intel: Intel OpenCL SDK (2011),
http://software.intel.com/en-us/articles/intel-opencl-sdk/

11. Khronos OpenCL Working Group: The OpenCL Specification Version 1.1 (2010),
http://www.khronos.org/opencl

12. Kim, J., Kim, H., Lee, J.H., Lee, J.: Achieving a single compute device image
in OpenCL for multiple GPUs. In: Proceedings of the 16th ACM Symposium on
Principles and Practice of Parallel Programming, PPoPP 2011, pp. 277–288 (2011)

13. Lattner, C., Adve, V.: LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation. In: Proceedings of the International Symposium on
Code Generation and Optimization: Feedback-Directed and Runtime Optimiza-
tion, CGO 2004, pp. 75–86 (2004)

14. NASA Advanced Supercomputing Division: NAS Parallel Benchmarks version 3.2,
http://www.nas.nasa.gov/Resources/Software/npb.html

15. NVIDIA: NVIDIA CUDA Toolkit 3.2,
http://developer.nvidia.com/cuda-toolkit-32-downloads

16. NVIDIA: NVIDIA CUDA C Programming Guide 3.2 (2010)
17. NVIDIA: NVIDIA GPU Computing Developer Home Page (2011),

http://developer.nvidia.com/object/gpucomputing.html

18. Phillips, J.C., Stone, J.E., Schulten, K.: Adapting a message-driven parallel ap-
plication to GPU-accelerated clusters. In: Proceedings of the 2008 ACM/IEEE
Conference on Supercomputing, SC 2008, pp. 8:1–8:9 (2008)

19. Seoul National University and Samsung: SNU-SAMSUNG OpenCL Framework
(2010), http://opencl.snu.ac.kr

20. The IMPACT Research Group: Parboil Benchmark suite,
http://impact.crhc.illinois.edu/parboil.php

http://www.alphaworks.ibm.com/tech/opencl
http://software.intel.com/en-us/articles/intel-opencl-sdk/
http://www.khronos.org/opencl
http://www.nas.nasa.gov/Resources/Software/npb.html
http://developer.nvidia.com/cuda-toolkit-32-downloads
http://developer.nvidia.com/object/gpucomputing.html
http://opencl.snu.ac.kr
http://impact.crhc.illinois.edu/parboil.php


CellCilk: Extending Cilk for Heterogeneous

Multicore Platforms

Tobias Werth1, Silvia Schreier2, and Michael Philippsen1

1 University of Erlangen-Nuremberg, Computer Science Department,
Programming Systems Group, Germany
{werth,philippsen}@cs.fau.de

2 University of Hagen, Faculty of Mathematics and Computer Science,
Chair of Data Processing Technology, Germany

silvia.schreier@fernuni-hagen.de

Abstract. The potential of heterogeneous multicores, like the Cell BE,
can only be exploited if the host and the accelerator cores are used in par-
allel and if the specific features of the cores are considered. Parallel pro-
gramming, especially when applied to irregular task-parallel problems, is
challenging itself. However, heterogeneous multicores add to that com-
plexity due to their memory hierarchy and specialized accelerators. As a
solution for these issues we present CellCilk, a prototype implementation
of Cilk for heterogeneous multicores with a host/accelerator design, using
the Cell BE in particular. CellCilk introduces a new keyword (spu spawn)
for task creation on the accelerator cores. Task scheduling and load bal-
ancing are done by a novel dynamic cross-hierarchy work-stealing regime.
Furthermore, the CellCilk runtime employs a garbage collection mecha-
nism for distributed data structures that are created during scheduling.
On benchmarks we achieve a good speedup and reasonable runtimes,
even when compared to manually parallelized codes.

Keywords: Cilk, work stealing, heterogeneous multicores, parallel com-
puting, Cell BE.

1 Introduction

In the ongoing trend to multicore one approach to tackle the memory wall, which
is caused by different growth rates for processor vs. memory speed, are hetero-
geneous architectures. These platforms often consist of a host CPU plus some
accelerators that use a different instruction set. Usually the accelerator cores are
not connected to the host’s main memory. Instead, the programmer has to use
direct memory access (DMA) transfers to move data between main memory and
their smaller scratchpad memories. Such a hierarchical memory design promises
increased performance at the price of more programming complexity.

The Cell BE is such a heterogeneous multicore. Its host CPU is one PowerPC
Unit (PPU). Its accelerators are Synergistic Processing Units (SPUs) with a
single-instruction multiple-data (SIMD) instruction set. They are connected by
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a high bandwidth bus. Code and data reside in a 256KB sized small local store on
each SPU that can be used as a scratchpad memory. The potential of the Cell BE
can only be exploited by using all of the SPUs in parallel. While dealing with
the increased hardware complexity may be tedious but feasible for data-parallel
problems it is much more complex for task-parallel or irregular problems.

Without a suited programming model, programmers have to decide which
parts of their program may run in parallel and how the parallel code is sched-
uled and executed. The core idea of Cilk [7] is to offload this to its runtime
system and scheduler. Cilk extends C and adds a runtime system for task cre-
ation/deletion and a work stealing for provably efficient load balancing. One of
the main advantages of Cilk over other programming models is its ability to
achieve a good speedup also for irregular problems [12]. Although it was origi-
nally designed for shared memory systems and although there have been several
approaches to port Cilk to distributed shared memory (DSM) systems [2], there
are no real attempts to target heterogeneous architectures like the Cell BE.

This paper shows how Cilk can be extended to run efficiently also on het-
erogeneous multicores and it presents our prototype CellCilk for the Cell BE.
With CellCilk it is possible to create tasks for the accelerators that are then
dynamically scheduled to them. Task creation and scheduling on the PPU work
as in Cilk. To cope with the heterogeneity of machines with a host/accelera-
tor design, we introduce a new scheduling mechanism that spawns tasks across
different types of cores. Experiments show a good speedup.

2 Extending Cilk to CellCilk

Cilk extends C by only five keywords (cilk, spawn, sync, inlet, and abort).
Cilk2c translates a Cilk program to C source which is then compiled and linked
against the Cilk runtime system for execution on a shared memory system. A
work stealing scheduler dynamically assigns the tasks to the available cores. We
analyze how this idea can be ported to heterogeneous multicores and adapt the
keywords and the scheduling strategy where needed. After explaining the Cilk
keywords and their extensions, we define the execution model for heterogeneous
architectures, followed by a section on the scheduling mechanisms. Then we show
garbage collection for distributed data structures and explain which function
variants are generated from the CellCilk source.

2.1 Keywords

The most important Cilk keyword1 is spawn, indicating a function call that may
be executed in parallel with the calling function. Every function, even a pure C
function, can be spawned. A sync statement works like a local barrier: Execution
waits for all (possibly) concurrently executing children before proceeding. The
example code on the left of Fig. 1 shows a Cilk function with return value. Using
a return value of a spawned function before a sync might cause a race condition.

1 Functions using one of the Cilk keywords have to be marked with cilk.



CellCilk: Extending Cilk for Heterogeneous Multicore Platforms 93

c i lk i n t f i b ( i n t n) {
i f (n < 2) {

re turn n ;
} e l s e {

i n t x , y ;
x = spawn f i b (n−1);
y = spawn f i b (n−2);
sync ;
r e turn ( x+y ) ;

}
}

c i lk i n t f i b ( i n t n) {
i n t r e t = 0 ;
in let void sum( in t r e s u l t ) {

r e t += r e s u l t ;
}
i f (n < 2) {

re turn n ;
} e l s e {

sum(spawn f i b (n−1)) ;
sum(spawn f i b (n−2)) ;
sync ;
r e turn r e t ;

}
}

Fig. 1. Fibonacci code as Cilk function; Fibonacci code with inlet

Because the potential of heterogeneous multicores can only be exploited when
the processor type is kept in mind, we have changed the semantics of spawn so
that the spawned function will be executed on the same core type (in the CellCilk
prototype, either PPU or SPU) as the spawner. In order to invoke a function on
an accelerator core, we introduce a new keyword (called spu spawn in CellCilk).
We will elaborate on the performance and other reasons for this decision below.

CellCilk’s sync statement still represents a local barrier for all spawned func-
tions, regardless of the type of core they are executing on. Other Cilk features,
e. g., inner functions written in pure C (so-called inlets) can also be used on
heterogeneous multicores without changes. They enable processing results from
spawned functions, e.g. in a reduction. The first argument of such an inlet is
the result of a spawned function call but it may have more arguments (but no
additional results of spawned functions). Fig. 1 shows on the right a variant of
the Fibonacci code that uses inlets. An inlet is executed as soon as the spawned
function returns. They are in a way piggy-backed onto the spawned function.
However, inlets are executed as an atomic block to avoid race conditions. The
keyword abort may only be used in conjunction with inlets. It indicates that all
other spawned children of the surrounding function should stop their execution.2

In case of a parallel search in a large search space, the use of abort makes sense
as soon as one child finds a solution.3

On a heterogeneous multicore it is challenging to efficiently implement inlet
and abort because functions may be spawned both to the host and to the acceler-
ator cores. Section 2.5 describes in detail how inlets are generated and executed.

2.2 Execution Model

Each Cilk function consists of so-called Threads that are uninterruptible se-
quences of statements (i. e., a sequence without spawn and sync). In Fig. 2 they
are represented with uppercase letters. The Cilk model guarantees that a single
Thread is always executed without interruption by other Threads of the same
function instance and its inlets. Using this model, each Cilk program can be

2 However, the function may spawn future children after aborting the current children.
3 Actually, this not an immediate abort but a flag is set at the corresponding workers.
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c() {
    // C1
}

cilk a() {
    // A1
    spawn b();
    // A2
    spawn c();
    // A3
    spu_spawn d();
    // A4
    sync;
    // A5
}

cilk b() {
    // B1
    spawn c();
    // B2
    spu_spawn c();
    // B3
    sync;
    // B4
}

cilk d() {
    // D1
    spawn e();
    // D2
    spawn c();
    // D3
    sync;
    // D4
}

cilk e() {
    // E1
    spawn f();
    // E2
    sync;
    // E3
}

f() {
    // F1
}

(a) Threads of a CellCilk program

A1 A4A3A2 A5

C1B1 B4B3B2 D1 D4D3D2

C1E1 E3E2C1C1

F1

control flow within 
single function

spawn without
changing core type

accelerator spawn

sync

(b) Dependency DAG

Fig. 2. Representation of a CellCilk program as a DAG

represented as a directed acyclic graph (DAG) using the Threads as nodes and
the dependencies between them as edges (see Fig. 2 (b)). This model can be
extended for heterogeneous multicores by introducing new types of nodes and
edges for accelerator spawns. Horizontal arrows represent the control flow within
single functions (inside a rectangle) where shaded rectangles mark functions that
are executed on an accelerator. A downward arrow corresponds to a spawn, a
dashed one to an accelerator spawn, and an upward arrow indicates a sync. As
will be explained later, the CellCilk scheduler respects those dependencies.

For each of the Threads, one could specify execution times. Using those times,
the critical path in the dependency DAG, i. e., the path with the longest total
execution time can be calculated. As this path gives an lower bound on the total
execution time, programmers can use it to guide their tuning efforts.

In ANSI C, a parent function cannot access the local memory of its children or
siblings as functions free their local memory (placed on stack) once they return.
Whereas ANSI C functions can access the frames of their parents, this is no
longer possible in CellCilk because it is neither straightforward nor efficient to
implement on heterogeneous multicores.

With the changed semantics of spawn and the added spu spawn better effi-
ciency can be achieved – albeit only with the help of the programmer who needs
to select the proper spawn and sometimes has to give up access to parent frames.

2.3 Scheduling and Work Stealing

For heterogeneous multicores, Cilk’s traditional two-level scheduling (called nano
and micro scheduling) needs to be extended by a new cross-hierarchy macro
scheduling to cope with the different types of cores.
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Fig. 3. Possible micro and nano scheduling of the program in Fig. 2

Every single worker uses nano scheduling to traverse the DAG in depth-first
order (see Fig. 2), similar to the way a regular C program is executed. CellCilk
uses this method for spawning statements that do not require a change of core
type. Cilk’s micro scheduling is based on randomized work stealing by means of
the THE-protocol [16]. That means that if a worker finishes its current task it
selects a randomized worker to steal work from it. CellCilk applies this mecha-
nism as well, but only between workers that run on the same type of core. To
do so, whenever the program steps on a spawn statement the current state is
saved as stack frame and added to the worker’s double ended queue (dequeue).
In Fig. 3(a), the worker has already finished the execution of both A1 and B1
(cf. Fig. 2). Before it starts executing C1, it adds the current state to the end of
its local dequeue. In Fig. 3(b) worker 2 is idle, selects worker 1 as victim, marks
the oldest work from the front of the dequeue as stolen, and starts to execute A2.
As soon as worker 1 finishes execution of C1, it continues with B2, see Fig. 3(c).
After completing B4, worker 1 notices that A1 was stolen (see Fig. 3(d)), stops
execution, and tries to steal work from others.

When work is moved from one processor type to another by an accelerator
spawn, e. g., a spu spawn on a PPU, there is also a switch from nano schedul-
ing to the new macro scheduling, as the micro scheduling mechanisms are no
longer applicable. The host worker adds the spawned function to a global first-
in first-out (FIFO) spawn queue located in host memory (see Fig. 4(a)). When
an accelerator finishes its task, it first searches for a new task in this global FIFO
spawn queue before selecting another accelerator as victim for stealing. If the
global dequeue holds at least one entry, the oldest entry is removed, transferred
to the accelerator, and executed, see Fig. 4(b). This corresponds to the oldest
work stealing mechanism in micro scheduling. If a spawn is executed on the accel-
erator the frame is added to the local dequeue, see Fig. 4(c). If the global spawn
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Fig. 4. Possible macro scheduling of the program in Fig. 2

queue is empty an idle accelerator worker switches to micro scheduling and tries
to steal work from the local dequeue of another worker (see Fig. 4(d)). As mul-
tiple workers (either on the host or on an accelerator) may access the global
spawn queue concurrently, the access to the queue has to be synchronized.

Here is another reason for the introduction of a spu spawn instead of trying
to build a general purpose spawn that abstract from the types of cores: There
would be two variants to implement such a type independent spawn and both
have drawbacks. The first approach is to implement work stealing across different
types of cores and across the memory hierarchy. That would cause slow com-
munication. Furthermore, the different compilers for the different cores of the
heterogeneous system in general use different struct layouts. Hence, instead of
simply copying structs, some elaborate (de)serialization to/from a common ex-
change format would be needed. The other approach would use a global queue.
This would imply even more synchronization so that the advantages of Cilk
would be lost because the minimal overhead of a spawn that is based on the
depth-first traversal of the call graph is crucial for Cilk’s performance.

If all Cilk keywords are removed from a Cilk program we get the so-called
serial elision that has the same behavior as the execution of the Cilk program
with one thread. Contrary to Cilk, no serial elision of a heterogeneous Cilk
program that has the same behavior as a single worker execution can be created
by simply deleting all keywords even if the processor type is ignored. This is
caused by the specialization in heterogeneous multicores, e. g., on the Cell BE
SPU intrinsics are not available on the PPU and DMA transfers work differently.
But it is possible to create a serial variant without CellCilk keywords by removing
all keywords except the accelerator spawn. This spawn has to be replaced by
code that executes an accelerator task while the host is waiting. Thus, the code
is executed sequentially without using the CellCilk runtime.

Because of the differences the programmer needs to know which spawned
function can run on which core type anyway. Therefore, it would not only be
useless to hide the core type behind a general purpose spawn. But it is even
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better to make the differences explicit and to avoid confusion by different types
of spawn.

2.4 Memory Management on the Accelerator Cores

Concurrent use of global memory easily leads to race conditions. On hetero-
geneous multicores the situation is even worse as the memory neither between
host and accelerator nor between multiple accelerator cores is shared. A global
memory would have to be simulated at a high cost, both with respect to runtime
as each variable access would cause some slow communication, and with respect
to space as a compound data structure would consume precious space on all
the small scratchpad memories of the accelerator cores. Therefore there are no
global variables in CellCilk.

Only pointers that are relative to the own stack frame or pointers that address
the main memory are allowed in CellCilk. The reason is that only those pointers
remain valid when a stack frame is stolen and executed on another core. We may
integrate a software managed cache as in [17] to circumvent this restriction.

But we cannot define away all memory management problems. Every function
has to store a list of all spawned children, e. g., to be able to process them during a
sync statement. If a function is spawned, a so-called spawn entry is added to the
list of children. It stores information about the child, e. g., the currently executing
core and whether it is already finished. If a function is executed by different cores
the spawn entries of its children are created by different cores. While this does
not cause any problem in shared memory environments a distributed list of
children is needed on distributed memory systems.

When accelerator 1 in Fig. 5 starts to execute function d() the function’s
prologue creates the list of children in the scratchpad memory of that accelerator.
When function e() is spawned, a spawn entry for e() is created there as well.
If later on accelerator 2 steals D2, a copy of the function frame is created in the
scratchpad memory of accelerator 2. But the children list of d() and the spawn
entry for e() have to remain in the other scratchpad memory until d() is finished
even if e() is finished earlier and accelerator 1 starts searching for new work.
If d() spawns another function c() on accelerator 2 the corresponding spawn
entry is created there and added to the distributed children list. If later on d()

runs into a local barrier on accelerator 2 (i. e., a sync), the whole distributed
list of children has to be processed. After that all spawn entries can be freed.
But a core can only free its own scratchpad memory. So the elements in the
scratchpad memory of accelerator 1 cannot be freed. Even worse, it is unknown
to accelerator 1 when the data structures can be freed.

To solve this problem, we integrated a garbage collection mechanism based on
a mark and sweep collector [11]. The CellCilk runtime registers dynamically allo-
cated structures (as spawn entries and children lists) for memory management.
If the memory can be freed, it is remotely marked as “free”-able via a sim-
ple runtime call. The runtime scans the list of registered structures from time
to time and sweeps all marked memory chunks. We found that it is enough to free
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Fig. 5. Illustration why garbage collection is necessary

memory while a processor is searching for new work instead of interrupting the
execution for garbage collection.

An alternative to the distributed children list would be to move the children
when the corresponding function is stolen. This would not only introduce the
copying overhead but would also require changes to addresses in the spawn
entries. As spawn entries are also referenced from function frames, these would
have to be updated causing the need for synchronization. Thus, we found a
distributed children list plus a simple garbage collector to be preferable.

2.5 CellCilk Code Generation and Function Variants

One of the drawbacks of programming heterogeneous multicores with a host/ac-
celerator design is the complex programming, as the programmer has to write the
source code for the PPU and SPU in different files (at least for the Cell BE). With
CellCilk this restriction no longer applies as a programmer only has to annotate
a function call with spu spawn. Fig. 6 shows how our source-to-source compiler
CellCilk2C generates separate files for host (PPU) and accelerator (SPU) from
original CellCilk source. As the accelerator cores typically are only equipped
with a small scratchpad memory for code and data the source code (at least)
for the accelerator should be as small as possible. To do so, CellCilk2C analyzes
the call graph starting from the main function, determines (at least within the
limits set by aliases and function pointers) that certain functions will never be
called on a certain type of core, and skips generating code for them.

Ordinary (non-Cilk) C functions that are not called across processor type
boundaries are simply copied to the generated source without any changes. The
spawning functions require more work. The overhead for task creation, work
stealing, and function continuation can be minimized by using function variants
that are specialized for their use cases. CellCilk2C generates two function vari-
ants (slow, fast) for the host and three function variants (slow, fast, host-call)
for the accelerator cores. The fast variant is used until it is stolen, the slow
variant is executed when stolen and provides several continuation points. The
host-call-variant is used to switch from host to accelerator.

The fast variant pretty much looks like a regular C method. It has a very
low overhead compared to plain C, is executed until the corresponding Thread
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Fig. 6. Translation from CellCilk to C and compilation for PPU and SPU

is stolen, and is only used in nano scheduling. It differs from plain C only in
dequeue administration. A slow variant is executed from a stack frame stored on
the dequeue. To be able to interrupt and later continue its execution, the stack
frame also holds the current position.4 The code variant looks like a special form
of Duff’s Device [6] that uses the current position in an initial switch to jump to
the statement/position where the function should be continued. The slow version
is hence a form of a closure object.

For the SPUs, we create an additional host-call variant for every accelerator
function that is potentially called directly from the host. Due to the change of ar-
chitectures and the disjunct memories, arguments cannot be passed through the
stack. Instead, the host-call variant uses two extra parameters: the SPU process
information and a pointer to a structure holding the arguments. The host-call
variant first applies a DMA transfer to copy this structure to the corresponding
worker and then calls the fast variant. As there are several restrictions on the
size and boundary of DMA transfers on the Cell BE, the structure is padded
with dummy bytes if necessary. This idea is also used for the return value.

CellCilk uses internally function pointers to know which function has to be
executed or continued. Therefore, an array of function pointers is created for the
host-call variant. Because function pointers created on the host are not valid on
the accelerators, there is also a mapping table.

The fast versions can ignore sync since the function is executed sequentially
(without stealing), there cannot be any children to wait for. Otherwise, the slow
variant would have been executed that waits for all children to be finished. For
this, we use condition variables in order to avoid busy waits. If a slow function
reaches a sync two scenarios are possible: if there is still at least one outstanding
child on the same processor type the execution of the function is suspended (and

4 In addition to the usual values, a CellCilk stack frame holds: the size of the frame,
the current code position, a list of (spawned) children, a stolen-flag, references to
the parent function as well as to the function variants.
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other work will be executed if possible). If all children are done, the suspended
function can be continued.

An inlet can be executed in Cilk like in C if the parent frame was not stolen
because it is then executed sequentially. Thus, no race condition can occur and
the atomicity of the inlet is ensured. But if the parent frame was stolen the inlet is
executed during the sync statement. This holds true in CellCilk for spawn state-
ments without processor type change as well. If an inlet contains a spu spawn

it can not be executed after returning from the child function because there is
always parallelism that could cause race conditions after the execution of an
accelerator spawn . So inlets containing an spu spawn will always be executed
during the sync statement. abort (within an inlet) is handled through the work-
ers’ dequeue. On the host a flag of the dequeue can be set. In CellCilk, we use
the mailbox mechanism to abort the work of a SPU from the PPU. The SPUs
can use DMA transfers for setting the abort flag of each other’s dequeues. All de-
queue functions check if an abort signal has been received. As sync, the abort

statement cannot be ignored in fast variants containing a spu spawn because
children may still run on the accelerator.

3 Performance Evaluation

We have evaluated CellCilk with several benchmarks using the C compiler from
the Gnu Compiler Collection. We have used a Playstation 3 utilizing the Cell BE
equipped with one PPU with two-way hyperthreading and with 6 SPUs.

First, we have tested our CellCilk prototype with three small standard ex-
amples in different implementations. The first example is the computation of
the Fibonacci function similar to the code shown above.5 The second example
is based on the 0/1-Knapsack problem. It also does not use memoization but
recursively searches for the best solution starting with the most valued item.
The currently best solution is stored in a variable located in main memory. Each
possibility is tried using two spawns (with and without current item). The search
tree is pruned by calculating an upper bound using the global best value.6 For
both examples (Fibonacci and Knapsack), we defined a threshold – below this
threshold their values are computed without further spawning. Otherwise, the
spawned functions are too fine-grained (only few instructions) and the overhead
of task creation would be too high. The third example is an implementation of
the discrete Fourier transformation (DFT) that uses more floating point com-
putations than the other examples.

Fig. 7(a) compares the runtimes of the CellCilk examples with up to two PPU
and up to six SPU threads with the execution time of ANSI C. The overhead
of CellCilk is moderate when executed with a single PPU thread (at most 2%).
With two or more PPU threads, only the DFT benefits because of the heavy
computational part. The timings of the other example programs do not change

5 Note: this code does not do memoization, values are computed multiple times.
6 The race condition due to the unsynchronized access to the global best value does
not affect the final result. It only delays pruning.
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as they mostly switch tasks. For Fibonacci (5.93) and DFT (5.96) the speedup
is almost linear on 6 SPUs. For Knapsack the speedup is superscalar. Although
Knapsack is quite slow on a single SPU, it gets much faster when executed with
more threads (speedup up to 22.17). This is caused by the pruning technique
mentioned above. The shared best value is updated by one thread while the
others can prematurely prune their search trees.

Furthermore, we have evaluated the performance of CellCilk with more “real-
world” benchmarks. In addition to the mentioned DFT example, we have written
two recursive sorting algorithms (merge sort and bitonic sort), matrix multipli-
cation, and the lattice boltzmann method (LBM) on a 2D grid. The work in the
DFT is distributed over the SPE threads using geometrical decomposition. The
sorting algorithms are inherently recursive, the recursive functions are annotated
with spu spawn and executed as CellCilk tasks. Matrix multiplication and LBM
are cache oblivious variants [8,9,19] that are recursive and hence allow simple
parallelization with CellCilk.

Fig. 7(b) shows the almost linear speedup of DFT, bitonic sort, and LBM.
We achieved still a good speedup with matrix multiplication while it is slightly
worse for mergesort because the last merge step has to be done sequentially.
Bitonic sort is a fully parallelizable variant of the merge sort idea and achieves
a speedup of 5.85 on 6 threads.

We also compare the matrix multiplication and LBM with implementations
using CellSs [1] and OpenMP with the xlc compiler; each of these implementa-
tions is optimized towards the used programming model. In addition to a man-
ually written and hand-optimized matrix multiplication in ANSI C, and two
variants using OpenMP resp. CellSs, we also compare our CellCilk implementa-
tion to a “fast matrix multiplication” [10] written in highly optimized assembly
code. As can be seen in Fig. 7(c), this version (TU-DD) has the best speedup of
course. Both the ANSI C and our CellCilk version achieve good speedups that
are much better than what the OpenMP and the CellSs version deliver (below
2). Fig. 7(d) gives the absolute run times. As OpenMP and CellSs are very slow
(66 resp. 13 seconds with 6 SPU threads), we did not include them in the chart.
Of course, the runtime of the assembly is better than the CellCilk version but we
have slightly outperformed the ANSI C implementation. This is probably due
to the good caching strategy of the cache oblivious algorithm.

For LBM Fig. 7(e) shows that both the ANSI C as well as the CellCilk imple-
mentation scale nicely, up to a speedup of almost 6 on 6 SPUs. In contrast, the
speedup of CellSs is below 3 and OpenMP cannot benefit from the parallel cores
at all. In absolute run times, CellCilk is only 2-3% slower than the C variant,
see Fig. 7(f). Again, the runtimes of CellSs and OpenMP are too slow (89 resp.
34 seconds with 6 threads) to be included in the chart.

4 Related Work

Peng et al. implemented SilkRoad [15] (based on distributed Cilk [16]) and
tested several memory consistency models for distributed shared memory sys-
tems. SilkRoad provides a shared memory to the programmer and keeps this
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(a) Runtime of CellCilk example programs
on PPU/SPU compared to versions in plain
C = 100%.

(b) Runtime of several CellCilk benchmark
programs on the SPUs compared the run-
time on a single SPU = 100%.

(c) Speedup of matrix multiplication. (d) Runtime of matrix multiplication.

(e) Speedup of LBM. (f) Runtime of LBM.

Fig. 7. Performance evaluation of the CellCilk prototype on a Cell BE

memory consistent by creating and copying memory diffs if necessary. Due to its
messaging overhead, SilkRoad is highly dependent on data locality of the appli-
cation. CellCilk outperforms SilkRoad and achieves better speedups. Clik [13]
proposes an improvement over SilkRoad with two different policies for selecting
the victim node. Instead of choosing a random victim it increases data locality
while decreasing message overhead by selecting the most overloaded or the last
selected node first. These policies may accelerate CellCilk as well. Dinan et al. [5]
show how scalable work stealing can be done on large-scale, non-heterogeneous
systems by reducing the number of synchronized operations on work queues and
a modified stealing scheme where not only one task is stolen.
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Offload [4] extends C++ so that code snippets can be offloaded to accelera-
tors. The system distinguishes between pointers to local and host memory and
can type-check pointer assignments. Furthermore, if values are assigned from/to
a host pointer, they may be automatically fetched via DMA (possibly employing
double buffering / software caches). As the approach does not focus on paral-
lelization, it is orthogonal to CellCilk and may be included in future work.

Several approaches try to simplify the complexity of parallel programming for
heterogeneous multicores. In the CellSs framework [1] the programmer annotates
functions as tasks. These tasks are ordered in a dependency graph at runtime.
Subgraphs are partitioned and scheduled over the SPUs. As too fine grained tasks
(that may be created by recursive functions) lead to a large task dependency
graph that has too much overhead for the PPU, CellSs prefers coarse grained
tasks. CellCilk beats CellSs in both runtime and speedup in our benchmarks.

OpenMP [14] does work sharing basically by annotating loops. These loops are
generated into functions that are executed in parallel on the PPU and the SPUs.
This model works efficiently for data-parallel applications but has its drawbacks
for task-parallelism. Recently, Cao et al. proposed an extension for OpenMP
tasks7 on the Cell BE [3]. They use explicitly managed local queues on the
SPUs and a global queue. Scheduling is done with two different strategies, one
is efficient for irregular applications, while the other is designed for applications
with a good data locality. As CellCilk has a very low overhead for task creation
in fast function variants. Task creation in OpenMP is more explicit. Thus, if all
cores are busy doing their own work, the estimated overhead in the OpenMP
tasking model slows down the execution compared to CellCilk.

5 Conclusions

We presented CellCilk, a programming model for heterogeneous multicores with
a host/accelerator design. CellCilk is based on Cilk and introduces a new key-
word that enables the programmer to write a parallel program in a single source
file using annotations (spawn resp. spu spawn). Our source-to-source compiler
CellCilk2C generates all necessary function variants for the different cores in-
cluding one variant that is used for spawns from host to accelerator.

The Cilk scheduling mechanism and runtime system were extended to cope
with all challenges of a heterogeneous architecture, e. g., distributed memory. The
CellCilk runtime schedules dynamically the spawned tasks over the available
host resp. accelerator threads. Load balancing in-between the workers of one
processor type is done by stealing the oldest work from a random victim. The
newly introduced macro scheduling based on a global FIFO queue takes care
of work that is scheduled on the host to be executed on an accelerator. The
runtime system requires a (mark and sweep) garbage collector that takes care
of distributed data structures.

As benchmarks on a Cell BE show, CellCilk brings the advantages and ef-
ficiency of Cilk to heterogeneous architectures and scales almost linearly when

7 Their implementation does not obey the OpenMP 3.0 task specification.
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the SPUs are used. As the CellCilk runtime does dynamic load balancing, Cell-
Cilk on a heterogeneous multicore is well suited for parallelizing irregular ap-
plications as well as geometrically decomposed applications for heterogeneous
platforms. Data-parallel applications may be parallelized more efficiently using
a data-parallel programming model. The benchmarks further show that it is
possible to achieve reasonable runtimes using CellCilk especially if compared to
other programming models such as OpenMP and CellSs.

6 Future Work

CellCilk may be further improved in some areas. As mentioned before, Cell-
Cilk2C analyzes the call graph and detects which functions are only executed on
the host. These functions are not included in the SPU binary to save precious
scratchpad memory. However, code garbage collection techniques as in [18] can
be used to further reduce the code size.

Currently, CellCilk packs function arguments and local variables into a struc-
ture that is copied when the function is stolen. This structure may be split into
several parts that are needed at different points (possible entry points after a
(spu )spawn). With help of live variable analysis we can determine which vari-
ables to place into which part to further reduce memory consumption.

In several applications most of the functions access most of the memory in
a read-only manner (e.g. the items in the Knapsack problem). A programmer
would make these data globally available when not using CellCilk. We plan
to extend CellCilk with processor type global variables that are copied to the
corresponding cores if necessary.
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Abstract. Limits on applications and hardware technologies have put a
stop to the frequency race during the 2000s. Designs now can be divided
into homogeneous and heterogeneous ones. Homogeneous types are the
easiest to use since most toolchains and system software do not need
too much of a rewrite. On the other end of the spectrum, there are the
type two heterogeneous designs. These designs offer tremendous compu-
tational raw power, but at the cost of hardware features that might be
necessary or even essential for certain types of system software and pro-
gramming languages. An example of this architectural design is the Cell
processor which exhibits both a heavy core and a group of simple cores
designed as a computational engine. Even though the Cell processor is
very well known for its accomplishments, it is also well known for its
low programmability. Among many efforts to increase its programma-
bility, there is the Open OPELL project. This framework tries to port
the OpenMP programming model to the Cell architecture. The OPELL
framework is composed of four components: a single source toolchain,
a very light SPU kernel, a software cache and a partition / code over-
lay manager. To reduce the overhead, each of these components can be
further optimized. This paper concentrates on optimizing the partition
manager by reducing the number of long latency transactions. The con-
tributions of this work are as follows.

1. The development of a dynamic framework that loads and manages
partitions across function calls to bypass the problem with restrictive
memory spaces.

2. The implementation of replacement policies that are useful to reduce
the number of DMA calls across partitions.

3. A quantification of such replacement policies given a selected set of
applications

4. An API which can be easily ported and extended to several types of
architectures.
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1 Introduction

During this decade, the multi / many core architectures have seen a renaissance,
due to the insatiable hunger for performance. Limits on applications and hard-
ware technologies have put a stop to the frequency race around 2006. Designs
now can be divided into homogeneous and heterogeneous ones. Homogeneous
designs are the easiest to use since most toolchain and system software do not
need too much of a rewrite. On the other end of the spectrum, there are het-
erogeneous designs. These designs offer tremendous computational raw power,
but at the cost of hardware features that might be necessary or even essential
for certain types of system software and programming languages. An example
of this architectural design is the Cell processor which will be explained in the
next section.

1.1 The Cell Broadband Engine

The Cell B.E. has been placed in the public eye thanks to being a central com-
ponent in one of the fastest super computer, being the main processing unit of
the Sony’s Playstation 3 videogame console, and being the bane of programmers
everywhere. This architecture is a project in which three of the big computer /
entertainment companies, IBM, Sony and Toshiba, worked together to create a
new chip for the seventh generation of home video game consoles[1]. The chip
possesses a heavy core, called the PowerPC Processing Element (or PPE for
short), which acts as the system’s brain. The workers for the chip are called the
Synergistic Processing Elements (or SPE for short) which are modified vector
architectures which huge computational power. The SPE possesses 256 KiB of
local memory and a Memory Flow Controller which takes care of external Input
/ Output operations.

Both processing elements coexist on the die with a ratio of 1 to 8 (one PPE to
eight SPEs), but more configurations are possible. Finally, all the components
are interconnected by a four-ring bus called the Element Interconnect Bus (or
EIB for short). Figure 1 shows a high level overview of the Cell B.E. This chip
is capable of around 200 Giga Floating Point Operations Per Seconds (FLOPS)
for single precision and around 102.4 Giga FLOPS for double precision1.

Although the heavy core possesses all the “standard” hardware components,
the computational engine lacks many of these features. The SPEs exhibit limited
local memory, lack caches of any type, and it has no virtual memory support.
Communication between the host (PPE) and the computational engine (the
SPEs) is achieved through explicit Direct Memory Access (DMA) operations
between the main memory and the local memory of the computational engine.
This puts more responsibilities on the system software, programmers and users
to take advantage of the system raw computational power by orchestrating all
components using the features of the computational engine.

1 These numbers come from the revised PowerXCell 8i Boards.
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Fig. 1. Block Diagram of the Cell Broadband engine

1.2 Problem Formulation

The lack of programmability in the heterogeneous designs, especially in the Cell
B.E., can be attributed to the loss of many hardware features, such as caches,
reorder buffers, etc and a lack of runtime systems to take advantage of the
architecture’s performance. The need for new software stacks is evident. Due
to this need, the OPELL framework was introduced. This framework tries to
bring the OpenMP parallel programming model (De facto shared memory par-
allel programming paradigm) to the Cell architecture. The OPELL framework is
composed of four components: a single source toolchain, a very light SPU kernel,
a software cache and a partition / code overlay manager. This extra layer greatly
increases the system’s programmability, but it comes at the cost of additional
overhead from the framework. To reduce the overhead, each of the components
can be further optimized. This paper concentrates on optimizing the partition
manager components by reducing the number of long latency transactions (DMA
operations) that it produces. The contribution of this paper can be summarized
as follows:

1. The development of a dynamic framework that loads and manages partitions
across function calls. In this manner, the restrictive memory problem can be
alleviated and the range of applications that can be run on the co-processing
unit is expanded.

2. The implementation of replacement policies that are useful to reduce the
number of DMA calls across partitions. Such replacement policies aim to
optimize the most costly operations in the proposed framework. Such re-
placements can be of the form of buffer divisions, rules about eviction and
loading, etc.

3. A quantification of such replacement policies given a selected set of applica-
tions and a report of the overhead of such policies. Several policies can be
given but a quantitative study is necessary to analyze which policy is best
in which application since the code can have different behaviors.
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4. An API which can be easily ported and extended to several types of ar-
chitectures. The problem of restricted space is not going away. The new
trend seems to favor an increasing number of cores (with local memories) in-
stead of more hardware features and heavy system software. This means that
frameworks like the one proposed in this paper will become more and more
important as the wave of multi / many core continues its ascent. Moreover,
the same concepts presented here can be extended to run on other hetero-
geneous accelerator type architecture like GPGPUs and FPGAs.

This paper is divided as follows. Section 2 introduces relevant related work.
Section 3 introduces the OPELL framework and each of its components. Section
4 shows the partition manager framework and its features. Section 5 presents
the results for the partition manager different features. Finally, Section 7 shows
the conclusions and future work.

2 Related Work

There have been many attempts to increase the programmability in the Cell
B.E. The most famous ones are the ALF and DaCS[3] frameworks and the
CellSS project[2]. The ALF and DaCS frameworks are designed to facilitate
the creation of tasks and data communication respectively for the Cell B.E.
The Accelerator Library Framework (ALF) is designed to provide a user-level
programming framework for people developing for the Cell Architecture. It takes
care of many low level approaches (like data transfers, task management, data
layout communication, etc). The DaCS framework provides support for process
management, accelerator topology services and several data movement schemas.
It is designed to provide a higher abstraction to the DMA engine communication.
Both frameworks can work together and they are definitely a step forward from
the original Cell B.E. primitives. They are not targeted to Cell B.E. application
programmers, but to library creators. Thus, the frameworks are designed to be
lower level than expected for an OpenMP programmer.

The Cell SuperScalar project (the CellSS) [2] is designed to automatically
exploit the function parallelism of a sequential program and distribute them
across the Cell B.E. architecture. It accomplishes this with a set of pragma based
directives. It has a locality aware scheduler to better utilize the memory spaces. It
uses a very similar approach as OpenMP. However, it is restricted to task level
parallelism in comparison to OpenMP that can handle data level parallelism.
Under our framework, the parallel functions are analogous to CellSS tasks and
the partition manager is their scheduler. Many of the required attributes of the
tasks under CellSS are hidden by the OpenMP directives and pragmas which
make them more programmable.

Finally, there have been efforts to port OpenMP to the Cell B.E.. The most
successful one is the implementation in IBM’s XL compiler[7]. The implemen-
tation under the XL compiler is analogous to the OPELL implementation with
very important differences. The software cache under the XL compiler is not con-
figurable with respect to the number of dirty bytes that can be monitored in the
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line. This allows the implementation of novel memory models and frameworks
as shown in [4]. The other difference is that the partition manager under the XL
uses static GCC like overlays. Under OPELL, the partitions can be dynamically
loaded anywhere in the memory which is not possible under the XL compiler.

3 Opell Framework

The Open Source OpenMP on CELL (or Open OPELL for short) developed at
the University of Delaware [6] is a porting of a very popular high performance
parallel language to a heterogeneous accelerator type architecture. Its main ob-
jective is to provide an open source OpenMP framework for the Cell B.E. archi-
tecture. It is composed of an OpenMP toolchain, which produces Cell B.E. code
from a single OpenMP source tree; and a runtime that hides the heterogeneity of
the architecture from the user. The framework provides the following features: a
single source compiler, a simple micro kernel, software cache, and the partition
/ overlay manager.

3.1 Single Source Compilation

The Cell B.E uses two distinct toolchains to compile its code for the architecture.
This adds more complications to an already complex programming environment.
In OPELL, the OpenMP source code is read by the driver program. The driver
clones the OpenMP source for both toolchains and calls the respective compiler
to do the work. The PPU compiler continues as expected, even creating a copy
of the parallel function (which is the body of the parallel region in OpenMP)
and inserting the appropriate OpenMP runtime function calls when needed. The
SPU compiler has a different set of jobs. First, it keeps the parallel functions and
discards the serial part of the source code. Second, it inserts calls to the SPU
execution handler and its framework to handle the parallel calls and OpenMP
runtime calls. Third, it inserts any extra function calls necessary to keep the
semantics of the program. Finally, it creates any structures needed for the other
components of the runtime system, links the correct libraries and generates the
binary. After this step is completed, the control returns to the driver which
merges both executables into a single one. Figure 2 shows a high level graphical
overview of the whole single source process.

3.2 Simple Execution Handler

This small piece of code2 deals with the communication between the PPU and
SPU during runtime and how runtime and parallel function calls are handled.
Since each of the SPUs have very limited memory, it is in everybody best inter-
est to keep the SPU threads very light. To achieve this, the SPU thread will be

2 In this paper, the terms simple execution handler and SPU micro kernel will be used
interchangeably.
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Fig. 2. A high level overview of the single source toolchain. Under this framework the
SPU Embedder will “generate” a new SPU binary (i.e it wraps it with a special API)
so it can communicate with the host.

loaded only with a minimal set of the code (the simple execution handler and
a set of libraries). This SPU resident code does not include the parallel regions
of the OpenMP code nor the OpenMP runtime libraries. Since both are needed
during runtime, they are both loaded or executed on demand, but by different
mechanisms. The parallel regions are loaded and executed by another compo-
nent, i.e. the partition manager, which loads and overlays code transparently.
The OpenMP runtime libraries require another framework to execute. Under
this framework, there exists an extra command buffer per thread that is used to
communicate between the SPE and PPE frameworks. Moreover, there exists a
complementary PPE thread for each SPE thread which is called the mirror or
shadow threads which services all the requests from its SPE.

When a SPE thread is created3, the simple execution handler starts and goes
immediately to polling. When a parallel region is found by the master thread
(which runs on the PPE), a message is sent to the simple execution handler with
the identifier’s ID and its arguments’ address. When it is received, the SPU calls
the code in the parallel region (through the partition manager). The SPU con-
tinues executing the code, until an OpenMP runtime call is found. In the SPU,
this call creates a PPU request to the command buffer. This request is composed
of the operation type (e.g. limit calculations for iteration space) and its argu-
ments. While the SPU waits for the results, the PPU calls the runtime function
and calculates the results. The PPU saves the results back to the Command
buffer and sends a signal to the SPE to continue. Finally the SPU receives the
signal and reads the results. The SPU thread ends polling when the PPU shadow
thread sends a self terminate signal, effectively ending the thread’s life. Figure
3a shows a graphical representation of the SPE micro kernel and communication
framework.

3 Which happens before the application code is run.
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(a) A high level overview of
the OPELL runtime

(b) A high level overview
of the Software cache struc-
ture

Fig. 3. Components of the Simple Execution handler and the Software cache

3.3 Software Cache

As stated before, the SPU component of the Cell B.E. does not have caches
(at least not across the SPU local storages) or any other way to maintain co-
herence. This presents a peculiar problem for the pseudo shared memory which
Open OPELL presents4. This heterogeneity hindrance is resolved by the software
cache. This framework component is designed to work like a normal hardware
cache with the following characteristics. It has 64 sets with 4-way associativity
and a cache line of 128 bytes (most efficient size for DMA transfers). Its total size
is 32 KiB and it has a write back and write allocate update policy. As a normal
cache, each line possesses a dirty-bit vector which keeps track of the modified
bytes of the line. When the effective (global) address is found in the cache, a hit
is produced and the operation is performed, i.e. read or write.

In case that the effective address is not in the cache, a miss is produced. A
read miss or write miss causes an atomic DMA operation to be issued to load
the desired value from memory and may produce a write back operation if any of
the bits in the dirty bit vector are set. The write process only touches the dirty
bytes and leaves the clean ones untouched. A graphical overview of the software
cache is presented by figure 3b.

This component has been used in the testing and creation of weak memory
models presented in [4].

3.4 Overlay / Partition Manager

As the software cache is used for data, the partition manager is used for code.
This small component is designed to load code on demand and manage the code

4 Open OPELL is designed to support OpenMP which is a shared memory program-
ming model.
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overlay space when needed. When compiling the source code, certain functions
are selected to be partitioned (not loaded with the original source code in the
SPU memory). The criteria to select these functions are based on the Function
Call Graph, their size and their runtime purpose, e.g. like parallel regions in
OpenMP. Finally, the partitions are created, descriptive structures are formed
and special calling code is inserted when appropriate. During runtime, the func-
tion call proceeds as usual (i.e. save registers, load parameters, etc), up to the
point of the actual call. Instead of jumping to the function, the control is given
to the partition manager runtime and several decoding steps are done. With in-
formation extracted from the actual symbol address, a loading decision is made
and the code is loaded into memory or not (if the code already resides in the
overlay). Then, the partition manager runtime passes control to the function.
When the function finishes, the control returns to the partition manager so any
cleaning task can be performed, like loading the caller partition if it was previ-
ously evicted. Finally, the partition manager returns to its caller without leaving
any trace of its activities.

A more detailed description of this component is given in the next section.

4 The Partition Manager

The Partition Manager framework depends on four structures and some binary
image changes. Some of them are created by the compiler, while others are cre-
ated and maintained during runtime. The partition manager major components
are described next.

4.1 Major Toolchain Changes

Under the Partition Manager framework, all partitionable code’s symbols will be
modified. These symbols represents the offset in bytes of the given symbol in its
partition. The symbol’s partition id is saved in the upper 14 bits. If the symbol
is not in a partition, the upper 14 bits are zero and the lower bits represents the
absolute address of the function. The format of symbol is described in figure 4a.

(a) A symbol address bit range (b) The Partition list entry

Fig. 4. The symbol address bit range and the Partition list entry format
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4.2 The Partition List

This structure is created by the toolchain. It consists of two parts which defines
the partition offset on the file and the partition size. Moreover, the partition
list resides in the computational element local memory; just after the program’s
data section. Under this framework, a partition is defined as a set of functions
for which their code has been created to be position independent (PIC); thus
they can be moved around the memory as the framework sees fit. The actual
partition code is not loaded with the program, but left in the global memory of
the machine. The partition offset part of a list element shows the offset (in bytes)
from the binary entry point. Finally, the size section of the entry contains the
size in bytes of the partition on the memory image. Under this model, each of the
partitions is identified by a unique number that index them into this list. When
a partition is required, the element’s partition is loaded using the partition list
information and the correct buffer state is set before calling the function. The
format and the bit range of the partition list entries are described in figure 4b.

4.3 The Partition Stack

The Partition Stack is a meta-structure which records the calling activity be-
tween partitions. It was designed to solve a very simple problem: how to return
from a function call which was called from another partition? By keeping the
partition stack, the framework can know who the caller of the current function
call is, load the partition back if it is required and save function state, i.e. regis-
ters which must be saved across partition manager calls. Although the partition
code is defined as PIC, when returning from a function call, the framework must
load the partition back to its original position. If this is not the case then a large
amount of binary rewriting and register manipulation is needed to ensure the
correct execution of the function. This is true even for PIC code since registers
might have stale addresses to the original sub-buffer location.

Fig. 5. A comparison between the modified SPE binary image and a normal one
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4.4 The Partition Buffer

The Partition Buffer is a special region of the local memory, in which the parti-
tion code is swap in and out. It is designed to have a fixed value per application,
but it can be divided into sub-buffers if required. Moreover, it contains certain
state, like the current Partition index and the lifetime of the code in this par-
tition; which is used for book-keeping and replacement policies. This buffer is
managed by the partition manager kernel.

The partition buffer and the partition list modifies the SPE binary image
a bit. It adds the list to the end of the data segment and the buffer after the
interrupt table. The modified image compared with a normal SPE image is given
in figure 5.

4.5 The Partition Manager Kernel

At the center of all these structures lies the Partition Manager. This small func-
tion takes care of the loading and management of the partitions in the system.
During initialization, the partition manager may statically divide the partition
buffer so that several partitions can co-exist with each other. It also applies the
replacement policy to the buffers if required. The sequence of operations involve
in a simple partition manager call is presented in Figure 6.

Fig. 6. A typical partition manager call

The next section explains a replacement policy and an enhancement which
is applied to the partition manager framework and its effect on the number of
operations.
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Table 1. The Four States of a Partition

State Location Description

Evicted Main Memory Partition was not loaded into local memory or it was loaded, evicted and it will
not be popped out from the partition stack.

Active Local Memory Partition is loaded and it is currently in use

In-active Local Memory Partition is not being used, but still resides in local memory

EWOR Main Memory Evicted With the Opportunity of Reuse. This partition was evicted from local
memory but one of the element of the partition stack will pop its partition id in
the near future.

5 The N Buffer: The Lazy Reuse Approaches

Since the partition buffer might be mostly empty most of the time, it can be
broken down into sub-buffers to further utilize the hardware resources. This
opens many interesting possibilities on how to manage the sub-buffers to increase
performance. Even though this area is not new, these techniques are usually
applied in hardware. The techniques applied for replacement in this buffer are
cache like in which that they try to take advantage of partition locality. The first
technique is when the buffer subdivisions are treated as FIFO (first in first out)
structures. In this context, this technique is called Modulus due to the operation
used to select the next replacement. The second one is based on one of the
most famous (and successful) cache replacement policies: Least Recently Used
(LRU). First, we need to introduce the challenges of dividing the buffer under
our framework and how it affects each component.

The partition buffer is enhanced by adding extra state. Each sub-buffer must
contain the partition index residing inside of it and an extra integer value to help
achieve advanced replacement features (i.e. the integer can represent lifetime for
LRU or the next partition index on a pre-fetching mechanism). Moreover, the
partition that resides in local memory becomes stateful under this model. A
partition now can be active, in-active, evicted or evicted with the opportunity of
reuse. For a description of the new states and their meanings, please refer to
table 1.

Every partition begins in the evicted state in main memory. When a partition
is used, the partition is loaded and becomes active. From this state the partition
can become in-active, if a new partition is needed and this one resides into a
sub-buffer which is not replaced; back to evicted, if it replaced and it doesn’t
belong to the return path of a chain of partitioned function calls; or Evicted with
an Opportunity to Reuse, in the case that a partition is kicked out but it lies on
the return path of a chain of partitioned function calls. An in-active partition
may transition to evicted and EWOR under the same conditions as an active
one. An EWOR partition can only transition to an active partition.

These states can be used to implement several levels of partitioning. One of
them is described in Section 5.3.

When returning from a chain the partition function calls, the partition must
be loaded into the same sub-buffers that they were called from. To achieve this,
the partition stack node must know where the partition originally resided. Thus,
this structure must save the sub-buffer id.
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5.1 Replacement Policies: The Modulus Approach

Under this approach, sub-buffers form a type of First-In First-Out (FIFO) struc-
ture in which the oldest partition is always replaced. It follows the normal for-
mula in which the next sub-buffer to be replaced is selected by the formula
next = (next + 1)modNSB where the next is the sub-buffer in which the new
partition is loaded and NSB represents the total number of sub-buffers.

5.2 Replacement Policies: The LRU Approach

Under this approach, each of the sub-buffers has a lifetime counter which decre-
ments every time that a function is called on another partition. The formula to
select the next buffer to be replaced becomes next = MIN(LTA) where next
is the sub-buffer where the next partition is put and LTA is the Lifetime Array
of values. In case that the minimum of the array is a set, this group of elements
is managed as if it was a FIFO buffer across different calls of the replacement
policy functions. It is important to note that by having multiple sub-buffers, du-
plication might be possible, the partition framework disallows this. In this way,
the framework would not get “confused” when figuring out which sub-buffer to
jump in. In the case that a partition is duplicated (for example when returning
from a function call into a different sub-buffer), the framework moves the parti-
tion to the correct sub-buffer and nullify its old locations. This move saves a load
to main memory or prevents the need to adjust all the address in the partition
to match the new sub-buffer.

5.3 The Victim Cache for the Partition Framework

Under this framework, the victim cache is a dynamically allocated piece of mem-
ory that is created when EWOR partition are called. The EWOR partition is
recognized by setting a bit in a partition mask (which has support for 128 par-
tition indexes) every time that a partition stack frame is pushed. When the

Fig. 7. The victim cache scheme
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partition stack frame is popped, the bit on the mask is unset5. When a new
partition is being loaded into the main memory, the evicted partition index is
checked against the partition mask. If they match, the partition code which re-
sides on the sub-buffer is copied to a newly allocated memory block. When an
EWOR partition is needed back, the victim cache is checked and the partition is
copied back to the sub-buffer if found. Under the current implementation, there
is only a single entry on the victim cache. This means that it can only provide
support for the most recent EWOR partition on the function chain. A high level
overview of the victim cache is given in figure 7.

Since the victim cache can be created dynamically, it can also be brought down
in the same way. The framework offers two wrappers for the memory allocators
(i.e. malloc and free) which can check the memory pool for availability. If the
pool is empty or near it, the victim cache can be brought down to free up memory
for the application.

6 Experimental Testbed and Results

The partition manager framework uses a small suite of test programs dedicated
to test its functionality and correctness. The testbed framework is called Hara-
hel and it is composed of several Perl scripts and test applications. The next
subsections will explain the hardware and software testbeds and presents results
for each of the test programs.

6.1 Hardware Testbed

For these experiments, we use the Playstation 3’s CBE configuration. This means
a Cell processor with 6 functional SPE, 256 MiB of main memory, and 80 GiB of
hard drive space. The two disabled SPEs are used for redundancy and to support
the hypervisor functionality. Besides these changes, the CBE processor has the
same facilities as high end first generation CBE processors. We take advantage
of the timing capabilities of the CBE engine. The CBE engine has hardware
time counters which ticks at a slower rate than the main processor (in our case,
they click at 79.8 MHz). Since they are hardware based, the counters provided
minimal interference with the main program. Each of the SPEs contains a single
counter register which can be accessed through our own timing facilities.

6.2 Software Testbed

For our experiments, we use a version of Linux running on the CBE, i.e. Yel-
low Dog with a 2.6.16 kernel. Furthermore, we use the CBE toolchain version
1.1 but with an upgraded GCC compiler, 4.2.0, which was ported to the CBE
architecture for OpenOPELL purposes.

5 This might create false positives in long chain of functions, but it is acceptable in
practice.
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Table 2. Applications used in the Harahel testbed

Name Description

DSP A set of DSP kernels (a simple MAC, Codebook encoding, and JPEG compres-
sion) used at the heart of several signal processing applications.

GZIP The SPEC benchmark compression utility.

Jacobi A benchmark which attempts to solve a system of equations using the Jacobi
method.

Laplace A program which approximate the result of an integral using the Laplace method.

MD A toy benchmark which simulates a molecular dynamic simulation.

MGRID A simplified program used to calculate Multi grid solver for computing a 3-D
potential field.

Micro-Benchmark 1 Simple test of one level partitioned calls.

Micro-Benchmark 2 Simple chain of functions across multiple files.

Micro-Benchmark 3 Complete argument register set test.

Micro-Benchmark 5 Long function chain example 2.

Micro-Benchmark 6 Long function chain example 3: Longer function chain and reuse.

Micro-Benchmark 7 Long function chain example 4: Return values and reuse.

Micro-Benchmark 8 Long function chain example 5: Victim cache example.

The applications being tested include kernels used in many famous bench-
marks. This testbed includes the GZIP compression and decompression applica-
tion which is our main testing program. Besides these applications, there is also
a set of micro-benchmarks designed to test certain functionality for the partition
manager. For a complete list, please refer to 2.

In the next section, we will present the overhead of the framework using a
very small example.

6.3 Partition Manager Overhead

Since this framework represents an initial implementation, the main metric on
the studies presented will be the number of DMA transfer produced by an specific
replacement policy or/and partition feature. However, we are going to present
the overhead for each feature and policy.

The first version represents the original design of the partition manager in
which every register is saved and the sub-buffer is not subdivided. The improved
version is with the reduction of saved registers but without any subdivision. The
final sections represent the policy methods with and without victim cache.

On this model, the overhead with the DMA is between 160 to 200 monitoring
cycles. Although this is a high number, these implementations are proof of con-
cepts and they can be greatly optimized. For this reason, we concentrate on the
number of DMA transfers since they are the most cycle consuming operation on
the partition manager. Moreover, some of these applications will not even run
without the partition manager.

6.4 Partition Manager Policies and DMA Counts

Figure 9 and 8 show the relation between the number of DMA and the number of
cycles that the application takes using a unoptimized buffer (saving all register
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(a) DSP (b) GZIPC (c) GZIPD (d) JACOBI

(e) LAPLACE (f) MD (g) MGRID (h) SYNTH1

(i) SYNTH2 (j) SYNTH3 (k) SYNTH5 (l) SYNTH6

(m) SYNTH7 (n) SYNTH8

Fig. 8. DMA counts for all applications for an unoptimized one buffer, an optimized
one buffer, optimized two buffers and optimized four buffer versions

file), optimized one buffer (rescheduled and reduction of the number of registers
saved), optimized two buffers and optimized four buffers. For most applications,
there are a correlation between a DMA’s reduction and a reduction of execution
time. However, for cases in which the number of partition can fit in the buffers,
the cycles mismatch like in Synthetic case 1 and 6.

Figure 10 show the ratio of Partition manager calls versus the number of
DMA transfers. The X axis represents the applications tested and the ratios of
calls versus one, two and four buffers. As the graph shows, adding the extra
buffers will dramatically lower the number of DMA transfers in each partition
manager call.
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(a) DSP (b) GZIPC (c) GZIPD (d) JACOBI

(e) LAPLACE (f) MD (g) MGRID (h) SYNTH1

(i) SYNTH2 (j) SYNTH3 (k) SYNTH5 (l) SYNTH6

(m) SYNTH7 (n) SYNTH8

Fig. 9. Cycle counts for all applications for an unoptimized one buffer, an optimized
one buffer, optimized two buffers and optimized four buffer versions

Figure 11 selects the GZIP and MGRID applications to show the advantage
of using both replacement policies. In the case of MGRID, both policies gives
the same counts because the number of partitions is very low. In the case of
the GZIP compression, the LRU policy wins over the Modulus policy. However,
in the case of decompression, the Modulus policy wins over the LRU one. This
means that the policy depends on the application behavior which opens the door
to smart application selection policies in the future.

Finally, in Figure 12, we show that the victim cache can have drastically
effects on the number of DMA transfers on a given application (Synthetic case
8). As the graph shows, it can produce a 88x reduction in the number of DMA
transfers.
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Fig. 10. Ratio of Partition Manager calls versus DMA transfers

Fig. 11. LRU versus Modulus DMA counts for selected applications

Fig. 12. The victim cache comparison with LRU and Modulus policies
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7 Conclusions and Future Work

Ideas presented in this paper show the trend of software in the many core
age: the software renaissance. Under this trend, old ideas are coming back to
the plate: Overlays, software caches, dataflow execution models, micro kernels,
among others. This trend is best shown in architectures like Cyclops-64[5] and
the Cell B.E.’s SPE units. Both designs exhibit explicit memory hierarchy, simple
pipelines and the lack of virtual memory. The software stacks on these architec-
tures are in a heavily state of flux to better utilize the hardware. This fertile
research ground allows the reinvention of these classic ideas. The partition man-
ager frameworks rise from this flux.

This paper shows a framework to support the code movements across het-
erogeneous accelerators components. It shows how these effort spans across all
components of the software stack. Moreover, it depicts its place on a higher ab-
straction framework for a high level parallel programming language. It shows the
effect of several policies dedicated to reduce the number of high latency opera-
tions. Future work on this area include the creation of a partition based function
call graph which can be used for pre-fetching schemes and the extension of task
based framework that allows percolation of code.
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Abstract. Transactional memory (TM) is a promising alternative tomu-
tual exclusion. In spite of this, it may be unrealistic for TM programs
to be devoid of locks due to their abundant use in legacy software sys-
tems. Consequently, for TMs to be practical they may need to manage the
interaction of transactions and locks when they access the same shared-
memory. This paper presents two algorithms, one coarse-grained and one
fine-grained, that improve the state-of-the-art performance for TMs that
support the concurrent execution of locks and transactions. We also dis-
cuss the programming language constructs that are necessary to imple-
ment such algorithms and present analyses that compare and contrast our
approach with prior work. Our analyses demonstrate that, (i) in general,
our proposed coarse- and fine-grained algorithms improve program con-
currency but (ii) an algorithm’s concurrent throughput potential does not
always lead to realized performance gains.

1 Introduction

Transactional memory (TM) [6,11] is a promising alternative to mutual exclusion
because it simplifies parallel programming by moving some of the complexity
of shared memory management away from the programmer’s view. While TM
shows promise for future software, most TMs have undefined behavior when
locks and transactions are used to concurrently synchronize the same shared-
memory. This creates a notable void in TM applicability for programmers who
wish to use transactions in legacy software that already use locks.

Zyulkarov et al. explored one possible solution to this problem by converting
all the locks used in the Quake game server, a large-scale multiplayer software
engine [1], to transactions [19]. During this process they encountered significant
transition challenges, such as unstructured locking (i.e., non-block-structured
critical sections), I/O and system calls, error handling, privatization and thread
local memory, and compensating and escape actions necessary to handle up to
nine levels of dynamic nesting. They also found that only using transactions
resulted in reduced performance when compared to only using locks or using a
combination of the two. These results seem to indicate that converting all locks
to transactions may be unrealistic for all but expert parallel programmers and, if
such a conversion were successful, it might result in a performance degradation.

S. Rajopadhye and M. Mills Strout (Eds.): LCPC 2011, LNCS 7146, pp. 124–140, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Another alternative, such as that proposed by Volos et al.’s TxLocks [15] and
Ziarek et al.’s P-SLE and atomic serialization [17], is to provide support for
transactions and locks so that they can safely access the same shared-memory.
In this paper, we focus on this approach and present a system that improves
performance over the aforementioned research. A difference in our approach and
the prior work of Volos et al. and Ziarek et al. is that our system extends the
programming language constructs for locks and transactions so that they contain
static (compile-time) information about the conflicts that persist between them,
while prior systems deduce conflicts between locks and transactions dynamically
(run-time). We demonstrate that our static extensions reduce the number of false
conflicts produced at run-time, resulting in improved concurrent throughput.

Throughout this paper we gradually extend and refine the notion of concurrent
lock and transaction execution. Our algorithms, one coarse-grained and one fine-
grained, manage two general cases of conflicts: (i) non-nested cases, when locks
and transactions that have no nesting are executed side-by-side and (ii) nested
cases, when locks are nested within transactions and transactions or locks execute
along side such transactions.1

The algorithms require two programming interface enhancements that are
similar in structure, but different in purpose, to those proposed by Usui et al. for
adaptive locks [14]. We augment the atomic transaction block so it takes a single
parameter, locks[], which is a list of locks that conflict with the transaction.
We also introduce a TmLock that behaves like a typical mutex and additionally
communicates with the TM subsystem before it is acquired and after it is released
so the TM system can manage conflicts of, and the forward progress between,
TmLocks and transactions. We also present an interesting finding, which extends
the prior findings of Gottschlich et al. [4], and reflects a counterintuitive result.
Our benchmarks show that our coarse-grained policy is always faster than the
prior systems, while our fine-grained policy is usually faster, but in some cases
it can be notably slower (up to ≈ 2×).

This paper makes the following technical contributions.

1. We present two algorithms, one coarse-grained and one fine-grained, that
allow for the concurrent execution of locks and transactions in the same
program and improve concurrent throughput beyond the state-of-the-art.

2. We propose two new TM language constructs: TmLock and an extended
atomic block structure that are used statically (compile-time) to capture
the conflicts between locks and transactions.

3. We include a qualitative analysis that precisely captures the potential con-
current throughput of existing systems compared to our algorithms.

4. Our experimental results show that our fine-grained algorithm yields up to
≈ 2.0× performance improvements over prior systems but can sometimes
degrade performance. Our coarse-grained algorithm yields up to ≈ 1.5×
performance improvements and never performs worse than prior systems for
our tested benchmarks.

1 A third case, when transactions are nested within locks, is not discussed as Volos et
al. [15] and Gottschlich et al. [4] show it does not require special effort.
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2 Background and Related Work

When transactions and locks are executed concurrently, they can behave in-
consistently due to the differences in their critical section execution [10, 15, 17].
Mutual exclusion locks generally use pessimistic critical sections that are limited
to one thread of execution [3, 18]. Transactions can use optimistic critical sec-
tions that support unlimited concurrent thread execution and resolve conflicts at
various points during transaction execution [7, 8]. This difference can incur cor-
rectness issues (e.g., transactions being aborted after executing a nested locked
region with I/O operations) and cause pathological interferences (e.g., blocking,
livelock, and deadlock) [15].

2.1 Conflicts between Locks and Transactions

For transactions and locks to execute concurrently, the notion of when they con-
flict must be understood. A lock conflicts with a transaction (and vice versa)
when both access the same memory location and at least one of those accesses
is a write. Although this notion of a conflict is principally the same as that
for transactions alone, the conflict resolution [5, 12] and concurrent execution
guarantees may be notably different. For this paper, we assume mutually ex-
clusive critical sections are not failure atomic and they execute pessimistically,
that is, without write buffering or speculative lock elision [9]. Therefore, conflicts
that arise between transactions and a given mutex must be identified before the
mutex’s critical section is executed.

TxLocks. Volos et al. propose a transaction-aware lock primitive, TxLock, to
handle the conflicts between locks and transactions without special hardware
support [15]. When used outside of a transaction, TxLocks execute pessimisti-
cally and no information is provided from TxLocks to the transactions that might
concurrently execute alongside them. This is done to minimize the programmer’s
burden of using TxLocks. TxLocks must therefore assume that all transactions
can conflict with any TxLock and, likewise, prohibit TxLocks and transactions
from executing concurrently. While TxLocks correctly manages conflicts between
locks and transactions, and minimizes programming overhead, such an approach
can limit concurrent throughput because it conservatively overestimates the con-
flicts that exist between TxLocks and transactions.

P-SLE and Atomic Serialization. Ziarek et al. introduce two key concepts:
pure-software lock elision (P-SLE) and atomic serialization [17]. P-SLE elimi-
nates conflicts between locks and transactions by converting locks into trans-
actions. However, as noted by the authors, and as enumerated by Zyulkarov
et al. [19], there are numerous reasons why the atomic regions protected by
locks cannot seamlessly transition into transaction-based atomic regions (see
Section 1). P-SLE handles these cases by reinstating all locks and using a sin-
gle global lock to serialize transaction execution. This behavior, called atomic
serialization, guarantees mutual exclusion between transactions [17]. Although
atomic serialization is correct because it serializes all transactions, such a strict
serialized ordering may be unnecessary and may adversely effect performance.
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Full Lock Protection. TxLocks [15] and atomic serialization [17] provide es-
sentially the same guarantee: they prevent a transaction from executing in one
thread while a lock-based critical section is active in another. We call this be-
havior full lock protection because the shared-memory accessed within a lock is
fully protected from transaction interference.

However, TxLocks and atomic serialization are not identical. Atomic serial-
ization allows irrevocable operations to be used within locks that can then be
placed inside of transactions. TxLocks does not allow such behavior. TxLocks’
nesting model, therefore, differs from our own and atomic serialization. There-
fore, when we discuss locks nested within transactions, we only consider atomic
serialization. For non-nested cases, we consider both TxLocks and atomic se-
rialization because their behavior is identical. For the remainder of the paper,
we refer to TxLocks and atomic serialization as implementations of full lock
protection (under the above restrictions), as it simplifies the discussion.

3 Language Constructs

We propose two interface extensions to enable programmers to efficiently manage
conflicts between locks and transactions. Using these extensions, the program-
mer can choose to provide coarse-grained, fine-grained, or no information about
potential conflicts between locks and transactions.

3.1 Coarse-Grained Conflict Management: TmLock

The TmLock data structure is used to allow programmers to provide coarse-
grained information about potential conflicts between locks and transactions.
The code shown below is a pseudocode example for the TmLock declaration
and usage. TmLocks are used for locks that could potentially conflict with any
transaction. When a TmLock is acquired at run-time, the TM system aborts
or commits all in-flight transactions and then prevents any transaction from
(re)starting until the the TmLock is released. Contention among TmLocks are
handled in the same way as normal locks are handled. By allowing programmers
to differentiate between locks that potentially conflict with transactions from
the locks that do not, TmLock can improve concurrency because normal locks
can run in parallel alongside transactions without conflict.

1 class TmLock { TmLock tmLock;

2 public:

3 void lock() tmLock.lock();

4 { /* Arbitration Algorithm */ } ...

5 void unlock() tmLock.unlock();

6 { /* TM Subsystem Communication */ }

7 };

For unmanaged languages, if the programmer is unsure about potential conflicts
between a lock and any transaction, a TmLock can be used in place of a normal
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lock as a conservative overestimation. Likewise, this same approach can be used
for managed languages where all locks can be automatically converted to TmLocks
by the compiler to guarantee conservative correctness. In the event of external
locking conflicts (e.g., OS-level or library-level conflicts), the programmer can
wrap external interfaces with TmLocks.

3.2 Fine-Grained Conflict Management: atomic()

We extend the atomic block to allow programmers to manage conflicts between
locks and transactions at a finer granularity than supported by TmLock alone.
Our extended atomic block, atomic (TmLock []), takes an array of TmLocks as
an argument and is shown in the example below. The array contains the list of
TmLocks that can conflict with the transaction.

If a programmer is unsure about potential conflicts, she can conservatively
overestimate them by using the atomic block with no argument, indicating the
transaction may conflict with any TmLock. If the programmer knows the trans-
action does not conflict with any TmLock, she can pass NULL to the atomic block,
indicating no conflicts. Under this programming model, transactions behave cor-
rectly with any number of TmLocks without any modification to the atomic con-
struct. We chose this design over others because it reduces the initial challenge
of integrating transactions into lock-based software and because it creates an it-
erative optimization path for programmers, where atomic blocks that have been
overestimated to conflict with all TmLocks can be optimized at a later date.

1 // syntax: atomic (TmLock []) {}

2 TmLock L1, L2; TmLock locks[] = {L1, L2};

3 atomic (locks) {...}; // conflict with L1 and L2

4 atomic (NULL) {...}; // no conflicts

5 atomic {...}; // conflicts with all TmLocks

4 Algorithms

The steps to (re)start and end a transaction for both the fine- and coarse-grained
algorithms are shown in Algorithm 1. The definition of a conflicting TmLock, rep-
resented by conflictingLocks , is context-sensitive. The coarse-grained algorithm
defines all TmLocks as conflicting, so conflictingLocks is equal to all TmLocks.
For the fine-grained algorithm, conflictingLocks is equal to those TmLocks spec-
ified in the atomic TmLock list. The IsolatedTx () procedure returns true if an
isolated transaction (i.e., a transaction that forbids the concurrent execution of
other transactions) is active, otherwise it returns false. The obtainedMutexes set
collects the TmLocks that have been acquired during a transaction’s execution
and is used to ensure a transaction’s state remains isolated by preventing other
threads from acquiring such locks until the transaction has committed [15].

Due to space limitations, we have omitted the serialization used to access the
shared data in all the algorithms shown in this section. In the Begin procedure,
lines 3-4 are serialized. In the End procedure, the entire procedure is serialized.
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Algorithm 1. Begin and End Transaction Procedures

1: procedure Begin(Transaction tx )
2: loop
3: Set L = TmLocks.locked() � Returns set of currently locked TmLocks
4: if (L ∩ tx .conflictingLocks ≡ ∅ ∧ !IsolatedTx()) then return

5: sleep(); continue

6: procedure End(Transaction tx )
7: tx .obtainedMutexes = ∅
8: Unblock(tx .conflictingLocks) � Fine-grained only: unblock tx .conflictingLocks

4.1 Coarse-Grained Algorithm

Algorithm 2 shows the TmLock.lock and TmLock.unlock procedures for the
coarse-grained algorithm when a TmLock is both nested, and not nested, within
a transaction. When a TmLock is acquired inside a transaction, the transaction
requests permission from the contention manager (CM) to become isolated. If
successful, this request aborts all active transactions and prevents new transac-
tions from starting. This is done because TmLocks, by the coarse-grained defini-
tion, can conflict with any transaction. Hence, when a TmLock is acquired within
a transaction, no other transactions can execute alongside it.

If the TmLock is not nested within a transaction, the algorithm calls
AbortTxes() which requests permission from the CM to abort all transactions
if there are any active (ActiveTxes()). In both cases, once there are no active
transactions, except for the transaction that may nest the TmLock, the TmLock

can be acquired.
When a TmLock is nested within a transaction, the tx .partialCommit() pro-

cedure is called as soon as the TmLock is acquired. This procedure commits
the transaction’s executed operations to the program state so non-transactional
reads and writes, performed inside the TmLock’s critical section, will access the
correctly updated memory. In Algorithm 2, lines 2-6 and lines 8-9 are serialized
if the while loop’s condition is false. If it is true, only the procedures called
within the while loop’s condition are serialized. For TmLock.unlock, the entire
procedure is serialized.

4.2 Fine-Grained Algorithm

Algorithm 3 shows the fine-grained algorithm for TmLock.lock and
TmLock.unlock. It includes cases where the procedures are nested, and not
nested, within a transaction. The serialization used in Algorithm 3 is identi-
cal to Algorithm 2.

When a TmLock.lock call is not nested within a transaction, the
TmLock requests the CM’s permission to abort conflicting transactions, via
AbortConflictTxes(). Because only those transactions whose extended atomic
block has included the TmLock are aborted (checked by the ConflictTxes()
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Algorithm 2. Coarse-Grained Lock and Unlock TmLock Procedures

Require: threadId is the global and unique id of thread that called lock()
1: procedure TmLock.lock

2: Transaction* tx = ActiveTx(threadId) � Pointer to active tx
3: if (tx �= NULL) then � TmLock.lock() is nested within tx
4: if (tx .makeIsolated(CM )) then � Request CM permission
5: Acquire TmLock mutex; tx .obtainedMutexes.insert(this)
6: tx .partialCommit()

7: else � TmLock.lock() not nested in tx
8: while (ActiveTxes() �= ∅ ∨ AbortTxes() ≡ false) do {}
9: Acquire TmLock mutex

10: procedure TmLock.unlock

11: Transaction* tx = ActiveTx(threadId)
12: if (tx �= NULL) then � TmLock.unlock() is nested within tx
13: if tx .obtainedMutexes ∩ this ≡ ∅ then � TmLock.lock() not nested in tx
14: Throw EarlyReleaseDeadLock exception � Prevent deadlock [4]

15: Release TmLock mutex

procedure), those transactions that did not include the TmLock in their atomic
block can continue to execute while a TmLock is acquired.

When TmLock.lock is called inside of a transaction, the transaction first
requests permission to become irrevocable [16]. Irrevocable transactions can-
not be aborted, just like isolated transactions, but unlike isolated transactions,
they may yield greater concurrent throughput because other non-conflicting,
revocable transactions may execute alongside them. Once the transaction is
made irrevocable, all transactions that conflict with the TmLock are aborted,
via AbortConflictTxes(). When AbortConflictTxes() is called within an irrevo-
cable transaction, it always returns true.

By allowing transactions that acquire TmLocks to become irrevocable, rather
than isolated, the fine-grained algorithm has the opportunity to produce more
concurrent throughput than the coarse-grained algorithm. Transactions that ac-
quire TmLocks using the fine-grained algorithm can be made irrevocable, rather
than isolated, because the fine-grained algorithm requires that all conflicts be-
tween transactions and TmLocks be listed within in the extended atomic block.
Because of this, non-conflicting revocable transactions may execute alongside an
irrevocable transaction that has acquired a TmLock.

5 Qualitative Comparison

In this section, we compare the concurrency potential of full lock protection to
our coarse- and fine-grained algorithms. We consider two general cases: (i) when
locks are not nested within transactions and (ii) when locks are nested within
transactions.
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Algorithm 3. Fine-Grained Lock and Unlock TmLock Procedures

Require: threadId is the global and unique id of thread that called lock()
1: procedure TmLock.lock

2: Transaction* tx = ActiveTx(threadId) � Pointer to active tx
3: if (tx �= NULL) then � TmLock.lock() is nested within tx
4: if (tx .makeIrrevocable(CM )) then � Request CM permission
5: AbortConflictTxes(this); Acquire TmLock mutex
6: tx .obtainedMutexes.insert(this); tx .partialCommit()

7: else � TmLock.lock() not nested within tx
8: while (ConflictTxes(this) �= ∅ ∨AbortConflictTxes(this) ≡ false) do {}
9: Acquire TmLock mutex

10: procedure TmLock.unlock

11: Transaction* tx = ActiveTx(threadId)
12: if (tx �= NULL) then � TmLock.unlock() is nested within tx
13: if tx .obtainedMutexes ∩ this ≡ ∅ then � TmLock.lock() not nested in tx
14: Throw EarlyReleaseDeadLock exception � Prevent deadlock [4]

15: else � TmLock.unlock() is not inside tx
16: Unblock(this) � Send message to unblock threads waiting for this

17: Release TmLock mutex

5.1 No Nesting between Locks and Transactions

We use the six threaded example shown in Figure 1 to contrast the three algo-
rithms when locks are not nested within transactions. Each thread executes a
single function, shown in Figure 2, in a staggered fashion. Three of the threads
use transactions, thread T1 runs Tx1(), T2 runs Tx2(), and T3 runs Tx3(),
while the other three use locks, thread T4 runs L1(), T5 runs L2(), and T6 runs
L3(). The example has a single conflict between T3’s transaction (Tx3()) and
T4 and T5’s locks (L1 and L2). Threads T1, T2, and T6 do not exhibit any con-
flicts and only exist to draw out the differences in the concurrency potential of
the algorithms. The coarse-grained conflict management algorithm only uses the
information from TmLocks, while the fine-grained algorithm uses both TmLocks
and the extended atomic blocks. Full lock protection uses no information from
either construct, which is identical to both TxLocks and atomic serialization.

Full Lock Protection. Transactions and locks are not allowed to concur-
rently execute when using full lock protection. This is because no information
is provided about the conflicts that may persist between them. Because of this,
the maximum concurrent lock and transaction throughput achievable by full
lock protection is: m(NoNestingfl ) = max (Ln, T ). Ln is the maximum num-
ber of lock-based critical sections that do not conflict with one another and
T is the maximum number of transactions that can be concurrently executed.
Because no conflict information is used by full lock protection, only one type
of critical section can be executed, locks or transactions, at a time. Figure 3
presents a visual model of full lock protection under the six threaded example.
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Fig. 1. Threads With No Nesting

1 TmLock L1, L2; Lock L3;

2 TmLock list[] = {L1,L2};

3

4 void Tx1() { atomic(NULL) {...} }

5 void Tx2() { atomic(NULL) {...} }

6 void Tx3() { atomic(list) {...} }

7 void L1() { /* lock/unlock L1 */ }

8 void L2() { /* lock/unlock L2 */ }

9 void L3() { /* lock/unlock L3 */ }

Fig. 2. Functions With No Nesting
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Fig. 3. Non-Nested Example: Full Lock Protection, Coarse-, and Fine-Grained

The transactions used in threads T1 − T3 are blocked while the lock-based crit-
ical sections of threads T4 − T6 execute, even though thread T6’s lock does not
conflict with any of the transactions and threads T1 and T2’s transactions do
not conflict with any of the locks.

Coarse-Grained Conflict Management. The coarse-grained algorithm lever-
ages TmLock information that distinguishes locks that might conflict with
transactions from those that are guaranteed to be conflict-free. This yields the
following concurrency potential: m(NoNestingtm) = max (Lnl , (Lna +T )). Lnl is
the total number of locks that do not conflict with one another, but do conflict
with transactions. Lna is the total number of locks that do not conflict with
one another and do not conflict with transactions. T is the maximum number
of transactions that can be executed. In the six threaded example, the coarse-
grained approach allows the transactions in threads T1 − T3 to execute while
only T6 is executing, because lock L3 does not conflict with any transaction. As
seen in Figure 3, this optimization shortens the overall TM run-time compared
to full lock protection by allowing T1 − T3 to restart their transactions as soon
as L1 and L2’s critical section execution has completed.

Fine-Grained Conflict Management. The fine-grained algorithm uses both
TmLock and the extended atomic block information, enabling it to capture the
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greatest amount of potential concurrency. This is expressed as:m(NoNestingtx ) =
Clt + Lna +Tna . Clt is the largest system selected set of locks and transactions
that can be run concurrently without any conflicts. Lna is the total number of
locks that do not conflict with one another and have not been flagged as con-
flicting with any transaction. Tna is the total number of transactions that can
be executed without conflicting with a lock. In the six threaded example, the
fine-grained algorithm only stalls thread T3 when locks L1 and L2, of threads T4

and T5, are executing. The conflict time introduced by this approach is equal
to the actual conflict time between the transactions and locks, resulting in the
maximum amount of concurrent execution of locks and transactions.

5.2 Nesting Locks Inside of Transactions

It complicates conflict management for locks to be lexically nested within trans-
actions. Locks must remain mutually exclusive, and, for this paper, we assume
that locks do not have failure atomicity (i.e., they do not emit the property of
side-effect free failure such as those found in transactions [2]). To ensure mutual
exclusion among locks, when a lock is acquired inside of a transaction, the trans-
action becomes irrevocable (i.e., it cannot be aborted) [13, 16] or isolated (i.e.,
it is irrevocable and executes without any concurrently executing transactions).

Irrevocable and isolated transactions limit concurrency amongst transactions
because conflicts between such transactions must be prevented pessimistically.
That is, other transactions of the same type must be prevented from running
concurrently even though conflicts between them may not exist. For isolated
transactions, only one transaction can execute at a time, whereas with irrevo-
cable transactions, only one irrevocable transaction may execute at a time, but
any number of revocable transactions can concurrently execute alongside it.

Transaction (and Lock) Threads 

Time 

Tx1 
Tx2 

Tx3 

Lock Threads 

Thread 1 
Thread 2 

Thread 3 

L1 
L2 

L3 

Thread 4 
Thread 5 

Thread 6 
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L2 

Fig. 4. Threads With Nesting

1 TmLock L1, L2; Lock L3;

2 TmLock tm1[] = {L1}, tm2[] = {L2};

3

4 void Tx1() { atomic(NULL) {...} }

5 void Tx2() { atomic(tm1) {L1();} }

6 void Tx3() { atomic(tm2) {L2();} }

7 void L1() { /* lock/unlock L1 */ }

8 void L2() { /* lock/unlock L2 */ }

9 void L3() { /* lock/unlock L3 */ }

Fig. 5. Functions With Nesting

We use a six threaded example shown in Figures 4 and 5 to draw out the
differences in potential concurrency of the three algorithms when locks are nested
within transactions. Three of the threads, T1−T3, execute transactions while the
other three, T4−T6, execute locks. Thread T1 runs the transaction Tx1(), which
contains no nested locking. Thread T2 runs transaction Tx2() which lexically
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Fig. 6. Nested Example: Full Lock Protection, Coarse-, and Fine-Grained

nests lock L1. Thread T3 runs transaction Tx3() which nests lock L2. Threads
T4 − T6 access locks L1 - L3, respectively.

Only two conflicts exist in the six threaded nested example. Threads T2 and
T4 conflict on lock L1, while threads T3 and T5 conflict on lock L2. Threads T1

and T6 have no conflicts and are included only to highlight the differences in
potential concurrency of the three algorithms.

Full Lock Protection. Full lock protection conservatively assumes that all
transactions may contain nested locks. Because of this, it disallows other trans-
actions from executing until a transaction that has acquired a nested lock has
committed. In addition, once a lock is acquired within a transaction, full lock
protection must assume other locks may also be acquired within the transac-
tion. Because such transactions guarantee isolation, and because locks cannot
be released until transaction commit time, as explained in Section 4, full lock
protection must prevent all lock-based critical sections from executing until the
transaction has committed. This behavior is identical to atomic serialization,
but not TxLocks for of the reasons mentioned in Section 2.1.

The maximum concurrent throughput given these restrictions is:
m(Nestingfl ) = max (tl ,Ln ,Tnl ). tl is a single transaction that acquires a
lock inside of it. Ln is the maximum number of locks that do not conflict with
one another. Tnl is the maximum number of transactions that can be executed
that do not have locks inside of them. Full lock protection only supports the
execution of one of the following: an isolated transaction that contains nested
locks, non-conflicting locks, or revocable transactions (as denoted by the max
function).

Coarse-Grained Conflict Management. When using the coarse-grained ap-
proach, if a transaction acquires a TmLock, the transaction becomes isolated
because the algorithm must assume all transactions can conflict with a TmLock.
Because isolated transactions must not abort, no TmLocks can be acquired while
the isolated transaction is active. This results in the following maximum con-
current throughput potential: m(Nestingtm) = max ((tl + Lnt ), (Ln + Tnl )). tl
is a single transaction that acquires a TmLock inside of it. Lnt is the maximum
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number of lock-based critical sections that do not conflict with one another and
do not conflict with tl . Ln is the maximum number of locks that do not conflict
with each other, but do conflict with tl . Tnl is the maximum number of trans-
actions that can be executed which do not have TmLocks inside of them and do
not conflict with Ln .

The coarse-grained approach is an improvement over full lock protection, and
likewise, atomic serialization, because non-conflicting locks (i.e., locks that are
not TmLocks) can be executed alongside an isolated transaction that has ac-
quired a lock. In addition, another improvement over full lock protection is that
non-conflicting locks can concurrently execute with other non-conflicting trans-
actions, as illustrated with Figure 6.

Fine-Grained Conflict Management. The fine-grained approach offers the
greatest potential concurrent throughput by allowing TmLocks and revocable
transactions to be run in parallel with a transaction that has acquired a TmLock.
When using the fine-grained algorithm, if a TmLock is acquired by a transac-
tion, the transaction becomes irrevocable, not isolated. This is an improvement
over the coarse-grained algorithm because irrevocable transactions allow other
revocable transactions to execute in parallel. Likewise, because each transaction
using the fine-grained algorithm has its conflicting TmLocks listed, the TmLocks
that are not listed as conflicting by a transaction can be acquired while the
transaction executes, even if it is irrevocable.

This results in the following concurrency potential: m(Nestingtx ) = max ((tl +
Lnt + Tr ), (Ln + Tnl )). All variables of the fine-grained algorithm are the same
as coarse-grained algorithm except Tr . Tr is the maximum number of revocable
transactions that can be executed concurrently alongside tl that do not conflict
with the set of locks, Lnt . As shown in Figure 6, the conflict time introduced by
the fine-grained algorithm is equal to the actual conflict time.

6 Experimental Results

Our benchmark data was gathered on a 1.0 GHz Sun Fire T2000 supporting 32
concurrent hardware threads. For all benchmarks with the exception of the red-
black trees in Figure 10, the x-axis shows the number of active threads and the
y-axis shows the total execution time in seconds. In Figure 10, the x-axis shows
the number of inserts and lookups and the y-axis shows the total execution time
in seconds. Smaller total time indicates more efficient execution.

For cases where locks are not nested within transactions, we use an experimen-
tal model that ranges from 4−32 threads in multiples of four. In the four threaded
version, the threads populate three containers of the same type (linked list, hash
table, or red-black tree) and then perform sanity checks (i.e., lookup()s) on the
values inserted. One thread populates a container with locks, another thread pop-
ulates a different container with transactions, and the third and fourth threads
populate a third container with locks and transactions, respectively. Figures 7
and 8 display the execution time of these benchmarks ranging from 4-32 threads.
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Each benchmark was run using full lock protection (left bar), coarse- (abbrevi-
ated TM, middle bar), and fine-grained (abbreviated TX, right bar) algorithms.

For cases where locks are nested within transactions, shown in Figures 9
and 10, we use a similar model to those used in non-nested executions. We use
the same basic 4-threaded model as described above, except that each fourth
thread’s transactions nest calls to lock-based insert and lookup operations. In
Figure 10, we slightly deviate from this model to isolate the red-black tree per-
formance using only 4- and 8-threaded experiments while doubling the tree size
each iteration. These benchmarks provide insight into the performance degrada-
tion of the fine-grained algorithm.

6.1 Performance Summary

Our experimental results are surprising. The coarse-grained algorithm (abbre-
viated as TM in the benchmarks) consistently outperforms full lock protection,
while the fine-grained algorithm (abbreviated as TX in the benchmarks) ranges
from ≈ 2x faster to ≈ 2x slower than either of the other approaches. Our initial
results seem to indicate that the coarse-grained algorithm is a better general
candidate than the fine-grained algorithm, in its current form, for software that
supports the concurrent execution of locks and transactions. This is because (i)
the coarse-grained algorithm requires minimal additional code (e.g., each of our
benchmarks only required one extra line of code for the coarse-grained algo-
rithm) and (ii) its performance efficiency is consistently better than the prior
systems for our experimental benchmarks.

These results are not intuitive from the analyses presented in Sections 5.1
and 5.2. Our experimental results capture what was missed from the mathe-
matical analysis in Sections 5.1 and 5.2. That is, the fine-grained algorithm’s
computational overhead introduce latencies that can degrade overall program
performance, even though it can increase the number of locks and transactions
that can execute concurrently. Two general factors contribute to this. First,
in order for the fine-grained algorithm to yield a performance benefit over the
other algorithms, the cumulative critical section overhead when executed serially
must be greater than the overhead incurred by the fine-grained algorithm. Sec-
ond, the fine-grained algorithm must locate false conflicts that are overlooked
by the other algorithms, which result in additional concurrent throughput. If
both of these conditions are not satisfied, the fine-grained algorithm may not
produce enough extra concurrent throughput to offset its algorithmic overhead
and therefore it may perform worse than if it did no (full lock protection) or
minimal (coarse-grained) conflict management.

An example of a benchmark that does not satisfy the above conditions can
seen in the nested red-black tree benchmarks of Figure 10. As can be seen in
the 4-threaded red-black tree nested benchmark (Figure 10), as the workload
grows, there is a growing divide between the fine-grained algorithm and the other
algorithms. This divide demonstrates that the critical section workload of the
threads is less than the algorithmic overhead of the fine-grained algorithm, but
greater than the other algorithms. Comparing the 4-threaded and 8-threaded
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red-black tree nested benchmarks to each other (again, Figure 10), one can
observe an increased performance degradation of the fine-grained algorithm in
the 8-threaded red-black tree compared to the 4-threaded red-black tree. This
illustrates that the algorithmic overhead of the fine-grained algorithm is greater
than the extra concurrency reclaimed from the false conflicts it finds, because
when more threads are added to the benchmark, the fine-grained algorithm
performs worse, not better, than the other algorithms.

7 Conclusion

While TM shows promise for future software programs, most TMs have un-
defined behavior for the concurrent execution of locks and transactions when
they are used to synchronize the same shared-memory. This paper presented a
performance study between our system and prior works that allow locks and
transactions to execute in the same program.

We introduced two new language constructs: the TmLock and the extended
atomic block. We analyzed how these constructs worked with two algorithms
at different granularities. Our TmLock data structure combined with a coarse-
grained algorithm yielded ≈ 1.5x improved program performance compared to
prior systems and never performed worse than those systems. Our fine-grained
algorithm provided up to a ≈ 2.0x performance improvement but, in some cases,
resulted in a ≈ 2.0x performance degradation compared to prior work.
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Abstract. In the early 1980s, shared memory mini-super-computers
had buses and memory whose speeds were relatively fast compared
to processor speeds. This led to the widespread use of various pro-
ducer/consumer (post/wait) synchronization schemes for enforcing data
dependences within parallel doacross loops. The rise of the “killer micro”,
instruction sets optimized for serial programs, and rapidly increasing
processor clock rates driven by Moore’s law, led to special purpose syn-
chronization instructions being replaced by software barriers combined
with loop fission (to allow the barriers to enforce dependences.) One cost
of this approach is poorer cache behavior because variables on which a
dependence exists are now accessed in separate loops. With the advent
of the multicore era, producer/consumer synchronization again appears
plausible. In this paper we compare the performance of hardware and
software synchronization schemes to barrier synchronization, and show
that either hardware or software based producer/consumer synchroniza-
tion can provide applications with superior performance.
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barrier synchronization.

1 Introduction

The dominance of chip multiprocessors has ushered in the second era of wide-
spread shared memory parallel computing. The first era was in the 1980s, when
mini-supercomputer companies such as Tera and Alliant had a significant market
presence. A salient property of the super-minis was memory, processor and bus
speeds that were much more balanced than in today’s machines. This balance
allowed inter-thread and inter-processor producer/consumer (ordering) synchro-
nization to occur in one or a small number of instruction cycles.

The rise and dominance of the “killer micro” in the early to mid-1990s put
an end to the super mini-computers. Driven by Moore’s law, processor speeds
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increased rapidly, outstripping memory and bus speeds. As well, the broad, se-
quential general purpose computing market that drove the development of these
processors did not need producer/consumer synchronization, and so no design
effort was spent implementing it. To cope with this, parallel programs target-
ing these chips converged on a model similar to what is provided by OpenMP
and Pthreads – support for critical and atomic sections is provided, along with
barrier synchronizations across all threads. Under this model, dependences are
synchronized by placing a barrier between the source and sink accesses of the
dependence. To do this often requires loop fission, which places the dependence
source in the loop that executes first, and the dependence sink in the loop that
executes later, with a barrier between the two (as shown in Fig. 1(b)). In ad-
dition to the overhead of executing two loops instead of one, temporal locality
between the dependent references is destroyed, and performance can suffer as a
result.

for (j = 0; j < size− 1; j++) {
S1 array1[j + 1] = array2[j];
S2 array3[j] =

array1[j + 1]− array1[j];
}

#pragma omp parallel for

for (j = 0; j < size− 1; j++) {
S1 array1[j + 1] = array2[j];
}

implicit barrier
#pragma omp parallel for

for (j = 0; j < size− 1; j++) {
S2 array3[j] = array1[j + 1]

−array1[j];
}

(a) A serial program fragment and
its dependences

(b) A parallel version of the frag-
ment of (b) after loop fission and in-
serting a barrier

Fig. 1. An example loop parallelization using barrier synchronization

This paper makes the following contributions. First, we present a preliminary
study of the performance benefits of three major synchronization schemes: (i)
barriers (both GOMP and user space barriers); (ii) hardware produce-consumer
synchronization; and (iii) software producer/consumer synchronization.

Second, we provide experimental results from three benchmarks showing that
GOMP barriers have high overheads. “User space” barriers, implemented as part
of the program, give better performance. The best performance comes from pro-
ducer/consumer synchronization, with software and hardware implementations
having similar, but not identical, performance. We describe, and use, an imple-
mentation of producer/consumer synchronization in the Simics simulator and
Intel i7 860 to obtain our results.

Third, we show that in the benchmarks we study, the differences in perfor-
mance between the synchronization operations and strategies are not a result of
what they allow to be parallelized but arise in large part from differences in the
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cache performance of the different strategies. Thus, the difficulty of synchronizing
doacross type loops with no dependence cycles using currently supported mutex
and barrier synchronization does not appear to be a significant impediment to
performance in these benchmarks.

Finally, we show that additional transformations, such as loop blocking, are
necessary to achieve good performance even with fused loops and producer con-
sumer synchronization. Such transformations can also maintain good perfor-
mance when the cost of producer/consumer synchronization increases.

The rest of the paper is organized as follows. The next section briefly discusses
some necessary background material. Section 3 describes the synchronization
techniques used in this paper. This section also covers compiler techniques like
loop fusion, loop skewing and loop blocking that aim to increase data reuse.
Simulation experiments and preliminary results are given in Section 5. Finally,
we discuss our conclusions in Section 6.

2 Background and Related Work

2.1 Locality with Loop Transformations

Much research has been done on analytical models and algorithms to perform
loop fusion and fission [10] to enhance parallelism and increase locality. Kennedy
and McKinley proposed an algorithm for loop fusion to maximize parallelism,
and a polynomial time algorithm to improve locality. Manjikian and Abdelrah-
man [13] present systematic techniques to perform loop fusion and parallelization
by “peeling” off iterations. Qasem and Kennedy [17] propose a cache-conscious
analytical model for profitable loop fusion with an empirical tuning framework,
but are concerned with locality, not parallelism.

Loop blocking partitions the iteration space into blocks so that the data in
blocks fits in cache. Wolf and Lam [20] present a complete approach to loop tiling
to improve cache locality. Unroll-and-jam is also proposed as important trans-
formation to increase parallelism by better instruction scheduling in software
pipelining [4].

In Section 4 we use these techniques when inserting synchronization to both
amortize the cost of synchronization over more references and to increase locality.

2.2 Synchronization and the Cost of Barriers

Data dependences that cross the processor core boundaries must be synchro-
nized, and one way to synchronize these dependences is to use barriers. Tra-
ditional software barriers can be quite effective in some loops or with coarser
grain parallelism [5]. Many popular libraries such as Pthreads and OpenMP
have barrier implementations. However, software-only barriers do not always
give speedups due to their relatively high latency. With CMP architectures, fast
hardware barriers have been proposed because faster communication is possible
within a single chip than across chips [11,18].
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2.3 Producer/Consumer Synchronization and Its Benefits

Producer/consumer synchronization to support the synchronization of data de-
pendences has been studied for decades. Midkiff and Padua [15] described several
schemes to generate and optimize the placement of post and wait primitives.
Su and Yew [19] present the Process-Oriented technique that realizes statement
level synchronization and its application. However, they did not perform a per-
formance evaluation of their scheme.

In [9], Kejariwal compares a bit vector based method with other three soft-
ware data synchronization methods: SYS, MAP and MYS. In SYS and MAP,
threads share the same synchronization signal, so the signal must be updated
in a sequential order. These schemes have little space overhead, but can lose
parallelism since they must serialize the “posts”. MYS resolves this problem by
using one synchronization signal per thread instead of one per dependence. The
loop containing the wait primitive of MYS can add overhead as it potentially
reads elements from both synchronization arrays. The effect of MYS on data
locality and cache performance, compared to barrier schemes, is not studied.

With faster communication on a single chip available in CMP architectures,
hardware data synchronization support has been proposed. The Synchronization
State Buffer [22] is simulated on a cacheless architecture, the IBMC64, and shows
better performance than SYS, MAP and MYS.

3 Synchronization Primitives Studied in This Paper

3.1 Synchronization Barriers

GNU OpenMP uses gomp barrier wait for barrier synchronization. A shared
counter variable, arrived, is used to hold the number of threads that have joined
the barrier. When a thread joints the barrier, arrived is incremented and the
thread waits by calling gomp sem wait(). After the last thread joins the barrier,
it serially signals all the other threads, and each signaled thread then decrements
arrived, which sets it back to zero.

GOMP barriers make a system call, and have a high system overhead. To
avoid system calls and the associated overhead, we have implemented the user-
space centralized barrier with sense reversal of [6]. It uses a shared counter and a
boolean type local “sense” variable to realize the semantics of multiple barriers.

3.2 Producer/Consumer Synchronization

Because the purpose of this paper is not to propose a better synchronization
scheme, but to present comparative results on the impact of reasonable synchro-
nization schemes on program performance, we use a simple “post” and “wait”
mechanism [15], with a straight forward but reasonable algorithm to insert the
synchronization into loops.

We use a program position as the value assigned to each synchronization vari-
able. Similar to a process counter [19], the program position in the loop nest is
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a vector 〈i1, i2, ..., in, stmt〉 that gives the current completed statement instance
in the source program. The stmt element in the vector uniquely identifies the
statement whose execution is being signaled, and i1, i2, ..., in are the iteration
values of the n loops that surround the statement stmt. The program position
vector enables us to signal multiple, and multi-level, dependences. For the code
in Fig. 1, the position of S1 in iteration j = 3 can be expressed as <3, 1>. Since
there is only one dependence in the example, we only need to use the iteration
number in the vector, i.e. <3>. The comparison of position vectors X and Y , is
a lexicographic comparison, i.e.

X ≥ Y iff x1 > y1, or x1 = y1 and 〈x2, x3, ..., xn〉 ≥ 〈y2, y3, ..., yn〉 .

The technique of this paper, PCS (producer/consumer synchronization), logi-
cally uses an array, pcsync with one element for each thread. The pcsync for
thread i holds the process counter vector representing the currently executing
position in thread i. A multi-threaded program using PCS performs the following
synchronization operations: (1) an initialization phase, to reset the synchroniza-
tion variables to zero; (2) a posting phase, to allow a thread to post a signal
to its own synchronization variables; and (3) a wait phase, where one thread
waits for a signal in the synchronization variable of another thread. Thus, PCS
implements three primitives: pcs init, pcs post, pcs wait.

A post primitive is inserted immediately after the source of a synchronized
dependence, and the wait primitive is placed immediately before the sink. In
the pcs wait primitive, the synchronization variable of the thread executing
the source holds the last completed position of that thread, which is compared
to the source position. If the value of the synchronization variable is greater
than, or equal to, source vector value, we know the execution of the dependence
source statement is completed, so we can terminate the spin loop and execute
the dependence sink statement. Otherwise, the source has not been completed,
and the waiting thread must wait. Pseudo-code of the three primitives is listed
in Fig. 2.

pcs init ()
doi = 1, nthreads

pcsync (i)
= zero position

end do

pcs post (tid, position)
memory fence
pcsync (tid) = position

pcs wait (tid, position)
while (pcsync (tid) < position)
memory fence

(a) pcs init (b) pcs post (c) pcs wait

Fig. 2. Pseudo-code of the three PCS primitives, pcs init, pcs post, and pcs wait

Memory fence instructions are needed to prevent hardware from reordering
guarded instructions past the synchronization instruction. We use an IA32 Intel
MFENCEmemory fence instruction to force the serialization of both load and store
instructions with the respect to synchronization instructions at the hardware
level. asm volatile("":::"memory") is used to prevent reordering of instruc-
tions past synchronization by the compiler.
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Fig. 3. Overview of the transformation framework

3.3 Hardware Support for Producer/Consumer Synchronization

To implement the pcsync array, we use a group of synchronization registers,
called PCSReg, that are connected to CPU cores through the PCSReg-CPU
interconnect. The number of the such registers is at least as large as the number
of threads so each thread has a register. The default PCSReg-CPU interconnect
has a latency of one cycle.

The pcs post primitive stores the position vector into the corresponding
thread’s register. The pcs wait instruction loads the register from the post-
ing thread and tests it. Because the pcs wait spin-waits, if the test fails the
pcs wait reloads the register, performs the test again, and repeats this until the
test succeeds.

4 Parallelizing doacross Loops with Synchronization
Primitives

This section discusses a general transformation framework integrating loop skew-
ing, loop fusion, loop blocking and synchronization insertion, to evaluate the
benefits of performing loop fusion and synchronization. A block diagram of the
steps performed by the framework is shown in Fig. 3.

Loop skewing is applied to enable legal multi-level loop fusion, which in turn
reduces the temporal reuse distance of dependences in a distributed loop nest.
Loop blocking aims to improve the data spatial locality and reduce false sharing.
Finally, barriers or producer/consumer synchronization primitives are inserted
to enable parallelism.

We use the Cetus compiler infrastructure [8] as our dependence analysis tool
to discover transformation opportunities in multiple loops that contain only
forward dependences. All transformations are implemented by hand.
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(a) Cyclic scheduling
before blocking

(b) Cyclic blocking (c) Blocking in pipeline
fashion

Fig. 4. Example of the effect of loop blocking on an iteration space

4.1 Loop Transformations

Loop blocking is a loop transformation that can enhance cache performance. By
keeping each block small enough, cache capacity misses are reduced and temporal
reuse is improved.

We first illustrate the transformations we perform with an example of loop
blocking, using code like that found in Fig. 1. A cyclic scheduling of the iterations
is shown in Fig. 4(a). In Fig. 4(b), we block four successive iterations together
into one task and assign tasks to threads in a round robin fashion. Four depen-
dence source statements (S1) are executed first, followed by the four dependence
sink statements (S2). The dashed line represents the forward dependence in the
original program. Instead of executing source and sink statements one after the
other, we execute several source statements followed by several sink statements.
The reason for this is to allow the source and sink statements to execute in par-
allel instead of in a pipelined fashion, as in Fig. 4(c). Loop blocking can reduce
the number of synchronizations while having a minimal impact, at worst, on
parallelism.

False sharing is another hazard that can be reduced by loop blocking. In
Fig. 4(a), adjacent array elements will likely be located in the same cache line,
and writes to an element will invalidate cached copies in other processors. All
threads will invalidate each other’s cache entries, which will generate a large
number of cache misses and inter-core traffic. By performing loop blocking with
properly sized blocks, array elements in the same cache line are almost always
accessed by the same thread, reducing false sharing.

From the previous analysis, having the proper block size is important. If the
block size is too small the program may suffer from large synchronization over-
heads and false sharing cache misses; if it is too large cache capacity misses and
workload imbalance can result.
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4.2 Inserting Barrier Synchronization

Again considering the example of Fig. 3, after applying loop skewing, loop fu-
sion and loop blocking, the loop nests now look like those shown in Fig. 3
under “Loop Blocking”. However, the forward dependence (the dashed line)
still exists between the inner loop nests and prevents the exploitation of finer
grain parallelism. Synchronization is used to enforce the dependence and enable
parallelization of the outer loop.

Barrier synchronization is inserted between every pair of inner loops, as shown
in the fourth phase of Fig. 3 (“Synchronization”). The transformed example code
is shown in Fig 5 as line 8 (ignoring line 1, 9 and 10). We call this version fine-
grained barrier with loop fusion and blocking in the next section.

4.3 Inserting Producer/Consumer Synchronization

The parallel version of a fused blocked loop with PCS primitives is shown in
lines 1, 9 and 10 of Fig. 5 (ignoring line 8). Before the parallel section starts,
we initialize the synchronization variables. Suppose that iteration k is mapped
onto thread T0, then after executing the first statement, T0 sets the value of
pcsync[0] to be 〈k〉 by executing pcs post(0, k). If another thread T1 waiting
for iteration k on thread T0, the wait primitive will wait until thread T0 finishes
the first statement in iteration k.

1 pcs init()
2 #pragma omp parallel private (j, k, tid, end)
3 {
4 tid = omp get thread num();
5 for (j = tid ∗ block size; j < size− 1; j+ = block size ∗ nthreads) {
6 for (k = j; k < end; k++)
7 array1[k + 1] = array2[k];
8 barrier;
9 pcs post (tid, k);
10 pcs wait ((tid-1)%nthreads, j);
11 for (k = j; k < end; k++)
12 array3[k] = array1[k + 1]− array1[k];
13 }
14 }

Fig. 5. Transformed code of the example in Fig. 1 after loop fusion, blocking, paral-
lelization and synchronizations. Line 7 (without line 8 and 9) shows how barrier syn-
chronization is inserted. Line 8 and 9 (without line 7) shows how PCS synchronization
is inserted.
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5 Experimental Evaluation

The evaluation of both software and hardware implementations is performed
in two different ways: using Simics-3.0.31 for the IA32 instruction set architec-
ture [12], and a real machine with an Intel R©CoreTMi7 2.80GHz multiproces-
sor. Simics is a a cycle-accurate full-system shared memory multi-core processor
simulator that models all components of the IA32 and Linux operating sys-
tem. We created four Simics target configurations (2, 4, 8 and 16 core) and
all four systems are running Fedora Core 5 (FC5), hosting Linux kernel 2.6.
GEMS’s Ruby models the cache memory hierarchy using a cycle-accurate tim-
ing model. Ruby models the timing of caches, cache controllers, interconnect,
and memory [14]. Ruby is configured with a 32kB private L1 I-cache and D-
cache for each processor core, and a shared L2 banked cache with one bank
per core. We use the MOESI CMP directory provided by Ruby for the coher-
ence protocol. It is a two-level directory protocol using non-inclusive L1/L2
caching with blocking caches [2]. Table 1 shows the configuration for target sys-
tem. Experiments were performed on real hardware using an Intel i7 860 quad-
core running at 2.8GHz with 32kB/246kB/8MB of private L1/shared L2/shared
L3 cache, respectively. Experiments were run using Ubuntu 10.4, Linux Ker-
nel 2.6, with the same compiler version and switches as the simulated
experiments.

We first measure the cost of the software and hardware versions of the PCS
scheme and the GOMP and software barrier schemes, using the EPCC OpenMP
Microbenchmarks [3]. These costs are reported in cycles in Table 2.

Table 1. The hardware configuration

Processor Intel Pentium 4, in-order with 2, 4, 8, 16 cores

Private L1 Cache 32kB 4-way, 64Byte-line, L1 hit latency: 1-cycle

Shared L2 Cache 32kB per bank

Cache Coherence Protocol Ruby’s MOESI CMP directory

Memory 200-cycle memory access

OS Fedora Core 5 (Tango machine)

Compiler GCC 4.3 with OpenMP, flag = -fopenmp -O3

Table 2. Costs of synchronization primitives

software post 30-100 cycles

software wait 100-200 cycles

hardware post 3-5 cycles

hardware wait 6-7 cycles

GOMP barrier 150-650 cycles

user-space barrier 100-400 cycles
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5.1 Performance Evaluation

We applied our strategy of loop transformations and synchronization insertion
to three benchmarks: membar, a micro benchmark we developed and is shown in
Fig. 1; laplace1D, the kernel extracted from the 1-D Laplace equation solver [21];
and ll18, a 2-D explicit hydrodynamics kernel from the Livermore Loops [1].
We compare the results of six versions of each benchmark:

1. The serial or original version (seq);
2. A version using a coarse-grained omp barrier (ompbarr);
3. A version using a finer-grained omp barrier with loop fusion and blocking

(ompbarr-b);
4. A version using a finer-grained central barrier with loop fusion and blocking

(userbarr-b);
5. A version using software producer/consumer synchronization with loop fu-

sion and blocking (softpcs-b);
6. A version using hardware producer/consumer synchronization with loop fu-

sion and blocking (hardpcs-b).

We set the GOMP CPU AFFINITY environment variable to minimize the effects of
context switches and to ensure that threads are mapped to different processor
cores. Two input data sets, small and large, are used on both on 2-, 4-, 8- and
16-core simulations and 2, 4 and 8 threads executions the real hardware. So for
each version of a benchmark, we measure eight cases on the simulator (labeled
2p-x, 4p-x, 8p-x and 16p-x, where “x” is “L” or “S” for the large and small data
sets, respectively.) On the real hardware, for each version of the benchmark we
measure six cases (labeled 2p-x, 4p-x and 8p-x, where “x” is as above. On the real
hardware processor, we measure the first five versions, i.e. all but hardpcs-b.
Different block sizes for loop blocking were measured, and the best was chosen
for each benchmark and data set.

The potential performance improvement from using producer/consumer syn-
chronization with loop transformations can come from exploiting finer grain
parallelism, reducing cache misses, memory accesses, and even coherence proto-
col messages. We measure both speedups and cache misses in our performance
evaluation.

Membar. The pseudo-code of each version of this micro benchmark is shown in
Fig. 1. Fig. 6 reveals the speedups and cache misses of parallel versions 2 through
6, compared to the speedup of the original version which is normalized to 1. The
data sets used are 216 (small) and 217 (large) double-precision array elements in
the simulator case and 219 (small) and 223 (large) for the real hardware.

We conclude from Fig. 6 (a) and (b) that in most of the cases with a higher
core count, the finer-grained parallel implementations (3-6) generally have supe-
rior performance compared to the coarse-grained implementation (2), and pro-
ducer/consumer synchronization performance is better than that of barriers. The
producer/consumer synchronization is less affected by core count, and shows bet-
ter performance at a higher number of processors. Hardware producer/consumer
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(a) Speedups with Simics simulator (b) Speedups with Intel processor

(c) L1 cache misses (d) L1 user cache misses

Fig. 6. Performance results for the micro benchmark membar

synchronization has approximately a 50% speedup over the coarse-grain barrier
version. The difference between software and hardware implementations of pro-
ducer/consumer synchronization is not large, usually between 5% to 10%. Note
that in the case of 16p-S, 8t-S and 8t-L, the ompbarr-b version slows down to
the general barrier version’s performance. We conjecture that the reason is the
high overhead of the GOMP barrier with small block sizes.

Fig. 6(c) and (d) present the system and user cache misses in both L1 D-cache
and L2 cache. The distributed loop with general OpenMP barrier (ompbarr)
causes more cache misses than in the sequential program. The gomp barrier

shows a large number of system cache misses. As blocking leads to more barri-
ers being executed, ompbarr-b leads to even more cache misses than ompbarr.
The user-space barrier implementation has relatively fewer system cache misses.
Trends in the data (fused and blocked versions have fewer misses) lead us
to conclude, as have many others, that loop fusion and blocking help reduce
the number of cache misses. Producer/consumer synchronization has the lowest
overhead, the fewest cache misses and the best performance.

Kernel from 1-D Laplace Equation Solver. The 1-D Laplace solver uses
a finite difference method to approximate the numerical solution to a partial
differential equation [21]. It is quite similar to the membar benchmark except
that it performs more computation and there is an enclosing serial time step
loop. We take the same strategy and same input data set as membar, and the
results are presented in Fig. 7. As expected, the results show similar trends to
membar but with higher speedups. With increasing core counts, barrier overheads
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(a) Speedups with Simics simulator. (b) Speedups with Intel processor.

(c) L1 cache misses (d) L1 user cache misses

Fig. 7. Performance result for the 1-D Laplace Solver Kernel

increase, and speedups rise more slowly. The producer/consumer synchroniza-
tion is less affected by core count, and shows better performance at a higher
number of processors. Note that in the 2-core, 4-core and 8-core configurations,
producer/consumer synchronization achieves a speedup greater than the core
count. This superlinear speedup is the result of the cache performance being
much improved relative to the serial program.

The Intel processor results are similar to the simulation results for 2- and
4-processors (with one thread per processor). In the 8-thread version (hyper-
threaded), the performance is limited by the core count.

2-D Explicit Hydrodynamics Kernel (Livermore Loop 18). The ll18

kernel has three two-dimensional loop nests, all of which have the same loop
bounds. Two data sets with 128× 128 and 256× 256 double-precision (8-byte)
floating point values are used on Simics, while 256 × 256 and 2048 × 2048 are
used on Intel. Qasem [17] states that all three loop nests can be fused in two
levels to obtain the best cache performance. We can fuse all three outer loops for
the finer-grained barrier synchronization. The difference from the previous two
benchmarks is that we need two elements in the synchronization position vector
introduced in section 3.2.

For two-dimensional loop blocking, we cyclically assign one outer loop itera-
tion to each thread, with inner loop iterations blocked. The results for ll18 are
shown in Fig. 8.
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(a) Speedups in Simics simulator (b) Speedups in Intel processor

(c) L1 cache misses (d) L1 user cache misses

Fig. 8. Performance result for ll18

5.2 Evaluation of Impact of the Synchronization Cost

To study the impact of synchronization cost on the performance of DOACROSS
loops, we conduct an experiment to present how speedups vary with different
synchronization costs. In the pcs post and pcs wait primitives, we insert a
delay loop to control the cost of both primitives by varying the number of loop
iterations.

The results of laplace-1D and ll18 is listed in the Fig 9. Both of the two
results are obtained with a Large data set and eight threads (8t-L). The three
straight lines are the three barrier versions. If we fix the loop blocking size
(i.e. 256, 16384 in laplace and 256, 1024 in ll18), we can see that speedups

(a) laplace. (b) ll18.

Fig. 9. Performance for PCS primitives with different costs
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of software producer/consumer synchronization drops dramatically as its cost
increases. But if we can tune the block size for the best performance, we can
maintain almost as good performance even when delays are fairly high. When
the overheads of the PCS primitives increase, increasing the block size reduces
the number of synchronization instructions executed, and the program achieves
speedups almost as high as with smaller synchronization instruction costs.

6 Conclusions and Future Work

This paper has presented a preliminary study, using small benchmarks, of the
utility of producer/consumer synchronization. In the future we plan to extend
this study to whole-program benchmarks. To summarize, we conclude:

1. By providing flexibility to compilers in how to structure parallel loops,
producer/consumer synchronization can improve locality and cache perfor-
mance, increasing overall program performance;

2. Both software and hardware implementations of producer/consumer syn-
chronization provide performance benefits over barriers by exploiting more
fine-grained parallelism;

3. Pthreads barriers that require system calls have a negative effect on cache
performance, and work should be done to improve this.

4. With the help of loop transformations, the performance of producer/consumer
synchronization may be relatively insensitive to its cost.

An interesting question not answered in this study is how much additional paral-
lelism in loops with dependence cycles can be exploited using producer consumer
synchronization on multi-cores. During the period of the “super-minicomputer”,
exploitation of parallelism in less than 100% doacross [16,7] loops (i.e. loops
with lexically backward dependences) was a motivator of producer/consumer
synchronization.
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Abstract. This paper describes an implementation of a non-blocking
concurrent hash trie based on single-word compare-and-swap instruc-
tions in a shared-memory system. Insert, lookup and remove operations
modifying different parts of the hash trie can be run completely inde-
pendently. Remove operations ensure that the unneeded memory is freed
and that the trie is kept compact. A pseudocode for these operations is
presented and a proof of correctness is given – we show that the imple-
mentation is linearizable and lock-free. Finally, benchmarks are presented
that compare concurrent hash trie operations against the corresponding
operations on other concurrent data structures.

1 Introduction

In the presence of multiple processors data has to be accessed concurrently.
Concurrent access to data requires synchronization in order to be correct. A tra-
ditional approach to synchronization is to use mutual exclusion locks. However,
locks induce a performance degradation if a thread holding a lock gets delayed
(e.g. by being preempted by the operating system). All other threads compet-
ing for the lock are prevented from making progress until the lock is released.
More fundamentally, mutual exclusion locks are not fault tolerant – a failure
may prevent progress indefinitely.

A lock-free concurrent object guarantees that if several threads attempt to
perform an operation on the object, then at least some thread will complete the
operation after a finite number of steps. Lock-free data structures are in general
more robust than their lock-based counterparts [10], as they are immune to
deadlocks, and unaffected by thread delays and failures. Universal methodologies
for constructing lock-free data structures exist [9], but they serve as a theoretical
foundation and are in general too inefficient to be practical – developing efficient
lock-free data structures still seems to necessitate a manual approach.

Trie is a data structure with a wide range of applications first developed by
Brandais [6] and Fredkin [7]. Hash array mapped tries described by Bagwell
[1] are a specific type of tries used to store key-value pairs. The search for the
key is guided by the bits in the hashcode value of the key. Each hash trie node
stores references to subtries inside an array, which is indexed with a bitmap. This
makes hash array mapped tries both space-efficient and cache-aware – the bitmap
and the array can be stored within the same cache line. A similar approach
was taken in the dynamic array data structures [8]. Hash array mapped tries
are space-efficient and ensure that they are compressed as elements are being
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removed. They are well-suited for applications where the size bounds of the data
structure are not known in advance and vary through time. In this paper we
describe in detail a non-blocking implementation of the hash array mapped trie.

Our contributions are the following:

1. We introduce a completely lock-free concurrent hash trie data structure for a
shared-memory system based on single-word compare-and-swap instructions.
A complete pseudocode is included in the paper.

2. Our implementation maintains the space-efficiency of sequential hash tries.
Additionally, remove operations check to see if the concurrent hash trie can
be contracted after a key has been removed, thus saving space and ensuring
that the depth of the trie is optimal.

3. There is no stop-the-world dynamic resizing phase during which no oper-
ation can be completed – the data structure grows with each subsequent
insertion and removal. This makes our data structure suitable for real-time
applications.

4. We present a proof of correctness and show that all operations are lineariz-
able and lock-free.

5. We present benchmarks that compare performance of concurrent hash tries
against other concurrent data structures. We interpret the results.

The rest of the paper is organized as follows. Section 2 describes sequential
hash tries and several attempts to make their operations concurrent. It then
presents case studies with concurrent hash trie operations. Section 3 presents the
algorithm for concurrent hash trie operations and describes it in detail. Section
4 presents the outline of the correctness proof – a complete proof is given in
the appendix. Section 5 contains experimental results and their interpretation.
Section 6 presents related work and section 7 concludes.

2 Discussion

Hash array mapped tries (from now on hash tries) described previously by Bag-
well [1] are trees that have 2 types of nodes – internal nodes and leaves. Leaves
store key-value bindings. Internal nodes have a 2W -way branching factor. In a
straightforward implementation, each internal node is a 2W -element array. Find-
ing a key proceeds in the following manner. If the internal node is at the root,
the initial W bits of the key hashcode are used as an index in the array. If the
internal node is at the level l, then W bits of the hashcode starting from the
position W ∗ l are used. This is repeated until a leaf or an empty entry is found.
Insertion and removal are similar.

Such an implementation is space-inefficient – most entries in the internal nodes
are never used. To ensure space efficiency, each internal node contains a bitmap
of length 2W . If a bit is set, then its corresponding array entry contains an
element. The corresponding entry for a bit on position i in the bitmap bmp
is calculated as #((i − 1) � bmp), where # is the bitcount and � is a logical
AND operation. The W bits of the hashcode relevant at some level l are used
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to compute the index i as before. At all times an invariant is preserved that the
bitmap bitcount is equal to the array length. Typically, W is 5 since that ensures
that 32-bit integers can be used as bitmaps. An example hash trie is shown in
Fig. 1A. The expected depth is logarithmic in the number of elements added –
this drives the running time of operations.
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Fig. 1. Hash trie and Ctrie examples

We want to preserve the nice properties of hash tries – space-efficiency, cache-
awareness and the expected depth of O(log2W (n)), where n is the number of
elements stored in the trie and 2W is the bitmap length. We also want to make
hash tries a concurrent data structure that can be accessed by multiple threads.
In doing so, we avoid locks and rely solely on CAS instructions. Furthermore, we
ensure that the new data structure has the lock-freedom property. We call the
data structure a Ctrie. In the remainder of this chapter we give several examples.

Assume that we have a hash trie from Fig. 1A and that a thread T1 decides
to insert a new key below the node C1. One way to do this is to do a CAS on
the bitmap in C1 to set the bit that corresponds to the new entry in the array,
and then CAS the entry in the array to point to the new key. This requires all
the arrays to have additional empty entries, leading to inefficiencies. A possible
solution is to keep a pointer to the array inside C1 and do a CAS on that pointer
with the updated copy of the array. The fundamental problem that still remains
is that such an insertion does not happen atomically. It is possible that some
other thread T2 also tries to insert below C1 after its bitmap is updated, but
before the array pointer is updated. Lock-freedom is not ensured if T2 were to
wait for T1 to complete.
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Another solution is for T1 to create an updated version of C1 called C1’ with
the updated bitmap and the new key entry in the array, and then do a CAS
in the entry within the C2 array that points to C1. The change is then done
atomically. However, this approach does not work. Assume that another thread
T2 decides to insert a key below the node C2 at the time when T1 is creating
C1’. To do this, it has to read C2 and create its updated copy C2’. Assume that
after that, T1 does the CAS in C2. The copy C2’ will not reflect the changes by
T1. Once T2 does a CAS in the C3 array, the key inserted by T1 is lost.

To solve this problem we define a new type of a node that we call an indirection
node. This node remains present within the Ctrie even if nodes above and below
it change. We now show an example of a sequence of Ctrie operations.

Every Ctrie is defined by the root reference (Fig. 1B). Initially, the root is
set to a special value called null. In this state the Ctrie corresponds to an empty
set, so all lookups fail to find a value for any given key and all remove operations
fail to remove a binding.

Assume that a key k1 has to be inserted. First, a new node C1 of type CNode
is created, so that it contains a single key k1 according to hash trie invariants.
After that, a new node I1 of type INode is created. The node I1 has a single
field main (Fig. 2) that is initialized to C1. A CAS instruction is then performed
at the root reference (Fig. 1B), with the expected value null and the new value
I1. If a CAS is successful, the insertion is completed and the Ctrie is in a state
shown in Fig. 1C. Otherwise, the insertion must be repeated.

Assume next that a key k2 is inserted such that its hashcode prefix is different
from that of k1. By the hash trie invariants, k2 should be next to k1 in C1. The
thread that does the insertion first creates an updated version of C1 and then does
a CAS at the I1.main (Fig. 1C) with the expected value of C1 and the updated
node as the new value. Again, if the CAS is not successful, the insertion process
is repeated. The Ctrie is now in the state shown in Fig. 1D.

If some thread inserts a key k3 with the same initial bits as k2, the hash trie
has to be extended with an additional level. The thread starts by creating a new
node C2 of type CNode containing both k2 and k3. It then creates a new node
I2 and sets I2.main to C2. Finally, it creates a new updated version of C1 such
that it points to the node I2 instead of the key k2 and does a CAS at I1.main
(Fig. 1D). We obtain a Ctrie shown in Fig. 1E.

Assume now that a thread T1 decides to remove k2 from the Ctrie. It creates
a new node C2’ from C2 that omits the key k2. It then does a CAS on I2.main
to set it to C2’ (Fig. 1E). As before, if the CAS is not successful, the operation
is restarted. Otherwise, k2 will no longer be in the trie – concurrent operations
will only see k1 and k3 in the trie, as shown in Fig. 1F. However, the key k3
could be moved further to the root - instead of being below the node C2, it could
be directly below the node C1. In general, we want to ensure that the path from
the root to a key is as short as possible. If we do not do this, we may end up
with a lot of wasted space and an increased depth of the Ctrie.

For this reason, after having removed a key, a thread will attempt to contract
the trie as much as possible. The thread T1 that removed the key has to check
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whether or not there are less than 2 keys remaining within C2. There is only a
single key, so it can create a copy of C1 such that the key k3 appears in place of
the node I2 and then do a CAS at I1.main (Fig. 1F). However, this approach
does not work. Assume there was another thread T2 that decides to insert a new
key below the node I2 just before T1 does the CAS at I1.main. The key inserted
by T2 is lost as soon as the CAS at I1.main occurs.

To solve this, we relax the invariants of the data structure. We introduce a
new type of a node - a tomb node. A tomb node is simply a node that holds a
single key. No thread may modify a node of type INode if it contains a tomb
node. In our example, instead of directly modifying I1, thread T1 must first
create a tomb node that contains the key k3. It then does a CAS at I2.main
to set it to the tomb node. After having done this (Fig. 1G), T1 may create a
contracted version of C1 and do a CAS at I1.main, at that point we end up with
a trie of an optimal size (Fig. 1H). If some other thread T2 attempts to modify
I2 after it has been tombed, then it must first do the same thing T1 is attempting
to do - move the key k3 back below C2, and only then proceed with its original
operation. We call an INode that points to a tomb node a tomb-I-node. We say
that a tomb-I-node in the example above is resurrected.

If some thread decides to remove k1, it proceeds as before. However, even
though k3 now remains the only key in C1 (Fig. 1I), it does not get tombed. The
reason for this is that we treat nodes directly below the root differently. If k3
were next removed, the trie would end up in a state shown in Fig. 1J, with the
I1.main set to null. We call this type of an INode a null-I-node.

root: INode

structure INode {
main: MainNode

}

MainNode: CNode | SNode

structure CNode {
bmp: integer
array: Array[2^W]

}

structure SNode {
k: KeyType
v: ValueType
tomb: boolean

}

Fig. 2. Types and data structures

3 Algorithm

We present the pseudocode of the algorithm in figures 3, 4 and 5. The pseudocode
assumes C-like semantics of conditions in if statements – if the first condition in
a conjunction fails, the second one is never evaluated. We use logical symbols for
boolean expressions. The pseudocode also contains pattern matching constructs
that are used to match a node against its type. All occurences of pattern matching
can be trivially replacedwith a sequence of if-then-else statements – we use pattern
matching for conciseness. The colon (:) in the pattern matching cases should be
understood as has type. The keyword def denotes a procedure definition. Reads
and compare-and-set instructions written in capitals are atomic – they occur at
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def insert(k, v)1

r = READ(root)2

if r = null ∨ isNullInode(r) {3

scn = CNode(SNode(k, v, ⊥))4

nr = INode(scn)5

if !CAS(root, r, nr) insert(k, v)6

} else if ¬iinsert(r, k, v, 0, null)7

insert(k, v)8

9

def remove(k)10

r = READ(root)11

if r = null return NOTFOUND12

else if isNullInode(r) {13

CAS(root, r, null)14

return remove(k)15

} else {16

res = iremove(r, k, 0, null)17

if res �= RESTART return res18

else remove(k)19

}20

21

def lookup(k)22

r = READ(root)23

if r = null return NOTFOUND24

else if isNullInode(r) {25

CAS(root, r, null)26

return lookup(k)27

} else {28

res = ilookup(r, k, 0, null)29

if res �= RESTART return res30

else return lookup(k)31

}32

33

def ilookup(i, k, lev, parent)34

READ(i.main) match {35

case cn: CNode =>36

flag, pos = flagpos(k.hc, lev, cn.bmp)37

if cn.bmp � flag = 0 return NOTFOUND38

cn.array(pos) match {39

case sin: INode =>40

return ilookup(sin, k, lev + W, i)41

case sn: SNode ∧ ¬sn.tomb =>42

if sn.k = k return sn.v43

else return NOTFOUND44

}45

case (sn: SNode ∧ sn.tomb) ∨ null =>46

if parent �= null clean(parent)47

return RESTART48

}49

Fig. 3. Basic operations I

one point in time. This is a high level pseudocode and might not be optimal in all
cases – the source code contains a more efficient implementation.1

Operations start by reading the root (lines 2, 11 and 23). If the root is null
then the trie is empty, so neither removal nor lookup finds a key. If the root
points to an INode that is set to null (as in Fig. 1J), then the root is set back to
just null before repeating. In both the previous cases, an insertion will replace
the root reference with a new CNode with the appropriate key.

If the root is neither null nor a null-I-node then the node below the root
I-node is read (lines 35, 51 and 79), and we proceed casewise. If the node pointed
at by the I-node is a CNode, an appropriate entry in its array must be found.
The method flagpos computes the values flag and pos from the hashcode hc
of the key, bitmap bmp of the cnode and the current level lev. The relevant
flag in the bitmap is defined as (hc >> (k · lev)) � ((1 << k) − 1), where 2k

is the length of the bitmap. The position pos within the array is given by the
expression #((flag − 1) � bmp), where # is the bitcount. The flag is used to
check if the appropriate branch is in the CNode (lines 38, 54, 82). If it is not,
lookups and removes end, since the desired key is not in the Ctrie. An insert
creates an updated copy of the current CNode with the new key. If the branch
is in the trie, pos is used as an index into the array. If an I-node is found, we
repeat the operation recursively. If a key-value binding (an SNode) is found, then
a lookup compares the keys and returns the binding if they are the same. An
insert operation will either replace the old binding if the keys are the same, or
otherwise extend the trie below the CNode. A remove compares the keys – if they
are the same it replaces the CNode with its updated version without the key.
1 See: http://github.com/axel22/Ctries
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def iinsert(i, k, v, lev, parent)50

READ(i.main) match {51

case cn: CNode =>52

flag, pos = flagpos(k.hc, lev, cn.bmp)53

if cn.bmp � flag = 0 {54

nsn = SNode(k, v, ⊥)55

narr = cn.array.inserted(pos, nsn)56

ncn = CNode(narr, bmp | flag)57

return CAS(i.main, cn, ncn)58

}59

cn.array(pos) match {60

case sin: INode =>61

return iinsert(sin, k, v, lev + W, i)62

case sn: SNode ∧ ¬sn.tomb =>63

nsn = SNode(k, v, ⊥)64

if sn.k = k {65

ncn = cn.updated(pos, nsn)66

return CAS(i.main, cn, ncn)67

} else {68

nin = INode(CNode(sn, nsn, lev + W))69

ncn = cn.updated(pos, nin)70

return CAS(i.main, cn, ncn)71

}72

}73

case (sn: SNode ∧ sn.tomb) ∨ null =>74

if parent �= null clean(parent)75

return ⊥76

}77

def iremove(i, k, lev, parent)78

READ(i.main) match {79

case cn: CNode =>80

flag, pos = flagpos(k.hc, lev, cn.bmp)81

if cn.bmp � flag = 0 return NOTFOUND82

res = cn.array(pos) match {83

case sin: INode =>84

return iremove(sin, k, lev + W, i)85

case sn: SNode ∧ ¬sn.tomb =>86

if sn.k = k {87

narr = cn.array.removed(pos)88

ncn = CNode(narr, bmp ^ flag)89

if cn.array.length = 1 ncn = null90

if CAS(i.main, cn, ncn) return sn.v91

else return RESTART92

} else return NOTFOUND93

}94

if res = NOTFOUND ∨ res = RESTART return res95

if parent ne null ∧ tombCompress()96

contractParent(parent, in, k.hc, lev - W)97

case (sn: SNode ∧ sn.tomb) ∨ null =>98

if parent �= null clean(parent)99

return RESTART100

}101

Fig. 4. Basic operations II

After a key was removed, the trie has to be contracted. A remove operation
first attempts to create a tomb from the current CNode. It first reads the node
below the current I-node to check if it is still a CNode. It then calls toWeakTombed
that creates a weak tomb from the given CNode. A weak tomb is defined as follows.
If the number of nodes below the CNode that are not null-I-nodes is greater than
1, then it is the CNode itself – in this case we say that there is nothing to entomb.
If the number of such nodes is 0, then the weak tomb is null. Otherwise, if the
single branch below the CNode is a key-value binding or a tomb-I-node (also
called a singleton), the weak tomb is the tomb node with that binding. If the
single branch below is another CNode, a weak tomb is a copy of the current CNode
with the null-I-nodes removed.

The procedure tombCompress continually tries to entomb the current CNode
until it finds out that there is nothing to entomb or it succeeds. The CAS in
line 132 corresponds to the one in Fig. 1F. If it succeeds and the weak tomb was
either a null or a tomb node, it will return true, meaning that the parent node
should be contracted. The contraction is done in contractParent, that checks if
the I-node is still reachable from its parent and then contracts the CNode below
the parent - it removes the null-I-node (line 148) or resurrects a tomb-I-node
into an SNode (line 152). The latter corresponds to the CAS in Fig. 1G.

If any operation encounters a null or a tomb node, it attempts to fix the
Ctrie before proceeding, since the Ctrie is in a relaxed state. A tomb node may
have originated from a remove operation that will attempt to contract the tomb
node at some time in the future. Rather than waiting for that remove operation
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def toCompressed(cn)102

num = bit#(cn.bmp)103

if num = 1 ∧ isTombInode(cn.array(0))104

return cn.array(0).main105

ncn = cn.filtered(_.main �= null)106

rarr = ncn.array.map(resurrect(_))107

if bit#(ncn.bmp) > 0108

return CNode(rarr, ncn.bmp)109

else return null110

111

def toWeakTombed(cn)112

farr = cn.array.filtered(_.main �= null)113

nbmp = cn.bmp.filtered(_.main �= null)114

if farr.length > 1 return cn115

if farr.length = 1116

if isSingleton(farr(0))117

return farr(0).tombed118

else CNode(farr, nbmp)119

return null120

121

def clean(i)122

m = READ(i.main)123

if m ∈ CNode124

CAS(i.main, m, toCompressed(m))125

126

def tombCompress(i)127

m = READ(i.main)128

if m �∈ CNode return ⊥129

mwt = toWeakTombed(m)130

if m = mwt return ⊥131

if CAS(i.main, m, mwt) mwt match {132

case null ∨ (sn: SNode ∧ sn.tomb) =>133

return �134

case _ => return ⊥135

} else return tombCompress()136

137

def contractParent(parent, i, hc, lev)138

m, pm = READ(i.main), READ(parent.main)139

pm match {140

case cn: CNode =>141

flag, pos = flagpos(k.hc, lev, cn.bmp)142

if bmp � flag = 0 return143

sub = cn.array(pos)144

if sub �= i return145

if m = null {146

ncn = cn.removed(pos)147

if !CAS(parent.main, cn, ncn)148

contractParent(parent, i, hc, lev)149

} else if isSingleton(m) {150

ncn = cn.updated(pos, m.untombed)151

if !CAS(parent.main, cn, ncn)152

contractParent(parent, i, hc, lev)153

}154

case _ => return155

}156

Fig. 5. Compression operations

to do its work, the current operation should do the work of contracting the tomb
itself, so it will invoke the clean operation on the parent I-node. The clean
operation will attempt to exchange the CNode below the parent I-node with its
compression. A CNode compression is defined as follows – if the CNode has a
single tomb node directly beneath, then it is that tomb node. Otherwise, the
compression is the copy of the CNode without the null-I-nodes (this is what the
filtered call in the toCompressed procedure does) and with all the tomb-I-
nodes resurrected to regular key nodes (this is what the map and resurrect
calls do). Going back to our previous example, if in Fig. 1G some other thread
were to attempt to write to I2, it would first do a clean operation on the parent
I1 of I2 – it would contract the trie in the same way as the removal would have.

4 Correctness

As illustrated by the examples in the previous section, designing a correct lock-
free algorithm is not straightforward. One of the reasons for this is that all
possible interleavings of steps of different threads executing the operations have
to be considered. For brevity, this section gives only the outline of the correct-
ness proof. There are three main criteria for correctness. Safety means that the
Ctrie corresponds to some abstract set of keys and that all operations change
the corresponding abstract set of keys consistently. An operation is lineariz-
able if any external observer can only observe the operation as if it took place
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instantaneously at some point between its invocation and completion [9] [11].
Lock-freedom means that if some number of threads execute operations concur-
rently, then after a finite number of steps some operation must complete [9].

We assume that the Ctrie has a branching factor 2W . Each node in the Ctrie
is identified by its type, level in the Ctrie l and the hashcode prefix p. The
hashcode prefix is the sequence of branch indices that have to be followed from
the root in order to reach the node. For a C-node cnl,p and a key k with the
hashcode h = r0 · r1 · · · rn, we denote cn.sub(k) as the branch with the index rl
or null if such a branch does not exist. We define the following invariants:

INV1 For every I-node inl,p, inl,p.main is a C-node cnl,p, a tombed S-node sn† or
null.

INV2 For every C-node the length of the array is equal to the bitcount in the bitmap.
INV3 If a flag i in the bitmap of cnl,p is set, then corresponding array entry contains

an I-node inl+W,p·r or an S-node.
INV4 If an entry in the array in cnl,p contains an S-node sn, then p is the prefix of

the hashcode sn.k.
INV5 If an I-node inl,p contains an S-node sn, then p is the prefix of the hashcode

sn.k.

We say that the Ctrie is valid if and only if the invariants hold. The relation
hasKey(node, x) holds if and only if the key x is within an S-node reachable from
node. A valid Ctrie is consistent with an abstract set A if and only if ∀k ∈ A

the relation hasKey(root, k) holds and ∀k /∈ A it does not. A Ctrie lookup is
consistent with the abstract set semantics if and only if it finds the keys in
the abstract set and does not find other keys. A Ctrie insertion or removal is
consistent with the abstract set semantics if and only if it produces a new Ctrie
consistent with a new abstract set with or without the given key, respectively.

Lemma 1. If an I-node in is either a null-I-node or a tomb-I-node at some time
t0 then ∀t > t0 in.main is never written to. We refer to such I-nodes as nonlive.

Lemma 2. C-nodes and S-nodes are immutable – once created, they do not
change the value of their fields.

Lemma 3. Invariants INV1-3 always hold.

Lemma 4. If a CAS instruction makes an I-node in unreachable from its parent
at some time t0, then in is nonlive at t0.

Lemma 5. Reading a cn such that cn.sub(k) = sn and k = sn.k at some time
t0 means that hasKey(root, k) holds at t0.

For a given Ctrie, we say that the longest path for a hashcode h = r0 · r1 · · · rn,
length(ri) = W , is the path from the root to a leaf such that at each C-node
cni,p the branch with the index ri is taken.

Lemma 6. Assume that the Ctrie is an valid state. Then every longest path
ends with an S-node, C-node or null.
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Lemma 7. Assume that a C-node cn is read from inl,p.main at some time t0
while searching for a key k. If cn.sub(k) = null then hasKey(root, k) is not in
the Ctrie at t0.

Lemma 8. Assume that the algorithm is searching for a key k and that an S-
node sn is read from cn.array(i) at some time t0 such that sn.k 	= k. Then the
relation hasKey(root, k) does not hold at t0.

Lemma 9. 1. Assume that one of the CAS in lines 58 and 71 succeeds at time
t1 after in.main was read in line 51 at time t0. Then ∀t, t0 ≤ t < t1, relation
hasKey(root, k) does not hold.

2. Assume that the CAS in lines 67 succeeds at time t1 after in.main was
read in line 51 at time t0. Then ∀t, t0 ≤ t < t1, relation hasKey(root, k) holds.

3. Assume that the CAS in line 91 succeeds at time t1 after in.main was read
in line 79 at time t0. Then ∀t, t0 ≤ t < t1, relation hasKey(root, k) holds.

Lemma 10. Assume that the Ctrie is valid and consistent with some abstract
set A ∀t, t1 − δ < t < t1. CAS instructions from lemma 9 induce a change into
a valid state which is consistent with the abstract set semantics.

Lemma 11. Assume that the Ctrie is valid and consistent with some abstract
set A ∀t, t1 − δ < t < t1. If one of the operations clean, tombCompress or
contractParent succeeds with a CAS at t1, the Ctrie will remain valid and con-
sistent with the abstract set A at t1.

Corollary 1. Invariants INV4,5 always hold due to lemmas 10 and 11.

Theorem 1 (Safety). At all times t, a Ctrie is in a valid state S, consistent
with some abstract set A. All Ctrie operations are consistent with the semantics
of the abstract set A.

Theorem 2 (Linearizability). Ctrie operations are linearizable.

Lemma 12. If a CAS that does not cause a consistency change in one of the
lines 58, 67, 71, 125, 132, 148 or 152 fails at some time t1, then there has been
a state (configuration) change since the time t0 when a respective read in one of
the lines 51, 51, 51, 123, 128, 139 or 139 occured.

Lemma 13. In each operation there is a finite number of execution steps be-
tween consecutive CAS instructions.

Corollary 2. There is a finite number of execution steps between two state
changes. This does not imply that there is a finite number of execution steps
between two operations. A state change is not necessarily a consistency change.

We define the total path length d as the sum of the lengths of all the paths
from the root to some leaf. Assume the Ctrie is in a valid state. Let n be the
number of reachable null-I-nodes in this state, t the number of reachable tomb-
I-nodes, l the number of live I-nodes, r the number of single tips of any length
and d the total path length. We denote the state of the Ctrie as Sn,t,l,r,d. We
call the state S0,0,l,r,d the clean state.
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Lemma 14. Observe all CAS instructions which never cause a consistency
change and assume they are successful. Assuming there was no state change
since reading in prior to calling clean, the CAS in line 125 changes the state of
the Ctrie from the state Sn,t,l,r,d to either Sn+j,t,l,r−1,d−1 where r > 0, j ∈ {0, 1}
and d ≥ 1, or to Sn−k,t−j,l,r,d′≤d where k ≥ 0, j ≥ 0, k+ j > 0, n ≥ k and t ≥ j.
Furthermore, the CAS in line 14 changes the state of the Ctrie from S1,0,0,0,1 to
S0,0,0,0,0. The CAS in line 26 changes the state from S1,0,0,0,1 to S0,0,0,0,0. The
CAS in line 132 changes the state from Sn,t,l,r,d to either Sn+j,t,l,r−1,d−j where
r > 0, j ∈ {0, 1} and d ≥ j, or to Sn−k,t,l,r,d′≤d where k > 0 and n ≥ k. The
CAS in line 148 changes the state from Sn,t,l,r,d to Sn−1,t,l,r+j,d−1 where n > 0
and j ≥ 0. The CAS in line 152 changes the state from Sn,t,l,r to Sn,t−1,l,r+j,d−1

where j ≥ 0.

Lemma 15. If the Ctrie is in a clean state and n threads are executing op-
erations on it, then some thread will execute a successful CAS resulting in a
consistency change after a finite number of execution steps.

Theorem 3 (Lock-freedom). Ctrie operations are lock-free.

5 Experiments

We show benchmark results in Fig. 6. All the measurements were performed on
a quad-core 2.67 GHz i7 processor with hyperthreading. We followed established
performance measurement methodologies [2]. We compare the performance of
Ctries against that of ConcurrentHashMap and ConcurrentSkipListMap [3] [4]
data structures from the Java standard library.

In the first experiment, we insert a total of N elements into the data structures.
The insertion is divided equally among P threads, where P ranges from 1 to 8.
The results are shown in Fig. 6A-D. Ctries outperform concurrent skip lists for
P = 1 (Fig. 6A). We argue that this is due to a fewer number of indirections
in the Ctrie data structure. A concurrent skip list roughly corresponds to a
balanced binary tree which has a branching factor 2. Ctries normally have a
branching factor 32, thus having a much lower depth. A lower depth means less
indirections and consequently fewer cache misses when searching the Ctrie.

We can also see that the Ctrie sometimes outperforms a concurrent hash
table for P = 1. The reason is that the hash table has a fixed size and is
resized once the load factor is reached – roughly speaking, a new table has to be
allocated and all the elements from the previous hash table have to be copied
into the new hash table. To do this, parts of the hash table have to be locked –
other threads adding new elements into the table have to wait until the resize
completes. This problem is much more apparent in Fig. 6B where P = 8. Fig.
6C,D show how the insertion scales for the number of elements N = 200k and
N = 1M , respectively. Due to the use of hyperthreading on the i7, we do not get
significant speedups when P > 4 for these data structures. We next measure the
performance for the remove operation (Fig. 6E-H). Each data structure starts
with N elements and then emptied concurrently by P threads. The keys being
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removed are divided equally among the threads. For P = 1 Ctries are clearly
outperformed by both other data structures. However, it should be noted that
concurrent hash table does not shrink once the number of keys becomes much
lower than the table size. This is space-inefficient – a hash table contains many
elements at some point during the runtime of the application will continue to
use the memory it does not need until the application ends. The slower Ctrie
performance seen in Fig. 6E for P = 1 is attributed to the additional work the
remove operation does to keep the Ctrie compact. However, Fig. 6F shows that
the Ctrie remove operation scales well for P = 8, as it outperforms both skip
list and hash table removals. This is also apparent in Fig. 6G,H. In the next
experiment, we populate all the data structures with N elements and then do a
lookup for every element once. The set of elements to be looked up is divided
equally among P threads. From Fig. 6I-L it is apparent that concurrent hash
tables have a much more efficient lookups than other data structures. This is
not surprising since they are a flat data structure – a lookup typically consists
of a single read in the table, possibly followed by traversing the collision chain
within the bucket. Although a Ctrie lookup outperforms a concurrent skip list
when P = 8, it still has to traverse more indirections than a hash table. Finally,
we do a series of benchmarks with both lookups and insertions to determine the
percentage of lookups for which the concurrent hash table performance equals
that of concurrent tries. Our test inserts new elements into the data structures
using P threads. A total of N elements are inserted. After each insert, a lookup
for a random element is performed r times, where r is the ratio of lookups per
insertion. Concurrent skip lists scaled well in these tests but had low absolute
performance, so they are excluded from the graphs for clarity. When using P = 2
threads, the ratio where the running time is equal for both concurrent hash
tables and concurrent tries is r = 2. When using P = 4 threads this ratio is
r = 5 and for P = 8 the ratio is r = 9. As the number of threads increases,
more opportunity for parallelism is lost during the resize phase in concurrent
hash tables, hence the ratio increases. This is shown in Fig. 6M-O. In the last
benchmark (Fig. 6P) we preallocate the array for the concurrent hash table to
avoid resize phases – in this case the hash table outperforms the concurrent trie.
The performance gap decreases as the number of threads approaches P = 8. The
downside is that a large amount of memory has to be used for the hash table
and the size needs to be known in advance.

6 Related Work

Concurrent programming techniques and important results in the area are cov-
ered by Shavit and Herlihy [9]. An overview of concurrent data structures is
given by Moir and Shavit [10]. There is a body of research available focusing
on concurrent lists, queues and concurrent priority queues [5] [10]. While linked
lists are inefficient as sets or maps because they do not scale well, the latter two
do not support the basic operations on sets and maps, so we exclude these from
the further discussion and focus on more suitable data structures.
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Fig. 6. Quad-core i7 microbenchmarks – ConcurrentHashMap(−),
ConcurrentSkipList(◦), Ctrie(×): A) insert, P=1; B) insert, P=8; C) insert,
N=200k; D) insert, N=1M; E) remove, P=1; F) remove, P=8; G) remove, N=200k,
H) remove, N=1M; I) lookup, P=1; J) lookup, P=8; K) lookup, N=200k; L) lookup,
N=1M; M) insert/lookup, ratio=1/2, N=1M; N) insert/lookup, ratio=1/5, N=1M;
O) insert/lookup, ratio=1/9, N=1M; P) insert/lookup with preallocated tables,
ratio=1/2, N=1M

Hash tables are typically resizeable arrays of buckets. Each bucket holds some
number of elements which is expected to be constant. The constant number
of elements per bucket necessitates resizing the data structure. Sequential hash
tables amortize the cost of resizing the table over other operations [14]. While
the individual concurrent hash table operations such as insertion or removal can
be performed in a lock-free manner as shown by Maged [4], resizing is typically
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implemented with a global lock. Although the cost of resize is amortized against
operations by one thread, this approach does not guarantee horizontal scalability.
Lea developed an extensible hash algorithm which allows concurrent searches
during the resizing phase, but not concurrent insertions and removals [3]. Shalev
and Shavit propose split-ordered lists which keep a table of hints into a linked list
in a way that does not require rearranging the elements of the linked list when
resizing [15]. This approach is quite innovative, but it is unclear how to shrink
the hint table if most of the keys are removed, while preserving lock-freedom.

Skip lists are a data structure which stores elements in a linked list. There
are multiple levels of linked lists which allow efficient insertions, removals and
lookups. Skip lists were originally invented by Pugh [16]. Pugh proposed con-
current skip lists which achieve synchronization through the use of locks [17].
Concurrent non-blocking skip lists were later implemented by Lev, Herlihy,
Luchangco and Shavit [18] and Lea [3]. Concurrent binary search trees were pro-
posed by Kung and Lehman [19] – their implementation uses a constant number
of locks at a time which exclude other insertion and removal operations, while
lookups can proceed concurrently. Bronson et al. presented a scalable concur-
rent implementation of an AVL tree based on transactional memory mechanisms
which require a fixed number of locks to perform deletions [20]. Recently, the
first non-blocking implementation of a binary search tree was proposed [21].

Tries were originally proposed by Brandais [6] and Fredkin [7]. Trie hashing
was applied to accessing files stored on the disk by Litwin [12]. Litwin, Sagiv
and Vidyasankar implemented trie hashing in a concurrent setting [13], however,
they did so by using mutual exclusion locks. Hash array mapped trees, or hash
tries, are tries for shared-memory proposed by Bagwell [1]. To our knowledge,
there is no nonblocking concurrent implementation of hash tries prior our work.

7 Conclusion

We described a lock-free concurrent implementation of the hash trie data struc-
ture. Our implementation supports insertion, remove and lookup operations. It is
space-efficient in the sense that it keeps a minimal amount of information in the
internal nodes. It is compact in the sense that after all removal operations com-
plete, all paths from the root to a leaf containing a key are as short as possible.
Operations are worst-case logarithmic with a low constant factor (O(log32 n)).
Its performance is comparable to that of the similar concurrent data structures.
The data structure grows dynamically – it uses no locks and there is no resizing
phase. We proved that it is linearizable and lock-free.

In the future we plan to extend the algorithm with operations like move
key, which reassigns a value from one key to another atomically. One research
direction is supporting efficient aggregation operations on the keys stored in the
Ctrie. One example of such an operation is the size of the Ctrie. Finally, we
plan to develop an efficient lock-free snapshot operation for the concurrent trie
which allows traversal of all the keys present in the data structure at the time at
which the snapshot was created. One possible approach to doing so is to, roughly
speaking, keep a partial history in the indirection nodes.
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Abstract. GPU-to-CPU translation may extend Graphics Processing
Units (GPU) programs executions to multi-/many-core CPUs, and hence
enable cross-device task migration and promote whole-system synergy.
This paper describes some of our findings in treatment to GPU syn-
chronizations during the translation process. We show that careful de-
pendence analysis may allow a fine-grained treatment to synchroniza-
tions and reveal redundant computation at the instruction-instance level.
Based on thread-level dependence graphs, we present a method to enable
such fine-grained treatment automatically. Experiments demonstrate that
compared to existing translations, the new approach can yield speedup
of a factor of integers.

1 Introduction

For their advantages on computing power, cost, and energy efficiency, Graphic
Processing Units (GPU) have become a type of mainstream co-processors in
modern computing systems. Recent years have seen a rapid adoption of GPU-
specific programming models, such as NVIDIA CUDA.

GPU-to-CPU translation aims at compiling code written in GPU program-
ming models to (multi-core) CPU code. It has drawn some recent research inter-
est from both academy and industry [3,8,10,12,14,16], for three reasons. First,
it extends the range of applicable architecture and hence the impact of GPU
programming models. An application developed in CUDA, for instance, can be
automatically converted to a form suitable for multicore CPU. Such a capabil-
ity is becoming increasingly important, given that the number of applications
written in GPU programming models has increased continuously. Second, the
translation enables smooth CPU-GPU collaborations. Given the trends towards
heterogeneous systems, an essential requirement for maximizing computing ef-
ficiency is the synergistic cooperation among various types of processors. Au-
tomatic GPU-to-CPU translation facilitates seamless migration of jobs among
GPU and CPU, hence helping promote a whole system synergy. Finally, a viable
and widely accepted methodology for programming heterogeneous Chip Multi-
processors (CMP) systems is yet to be developed. As a programming model that
exposes multi-level parallelism of an application to an extreme extent, CUDA-
like GPU programming models are potential contenders if translation from them
to a conventional commodity microprocessor works well.

S. Rajopadhye and M. Mills Strout (Eds.): LCPC 2011, LNCS 7146, pp. 171–184, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Recent studies have produced some GPU-to-CPU translation systems, at both
the source code level (e.g., MCUDA [9,10]) and below (e.g., Ocelot [8]). However,
none of them has systematically explored the different implications of synchro-
nizations on GPU and CPU.

On GPU, it is typical that some explicit device-specific intrinsics are intro-
duced to enable synchronizations among threads. These intrinsics are used widely
for being essential for the implementation of various parallel operations on GPU.
In a CUDA application, for example, the GPU threads are organized in a number
of thread blocks, and each thread block contains a number of thread warps. An
intrinsic, syncthreads(), serves as a thread-block–level barrier, ensuring that
none of the threads in a block passes over the synchronization point before all
threads in the block reaches that point.

In many GPU applications, the synchronization intrinsics are used even though
a synchronization between just a subset of threads in a block is necessary. By do-
ing that, the programmer introduces unnecessarily strong constraints, but avoids
thread-specific checks and obtains programming easiness. It causes almost no is-
sue to the performance of GPU applications because of the low overhead and high
parallelism of hardware. However, a literal translation of such syncthreads()
calls to CPU, as existing GPU-to-CPU translation systems all do, often leads to
considerable inefficiency.

The problem becomes even more serious when implicit synchronizations are
taken into consideration. Due to the hardware implementation of GPU, syn-
chronizations are sometimes realized in an implicit manner. In CUDA, every
thread warp (32 threads) proceeds in lockstep. In another word, none of the
threads can proceed to the next instruction until all threads in the warp have
finished the current instruction. This default SIMD execution model is equiva-
lent to that there is an implicit warp-level barrier after every instruction. Due
to the prevalence of such implicit synchronizations, a literal translation of GPU
synchronizations to CPU would cause serious efficiency issues. Existing GPU-to-
CPU translation systems typically ignore such implicit synchronizations during
the translation, the consequence of which is even more serious than the efficiency
issue: The produced CPU code may be erroneous for violating some data de-
pendences originally maintained by the implicit synchronizations (illustrated in
Section 3).

In a recent study [12], we analyzed the correctness issue caused by the neglic-
tion of implicit synchronizations, proposed a dependence theory to identify crit-
ical implicit synchronizations (i.e., those that should not be ignored), and devel-
oped a state-level code generation algorithm to fix the issue.

In this paper, we investigate the potential of fine-grained treatment to the
synchronizations. Unlike the prior study, this exploration deals with both implicit
and explicit synchronizations. More importantly, it analyzes dependences among
threads at the level of the dynamic instances of GPU statements. By lowering the
granularity from statement to statement instances, it achieves a more detailed
understanding of inter-thread data dependences. The understanding then leads
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to more efficient treatments to GPU synchronizations and the revelation of fine-
grained redundant computations.

In the following parts of this paper, we first discuss the origin, forms, and
performance implications of GPU synchronization intrinsics, both the explicit
(Section 2) and implicit (Section 3). We then present the use of thread-level
dependence graphs (TLDG) for representing fine-grained data and control de-
pendences among dynamic instances of GPU kernel instructions. We report two
uses of the fine-grained analysis. The first is to generate CPU code with unnec-
essary synchronization constraints relaxed. The second is to prune instruction-
instance–level redundant computations (Section 4). We evaluate the effectiveness
of the techniques on three GPU programs. By comparing with the codes pro-
duced by prior techniques, we demonstrate that the fine-grained treatment to
synchronizations has some clear performance benefits (Section 5).

2 Impact of Explicit Synchronizations

One of the major device-specific features of the CUDA programming model is
the intra-block synchronization. An invocation to the ” syncthreads()” will stall
any run-ahead threads in the block until all threads have reached that point. As
an essential and efficient barrier primitive, ” syncthreads()” exists prevalently
in CUDA programs.

In existing GPU-to-CPU translation, the common approach to transforming
GPU syncthreads() into equivalent CPU code is to imitate the strict intra-
block barrier via loop splitting. Figure 1 illustrates the translation scheme im-
plemented in MCUDA [10], a typical GPU-to-CPU translator. For the purpose
of explanation, the figure shows only the produced sequential code correspond-
ing to the execution of the tasks done by one thread block. The GPU kernel
function, orginially executed by every thread in the block, turns into two loops,
which each has B iterations corresponding to the tasks executed by B GPU
threads in the thread block. The two loops are for work1 and work2 respec-
tively. Putting them into two separate loops ensures that the order constraints
imposed by syncthreads() are satisfied.

The loop splitting approach is subject to several drawbacks. First, it intro-
duces extra loop overhead.

Second, it imposes strong constraints on the scheduling of instructions. In
principle, the instructions in the second loop cannot be executed before the
first loop finishes (unless the compiler finds that the two loops can be fused to-
gether). Although that constraint is the same as what the GPU synchronization
intrinsics implies, it is often unnecessarily strong. The efficient synchronization
and uniform SIMD execution model on GPU makes it attempting for program-
mers to skip fine-grained data dependence analysis during the coding of GPU
kernels, and insert syncthreads() wherever it might be needed. Often, synchro-
nizations are only needed between a subset of threads. But this strategy is fine
for GPU programming because the synchronization intrinsic is lightweight and
usually there are no better alternatives—inserting conditional statements often
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// B: thread block size

__global__ void kernel_f(...){
   //work1
   ...
   __synthreads();
   //work2
   ...
}

void kernel_f(..., cid){
// cid: the id of the CPU thread
    s = cid*B; 
    for (i=s; i<s+B; i++){
        //work1
        ...
    }
     for (i=s; i<s+B; i++){
        //work2
        ...
    }
}

(a) GPU kernel (b) Generated CPU function

Fig. 1. Illustration of MCUDA compilation. For illustration purpose, it shows the CPU
code that corresponds to the execution of only one GPU thread block.

introduces even higher overhead than synchronizations. But on CPU, the con-
straints may hurt instruction scheduling and hence computing efficiency sub-
stantially.

The severity of the two issues depend on the density of the invocation of
synchronization intrinsics. Unfortunately, due to the simplicity brought by invo-
cations of the intrinsics, the density can be quite high in real GPU applications.
In one of our benchmarks, CG CUDA, for instance, 23 syncthreads() invoca-
tions appear in a kernel with only 170 lines of code.

3 Impact of Implicit Synchronizations

GPU threads in a warp proceed in locksteps, which is equivalent to having an
warp-level synchronization after every instruction. We call such order constraints
implicit synchronizations.

Most previous GPU-to-CPU translations give no considerations to implicit
synchronizations. Consequently, there is no guarantee that the generated code
will retain the dependences in the original program; the produced code can be
hence incorrect.

The parallel reduction program in Figure 2 illustrates the correctness pitfall.
On the left is an illustration of the standard parallel reduction algorithm. It
proceeds level by level; data dependences exist between every two levels. The
bottom six lines of code in the kernel shown on the right of the figure correspond
to the six bottom levels of the parallel reduction algorithm. They contain no
explicit invocation of synchronization intrinsics, but the data dependences among
the levels are well preserved, thanks to the implicit synchronizations among GPU
instructions1. A translation of the kernel by MCUDA will violate the inter-level
data dependences because of the negliction of the implicit synchronizations.

1 We use source code rather than assembly instructions for illustration purpose.
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...

... ...

// s[]: contains input data
for (i=blockSize/2; i>32; 
i>>=1){
        if (tid < 1)        s[tid] 
+= s[tid+1];
        __syncthreads();
}
if (tid<32){
        s[tid] += s[tid+32];
        s[tid] += s[tid+16];
        s[tid] += s[tid+8];
        s[tid] += s[tid+4];
        s[tid] += s[tid+2];
        s[tid] += s[tid+1];
}(a) Algorithm (b) Kernel function

3 1 1 2 6 1

4 3 7

97

Fig. 2. Algorithm and excerpted code of CUDA SDK reduction (kernel 5)

Such an exploitation of implicit synchronizations saves invocations of explicit
synchronization intrinsics, and has served as a trick adopted by many GPU
applications for achieving high performance. It is important to find an approach
to handling them correctly and efficiently.

4 Instance-Level Dependence Analysis and Code
Generation

We propose a fine-grained dependence analysis and code generation approach
to address the limitations of the prior treatments to both explicit and implicit
synchronizations in GPU-to-CPU translations. The approach is based on thread-
level dependence graphs (TLDGs), a kind of representation of the dynamic in-
stances of the instructions in a GPU kernel with intra- and inter-thread depen-
dences captured.

In this section, we first introduce the concept of TLDG, and then describe its
usage for enabling efficient and correct code generation in GPU-to-CPU trans-
lations.

Without loss of generality, we assume that the target code region for our
following analysis meets the following two conditions: (1) It contains no loops;
(2) the execution patterns of all thread blocks on that region are identical or the
region is executed by only one thread block. These assumptions help focus our
discussions on the handling of the synchronization issues; the elided complexities
can be handled by existing compiler techniques without major adjustments to
our analysis framework.
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4.1 TLDG

A TLDG is a directed graph constructed based on the data and control depen-
dences in the GPU code, with awareness of the semantics of the warp/block
logical hierarchy and synchronizations. It captures the important dependences
that will appear in the execution of a GPU thread block. Depending on the num-
ber of threads a TLDG models, a TLDG can be for a thread block or a thread
warp. The former is useful for dealing with explicit synchronizations, while the
latter is for implicit synchronizations.

The generation of the node set of TLDG focuses on only those statements that
access data (e.g. arrays) shared by different threads in the warp or block. The
first step is to break the statements into load/store references, as illustrated in
Figure 3 (b). This step yields a set of data reference units (DRU), each containing
exactly one reference to shared data. DRUs are the basic scheduling units in the
follow-up optimizations.

The second step is to build up a set of static nodes, as illustrated by the nodes
in Figure 3 (c). Each DRU maps to one static node. Each node is marked by the
array reference in its corresponding DRU. An instruction that accesses no shared
data are attached to a node whose corresponding DRU follows that instruction.

The third step creates the nodes in the TLDG by duplicating the entire set
of static nodes N times (N is the number of threads to model). Each node
corresponds to the dynamic instance of a static node executed by a GPU thread.

The final step connects the nodes via directed edges, as shown in Figure 3
(d). Each edge n1 → n2 represents one of the following two possibilities:

– There is a control dependence from n1 to n2, when both nodes come from
the same thread, or

– There is a data dependence from n1 to n2 coming from either the same or
different threads, where the type of data dependence could be either true,
anti- or output dependence.

Dependence analysis is done between every pair of DRU. Due to the regular
data-level parallelism of many GPU kernels, compiler-based static analysis is
often sufficient.

Note that nodes constructed from the same DRU are executed simultaneously
on GPU. And because there are no loops in the code, dependence edges can not
point from a later DRU to an earlier DRU. Thus if we organize the nodes in
a matrix, with the thread id increasing along the horizontal direction and the
time stamp of each DRU execution increasing along the vertical direction, then
no edges can point upwards, and no cycles exist in a TLDG.

The edges in an TLDG essentially compose the set of order constraints for the
execution of the tasks in the GPU kernel. As long as a GPU-to-CPU translation
of the kernel observes these constraints, the produced CPU code meets the order
requirement. Next, we describe how we select a good instruction order among
many legal schedules.
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if (blockSize >=   8)  sdata[tid] += sdata[tid +  4];
if (blockSize >=   4)  sdata[tid] += sdata[tid +  2];
if (blockSize >=   2)  sdata[tid] += sdata[tid +  1];

//node 0
if (blockSize >=  8)  {tempBuf[tid] =  sdata[tid+4];} 
//node 1
if (blockSize >=  8)  {sdata[tid] =+  tempBuf[tid];} 
//node 2
if (blockSize >=  4)  {tempBuf[tid] =  sdata[tid+2];} 
//node 3
if (blockSize >=  4)  {sdata[tid] +=  tempBuf[tid];} 
//node 4
if (blockSize >=  2)  {tempBuf[tid] =  sdata[tid+1];} 
//node 5
if (blockSize >= 2)  {sdata[tid] +=  tempBuf[tid];} 

(a) (b)

T0 T1 T2 T3 T4 T5 T6 T7

N0

N1

N2

N3

N4

N5

(c) (d)

Fig. 3. (a). The original statements in CUDA SDK source code. (b). Statements broken
into references, each forming a DRU. (c). The static nodes and dependences. (d) The
intra-thread and inter-thread edges of the TLDG.

4.2 Code Generation

To generate a piece of CPU code from the TLDG, we need to introduce additional
ordering between the DRUs without changing any source-sink relationships of
the original GPU code. As the graph is acyclic, a simple breadth-first traversal
of the graphs will yield a correct sequence. The rest part of the problem is
comparing the quality of all the legal sequences and picking an optimal one. The
produced code will be a sequence of all DRU instances, and no loops are needed
to express the operations of a thread block.

Our code generation algorithm is a round-based scheduling algorithm as shown
in Figure 4. The key idea is to partition the nodes into different groups and im-
pose strict order among groups while maintaining full concurrency within each
group. The DRUs in each group forms one round. In each round, the algorithm
puts all nodes in the current TLDG that have no incoming edges into the round
group (roundQueue in Figure 4), and then removes them along with their out-
going edges from the TLDG before proceeding to the next round. The process
continues until the graph is empty.

A simple output of the instructions contained in each round in the round
order will produce a correct execution sequence of DRUs. It is easy to see that
the produced code maintains the source and sink relationships of all the de-
pendences in the original TLDG. The successful detection and preservation
of instance-level dependences effectively eliminate the need for a whole block
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while G not empty :
for each node N :

i f N. inDeg == 0
roundQueue . push (N) ;

for each edge E outgoing from N:
d e l e t e E from G

de l e t e N from G
roundQueue . s o r t (N)
outputCode . append ( roundQueue . codeGenerat ion ( ) )

Fig. 4. Pseudo code for round-based code generation

synchronization. Such relaxation introduces additional freedom in the optimiza-
tion space for GPU-to-CPU code generation. Figure 5 (a) shows the content of
a piece of generated code.

This round-based code scheduling shares some commonality with traditional
list-based instruction scheduling [7]. A key difference is that the round-based
algorithm works on dynamic instances of instructions (TLDG) rather than static
instructions (as in traditional instruction dependence graphs).

A simple optimization is to compute the values of thread ID-specific condi-
tional statements during the code generation process to save runtime execution
of those branch statements.

Another by-product of the above code generation process is the change of
memory-access pattern in the original GPU program. Since memory coalescing
and layout transformation are often explicitly maintained by GPU programmers,
we would normally expect the memory referencing code of the GPU program to
produce relatively regular memory accesses. Therefore the unrolling of the orig-
inal loop into CPU code might impair the sequentiality and locality of memory
accesses. To alleviate this problem, we simply add a sorting process within each
round to heuristically reduce the spatial distance between two adjacent refer-
ences in the generated CPU code. A more detailed study is part of our future
studies.

4.3 Instance-Level Redundancy Removal

Due to the massive parallelism of GPU and the sensitivity of its efficiency to
conditional branches, it is common for a GPU application to contain some useless
calculations. Such redundancy differs from the redundancy in traditional CPU
code in that the corresponding statements are not completely redundant. It is
common that the executions of them by some but not all threads are useful. An
example is the bottom line in Figure 2 (b). Even though only the calculation by
the first thread is useful, all threads in the thread block runs that statement. The
execution results of these threads are ignored automatically, causing no harm to
the GPU computing efficiency.
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But they may impair the CPU efficiency substantially. Take parallel reduction
as an example. As a fundamental parallel algorithm that produces relatively
small amount of data from large number of input entries, parallel reductions are
often implemented under the rationale of reducing the length of the critical path
as much as possible rather than the utilization of the processor. A typical parallel
reduction code taken from CUDA SDK shows that no iterations after the first
one actually utilizes more than half of all threads, but the redundant threads
perform calculations just like the small portion of useful threads, creating large
waste of processor time that can not be effectively hidden on CPU.

With instance-level computations fully exposed, the TLDG described earlier
offers the basis for finding such redundant calculations. As shown in figure 5,
the TLDG-based redundancy removal starts from a list of “useful” nodes and
traces upwards to the top of the graph, marking all the nodes encountered in the
process as useful. The initial set of useful nodes are those containing returning
values of the kernel.

After redundancy removal, the number of lines of code generated for the re-
duction kernel (when block size is 256) is reduced from more than 3000 to around
500, significantly cutting the number of instructions CPU needs to execute.

Similar to the optimization in code generation, redundancy removal can also
be integrated into the code generation framework. With the large proportion
of unnecessary memory references and conditional checks removed, the pruned
code may outperform the original code substantially.

      1 {      
      2 T*data, 
      3 hash<int, T> tempBuf)
      4 if(tid[128]<256) tempBuf.insert(<0>, data[128]);
      5 if(tid[129]<256) tempBuf.insert(<1>, data[129]);
......  
3458 if(tid[239]<32) data[239] += tempBuf.pop(239);
3459 if(tid[255]<32) data[255] += tempBuf.pop(255);
3460}

      1 {      
      2 T*data, 
      3 hash<int, T> tempBuf)
      4 tempBuf.insert(<0>, data[128]);
      5 tempBuf.insert(<1>, data[129]);
......
511  data[1]+=tempBuf.pop(1);
512  tempBuf.insert(<0>, data[1]);
513  data[0]+=tempBuf.pop(0);
514 }        

(a) (b)
N0

N1

N2

N3

N4

N5
T0 T1 T2 T3 T4 T5 T6 T7

(c)

Fig. 5. (a). The original generated code before redundancy removal. (b). Pruned code
where all useless computations are removed. (c). Bottom-up redundancy removal, start-
ing with the initial useful nodes, marked black.
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Our discussions so far concentrate on block-level TLDG for handling explicit
synchronizations and block-level redundant calculations. It is easy to see that the
same approach applies to warp-level implicit synchronizations and redundancies.
The only change needed is to replace the block-level TLDG with a warp-level
TLDG.

5 Evaluation

In this section, we present experiment result using the TLDG framework on
3 benchmarks: reduction and sortingNetwork from the CUDA SDK exam-
ples, and the CUDA version of the NPB CG benchmark, a conjugate gradient
application [1]. All three benchmarks demonstrate both explicit and implicit
synchronizations.

To test the performance of our framework, our experiment was carried out
on a quad-core Intel Xeon E5460 machine, with Linux 2.6.33 and GCC 4.1.2
installed. The compilations always use the highest level of optimization.

5.1 Versions

For each benchmark, we create five versions for comparison.

– Baseline: This version is generated by MCUDA, a typical existing GPU-to-
CPU translator available to the public. Note that due to the negliction of
implicit synchronizations, the translation results from this version may not
be correct.

– Merged Version: This version is a simple extension of MCUDA. It addresses
the implicit synchronization issue by treating them as explicit
synchronizations—that is, the statements between every pair of implicit syn-
chronizations becomes a separate loop. We then employ the loop fusion in
existing C compilers to reduce the incurred loop overhead.

– Split Version: This version is produced by a statement-level dependence
analysis proposed in a recent study [12]. It applies a dependence theory to
identify critical implicit synchronization points in a kernel and conducts loop
splitting at those points to handle implicit synchronizations. This approach
may avoid the drawbacks of the merged version in creating too many small
loops.

– TLDG-basic Version: This version is from our basic approach. It is based on
instance-level dependence analysis as described in earlier sections. Besides
handling implicit synchronizations correctly, it relaxes the order constraints
imposed by both implicit and explicit synchronizations through the round-
based scheduling.

– TLDG-opt Version: This version is the same as the TLDG-basic, but with
the TLDG-based redundancy removal applied.
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5.2 Experiment Results

In our experiment, the timing results correspond to the entire-kernel execution
for reduction and sortingNetworks, while for CG-CUDA, the it corresponds to
the time spent in the two reduction bodies on the common array.

In Table 1, we compare the performance of the five versions. The merged
version lags behind all other versions with considerable slowdown. It is due
to the high loop overhead introduced by the transformation and the limited
capability of compilers in loop fusion. The split version always demonstrates
similar performance as the baseline, proving the effectiveness of statement-level
dependence analysis and the moderate overhead of the synchronizations inserted
upon the analysis.

The TLDG-based version outperforms both merged and split versions signif-
icantly in two of the three benchmarks, even without the redundancy removal.
The main reason for such an advantage is its fully unrolled instruction sequence,
which has almost no loop overhead, and meanwhile, provides a chunk of linear
code for compiler to optimize. The locality produced by the intra-round sorting
may also contribute to the speedup to a certain degree.

Table 1. Relative Speedup over the (incorrect) baseline version

Versions Reduction Sorting CG

Baseline 1 1 1

Merged 0.38 0.72 0.93

Split 0.63 1.01 0.98

TLDG-basic 1.34 1.58 3.16

TLDG-opt 1.61 1.58 12.47

One exception is reduction, where TLDG-based version shows the worst
performance among all versions. The reason lies in the implementation details.
Since the original loop structure is broken and then fused into a bigger function
body, adjacent DRUs from the same GPU thread might be separated by a large
number of instructions from other threads. To avoid introducing unnecessary
variables renaming, we used a temporary buffer in the generated code to store
the intermediate results of each DRU, as well as its own thread id to cope with
the frequent condition calculations in the reduction kernel. As shown in figure 5
(a) and (b), this buffer is implemented as a hash table to enable rapid loop-up
for the latest stored value of a particular GPU thread. Such a design introduces
some additional memory accesses. With only two explicit synchronizations per
kernel invocation in the reduction benchmark, the time saving from enlarged
basic block in the CPU code is not sufficient to outweigh this overhead. In CG,
the synchronizations are repeated in a loop, while in sortingNetworks, there
are a large number of memory loads and stores from the swapping process. Both
provide sufficient opportunities for the compiler to take advantage of.
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The TLDG-opt version gives the best performance of all. The speedup comes
from the downsized CPU code with all useless operations and condition calcula-
tions removed. On the CG benchmark, thanks to is large kernel size and block
size, the speedup is the most prominent. Reduction also shows a significant
speedup. The code size of these two benchmarks are reduced by a factor of 8
and 6.8 respectively, compared with their TLDG-basic versions. The program,
sorting, shows no extra speedup as it contains no redundancies.

6 Related Work

A number of previous works have aimed at automatic compilation of GPU pro-
gram onto CPU. MCUDA [9,10] and Ocelot [8]) both use an iterative execution
framework based on the original GPU code structure to take advantage of its
data and logical regularities. However, neither of them addresses the implicit
synchronization pitfall, nor relaxes the constraints imposed by GPU synchro-
nizations.

A recent study [12] analyzes the correctness issue caused by the negliction of
implicit synchronizations. It proposes a state-level dependence theory to identify
critical implicit synchronizations and generate correct CPU code. This current
study concentrates on instance-level analysis and transformations.

NVIDIA provides a native emulation tool for running CUDA programs on
CPU focuses on easing the debugging on GPU rather than improving perfor-
mance [2]. Under the emulation mode, the programmer needs to manually insert
macros to adapt to the current device at runtime. Although CUDA emulator
provides the capability to run GPU program on CPU, it is not suitable for
GPU-to-CPU automatic compilation. A similar case lies in OpenCL. While it
allows the use of implicit synchronizations, it does not specify how they should
be treated differently on different platforms, and the programmer again has to
manually ensure the correctness of the cross-platform compilation [3]. Neither
of them has attempted to relax order constraints or remove redundancies.

There have been many studies trying to ease GPU programming. A common
approach is pragma-guided translation (e.g., from OpenMP to CUDA) [4, 14].
Others have proposed extensions to CUDA or OpenCL (e.g. [16]). Dynamical
optimization of GPU executions through either software (e.g. [5,6,13,17,19–21])
or hardware (e.g. [11,15,18]) techniques have shown large benefits recently. This
current study is unique in focusing on the translation of synchronizations across
devices.

7 Conclusion

In this paper, we examine the impact of explicit and implicit synchronizations on
the compilation of GPU code to CPU. We propose an instance-level dependence
analysis to help produce correct CPU code with efficiency optimized. The new
approach employs TLDG to capture the dependences among dynamic instances
of instructions of all threads in a thread block or warp. Assisted with round-based
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code generation and redundancy removal, it not only addresses the correctness
issue in the treatment to implicit synchronizations by existing techniques, but
also leads to significant speedups on three benchmarks.
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Abstract. We propose an abstraction to alleviate the difficulty of pro-
gramming with threads. This abstraction is not directly usable by ap-
plication programmers. Instead, application-visible behavior is defined
through a semantical plugin, and invoked via a language or library that
uses the plugin. The main benefit is that parallel language runtimes be-
come simpler to implement, because they use sequential algorithms for
the parallel semantics. This is possible because the abstraction makes
available a virtual time in which events in different program time-lines
are sequentialized. The parallel semantics relate events in different time-
lines via relating the sequentialized versions within the virtual time-line.

We have implemented the abstraction in user-space and demonstrate
its low overhead and quickness to implement a runtime on three sets of
parallelism constructs: rendez-vous style send and receive; Cilk style
spawn and sync, which have similar performance to Cilk 5.4; and mutex

and condition variable constructs from pthreads, which have 80x
lower overhead than Linux thread operations. Development time aver-
aged around two days per set, versus an expected duration of weeks to
modify a thread-based runtime system.

1 Motivation

Thread parallelism constructs have been well documented to be difficult to
program with. They directly expose low-level concurrency to the programmer.
Arbitrary non-deterministic behavior and deadlocks can arise from improperly
synchronized code. Efficient execution requires non-blocking algorithms whose
correctness require deep understanding of weakly consistent memory models. In
addition, the operating system abstraction for threads comes with a very high
context-switching and synchronization overhead.

A Partial Solution. To deal with the last problem, a parallel language’s runtime
turns off operating system threads by pinning one to each physical core. This
way, the custom runtime is assured that the software thread is one-to-one with a
physical core. It then implements a user-level thread package that lets it control
which OS thread a computational task is assigned to. Finally, the runtime then
implements the language’s parallel semantics in terms of those user threads.
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The user-level threading approach addresses the system overhead issue, but it
still hides important events such as input-output or node-to-node communica-
tions in a cluster. Scalable runtimes need to coordinate task assignment to cores
with application access of input and output, memory allocation over non-uniform
cache and memory hierarchies, offloading to hardware accelerators, power man-
agement, and inter-node communication in a cluster. The user-level threading
approach is hampered in addressing these needs, and further makes the paral-
lel runtime implementation cumbersome, error-prone and complex, because it is
still written in terms of threads.

Ideally, the OS would be in terms of a mutable hardware abstraction, and
export mutations as new behavior. We define a mutable hardware abstraction
to be an interface to hardware-level behaviors that are normally inside the OS
or below it. Examples include communication between cores, allotting time-
slots to applications, and establishing ordering of events among cores (which is
what atomic memory operations and equivalent patterns of instructions do). The
kernel itself would be implemented in terms of such an abstraction, and would
accept mutations the same way it accepts device-drivers. It would then export
the mutated behaviors for the language to trigger.

A language runtime would be in the form of a mutation. Being inside the
OS, it has secure access to kernel-only hardware mechanisms. It could directly
negotiate with the kernel to manage physical resources, in a low-overhead way.
The arrangement enables the runtime to control which task is assigned to which
processing element at what time. Both high performance and low-energy depend
on this for implementing data affinity techniques. For example, the runtime could
track data within the memory hierarchy and assign tasks to locations close to
their consumed data.

Contribution. We show in this paper the definition and implementation of such
a mutable hardware abstraction, albeit at user-level rather than in the kernel.
The abstraction lets a language’s runtime be implemented as a mutation, which
we call a plugin. The plugin implements parallelism constructs and assignment
of tasks to cores.

We focus in this introductory paper on the definition of the abstraction and its
support for parallelism constructs, postponing exploration of assignment of tasks
onto cores and other performance optimizations to following papers. This paper
defines multiple time-lines in a program, and a virtual timeline that globally
orders events among them. It demonstrates three sets of parallelism constructs:
synchronous send-receive motivated by process calculi; spawn and sync from
Cilk [7,10]; and mutex and condition variable from pthreads. The assignment
policy we implemented with them is simply first-come first-served.

We call the abstraction Virtualized Master-Slave, or VMS. It exports facilities
to create virtual processors and control how their timelines relate to each other,
and relate to physical time. It also exports facilities to suspend a virtual processor
and for an executable to interact with the plugin. The plugin embodies most of a
language’s runtime. A wrapper-library or keyword is what appears in application
code, and is what triggers the runtime.
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Organization of Paper. Section 3 provide the original concepts and definitions
of VMS. Section 4 focuses on the implementation, describing the elements and
how they interact, then relating them back to the theoretical definition. Sec-
tion 5 takes the point of view of the application code, studying the usage and
implementation of parallel language constructs as a VMS plugin. To wrap up,
measurements of effectiveness appear in Section 6 and conclusions in Section 7.

2 Background and Related Work

User-level thread packages and most parallel language runtimes have to side-step
OS threads, by pinning one to each core, which effectively gives the user-level
package control over the core. Our VMS implementation also does this. We are
not claiming in this paper to have the OS level implementation of VMS that is
possible – but just the user-space version.

Related Work. The most primitive methods for establishing ordering among
cores or distributed processors are atomic instructions and clock-synchronization
techniques [16,4].

Meanwhile, the most closely related work is Scheduler Activations [2], which
also allows modifying concurrency constructs and controlling assignment of vir-
tual processors onto cores. However it has no virtual time to guarantee globally
consistent sequentialization, and no interface for plugins.

BOM [6], which is used in Manticore to express scheduling policies and syn-
chronization, also bears resemblances to VMS, but at a higher level of abstrac-
tion. BOM is a functional language, rather than a primitive abstraction meant
to sit at the hardware-software boundary as VMS is.

Coroutines is a high-performance means of switching between tasks. Coroutine
scheduling and stack handling techniques were well suited to the user-space
implementation of VMS.

Other related work either provides an abstraction of the thread model, or is
a full language with specific parallelism constructs. As a protypic example of
user-level threads, Cilk [7,10] provides a simplified abstraction with an efficient
scheduling and load balancing algorithm, but limited to fork-join concurrency.
OpenMP [18] is a typical example of a parallel extension of sequential languages;
it allows creating tasks and controlling their execution order. We claim that both
Cilk and OpenMP, as well as most thread abstractions or parallel languages may
be implemented via plugins to VMS, with similar performance.

VMS is unique in that it doesn’t impose its own concurrency semantics as
a programming model, but rather takes preferred ones as plugins. This makes
it only a support mechanism to implement language runtimes – VMS is hidden
from the application, underneath the language. Parallelism constructs may be
implemented as VMS plugins, easily, quickly, and with high performance as
indicated in Section 6.
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This work presents a first incarnation of VMS. We plan to explore the
embedding into VMS of a variety of parallel languages, with a special
interest for coordination languages [8,15,5]. We will also explore VMS’s com-
patibility with different concurrent semantics [14,13,17,12,1]. One particularly
important application would be to use VMS to facilitate the design and imple-
mentation of the emerging hybrid programming models, such as MPI+OpenMP,
or OpenMP+OpenCL [3,9].

3 Abstract Definition of VMS

We start with an intuitive overview, then precise the definitions and properties
in the following sub-sections.

Definitions: 1) We want to avoid the confusion associated with the various
interpretations for the terms “thread” and “task” so will use the term Virtual
Processor (VP), which we define as state in combination with the ability to
animate code or an additional level of virtual processors. The state consists of
a program counter, a stack with its contents, a pointer to top of stack, and a
pointer to the current stack frame. 2) A physical processor executes a sequential
stream of instructions. 3) A program-timeline is the sequence of instructions
animated by a Slave VP, which is in turn animated by a physical processor.

Intuitive Overview. VMS can be understood via an analogy with atomic in-
structions, such as Compare and Swap (CAS). These are used to establish an
ordering among the timelines of cores. They consist of two parts: 1) the seman-
tics of what is done to the memory location, 2) a mechanism that establishes an
ordering among the cores. For CAS, the semantics are: “compare value in this
register to value at the address, and if same, then put value in second register
into the address.” Multiple kinds of atomic instructions share the same order-
establishing mechanism, they simply provide different semantics as a front-end.

VMS can be viewed as virtualizing the order-establishing mechanism. It allows
the semantics to be plugged-in to it. This breaks concurrency constructs into
two parts: the VMS mechanism, which establishes an ordering between events
in different timelines; and the plugin, which supplies the semantics.

Below the interface, hardware mechanisms are employed to order specific
points in one physical processor’s timeline relative to specific points in another’s
timeline. Above the interface, a plugin provides the semantics that an application
uses to invoke creation of the ordering.

Together, VMS plus the plugin form a parallelism construct, by which an
application controls how the time-lines of its virtual processors relate. Such con-
structs also guarantee relations of VP time-lines to hardware events.

As an example, consider a program where one VP writes into a data struc-
ture then calls a send construct. Meanwhile, a different VP calls the receive



A Mutable Hardware Abstraction to Replace Threads 189

construct then reads the data structure. The semantics of the send and receive

constructs are that all data written before the send is readable in the other
time-line after the receive. To implement these constructs, VMS provides the
mechanism to enforce the ordering, and to include the writes and reads in that
ordering. The plugin directs that mechanism to order the send event before the
receive event.

What the VMS Interface Provides: The interface provides primitive operations
to create and suspend VPs; a way for plugins to control when and where each
VP is (re)started; a way for application code to send requests to the plugin; and
a way to order a specific point in one VP time-line relative to a specific point in
another VP time-line. All implementations of the VMS interface provide these,
whether it is on shared memory or distributed, with strong memory consistency
or weak.

Specification in Three Parts. We specify the observable behavior of a VMS
system with plugins present. Hence, the specified behaviors remain valid with any
parallelism construct implementable with VMS. First we give the specification
of a computation system that VMS is compatible with; then specify a notion of
time and the key VMS guarantee; and lastly specify virtual processor scheduling
states and transitions between them.

3.1 The Specifications for a VMS-compatible Computation System

– An application creates multiple VPs, which are Slaves, each with an inde-
pendent time-line.

– A schedule of Slaves is generated by a Master entity, from within a hidden
time-line(s).

– A schedule is the set of physical locations and time-points at which Slaves
are (re)animated.

– All semantic parallelism behavior is invoked by Slaves communicating with
the Master.

– A Slave communicates with the Master by using a VMS primitive, which
suspends the Slave.

Where We Define: Semantic Parallelism Behavior is the actions taken by a
parallelism construct, which establishes an ordering among events in different
Slave timelines.

Discussion: The key point is that scheduling is separated from the application
code. This is enforced by the schedule being generated in a time-line hidden from
the application. The rest of the requirements are consequences of that separation.

The Master entity appears as a single entity, to the slaves. However it may
be implemented with multiple (hidden) timelines. This is the approach taken
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in our initial implementation, which has several Master VPs hidden inside the
VMS implementation.

3.2 The Time-Related Specifications of VMS

To prepare for the time-related specifications, we give an advance peek of the
following section, 3.3. There, Slave VPs are specified to have three scheduling
states: Animated, Blocked, and Ready. When a parallelism construct starts exe-
cution, the Slave transitions from Animated to Blocked. When it ends execution,
the Slave transitions from Blocked to Ready. VMS provides a way to control the
order of these state-transitions, which is equivalent to controlling the order of
the parallelism-constructs. Controlling the state transitions is how the ordering
among constructs in different timelines is established.

With that background, here are time-related specifications for VMS:

– VMS provides a Virtual timeline that globally orders changes of scheduling
state of Slave VPs.

– Ordering is created among construct-invocations by controlling the order of
Blocked to Ready transitions in the Virtual timeline.

– Causally tied construct-invocations are tied-together inside the Master.
– VMS enforces ordering of observations of physical events in Slave timelines

to be consistent with the Virtual time ordering.
– Virtual time defines only ordering, but not spans, nor widths.

Discussion: Most importantly here, Virtual time defines a global ordering among
Slave state-transitions. To make this useful for parallelism, VMS must be imple-
mented so that observations of physical events, like reads and writes to shared
memory, are consistent with that ordering.

The Virtual timeline plays the same role as the mechanism added to memory
systems to support atomic instructions. All atomic instructions require hardware
that establishes an ordering among the timelines of physical cores. That hard-
ware sequentializes execution of atomic memory accesses to the same address.
VMS virtualizes this mechanism. It provides the same ordering function.

An important point is that the Virtual timeline is generated inside the Master.
When a Slave uses the VMS primitive to send a parallelism-construct request, it
suspends. However, that Slave doesn’t actually transition state from Animated to
Blocked until the Master acknowledges the suspension. It is the acknowledgement
that adds the Slave transition into the Virtual timeline.

The essential value of VMS is using it to control the order of observing events.
It has to be able to causally link the execution of a parallelism construct in one
timeline to the execution of a construct in a different timeline. Establishing
such a causal link is called tying together two construct executions. It is specific
executions from different timelines that are causally linked with such a tie.
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The Key VMS Guarantee: the order of observing physical events is consistent
with the order of tied together parallelism constructs.

To explain this, take as given: two Slaves both execute parallelism constructs,
those are tied together by the Master, establishing a causal ordering from one
to the other. So, one construct is the before-construct, the other is the after -
construct. Now, the guarantee means that any events triggered before the before-
construct, in its timeline, are guaranteed to be detected in the other timeline as
also preceding the after-construct. In addition, events triggered after the after-
construct are guaranteed not visible before the before-construct in its timeline.
This two-part guarantee is the result of the above specifications of VMS’s time-
related behavior.

Definitions: Some more definitions, to prepare for the next explanation. 1) An
ordering-point exists in a Slave VP’s timeline as a zero-width event that can be
tied to ordering points in other timelines. It is initiated by a Slave VP executing
the suspend primitive, and ended by the Master transitioning the Slave back to
Animated. 2) A trace-segment is a portion of a Slave VP’s stream of instructions
bounded by ordering-points.

Hence, the timeline of a Slave is a sequence of trace-segments. Each trace-
segment is animated by a single physical processor, but not necessarily the same
as animated the Slave’s other trace segments.

Relating Time-Lines to Each Other. Figure 1 shows two ordering points being
tied together. A trace segment starts, at the same time an ordering-point ends,
by its Slave transitioning to Animated. Because the transition to Animated exists
as a point in Virtual time, the start of a trace-segment has a well-defined position
within Virtual time. Likewise, a trace-segment is ended by its Slave executing
the suspend primitive of VMS. Although this does not have a well-defined point
in Virtual time, every execution of suspend is acknowledged by the Master,
which transitions the Slave to Blocked. That transition does have a well-defined
position in Virtual time. Hence, the end of every trace-segment is associated
with a well-defined position in Virtual time.

As a result, trace segments can be ordered relative to each other, by checking
their start and end points in Virtual time. If they have no overlap in virtual
time then they have a total ordering. However, if any portion of them overlaps
in Virtual time, then they are considered concurrent trace-segments, and their
Slaves are considered to be executing in parallel between those points of Virtual
time.

Note that this is conservative because it doesn’t take into account the physical
wait time between a Slave suspending and the Master acknowledging. The Slave
may stop executing at a physical time-point that would map onto an earlier point
in Virtual time. In some cases, ending the Slave’s trace-segment at the earlier
point would eliminate the overlap with a particular other trace-segment. But
VMS’s set of specifications doesn’t allow such mapping of suspend-execution onto
Virtual time (for implementation-related reasons, which require downloading the
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Fig. 1. Time Behaviors: Shows Ordering Point 1.1 being tied to Ordering Point 2.1. As
a result, VMS guarantees that events triggered in Trace Segment 1.1 are seen as having
taken place in the past in Trace Segment 2.2. Also shows that there is no common tied
ordering point between segments 1.2 and 2.2, so VMS provides no guarantees about
what order segment 2.2 sees events triggered in segment 1.2

code and gaining experience with it, to establish a common language, for an
explanation to be understood).

A subtlety is that events triggered before one tied ordering-point, might be
visible in the other timeline before the other tied ordering-point. In the figure,
segment 2.1 might be able to see events from segment 1.1 if it looked. The VMS
guarantee doesn’t cover overlapped trace-segments. Physical events triggered
before are only guaranteed visible after the tie point, and events after are only
guaranteed not visible before the tie point.

We call this bounded non-determinism, because events within overlapped
trace-segments have non-deterministic ordering, but the region of non-
determinism can be bounded by tied ordering-points. This allows a program to
specify non-determinism, but control the region of non-deterministic behavior.
For example, a reduction construct could be created that non-deterministically
assigns portions of the reduction work to overlapped Slave segments. It would
tie together ordering points from all the Slaves that mark the end of reduction.
Hence, the outcome is deterministic, but the path to get there is not.

Sequential Algorithms for Parallel Constructs. The globally-consistent sequen-
tial order in Virtual time enables one of VMS’s main benefits: sequential algo-
rithms for parallel constructs. An implementation to tie ordering points together
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equals an implementation of parallel constructs. A plugin has an ordering of state
transitions available, and chooses from those. Sequential algorithms rely on an
ordering existing, while concurrent algorithms must include operations that es-
tablish an ordering. Plugins have Virtual time ordering available, so they can
use sequential algorithms.

3.3 Specification of Scheduling State

Scheduling state is used in VMS to organize internal activity, for enforcing the
guarantees.

– VPs have three scheduling states: Animated, Blocked, Ready; see Figure 2.
– VPs in Animated are allowed to advance Program time with (core-local)

physical time.
– VPs in Blocked and Ready do not advance their Program time.
– Animated has two physical states: Progressing and Stalled.
– VPs in Progressing advance Program time with (core-local) physical time,

those in Stalled do not (allowing non-semantic suspend for hardware inter-
rupts).

– Scheduling states are defined in Virtual time only.
– Progressing and Stalled are defined in (core-local) physical time only; the

distinction is invisible in Virtual time.

Fig. 2. Scheduling states of a slave VP in the
VMS model. Animated, Blocked, and Ready are
only defined in Virtual Time and only visible in
the Master. Progressing and Stalled are only vis-
ible in physical-processor local time, not visible
in Virtual time.

Fig. 3. The Master, split into
a generic core and a language-
specific plugin. The core encapsu-
lates the hardware and remains the
same across applications. The plu-
gin implements the semantics of the
parallelism-constructs.

Some important points: (1) only VPs Animated can trigger physical events
that are seen in other program time-lines; (2) the distinction between Blocked
vs Stalled is that a Slave has to explicitly execute a VMS primitive operation to
enter Blocked. In contrast, Stalled happens invisibly, with no effect on semantic
behavior. It is due to hardware events hidden inside VMS, such as interrupts.



194 S. Halle and A. Cohen

The Ready state is used to separate the parallelism-construct behavior from
the scheduling behavior. It acts as a “staging area” for scheduling. VPs placed
into this state are ready to be animated, but the scheduler decides when and
where.

An interesting point is that in VMS, the causal tie between timelines is created
by actions outside program timelines. In contrast, memory-based lock algorithms
place the concurrency-related behavior inside program timelines.

Transition Between Slave Scheduling States.

– VPs transition states as shown in Figure 2.
– Animated→Blocked is requested by a Slave executing suspend, but takes

place in Virtual time at the point the Master acknowledges that request.
– Blocked→Ready is determined by the semantics implemented in the plugin.
– Ready→Animated is determined by the scheduler in the plugin.
– Transitions in scheduling state have a globally consistent order in Virtual

time.

The parallelism primitives executed by a program do not directly control change
in scheduling states. Rather they communicate messages to the Master, via a
VMS supplied primitive. If it suspended when sending the request, then the act of
the Master acknowledging the request places the Animated→Blocked transition
into Virtual time. Inside the Master, the plugin then processes the message.
Based on contents, it performs changes in state from Blocked→Ready, creates
new VPs, and dissipates existing VPs. Most communication from Slave to Master
requires the Slave to suspend when it sends the message. A few messages, like
creating new Slave may be sent without suspending.

The suspend primitive decouples local physical time from Virtual time. Exe-
cution causes immediate transition to Stalled in physical time, later the Master
performs Animated→Blocked, fixing that transition in Virtual time. The only
relationship is causality. This weak relation is what allows suspension-points
to be serialized in Virtual time, which in turn is what allows using sequential
algorithms to implement parallelism constructs.

3.4 Plugins

The Master entity has two parts, a generic core part and a plugin (Figure 3). The
core part of the Master is implemented as part of VMS itself. The plugin sup-
plies two functions: the communication-handler and the scheduler, both having
a standard prototype. The communication-handler implements the parallelism
constructs, while scheduler assigns VPs to cores.

An instance of a plugin is created as part of initializing an application, and
the instance holds the semantic and scheduling state for that run of the applica-
tion. This state, combined with the virtual processor states of the slaves created
during that application run, represents progress of the work of the application.
For example, multi-tasking is performed simply by the Master switching among
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plugin instances when it has a resource to offer to a scheduler. The parallelism-
semantic state holds all information needed to resume (hardware state, such as
TLB and cache-tags is inside VMS).

4 Internal Workings of Our Implementation

For our example implementation, we name the elements and describe their logical
function, then relate those to the abstract model. We then step through the
operation of the elements.

Elements and Their Logical Function. As illustrated in Figure 4, our VMS im-
plementation is organized around physical cores. Each core has its own master
virtual-processor, masterVP, and a physical-core controller, which communicate
via a set of scheduling slots, schedSlot. The Master in the abstract definition is
implemented by the multiple masterVPs plus a particular plugin instance with
its shared parallelism-semantic state (seen at the top).

On a given core, only one of: the core-controller, masterVP, or a slave VP, is
animated at any point in local physical time. Each masterVP animates the same
function, called master loop, and each slave VP animates a function from the
application, starting with the top-level function the slave is created with, and
following its call sequence. The core controller is implemented here as a Linux
pthread that runs the core loop function.

Switching between VPs is done by executing a VMS primitive that suspends
the VP. This switches the physical core over to the controller, by jumping to
the start of the core loop function, which chooses the next VP and switches to
that (switching is detailed in Section 5 Figure 7).

Relation to Abstract Model. We chose to implement the Master entity of the
model by a set of masterVPs, plus plugin functions and shared parallelism-
semantic state. VMS consists of this implementation of the Master, plus the
core-controllers, plus the VMS primitive libraries, for creating new VPs and dis-
sipating existing VPs, suspending VPs, and communicating from slave VP to
Master. In Figure 4, everything in green is part of VMS, while the plugin is in
red, and application code appears as blue, inside the slave VP.

Virtual time in the model is implemented via a combination of four things:
a masterLock (not shown) that guarantees non-overlap of masterVP trace-
segments; the master loop which performs transition Animated→Blocked; the
comm handler fn which performs Blocked→Ready and the scheduler fn which
performs Ready→Animated. Each state transition is one step of Virtual time;
is guaranteed sequential by the non-overlap of masterVP trace segments; and is
global due to being in parallelism-semantic state that is shared (top of Figure 4).

Transitions Progressing�Stalled within the Animated state are invisible to
the parallelism semantics, the Master, and Virtual time, and so have no effect
on the elements seen.
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Fig. 4. Internal elements of our example VMS implementation

Steps of Operation. The steps of operation are numbered, in Figure 4. Taking
them in order:

1. master loop scans the scheduling slots to see which ones’ slaves have sus-
pended since the previous scan.

2. It hands these to the comm handler fn plugged in (which equals transition
Animated→Blocked).

3. The VP has a request attached, and data in it causes the comm handler fn to
manipulate data structures in the shared parallelism-semantic state. These
structures hold all the slaves in the blocked state (code-level detail and ex-
ample will come in Figure 8, Section 5).

4. Some requests cause slaves to be moved to a readyQ on one of the cores
(Blocked→Ready). Which core’s readyQ receives the slave is under plugin
control, determined by a combination of request contents, semantic state and
physical machine state.

5. During the scan, the master loop also looks for empty slots, and for each
calls the scheduler fn plugged in. It chooses a slave from the readyQ on
the core animating master loop.

6. The master loop then places the slave VP’s pointer into the scheduling slot
(Ready→Animated), making it available to the core loop.

7. When done with the scan, masterVP suspends, switching animation back to
the core loop.

8. core loop takes slave VPs out of the slots.
9. Then core loop switches animation to these slave VPs.
10. When a slave self-suspends, animation returns to the core loop (detail in

code in Figure 9), which picks another.
11. Until all slots are empty and the core loop switches animation to the

masterVP.
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Enabling Sequential Implementation of Parallelism Semantics. All these steps
happen on each core separately, but we use a central masterLock to ensure
that only one core’s masterVP can be active at any time. This guarantees non-
overlap of trace-segments from different masterVPs, allowing the plugins to use
sequential algorithms, without a performance penalty, as verified in Section 6.

Relating this to the abstract model: the parallelism-semantic behavior of the
Master is implemented by the communication handler, in the plugin. It thus
runs in the Master time referred to, in the model, in Section 3. Requests are sent
to the Master by self-suspension of the slaves, but sit idle until the other slaves
in the scheduling slots have also run. This is the passive behavior of requests
that was noted in Section 3, which allows the masterVPs to remain suspended
until needed. This in turn enables the masterVPs from different cores to be non-
overlapped. It is the non-overlap that enables the algorithms for the parallelism
semantics to be sequential.

5 Code Example

To relate the abstract model and the internal elements to application code and
parallelism-library code, we give code snippets that illustrate key features. We
start with the application then work down through the sequence of calls, to the
plugin, using our SSR [11] parallelism-library as an example.

In general, applications are either written in terms of a parallel language
that has its own syntax, or a base language with a parallelism library, which is
often called an embedded language. Our demonstrators, VCilk [11], Vthread, and
SSR, are all parallelism libraries. A parallel language would follow the standard
practice of performing source-to-source transform, from custom syntax into C
plus parallelism-library calls.

SSR. SSR stands for Synchronous Send-Receive, and details of its calls and in-
ternal implementation will be given throughout this section. It has two types
of construct. The first, called from-to has two calls: SSR send from to and
SSR receive from to, both of which specify the sending VP as well as the re-
ceiving VP. The other, called of-type also has two calls: SSR send of type to

and SSR receive of type, which allow a receiver to accept from anonymous
senders, but select according to type of message.

Application View. Figure 5 shows snippets of application code, which use the
SSR parallelism library. The most important feature is that all calls take a
pointer to the VP that is animating the call. This is seen at the top of the figure
where slave VP creation takes a pointer to the VP asking for creation. Below
that is the standard prototype for top level functions, showing that the function
receives a pointer to the VP it is the top level function for.

The pointer is placed on the stack by VMS when it creates the VP, and is
the means by which the application comes into possession of the pointer. This
animating VP is passed to all library calls made from there. For example, the
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Creating a new processor:

newProcessor = SSR__create_procr( &top_VP_fn, paramsPtr, animatingVP );

prototype for the top level function:

top_VP_fn( void *parameterStrucPtr, VirtProcr *animatingVP );

handing animating VP to parallelism constructs:

SSR__send_from_to( messagePtr, animatingVP, receivingVP );

messagePtr = SSR__receive_from_to( sendingVP, animatingVP );

Fig. 5. Application code snippets showing that all calls to the parallelism library take
the VP animating that call as a parameter

bottom shows a pointer to the animating VP placed in the position of sender in
the send construct call. Correspondingly, for the receive construct, the position
of receiving VP is filled by the VP animating the call.

Relating these to the internal elements of our implementation, the
animatingVP suspends inside each of these calls, passing a request (generated in
the library) to one of the masterVPs. The masterVP then calls the comm-handler
plugin, and so on, as described in Section 4.

For the SSR create processor call, the comm-handler in turn calls a VMS
primitive to perform the creation. The primitive places a pointer to the newly
created VP onto its stack, so that when top VP fn is later animated, it sees the
VP-pointer as a parameter passed to it. All application code is either such a
top-level function, or has one at the root of the call-stack.

The send and receive calls both suspend their animating VP. When both have
been called, the communication handler pairs them up and resumes both. This
ties time-lines together, invoking the VMS guarantee. Both application-functions
know, because of the VMS guarantee (Section 3), that writes to shared variables
made before the send call by the sender are visible to the receiver after the
receive call. This is the programmer’s view of tying together the local time-lines
of two different VPs, as defined in Section 3.

Concurrency-Library View. A parallelism library is a wrapper. Each call, in
general, only creates a request, sends it, and returns, as seen below. To send a
request, it uses the combined request-and-suspend VMS primitive that attaches
the request then suspends the VP. The primitive requires the pointer to the VP,
to attach the request and to suspend it.

In Figure 6, notice that the request’s data is on the stack of the vir-
tual processor that’s animating the call, which is the receiveVP. The
VMS send sem request suspends this VP, which changes the physical core’s
stack pointer to a different stack. So the request data is guaranteed to remain
undisturbed while the VP is suspended.
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Figure 7 shows the implementation of the VMS suspend primitive. As seen in
Figure 4, suspending the receiveVP involves switching to the core loop. In our
implementation, this is done by switching to the stack of the pthread pinned to
the physical core and then jumping to the start-point of core loop.

This code uses standard techniques commonly employed in co-routine imple-
mentations. Tuning effort spent in core loop is inherited by all applications.

Plugin View. SSR’s communication handler dispatches on the reqType field of
the request data, as set by the SSR receive from to code. It calls the handler
code in Figure 8. This constructs a hash-key, by concatenating the from-VP’s
pointer with the to-VP’s pointer. Then it looks-up that key in the hash-table
that SSR uses to match sends with receives, which is in the shared semantic
state seen at the top of Figure 4 in Section 4.

The most important feature in Figure 8 is that both send and receive will
construct the same key, so will find the same hash entry. Whichever request is
handled first in Virtual time will see the hash entry empty, and save itself in
that entry. The second to arrive sees the waiting request and then resumes both
VPs, by putting them into their readyQs.

Access to the shared hash table can be considered private, as in a sequential
algorithm. This is because our VMS-core implementation ensures that only one
handler on one core is executing at a time.

6 Results

We implemented blocked dense matrix multiplication with right sub-matrices
copied to transposed form, and ran it on a 4-core Core2Quad 2.4Ghz processor.

Implementation-Time. As shown in Table 1, time to implement the three parallel
libraries averages 2 days each. As an example of productivity, adding nested
transactions, parallel singleton, and atomic function-execution to SSR required
a single afternoon, totaling less than 100 lines of C code.

Execution Performance. Performance of VMS is seen in Table 2. The code is not
optimized, but rather written to be easy to understand and modify. The majority
of the plugin time is lost to cache misses because the shared parallelism-semantic
state moves between cores on a majority of accesses. Acquisition of the master
lock is slow due to the hardware implementing the CAS instruction.

Existing techniques will likely improve performance, such as localizing se-
mantic data to cores, splitting malloc across the cores, pre-allocating slabs that
are recycled, and pre-fetching. However, in many cases, several hundred nano-
seconds per task is as optimal as the applications can benefit from.

Head to Head. We compare our implementation of the spawn and sync con-
structs against Cilk 5.4, on the top in Table 3, which shows that the same
application code has similar performance. For large matrices, Cilk 5.4’s better
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void * SSR__receive_from_to( VirtProcr *sendVP, VirtProcr *receiveVP )

{ SSRSemReq reqData;

reqData.receiveVP = receiveVP;

reqData.sendVP = sendVP;

reqData.reqType = receive_from_to;

VMS__send_sem_request( &reqData, receiveVP );

return receiveVP->dataReturnedFromRequest;

}

Fig. 6. Implementation of SSR’s receive from to library function

VMS__suspend_procr( VirtProcr *animatingVP )
{ animatingVP->resumeInstrAddr = &&ResumePt; //GCC takes addr of label
animatingVP->schedSlotAssignedTo->isNewlySuspended = TRUE; //for master_loop to see
<assembly code stores current physical core’s stack reg into animatingVP struct>
<assembly code loads stack reg with core_loop stackPtr, which was saved into animatingVP>
<assembly code jmps to core_loop start instr addr, which was also saved into animatingVP>

ResumePt:
return;

}

Fig. 7. Implementation of VMS suspend processor. Re-animating the virtual processor
reverses this sequence. It saves the core loop’s resume instr-addr and stack ptr into
the VP structure, then loads the VP’s stack ptr and jmps to its resumeInstrAddr.

handle_receive_from_to( VirtProcr *requestingVP, SSRSemReq *reqData, SSRSemEnv *semEnv )
{ commHashTbl = semEnv->communicatingVPHashTable;
key[0] = reqData->receiveVP; key[1] = reqData->sendVP; //send uses same key
waitingReqData = lookup_and_remove( key, commHashTbl ); //get waiting request
if( waitingReqData != NULL )
{ resume_virt_procr( waitingReqData->sendVP );

resume_virt_procr( waitingReqData->receiveVP );
}

else
insert( key, reqData, commHashTbl ); //receive is first to arrive, make it wait

}

Fig. 8. Pseudo-code of communication-handler for receive from to request type. The
semEnv is a pointer to the shared parallel semantic state seen at the top of Figure 4.

use of the memory hierarchy (the workstealing algorithm) achieves 23% better
performance. However, for small matrices, VCilk is better, with a factor 2 lower
overhead. Cilk 5.4 does not allow controlling the number of spawn events it ac-
tually executes, and chooses to run smaller matrices sequentially, limiting our
comparison.

When comparing to pthreads, our VMS based implementation has more than
an order of magnitude better overhead per invocation of mutex or condition
variable functionality, as seen on the bottom of Table 3. Applications that in-
herently have short trace segments will synchronize often and benefit the most
from Vthread.
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Table 1. Person-days to design,
code, and test each parallelism li-
brary. L.O.C. is lines of (original)
C code, excluding libraries and
comments.

SSR Vthread VCilk

Design 4 1 0.5
Code 2 0.5 0.5
Test 1 0.5 0.5
L.O.C. 470 290 310

Table 2. Cycles of overhead, per scheduled slave.
“comp only” is perfect memory, “comp + mem”
is actual cycles. “Plugin-concur” only concurrency
requests, “plugin-all” includes create and malloc
requests. Two significant digits due to variability.

comp only comp + mem

VMS Only master loop 91 110
switch VPs 77 130
(malloc) 160 2300
(create VP) 540 3800

Language:
SSR plugin – concur 190 540

plugin – all 530 2200
lock 250

Vthread plugin – concur 66 710
plugin – all 180 1500
lock 250

VCilk plugin – concur 65 260
plugin – all 330 1800
lock 250

Table 3. On left, exe time in seconds for MM. To the right, overhead for pthread
vs. Vthread. First column is cycles for perfect memory and second is total measured
cycles. pthread cycles are deduced from round-trip experiments.

Matrix size Lang. sec.

81× 81 Cilk 0.017
VCilk 0.008

324× 324 Cilk 0.13
VCilk 0.13

648× 648 Cilk 0.71
VCilk 0.85

1296× 1296 Cilk 4.8
VCilk 6.2

operation Vthread pthread ratio
comp only total

mutex lock 85 1050 50,000 48:1
mutex unlock 85 610 45,000 74:1
cond wait 85 850 60,000 71:1
cond signal 90 650 60,000 92:1

7 Conclusion

We have shown an alternative to the thread model that enables easier-to-use
parallelism constructs by splitting the scheduler open, to accept new parallelism
constructs in the form of plugins. This gives the language control over assigning
virtual processors to physical cores, for performance, debugging, and flexibility
benefits. Parallelism constructs of programming languages can be implemented
using sequential algorithms, within a matter of days, while maintaining low run-
time overhead.
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Abstract. NVIDIA’s Compute Unified Device Architecture (CUDA)
enabled GPUs become accessible to mainstream programming. Abun-
dance of simple computational cores and high memory bandwidth make
GPUs ideal candidates for data parallel applications. However, its poten-
tial for executing applications that combine task and data parallelism has
not been explored in detail. CUDA does not provide a viable interface
for creating dynamic tasks and handling load balancing issues. Any sup-
port for such has to be orchestrated entirely by the CUDA programmer
today.

In this work, we introduce a finish-async style API to GPU device
programming as first step towards task parallelism. We present the de-
sign and implementation details of our new intra-device inter-SM work-
stealing runtime system. We compare performance results using our
runtime to direct execution on the device as well as past work on GPU
runtimes. Finally, we show how this runtime can be targeted by exten-
sions to the high-level CnC-CUDA programming model.

Keywords: gpu, work-stealing, finish, async, task, runtime.

1 Introduction

Graphics Processing Units (GPUs) contain hundreds of lightweight cores with
large bandwidth access to on-chip memory. The massive parallelism and memory
bandwidth of a GPU makes it very useful for computationally heavy applications
operating on large data sets. Add to this the relative energy efficiency and low
cost of its hundreds of simple cores compared to a CPU, with fewer cores, and we
begin to understand its growing applicability both on the supercomputer scale
[1] and in desktop computing for application areas that include life sciences,
medical imaging and finance [2].

NVIDIA provides a C/C++ based API for programming their GPUs called
the Compute Unified Device Architecture (CUDA) programming model. CUDA
includes explicit memory management functions and generally requires consid-
erable knowledge and understanding of the GPU hardware to achieve the sig-
nificant performance gains that GPUs are capable of delivering, representing
a steep learning curve to many programmers. The CUDA programming model
was developed to primarily benefit regular data parallel applications, that are
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aligned to the needs of heavy graphics processing. In a nutshell, CUDA allows
the programmer to launch large batches of SIMD threads. These collections of
threads are decomposed into blocks of threads, containing anywhere from 32 to
1024 threads. The threads within a block are all mapped to the same streaming
multiprocessor on the device. Threads on the same streaming multiprocessor
(SM), and therefore in the same block, execute the same kernel in lock-step, but
threads in different SMs may run completely separate kernels with no perfor-
mance penalty.

Executing irregular applications that may involve dynamic task parallelism
is not trivial using the current CUDA API. With this work, we aim to help
improve the adoption of CUDA-like models for irregular applications by handling
many of the lower level runtime details for the programmer. We have designed
and implemented a runtime abstraction for dynamic task parallelism using the
finish-async style API [3] on top of the regular data parallel model of execution.
The programmer is freed from the responsibility of load balancing dynamically
created tasks with the aid of our CUDA work stealing scheduler that operates
across multiple SMs in the same device. The runtime helps reduce data transfer
overhead by overlapping it with kernel execution, manage multiple devices, and
distribute tasks on the device with the goal of balancing the workload across all
SMs on a GPU.

The rest of the paper is organized as follows. Section 2 introduces our new
GPU runtime for dynamic task parallelism. Section 3 provides implementation
details of the work-stealing runtime deployed using the CUDA programming
model. Section 4 shows how the runtime can be targeted by extensions to the
high-level CnC-CUDA programming model introduced in past work [4]. Section
5 presents the results of experiments on our runtime system. Finally, Section 6
discusses related work and Section 7 contains our conclusions.

2 The GPU Work-Stealing Runtime System

GPUs’ restriction to primarily data parallel applications means its potential
for executing irregular applications that combine dynamic task parallelism with
data parallelism has not yet been explored in detail. With CUDA currently
providing no viable interface for dynamically creating tasks or handling load
balancing issues, it may be some time before any official support is provided,
if ever. In applications that perform recursive decomposition (say), each step
produces tasks that may execute in parallel. This requirement for dynamic task
creation is not trivially solved using the current CUDA API. Another factor
that inhibits execution of irregular applications on the GPU is the need for task
synchronization. CUDA allows synchronization only among threads that belong
to the same block, which can run on only one SM. As a result, the only way
that parallel blocks of threads can synchronize with each other in CUDA is via
multiple kernel launches. This enforces a severe restriction on running irregular
applications, that may require combining results from parallel work in each step
before moving onto the next step.
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Both of these disadvantages, dynamic task creation and parallel task synchro-
nization, can be addressed by the finish-async style of programming [3]. In this
model, an async creates or spawns a task that can potentially execute in paral-
lel with the continuation of the spawning task. The finish provides a scope for
all spawned tasks, both direct and nested, to complete before execution of the
continuation of a finish. The finish and async constructs provide a natural way
for programmers to express task parallelism using dynamic task creation and
synchronization.

In this work, we have developed a runtime system on the GPU that provides
a task-based implementation for abstractions such as finish and async. The goal
of our finish-async model on the GPU is to be faster than the current divergent
execution model for irregular applications without sacrificing the performance
of intra-SM regular computations. We aim to provide the users with a simpler
programming model for task parallelism, while handling the problem of load
balancing which all systems supporting dynamic task creation must deal with.
At the moment, the finish-async functionality on the device has only been thor-
oughly tested with a flat finish wrapping all device asyncs.

3 Implementation Details of GPU Runtime

The goal of this runtime is to balance work across the threads of a GPU better
and with less effort for the user than a hand written application, while supplying
a simpler and easier to use API. To achieve this goal we use a hybrid task
distribution model that uses both work stealing and work sharing queues to
provide load balancing between SMs on a CUDA device, and across different
devices.

Our runtime starts by launching N blocks of CUDA threads on each de-
vice, where N is the number of SMs on that device. Conceptually, our runtime
treats these blocks as worker blocks, analogous to worker threads in CPU-based
work-stealing runtimes. Each of these worker blocks executes the runtime kernel.
Shown in Figure 1, each worker block maintains its own work stealing deque. A
worker can also steal from other workers’ deques that reside on the same device.
A separate FIFO shared queue is maintained to place tasks from the host onto
the device. Only the host can push tasks onto this queue while the workers on the
device compete to pop these tasks. At the moment, tasks are distributed evenly
and naively among devices from the host, but more intelligent device selection
for task placement would be an interesting direction for future work.

3.1 Task Representation

As mentioned earlier, CUDA has two levels of parallelism: SIMD threads within
a block of threads on the same SM, and threads executing potentially different
kernels on different SMs. When we talk about tasks in this paper, these represent
tasks which are run by a block of threads, not individual threads, though tasks
can be created by any thread in a block. To dynamically create tasks at the fine
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Fig. 1. GPU runtime for dynamic task parallelism

grain level of individual threads would be prohibitively expensive for GPUs, in
most cases leading to major divergence and serialization of execution.

Tasks designated for execution on the device are represented by a task struc-
ture. This task structure uses a param structure to represent inputs and outputs
of the device task. The work sharing and stealing deques contain pointers to
these task structures, shown below.

typedef struct {
void *ptr; // address of the data

size t size; // number of bytes in this parameter

volatile int *done flag; // Indicates readiness of data

unsigned char type; // Indicates input and/or output from device

} param;

typedef struct task {
int type; // what code to run for this task

param *p; // list of parameters to this task

int *ready flag; // indicates if this task has completed

int num params; // number of parameters

...

} task;

The task structure represents a task on the device with certain global inputs
and outputs. The type field of a task structure uses an integer id to identify
the code to be executed by this task, while the param pointer points to a list
of parameters containing information on the inputs and outputs to the device.
Tagging a parameter as being input or output only has significance in context
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of the device, and does not describe its relation to a task. The ready flag field is
used to test when a continuation task is ready to be executed in our async-finish
model for on-device dynamic task creation, which we will discuss in more depth
later in this section.

3.2 Task Creation

A task is launched by building a task structure with the appropriate parameters
and type on the host or on the device and then placing it on the work sharing
queue (if launching from the host) or on the worker block’s work stealing queue
(if launching from the device). If launched from the host, this process includes
asynchronously allocating and copying the input and output data.

Once this task is placed in the appropriate queue it will then be fetched by a
worker block. The worker block will then call the appropriate function based on
the type field of the task. All queues on the device use locks to protect against
concurrent conflicting accesses using CUDA’s atomic CAS instruction.

A large obstacle to launching tasks from the device lies in CUDA’s lack of
dynamic memory allocation. Without dynamic memory allocation and with a
potentially dynamic number of tasks it is impossible to estimate the amount
of device memory that will be necessary to preallocate for each application. At
the moment, this problem is being solved by a mock memory manager for the
device, implemented as a linked list of preallocated task structures for each type
of task on each device. Each of these empty tasks is allocated with memory for its
parameters. When a device on the task launches a nested task it simply allocates
a task from one of these linked lists, which can then be pushed onto the work
stealing queues in the same manner as any task. When a task has completed on
the device, it can be freed for future use by placing it back onto these linked
lists.

Once all tasks have been placed on the device, the worker blocks are told
that there is no remaining work by placing a special value into the work sharing
queue. Upon finding this value, each worker block can be sure that there are no
incoming tasks from the host to be run and instead begins waiting for a global
counter of tasks to reach zero, while continuing to attempt to pop from its own
work queue and steal from others’ work queues.

3.3 Communication between Device and Host

One of the largest burdens placed on a CUDA programmer trying to achieve
optimal execution on the device is device memory management. While the most
basic memory management functions are easy to work with (cudaMalloc and cu-
daMemcpy being analogous to malloc and memcpy on the host), they also gener-
ally result in inefficient executions with lots of blocking function calls. Therefore,
managing device memory for the user is a problem that any CUDA runtime sys-
tem must solve. Ours hides all device allocation and communication from the
user, instead using the contents of each task structure to know what the memory
requirements of a task are.
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One of the keys to good performance in any multicore system is overlapping
communication with computation in order to hide the added overhead that isn’t
a concern in sequential code. In this runtime system, we leverage CUDA streams
in an attempt to manage this overlapping for the user. Each time a new task is
placed onto the device from the host, the associated input is copied with it. Using
asynchronous memory copies in a CUDA stream allows this communication to
occur in parallel with the runtime kernel and any programmer-written code
executing on the device. In the future, a more advanced task pushing mechanism
on the host could also allow copying through multiple streams at once to ensure
maximum utilization of the bandwidth to each device.

In this implementation, a list of address mappings conceptually sits between
the host and device memory. These mappings allow the runtime on the host
to keep track of what host memory locations have already been copied to the
device, what device location they were copied to, and how many bytes were
transferred. This information allows us to be certain of where to copy to/from
and how much to copy.

4 Extensions to CnC-CUDA

The GPU work-stealing runtime is a standalone tool which can be integrated
with a programming model in order to provide a friendly user-interface. We
made the integration with a new C-based implementation of the Concurrent
Collections (CnC) programming model, being motivated by the results in previ-
ous work on CnC-CUDA [4]. The details of CnC-C are beyond the scope of this
paper. Current work is being done on the integration with the Habanero C lan-
guage [15] which uses the async-finish model, making integration more straight
forward. On the other hand the CnC model is more general than the async-finish
model; that is to say more graphs/programs can be expressed using CnC than
with finish-async. In our work we will be using a subset of CnC’s synchroniza-
tion pattern. We reserve for future work extending the current implementation
to support data dependences between CPU and GPU tasks.

CnC offers a easy way for the programmer to specify the dependences within
his program with the aid of an intuitive graph language. The main components
of any graph are data collections, control collections and steps. Data collections
can be viewed as a tagged data storage (analogous to key-value pairs). A tag’s
role once it is put into a control collection is that of starting (prescribing) the
steps assigned to it. Steps represent units of computation and are prescribed
by a tag. They also read (get) items from data collections and can put items
and/or tags into their data and control collections. A step may request an item
with a certain tag from a data collection without having the knowledge whether
the item exists or not. The CnC runtime will ensure the steps that have been
prescribed will execute when the data they need is available.

Let us take one of the benchmarks - Crypt - and show the transformation of
a CnC graph to its analogous CUDA code, assuming we already have a kernel
written in CUDA for Crypt. First, we will write a simple CnC graph. The no-
tation ’::’ in a CnC graph indicates the prescription of a computation step with
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a tag. The notation ’− >’ in a CnC graph indicates a computation step which
either consumes or produces an item. For example, in the CnC graph below
representing the crypt application, decrypt tag is a tag collection which pre-
scribes (launches) the computation step gpu decrypt. The data collections used
are ”original”the original text, ”z”the encryption key, ”crypt”the encrypted text,
”dk”the decryption key and ”original decrypted”the original text after decryp-
tion.The gpu encrypt computation step consumes items from data collections
original and z, and produces items into crypt and decrypt tag output collection,
where decrypt tag is a control collection.

<decrypt tag>::gpu decrypt;

<encrypt tag>::gpu encrypt;

[ original ], [ z ] -> { gpu encrypt } -> [ crypt ], < decrypt tag >;

[ crypt ], [ dk ] -> { gpu decrypt } -> [ original decrypted ];

Using features offered by CnC much of the code needed to link the user’s inputs
with the kernel will be auto-generated.

A CnC program would then be written to work with the code generated by
this graph file. The C code will look as follows:

CnCGraph graph;

graph.original.Put(tag, orig);

graph.z.Put(tag, z);

graph.encrypt tag.Put(tag);

The CnC-C runtime will then manage the data dependencies, control depen-
dences, and computation step invocation using the Habanero-C parallel
programming language. Integrating the GPU work-stealing runtime with the
CnC-C programming model would allow computation analogous to the below
CUDA code to be generated for the user from the CnC graph specified above:

cudaMalloc(&d original); cudaMalloc(&d crypt);

cudaMalloc(&d original decrypted);

cudaMalloc(&d z); cudaMalloc(&d dk);

cudaMemcpy(d original, original);

cudaMemcpy(d z, z); cudaMemcpy(d dk, dk);

encrypt kernel<<<blocks per grid,threads per block,0,stream>>>(d original,

d z, d crypt);

decrypt kernel<<<blocks per grid,threads per block,0,stream>>>(d crypt,

d dk, d original decrypted);

cudaMemcpy(original decrypted, d original decrypted);

The eventual goal is to auto-generate all code related to the CUDA runtime for
the CnC user, only requiring a) an initialization call in the CnC Main function,
b) a terminating call to signal the runtime kernel on the device to exit, and
c) CUDA kernels to be used as computation steps. Reaching complete auto-
generation is still a work in progress, but a manual proof of concept has already
successfully demonstrated the integration of the GPU runtime and CnC.
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5 Experiments

To test the performance of our GPU work stealing runtime, we tried to find ex-
amples of applications that are challenging to implement efficiently on graphics
hardware and data parallel applications that are already well suited for CUDA.
We use n-queens from BOTS [5] for our first benchmark. The BOTS imple-
mentation of nqueens on a CUDA device is difficult because it can result in
unbalanced computation trees and requires a lot of dynamic task creation and
load balancing. For our second benchmark, we will use an implementation of
the quicksort sorting algorithm based on [6]. Our third benchmark, the crypt
benchmark from the Java Grande Forum Benchmark Suite [7], is regular and
recognized to be a good candidate for GPU execution. Our fourth benchmark
will be a shortest path computation based on the implementation of Dijkstra’s
algorithm in [8]. This benchmark starts with a single task and must then spread
the load across all SMs as evenly as possible. The fifth benchmark is an imple-
mentation of an unbalanced tree search based on code from OSU, which again
tests the load balancing capabilities of the runtime. Our final benchmark will be
the Series benchmark from the Java Grande Forum Benchmark Suite, another
data parallel benchmark which demonstrates the low overhead of our runtime
system.

In our tests, we compare runs with different numbers of devices as well as
different data sizes to see how this impacts execution time. Additionally, we
use diagnostic data from our runtime to measure how effectively we are load
balancing the application’s work.

Benchmark tests were performed with 1, 2, or 3 NVIDIA Tesla C2050 GPUs.
The Tesla GPUs were tested with direct calls to runtime functions from C or
CUDA code. Each Tesla C2050 has 14 multiprocessors, 2.8 GB of global memory,
1.15 GHz clock cycle and are using CUDA Driver and Runtime version 3.20. The
host machine of the Tesla GPUs has 4 Quad Core AMD CPUs (2.5 GHz).

5.1 N-Queens

For the n-queens benchmark we ported the BOTS implementation of n-queens
to the device using our runtime. The BOTS benchmark suite is intentionally
designed to test the effect that irregular parallelism has on a multicore system.
Irregular and recursive based parallelism results in less predictable numbers and
distributions of tasks that are more difficult to allocate between worker threads.
Because of this, n-queens is a challenge to port to the CUDA programming model
without a loss in performance. Our runtime facilitates this irregular parallelism
on graphics hardware. In Figure 2 we can see that our implementation of the
n-queens benchmark scales well across multiple devices. From experience in de-
veloping it, we can also say that building an n-queens benchmark for the CUDA
was much simpler with our runtime than it would have been without.
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Fig. 2. Speedup normalized to single-threaded execution of the n-queens benchmark
using our work stealing GPU runtime on 1 or 2 devices, or using 12 threads on the
host

Fig. 3. Tasks executed by each SM on a single device running the n-queens benchmark

5.2 Crypt

The crypt benchmark from the Java Grande Forum Benchmark Suite (JGF)
performs the IDEA cryptographic algorithm on a block of bytes, encrypting and
then decrypting and validating the results. This algorithm is already well suited
for execution in a data parallel programming model like CUDA. The encryption
and decryption of every 8 bytes can be run independent of the rest of the data
set with no conflicting accesses to shared variables. We include crypt in these
experiments to demonstrate that using this runtime to run an application which
is already well suited for CUDA will not result in significant degradation of
performance.
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The hand coded CUDA version of crypt which we tested against does not
try to take advantage of any overlapping of communication and computation.
The reason for this is that in our initial implementation we did not predict any
advantages in splitting the copying of the original data to the device. Later tests
showed that better performance was achievable with hand coded CUDA code,
but required considerable more experience and effort on the part of the CUDA
programmer.

Though not shown in Figure 4 an unexpected benefit of our runtime automat-
ically providing device management for more than one device was the ability to
handle larger data sets when using our runtime.

Fig. 4. Speedup of Crypt benchmark using our work stealing GPU runtime on 1 or
2 devices and using hand coded CUDA on a single device. Speedup is normalized to
single device execution.

5.3 Dijkstra’s Shortest Path Algorithm

We implemented Dijkstra’s shortest path algorithm using our runtime based on
the algorithm used in “Dynamic Work Scheduling for GPU Systems” [8] for the
same reason as they did: it is an application which effectively tests the load
balancing abilities of a runtime. Figure 5 shows how many tasks each worker
executes while finding the distance from each node to a destination node in a
10,000 node bidirectional weighted graph. Initially a single task is placed on a
single worker. From there, our runtime is able to distribute tasks to all SMs on
the device, indicated by the level top surface of Figure 5.

5.4 Unbalanced Tree Search

Unbalanced Tree Search (UTS) makes a pass over a tree with a randomized
number of children at each node. Because of the imbalance in the tree, static
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Fig. 5. Tasks executed by each SM on a single device running the Dijkstra benchmark

work assignment is very detrimental to performance. We implemented UTS using
our GPU runtime, based on a multi-threaded implementation from OSU. Figure
7 shows that, in general, our implementation was able to maintain performance
parity with a 12 threaded host system.

Fig. 6. Speedup of the UTS benchmark using our work stealing GPU runtime on 1, 2,
or 3 devices, using 12 threads on a 12 core host system, and running in single threaded
mode. Speedup is normalized to the single threaded implementation.

5.5 Series

The Series benchmark from the Java Grande Forum Benchmark Suite is ex-
tremely data parallel, and well optimized to run on the GPU. An interesting
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result of this test is that our runtime with one device severely underperforms
compared to the hand coded implementation. The cause of this is the small input
data sizes to series. Because there is very little input to the series benchmark,
the small copies necessary to launch tasks on the device add enough overhead to
degrade performance. This introduces a small subset of applications which our
runtime may not perform as well on. However, with 2 devices we outstrip single
device hand-coded without any additional effort on behalf of the programmer.

Fig. 7. Speedup of the Series benchmark using our work stealing GPU runtime on 1
or 2 devices, compared against hand-coded CUDA on 1 device. Speedup is normalized
to the single device implementation.

5.6 Multi-GPU Performance

For many of the above benchmarks, we see less than expected acceleration from
using multiple devices, a counterintuitive result which requires some explanation.
The primary cause of this is redundant memory copies. Take the crypt bench-
mark for example. In crypt, there are encryption and decryption keys being used
which must be accessible from each device. This means that by increasing the
number of devices, you are actually increasing the amount of necessary commu-
nication that is necessary. Other factors may be causing this discrepancy as well,
but further investigation would be necessary to understand what they may be.
Two potential solutions to this problem could be: 1) more intelligent task place-
ment of tasks which share data on the same device, or 2) use CUDA 4.0’s unified
virtual device address space to access a single copy from any device. The useful-
ness of more intelligent task placement when benchmarking would be minimal
as it would mean even when 3 devices are initialized not all would be necessarily
used. Additionally, while early experience with the unified virtual address space
shows that it is more useful in the easing porting, its use can actually result in
performance degradation.
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6 Related Work

There have been some recent experiments at either including GPU execution
into current programming models and languages, or implementing a task-parallel
runtime on the GPU. Lastras-Montano et al. [8] implemented a work stealing
runtime on the device. In their paper, a worker is a single warp of threads (32
threads). Each of these warps is assigned a q-structure, which is a collection
of queues in shared and global memory to place tasks in and steal tasks from.
Since multiple warps in a block always reside on the same SM, this runtime can
attempt to steal from those other warps via faster on-chip shared memory before
looking to steal from global memory (i.e. from workers in other SMs). Their use of
queues in shared memory would yield considerably less latency than our global
memory queues, and could be included in future work. However, designating
each individual warp as a worker would lead to increased contention for steals.
While our runtime is designed for continuous use throughout an application,
their runtime starts with a kernel launch and ends when a certain number of
steals have failed. This termination condition could be harmful to performance
critical applications.

The X10 programming language recently began supporting the execution of
tasks on CUDA devices [9]. They do not provide an actual on-GPU work stealing
runtime, but instead integrate GPU tasks into their host work stealing runtime.
They provide the user with a simpler API for allocating device memory and
copying asynchronously from host memory to device memory than the CUDA
API does and expose the block and thread CUDA memory model to the pro-
grammer in what might be a more intuitive way: as nested loops iterating over
X10 points. However, this is not a device runtime and even though the appear-
ance of the code may be more familiar to non-CUDA programmers and they
hide some of the memory management from the programmer, the programmer
must still be very aware of the CUDA programming model and its challenges
and nuances.

The work in [10] presented a variety of potential GPU load balancing schemes
ranging in complexity from a static array of tasks to a work-stealing task dis-
tribution technique similar to the one used in our runtime system. In order to
compare the relative performance of the different systems proposed in their pa-
per they used an octree creation application. They demonstrated that the task
distribution system most similar to our own methods for distributing tasks be-
tween SMs on the same device achieved the best performance of those tested.

StarPU [11] [12] is another runtime system for hybrid CPU and GPU execu-
tion. Similar to X10, this system’s role is to dispatch tasks to different processing
unit for which it makes complex scheduling decisions based on different hard-
ware. StarSs and its GPU extension GPUSs [13] is building on the OpenMP
model and offers simplicity by using pragmas to define tasks that can be exe-
cuted on the GPU. However each task annotated for GPU execution will run
as an independent kernel without any control on how the computation is dis-
tributed on the device. Both StarPU and StarSs will use the CPU, GPU as
well as other resources like the Cell to achieve system-wide load balancing, but
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neither of them addresses the problem of load balancing inside the GPU, but base
their assumption on the fact that work inside the GPU kernel will be uniform.

This work has the potential of being supported on OpenCL [14]. In such a
scenario, slight modifications of the runtime API will needed to be done for con-
formance to OpenCL standards, and possibly a reimplementation of the runtime
kernel.

7 Conclusions and Future Work

In this paper, we have presented a GPU work stealing runtime that support
dynamic task parallelism at thread block granularity. We demonstrated the ef-
fectiveness of our combination of work stealing and work sharing queues in dis-
tributing tasks across the device using the nqueens and Dijkstra benchmarks.
Each of these benchmarks starts with a single task on a single SM, requiring low
overhead task distribution to achieve good performance. We demonstrated that
even applications for which CUDA is well suited using this runtime incurs little
overhead and may even result in better performance, a result of automatically
managing multiple devices for the user as well as overlapping data transfer with
kernel execution. We gave a brief overview of other simplified interfaces to the
device that are currently available or in development and compared them to our
own approach. While support for CUDA calls in X10 provide simpler access to
the device and the previous work by Angels et al provided fine grain load balanc-
ing at the level of a warp of CUDA threads, our runtime demonstrates parts of
both of these features with a persistent state on the device that supports more of
a streaming and data driven programming model than the launch-wait-relaunch
model normally used with CUDA.

Some topics for future work are as follows. At the moment, our runtime han-
dles device memory allocation and transfer for the programmer, but freeing of
device memory cannot occur while a kernel is running on the device, and there-
fore cannot happen while our runtime is being used. Therefore, in order to limit
waste of device memory and of page locked host memory our runtime system
should include some more advanced memory reuse mechanisms. This may in-
clude the implementation of a concurrent memory manager on the device.Some
optimization may be possible on our device work stealing code, with a focus on
minimizing the use of atomic instructions and memory fences. While these are
necessary to ensure each worker has a consistent view of other workers’ deques
we may be over-using these instructions. We would also like to consider the re-
sults of decreasing the number of threads in each worker on the device. Angels
et al. used warps as task execution units. Investigating the effect that a change
in worker granularity would have on our system could be very beneficial (or
damaging) to overall performance. Finally, we also aim to integrate this work
into the larger Habanero-C parallel programming language project [15] at Rice
University. The plan is to create an unified runtime for integrated CPU and GPU
scheduling of tasks. This work will enable a system to automatically decide at
runtime when it is more beneficial to run a task on the GPU instead of the CPU
and vice versa.
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A Code Merging Optimization Technique for GPU
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Abstract. A GPU usually delivers the highest performance when it is fully uti-
lized, that is, programs running on it are taking full advantage of all the GPU
resources. Two main types of resources on the GPU are the compute engine, i.e.,
the ALU units, and the data mover, i.e., the memory units. This means that an
ideal program will keep both the ALU units and the memory units busy for the
duration of the runtime. The vast majority of GPU applications, however, either
utilize ALU units but leave memory units idle, which is called ALU bound, or
use the memory units but idle ALUs, which is called memory bound, and rarely
attempt to take full advantage of both at the same time.

In this paper, we propose a novel code transformation technique at a coarse
grain level to increase GPU utilization for both NVIDIA and AMD GPUs. Our
technique merges code from heuristically selected GPU kernels to increase per-
formance by improving overall GPU utilization and lowering API overhead. We
look at the resource usage of the kernels and make a decision to merge kernels
based on several key metrics such as ALU packing percentage, ALU busy per-
centage, Fetch busy percentages, Write busy percentages and local memory busy
percentages. In particular, this technique is applied at source level and does not
interfere with or exclude kernel code or memory hierarchy optimizations, which
can still be applied to the merged kernel. Notably, the proposed transformation is
not an attempt to replace concurrent kernel execution, where different kernels can
be context-switched from one to another but never really run on the same core at
the same time. Instead, our transformation allows for merged kernels to mix and
run the instructions from multiple kernels in a really concurrent way. We provide
several examples of inter-process merging describing both the advantages and
limitations. Our results show that substantial speedup can be gained by merging
kernels across processes compared to running those processes sequentially. For
AMD’s Radeon 5870 we obtained an average speedup of 1.28 and a maximum
speedup of 1.53 and for NVIDIA’s GTX280 we obtained an average speedup of
1.17 with a maximum speedup of 1.37.

1 Introduction

Today’s GPUs consist of hundreds of processing cores and can run thousands of threads
at the same time. Even though the sheer scale of parallelism may already generate good
speedups for GPU programs, crucial resources on GPUs such as ALU processing units
and memory units are frequently imbalancedly utilized, which prevents the realization
of full GPU performance. The reason is that even though many threads can run on the
GPU concurrently, the threads are identical copies of the same code. If a batch of threads
saturate the ALU units but leave the memory units idling, the imbalance and under-
utilization won’t be remedied by context switching because the next batch of threads

S. Rajopadhye and M. Mills Strout (Eds.): LCPC 2011, LNCS 7146, pp. 218–236, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



A Code Merging Optimization Technique for GPU 219

will use the resources in the same way. This observation is true for both NVIDIA’s and
AMD’s GPUs. Clearly, GPUs can deliver better performance if the GPU resources are
used in a more balance way.

Recently NVIDIA released a technology called concurrent kernel execution [1] that
allows different kernels (i.e., different code) to be kept active on NVIDIA Fermi GPU
and switches the execution between kernels when one kernel is stalled. While sounds
like a perfect solution for resource idling, the concurrent kernel execution in fact does
not improve the resource imbalance or resource under-utilization within a kernel be-
cause at any moment, only one kernel can run on a core of a GPU. While the resource
idling due to long latency operations is averted by context switching, the imbalance
of the kernels, utilization of the core resources is untouched. For example, assuming
that we have two kernels, one only using ALU and one only doing memory operation.
The concurrent-kernel-execution will switch back-and-forth between the two kernels
because the memory operations are slow and will stall execution. Overall, the effec-
tive memory access latency is reduced. However, at any given moment, the GPU is
either idling the ALU or idling the memory controller, because only one kernel runs
at a time. In other words, the switching from an imbalanced kernel to another imbal-
anced kernel will not help either one to get more balanced. This sub-kernel level of
resource imbalance and the consequent resource under-utilization is our key observa-
tion and is not addressed in current technology. We need a technique that works within
a thread/kernel to help achieve full utilization of each of the given resource units in
the GPU.

In this paper, we propose a novel code transformation technique that strategically
merges kernels with different resource usage patterns to improve performance of GPU
programs. This technique is applied at a coarse grain level. More specifically, this pa-
per makes three contributions. The first contribution is the identification of a group of
profiling metrics that defines how fully a resource is by a GPU kernel, i.e., the bounded-
ness of resource utilization. The level of component use is a good metric for measuring
the imbalance of resource utilization in a GPU program kernel and therefore provides
guidelines of which kernels might be good candidates for merging.

The second contribution is the kernel merging transformation that provides
multiple ways of merging GPU kernels to balance the resource usage on GPU. We
also developed several heuristics to guide the transformation to maximize benefit. The
third contribution is that the proposed transformation is, to our best knowledge, the
first cross-platform code transformation technique that addresses the resource under-
utilization problem for both AMD’s and NVIDIA’s GPGPU programming frameworks.

The rest of this paper is organized as follows. Section 2 introduces the architectural
features of AMD and NVIDIA GPUs that are relevant to the code merging transfor-
mation. Section 3 explains from a GPU architecture point-of-view why code merg-
ing might improve program performance on GPU. Section 4 describes the transfor-
mation and heuristics of how and when to apply the transformation. Then, we com-
prehensively evaluate our approach on both AMD and NVIDIA GPUs and show the
results in Section 5. Finally we conclude and suggest future directions of research in
Section 6.
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2 GPU Background

Modern GPUs are massively multi-threaded many-core architectures with several layers
of memory in a complex memory hierarchy scheme. One key aspect in the evaluation of
the performance of GPU programs is the bottleneck, which is the limiting factor of the
application. There are essentially two types of bottlenecks on GPUs: ALU and memory.
An ALU bound GPU kernel is a kernel in which the majority of the time executing the
kernel is spent doing ALU operations. A memory bound GPU kernel is a kernel in
which the majority of the time executing the kernel is spent doing memory operations.
The GPU achieves the greatest utilization when both ALU and memory are fully used.

The two main brand name GPU architectures share similar features but are also quite
different. The terminologies are also different on the two architectures even for features
that work in similar ways. In the following we briefly introduce the architectural fea-
tures on NVIDIA and AMD GPUs that are most relevant to the proposed code trans-
formation. We will refer the detailed introduction of GPU programming on the two
architectures to their respective programming guides.

2.1 AMD GPU

The AMD GPU consists of multiple compute units (SIMD engines) each of which
has 16 stream cores (thread processors). Each stream core itself contains processing
elements that make up a 5-wide VLIW processor. The memory hierarchy consists of
special registers, global purpose registers, L1 and L2 cache, local memory, texture and
vertex fetch and global memory. Threads are organized into work-items and then into
wavefronts. For the high end AMD compute device, a wavefront consists of 64 threads
organized into 16 2x2 quads, and wavefronts are then organized into work-groups. A
compute device has two wavefront slots, odd and even, and executes two wavefronts
simultaneously. More wavefronts can be in the work queue and can be switched with
an executing wavefront when the executing wavefront stalls. The number of wavefronts
that can exist in the queue is dependent on the number of resources available, such as
registers and local memory. This is an important feature because this wavefront switch-
ing allows for greater GPU utilization and gives the GPU the ability to hide memory
latencies. The instruction set architecture is organized into VLIW instructions or bun-
dles. These bundles are then organized into clauses, which are a group of bundles of the
same type. For example, ALU operations are grouped into an ALU clause while fetch
operations might be grouped into a TEX clause. Each clause is executed by a wavefront
until completion and cannot be switched out mid-clause.[2]

2.2 NVIDIA GPU

The NVIDIA GPU consists of multiple stream multiprocessors with 8 streaming pro-
cessors per multiprocessor. The memory hierarchy consists of registers, shared mem-
ory, texture memory, constant memory and global memory. Threads are organized into
groups of 32, called warps. Each warp is executed in SIMD fashion on a stream mul-
tiprocessor and is broken into half-warps, 16 threads, and quarter-warps, 8 threads.
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Like the switching between clauses on AMD GPUs, NVIDIA GPUs also allow switch-
ing between warps when warps stall. Warps are organized into blocks which are then
organized into grids. While NVIDIA exposes PTX (an intermediate representation of
instructions) they do not currently expose their ISA directly. Since PTX is an interme-
diate representation and is not directly executed on GPU hardware, it is not able to give
the same level of detail as an instruction set architecture.[1]

3 Motivation

The main motivation behind this code merging transformation is the idea to improve
performance by balancing the utilization of GPU resources within kernels. In general,
most current GPU applications are implemented with the goal to get maximum ALU
utilization. While the ideal full ALU utilization may give the best performance for
an application, some algorithms are naturally memory bound and simply don’t allow
their GPU implementations to become ALU bound. These memory bound GPU kernels
leave many ALU resources idle. In the same notion, ALU bound GPU kernels leave
many memory resources idle. We note that GPU is an intrinsically throughput-oriented
architecture. Our proposed transformation attempts to achieve better overall GPU uti-
lization by recognizing idleness, both ALU and memory bound, and combining GPU
kernels that are on different ends of the ALU/memory usage spectrum so as to move the
point of usage of the combined code closer to neutral which implies better utilization
of GPU resources and better overall performance. Equally important is the criteria that
determines which kernels exhibit good qualities of a merging candidate. This type of
transformation would be particularly helpful for a multi-user GPU system, because the
proposed transformation can improve the overall throughput by recouping idle resource
capacity across different applications that run at the same time on such shared systems.

We want to address the relationship between the code merging transformation with
other optimization techniques on the GPU. The proposed transformation is compati-
ble with most other GPU optimizations. The transformation occurs at a coarser gran-
ularity than other known optimizations, most of which occur within the kernel itself
such as memory and register optimizations[3][4] and divergence and workload balance
optimizations[5][6]. This transformation does not interfere with these known optimiza-
tions because these optimizations can still be applied after the proposed transformation
to the merged kernels. There also exist some optimizations which require the kernel
code to be split into multiple kernels[7]. This transformation does not affect this type
of optimization either since it can still be applied to the split kernels, if there are other
kernels to merge with them. Furthermore, this transformation can also be applied with
emerging GPU technology such as concurrent kernels [1] since several kernels can be
merged into one or more kernels and can then be run concurrently under the same con-
text.

The discussion of the level of use of resource utilization provides a high-level view
of why the proposed code merging transformation works. Next we go into the design
details of NVIDIA’s and AMD’s GPU to reveal an architectural explanation of how
code merging, if done properly, leads to a better utilization of the ALU/memory units
and improves program performance on GPU.
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Furthermore, the second major motivation behind this transformation is to merge
kernels from different processes on multi-user systems into one process. For example,
if a developer is utilizing a system for executing an ALU intense algorithm and another
developer is waiting to execute a memory intense algorithm, these two processes’ ker-
nels can be merged into one larger kernel resulting in better overall GPU utilization and
kernel speedup. Thereby, this type of transformation would be particularly helpful for a
multi-user system.

Next we discuss three architectural/program features that are not ideally handled in
current technology and can be improved by the proposed transformations.

3.1 ALU Packing Percentage

Since NVIDIA GPUs do not utilize VLIW processors this metric applies only to AMD
GPUs. The ALU packing percentage is the percent of cores in the VLIW processor that
are being utilized by the GPU kernel. For example, if the ALU packing percentage is
20% then only 1 of the 5 cores are being used per VLIW instruction. There are two
major factors that affect the ALU packing percentage. The first factor is that of data
dependence. Instructions that have data dependence are not able to be scheduled to-
gether in one VLIW instruction. The second factor is that of control flow and scope.
Instructions within a control flow statement or scope are scheduled, by the compiler,
to run in separate ISA clauses. Instruction packing does not occur across clauses and
so while there may not be any data dependence between an instruction outside an if
statement and one inside an if statement, these two instructions cannot be packed. The
ALU packing percentage can be increased through this transformation because separate
GPU kernels have no data dependence and their instructions can be bundled together
within VLIW instructions. Instructions within control flow statements can only be com-
bined across GPU kernels if the control flow statements have the same conditionals or
the instructions within the control flow statements can be software predicated or the
two kernels have synchronization points which can be combined. Figure 1 and Figure
2 both have data dependence from instruction 13 to 14 in ALU clause 02 and are only
utilizing 1 of the 5 cores in each VLIW instruction. If these two kernels are merged, the
resulting code, as shown in Figure 3 now has 2 of the 5 cores in each VLIW instruction
being utilized. Basically the merged code uses the same number of cycles as either of
the pre-merge kernels, as if one is piggy-backing the other.

3.2 Idleness

There are three major GPU components which can execute in parallel: ALU compo-
nents, global memory components and local memory components. Kernel code is gen-
erally laid out in a streaming fashion: read input, work on input and write output. This
inherent layout causes dependence to occur between the components and while there
can exist some overlap in resource usage due to context switching, there still leaves
idleness in those components in which the kernel does not greatly use. For example, in
an ALU bound kernel each wavefront uses the ALU units far more than the memory
units and the time it takes to execute one wavefronts’ ALU operations can be spent
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02 ALU: ADDR( 5 1 ) CNT( 1 1 7 )
13 w: ADD T0 .w, T0 . y , PV12 . x
14 z : ADD T0 . z , T0 . x , PV13 .w

Fig. 1. Kernel One ISA

02 ALU: ADDR( 5 1 ) CNT( 6 3 )
13 y : ADD T0 . y , T0 . w, PV12 . z
14 x : ADD T0 . x , T0 . z , PV13 . y

Fig. 2. Kernel Two ISA

02 ALU: ADDR( 5 6 ) CNT( 1 2 1 )
13 x : ADD T0 . x , PV12 .w, R2 . x

z : ADD T0 . z , R0 . x , PV12 .w
14 y : ADD T0 . y , T0 . w, PV13 . z

w: ADD T0 . w, T0 . w, PV13 . x

Fig. 3. Merged Kernels ISA

fetching inputs for multiple wavefronts from memory. This leaves a gap when execut-
ing the back half of the wavefronts such that all the inputs have been fetched for all the
wavefronts but not all the ALU operations have been executed. In this case, there is an
opportunity to use the memory units that are sitting idle. In contrast, in a memory bound
kernel the memory units are used far more than the ALU operations and therefore, in
the same sense, the ALU units are not being fed fast enough and are sitting idle. There
also exists the case where local memory is being used but neither the ALU units nor the
global memory units are being used. In both types of memory, global and local, stalling
is considering as being busy since the unit is being tasked. Stalling is not the same as
idling. In this paper, these are the three major cases that motivate this kernel merging
technique.

3.3 API Overhead

Each process or application requires a certain amount of API overhead or setup time.
This not only includes the individual kernel invocation time but also count the entire
API overhead and setup time, such as the setting up of device and the creation of con-
text. For individual processes each of these steps must be done at least once and while
kernel invocation time can be reduced with a single application by queuing the kernels it
cannot be reduced when looking at kernels across processes. When kernels are merged
this overhead of setup is reduced since these calls only need to take place once. This
overhead reduction scales with the number of merged kernels across programs since the
device, context and platform setup times remains the same.

4 Transformation

Kernels from different processes are merged in two steps. The first step brings the two
separate host codes into one program and the second step is to merge the kernel codes.
The main work in the first step is to create a proper context for the kernel merging in the
second step. The context preparation involves merging the data structures, functions and
necessary code into one program. Furthermore, we also bring the two separate OpenCL
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API calls under one ”umbrella” of OpenCL API calls, i.e., setting up the platform,
device, context and kernel for OpenCL. In addition, all of the buffer creation, buffer
reads, buffer writes and releasing objects need to be merged. The first step may appear
to involve a lot of things, however, is actually very straightforward because it’s not
important in which order these things get merged in context preparation, so long as
they stay in the proper order within the code, i.e. creating buffers before writes and
writes before kernel call and kernel call before reads and reads before releases. The
performance of the merged kernel is not affected either as long as the context is prepared
in a valid way.

Merging the kernel code in the second step is not as straightforward and the way in
which the kernel code is merged can greatly impact performance. The simplest way to
merge two kernels is to cascade the kernel codes as shown in Figure 4. However, simple
solutions like cascading do not usually give optimal performance. Here we will discuss
several key factors that are important to the decision of how to merge. Furthermore, we
describe several heuristics for choosing which kernels to merge. The heuristics are very
effective and give near optimal performance in most cases.

Fig. 4. Cascading Kernels

4.1 Merging Based on Resource Usage

Generally speaking, kernels that use resources in different ways can potentially benefit
from merging. There are two values which impact this decision: actual resource busy
percentages and theoretical resource busy percentages. Both of these values give an
indication of the bottleneck, the profiler giving the real bottleneck and the theoretical
values giving what ”should” be the bottleneck. The theoretical values can also be looked
at as a best case scenario (components are totally parallelized, so the execution time is
the greatest of the three components’ times) or a worst case scenario (components are
totally serialized, so the execution time is the sum of the three components’ times). In
reality, neither of the theoretical times are true since there is dependence and also some
parallelization of work. However, these values can be used as a guide when compared
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Table 1. AMD OpenCL Profiler Counters

Counters Description

Time Kernel execution time not including kernel
setup

ALU Instr Number of ALU instructions
Fetch Instr Number of global read instructions
Write Instr Number of global write instructions

LDS Fetch Instr Number of LDS read instructions
LDS Write Instr Number of LDS write instructions

ALU Busy Percent of overall time ALU units are busy
Fetch Busy Percent of overall time read units are busy

(includes stalled)
Write Stalled Percent of overall time Write units are

stalled
LDS Bank Conflict Percent of overall time LDS units are

stalled by bank conflicts
Fast Path Total KBs written using the fast path

Complete Path Total KBs written using the complete path

to the profiler values as to how much serialization, parallelization or idleness is actually
occurring in a kernel. In this paper, we use these two sets of values of kernels to decide
the potential benefit for merging them.

For this transformation, the profiler counters used are described in Table 1. Some of
the counters are used to calculate the actual run times of the components and some of
the other counters are needed to calculate the theoretical values. Equations 1 and 2 refer
to the equations to calculate the theoretical time spent on each component. Equations
3, 4, 5 and 6 are the equations to calculate the actual time spent on each component.
The actual time spent on ALU and read operations is easily calculated since the pro-
filer directly reports the percent time the kernel is busy performing these operations.
The actual time spent using the LDS (local memory) and writing data to global mem-
ory is given as an estimation using some profiler counters together with the theoretical
equations since the profiler does not report direct busy percents on these operations.

Global Memory Time =
Total Bits

Bus Width×Memory Clock
(1)

LDS Time =
# Threads × LDS Instr

LDS per Clock× Engine Clock
(2)

Actual ALU Time = Kernel Time× ALU Busy
100

(3)

Actual Read Time = Kernel Time× Fetch Busy
100

(4)

Est. Actual Write Time = (1) + Kernel Time×Write Stalled (5)

Est. Actual LDS Time = (2) + Kernel Time× LDS Conflict (6)

For example, given a kernel with 98% ALU Busy and 22% Fetch (read) Busy coun-
ters we can determine that there is 1) overlap in ALU workload and global memory
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read workload (since together they are greater than 100%) and 2) 78% of the time the
memory read units are idle. Since this kernel is 98% ALU Busy this would indicate that
this kernel would not be a good candidate for merging with another ALU bound kernel
based on resource usage. This kernel is however only using the read units 22% of the
time and therefore would make a good candidate for merging with a read bound kernel
(since although adding ALU operations would increase the ALU execution time in an
already ALU bound kernel, it would hide memory latency from the second kernel). A
kernel with the opposite values, 98% Fetch Busy and 22% ALU Busy would be a good
candidate for merging with an ALU bound kernel (since the first kernel could hide some
ALU operations of the second kernel).

The resource usage of a kernel is represented as a vector of five values: an ALU
value, a global read value, a global write value, an LDS value and an overall ”overlap”
value. The vectors will be used as the decision factor for the purposes of choosing
which kernels to merge and the way of merging. The first four values represent how
much of the resource is being used by the kernel and the last value, the overlap value,
represents how much of that work is being done in parallel by the components. The
ALU value and global read value come directly from the counters ALU Busy and Fetch
Busy, respectively. The global write value and LDS value are the percents of equation 5
and equation 6 in reference to the Time counter, respectively, since the profiler does not
directly give the percent these units are busy. The overlap value is important because
it gives detail as to how much resource availability within that time exist among the
different components and how much room in each component is available for merging.
In the above example, if the overlap is 0 then the ALU is idle during the entire fetch time
and vice-versa. A kernel with a low overlap value makes for a better merge candidate
than a kernel with a higher overlap value. If a kernel is 98% ALU busy and 50% fetch
busy and has an overlap of 100% then there is only 50% of the total kernel time to do
extra fetch instructions.

The individual actual times are calculated and summed and the percent difference
is taken with regards to the Time counter. This calculation yields the overlap value
equation below:

Overlap = 1− Kernel Time
(3) + (4) + (5) + (6)

(7)

This equation is not a direct calculation for the actual overlap since it is not currently
possible to directly extract the level of component parallelization from the profiler that
has no such counter. Unfortunately, at this time, it is not possible to tell which compo-
nents’ runtimes overlap with which other components’ runtimes, making it not possible
to give an exact formula for estimating benefit based on resource usage. Instead, this
heuristic is used to give a quantifiable estimation of the overall overlap.

Each kernel candidate’s values, the five listed above, are summed together. For ex-
ample, given two kernels with the above properties would result in an ALU value of
.98 + .98 = 1.96 and a global read value of .22 + .22 = .44, so these would not be good
merging candidates because both kernels are very ALU bound. For example, if we as-
sume that these two kernels serialize the read and ALU operations (no overlap) then
only a speedup of the time of one kernel’s read operations can be hidden. However,
given one kernel with the properties mentioned above and one with opposite properties
the ALU value would be .98 + .22 = 1.20 and a global read value of .22 + .98 = 1.20,
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giving a much better balance and would hence be good merging candidates since the
fetch bound kernel could hide memory latency in the ALu bound kernel. For example,
if we again assume that these two kernels serialize the read and ALU operations then
the speedup could be .98 - .22 = .68 of the second kernels’ read time. What this means
is that if the first kernel spends 22% of it’s time reading data then 98% of it’s time
executing ALU operations, the second kernel can spend 68% of the first kernel’s time
reading data. Speedup depends on the level of overlap for each kernel, which in practice
is neither 0% or 100%, even in the first example the ALU is not busy 100% of the time.

4.2 Merging Based on ALU Packing Percentage

Another attribute that contributes to the merging decision is the ALU packing percent-
ages. This heuristic only applies to AMD’s VLIW architecture and, unlike merging
based on resource usage, would allow two ALU bound kernels to be merged and ob-
tain speedup. When merging kernels, one kernel’s ALU instructions might fit into the
empty VLIW slots of the other kernel, thereby reducing the overall number of ALU cy-
cles needed to execute the kernel. The compiler has control of how the VLIW instruc-
tions are packed and the size of the window the compiler uses when looking at which
VLIW instructions to pack. The window for packing analysis is between the point in
which two code blocks meet. In other words, the compiler’s window for packing can
only reach so far up and down and won’t pack a merged kernels’ instructions if they
are outside of that window. Greater code motion and interleaving of code statements
between the merged kernels could lead to better packing improvements but would, in
most instances, not overcome the negative effects of the increased register usage. It is
still possible to get speedup from this feature with those constraints. For example, given
two ALU bound kernels with 500 ALU instructions and 440 instructions merged over
2048*2048 threads, a speedup of 1.13 is obtained on AMD’s Radeon 5870. The deci-
sion to merge based on ALU packing percentage should be evaluated after the kernel
candidates have failed the test based on resource usage. Specifically, the ALU packing
heuristic is based on 1) the kernel’s packing percentage (lower is better) and 2) the ker-
nel’s ALU usage (higher is better). One of the other advantages to ALU packing is that
profile feedback is not needed, ALU packing can be determined statically through the
analysis of the assembly code of the program.

4.3 General Techniques of Kernel Merging

When merging kernels there are some good practices that generally adhere to most sce-
narios. One key issue when merging kernels is the impact the extra code will have on
register pressure. Register pressure is always a performance consideration when pro-
gramming for the GPU and, generally, the lower register pressure the better since more
threads can be queued which leads to more memory latency hiding. Ideally, since the
kernels are independent pieces of code, there should be little to no added register pres-
sure. The register count used in the merged code should be no more than the highest
register count among all kernels. This is true when the kernels are simply cascaded be-
cause all the registers used by the top kernel can then be reused by the bottom kernel,
so this technique does not significantly impact register pressure. There is no need to
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have both sets of registers reserved because registers can be reused from one kernel’s
code to the next when the kernels are merged. However, simply cascading the kernels is
not always optimal for performance. Every kernel has some output and when merging
kernels are simply cascaded the output of one kernel is put in the middle of the newly
merged kernel code. In most instances this causes the compiler to produce a wait ac-
knowledgment assembly instruction (WAITACK), which adds synchronization to the
kernel and causes slowdown because it waits for acknowledgments back from either
the read or write memory units. To remove this synchronization, the output of all the
merged kernels are moved toward the end of the kernel as shown in Figure 5. In this
way, the register pressure is not significantly affected. It’s not always possible to put
the outputs right next to each other for the kernels being merged, instead a best effort is
made while keeping register pressure as low as possible (without reducing occupancy)
and eliminating the (WAITACK) instruction. Similar to the principle of maximizing

Fig. 5. Moving Output of Merged Kernels

the grouping of outputs, every attempt should also be made to group the inputs. How-
ever, this is not due to a wait acknowledgment after a memory read but is driven by the
goal to group the memory reads in the same memory read clause, so as to reduce any
delay caused by switching between two different such clauses or any delay caused by
data dependence. Since the effect of this optimization might not be high, it is not per-
formed if the register count needs to be increased to the point of reducing the number of
wavefronts/warps. This is shown in Figure 6. For AMD GPUs, the equation to calculate
the number of simultaneous wavefronts is:

Simul WFs =
Regs per Thread− Temp Regs used

Regs Used
(8)

4.4 Fences and Barriers

There are many types of kernels which require synchronization and in these kernels
fences and barriers are used to implement this synchronization. There are two cases
to consider when merging kernels with synchronization primitives: both kernels have
synchronization or one kernel has synchronization. In the case of both kernels having
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Fig. 6. Moving Input of Merged Kernels

synchronization each kernel code is broken into blocks separated by these fences or
barriers. The blocks are then merged based on their sequence according to the blocks
as shown in Figure 7. The case of merging kernels with synchronization primitives is
a good example showing that a simple merging approach such as cascading can some-
times destroy performance. If the kernels were simply cascaded the total number of
fences or barriers would be the sum of the synchronizations of all the kernels being
merged. However, merging kernels at the granularity of code blocks that are synchro-
nized allows the number of synchronizations to remain the same as the kernel with the
highest number of synchronizations because the kernels now share the same barriers,
thus eliminating the need for duplicate barriers. For example, if each kernel performs
some operations and then synchronizes, in the merged kernel they can both perform
these operations at the same time and then synchronize together.

Fig. 7. Merging Kernels with Synchronization Points
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If only one kernel has synchronization operations, the kernel that does not have syn-
chronization is placed either before or after the synchronization operation depending
on which option gives the lowest register usage, which can be determined statically.
This technique does not exclude the other techniques mentioned above, meaning that
both moving the output and inputs is taken in to account when merging kernels with
synchronization.

4.5 Limiting Factors

The proposed kernel merging technique cannot be employed freely. There are a few
other limiting factors that should be considered when deciding whether to apply this
transformation or not. One limitation is caused by the possible changes of the dimen-
sions of a GPU kernel when it is merged with another kernel, and the consequent
changes in its memory access patterns. For example, changing the local dimension from
1D to 2D, or vice versa, could cause global memory conflicts or contention. Kernels
work best when they execute over the dimensions, both global and local, for which
they were coded. For some applications a specific local thread size and/or dimension
are needed for correct results, particularly for problems that utilize a certain block size
for local memory calculations. For example, matrix operations often fall into this cate-
gory. There are also applications that may have their performance effected by the local
dimension size when going from one dimension to larger dimensions due to a change
in memory access size based on the algorithm. For example, image filters often look
at the surrounding pixels and the size of the reads can change depending on the local
dimension, whether they are just looking forward and backward or forward, backward,
side to side and diagonally.

Our heuristic considers both local memory usage and local thread size. If a kernel
has a two dimension local thread size (block size) it will not be reduced when merging.
What this means is that if this kernel is merged with a one dimension local thread size
kernel, that kernel’s local thread size is changed to two dimensions, unless changing
the local thread size effects the fetch size performance (architecture dependent). Our
heuristic checks to make sure that the combined local memory usage does not exceed
the local memory available for the architecture, if it does then those kernels are not
merged.

5 Evaluation

We evaluate our code merging transformation technique on both AMD and NVIDIA
GPUs. All of the results presented in this paper were taken with maximum global size
and maximum memory usage allowed for the given problem, thereby imitating a large
data inter-process environment. The host-to-device transfer will not be addressed in our
evaluation since it does not impact the effectiveness of the proposed transformation in
one way or the other. The AMD GPU used was the 5870 which has the RV870 chip
and 1GB of memory. The NVIDIA GPU used was the GTX280 which has the GT200
chip and 1GB of memory. The specifications of both GPU architectures are mentioned
in the GPU Background section of this paper. The latest drivers and SDKs were used
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at the time of this writing, which was the AMD Stream SDK 2.2 and NVIDIA’s CU-
DA/OpenCL 3.1 Toolkit. All profiling information listed was obtained using the AMD
OpenCL profiler.

The benchmarks used for evaluation were taken from the AMD Stream SDK 2.2
OpenCL samples. The code is compatible with but might not be tuned for NVIDIA
hardware. However, since we use the same compiler options before and after our trans-
formation, the speedup validly reflect the effectiveness of our approach. The runtimes
are taken directly from these samples, unaltered for either GPU architecture. The merged
kernels were merged without modifying any kernel code other than the transformation
techniques outlined in the Transformation section of this paper. All of the speedups
shown were compared to the combined single benchmark times using the same global
size with an optimal local size. The benchmarks are one-dimension BlackScholes,
Mersenne Twister, SobelFilter and SimpleConvolution, as well as two-dimension DCT
and MatrixTranspose. The six benchmarks can be combined into 15 different pairs (C2

6 ),
and we tested all combinations that passed the heuristic tests.

The results for both the AMD 5870 and the NVIDIA GTX280 are listed in Figures
8 and 9, respectively. All the timing results were obtained using the respective profil-
ers: AMD’s Stream OpenCL profiler and NVIDIA’s OpenCL profiler. The AMD GPU
shows the most significant performance gain with an average speedup of 1.28 and a
maximum speedup of 1.53. Good speedups were also obtained for the GTX280 (aver-
age speedup 1.17 and max 1.37).

5.1 Effects of Resource Usage

Barring any of the mentioned limiting factors, the best performance results come from
the merging of ALU bound kernels with memory bound kernels. This conforms to our
transformation heuristics and allows for the greatest increase in overlap. For our bench-
marks, the DCT, MatrixTranspose and SimpleConvolution all had relatively low ALU
values and overlap values while the BlackScholes, SobelFilter and MersenneTwister
samples had relatively high ALU and overlap values, as can be seen in Table 2.

Table 2. Profiled Resource Utilization of Single Benchmark

Kernel ALU Read Write LDS Overlap

DCT 0.381 0.224 0.016 0.429 0.049
Black Scholes 0.997 0.222 0.110 0 0.241

Mersenne Twister 0.956 0.086 0.130 0.280 0.311
MaxTrans 0.025 0.006 0.010 0.057 -9.06

Simple Conv 0.434 0.334 0.026 0 -0.25
Sobel Filter 0.960 0.231 0.035 0 0.184

In Table 2 the kernels with a high ALU value also have a high overlap value since
these kernels are ALU bound and, combined with context switching, allows for a high
amount of memory latency hiding. This means that these kernels will merge well. The
DCT sample is LDS bound and therefore has little overlap and will merge well with a
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kernel that has either a high ALU value, a high read value or a high write value. Both
the Matrix Transpose and the Simple Convolution benchmarks show a negative overlap,
however. The profiler does not give the information about all aspects of execution that
might impact performance, such as unreported bank conflicts, LDS stalls, synchroniza-
tion stalls, and context switching latency. However, for the purpose of merging, since
we know the negative overlap is not caused by the ALU or read values, the negative
value itself indicates that there is heavy idleness.

The values are added to predict which kernels are good merge candidates. For exam-
ple, if two kernels are to be merged the speedup gained is going to decrease as any value
approaches 2. For example, for any combination of Black Scholes, Mersenne Twister
or Sobel Filter on NVIDIA 280 GTX, the sum of their ALU values readily approaches
the threshold and so the speedup is nominal. The ALU value for Matrix Transpose and
Black Scholes is just over 1, meaning that most of the other operations can be hidden
by ALU operations while being just slightly more ALU bound. This method is done for
each of the first four values with the same concept. For example, if two kernels had read
values of .99 then they wouldn’t be good merge candidates. The best merge candidates
are going to stress different components of the GPU, ideally a perfectly merged kernel
with have values of 1. This can be extended to multiple kernels (more than two) since
there are more than two components that work in parallel and most kernels won’t use
close to 100% of any of those components. For example, a high ALU value kernel could
be very well merged with a high read value kernel and a high LDS value kernel. This
can be extended to as many kernels as the heuristic will predict speedup.

Looking at Table 3, we can see that the Matrix Transpose kernel merges well with
almost every other kernel since it’s values are so small and it’s overlap is deeply nega-
tive, there’s plenty of opportunity for other kernels to do work during it’s runtime. This
is expressed in Table 3 by the improvement in the overlap value.

Table 3. Heuristics values for kernel combinations

Merged Kernel ALU Read Write LDS Overlap

DCT+Twister 0.770 0.141 0.104 0.370 0.278
DCT+Scholes 0.803 0.258 0.085 0.240 0.278

Scholes+MaxTrans 0.810 0.185 0.114 0.071 0.153
Scholes+Twister 0.978 0.139 0.144 0.206 0.318

Twister+MaxTrans 0.765 0.072 0.125 0.297 0.206
DCT+MaxTrans 0.219 0.128 0.018 0.294 -0.514
Scholes+Simple 0.854 0.263 0.098 0 0.177
Twister+Simple 0.836 0.138 0.122 0.248 0.257
DCT+Simple 0.351 0.217 0.018 0.233 -0.217

Simple+MaxTrans 0.122 0.077 0.013 0.037 -2.98
Scholes+Sobel 0.998 0.223 0.109 0 0.249
Twister+Sobel 0.940 0.106 0.131 0.266 0.308
DCT+Sobel 0.442 0.182 0.021 0.279 -0.079

Simple+Sobel 0.683 0.297 0.042 0 0.0227
Sobel+MaxTrans 0.131 0.029 0.013 0.038 -3.68
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5.2 The Effects of Barriers

Of the 6 benchmarks only the DCT and MatrixTranspose have barriers. Each of the
two has one barrier. These two kernels are merged according to the Fences and Barriers
subsection of the Transformation section. That is, the code segments that are separated
by barriers are interleaved in the merged kernel. When merging the DCT and Matrix-
Transpose, the code sections on each side of the barrier were put on the proper side of
the barrier in the merged kernels, so no extra barriers were needed. Despite the need for
synchronization, these samples give good performance on the AMD GPU when merged
with BlackScholes and MersenneTwister, both of whom are ALU bound. DCT and Ma-
trixTranspose also show speedup when merged together, both due to Matrix Transpose’s
low overlap value and interleaving the barriers.

5.3 Candidate Elimination

Table 3 shows all of the values for all possible combinations and indicates which com-
binations are good candidates for merging based on our heuristics. Both the Sobel Fil-
ter and Simple Convolution cause an increase in fetch size when going from a local
thread dimension size of one to two on AMD’s Radeon 5870 and the Sobel Filter on the
GTX280. The increase in runtime is greater than the expected benefit from the transfor-
mation so the kernels aren’t merged when it requires that they be transformed into two
dimensional problems. Additionally for the NVIDIA GPU, the combinations that were
eliminated were Scholes Twister, Scholes Sobel and Sobel Twister. All of these kernels
have high ALU values and since the NVIDIA GPU doesn’t use the VLIW architecture
there is no possible gain from ALU packing. This causes their runtimes to be serialized
and no improvement can be made. These three kernels might also be eliminated from
the AMD GPU if not for the possible gain in performance from an increase in ALU
packing. The advantage of ALU packing does not need to be profiled and can be at-
tained statically through the compiled ISA. The speedups from these combinations of
ALU bound kernels on the AMD GPU comes from ALU packing. The number of ALU
cycles saved in the Scholes Twister sample was about double that of the Sobel Twister
and Sobel Scholes samples. Figures 8 and 9 show the results of all the combinations that
pass the heuristics and are actually merged. The left column in all the figures shows the
execution time of kernels executed separately, and the right column shows the execution
time of the corresponding merged kernel.

Just for the purpose to show the effectiveness of our heuristics, Figure 10 shows all
of the results for the combinations of benchmarks that did not pass our heuristics. The
combinations in this figure have almost the same execution time for the merged kernel
as the combined execution time of the individual kernels. On the other hand, it also
shows that our transformation is “safe” in the sense that even if two wrong kernels are
merged, the performance will only marginally decrease.
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Fig. 8. AMD 5870 Results
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Fig. 9. NVIDIA GTX280 Results
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Fig. 10. Results of Poor Merging Candidates

6 Related Work and Conclusion

The performance effect of resource sharing and competition has been studied before in
the context of multi-threaded CPU programs. Resources in a CPU including cache, off-
chip bandwidth and memory are shared among many multi-tasked threads. A preview
of the phenomena of inter-thread conflict and thrashing is already observed in multi-
threaded machines such as the Intel Pentium 4 that supports hyperthreading [8,9], even
though there are only two threads that share a processor and other resources. [10,11,12]
explores the possibility of optimizing multiple programs that will run simultaneously on
multi-processors. Generally, the previous approaches are designed for multi-threaded
programs with a small number of threads and cannot be easily scaled up to hundreds
of threads that run in parallel on a GPU. Intra-thread optimizations for GPU have been
long studied. There are many well documented optimizations for GPU programs that are
applied at the thread or wavefront/warp level to improve the usage of GPU resources.
A recent example is a systematic framework to optimize for GPU memory hierarchy
that is proposed in [13]. A good overview of intra-thread optimizations can be found in
[14]. On the other hand, however, little is known about optimizations for resources at a
higher level such as at the kernel level.

In this paper we present a novel transformation that merges inter-process kernels
to improve program performance on the GPU. The proposed transformation is moti-
vated by the fact that while there are many techniques that optimize GPU kernels at
the thread level there are no techniques that help to increase resource utilization below
the kernel level. Concurrent kernels, while improving overall GPU usage by utilizing
more resource units at one time, does not help to improve individual resource units’
usage within the GPU. We discuss how the code merging transformation has minimal
effect on optimizations done at a finer granularity and can help increase performance
when combined with other optimizations. We give a set of heuristics for selecting which
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kernels to merge and how to merge them along with real world application results from
both major GPU vendors for a wide array of benchmarks.

In the future, we would like to extend this work to include larger benchmark appli-
cations that contain multiple kernels. We would also like to extend this work to include
results for Fermi machines and for the new 4-wide VLIW AMD machines, for both
the set of benchmarks presented and the planned future larger benchmark applications.
A comparison between the speedups of this technique and the speedups from using
concurrent kernel execution will also be included.
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Abstract. We present an automatic, static program transformation
that schedules and generates efficient memory transfers between a
computer host and its hardware accelerator, addressing a well-known
performance bottleneck. Our automatic approach uses two simple heuris-
tics: to perform transfers to the accelerator as early as possible and to
delay transfers back from the accelerator as late as possible. We im-
plemented this transformation as a middle-end compilation pass in the
pips/Par4All compiler. In the generated code, redundant communica-
tions due to data reuse between kernel executions are avoided. Instruc-
tions that initiate transfers are scheduled effectively at compile-time. We
present experimental results obtained with the Polybench 2.0, some Ro-
dinia benchmarks, and with a real numerical simulation. We obtain an
average speedup of 4 to 5 when compared to a naïve parallelization using
a modern gpu with Par4All, hmpp, and pgi, and 3.5 when compared
to an OpenMP version using a 12-core multiprocessor.

Keywords: Automatic parallelization, communication optimization,
source-to-source compilation, heterogeneous parallel architecture, gpu.

1 Introduction

Hybrid computers based on hardware accelerators are growing as a preferred
method to improve performance of massively parallel software. In 2008, Road-
runner, using PowerXCell 8i accelerators, headed the top500 ranking. The June
2011 version of this list and of the Green500 list both include in the top 5 three
hybrid supercomputers employing nvidia gpus. These highly parallel hardware
accelerators allow potentially better performance-price and performance-watts
ratios when compared to classical multi-core cpus. The same evolution is evident
in the embedded and mobile world (nvidia Tegra, etc.). In all, the near future
of high performance computing appears heterogeneous.

The disadvantage of heterogeneity is the complexity of its programming
model: the code executing on the accelerator cannot directly access the host
memory and vice-versa for the cpu. Explicit communications are used to ex-
change data, via slow io buses. For example, pci bus offers 8 GB/s. This is gen-
erally thought to be the most important bottleneck for hybrid systems [7,9,10].
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Though some recent architectures avoid explicit copy instructions, the low per-
formance pci bus is still a limitation.

We propose with Par4All [15] an open source initiative to unify efforts
concerning compilers for parallel architectures. It supports the automatic inte-
grated compilation of applications for hybrid architectures. Its basic compilation
scheme generates parallel and hybrid code that is correct, but lacks efficiency
due to redundant communications between the host and the accelerator.

Much work has been done regarding communication optimization for dis-
tributed computers. Examples include message fusion in the context of spdd

(Single Program Distributed Data) [12] and data flow analysis based on array
regions to eliminate redundant communications and to overlap the remaining
communications with compute operations [13].

We apply similar methods to offload computation in the context of a host-
accelerator relationship and to integrate in a parallelizing compiler a transfor-
mation that optimizes cpu-gpu communications at compile time. In this paper
we briefly present existing approaches addressing the issue of writing software
for accelerators (§ 2). We identify practical cases for numerical simulations that
can benefit from hardware accelerators. We show the limit of automatic trans-
formation without a specific optimization for communication (§ 3). We present
a new data flow analysis designed to optimize the static generation of memory
transfers between host and accelerator (§ 4). Then, using a 12-core Xeon multi-
processor machine with a nvidia Tesla gpu C2050, we evaluate our solution on
well known benchmarks [22,6]. Finally, we show that our approach scales well
with a real numerical cosmological simulation (§ 5).

2 Automatic or Semi-automatic Transformations for
Hardware Accelerators

Targeting hardware accelerators is hard work for a software developer when done
fully manually. At the highest level of abstraction and programmer convenience,
there are apis and C-like programming languages such as cuda, OpenCL. At
lower levels there are assembly and hardware description languages like vhdl.
nvidia cuda is a proprietary C-extension with some C++ features, limited to
nvidia gpus. The OpenCL standard includes an api that presents an abstrac-
tion of the target architecture. However, manufacturers can propose proprietary
extensions. In practice, OpenCL still leads to a code tuned for a particular
accelerator or architecture. Devices like fpgas are generally configured with
languages like vhdl. Tools like the Altera C-to-vhdl compiler c2h attempt to
raise the level of abstraction and convenience in device programming.

2.1 Semi-automatic Approach

Recent compilers comprise an incremental way for converting software toward
accelerators. For instance, the pgi Accelerator [23] requires the use of directives.
The programmer must select the pieces of source that are to be executed on the
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accelerator, providing optional directives that act as hints for data allocations
and transfers. The compiler generates all code automatically.

hmpp [5], the caps compiler, works in a similar way: the user inserts direc-
tives to describe the parameters required for code generation. Specialization and
optimization possibilities are greater, but with the same drawback as OpenCL

extensions: the resulting code is tied to a specific architecture.
Jcuda [24] offers a simpler interface to target cuda from Java. Data transfers

are automatically generated for each call. Arguments can be declared as IN,
OUT, or INOUT to avoid useless transfers, but no piece of data can be kept
in the gpu memory between two kernel launches. There have also been several
initiatives to automate transformations for OpenMP annotated source code to
cuda [20,21]. The gpu programming model and the host accelerator paradigm
greatly restrict the potential of this approach, since OpenMP is designed for
shared memory computer. Recent work [14,19] adds extensions to OpenMP

that account for cuda specificity. But, these lead again to specialized source
code.

These approaches offer either very limited automatic optimization of host-
accelerator communications or none at all. OpenMPC [19] includes an interpro-
cedural liveness analysis to remove some useless memory transfers, but it does
not optimize their insertion. Recently, new directives were added to the pgi [23]
accelerator compiler to precisely control data movements. These make programs
easier to write, but the developer is still responsible for designing and writing
communications code.

2.2 Fully Automatic Approach: Par4All

Par4All [15] is an open-source initiative that aims to develop a parallelizing
compiler based on source-to-source transformations. The current development
version (1.2.1) generates OpenMP from C and Fortran source code for shared
memory architecture and cuda or OpenCL for hardware accelerators includ-
ing nvidia and ati gpus. The automatic transformation process in Par4All

is heavily based on pips compiler framework phases [17,1]. The latter uses a
linear algebra library [2] to analyze, transform and parallelize programs using
polyhedral representations [11]. Parallel loop nests are outlined (i.e. extracted)
in new functions tagged as eligible on the gpu. They are called kernels in the
hybrid programming terminology. Convex array region analyses [8] are used to
characterize the data used and defined by each kernel.

Par4All often parallelizes computations with no resulting speedup because
communication times dominate. The new transformation presented here obtains
better speedups by improving communication efficiency.

3 Stars-PM Simulation

Small benchmarks like the Polybench suite [22] are limited to a few kernels,
sometimes surrounded with a time step loop. Thus they are not representative
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of a whole application when evaluating a global optimization. To address this
issue, we do not limit our experiments to the Polybench benchmarks, but we also
include Stars-PM, a particle mesh cosmological N -body code. The sequential
version was written in C at Observatoire Astronomique de Strasbourg and was
rewritten and optimized by hand using cuda to target gpus [3].

(a) A satellite triggers a bar and
spiral arms in a galactic disc.

int main ( int argc , char ∗argv [ ] ) {
/∗ Read data from a f i l e ∗/
in i t_data ( argv [ 1 ] ) ;
/∗ Main temporal loop ∗/
for ( t = 0 ; t < T; t += DT)

i t e r a t i o n ( . . . ) ;
/∗ Output r e s u l t s to a f i l e ∗/
write_data ( argv [ 2 ] ) ;

}

(b) Simplified scheme for simulations.

void i t e r a t i o n ( coord pos [NP ] [NP ] [NP] ,
coord ve l [NP ] [NP ] [NP] ,
f loat dens [NP ] [NP ] [NP] ,
int data [NP ] [NP ] [NP] ,
int h i s t o [NP ] [NP ] [NP] ) {

/∗ Cut the t r i−dimensionnal space
∗ in a regu lar mesh ∗/

d i s c r e t i s a t i o n ( pos , data ) ;
/∗ Compute densi ty on the gr id ∗/
histogram ( data , h i s t o ) ;
/∗ Compute po t e n t i a l on the mesh
∗ in the Fourier space ∗/

po t en t i a l ( h i sto , dens ) ;
/∗ For each dimension , compute the
∗ force and then update the speed ∗/

f o r c ex ( dens , f o r c e ) ;
updateve l ( ve l , f o r c e , data , 0 , dt ) ;
f o r c ey ( dens , f o r c e ) ;
updateve l ( ve l , f o r c e , data , 1 , dt ) ;
f o r c e z ( dens , f o r c e ) ;
updateve l ( ve l , f o r c e , data , 2 , dt ) ;
/∗ Move pa r t i c l e s ∗/
updatepos ( pos , v e l ) ;

}

(c) Time step in the cosmological simulation.

Fig. 1. Outline of the Stars-PM cosmological simulation code

This simulation is a model of gravitational interactions between particles in
space. It represents three-dimensional space with a discrete grid. Initial condi-
tions are read from a file. A sequential loop iterates over successive time steps.
Results are computed from the final grid state and stored in an output file. This
general organization is shown in the simplified code shown in Fig. 1b. It is a
common technique in numerical simulations. The processing for a time step is
illustrated Fig. 1c.

3.1 Transformation Process

The automatic transformation process in Par4All is based on parallel loop nest
detection. Loop nests are then outlined to obtain kernel functions.

The simplified code for function discretization(pos, data) is provided
before and after the transformation in Figs. 2 and 3 respectively. The loop nest
is detected as parallel and selected to be transformed into a kernel. The loop
body is outlined in a new function that will be executed by the gpu, and the loop
nest is replaced by a call to a kernel launch function. pips performs several array
regions analyses: W (resp. R) is the region of an array written (resp. read) by
a statement or a sequence of statements, for example a loop or a function. pips
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void d i s c r e t i z a t i o n ( coord pos [NP ] [NP ] [NP] ,
int data [NP ] [NP ] [NP] ) {

int i , j , k ;
f loat x , y , z ;
for ( i = 0 ; i < NP; i++)

for ( j = 0 ; j < NP; j++)
for (k = 0 ; k < NP; k++) {

x = pos [ i ] [ j ] [ k ] . x ;
y = pos [ i ] [ j ] [ k ] . y ;
z = pos [ i ] [ j ] [ k ] . z ;
data [ i ] [ j ] [ k ] = ( int ) ( x/DX)∗NP∗NP

+ ( int ) ( y/DX)∗NP
+ ( int ) ( z/DX) ;

}
}

Fig. 2. Sequential source code for function discretization

also computes IN and OUT [8] regions. These are conservative over-estimates
of the respective array areas used (IN ) and defined (OUT ) by the kernel. IN
regions must be copied from host to gpu before kernel execution. OUT regions
must be copied back afterward.

Looking at function discretization (Fig. 2) we observe that the pos array
is used in the kernel, whereas data array is written. Two transfers are generated
(Fig. 3). One ensures that data is moved to the gpu before kernel execution and
the other copies the result back to the host memory after kernel execution.

void d i s c r e t i z a t i o n ( coord pos [NP ] [NP ] [NP] , int data [NP ] [NP ] [NP] ) {
// Pointers to memory on acce l e ra tor :
coord (∗ pos0 ) [NP ] [NP ] [NP] = ( coord ( ∗ ) [NP ] [NP ] [NP] ) 0 ;
int (∗ data0 ) [NP ] [NP ] [NP] = ( int ( ∗ ) [NP ] [NP ] [NP] ) 0 ;
// Al l oca t ing b u f f e r s on the GPU and copy in
P4A_accel_malloc( ( void ∗∗) &data0 , s izeof ( int )∗NP∗NP∗NP) ;
P4A_accel_malloc( ( void ∗∗) &pos0 , s izeof ( coord )∗NP∗NP∗NP) ;
P4A_copy_to_accel ( s izeof ( coord )∗NP∗NP∗NP, pos , ∗pos0 ) ;
P4A_call_accel_kernel_2d ( d i s c r e t i z a t i on_ke r ne l ,NP,NP,∗ pos0 ,∗ data0 ) ;
// Copy out and GPU bu f f e r s dea l l oca t ion
P4A_copy_from_accel ( s izeof ( int )∗NP∗NP∗NP, data , ∗data0 ) ;
P4A_accel_free ( data0 ) ;
P4A_accel_free ( pos0 ) ;

}
// The kerne l corresponding to se quent ia l loop body
P4A_accel_kernel d i s c r e t i z a t i o n_ke r ne l ( coord ∗pos , int ∗data ) {

int k ; f loat x , y , z ;
int i = P4A_vp_1 ; // P4A_vp_∗ are mapped from CUDA BlockIdx .∗
int j = P4A_vp_0 ; // and ThreadIdx .∗ to loop ind ic e s
// I t e ra t ion clamping to avoid GPU i t e r a t i on overrun :
i f ( i<=NP&&j<=NP)

for (k = 0 ; k < NP; k += 1) {
x = (∗ ( pos+k+NP∗NP∗ i+NP∗ j ) ) . x ;
y = (∗ ( pos+k+NP∗NP∗ i+NP∗ j ) ) . y ;
z = (∗ ( pos+k+NP∗NP∗ i+NP∗ j ) ) . z ;
∗( data+k+NP∗NP∗ i+NP∗ j ) = ( int ) ( x/DX)∗NP∗NP

+ ( int ) ( y/DX)∗NP
+ ( int ) ( z/DX) ;

}
}

Fig. 3. Code for function discretization after automatic gpu code generation
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3.2 Limit of This Approach

Data exchanges between host and accelerator are executed as dma transfers
between ram memories across the pci-express bus, which currently offers a the-
oretical bandwidth of 8 GB/s. This is really small compared to the gpu memory
bandwidth which is close to 150 GB/s. This low bandwidth can annihilate all
gain obtained when offloading computations in kernels, unless they are really
compute intensive.

With our hardware (see § 5), we measure up to 5.6GB/s from the host to
the gpu, and 6.2GB/s back. This is obtained for a few tens of MB, but de-
creases dramatically for smaller blocks. Moreover this bandwidth is reduced by
more than a half when the transfered memory areas are not pinned—physically
contiguous and not subject to paging by the virtual memory manager. Figure 5
illustrates this behavior.

In our tests, using as reference a cube with 128 cells per edge and as many
particles as cells, for a function like discretization, one copy to the gpu for
particle positions is a block of 25 MB. One copy back for the particle-to-cell
association is a 8 MB block. The communication time for these two copies is
about 5 ms. Recent gpus offer ecc hardware memory error checking that more
than doubles time needed for the same copies to 12 ms. Each buffer allocation
and deallocation requires 10 ms. In comparison, kernel execution requires only
0.37 ms on the gpu, but 37 ms on the cpu. We note that the memory transfers
and buffer allocations represent the largest potential for obtaining high speedups,
which motivates our work.

3.3 Observations

In each time step, function iteration (Fig. 1c) uses data defined by a previ-
ous one. The parallelized code performs many transfers from the gpu followed
immediately by the opposite transfer.

Our simulation (Fig. 1b) exemplifies the common pattern of data dependencies
between loop iterations, where the current iteration uses data defined during
previous ones. There is clear advantage in allowing such data to remain on the
gpu, with copies back to the host only as needed for checkpoints and final results.

4 Optimization Algorithm

We propose a new analysis for the compiler middle-end to support efficient host-
gpu data copying. The host and the accelerator have separated memory spaces,
this analysis annotates internally the source program with information about
where up-to-date copies of data lie—in host and/or gpu memory. This allows
additional transformation to statically determine good places to insert asyn-
chronous transfers with a simple strategy: Launch transfers from host to gpu

as early as possible and launch those from gpu back to host as late as possible,
while still guaranteeing data integrity. Additionally, we avoid launching transfers



Static Compilation Analysis for Host-Accelerator 243

inside loops wherever possible. We use a heuristic to place transfers as high as
possible in the call graph and in the ast.1

4.1 Definitions

The analysis computes the following sets for each statement:

– U>
A is the set of arrays known to be used next (>) to the accelerator;

– D<
A is the set of arrays known to be lastly (<) defined on the accelerator;

– TH→A is the set of arrays to transfer to the accelerator memory space im-
mediately after the statement;

– TA→H is the set of arrays to transfer from the accelerator on the host im-
mediately before the statement.

4.2 Intraprocedural Phase

The analysis begins with the D<
A set in a forward pass. An array is defined on

the gpu for a statement S iff this is also the case for its immediate predecessors
in the control flow graph and if the array is not used or defined by the host, i.e.
is not in the set R(I) or W(I) computed by pips:

D<
A(S) =

⎛
⎝ ⋂

S′∈pred(S)

D<
A(S

′)

⎞
⎠−R(S)−W(S) (1)

The initialization is done at the first kernel call site Sk with the arrays defined
by the kernel k and used later (OUT (Sk)). The following equation is used at
each kernel call site:

D<
A(Sk) = OUT (Sk)

⋃⎛
⎝ ⋂

S′∈pred(Sk)

D<
A(S

′)

⎞
⎠ (2)

A backward pass is then performed in order to build U>
A . For a statement S, an

array has its next use on the accelerator iff this is also the case for all statements
immediately following in the control flow graph, and if it is not defined by S.

U>
A (S) =

⎛
⎝ ⋃

S′∈succ(S)

U>
A (S′)

⎞
⎠−W(S) (3)

Just as D<
A , U>

A is initially empty and is initialized at kernel call sites with
the arrays necessary to run the kernel, IN (Sk), and the arrays defined by the
kernel, W(Sk). These defined arrays have to be transferred to the gpu if we
cannot established that they are entirely written by the kernel. Otherwise, we
might overwrite still-valid data when copying back the array from the gpu after
kernel execution:
1 PIPS uses a hierarchical control flow graph [17,1] to preserve as much as possible

of the ast. However, to simplify the presentation of the analyses, we assume that a
cfg is available.
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U>
A (Sk) = IN (Sk)

⋃
W(Sk)

⋃⎛
⎝ ⋃

S′∈succ(Sk)

U>
A (S′)

⎞
⎠ (4)

An array must be transferred from the accelerator to the host after a statement
S iff its last definition is in a kernel and if it is not the case for at least one of
the immediately following statements:

TA→H(S) = D<
A(S)−

⋂
S′∈succ(S)

D<
A(S

′) (5)

This set is used to generate a copy operation at the latest possible location.
An array must be transferred from the host to the accelerator if its next use

is on the accelerator. To perform the communication at the earliest, we place its
launch immediately after the statement that defines it, i.e. the statement whose
W(S) set contains it.

TH→A(S) = W(S)
⋂⎛

⎝ ⋃
S′∈succ(S)

U>
A (S′)

⎞
⎠ (6)

4.3 Interprocedural Extension

Kernel calls are potentially localized deep in the call graph. Consequently, a reuse
between kernels requires interprocedural analysis. Function iteration (Fig. 1c)
illustrates this situation, each step corresponds to one or more kernel executions.

Our approach is to perform a backward analysis on the call graph. For each
function f , summary sets D<

A(f) and U>
A (f) are computed. They summarize

information about the formal parameters for the function. These sets can be
viewed as contracts. They specify a data mapping that the call site must conform
to. All arrays present in U>

A (f) must be transferred to the gpu before the call,
and all arrays defined in D<

A(f) must be transferred back from the gpu before
any use on the host. These sets are required in the computation of D<

A and U>
A

when a call site is encountered. Indeed at a call site c for a function f , each
argument of the call that corresponds to a formal parameter present in U>

A must
be transferred to the gpu before the call, because we know that the first use in
the called function occurs in a kernel. Similarly, an argument that is present in
D<

A has been defined in a kernel during the call and not already transferred back
when the call ends. This transfer can be scheduled later, but before any use on
the host.

Equations 1 and 3 are modified for call site by adding a translation operator,
transf→c, between arguments and formal parameters:

D<
A(c) =

(
transf→c(D<

A(f))
⋃⎛

⎝ ⋂
S′∈pred(c)

D<
A(S

′)

⎞
⎠)

−R(c)−W(c) (7)

U>
A (c) =

(
transf→c(U>

A (f))
⋃⎛

⎝ ⋃
S′∈succ(c)

U>
A (S′)

⎞
⎠)

−W(c) (8)
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On the code Fig. 4, we observe, comparing the result of the interprocedural
optimized code with the very local approach (Fig. 3), that all communications
and memory management (allocation/deallocation) have been eliminated from
the main loop.

void d i s c r e t i z a t i o n ( coord pos [NP ] [NP ] [NP] ,
int data [NP ] [NP ] [NP] ) {

//generated var iab l e
coord ∗pos0 = P4A_runtime_resolve ( pos ,NP∗NP∗NP∗ s izeof ( coord ) ) ;
int ∗data0 = P4A_runtime_resolve ( pos ,NP∗NP∗NP∗ s izeof ( int ) ) ;
// Cal l kerne l
P4A_call_accel_kernel_2d ( d i s c r e t i z a t i on_ke rne l ,

NP, NP, ∗pos0 , ∗data0 ) ;
}
int main ( int argc , char ∗argv [ ] ) {

/∗ Read data from input f i l e s ∗/
in i t_data ( argv [ 1 ] , . . . . ) ;
P4A_runtime_copy_to_accel( pos , . . . ∗ s izeof ( . . . ) ) ;
/∗ Main temporal moop ∗/
for ( t = 0 ; t < T; t+=DT)

i t e r a t i o n ( . . . ) ;
/∗ Output r e su l t s to a f i l e ∗/
P4A_runtime_copy_from_accel( pos , . . . ∗ s izeof ( . . . ) ) ;
write_data ( argv [ 2 ] , . . . . ) ;

}

Fig. 4. Simplified code for functions discretization and main after interprocedural
communication optimization

4.4 Runtime Library

Our compiler Par4All includes a lightweight runtime library that allows to ab-
stract from the target (OpenCL and cuda). It also supports common functions
such as memory allocation at kernel call and memory transfer sites. It maintains
a hash table that maps host addresses to gpu addresses. This allows flexibility
in the handling of the memory allocations. Using it, the user call sites and his
function signatures can be preserved.

The memory management in the runtime does not free the gpu buffers im-
mediately after they have been used, but preserves them as long as there is
enough memory on the gpu. When a kernel execution requires more memory
than is available, the runtime frees some buffers. The policy used for selecting
a buffer to free can be the same as for cache and virtual memory management,
for instance lru or lfu.

Notice in Fig. 4 the calls to the runtime that retrieve addresses in the gpu

memory space for arrays pos and data.

5 Experiments

We ran several experiments using the Polybench Suite, Rodinia, and Stars-PM.
The Rodinia’s tests had to be partially rewritten to match Par4All coding
guidelines. Specifically, we performed a one-for-one replacement of C89 array
definitions and accesses with C99 variable length array constructs. This was
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necessary for the automatic parallelization process of Par4All to succeed and
provide good input to our communication optimization later in the compilation
chain. All benchmarks presented here, including Stars-PM, are available with
the current development version of Par4All [15].

5.1 Metric

The first question is: what should we measure? While speedups in terms of cpu

and wall clock time are most important to users if not to administrators, many
parameters impact the results obtained. Let us consider for example the popular
hotspot benchmark [16]. Its execution time depends on two parameters: the matrix
size and the number of time steps. In the general context of gpu the matrix size
should be large enough to fully load the gpu. In the context of this paper the time
step parameter is at least as important since we move data transfers out of the
time step loop. Figure 6 shows how hotspot is affected by the number of time step
iterations and approaches an asymptote, acceleration ranges from 1.4 to 14. The
single speedup metric is not enough to properly evaluate our scheme.

We believe that a more objective measurement for evaluating our approach
is the number of communications removed and the comparison with a scheme
written by an expert programmer. Focusing on the speedup would also emphasize
the parallelizer capabilities.

We propose to count the number of memory transfers generated for each
version of the code. When the communication occurs in a loop this metric is
parametrized by the surrounding loop iteration space. For instance many bench-
marks are parametrized with a number of time steps t, thus if 3 memory transfers
are present in the time step loop, and 2 are outside of the loop, the number of
communication will be expressed as 3 × t + 2. Sometimes a loop that iterate
over a matrix dimension cannot be parallelized, either intrinsically or because
of limited capacity of the compiler. Memory transfers in such loop have a huge
performance impact. In this case we use n to emphasize the difference with the
time step iteration space.

5.2 Measurements

Figure 7 shows our results on 20 benchmarks from Polybench suite, 3 from
Rodinia, and the application Stars-PM (§ 3). Measurements where performed
on a machine with two Xeon Westmere X5670 (12 cores at 2.93 GHz) and a
nvidia gpu Tesla C2050. The OpenMP versions used for the experiments are
generated automatically by the parallelizer and are not manually optimized.

Kernels are exactly the same for the two automatically generated versions
using Par4All. We used the nvidia cuda sdk 4.0, and gcc 4.4.5 with -O3.

For Polybench, we forced Par4All to ignore array initializations because they
are both easily parallelized and occur before any of the timed algorithms. Our
normal optimizer configuration would thus have “optimized away” the initial
data transfer to the gpu within the timed code. The measurements in Fig. 7
includes all communications.
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Some of the Polybench test cases use default sizes that are too small to amor-
tize even the initial data transfer to the accelerator. Following Jablin et al. [18],
we adapted the input size to match capabilities of the gpu.

For the cosmological simulation, the communication optimization speeds up
execution by a factor of 14 compared to the version without our optimization,
and 52 compared to the sequential code.

We include results for hmpp and pgi. Only basic directives were added by
hand. We didn’t use more advanced options of the directives, thus the compiler
doesn’t have any hints on how to optimize communications.

The geometric mean over all test cases shows that this optimization improves
by a 4 to 5 factor over Par4All, pgi and hmpp naïve versions.

When counting the number of memory transfers, the optimized code performs
very close to a hand written mapping. One noticeable exception is gramschmidt.
Communications cannot be moved out of any loop due to data dependencies
introduced by some sequential code. Some aggressive transformations in the
compiler might help by accepting a slower generated code but allowing data to
stay on the gpu. This would still be valuable if the slowdown is significantly lower
than the communication overhead. The difficulty for the compiler is to evaluate
the slowdown and to attempt parallelization only if optimized communications
lead to a net performance increase. This is beyond our current capabilities.

5.3 Comparison with Respect to a Fully Dynamic Approach

While our aim has been to resolve the issue of communication optimization at
compile time, other approaches are addressing it entirely at runtime. This is the
case for the StarPU [4] library.

We took an example included with the Par4All distribution and rewrote
it using StarPU in order to evaluate the overhead of the dynamic management
of communication compared to our static scheme. This example performs 400
iterations of a simple Jacobi scheme on a 500× 500 pixels picture loaded from a
file and stores the result in another file.
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We were able to confirm that StarPU removed all spurious communications,
just as our static scheme does. The manual rewrite using StarPU and a gpu

with cuda offers a 4.7 speedup over the sequential version. This is nearly 3
times slower than our optimized scheme, which provides a 12.8 acceleration.

Although StarPU is a library that has capabilities ranging far beyond the
issue of optimizing communications, the overhead we measured confirmed that
our static approach is relevant.

6 Related Work

Among the compilers that we evaluated § 2.1, none implements such an auto-
matic optimization. While Lee et al. address this issue [20, §.4.2.3], their work
is limited to liveness of data and thus quite similar to our unoptimized scheme.
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Our proposal is independent of the parallelizing scheme involved, and is
applicable to systems that transform OpenMP in cuda or OpenCL like OM-

PCuda [21] or OpenMP to gpu [20]. It’s also relevant for directives-based com-
piler, such as Jcuda and hicuda [14]. It would also complete the work done on
OpenMPC [19] by not only removing useless communications but moving them
up in the call graph. Finally it would free the programmer of the task of adding
directives to manage data movements in hmpp [5] and pgi Accelerator [23].

In a recent paper [18], Jablin et al. introduce cgcm, a system targeting ex-
actly the same issue. cgcm, just like our scheme is focused on transferring full
allocation units. While our granularity is the array, cgcm is coarser and consid-
ers a structure of arrays as a single allocation unit. While our decision process is
fully static, cgcm takes decisions dynamically. It relies on a complete runtime to
handle general pointers to the middle of any heap-allocated structure, which we
do not support at this time. We obtain similar overall results, and used the same
input sizes. Jablin et al. measured a less-than 8 geometric mean speedup vs. ours
of more than 14. However, a direct comparison of our measurement is hazardous.
We used gcc while Jablin et al. used Clang, and we made our measurements
on a Xeon Westmere while he uses an older Core2Quad Kentsfield. He optimzed
the whole program and measured wall clock time while we prevent optimization
accross initialization functions and excluded them from our measures. Finally, he
used a llvm ptx backend for gpu code generation, while we used nvidia nvcc

compilation chain. The overhead introduced by the runtime system in cgcm is
thus impossible to evaluate.

7 Conclusion

With the increasing use of hardware accelerators, automatic or semi-automatic
transformations assisted by directives take on an ever greater importance.

We have shown that the communication impact is critical when targeting
hardware accelerators for massively parallel code like numerical simulations. Op-
timizing data movements is thus a key to high performance.

We introduced an optimization scheme that addresses this issue, and we im-
plemented it in pips and Par4All.

We have experimented and validated our approach on 20 benchmarks of the
Polybench 2.0 suite, 3 from Rodinia, and on a real numerical simulation code.
The geometric mean for our optimization is over 14, while a naïve paralleliza-
tion using cuda achieves 2.22, and the OpenMP loop parallelization provides
3.9. While some benchmarks are not representative of a whole application, we
measured on a real simulation an acceleration of 12 compared to a naïve paral-
lelization and 8 compared to an OpenMP version on two 6-core processors. We
found that our scheme performs very close to a hand written mapping.

We plan to improve the cache management in the runtime. We can go fur-
ther than classic cache management algorithms because, unlike hardware cache,
our runtime is software managed and can be dynamically controlled. Data flow
analyses provide knowledge on the potential future execution of the program.
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This can be used in metrics to choose the next buffer to free from the cache.
Cheap computations unlikely to be used again should be chosen first. Costly
results that are certain to be used should be freed last.

The execution times measured with multi-core processors show that attention
should be paid to work sharing between hosts and accelerators rather than keep-
ing the host idle during the completion of a kernel. Multi-core and multi-gpu

configurations are another track to explore, with new requirements to determine
optimal array region transfers and computation localization.
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Abstract. Task-based approaches are popular for the development of parallel pro-
grams for several reasons. They provide a decoupling of the parallel specification
from the scheduling and mapping to the execution resources of a specific hard-
ware platform, thus allowing a flexible and individual mapping. For platforms
with a distributed address space, the use of parallel tasks, instead of sequential
tasks, adds the additional advantage of a structuring of the program into commu-
nication domains that can help to reduce the overall communication overhead. In
this article, we consider the parallel programming model of communicating par-
allel tasks (CM-tasks), which allows both task-internal communication as well as
communication between concurrently executed tasks at arbitrary points of their
execution. We propose a corresponding scheduling algorithm and describe how
the scheduling is supported by a transformation tool. An experimental evaluation
of several application programs shows that using the CM-task model may lead
to significant performance improvements compared to other parallel execution
schemes.

1 Introduction

Task-based approaches have the advantage to allow a decoupling of the computation
specification for a given application algorithm from the actual mapping and execution
on the computation resources of a parallel target platforms. Many different variations
of task-based programming systems have been investigated. An important distinction
is whether the individual tasks are executed sequentially on a single execution resource
(called single-processor tasks, S-tasks) or whether they can be executed on multiple
execution resources (called parallel tasks or multi-processor tasks, M-tasks). S-tasks are
often used for program development in shared address spaces, including single multi-
core processors, and allow a flexible program development. Efficient load balancing
methods can easily be integrated into the runtime system. Examples for such approaches
are the task concepts in OpenMP 3.0 [14], the TPL library for .NET [13], or the KOALA
framework [10], which provides adaptive load balancing mechanisms. For distributed
address spaces, the main challenge is to obtain a distributed load balancing of tasks with
a low communication overhead.

Parallel tasks are typically more coarse-grained than S-tasks, since they are meant to
be executed by multiple execution units. Each parallel task captures the computations of
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a specific portion of the application program and can itself be executed by an arbitrary
number of execution resources, resulting in a mixed parallel execution. The execution
resources may need to exchange information or data during the execution of a parallel
task, and thus each parallel task may also comprise task-internal communication. Paral-
lel tasks may have dependencies which then force a specific execution order. Some of
the parallel tasks of the program may be independent of each other and can therefore
be executed concurrently to each other. In that case, an important decision of the load
balancing is dedicated to the question how many and which execution resources should
be assigned to each of the concurrently running parallel tasks.

The interaction between different parallel tasks is captured by input-output relations,
i.e., one parallel task may produce output data that can be used by another parallel task
as input. This parallel programming model is used, for example, by the Paradigm com-
piler [17], the TwoL model [19], and many other approaches [1,8,20]. In this article, we
consider an extended model which allows communication also between parallel tasks
that are executed concurrently. This programming model is called communicating M-
tasks (CM-tasks) [7] and provides more flexibility for the parallel task structuring due to
an additional kind of interaction between parallel tasks. Interactions can be captured by
communication between the parallel tasks at specific communication points. For CM-
tasks, it must be ensured that tasks with communication interactions are executed at the
same time and not one after another. This restricts the execution order of CM-tasks, but
provides the possibility for an efficient organization of the communication between the
CM-tasks.

This article concentrates on the scheduling of CM-tasks. In particular, the following
contributions are made. A new scheduling algorithm for the execution of CM-task pro-
grams is proposed that is able to deal with the specific constraints of the scheduling
problem for CM-task graphs. In order to support the programming with CM-tasks and
especially the new CM-task scheduling algorithm, we have integrated the scheduling
into a compiler framework. The compiler framework generates an efficient executable
MPI program from a CM-task specification provided by the application programmer.
An experimental evaluation for several complex application programs shows that the
scheduling algorithm for CM-tasks can lead to significant performance improvements
compared to execution schemes resulting from other schedules. Applications from sci-
entific computing offering a modular structure of different program components can
benefit tremendously from the CM-task structure and the programming support. Espe-
cially, the separation of specification and execution scheme for a specific hardware leads
to a portability of efficiency.

The rest of the article is organized as follows. Section 2 gives an overview of the
CM-task programming model and defines the scheduling problem for CM-task graphs.
Section 3 proposes a scheduling algorithm and Section 4 describes the integration into a
compiler tool. Section 5 presents an experimental evaluation. Section 6 discusses related
work and Section 7 concludes the article.

2 CM-Task Programming Model

A CM-task program consists of a set of cooperating CM-tasks. Each CM-task imple-
ments a specific part of the application and is implemented to be executable on an ar-
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bitrary number of processors. Each CM-task operates on a set of input variables that it
expects upon its activation and produces a set of output variables that are available after
its termination. Moreover, communication phases can be defined in which data can be
exchanged with other CM-tasks (that are to be executed concurrently). Dependencies
between CM-tasks based on input-output relations and communication interactions bet-
ween CM-tasks during their execution are captured by the following relations:

• P-relation: A P-relation (precedence relation) from a CM-task A to a CM-task B ex-
ists if A provides output data required by B as input before B can start its execution.
This relation is not symmetric and is denoted by AδPB.

• C-relation: A C-relation (communication relation) between CM-tasks A and B ex-
ists, if A and B have to exchange data during their execution. This relation is sym-
metric and is denoted by AδCB.

2.1 CM-Task Scheduling Problem

Fig. 1. Example for a CM-task
graph with precedence edges (anno-
tation p) and communication edges
(annotation c).

A CM-task program can be described by a CM-task
graph G = (V,E) where the set of nodes V =
{A1, . . . , An} represents the set of CM-tasks and the
set of edges E represents the (C and P) relations bet-
ween the CM-tasks. The set E can be partitioned into
two disjoint sets EC andEP with E = EP∪EC . EP

contains directed edges representing the P-relations
defined between CM-tasks. There is a precedence
edge from CM-task A to CM-task B in EP if an
input-output relation from A to B exists. EC con-
tains bidirectional edges representing the C-relations
defined between CM-tasks. An example for a CM-
task graph is shown in Fig. 1.

The execution times of CM-tasks are assumed to
be given by a function

T : V × {1, . . . , q} → R

where q is the size of the processor set Q of a (homogeneous) target platform. The
runtime T (A, |R|) of a CM-task A executed on a subset R ⊆ Q comprises the com-
putation time, the internal communication time, as well as the time for data exchanges
with simultaneously running CM-tasks with which A has a C-relation. The data ex-
change costs are included in the function T because the corresponding communication
operations are implemented within the CM-tasks. In practice, T can be an analytical
function in closed form determined by curve fitting, see [3,12] for an overview on the
performance model. In the following, we assume that T is a non-increasing function in
the number of processors used, i.e., using more processors to execute a CM-task does
not lead to an increase in execution time. The P-relation edges of the CM-task graph
are associated with communication costs

TP : EP × {1, . . . , q} × {1, . . . , q} → R
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where TP (e, |R1|, |R2|) with e = (A1, A2) denotes the communication costs between
CM-task A1 executed on set R1 of processors and CM-task A2 executed on set R2

of processors with R1, R2 ⊆ Q. These communication costs may result from a re-
distribution operation that is required between CM-tasks A1 and A2 with A1δPA2 if
R1 	= R2 or if R1 = R2 and A1 provides its output in a different data distribution as
expected by A2. The re-distribution costs depend on the number of data elements that
have to be transmitted from R1 to R2 and the communication performance of the target
platform.

A schedule S of a given CM-task program maps each CM-task Ai, i = 1, . . . , n, to
an execution time interval with start time si and a processor set Ri with Ri ⊆ Q, i.e.,

S : {A1, . . . , An} → R× 2Q with S(Ai) = (si, Ri).

2.2 Scheduling Constraints

The P- and C-relations of a program lead to the following scheduling constraints:

(I) Consecutive time intervals. If there is a P-relation AiδPAj between two CM-tasks
Ai and Aj , i, j ∈ {1, . . . n}, i 	= j, then the execution of Aj cannot be started before
the execution of Ai and all required data re-distribution operations between Ai and Aj

have been terminated. Thus, the following condition must be fulfilled:

si + T (Ai, |Ri|) + TP (e, |Ri|, |Rj |) ≤ sj with e = (Ai, Aj).

(II) Simultaneous time intervals. If there is a C-relation AiδCAj , i, j ∈ {1, . . . , n},
i 	= j, then Ai and Aj have to be executed concurrently on disjoint sets of processors
Ri and Rj , i.e., the following conditions must be fulfilled:

Ri ∩Rj = ∅ and [si, si + T (Ai, |Ri|)] ∩ [sj , sj + T (Aj , |Rj |)] 	= ∅.

The overlapping execution time intervals guarantee that the CM-tasks Ai and Aj can
exchange data during their execution.

(III) Arbitrary execution order. If there are no P- or C-relations between CM-tasks Ai

and Aj , i, j ∈ {1, . . . , n}, i 	= j, then Ai and Aj can be executed in concurrent or in
consecutive execution order. For a concurrent execution, disjoint processor sets Ri and
Rj have to be used, i.e.,

if [si, si + Tg(Ai, |Ri|)] ∩ [sj , sj + Tg(Aj , |Rj |)] 	= ∅ then Ri ∩Rj = ∅

where Tg comprises the execution time of Ai as well as the communication time for
data exchanges with successively executed CM-tasks Ak with AiδPAk , i.e.,

Tg(Ai, |Ri|) = T (Ai, |Ri|) +
n∑

k=1

TP (e, |Ri|, |Rk|) with e = (Ai, Ak) ∈ EP .
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In the following, a schedule that meets the constraints (I) - (III) is called feasible. A
feasible schedule S leads to a total execution time Tmax(S) that is defined as the point
in time when all CM-tasks have been finished, i.e.:

Tmax(S) = max
i=1,...,n

{si + Tg(Ai, |Ri|)}.

The problem of finding a feasible schedule S that minimizes Tmax(S) is called schedul-
ing problem for a CM-task program.

3 Scheduling Algorithm

In this section, we propose a scheduling algorithm for CM-task graphs that works in
three phases.

3.1 Transformation of the CM-Task Graph

In the first phase, CM-tasks that are connected by C-relations are identified and com-
bined into larger super-tasks as defined in the following.

Definition 1 (Super-task). Let G = (V,E) be a CM-task graph. A super-task is a
maximum subgraph Ĝ= (V̂ , Ê) of G with V̂ ⊆ V and Ê ⊆EC such that each pair of
CM-tasks A,B ∈ V̂ is connected by a path of bidirectional edges in Ê.

Each CM-task and each bidirectional C-relation edge of a CM-task graph belongs to
exactly one super-task. A single CM-task without C-relations to any other CM-task
forms a super-task by itself. The problem of finding the super-tasks of a CM-task graph
is equivalent to discovering the connected components of an undirected graph, consid-
ering the C-relations as undirected edges. Using the super-task, the CM-task graph is
transformed into a super-task graph as defined next.

Definition 2 (Super-task graph). Let G = (V,E) be a CM-task graph having l super-
tasks Ĝ1 = (V̂1, Ê1), . . . , Ĝl = (V̂l, Êl). A super-task graph is a directed graph G′ =
(V ′, E′) with a set of l nodes V ′ = {Ĝ1, . . . , Ĝl} and a set of directed edges E′ =
{(Ĝi, Ĝj) | there exists A ∈ V̂i, B ∈ V̂j with AδPB}.

Figure 2 (a) shows a super-task graph for the example CM-task graph from Fig. 1.
Figure 2 (b)-(d) illustrates the scheduling phases described in the following subsections.

3.2 Load Balancing for Super-Tasks

The second phase is an iterative load balancing algorithm shown in Algorithm 1 that
determines a partition of a set of p processors into m subsets where m is the number of
CM-tasks inside a specific super-task Ĝ. This is done for different numbers of proces-
sors which have to be larger than m and smaller than the total number q of processors.
The partition is computed such that the execution time of the entire super-task Ĝ is at a
minimum. The result of the load balancing algorithm is a super-task allocation LĜ for
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(a) (b) (c) (d)

Fig. 2. (a) Super-task graph for the CM-task graph from Fig. 1 with super-tasks A = {1}, B =
{2, 3}, C = {4}, D = {5}, E = {6}, F = {7, 8, 9}, G = {10}, H = {11, 12}, and
I = {13}. (b) Subdivision of the super-task graph into five consecutive layers W1 = {A},
W2 = {B,C,D}, W3 = {E,F}, W4 = {G,H}, and W5 = {I}. (c) Possible schedule
for the super-task graph consisting of a subschedule for each layer of the graph according to
Algorithm 2. For super-tasks W2 and W4 a division into two groups of processors has been
chosen. (d) Schedule for the original CM-task graph including load balancing from Alg. 1.

Algorithm 1: Load balancing for a single super-task

1 begin
2 let Ĝ = (V̂ , Ê) be a super-task with V̂ = {A1, . . . , Am};
3 set LĜ(Ai,m) = 1 for i = 1, . . . ,m;
4 for (p = m+ 1, . . . , q) do
5 set LĜ(Ai, p) = LĜ(Ai, p− 1) for i = 1, . . . ,m;

6 choose CM-task Ak ∈ V̂ with maximum value of T (Ak, LĜ(Ak, p− 1));
7 increase LĜ(Ak, p) by 1;

Ĝ, where LĜ(A, p) specifies how many processors are allocated to CM-task A inside
super-task Ĝ when a total of p processors is available for the super-task Ĝ. Since the
number of processors available for super-task Ĝ is determined not until the next phase
of the scheduling algorithm, all possible numbers p of processors are considered, i.e.
m ≤ p ≤ q. The number of processors must be at least m because all m CM-tasks of a
super-task have to be executed concurrently to each other.

Algorithm 1 starts with p = m and assigns a single processor to each CM-task of the
super-task Ĝ. In each step, the number of available processors is increased by one and
the additional processor is assigned to the CM-task Ak having the largest parallel execu-
tion time within the current super-task allocation. This usually decreases the execution
time of Ak, and another CM-task may then have the largest execution time.

Using the super-task allocation LĜ, the cost of a super-task Ĝ can be calculated by
the cost function defined below.

Definition 3 (Costs for super-task graphs). Let G=(V,E) be a CM-task graph and
G′ = (V ′, E′) its corresponding super-task graph. A node Ĝ = (V̂ , Ê) of G′ executed
on p processors has costs
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Algorithm 2: Scheduling of the layers of the super-task graph

1 begin
2 let W = {Ĝ1, . . . , Ĝr} be one layer of the super-task graph G′ = (V ′, E′);
3 let f = max

i=1,...,r
|V̂i| be the max. number of CM-tasks in any super-task of W ;

4 set Tmin =∞;
5 for (κ = 1, . . . ,min{q − f + 1, r}) do
6 partition the set of P processors into disjoint subsets R1, . . . , Rκ such that

|R1| = max
{⌈

P
κ

⌉
, f

}
and R2, . . . , Rκ have about equal size;

7 sort {Ĝ1, . . . , Ĝr} such that T (Ĝi, |R1|) ≥ T (Ĝi+1, |R1|) for i = 1, . . . , r − 1;
8 for (j = 1, . . . , r) do
9 assign Ĝj to the group Rl with the smallest accumulated execution time

and |Rl| ≥ |V̂j |;
10 adjust the sizes of the subsets R1, . . . , Rκ to reduce load imbalances;
11 Tκ = max

j=1,...,κ
accumulated execution time of Rj ;

12 if (Tκ < Tmin) then Tmin = Tκ;

T ′(Ĝ, p) =

{
∞ if p < |V̂ |
max
A∈V̂

T (A,LĜ(A, p)) otherwise.

A directed edge êij = (Ĝi, Ĝj) with Ĝi = (V̂i, Êi), Ĝj = (V̂j , Êj), i 	= j, has costs

T ′
P (êij , pi, pj) =

∑
e∈RE

TP (e, LĜi
(A, pi), LĜj

(B, pj))

with RE = {e = (A,B) | there exists A ∈ V̂i, B ∈ V̂j with AδPB}.

The cost information is needed for the scheduling algorithm presented next.

3.3 Scheduling of the Super-Task Graph

A super-task graph resembles a standard parallel task graph. However, there is an im-
portant difference: the scheduling problem for a super-task graph has the additional
restriction that there exists a minimum number of processors which must be assigned
to a super-task. This constraint is needed, since it has to be guaranteed that a concurrent
execution of all CM-tasks within one super-task is possible.

In the following, we propose a scheduling algorithm for a super-task graph G′ that
is based on a layer-based scheduling algorithm for parallel tasks [19] and additionally
exploits the load balancing information from Algorithm 1. Layer-based scheduling al-
gorithms are well suited for parallel applications consisting of multiple consecutive
computation phases. Alternative approaches, such as CPA [16] or CPR [15], try to re-
duce the length of the critical path of the task graphs. A comparison of layer-based and
critical path based scheduling algorithms for parallel tasks shows the advantages of the
layer-based ones [5].
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The scheduling algorithm proposed consists of several phases. First, the graph G′ is
partitioned into layers of independent super-task nodes such that the consecutive execu-
tion of the layers leads to a feasible schedule for the super-task graph. The partitioning
is performed by a greedy algorithm that runs over the super-task graph in a breadth-
first manner and puts as many super-tasks as possible into the currently built layer. An
illustration is given in Fig. 2 (b). In the second phase, the layers are treated one after
another and the scheduling algorithm given in Algorithm 2 is applied to each of them.
The goal of the scheduling algorithm is to select a partition of the processor set into κ
processor groups. Each of these groups is responsible for the execution of a specific set
of super-tasks that are also selected by the scheduling algorithm. An illustration of such
a group partitioning and assignment of super-tasks is given in Fig. 2 (c).

The scheduling algorithm for a single layer W with r = |W | super-tasks tests all
possible values for the number κ of processor groups with κ ≤ r and selects the number
that leads to the smallest overall execution time (line 5). For a specific value of κ, the
set of P processors is partitioned into subgroups such that at least one of the groups is
large enough to execute any super-task of W . In particular, at least the largest processor
group R1 contains at least f processors where f denotes the maximum number of
tasks which any of the super-tasks contains in its node set V̂1, . . . , V̂r (line 3). If f ≤
P/κ then a distribution into κ processor sets is chosen (line 6). If f > P/κ then one
processor group is made large enough to contain exactly f processors and the rest of
the processors is evenly partitioned into κ− 1 processor groups. For the assignment of
super-tasks to processor groups, a list scheduling algorithm is employed that considers
the super-tasks one after another in decreasing order of their estimated execution time
(line 7). The subset Rl of processors for a specific super-task Ĝj is selected such that
Rl is large enough to execute Ĝj and assigning Ĝj to Rl leads to the overall smallest
accumulated execution time (line 9).

Afterwards, an iterative group adjustment is performed to reduce load imbalances
between the subsets of processors (line 10). In each iteration step, two subsets of pro-
cessors Ri and Rj are identified such that moving a processor fromRi to Rj reduces the
total execution time of the layer while Ri is still large enough to execute all super-tasks
assigned to it. The procedure stops when there is no such subset left.

4 Programming Support for CM-Task Applications

The parallel programming model of CM-tasks is supported by a compiler framework [6].
The compiler framework expects the following input:

• a platform-independent specification program that describes the task structure of the
parallel application, see an example in Fig. 3,

• a machine description that defines a homogeneous target platform by specifying a
number of hardware parameters such as the number of processors, the speed of the
processors, and the speed of the interconnection network, and

• a set of CM-tasks that are provided as parallel functions to be executed on an arbi-
trary number of processors, e.g. using C+MPI.
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cmmain pabm ( y : s v e c t o r s : i n o u t : r e p l i c ) {
var x , h : s c a l a r ; var o r t : s v e c t o r s ;
seq {

i n i t s t e p ( x , h ) ;
whi l e ( x [ 0 ] < X)#100 {

seq {
cp arfor ( k = 0 :K−1) {

pabm s tep ( k , x , h , y [ k ] , y [K−1] , o r t ) ; }
u p d a t e s t e p ( x , h ) ;

}}}}

Fig. 3. Coordination structure for the PABM method using the specification operators

Compiler Framework

Data 
Distribution

Code
Generator

Static
Scheduler

Dataflow
Analyzer

Specification
Program

Coordination
Program
(C+MPI)

Platform
Description

Fig. 4. Overview of the transformation steps of a user-defined specification program and platform
description into a C+MPI coordination program

A specification program consists of two parts. The first part contains declarations of
the parallel functions implemented by the user. Each declaration comprises (i) an inter-
face description with input parameters, output parameters as well as special parameters
that are communicated along the C-relations and (ii) a cost formula depending on the
number of executing processors and platform-specific parameters whose values are pro-
vided in the machine description. The second part describes the coordination structure
of the CM-tasks of the program. The coordination structure uses the operators seq to de-
fine a consecutive execution due to P-relations, par to define independent computations
that might be executed concurrently or one after another, cpar to define a concurrent
execution due to C-relations, for and while to define loops whose iterations have to be
executed one after another, parfor to define loops whose iterations are independent of
each other, cparfor to define loops whose iterations have to be executed concurrently,
and if to define a conditional execution of entire tasks.

Figure 3 shows the coordination structure for a Parallel-Adams-Bashforth-Moulton
(PABM) method [21], an implicit solution method for systems of ordinary differential
equations. The PABM method performs several time steps that are executed one after
another and within each time step,K stage vectors are computed. The CM-tasks utilized
are init step to initialize the first time step, pabm step to compute a single stage
vector for a single time step and update step to update the step size for the next time
step. The term #100 defines an estimate of the number of iterations of the while-loop
and can be used to predict the resulting execution time of the application.
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The compiler framework performs several transformation steps to translate a speci-
fication program into an executable C+MPI coordination program that is adapted to a
specific parallel platform, see Fig. 4 for an overview. The transformation steps of the
framework include the detection of data dependencies, the computation of a platform-
dependent static schedule, the insertion of data re-distribution operations, and the final
translation into the coordination program. The final coordination program incorporates
a schedule determined by the scheduling algorithm from Sect. 3 in which the execu-
tion order of independent CM-tasks and the processor groups are given. At runtime,
the coordination program is responsible for (i) the actual creation of processor groups
and the data exchanges along the C-relations, (ii) the data re-distribution operations to
guarantee the correct distribution of input data before starting a CM-task, and (iii) the
actual execution of the user-defined parallel tasks. The static scheduler performs the
scheduling in the following way:

(1) The specification program is transformed into a set of CM-task graphs. A CM-
task graph is constructed for each body of a for- or while-loop, each branch of
the if-operator, and for the entire application. The parfor- and cparfor-loops are
unrolled such that different scheduling decisions can be made for each iteration of
these loops. The CM-task graphs are organized hierarchically according to the nest-
ing of the corresponding operators. For example, the specification program from
Fig. 3 is translated into two CM-task graphs: an upper-level CM-task graph with
two nodes representing the function init step and the entire while-loop, re-
spectively, and a lower-level CM-task graph for the body of the while-loop with
K + 1 nodes where K nodes represent the instances of function pabm step and
one node represents update step.

(2) Next, a feasible CM-task schedule (as defined in Sect. 2.1) is produced for each
CM-task graph. The scheduling starts with the CM-task graph representing the en-
tire application and then traverses the hierarchy of CM-task graphs. The scheduling
decisions on the upper levels determine the number of processors available on the
lower levels. For example, the number of processors assigned to the entire while-
loop equals the number of available processors when scheduling the loop body. The
scheduling for a single CM-task graph is described in Sect. 3.

(3) The resulting CM-task schedules are transformed back and result in a modified
specification program. This program includes an additional annotation at each ac-
tivation of a task that specifies the processor group for the execution. Additionally,
the operators of the initial program are modified to reflect the execution order de-
fined by the schedule, i.e., a par operator might be transformed into a seq operator
if a consecutive execution is required. The specific layered structure created by the
scheduling algorithm supports the back transformation.

5 Experimental Evaluation

Experimental results have been obtained by applying the scheduling algorithm proposed
to complex application benchmark programs from scientific computing. The application
benchmarks are executed on two parallel platforms. The CHiC cluster consists of 530
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Fig. 5. Measured execution times for a single time step of the IRK method with K = 4 stage
vectors and the PABM method with K = 8 stage vectors on 256 processor cores of the CHiC
cluster (left) and the JuRoPA cluster (right).

nodes, each equipped with two AMD Opteron 2218 dual-core processors clocked at 2.6
GHz. The nodes are interconnected by a 10 GBit/s Infiniband network and the MVA-
PICH 1.0 MPI library is used. The JuRoPA cluster is built up of 2208 nodes, each
consisting of two Intel Xeon X5570 (Nehalem) quad-core processors running at 2.93
GHz and the ParaStation MPI library 5.0 is used.

The first set of applications are solvers for systems of ordinary differential equations
(ODEs). In particular, we consider the Iterated Runge-Kutta (IRK) method and the Par-
allel Adams-Bashforth-Moulton (PABM) [21] method. Both methods consist of a large
number of time steps that are executed one after another. Each time step computes a
fixed number K of stage vectors. Three different parallel implementations are consid-
ered: The data parallel version computes the K stage vectors of each time step one
after another using all available processors and, thus, contains several global communi-
cation operations. The task parallel version based on standard parallel tasks computes
the K stage vectors concurrently on K disjoint equal-sized groups of processors. This
restricts the task internal communication to groups of processors but leads to additional
global communication for the exchange of intermediate results between the processor
groups. The task parallel version based on CM-tasks also computes the stage vectors
concurrently but the data exchange between the groups of processors is implemented
using orthogonal communication [18]. In the CM-task model, this communication can
be modeled using appropriate C-relations. All program versions are implemented in C
and use the MPI library for communication between the processors.

Figure 5 shows the average execution times of one time step of the IRK and PABM
methods for a sparse ODE system that arises from the spatial discretization of the 2D
Brusselator equation (BRUSS2D) [9]. The measurements show that a standard data
parallel implementation leads to lower execution times compared to standard parallel
tasks for the IRK method because additional data re-distribution operations are avoided.
For the PABM method, the task parallel version with standard parallel tasks leads to
lower runtimes than pure data parallelism because the stage vector computations are
decoupled from each other and, thus, much fewer data re-distribution operations are
required than for the IRK method. The lowest execution times are achieved by the
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Fig. 6. Speedup values of the IRK method with K = 4 stage vectors on the CHiC cluster (left)
and of the PABM method with K = 8 stage vectors on the JuRoPA cluster (right) for a dense
ODE system.
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Fig. 7. Relative performance of the generated version of the IRK method compared to a handwrit-
ten implementation (left) and performance of the LU-MZ benchmark (right).

task parallel version based on CM-tasks for both, the IRK and the PABM method. For
example, the runtime of the data parallel implementation of the IRK method on the
CHiC cluster can be reduced to one fifth by employing CM-tasks.

Figure 6 shows the speedup values of the IRK and PABM methods for a dense ODE
system that arises from a Galerkin approximation of a Schroedinger-Poisson system. It
can be seen that the CM-task version obtains the highest speedup values on both cluster
platforms.

Figure 7 (left) compares the performance of the CM-task program version produced
by the transformation framework with a handwritten CM-task implementation. The rel-
ative performance shown in the figure has been obtained by dividing the average ex-
ecution time of the handwritten version by the runtime of the generated version. The
overhead of the generated version is mainly caused by the data re-distribution opera-
tions which are implemented by collective communication in the handwritten version
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Fig. 8. Performance of the SP-MZ (left) and the BT-MZ (right) benchmarks

and by point-to-point communication in the generated version. The overhead decreases
from 20% (for small ODE systems) to under 2% (for large ODE systems) because the
share of the coordination code in the total execution time is smaller for larger systems.

The second set of applications is taken from the NAS Parallel Multi-Zone (NAS-
MZ) benchmark suite [22]. These benchmarks compute the solution of flow equations
on a three-dimensional discretization mesh that is partitioned into zones. One time step
consists of independent computations for each zone followed by a border exchange
between neighboring zones. Two different implementations are considered: The data
parallel version uses all processors to compute the individual zones one after another.
The task parallel version uses a set of CM-tasks each implementing the computations
of one zone and C-relations to model the border exchanges between the zones.

Figure 7 (right) shows the measured performance of the LU-MZ benchmark that con-
sists of 16 equal-sized zones leading to 16 equal-sized processor groups in the CM-task
implementation. For a lower number of cores, data parallelism leads to a better perfor-
mance on both platforms due to a better utilization of the cache and the avoidance of
communication for the border exchanges. For a higher number of cores, the implemen-
tation with CM-tasks shows a much better scalability because the number of cores per
zone is smaller leading to smaller synchronization and waiting times.

Figure 8 shows the performance of the SP-MZ and BT-MZ benchmarks which both
define 256 zones. We compare program versions with 16, 64, or 256 CM-tasks where
each CM-task computes 16, 4, and 1 zones one after another, respectively. Data par-
allelism is not competitive for these benchmarks, because the individual zones do not
contain enough computations to employ a large number of cores. The number of cores
per zone is much smaller in the task parallel versions leading to a much higher perfor-
mance. In the SP-MZ benchmark all zones have the same size and, thus, equal-sized
processor groups should be used to execute the CM-tasks. This is only possible when
the number of processor cores is a multiple of the number of CM-tasks. In all other
cases, load imbalances between the processor groups utilized lead to a degradation of
the performance. For example, the program with 256 CM-tasks has almost the same
performance on 512 as on 640 processor cores.
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The zones in the BT-MZ benchmark have different sizes and, thus, the computation
of a schedule that assigns an equal amount of computational work to the processor
groups is important. For example, the program version with 256 CM-tasks suffers from
load imbalances on 256 cores. These imbalances cannot be eliminated because one core
has to be used for each CM-task. For a higher number of cores the CM-task scheduling
algorithm is successful in computing a suitable schedule as it is indicated by the high
scalability of this program version.

6 Related Work

Several research groups have proposed models for mixed task and data parallel execu-
tions with the goal to obtain parallel programs with faster execution time and better
scalability properties, see [1,8,20,4] for an overview of systems and approaches. An
exploitation of task and data parallelism in the context of a parallelizing compiler with
an integrated scheduler can be found in the Paradigm project [17]. The CM-task model
considered in this article is an extension of these approaches which captures additional
communication patterns.

Many heuristics and approximation algorithms have been proposed for the schedul-
ing of mixed parallel applications based on parallel tasks. Most of these algorithms
are based on a two-step approach that separates the computation of the number of
processors assigned to each parallel task from the scheduling on specific sets of pro-
cessors. Examples for such algorithms are TSAS[17], CPR[15], CPA[16], MCPA[2],
Loc-MPS[23] and RATS[11]. These algorithms do not capture C-relations between
CM-tasks and, thus, have to be adapted before they can be applied to CM-task pro-
grams. A work stealing approach for parallel tasks has been presented in [24], but this
approach is intended for a shared address space and the concept of C-relations is not
required.

7 Conclusions

The performance experiments for typical application programs on different execution
platforms with a distributed address space have shown that different CM-task sched-
ules can lead to quite different execution times. The flexible task mapping provided by
separating task specification from task scheduling makes it possible to pick the most
advantageous scheduling for a specific application on a specific parallel machine. To
support the programming with the CM-task approach, we have implemented a trans-
formation tool, which has the advantage that it allows the application programmer
to concentrate on the specification of the application and a suitable task decomposi-
tion. The proposed scheduling algorithm is an important part of the transformation
approach. The overhead of applying the transformation tool is small compared to the
performance improvement achievable, thus combining performance efficiency and
programmability.



266 J. Dümmler, T. Rauber, and G. Rünger
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LNCS, vol. 4641, pp. 23–32. Springer, Heidelberg (2007)
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Abstract. The increased number of execution units in many-core pro-
cessors is driving numerous paradigm changes in parallel systems. Pre-
vious techniques that focused solely upon obtaining correct results are
being rendered obsolete unless they can also provide results efficiently.

This paper dives into the particular problem of efficiently supporting
fine-grained task creation and task termination for runtime systems in
shared memory processors.

Our contributions are inspired by our observation of High Performance
Computing (HPC) programs, where it is common for a large number of
similar fine-grained tasks to become enabled at the same time.

We present evidence showing that task creation, assignment of tasks
to processors, and task termination represent a significant overhead when
executing fine-grained applications in many-core processors.

We introduce the concept of the polytask, wherein the similarity of
tasks created at the same time is exploited to allow faster task creation,
assignment and termination. The polytask technique can be applied to
any runtime system where tasks are managed through queues.

The main contributions of this work are:

1. The observation that task management may generate substantial
overhead in fine-grained parallel programs for many core processors.

2. The introduction of the polytask concept: A data structure that can
be added to queue-centric scheduling systems to represent groups of
similar tasks.

3. Experimental evidence showing that the polytask is an effective way
to implement fine-grained task creation/termination primitives for
parallel runtime systems in many-core processors.

We use microbenchmarks to show that queues modified to handle poly-
tasks perform orders of magnitude faster than traditional queues in some
scenarios. Furthermore, we use microbenchmarks to measure the amount
of time spent executing tasks. We show situations where fine-grained pro-
grams using polytasks are able to achieve efficiencies close to 100% while
their efficiency becomes only 20% when not using polytasks. Finally, we
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use several applications with fine granularity to show that the use of
polytasks results in average speedups from 1.4X to 100X depending on
the queue implementation used.

1 Introduction

The development of processor chip architectures containing hundreds of exe-
cution units has unleashed challenges that span from efficient development to
efficient execution of applications.

The idea of partitioning computations into tasks (or equivalent concepts) has
been used by a number of execution paradigms such as pthreads[3], OpenMP [7],
Cilk[2] and others to address the efficiency of execution. Our techniques, results
and conclusions focus on the aspect of viewing tasks as units of computation, and
they are orthogonal to implementation of tasks in particular execution paradigms.

Execution of tasks varies from paradigm to paradigm, and generally includes
the use of queues to produce and consume (or execute) tasks as the program
progresses. It is a common occurrence in previous research to assume that tasks
that become enabled can be executed immediately, overlooking the fact that
enqueueing a task to make it available to other threads takes a nonzero time.
This assumption is reasonable in systems with few processors or coarse task
granularity because the time taken to enqueue a task is negligible compared to
the time taken to execute it. However, the enqueueing process can become a
significant source of overhead for systems where a large number of processors
participate in fine-grained execution.

A simple observation can be used to illustrate the problem: A system that
uses a queue (centralized or distributed) for task management where there are
P idle processors requires at least P tasks to be enqueued to allow execution
in all processors. Even if enough tasks are available, the time to enqueue them
becomes relevant as P grows. Advanced algorithms based on distributed struc-
tures or trees softens this problem by providing faster primitives due to lower
contention, but ultimately they do not intrinsically reduce the total number of
queue operations needed.

The overhead of assigning tasks in systems with many processors can be solved
by leveraging on a simple observation: Tasks that become enabled at the same
time are frequently very similar because, in many cases, all tasks direct proces-
sors to execute the same instructions, using the same shared data, and only a
few parameters and local variables differentiate tasks from one another.

Our contributions are inspired by the idea that similar tasks can be efficiently
compressed and represented as a single task, that we refer to as a polytask.
We address the specific case in which tasks can be written in such a way that
only a single integer number can be used to retrieve their task-specific data.
Many programs have that property: iterations of parallel loops are differentiated
by their iteration index, threads in fork-join applications can be differentiated
by their thread identifier and so on.

We show that most queue primitives can support compression of tasks if a
small data structure containing two integers is added to the task description.
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Using the added integers, we show that it is possible to efficiently perform task
management on compressed tasks.

The effectiveness of compressing tasks into polytasks is shown in experiments
where three traditional queueing techniques are modified to allow compression.
Our results show that compression of tasks, when possible, allows much faster
queue primitives than their noncompressed counterparts because (1) compressed
tasks represent several tasks, making a queue operation on them equivalent to
several queue operations on noncompressed tasks and (2) queue operations on
compressed tasks are frequently faster than queue operations on regular tasks.
We show that queues modified to handle polytasks perform at par with their
non-modified versions when compression is not possible.

Our contributions are relevant to queue-centric runtime systems whether they
have one queue or many. Other runtime systems that are not necessarily queue
centric, such as OpenMP [7] have developed alternatives that are very similar in
their implementation and their objective. Our contribution is the presentation of
a systematic way to modify queue-centric systems to address task compression.

The advantages of task compression in larger applications are shown in Section
5 using microbenchmarks and applications. All cases present evidence supporting
our claims regarding the effectiveness of task compression.

The rest of the paper is organized as follows: Section 2 presents relevant
background, Section 3 presents some motivation as well as the specific definition
of the problem addressed in this paper, Section 4 represents the core of our
paper, presenting our technique for task compression, Section 5 describes our
experiments and results, Section 6 presents related work and Section 7 presents
conclusions and future work.

2 Background

This section presents background related to our contributions, including a brief
summary of the queue algorithms referred throughout the paper, and a descrip-
tion of the processor used for our experiments.

2.1 Queue Algorithms

The central work of this paper tries to enhance the capabilities of existing queue
algorithms for the particular case of task management. A large number of queue
algorithms exist, for example, Shafiei [16] shows a survey summarizing the rela-
tive advantages of many different algorithms. We have chosen three queue algo-
rithms that cover a significant portion of the design space.

The first algorithm, which we refer to as the SpinQueue algorithm, uses a
linked list as the basic data structure for the queue and a spinlock to avoid data
races on processors accessing the queue. The SpinQueue is a simple implemen-
tation, that is easy to understand, easy to program, and that offers excellent
performance if there is low contention at the queue. The simple implementation
of the SpinQueue makes it suitable for quick development of parallel applications.
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The MS-Queue is an advanced non-blocking algorithm, presented by Michael
and Scott [12], that uses a Compare and Swap operation to allow concurrent
operations on the queue. The MS-Queue algorithm has become an industry de
facto standard, being used in the Java Concurrency Constructs, and in many
other high-profile implementations.

The MC-Queue is a queue algorithm presented by Mellor-Crummey[11] that
distributes queue operations over a group of nonblocking queues to maximize
performance. In the MC-Queue, the queue structure is composed of several in-
dependent nonblocking queue implementations. When queue operations are re-
quested, an atomic addition is used to select one of the available nonblocking
queues, effectively distributing the operations across them. The MC-Queue is
an excellent choice for applications where a large number processors attempt to
execute operations concurrently.

2.2 Cyclops-64 Architecture

Cyclops-64 (C64) is a processor developed by IBM. The architecture and features
of C64 have been described extensively in previous publications [6,5].

Each C64 chip has 80 computational cores, no automatic data cache, and 1GB
of addressable memory. Each core contains two single-issue thread units, 60KB
of user-addressable memory that is divided into stack space and shared memory,
a 64 bit floating point unit, and one memory controller.

One of the main features of the C64 chip is thatmemory controllers can execute
atomic operations. In C64, each memory controller contains its own Arithmetic
and Logical Unit that allows the memory controller to execute integer and logical
atomic operations in memory without the intervention of a processor or a thread
unit. Atomic operations in C64 take 3 cycles to complete at the memory controller.
All memory controllers in C64 have the capability to execute atomic operations.

Under the default configuration, C64 has 16KB of stack space for each thread
unit, 2.5MB of shared on-chip memory, and 1GB of DRAM memory.

3 Motivation

The difficulties in traditional task management as well as the possibilities of task
compression can be illustrated using the kernel of a simulation of an electromag-
netic wave propagating using the Finite Difference Time Domain algorithm in 1
Dimension (FDTD1D), shown in Figure 1.

The parallel loops in Figure 1 can be efficiently executed in a many-core
processor such as C64 if the iterations in the parallel loops are expressed as tasks.
The granularity of the execution can be varied through the tile size (TileSize
in Figure 1). A small tile size will result in finer grain and more parallelism, but
it will also incur a higher runtime system overhead because of the additional
burden in task management.

The main problem is that fine-grained execution is difficult: The granular-
ity of tasks is limited by the overhead of task management. In general, fine
grain execution is useful only when the overhead associated with the execution
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// TileSize controls the granularity
#define TileSize 16
void FDTD1D( double *E, double *H, int N,

int Timesteps,
const double k1, const double k2 )

{
int i, t;
for ( t=0;t<Timesteps;t++ )
{
parallel for (i=1; i<N/TileSize; i++)
{

E_Tile( i, E, H, N, k1, k2 );
}

parallel for (i=1; i<N/TileSize; i++)
{

H_Tile( i, E, H, N, k1, k2 );
}

}
}

Fig. 1. FDTD1D Kernel

void E_Tile( int TileID,
double *E, double *H, int N,
int Timesteps,
const double k1, const double k2 ) {
int i, Start, End;
Start = TileID * TileSize;
End = Start + TileSize;
for ( i = Start; i < End; i++ )
E[i]=k1*E[i]+k2*(H[i]-H[i-1]);

}

void H_Tile( int TileID,
double *E, double *H, int N,
int Timesteps,
const double k1, const double k2 ) {
int i, Start, End;
Start = TileID * TileSize;
End = Start + TileSize;
for ( i = Start; i < End; i++ )
H[i]+=E[i]-E[i+1];

}

Fig. 2. FDTD1D Compute Tiles

is acceptable. In contrast, coarse-grained executions decrease the proportional
overhead of task management at the cost of reducing parallelism and reducing
the opportunities for load balancing in many-core systems [9].

Traces of several executions of FDTD1D, executed using the TIDeFlow run-
time system [13] with the SpinQueue algorithm in C64 were obtained to show
the limits in granularity:

Table 1. Task duration and enqueueing overhead for C64 (SpinQueue Algorithm)

Process Cycles Process Cycles

Enqueue one task 6200 Enqueue a task for each processor 9.9 × 105

Execute a tile of size 1 180 Execute a tile of size 256 16000
Execute a tile of size 1024 56000 Execute a tile of size 16384 9.0 × 105

Execute a tile of size 65536 3.6× 106

Table 1 exposes the problem faced by programs with fine granularity: If the
tile size is set to 1, approximately 106 cycles will be required to enqueue one
task for each one of the 160 processors in C64 while a single processor executes
one task in only 180 cycles. The conclusion is that programs where tiles take less
than 106 cycles to execute result in poor performance because processors will
consume tasks faster than they are written to the queue.

The solution that we pursue in this paper is based on the observation that
in many programs, tasks are very similar, and they may be compressed into a
single task to reduce the total time for task creation. Task compression opens a
number of questions that we intend to address.
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3.1 Problem Formulation

The following question summarizes our research goals:

How is it possible to exploit the commonly found similarities between
tasks created at the same time to achieve efficient representation of tasks?

The main question opens related questions:

– How can several, similar tasks be efficiently compressed into a polytask?
– Is it possible to concurrently and efficiently extract a task from a polytask?
– Is it possible to efficiently support termination operations such as join when

using compressed task representations such as polytasks?
– Does task compression introduce additional overheads in applications where

tasks are dissimilar making task compression unnecessary?

We intend to fully answer these questions in the following sections.We also provide
experimental results to back our claims regarding the usability of polytasks.

4 Polytasks: Efficient Building Blocks for Runtime
Systems

Creation of similar tasks at the same time is common in scientific programs
using execution models that support parallel execution of loops. Figure 1 shows
one such example where a parallel loop results in creation of a large number of
similar tasks, that execute the same instructions, that access the same global
variables and that are distinguished only by their loop index, or rather, by their
execution instance.

The main idea in our proposed solution is to represent all the tasks related to
a parallel loop with a single data structure that we call a polytask. A polytask
is a data structure that includes all the information commonly found in a task
plus additional information describing the number of tasks it represents (N , the
number of iterations in the parallel loop) and their state.

typedef struct task_s {
// Task Information:
// Environment information
// Code to be executed
...

} task_t

Fig. 3. Original task data structure

typedef struct polytask_s {
int TasksAvailable;
int TasksPending;

// Task Information:
// Environment information
// Code to be executed
...

} polytask_t

Fig. 4. Polytask data structure

A generic structure that can be used to represent a single, particular task is
presented in Figure 3. The structure of Figure 3 has been upgraded (Figure 4) to
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allow representation of several, similar tasks as a polytask. The polytask structure
contains a counter that specifies the number of tasks that are available in the poly-
task (TasksAvailable) and a counter containing the number of tasks that have
not finished (TasksPending). The TasksPending counter facilitates implicit join
operations at the end of parallel loops. At initialization, both counters are ini-
tialized to N to indicate that N tasks are available and that none of them have
finished execution.

Note that any queue algorithm can be used to implement polytasks opera-
tions: A polytask can be enqueued into the work queue in the same way as a
single task can be enqueued. The algorithm in Figure 6 shows how to upgrade
a generic runtime system to support polytasks by introducing three operations
for task management: PolyEnqueue is used to create N tasks of a particular
type. PolyDequeue is used to extract the next available task from the queue
and TaskCompleted is used to count the number of tasks that have finished
execution.

A significant advantage of polytasks over individual tasks is that a polytask
is enqueued once into the work queue. PolyEnqueue, when called, initializes the
information in the task structure to specify that N tasks must be created and
N tasks must complete. PolyEnqueue enqueues a single queue item containing
the polytask to the queue. In general, only minimum modifications to the data
structures and to the original enqueueing algorithm are required to support
polytasks.

Extracting individual tasks from a polytask is more challenging because an
unmodified dequeue operation will remove the polytask from the queue. Instead,
PolyDequeue extracts a single task from the polytask at the head of the queue
using an atomic decrement on its TasksAvailable counter. The value returned
by the atomic decrement is used as the execution instance for the execution of
the task (e.g. iteration index of a parallel loop) if it is positive. It is possible to
obtain invalid (non-positive) execution instances during the extraction process
because the atomic decrement is a concurrent process. This is not a problem
since polytasks are quickly removed from the queue after all their available tasks
have been claimed, effectively presenting a new polytask at the head of the
queue. Processors that did not obtain valid execution instances during their fist
attempt can retry until the polytask at the head of the queue contains enough
available tasks.

Execution instances are assigned to processors starting from N and going
down to 1. When a processor extracts the last task from the polytask, (i.e. when
the execution instance obtained is 1), the processor dequeues the polytask from
the queue using the original queue algorithm selected.

TaskCompleted implements join behavior for tasks in a particular polytask.
The TasksPending counter in the polytask structure can be used as a synchro-
nization point to reliably know the number of tasks that have not finished execu-
tion in a particular polytask. Processors atomically decrement the TasksPending
counter to indicate termination of individual tasks in the polytask. A processor
can know if it executed the last task in the polytask (i.e. the join operation
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/* --- Queue Variables --- */
typedef struct QueueItem_s {

polytask_t PolyTask;
// Other Queue-Specific Members
...

}
QueueItem_t;

QueueItem_t *Head, *Tail;

/* --- PolyTask Functions --- */
task_t * PolyDequeue( void ) {
StartDequeue:

polytask_t PolyTask = Head->PolyTask;
int ExecutionInstance =
Atomic_Decrement(

&( PolyTask->TasksAvailable ) );

if ( ExecutionInstance == 1 ) {
// Removes Task from Queue
Dequeue();

}

if ( ExecutionInstance > 0 ) {
return( PolyTask );

}

goto StartDequeue;
}

Fig. 5. Polytask Dequeue

void PolyEnqueue( PolyTask_t *PolyTask,
int N )

{
PolyTask.TasksAvailable = N;
PolyTask.TasksPending = N;
Enqueue( PolyTask );

}

void TaskCompleted( PolyTask_t *PolyTask )
{

int PendingTasks =
Atomic_Decrement(

&( PolyTask->TasksPending ) );

if ( PendingTasks == 1 ) {
// This is the last task
// Join operation successful
....

}
}

Fig. 6. Polytask Enqueue and Com-
plete Task operations

is complete) by inspecting the return value of the atomic decrement. Figure 6
shows the structure of the TaskCompleted function and how it can be used to
handle the behavior of join operations by the runtime system.

Polytask operations are faster than traditional task operations on queues.
When task compression is possible (N > 1), they provide flexible mechanisms
for synchronization and continuation of tasks. The speed up will be significant,
especially when fine granularity is used and the number of processors increase.
The synchronization between tasks of the same type (i.e. in a polytask) is easier
and allows smooth support for control flow mechanisms such as creation, termi-
nation and continuation found in parallel loops. The reasons for faster operations
and easier synchronization and continuation are:

– Task Creation: N tasks can be written with a single queue operation.
– Task Assignment: In most cases, the concurrent part of the algorithm that

assigns a single task to a processor is a single atomic decrement, that can
be executed in parallel by all processors with very little contention. This is
an improvement over a single task-based approach where the algorithm to
access the queue is based on locks and it could be better even on queues
using Compare-and-Swap operations. However, on C64, atomic decrements
are faster than compare and swap operations because atomic decrements can
be executed directly in memory by the memory controller (see section 2.2).
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– Join and Continuation Operations: The use of a single counter
(TasksPending) modified through atomic operations allows fast task syn-
chronization during the termination phase of parallel loops. The decentral-
ized nature of the count, where any processor may be the last one, reduces
the overhead of other implementations where a particular, centralized pro-
cess is responsible for the termination and continuation of the parallel loop.

Section 5 uses microbenchmarks and some applications to show the advantages
of polytasks over traditional queue techniques.

5 Experiments

The effectiveness of compressing tasks into polytasks is analyzed in this sec-
tion. We have designed experiments that show the effect of task compression
in an isolated scenario –using microbenchmarks– and in a full production run-
time system –using full applications–. Our results show that applications with
many similar tasks greatly benefit from the use of polytasks, without adversely
affecting applications without good task similarity.

We have chosen C64, a many-core processor architecture (Section 2.2) as the
testbed architecture because it is a logical choice to support task-based runtime
systems due to its large number of processors in a shared memory environment
and its non-preemptive execution model.

All of our experiments where written in C and they were compiled with ET
International’s C64 C compiler, version 4.3.2, with compilation flags -O3. We
ran all of our experiments using FAST[5], a highly accurate C64 simulator.

5.1 Microbenchmarks

In our first study, we analyze the advantages and disadvantages of polytasks in
a controlled environment that attempts to show the behavior of the required
queue primitive operations without external perturbations.

In our first set of experiments, we isolate the behavior of queue operations
by running programs where all processors in a C64 chip continuously produce
and consume randomly generated tasks without executing them. In these exper-
iments, each processor produces 512 tasks and consumes 512 tasks. Embedded
hardware performance counters are used to collect timing data. To illustrate the
effectiveness of polytasks, the number of tasks that are similar in each exper-
iment was modified. A task similarity of N (See Figures 7 and 8) indicates
that groups of N tasks are similar and can be potentially compressed into a
single polytask. Our experiments show results that range from task similarity of
1, where each task is unique, to task similarity of 256, where groups of 256 tasks
are compressed into a single polytask. When the results are reported, enqueue-
ing one polytask that contains N tasks is considered equivalent to enqueueing
N tasks directly because a runtime system will observe, in both cases, that N
tasks have been created.
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Fig. 7. Effect of polytask compression on throughput

We have explored the sensitivity of polytasks to the underlying queueing algo-
rithm used. From the many queue algorithms that exist (Shafiei [16] has compiled
an excellent summary) we have chosen three algorithms that cover a significant
portion of the design space, a spinlock-based queue (SpinQueue, the simplest
to implement), the MS-Queue algorithm[12] (the most famous nonblocking al-
gorithm) and the MC-Queue algorithm[11] (a distributed queue with very high
performance). We implemented polytasks on each one of the selected queue al-
gorithms in an effort to present quality over quantity.

Figures 7 and 8 show the results of our experiments. Inspection of the figures
allows us to reach important conclusions:

– Polytasks increase the performance of runtime operations, both in total (ag-
gregated) operations per second in the whole system as well as in terms of
reducing the latency of individual operations.

– The overhead of polytask compression is very small. Both in terms of latency
and throughput there is not a significant overhead (less than 2% in all but
one case) when polytasks are used in situations where tasks are not similar.

– The advantages of polytasks are not dependent on the queue algorithm used
to implement the polytask operations: All queue algorithms tested present
excellent performance gains, and very low overhead.

– When task similarity is high, the average performance of task operations is
improved by up to two orders of magnitude. The reason for the increase in
performance is that calls to polytask operations that do not result in calls
to queue operations finish quickly.

The results shown in Figures 7 and 8 show that polytasks can benefit applica-
tions where task compression is possible without degrading the performance of
applications where task compression is not possible. The second set of experi-
ments was designed to show the advantages of the use of polytasks in applications
with varying levels of granularity. To avoid external perturbations, synthetic tasks
that execute a delay loop of varying duration were used.
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Fig. 8. Effect of polytask compression on latency

Fig. 9. Advantages of polytasks as a function of program granularity

Figure 9 shows the results of our experiments. In the figure, the efficiency is the
fraction of time that the processor spends executing tasks, and it is calculated
as the ratio between the time executing tasks and the total execution time,
including overheads. The Task Granularity is the duration of the tasks executed.
Each data point reported in the figure was obtained by running 40960 tasks that
execute a delay loop whose duration is specified in the figure as Task Granularity.

Our results show that fine grained applications greatly benefit from the use of
polytasks. Polytasks enable greater runtime system efficiencies at very fine grain
synchronization while traditional approaches only allow coarser grain synchro-
nization.

As is to be expected, if the application uses very coarse grained parallelism the
burden of task management does not affect the efficiency of the system because
the time to perform a queue operation will not be significant when compared to
the execution time of a task.

The results of Figure 9 show that the advantages of polytasks under vary-
ing task granularity remain, independent of the queue algorithm used. In our
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Fig. 10. Advantages of polytasks on applications

experiments, we observe that polytasks provide significant advantages in effi-
ciency for all three of the queue algorithms used (SpinQueue, MC-Queue and
MS-Queue) in fine-grained environments.

5.2 Applications

The advantages of polytasks in production systems was tested using scientific
applications running in typical environments.

Several applications were tested: Fast Fourier Transforms that use the Cooley-
Tukey algorithm with two-point butterflies (FFT) and simulations of electromag-
netic waves propagating using the Finite Difference Time Domain algorithm in 1
Dimension (FDTD1D)[15] and 2 dimensions (FDTD2D)[14]. FFT was run with
input sizes 29 (FFT2P 29) through 212 (FFT2P 212), FDTD1D runs a problem of
size 20000 with 3 timesteps and tiles of width 16, and FDTD2D runs a problem
of size 128 by 128 with 2 timesteps and tiles of width 4 by 4.

The results reported for all applications reflect the complete program and
include memory allocation, initialization, computation and reporting of results.

In all cases, the programs were developed to use the TIDeFlow [13] runtime
system. TIDeFlow uses a priority queue to assignwork to processors in the system.

We compared the effect of polytasks by running several sets of experiments:
The first set of experiments consists of pairing each one of the programs with
each one of the versions of the TIDeFlow runtime system that use each one
of the possible underlying queue algorithms described (SpinQueue, MC-Queue
and MS-Queue) without the advantage of polytasks. For the second set of ex-
periments, we ran all combinations of programs and TIDeFlow implementations
using polytasks.

Figure 10 reports the speedup of each program with reference to an execution
using the unmodified runtime system (Single Task). The objective of showing a
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comparison of polytasks against single tasks for each one of several underlying
queue algorithms is to show that the advantages of polytasks are not exclusive
to a particular queue algorithm. Such advantages are primarily the result of a
runtime that operates more efficiently.

The reasons for the excellent speedup in the programs tested are: (1) The
applications use very fine grain synchronization and a significant portion of the
time is spent in task management. As explained in Section 5.1 and in Figure
9, these results hold for fine-grained applications. The impact of polytasks on
other coarse-grained applications not considered here may not be as pronounced
as the impact in the fine-grained applications that we tested. (2) The applications
exhibit a large degree of task similarity because their main computational kernel
consists mainly of parallel for loops.

6 Related Work

Several execution paradigms based in tasks have been presented in the past.
Intel’s Concurrent Collections (CnC)[10] is an execution paradigm where pro-

grams are expressed in terms of computational tasks (or steps in the CnC ter-
minology), data dependencies and control dependencies. The current generation
of CnC implementations represent tasks as individual items in the work pool.
However, polytasks could be a promising addition to CnC because it is frequent
that several computation steps are similar in everything except in their control
tag value, making the addition of polytasks a natural extension to allow higher
scalability and performance.

The University of Delaware’s Codelet Model[8], part of the ongoing DARPA
UHPC project, is an initiative to achieve unprecedented parallelism in programs
by expressing computations as dataflow graphs composed of codelets (compu-
tational tasks) that can migrate across large systems. Polytasks can potentially
impact the effectiveness of the codelet model because it may help migration of
tasks to remote locations if several tasks are compressed to a single polytask.

Other execution paradigms that use tasks in a way or another, and queues to
manage tasks include X10[4], EARTH[17], Cilk[2] and Habanero C[1]. Polytasks
offer interesting opportunities for those execution paradigms, and may poten-
tially be used to improve their performance and scalability.

7 Conclusions and Future Work

We have shown that polytasks are an effective way to exploit the similarity
between tasks that is commonly found in scientific programs that use a queue-
centric approach for execution. The polytask technique allows queue-centric run-
times to exploit the same parallel loops as the OpenMP dynamic construct.
Our research focus on how to develop a systematic technique for task compres-
sion rather than addressing particular situations in particular systems. Future
work will compare the differences in performance between OpenMP’s dynamic
construct and polytasks.
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We have presented a line of thought that concludes that there is a high degree
of similarity in tasks that are enabled at the same time in scientific programs,
mostly resulting from parallel loops that are expressed as a set of embarrassingly
parallel tasks that become enabled.

We have taken advantage of the similarity of tasks and their proximity in time
to invent a way to express them in a compressed form, that we call a polytask. We
have shown that the data structures and algorithms of runtime systems require
only minor modifications to support polytasks.

We have provided evidence, both in our informal analysis and in our experi-
ments of the usability of polytasks for runtime systems.

The polytasks improve the performance of the runtime system when the pro-
grams run exhibit high task similarity. In cases where task compression is not
possible, polytasks do not introduce significant overhead, and can be used safely.

The effect of polytasks on the speed of the runtime system can only be no-
ticed in applications with fine granularity. In applications where parallelism has
been exposed at a coarse-grain level, the issue of task management overhead is
not as relevant because most of the application time is spent executing tasks.
Nevertheless, if significant parallelism is required in future generations of multi-
processors with a large number of processing units per chip, fine grain parallelism
will become a necessity.

We have shown that polytasks are effective for C64, a system that is non-
preemptive, that has no cache and that supports atomic operations in-memory.
Polytasks are effective for C64 because processors have very little overhead when
they start executing a task: There is no cache that needs to be filled, there is no
thread-state that needs to be put in place and there is no virtual memory that
needs to be made available.

Although future work may analyze the usability of polytasks for preemptive
systems, with few cores, caches, and other architectural features, it is the im-
pression of the authors that queue-based runtime systems will primarily benefit
systems with massive hardware parallelism where the architecture is directly
exposed to the users.

Future work will focus on extending the polytask concept beyond the imple-
mentation of runtime systems, including the development of language or compiler
extensions to indicate or hint task similarity outside of the trivial case of parallel
loops.
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Abstract. Writing a parallel shared memory application that achieves
good performance and scales well as the number of threads increases
can be challenging. One of the reasons is that as threads proliferate, the
contention among shared resources increases and this may cause perfor-
mance degradation. In particular, multi-threaded applications can suffer
from the false sharing problem, which can degrade the performance of
an application significantly. The work in this paper focuses on detecting
performance bottlenecks caused by false sharing in OpenMP applica-
tions. We introduce a dynamic framework to help application developers
detect instances of false sharing as well as identify the data objects in an
OpenMP code that cause the problem. The framework that we have de-
veloped leverages features of the OpenMP collector API to interact with
the OpenMP compiler’s runtime library and utilizes the information from
hardware counters. We demonstrate the usefulness of this framework on
actual applications that exhibit poor scaling because of false sharing.
To show the benefit of our technique, we manually modify the identified
problem code by adjusting the alignment of the data that are causing
false sharing; we then compare the performance with the original version.

Keywords: Cache coherence, false sharing, OpenMP, DARWIN,
hardware counter, OpenMP collector API.

1 Introduction

With the widespread deployment of multi-core processors, many applications
are being modified to enable them to fully utilize the hardware. The de-facto
standard OpenMP [4], a shared memory programming model, is a popular choice
for programming these systems. OpenMP offers a simple means to parallelize
a computation so that programmers can focus on their algorithm rather than
expend effort managing multiple threads. However, the simplicity of OpenMP
also masks some potential problems from the programmer. One of the well-known
problems is avoiding false sharing [21].

False sharing may occur on multi-core platforms as a result of the fact that
blocks of data are fetched into cache on a per-line basis. When one thread ac-
cesses data that happens to be on the same line as data simultaneously accessed
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by another thread, both need up-to-date copies of the same cache line. In order
to maintain the consistency of the shared data, the processor may then generate
additional cache misses that degrade performance. It can be very hard for the
application developer to correctly identify the source of such performance prob-
lems, since it requires some amount of understanding of the way in which the
hardware supports data sharing in the presence of private caches.

We have created a dynamic optimization framework for OpenMP programs,
called DARWIN, that is based on the open-source OpenUH [10] compiler, and
have shown how it can be used to optimize applications that exhibit ccNUMA
data locality problems [23]. The core feature of this framework is its usage of
the OpenMP collector API [6] to interact with a running OpenMP program. The
collector API can track various OpenMP states on a per-thread basis, such as
whether a thread is in a parallel region. DARWIN also utilizes hardware counters
to obtain detailed information about the program’s execution. When combined
with its other capabilities, such as relating the performance data to the data
structures in the source code, DARWIN is able to help the application developer
to gain insights about dynamic code behavior, particularly in the hot-spots of a
parallel program.

In this paper, we explain how false sharing may arise in OpenMP applications
and how the DARWIN framework may be used to identify data objects in an
OpenMP code that cause false sharing. We describe DARWIN’s ability to inter-
act with the OpenMP runtime library and to access hardware counters, which
is the starting point for our false sharing detection strategy. We then discuss
the two stages involved in our approach. The first stage observes the degree of
coherence problem in a program. The second stage isolates the data structure
that leads to the false sharing problem.

The paper is structured as follows: section 2 describes the false sharing prob-
lem. Section 3 gives an introduction to the DARWIN framework. After presenting
our methodology in section 4, we discuss our experiments in section 5. Section 6
discusses prior research closely related to our work. Finally, section 7 summarizes
our findings and offers conclusions.

2 False Sharing

In a multi-threaded program running on a multicore processor, data sharing
among threads can produce cache coherence misses. When a processor core
modifies data that is currently shared by the other cores, the cache coherence
mechanism has to invalidate all copies in the other cores. An attempt to read
this data by another core shortly after the modification has to wait for the most
recent value in order to guarantee data consistency among cores.

The data sharing that occurs when processor cores actually access the same
data element is called true sharing. Such accesses typically need to be coordinated
in order to ensure the correctness of the program. A variety of synchronization
techniques may be employed to do so, depending on the programming interface
being used. Some of these techniques are locks, monitors, and semaphores. In the
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OpenMP API, critical and atomic are two constructs that prevent the code they
are associated with, from being executed by multiple threads concurrently. The
critical construct provides mutual exclusion for code blocks in a critical section,
whereas the atomic construct ensures safe updating of shared variables.When the
order of the accesses is important, the OpenMP barrier and taskwait constructs
can be used to enforce the necessary execution sequence.

In contrast to true sharing, false sharing is an unnecessary condition that
may arise as a consequence of the cache coherence mechanism working at cache
line granularity [2]. It does not imply that there is any error in the code. This
condition may occur when multiple processor cores access different data elements
that reside in the same cache line. A write operation to a data element in the
cache line will invalidate all the data in all copies of the cache line stored in
other cores. A successive read by another core will incur a cache miss, and it will
need to fetch the entire cache line from either the main memory or the updating
core’s private cache to make sure that it has the up-to-date version of the cache
line. Poor scalability of multi-threaded programs can occur if the invalidation
and subsequent read to the same cache line happen very frequently.

int *local_count = (int*) malloc(sizeof(int)* NUM_THREADS*PADDING );
int *vector = (int*)malloc(sizeof(int)* VECTOR_SIZE);
for(i=0;i<COUNT;i++)
{
#pragma omp parallel

{
int tid = omp_get_thread_num()*PADDING ;
if(tid < 0) tid = 0;

#pragma omp for
for(j = 0; j < VECTOR_SIZE; j++)

local_count[tid] += vector[j]*2;

#pragma omp master
{

int k;
for(k = 0; k<NUM_THREADS; k++)
result += local_count[k];

}
}

}

Fig. 1. OpenMP code snippet with false sharing problem

Figure 1 shows a code snippet from an OpenMP program that exhibits the
false sharing problem. This code will read each value of a vector, multiply it
by two, and calculate the sum. Its performance is inversely proportional to the
number of threads as shown in Table 1.

Mitigating the false sharing effect can lead to an astonishing 57x performance
improvement for this code. The reason for the poor performance of the unopti-
mized code lies in the way it accesses the local count array. When the PADDING
variable is set to 1, the size of the array is equal to the number of threads. The
cache line size of the underlying machine being used is 128 bytes, so even though
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the threads access different elements of the array, they fetch the same cache line
frequently and interfere with each other by causing unnecessary invalidations.
By taking the cache line size into account and increasing the PADDING value,
we can prevent threads from accessing the same cache lines continuously.

Table 1. Execution time of OpenMP code from Figure 1

Code version
Execution time(s)

1-thread 2-threads 4-threads 8-threads

Unoptimized 0.503 4.563 3.961 4.432

Optimized 0.503 0.263 0.137 0.078

3 DARWIN Framework

The DARWIN framework is a feedback dynamic optimization system that pri-
marily leverages the features of the OpenMP collector API [6] to communicate
with a running OpenMP program. Figure 2 illustrates the major components of
the framework.

Fig. 2. The DARWIN Framework

The collector tool is the central component of DARWIN. It utilizes theOpenMP
collector API to facilitate transparent communication with the OpenMP applica-
tion. The OpenUH OpenMP runtime library throws a collector event notification
that represents transition to a particular state in the OpenMP program’s execu-
tion. For example, the OMP EVENT FORK event is thrown when the OpenMP
master thread enters a parallel region. The collector tool catches the event notifi-
cation and provides it to the event handler that performs the appropriate profil-
ing activity, such as starting and stopping the performance measurement for each
thread in a parallel region.

DARWIN has two execution phases, monitoring and optimization. This work
focuses on the monitoring phase, which collects performance data to enable the
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false sharing analysis. In the monitoring phase, the collector tool starts and
stops the performance monitoring component when it receives a collector event
notification about the start and end of an OpenMP parallel region, respectively.

Currently, the performance monitoring component utilizes Data Event Ad-
dress Register (DEAR) of the Itanium 2 processor to capture samples of mem-
ory load operations, which contain meaningful information such as the referenced
memory addresses and the load latency. Other processor models such as AMD
Opteron and Intel Core support similar functionality via Instruction Base Sam-
pling (IBS) and Precise Event Base Sampling (PEBS), respectively. Support for
these hardware counters will be included in the future work.

At the end of the monitoring phase, the collector tool invokes the data man-
ager to create data-centric information by relating the referenced memory ad-
dresses in the sampling results with the data structures at the source code level,
thus making the information comprehensible to the programmer. Finally, the
data manager saves all of the gathered information to persistent storage.

To support the creation of data-centric information, the data allocation com-
ponent captures the allocation information of global, static, and dynamic data,
which includes the parallel region id, thread id, starting address, allocation size,
and the variable name. The allocation information for global and static data is
provided by the symbol table of the executable file. For dynamic data, we in-
terpose the memory allocation routines to capture the resulting starting address
and allocation size parameter. We also retrieve the program counter of the allo-
cation caller, which is used to find the caller’s name and line number from the
debug information. Both name and line number are used as the variable name
for dynamic data. It is possible that more than one dynamic data allocation are
attributed with the same variable name, which may indicate that these data are
elements of an array, list, or tree. The allocation information is stored into a
B-Tree [1] that offers very good performance for searching, especially when the
number of allocation records, and hence the search space, is very large.

DARWIN provides several utilities to support data analysis by the program-
mer. One tool is used to export the collected performance data into text files
that follow the Tuning and Analysis Utilities (TAU) [18] profile format. A second
tool can be used to analyze the data allocation information.

TAU is a portable toolkit for performance analysis of parallel programs that
are written in Fortran, C, C++, and Python. The programmer can run TAU’s
Paraprof [20] to observe the behavior of the program through its 3D visualization
capabilities, and draw conclusions about the observed performance bottlenecks.

4 False Sharing Detection Methodology

Our approach for determining the data that exhibits false sharing consists of two
stages. The first stage checks whether the cache coherence miss contributes to a
major bottleneck in the program. The second stage isolates the data structures
that cause the false sharing problem.
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4.1 Stage 1 : Detecting Cache Coherence Problem

False sharing is a cache coherence problem related to the way processors maintain
memory consistency. Therefore, observing the hardware behavior is a good way
to determine if a program is suffering from coherence misses. Modern processors
accommodate a performance monitoring unit (PMU) that can provide hints
about the potential existence of cache coherence problems.

For example, the Intel Itanium 2 processor supports the PMU event
BUS MEM READ BRIL SELF that gives the number of cache line invali-
dation transactions [22]. The Intel Core i7 family supports an event called
MEM UNCORE RETIRED.OTHER CORE L2 HITM that indicates the num-
ber of retired memory load instructions that hit dirty data in sibling cores [7].
If a large number of each event is detected during a program’s execution, it in-
dicates that a serious cache coherence problem can occur when the program is
executed with multiple threads.

4.2 Stage 2 : Isolating the Data Structures

To identify those data structures that have a major false sharing problem, our
method starts by observing the accesses to cache lines with high level symptoms,
which are a high memory access latency, and a large number of references. When
a cache coherence miss occurs, a read operation from the processor needs to fetch
the data from another processor’s cache or wait until the memory is updated with
the latest version, after which the processor reads directly from memory. This
means that a cache coherence miss has longer latency than other kinds of cache
misses. It has been reported [9] that a cache coherence miss on the Itanium
2 processor can exceed 180-200 cycles, while the average latency for reading
from memory is 120-150 cycles. We are also aware that a modest amount of false
sharing misses will not lead to a significant problem for application performance.
Therefore, cache lines with a low number of references are ignored.

After the data structures showing the symptoms above have been identified,
we examine the data allocation information to look for other data structures
that share the problematic cache line. The search is also performed within the
elements of the data structure if it is a linear or non-linear data structure. As
discussed in section 3, these kinds of data structures are represented by multiple
allocations with the same variable name. If the search attempt returns one or
more results, we conclude that the problem is due to false sharing. Otherwise,
we observe the data access pattern of the data structures that experience the
false sharing symptoms.

False sharing can exist on a data structure that is accessed by multiple threads,
where each thread only accesses a portion of the data. It is possible that some
elements near the boundary of two disjoint data portions are in the same cache
line. If the data structure size is small, e.g. it takes up about as many bytes as
there are in a cache line, most elements of the data structure might be contained
in the same cache line causing an increased risk of false sharing.
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The results of our false sharing detection are validated by performing manual
optimization to the source code that allocates the falsely shared data, with-
out making extensive program restructuring. The optimization is performed by
modifying the data layout to prevent falsely shared data from residing on the
same cache line. We use GCC’s aligned variable attribute and posix memalign
function to allocate data on the cache line boundary. The result of the detec-
tion is considered to be valid when the performance of the optimized code is
substantially better.

5 Experiments

To evaluate our methodology, we performed experiments using the Phoenix suite
[17] that implements MapReduce for shared memory systems. Phoenix provides
eight sample applications parallelized with the Pthreads library that we have
ported to OpenMP. The programs were compiled using the OpenUH compiler
with optimization level O2. Each sample program included several input config-
urations. We chose the one that results in a reasonable execution time (not too
long nor too short). The platform that we used was an SGI Altix 3700 consisting
of 32 nodes with dual 1.3 GHz Intel Itanium 2 processors per node running the
SUSE 10 operating system. The experiment was conducted using an interactive
PBS1 with four compute nodes and eight physical CPUs. Each program was
executed with the dplace command to enforce thread affinity. The overall wall
clock execution time was measured using the shell’s time function.

5.1 Results of Detecting Cache Coherence Problem

Figure 3 presents the speedup for each program executed with different numbers
of threads. The speedup is defined as the execution time of the serial run divided
by the execution time of the multi-threaded version. The experiment for each
configuration was performed three times and the average execution time was
determined.

From all of the programs, only kmeans experienced an ideal speedup. The
matrix multiply and pca programs had reasonable results but did not come close
to the ideal speedup. The speedup of histogram, reverse index, and word count
programs was even lower than that obtained by these benchmarks. The lin-
ear regression, and string match programs suffered from a heavy slowdown when
using more than one thread.

To determine whether the slowdown or poor scaling came from the cache
coherency problem, we observe the cache invalidation event measurement. Ta-
ble 2 shows the measurement results. It shows that histogram, linear regression,
reverse index, string match, and word count had a very large number of cache
invalidation events when using higher numbers of threads. This is an indica-
tion that these programs suffer from a cache coherence problem. Although both

1 Portable Batch Session.
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Fig. 3. The speedup of the original program

Table 2. Cache invalidation event measurement result

Program Name
Total Cache Invalidation Count

1-thread 2-threads 4-threads 8-threads

histogram 13 7,820,000 16,532,800 5,959,190

kmeans 383 28,590 47,541 54,345

linear regression 9 417,225,000 254,442,000 154,970,000

matrix multiply 31,139 31,152 84,227 101,094

pca 44,517 46,757 80,373 122,288

reverse index 4,284 89,466 217,884 590,013

string match 82 82,503,000 73,178,800 221,882,000

word count 4,877 6,531,793 18,071,086 68,801,742

programs experienced sub-linear speedup in the number of threads as shown in
Figure 3, matrix multiply and pca had a low number of cache invalidation events.

An examination of the code reveals that the matrix multiply program writes
its results into an output file at the end of the program and that the pca program
has many synchronizations using critical regions, which limits the speedup of
both of them. The number of cache invalidation events in reverse index program
was pretty high when executed with eight threads, but the increase was not as
extreme as with histogram, linear regression, string match, and word count. We
conclude that the coherence problem may not contribute significantly to the
overall performance of reverse index.

We then focused on the programs with a high number of cache invalidation
events and collected the information required for identifying the variables that
exhibit a false sharing problem. To help us analyze the collected information, we
used the TAU Paraprof utility that can visualize the collected memory references
information of each thread in a parallel region.

Due to the page limitation, we only present the analysis result for
linear regression, and string match as shown in Figure 4 and 6 in the following
subsections. Both programs experienced an enormous amount of cache invalida-
tions and were slower when executed with multiple threads.
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5.2 Linear Regression

Figure 4(a) shows the average memory latency of the accesses to each cache line.
The horizontal axis contains the cache line number. The vertical axis provides
the memory access latency. The depth axis shows the thread id. There are two
distinct data regions that can be identified in this figure. In data region 1, two
cache lines referenced by thread 2 experienced a high latency, while the accesses
from all threads to the cache lines in data region 2 had higher latency than most
accesses to cache line in data region 1. Next we examine whether the two cache
lines in data region 1 and the cache lines in data region 2 also had a high number
of references.

Figure 4(b) shows the number of memory references to each cache line. The
horizontal axis contains the cache line number. The vertical axis provides the
number of references. The depth axis shows the thread id. The accesses to data
region 1 were not shown by Paraprof because the number of references to this
data region was very small compared to the number of references of region 2.

Figure 4(c) gives the total amount of memory latency for each cache line. The
total latency is defined as the average memory latency multiplied by the total
number of references. Since data region 2 dominated the total memory access
latency, we suspected the data structures in this data region to be the leading
cause of the false sharing problem.

According to DARWIN’s data-centric information, data region 2 contained
accesses to a variable named main 155. It was dynamic data allocated by the

(a) Average memory latency (b) Memory reference count

(c) Total memory latency (d) main 155 access pattern

Fig. 4. Linear regression memory access visualization
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master thread in the main function, at line number 155. Its access pattern,
presented in Figure 4(d), shows that updates to this data were distributed among
the threads, and that in some cases, multiple threads were accessing the same
cache line. In this case, the accesses from thread 1 to 3 hit elements of main 155
that reside in the same cache line and have much higher latency than the accesses
from thread 1. Therefore, we concluded that accesses to main 155 caused the
main false sharing problem in linear regression. We also found a similar situation
with histogram, where dynamic data shared among threads was causing the most
significant bottleneck. We validated the findings by adjusting the data allocation
alignment using the aligned attribute, as shown in Figure 5. The validation
results are presented in Section 5.4.

typedef struct
{

POINT_T *points __attribute__((aligned (256)));
int num_elems;
long long SX, SY, SXX, SYY , SXY;

} lreg_args;
...
tid_args = (lreg_args *) calloc(sizeof(lreg_args),num_procs);

Fig. 5. Adjusting the data alignment in linear regression

5.3 String match

Figures 6(a) and 6(b) show the average and total memory access latency of each
cache line, respectively. As with linear regression, we identified two distinct

(a) Average memory latency (b) Total memory latency

Fig. 6. String match memory access visualization

data regions with different access patterns. Both figures clearly show that the
accesses to data structures in data region 2 were causing the major bottleneck of
this program. According to the data-centric information, data region 2 contained
the memory accesses to variable key2 final and string match map 266. The first
variable was a global variable allocated in the same cache line with other global
variables. We encountered the same situation in reverse index, and word count,
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where some of their global variables resided in the same cache line and were
accessed frequently and had high latency.

string match map 266 was a dynamic data object allocated in the
string match map function at line number 266. In contrast to the main 155
variable, whose accesses were distributed among threads in linear regression,
string match map 266 was allocated only by thread 3 and privately used within
this thread. However, the problematic cache line of this variable was shared with
a dynamic variable allocated by other thread.

Table 3 presents several data structures allocated in this program. It confirms
that key2 final resided in the same cache line with fdata keys. The first cache
line of string match map 266, which is the problematic one, was shared with
string match map 268 that was allocated by thread 2.

Table 3. Data allocation information of several variables in string match

Parallel
region id

Thread
id

Variable name Starting
cache line

Last cache
line

Size
(bytes)

0 0 fdata keys 0x00004a80 0x00004a80 8

0 0 key 2 final 0x00004a80 0x00004a80 8

0 0 key 3 final 0x00004b00 0x00004b00 8

2 2 string match map 268 0x0c031f00 0x0c032300 1024

2 3 string match map 266 0x0c032300 0x0c032700 1024

The findings were validated by adjusting the data allocation alignment using
the aligned attribute on key2 final and fdata keys. We substitute the malloc rou-
tine for the allocation of string match map 266 with the posix memalign routine.
These attempts are presented in figure 7.

char *key2_final __attribute__((aligned (256)));
char *fdata_keys __attribute__((aligned (256)));
...
posix_memalign(&cur_word ,256, MAX_REC_LEN);

Fig. 7. Adjusting data alignment in string match

5.4 Results of Memory Alignment

Figure 8 shows the speedup of each program over the original one after we per-
formed the adjustments to the source code. The speedup is defined as the execu-
tion time of the original program divided by the execution time of the modified
one. The memory alignment attempt produced visible improvement of the per-
formance of histogram, linear regression, string match, and word count with up
to 30x speedup. The reverse index program did not experience any significant
improvement. However, this does not mean that our finding on reverse index is
invalid.

Table 4 presents the cache invalidation count of reverse index after the mem-
ory alignment. It shows that the memory alignment successfully reduced the
number of cache invalidations.
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Fig. 8. The speedup after adjusting the memory alignment

Table 4. Reverse index cache invalidation event measurement result

Code Version
Total Cache Invalidation Count

1-thread 2-threads 4-threads 8-threads

Unoptimized 4,284 89,466 217,884 590,013

Optimized 4,275 60,115 122,024 240,368

5.5 Performance Overhead

To determine overheads, we compare the execution time of the monitoring at-
tempt with the original program execution time. Figure 9(a) shows the slowdown
of the monitoring phase, defined as the monitoring execution time divided by
the original program execution time. The monitoring overhead consisted of the
time taken to capture data allocation, collect the data cache miss samples, and
create data-centric information. Each of them was measured using the gettime-
ofday routine. Figure 9(b) gives the percentage of each overhead component in
the total overhead time.

(a) (b)

Fig. 9. (a) The slowdown of the monitoring phase. (b) Overhead breakdown.

According to figure 9(a) the monitoring phase generated a slowdown ranging
from 1.02x to 1.72x, with the average around 1.17x. reverse index had the highest
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overhead with 1.72x slowdown, while the rest of the programs had less than 1.1x
slowdown.

Figure 9(b) shows that the majority of reverse index ’s overhead was incurred
during capture of the data allocation information. The reason for this is because
reverse index contained an excessive number of dynamic data allocations. re-
verse index had 99,675 allocations, while the other programs had less than 50
allocations. Based on our investigation, traversing the stack frame to get the
program counter during the dynamic data allocation can consume a significant
amount of time, especially when the program has a large number of allocations.
Reducing the need to traverse the stack frame is a subject for future work.

6 Related Work

False sharing is a performance problem that occurs as a consequence of the cache
coherence mechanism working at cache line granularity. Detecting false sharing
accurately requires complete information on memory allocation and memory
(read and write) operations from each thread. Previous work [5,15,13,14] has
developed approaches for memory analysis that use memory tracing and cache
simulation. This starts by tracking the memory accesses (both loads and stores)
at runtime. A cache simulator then takes the captured data to analyze the se-
quence of each memory operation and determine the type and amount of cache
misses generated during the simulation. The main drawback of this approach is
within the memory tracing part, which can incur very large overheads. A mem-
ory shadowing technique was used [24] in an attempt to minimize the overhead
of tracking the changes to the data state. Our approach does not analyze the
sequence of memory operations. We exploit higher level information, such as the
latency, and the number of memory access references. By utilizing the hardware
performance monitoring unit, the overhead of capturing this information can be
minimized. Furthermore, our approach can quickly pinpoint the falsely shared
data that has a significant impact on the performance.

Others [12,16,7,14] also use information from the hardware performance mon-
itoring unit to support performance analysis. HPCToolkit[12], and Memphis[16]
use the sampling result from AMD IBS to generate data centric information.
HPCToolkit utilizes the information to help a programmer find data structures
with poor cache utilization. Memphis focuses on finding data placement problem
on ccNUMA platform. Intel PTU[7] utilizes event-based sampling to identify the
data address and function that is likely to experience false sharing. Our work
is more focused on finding the actual data objects that suffer greatly from false
sharing. Our work is similar to [14] in terms of the utilization of the perfor-
mance monitoring unit to capture memory load operations. While [14] directs
the captured information to the cache simulator in order to analyze the memory
access sequences, our approach uses it to analyze the latency, and the number
of references.
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Several attempts have been made to eliminate the false sharing problem. For
example, careful selection of runtime scheduling parameters such as chunk size
and chunk stride when distributing loop iterations to threads has been used to
prevent false sharing [3]. Proposed data layout optimization solutions include
array padding [8] and memory alignment methods[19]. A runtime system called
Sheriff [11] performs both detection and elimination of false sharing in C/C++
applications parallelized using the Pthreads library. Sheriff eliminates false shar-
ing by converting each thread into a process and creating a private copy of shared
data for each process. It detects false sharing by observing each word in the pri-
vate copy of each process. False sharing is detected when there is a modification
to a word adjacent with another word of another process’s private copy, and
both words reside on the same cache line. Our work is primarily concerned with
detecting the false sharing problem, rather than eliminating it.

7 Conclusion

This paper describes our implementation of a technique to detect false sharing in
OpenMP applications in the DARWIN framework. DARWIN provides features
to enable communication with the OpenMP runtime library, and to capture the
data access pattern.

The technique consists of two stages, which are 1) detection of coherence bot-
tlenecks in the program with the help of hardware counters and 2) identification
of data objects that cause the false sharing problem. The second stage utilizes the
data allocation and access pattern information to distinguish the data structures
that cause major bottlenecks due to false sharing.

To observe the effectiveness of our method, the technique was applied to sev-
eral Phoenix programs that exhibit false sharing. Bottlenecks caused by the cache
coherence problem were detected, and the data causing serious false sharing prob-
lems were identified. Optimizing the memory alignment of the problematic data
greatly improved the performance, thus indicating that our method is capable of
identifying the data responsible for the false sharing problem. DARWIN’s mon-
itoring approach created an average of 1.17x slowdown of the programs used.
Traversing the stack frame when capturing the dynamic data allocation can in-
cur large overhead, especially when the program has a large number of dynamic
data allocations.
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