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Abstract. In this paper, we present a new methodology to adapt any
kind of lattice reduction algorithms to deal with the modular knapsack
problem. In general, the modular knapsack problem can be solved using
a lattice reduction algorithm, when its density is low. The complexity of
lattice reduction algorithms to solve those problems is upper-bounded
in the function of the lattice dimension and the maximum norm of the
input basis. In the case of a low density modular knapsack-type basis,
the weight of maximum norm is mainly from its first column. Therefore,
by distributing the weight into multiple columns, we are able to reduce
the maximum norm of the input basis. Consequently, the upper bound
of the time complexity is reduced.

To show the advantage of our methodology, we apply our idea over
the floating-point LLL (L2) algorithm. We bring the complexity from
O(d3+εβ2 + d4+εβ) to O(d2+εβ2 + d4+εβ) for ε < 1 for the low den-
sity knapsack problem, assuming a uniform distribution, where d is the
dimension of the lattice, β is the bit length of the maximum norm of
knapsack-type basis.

We also provide some techniques when dealing with a principal ideal
lattice basis, which can be seen as a special case of a low density modular
knapsack-type basis.

Keywords: Lattice Theory, Lattice Reduction, Knapsack Problem, LLL,
Recursive Reduction, Ideal Lattice.

1 Introduction

To find the shortest non-zero vector within an arbitrary lattice is an NP-hard
problem [1]. Moreover, till now there is no polynomial algorithm that finds a
vector in the lattice that is polynomially close to the shortest non-zero vector.
However, there exist several algorithms, for example, LLL [14] and L2 [19], run-
ning in polynomial time in d and β, where d is the dimension of the lattice, and β
is the bit length of the maximum norm of input basis, that find vectors with ex-
ponential approximation (in d) to the shortest non-zero vector. Indeed, in some
lattice based cryptography/cryptanalysis, it may not be necessary to recover the
exact shortest non-zero vector, nor a polynomially close one. Finding one with
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exponential distance to the shortest one is already useful, for instance, to solve
a low density knapsack problem or a low density modular knapsack problem.

Definition 1 (Knapsack Problem). Let {X1, X2, . . . , Xd} be a set of positive

integers. Let c =
∑d

1 siXi, where si ∈ {0, 1}. A knapsack problem is given {Xi}
and c, find each si.

The density of a knapsack, denoted by ρ, is d/β, where β is the maximum bit
length of Xi-s.

Definition 2 (Modular Knapsack Problem). Let {X0, X1, . . . , Xd} be a set

of positive integers. Let c =
∑d

1 siXi mod X0, where si ∈ {0, 1}. A modular
knapsack problem is given {Xi} and c, find each si.

The knapsack problem is also known as the subset sum problem [12]. When∑
si � d, it becomes a sparse subset sum problem (SSSP). The decisional

version of the knapsack problem is NP-complete [9]. However, if its density is
too low, there is an efficient reduction to the problem of finding the shortest
vector from a lattice (refer to [13,21,3]).

In this paper, we deal with a (modular) knapsack problem assuming a uniform
distribution, i.e., Xi-s are uniformly randomly distributed.

We refer to BK as the knapsack-type basis, and BM as the modular knapsack-
type basis. In the rest of the paper, for simplicity, we focus on knapsack-type
basis, although the adoption over a modular knapsack-type basis is straightfor-
ward.

BK =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

X1 1 0 . . . 0
X2 0 1 . . . 0
X3 0 0 . . . 0
...

...
...
. . .

...
Xd 0 0 . . . 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, BM =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

X0 0 0 . . . 0
X1 1 0 . . . 0
X2 0 1 . . . 0
...

...
...
. . .

...
Xd 0 0 . . . 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

We also consider a principal ideal lattice basis. A principal ideal lattice is an
ideal lattice that can be represented by two integers. This type of lattice enables
important applications, for instance, constructing fully homomorphic encryption
schemes with smaller key size (see [5,26] for an example of this optimization).

A basis of a principal ideal lattice (see Section 5) maintains a similar form of
modular knapsack basis, with Xi = −αi mod X0 for i ≥ 1, where α is the root
for the principal ideal. The security of the corresponding cryptosystem is based
on the complexity of reducing this basis.

In general, to solve any of the above problems using lattice, one always start
by performing an LLL reduction on a lattice L(BK) (L(BM ), respectively). Then
depending on the type of problem and the result the LLL algorithm produces,
one may perform stronger lattice reduction (BKZ [24,7,2] for example) and/or
use enumeration techniques such as Kannan SVP solver [8].

To date, the complexity of best LLL reduction algorithms for the above three
type of basis is upper bounded by O(d3+εβ2+d4+εβ) [19], although heuristically,
one is able to obtain O(d2+εβ2) in practice when ρ is significantly smaller than
1 [20].
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Our Contribution: We propose a new methodology to reduce low density modu-
lar knapsack-type basis using LLL-type algorithms. Instead of reducing the whole
knapsack-type basis directly, we pre-process its sub-lattices, and therefore, the
weight of Xi-s is equally distributed into several columns and the reduction com-
plexity is thereafter reduced. Although the idea is somewhat straightforward, the
improvement is very significant.

Table 1. Comparison of time complexity

Algorithms Time Complexity

LLL[14] O(d5+εβ2+ε)

LLL for knapsack O(d4+εβ2+ε)

L2[19] O(d4+εβ2 + d5+εβ)

L2 for knapsack[19] O(d3+εβ2 + d4+εβ)

L̃1[22] O(dω+1+εβ1+ε + d5+εβ)

Our rec-L2 O(d2+εβ2 + d4+εβ)

Our rec-L̃1 O(dωβ1+ε + d4+εβ)

Table 1 shows a time complexity comparison between our algorithms and the
existing algorithms. However, we note that the complexities of all the existing
algorithms are in worst-case, or in another words, for any type of basis, the algo-
rithms will terminate in the corresponding time. In contrast, in our algorithm,
we assume a uniform distribution, and therefore, the complexity given for our
recursive reduction algorithms is the upper bound following this assumption.
Nevertheless, we note that such an assumption is quite natural in practice.

Our result is also applicable to a principal ideal lattice basis. In addition,
we provide a technique that further reduces the time complexity. Note that our
technique does not affect the asymptotic complexity as displayed in Table 1.

Paper Organization: In the next section, we review some related area to this
research. In Section 3, we propose our methodology to deal with low density
knapsack-type basis, introduce our recursive reduction algorithm, and analyze
its complexity. Then, we apply our method to L2 and compare its complexity
with non-modified L2 in Section 4. In Section 5, we analyze the special case of
the principal ideal lattice basis. Finally, the last section concludes this paper.

2 Background

2.1 Lattice Basics

In this subsection, we review some concepts of the lattice theory that will be
used throughout this paper. The lattice theory, also known as the geometry of
numbers, was introduced by Minkowski in 1896 [17]. We refer readers to [15,16]
for a more complex account.
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Definition 3 (Lattice). A lattice L is a discrete sub-group of R
n, or equiv-

alently the set of all the integral combinations of d ≤ n linearly independent
vectors over R.

L = Zb1 + Zb2 + · · ·+ Zbd, bi ∈ R
n

B = (b1, . . . , bd) is called a basis of L and d is the dimension of L, denoted as
dim(L). L is a full rank lattice if d equals to n.

For a given lattice L, there exists an infinite number of basis. However, its
determinant (see Definition 4) is unique.

Definition 4 (Determinant). Let L be a lattice. Its determinant, denoted as
det(L), is a real value, such that for any basis B of L, det(L) =√det(B · BT ),
where BT is the transpose of B.

Definition 5 (Successive Minima). Let L be an integer lattice of dimension
d. Let i be a positive integer. The i-th successive minima with respect to L,
denoted by λi, is the smallest real number, such that there exist i non-zero linear
independent vectors v1,v2, . . . ,vi ∈ L with

‖v1‖, ‖v2‖, . . . , ‖vi‖ ≤ λi.

The i-th minima of a random lattice (as defined in Theorem 1) is estimated by:

λi(L) ∼
√

d

2πe
det(L) 1

d . (1)

Definition 6 (Hermite Factor). Let B = (b1, . . . , bd) a basis of L. The Her-

mite factor with respect to B, denoted by γ(B), is defined as ‖b1‖
det(L)

1
d
.

Note that Hermite factor indicates the quality of a reduced basis.
Additionally, following the result of [6]:

Theorem 1 (Random Lattice). Let B be a modular knapsack-type basis con-
structing from a modular knapsack problem given by {Xi}. L(B) is a random
lattice, if {Xi} are uniformly distributed.

2.2 Lattice Reduction Algorithms

In 1982, Lenstra, Lenstra and Lovasz [14] proposed an algorithm, known as
LLL, that produces an LLL-reduced basis for a given basis. For a lattice L with
dimension d, and a basis B, where the norm of all spanning vectors in B is
≤ 2β, the worst-case time complexity is polynomial O(d5+εβ2+ε). Moreover, it
is observed in [20] that in practice, LLL seems to be much more efficient in terms
of average time complexity.

In 2005, Nguyen and Stehlé [19] proposed an improvement of LLL, which is
the first variant whose worst-case time complexity is quadratic with respect to β.
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This algorithm is therefore named L2. This algorithm makes use of floating-point
arithmetics, hence, the library that implements L2 is sometimes referred to as
fplll [23]. It terminates with a worst-case time complexity of O(d4+εβ2 + d5+εβ)
for any basis. For a knapsack-type basis, it is proved that L2 terminates in
O(d3+εβ2+ d4+εβ), since there are O(dβ) loop iterations for these bases instead
ofO(d2β) for random bases (see Remark 3, [19]). Moreover, some heuristic results
show that when dealing with this kind of bases, and when d, β grow to infinity,
one obtains Θ(d3β2) when β = Ω(d2), and Θ(d2β2) when β is significantly larger
than d (see Heuristic 3, [20]).

Recently, in 2011, Novocin, Stehlé and Villard [22] proposed a new improved
LLL-type algorithm that is quasi-linear in β. This led to the name L̃1. It is
guaranteed to terminate in time O(d5+εβ + dω+1+εβ1+ε) for any basis, where ω
is a valid exponent from matrix multiplications. To bound ω, we have 2 < ω ≤ 3.
A typical setting in [22] is ω = 2.3.

In [27], van Hoeij and Novocin proposed a gradual sub-lattice reductions algo-
rithm based on LLL that deals with knapsack-type basis. Unlike other LLL-type
reduction algorithms, it only produces a basis of a sub-lattice. This algorithm
uses a worst-case O(d7 + d3β2) time complexity.

For more improvements on LLL with respect to d, we refer readers to
[18,25,10,11].

With regard to the quality of a reduced basis for an arbitrary lattice, the
following theorem provides an upper bound.

Theorem 2. For a lattice L, if (b1, . . . , bn) form an LLL-reduced basis of L,
then,

∀i, ‖bi‖ ≤ 2
d−1
2 max(λi(L)). (2)

Therefore, assuming a uniform distribution, we have the following.

1. If a modular knapsack problem follows a uniform distribution, then its cor-
responding basis forms a random lattice.

2. If L is a random lattice, then λi(L) is with respect to Equation 1.

3. From Equation 1 and 2, we have ‖bi‖ ≤ 2
d−1
2

√
d

2πe det(L)
1
d for a random

lattice.

Hence, for a modular knapsack-type basis, if B = (b1, . . . , bd) forms its LLL-
reduced basis, then

‖bi‖ < 2d det(L) 1
d , 1 ≤ i ≤ d.

In terms of the quality of ‖b1‖, the work in [4] shows that on average cases,
LLL-type reduction algorithms is able to find a short vector with a Hermite
factor 1.0219d, while on worst cases, 1.0754d, respectively. Further, heuristically,
it is impossible to find vectors with Hermite factor < 1.01d using LLL-type
algorithms [4]. By contrast, a recent work of BKZ 2.0 [2] finds a vector with a
Hermite factor as small as 1.0099d.

It has been shown that other lattice reduction algorithms, for instance, BKZ
[24,7], and BKZ 2.0 [2], produce a basis with better quality. However, in general,
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they are too expensive to use. We also note those methods require to perform
at least one LLL reduction.

As for low density knapsack-type basis, the Hermite factor of the basis is
large. This implies that, in general, the output basis of most reduction algorithms
contains the demanded short vector. In this case, the time complexity is more
important, compared with the quality of the reduced basis/vectors. For this
reason, in this paper, we focus only on LLL-type reduction algorithms.

3 Our Reduction Methodology

3.1 A Methodology for Lattice Reduction

In this subsection, we do not propose an algorithm for lattice reduction but rather
a methodology applicable to all lattice reduction algorithms for the knapsack
problem with uniform distribution.

Let A be an LLL-type reduction algorithm that returns an LLL-reduced ba-
sis Bred of a lattice L of dimension d, where Bred = (b1, . . . , bd), 0 < ‖bi‖ <

cd0 det(L)
1
d for certain constant c0. The running time will be c1d

a1βb1 +c2d
a2βb2 ,

where a1, b1, a2 and b2 are all parameters, c1 and c2 are two constants. Without
losing generality, assuming a1 ≥ a2, b1 ≤ b2 (if not, then one term will over-
whelm the other, and hence, making the other term negligible). We note that
this is a formalization of all LLL-type reduction algorithms.

For a knapsack-type basis B of L, where most of the weight of β are from the
first column of the basis matrix B = (b1, b2, . . . , bd), it holds that 2

β ∼ det(L).
Moreover, for any sub-lattice Ls of L that is spanned by a subset of row vectors
{b1, b2, . . . , bd}, it is easy to prove that det(Ls) ∼ 2β . In addition, since we
assume a uniform distribution, the sub-lattice spanned by the subset of vectors
can be seen as a random lattice. Note that the bases of those sub-lattice are
knapsack-type basis, so if one needs to ensure the randomness, one is required
to add a new vector 〈X0, 0, . . . , 0〉 to the basis and convert it to a modular one.
One can verify that this modification will not change the asymptotic complexity.
Nevertheless, in practice, it is natural to omit this procedure.

We firstly pre-process the basis, so that the weight is as equally distributed
into all columns as possible, and therefore, the maximum norm of the new basis
is reduced. Suppose we cut the basis into d/k blocks and each block contains k
vectors. Then one applies A on each block. Since we know that the determinant
of each block is ∼ 2β, this pre-processing gives us a basis with smaller maximum
norm ∼ ck02

β/k. Further, since the pre-processed basis and the initial basis span
the same lattice, the pre-processing will not affect the quality of reduced basis
that a reduction algorithm returns.

Below, we show an example of how this methodology works with dimension 4
knapsack-type basis, where we cut L into two sub-lattices and pre-process them

independently. As a result, Xi ∼ 2β , while xi,j � c202
β
2 for a classic LLL-type

reduction algorithm.
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Bbefore =

⎛

⎜
⎜
⎝

X1 1 0 0 0
X2 0 1 0 0
X3 0 0 1 0
X4 0 0 0 1

⎞

⎟
⎟
⎠ =⇒ Bafter =

⎛

⎜
⎜
⎝

x1,1 x1,2 x1,3 0 0
x2,1 x2,2 x2,3 0 0
x3,1 0 0 x3,4 x3,5

x4,1 0 0 x4,4 x4,5

⎞

⎟
⎟
⎠

Now we examine the complexity. The total time complexity of this pre-processing
is c1dk

a1−1βb1+c2dk
a2−1βb2 . The complexity of the final reduction now becomes

c1d
a1(k log2(c0) + β/k)b1 + c2d

a2(k log2(c0) + β/k)b2 . Therefore, as long as

c1d
a1(k log2(c0) + β/k)b1 + c2d

a2(k log2(c0) + β/k)b2 (3)

+c1dk
a1−1βb1 + c2dk

a2−1βb2 < c1d
a1βb1 + c2d

a2βb2 ,

conducting the pre-processing will reduce the complexity of whole reduction.
In the case where k log2(c0) is negligible compared with β/k, we obtain:

c1d
a1(β/k)b1 + c2d

a2(β/k)b2 + c1dk
a1−1βb1 + c2dk

a2−1βb2

< c1d
a1βb1 + c2d

a2βb2 .

Therefore,

c1

(

da1 − da1

kb1
− dka1−1

)

βb1+c2

(

da2 − da2

kb2
− dka2−1

)

βb2 > 0.

Taking L2 as an example, where a1 = 4, b1 = 2, a2 = 5 and b2 = 1, let k = d/2,
we obtain c1(

7
8d

4 − 4d2)β2 + c2(
15
16d

5 − 2d4)β from the left hand side, which is
positive for dimension d > 2. This indicates that, in theory, when dealing with
a knapsack-type basis, one can always achieve a better complexity by cutting
the basis into two halves and pre-process them independently. This leads to the
recursive reduction in the next section.

3.2 Recursive Reduction with LLL-Type Algorithms

The main idea is to apply our methodology to an input basis recursively, until
one arrives to sub-lattice basis with dimension 2. In doing so, we achieve a
upper bounded complexity of O(da1−b1βb1 + da2−b2βb2). For simplicity, we deal
with lattice whose dimension equals to a power of 2, although same principle is
applicable to lattices with arbitrary dimensions.

Algorithm. We now describe our recursive reduction algorithm with LLL-type
reduction algorithms. Let LLL(·) an LLL reduction algorithm that for any lattice
basisB, it returns a reduced basisBr. Algorithm 1 describes our algorithm, where
B is a knapsack-type basis of a d-dimensional lattice, and d is a power of 2.

Since we have proven that, for any dimension of knapsack-type basis, it is
always better to reduce its sub-lattice in advance as long as Equation 3 holds,
it is straightforward to draw the following conclusion: the best complexity to
reduce a knapsack-type basis with LLL-type reduction algorithms occurs when
one cuts the basis recursively until one arrives with dimension 2 sub-lattices.
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Algorithm 1. Recursive Reduction with LLL algorithm

Input: B, d
Output: Br

number of rounds← log2 d
Bb ← B
for i← 1→ number of rounds do

dim of sublattice← 2i

number of blocks← d/dim of sublattice
Br ← EmptyMatrix()
for j ← 1→ number of blocks do

Bt ← SubMatrix(Bb, (j−1)∗dim of sublattice+1, 1, j ∗dim of sublattice, d)

Bt ← LLL(Bt)
Br ← V erticalJoin(Br, Bt)

end for
Bb ← Br

end for

In Algorithm 1, EmptyMatrix(·) is to generate a 0 by 0 matrix; SubMatrix
(B, a, b, c, d) is to extract a matrix from B, starting from a-th row and b-th
column, finishing at c-th row and d-th column; while V erticalJoin(A,B) is to
adjoin two matrix with same number of columns vertically.

Complexity. In the following, we prove that the complexity of our algorithm
is O(da1−b1βb1 + da2−b2βb2), assuming ρ < 1.

For the i-th round, to reduce a single block takes c12
ia1( β

2i−1 )
b1+c22

ia2( β
2i−1 )

b2 ,

while there exist d
2i such blocks. Hence, the total complexity is as follows:

log2 d∑

i=1

(
d

2i

)

(c12
ia1(β/2i−1)b1 + c22

ia2(β/2i−1)b2)

= d ·
log2 d∑

i=1

(c12
i(a1−b1−1)+b1βb1 + c22

i(a2−b2−1)+b2βb2)

= c12
b1dβb1

⎛

⎝
log2 d∑

i=1

2(a1−b1−1)i

⎞

⎠+ c22
b2dβb2

⎛

⎝
log2 d∑

i=1

2(a2−b2−1)i

⎞

⎠

< c12
b1dβb1

(
2(log2 d+1)(a1−b1−1)

)
+ c22

b2dβb2
(
2(log2 d+1)(a2−b2−1)

)

< c12
b1dβb1(2d)a1−b1−1 + c22

b2dβb2(2d)a2−b2−1

< c12
a1−1da1−b1βb1 + c22

a2−1da2−b2βb2 .

As a result, we obtain a new time complexity O(da1−b1βb1 + da2−b2βb2).
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4 Applying Recursive Reduction to L2

We adapt the classic L2 as an example. The L2 algorithm uses a worst-case com-
plexity of c1d

4β2 + c2d
5β for arbitrary basis. Therefore, applying our recursive

methodology, one obtains

log2 d∑

i=1

(
d

2i

)(

c12
4i

(
β

2i−1

)2

+ c22
5i

(
β

2i−1

))

=

log2 d∑

i=1

(4c1d2
iβ2 + 2c2d2

3iβ)

= 4c1dβ
2

⎛

⎝
log2 d∑

i=1

2i

⎞

⎠+ 2c2dβ

⎛

⎝
log2 d∑

i=1

23i

⎞

⎠

< 4c1dβ
2(2d) + 2c2dβ1.15d

3

< 8c1d
2β2 + 2.3c2d

4β.

Now we compare our complexity with the original L2 algorithm. As mentioned
earlier, when applying to a knapsack-type basis, the provable worst-case com-
plexity of L2 becomes c1d

3β2+c2d
4β rather than c1d

4β2+c2d
5β as for a random

basis. However, it is worth pointing out that in practice, one can achieve a much
better result than a worst case, since the weight of most Xi is equally distributed
into all the columns. Heuristically, one can expect Θ(c1d

2β2) when d, β go to
infinity and β � d.

Input a knapsack-type basis, the L2 algorithm (and almost all other LLL-type
reduction algorithms) tries to reduce the first k rows, then the k + 1 row, k + 2
row, etc. For a given k + 1 step, the current basis has the following shape:

Bknap−L2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x1,1 x1,2 . . . x1,k+1 0 0 . . . 0
x2,1 x2,2 . . . x2,k+1 0 0 . . . 0
...

... · · · ...
...
... · · · ...

xk,1 xk,2 . . . xk,k+1 0 0 . . . 0
Xk+1 0 . . . 0 1 0 . . . 0
Xk+2 0 . . . 0 0 1 . . . 0

...
... · · · ...

...
... · · · ...

Xd 0 . . . 0 0 0 . . . 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

L2 will reduce the first k+1 rows during this step. Despite that most of the entries

are with small elements (‖xi,j‖ ∼ O(2
β
k )), the worse-case complexity of current

step still depends on the last row of current step, i.e., 〈Xk+1, 0, . . . , 0, 1, 0, . . . , 0〉.
For the recursive reduction, on the final step, the input basis is in the form

of:
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Brec−L2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x1,1 x1,2 . . . x1, d2+1 0 0 . . . 0

x2,1 x2,2 . . . x2, d2+1 0 0 . . . 0
...

... · · · ...
...

... · · · ...
x d

2 ,1
xk,2 . . . x d

2 ,
d
2+1 0 0 . . . 0

x d
2+1,1 0 . . . 0 x d

2+1, d2+2 x d
2+1, d2+3 . . . x d

2+1,d+1

x d
2+2,1 0 . . . 0 x d

2+2, d2+2 x d
2+2, d2+3 . . . x d

2+2,d+1

...
... · · · ...

...
... · · · ...

xd,1 0 . . . 0 xd, d2+2 xd, d2+3 . . . xd,d+1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Note that the weight of Xi is equally distributed into d
2 + 1 columns. Hence,

the bit length of maximum norm of basis is reduced from β to approximately
d log2 c0 + 2β/d. Therefore, we achieve a better time complexity. In fact, the
provable new complexity is of the same level of the heuristic results observed in
practice, when β � d.

5 Special Case: Principal Ideal Lattice Basis

In this section, we present a technique when dealing with a principal ideal lattice
basis. Due to the special form of a principal ideal lattice, we are able to reduce the
number of reductions in each round to 1, with a cost of O(d) additional vectors
for the next round. This technique does not effect the asymptotic complexity,
however, in practice, it will accelerate the reduction.

BI =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

δ 0 0 . . . 0
−α mod δ 1 0 . . . 0
−α2 mod δ 0 1 . . . 0

...
...
...
. . .

...
−αd−1 mod δ 0 0 . . . 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=⇒ B′
I =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

δ 0 0 . . . 0 0
−α 1 0 . . . 0 0
0 −α 1 . . . 0 0
...

...
...
. . .

...
...

0 0 0 . . . −α 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Let X0 = δ, one obtains BI in the above form. From BI , one constructs a new
basis B′

I . Then, one can obtain a generator matrix of L(BI) by inserting some
vectors in L to B′

I .
The following example shows how to construct G with d = 5. In this example,

since vector 〈0, 0, δ, 0, 0〉 is a valid vector in L(B), B and G span a same lattice.
Applying a lattice reduction algorithm over G will return a matrix with the top
row that is a zero vector, while the rest form a reduced basis of L.

G =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

δ 0 0 0 0
−α 1 0 0 0
0 −α 1 0 0
0 0 δ 0 0
0 0 −α 1 0
0 0 0 −α 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=⇒

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

x1,1 x1,2 x1,3 0 0
x2,1 x2,2 x2,3 0 0
x3,1 x3,2 x3,3 0 0
0 0 x1,1 x1,2 x1,3

0 0 x2,1 x2,2 x2,3

0 0 x3,1 x3,2 x3,3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠
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To reduce G, we adopt our recursive reduction methodology. We firstly reduce
the top half of G. Since the second half is identical to the top half, except the
position of the elements, we do not need to reduce the second half. Indeed, we
use the result of the top half block and then shift all the elements. In this case,
during our recursive reduction, for round i, instead of doing d/2i reductions,
one need to perform only one reduction. Finally, one reduces the final matrix G,
removes all the zero vectors and start a new round.

With our technique, the number of vectors grows, and this may increase the
complexity of the next round. For the i-th round, the number of vectors grows
by d/2i−1− 1. It will be negligible when d/2i � d. For instance, if we adopt this
approach between the second last round and the last round, this approach will
only increase the number of vectors by 1, while if one uses it prior to the first
round, the number of rows will almost be doubled. In practice, one can choose
to adopt this technique for each round only when it accelerates the reduction.

We note that the asymptotic complexity remains the same, since generally
speaking, the number of vectors remains O(d) as before, while the asymptotic
complexity concerns only d and β.

6 Conclusion

In this paper, we presented a methodology for lattice reduction algorithms used
for solving low density modular knapsack problems. The complexity of poly-
nomial time lattice reduction algorithms relies on the dimension d and the bit
length β of maximum norm of input basis. We prove that for a knapsack-type
basis, it is always better to pre-process the basis by distributing the weight to
many columns as equally as possible. Using this methodology recursively, we
are able to reduce β to approximately 2β/d, and consequently, we successfully
reduce the entire complexity.

We then demonstrated our technique over the floating-point LLL algorithm.
We obtain a provable upper bounded complexity of O(d2+εβ2 + d4+εβ), which
is by far the best provable time complexity for a knapsack-type basis.
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19. Nguyên, P.Q., Stehlé, D.: Floating-Point LLL Revisited. In: Cramer, R. (ed.) EU-

ROCRYPT 2005. LNCS, vol. 3494, pp. 215–233. Springer, Heidelberg (2005)
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