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Preface

Previously called the Workshop on Selected Areas in Cryptography, the
Conference on Selected Areas in Cryptography (SAC) series was initiated in
1994, when the first workshop was held at Queen’s University in Kingston. The
SAC conference has been held annually since 1994 in various Canadian locations,
including Calgary, Kingston, Montreal, Ottawa, Sackville, St. John’s, Toronto,
and Waterloo. More information on former SAC conferences can be found at the
main SAC conferences site (http://sacconference.org/).

This volume contains the papers presented at SAC 2012, held on August
15–16, 2012 in Windsor, Canada. The objective of the conference is to present
cutting edge research in the designated areas of cryptography and to facilitate
future research through an informal and friendly conference setting.

The themes for the SAC 2012 conference were:

1. Design and analysis of symmetric key primitives and cryptosystems,
including block and stream ciphers, hash functions, and MAC algorithms.

2. Efficient implementations of symmetric and public key algorithms.
3. Mathematical and algorithmic aspects of applied cryptology.
4. Light-weight authentication protocols.

There were 87 submissions. Each submission was reviewed by at least 3 pro-
gram committee members. The committee decided to accept 24 papers and the
acceptance rate was 24/87 = 27.6%. The program also included two invited
talks.

We appreciate the hard work of the SAC 2012 Program Committee. We are
also very grateful to the many others who participated in the review process:
Mohamed Ahmed Abdelraheem, Jithra Adikari, Toru Akishita, Martin Albrecht,
Hoda Alkhzaimi, Elena Andreeva, Kazumaro Aoki, Guido Bertoni, Zeeshan Bi-
lal, Cline Blondeau, Céline Blondeau, Julia Borghoff, Yuri Borissov, Sebastien
Canard, Murat Cenk, Qi Chai, Nadia El Mrabet, Junfeng Fan, Xinxin Fan, Se-
bastian Faust, Ewan Fleischmann, Thomas Fuhr, Louis Goubin, Robert Granger,
Risto Hakala, Jens Hermans, Harunaga Hiwatari, Takanori Isobe, Pascal Junod,
Abdel Alim Kamal, Kazuya Kamio, Dmitry Khovratovich, Aleksandar Kircan-
ski, Mario Kirschbaum, Ilya Kizhvatov, Edward Knapp, Miroslav Knezevic,
Noboru Kunihiro, Jooyoung Lee, Vadim Lyubashevsky, Kalikinkar Mandal, Alex
May, Florian Mendel, Bart Mennink, Rafael Misoczki, Carlos Moreno, Mehran
Mozaffari-Kermani, Nicolas Méloni, Tomislav Nad, Christophe Negre, Samuel
Neves, Thomas Plos, Francesco Regazzoni, Alfredo Rial, Koichi Sakumoto, Ste-
faan Seys, Kyoji Shibutani, Dave Singelee, Hadi Soleimany, Paul Stankovski,
Stefan Tillich, Elmar Tischhauser, Gilles Van Assche, Kerem Varici, Frederik
Vercauteren, Lei Wang, Erich Wenger, Zhiqian Xu, Bo Zhu, and Martin Ågren.
We apologize for any unintended errors or omissions in this list.



VI Preface

This conference was generously sponsored by the Department of Electrical
and Computer Engineering, Faculty of Engineering, and the Office of Vice Pres-
ident - Research, University of Windsor.

Special thanks go to Dr. Carlisle Adams, University of Ottawa, Dr. Amr
Youssef, Concordia University, and Dr. Ali Miri, Ryerson University for gener-
ously sharing their rich experiences in organizing SAC conferences.

We would like to thank Andria Ballo, Heather Quinn, Shelby Marchand,
Yiruo He, and Shoaleh Hashemi Namin for their hard work in dealing with local
arrangements. Our cordial thanks also go to EasyChair.org for providing support
and convenience with regard to the paper-review and editing processes.

September 2012 Lars R. Knudsen
Huapeng Wu
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Privacy Enhancing Technologies for the Internet

(Invited Talk)

Ian Goldberg

Cheriton School of Computer Science
University of Waterloo

Waterloo, ON N2L 3G1 Canada
iang@cs.uwaterloo.ca

Abstract. The unprecedented communication power made available by
the Internet has helped to spread freedom and democracy around the
world. Unfortunately, there still exist regimes that restrict the flow of
information, censor websites, and block some kinds of communication.

For more than a decade, privacy enhancing technologies have been
used to allow people to communicate online while allowing them to con-
trol who can learn what they are saying and to whom they are speaking.
Today, these same kinds of technologies are also being used to circumvent
online censorship and allow global citizens to communicate freely.

In this talk, we will take a look at past, present, and upcoming privacy
enhancing technologies for the Internet, and discuss their strengths and
challenges.
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An All-In-One Approach to Differential

Cryptanalysis for Small Block Ciphers�

Martin R. Albrecht1 and Gregor Leander2

1 INRIA, Paris-Rocquencourt Center, POLSYS Project
UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris, France

CNRS, UMR 7606, LIP6, F-75005, Paris, France
2 DTU Mathematics, Department of Mathematics, Technical University of Denmark,

2800 Kgs. Lyngby, Denmark
malb@lip6.fr, G.Leander@mat.dtu.dk

Abstract. Wepresent a framework that unifies several standard differen-
tial techniques. This unified view allows us to consider many, potentially
all, output differences for a given input difference and to combine the in-
formation derived from them in an optimal way. We then propose a new
attack that implicitly mounts several standard, truncated, impossible, im-
probable and possible future variants of differential attacks in parallel and
hence allows to significantly improve upon known differential attacks using
the same input difference. To demonstrate the viability of our techniques,
we apply them to KATAN-32. In particular, our attack allows us to break
115 rounds of KATAN-32. For this, our attack exploits the non-uniformity
of the difference distribution after 91 rounds which is 20 rounds more than
the previously best known differential characteristic.

Keywords: symmetric cryptography, block cipher, differential attack.

1 Introduction

Designing a secure block cipher that, at the same time, is very efficient is still
challenging. In particular, lightweight cryptography which recently received con-
siderable attention from the cryptographic community calls for block ciphers that
can be efficiently implemented even in very resource constrained devices. Design-
ing secure ciphers for such tiny devices – e.g., RFID tags or sensor networks –
requires, on the one hand, innovative design strategies and, on the other hand,
perhaps compromises in the security level. One such constraint is the block size
used in block ciphers. As the block size, along with the key size, greatly influ-
ences the required circuit size, block ciphers tailored to be implemented in small
devices have a strong tendency to feature smaller block sizes compared to mod-
ern block ciphers mainly focusing on software such as the AES. While modern
block ciphers focusing on software usually have a block size of no less than 128
bits, most ciphers designed for efficient implementations in hardware have block

� This is an extended abstract of the work available as [1].

L.R. Knudsen and H. Wu (Eds.): SAC 2012, LNCS 7707, pp. 1–15, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 M.R. Albrecht and G. Leander

sizes of 64 bits or less (see for example PRESENT [8] or HIGHT [12]). A block
cipher with a particular small block size of 32-bit is KATAN-32 [10] presented
at CHES 2009.

Block ciphers with very small block sizes have some interesting characteristics.
From the point of view of the attacker, when using the block cipher in counter
mode, it is possible to distinguish the output from a random sequences faster.
Similarly, an attacker can build a complete code book faster and time-memory
tradeoffs are a greater concern. From the perspective of the designer, most sta-
tistical attacks like differential or linear cryptanalysis seem at first glance to
become more difficult as the amount of data available to the attacker is much
more restricted.

Finally, from a theoretical point of view, small block sizes provide the opportu-
nity to understand well-established attacks better since computations involving
the entire code-book are feasible. In particular, for differential cryptanalysis, it
becomes feasible to compute the exact expected probabilities for many (some-
times all) differentials. This data then allows to study the behaviour of (classical)
differential cryptanalysis and related techniques more precisely.

Yet, it is not obvious a priori how to provide an optimal unified view on these
differentials even if this data is available. To provide an answer to this question,
this work investigates the probability distribution of output differences under one
(or many) input difference and provides an optimal way to use the non-uniform
distribution of differences in an attack.

Prior Work: Differential cryptanalysis was first proposed by Biham and Shamir
[4] and since became one of the most prominent tools in the analysis of block
ciphers. Many improvements and extensions have been proposed in the past,
we mention some of the most influential ones. Knudsen [15] and later Biham,
Biryukov and Shamir [3] proposed to use differentials with zero probability, that
is impossible differential attacks. Based on the work of Lai [17] High-order differ-
entials were introduced in [16] and are most effective against ciphers where the
algebraic degree can be limited. Truncated differentials, first mentioned in [16]
can be seen as a collection of differentials and in some cases allow to push dif-
ferential attacks one or two rounds further. Boomerang attacks can be viewed as
special cases of second order differentials and are most efficient when the prob-
ability of any differential drops rapidly with an increasing number of rounds.
Recently, improbable differentials have been suggested [22] as a natural exten-
sion of impossible differentials and have been successfully applied to the block
cipher CLEFIA. Also recently, differential cryptanalysis was extended to multi-
differential cryptanalysis in [6]. Finally, our application of the log-likelihood can
be seen in the framework of [21].

Our Contribution:Abstractly, differential cryptanalysis exposes a non-uniform
distribution of output differences given one (or several) input differences. This
is also the point of view from which our investigation sets out. Phrased in these
terms, recovering key information using differential techniques becomes the task
of distinguishing between distributions, one for the right key and one for the
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wrong keys. However, usually the attacker does not have access to a full de-
scription of these distributions. In standard differential cryptanalysis only one
output difference is considered and usually the probability of the best differential
characteristic is considered in place of the probability of the output differential.
Furthermore, for wrong keys it is assumed that the distribution is uniform.

In comparison the advantage of an attacker when dealing with small block-size
ciphers become apparent. The attacker has, under mild assumptions, the abil-
ity to compute the parameters of those distributions precisely. Thus, the task
is no longer to distinguish (essentially) unknown distributions, but distributions
which are known completely. In particular, the usual hypotheses that wrong keys
result in random permutations can be lifted. To this end, we first introduce a
model to study and distinguish these distributions. As an important side effect,
our framework unifies and generalises standard differential attacks, impossible
differentials, improbable differentials and truncated differentials into one attack
framework. Since our framework considers the distribution of all output differ-
ences it captures all techniques which exploit statistically significant subspaces
of the output space.

We then propose a new attack based on this model that implicitly mounts
several standard, truncated, impossible, improbable and possible future vari-
ants of differential attacks in parallel and hence allows to significantly improve
upon known differential attacks using the same input difference. We stress that
these “parallel applications” of various differential attacks are such that they are
strictly better than those attacks considered independently. To demonstrate the
viability of our model and attack, we apply our attack to two ciphers with small
block sizes: the toy-cipher SmallPresent[4] and KATAN-32. For KATAN-32 we
present the best known differential attack.1 In particular, our attack allows us
to break 115 rounds of KATAN-32, which is 37 rounds more than previous work
[14], although we note that our attack requires considerably more resources than
[14]. For this, our attack exploits the non-uniformity of the difference distribu-
tion after 91 rounds which is 20 rounds more than the previously best known
differential characteristic. Since our results takes into account several standard
techniques and still cover less than 1/2 of the cipher, they further strengthen our
confidence in KATAN-32’s resistance against differential attacks. For complete-
ness, we also like to mention a recent preprint [13] using a meet-in-the-middle
variant to recover the key for the full KATAN (slightly) faster than exhaustive
search.

Furthermore, our model allows to combine many input- and output-differences
which allows to reduce the data complexity compared to previous works signif-
icantly. This is mainly due to the fact that our approach almost naturally pro-
vides the optimal way of combining information from several input and output
differences. This is the major difference between our work and [6].

We highlight that similar approaches have been independently developed by
Blondeau, Gérard and Nyberg [7] and Murphy [20]. While these approaches also
differ in some theoretical respects (such as using the likelihood instead of the

1 Our attack is also the best known differential attack on SmallPresent[4].
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likelihood ratio in the latter case), the main difference between these works and
ours is that we put our model to practice and use it to improve upon known
attacks.

2 Preliminaries and Notation

In this work we focus on block ciphers where the key is XORed to (parts of)
the state. Let Rk denote one round function of a block cipher with (round)-key
k, where without loss of generality the key is added in last. By R we denote
the round function without the final key addition, that is Rk(x) = R(x) ⊕ k.
Moreover let EK : Fn

2 → F
n
2 be the corresponding r round block cipher, where

K = (k0, k1, . . . , kr) consist of all round keys. More precisely EK(x) = Rkr ◦
Rkr−1 ◦· · ·◦Rk1(x⊕k0) where k0 is the whitening key. For a function F : Fn

2 → Fn
2

given an input difference δ and an output difference γ we denote

PF (δ, γ) := Pr(F (X)⊕ F (X ⊕ δ) = γ)

for randomly uniformly chosen X . That is, PF (δ, γ) is the probability of the
differential δ → γ. Using N (unordered) pairs, the number of pairs following the

given differential is denoted by D
(N)
F (δ, γ). The expected value of D

(N)
F (δ, γ) is

NPF (δ, γ) and we discuss below more precisely how D
(N)
F (δ, γ) is distributed.

Note that in the following N always denotes the number of (unordered) plain-
text/ciphertext pairs used. As we use unordered pairs, using the full code book
corresponds to choosing N = 2n−1.

We consider the case where we assume E is a Markov cipher. A cipher E is a
Markov cipher when the transitional probabilities for the output differences of
round r+1 only depend on the output difference of round r. More precisely the
round function has to satisfy [18]:

Pr(R(X ⊕ k)⊕R(X ⊕ δ ⊕ k) = γ | X = x0) = PR(δ, γ)

for all choices of x0 and uniformly random chosen subkeys k. If, furthermore,
all round keys are independent, then one can compute the average value of
PEK (δ, γ) over all possible keys by adding the probabilities for all differential
characteristics included in the differential. This has first been formalised in [18]
and is summarised in the next proposition.

Proposition 1. For a function EK : Fn
2 → F

n
2 = Rkr ◦Rkr−1 ◦ · · · ◦Rk1(x⊕ k0)

with input difference δ, output difference γ and PR(γ
′, δ′) the probability of the

differential γ′ → δ′ for the function R we have

P̃E(δ, γ) :=
1

�K

∑
K

PEK (δ, γ)

=
∑

γ1,...,γr−1

PR(δ, γ1)
(∏

PR(γi, γi+1)
)
PR(γr−1, γ)
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The hypothesis of stochastic equivalence states (cf. [18]) that for almost all keys

we expect PEK (δ, γ) ≈ P̃E(δ, γ) which implies that D
(N)
K (δ, γ) ≈ NP̃E(δ, γ) for

almost all keys.
This approximation has to be understood as expected value taken over all

expanded keys. However, for our purpose, we are not only interested in the

expected value of the counter D
(N)
EK

(δ, γ) but moreover how these values are
distributed. This was analysed in [11] and more recently in [5]. It turns out,

considering D
(N)
EK

(δ, γ) as the results of N independent Bernoulli trials with suc-

cess probability P̃E(δ, γ) leads to a good model of the actual distribution. More
precisely, denoting by B(n, p) the Binomial distribution with n tries and success
probability p, the following is a reasonable approximation for the distribution of

D
(N)
EK

(δ, γ).

Assumption 1 (cf. Theorem 14 in [11]). The counter D
(N)
EK

(δ, γ) is dis-

tributed according to the Binomial distribution B(N, P̃E(δ, γ)), that is

Pr(D
(N)
EK

(δ, γ) = c) =

(
N

c

)
P̃E(δ, γ)

c(1− P̃E(δ, γ))
N−c

where the probability is taken over random keys K.

We note that we experimentally validated this assumption for all ciphers con-
sidered in this work although these ciphers are not Markov ciphers.

2.1 P̃E(δ, γ) in Differential Cryptanalysis

In standard differential cryptanalysis the attacker attempts to find an input differ-
ence and an output difference such that P̃E(δ, γ) is “sufficiently high”, i.e., bounded
away from uniform. In this case we can expect that, with high probability, for each
key K there exist sufficiently many right pairs to mount an attack, i.e., to detect
the bias of P̃E(δ, γ). Traditionally, in a 1R attack on the cipherRkr+1 ◦EK one (par-
tially) decrypts the last roundwith all possible (partial) round keys and increases a
counter for the current round key guess iff the computed difference fits the expected
output difference γ of round r. Afterwards, the keys are ranked according to their
counters, that is, the attacker first tries the key with the highest counter, than the
one with the second highest counter, etc.

The success probability of a differential attack is usually computed under the
Wrong-KeyRandomizationHypotheses .TheWrong-KeyRandomizationHypothe-
ses (see for example [18]) states that for awrongkeyguess the corresponding counter
is distributed as for a random permutation. Using the notation established above
the Wrong-Key Randomization Hypotheses can be stated as follows

Assumption 2 (Wrong-Key Randomization Hypotheses, cf. [18])). For
a wrong key guess the corresponding counter is distributed as for a random per-

mutation, that is D
(N)

R−1

k′ ◦Rkr+1
◦EK

(δ, γ) ∼ B(N, 2−n) for all k′ �= kr+1.
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2.2 Distinguishing Distributions

Following the above discussion on the distribution of counter values, it is natural
to view a differential attack as a technique to find the value kr+1 which maximises
the likelihood function corresponding to the right-key distribution (Maximum
Likelihood Estimation). This estimation may take two distributions into account.
For the right key guess, according to Assumption 1 the counter is distributed
according to B(N, P̃E(δ, γ)) while the counter of a wrong key guess is assumed
(cf. Assumption 2) to be distributed accordingly to B(N, 2−n).

In this setting, the maximum likelihood estimation is equivalent to maximising
the log-likelihood ratio of the two distributions under consideration. Indeed, by
the Neyman-Pearson Lemma the log-likelihood ratio is the most poweful test
to determine whether a sample comes from one of two distributions. Denoting
p = P̃E(δ, γ) and q = 2−n, if a key K resulted in a counter value c one computes

lk(c) := log

((
N
c

)
pc(1− p)N−c(

N
c

)
qc(1− q)N−c

)
= c log

((
p(1− q)

q(1 − p)

))
+N · log

(
1− p

1− q

)
.

The key guesses are ranked according to their lk(c) values, that is, the key
with highest lk(c) value is tested first. To simplify the computation one can
equivalently rank the keys according to

l′k(c) = c · w where w = log

(
p(1− q)

q(1 − p)

)
,

as we are only interested in the relative value of lk(c).
2

We may write lk′ and l′k′ for lk′(c) and l′k′(c) respectively if it is clear from
the context which c we are referring to.

Now, observe that l′k(c) is monotone increasing iff p > q (as in this case w > 0).
Thus, if the expected counter for the right key is higher than for wrong key
guesses then l′k has the same ranking and the rankings accordingly to l′k(c) and c
is the same. However, if p < q the function is monotone decreasing (as w < 0) and
the ranks get reversed. This corresponds to improbable differentials as defined
in [22]. The special case where p = 0 corresponds to impossible differentials (as
introduced in [15] and later used in [3]), as in this case for each counter c �= 0
the value lk(c) is formally minus infinity. In the latter case we use the convention
w = −∞ and 0 · w = 0. To conclude, we state the following observation.

Observation 1. Ranking keys according to their maximum likelihood estimation
as defined in Equation (1) unifies in a natural way standard differential attacks,
impossible differentials and improbable differentials.

As explained in the next section, it is this unified view that allows for a gener-

alised attack that considers many (in principle all) counters D
(N)
EK

(δ, γ) simulta-
neously.

2 As discussed below, this is actually equivalent to sorting according to the counters
c in the case of p > q and to −c in the case of p < q.
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3 The Attack Model

In this section, we present our attack in detail and provide formulas for com-
puting the gain of our attack. In summary, we use many (or even all) counters

D
(N)
EK

(δ, γ) for different δ and γ values simultaneously. We view those counters
as samples from one out of two possible (this time multi-dimensional) distri-
butions. One distribution corresponds to the correct round-key guess and the
other to the wrong key guesses. Using many counters at the same time allows us
to significantly improve the success probability (or – equivalently – reduce the
data complexity) compared to standard differential attacks. Informally, and this
is the major difference and biggest improvement over a related approach per-
formed in [6], this allows us to perform several standard differential attacks and
impossible (or more generally improbable) differential attacks at the same time.
In our attacks these simultaneous differential attacks are weighted appropriately
ensuring that we do not lose information compared to standard attacks. That is,
considering more information never reduces the success probability but strictly
improves it.

3.1 Multi-dimensional Distribution of D
(N)
EK

(δ, γ)

While in general any subset of pairs of input/output differences could be con-
sidered, here we focus on the case where one input difference is fixed and we
consider all possible output differences. In this case, we denote by

D(N)
EK

(δ) =
(
D

(N)
EK

(δ, 1), D
(N)
EK

(δ, 2), . . . , D
(N)
EK

(δ, 2n − 1)
)

the vector of all corresponding counters. As discussed in Section 2, each individ-
ual counter is distributed according to a binomial distribution B(N, P̃E(δ, γ)).
As each pair of the N pairs with input difference δ results in exactly one output
difference, we have that ∑

γ

D
(N)
EK

(δ, γ) = N.

Thus, assuming that this is the only dependency between the counter values, the

vectorD(N)
EK

(δ) follows amultinomial distributionwith parametersN and P̃E(δ) :=(
P̃E(δ, 1), . . . , P̃E(δ, 2

n − 1)
)
, denoted by D(N)

EK
(δ, γ) ∼ Multi(N, P̃E(δ)).

Later in this work we present experimental evidence comparing the empirical
and theoretical gain of the attack to justify this assumption for the ciphers
considered in this work. We summarise our assumption on the behaviour below.

Assumption 3. The vector of counters D(N)
EK

(δ) follows a multinomial distri-
bution where each component is distributed according to Assumption 1 and∑

γ

D
(N)
EK

(δ, γ) = N.
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In contrast to previous works, we do not rely on the Wrong-Key Randomization
Hypotheses (Assumption 2) for our attack. Before mounting our attack, the
attacker has to compute the expected probability (or the expected counter value)
for all possible output differences. If the attacker is able to do this, he is usually
also able to compute the expected probability for wrong keys, that is compute

the distribution ofD
(N)

R−1

k′ ◦Rkr+1
◦EK

(δ, γ) as this is essentially computing two more

rounds. We note that even if k′ differs from k in only a few bits, this affects at
least one S-box and hence many output differences.

3.2 The Attack Algorithm

First, recall that the attack uses N plaintext/ciphertext pairs, to recover the
secret key. Following the previous section, we assume that the attacker has – in
an offline phase – computed the parameters of two distributions. Namely, vectors
of parameters p = (pi)i and q = (qi)i such that

pi = P̃E(δ, i) (1)

qi = P̃R−1◦R◦E(δ, i). (2)

That is, for a right key the vector of counters is a sample from the distribu-
tion Dist1 = Multi(N, p) and for the wrong keys sampled from the distribution
Dist2 = Multi(N, q). After this pre-computation phase, the attack proceeds as
follows . For all possible last round keys k′, the attacker first computes the vec-

tor of difference counters D(N)

R−1

k′ ◦Rkr+1
◦EK

(δ). That is, given the guess for the last

round key, the attacker partially decrypts every ciphertext and for all output dif-
ferences γ computes the number of pairs fulfilling the differential δ → γ. Next,
the attacker estimates the likelihood that the vector was sampled from Dist1. In
our case, this is equivalent to computing the difference of the log-likelihood of
the vector with respect to Dist1 and with respect to Dist2, i.e., to compute the
log-likelihood-ratio.

Given that for a random variable X following a multinomial distribution X ∼
Multi(M,p) it holds that

Pr((X1, . . . , Xn) = (x1, . . . , xn)) =

{
n!

x1!x2!...xn!
px1
1 . . . pxn

n if
∑

xi = M

0 else
,

the log-likelihood-ratio is given by lk′ =
∑

i D
(N)

R−1

k′ ◦Rkr+1
◦EK

(δ, i) log
(

pi

qi

)
Thus,

denoting wi = log
(

pi

qi

)
one computes

lk′ =
∑
i

wi ·D(N)

R−1

k′ ◦Rkr+1
◦EK

(δ, i).

This is a weighted extension of the case where one considers only one counter.
As before these weights naturally capture various types of differential attacks,
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i.e., in each component one considers a standard differential, improbable or
impossible differential attack. Furthermore, truncated differentials are captured

in this model since these correspond to a sub-vector of D(N)
EK

(δ).3

The time complexity is |K ′| · N where N is the number of pairs considered
and |K ′| is the number of all last-round subkeys.

3.3 Computing the Gain of the Attack

What remains to be established is the efficiency of this attack. The key obser-
vation (cf. also [2]) is that the distribution of lk′ can be well approximated by a
normal distribution in the case where all values wi are relatively close together.
The case where all wi are close to uniform is the most interesting case for our at-
tack, as otherwise standard differential techniques, considering only one counter
are sufficient to break the cipher. Recall that there are two distributions to be
considered. First, there is a random variable (and a corresponding distribution)
for the log-likelihood-ratio of the right key. We denote this random variable by

R and it is defined as R =
∑

iwiD
(N)
EK

(δ, i). By Assumption 3 we expect D(N)
EK

(δ)
to be multinomial distributed with parameters N and (pi)i, with pi defined in
Equation (1). Hence the expected value of R is given by E(R) = N

∑
wipi.

Using that the pairwise covariances for a multinomial distribution is known, the
variance of R can be computed to be

Var(R) = N

⎛⎝(∑
i

w2
i pi

)
−
(∑

i

wipi

)2
⎞⎠ .

Therefore, denoting by N (E, V ) the normal distribution with expected value E
and variance V , we will use the following approximation

R ∼ N

⎛⎝N
∑

wipi, N

⎛⎝(∑
i

w2
i pi

)
−
(∑

i

wipi

)2
⎞⎠⎞⎠

which we will justify with experimental results later in this work.
For the wrong keys, we introduce a random variableW and, following the same

lines of argumentation, we approximate the distribution of W with a normal
distribution, as follows

W ∼ N

⎛⎝N
∑

wiqi, N

⎛⎝(∑
i

w2
i qi

)
−
(∑

i

wiqi

)2
⎞⎠⎞⎠

with qi as defined in Equation (2). This enables to estimate the gain of the
attack. The gain is related to the probability that a wrong key candidate is

3 We note, however, that in the case of truncated differential attacks we might have
to assume that Assumption 2 holds.
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ranked higher than the right key candidate. More precisely, if the task is to
recover an n bit key and the rank of the correct key is r on average the gain is
defined as − log2

2r−1
2n . Given the probability that a wrong key is ranked higher

than the right key the expected number of wrong keys ranked higher than the
right key can be computed. This corresponds in turn to the expected rank of the
right key.

For analyzing this, we assume that the right key value is sampled according to
R. As the normal distribution is symmetric, with a probability of 1/2, the result
is larger or equal to E(R). For the wrong keys values are sampled from W . For
50% percent of the keys, computing the gain is now reduced to computing the
probability that W ≥ E(R), as this corresponds to an upper bound on to the
probability that a wrong key is ranked above the right key. Using the density
function of W, defined as

fW (x) =
1√

2πVar(W)
e−

1
2 Var(W)

(x−E(W))2

this probability of a wrong key being ranked higher than the right key is given
by Pr(W ≥ E(R)) =

∫∞
E(R) fW (x). Using the relation of the standard Normal

distribution and the Gaussian error function, this can be rewritten as

Pr(W ≥ E(R)) = 1

2

(
1− erf

(
E(R)− E(W)√

2Var(W)

))
. (3)

Concluding this part, we have now at hand an expression that allows us two
compute the gain of the attack. Moreover, compared to computing the values
of pi and qi, the time for evaluating the above expressions is negligible. We will
make use of this in Section 4 where the model is applied to SmallPRESENT-[4]
and KATAN. The experimental data given there justifies in turn the model for
those two ciphers.

More Input Differences. A straight-forward extension which does not require any
change to the analysis above is to use a different subset of input- and output-
differences. In particular, the attack might benefit from not only using one vector

D(N)
EK

(δ) but several such vectors for several choices of δ. We followed this ap-
proach in our experiments for SmallPRESENT-[4].

4 Application

In this section, we apply our framework to two blockciphers with very small
block sizes. First, we consider SmallPRESENT-[4] to demonstrate the idea and
then we consider reduced round variants of KATAN-32 for which we present the
currently best known differential attack.
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4.1 Toy Example SmallPRESENT-[4]

SmallPRESENT-[s] [19] is a small-scale (toy) cipher designed to aid the develop-
ment and verification of cryptanalysis techniques. The cipher is an SP-network
with s parallel 4-bit S-box applications. Hence the block size is 4s. The permuta-
tion layer is a simple permutation of wires. We focus on SmallPRESENT-[4], the
version with 16 bit block size, as this allows us to derive sufficient experimental
data rather quickly. The S-box S is the same as for PRESENT (cf. [8]) itself and
the round keys are independent. For more details we refer to [19]. A standard
differential attack, with one round of partial decryption, seems feasible for not
more than 7 rounds. By looking at all the whole vector of output differences, we
are able to break 9 rounds with a significant gain. Moreover, compared to stan-
dard differential attacks, the data complexity for 7 rounds is reduced by a factor
of 25. We summarise our findings for attacking 7, 8 and 9 rounds in Table 1.
All attacks in Table 1 are 1R attacks. Hence, the length of the differentials is
6, 7 and 8 respectively. In Table 1 we give the number of input differences con-
sidered, the values for E(R), V (R), E(W), V (W) and the number of right-key
ranks smaller a than given threshold observed in 100 experiments (except for
the last column, see below) compared with the number of such ranks predicted
by our model (given in brackets in Table 1).

Table 1. Experimental Results for SmallPRESENT-[4]

#rounds 7 7 8 8 9 9

Data used 216 29 216 216 216 216

#Δ 1 1 1 5 1 60

E(R) 53.8210 0.8409 2.2250 9.7636 0.0570 1.5181

V (R) 124.0870 1.9388 4.6110 20.1537 0.1130 3.0441

E(W) −47.2890 −0.7389 −2.1490 −9.4631 −0.0560 −1.5141

V (W) 84.2370 1.3162 4.1520 18.3502 0.1120 3.0203

#ranks < 20 100 (10000.00) 4 (1.10) 1 (2.70) 57 (61.95) 0 (6.81E-3) 1 (0.56)

#ranks < 21 4 (1.50) 2 (3.90) 65 (67.64) 0 (0.01) 2 (0.84)

#ranks < 22 4 (2.10) 3 (5.40) 73 (73.13) 0 (0.02) 2 (1.26)

#ranks < 23 4 (2.90) 5 (7.40) 79 (78.30) 0 (0.05) 2 (1.96)

#ranks < 24 4 (4.10) 8 (10.20) 82 (83.03) 0 (0.09) 2 (2.87)

#ranks < 25 4 (5.70) 11 (13.70) 84 (87.21) 1 (0.16) 5 (4.27)

#ranks < 26 5 (7.80) 16 (18.30) 88 (90.78) 1 (0.30) 8 (6.23)

#ranks < 27 9 (10.70) 25 (24.20) 91 (93.69) 1 (0.56) 14 (8.96)

#ranks < 28 14 (14.50) 31 (31.30) 95 (95.95) 3 (1.04) 22 (12.67)

#ranks < 29 19 (19.60) 42 (39.80) 96 (97.59) 3 (1.92) 28 (17.57)

For comparison, the best 6 round differential for one active S-box is δ =
0x0007, γ = 0x0404 where P̃E(δ, γ) = 2−13.57 which is still sufficient to mount
a standard differential attack. Consequently, our attack always succeeded as
well. However, to go beyond standard differential attacks, even when using only
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29 pairs, which for a standard differential attack would not be sufficient, we
expect and observe a gain of more than 3.5 for 50% of the keys (cf. column 3 to
Table 1). The best 7 round differential for one active S-box is δ = 0x0007, γ =
0x0505 where P̃E(δ, γ) = 2−15.39 which is not sufficient to mount a standard
differential attack while our attack provides a gain of 5.97 for 50% of the keys.
Using N = 214, N = 213, N = 212 and N = 211 we get a gain of 3.954, 2.821,
2.159 and 1.758 respectively. Using more than one input difference and the full
code book, namely 0x0007, 0x000f, 0x0700, 0x0070 and 0x0f00 we expect and
observe (cf. column 5 of Table 1) a gain of 18.03 for 50% of the keys. Finally, the
best 8 round differential for one active S-box is δ = 0x0007, γ = 0x5055 where
P̃E(δ, γ) = 2−15.92.. Our attack has a gain of 1.44 for 50% of the keys(cf. column
6 of Table 1). Using all sixty input differences where one S-box is active in round
one, we expect a gain of 4.625 which is better than exhaustive key search (over
half the key space) by a factor of 3.625. Our experimental results for this case
are presented in the last column of Table 1.

4.2 Application to KATAN-32

KATAN-32 is one member of a family of ciphers defined in [10]. It has a block-
size of 32 bits, an 80 bit key and 254 rounds. The relatively small block-size
of 32 bits makes it an interesting target for our technique. The plaintext is
loaded into two registers of length 13 and 19, respectively. In each round, two
bits of the registers are updated, involving one key bit each. We refer to [10]
for more information. The currently best know differential attack on KATAN-
32 is a conditional differential attack that can break up to 78 rounds given
222 chosen plaintext/ciphertext pairs (see [14]). The best attack overall breaks
the full cipher slightly faster than exhaustive key search [13]. Note that, for
KTANTAN-32, which differs from KATAN-32 only in the key-scheduling, better
attacks are known (see [9,23]) but they do not apply to KATAN-32.

Below, we always assume δ = 0x1006a880which is the input difference for the
best known differential characteristic which holds with probability 2−31 after 71
rounds disregarding any dependencies. Note, however, that the special structure
of KATAN-32 means that in fact the first probabilistic difference only depends
on the plaintext values and not on the key values.

We consider a � = 24R attack below to maximise the number of rounds. This
implies a computational cost of 232 · 22� = 232+48 = 280 partial decryptions in
the online phase of the attack. Exhaustive search over half the key space would
have to perform 279 full encryptions where one full encryption costs roughly 4
partial decryptions. Hence, our attacks are twice as fast as exhaustive search.
However, we emphasise that compared to exhaustive search the gain in our attack
is significantly smaller.

71 + 24 Rounds of KATAN-32. The best output difference γ = 0x00000008 has
probability P̃E(δ, γ) ≈ 2−29.52, the output difference with the lowest probability
is γ̃ = 0x00000080 with P̃E(δ, γ) ≈ 2−32.10. We get E(R) ≈ 2505.211, V (R) ≈
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5096.661, E(W) ≈ −2467.448, V (W) ≈ 4868.280. Which gives an expected gain
of > 50 for 50% of the keys. We verified this estimate by considering the 16
differences with the highest probability. We compared randomly chosen right
keys with randomly chosen wrong keys and always recovered the right key as
the key with the highest rank.

91 + 24 Rounds of KATAN-32. The best output difference γ = 0x00400000 has
probability P̃E(δ, γ) ≈ 2−31.98, the output difference with the lowest probability
is γ̃ = 0x02000000 with P̃E(δ, γ̃) ≈ 2−32.00. We get E(R) ≈ 0.3695390, V (R) ≈
0.7390803, E(W) ≈ −0.3695384, V (W) ≈ 0.7390745. Which gives an expected
gain of 2.3586180 for 50% of the keys. The expected gain for 50% of the keys for
92 and 94 rounds is 1.9220367 and 1.2306869 respectively.

5 Conclusions and Further Work

In this work we presented a unifying framework for several standard differen-
tial attacks. This unified view allows to naturally consider multiple differentials
and by that improving upon known results. Our framework always provides
better success probabilities than any of the combined differential attacks alone;
although at the potential cost of increased computation time and memory. We
demonstrated the viability of our approach by extending the the best differen-
tial for SmallPRESENT-[4] by two rounds and the best known differential for
KATAN-32 by 20 rounds.

However, for many ciphers computing the distribution of counter values, i.e.,

D(N)
EK

(δ), is prohibitively expensive. For example, computing the Markov model

exactly for KATAN-48 would require O(248) memory which is well beyond what
is feasible today. Yet, starting from one difference computing one or two rounds
is usually feasible since only few output differences are possible after such a
small number of rounds. It is thus possible to extend a standard differential

attack using techniques discussed in this work. Instead of considering D(N)
EK

(δ)

the attacker would consider D(N)
Rkr

(δ). Then, in the online phase of the attack
counters are weighted accordingly to their distribution. We leave the details of
such an approach open for further investigation.
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Abstract. The family of Max-PoSSo problems is about solving polyno-
mial systemswith noise, and is analogous to thewell-knownMax-SAT fam-
ily of problems when the ground field is F2. In this paper, we present a new
method called ISBS for solving the family ofMax-PoSSoproblems overF2 .
This method is based on the ideas of incrementally solving polynomial sys-
tem and searching the values of polynomials with backtracking. The ISBS
method can be combinedwith different algebraic methods for solving poly-
nomial systems, such as the Gröbner Basis method or the Characteristic
Set(CS) method. By combining with the CS method, we implement ISBS
and apply it in Cold Boot attacks. ACold Boot attack is a type of side chan-
nel attack in which an attacker recover cryptographic key material from
DRAMrelies on the data remanence property of DRAM.Cold Boot key re-
covery problems of block ciphers can be modeled as Max-PoSSo problems
over F2. We apply the ISBS method to solve the Cold Boot key recovery
problems of AES and Serpent, and obtain some experimental results which
are better than the existing ones.
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1 Introduction

Solving polynomial system with noise, which means finding an optimal solution
from a group of polynomials with noise, is a fundamental problem in several
areas of cryptography, such as algebraic attacks, side-channel attacks and the
cryptanalysis of LPN/LWE-based schemes. In computation complexity field, this
problem is also significant and called the maximum equation satisfying problem
[7,14]. In the general case, this problem is NP-hard even when the polynomials
are linear. In [1], the authors classified this kind of problems into three categories:
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Max-PoSSo, Partial Max-PoSSo, and Partial Weighted Max-PoSSo, and called
them the family of Max-PoSSo problems. Moreover, they presented a model by
which they can convert the Cold Boot key recovery problems of block ciphers
into the family of Max-PoSSo problems. The Cold Boot key recovery problems
originated from a side channel attack which is called the Cold Boot attack[8].
In a Cold Boot attack, an attacker with physical access to a computer is able
to retrieve sensitive information from a running operating system after using a
cold reboot to restart the machine from a completely “off” state. The attack
relies on the data remanence property of DRAM to retrieve memory contents
which remain readable in the seconds to minutes after power has been removed.
Furthermore, the time of retention can be potentially increased by reducing the
temperature of memory. Thus, data in memory can be used to recover potentially
sensitive information, such as cryptographic keys. Due to the nature of the Cold
Boot attack, it is realistic to assume that only decayed image of the data in
memory can be available to the attacker, which means a fraction of memory bits
will be flipped. Therefore, the most important step of the Cold Boot attack is
recovering the original sensitive information from the decayed data.

In the case of block cipher, the sensitive information is the original key, and
the decayed data is likely to be the round keys, which are generated from the
origin key by the key schedule operation. Thus the Cold Boot key recovery
problem of block cipher is recovering the origin key from the decayed round
keys. Intuitively, every bit of round keys corresponds to a boolean polynomial
equation with the bits of origin key as its variables. Then all bits of these round
keys correspond to a boolean polynomial system. However, because of the data
decay this polynomial system has some noise. In general case, these polynomials
can be seen as random ones, so a random assignment may satisfy about half of
them. If the percentage of the decayed bits is smaller than 50%, an assignment
satisfying the maximum number of these polynomials may be equal to the origin
key with high probability. By this way, we can model the Cold Boot key recovery
problem of block cipher as the Max-PoSSo problem over F2, which is finding the
optimal solution of a polynomial system with noise.

As mentioned before, the general Max-PoSSo problem over F2 is NP-hard.
A natural way of solving Max-PoSSo problems over F2 is converting them into
their SAT equivalents and then solve them by Max-SAT solvers. However, this
method has a disadvantages that the original algebraic structure is destroyed. In
[1], the authors converted the Max-PoSSo problems over F2 into mixed integer
programming problems, and used the MIP solver SCIP to solve them. They
presented some experimental results about attacking AES and Serpent. Their
attack result about Serpent is a new result, and they showed that comparing
with generic combinatorial approach their attack is much better.

The main contribution of this paper is that we propose a new method
called ISBS for solving the family of Max-PoSSo problems over F2. The
basic idea of ISBS is searching the values of polynomials. Precisely speak-
ing, given a polynomials system with noise {f1, f2, . . . , fm}, we try to solve
polynomial systems {f1 + e2, f2 + e2, . . . , fm + em}, where {e1, e2, . . . , em}
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can be equal to {0, 0, . . . , 0}, {1, 0, . . . , 0}, . . . , {1, 1, . . . , 1}. The solution of a
{f1+e2, f2+e2, . . . , fm+em} with {e1, e2, . . . , em} having the smallest Hamming-
weight is the solution of the Max-PoSSo problem.

In the ISBS method, we combine the above idea with the ideas of incremen-
tally solving {f1 + e1, f2 + e2, . . . , fm + em} and searching {e1, e2, . . . , em} with
backtracking. By this way, we can cut off a lot of branches when searching the
values of {e1, e2, . . . , em}. Furthermore, with the incremental solving method,
we can use the former results to derive the latter ones, by which we can reduce
a lot of computation.

In order to further improve the efficiency of ISBS, we combine it with an
algebraic method for solving polynomial system which is called the Characteris-
tic Set(CS) Method. In the field of symbolic computation, the CS method is an
important tool for studying polynomial, algebraic differential, and algebraic dif-
ference equation systems. Its idea is reducing equation systems in general form to
equation systems in the form of triangular sets. This method was introduced by
Ritt and the recent study of it was inspired by Wu’s seminal work on automated
geometry theorem proving [13]. In [2], the CS method was firstly extended to
solve polynomial equations in boolean ring. In [6], it was further extended to
solve polynomial equations in general finite fields, and an efficient variant of
the CS method called the MFCS algorithm was proposed and systematically
analyzed. MFCS is an algorithm for solving boolean polynomial system, and it
already had some applications in cryptanalysis[9]. MFCS has some advantage
in incrementally solving polynomial system, thus we implemented ISBS with
the MFCS algorithm.

Furthermore, we used ISBS to solve some Cold Boot key recovery problems of
AES and Serpent, and compared our experimental results with those in [1]. From
these results, we showed that by solving these problems with ISBS the success
rate of recovering the origin key is higher and the average running time is shorter.

The rest of this paper is organized as follows. In Section 2, we introduce the
family of Max-PoSSo problems and its relation with Cold Boot key recovery.
In Section 3, we present the ISBS method and simply introduce the MFCS
algorithm. In Section 4, our experimental results of attacking AES and Serpent
are shown. In Section 5, the conclusions are presented. In Appendix, we present
some tricks we used in solving the symmetric noise problems.

2 The Family of Max-PoSSo Problems and the Cold
Boot Problem

In this section we will introduce the family of Max-PoSSo problems and its
relationship with the Cold Boot key recovery problem.

2.1 The Family of Max-PoSSo Problems

Let F be a field, and P = {f1, . . . , fm} ⊂ F[x1, . . . , xn] is a polynomial sys-
tem. The polynomial system solving (PoSSo) problem is finding a solution
(x1, . . . , xn) ∈ Fn such that ∀fi ∈ P, we have fi(x1, . . . , xn) = 0.
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By Max-PoSSo, we mean the problem of finding any (x1, . . . , xn) ∈ Fn that
satisfies the maximum number of polynomials in P. The name “Max-PoSSo”
was first proposed in [1]. In the computational complexity field, this problem is
sometimes called the maximum equation satisfying problem [7,14]. Obviously,
Max-PoSSo is at least as hard as PoSSo. Moreover, whether the polynomials in
P are linear or not, Max-PoSSo is a NP-hard problem.

Besides Max-PoSSo, in [1], the authors introduced another two similar prob-
lems: Partial Max-PoSSo and Partial Weighted Max-PoSSo.

Partial Max-PoSSo problem is finding a point (x1, . . . , xn) ∈ Fn such that
for two sets of polynomials H,S ∈ F[x1, . . . , xn], we have f(x1, . . . , xn) = 0 for
all f ∈ H, and the number of polynomials f ∈ S with f(x1, . . . , xn) = 0 is
maximised. It is easy to see that Max-PoSSo is a special case of Partial Max-
PoSSo when H = ∅.

LetH,S are two polynomial sets in F[x1, . . . , xn]. C : S×Fn → R≥0, (f, x)→ v
is a cost function. v = 0 if f(x) = 0 and v > 0 if f(x) �= 0. Partial Weighted Max-
PoSSo denotes the problem of finding a point (x1, . . . , xn) ∈ Fn such that ∀f ∈ H
we have f(x) = 0 and

∑
f∈S C(f, x) is minimised. Obviously, Partial Max-PoSSo

is Partial Weighted Max-PoSSo when C(f, x) = 1 if f(x) �= 0 for all f .
In the definition of the above four problems, the ground field F can be any

field. However, in the following of this paper, we focus on the case of F = F2,
where F2 is the finite field with elements 0 and 1, and this is the most common
case in cryptanalysis.

2.2 Cold Boot Key Recovery as Max-PoSSo

The Cold Boot key recovery problem was first proposed and discussed in the
seminal work of [8]. In [1], the authors built a new mathematical model for Cold
Boot key recovery problem of block cipher, by which they can convert the Cold
Boot problem into the Partial Weighted Max-PoSSo problem. In the following,
we extract the definition of this model from [1].

First, according to [8], we should know that bit decay in DRAM is usually
asymmetric: bit flips 0 → 1 and 1 → 0 occur with different probabilities, de-
pending on the “ground state”. The Cold Boot problem of block cipher can be
defined as follows.

Consider an efficiently computable vectorial Boolean function KS : Fn
2 → FN

2

where N > n, and two real numbers 0 ≤ δ0, δ1 ≤ 1. Let K = KS(k) be the
image for some k ∈ Fn

2 , and Ki be the i-th bit of K. Given K, we compute K ′ =
(K ′

0,K
′
1, . . . ,K

′
N−1) ∈ FN

2 according to the following probability distribution:

Pr[K ′
i = 0|Ki = 0] = 1− δ1, P r[K ′

i = 1|Ki = 0] = δ1,

P r[K ′
i = 1|Ki = 1] = 1− δ0, P r[K ′

i = 0|Ki = 1] = δ0.

Then we can consider such a K ′ as a noisy output of KS for some k ∈ Fn
2 , with

the probability of a bit 1 in K flipping to 0 is δ0 and the probability of a bit 0 in
K flipping to 1 is δ1. It follows that a bit K ′

i = 0 of K ′ is correct with probability
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Pr[Ki = 0|Ki = 0] =
Pr[K ′

i = 0|Ki = 0]Pr[Ki = 0]

Pr[K ′
i = 0]

=
(1− δ1)

(1− δ1 + δ0)
.

Likewise, a bit K ′
i = 1 of K ′ is correct with probability (1−δ0)

(1−δ0+δ1)
. We denote

these values byΔ0 andΔ1 respectively. Now assume we are given a description of
the function KS and a vector K ′ ∈ FN

2 obtained by the process described above.
Furthermore, we are also given a control function E : Fn

2 → {True, False} which
returns True or False for a candidate k. The task is to recover k such that E(k)
returns True. For example, E could use the encryption of some known data to
check whether k is the original key. In the context of this work, we can consider
the function KS as the key schedule operation of a block cipher with n-bit keys.
The vector K is the result of the key schedule expansion for a key k, and the
noisy vector K ′ is obtained from K due to the process of memory bit decay.

We can consider the Cold Boot Problem as a Partial Weighted Max-PoSSo
problem over F2. Let FK be an equation system corresponding to KS such that
the only pairs (k,K) that satisfy FK are any k ∈ Fn

2 and K = KS(k). In our
task however, we need to consider FK with k and K ′. Assume that for each
noisy output bit K ′

i there is some fi ∈ FK of the form gi +K ′
i where gi is some

polynomial. Furthermore assume that these are the only polynomials involving
the output bits (FK can always be brought into this form) and denote the set
of these polynomials by S. Denote the set of all remaining polynomials in FK as
H, and define the cost function C as a function which returns

1

1−Δ0
, for K′

i = 0, f(x) �= 0;
1

1−Δ1
, for K′

i = 1, f(x) �= 0; 0, otherwise.

This cost function returns a cost proportional to the inverse of the probability
that a given value is correct. Finally, let FE be an equation system that is only
satisfiable for k ∈ Fn

2 for which E returns True. This will usually be an equation
system for one or more encryptions. Add the polynomials in FE to H.2 Then
H, S, C define a Partial Weighted Max-PoSSo problem. Any optimal solution x
to this problem is a candidate solution for the Cold Boot problem.

3 A New Method for Solving Max-PoSSo Problems

3.1 The Incremental Solving and Backtracking Search (ISBS)
Method

In this part, we will introduce the ISBS method for solving the family of Max-
PoSSo problems. First, let’s show our idea. Almost all existing algorithms for
solving Max-PoSSo problems are based on the idea of searching the values of

2 Actually, in our following attacks on AES and Serpent, we didn’t add FE into H.
The reason is in our method we need to solve H first, and if FE is added solving H
will be extremely inefficient.
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variables, such as the Max-SAT solvers. Our idea is based on another direction
which is searching the values of polynomials. Now let’s show it specifically.

Given a noisy polynomial set P = {f1, f2, . . . , fm}. For every vector E =
[e1, e2, . . . , em] ∈ Fn

2 , we can solve the polynomial system {f1+e1, f2+e2, . . . , fn+
em} by an algebraic method. We can exhaustively searching E in the order of
increasing Hamming weight and solve the corresponding polynomial system for
each E. If the corresponding equation set of some E have a solution, then it is
the solution of the Max-PoSSo problem.

To improve the solving and searching efficiencies, we combine the incremental
solving method and backtracking search method with the above idea. For a poly-
nomial set P, we can solve it by some algebraic method, such as the Characteristic
Set(CS) method [2,6] or the Gröbner Basis method [4,5]. We denote the output
results of such a solving algorithm with input P by Result(P). From Result(P),
we can deriver all the solutions of P easily. We remind the reader that, for differ-
ent methods, Result(P) can be different. For example, if we use the CS method
to solve P, Result(P) = ∪iAi is a group of triangular sets(A triangular set Ai

is a polynomial set which can be easily solved, and its precise definition will be
given in next section). If we use the Gröbner Basis method to solve P, Result(P)
is the Gröbner Basis of idea < P >. When this polynomial system has no solu-
tion, we set Result(P) = {1}. Obviously, given Result(P) and a polynomial g, we
can achieve Result({Result(P), g}). For example, for the CS method, we need
to compute each Result(Ai, g) and return the union of them. For the Gröbner
Basis method, we need to compute the Gröbner Basis of idea generated by the
new polynomial set. Therefore, given a polynomial system P = {f1, f2, . . . , fm},
we can get Result(P) by computing Result({f1}),Result({Result({f1}), f2}), . . ..
This is the incremental solving method.

In the ISBSmethod, first we try to incrementally solve {f1+e1, f2+e2, . . . , fi+
ei} for i from 1 to m with each ei = 0. If Result({f1+e1, f2+e2, . . . , fi+ei}) = 1
for some ei, we flip ei to 1 and solve this new {f1 + e1, f2 + e2, . . . , fi + ei}. At
last, we will obtain a candidate Result({f1 + e1, f2 + e2, . . . , fm + em}) where
[e1, . . . , em] = [e′1, . . . , e

′
m]. Then, in order to obtain a better candidate, we

search all the possible values of [e1, . . . , em] with backtracking based on the value
[e′1, . . . , e

′
m]. That is we flip the value of e′i for i from m to 1, and try to incremen-

tally solve all the new systems {f1+e′1, . . . , fi+e′i+1, fi+1+ei+1, . . . , fm+em}. Fi-
nally, we will find the optimal solution after searching all the possible [e1, . . . , em].

In the following Algorithm 1, we will present the ISBS method specifically.
Here we should introduce a notation. For a polynomial set P = {f1, . . . , fm},

We use Zero(P) to denote the common zeros of the polynomials in P in the affine
space Fn

2 , that is,

Zero(P) = {(a1, · · · , an), ai ∈ F2, s.t., ∀fi ∈ P, fi(a1, · · · , an) = 0}.

Let Q = ∪iPi be the union of some polynomial sets, we define Zero(Q) to be
∪iZero(Pi).

Theorem 1. Algorithm 1 terminates and returns a solution of the Partial
Weighted Max-PoSSo problem.
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Algorithm 1. Incremental Solving and Backtracking Search(ISBS) al-
gorithm

Input: Two boolean polynomial sets H = {h1, h2, . . . , hr},S = {f1, f2, . . . , fm}.
A cost function C(fi, x),
where C(fi, x) = 0 if fi(x) = 0, C(fi, x) = ci if fi(x) = 1.

Output: (x1, . . . , xn) ∈ Fn
2 s.t. hi(x) = 0 for any i and

∑
fi∈S C(fi, x) is minimized.

1. Let E = [e1, e2, . . . , em] be a m-dim vector.
Solve H by an algebraic method and set Q0 = Result(H).

2. For i from 1 to m do
1.1. Set Pi = {Qi−1, fi}, solve Pi and achieve Result(Pi).
1.2. If Result(Pi) = {1}, then set Qi = Qi−1 and ei = 1.
1.3. Else, set Qi = Result(Pi), ei = 0.

3. Set S = Qm and ubound =
∑

i ciei.
Set u = ubound, k = m.

4. while k ≥ 1 do
4.1. If ek = 0 and u+ ck < ubound, then

4.1.1. Set ek = 1, u = u+ ck.
Solve Pk = {Qk−1, fk + 1} and achieve Result(Pk).

4.1.2. If Result(Pk) = {1}, then goto Step 4.2.
4.1.3. Else, Set Qk = Result(Pk).

For i from k + 1 to m do
4.1.3.1. Solve Pi = {Qi−1, fi} and achieve Result(Pi).
4.1.3.2. If Result(Pi) = {1} then Qi = Qi−1, ei = 1.

u = u+ ci. If u ≥ ubound, then set k = i, and goto Step 4.2.
4.1.3.3. Else, Qi = Result(Pi), ei = 0.

4.1.4. Set k = m, S = Qm, ubound = u.
4.2. Else, u = u− ekck, k = k − 1.

5. Get (x1, . . . , xn) from S, and return (x1, . . . , xn).

Proof: The termination of Algorithm 1 is trivial, since in this algorithm we are
searching all possible values of [e1, e2, . . . , em] with backtracking and the number
of possible values is finite. In the following, we will explain the operations of this
algorithm more specifically, from which we can show the correctness of this
algorithm.

From Step 1 to Step 3, we do the following operations recursively. For k from
0 to m− 1, We compute Result({Qk, fk+1}).

– If the result is not {1}, it means that fk+1 = 0 can be satisfied. We set ek+1 =
0 and use Qk to store the result. Then we compute Result({Qk+1, fk+2}).

– If the result is {1}, fk+1 = 0 cannot be satisfied by any point in Zero(Qk). It
implies that fk+1 = 1 holds for all these points, so we set ek+1 = 1. We set
Qk+1 = Qk , and it is also equal to Result({Qk, fk + 1}). Then we compute
Result({Qk+1, fk+2}).

After Step 3, we achieve S, and the points in Zero(S) are candidates of the
problem. For any k with ek = 0, the corresponding polynomial fk vanishes on
Zero(S). For any other fk, fk = 0 is unsatisfied by these points. Note that for
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the points in Zero(S), the values of the corresponding cost functions are same.
We use ubound to store this value. Obviously, u, the value of the cost function
for a better candidate, should satisfy u < ubound.

In Step 4, we are trying to find a better candidate by backtracking to ek.
From k = m to 1, we try to flip the value of ek, and there are four cases.

1) ek = 1, and Zero({f1 + e1, . . . , fk−1 + ek−1, fk}) = ∅. We don’t flip ek, since
Zero({f1 + e1, . . . , fk−1 + ek−1, fk}) = ∅ and we can not find any candidate
from Zero({f1 + e1, . . . , fk}).

2) ek = 1, and ek has already been flipped with the same e1, . . . , ek−1. We don’t
flip ek, since we have already considered the points in Zero({f1+e1, . . . , fk}).

3) ek = 0, and u ≥ ubound, where u is the value of the cost function cor-
responding to [e1, . . . , ek−1, ek + 1]. We don’t flip ek, since the points in
Zero({f1 + e1, . . . , fk + ek + 1}) are worse than the stored candidate.

4) ek = 0, and u < ubound, where u is the value of the cost function correspond-
ing to [e1, . . . , ek−1, ek + 1]. We flip ek.

After we flipping ek to 1, we compute Result({Qk−1, fk+1}). This means that we
are trying to find better candidates from the points in Zero({f1+ e1, . . . , fk−1 +
ek−1, fk + 1}). If Result({Qk−1, fk + 1}) = {1}, it implies that {f1 + e1 =
0, . . . , fk−1+ ek−1 = 0, fk+1 = 0} is unsatisfied by any points in Fn

2 . Obviously,
we cannot find better candidates in this case. When Result({Qk−1, fk + 1}) �=
{1}, we execute Step 4.1.3.1-4.1.3.3 to incrementally solve the following polyno-
mials {fk+1, . . . , fm} as the operations in Step 1-3. In this procedure, if the value
of the cost function u corresponding to [e1, . . . , ei] is not smaller than ubound, we
have to interrupt the incrementally solving procedure, and backtrack to ei−1.
If we successfully complete the incrementally solving process, we will achieve a
better candidate Qn. Then we replace the old S by Qn and refresh the value
of ubound. After these operations, we return to Step 4 to backtrack and search
again.

From the above statement, we can know that before Step 5 we exhaustively
search all the possible values of [e1, e2, . . . , em] and solve the corresponding poly-
nomial systems {f1 + e1, f2 + e2, . . . , fm + em} in order to find the optimal can-
didate. We only cut off some branches in the following cases, and we will prove
that we cannot achieve a better candidate in these cases .

(a) We obtain {1} when incrementally solving {f1 + e1, . . . , fk−1 + ek−1, fk}. In
this case, Zero({f1 + e1, . . . , fk−1 + ek−1, fk} = ∅ and we cannot find any
solution from Zero({f1 + e1, . . . , fk−1 + ek−1, fk, fk+1 + ek+1, . . . , fm + em},
where e1, . . . , ek−1 are fixed and ek+1, . . . , em can be any values. Thus, we
cut off these branches and only consider the branches with ek = 1.

(b) In Step 4.1.3.2, u ≥ ubound. This implies that the candidates in Zero({f1 +
e1, . . . , fi−1 + ei−1, fi + 1} will not be better than the stored one. Thus, we
cut off the following branches and backtrack to ei−1.

(c) In Step 4.1.2, Result(Pk) = {1}. This means that Zero({f1 + e1, . . . , fk−1 +
ek−1, fk + 1}) = ∅. Similarly as case (a), we cut off the following branches
because we cannot find any solution from them.
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(d) In Step 4.1, when we want to flip ek from 0 to 1, we find u + ck ≥ ubound.
This case is similar as case (b). u+ ck ≥ ubound implies that the candidates
in Zero({f1 + e1, . . . , fk−1 + ek−1, fk + 1} will not be better than the stored
one, thus we cut off the following branches and backtrack to ek−1.

The loop of Step 4 ends when k = 0 which means that we have exhaustively
searched all possible branches except the redundant ones and the candidate we
stored is the best one among all the points in Fn

2 .
Finally, we obtain solutions from S by Step 5, and this procedure is very easy

when S is some triangular sets or a Gröbner Basis. In most time when m > n, S
has very simple structure which only contain several points. �

Remark 1. Step 4.1.1 can be changed in Algorithm 1. We only need to set ek = 1,
u = u+ ck, Qk = Qk−1 without solving {Qk−1, fk +1}. This means that we skip
the polynomial fk in the incremental solving process. Actually, if we achieve a
better candidate from the points in Zero(Qk) in the following process, all points
in this candidate must satisfy fk + 1 = 0. Suppose fk = 0 for some point in this
candidate, then we have f1 + e1 = 0, . . . , fk−1 + ek−1 = 0, fk = 0, fk+1 + ek+1 =
0, . . . , fm + em = 0 hold on this point. Since fk = 0, this point should already
be contained in a candidate of the previous process. However, this point is from
a better candidate, which means that it is better than itself and leads to a
contradiction. This proves the correctness of our modification. Intuitively, after
this modification, the algorithm will be more efficient since we don’t need to
compute Result({Qk−1, fk + 1}), but the opposite is true. From experiments
we found that this modification will reduce the efficiency of our algorithm. The
reason is that constraint fk+1 = 0 makes the point sets considered smaller which
will accelerate the following compute. More importantly, if Result(Pk) = {1} we
can cut off this backtracking branch instantly. If we consider solving Max-PoSSo
over a big finite field, this modification may have some advantage, but this is
beyond the scope of this article.

Theoretically estimating the complexity of ISBS is very difficult. The only thing
we know is that the number of paths in the whole search tree is bounded by 2m.
However, when contradictions occur in the algebraic solving process, a lot of
subtree will be cut off. Thus, in our experiments the numbers of paths are much
smaller than 2m.

3.2 The Characteristic Set Method in F2

It is easy to see that the efficiency of the algebraic solving algorithm will signif-
icantly influence the efficiency of the whole algorithm. In our implementation of
the ISBS method, we use the MFCS algorithm as the algebraic solving algo-
rithm. The MFCS algorithm is an variant of the Characteristic Set(CS) method
for solving the boolean polynomial systems, and it is efficient in the case of in-
crementally solving. In this subsection, we will simply introduce the MFCS
algorithm. More details of it can be found in [6].
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For a boolean polynomial P ∈ F2[x1, x2, . . . , xn]/ < x2
1+x1, x

2
2+x2, . . . , x

2
n+

xn >, the class of P , denoted as cls(P ), is the largest index c such that xc

occurs in P . If P is a constant, we set cls(P ) to be 0. If cls(P ) = c > 0, we call
xc the leading variable of P , denoted as lvar(P ). The leading coefficient of P as
a univariate polynomial in lvar(P ) is called the initial of P , and is denoted as
init(P ).

A sequence of nonzero polynomials

A : A1, A2, . . . , Ar (1)

is a triangular set if either r = 1 and A1 = 1 or 0 < cls(A1) < · · · < cls(Ar). A
boolean polynomial P is called monic, if init(P ) = 1. Moreover, if the elements
of a triangular set are all monic, we call it a monic triangular set.

Algorithm 2. MFCS(P)

Input: A finite set of polynomials P.
Output: Monic triangular sets {A1,A2, . . . ,At} such that

Zero(P) = ∪t
i=1Zero(Ai) and Zero(Ai) ∩ Zero(Aj) = ∅

1 Set P∗ = {P}, A∗ = ∅ and C∗ = ∅.
2 While P∗ �= ∅ do

2.1 Choose a polynomial set Q from P∗.
2.2 While Q �= ∅ do

2.2.1 If 1 ∈ Q, Zero(Q) = ∅. Goto Step 2.1.
2.2.2 Let Q1 ⊂ Q be the polynomials with the highest class.
2.2.3 Let Qmonic = ∅, Q2 = Q \Q1.
2.2.4 While Q1 �= ∅ do

Let P = Ixc + U ∈ Q1, Q1 = Q1 \ {P}.
P1 = Qmonic ∪Q2 ∪Q1 ∪ {I, U}.
P∗ = P∗ ∪ {P1}.
Qmonic = Qmonic ∪ {xc + U}, Q2 = Q2 ∪ {I + 1}.

2.2.5 Let Q = xc + U be a polynomial with lowest degree in Qmonic.
2.2.6 A = A ∪ {Q}.
2.2.7 Q = Q2 ∪ {R �= 0|R = Qi +Q,Qi ∈ Qmonic}.

2.3 if A �= ∅, set A∗ = A∗ ∪ {A}.
3 Return A∗

With the MFCS algorithm, we can decompose Zero(P), the common zero set
of a polynomial set P, as ∪iZero(Ai), the union of the common zero sets of some
monic triangular sets Ai. We first convert all polynomials into monic ones by
the following decomposition formula: Zero(Ixc + U) = Zero(Ixc + U, I + 1) ∪
Zero(I, U) = Zero(xc +U, I +1)∪Zero(I, U). Note that, with decomposition we
will generate some new polynomial sets, and we call these new polynomial sets
to be new components. Then we can choose one monic polynomial xc + R to
eliminate the xc of other polynomials by doing addition xc+R+xc+R1 = R+R1.
Note that R+R1 is a polynomial with lower class. Therefore, we can obtain the
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following group of polynomial sets {xc + R,P′},P1, . . . ,Pt, where P′ is a set of
polynomials with class lower than c and each Pi is a new generating polynomial
set. Then we can recursively apply the above operations to the polynomials
with highest class in P′. After dealing with all classes, we will obtain a monic
triangular set or constant 1, and generate a group of new polynomial sets. Then
we recursively apply the above operations to every new set. Finally, we will
obtain the monic triangular sets we need. Obviously, for a monic triangular set
{x1+ c1, x2+f1(x1), x3+f2(x2, x1), . . . , xn+fn−1(xn−1, . . . , x1)}, we can easily
solve it.

MFCS has the following properties[6]:

1. The size of polynomials occurring in the whole algorithm can be controlled by
that of the input ones. The expansion of the internal result will not happen.
Note that in different components most polynomials are same, and the same
ones can be shared in the memory with data structure SZDD[11]. For the
above reasons, the memory cost of MFCS is small.

2. MFCS can solve one component very fast. The bitwise complexity of solving
one component is O(LMnd+2), where L is the number of input polynomials,
n is the number of variables, d is the highest degree of the input polynomials
and M is the maximal number of terms for all input polynomials. Obviously,
when d is fixed, this is a polynomial about n.

4 Experimental Results for Attacking AES and Serpent

According to Section 2.2 we can model the Cold Boot key recovery problems
of AES and Serpent as Partial Weighted Max-PoSSo problems. We applied the
ISBS method to solve these problems and compared our results with those
shown in [1]. As in [1], we focused on the 128-bit versions of the two ciphers.

The benchmarks are generated the same way as those in [1]. The experi-
mental platform is a PC with i7 2.8Ghz CPU(only one core is used), and 4G
Memory. For every instance of the problem we performed 100 experiments with
randomly generated keys, and we only used a reduced round of key schedule. In
the first two groups of experiments, we also set δ1 to be 0.001 as [1,8,12] and
used the “aggressive” modelling in most time, where we assume δ1 = 0 instead
of δ1 = 0.001. In the “aggressive” modelling, all equations with K ′

i = 1 should
be satisfied, so they should be added into the set H and the problem reduces to
Partial Max-PoSSo. Note that, the input data in our experiments are generated
with δ1 > 0, thus in “aggressive” modelling the equations in H with Ki = 1 may
be incorrect.

In the following tables, the line “ISBS” shows the results of attacking AES
and Serpent by using ISBS. The line “SCIP” shows the results in [1] where
they used the MIP solver SCIP for solving these problems. The column “aggr”
denotes whether we choose the aggressive (“+”) or normal (“-”) modelling. As
in [1], we also interrupted the solver when the running time exceeded the time
limit. The column ”r” gives the success rate, which is the percentage of the
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instances we recovered the correct key. There are two cases in which we cannot
recover the correct key.

– We interrupted the solver after the time limit.
– The optimal solution we achieved from the (Partial weighted ) Max-PoSSo

problems is not the correct key. In “aggressive” modelling, when some poly-
nomial in H is incorrect, this will always happen. When all polynomials in
H are correct, if we added polynomials in FE which are the checking poly-
nomials into the set H, the optimal solution will always be the correct key.
However, as mentioned before we didn’t do this in order to decrease the
running time. Thus, with a quite low probability, the optimal solution may
not be the correct key.

Table 1. AES considering N rounds of key schedule output

δ0 Method N aggr limit t r min t avg. t max t

0.15 ISBS 4 + 60.0 s 75% 0.002 s 0.07 s 0.15 s
SCIP 4 + 60.0 s 70% 1.78 s 11.77 s 59.16 s

0.30 ISBS 4 + 3600.0 s 70% 0.002 s 0.14 s 2.38 s
SCIP 4 + 3600.0 s 69% 4.86 s 117.68 s 719.99 s

0.35 ISBS 4 + 3600.0 s 66% 0.002 s 0.27 s 7.87 s
SCIP 4 + 3600.0 s 68% 4.45 s 207.07 s 1639.55 s

0.40 ISBS 4 + 3600.0 s 58% 0.002 s 0.84 s 20.30 s
SCIP 4 + 3600.0 s 61% 4.97 s 481.99 s 3600.00 s
SCIP 5 + 3600.0 s 62% 7.72 s 704.33 s 3600.00 s

0.50 ISBS 4 + 3600.0 s 23% 0.002 s 772.02 s 3600.00 s
ISBS 5 + 3600.0 s 63% 0.003 s 1.05 s 46.32 s
SCIP 4 + 3600.0 s 8% 6.57 s 3074.36 s 3600.00 s
SCIP 4 + 7200.0 s 13% 6.10 s 5882.66 s 7200.00 s

Table 1 presents the results of attacking AES. For attacking AES, we didn’t
use the normal(“-”) modelling.3 In the aggressive modelling, by adding some
intermediate variables we convert the S-box polynomials with degree 7 into the
quadratic polynomials[3]. Since these intermediate quadratic polynomials must
be satisfied, we add them into set H. For these problems from AES, after we
solving H, the point in Zero(Result(H)) is small, finding an optimal one from
this set is not too hard. Thus, most of the running time is spent on solving H.
When we use more rounds of key schedule output, we can solve H faster. This
explains why the result of N = 5 is better than that of N = 4 in the case of
δ0 = 0.5. From the results of SCIP, it seems that more rounds will lead to a
worse result. From the results of Table 1, we can see that, for the easy problems,
with keeping the same success rate, the running time of ISBS is much shorter.

3 Since the first round key of AES is its initial key, we have 128 polynomials which
have form xi + 1 or xi. In this case, using ISBS to search the value of polynomials
is equal to exhaustively searching the value of variables.
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For the hard problem, the success rate of ISBS is higher, and the running time
of it is shorter.

In the aspect of attacking cipher, our results are worse than those in [12].
Actually, as mentioned before, if we use all rounds of the key schedule, the
running times of ISBS will be much shorter and close to the running times in
[12]. However, using all rounds will make Zero(Result(H)) only contain one point,
and this means that we just need to solve a PoSSo problem instead of a Partial
Max-PoSSo problem. Hence, for testing the efficiency of ISBS for solving Partial
Max-PoSSo problems, we only use 4 or 5 rounds of key schedule and achieved
these poorer attack results.

Table 2. SERPENT considering 32 ·N bits of key schedule output

δ0 Method N aggr limit t r min t avg. t max t

0.05 ISBS 8 − 600.0 s 90% 0.41 s 58.49 s 600.00 s
SCIP 12 − 600.0 s 37% 8.22 s 457.57s 600.00 s

0.15 ISBS 12 + 60.0 s 81% 1.19 s 3.82 s 60.00 s
SCIP 12 + 60.0 s 84% 0.67 s 11.25 s 60.00 s
SCIP 16 + 60.0 s 79% 0.88 s 13.49 s 60.00 s

0.30 ISBS 16 + 600.0 s 81% 4.73 s 11.66 s 58.91 s
SCIP 16 + 600.0 s 74% 1.13s 57.05 s 425.48 s

0.50 ISBS 20 + 3600.0 s 55% 14.11 s 974.69 s 3600.00 s
SCIP 16 + 3600.0 s 38% 136.54 s 2763.68 s 3600.00 s

The results of attacking Serpent are given in Table 2. In the normal modelling
with δ0 = 0.05, we set N = 8. The reason is that in this modelling we don’t
have polynomials in H, and more input polynomials will make us search more
possible values of these polynomials. If N = 4, we can get an optimal result very
fast, but it isn’t the correct key in most time. The reason is that the randomness
of the first round of the Serpent key schedule is poor. By setting N = 8, we have
a good success rate and short running times. In the aggressive modelling, the
situations are similar to those in AES. For SCIP, when N is larger, the results
are worse. For ISBS, more bits of key schedule will make it solve H easier.
Therefore, when δ0 increase we set N larger.

Table 3 presents the results when considering symmetric noise(i.e., δ0 = δ1).
This is a pure Max-PoSSo problem. As mentioned before, when H = ∅, with
less equations ISBS can be more efficient. Thus, in this group of experiments,
we set N = 8. When solving these problems, we used some important tricks
to accelerate the computation. These tricks will be introduced in the appendix
detailedly. From the results, we can see that ISBS has higher success rates and
shorter running time comparing to SCIP.

If we don’t use the incremental solving and backtracking search method, which
means that we only exhaustively search the value of polynomials in the order
of increasing Hamming-weight and solve the corresponding polynomial systems,
when δ0 = δ1 = 0.05 the running time will be about

(
256

0.05·256
)
· T0 ≈ 271 ·
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Table 3. SERPENT considering 32 ·N bits of key schedule output(symmetric noise)

δ0 = δ1 Method N limit t r min t avg. t max t

0.01 ISBS 8 3600.0 s 100% 0.78 s 9.87 s 138.19 s
SCIP 12 3600.0 s 96% 4.60 s 256.46 s 3600.00 s

0.02 ISBS 8 3600.0 s 96% 0.80 s 163.56 s 3600.00 s
SCIP 12 3600.0 s 79% 8.20 s 1139.72 s 3600.00 s

0.03 ISBS 8 3600.0 s 90% 1.74 s 577.60 s 3600.00 s
SCIP 12 7200.0 s 53% 24.57 s 4205.34 s 7200.0 s

0.05 ISBS 8 3600.0 s 38% 12.37 s 917.05 s 3600.00 s
SCIP 12 3600.0 s 18% 5.84 s 1921.89 s 3600.00 s

T0, where T0 is the time for solving a polynomial system with 128 variables
and 256 equations. This polynomial system can be easily solved, because of the
easy invertibility of the key schedule operations. From our experiments with 100
instances, the average value of T0 is 0.30 seconds, then 271 · T0 ≈ 269.3 seconds
which is much larger than our result 917.05 ≈ 29.8 seconds.4 This implies that
by using incremental solving and backtracking search method, we avoid a lot
of repeated computation and cut off a lot of redundant branches which highly
improve the efficiency of searching.

5 Conclusion

In this paper, we proposed a new method called ISBS for solving the family of
Max-PoSSo problems over F2, and applied the method in solving the Cold Boot
key recovery problems of AES and Serpent. Our work is inspired by the work
in [1], and provide a new way of solving the non-linear polynomials system with
noise. Our method was combined with the Characteristic Set method, which is a
powerful tool in symbolic computation and has good performances on solving the
boolean polynomial systems. The main innovation of ISBS is the combination
of incremental solving and backtracking search. By this idea, we can use the
former results to reduce the repeated computations and use the conflictions to
cut off a lot of redundant branches. Our experimental data shows that ISBS
has good performances on solving the Cold Boot key recovery problems of AES
and Serpent, and its results are better than the previously existing ones by using
SCIP solver.
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Appendix: Some Tricks Used in ISBS for Solving
Symmetric Noisy Problems

In this section, we will introduce some tricks we used in solving the problems in
Table 3. For this kind of problems, these tricks can greatly improve the efficiency
of ISBS.

(I) In ISBS, if ubound is smaller, the branches we need to search is less, and
the algorithm will end faster. When umin, the value of the cost function corre-
sponding to the optimal solution, is small, we can increasingly set the ubound as
k, 2k, 3k, . . . , u0. Here k is a value which is determined by the number of input
polynomials, and u0 is the value of the cost function corresponding to Qn which
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is generated from Step 2. Then we try to find a solution under these bounds.
Precisely speaking, in Step 3, we set S = ∅ and ubound = mk, m = 1, 2, . . . If
ISBS returns a nonempty solution when ubound = mk < u0 for some m, then it
is the optimal solution of the problem. Otherwise, we set ubound = (m + 1)k if
(m+1)k < u0; or ubound = u0 if (m+1)k ≥ u0. Then we execute Step 3-5 of ISBS
again until we achieve a nonempty solution. If we cannot achieve a nonempty
solution, Qn from Step 2 will be the optimal solution. The disadvantage of this
modification is that in the case of ubound = (m + 1)k we need to search a lot
of branches which have already be searched in the case of ubound = mk. If umin

is big, the cost of repeated computation is big. That is why we only use this
modification when umin is small.

(II) Note that, in our experiments, we used 256 bits of key schedule output,
while the key is 128 bits. Thus the input polynomial system has 128 variables
and 256 polynomials. In the experiments, after we had incrementally solved
the first 128 polynomials with any assignment of [e1, . . . , e128], we always ob-
tained a result which only contains several points. Then the process of solving
and backtracking the following 128 polynomials is very easy. For example, if
Zero({f1+e′1, . . . , f128+e′128}) = {x0} for some [e′1, . . . , e′128], where x0 is a point
in Fn

2 . Then [e129, . . . , e256] must be equal to [f129(x0), . . . , f256(x0)]. Any flip of
ei, i = 129, . . . , 256 will lead to Result(Result({f1+e′1, . . . , f128+e′128}), fi+ei+
1) = 1, so this branch will be cut off instantly.

Based on the above observation, given a ubound, the running time of ISBS is
almost equal to the time of searching and solving {f1+e1, f2+e2, . . . , f128+e128}
where [e1, . . . , e128] satisfies u(e1, e2, . . . , e128) ≤ ubound and u(e1, e2, . . . , e128) is
the value of the cost function corresponding to [e1, e2, . . . , e128]. The cost of the
operations about the following 128 polynomials can be ignored.

For an assignment [e01, e
0
2, . . . , e

0
256] of [e1, e2, . . . , e256] satisfying u(e01, e

0
2, . . . ,

e0256) ≤ ubound, we have u(e
0
1, . . . , e

0
128) ≤ 1

2ubound or u(e0129, . . . , e
0
256) ≤ 1

2ubound.
Instead of searching all the branches satisfying u(e1, e2, . . . , e128) ≤ ubound, we
can search the branches satisfying u(e1, e2, . . . , e128) ≤ 1

2ubound or u(e129, e130, . . .
, e256) ≤ 1

2ubound. To do this, we can use ISBS one time to solve {f1, . . . , f128, f129
, . . . , f256} under the condition of u(e1, e2, . . . , e128) ≤ 1

2ubound, then use ISBS
another time to solve {f129, . . . , f256, f1, . . . , f128} under the condition of u(e129,
e130, . . . , e256) ≤ 1

2ubound. To understand why this modification can accelerate
the computation, we need the following two lemmas.

Lemma 1. Let a, b, n be positive integers, and n > a+b. Then
a∑

i=0

(
n
i

)
+

b∑
i=0

(
n
i

)
≥

�a+b
2 	∑

i=0

(
n
i

)
+


 a+b
2 �∑

i=0

(
n
i

)
. The equality holds if and only if a = b or a+ b = n− 1.

Proof: Obviously, when a = b the equality holds. If a + b = n − 1,
a∑

i=0

(
n
i

)
+

b∑
i=0

(
n
i

)
=

a∑
i=0

(
n
i

)
+

n∑
i=n−b

(
n
i

)
=

a∑
i=0

(
n
i

)
+

n∑
i=a+1

(
n
i

)
= 2n.

�a+b
2 	∑

i=0

(
n
i

)
+


a+b
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i=0

(
n
i

)
=
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�n−1
2 	∑

i=0

(
n
i

)
+

n∑
i=n−
n−1

2 �

(
n
i

)
=

�n−1
2 	∑

i=0

(
n
i

)
+

n∑
i=�n−1

2 	+1

(
n
i

)
= 2n. Thus, the equality

holds when a+ b = n− 1.
If a �= b and a + b < n − 1, we can assume a > b without loss of generality.

Then it is equal to prove(
n

b+ 1

)
+

(
n

b+ 2

)
+ · · ·+

(
n

�a+b
2 �

)
<

(
n

�a+b
2 �+ 1

)
+

(
n

�a+b
2 �+ 2

)
+ · · ·+

(
n

a

)
.

(2)
Note that both sides of the inequality have the same number of terms.

– If a ≤ �n2 �, obviously we have
(

n
b+1

)
<
(

n
�a+b

2 	+1

)
,
(

n
b+2

)
<
(

n
�a+b

2 	+2

)
, . . . ,(

n

a+b

2 �
)
<
(
n
a

)
. Summing up all these inequalities, we can obtain (2).

– If a > �n2 �, then we can divide the right part of (2) into two parts(
n

�a+b
2 �+ 1

)
+ · · ·+

(
n

�n2 �

)
,

(
n

�n2 �+ 1

)
+ · · ·+

(
n

a

)
, (3)

and also divide the left part of (2) into two parts(
n

a+ b− �n2 �+ 1

)
+ · · ·+

(
n

�a+b
2 �

)
,

(
n

b+ 1

)
+ · · ·+

(
n

a+ b − �n2 �

)
. (4)

The first parts of (3) and (4) have the same number of terms, and the second
parts of (3) and (4) also have the same number of terms. Since �n2 � > �

a+b
2 �,

we have
(

n
a+b−
n
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)
<
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. Then it is sufficient to prove that the

second part of (3) is not less than that of (4). We have
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Since n− a > b + 1, we have
(

n
n−a

)
>
(

n
b+1

)
, . . . ,

(
n

�n
2 	−1

)
>
(

n
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n
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)
. This

proves the inequality (2). �

Furthermore, we can prove the following lemma similarly as Lemma 1,

Lemma 2. Let a, b, n be positive integers. Assume n > a + b and a > b. Then
a∑

i=0

(
n
i

)
+

b∑
i=0

(
n
i

)
≥

a−t∑
i=0

(
n
i

)
+

b+t∑
i=0

(
n
i

)
, where t is an integer satisfying 0 < t < a−b

2 .

The equality holds if and only if a+ b = n− 1.

According to Lemma 1, we have
ubound∑
i=0

(
128
i

)
>

1
2ubound∑

i=0

(
128
i

)
+

1
2ubound∑

i=0

(
128
i

)
. In the

problems of Table 3, the value of the cost function is the number of unsatisfying
equations. Thus, the inequality implies that the number of branches satisfying
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u(e1, e2, . . . , e128) ≤ ubound is larger than the number of branches satisfying
u(e1, e2, . . . , e128) ≤ 1

2ubound or u(e129, e130, . . . , e256) ≤ 1
2ubound without consid-

ering cutting off branching. For example, if ubound = 10, then
ubound∑
i=0

(
128
i

)
≈ 247.8

and

1
2ubound∑

i=0

(
128
i

)
+

1
2ubound∑

i=0

(
128
i

)
≈ 229.0. Obviously, this is a remarkable improve-

ment.
However, in the Serpent problems, solving a branch with input {f129, . . . , f256

, f1, . . . , f128} is slower than solving a branch with input {f1, . . . , f128, f129, . . . ,
f256}. The reason is that f1, . . . , f256 is a polynomials sequence which is sorted
from the “simplest” one to the “most complex” one. In this order incremental
solving can be more efficient. A better strategy is considering the branches sat-
isfying u(e1, e2, . . . , e128) ≤ 6

10ubound or u(e129, e130, . . . , e256) ≤ 4
10ubound. From

Lemma 2, we know that under this strategy the branches we need to solve are
still much less than those in the case of u(e1, e2, . . . , e128) ≤ ubound. From ex-
periments, we found that the total running time under this strategy will be
smaller than that under the strategy of considering u(e1, e2, . . . , e128) ≤ 1

2ubound

or u(e129, e130, . . . , e256) ≤ 1
2ubound.

In the experiments of Table 3 when δ0 = 0.01, 0.02, 0.03, we used trick (I).
For the problems with δ0 = 0.05, we used both trick (I) and trick (II).
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Abstract. In the white-box attack context, i.e., the setting where an im-
plementation of a cryptographic algorithm is executed on an untrusted
platform, the adversary has full access to the implementation and its
execution environment. In 2002, Chow et al. presented a white-box AES
implementation which aims at preventing key-extraction in the white-box
attack context. However, in 2004, Billet et al. presented an efficient prac-
tical attack on Chow et al.’s white-box AES implementation. In response,
in 2009, Xiao and Lai proposed a new white-box AES implementation
which is claimed to be resistant against Billet et al.’s attack. This paper
presents a practical cryptanalysis of the white-box AES implementation
proposed by Xiao et al. The linear equivalence algorithm presented by
Biryukov et al. is used as a building block. The cryptanalysis efficiently
extracts the AES key from Xiao et al.’s white-box AES implementation
with a work factor of about 232.

Keywords: white-box cryptography, AES, cryptanalysis, linear equiv-
alence algorithm.

1 Introduction

A white-box environment is an environment in which an adversary has complete
access to an implementation of a cryptographic algorithm and its execution
environment. In a white-box environment, the adversary is much more powerful
than in a traditional black-box environment in which the adversary has only
access to the inputs and outputs of a cryptographic algorithm. For example, in
a white-box environment the adversary can: (1) trace every program instruction
of the implementation, (2) view the contents of memory and cache, including
secret data, (3) stop execution at any point and run an off-line process, and/or
(4) alter code or memory contents at will. To this end, the adversary can make
use of widely available tools such as disassemblers and debuggers.

An example of a white-box environment is a digital content protection system
in which the client is implemented in software and executed on a PC, tablet,
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set-top box or a mobile phone. A malicious end-user may attempt to extract
a secret key used for content decryption from the software. Next, the end-user
may distribute this key to non-entitled end-users, or the end-user may use this
key to decrypt the content directly, circumventing content usage rules.

White-box cryptography was introduced in 2002 by Chow, Eisen, Johnson and
van Oorschot in [4,5], and aims at protecting a secret key in a white-box envi-
ronment. In [4], Chow et al. present generic techniques that can be used to design
implementations of a cryptographic algorithmthat resist key extraction in awhite-
box environment. Next, the authors apply these techniques to define an example
white-box implementation of the Advanced Encryption Standard (AES).

In 2004, a cryptanalysis of the white-box AES implementation by Chow et al.
was presented by Billet, Gilbert and Ech-Chatbi [1]. This attack is referred to as
the Billet Gilbert Ech-Chatbi (BGE) attack in the following. The BGE attack is
efficient in that a modern PC only requires a few minutes to extract the AES key
from the white-box AES implementation. In [7], James Muir presents a tutorial
on the design and cryptanalysis of white-box AES implementations.

The BGE attack motivated the design of other white-box AES implementa-
tions offering more resistance against key extraction. In [3], Bringer, Chabanne
and Dottax proposed a white-box AES implementation in which perturbations
are added to AES in order to hide its algebraic structure. However, the imple-
mentation in [3] has been cryptanalyzed by De Mulder, Wyseur and Preneel
in [8]. Recently, two new white-box AES implementations have been proposed:
one in 2010 by Karroumi based on dual ciphers of AES [6] and one in 2009 by
Xiao and Lai based on large linear encodings [10].

This paper presents a cryptanalysis of the Xiao – Lai white-box AES imple-
mentation proposed in [10], efficiently extracting the AES key from the white-box
AES implementation. The cryptanalysis uses the linear equivalence algorithm
presented by Biryukov, De Cannière, Braeken and Preneel in [2] as a building
block. In addition to this, the structure of AES and the structure of the white-box
implementation are exploited in the cryptanalysis. Key steps of the cryptanalysis
have been implemented in C++ and verified by computer experiments.

Organization of This Paper. The remainder of this paper is organized as
follows. Section 2 briefly describes the white-box AES implementation proposed
in [10] and the linear equivalence algorithm presented in [2]. Section 3 outlines the
cryptanalysis of the white-box AES implementation. Finally, concluding remarks
can be found in Sect. 4.

2 Preliminaries

2.1 AES-128

In this section, aspects of AES-128 that are relevant for this paper are described.
For detailed information, refer to FIPS 197 [9]. AES-128 is an iterated block
cipher mapping a 16 byte plaintext to a 16 byte ciphertext using a 128 bit
key. AES-128 consists of 10 rounds and has 11 round keys which are derived
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from the AES-128 key using the AES key scheduling algorithm. Each round of
the algorithm updates a 16 byte state; the initial state of the algorithm is the
plaintext and the final state of the algorithm is the ciphertext. In the following, a
state is denoted by [statei]i=0,1,...,15. A round comprises the following operations:

– ShiftRows is a permutation on the indices of the bytes of the state. It is
defined by the permutation (0, 5, 10, 15, 4, 9, 14, 3, 8, 13, 2, 7, 12, 1, 6, 11), i.e.
the first byte of the output of ShiftRows is the first byte of the input, the
second byte of the output is the fifth byte of the input, and so on.

– AddRoundKey is a bitwise addition modulo two of a 128 bit round key kr

(1 ≤ r ≤ 11) and the state.

– SubBytes applies the AES S-box operation to every byte of the state. AES
uses one fixed S-box, denoted by S, which is a non-linear, bijective mapping
from 8 bits to 8 bits

– MixColumns is a linear operation over GF
(
28
)
operating on 4 bytes of the

state at a time. The MixColumns operation can be represented by a 4 × 4
matrix MC over GF

(
28
)
. To update the state, 4 consecutive bytes of the

state are interpreted as a vector over GF
(
28
)
and multiplied by MC. Using

the notation and the representation of the finite field as in [9], we have:⎛⎜⎜⎝
state4i

state4i+1

state4i+2

state4i+3

⎞⎟⎟⎠← MC ·

⎛⎜⎜⎝
state4i

state4i+1

state4i+2

state4i+3

⎞⎟⎟⎠ with MC =

⎛⎜⎜⎝
02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎞⎟⎟⎠ ,

for i = 0, 1, 2, 3.

There are several equivalent ways to describe AES-128. The following description
of AES-128 is the one used in this paper, where k̂r for 1 ≤ r ≤ 10 is the result
of applying ShiftRows to kr:

state ← plaintext
for r = 1 to 9 do

state ← ShiftRows (state)
state ← AddRoundKey(state,k̂r )
state ← SubBytes(state)
state ← MixColumns (state)

end for
state ← ShiftRows (state)
state ← AddRoundKey(state,k̂10)
state ← SubBytes(state)
state ← AddRoundKey(state,k11)
ciphertext ← state
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2.2 The White-Box AES Implementation

This section describes the white-box AES implementation proposed in [10]. As
the MixColumns operation is omitted in the final AES-128 round, the white-box
implementation of the final round differs from the white-box implementation of
the other rounds. However, as the final round is not relevant for the cryptanalysis
presented in this paper, the description of its implementation is omitted below.

First, the AddRoundKey and SubBytes operations of AES round r (1 ≤ r ≤ 9)
are composed, resulting in 16 8-bit bijective lookup tables for each round. In
the following, such a table is referred to as a T-box. If the 16 bytes of a 128 bit
round key are denoted by k̂ri (i = 0, 1, . . . , 15), then the T-boxes are defined as
follows:

T r
i (x) = S(x⊕ k̂ri ) for 1 ≤ r ≤ 9 and 0 ≤ i ≤ 15 .

Second, the 4× 4 matrix MC is split into two 4× 2 submatrices: MC0 is defined as
the first 2 columns of MC and MC1 is defined as the remaining 2 columns of MC.
Using this notation, the MixColumns matrix multiplication is given by:⎛⎜⎜⎝

state4i
state4i+1

state4i+2

state4i+3

⎞⎟⎟⎠← MC0 ·
(

state4i
state4i+1

)
⊕ MC1 ·

(
state4i+2

state4i+3

)

for i = 0, 1, 2, 3.

TMCri

16
MCi mod 2

8

8
Lr
i

32 32
Rr


i/2�
S

⊕k
r
2i

T r
2i

kr2i+1

S
⊕

T r
2i+1

8

8

ˆ

ˆ

Fig. 1. Composition of T-boxes (T r
2i and T r

2i+1) and MixColumns operation (MCi mod 2)
resulting in 16-to-32 bit lookup table TMCri

For 1 ≤ r ≤ 9, the T-boxes and the MixColumns operations are composed as
depicted in Fig. 1. Observe that this results in 8 lookup-tables per round, each
table mapping 16 bits to 32 bits. To prevent an adversary from extracting the
AES round keys from these tables, each table is composed with two secret white-
box encodings Lr

i and Rr

i/2� as depicted in Fig. 1. Each white-box encoding Lr

i

is a bijective linear mapping from 16 bits to 16 bits, i.e., it can be represented
by a non-singular 16 × 16 matrix over GF (2). Each white-box encoding Rr


i/2�
is a bijective linear mapping from 32 bits to 32 bits, i.e., it can be represented
by a non-singular 32 × 32 matrix over GF (2). The resulting tables from 16 to
32 bits are referred to as TMCri (i = 0, 1, . . . , 7) in the following.
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Third, a 128 × 128 non-singular matrix M r over GF (2) is associated with
each round r (1 ≤ r ≤ 9). If SR denotes the 128× 128 non-singular matrix over
GF (2) representing the ShiftRows operation, then the matrix M r is defined as
follows:

M r = diag
(
(Lr

0)
−1, . . . , (Lr

7)
−1
)
◦ SR ◦ diag

(
(Rr−1

0 )−1, . . . , (Rr−1
3 )−1

)
, (1)

for r = 2, 3, . . . , 9, where ‘◦’ denotes the function composition symbol. The
matrix M1 associated with the first round has a slightly different structure and
is defined below.

Fourth, an additional secret white-box encoding is defined, denoted by IN.
This encoding is represented by a non-singular 128 × 128 matrix over GF (2),
and is applied to an AES-128 plaintext. Next, the non-singular 128×128 matrix
M1 over GF (2) is defined as follows:

M1 = diag
(
(L1

0)
−1, . . . , (L1

7)
−1
)
◦ SR ◦ IN−1 . (2)

...

32

32 ⊕
32

32 ⊕

32

32 ⊕

32

32 ⊕

32

32

32

32

16

16

16

16

16

16

16

16

32

32

32

32

round r (2 ≤ r ≤ 9)

TMCr0

TMCr1

TMCr2

TMCr3

TMCr4

TMCr5

TMCr6

TMCr7 }

MrIN(plaintext)

32

32 ⊕ 32

32

32 ⊕ 32

32

32 ⊕ 32

32

32 ⊕ 32

16

16

16

16

16

16

16

16

}

round 1

128

TMC10

TMC11

TMC12

TMC13

TMC14

TMC15

TMC16

TMC17

M1

Fig. 2. White-box AES-128 implementation [10] of rounds r = 1, 2, . . . , 9

Using these notations and definitions, the structure of the first 9 rounds of
the white-box AES-128 implementation is depicted in Fig. 2. In the white-box
implementation, an operation M r is implemented as a matrix vector multiplica-
tion over GF (2) and an operation TMCri is implemented as a look-up table. Notice
that the output of two tables, which corresponds to the linearly encoded output
of MC0 and MC1, is added modulo two in the white-box implementation. After
the final AES round, a secret white-box encoding OUT is applied to the AES-128
ciphertext. OUT is represented by a non-singular 128 × 128 matrix over GF (2).
Observe that, with the exception of the encodings IN and OUT, the white-box
implementation of AES-128 is functionally equivalent to AES-128.

The main differences with the white-box AES-128 implementation presented
in [4] are the following: (i) all secret white-box encodings are linear over GF (2),
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and (ii) the secret white-box encodings operate on at least 2 bytes simultaneously
instead of at least 4 bits (in case of a non-linear encoding) or at least a byte (in
case of a linear encoding) in [4]. In [10], the authors argue that their white-box
AES-128 implementation is resistant against the BGE attack [1].

2.3 The Linear Equivalence Algorithm

Definition 1. Two permutations on n bits (or S-boxes) S1 and S2 are called
linearly equivalent if a pair of linear mappings (A,B) from n to n bits exists
such that S2 = B ◦ S1 ◦A.

A pair (A,B) as in this definition is referred to as a linear equivalence. Notice
that both linear mappings A and B of a linear equivalence are bijective. If
S1 = S2, then the linear equivalences are referred to as linear self-equivalences.

The linear equivalence problem is: given two n-bit bijective S-boxes S1 and
S2, determine if S1 and S2 are linearly equivalent. An algorithm for solving the
linear equivalence problem is presented in [2]. The inputs to the algorithm are
S1 and S2, and the output is either a linear equivalence (A,B) in case S1 and
S2 are linearly equivalent, or a message that such a linear equivalence does not
exist. The algorithm is referred to as the linear equivalence algorithm (LE), and
exploits the linearity of the mappings A and B. For an in depth description
LE, refer to [2]. Below we give a brief description of a variant of LE where it is
assumed that both given S-boxes map 0 to itself, i.e., S1(0) = S2(0) = 0. This
variant of LE will be used as a building block for the cryptanalysis in this paper.

S2

S1A? B?

=

A(x1), A(x2)x1, x2 y1, y2 B(y1), B(y2)
S1

S2

S−1
2

S−1
1 B(y3) =

B(y1)⊕B(y2)y1 ⊕ y2

y3 =
x3 A(x3)

guess

linear combination

lin
ea

r c
om

bi
na

tio
n

B?

A?

Fig. 3. Illustration how LE works

In case S1(0) = S2(0) = 0, at least two guesses for two points of A are
necessary in order to start LE; select two distinct input points x1 �= 0 and x2 �= 0
and guess the values of A(x1) and A(x2). Based on these two initial guesses and
the linearity of A and B, we incrementally build the linear mappings A and B
as far as possible. The initial guesses A(xi) for the points xi (i = 1, 2) provide
us with knowledge about B by computing yi = S1(A(xi)) and B(yi) = S2(xi),
which in turn gives us possibly new information about A by computing the
images of the linear combinations of yi and B(yi) through respectively S−1

1 and
S−1
2 . This process is applied iteratively, where in each step of the process the

linearity of the partially determined mappings A and B is verified by a Gaussian
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elimination. Figure 3 illustrates the process. In case neither for A nor for B a set
of n linearly independent inputs and outputs is obtained, the algorithm requires
an additional guess for a new point x of A (or B) in order to continue.

If n linearly independent inputs and n linearly independent outputs to A are
obtained, then a candidate for A can be computed. Similar reasoning applies to
B. If the candidate linear equivalence is denoted by (A∗, B∗), then the correctness
of this pair can be tested by verifying the relation S2 = B∗◦S1◦A∗ for all possible
inputs. If no candidate linear equivalence is found (due to linear inconsistencies
occurred during the process), or if the candidate linear equivalence is incorrect,
then the process is repeated with a different guess for A(x1) or for A(x2), or for
any of the possibly additional guesses made during the execution of LE.

The original linear equivalence algorithm LE exits after finding one single
linear equivalence which already proves that both given S-boxes S1 and S2 are
linearly equivalent. However, by running LE over all possible guesses, i.e., both
initial guesses as well as the possibly additional guesses made during the execu-
tion of LE, also other linear equivalences (A,B) can be found. The work factor of
this variant is at least n3 ·22n, i.e., a Gaussian elimination (n3) for each possible
pair of initial guesses (22n).

3 Cryptanalysis of the White-Box AES Implementation

In this section, we elaborate on the cryptanalysis of the white-box AES-128 im-
plementation proposed in [10] and described in Sect. 2.2. The goal of the crypt-
analysis is the recovery of the full 128-bit AES key, together with the external
input and output encodings, IN and OUT respectively.

The cryptanalysis focusses on extracting the first round key k̂1 contained
within the 8 key-dependent 16-to-32 bit lookup tables TMC1i (i = 0, . . . , 7) of the
first round. Each table TMC1i , depicted in Fig. 4(a), is defined as follows:

TMC1i = R1

i/2� ◦ MCi mod 2 ◦ S‖S ◦ ⊕(k̂1

2i‖k̂1
2i+1)

◦ L1
i , (3)

where ‖ denotes the concatenation symbol, ⊕c denotes the function ⊕c(x) =
x ⊕ c, and S‖S denotes the 16-bit bijective S-box comprising two AES S-boxes
in parallel. Given (3), the adversary knows that both S-boxes S1 = S‖S and
S2 = TMC1i are affine equivalent by the affine equivalence (A,B) = (⊕(k̂1

2i‖k̂1
2i+1)

◦
L1
i , R

1

i/2� ◦ MCi mod 2) such that S2 = B ◦ S1 ◦ A. As one can notice, only A is

affine where the constant part equals the key-material contained within TMC1i .
Hence by making TMC1i key-independent (see Lemma 1 below), we can reduce
the problem to finding linear instead of affine equivalences, for which we apply
the linear equivalence algorithm (LE).

Lemma 1. Given the key-dependent 16-to-32 bit lookup table TMC 1
i (defined

by (3) and depicted in Fig. 4(a)), let xi
0 be the 16-bit value such that TMC 1

i (xi
0) =

0, and let TMC
1

i be defined as TMC
1

i = TMC 1
i ◦ ⊕xi

0
. If S is defined as the 8-bit

bijective S-box S = S ◦ ⊕‘52’ where S denotes the AES S-box, then:
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ˆ
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Fig. 4. Key-dependent table TMC1i versus key-independent table TMC
1
i

TMC
1

i = R1

i/2� ◦ MCi mod 2 ◦ S‖S ◦ L1

i , (4)

where S‖S denotes the 16-bit bijective S-box comprising two S-boxes S in parallel.

The key-independent 16-to-32 bit lookup table TMC
1

i is depicted in Fig. 4(b).

Proof. Given the fact that TMC1i is encoded merely by linear input and output
encodings L1

i and R1

i/2� (see (3)) and that S(‘52’) = 0, the 16-bit value xi

0, for

which TMC 1
i (xi

0) = 0, has the following form:

xi
0 = (L1

i )
−1
(
(k̂12i ⊕ ‘52’) ‖ (k̂12i+1 ⊕ ‘52’)

)
, (5)

In the rare case that xi
0 = 0, it immediately follows that both first round key

bytes k̂12i and k̂12i+1 are equal to ‘52’. Now, based on xi
0, one can construct the

key-independent 16-to-32 bit lookup table TMC
1
i as follows:

TMC
1
i = TMC1i ◦ ⊕xi

0
= R1


i/2� ◦ MCi mod 2 ◦ S‖S ◦ ⊕(k̂1
2i‖k̂1

2i+1)
◦ ⊕L1

i (x
i
0)
◦ L1

i

= R1

i/2� ◦ MCi mod 2 ◦ S‖S ◦ ⊕(‘52’‖‘52’) ◦ L1

i

= R1

i/2� ◦ MCi mod 2 ◦ S‖S ◦ L1

i .

The 8-bit bijective S-box S maps 0 to itself, i.e. S(‘00’) = ‘00’, since S(‘52’) =

‘00’. Given (4), it also follows that TMC
1
i (0) = 0.

Linear Equivalence Algorithm (LE). Given (4), the adversary knows that
the 16-bit bijective S-box S1 = S‖S and the key-independent 16-to-32 bit lookup

table S2 = TMC
1
i (which is a bijective mapping from GF

(
216

)
to a 16-dimensional

subspace of GF
(
232

)
) obtained through Lemma 1, are linearly equivalent by the

linear equivalence (A,B) = (L1
i , R

1

i/2� ◦ MCi mod 2). His goal is to recover this

linear equivalence which contains the secret linear input encoding L1
i he needs in

order to extract both first round key bytes k̂12i and k̂12i+1 out of the 16-bit value
xi
0 given by (5). The described problem is exactly what the linear equivalence

algorithm (LE) tries to solve.
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Since in this case both S-boxes S1 = S‖S and S2 = TMC
1
i map 0 to itself, at

least two initial 16-bit guesses A(xn) for two distinct points xn �= 0 (n = 1, 2)
of A are necessary to execute LE, and hence the work factor becomes at least
244, i.e., n3 · 22n for n = 16. Furthermore, 128 linear equivalences (A,B) =
(As ◦ L1

i , R
1

i/2� ◦ MCi mod 2 ◦ Bs) can be found, where (As, Bs) denotes the 128

linear self-equivalences of S‖S (see Appendix A):

S‖S = Bs ◦ S‖S ◦As →
TMC

1
i = R1


i/2� ◦ MCi mod 2 ◦Bs ◦ S‖S ◦As ◦ L1
i = B ◦ S‖S ◦A .

The desired linear equivalence, i.e., the linear equivalence that the adversary
wants to obtain, is denoted by (A,B)d = (L1

i , R
1

i/2� ◦MCi mod 2) and corresponds

to the one with the linear self-equivalence (As, Bs) = (I16, I16), where I16 denotes
the 16-bit identity matrix over GF (2).

Our Goal. In the following sections, we present a way how to modify the linear

equivalence algorithm when applied to S1 = S‖S and S2 = TMC
1
i , such that only

the single desired linear equivalence (A,B)d = (L1
i , R

1

i/2� ◦MCi mod 2) is given as

output. At the same time, the work factor decreases as well. This modification
exploits both the structure of AES as well as the structure of the white-box
implementation.

3.1 Obtain Leaked Information about the Linear Input Encoding
L1

i

Due to the inherent structure of the white-box implementation, partial informa-

tion about the linear input encoding L1
i of the key-independent tables TMC

1
i of the

first round is leaked. For each L1
i , this leaked information comprises four sets of

16-bit encoded values for which the underlying unencoded bytes share a known
bijective function. In the next section, we show how to modify the linear equiva-
lence algorithm based on this leaked information. Here, we elaborate on how this

information is extracted for L1
i∗ of a given table TMC

1
i∗ for some i∗ ∈ {0, 1, . . . , 7}.

Below, the following description is used: given an AES state by [staten]n=0,1,...,15,
then each set of 4 consecutive bytes [state4j , state4j+1, state4j+2, state4j+3] for
j = 0, . . . , 3 is referred to as column j.

First, one builds an implementation which only consists of the single key-

independent table TMC
1
i∗ followed by the matrix multiplication over GF (2) with

M2 given by (1) for r = 2. This implementation is in detail depicted in Fig. 5
for i∗ = 4, where the internal states U, V and Y are indicated as well: the 2-byte
state U = (u0‖u1) corresponds to the 2-byte input to S‖S and the 4-byte state
V = (v0‖v1‖v2‖v3) corresponds to the 4-byte output of MCz where z = i∗ mod 2.
Since each byte vl (l = 0, . . . , 3) of V is an output byte of MCz , the relation
between U and V is given by mczl,0⊗S(u0)⊕mczl,1⊗S(u1) = vl for l = 0, . . . , 3,

where ⊗ denotes the multiplication over the Rijndael finite field GF
(
28
)
and
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u0 u1

S S
MC0

v0 v1 v2 v3

0 0 0 0 0 0 0 0 v0 v1 v2 v3 0 0 0 0

ShiftRows (SR)
0 0 v2 0 0 v1 0 0 v0 0 0 0 0 0 0 v3

16
0 1 2 3 4 5 6 7

16 16 16 16 16 16 16

32

16

venc0venc1venc2 venc30 0 0 0

{
{ 0 0 0

State Y

State SR(Y)

State V

State U

{ { { {column 0 column 1 column 2 column 3

output

L1
4

TMC
1
4

R1
2

(R1
2)

−1 (R1
3)

−1(R1
1)

−1(R1
0)

−1

32 32

x

(L2)−1 (L2)−1 (L2)−1 (L2)−1 (L2)−1 (L2)−1 (L2)−1 (L2)−1

M2

Fig. 5. Example of the implementation associated to TMC
1
i∗ with i∗ = 4: identifying the

four values venc
l for l = 0, . . . , 3 in order to build the corresponding sets Si∗

l

the pair (mczl,0,mczl,1) corresponds to the MixColumns coefficients on row l of

the 4× 2 submatrix MCz over GF
(
28
)
, i.e. (mczl,0,mczl,1) ∈ SMC with:

SMC = {(‘02’, ‘03’), (‘01’, ‘02’), (‘01’, ‘01’), (‘03’, ‘01’)} . (6)

Then, the 16-byte input to M2 is provided as follows: three 4-byte 0-values
for columns j �= �i∗/2� (in our example: j = 0, 1, 3) and the 4-byte output of

TMC
1
i∗ for column j = �i∗/2� (in our example: j = 2). This ensures that the

three columns j with j �= �i∗/2� of the state Y remain zero, whereas column
j = �i∗/2� equals the 4-byte state V . The ShiftRows operation ensures that
the four bytes vl (l = 0, . . . , 3) of V are spread over all four columns of the
internal state SR(Y ), which are then each encoded by a different linear encod-
ing (L2

2((
i∗/2�−l) mod 4)+
l/2�)
−1. Hence the output state contains four 16-bit

0-values, whereas the other four 16-bit output values vencl (l = 0, . . . , 3) each
correspond to one of the 4 bytes vl of V in a linearly encoded form.

If vencl = 0, then the associated byte vl = ‘00’ as well, such that we have a
known bijective function f i∗

l between the bytes u0, u1 of U , which is defined as:

u1 = f i∗
l (u0) with f i∗

l =
(
S
)−1 ◦ ⊗(mczl,1)

−1 ◦ ⊗mczl,0
◦ S , (7)

where z = i∗ mod 2. This function follows out of the equation mczl,0 ⊗ S(u0) ⊕
mczl,1 ⊗ S(u1) = ‘00’ and is depicted in Fig. 6.

Now, for the linear input encoding L1
i∗ of TMC

1
i∗ , four sets Si∗l (l = 0, . . . , 3)

are built as follows. First associate one of the four values vencl with each set Si∗l .

Then, for each set Si∗l , store the 16-bit value x, given as input to TMC
1
i∗ , for which

the associated output value vencl = 0. Do this for all x ∈ GF
(
216

)
. This results
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S

S

L1
i∗

u0

u1

S(u0)

S(u1)

⊗(mczl,1)
−1 ◦ ⊗mczl,0

f i∗
l

x ∈ Si∗l

Fig. 6. How the known bijective function f i∗
l between u0 and u1 is defined

in that each set Si∗l is composed of 28 16-bit encoded values x for which the
underlying unencoded bytes u0, u1 share the known bijective function f i∗

l given
by (7) and depicted in Fig. 6:

Si∗l = {x ∈ GF
(
216

)
| L1

i∗(x) = u0‖u1 ∧ u1 = f i∗
l (u0)} with |Si∗l | = 28 . (8)

So with each set Si∗l (l = 0, . . . , 3), a known bijective function f i∗
l is associated.

3.2 Finding the Desired Linear Equivalence (A,B)d: Obtain the
Full Linear Input Encoding L1

i

So far, for the secret linear input encoding L1
i of each table TMC

1
i (i = 0, 1, . . . , 7)

of the first round, four sets Sil (l = 0, . . . , 3) defined by (8) are obtained. For each
element x ∈ Sil , the underlying unencoded bytes u0, u1 share a specific known
bijective function f i

l given by (7) and depicted in Fig. 6. Now, by exploiting this
leaked information about L1

i , we present an efficient algorithm for computing
the desired linear equivalence (A,B)d = (L1

i , R
1

i/2� ◦MCi mod 2). This enables the

adversary to obtain the secret linear input encoding A = L1
i of TMC

1
i , which also

corresponds to the linear input encoding of TMC1i .

Algorithm for Finding (A,B)d. Since A = L1
i in the desired linear equiva-

lence, we exploit the leaked information about L1
i in order to make the two initial

guesses A(xn) for two distinct points xn �= 0 (n = 1, 2) of A. Only two out of
four sets Sil are considered, i.e., those where the pair of MixColumns coefficients
(mczl,0,mczl,1) of the associated function f i

l equals (‘01’, ‘02’) or (‘02’, ‘03’). We

choose one of both sets and simply denote it by Si.
Now, select two distinct points xn �= 0 (n = 1, 2) out of the chosen set,

i.e., xn ∈ Si. Based on definition (8) of Si, these points are defined as xn =
(L1

i )
−1
(
un‖f i(un)

)
for some unknown distinct 8-bit values un ∈ GF

(
28
)
\ {0},

where f i denotes the known function associated with Si. Now, based on this
knowledge and the fact that we want to find A = L1

i , the two initial guessesA(xn)
are made as follows: A(xn) = an‖f i(an) for all an ∈ GF

(
28
)
\ {0} (n = 1, 2).

Hence although A(xn) is a 16-bit value, we only need to guess the 8-bit value an
such that the total number of guesses becomes 216 (i.e. 22

n
2 with n = 16). For

each possible pair of initial guesses
(
A(xn) = an‖f i(an)

)
n=1,2

, LE is executed

on S1 = S‖S and S2 = TMC
1
i . All found linear equivalences are stored in the

set SLE.
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It is assumed that at least (A,B)d = (L1
i , R

1

i/2� ◦ MCi mod 2) ∈ SLE, which

occurs when an = un for n = 1, 2. It is possible that one or more linear equiv-
alences (A,B) = (As ◦ L1

i , R
1

i/2� ◦ MCi mod 2 ◦ Bs) with As �= I16 (see the in-

troducing part of Sect. 3) can be found as well such that |SLE| > 1. In that
case, the procedure needs to be repeated for two new distinct points x∗

n �= 0
(n = 1, 2) out of the chosen set Si, which are also distinct from the original
chosen points xn �= 0 (n = 1, 2). This results in a second set S∗LE. Assuming that

all possible linear equivalences between S1 = S‖S and S2 = TMC
1
i are given by

(A,B) = (As ◦ L1
i , R

1

i/2� ◦ MCi mod 2 ◦ Bs), it can be shown that for both con-

sidered sets, it is impossible that a linear equivalence with As �= I16 is given as
output during both executions of the procedure. Hence taking the intersection
of both sets SLE and S∗LE results in the desired linear equivalence (A,B)d.

Algorithm 1 gives a detailed description of the whole procedure. It has an
average case work factor of 229, i.e., 2 · n3 · 22n

2 for n = 16.

Algorithm 1. Finding the desired linear equivalence (A,B)d

Input: S1 = S‖S, S2 = TMC
1
i , Si, f i

Output: (A,B)d = (L1
i , R

1
�i/2� ◦ MCi mod 2)

1: select two distinct points x1, x2 ∈ Si with xn �= 0 (n = 1, 2)
2: call search-LE(x1, x2) → SLE

3: if |SLE| > 1 then
4: select two distinct points x∗

1, x
∗
2 ∈ Si with x∗

n �= 0, x∗
n �= xm (n = 1, 2 ; m = 1, 2)

5: call search-LE(x∗
1, x

∗
2) → S∗

LE

6: SLE ← SLE ∩ S∗
LE

7: end if
8: return SLE

where
Procedure search-LE (Input: x1, x2 – Output: SLE)

1: SLE ← ∅

2: for all a1 ∈ GF
(
28
)
\ {0} do

3: A(x1) ← a1‖f i(a1)
4: for all a2 ∈ GF

(
28
)
\ {0} do

5: A(x2) ← a2‖f i(a2)

6: call LE on S1 = S‖S and S2 = TMC
1
i with initial guesses A(x1), A(x2) → SLE

7: end for
8: end for

Choice of Set Si. To each of the four sets Sil (l = 0, . . . , 3), a pair of
MixColumns coefficients (mczl,0,mczl,1) ∈ SMC (see (6)) of the associated func-

tion f i
l is related. Let us denote this relation by Sil ↔ (mczl,0,mczl,1). Here, we

elaborate on the fact that not all four sets are equally suitable to be used in
Algorithm 1.
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Sil ↔ (‘01’, ‘01’): in this case, the associated function f i
l becomes the identity

function such that the pair of initial guesses becomes
(
A(xn) = an‖an

)
n=1,2

with an ∈ GF
(
28
)
\ {0}. When executing LE on S1 = S‖S and S2 = TMC

1
i

for any such pair, we only find at most 8 linearly independent inputs and
output to A (or B). This is explained by the fact that linear combinations
of an‖an (or of S(an)‖S(an)) span at most an 8-dimensional space. In order
to continue executing LE, an additional guess for a new point x of A (or B)
is required which increases the work factor. Hence we avoid using this set;

Sil ↔ {(‘01’, ‘02’), (‘02’, ‘03’), (‘03’, ‘01’)}: computer simulations show that all
three remaining sets can be used in Algorithm 1 without requiring an addi-
tional guess during the execution of LE. However, in the worst case scenario,
using the set Sil ↔ (‘03’, ‘01’) requires that the procedure ‘search-LE’ needs
to be executed 4 times in total in order to find the single desired linear equiv-
alence (A,B)d, instead of at most 2 times in case of the set Sil ↔ (‘01’, ‘02’)
or the set Sil ↔ (‘02’, ‘03’). Note that Algorithm 1 assumes that one of the
latter sets is chosen.

Implementation. Algorithm 1 has been implemented in C++ and tests have
been conducted on an Intel Core2 Quad @ 3.00GHZ. For the conducted tests,
we chose the set Sil where (mczl,0,mczl,1) = (‘02’, ‘03’). We ran the implementation

3000 times in total, each time for a different randomly chosen L1
i and R1


i/2�.
Only 4 times the procedure ‘search-LE’ needed to be repeated since 2 linear
equivalences were found during the first execution. The implementation always
succeeded in finding only the single desired linear equivalence (A,B)d, which
required on average ≈ 1min. It should be noted that the implementation was
not optimized for speed, hence improvements are possible. The implementation
also showed that each pair of initial guesses as defined above were sufficient in
order to execute LE, i.e., no additional guesses were required.

3.3 Extracting the Full 128-Bit AES Key and the External Input
and Output Encodings IN and OUT

At this point in the cryptanalysis, we extracted the 16-bit secret linear input
encodings L1

i of all 8 16-to-32 bit tables TMC1i (i = 0, . . . , 7) of the first round.

Extracting the Full 128-bit AES Key. Given the 16-bit value xi
0 of each table

TMC1i defined by TMC1i (x
i
0) = 0 (see (5)), the adversary can extract both first

round key bytes k̂12i and k̂12i+1 contained within each key-dependent table TMC1i
as follows:

k̂12i ‖ k̂12i+1 = L1
i (x

i
0)⊕

(
‘52’ ‖ ‘52’

)
.

By doing so for each table TMC1i (i = 0, 1, . . . , 7) and taking into account the data
flow of the white-box implementation of the first round, the adversary is able
to obtain the full 128-bit first round key k̂1, which after applying the inverse
ShiftRows operation to it results in the actual first round key k1. According to
the AES key scheduling algorithm, k1 corresponds to the 128-bit AES key k.
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Extracting the External Input and Output Encodings IN and OUT. By knowing
all 8 linear input encodings L1

i (i = 0, 1, . . . , 7) of the first round, the external
128-bit linear input encoding IN can be extracted out of the 128 × 128 binary
matrix M1 given by (2) as follows: IN−1 = SR−1 ◦ diag(L1

0, . . . , L
1
7) ◦M1.

The external 128-bit linear output encoding OUT can be extracted once both
the AES key k and IN have been recovered. Let us take the canonical base
([ei])i=0,...,127 of the vector space GF (2)

128
and calculate for each 128-bit base

vector ei the 128-bit value yi = WBAESk
(
IN
(
AES−1

k (ei)
))
, where WBAESk

denotes the given white-box AES implementation defined by WBAESk = OUT ◦
AESk◦IN−1 and AES−1

k denotes the inverse standard AES implementation, both
instantiated with the AES key k:

yi = OUT(AESk(IN
−1︸ ︷︷ ︸

WBAESk

(IN(AES−1
k (ei))))) = OUT(ei) .

As one can notice, yi corresponds to the image of ei under the external 128-bit
linear output encoding OUT. Hence OUT is completely defined by calculating all
pairs (ei, yi) for i = 0, . . . , 127.

3.4 Work Factor

The overall work factor of our cryptanalysis is dominated by the execution of
Algorithm 1 in order to obtain the linear input encodings L1

i of all 8 16-to-32
bit tables TMC1i (i = 0, . . . , 7) of the first round. The algorithm has a work factor

of about 229. Thus, executing the algorithm on S1 = S‖S and S2 = TMC
1
i for

i = 0, 1, . . . , 7 leads to an overall work factor of about 8·229 = 232. Once obtained
L1
i for i = 0, 1, . . . , 7, the AES key together with the external encodings can be

extracted as explained in Sect. 3.3.

4 Conclusion

This paper described in detail a practical attack on the white-box AES imple-
mentation of Xiao and Lai [10]. The cryptanalysis exploits both the structure
of AES as well as the structure of the white-box AES implementation. It uses
a modified variant of the linear equivalence algorithm presented by Biryukov
et al. [2], which is built by exploiting leaked information out of the white-box
implementation. The attack efficiently extracts the AES key from Xiao et al.’s
white-box AES implementation with a work factor of about 232. In addition to
extracting the AES key, which is the main goal in cryptanalysis of white-box
implementations, our cryptanalysis is also able to recover the external input and
output encodings. Crucial parts of the cryptanalysis have been implemented
in C++ and verified by computer experiments. The implementation furthermore
shows that both the 128-bit AES key as well as the external input and output
encodings can be extracted from the white-box implementation in just a few
minutes on a modern PC.
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S = S ◦ ⊕‘52’. If Φl denotes the set of exactly #l = 8 linear self-equivalences
(α, β) of S such that S = β ◦ S ◦ α, and is defined as:

Φl =
{
(α = [c] ◦Qi, β = A ◦Q−i ◦ [c] ◦A−1) | (i, c) ∈ Sl

}
with

Sl = {(0, ‘01’), (1, ‘05’), (2, ‘13’), (3, ‘60’),
(4, ‘55’), (5, ‘f6’), (6, ‘b2’), (7, ‘66’)} ,

where [c] denotes the 8 × 8 binary matrix representing a multiplication by c
in GF

(
28
)
and Q denotes the 8 × 8 binary matrix that performs the squaring

operation in GF
(
28
)
(both considered the Rijndael finite field), then the 16-

bit bijective S-box comprising two identical S-boxes S in parallel, i.e. S‖S, has
2 ·#2

l = 128 trivial linear self-equivalences denoted by the pair of 16-bit bijective
linear mappings (As, Bs) such that S‖S = Bs ◦ S‖S ◦ As, with the following
diagonal structure:

As =

(
α1 08×8

08×8 α2

)
, Bs =

(
β1 08×8

08×8 β2

)
or

As =

(
08×8 α1

α2 08×8

)
, Bs =

(
08×8 β2

β1 08×8

)
, (9)

for any combination [(α1, β1), (α2, β2)] where both (α1, β1), (α2, β2) ∈ Φl. In (9),
08×8 denotes the 8× 8 binary zero-matrix over GF (2).

The linear equivalence algorithm (implemented in C++) has been executed with
S1 = S2 = S‖S and found exactly these 128 linear self-equivalences (As, Bs) of
the form (9).
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Abstract. We propose a leakage-resilient signature scheme in the con-
tinual leakage model that is based on a well-known identity-based en-
cryption scheme by Boneh and Boyen (Eurocrypt 2004). The proposed
signature scheme is the most efficient among the existing schemes that
allow for continual leakage. Its efficiency is close to that of non leakage-
resilient pairing-based signature schemes. It tolerates leakage of almost
half of the bits of the secret key at every new signature invocation. We
prove the security of the new scheme in the generic bilinear group model.

Keywords: leakage-resilient cryptography, digital signature, continual
leakage, generic group model, efficiency.

1 Introduction

Side channel attacks are often effective in recovering the secret key of cryp-
tosystems that are provably secure otherwise [16,17,7]. Typical examples of side
channel attacks include analysis of running-time, power consumption, electro-
magnetic radiation leak, fault detection, to name just but a few. Countermea-
sures adopted in practice against side channel attacks are usually heuristic, aimed
often at covering a restricted class of attacks. On the other hand, it is desirable
to extend the traditional provable security methodology to also include side
channel attacks. This area of contemporary cryptography is usually referred to
as leakage-resilient cryptography and it has been an increasingly active area in
recent years.

In this work we make two main assumptions to model leakage:

– Bounded leakage: the useful leakage data per signature invocation is
bounded in length (but unbounded overall);

– Independent leakage: the computation can be divided into rounds, where
each such round leaks independently.

This model has been previously used in [11,21,15,12]. The first assumption can
be seen overly restrictive; however it should be noticed that in practice many
side-channel attacks only exploit a polylogarithmic amount of information. The
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second assumption allows us to divide the memory of a device, at every comput-
ing step, into two parts - an active and a passive part. The part of the memory
being currently accessed by a computation is the active part, and only the ac-
tive part leaks information at any given time. We stress that even if our leakage
definition is local with respect to each part of the memory, it still captures some
global functions of the secret key, for instance any affine leakage function. We
refer to the work by Dziembowski and Faust [10] for a discussion on the signifi-
cance and limitations of this leakage model. In particular, the Only Computation
Leaks Information model [13,20] complies with our leakage model.

In the last few years a tremendous progress has been made in the inter-
play between provable security and side-channel attacks, such as the works
[14,12,6,8,18,5] bear witness for the case of digital signatures. Admittedly, the
schemes that do not use any idealized assumption (random oracle, generic
groups), are much more involved than their non-leakage counterparts, and more
importantly, not yet quite efficient to be used in practice. A rough estimation
of the efficiency of current leakage-resilient schemes is that they are a linear
number of times in the security parameter slower than their non-leakage coun-
terparts. In this work we aim at building an efficient signature scheme secure
against continual leakage. To this aim, we use an idealized model of computa-
tion called generic bilinear group (GBG) model, which has been previously used
by Kiltz and Pietrzak [15] to provide leakage-resilient public key encryption.
They propose a bilinear version of the ElGamal key encapsulation mechanism
which enjoys provable leakage-resilience in the presence of continual leakage.
Their scheme is very efficient, less than a handful of times slower than standard
ElGamal.

We use the techniques by Kiltz and Pietrzak to propose a leakage-resilient
signature scheme that builds upon the Boneh-Boyen identity-based encryption
scheme [2]. The resulting signature scheme is nearly as efficient as the origi-
nal identity-based encryption scheme (only 4

3 times slower). Our main theorem
(Theorem 2) states that allowing λ bits of leakage at every round decreases the
security of the scheme by at most a factor 22λ.

The main criticism that can be addressed to our work is the use of the generic
group idealization to reason about side-channel attacks. The main question is
whether the generic group model is a risky abstraction when side-channel attacks
are considered. The main advantage of our chosen approach lies on its practical-
ity: the schemes obtained are of efficiency comparable to traditional schemes, a
major argument in our opinion to motivate the cryptographic engineering com-
munity’s interest. This alone justifies in our view a careful consideration of this
approach to reason about leakage-resilient schemes, since this level of practical-
ity is still out of reach for the existing leakage-resilient schemes in the standard
model. We would like to mention that nevertheless, given the breakthroughs
achieved in the last few years in the theory of leakage-resilient cryptography,
we are confident that the above-mentioned efficiency gap will be progressively
shrunk in the years to come and under widely accepted assumptions.
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2 Definitions

In this section, we recollect some basic notions of security of signature schemes,
bilinear groups, and the generic bilinear group model. We also describe the model
of leakage we shall consider in this paper and formulate a definition of security
of signature schemes in the presence of continual leakage. We adapt the leakage
model specified in [15] to signature schemes.

Let Z denote the set of integers and Zp (p > 0) denote, depending upon the
context, either the set of integers {0, 1, . . . , p − 1} or the ring modulo p. We
denote a random sampling of an element a ∈ A from a set A, and also denote
a (possibly probabilistic) output of an algorithm A, by a ← A. If we want to
explicitly denote the randomness r used during the sampling/output, then we
do so by s

r← S. Unless otherwise mentioned or implicit from the context, any
sampling is from an uniform distribution. The symbol “ :=” is used to define a
notation in an expression, as in A := Z, or to explicitly indicate an output of a
deterministic algorithm or a function.

2.1 Existential Unforgeability

A signature scheme Π = (KeyGen, Sign,Verify) consists of three probabilistic
polynomial-time algorithms KeyGen, Sign, and Verify. Let κ denote the security
parameter. KeyGen(κ) on input κ produces a public- and secret-key pair (pk, sk)
along with other public parameters PP. The algorithm Sign(sk,m) on input a
secret key sk and a message m ∈ M , where M is the message space, outputs a
signature σ. Verify(pk,m, σ) on input a public key pk, a message m ∈ M and a
signature σ, outputs a bit b = 1 meaning valid, or b = 0 meaning invalid. We
require the following correctness requirement to be satisfied by Π:

Pr[Verify(pk,m, Sign(sk,m)) = 1 : (pk, sk)← KeyGen(κ),m ∈M ] = 1.

The security of a signature scheme Π is defined through the following experiment:

Sign-ForgeΠ(A, κ) Sign-Oracle Ωsk(m)
(pk, sk)← KeyGen(κ) w := w ∪m
w := ∅ σ ← Sign(sk,m)

(m,σ)← AΩsk(·)(pk) Return σ
If m ∈ w, then return b := 0
b← Verify(pk,m, σ)

Definition 1. [Existential Unforgeability] A signature scheme Π is existen-
tially unforgeable under adaptive chosen-message attacks, in short “secure”, if
Pr [b = 1] is negligible in the Experiment Sign-ForgeΠ(A, κ) for any efficient
adversary A.
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2.2 Leakage Model

We split the secret state into two parts that reside in different parts of the
memory, and structure any computation that involves access to the secret state
into a sequence of steps. Any step accesses only one part of the secret state
(active part) and the other part (passive part) is assumed not to leak in the
current step of computation. In the case of signature schemes, we structure the
signing process into two steps. For simplicity, we define a security notion for
leakage-resilient signature schemes assuming that the signing process is carried
out in two steps. We also refer to a single invocation of the signature generation
algorithm as a round.

Let us consider the problem of achieving leakage resilience under continual
leakage even when a significant fraction of the bits of the secret state are leaked
per round. Then it is necessary that the secret state must be stateful, i.e. the
secret state must be refreshed during every round [15]. Otherwise, after many
rounds the entire secret state will be completely leaked.

Formally, a stateful signature scheme Π∗ = (KeyGen∗, Sign∗1, Sign
∗
2, Verify

∗)
consists of four probabilistic polynomial-time algorithms KeyGen∗, Sign∗1, Sign

∗
2

and Verify∗. KeyGen∗(κ) is same as the set-up phase KeyGen of Π except that
instead of a “single” secret key sk, it outputs two initial secret states (S0, S

′
0).

Intuitively, S0 and S′
0 may be viewed as two shares of the secret key sk. From the

point of view of an adversary, the signing algorithm Sign of Π and (Sign∗1, Sign
∗
2)

have the same functionality. First, Sign∗1 is executed and later Sign∗2 is executed.
That is, the ith execution of the signing process (or ith round) is carried out as:

(Si, wi)
ri← Sign∗1(Si−1,mi) ; (S

′
i, σi)

r′i← Sign∗2(S
′
i−1, wi). (1)

In the above expression, ri and r′i are the randomness used by Sign∗1 and Sign∗2,
respectively. The parameter wi is some state information passed onto Sign∗2 by
Sign∗1. The signature σi is generated for the message mi, and the internal state
is updated from (Si−1, S

′
i−1) to (Si, S

′
i).

We model the leakage during signature generation by giving an adversary A
access to a leakage oracle Ωleak

(Si−1,S′
i−1)

(·). This oracle, in addition to giving A
signatures for the messages of its choice, also allows A to obtain leakage from
the computation used to generate signatures. More precisely, let λ be a leakage
parameter. During the ith signing round, A is allowed to specify two functions
fi and hi, each of range {0, 1}λ, that can be efficiently computed. The outputs
of the leakage functions are

Λi = fi(Si−1, ri) ; Λ
′
i = hi(S

′
i−1, r

′
i, wi). (2)

Since the value of m can be included in the description of fi and hi, hence it is
not explicitly included as an input. Note that it also possible for A to specify
hi after obtaining Λi. But, for the simplicity of the exposition, we focus on the
case where fi and hi are specified along with the message mi to the oracle.
The security of the signature scheme Π∗ in the presence of (continual) leakage
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is defined through the following experiment Sign-Forge-LeakΠ∗(A, κ, λ). In the
description below, |fi| refers to the length of the output of fi.

Sign-Forge-LeakΠ∗(A, κ, λ) Sign-Leak-Oracle Ωleak
(Si−1,S′

i−1)
(mi, fi, hi)

(pk, (S0, S
′
0))← KeyGen∗(κ) If |fi| �= λ or |hi| �= λ, return ⊥

i := 1, w := ∅ (Si, wi)
ri← Sign∗1(Si−1,mi)

(m,σ)← A
Ωleak

(Si−1,S′
i−1

)
(·)
(pk) (S′

i, σi)
r′i← Sign∗2(S′

i−1, wi)
If m ∈ w, then return b := 0 Λi := fi(Si−1, ri)
b← Verify∗(pk,m, σ) Λ′

i := hi(S
′
i−1, r

′
i, wi)

i := i+ 1
w := w ∪mi

Return (σi, Λi, Λ
′
i)

Definition 2. [Existential Unforgeability with Leakage] A signature scheme
Π∗ is existentially unforgeable under adaptive chosen-message attacks in the
presence of (continual) leakage if Pr [b = 1] is negligible in the Experiment
Sign-Forge-LeakΠ∗(A, κ, λ) for any efficient adversary A.

2.3 Bilinear Groups

Let BGen(κ) be a probabilistic bilinear group generator that outputs
(G,GT , p, e, g) such that:

1. G = 〈g〉 and GT are (multiplicatively written) cyclic groups of prime order
p with binary operations · and �, respectively. The size of p is κ bits.

2. e : G×G→ GT is a bilinear map that is:
(a) bilinear: ∀u, v ∈ G and ∀a, b ∈ Z, e(ua, vb) = e(u, v)ab.
(b) non-degenerate: e(g, g) �= 1.

Such a group G is said to be a bilinear group the above properties hold. It is also
required that the group operations in G and GT , and the map e are efficiently
computable. The group G is called as base group and GT as target group.

2.4 Generic Bilinear Group Model

The generic bilinear group (GBG) model [4] is an extension of the generic group
model [23]. The encodings of the elements of G and GT are given by random
injective maps ξ : Zp → Ξ and ξT : Zp → ΞT , respectively, where Ξ and ΞT

are sets of bit-strings. The group operations in G and GT , and evaluation of the
bilinear map e are performed by three public oracles O, OT and Oe, respectively,
defined as follows. For all a, b ∈ Zp

– O(ξ(a), ξ(b)) := ξ(a+ bmod p)
– OT (ξT (a), ξT (b)) := ξT (a+ bmod p)
– Oe(ξ(a), ξ(b)) := ξT (abmod p)

We assume that Ξ ∩ΞT = φ, the (fixed) generator g of G satisfies g = ξ(1), and
also the (fixed) generator gT of GT satisfies gT = e(g, g) = ξT (1).
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2.5 Min-Entropy

Let X be a finite random variable with a probability distribution Pr.
The min-entropy of X , denoted H∞(X), is defined as H∞(X) := − log2(
max

x
Pr[X = x]

)
. Min-entropy is a standard measure of the worst-case pre-

dictability of a random variable. Let Z be a random variable. The average con-
ditional min-entropy of X given Z, denoted H̃∞(X |Z), is defined as

H̃∞(X |Z) := − log2

(
E

z←Z

[
max
x

Pr[X = x |Z = z]
])

.

Average conditional min-entropy is a measure of the worst-case predictability of
a random variable given a correlated random variable. The following result is
due to [9].

Lemma 1. Let f : X → {0, 1}λ′
be a function on X. Then H̃∞(X | f(X)) ≥

H∞(X)− λ′.

The following result is a simple variant of the Schwartz-Zippel Lemma [22,24].

Lemma 2. [Schwartz-Zippel; min-entropy version] Let F ∈ Zp[X1, . . . , Xn] be
a non-zero polynomial of (total) degree at most d. Let Pi (i = 1, . . . , n) be proba-
bility distributions on Zp such that H∞(Pi) ≥ log p−λ′, where 0 ≤ λ′ ≤ log p. If
xi

Pi← Zp (i = 1, . . . , n) are chosen independently, then Pr[F (x1, . . . , xn) = 0] ≤
2λ

′ d

p
.

Proof. We prove the result by induction. When n = 1, the univariate polynomial
F has at most d roots. Since H∞(P1) ≥ log p − λ′, we have Pr[F (x1) = 0] ≤
d 2−(log p−λ′) = d

p 2
λ′

.
Let us now prove the result for the n-variables case assuming the result for

the (n− 1)-variables case. On writing F as a polynomial in X1 with coefficients
in Zp[X2, . . . , Xn], let i (i ≥ 1) be the degree of X1 in the leading term and
F ′ ∈ Zp[X2, . . . , Xn] be the leading coefficient. The probability

Pr[F (x1, . . . , xn) = 0] ≤ Pr[F (x1, . . . , xn) = 0 |F ′(x2, . . . , xn) �= 0]

+ Pr[F ′(x2, . . . , xn) = 0].

F ′ is now a non-zero polynomial, of degree at most d − i, in only n − 1 vari-
ables. By induction hypothesis we have Pr[F ′(x2, . . . , xn) = 0] ≤ d−i

p 2λ
′
. When

F ′(x2, . . . , xn) �= 0, we have Pr[F (x1, . . . , xn) = 0] ≤ i
p 2

λ′
because degree of F

in X1 is i (i ≥ 1) and the distributions Pi (i = 1, . . . , n) are independent. Hence
Pr[F (x1, . . . , xn) = 0] ≤ d

p 2
λ′

. Note that the parameter n does not appear in
the above bound. ��

Corollary 1. If λ′ = (1 − ε) log p (for constant ε > 0) in Lemma 2, then
Pr[F (x1, . . . , xn) = 0] is negligible (in log p).
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3 Basic Signature Scheme

We now describe a signature scheme that is obtained from the Boneh-Boyen
identity based encryption scheme (BB-IBE) [2]. This scheme is not yet known to
be existentially unforgeable under adaptive chosen-message attacks (EUF-CMA)
in the standard model. However, we are able to prove that the BB-signature
scheme is EUF-CMA secure in the GBG model.

Let ΠBB = (KeyGenBB, SignBB,VerifyBB) be a signature scheme on the message
space Zp defined as follows:

1. KeyGenBB(κ): Compute PP := (G,GT , p, e, g) ← BGen(κ). Choose random
x, x0, x1 ← Zp. Set X := gx, X0 := gx0 , X1 := gx1 and XT := e(g,X) =
e(g, g)x. The public key is pk := (PP, X0, X1, XT ) and the secret key is
sk := X .

2. SignBB(sk,m): Choose a random t ← Zp. Set σ := (sk · (X0 · Xm
1 )t, gt).

Output the signature σ.
3. VerifyBB(pk,m, σ): Let σ = (σ1, σ2) ∈ G2. Output the bit b = 1 (valid) if

XT � e(σ2, X0 ·Xm
1 ) = e(σ1, g). Otherwise output b = 0 (invalid).

Theorem 1. The signature scheme ΠBB is EUF-CMA secure in the generic
bilinear group model.

Proof. Let A be a q-query adversary that can break the security of ΠBB. By a
q-query adversary we mean that A can make totally at most q group oracle and
signing oracle queries. Let qO be the total number of calls to the group oracles
O, OT and Oe, and qΩ correspond to the number of calls to the signing oracle.
We have qO + qΩ ≤ q. As is typical for proofs in the generic group model, we
bound the advantage of A against ΠBB by the success probability of A in the
following game G (see [23,19,3]). A plays the game G with an algorithm B.

Game G : Let X , X0, X1, {Ti : 1 ≤ i ≤ qΩ}, {Ui : 1 ≤ i ≤ qg, 0 ≤
qg ≤ 2(qO + 1)} and {Vi : 1 ≤ i ≤ qgT , 0 ≤ qgT ≤ 2qO} be indeterminates,
and {mi : 1 ≤ i ≤ qΩ} be elements of Zp chosen by A. Intuitively, these
indeterminates correspond to randomly chosen group elements in ΠBB, or more
precisely their discrete logarithms. The indeterminates X , X0, X1 correspond to
the quantities x, x0, x1, respectively. Note that A might query the group oracles
with representations (bit-strings) not previously obtained from the group oracles.
In order to accommodate this case we introduce the indeterminates Ui, Vi. The
Ui (1 ≤ i ≤ qg) correspond to the elements of G, whereas Vi (1 ≤ i ≤ qgT )
correspond to the elements of GT . We denote the lists {Ti : 1 ≤ i ≤ qΩ},
{Ui : 1 ≤ i ≤ qg} and {Vi : 1 ≤ i ≤ qgT } by {T }, {U} and {V }, respectively.
B maintains two lists of pairs

L = {(F1,i , ξ1,i) : 1 ≤ i ≤ τ1}, (3)
LT = {(FT,i , ξT,i) : 1 ≤ i ≤ τT }, (4)
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such that, at step τ (0 ≤ τ ≤ qO) in the game,

τ1 + τT = τ + 2qΩ + qg + qgT + 4. (5)

The entries F1,i ∈ Zp[X,X0, X1, {U}, {T }], FT,i ∈ Zp[X,X0, X1, {U}, {V }, {T }]
are multivariate polynomials over Zp, whereas ξ1,i, ξT,i are bit-strings in the
encoding sets Ξ (of G) and ΞT (of GT ), respectively. Intuitively, the polynomials
in lists L and LT correspond to elements of G and GT , respectively, that A will
ever be able to compute or guess. In order to simplify the description, we view
Zp[X,X0, X1, {U}, {T }] as a subring of Zp[X,X0, X1, {U}, {V }, {T }].

Initially, τ = 0, τ1 = 2qΩ + qg + 3, τT = qgT + 1,

L = { (1, ξ1,1), (X0, ξ1,2), (X1, ξ1,3), {(Ui, ξ1,i+3) : 1 ≤ i ≤ qg},
{(X + (X0 +miX1)Ti, ξ1,2i+qg+2), (Ti, ξ1,2i+qg+3) : 1 ≤ i ≤ qΩ}

}
,

LT = { X, {(Vi, ξT,i+1) : 1 ≤ i ≤ qgT } } .

The bit-strings ξ1,i, ξT,i are set to random distinct strings from Ξ and ΞT ,
respectively. We assume that there is some ordering (say, lexicographic ordering)
among the strings in the sets Ξ and ΞT , so that given a string ξ1,i or ξT,i, it is
possible to determine its index in the lists, if it exits.

The initial state of the two lists correspond to the group elements that A gets
as input as part of the public parameters and the signatures obtained by A on
the messages mi of its choice. As previously mentioned, the polynomials Ui, Vi

correspond to the group elements that A will guess in the actual interaction.
Since A can query the group oracles with at most two new (guessed) elements
and since it may also output at most two new elements from G as its forgery,
we have qg + qgT ≤ 2qO + 2. Hence (5) can be simplified as (assuming qΩ ≥ 6,
without loss of generality)

τ1 + τT ≤ qO + 2qΩ + 2qO + 2 + 4 ≤ 3(qO + qΩ) ≤ 3q. (6)

The game begins by B providing A with the initial τ1 strings ξ1,1, . . ., ξ1,τ1 from
L, and τT strings ξT,1, . . ., ξT,τT from LT .

Group Operation: The calls made by A to the group oracles O and OT are
modeled as follows. For group operations in G, A provides B with two operands
(bit-strings) ξ1,i, ξ1,j (1 ≤ i, j ≤ τ1) in L and also specifies whether to multiply or
divide them. B answers the query by first incrementing the counters τ1 := τ1+1
and τ := τ + 1, and provides A with the polynomial F1,τ1 := F1,i ± F1,j . If
F1,τ1 = F1,k for some k < τ1, then B sets ξ1,τ1 := ξ1,k. Otherwise, ξ1,τ1 is set to a
random string distinct from those already present in L. Also the pair (F1,τ1 , ξ1,τ1)
is appended to L. Note that the (total) degree of the polynomials F1,i in L
is at most two. Similarly, group operations in GT are answered, appropriately
updating the list LT and the counters τT and τ .

Pairing: For a pairing operation, A queries B with two operands ξ1,i, ξ1,j (1 ≤
i, j ≤ τ1) in L. B first increments τT := τT +1 and τ := τ+1, and then computes
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the polynomial FT,τT := F1,i ·F1,j . Again, if FT,τ1 = FT,k for some k < τT , then
B sets ξT,τT := ξT,k. Otherwise, ξT,τT is set to a random string distinct from
those already present in LT . Also the pair (FT,τT , ξT,τT ) is appended to LT . The
degree of the polynomials FT,i in LT is at most four.

When A terminates it outputs (m, (ξ1,α1 , ξ1,α2)) ∈ Zp × L× L (1 ≤ α1, α2 ≤
τ1). This corresponds to the “forgery” output by A in the actual interaction.
Let the polynomials corresponding to ξ1,α1 and ξ1,α2 in L be F1,α1 and F1,α2 ,
respectively. After A terminates, B computes the polynomial

F1,σ := X + F1,α2(X0 +mX1)− F1,α1 . (7)

Note that the degree of F1,σ is at most three. Next, B chooses random values x,
x0, x1, {u}, {v}, {t} ← Zp for the indeterminates X , X0, X1, {U}, {V }, {T },
respectively. Then it evaluates the polynomials in lists L and LT . A is said to
have won the game G if:

1. F1,i(x, x0, x1, {u}, {t}) = F1,j(x, x0, x1, {u}, {t}) in Zp, for some two polyno-
mials F1,i �= F1,j in L.

2. FT,i(x, x0, x1, {u}, {v}, {t}) = FT,j(x, x0, x1, {u}, {v}, {t}) in Zp, for some
two polynomials FT,i �= FT,j in LT .

3. F1,σ(x, x0, x1, {u}, {t}) = 0 in Zp, and m �= mi ∀i, i = 1, . . . , qΩ.

This completes the description of the game G.
We claim that the success probability of A in the actual EUF-CMA game is

bounded above by its success probability in the above game G. This is because
of the following reasons:

– The conditions 1 and 2 above ensure that A will get to see only distinct
group elements in the actual interaction. In other words, A is unable to
cause collisions among group elements. As long as these two conditions are
not satisfied, then the view of A is identical in the game G and the actual
interaction. Hence if A is unable to provoke collisions, then adaptive strate-
gies are no more powerful than non-adaptive ones (for more details, we refer
to [19, Lemma 2 on pp. 12], also [23]). This observation allows us to choose
group elements and their representations independently of the strategy of A.
Hence A specified the messages mi at the beginning of the game G and also
obtained the corresponding signatures. For the same reason, it also decided
at the beginning itself on the representations it would guess. Note that the
assumption that A would a priori decide the representations it would guess
is only to simplify the description of the proof and it is not an inherent
limitation.

– The condition 3 above ensures that the pair (ξ1,α1 , ξ1,α2) is a valid forgery
on a distinct message m.

We now compute the success probability of A in the game G. The τ1 polynomials
F1,i in L have degree at most two. Note that F1,i �= F1,j ⇔ F1,i − F1,j �= 0 as
polynomials. From Lemma 2 (with λ′ = 0), the probability that two distinct
polynomials in L evaluate to the same value for randomly and independently
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chosen values for the indeterminates is at most 2
p . Summing up over at most(

τ1
2

)
distinct pairs (i, j), the probability that the condition 1 above holds is at

most
(
τ1
2

)
· 2p . Similarly, we have the probability that the condition 2 above holds

is at most
(
τ2
2

)
· 4p . The degree of the polynomial F1,σ in condition 3 is at most

three. In order to apply Lemma 2, we need to prove that Fσ is not identically
equal to the zero polynomial. We prove this fact in Lemma 3 below. Let PrforgeA,ΠBB

denote the advantage of the adversary A in computing a forgery against ΠBB.
Then, assuming Lemma 3, we obtain from (6)

PrforgeA,ΠBB
≤
(
τ1
2

)
· 2
p
+

(
τ2
2

)
· 4
p
+

3

p
≤ 2

p
(τ1 + τ2)

2 ≤ 18q2

p
. (8)

Hence if q = poly(log p), then PrforgeA,ΠBB
is negligible.

Lemma 3. The polynomial F1,σ ∈ Zp[X,X0, X1, {U}, {T }] is non-zero.

Proof. Any polynomial in L is obtained by either adding or subtracting two
polynomials previously existing in the list. Hence we can write F1,α1 and F1,α2

in terms of polynomials present in L when it was was initialized at step τ = 0
in the game G. Note that initially L also includes the representations guessed by
A, in addition to the inputs.

F1,α1 = c1 + c2X0 + c3X1 +
∑qg

i=1 c4,iUi +
∑qΩ

i=1 c5,iTi

+
∑qΩ

i=1 c6,i(X + (X0 +miX1)Ti), (9)

F1,α2 = d1 + d2X0 + d3X1 +
∑qg

i=1 d4,iUi +
∑qΩ

i=1 d5,iTi

+
∑qΩ

i=1 d6,i(X + (X0 +miX1)Ti), (10)

where cj , dj(j = 1, 2, 3), cj,i, dj,i(j = 4, 5, 6; 1 ≤ i ≤ qΩ) ∈ Zp are chosen by A.
We have two possible cases:

Case 1: c6,i = d6,i = 0 ∀i, 1 ≤ i ≤ qΩ.
In this case, both F1,α1 and F1,α2 do not contain the indeterminate X . Hence

the expression F1,α2(X0 + mX1) − F1,α1 in (7) is free of X . Therefore, in the
polynomial X + F1,α2(X0 +mX1)− F1,α1 , the coefficient of the term X is non-
zero. Hence F1,σ is non-zero.

Case 2: c6,k �= 0 or d6,k �= 0 for some k, where 1 ≤ k ≤ qΩ.
On substituting expressions from (9) and (10) into (7), we get that the coeffi-

cient of monomials X2
0Ti, X0Ti, X1Ti in F1,σ are d6,i, d5,i− c6,i, m d5,i−mic6,i,

respectively, for 1 ≤ i ≤ qΩ.
If d6,k �= 0, then the coefficient of X2

0Tk is non-zero, and hence F1,σ �= 0.
Else, c6,k �= 0. We again have two cases: If d5,k �= c6,k, then the coefficient of
X0Tk is non-zero. Or else, if d5,k = c6,k, then the coefficient of X1Tk is non-zero,
since m �= mi ∀i, i = 1, . . . , qΩ. Hence in all cases we have F1,σ to be a non-zero
polynomial. ��
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4 A Leakage-Resilient Signature Scheme

As previously mentioned in Section 2.2, any cryptographic scheme that does not
maintain a stateful secret state is insecure against continual leakage. So is the
case with the signature scheme ΠBB. We now describe a leakage-resilient version
Π∗

BB of ΠBB. We follow the techniques of [15] to adapt ΠBB to a leakage setting.
The basic idea is to store the secret key X = gx in two different parts of the
memory as (S0 := gl0 , S′

0 := gx−l0) for a randomly chosen l0 ← Zp. Accordingly,
the KeyGenBB step of ΠBB is modified to obtain the set-up stage KeyGen∗BB of
Π∗

BB. The signature generation is now carried out as a two step process Sign∗BB1
and Sign∗BB2. During the ith signature query, the two parts of the secret key
(Si−1, S

′
i−1) are refreshed to obtain (Si := Si−1 · gli , S′

i := S′
i−1 · g−li), where

li ← Zp. This is done in order to protect against continual leakage.

Let Π∗
BB = (KeyGen∗BB, Sign

∗
BB1, Sign

∗
BB2,Verify

∗
BB) be a stateful signature

scheme on the message space Zp defined as follows:

1. KeyGen∗BB(κ): Compute PP := (G,GT , p, e, g) ← BGen(κ). Choose random
x, x0, x1, l0 ← Zp. Set X := gx, X0 := gx0 , X1 := gx1 and XT := e(g,X) =
e(g, g)x. The public key is pk := (PP, X0, X1, XT ) and the secret key is
sk∗ := (S0 := gl0 , S′

0 := gx−l0 = X · g−l0) ∈ G2.
2. Sign∗BB1(Si−1,mi): Choose random ti, li ← Zp. Set Si := Si−1 · gli , σ′

1,i :=
Si · (X0 ·Xmi

1 )ti , and σ′
2,i := gti .

3. Sign∗BB2(S
′
i−1, (σ

′
1,i, σ

′
2,i, li)): Set S′

i := S′
i−1 · g−li and σi := (S′

i · σ′
1,i, σ

′
2,i).

Output the signature σi.
4. Verify∗BB(pk,m, σ): Let σ = (σ1, σ2) ∈ G2. Output the bit b = 1 (valid) if

XT � e(σ2, X0 ·Xm
1 ) = e(σ1, g). Otherwise output b = 0 (invalid).

In steps 2 and 3 above, the index i keeps a count of the number of invocations
(rounds) of the signing algorithm. For every i ≥ 1, let Yi :=

∑i
j=0 lj . It is easy

to check that Si · S′
i = gYi · gx−Yi = X . We sometimes even refer to X as the

secret key.
Note that Sign∗BB1 requires four exponentiations and Sign∗BB2 requires one. The

total number of exponentiations needed for every signature invocation can be
reduced from five to four if Sign∗BB1 also passes on gli to Sign∗BB2. Hence only
one extra exponentiation is needed when compared with the SignBB step of ΠBB,
which requires three.

For the sake of clarity, we would like to compare the various notations used
in the signature scheme Π∗

BB above with those in (1) corresponding to a generic
stateful signature scheme Π∗. The quantities ri and wi in (1) correspond to
(li, ti) and (σ′

1,i, σ
′
2,i, li) of Π∗

BB, respectively. The quantities Si, S′
i and mi de-

note the same things in both the cases. However, since the algorithm Sign∗BB2
of Π∗

BB does not generate any randomness, there is no analogue in Π∗
BB for

r′i of (1). Accordingly, the leakage functions specified by an adversary to the
signing oracle Ωleak

(Si−1,S′
i−1)

(mi, fi, hi) would be of the form f i(Si−1, (li, ti)) and
hi(S

′
i−1, (σ

′
1,i, σ

′
2,i, li)).
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First we show that Π∗
BB is secure in the GBG model when an adversary is

not allowed to obtain leakage. The following lemma is a trivial consequence of
the fact that the input/output behaviour of Π∗

BB and ΠBB are identical (c.f.
Theorem 1).

Lemma 4. The signature scheme Π∗
BB is EUF-CMA secure in the generic bi-

linear group model.

The following theorem establishes the fact that the signature scheme Π∗
BB is

resilient to (continual) leakage attacks in the GBG model if λ  log p
2 , where λ

is the leakage parameter.

Theorem 2. The signature scheme Π∗
BB is secure with leakage w.r.t. Definition

2 in the generic bilinear group model. The advantage of a q-query adversary
who gets at most λ bits of leakage per each invocation of Sign∗BB1 or Sign∗BB2 is
O
(

q2

p 22λ
)
.

Proof. Let A be a q-query adversary that can break the security of Π∗
BB. By a

q-query adversary A we mean that A can make totally at most q group oracle
and signing oracle queries. Let qO be the total number of calls to the group
oracles O, OT and Oe, and qΩ correspond to the number of calls to the signing
oracle. We have qO + qΩ ≤ q. In the count qO, even the group oracle queries by
leakage functions f i, hi specified by A are also included.

We first informally sketch the main ideas of the proof and then formalize these
ideas. Let us try to see why the proof of security of Π∗

BB in the absence of any
leakage (i.e. proof of Theorem 1) would not carry over as it is in the presence
of leakage. In the non-leakage setting, while determining the probability of col-
lision among distinct polynomials in conditions 1-3 on page 58, we substituted
for each indeterminate an independent value chosen from an uniform distribu-
tion over Zp. But, when A has access to leakage functions f i(Si−1, (li, ti)) and
hi(S

′
i−1, (σ

′
1,i, σ

′
2,i, li)), then from its point of view the parameters ti (1 ≤ i ≤ qΩ)

are no longer uniformly distributed (though they are still independent). With
some partial information about ti, A can now cause collisions among polynomi-
als with increased probability. Since each ti is chosen independently and it can
be leaked by only fi, hence at most λ bits of ti can be leaked. Apart from the
values ti, the only other “useful” information that leakage functions can provide
is about the secret key X = gx. This is because the parameters li themselves
alone do not help A to output forgery since the signatures generated are in-
dependent of these randomly chosen values. Instead, A can very much use the
leakages of li to compute, and eventually leak, the secret key X . Note that the
leakage functions do not provide any additional information on the values x, x0

or x1.
We first bound the probability of the event that the secret key X is computed

by some leakage function f i or hi. As long as this event has not occurred, then
no bits of the secret key is leaked and the “only” additional information A has
is about the values ti. Clearly, the probability of this event depends on the
leakage parameter λ. For instance, if the amount of leakage per invocation is not
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bounded, then during the first signature query itself, the adversary can leak the
initial two shares of the secret key S0 = gl0 and S′

0 = X · g−l0 to recompute X .
Finally, we determine the advantage of A conditioned on the event of the secret
key X not being computed by any of the leakage functions.

Formally, we define E to be the event of computing (or guessing) the secret
key X = gx by any of the leakage functions f i or hi (1 ≤ i ≤ qΩ). Let E
denote the complement of the event E, Forgery denote the event of A forging a
signature on a new message, and PrforgeA,Π∗

BB
= Pr[Forgery] denote the advantage of

A in computing a forgery against Π∗
BB. We have

PrforgeA,Π∗
BB

= Pr[Forgery|E]Pr[E] + Pr[Forgery|E]Pr[E].

Since Pr[Forgery|E], Pr[E] ≤ 1, we obtain

PrforgeA,Π∗
BB
≤ Pr[E] + Pr[Forgery|E]. (11)

We first bound the probability of the event E.

Lemma 5. Pr[E] ≤ O
(

q2

p 22λ
)

.

Proof. Let the adversary A play the following game G′. Since the game G′ is
similar in nature to the game G in the proof of Theorem 1, we only briefly
describe G′. We use the notations introduced in the game G. Let {L} denote the
list of indeterminates {Li : 1 ≤ i ≤ qΩ} that correspond to the values li in Π∗

BB.

Game G′: For every leakage function f i(Si−1, (li, ti)) and hi(S
′
i−1, (σ

′
1,i, σ

′
2,i, li)),

A builds lists Lfi and Lhi , respectively. These lists contain polynomial-bit string
pairs. The polynomials are from Zp[X,X0, X1, {U}, {T }, {L}] and the bit-strings
are from the encoding set Ξ of the group G. Intuitively, the polynomials in lists
Lfi and Lhi correspond to the elements of group G that can be computed by fi
and hi, respectively. Every polynomial in Lfi is of the form

c1,iLi + c2,i

i−1∑
j=0

Lj + c3,iDi, (12)

where c1,i, c2,i, c3,i ∈ Zp are chosen by A and Di ∈ Zp[X,X0, X1, {U}, {T }] is
in the list L (c.f. (3)). Every polynomial in Lhi is of the form

d1,iLi+d2,i

⎛⎝X −
i−1∑
j=0

Lj

⎞⎠+d3,i

⎛⎝⎛⎝ i∑
j=0

Lj

⎞⎠+ (X0 +miX1)Ti

⎞⎠+d4,iWi, (13)

where d1,i, d2,i, d3,i, d4,i, mi ∈ Zp are also chosen by A and Wi ∈ Zp[X,
X0, X1, {U}, {T }] is in the list L.

When A terminates it outputs a polynomial F from the list Lfi or Lhi , for
some i. Intuitively, the polynomial F output by A corresponds to its guess of
the secret key X . A is said to have won the game G′ if
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1. There is a collision in any of the lists Lfi and Lhi , for some i (1 ≤ i ≤ qΩ).
2. F −X = 0 in Zp.

Note that the polynomials are now evaluated with values chosen from indepen-
dent distributions with min-entropy log p−2λ. The reason for this will be shortly
explained. This completes the description of the game G′.

Technically speaking, A must also maintain lists LfiT and Lhi

T (1 ≤ i ≤ qΩ)
that correspond to elements of the group GT that can be computed by fi and
hi. To simplify the discussion, we only describe collisions in the lists Lfi and
Lhi . Similar arguments apply for the lists LfiT and Lhi

T . Since we compute Pr[E]
only up to a constant factor, the additional advantage A obtains from collisions
in LfiT and Lhi

T is implicitly included. However, working on the lines of the proof
of Theorem 1, it is relatively straightforward to completely formalize the present
discussion.

For similar reasons as given in the proof of Theorem 1, we have Pr[E] is
bounded above by the success probability of A in the above game G′. We partic-
ularly like to note the following. As observed in [1, pp. 691] and the references
therein, even in the leakage setting adaptive strategies are no more powerful
than non-adaptive ones.

Before computing the success probability of A, we first show that F −X is
a non-zero polynomial. From Lemma 4 and Theorem 1, we know that Π∗

BB is
secure without leakage. Hence the polynomial X (that corresponds to the secret
key) cannot appear in the list L, because this would otherwise imply that the
secret key can be computed without access to leakage functions. A formal proof
for this fact can be easily obtained on the lines of the proof of Lemma 3. Hence
even when c1,i = c2,i = 0 in (12), the lists Lfi cannot contain the polynomial
X . If c1,i �= 0 or c2,i �= 0, then the polynomial in (12) will contain either Li or
Li−1, or both. Hence the polynomial X cannot appear in any of the lists Lfi . In
a similar way it can be seen that the lists Lhi do not contain X . Hence F −X
is a non-zero polynomial of degree at most two.

Let us now determine the probability that the condition 1 above holds, i.e. the
probability of collisions among distinct polynomials in any of the lists Lfi and
Lhi . In order to compute the probability, we evaluate the polynomials in (12)
and (13) by choosing values from Zp according to (independent) distributions
with min-entropy at least log p − 2λ. This is because A can obtain at most 2λ
bits of leakage about li (i = 0, . . . , qΩ), and at most λ bits of ti (i = 1, . . . , qΩ).
From Lemma 1, the values li, ti have min-entropy at least log p − 2λ in the
view of A. The total length of the lists Lfi , Lhi is at most O(qΩ + qO) = O(q).
Hence there can be at most O(q2) pairs of distinct polynomials (of degree at
most two) evaluating to the same value. From Lemma 2 (with λ′ = 2λ), we
obtain Pr[E] ≤ O

(
q2

p 2
2λ
)
. Since F −X is a non-zero polynomial of degree at

most two, the probability that F − X evaluates to zero is at most 2
p2

2λ. This
probability is also implicitly included in the above bound. ��

We now determine the probability Pr[Forgery |E] in (11).
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Lemma 6. Pr[Forgery |E] ≤ 18q2

p
2λ.

Proof. Given that the event E has not occurred, the only meaningful leakage
A can now obtain is that of ti (i = 1, . . . , qΩ). Since at most λ bits of ti can
leak (only by fi), from the view point of A the values ti have min-entropy at
least log p− λ. From Lemma 2 (with λ′ = λ), the probability of collision among
distinct polynomials in conditions 1-3 on page 58 is now increased by a factor of
2λ. Hence, from (8), we obtain Pr[Forgery |E] ≤ 18q2

p 2λ. ��

From (11) and Lemmas 5 and 6, we have PrforgeA,Π∗
BB
≤ O

(
q2

p
22λ

)
. This completes

the proof of Theorem 2. ��

Acknowledgements. We like to thank Jean-Sébastien Coron for his valuable
comments on an early draft of this paper.

References

1. Aggarwal, D., Maurer, U.: The Leakage-Resilience Limit of a Computational Prob-
lem Is Equal to Its Unpredictability Entropy. In: Lee, D.H., Wang, X. (eds.) ASI-
ACRYPT 2011. LNCS, vol. 7073, pp. 686–701. Springer, Heidelberg (2011)

2. Boneh, D., Boyen, X.: Efficient Selective-ID Secure Identity-Based Encryption
Without Random Oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

3. Boneh, D., Boyen, X.: Short signatures without random oracles and the sdh as-
sumption in bilinear groups. J. Cryptology 21(2), 149–177 (2008)

4. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical Identity Based Encryption with Con-
stant Size Ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 440–456. Springer, Heidelberg (2005)

5. Boyle, E., Segev, G., Wichs, D.: Fully Leakage-Resilient Signatures. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 89–108. Springer, Heidelberg
(2011)

6. Brakerski, Z., Kalai, Y.T., Katz, J., Vaikuntanathan, V.: Overcoming the hole
in the bucket: Public-key cryptography resilient to continual memory leakage. In:
FOCS, pp. 501–510. IEEE Computer Society (2010)

7. Coron, J.-S.: Resistance against Differential Power Analysis for Elliptic Curve
Cryptosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717,
pp. 292–302. Springer, Heidelberg (1999)

8. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Efficient Public-Key Cryp-
tography in the Presence of Key Leakage. In: Abe, M. (ed.) ASIACRYPT 2010.
LNCS, vol. 6477, pp. 613–631. Springer, Heidelberg (2010)

9. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate
strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139
(2008)

10. Dziembowski, S., Faust, S.: Leakage-Resilient Cryptography from the Inner-
Product Extractor. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS,
vol. 7073, pp. 702–721. Springer, Heidelberg (2011)



A Practical Leakage-Resilient Signature Scheme 65

11. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: FOCS,
pp. 293–302. IEEE Computer Society (2008)

12. Faust, S., Kiltz, E., Pietrzak, K., Rothblum, G.N.: Leakage-Resilient Signatures. In:
Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 343–360. Springer, Heidelberg
(2010)

13. Ishai, Y., Sahai, A., Wagner, D.: Private Circuits: Securing Hardware against Prob-
ing Attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003)

14. Katz, J., Vaikuntanathan, V.: Signature Schemes with Bounded Leakage Resilience.
In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 703–720. Springer,
Heidelberg (2009)

15. Kiltz, E., Pietrzak, K.: Leakage Resilient ElGamal Encryption. In: Abe, M. (ed.)
ASIACRYPT 2010. LNCS, vol. 6477, pp. 595–612. Springer, Heidelberg (2010)

16. Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109,
pp. 104–113. Springer, Heidelberg (1996)

17. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

18. Malkin, T., Teranishi, I., Vahlis, Y., Yung, M.: Signatures Resilient to Contin-
ual Leakage on Memory and Computation. In: Ishai, Y. (ed.) TCC 2011. LNCS,
vol. 6597, pp. 89–106. Springer, Heidelberg (2011)

19. Maurer, U.M.: Abstract Models of Computation in Cryptography. In: Smart, N.P.
(ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 1–12. Springer, Hei-
delberg (2005)

20. Micali, S., Reyzin, L.: Physically Observable Cryptography. In: Naor, M. (ed.) TCC
2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg (2004)

21. Pietrzak, K.: A Leakage-Resilient Mode of Operation. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 462–482. Springer, Heidelberg (2009)

22. Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identi-
ties. J. ACM 27(4), 701–717 (1980)

23. Shoup, V.: Lower Bounds for Discrete Logarithms and Related Problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997)

24. Zippel, R.: Probabilistic Algorithms for Sparse Polynomials. In: Ng, K.W. (ed.)
EUROSAM 1979. LNCS, vol. 72, pp. 216–226. Springer, Heidelberg (1979)



Forward Secure Signatures on Smart Cards�

Andreas Hülsing, Christoph Busold, and Johannes Buchmann

Cryptography and Computeralgebra
Department of Computer Science

TU Darmstadt, Germany
{huelsing,buchmann}@cdc.informatik.tu-darmstadt.de,

christoph.busold@cased.de

Abstract. We introduce the forward secure signature scheme XMSS+

and present an implementation for smart cards. It is based on the hash-
based signature scheme XMSS. In contrast to the only previous imple-
mentation of a hash-based signature scheme on smart cards by Rohde et
al., we solve the problem of on-card key generation. Compared to XMSS,
we reduce the key generation time from O(n) to O(

√
n), where n is the

number of signatures that can be created with one key pair. To the best
of our knowledge this is the first implementation of a forward secure sig-
nature scheme and the first full implementation of a hash-based signature
scheme on smart cards. The resulting runtimes are comparable to those
of RSA and ECDSA on the same device. This shows the practicality of
forward secure signature schemes, even on constrained devices.

Keywords: forward secure signatures, smart cards, implementation,
hash-based signatures.

1 Introduction

In 1997 Anderson introduced the idea of forward secure signature schemes (FSS)
[3]. The idea behind FSS is the following: Even in the case of a key compromise,
all signatures issued before the compromise should remain valid. This is an im-
portant property for all use cases where signatures have to stay valid for more
than a short time period, including use cases like document signing or certifi-
cates. If for example a contract is signed, it is important that the signature stays
valid for at least as long as the contract has some relevance. The solutions used
today require the use of time stamps [13, 14]. This introduces the requirement
for a trusted third party and the overhead of requesting a time stamp for each
signature. FSS in turn already provide this property and thereby abandon the
need for time stamps. To fulfill the forward security property, a signature scheme
has to be key evolving, meaning, the private key changes over time. The lifetime
of a key pair is divided into time periods. While the public key stays the same,
the secret key is updated at the end of each time period. So far, it was shown
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that FSS can be efficiently implemented on PCs [6, 11]. As for common signa-
ture schemes, to be usable in practice, FSS must be efficiently implementable
on smart cards. This is even more important in the case of FSS, as it has to be
ensured that the secret key is updated and the former secret key is deleted. So
far there exists no implementation of FSS on smart cards.

A candidate FSS is the hash-based FSS XMSS [6] because of its strong security
guarantees (see Section 2). Moreover, XMSS benefits from hardware acceleration
for block ciphers, which is provided by many smart cards. A severe problem of
most FSS, including XMSS, is the costly key generation. XMSS key generation
requires time linear in the number of signatures that can be generated using the
same key pair. While this might be tolerable on PCs, it makes key generation
on smart cards impractical. The only existing implementation of a hash-based
signature scheme on smart cards [22] does not include on-card key generation
for this reason. But on-card key generation is necessary for most use cases that
benefit from the forward security property. I.e. to guarantee non-repudiation in
the case of document signing, a signature key pair has to be generated on the
smart card and must never leave this secure environment.

Our contribution. In this paper we introduce XMSS+ which is based on XMSS
and present an implementation on an Infineon SLE78 smart card. While the
strong security guarantees of XMSS are preserved, XMSS+ key generation re-
quires only time O(

√
n), for a key pair, that can be used to sign n messages.

Thereby we make on-card key generation practical. This means we present the
first implementation of a forward-secure signature scheme on a smart card. At
the same time, it is the first full (including key generation) smart card implemen-
tation of a hash-based signature scheme. To achieve this, we use the tree chaining
technique [9] and improve the idea of distributed signature generation [7]. To im-
prove the performance, we implemented all used (hash) function families based
on AES and exploit the hardware acceleration provided by the card. Using our
implementation, the generation of a key pair, that can be used to generate 220

signatures, can be done in 22.2s. For such a key pair, signature generation took
less than 106ms, verification took no more than 44ms. These timings are of the
same order of magnitude than the runtimes for RSA and ECDSA on the same
card using the asymmetric crypto co-processor.

Organization. We start with a description of XMSS in Section 2. XMSS+, that
enables key generation, is presented and analyzed in Section 3. We describe our
implementation and present parameters and runtimes in Section 4. Finally, we
give a conclusion in Section 5.

2 The eXtended Merkle Signature Scheme XMSS

In this section we describe the FSS XMSS [6]. While there exist many proposals
for FSS, including [1,2,4,10,15–17,19,23], XMSS is the only FSS where the for-
ward security is based on minimal security assumptions. XMSS uses a function
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family F and a hash function family H. It is provably forward secure in the stan-
dard model, if F is pseudorandom and H second preimage resistant. As current
research suggests that these properties are not threatened by the existence of
quantum computers, XMSS+ is assumed to be resistant against quantum com-
puter based attacks. We first give a high level overview. XMSS is build on a
one-time signature scheme (OTS), a signature scheme where a key pair can only
be used once. To obtain a many-time signature scheme, many OTS key pairs
are used and their public keys are authenticated using a Merkle Tree. A Merkle
Tree is a binary hash tree. The leaves of the tree are the hash values of the OTS
public keys. The root of the Merkle Tree is the XMSS public key. To overcome
the need of storing all OTS key pairs, they are generated using a pseudorandom
generator (PRG). We start the detailed description with the parameters used
by XMSS, afterwards we give a description of the building blocks, namely, the
Winternitz-OTS, the XMSS Tree, the leaf construction, and the PRG. Then we
describe the algorithms for key generation, signature generation and verifica-

tion. In the following we write log for log2 and x
$←− X if the value x is chosen

uniformly at random from the set X .

Parameters. For security parameter n ∈ N, XMSS uses a pseudorandom func-
tion family Fn = {FK : {0, 1}n → {0, 1}n|K ∈ {0, 1}n}, and a second preim-
age resistant hash function H, chosen uniformly at random from the family
Hn = {HK : {0, 1}2n → {0, 1}n|K ∈ {0, 1}n}. It is parameterized by the mes-
sage length m ∈ N, the tree height h ∈ N, the BDS parameter k ∈ N, k < h, k−h
is even, and the Winternitz parameter w ∈ N, w > 1. XMSS can be used to sign
2h message digests of m bits. The Winternitz parameter w allows for a trade off
between signature generation time and signature size. The BDS parameter k al-
lows for a time-memory trade-off for the signature generation. Those parameters
are publicly known.

Winternitz OTS. XMSS uses the Winternitz-OTS (W-OTS) from [5]. W-OTS
uses the function family Fn and a value X ∈ {0, 1}n that is chosen during
XMSS key generation. For K,X ∈ {0, 1}n, e ∈ N, and FK ∈ Fn we define
F

e
K(X) as follows. We set F0

K(X) = K and for e > 0 we define K ′ = F
e−1
K (X)

and F
e
K(X) = FK′(X). Also, define

�1 =

⌈
m

log(w)

⌉
, �2 =

⌊
log(�1(w − 1))

log(w)

⌋
+ 1, � = �1 + �2.

The secret signature key of W-OTS consists of � n-bit strings ski, 1 ≤ i ≤ �.
The generation of the ski will be explained later. The public verification key is
computed as

pk = (pk1, . . . , pk�) = (Fw−1
sk1

(X), . . . ,Fw−1
sk�

(X)),

with F
w−1 as defined above. W-OTS signs messages of binary length m. They

are processed in base w representation. They are of the form M = (M1 . . .M�1),
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Mi ∈ {0, . . . , w− 1}. The checksum C =
∑�1

i=1(w− 1−Mi) in base w represen-
tation is appended to M . It is of length �2. The result is a sequence of � base w
numbers, denoted by (T1, . . . , T�). The signature of M is

σ = (σ1, . . . , σ�) = (FT1

sk1
(X), . . . ,FT�

sk�
(X)).

It is verified by constructing (T1 . . . , T�) and checking

(Fw−1−T1
σ1

(X), . . . ,Fw−1−T�
σ�

(X))
?
= (pk1, . . . , pk�).

The sizes of signature, public, and secret key are �n bits. For more detailed
information see [5].

XMSS Tree. The XMSS tree utilizes the hash function H. The XMSS tree is a
binary tree of height h. It has h+1 levels. The leaves are on level 0. The root is
on level h. The nodes on level j, 0 ≤ j ≤ h, are denoted by Ni,j , 0 ≤ i < 2h−j .
To construct the tree, h bit masks Bj ∈ {0, 1}2n, 0 < j ≤ h, are used. Ni,j , for
0 < j ≤ h, is computed as

Ni,j = H((N2i,j−1||N2i+1,j−1)⊕Bj).

Leaf Construction. The leaves of the XMSS tree are the hash values of the
W-OTS public keys. To avoid the need of a collision resistant hash function,
another XMSS tree is used to construct the leaves. It is called L-tree. The � leaves
of an L-tree are the � bit strings (pk0, . . . , pk�) from the corresponding verification
key. As � is not necessarily a power of 2, there might not be sufficiently many
leaves to get a complete binary tree. Therefore the construction is modified. A
left node that has no right sibling is lifted to a higher level of the L-tree until it
becomes the right sibling of another node. In this construction, the same hash
function as above but new bitmasks are used. The bitmasks are the same for all
L-trees. As L-trees have height �log ��, additional �log �� bitmasks are required.

Pseudorandom Generator. The W-OTS key pairs are generated using two
pseudorandom generators (PRG). The stateful forward secure PRG FsGen :
{0, 1}n → {0, 1}n × {0, 1}n is used to generate one seed value per W-OTS key-
pair, using the function family Fn. Then the seed is expanded to the � W-OTS
secret key bit strings using Fn. FsGen starts from a uniformly random state

S0
$←− {0, 1}n. On input of a state Si, FsGen generates a new state Si+1 and

a pseudorandom output Ri:

FsGen(Si) = (Si+1||Ri) = (FSi(0)||FSi(1)).

The output Ri is used to generate the ith W-OTS secret key (sk1, . . . , sk�):

skj = FRi(j − 1), 1 ≤ j ≤ �.
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Key Generation. The key generation algorithm takes as input all of the above
parameters. Then the whole XMSS Tree has to be constructed to obtain the
value of the root node. We now detail this procedure. First, the bitmasks
(B1, . . . , Bh+�log �	) and the value X are chosen uniformly at random. Then,
the initial state of FsGen, S0 is chosen uniformly at random and a copy of it is
stored as part of the secret key SK. The tree is constructed using the TreeHash

algorithm, listed as Algorithm 1 below. Starting with an empty stack Stack and
S0, all 2

h leaves are successively generated and used as input to the TreeHash

algorithm to update Stack. This is done by evaluating FsGen on the current
state Si, obtaining Ri and replacing Si with Si+1. Then Ri is used to compute
the W-OTS public key, which in turn is used to compute the corresponding leaf
using an L-tree. The leaf and the current Stack are then used as input for the
TreeHash algorithm to obtain an updated Stack. The W-OTS key pair and Ri

are deleted. After all 2h leaves were processed by TreeHash, the only value on
Stack is the root of the tree, which is stored in the public key PK.

Algorithm 1. TreeHash

Input: Stack Stack, node N1

Output: Updated stack Stack

1. While top node on Stack has same height as N1 do
(a) t ← N1.height() + 1
(b) N1 ← H ((Stack.pop()||N1)⊕Bt)

2. Stack.push(N1)
3. Return Stack

The XMSS signature generation algorithm uses as subroutine the BDS al-
gorithm [8] that is explained there. The BDS algorithm uses a state StateBDS

which is initialized during the above computation of the root. For details see [8].
The initial XMSS secret key SK = (S0, StateBDS) contains the initial states of
FsGen and the BDS algorithm. The XMSS public key consists of the bitmasks
(B1, . . . , Bh+�log �	), the value X , and the root of the tree. As shown in [6], key

generation requires 2h(�+ 1) evaluations of H and 2h(2 + �(w + 1)) evaluations
of functions from Fn.

Signature Generation. The signature generation algorithm takes as input a mes-
sage M , the secret key SK and the index i. It outputs an updated secret key SK′

and a signature Σ on the message M . To sign the ith message (we start counting
from 0), the ith W-OTS key pair is used. The signature Σ = (i, σ,Auth) con-
tains the index i, the W-OTS signature σ, and the authentication path for the
leaf N0,i. The authentication path is the sequence Auth = (Auth0, . . . ,Authh−1)
of the siblings of all nodes on the path from N0,i to the root. Figure 1 shows the
authentication path for leaf i. We now explain how a signature is generated. On
input of the ith message, SK contains the ith state Si of FsGen. So, FsGen is
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evaluated on Si to obtain Si+1, which becomes the updated secret key, and Ri.
Ri is used to generate the ith W-OTS secret key, which in turn is used to gener-
ate the one-time signature σ on M . Then the authentication path is computed
using the BDS tree traversal algorithm from [8] which we explain next.

j = h

j = 0
i

Fig. 1. The authentication path for leaf i

The BDS algorithm uses TreeHash to compute the nodes of the authenti-
cation path. The computation of a node on level i takes 2i leaf computations
and 2i evaluations of TreeHash. If all this computation is done when the au-
thentication path is needed, the computation of an authentication path requires
2h − 1 leaf computations and evaluations of TreeHash in the worst case. The
BDS algorithm reduces the worst case signing time to (h − k)/2 leaf compu-
tations and evaluations of TreeHash. More specifically, the BDS algorithm
does three things. First, it uses the fact that a node that is a left child can be
computed from values that occurred in an authentication path before, spending
only one evaluation of H. Second, it stores the right nodes from the top k levels
of the tree during key generation. So these nodes, that are most expensive to
compute, do not have to be computed again during signature generation. Third,
it distributes the computations for right child nodes among previous signature
generations. This is done, using one instance of TreeHash per tree level. The
computation of the next right node on a level starts, when the last computed
right node becomes part of the authentication path. The BDS algorithm uses a
state StateBDS of 2(h−k) states of FsGen and at most

(
3h+

⌊
h
2

⌋
− 3k − 2 + 2k

)
tree nodes. StateBDS is initialized during key generation. After initialization, it
contains the right nodes on the k top levels, the first authentication path (for
N0,0) and the second right node on each level. To compute the authentication
paths, the BDS algorithm spends only (h− k)/2 leaf computations and evalua-
tions of TreeHash to update its state per signature. This update is done such
that at the end of the ith signature generation, StateBDS already contains the
authentication path for leaf i+ 1. For more details see [8].

Signature Verification. The signature verification algorithm takes as input a
signature Σ = (i, σ,Auth), the message M and the XMSS public key PK. To
verify the signature, the values (T0, . . . , T�) are computed as described in the
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W-OTS signature generation, usingM . Then the ith verification key is computed
using the formula

(pk1, . . . , pk�) = (Fw−1−T1
σ1

(X), . . . ,Fw−1−T�
σ�

(X)).

The corresponding leaf N0,i of the XMSS tree is constructed using an L-tree.
This leaf and the authentication path are used to compute the path (P0, . . . , Ph)
to the root of the XMSS tree, where P0 = N0,i and

Pj =

{
H((Pj−1||Authj−1)⊕Bj), if

⌊
i/2j

⌋
≡ 0 mod 2

H((Authj−1||Pj−1)⊕Bj), if
⌊
i/2j

⌋
≡ 1 mod 2

for 0 ≤ j ≤ h. If Ph is equal to the root of the XMSS tree given in the public
key, the signature is accepted. Otherwise, it is rejected.

3 XMSS+: On-Card Key Generation

In [22], a hash-based signature scheme similar to XMSS is implemented on smart
cards. But they did not implement on-card key generation, because of the heavy
computations required. In this section we introduce XMSS+, which allows for
fast on-card key generation. The techniques used are based on the tree chaining
technique introduced in [9] and distributed signature generation from [7]. The
basic idea is the following. To obtain an instance of XMSS+ that can be used to
make 2h signatures, we use two levels of XMSS key pairs with height h/2 instead
of one key pair with height h: One key pair on the upper level (U) of height h/2
is used to sign the roots of 2h/2 key pairs on the lower level (Ls) of height h/2.
The root of U becomes the public key and the Ls are used to sign the messages.
During key generation, U and the first L are generated. The generation of the
remaining Ls is distributed among signature generations. As a result, the time
to generate a key pair, that can be used to sign 2h messages, goes down from
O(2h) to O(2h/2).

A signature always contains the current index, the signature of the message
using the current L, and the signature of the root of L under U . To decrease the
worst case signing time, the authors of [7] propose to equally distribute the costs
for signing the roots of the Ls among the message signatures. For XMSS+ we
propose a new approach to distribute these costs. We use the observation that
the BDS algorithm does not always use all updates it receives. These unused
updates can be used to compute the signatures of the roots from the Ls. Thereby
we reduce the worst case signing time, again. We use the same bit masks and the
same X value for all trees. Thereby the public key size is reduced, as it contains
less bit masks. To generate the secret keys, we select a random initial state for
FsGen for each key pair, just in time. Now we describe the key generation,
signature generation and signature verification algorithms in detail.

Key generation. The XMSS+ key generation algorithm takes as inputs the se-
curity parameter n, the message length m, the hash function H, the function
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family F , and the overall height h, h is even. We set the internal tree height
h′ = h/2. In contrast to the last section, it takes two Winternitz parameters
wu, wl and two BDS parameters ku, kl such that h′−ki is even for i ∈ {l, u} and
(h′ − ku)/2 + 1 ≤ 2h

′−kl+1. As for XMSS, the bitmasks and the X are chosen
uniformly at random, but this time h′+max{log �u, log �l} bitmasks are chosen.
Both, the bitmasks and the X are used for both levels. Then the two XMSS key
pairs L and U are generated. This is done as described in the last section. For
L, wl, kl, and the message length m are used. For U , wu and ku are used. The
message length for U is n, because this is the size of the root nodes of the Ls.
Next, the root of L is signed using the first W-OTS keypair of U . Then, a FsGen

state for the next L is chosen uniformly at random, and a new TreeHash stack
Stacknext is initialized.

The XMSS+ secret key SK consists of the two FsGen states Sl and Su and the
BDS states StateBDS,l and StateBDS,u for U and L and the signature on the root
of L. Additionally, it contains a FsGen state Sn, a TreeHash stack Stacknext
and a BDS state StateBDS,n for the next L. The public key PK consists of the
h′ +max{log �1, log �2} bitmasks, the value X and the root of U .

Signature generation. The signature generation algorithm takes as input a mes-
sage M , the secret key SK, and the index i. First, M is signed. This is done as
described in the last section, using Sl and StateBDS,l as secret key for L and i

mod 2h
′
as index. During this signature generation, BDS receives (h′ − kl)/2

updates. If not all of these updates are used to update StateBDS,l, the remaining
updates are used to update StateBDS,u. Then one leaf of the next lower tree is
computed and used as input for TreeHash to update Stacknext. The signature
Σ = (σu,Authu, σl,Authl, i) contains the one-time signatures from U and L and
the two authentication paths, as well as the index i.

If i mod 2h
′
= 2h

′ − 1 the last W-OTS key pair of the current L was used.
In this case, Stacknext now contains the root of the next L. Now, U is used to
sign this root. The key pair consists of Su and StateBDS,u. The used index is

�i/2h′�. In contrast to the signing algorithm from the last section, BDS receives
no updates at this time. The updates needed to compute the next authentication
path are received during the next 2h

′
message signatures. In SK StateBDS,l, Sl,

and the signature of the root of the L are replaced by StateBDS,n, Sn and the
new computed signature, respectively. Afterwards, the data structures for the
next L are initialized and used to replace the ones in SK.

Signature verification. The signature verification algorithm takes as input a
signature Σ = (σu,Authu, σl,Authl, i), the messageM and the public key PK. To
verify the signature, M and σl are used to construct the corresponding W-OTS
public key, and then the corresponding leaf node. This leaf node, Authl and the
index j = i mod 2h

′
are used to compute the root of L. This root in turn, is

used together with σu to compute the W-OTS public key and the corresponding
leaf node of U . This leaf node, Authu and the index j = �i/2h′� are used to
compute a root for U . The root computations are done as described in the last
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section. If the resulting root equals the root node included in the public key, the
signature is accepted and rejected otherwise.

3.1 Analysis

In the following we provide an analysis of XMSS+. We show that the distributed
authentication path computation works and revisit the security of the scheme.
We start with key and signature sizes and the runtimes of the algorithms. A
theoretical comparison with XMSS will be included in the full version of this
paper.

Sizes and Runtimes. First we look at the sizes. The signature size grows by the
size of one W-OTS signature and is (h+�u+�l)n bits. The public key size slightly
decreases, as the number of bitmasks decreases and is (h+2max{log �u, log �l}+
2)n bits. The secret key stays about the same size, depending on the parameter
choices, and is at most (7.5h−7kl−5ku+2kl +2ku + �u)n bits. For the runtimes
we only look at the worst case times and get the following. The key generation
time is reduced to 2h/2(�u+ �l+2)tH+2h/2(4+ �u(wu+1)+ �l(wl+1))tF, where
tH and tF denote the runtimes of one evaluation of H and F, respectively. The
worst case signing time also decreases because the trees are smaller and requires
less than maxi∈{l,u}{(((h′− kl +2)/2) · (h′− ki+ �i)+h′)tH +(((h′− kl +4)/2) ·
(�i(wi +1))+ h′− kl)tF} (Recall that h′ = h/2). Signature verification increases
by the costs of verifying one W-OTS signature and computing the corresponding
leaf. It requires (�u + �l + h)tH + (�uwu + �lwl)tF.

Correctness. In the following we show, that the unused updates from L suffice to
compute the authentication paths and to sign the next root. For the computation
of the ith authentication path Authi in U and the signature on the (i+1)th root,
all unused updates from the (i − 1)th L can be used. The signature algorithm
spends (h′ − kl)/2 updates per signature. Hence, the BDS algorithm receives
(h′− kl)2

h′−1 updates while the (i− 1)th L is used. For all authentication paths
of L, the BDS algorithm has to compute all right nodes of the tree, that are
on a height < h′ − kl, besides the two first right nodes on every height as these
nodes are already stored during initialization. The number of required updates
for 2 ≤ kl ≤ h′ is

h′−kl−1∑
i=0

(2h
′−i−1 − 2)2i = (h′ − kl)2

h′−1 − 2h
′−kl+1

so there are (h′−kl)2
h′−1−(h′−kl)2

h′−1+2h
′−kl+1 = 2h

′−kl+1 unused updates.
As (h′−ku)/2+1 ≤ 2h

′−kl+1, the BDS algorithm for the U receives all (h′−ku)/2
updates to compute Authi before it is needed and one update is left for the
signature on the next root. Doing the same computation for kl = 0 there are
even more (3·2h′−1) unused updates. For kl = h′, it follows from (h′−ku)/2+1 ≤
2h

′−kl+1 that ku = h′ and therefore all nodes of both trees are stored.
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Security. In [6], an exact proof is given which shows that XMSS is forward
secure, if F is a pseudorandom function family andH a second preimage resistant
hash function family. The tree chaining technique corresponds to the product
composition from [19]. In [19] the authors give an exact proof for the forward
security of the product composition if the underlying signature schemes are
forward secure. It is straight forward to combine both security proofs to obtain
an exact proof for the forward security of XMSS+.

4 Implementation

In this section we present our smart card implementation. First we give a descrip-
tion of our implementation. Then we present our results and give a comparison
with XMSS, RSA and ECDSA. At the end of the section we discuss an issue
regarding the non-volatile memory (NVM).

Implementation Details. For the implementation we use an Infineon SLE78
CFLX4000PM offering 8 KB RAM and 404 KB NVM. Its core consists of
a 16-bit CPU running at 33 MHz. Besides other peripherals, it provides a
True Random Number Generator (TRNG), a symmetric and an asymmetric
crypto co-processor. We use the hardware accelerated AES implementation of
the card to implement the function families F and H. As proposed in [6], we use
plain AES for F . To implement H we build a compression function using the
Matyas-Meyer-Oseas construction [20] and iterate it using the Merkle-Darmgard
construction [12, 21]. As the input size of H is fixed, we do not require M-D
strengthening. Figure 2 shows the whole construction. As shown there, the con-
struction requires two AES evaluations per evaluation of HK ∈ H. All random
inputs of the scheme are generated using the TRNG. Besides XMSS+, we also
implemented XMSS for comparison.

AES AES

M1 M2

K HK(M)

Fig. 2. Construction of H using AES with the Matyas-Meyer-Oseas construction in
M-D Mode

Results. Tables 1 and 2 show the runtimes of our implementation with different
parameter sets. We use the same k and w for both trees. The last column shows
the security level for the given parameter sets. Following the updated heuristic
of Lenstra and Verheul [18] the configurations with a security level of 81 (85,
86) bits are secure until the year 2019 (2025, 2026). In Appendix A we explain
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how the security level is computed. Please note that these numbers represent a
lower bound on the provable security level. A successful attack would still require
an adversary to either find a second preimage in a 128 bit hash function or to
launch a successful key retrieval attack on AES 128. This would result in 128 bit
security for all parameter sets. In Table 1, the signature time is the worst case
time over all signatures of one key pair. The secret key size in the table differs
from the values we would obtain using the theoretical formulas from the last
section. This is because it includes all data that has to be stored on the card to
generate signatures, including the bitmasks and X .

Table 1. Results for XMSS and XMSS+ for message length m = 256 on an Infineon
SLE78. We use the same k and w for both trees. b denotes the security level in bits.
The signature times are worst case times.

Timings (ms) Sizes (byte)
Scheme h k w KeyGen Sign Verify Secret key Public key Signature b

XMSS+ 16 2 4 5,600 106 25 3,760 544 3,476 85
XMSS+ 16 2 8 5,800 105 21 3,376 512 2,436 81
XMSS+ 16 2 16 6,700 118 22 3,200 512 1,892 71
XMSS+ 16 2 32 10,500 173 28 3,056 480 1,588 54
XMSS+ 20 4 4 22,200 106 25 4,303 608 3,540 81
XMSS+ 20 4 8 22,800 105 21 3,920 576 2,500 77
XMSS+ 20 4 16 28,300 124 22 3,744 576 1,956 67
XMSS+ 20 4 32 41,500 176 28 3,600 544 1,652 50

XMSS 10 4 4 14,600 86 22 1,680 608 2,292 92
XMSS 10 4 16 18,800 100 17 1,648 576 1,236 78
XMSS 16 4 4 925,400 134 23 2,448 800 2,388 86
XMSS 16 4 16 1,199,100 159 18 2,416 768 1,332 72

We used parameter sets with two heights. A key pair with h = 16 allows to
generate more than 65, 000, one with h = 20 to generate more than one million
signatures. Assuming a validity period of one year, this corresponds to seven
signatures per day and two signatures per minute, respectively. The runtimes
show, that XMSS+ key generation can be done on the smart card in practical
time. For all but one used parameter set, the key generation time is below 30
seconds. The times for signature generation and verification are all below 200 ms
and 30 ms, respectively. The size of the secret key is around four kilo byte and
signatures are around two kilo byte, while the public keys are around 500 bytes.
Increasing the tree height for XMSS almost doubles key generation time. For
XMSS+ the key generation time is almost doubled if one increases the height by
two, as this means that the height of each internal tree is increased by one.

The results show that we can reduce the signature size by increasing the
Winternitz parameter w. The behavior of the implementation reflects the theory.
The factor for the reduction of the W-OTS signature size is only logarithmic in
w. The increase of the runtime is negligible for small w. This can be explained
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by the following. While the length of the single function chains increases, the
number of chains decreases. For w > 16 the increase of the runtime becomes
almost linear. So from this point, w = 16 seems to be a good choice. On the
other hand, the provable security level also decreases almost linearly in w. While
this only reflects a provable lower bound on the security of the scheme, it is still
another reason to keep w small.

Table 2. Results for XMSS+ for message length m = 256 on an Infineon SLE78 for
different values of k. We use the same k and w for both trees. The table shows the
worst case signing times, as well as the average case times.

Timings (ms) Size (byte)
Scheme h k w KeyGen Sign (w.c.) Sign (avg.c.) Secret key

XMSS+ 16 0 16 6,700 133 96 3,312
XMSS+ 16 2 16 6,700 118 96 3,200
XMSS+ 16 4 16 6,700 97 83 3,232
XMSS+ 16 6 16 7,000 95 67 4,352
XMSS+ 16 8 16 8,000 94 53 10,112

Table 2 shows two things. On the one hand, it is possible to decrease the
average case signing time spending more storage for the secret key state, by
increasing k. This is what one assumes given the theory. On the other hand, the
worst case signing time can only be reduced up to a certain limit. For the given
parameters this limit is 94ms, the worst case signing time, when both trees are
completely stored. These 94ms are mainly caused by the write operations, when
one key pair on the lower level is finished. While all the computations are done
in previous rounds, the data structures for the next lower level key pair have
to be copied to the data structure for the current lower level key pair. Further
the new data structures for the next lower level key pair must be initialized.
Choosing k = 4 seems to be the most reasonable choice for h = 16.

Comparison. The last rows of Table 1 show the results for classical XMSS. The
results show that XMSS key generation can be done on the smart card, but is
impractical as it already takes more than 15 minutes for h = 16. Increasing the
height by one almost doubles the runtime of key generation. Generating a key
with XMSS+ is already for h = 16 almost 200 times faster than with XMSS.
While XMSS+ signature generation is slightly faster for comparable parameters,
verification is faster for XMSS. The faster key generation is paid by slightly
bigger secret keys and signatures, while the XMSS+ public keys are smaller,
because of the reused bitmasks.

Now we compare XMSS+ with RSA 2048 and ECDSA 256 on the same smart
card. The key generation performance of XMSS+ is similar to RSA 2048, which
needs on average 11 seconds, but slower than ECDSA 256 (95ms). Signature
generation is comparable to RSA 2048 (190ms) and ECDSA 256 (100ms). Only
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verification takes slightly longer than with RSA 2048 (7ms), but it is faster than
with ECDSA 256 (58ms). The security level of RSA 2048 and ECDSA 256 is 95
and 128 bits, respectively. In contrast to the security level shown in Table 1, these
numbers are not based on a security proof, but on the best known attacks. As
mentioned above, the security level of XMSS+ is 128 bit, when we only assume
the best known attacks.

NVM. The changing key presents a challenge for the implementation of XMSS+

and XMSS on smart cards. NVM is organized in sectors and pages. Due to phys-
ical limitations only complete pages can be written (erased and reprogrammed)
at once. Furthermore they wear out and cannot be programmed anymore after a
certain number of write cycles, depending on the technology (about 500, 000 in
our case). However, as write operations are distributed over all 33 physical pages
of a sector, the complete available cycles are around 16.5 million per sector.

Generating a key takes only a few hundred write cycles, but its state has to
be updated after each signature step. Overall, one million available signatures
require one million write cycles for the modification of the state. Using careful
memory management, layout and optimization, we managed to keep the number
of write cycles below five million for a key pair with h = 20, which is far below
the 16.5 million available per sector. This includes key generation and all 220

signatures. It should be noted, that this affects only one NVM sector of the
card. To use multiple keys, they can be placed in different sectors in order to
preserve NVM quality.

5 Conclusion

We presented the first smart card implementation of a forward secure signa-
ture scheme. The results presented in Section 4 show that the implementation is
practical and that key generation can be done on the card in less than a minute.
This is in contrast to previous implementations of similar schemes, that did not
achieve on-card key generation. To achieve this, we introduced XMSS+, an im-
proved version of XMSS. Besides the improved key generation, the worst case
signing time is also reduced. While the presented improvement is necessary for
an implementation on smart cards, it might also show to be useful for imple-
mentations on other hardware (At least in cases, where key generation time or
worst case signing time are critical).

Given the results of the last section, we propose the parameter set h = 16,
w = 16 and k = 4. These parameters seem to lead the optimal performance as
long as 65, 000 signatures per key pair are enough. The provable lower bound
on the security level of 71 bits is too low from a theoretical point of view. But
if we compute the security level according to the best known attacks - as it is
common practice - we get a security level of 128 bit. This leads to interesting
directions for future work. One would be to either tighten the security proofs or
find better reductions from different security assumptions. Another one would
be to implement XMSS+ with co-processors for block ciphers with a bigger block
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size than AES. Alternatively, it would be possible to use hash functions with a
digest length of more than 128 bit, using the constructions from [6] to construct
the PRF.

One topic we did not address in this work is the side channel resistance. But
the forward security property already protects against the most common attack
vector for side channel attacks. If a user looses her smart card and revokes her
key pair, an attacker can not gain any advantage of a successful side channel
attack. The secret key the adversary learns is revoked from this time on and
it is not possible to learn the keys of prior time periods. Nevertheless, as there
exist other attack vectors, it would be interesting to analyze the side channel
resistance of our implementation.
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A Security Level

We compute the security level in the sense of [18]. This allows a comparison of
the security of XMSS+ with the security of a symmetric primitive like a block
cipher for given security parameters. Following [18], we say that XMSS+ has
security level b if a successful attack on the scheme can be expected to require
approximately 2b−1 evaluations of functions from Fn and Hn. Following the
reasoning in [18], we only take into account generic attacks on Hn and Fn. A
lower bound for the security level of XMSS was computed in [6]. For XMSS+, we
combined the exact security proofs from [6] and [19]. Following the computation
in [6], we can lower bound the security level b by

b ≥ max {n− h/2− 4− wu − 2log(�uwu), n− h− 4− wl − 2log(�lwl)}

for the used parameter sets.
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1 The Start of the Competition

The story of the SHA-3 competition starts with the presentation of surprisingly
efficient attacks on several modern hash functions at Eurocrypt 2005 [1, 2] and
at Crypto 2005 [3, 4]. Collisions were given for the hash functions MD4, MD5,
RIPEMD and SHA-0. An algorithm was shown that can produce collisions for
SHA-1 with a complexity that is much lower than previously thought. Before
2005, there were already partial attacks known for several of these hash functions,
but only MD4 was really broken [5]. Soon the results were furthere improved and
extended to other hash functions. These developments caused NIST to start an
effort to develop and standardize a new Secure Hashing Algorithm. This effort
was going to be an open competition, similar to the AES competition which it
had run from 1998 until 2000.

In 1998, NIST received 21 submissions for the AES competition, of which
15 fulfilled the formal submission requirements and were allowed to enter the
competition. In 2008, NIST received 64 submissions for the SHA-3 competition,
of which 51 were allowed to enter. This big increase in candidate algorithms
and the limited amount of effort available implied that NIST had to adopt a
strategy that would allow it to quickly reduce the number of candidates. In
July 2009, barely 6 months after the first SHA-3 Candidate Conference, NIST
announced the 14 algorithms that were selected to enter the second round of the
competition. Quite some of the other 37 candidates had been broken or turned
out to be very slow compared to the current standards. However, it can also
be said that some of the non-selected algorithms were victims of bad PR. In
December 2010, NIST announced the 5 finalist algorithms, which were allowed
to enter the third and last round of the competition.

2 The 5 Finalists

We briefly discuss the main elements of each of the 5 finalists (in alphabetical
order). The reader will notice that NIST selected the finalists in such a way that
all corners of the design space are covered. This is probably not a coincidence.

� This work was sponsored by the Research Fund KU Leuven (OT/08/027) and by
the European Commission through the ICT Programme under Contract ICT-2007-
216676 (ECRYPT II). The information in this paper is provided as is, and no war-
ranty is given or implied that the information is fit for any particular purpose. The
user thereof uses the information at its sole risk and liability.
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Blake [6] is an Addition-Rotation-XOR (ARX) design. It has a round function
inspired by the stream cipher Salsa20 [7]. Its internal state is represented by a
square, which in each round is first processed column by column, like in the
AES [8], and subsequently diagonal by diagonal. Blake has 14 or 16 rounds,
depending on the desired length of the digest, which determines the size of
the internal state. Despite its large number of rounds and the fact that each
round contains two passes over the whole state, Blake is very fast on almost all
platforms.

Grøstl [9] is a Substitution-Permutation Network (SPN) design. Among the
finalists, Grøstl comes the closest to the AES and Rijndael designs. It uses a
state consisting of two 8 × 8 squares for 256-bit digests, respectively of two
8× 16 rectangular arrays for 512-bit digests. The round transformation uses the
AES S-box and diffusion operations which are very similar to the AES diffusion
operations. There are 10 or 14 rounds, depending on the digest length. Grøstl
is classified as a permutation based design, which is distinguished from a block-
cipher based design by the fact that the message is not inputted in every round,
but only at the start and the end of the compression function.

Also JH [10] is a permutation-based SPN design. JH has 42 rounds. It uses
4-bit S-boxes and generalizes the two-dimensional AES diffusion to 8 dimen-
sions, however without generalizing the proof on the minimum number of active
S-boxes. Digests of length 256 or 512 bits are produced by exactly the same
function.

Keccak [11] is a Sponge design, which implies that it is also permutation-
based. The Keccak permutation has 24 rounds. It uses a 5-bit S-box and bit-
level diffusion with a nice geometric representation. Keccak is a streaming design:
every message bit is added to the state only once. The state is a 3-dimensional
array. Specifically, it is a 5 × 5 × z array, where z is equal to 64 for the version
submitted to the competition. The versions producing digests of 256 respectively
512 bits differ only in the number of message bits that are added to the state
between two applications of the permutation. On most platforms, the speed of
Keccak is in the middle of the 5 finalists.

Skein [12] is the second ARX design. It has 72 rounds and is very fast on high-
end platforms. Skein is block-cipher based. It uses the block cipher Threefish in
the newly designed Unique Block Iteration (UBI) mode. Threefish. was designed
specifically for Skein and bears no resemblance to Twofish or Blowfish. Digests
of length 256 or 512 bits are produced by exactly the same function.

3 Speed

The eBASH site offers speed measurements of the finalists on a multitude of
desktop and server platforms, but also a few smaller processors [13]. It indicates
that Skein and (the 256-bit version of) Blake are usually the fastest, Keccak
is mostly in the middle. At the bottom side, Grøstl-512 is usually the slowest,
preceded by JH and Grøstl-256. On platforms with the special AES instructions,
Grøstl-256 beats Keccak. Hence, ARX designs appear to make the best use of
these platforms.



Extracts from the SHA-3 Competition 83

The XBX study looks at embedded processors and takes the requirements for
ROM and RAM into account [14]. In this study, Blake usually performs well,
and it never performs badly. On many high-end platforms, Skein is the fastest.
Keccak and Grøstl perform repeatedly among the best, in particular when small
footprint is important.

4 Highlights

If the talks and papers presented during the AES competition would have to be
summarized in a few words, we would propose security-margin weighted perfor-
mance, side-channel attack resistance, algebra and the pronounciation of certain
Dutch vowels. For the SHA-3 competition, these would be replaced by prov-
able security/indifferentiability, rebound, practicality of attacks and distinguish-
ers/nonrandom properties.

The indifferentiability concept [15] predates the SHA-3 conference. It has now
become common practice to produce an indifferentiability proof for every new
design [16]. Like with all security proofs, a certain level of idealisation is required
in order for the proofs to work. At which level the idealization is done, influences
for instance the provable security of Blake [17]. Clearly, every methodology which
forces designers to reason about the security properties of their design, is a
good thing to have. The exact implications of an indifferentiability proof for the
security of a design remain a topic of further research [18].

A distinguisher for a keyed primitive is a well-defined concept. For an unkeyed
primitive, say a standardized hash function, defining a distinguisher turns out
to be problematic. There appears to be a vague intuition in folk lore, that any
property of a specific hash function, that is present with small probability only
in a random function, should be considered as a weakness, since it allows to
distinguish the specific hash function from a random function. The problem is
that distinguishing a deterministic hash function h from a random function f , is
trivial. For example, we can simply query the function on 0; the probability that
f(0) = h(0) is negligible. More broadly speaking, some of the recently presented
results can be considered as Texas sharpshooter fallacies, because they don’t
take into account the effect that is also known as the law of truly large numbers:
since there is an infinite number of properties that can be investigated, any hash
function is bound to exhibit some of them.

5 Outlook

Given the relative slow progress in cryptanalytic results on SHA-256 and the
quite competitive speed of SHA-256 and SHA-512 on many processors, it is likely
that the winner of the SHA-3 competition will face a hard time pushing its way
into applications. For comparison, consider how long it took AES to replace the
much slower 3-DES or even the clearly insecure DES in many applications.

On the other hand, it is clear that the competition has increased the pace
of progress in knowledge on hash function design and cryptanalysis. Some of
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the new cryptanalytic insights even led to improved results on AES [19, 20].
Furthermore, several important steps have been made in the development of
tools and libraries assisting the (semi-)automatic cryptanalysis of hash functions
and symmetric-key algorithms [21]. It might well be that these will be the most
important outcome of the SHA-3 competition.
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Abstract. In this paper we study a 128-bit-key cipher called PC1 which
is used as part of the DRM system of the Amazon Kindle e-book reader.
This is the first academic cryptanalysis of this cipher and it shows that
PC1 is a very weak stream cipher, and can be practically broken in a
known-plaintext and even in a ciphertext-only scenario.

A hash function based on this cipher has also been proposed and is im-
plemented in the binary editor WinHex. We show that this hash function
is also vulnerable to a practical attack, which can produce meaningful
collisions or second pre-images.

Keywords: Cryptanalysis, Stream cipher, Hash function, Pukall Ci-
pher, PC1, PSCHF, MobiPocket, Amazon Kindle, E-book.

1 Introduction

In this paper we study the stream cipher PC1, a 128-bit key cipher designed by
Pukall in 1991. The cipher was first described in a Usenet post [7] and imple-
mentations of the cipher can be found on the designer’s website [9]1. The PC1
cipher is a part of the DRM system of the MOBI e-book format, which is used
in the Amazon Kindle and in MobiPocket (a popular free e-book reader which
supports a variety of platforms). This fact makes this cipher into one of the most
widely deployed ciphers in the world with millions of users holding devices with
this algorithm inside. This cipher is also used in a hashing mode by WinHex [10],
an hexadecimal editor used for data recovery and forensics.

So far, no proper security analysis of PC1 is available in the academic liter-
ature. Thus it is interesting to study the security of PC1 due to its widespread
use and because it offers a nice challenge to cryptanalyst. Our results show prac-
tical attacks on the PC1 stream cipher. First, we show a known plaintext attack
which recovers the key in a few minutes with a few hundred kilobytes of en-
crypted text (one small book). Second, we show a ciphertext-only attack, using
a secret text encrypted under one thousand different keys. We can recover the
plaintext in less than one hour, and we can then use the first attack to extract
the keys if needed. Additionally, we show that the hashing mode is extremely
weak, by building a simple second-preimage attack with complexity 224, and a
more advanced attack using meaningful messages with a similar complexity. Our
results are summarized in Table 1.
1 Implementations of PC1 can also be found in various DRM removal tools.

L.R. Knudsen and H. Wu (Eds.): SAC 2012, LNCS 7707, pp. 86–103, 2013.
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2 Description of PC1

PC1 can be described as a self-synchronizing stream cipher, with a feedback
from the plaintext to the internal state. The cipher uses 16-bit integers, and
simple arithmetic operations: addition, multiplication and bitwise exclusive or
(xor). The round function produces one byte of keystream, and the plaintext is
encrypted byte by byte.

The internal state of the cipher can be described as a 16-bit integer s, and
an 8-bit integer π which is just the xor-sum of all the previous plaintext bytes
(πt = ⊕t−1

i=0p
i). The round function PC1Round takes as input the 128 bit key k

and the state (s, π), and will produce one byte of keystream and a new value of
the state s.

In this paper we use the following notations:

p Plaintext + Addition modulo 216

c Ciphertext × Multiplication modulo 216

σ Keystream ⊕ Boolean exclusive or (xor)
ki 16-bit sub-keys: k = k0‖k1 . . . ‖k7
xt The value of x after t iterations of PC1Round
x[i] Bit i of x. We use x[i–j] or x[i, . . . , j] to denote bits i to j.
f(x) = x× 20021 + 1 gi(x) = (x+ i)× 20021
h(x) = x× 346 fold(x) = (x# 8)⊕ x (mod 28)

A schematic description of PC1 is shown in Figure 1, and pseudo-code is given
in Figure 2. We can divide the PC1 in two parts, as shown in the figure:

– The first part is independent of the state s and takes only the key and the
state π as input. We denote this part as KF (key function), and it produces
two outputs: w = KF1(π, k) is a set of 8 values used by the second part, and
σk = KF2(π, k) is used to create the keystream.

– The second part updates the state s from the previous value of s, and the
value of the w’s. We denote this part as SF (state function), and it produces
two outputs: SF1(s, w) is the new state s, and σs = SF2(s, w) is used to
create the keystream.

A high-level representation of PC1 using these functions is given in Figure 3.
An important property of PC1 is that the only operations in KF and SF are
modular additions, modular multiplications, and bitwise xors (the f , gi, and h
functions only use modular additions and multiplication). Therefore, KF and SF
are T-functions [5]: we can compute the i least significant bits of the outputs by
knowing only the i least significant bits of the inputs. The only operation that is
not a T-function in the PC1 design is the fold from 16 bits to 8 bits at the end.

Note that our description of PC1 does not follow exactly available code: we use
an equivalent description in order to make the state more explicit. In particular,
we put g0 at the end of the round in order to only have a 16-bit state s, while the
reference code keeps two variables and computes g0 and the subsequent sum at
the beginning of the round. We also use an explicit π state instead of modifying
the key in place.
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Fig. 1. The PC1 stream cipher

2.1 Use in the Mobipocket e-Book Format and in the Kindle

A notable use of the PC1 stream cipher is in the MOBI e-book format [6].
This format allows optional encryption with PC1; this feature is used to build
the DRM scheme of MobiPocket and of the Amazon Kindle. An encrypted e-
book is composed of plaintext meta-data and several encrypted text segments.
Each segment contains 4 kB of text with HTML-like markup, and is optionally
compressed with LZ77. This implementation of LZ77 keeps most characters as-
is in the compressed stream, and use non-ASCII characters to encode length-
distance pairs. In practice there are still many repetitions in the compressed
stream, most of them coming from the formatting tags.

It is a well established fact the DRM system of both MobiPocket and the
Amazon Kindle are based on PC1. As a verification, we downloaded several
e-books from the Amazon store and they all followed this format.

Each text segment in a given e-book is encrypted with the same key, and the
PC1 stream cipher does not use any IV. Thanks to the plaintext feedback the
corresponding keystreams will not all be the same. Nonetheless the lack of IV
implies a significant weakness: the first byte of keystream will be the same for
all encrypted segments, so we can recover the first character of each segment
by knowing the first character of the file. Moreover we can detect when two
segments share a common prefix.
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function PC1Round(k,π,s)
k → k0, k1, . . . , k7
σ ← 0
w ← 0
for 0 ≤ i < 8 do

w ← w ⊕ ki ⊕ (π × 257)
x ← h(w) � h(x) = x× 346
w ← f(w) � f(x) = x× 20021 + 1
s ← s+ x
σ ← σ ⊕w ⊕ s
s ← gi+1 mod 8(s) + x � gi(x) = (x+ i)× 20021

σ ← fold(σ) � fold(x) = (x � 8) ⊕ x (mod 28)
return (σ, s)

function PC1Encrypt(k, p)
π ← 0; s ← 0
for all pt do

(σ, s) ← PC1Round(k, π, s)
ct ← pt ⊕ σ
π ← π ⊕ pt

return c

function PC1Decrypt(k, c)
π ← 0; s ← 0
for all ct do

(σ, s) ← PC1Round(k, π, s)
pt ← ct ⊕ σ
π ← π ⊕ pt

return p

Fig. 2. Pseudo-code of the PC1 stream cipher

Attacks on the DRM Scheme. Like all DRM schemes, this system is bound
to fail because the key has to be present in the device and can be extracted by
the user. Indeed this DRM scheme has been reverse engineered, and software is
available to decrypt the e-books in order to read them with other devices [3].

In this paper, we do not look at the DRM part of the system, but we target
the stream cipher from a cryptanalysis point of view.

3 Previous Analysis

Two simple attacks on PC1 have already been described. Our new attacks will
exploit some of the same properties — which we rediscovered — and expand on
those ideas in order to build practical key-recovery attacks.
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KF SF

sπ

16

8 × 16

w

16

σk

16

σs

8

k
128

p
8

fold

16

8 σ

p c

πt+1 = πt ⊕ pt

wt = KF1(π
t, k)

st+1 = SF1(s
t, wt)

σt = fold(KF2(π
t, k)⊕ SF2(s

t, wt))

ct = pt ⊕ σt

Fig. 3. Overview of PC1. Grey boxes represent memory registers.

Table 1. Summary of the attacks on the PC1 stream cipher, and on the PSCHF hash
function

Attacks on PC1 Complexity Data Reference

Distinguisher Chosen plaintext 216 216 [1]
Key recovery Known plaintext 272 24 [2]
Key recovery Known plaintext 231 220 Section 5
Key recovery Ciphertext only, 210 unrelated keys 235 217.210 Section 6

Attacks on PSCHF Complexity Reference

Second preimage with meaningful messages 224 Section 7

3.1 Key Guessing

As described above, most of the computations of PC1 can be seen as a T-
function. Therefore, if we guess the low 9 bits of each sub-key, we can compute
the low 9 bits of KF and SF in a known plaintext attack. This gives one bit of
the keystream after the folding, and we can discard wrong guesses. We can then
guess the remaining key bits, and the full attack has a complexity of 272. This
was described in a Usenet post by Hellström [2].

3.2 State Collisions

Our description clearly shows that the internal state of the stream cipher is very
small: 8 bits in π that do not depend of the key, and 16 bits in s. Therefore we
expect that there will be collisions in the state quickly. This was first reported by
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Hellström on Usenet in [1], where he described a chosen-plaintext distinguisher:
given two messages x0‖y and x1‖y such that x0 and x1 have the same xor sum,
the encryption of y will be the same in both messages with probability 2−16.

A more efficient distinguisher can be built using the birthday paradox. We
consider 28 different prefixes xi with a fixed xor sum, and a fixed suffix y. When
encrypting the messages xi‖y, we expected that two of them will show the same
encryption of y when the state s collides after encrypting xi and xj .

4 Properties of PC1

Before describing our attacks, we study some useful properties of the design of
PC1.

4.1 Simplified State Update

First, we can see that the SF1 function only uses modular additions and modular
multiplications by constants. Therefore, the state update can be written as a
degree 1 polynomial (the full coefficients are given in Appendix A):

st+1 = SF1(s
t, wt) =

7∑
i=0

(
ai × wt

i

)
+ b × st + c

If we integrate the computation of w =
∑7

i=0 ai × wi inside KF, we only have
to transmit 16 bits between KF and SF for the s update loop. This results in
the simplified state update of Figure 4 (we denote the resulting functions by KF′

and SF′).

KF′ SF′

sπ

16

16

w

8

k
128

p
8

wt = KF′(πt, k)

st+1 = SF′(st, wt)

= wt + b× st + c

Fig. 4. Simplified PC1 state update

In the following, we denote KF′(x, k) as wx for a given key k. In particular,
we have wt = wπt . One can see that knowing the values of wx for all possi-
ble x is sufficient to compute the state update without knowing the key itself.
Equivalently, we can see KF′ as a key-dependent 8× 16 bit S-Box.
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4.2 Diffusion

All operations in KF and SF are T-function so the only diffusion is from the low
bits to the high bits. Moreover, several bits actually cancel out and only affect
output bits at higher indexes. We can learn how the key affects the state update
by looking at the coefficients ai. We notice an interesting property of the least
significant bits of the coefficients:

∀i, ai ≡ 4 mod 8 b ≡ −1 mod 8 c ≡ 4 mod 8

Therefore, if bits 0 to i of the key and plaintext are known, we can compute bits
0 to i of w, and bits 0 to i+ 2 of s. More precisely, we can write

7∑
i=0

ai × wi = 4×
7∑

i=0

wi + 8×
7∑

i=0

a′i × wi with ai = 8a′i + 4

st+1 ≡ 4×
7∑

i=0

wi − st + 4 (mod 8)

We also have
∑7

i=0 wi ≡
⊕

i=1,3,5,7 ki (mod 2) and s0 = 0, which leads to:

st ≡ 4× t×

⎛⎝1⊕
⊕

i=1,3,5,7

ki

⎞⎠ (mod 8)

In particular, this shows that st ≡ 0 mod 4 (the two least significant bits of st
are always zero), and we will always have st+2 = st mod 8. Collisions between
st and st

′
will be more likely if t and t′ have the same parity; more generally,

collisions are more likely when t− t′ is a multiple of large power of two, but the
exact relations are difficult to extract.

We can also see that keys with
⊕

i=1,3,5,7 ki = 1 will lead to more frequent
collisions, because 3 bits of s are fixed to zero. This defines a class of key keys
with regard to collision based attacks. More generally we can define classes of
increasingly weak keys for which more low bits of the state are fixed.

5 Collision-Based Known Plaintext Attack

As mentioned above, collisions in the internal state are relatively likely due to the
small state size. We show how to use such collisions in an efficient key recovery
attack.

First, let us see how we can detect state collisions. If a collision happens
between steps t and t′ (i.e. st = st

′
and πt = πt′) this will result in σt = σt′

and st+1 = st
′+1. Additionally, if the plaintexts at positions t and t′ match, we

will have ct = ct
′

and πt+1 = πt′+1, which will in turn give σt+1 = σt′+1 and
st+2 = st

′+2. Furthermore, if several bytes of the plaintext match, this will give a
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match in several keystream bytes because the state transitions will be the same.
More formally, we have⎧⎪⎪⎨⎪⎪⎩

st = st
′

πt = πt′

pt,...,t+u−1 = pt
′,...,t′+u−1

=⇒

⎧⎪⎪⎨⎪⎪⎩
st+1,...,t+u+1 = st

′+1,...,t′+u+1

σt+1,...,t+u+1 = σt′+1,...,t′+u+1

ct+1,...,t+u = ct
′+1,...,t′+u

A u-byte match in the plaintext results in a u-byte match in the ciphertext, plus
one byte in the keystream, provided that the state (s, π) also matches.

In order to exploit this in a key-recovery attack, we look for matches in the
plaintext and ciphertext, and we assume that they correspond to state collisions.
If we get enough colliding bytes we will have few false positives, and we will
learn that st = st

′
for some values of t and t′. This is very valuable because the

computation of s from k is a T-function. We can then recover the key bit by bit:
if we guess the least significant bits of k we can compute the least significant
bits of s and verify that they collide.

We now study some internal details of the cipher in order to speed-up this
key recovery and to make it more practical.

5.1 Detecting State Collisions

We look for pairs of positions (t, t′) with:

πt = πt′ and pt,...,t+u−1 = pt
′,...,t′+u−1 (A)

σt+1,...,t+u+1 = σt′+1,...,t′+u+1 (B)

Condition (A) is a u+1-byte condition depending only on the plaintext (we have
πt =

⊕t−1
i=0 p

i), while condition (B) is a u+ 1-byte condition depending also on
the ciphertext. In our attack we use u = 2: we have a 3-byte filtering to detect
the two-byte event st = st

′
, and we expect few false positives.

However, due to the structure of the cipher, the probability of having (B) is
bigger than 2−8(u+1), even when st �= st

′
. First, the most significant bit of s

does not affect σ, because its effect is cancelled by the structure of additions
and xors. More generally, if we have st ≡ st

′
mod 2i (i.e. an i-bit match in s),

then i + 1 bits of σ will match, and this implies Pr(B) ≥ 2−(16−i−1)(u+1). For
instance, with u = 2, we have Pr(B) ≥ 2−2 when st ≡ st

′
mod 214, which would

generate many false positives.
In our implementation of the attack, when we detect (B), we only assume

that this correspond to st ≡ st
′
mod 210. Experimentally, the probability of

detecting (B) with u = 2 is around 2−15 for random keys and random s states,
versus 2−24 if st �≡ st

′
mod 210. Therefore we have Pr

[
st �≡ st′ mod 210

∣∣ (B)
]
≈

2−24/2−15 = 2−9, and we expect to have no false positives when we use a dozen
collisions.
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Since we only assume that 10 bits of s are colliding, we can only use these
collisions to recover the low 8 bits of the subkeys. For the upper 8 bits of the
key we use the output stream σ. If we know kj [0–7] and we guess kj [8], we can
compute σk[0–8] ⊕ σs[0–8] before the fold, and one bit of σ after the fold. We
can verify our guess by comparing this to the known least significant bit of c⊕p.

Note that most text documents have a relatively low entropy, therefore con-
dition (A) will be satisfied with probability significantly higher than 2−8(u+1).
In practice, with a sample book of 183 kB (after LZ77 compression), we have
120959 pairs of positions satisfying (A), and for a random encryption key we
usually detect between six and one hundred collisions.

5.2 Key Recovery

The basic approach to use those collisions in a key recovery attack is to guess the
key bits one by one, and to compute the state in order to exclude wrong guesses.

In a known plaintext attack if we guess kj [0–i] for all j then we can compute
wj [0–i] for all j, and also s[0, . . . , i+ 2]. We can verify a guess by comparing st

and st
′
up to the bit i+ 2.

However, this essentially requires us to perform a trial encryption of the full
text to test each key guess. To build a significantly more efficient attack we
consider how s is updated from the key. As explained in Section 4, we have
st+1 = wπt + b×st+ c, where the wx can be computed from the key. For a given
plaintext p, we can compute πt at each step, and each st can be written as a
linear combination of the wx:

st = Rt(w0, . . . , w255)

with the following relations:

Rt = wπt + b×Rt−1 + c R0 = 0

We can compute the coefficients of each Rt from the known plaintext, and every
state collision we detect can be translated to an equality Rt = Rt′ . For each guess
of the least significant bits of the key, checking those equalities only requires to
compute the 256 values wx, and to evaluate linear combinations with 256 terms.

Moreover, we can look for sparse relations, so that we don’t have to evaluate
all the 256 values wx. First, note that we also have implicit relations due to the
structure of KF′: we know that KF is a T-function, and the coefficients ai used
to compute w are all multiple of 4; this gives wx ≡ wy mod 2i+2 for all x and y
with x ≡ y mod 2i. We use MAGMA to compute the vector space generated by
the collision relations, and we compute the quotient of this space by the implicit
relations. The basis of the quotient contains relatively sparse relations, and we
find very sparse ones (with only one or two terms) when we restrict the equations
to k[0–i] for a small i, by working in the ring Z/2iZ.

Using these relations, a key trial now costs less than 256 evaluations of the
round function. In practice this gives a speedup of about 100 times over the
staightforward approach.
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5.3 Dealing with Independent Message Segments

As mentionned in section 2.1, MOBI e-books are divided into several segments.
Each of these segments is encrypted with the same key starting with the initial
state (π, s) = (0, 0). The segments are too short to find collisions inside a given
segment, but we can use collisions between two different segments just as easily.

Let’s assume we detect a collision in the state s, π after enciphering the plain-
text p1 from the initial state and after enciphering the plaintext p2 from the
initial state. We can verify a guess of the least significant bits of the key by
enciphering p1 and p2 starting from the initial state, and verifying that the least
significant bits of the states match.

5.4 Complexity of the Attack

It is difficult to give the precise complexity of the attack because it depends on
the number of collisions found, and how much filtering they give. We did some
experiments to measure the actual complexity by enciphering a fixed book with
random keys, as reported by Figure 5. We found that when we have at least 9
collisions, the median complexity is less than 223 key trial, which take about one
minute. The attack is still practical with as low as six collisions, but in this case
we have to try around 230 key candidates, which takes a few hours with one core
of a typical PC.

6 7 8 16 32 64 128

216

220

224

228

232

Number of collisions
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Experiments
Median

Fig. 5. Experimental results with an e-book of size 336kB (after LZ77 compression).
Complexity is shown as the number of key trials.



96 A. Biryukov, G. Leurent, and A. Roy

With this sample e-book, the vast majority of keys result in more than 9 col-
lisions, and often a lot more. This results in a complexity of less that 223 key
trials. In general, this will be the case if the known plaintext is sufficiently long
(several hundred kilobytes, or a megabyte). Since each key trial costs less than
28 evaluation of the round function, the attack will cost less than 231 evaluations
of the round functions. In practice, it can be done in less than one minute.

6 Ciphertext Only Attack Using Many Unknown Keys

We now describe a ciphertext-only attack, assuming that the attacker has access
to several encryptions of the same text under many different and unrelated keys.
If a DRM scheme is based on PC1, this would be a collusion attack where several
users buy a copy of a protected work and they share the encrypted data. This
attack is based on the observation that the keystream generated by a random
key at two differents positions σ1 = PC1(k, s1, π1) and σ2 = PC1(k, s2, π2) are
biased when π1 = π2.

For each plaintext position t, we build a vector Ct with the corresponding
ciphertext under each available key. If we consider a pair of positions t and t′

the vectors Ct and Ct′ will be correlated if πt = πt′ . If we manage to detect
this correlations efficiently, we can “color” the text positions with 256 colors
corresponding to the values of πt. Then we only have to recover the actual value
of πt corresponding to each color. We can use some known part of the text, the
low entropy of the human language, or some extra information recovered when
detecting the bias.

Bias in σ[0]. Let us first study the bias between the Ct vectors. The main
bias is in the least significant bit, and is present when πt[0–6] = πt′ [0–6]. Let us
consider a given plaintext p encrypted under a random key, and two positions t,
t′ with this property. Because of cancellation effects in the structure of KF and
SF, π[7] does not affect bits 0–8 of σk = KF2(π, k) and σl = SF2(s, w). Moreover,
with some probability we have st[0–8] = st

′
[0–8]. If this if the case, we will have

σt
l [0–8] = σt′

l [0–8], and σt[0] = σt′ [0] after the fold.
This results in a bias in ct[0]⊕ ct

′
[0]:

Pr
[
ct[0] = ct

′
[0]

∣∣∣ πt[0–6] = πt′ [0–6]
]

= Pr
[
pt[0]⊕ σt[0] = pt

′
[0]⊕ σt′ [0]

∣∣∣ πt[0–6] = πt′ [0–6]
]

= Pr
[
σt[0]⊕ σt′ [0] = pt[0]⊕ pt

′
[0]

∣∣∣ πt[0–6] = πt′ [0–6]
]

≈ 1/2± Pr
[
st[0–8] = st

′
[0–8]

]
The bias is positive if pt[0] = pt

′
[0] and negative otherwise. As noted in Sec-

tion 4.2, two bits of s are fixed to zero, which results in Pr [st[0–8] = st′ [0–8]] ≥
2−7. We even have three fixed bits if t′ ≡ t (mod 2), which give a stronger bias
of 2−6. Moreover, we can get even stronger biases for classes of weak keys, and
when using positions such that t− t′ is a multiple of a larger power of 2.
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Bias with More Bits of σ. There are similar biases with more outputs bits
when πt = πt′ . For instance, we have st[0–9] = st

′
[0–9], with some probability.

This implies σt
l [0–9] = σt′

l [0–9], and σt[0–1] = σt′ [0–1] after the fold. This results
in a bias in ct[0–1]⊕ ct

′
[0–1]:

Pr
[
ct[0–1]⊕ ct

′
[0–1] = pt[0–1]⊕ pt

′
[0–1]

∣∣∣ πt = πt′
]
≈ 1

4
+ Pr

[
st[0–9] = st

′
[0–9]

]

6.1 Clustering

These biases are quite strong and most colors can be recovered if we have access
to a fixed text encrypted under 220 different keys. In order to reduce the number
of keys needed, we use a more elaborate algorithm.

First, we work on sets of positions with the same remainder modulo 8: Ti =
{t | t ≡ i mod 8}. Positions in the same set will show a stronger bias on σ[0]:
Pr [st[0–8] = st′ [0–8] | t ≡ t′ (mod 8)] is about 2−6 for strong keys, but it can
be as high as 2−4 for weaker keys (one key in 8 is weak). This allows to detect
some relations with only one thousand keys. Each relation also gives the value
of pt[0]⊕ pt

′
[0] from the sign of the bias.

Then we use a clustering algorithm to detect positions wich share the same
color. Initially, we assign a different color to each position, and we merge pairs
of colors when we detect a significant bias (we use a priority queue to start
with the strongest bias, and we recompute the bias as the clusters grow). When
comparing clusters with more than one position, we effectively have a larger
sample size, and we can detect weaker biases. Note that we need to correct the
signs of the biases using the values of pt[0]⊕pt

′
[0] that we recover when merging

colors.
The first phase of the algorithm stops when have identified 128 large colors.

We assume that these correspond to the 128 values of π[0–6], which generate the
bias in σ[0]. We then remove false positives from each cluster by verifying that
each position is strongly correlated to the rest of the cluster, and we go through
all the unassigned positions and assign them to the cluster with the stongest
correlation (again, we use a priority queue to start with the strongest bias).

At this point each Ti has been partitioned in 128 colors, corresponding to
the value of π[0–6]. We then match the colors of different Ti’s by choosing the
strongest correlation (we first merge Ti and Ti+4 because this allows bigger biases,
then Ti and Ti+2, and finally Ti and Ti+1).

Finally, we have to split each color: we have the value of π[0–6], but we want
to recover the full value of π[0–7]. We use the bias on σ[0–1] to detect when two
positions correspond to the same π[0–7] (note that we already know the value
of pt[0] ⊕ pt

′
[0]). For every color, we first pick two random points to create the

new colors, and we assign the remaining points to the closest group. We repeat
this with new random choices until the same partition is found three times.

The full attack is given as pseudo-code in Algorithms 1 and 2.
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Algorithm 1. Pseudo-code of the clustering algorithm
for all i do � Initially, assign a different color to every position

Color[i] ← i

for 0 ≤ x < 8 do � For each Tx

repeat � Merge colors with the strongest correlation
for all i, j ≡ x (mod 8), s.t. Color[i] �= Color[j] do

b ←ComputeBias( Get(Color[i]), Get(Color[j]) )
if b > bmax then

bmax ← b; ci ← Color[i]; cj ← Color[j]

for all k ∈ Get(ci) do
Color[k] ← cj

until 128 large colors have been identified � Store in MainColor[x]

for all i ≡ x (mod 8) do � Remove false positives
if ComputeBias( {i}, Get(Color[i]) \ {i} ) > ε then

Color[i] ← NewColor()

for all i ≡ x (mod 8) do � Assign remaining points to the closest color
for 0 ≤ j < 128 do

b ←ComputeBias( {i}, Get(MainColor[x][j]) )
if b > bmax then

bmax ← b; c ← MainColor[x][j]

Color[i] ← c

Merge(0,4); Merge(1,5); Merge(2,6); Merge(3,7);
Merge(0,2); Merge(1,3); Merge(0,1); � Merge colors from different Tx

for 0 ≤ i < 128 do � Split colors from π[0–6] to π[0–7]
Split(Get(MainColor[0][i]))

return Color

6.2 Experiments

We performed experiments with a sample text of a few kilobytes that we en-
crypted with PC1 under 210 different keys. In this setting, our clustering algo-
rithm can recover the colors in half an hour with a desktop PC. To associate
the correct π value to each color, we can use the fact the MOBI format encrypts
each chunk independently, and that the first character of a book is always a tag
opening character “<”. This allows to recover the first byte of each segment, and
to identify the colors. In the end, we can decipher the full text with only a few
errors. From that point, we can use the known-plaintext attack of Section 5 to
recover the keys, and to produce a clean plaintext.

One of the most expensive steps of the attack is to compute the bias between
each pair of positions in the plaintext. In our implementation, we use 217 bytes
of text, divided in 8 sets Ti of size 214. Therefore we have to compute 8 × 227

biases, and each computation requires 210 bit operations, or 25 word operations.
Therefore the complexity of the attack is about 235 word operations.
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Algorithm 2. Functions used by the clustering algorithm

function Split(S) � Split color from π[0–6] to π[0–7]
repeat

a, b ←Random(S); A ← {a}; B ← {b}
for all i ∈ S do

if ComputeBias2({i} ,A) > ComputeBias2({i} ,B) then
A ← A ∪ {i}

else
B ← B ∪ {i}

until the same partition A,B is found three times
c ← NewColor()
for all i ∈ A do

Color[i] ← c

function Merge(x, y) � Merge colors from different Tx

for 0 ≤ j < 128 do
for 0 ≤ i < 128 do

b ←ComputeBias( Get(MainColor[x][i]), Get(MainColor[y][j]) )
if b > bmax then

bmax ← b; c ← MainColor[x][i]

for all k ∈ Get(MainColor[y][j]) do
Color[k] ← c

function Get(c) � Returns the set of positions currently in color c
return {i | Color[i] = c}

function ComputeBias(S , S ′) � Evaluates the bias in σ[0] between S and S ′

function ComputeBias2(S , S ′) � Evaluates the bias in σ[0–1] between S and S ′

7 PSCHF: A Hash Function Based on PC1

A hash function based on PC1 has also been proposed by Pukall [8], and it
is used in the WinHex hexadecimal editor to check the integrity of a file. The
PSCHF hash function operates in two steps:

– First the message is encrypted with PC1 using a fixed key kh, and the en-
crypted message is cut into chunks of 256 bits which are xor-ed together to
produce an intermediate 256-bit value h.

– Second, a finalization function is computed from the final value of the state
(s, π), h and the message length α (mod 32).

The pseudo-code for the hash function is given in Figure 6.

7.1 Second Preimage Attack

To conclude our analysis, we describe a second preimage attack against this
hash function. We ignore the finalization, and target the values h, s, π, α after
the main loop.
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h[0, . . . , 31] ← 0
s ← 0, π ← 0
α ← 0
� The first loop reads the input message
for all pt do

(σ, s) ← PC1Round(kh, π, s)
h[α] ← h[α] ⊕ σ ⊕ pt

π ← π ⊕ pt

α ← α+ 1 mod 32

� The second loop is a finalization whose input are h, s, π, and α
for 0 ≤ j < 10× (
+ 1) do

(σ, s) ← PC1Round(kh, π, s)
π ← π ⊕ h[α]
h[α] ← σ
α ← α+ 1 mod 32

return h

Fig. 6. Pseudo-code of the PSCHF hash function. The key kh is a fixed constant, and 

is used to compute the number of blank rounds in the finalization. WinHex uses 
 = 10
and kh = 0xF6C72495179F3F03C6DEF156F82A8538 .

We use E(M, s, π) to denote the encryption of a message block M with the
key kh, starting from state (s, π). The intermediate value h can be written as:

h = E(M0, π
0, s0)⊕ E(M1, π

32, s32)⊕ · · · ⊕ E(Ml, π
t, st),

where the st, πt values are implicitly computed by the previous E calls. The
message blocks are 32-byte long, but the last one might be incomplete.

We can easily build a second preimage attack due to the small internal state of
the cipher. We consider a given message M , and the corresponding target state
h, s, π, α before the finalization function. First, let us assume that the length
of M is a multiple of 32 bytes, i.e. α = 0. We consider a two-block message
M = M0,M1, and we want to reach the pre-specified value h:

h = E(M0, π
0, s0)⊕ E(M1, π

32, s32) = h,

or equivalently:
E(M1, π

32, s32) = h⊕ E(M0, π
0, s0).

We can find solutions by picking M0 randomly and just compute M1 by decrypt-
ing h⊕E(M0, π

0, s0), starting from the state (π32, s32) reached after encrypting
M0. Note that we have α = 0 because we use a message of length 64 bytes. How-
ever, we also need to reach the pre-specified internal state i.e. s64 = s, π64 = π.
For a random choice of M0 this should be satisfied with probability 2−21 (the
probability is higher than 2−24 because at least three bits of s are fixed to zero).



Cryptanalysis of the “Kindle” Cipher 101

If the length of the given message M is not a multiple of 32 we can still mount
a similar attack. We use a message M made of three parts: M0 of length α, M1

of length 32− α, and M2 of length α. A preimage has to satisfy:

h =
(
E(M0, π

0, s0)‖E(M1, π
α, sα)

)
⊕
(
E(M2, π

32, s32)‖032−α
)
= h(

E(M2, π
32, s32)‖E(M1, π

α, sα)
)
=
(
E(M0, π

0, s0)‖032−α
)
⊕ h

Like in the previous case, we can choose a random M0, and obtain M1 by de-
crypting h[α + 1, . . . , 31] (starting from the state (πα, sα) found after M0) and
M2 by decrypting E(M0, π

0, s0)⊕ h[0, . . . , α] (starting from the state (π32, s32)
found after computing M1). At the end, we have π32+α = π and s32+α = s with
probability 2−21.

We can also use the attack with a chosen prefix. Given a target message M
and a chosen prefix N , we can build M such that H(N‖M) = H(M).

This attack has been verified and examples of second preimage are given in
Table 2. These examples are preimages of the empty message; they can be used
as a prefix to any chosen message M and will provide a message P‖M with the
same hash value. In this setting, it is also possible to build a meaningful message:
if the message block M0 is meaningful and goes to the state s = 0, π = 0, then
the decryption of M0 will give M1 = M0 and the full message is meaningful.

Table 2. Examples of second preimage of the empty message. We use the same key as
in WinHex: kh = 0xF6C72495179F3F03C6DEF156F82A8538.

Random Message
D5 06 35 27 03 5C 71 E0 F6 D8 49 9B C9 ED 95 B2
FE 38 1E A0 A5 26 1A 80 91 F8 53 2E EF 5D 54 C4
FC 8B F0 09 D2 5C 5A 36 08 D6 41 F8 34 F5 50 5D
96 F6 C5 30 56 4A 9C 0D E2 DA 29 FD 4C 4A F0 62

Meaningful Message (hex)
2A 20 20 44 4F 20 6E 4F 74 20 52 45 41 44 20 74
68 69 73 20 6D 65 73 73 61 67 65 20 21 20 20 0A
2A 20 20 44 4F 20 6E 4F 74 20 52 45 41 44 20 74
68 69 73 20 6D 65 73 73 61 67 65 20 21 20 20 0A

Meaningful Message (ASCII)
*␣␣DO␣nOt␣READ␣this␣message␣!␣␣
*␣␣DO␣nOt␣READ␣this␣message␣!␣␣

H(M) = H(∅)

51 DE 77 DF 24 04 D0 37 18 DE 7C 53 9E 8A 62 75
FA 48 B0 3C E3 C1 5F 31 4D 58 F8 D8 FF 3B 19 8D

7.2 Meaningful Preimages

More generally, we can build arbitrary preimage where we control most of the
text, using Joux’s multi-collision structure [4], and a linearization technique.
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First, we consider 28 meaningful blocks with the same xor-sum, and we com-
pute the state after encrypting them. We expect that two block m0,0 and m0,1

will lead to the same state s32, π32. We repeat this from the state s32, π32 to find
two messages m1,0 and m1,1 that lead to the same state s64, π64, and we build
a multi-collision structure with 256 pairs mi,0,mi,1 iteratively. This structure
contains 2256 different messages all leading to the same state s8192, π8192. Each
step needs 28 calls to PC1Round, so the full structure will be built for a cost of
216.

We then add a final block m256 of size α and whose xor-sum is π ⊕ π8192, in
order to connect the state s8192, π8192 to the target state s, π. This require 216

trials. We now have 2256 messages all going to the correct s, π and α, and we
will select one that goes to the correct h using a linearization technique.

Let us define ci,x = E(mi,x, π
32i, s32i) and c256 = E(m256, π

8192, s8192). We
can then express h as a function of 256 unknown xi’s:

h = c0,x0 ⊕ c1,x1 ⊕ · · · ⊕ c255,x255 ⊕ c256

= c256 ⊕
255⊕
i=0

ci,xi

= c256 ⊕
255⊕
i=0

ci,0 ⊕
255⊕
i=0

xi · (ci,0 ⊕ ci,1)

= C ⊕X ·D,

where C = c256 ⊕
⊕255

i=0 c0, D is a matrix whose row are the ci,0 ⊕ ci,1, and X is
a row vector of the xi’s. We can then solve h = C ⊕X ·D using linear algebra,
and we find a message that is a preimage of M . This technique will produce
meaningful second preimages of length around 256 block, i.e. 8 kilobytes, with
a complexity of 224.

8 Conclusion

In this work, the study the cipher PC1, which is used in the Amazon Kindle
as part of the DRM scheme. Our analysis target the cipher itself, and not the
full DRM scheme. We show devastating attacks against the PC1 cipher, and
the PSCHF hash function: a known-plaintext key-recovery attack, a ciphertext
only attack using a thousand unrelated keys, and a meaningful second-preimage
attack on the hash function. All these attacks are practical and have been im-
plemented. While trying to make our attacks more efficient, we have used crypt-
analytic techniques which could be of independent interest.

Our attack scenarios are practical: if a DRM scheme is based on PC1, collud-
ing users can recover the plaintext from a thousand ciphertexts encrypted with
different keys. This analysis shows that PC1 is very weak and probably made its
way into popular products due to the lack of academic cryptanalysis, which we
provide in this paper. However, the practical impact on existing DRM schemes
is limited, because there are already easy ways to circumvent them.
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The main problem in the design of PC1 is the very small internal state, which
allows attacks based on internal collisions. Additionnaly, our attacks exploit the
fact that several components of PC1 are T-functions, i.e. the diffusion is only
from the low bits to the high bits.
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022 of the FNR Luxembourg.
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Abstract. In this paper we first refine Mykkeltveit et al.’s technique for
producing de Bruijn sequences through compositions. We then conduct
an analysis on an approximation of the feedback functions that generate
de Bruijn sequences. The cycle structures of the approximated feedback
functions and the linear complexity of a sequence produced by an ap-
proximated feedback function are determined. Furthermore, we present
a compact representation of an (n + 16)-stage nonlinear feedback shift
register (NLFSR) and a few examples of de Bruijn sequences of period
2n, 35 ≤ n ≤ 40, which are generated by the recursively constructed
NLFSR together with the evaluation of their implementation.

Keywords: de Bruijn sequences, nonlinear feedback shift registers, pseu-
dorandom sequence generators, span n sequences, compositions.

1 Introduction

Recently, nonlinear feedback shift registers (NLFSRs) have received a lot of at-
tention in designing cryptographic primitives such as Pseudorandom sequence
generators (PRSGs) and stream ciphers to provide security and privacy in com-
munication systems. For example, well-known stream ciphers such as Grain and
Trivium used NLFSRs as the basic building blocks in their designs [4]. Due to
the efficient hardware implementations, NLFSRs have a number of applications
in constrained environments for instance RFID tags and sensor networks.

The theory of NLFSRs is not well explored. Most of the known results are col-
lectively reported in Golomb’s book [9]. To design a secure cryptographic prim-
itive, such as a key stream generator in a stream cipher, an arbitrary NLFSR
cannot be used to generate keystreams with unpredictability, since the random-
ness properties of a sequence generated by an arbitrary NLFSR are not known.
A classical approach to use an NLFSR in a keystream generator is to combine
it with a linear feedback shift register (LFSR), where the LFSR guarantees the
period of an output keystream. A (binary) de Bruijn sequence is a sequence of
period 2n in which each n-bit pattern occurs exactly once in one period of the
sequence (this is referred to as the span n property). A de Bruijn sequence can be
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generated by an n-stage NLFSR and it has known randomness properties such
as long period, balance, span n property [3, 8, 9].

The linear span or linear complexity of a sequence is defined as the length
of the shortest LFSR which generates the sequence. The linear complexity of
a de Bruijn sequence is greater than half of its period [2]. However, one can
delete one zero bit from the run of zeros of length n of a de Bruijn sequence
of period 2n. The resulting sequence is called a modified de Bruijn or span n
sequence. A span n sequence keeps the balance property and span n properly
of the corresponding de Bruijn sequence except for linear span, which could be
very low. A classic example of this phenomenon is m-sequences, which are a class
of span n sequences that can be generated by an LFSR. By this technique, one
can generate a de Bruijn sequence from an m-sequence. The linear complexity
of this type of de Bruijn sequences is at least 2n−1 + n + 1 [2]. Likewise, from
this de Bruijn sequence, one can remove a zero from the run of zeros of length
n then it becomes an m-sequence with linear complexity n. Thus, the lower
bound of the linear complexity of this de Bruijn sequence drops to n only after
removing one zero from the run of zeros of length n [12]. This shows that the
linear complexity of a de Bruijn sequence is not an adequate measurement for
its randomness. Instead, it should be measured in terms of the linear complexity
of its corresponding span n sequence, since they have only one bit difference.

A de Bruijn sequence and a span n sequence are an one-to-one correspon-
dence, i.e., a span n sequence can be produced from a de Bruijn sequence by
removing one zero from the run of zeros of length n. A number of publications
in the literature have been discussed several techniques for generating de Bruijn
sequences [1, 5–7, 16, 18, 21]. In most of the techniques, a de Bruijn sequence is
produced by joining many small cycles, which enforces that either the procedure
needs some extra memory for storing the state information for joining the cycles
or the feedback function must contain many product terms in order to join the
cycles. Most of the existing methods are not efficient for producing de Bruijn
sequences of period 2n, n ≥ 30.

The objective of this paper is to investigate how to generate a de Bruijn se-
quence where the corresponding span n sequence has a large linear complexity
through an iterative method or a composition method. The contribution of this
paper is that first we refine Mykkeltveit et al.’s iterative method [21] for gen-
erating a large period de Bruijn sequence from a feedback function of a short
stage feedback shift register which generates a span n sequence. Then we give
an analysis of the recursively constructed nonlinear recurrence relation from a
cryptographic point of view. In the analysis, we investigate an approximation
of the feedback function by setting some product terms as constant functions,
and determine the cycle structure of an approximated feedback function and the
linear complexity of a sequence generated by an approximated feedback func-
tion. The analysis also shows that the de Bruijn sequences generated by the
composition have strong cryptographic properties if the starting short span n
sequence is strong. Thirdly, we derive a compact representation of an (n+ 16)-
stage NLFSR and present a few instances of cryptographically strong de Bruijn
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sequences with periods in the range of 235 and 240 together with the discussions
of their implementation issues.

The paper is organized as follows. In Sect. 2, we define some notations and
recall some background results that are used in this paper. Sect. 3 presents the
recursive construction of the arbitrary stage NLFSRs. In Sect. 4, we analyze
the feedback functions of the recursive NLFSRs from a cryptographic point of
view. In Sect. 5, we present a few instances of cryptographically strong de Bruijn
sequences with periods in the range of 235 and 240. In Sect. 6, we describe the
methods for optimizing the number of additions for computing the feedback
function of an 40-stage recursive NLFSR. Finally, in Sect. 7, we conclude the
paper.

2 Preliminaries

In this section, we define and explain some notations, terms and mathematical
functions that will be used in this paper.

- �2 = {0, 1} : the Galois field with two elements.
- �2t : a finite field with 2t elements that is defined by a primitive element α
with p(α) = 0, where p(x) = c0 + c1x + · · · + ct−1x

t−1 + xt is a primitive
polynomial of degree t (≥ 2) over �2.

- Zn
o and Zn

e denote two sets of odd integers and even integers between 1 and
n, respectively.

- Supp(f) : the set of all inputs for which f(x) = 1, x ∈ �2n , where f is a
Boolean function in n variables.

- H(f) : the Hamming weight of the Boolean function f .
- ψ(x0, x1) = x0 + x1 : a Boolean function in two variables.

2.1 Basic Definitions and Properties

Let a = {ai} be a periodic binary sequence generated by an n-stage linear or
nonlinear feedback shift register, which is defined as [9]

an+k = f(ak, ..., ak+n−1) = ak + g(ak+1, ..., ak+n−1), ai ∈ �2, k ≥ 0 (1)

where (a0, ..., an−1) is called the initial state of the feedback shift register, f
is a Boolean function in n variables and g is a Boolean function in (n − 1)
variables. The recurrence relation (1) is called a nonsingular recurrence relation.
If the function f is an affine function, then the sequence a is called an LFSR
sequence; otherwise it is called an NLFSR sequence. The minimal polynomial
of the sequence a is defined by the LFSR of shortest length that can generate
the sequence and the degree of the minimal polynomial determines the linear
complexity of the sequence a.

The linear span of a de Bruijn sequence, denoted as LSdb, is bounded by
2n−1 + n+ 1 ≤ LSdb ≤ 2n − 1 [2]. On the other hand, the linear span of a span
n sequence, denoted as LSs, is bounded by 2n < LSs ≤ 2n − 2 [20]. From this
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property, we say that a span n sequence has an optimal or suboptimal linear
span if its linear span is equal to 2n − 2 or close to 2n − 2.

It is well known that a nonsingular feedback shift register with a feedback
function f partitions the space of 2n n-tuples into a finite number of cycles,
which is known as the cycle decomposition or cycle structure of f and we denote
by Ω(f) the cycle decomposition of f . Each cycle in Ω(f) can be considered as
a periodic sequence.

Proposition 1. [9] Let f be a feedback function in n variables that generates a

span n sequence, then the function h = f +
∏n−1

i=1 (xi + 1) generates a de Bruijn
sequence.

The Welch-Gong (WG) Transformation

Let Tr(x) = x + x2 + · · · + x2t−1

, x ∈ �2t , be the trace function mapping from
�2t to �2. Let t > 0 with (t mod 3) �= 0 and 3k ≡ 1 mod t for some integer k.
We define a function h from �2t to �2t by h(x) = x+ xq1 + xq2 + xq3 + xq4 and
the exponents are given by

q1 = 2k + 1, q2 = 22k + 2k + 1, q3 = 22k − 2k + 1, q4 = 22k + 2k − 1.

The functions, from �2t to �2, defined by

fd(x) = Tr(h(xd + 1) + 1) and gd(x) = Tr(h(xd)),

are known as the WG transformation and five-term (or 5-term) function, respec-
tively [10, 11], where d is a coset leader which is co-prime with 2t − 1. The WG
transformation has good cryptographic properties such as high algebraic degree,
high nonlinearity. Moreover, a WG sequence has high linear span [11].

2.2 Composite Recurrence Relations

Let g(x0, ..., xn−1, xn) = x0 + G(x1, x2, ..., xn−1) + xn = 0 and f(x0, ...,
xm−1, xm) = x0 + F (x1, x2, ..., xm−1) + xm = 0 be two recurrence relations
of n and m stages, respectively that generate periodic sequences, where G and
F are Boolean functions in (n− 1) and (m− 1) variables, respectively. Then, a
composite recurrence relation, denoted as g ◦ f , is defined by [21]

g ◦ f = g(f(x0, ..., xm), f(x1, ..., xm+1), ..., f(xn, ..., xm+n−1)) = 0,

which is a recurrence relation of (n+m) stages. The operation “◦” is regarded as
the composition operation of recurrence relations. For more detailed treatments
on the cycle decomposition of a composite recurrence relation, see [21].

Lemma 1. [21] Let p be a characteristic polynomial, and q(x0, ..., xn) = x0 +
xn + w(x1, ..., xn−1) where w is a Boolean function in (n− 1) variables and let
a ∈ Ω(q) and x ∈ Ω(q◦p). If the minimal polynomial of a is coprime with p, then
x = b + c where b’s and a’s minimal polynomials are the same and c’s minimal
polynomial is p.
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Theorem 1. [21] Let g = x0+xn+f(x1, ..., xn−1), which generates a de Bruijn
sequence with period 2n and let ψ(x0, x1) = x0 + x1. Then both h1 = g ◦ ψ +∏

i∈Zn
o
xi

∏
i∈Zn

e
(xi + 1) and h2 = g ◦ ψ +

∏
i∈Zn

o
(xi + 1)

∏
i∈Zn

e
xi generate de

Bruijn sequences with period 2n+1.

3 Recursive Feedback Functions in Composed de Bruijn
Sequences

In [21], Mykkeltveit et al. mentioned the idea of constructing a long stage NLFSR
from a short stage NLFSR by repeatedly applying Theorem 1 when g is a linear
function in two variables that generates a de Bruijn sequence. In this section, we
first refine Mykkeltveit et al.’s method and then we show an analytic formulation
of a recursive feedback function of an (n+k)-stage NLFSR, which is constructed
from a feedback function of an n-stage NLFSR by repeatedly applying Theorem 1
and the composition operation.

3.1 The k-th Order Composition of a Boolean Function

Let g(x0, x1, ..., xn) = x0 + xn + G(x1, x2, ..., xn−1) be a Boolean function in
(n + 1) variables where G is a Boolean function in (n − 1) variables. The first
order composition of ψ and g, denoted as g ◦ ψ, is given by [21]

g ◦ ψ = g(x0 + x1, x1 + x2, ..., xn + xn+1)

= x0 + x1 + xn+1 + xn +G(x1 + x2, ..., xn−1 + xn).

Similarly, the k-th order composition of g with respect to ψ, denoted as g ◦ψk, is
defined by g ◦ψk =

(
g ◦ ψk−1

)
◦ψ, where g ◦ψk−1 is (k−1)-th order composition

of g with respect to ψ.

3.2 Repeated Compositions of a Product Term

Let Xp
0 be a product term in p variables which is given by

Xp
0 =

∏
i∈Zp

o

xi

∏
i∈Zp

e

(xi + 1).

Then the first order composition of Xp
0 with respect to ψ, denoted as Xp

1 , is
given by

Xp
1 =

∏
i∈Zp

o

(xi + xi+1)
∏
i∈Zp

e

(xi + xi+1 + 1)

which is a product of sum terms in (p + 1) variables. Similarly, the k-th order
composition ofXp

0 with respect to ψ, denoted byXp
k , is defined asXp

k = (Xp
k−1)◦

ψ, which is a product of sum terms in (p+k) variables. Note that the composition
operation with respect to ψ increases the number of variables in Xp

0 by one when
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it repeats once, but the composition operation does not increase the algebraic
degree of Xp

0 .

We denote by Jn−1 =
∏n−1

i=1 (xi + 1). In a similar manner, the k-th order
composition of Jn−1 with respect to ψ, denoted as Jn−1

k , is defined by Jn−1
k =(

Jn−1
k−1

)
◦ ψ, where Jn−1

k−1 is the (k − 1)-th order composition of Jn−1.
Let us now define a function Ink in (n+ k − 1) variables as follows

Ink (x1, x2, ..., xn+k−1) = Jn−1
k +Xn

k−1 +Xn+1
k−2 + · · ·+Xn+k−2

1 +Xn+k−1
0 .

Then, Ink satisfies the following recursive relation

Ink+1 = Ink ◦ ψ +Xn+k
0 , for k ≥ 0 and n ≥ 2,

where In0 = Jn−1.

3.3 The Recursive Construction of the NLFSR

In this subsection, we give the construction of an (n + k)-stage NLFSR that is
constructed from an n-stage NLFSR.

Proposition 2. Let g(x0, x1, ..., xn) = xn+x0+G(x1, x2, ..., xn−1), which gen-
erates a span n sequence of period 2n − 1, where G is a Boolean function in
(n− 1) variables. Then, for any integer k ≥ 0, Rn

k (x0, x1, ..., xn+k) = (xn+x0)◦
ψk +G(x1, x2, ..., xn−1) ◦ψk + Ink (x1, ..., xn+k−1) generates a de Bruijn sequence
of period 2n+k.

Proof. By applying Theorem 1 to the feedback function (g + Jn−1) k times, it
becomes

Rn
k (x0, x1, ..., xn+k) = (xn + x0) ◦ ψk +G(x1, x2, ..., xn−1) ◦ ψk+

Ink (x1, ..., xn+k−1), k ≥ 0 (2)

= (xn + x0) ◦ ψk +G(x1 ◦ ψk, ..., xn−1 ◦ ψk)+

Ink (x1, x2, ..., xn+k−1). (3)

The function Rn
k is a feedback function in (n+ k) variables of an (n+ k)-stage

NLFSR and the recurrence relation, Rn
k = 0, generates a de Bruijn sequence

with period 2n+k. �

One can construct the feedback function Rn
k+1 from Rn

k in the following recursive
manner

Rn
k+1 = Rn

k ◦ ψ +Xn+k
0 or Rn

k+1 = g ◦ ψk+1 + Ink+1, k ≥ 0

where Rn
0 = (g + Jn−1).

Remark 1. For k = 1, Proposition 2 is the same as Theorem 1 which is also found
by Lempel in [18]. For k = 1 and g is a primitive polynomial, Proposition 2 is
similar to Theorem 2 in [21].
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Remark 2. According to Theorem 1, the product term Xp
0 in the recurrence

relation (2) can be replaced by the product term
∏

i∈Zp
o
(xi + 1)

∏
i∈Zp

e
xi.

We now present an explicit form of the product terms of In16 for a recurrence
relation of (n+ 16) stages, which is derived by putting k = 16 in the recurrence
relation (2). Then, the nonlinear recurrence relation of (n + 16) stages is given
by

Rn
16(x0, ..., xn+16) = xn+16 + xn + x0 + x16 +G(x1 + x17, ..., xn−1 + xn+15)

+ Jn−1
16 +Xn

15 + · · ·+Xn+14
1 +Xn+15

0 = 0 (4)

where Jn−1
16 =

∏n−1
i=1 (xi+xi+16+1) and X i

j = T i
o,j ·T i

e,j , i+j = (n+15), n ≤ i ≤
n+15, T i

o,j and T i
e,j are given in Table 2 (see Appendix). In the product terms,

the subscripts o and e represent the odd indices product terms and even indices
product terms. Note that each product term X i

j, i+j = (n+15), n ≤ i ≤ n+15,
is a function of (n+ 15) variables.

4 Cryptanalysis of the Recursively Constructed NLFSR
for Generating de Bruijn Sequences

Since the feedback function contains Ink and it includes many product terms
whose algebraic degrees are high and the Hamming weights of these product
terms are low, as a result, the function Ink can be approximated by a linear
function or a constant function with high probability. In this section, we first
investigate the success probability of approximating the function Ink by the zero
function. We then study the cycle decomposition of an approximated recurrence
relation after a successful approximation of the feedback function with high
probability.

4.1 Hamming Weights of the Product Terms and In
k

Before calculating the success probability of approximating the function Ink by
the zero function, we first need to derive the Hamming weight of a composed
product term as Ink is a sum of (k + 1) composed product terms.

Proposition 3. For an integer r ≥ 1, the Hamming weight of Xp
r is equal to

2r.

Proof. For any product term Xp
0 , the r-order composition is of the form Xp

r =∏
i∈Zp

o
Ui ·

∏
i∈Zp

e
Vi, where Ui is a sum of at most (r+1) variables and Vi is also

a sum of at most (r + 1) variables and the exact number of variables in Ui/Vi

depends on the value of r. For simplicity, we assume that r = 2l, l ≥ 0. To find
the Hamming weight of Xp

r , there are two cases to arise.
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Case I: When 1 ≤ p ≤ r + 1
If r = 2l, then Ui and Vj can be written as Ui = xi + xi+r , i ∈ Zp

o , Vj =
(xj + xj+r + 1), j ∈ Zp

e , respectively. X
p
r = 1 if and only if Ui = 1 and Vj = 1

for all i ∈ Zp
o and j ∈ Zp

e . This implies

x1 = 1 + x1+r = 1 + x1+2r = · · · = 1 + xl1 = 0/1

x2 = x2+r = x2+2r = · · · = xl2 = 0/1

...

xp = 1 + xp+r = 1 + xp+2r = · · · = 1 + xln = 0/1, if p is odd

xp = xp+r = xp+2r = · · · = xlp = 0/1, if p is even

where li ≤ p+ r, i = 1, 2, ..., p. Note that Xp
r is a function in (p + r) variables.

For an (p + r)-tuple with Xp
r = 1, the values at 2p positions are determined

by the values at p positions, which follows from the above set of equations and
the remaining (p+ r− 2p) positions can take any binary value. Hence, the total
number of (p+ r)-tuples for which Xp

r = 1 is equal to 2p · 2r−p = 2r.

Case II: When p ≥ r + 1
Similarly, Xp

r = 1 if and only if Ui = 1 and Vj = 1 for all i ∈ Zp
o and j ∈ Zp

e .
This implies

x1 = 1 + x1+r = 1 + x1+2r = · · · = 1 + xl1 = 0/1

x2 = x2+r = x2+2r = · · · = xl2 = 0/1

...

xr−1 = 1 + x2r−1 = · · · = 1 + xlr−1 = 0/1

xr = x2r = · · · = xlr = 0/1

where li ≤ p + r, i = 1, 2, ..., r. According to the above system of equations,
the binary values at (p + r) positions are determined by the binary values at r
positions and these r positions can take any values. Hence, the total number of
(p+ r)-tuples for which Xp

r = 1 is given by 2r.
By considering Ui = 1 and Vj = 1 for all i ∈ Zp

o and j ∈ Zp
e as a system

of linear equations with p equations and (p + r) unknown variables over �2, it
follows that the Hamming weight of Xp

r is equal to the number of solutions of
the system of linear equations, which is equal to 2p+r−r = 2r for any positive
integer r(�= 2l). �

Proposition 4. For any integer r ≥ 1, the Hamming weight of Jn−1
r is equal

to 2r.

Proof. The proof is similar to the proof of Proposition 3. �

Proposition 5. For any integer k ≥ 1 and n ≥ 2, the Hamming weight of
function Ink is equal to 2k + 1. One can approximate function Ink by the zero
function with probability (1− 1

2n−1 − 1
2n+k−1 ).
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Proof. By Proposition 3, the Hamming weight of Xn+k−1−j
j is equal to 2j

for 0 ≤ j ≤ k − 1. Note that Xn+k−1−j
j = 1 is a system of linear equa-

tions with (n + k − 1 − j) equations and (n + k − 1) unknown variables and

Supp(Xn+k−1−j
j ) contains the set of all solutions. It is not hard to show that the

support of Xn+k−1−i
i and Xn+k−1−j

j are disjoint for 0 ≤ i �= j ≤ n− 1. Again,

(∪k−2
j=0Supp(X

n+k−1−j
j )) ⊂ Supp(Jn−1

k ), and Supp(Xn+k−1
k−1 ) and Supp(Jn−1

k )

are disjoint. Then the cardinality of the support of Ink is equal to (2k + 2k−1 −∑k−2
j=0 2

j) = (2k + 2k−1 − 2k−1 + 1) = 2k + 1. Hence, the Hamming weight of Ink
is 2k + 1.

Since the Hamming weight of Ink is 2k +1, the number of inputs for which Ink
takes the value zero is equal to 2n+k−1 − 2k − 1. Hence, one can approximate
the function Ink by the zero function with probability (1− 1

2n−1 − 1
2n+k−1 ). �

4.2 Cycle Structures of the Recurrence Relation After
Approximation

By Proposition 5, the function Ink can be approximated by the zero function
with probability about (1− 1

2n−1 ). As a consequence, Eq. (2) can be written as
follows

Rn
k,a(x0, x1, ..., xn+k) = ((xn + x0) +G(x1, x2, ..., xn−1)) ◦ ψk. (5)

In the following proposition, we provide the cycle structure of the above recur-
rence relation.

Lemma 2. For an integer k ≥ 1, Ω(Rn
k,a) = Ω(g) ⊕ Ω(ψk), i.e., any sequence

x ∈ Ω(Rn
k,a) can be written as x = b + c, where b’s minimal polynomial is the

same as the minimal polynomial of a span n sequence that is generated by g and
c’s minimal polynomial is (1 + x)k and ⊕ denotes the direct sum operation.

Proof. Let s be a span n sequence generated by g and let h(x) the minimal
polynomial of s. Then, h(x) = h1(x) · h2(x) · · · hr(x), where hi’s are distinct
irreducible polynomials of degree less than or equal to n and the value of r
depends on the sequence, see [10, 12, 20]. If hi(x) = (1+ x) for some i, then the
sequence s is not a span n sequence. On the other hand, the minimal polynomial
of ψk is (1 + x)k. Again, the minimal polynomial of a sequence generated by ψk

is a factor of (1 + x)k. As h(x) does not contain the factor (1 + x), the minimal
polynomial of s and the minimal polynomial of ψk are relatively prime with
each other. Then, by Lemma 1, any sequence x ∈ Ω(Rn

k,a) can be represented

by x = b + c where b ∈ Ω(g) and c ∈ Ω(ψk). Hence, the cycle decomposition of
Rn

k,a is a direct sum of Ω(g) and Ω(ψk), i.e., Ω(Rn
k,a) = Ω(g)⊕Ω(ψk). �

Proposition 6. The cycle decomposition of Rn
k,a, i.e., Ω(Rn

k,a) contains 2 ·
(Γ2(k)+1) cycles with (Γ2(k)+1) cycles of period at least 2n−1 and (Γ2(k)+1)
cycles of period at most 2�log2 k	, where Γ2(k) is the number of all coset leaders
modulo 2k − 1.
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Proof. For any positive integer k ≥ 1, the cycle decomposition of ψk is the cycle
decomposition of (1 + x)k, which contains sequences with period 2�log2 i	, 1 ≤
i ≤ k, and the number of cycles is given by (Γ2(k) + 1) including the zero cycle
(see [9], Th. 3.4, page-42). Again, the cycle decomposition of g contains only
two cycles, one is a cycle of length 2n − 1 and the other one is the zero cycle
of length one. Therefore, by Lemma 2, Ω(Rn

k,a) contains 2 · (Γ2(k) + 1) cycles
where (Γ2(k) + 1) cycles are of length at least 2n − 1 and (Γ2(k) + 1) cycles are
of length at most 2�log2 k	. �

Proposition 7. Let Ω(Rn
k,a) be the cycle decomposition of Rn

k,a. For any se-
quence x ∈ Ω(Rn

k,a) with period at least 2n − 1, the linear complexity of x is
bounded below by the linear complexity of the sequence generated by g.

Proof. We already showed in Lemma 2 that any sequence x ∈ Ω(Rn
k,a) can be

written as x = b+c where b ∈ Ω(g), c ∈ Ω(ψk), and the minimal polynomial of b
is coprime with the minimal polynomial of c. Since the minimal polynomial of b
is coprime with the minimal polynomial of c, the linear complexity of x is equal
to the sum of the linear complexities of b and c. Therefore, the linear complexity
of x is greater than or equal to the linear complexity of b. Hence, the assertion
is established. �

Remark 3. Propositions 5, 6, and 7 suggest that in order to generate a strong
de Bruijn sequence by this technique, the starting span n sequence generated
by g should have excellent randomness properties, particularly, long period and
an optimal or suboptimal linear complexity. If an attacker is successful in ap-
proximating the feedback function Rn

k by the feedback function g ◦ψk, then the
security of the sequence generated by Rn

k depends on the security of the sequence
generated by g.

5 Designing Parameters for Cryptographic de Bruijn
Sequences

In this section, we present a few examples of cryptographically strong de Bruijn
sequences with period 2n+k for 19 ≤ n ≤ 24 and k = 16.

5.1 Tradeoff between n and k

From the construction of the recurrence relation, one can determine an (n+ k)-
stage recurrence relation by choosing a small value of n and a large value of k
since for a small value of n it is easy to find a span n sequence and the success
probability of approximating the feedback function is low. However, for such a
choice of the parameters, the recurrence relation contains many product terms,
as a result, the function Ink may not be calculated efficiently. Thus, for generating
a strong de Bruijn efficiently, one needs to choose the parameters in such a way
that the nonlinearly generated span n sequence is large enough and its linear
complexity is optimal, and the number of product terms in Ink is as small as
possible.
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5.2 Examples of de Bruijn Sequences with Large Periods

Let {xj}j≥0 be a binary span n sequence generated by the following n-stage
recurrence relation for a suitable choice of a decimation number d, a primitive
polynomial p(x), and a t-tap position [19]

xn = x0 + fd(xr1 , xr2 , ..., xrt) (6)

where (r1, r2, ..., rt) with 0 < r1 < r2 < · · · < rt < n is called a t-tap position
and fd is a WG transformation. Here the decimation number d is a coset leader
which is coprime with 2t − 1. Then the recurrence relation (4) with G as the
WG transformation can be written as

Rn
16 = xn+16 + xn + x0 + x16 + fd(xr1 + xr1+16, ..., xrt + xrt+16) + Jn−1

16

+Xn
15 +Xn+1

14 + · · ·+Xn+14
1 +Xn+15 = 0 (7)

where Jn−1
16 =

∏n−1
i=1 (xi + xi+16 + 1) and Xp

j = T p
o,j · T

p
e,j, p+ j = (n+ 15), n ≤

p ≤ n + 15, T p
o,j and T p

e,j are given in Table 2. The recurrence relation (7) can
generate a de Bruijn sequence for a suitable choice of a decimation number d,
a primitive polynomial p(x), and a t-tap position. Our de Bruijn sequences are
uniquely represented by the following four parameters: 1) the decimation number
d, 2) the primitive polynomial p(x), 3) the t-tap position (r1, r2, ..., rt), and 4)
Ink .

Table 1 presents a few examples of cryptographically strong de Bruijn se-
quences with periods in the range of 235 and 240. In Table 1, the computations
for the linear complexity of the 24-stage span n sequence has not finished yet.
However, currently the lower bound of the linear complexity is at least 222. For
more instances of span n sequences with an optimal or suboptimal linear span,
see [19].

Table 1. De Bruijn sequences with periods ≥ 235

WG over �2t Decimation Basis Polynomial t-tap positions span n Linear Span, Ink , Period
t d (c0, c1, ..., ct−1) (r1, r2, ..., rt) n span n k 2n+k

13 55 (1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0) (1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 15, 17) 24 −− 16 240

8 53 (1, 1, 1, 0, 0, 1, 1, 1) (1, 2, 5, 6, 8, 11, 12, 15) 21 221 − 5 16 237

8 29 (1, 1, 1, 0, 0, 0, 0, 1) (1, 2, 6, 8, 9, 15, 16, 19) 21 221 − 26 16 237

8 31 (1, 1, 1, 0, 0, 0, 0, 1) (1, 2, 10, 12, 13, 16, 18, 19) 20 220 − 6 16 236

8 1 (1, 1, 0, 0, 0, 1, 1, 0) (1, 3, 4, 5, 8, 11, 12, 15) 19 219 − 2 16 235

7 5 (1, 0, 0, 1, 1, 1, 0) (1, 2, 6, 8, 10, 12, 16) 20 220 − 7 16 236

7 19 (1, 0, 1, 0, 0, 1, 1) (1, 2, 3, 5, 6, 10, 18) 19 219 − 2 16 235

5 1 (1, 1, 1, 0, 1) (5, 10, 12, 18, 19) 20 220 − 2 16 236

Remark 4. In recurrence relation (4), any feedback function g that generates
a span n sequence can be used to produce a long de Bruijn sequence. To the
best of our knowledge, Table 1 contains a set of (longest) de Bruijn sequences
whose algebraic forms of the recurrence relations are known. We here used WG



Cryptographically Strong de Bruijn Sequences 115

transformations for producing long period de Bruijn sequences as a span n se-
quence can be found in a systematic manner by using WG transformations and
the compact representation of the recurrence relation (6). In [23], eight span n
sequences with periods in the range of (222− 1) and (231− 1) are presented and
that have been used in stream cipher Achterbahn.

6 Implementation

In this section, we provide some techniques for optimizing the number additions
in the product terms for k = 16, and give an estimation for the number of
multiplications and the time complexity for computing the function Ink in terms
of n and k.

6.1 Optimizing the Number of Additions

For k = 16, Ink in recurrence relation (7) contains 17 product terms. For example,
for n = 24 and k = 16, one needs 2116 additions for computing all product
terms in Ink . In Table 2, we can observe that many partial-sum terms appear
in different product terms. By reusing the result of a previously computed sum
term, we can optimize the number of additions. For k = 16, three optimization
rules are described in Table 3.

Applying the rules given in Table 3, the total number of additions required
for computing In16 is given by (n − 1 + 32 · �n+5

2 � + 32 · �n+5
2 � + 152) = (32 ·

(n + 5) + n + 151), since the numbers of additions required for OR-I, OR-II
and OR-III in Table 3 are 32, 18 and 5, respectively. For n = 24 and k =
16, the number of additions after applying the above three rules is equal to
1103.

6.2 Number of Multiplications and the Time Complexity for
Computing In

k

The maximum number of multiplications required for computing Ink is given by∑n+k−1
i=n−1 (i−1) = (n(k+1)+ (k−1)(k−2)

2 −3) as one requires (i−1) multiplications
to compute a product of i numbers. For n = 24 and k = 16, the number of
multiplications for computing Ink equals 510.

Proposition 8. The time complexity for computing the function Ink is approx-

imately given by
∑n+k−1

p=n−1�log2 p�.

Proof. To compute a product term Xp
k , n ≤ p ≤ n+ k− 1, one requires at most

�log2 p�-time. Since the function Ink contains (k + 1) product terms, the time

complexity for computing Ink is given by
∑n+k−1

p=n−1�log2 p�. �
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7 Conclusions

In this paper, we first refined a technique by Mykkeltveit et al. for producing a
long period de Bruijn sequence from a short period span n sequence through the
composition operation. We then performed an analysis on the feedback functions
of the long period de Bruijn sequences from the cryptographic point of view. In
our analysis, we studied an approximation of the feedback functions and the
cycle structure of an approximated feedback function, and determined the linear
complexity of a sequence generated by an approximated feedback function. In
addition, we presented a compact representation of an (n + 16)-stage NLFSR
and a few instances of de Bruijn sequences with periods in the range of 235 and
240 together with the discussions of their implementation issues. A long period
de Bruijn sequence produced by this technique can be used as a building block
to design secure lightweight cryptographic primitives such as pseudorandom se-
quence generators and stream ciphers with desired randomness properties.
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A. Explicit Forms of Product Terms of In
16 and

Optimization Rules

We here present the explicit forms of the product terms of In16 in Table 2, the
rules for optimizing the number of additions required for computing the function
In16 in Table 3, and the product terms of Table 2 after applying the optimization
rules in Table 4.

Table 2. Product terms in In16 of recurrence relation (4)

T n
o,15 =

∏
i∈Zn

o

(∑15
l=0 xi+l

)
T n+1
o,14 =

∏
i∈Zn+1

o

(∑7
l=0 xi+2l

)
T n+2
o,13 =

∏
i∈Zn+2

o
(xi + xi+1 +

∑3
l=1(xi+2l + xi+2l+1)) T n+3

o,12 =
∏

i∈Zn+3
o

(
∑3

l=0 xi+4l)

T n+4
o,11 =

∏
i∈Zn+4

o
(
∑4

l=0 xi+l +
∑11

l=8 xi+l) T n+5
o,10 =

∏
i∈Zn+5

o
(xi + xi+2 + xi+8 + xi+10)

T n+6
o,9 =

∏
i∈Zn+6

o
(xi + xi+1 + xi+8 + xi+9) T n+7

o,8 =
∏

i∈Zn+7
o

(xi + xi+8)

T n+8
o,7 =

∏
i∈Zn+8

o
(
∑7

l=0 xi+l) T n+9
o,6 =

∏
i∈Zn+9

o
(
∑3

l=0 xi+2l)

T n+10
o,5 =

∏
i∈Zn+10

o
(xi + xi+1 + xi+4 + xi+5) T n+11

o,4 =
∏

i∈Zn+11
o

(xi + xi+4)

T n+12
o,3 =

∏
i∈Zn+12

o
(
∑3

l=0 xi+l) T n+13
o,2 =

∏
i∈Zn+13

o
(xi + xi+2)

T n+14
o,1 =

∏
i∈Zn+14

o
(xi + xi+1) T n+15

o,0 =
∏

i∈Zn+16
o

xi

T n
e,15 =

∏
i∈Zn

e
(
∑15

l=0 xi+l + 1) T n+1
e,14 =

∏
i∈Zn+1

e
(
∑7

l=0 xi+2l + 1)

T n+2
e,13 =

∏
i∈Zn+2

e
(xi + xi+1 +

∑3
l=1(xi+2l + xi+2l+1) + 1) T n+3

e,12 =
∏

i∈Zn+3
e

(
∑3

l=0 xi+4l + 1)

T n+4
e,11 =

∏
i∈Zn+4

e
(
∑4

l=0 xi+l +
∑11

l=8 xi+l + 1) T n+5
e,10 =

∏
i∈Zn+5

e
(xi + xi+2 + xi+8 + xi+10 + 1)

T n+6
e,9 =

∏
i∈Zn+6

e
(xi + xi+1 + xi+8 + xi+9 + 1) T n+7

e,8 =
∏

i∈Zn+7
e

(xi + xi+8 + 1)

T n+8
e,7 =

∏
i∈Zn+8

e
(
∑7

l=0 xi+l + 1) T n+9
e,6 =

∏
i∈Zn+9

e
(
∑3

l=0 xi+2l + 1)

T n+10
e,5 =

∏
i∈Zn+10

e
(xi + xi+1 + xi+4 + xi+5 + 1) T n+11

e,4 =
∏

i∈Zn+11
e

(xi + xi+4 + 1)

T n+12
e,3 =

∏
i∈Zn+12

e
(
∑3

l=0 xi+l + 1) T n+13
e,2 =

∏
i∈Zn+13

e
(xi + xi+2 + 1)

T n+14
e,1 =

∏
i∈Zn+14

e
(xi + xi+1 + 1) T n+15

e,0 =
∏

i∈Zn+16
e

(xi + 1)
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Table 3. Optimization rules for addition

Optimization Rule I
Y 1
1,i = xi + xi+1 Y 2

1,i = xi+2 + xi+3 Y 1
3,i = xi+8 + xi+9 Y 2

3,i = xi+10 + xi+11

Y 1
2,i = xi+4 + xi+5 Y 2

2,i = xi+6 + xi+7 Y 1
4,i = xi+12 + xi+13 Y 2

4,i = xi+14 + xi+15

Y1,i = Y 1
1,i + Y 2

1,i Y2,i = Y 1
2,i + Y 2

2,i Y0,2,i = xi + xi+2 Y4,6,i = xi+4 + xi+6

Y3,i = Y 1
3,i + Y 2

3,i Y4,i = Y 1
4,i + Y 2

4,i Y8,10,i = xi+8 + xi+10 Y12,14,i = xi+12 + xi+14

Q0,i = xi Q4,i = xi + xi+4 Q3,i = Y1,i Q7,i = Q3,i + Y2,i

Q8,i = xi + xi+8 Q12,i = Q4,i + xi+8 + xi+12 Q11,i = Q3,i + Y3,i Q15,i = Q7,i + Y3,i + Y4,i

Q2,i = Y0,2,i Q6,i = Q2,i + Y4,6,i Q1,i = Y 1
1,i Q5,i = Q1,i + Y 1

2,i

Q10,i = Q2,i + Y8,10,i Q14,i = Q6,i + Y8,10,i + Y12,14,i Q9,i = Q1,i + Y 1
3,i Q13,i = Q5,i + Y 1

3,i + Y 1
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Y 1
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T n
o,15 =

∏
i∈Zn

o
Q15,i T n+1

o,14 =
∏

i∈Zn+1
o

Q14,i

T n+2
o,13 =

∏
i∈Zn+2

o
Q13,i T n+3

o,12 =
∏

i∈Zn+3
o

Q12,i

T n+4
o,11 =

∏
i∈Zn+4

o
Q11,i T n+5

o,10 =
∏

i∈Zn+5
o

Q10,i

T n+6
o,9 =

∏
i∈Zn+5

o
Q9,i ·W9,n+6 T n+7

o,8 =
∏

i∈Zn+5
o

Q11,i

∏n+7
i=n+6,oddW8,i

T n+8
o,7 =

∏
i∈Zn+5

o
Q7,i ·

∏n+8
i=n+6,oddW7,i T n+9

o,6 =
∏

i∈Zn+5
o

Q6,i ·
∏n+9

i=n+6,oddW6,i

T n+10
o,5 =

∏
i∈Zn+5

o
Q5,i ·

∏n+10
i=n+6,odd W5,i T n+11

o,4 =
∏

i∈Zn+5
o

Q4,i ·
∏n+11

i=n+6,oddW4,i

T n+12
o,3 =

∏
i∈Zn+5

o
Q3,i ·

∏n+11
i=n+6,oddW3,i · Z3,n+12 T n+13

o,2 =
∏

i∈Zn+5
o

Q2,i ·
∏n+11

i=n+6,oddW2,i ·
∏n+13

i=n+12,odd Z2,i

T n+14
o,1 =

∏
i∈Zn+5

o
Q1,i ·

∏n+11
i=n+6,oddW1,i ·

∏n+13
i=n+12,odd Z1,i · (xn+14 + xn+15) T n+15

o,0 =
∏

i∈Zn+16
o

xi

T n
e,15 =

∏
i∈Zn

e
Q15,i T n+1

e,14 =
∏

i∈Zn+1
e

Q14,i

T n+2
e,13 =

∏
i∈Zn+2

e
Q13,i T n+3

e,12 =
∏

i∈Zn+3
e

Q12,i

T n+4
e,11 =

∏
i∈Zn+4

e
Q11,i T n+5

e,10 =
∏

i∈Zn+5
e

Q10,i

T n+6
e,9 =

∏
i∈Zn+5

e
Q9,i ·W9,n+6 T n+7

e,8 =
∏

i∈Zn+5
e

Q11,i

∏n+7
i=n+6,even W8,i

T n+8
e,7 =

∏
i∈Zn+5

e
Q7,i ·

∏n+8
i=n+6,even W7,i T n+9

e,6 =
∏

i∈Zn+5
e

Q6,i ·
∏n+9

i=n+6,even W6,i

T n+10
e,5 =

∏
i∈Zn+5

e
Q5,i ·

∏n+10
i=n+6,even W5,i T n+11

e,4 =
∏

i∈Zn+5
e

Q4,i ·
∏n+11

i=n+6,even W4,i

T n+12
e,3 =

∏
i∈Zn+5

e
Q3,i ·

∏n+11
i=n+6,even W3,i · Z3,n+12 T n+13

e,2 =
∏

i∈Zn+5
e

Q2,i ·
∏n+11

i=n+6,oddW2,i ·
∏n+13

i=n+12,even Z2,i

T n+14
e,1 =

∏
i∈Zn+5

e
Q1,i ·

∏n+11
i=n+6,even W1,i ·

∏n+13
i=n+12,even Z1,i · (xn+14 + xn+15) T n+15

e,0 =
∏

i∈Zn+16
e

xi



Cryptanalysis of the Loiss Stream Cipher

Alex Biryukov1, Aleksandar Kircanski2, and Amr M. Youssef2

1 University of Luxembourg
Laboratory of Algorithmics, Cryptology and Security (LACS)
Rue Richard Coudenhove-Kalergi 6, Luxembourg, Luxembourg

2 Concordia University
Concordia Institute for Information Systems Engineering (CIISE)

Montreal, Quebec, H3G 1M8, Canada

Abstract. Loiss is a byte-oriented stream cipher designed by Dengguo
Feng et al. Its design builds upon the design of the SNOW family of ci-
phers. The algorithm consists of a linear feedback shift register (LFSR)
and a non-linear finite state machine (FSM). Loiss utilizes a structure
called Byte-Oriented Mixer with Memory (BOMM) in its filter gener-
ator, which aims to improve resistance against algebraic attacks, linear
distinguishing attacks and fast correlation attacks. In this paper, by ex-
ploiting some differential properties of the BOMM structure during the
cipher initialization phase, we provide an attack of a practical complex-
ity on Loiss in the related-key model. As confirmed by our experimental
results, our attack recovers 92 bits of the 128-bit key in less than one
hour on a PC with 3 GHz Intel Pentium 4 processor. The possibility of
extending the attack to a resynchronization attack in a single-key model
is discussed. We also show that Loiss is not resistant to slide attacks.

1 Introduction

Several word-oriented LFSR-based stream ciphers have been recently proposed
and standardized. Examples include ZUC [1], proposed for use in the 4G mobile
networks and also SNOW 3G [3], which is deployed in the 3GPP networks.
The usual word-oriented LFSR-based design consists of a linear part, which
produces sequences with good statistical properties and a finite state machine
which provides non-linearity for the state transition function.

In 2011, the Loiss stream cipher [4] was proposed by a team from the State Key
Laboratory of Information Security in China. The cipher follows the above men-
tioned design approach: it includes a byte-orientedLFSR and anFSM.The novelty
in the design of Loiss is that its FSM includes a structure called a Byte Oriented-
Mixer withMemory (BOMM)which is a 16 byte array adopted from the idea of the
RC4 inner state. The BOMM structure is updated in a pseudorandommanner.

The Loiss key scheduling algorithm utilizes a usual approach to provide non-
linearity over all the inner state bits. During the initialization phase, the FSM
output is connected to the LFSR update function. This ensures that after the
initialization process, the LFSR content depends non-linearly on the key and

L.R. Knudsen and H. Wu (Eds.): SAC 2012, LNCS 7707, pp. 119–134, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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the IV. Such an approach has been previously used in several LFSR-based word-
oriented constructions such as the SNOW family of ciphers [3]. In Loiss, however,
the FSM contains the BOMM element which is updated slowly in a pseudo-
random manner. The feedback to the LFSR, used in the initialization phase,
passes through this BOMM which turns out to be exploitable in a differential-
style attack since the BOMM does not properly diffuse differences.

In this paper, we provide a related-key attack of a practical complexity against
the Loiss stream cipher by exploiting this weakness in its key scheduling algo-
rithm (see also [7] for a work that was done independently of our results). The
attack requires two related keys differing in one byte, a computational work of
around 226 Loiss initializations, 225.8 chosen-IVs for both of the related keys,
offline precomputation of around 226 Loiss initializations and a storage space of
232 words. This shows that the additional design complication, i.e., the addition
of the BOMM mechanism, weakens the cipher instead of strengthening it. We
also discuss the possibility of extending such a related-key attack into a resyn-
chronization single-key attack. Finally, we show that Loiss does not properly
resist to slide attacks.

The rest of the paper is organized as follows. In section 2, we briefly review
relevant specifications of the Loiss stream cipher. Our related-key attack is de-
tailed in section 3 where we also discuss the possibility of extending the attack
to the single-key scenario. In section 4, we show that Loiss is not resistant to
slide attacks. Finally, our conclusion is given in section 5.

2 Specifications of Loiss

Figure 1 shows a schematic description of the Loiss stream cipher. In here, we
briefly review relevant components of the cipher. Let F28 denote the quotient
field F2[x]/(π(x)), where the corresponding primitive polynomial π(x) = x8 +
x7 + x5 + x3 + 1. If α is a root of the polynomial π(x) in F28 , then the LFSR of
Loiss is defined over F28 using the characteristic polynomial

f(x) = x32 + x29 + αx24 + α−1x17 + x15 + x11 + αx5 + x2 + α−1.
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Fig. 1. Loiss stream cipher
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The usual bijection between the elements of F28 and 8-bit binary values is used.
The LFSR consists of 32 byte registers denoted by si, 0 ≤ i ≤ 31. Restating
the above equation, if st0, . . . , s

t
31 denote the LFSR registers after t LFSR clocks,

then the LFSR update function is defined by

st+1
31 = st29 ⊕ αst24 ⊕ α−1st17 ⊕ st15 ⊕ st11 ⊕ αst5 ⊕ st2 ⊕ α−1st0 (1)

and st+1
i = sti+1 for 0 ≤ i ≤ 30.

The FSM consists of the function F and the BOMM. The function F com-
presses 32-bit words into 8-bit values. It utilizes a 32-bit memory unit R and
takes LFSR registers s31, s26, s20 and s7 as input. In particular, in each step,
the output of F is taken to be the 8 leftmost bits of the register R, after which
the R value is updated by

X = st31|st26|st20|st7
Rt+1 = θ(γ(X ⊕Rt))

where γ is the S-box layer which uses 8× 8 S-box S1 and is defined by

γ(x1|x2|x3|x4) = S1(x1)|S1(x2)|S1(x3)|S1(x4)

and θ is a linear transformation layer defined by

θ(x) = x⊕ (x <<< 2)⊕ (x <<< 10)⊕ (x <<< 18)⊕ (x <<< 24)

Since the attack technique provided in this paper does not depend on the par-
ticular choice of the used S-boxes, we refer the reader to [4] for the specifications
of S1 and S2.

As for the BOMM structure, it utilizes 16 memory units, i.e., bytes y0, . . . , y15.
The BOMM function maps 8-bit values to 8-bit values. Let w and v denote the
input and output of the BOMM function. Denote the nibbles of its input w as
h = w >> 4 and l = w mod 16. Then, the BOMM function returns v = yth ⊕ w,
after which the update of its memory units takes place as follows:

yt+1
l = ytl ⊕ S2(w)
If h �= l, then

yt+1
h = yth ⊕ S2(y

t+1
l )

else
yt+1
h = yt+1

l ⊕ S2(y
t+1
l )

yt+1
i = yti , for 0 ≤ i ≤ 15 and i /∈ {h, l}

where S2 is an 8 × 8 S-box. In the FSM update step, the input to the BOMM
function, i.e., the w value, is taken to be leftmost byte of the output of the F
function.

The initialization procedure of Loiss proceeds as follows. The register R is set
to zero, i.e., R0 = 0. If the key K and the initialization vector IV are represented
byte-wise as
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K = K15|K14| · · · |K0

IV = IV15|IV14| · · · |IV0,
(2)

then the starting inner state (s031, . . . , s
0
0, R

0, y015, . . . , y
0
0) is loaded with the K

and IV as follows:

s0i = Ki, s0i+16 = Ki ⊕ IVi, y0i = IVi (3)

for 0 ≤ i ≤ 15. Then, Loiss runs for 64 steps and the output of the BOMM
takes part in the LFSR update step. In other words, instead of (1), the following
LFSR update function is used:

st+1
31 = st29 ⊕ αst24 ⊕ α−1st17 ⊕ st15 ⊕ st11 ⊕ αst5 ⊕ st2 ⊕ α−1st0 ⊕ vt (4)

Then, the keystream generation stage starts. Loiss generator produces one byte
of keystream per step:

zt = st0 ⊕ vt.

In general, except for the new BOMM component, the whole Loiss design is very
similar to the design of the SNOW 3G cipher. It is also interesting to note that
the same θ linear layer has been used in the SMS4 block cipher [2] and also in
ZUC [1].

3 Proposed Attack

In this section, a differential-style attack against the Loiss key scheduling algo-
rithm is presented. The attack requires two related keys that differ in one byte.
It also requires the ability to resynchronize the cipher under the two keys with
chosen IV values.

The attack starts by having the pair of inner states right after the key load-
ing step differ only in one LFSR byte and one BOMM byte. Then, the idea is to
have the LFSR difference fully cancelled. We use the fact that the BOMM output
participates in the LFSR update step during the initialization and the BOMM
difference helps us to cancel out the LFSR difference through the feedback. Once
the difference in the LFSR is fully cancelled, only the BOMM component is active
and moreover, with a single byte difference. Then, since the BOMM does not have
proper diffusion properties, the single-byte difference stays localized in the BOMM
until the end of the initialization, which can be detected from the keystream.

The probability of the event that a given BOMM byte is not used during the
initialization is (1516 )

128 ≈ 2−12, since a BOMM element is consulted 128 times
during the 64 initialization steps. If the active byte has not been used until
the end of the initialization, the two instances of the cipher generate several
equal keystream bytes with high probability. Namely, the difference at the point
where the keystream is to be produced will be of low-weight and localized in the
BOMM. Therefore, spotting large number of zero bytes in the starting keystream
byte difference indicates that the LFSR difference cancellations described above
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took place. These cancellations happen only when certain equations in the start-
ing LFSR bytes are satisfied and consequently, since the starting LFSR bits are
related to the key bits, information about the key bits leaks.

Let K and K ′ differ only in the byte K3. The steps of the attack can be
summarized as follows:

- Construct a list of (IV, IV ′) pairs for which the LFSR state difference can-
cellation happens. The cancellation event is described in section 3.1, the
distinguisher used to detect this event is given in section 3.2 and a proce-
dure for collecting the (IV, IV ′) pairs is provided in section 3.3.

- Use this collection of IVs as input to the filtering procedure to filter the
wrong key candidates, as described in section 3.4.

The attack recovers 92 bits of the key and the remaining 128− 92 = 36 bits can
be obtained by brute force. In another variant of the attack, 112 bits of the key
are recovered and the rest are found by brute-force.

3.1 Cancelling the LFSR Difference

In this section, a necessary and sufficient condition for the starting inner state
difference to be fully cancelled in the LFSR after 4 steps is provided. The condi-
tion is specified in terms of the leftmost byte of the R register in the first 4 steps.
Then, the conditions on the R register as provided by Observation 1 below leak
information on the early LFSR bytes and thus about the secret key.

The key-loading mechanism (3) allows having a chosen difference only at bytes
s3 and y3 at time t = 0. Namely, it suffices to have

K3 ⊕K ′
3 = IV3 ⊕ IV ′

3 = δ (5)

and the rest of the K,K ′ and also IV, IV ′ bytes to have a zero-difference. More-
over, the key-loading mechanism trivially allows choosing the starting values of
the y3 register. This is done by choosing the IV3 byte, since the IV is simply
copied into the BOMM. This shows that the assumptions required by Obser-
vation 1 (i.e., the particular difference value 0x02 in s3 and y3 and also the
y3 = 0x9d constant) can be satisfied. Recall that wt denotes the leftmost byte
of the R register at time t ≥ 0.

Observation 1. Let a pair of Loiss inner states have only s3 and y3 bytes active,
both with difference 0x02. Also, let y3 = 0x9d. Then, after 4 steps, the LFSR
does not contain any active byte if and only if

(w0, w1, w2, w3) = (0x00, 0x33, 0xK?, 0x3?) (6)

where K is any hexadecimal digit different from 0x3 and the symbol ‘?” denotes
any hexadecimal digit.

The proof of the observation above is given in Appendix B. Here, a descriptive
overview of the cancellation specified by Observation 1 is provided. In Figure 2,
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the BOMM and the LFSR bytes s3, s2, s1, s0 are shown during the first four steps.
In the second and the fourth states in the figure, the cancellation of the LFSR
difference by the feedback byte to the LFSR update is denoted. In the first step,
the difference does not enter neither the LFSR update function nor the feedback
value (since w0 = 0x00). In the second step, it is required that w1 = 0x33 for the
difference to be cancelled and also to be updated to the next necessary BOMM
difference value, 2α−1. In the third step, the difference is neither passed to the
LFSR nor changed in the BOMM. Finally, in the fourth step, the difference in the
LFSR byte s0 is cancelled and the LFSR becomes fully inactive.

It should be noted that Observation 1 holds for other difference values apart
from δ = 0x02. The set Δ of such differences is given in Appendix A. In particu-
lar, Observation 1 is true for any δ ∈ F 8

2 such that the input differences α−1× δ
and δ cannot be mapped to the output differences α−1 × δ by the S2 S-box (see
the (⇒) part of the proof in Appendix B). For each difference from the set Δ,
the initial constant for y30 is calculated from (14).

The overall probability that there will be only one BOMM byte, y3, active
after all of the 64 steps of the key scheduling procedure is estimated next. For
this event to happen, it suffices to have (6) satisfied in addition to ensuring
that the y3 difference does not propagate to other bytes during the initialization
procedure. The event (6) happens with probability pw = 2−8× 15

16×2−4 ≈ 2−12.1.
The event by which the y3 difference does not propagate to any other byte is
equivalent to the event of wt mod 16 �= 0x3 and wt >> 4 �= 0x3 for 4 ≤ t ≤ 63,
and w2 mod 16 �= 3. The latter condition is included since Observation 1 does
not rule out the possibility of the spreading of the y3 difference to another byte
during step 3. Thus, the probability that y3 does not spread to any other byte
is ps = (1516 )

2×60+1 ≈ 2−11.3. Thus, a randomly chosen key-IV pair satisfying (5)
such that the assumptions of Observation 1 are satisfied produces a pair of inner
states with only one active byte with probability

p = ps × pw = 2−12.1 × 2−11.3 = 2−23.4 (7)

under the usual independence assumption.
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Fig. 2. Illustration of the differences in the BOMM structure at times t = 0, 1, 2, 3
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3.2 Distinguishing Loiss Pairs

In the previous subsection, we showed that it is possible to have a pair of Loiss
inner states with only one active byte (located in the BOMM) after the ini-
tialization. Here, a distinguisher for the keystreams generated by a pair of such
states is provided. The goal is to minimize the probability of false positives and
false negatives.

Let the time at which the two instances of the cipher differ by only one BOMM
byte be t = 0. Since at this time most of the words are inactive, it is natural to
attempt distinguishing Loiss key stream pairs from random keystream pairs by
simply counting the number of equal bytes in the two outputs. Such a distin-
guisher depends on parameters n and m, where n is the number of keystream
generation steps that will be considered and m is the number of equal corre-
sponding words in steps 0, . . . , n− 1. The distinguisher can be formulated as:

- Count the number of indices 0 ≤ i < n such that zi = z′i
- If this count is ≥ m return Loiss keystreams, otherwise return Random.

Good values for (n,m) can be chosen by consulting Table 1 Appendix C. In this
table, the probability of false positives and false negatives for some representative
(n,m) points has been tabulated. Details on how the values in the table have
been calculated are provided below.

The false positive probability signifies the probability that in two random
sequences of n bytes, more than m corresponding bytes will be equal. On the
other hand, the false negative probability signifies the probability that two Loiss
instances with only one active byte located in the BOMM, will produce strictly
less than m equal bytes. For the purpose of the attack above, it is necessary to
keep the probability of false positives low, since a false positive would lead to
generating equations that have incorrect key values as solutions.

As for the false positive probability, it has been calculated by using the formula
describing the probability that in n randomly generated bytes, at leastm of them
are equal to zero. Namely, if l denotes the number of zeros in the sample, then

P [false positive] = P [l ≥ m] =
∑

l=m,...,n

(
n
l

) (
1

256

)l ( 255
256

)n−l
.

The false negative probability has been calculated experimentally by ran-
domly generating a pair of equal Loiss inner states and then inducing a random
difference at a random BOMM byte. After running the cipher for n steps, the
number of equal bytes is counted. If such number is strictly smaller than m, a
counter is incremented. After repeating the previous procedure for 228 times and
dividing the resulting counter by 228, an approximation of the probability of a
false negatives is obtained.

For the purpose of the distinguisher used in the next subsection, taking
(n,m) = (32, 10) makes the probability of the attack failure marginally small,
i.e., equal to around 225.8 × 2−54.2, since the distinguisher is applied for around
225.8 times and a false positive answer would lead to wrong conclusions about
the value of key bytes.
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3.3 Finding the Correct IVs

According to the cancellation probability (7), for around one in 223.4 randomly
chosen IVs, if the key-IV pair satisfies (5), the inner state right after the ini-
tialization will have only the y3 BOMM byte active. Given the choices for the
distinguisher given in Table 1, such event can be reliably detected. Hereafter,
such IVs will be called correct IVs. In this section, it is shown that the correct
IVs can be found with probability better than 2−23.4, which helps us reduce the
final number of chosen-IVs required for the attack.

In particular, once one correct IV is obtained, more such correct IVs can be
found with better probability. Namely, changing certain IV bytes in a correct
IV does not influence all w1, w2 and w3 bytes. For instance, perturbing byte
IV11 in a correct IV does not change w1 = 0x33 value and the the probability
(7) that the new IV will also be a correct one increases by a factor of 28. More
precisely, let T1 denote a collection of IV bytes such that any change in bytes
from T1 leaves R1 unchanged, but changes Rt, t ≥ 2. It is easy to verify that
T1 = {IV1, IV5, IV8, IV11, IV13}.

Thus, after finding one correct IV, varying only the bytes from T1 can serve
to find more correct IVs with better probability. Such a set of IVs would result
in the IVs for which the R1 word is constant. However, the attack step provided
in subsection 3.4, which takes the correct IV set as its input, requires that the
IVs produce about 5 different R1 values. Similarly, there have to be around
360 different R2 values. These two numbers of required different R1 and R2

values are necessary to minimize the number of key byte candidates that will
be recovered, as will be explained in the next subsection. Therefore, the search
procedure that produces the input to the procedure in the next subsection can
proceed as follows:

- Let sets L0 = L1 = L2 = L3 = L4 = ∅.
- Generate 5 correct IVs randomly and place them in sets Li, 0 ≤ i ≤ 4,
respectively. In more detail, for each randomly generated IV , compute IV ′

according to (5) and apply the distinguisher from subsection 3.2. If the dis-
tinguisher returns a positive answer, a correct IV has been found.

- For 0 ≤ i ≤ 4
- Using the IV from each Li, generate more corrects IVs such that the Li

sets contain 72 IVs each. In particular, the new correct IVs are generated
by randomizing the starting IV bytes specified by T1 and applying the
distinguisher.

The output of the above procedure are sets Li, 0 ≤ i ≤ 3, each containing
72 IVs for which the R1 is constant. This procedure takes around 5 × 223.4 +
5 × 72 × 223.4−8 ≈ 226 chosen-IV queries on both Loiss instances. If instead
of applying the previous procedure, all of the 5 × 72 = 360 correct IVs were
generated randomly, the number of chosen IV queries would be 360 × 223.4 ≈
231.9.
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3.4 Filtering the Key Bytes

In each Loiss step, the function F updates the register R by a transformation
similar to one round of a block cipher, where the R value plays the role of the
plaintext and the four LFSR registers play the role of the round key. The goal
hereafter is to recover the LFSR registers fed to F in the first three initialization
steps, i.e., s7+i, s20+i, s26+i, s31+i for 0 ≤ i ≤ 2. In particular, since the LFSR
bytes in question can be represented as a sum of the key and the IV, the goal is
to recover the key part in these bytes. First, the application of the F function
in the first three steps is represented in the form of
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Fig. 3. The R register in times 0 ≤ t ≤ 3

Ri+1 = F (Ri, ki3 ⊕ ivi3|ki2 ⊕ ivi2|ki1 ⊕ ivi1|ki0) (8)

for 0 ≤ i ≤ 2, where ki3, k
i
2, k

i
1 and ki0 depend only on the original key bytes and

ivi3, iv
i
2 and ivi1 depend only on the IV bytes. More precisely, in the first step

k03 = K15, k
0
2 = K10, k

0
1 = K4, k

0
0 = K7

iv03 = IV15, iv
0
2 = IV10, iv

0
1 = IV4

(9)

In the second step, we have

k13 = K13 ⊕ αK8 ⊕ α−1K1 ⊕K15 ⊕K11 ⊕ αK5 ⊕K2 ⊕ α−1K0

k12 = K11, k
1
1 = K5, k

1
0 = K8

iv13 = IV13 ⊕ αIV8 ⊕ α−1IV1 ⊕ IV15 ⊕ IV11 ⊕ αIV5 ⊕ (10)

IV2 ⊕ α−1IV0 ⊕ f1

iv12 = IV11, iv
1
1 = IV5

and in the third step
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k23 = K14 ⊕ αK9 ⊕ α−1K2 ⊕K0 ⊕K12 ⊕ αK6 ⊕K3 ⊕ α−1K1

k22 = K12, k
2
1 = K6, k

2
0 = K9

iv23 = IV14 ⊕ αIV9 ⊕ α−1IV2 ⊕ IV0 ⊕ IV12 ⊕ αIV6 ⊕ IV3 ⊕ (11)

α−1IV1 ⊕ f2

iv22 = IV12, iv
2
1 = IV6

where f1, f2 represent the feedback bytes. If the IV bytes in the right-hand side
of (9), (10) and (11) are taken from a correct IV, then (6) will hold. In that case,
also, the feedback bytes will be f1 = IV0 and f2 = IV3 ⊕ 0x33. The first three
steps of the F function when a correct IV is used are represented schematically
in Figure 3.

Then, the filtering procedure for recovering kij , 0 ≤ i ≤ 2, 0 ≤ j ≤ 3 amounts
to substituting the F function key guesses into (8) along with the iv bytes derived
from a correct IV and then verifying whether (6) holds. In particular, the filtering
procedure is done round by round. As for the first F round, (6) amounts to
R1 >> 24 = 0x33 and thus a candidate for k0 = k03 |k02 |k01 |k00 passes the criterion
with probability 2−8, which implies that 5 correct IVs are sufficient to uniquely
determine k0 with a good probability. We have verified experimentally that there
is enough diffusion in one F -round to find the key uniquely with just 5 correct
IVs.

As for the second step of the initialization phase, where (8) is executed for
i = 1, first it should be noted that R1 is known for each IV since k03 |k02 |k01 |k00 is
known. According to (6), the second F round criterion amounts to R2 >> 28 �= 3.
Thus, a guess for k1 = k13 |k12 |k11 |k10 passes the criterion with probability 15

16 .
Assuming that all the wrong key bits can be eliminated, around 332 correct IV
values will be required, since 232 × (1516 )

332 ≈ 1. In the previous section, 360
correct IVs has been generated, which ensures the unique recovery of k1 with
good probability. Throughout all our experiments, the number of candidates
for k1 that pass the test was consistently equal to 16. Without going into why
16 candidates always pass the test, it is noted that these candidates can be
eliminated during the third F round filtering. The third F round criterion is
R3 >> 28 = 3 and one can expect that the candidate for k2 = k23 |k22 |k21 |k20 passes
with probability 2−4, meaning that around 8 correct IV values will be required.
The filtering is done for each of the 16 candidates for k1. Again, experimentally,
it was found that 16 candidates for k2 always pass the test and therefore there
will be 16 candidates at the end of the filtering procedure.

It remains to state how the correct IVs are drawn from Li, 0 ≤ i ≤ 4 to derive
the ivi values specified by (9), (10) and (11). For the first F round filtering,
the 5 IVs are chosen from L0, L1, L2, L3 and L4, respectively, which ensures
that different 5 iv0 values will be derived and that the filtering procedure will
properly work. The second and third round choice of the IVs is arbitrary.

Attack Complexity: After the filtering procedure described above, there will
remain 16 candidates for kij , 0 ≤ i ≤ 2, 0 ≤ j ≤ 3 (96 bits). Each of the 16
candidates yields a linear system in the cipher key bytes determined by (9), (10)
and (11). Since the linear equations in the system are independent, it follows
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that a 96 − 4 = 92-bit constraint on the key K is specified. At this point, the
attacker can either brute-force the remaining 128− 92 = 36 key bits or continue
with the filtering process described above to deduce more key bits. In case of
brute-forcing the 36 bits, the total complexity of the attack is dominated by
around 236 Loiss initialization procedures.

In the case where the filtering process is continued, the criterion R4 >> 28 �= 3
can be used to filter out more key bits. Namely, expanding the corresponding
iv3 and k3 values in a way analogous to (9)-(11), while taking into account the
feedback byte in the LFSR update, reveals that altogether 20 more key bits can
be recovered. In that case, the total complexity is dominated by the complexity
of the above filtering procedures. The most expensive step is the filtering based
on the second F round. We recall that in this filtering step, for each of the 360
correct IVs, each 32-bit key value is tested and eliminated if R2 >> 28 �= 3 does
not hold. Instead of applying the F function 232 × 360 ≈ 240.5 times, one can
go through all key candidates for a particular IV, eliminate around 15

16 of them
and then, for the next IV, only go through the remaining candidates. In such a
case, the number of applications of F is

∑360
i=0(

15
16 )

i232 ≈ 236. To have further
optimization, a table containing 232 entries and representing F function can be
prepared in advance. To measure the computational complexity of the attack
in terms of Loiss initializations, a conservative estimate that one table lookup
costs around 2−4 of a reasonable implementation of one Loiss initialization step
could be accepted. Then, since there are 64 = 26 steps in the initialization, the
final complexity amounts to around 226 Loiss initializations, 225.8 chosen-IVs for
both keys, storage space of 232 32-bit words and offline precomputation of 232

applications of F , which is less than 226 Loiss initializations, since each Loiss
initialization includes 26 F computations.

Our attack was implemented and tested on a PC with 3 GHz Intel Pentium 4
processor with one core. Our implementation takes less than one hour to recover
92 bits of the key information and the attack procedure was successful on all the
tested 32 randomly generated keys.

3.5 Towards a Resynchronization Attack

Here, some preliminary observations on the possibility of adapting the above
attack to the single-key model are provided. In the single-key resynchronization
attack, only the IV can have active bytes, which means that only the left-hand
half of the LFSR, i.e., registers s16, . . . , s31 as well as the BOMM will contain
active bytes. As in the related-key attack above, the strategy is to have the
difference cancelled out in the LFSR and localized only in the BOMM early
during the initialization. One of the obstacles is that the R register will neces-
sarily be activated when the difference reaches byte s7, since the left-hand half
of the LFSR contains active bytes. We note that this obstacle can be bypassed
by cancelling the introduced R difference by having more than one LFSR byte
active. Let LFSR bytes s9, s8 and s7 be active with differences δ2, δ1, δ0 at
some time t during the initialization procedure. Also, assume that the word R
and the BOMM bytes to be used in the next three steps are inactive. Below, we
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determine how many of the (δ2, δ1, δ0) values can leave R inactive after 3 steps
(after having passed through s7) and also the probability of occurrence of such
an event. For this purpose, note that the R cancellation event occurs if

γ(F (xt)⊕ ut+1)⊕ γ(F (xt ⊕ δ0)⊕ ut+1 ⊕ δ1) = θ−1δ2 (12)

where xt = Rt ⊕ ut and ut denotes the 32-bit words fed to the F function
from the LFSR in t-th step. By using a precomputed table for the S-box S1

that, for each input and output difference, contains the information whether it
is possible to achieve the input-output difference pair or not, we exhaustively
checked for which values of (δ2, δ1, δ0) equation (12) has solutions in xt and
ut+1. The result of the finding is that only 2−12.861 of (δ2, δ1, δ0) values cannot
yield an R difference cancellation event. For the remaining (δ2, δ1, δ0), for which
(12) does have a solution, the probability of the R difference cancellation is
2−4 × 2−28 = 2−32.

The analysis above indicates that attackers can choose almost any (δ2, δ1, δ0)
starting difference at three consecutive LFSR bytes and then bypass an R ac-
tivation with a probability of 2−32. A possible favorable position to introduce
such (δ2, δ1, δ0) difference can be in registers s18, s17, s16, since the R register will
only be activated through byte s7. This can be done by activating IV2, IV1, IV0

bytes. The 3-byte difference that arises in the BOMM then needs to be used for
cancellations whenever some of the active LFSR bytes pass through the taps.
Due to the relatively high number of cancellations that need to happen as the
difference moves towards the right, we have not been able to bring the cancella-
tion probability sufficiently high enough to have a practical attack. Controlling
the difference propagation as done in [6] may be useful for that purpose. It is
left for future research to verify whether a practical resynchronization single-key
attack can be mounted against Loiss.

4 Sliding Properties of Loiss

In [5], a slide attack on SNOW 3G and SNOW 2.0 was provided. This attack is
a related-key attack and involves a key-IV pair (K, IV ) and (K ′, IV ′). The idea
is to have the inner state of the (K, IV ) instance after n ≥ 1 steps be a starting
inner state. Then, the corresponding (K ′, IV ′) initializes to this starting state
and the equality of the inner states is preserved until the end of the procedure.
The similarity between the two keystreams is detected and this provides a ba-
sis for the key-recovery attack. Since LFSR-based word-oriented stream ciphers
usually do not use counters which are the usual countermeasure against this kind
of slide attacks, one way to protect against sliding is to have the initial inner
state populated by the key, IV and constants so that it disallows the next several
states to be starting states. For example, in ZUC [1], constants are loaded in a
way that makes it difficult to mount a slide attack.

In the following, we point out that Loiss, similar to SNOW 2.0 and SNOW
3G, does not properly defend against sliding. If C0 = S−1

1 (0) and C1 = S2(0), a
slide by one step can be achieved as follows.
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Observation 2. Let K = (K15, . . . ,K0) and IV = (A, . . . , A,B), where

A = (α⊕α−1⊕1)−1(K0⊕α−1K0⊕α−1K1⊕K2⊕αK5⊕αK8⊕K11⊕K13⊕C0)

and B is determined by B ⊕ C1 ⊕ S2(B ⊕ C1) = A. Also, assume that K7 = C0

and K4 = K10 = K15 = C0 ⊕ A. Then, for K ′ = (K0 ⊕ B,K15, . . . ,K1) and
IV ′ = (A, . . . , A), we have

z′0 = z1 (13)

The proof of the observation is given in Appendix B.
Due to the requirement on bytes K7, K4, K10 and K15 from the formulation

of the observation above, a Loiss key K has a related key pair specified by the
observation above with probability 2−32. For the related keysK andK ′ satisfying
the conditions above, the attack can be performed by going through all A ∈ F 8

2

and verifying whether the relation (13) is satisfied for IV = (A, . . . , A,B), and
IV ′ = (A, . . . , A). If yes, then such an A byte is a candidate for the right-hand
side of the equation above specifying A, which depends only on K bytes. Each
false candidate out of 28 candidates for A will pass the test (13) with probability
2−8. That way, around one byte of the key information leaks. Slides by more
than one step may also be possible.

5 Conclusion

We presented a practical-complexity related-key attack on the Loiss stream ci-
pher. The fact that a slowly changing array (the BOMM) has been added as
a part of the FSM in Loiss allowed the difference to be contained (i.e., do not
propagate) during a large number of inner state update steps with a relatively
high probability. The attack was implemented and our implementation takes less
than one hour on a PC with 3GHz Intel Pentium 4 processor to recover 92 bits
of the 128-bit key. The possibility of extending the attack to a resynchronization
attack in a single-key model was discussed. We also showed that a slide attack
is possible for the Loiss stream cipher.
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A The Set of Possible Differences

Observation 1 is true for the following values (shown in hexadecimal):

Δ = {2, 5, 7, 9, d, 10, 11, 13, 15, 16, 18, 19, 1a, 1c, 1d, 1f, 20, 21, 25, 27, 2a, 2b, 2c, 2e, 2f, 31,
32, 37, 38, 39, 3d, 3e, 45, 48, 4a, 4b, 4d, 4f, 50, 54, 56, 57, 5b, 5c, 5d, 60, 61, 63, 64, 65, 66, 69, 6a,

6b, 6c, 6f, 70, 72, 74, 75, 77, 79, 7a, 7b, 7d, 7f, 80, 81, 82, 87, 89, 8b, 8d, 8e, 92, 94, 96, 97, 98, 99,

9a, 9c, 9d, 9e, a0, a1, a9, aa, ac, ae, af, b0, b2, b5, b8, ba, bc, bd, bf, c0, c1, c3, c4, c5, c7, ca, cd,

d1, d2, d3, d4, d6, d7, d8, da, dc, de, df, e1, e2, e8, eb, ed, f0, f1, f2, f3, f4, f7, f9, fb, fc, ff}

B Proof of Observations 1 and 2

In this appendix, we provide proofs for the two observations listed in the paper.
Proof of Observation 1:

From the cipher specification, w0 = 0x00 is true regardless of the condition
on the left-hand side. The two directions of the proof are provided as follows.
(⇐): The change of the difference in the BOMM is described in Figure 2. In
the first step, since w0 = 0x00, both the value and the difference of y03 remain
unchanged and the LFSR difference is moved from s3 to s2. Since w1 = 0x33
and both s2 and y13 are active with the same difference, they cancel out and the
corresponding LFSR byte becomes inactive. As for the LFSR difference, it is just
moved to s1. Another effect of the second step is the change of the difference
in y3 byte from 0x02 to α−1 × 2. Namely, expanding the difference in the y3
byte and substituting the initial choice of y03 = 0x9d and also the choice of the
starting difference δ = 0x02 gives

y23 ⊕ y
′2
3 = δ ⊕ S2(y

0
3 ⊕ S2(0x33))⊕ S2(y

0
3 ⊕ δ ⊕ S2(0x33)) = α−1 × 0x02 (14)

The third step moves the s1 active byte to s0, since w2 >> 4 �= 3 and leaves
the y3 difference unchanged. Finally, since w3 >> 4 = 0x3, the difference in y3
cancels out the difference in the LFSR update function (4) in the fourth step
and this direction of the proof follows.

(⇒): Clearly, w1 >> 4 = 0x3 since otherwise s131 would be active and the LFSR
after 4 steps would necessarily have at least one active byte. Moreover, K =
w2 >> 4 �= 0x3 holds since y23 is necessarily active and otherwise there would be
a difference introduced to the LFSR on byte s231.

To show that w1 mod 4 = 0x3, assume the contrary. In that case, the full
LFSR cancellation in the fourth step cannot happen. Namely, in the second

http://comjnl.oxfordjournals.org/content/early/2012/05/21/comjnl.bxs047.short?rss=1
http://comjnl.oxfordjournals.org/content/early/2012/05/21/comjnl.bxs047.short?rss=1
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step, the difference in register y13 remains unchanged, i.e., it remains equal to
0x02. Therefore, during the third step, the existing one byte difference in the
BOMM has to evolve to α−1 × 2 in order for the LFSR cancellation to happen
in the fourth step. However, according to the S2 specification, the input S2

difference 0x02 cannot be transformed to the output difference α−1×2 and thus
w1 mod 4 = 0x3.

Now, according to the (⇐) direction of the proof, (14) holds. To show that
w3 >> 4 = 0x3, suppose the contrary. Since the LFSR byte s0 is active at the
fourth step (with the difference 0x2), for this difference to be cancelled out, the
BOMM output byte at step four has to be active with the same difference. Thus,
the difference in y23 which is equal to α−1× 0x02 has to remain α−1× 0x02 after
passing through the S2 S-box. This difference will necessarily be induced on
some other BOMM byte since K �= 3. However, such a possibility is ruled out
by the S2 specification: the S2 S-box cannot map the input difference α−1 × 2
to α−1 × 2 output difference. It should be noted that this was possible in (14),
since the same byte was updated twice in step 1. Therefore, w3 >> 4 = 0x3 has
to hold. �
Proof of Observation 2

We will show that

IS1 = (s131, . . . , s
1
0, R

1, y116, . . . , y
1
0)

= (s
′0
31, . . . , s

′0
0 , R

′0, y
′0
16, . . . , y

′0
0 ) = IS

′0 (15)

As for the BOMM bytes yi, 15 ≤ i ≤ 0, in the (K, IV ) instance of the cipher, only
y0 will be updated since R0 = 0. In other words, y1i = A for 15 ≤ i ≤ 1. Moreover,
from the specification of B, it follows that y10 = A. Since IV ′ = (A, . . . , A),
y

′0
i = A for 15 ≤ i ≤ 0 as well, i.e., (15) holds for the BOMM bytes. As for the

equality between R1 and R
′0, by the initialization procedure, R

′0 = 0. To have
R1 = 0 as well, it suffices to have each of the four LFSR registers s031, s

0
26, s

0
20, s

0
7

equal to C0 = S−1(0), which is exactly the case due to the values to which
bytes K15, K8, K4 and K7 are set. Finally, to establish the equality of the LFSR
values in (15), the expression defining A are substituted into the way the LFSR
is updated during the initialization procedure with the feed-forward, verifying
that s131 = s

′0
31 = K15 ⊕A. As for the other LFSR values, s1i = s

′0
i holds directly

due to the specification of K, IV,K ′, IV ′.
Thus, the initialization procedures of the two cipher instances are slided, i.e.,

ISt = IS
′t−1 for 1 ≤ t ≤ 64. At time t = 64, in the (K, IV ) instance of

the cipher, a regular keystream step is applied, whereas in the (K ′, IV ′) in-
stance, an initialization step is applied which destroys the slide property by
introducing a difference between s6531 and s

′64
31 . However, it can be verified that

this difference does not affect the two corresponding first keystream words, which
proves (13). �
It should be noted that, as we verified by solving B ⊕C1 ⊕ S2(B ⊕C1) = A for
each A ∈ F 8

2 , there always exists a byte B specified by this observation.
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C Distinguisher Performance for Different (n,m)

The following table shows the numerical values for false positive and false neg-
ative probabilities for the distinguisher presented in section 3.2.

Table 1. Effectiveness of the distinguisher for different (n,m) parameters

(n,m) P[false positive] ≈ P[false negative] ≈
(16, 6) 2−35.1 2−22.41

(16, 8) 2−50.4 2−16.00

(24, 8) 2−44.6 2−24.01

(24, 10) 2−59.2 2−19.91

(32, 10) 2−54.2 2−27.6

(32, 12) 2−68.3 2−20.68
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Abstract. This paper presents new explicit formulae for the point dou-
bling, tripling and addition for ordinary Weierstraß elliptic curves with
a point of order 3 and their equivalent Hessian curves over finite fields
of characteristic three. The cost of basic point operations is lower than
that of all previously proposed ones. The new doubling, mixed addi-
tion and tripling formulae in projective coordinates require 3M + 2C,
8M + 1C + 1D and 4M + 4C + 1D respectively, where M, C and D
is the cost of a field multiplication, a cubing and a multiplication by a
constant. Finally, we present several examples of ordinary elliptic curves
in characteristic three for high security levels.

Keywords: Elliptic curve, Hessian curve, scalar multiplication, cryp-
tography.

1 Introduction

Elliptic curve cryptosystem which was discovered by Neal Koblitz [13] and Vic-
tor Miller [16] independently requires smaller key sizes than the other public
cryptosystems such as RSA at the same level of security. For example, a 160-bit
elliptic curve key is competitive with a 1024-bit RSA key at the AES 80-bit se-
curity level. Thus it may be advantageous to use elliptic curve cryptosystems in
resource-constrained environments, such as smart cards and embedded devices.

Scalar multiplication is a central operation in elliptic curve cryptographic
schemes. There are numerous investigations of fast point multiplication on el-
liptic curves over large prime fields or binary fields. We refer to [3,8,1] for the
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two cases. Note that ordinary elliptic curves in characteristic three could be ap-
plied in cryptographic schemes. For example, Koblitz implemented the digital
signature algorithm on a special family of supersingular elliptic curves in char-
acteristic three with great efficiency [14]. Compared to elliptic curves on large
prime fields or binary fields, Smart et al. first pointed out that ordinary ellip-
tic curve in characteristic three can be an alternative for implementing elliptic
curve cryptosystems [20]. Recently, the improved formulae on this case are given
in [17,12]. In [10], Hisil et al. gave a new tripling formulae for Hessian curve in
characteristic three. The generalized form of Hessian curves has been presented
by Farashahi, Joye, Bernstein, Lange and Kohel [6,4].

The goal of the present work is to speed up scalar multiplication on ordinary
elliptic curves in characteristic three. We study the ordinary Weierstraß elliptic
curves with a point of order 3 and their birationally equivalent Hessian curves
over finite fields of characteristic 3.

The main contribution of this paper is given as follows:

– A modified projective coordinate system is presented for the Weierstraß el-
liptic curves with a rational point of order 3 over finite fields of characteristic
3. It is named as the scaled projective coordinate system which offers better
performance than other projective coordinate systems.

– The basic point operations of addition, doubling, and tripling are investi-
gated in the new scaled coordinate system for Weierstraß curves. The pro-
posed formulae are faster than the previous known results.

– The new tripling formulae are presented for Hessian curves over finite fields
of characteristic 3.

– The doubling and tripling formulae are complete for all input points in the
rational group of these curves.

The paper is organized as follows. §2 recalls the necessary background for Weier-
straß curves and Hessian curves over the finite fields F3m . §3 presents new dou-
bling, addition and tripling formulae for Weierstraß elliptic curves over F3m with
a point of order three. §4 presents the new addition and tripling formulae for
Hessian curves. §5 gives the efficiency consideration and timing results and §6
concludes the paper.

2 Preliminaries

2.1 Weierstraß Elliptic Curves over F3m

Elliptic curves over any field can be divided into two classes of ordinary and
supersingular elliptic curves. Every ordinary elliptic curve over the finite field
F3m can be written in the Weierstraß form y2 = x3 + ax2 + b, where a, b ∈ F3m

and ab �= 0. It is known, [20], that every ordinary elliptic curve over F3m with a
point of order three can be written in the form

Eb : y
2 = x3 + x2 + b

where b ∈ F3m .
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The sum of two (different) points (x1, y1), (x2, y2) on Eb is the point (x3, y3)
given by ([20])

x3 = λ2 − x1 − x2 − 1, and y3 = λ(x1 − x3)− y1, (1)

where λ = (y2 − y1)/(x2 − x1).
The doubling of the point (x1, y1) on Eb is the point (x3, y3) given by ([20])

x3 = λ2 + x1 − 1, and y3 = λ(x1 − x3)− y1, (2)

where λ = x1/y1. Also, the inverse of the point (x1, y1) on Eb is the point
(x1,−y1). Furthermore, the tripling of the point (x1, y1) on Eb is the point
(x3, y3) given by ([20])

x3 =
(x3

1 + b)3 − bx3
1

(x1 + b)2
, and y3 =

y91 − y31(x
3
1 + b)2

(x1 + b)3
. (3)

Projective coordinate systems are preferred for point operations to avoid field in-
versions. There are some different types of projective coordinates which have the
respective advantages in efficiency. The relationship between affine coordinates
(x, y) and projective coordinates (X,Y, Z) is (x, y) = (X/Z, Y/Z), for Jacobian
projective coordinates, (x, y) = (X/Z2, Y/Z3), and for López Dahab projective
coordinates [15], (x, y) = (X/Z, Y/Z2).

2.2 Hessian Curves over F3m

A Hessian curve over a finite field F3m is given by the cubic equation

Hd : u3 + v3 + 1 = duv , (4)

for some d ∈ F3m with d �= 0 [9]. Furthermore, the generalized form of Hessian
curves, called twisted Hessian as well, have been studied in [6,4]. A generalized
Hessian curve Hc,d over F3m is defined by the equation

Hc,d : u3 + v3 + c = duv ,

where c, d ∈ F3m with c, d �= 0. Clearly, a Hessian curve Hd is a generalized
Hessian curve Hc,d with c = 1. Furthermore, the generalized Hessian curve Hc,d

over F3m , via the map (u, v) &→ (ũ, ṽ) given by ũ = u/ζ, ṽ = v/ζ, with ζ = 3
√
c,

is isomorphic to the Hessian curve H d
ζ

: ũ3 + ṽ3 + 1 = d
ζ ũṽ. So, the families of

Hessian curves and generalized Hessian over F3m are the same. For simplicity,
from now on we consider the family of Hessian curves over F3m . Furthermore,
we recall from [6, Theorem 5] that the number of F3m-isomorphism classes of
the family of Hessian (or generalized Hessian) curves over F3m is 3m − 1.

The sum of two (different) points (u1, v1), (u2, v2) on Hd is the point (u3, v3)
given by

u3 =
v1

2u2 − v2
2u1

u2v2 − u1v1
and v3 =

u1
2v2 − u2

2v1
u2v2 − u1v1

.
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The doubling of the point (u1, v1) on Hd is the point (u3, v3) given by

u3 =
v1(1− u1

3)

u1
3 − v13

and v3 =
u1(v1

3 − 1)

u1
3 − v13

.

Also, the inverse of the point (u1, v1) on Hd is the point (v1, u1).
The projective closure of the curve Hd is

Hd : U3 + V 3 +W 3 = dUVW .

The neutral element of the group of F-rational points of Hd is the point at
infinity (1,−1, 0) and the inverse of the point P = (U1, V1,W1) on Hd, is the
point −P = (V1, U1,W1).

The sum of the points (U1, V1,W1), (U2, V2,W2) onHd is the point (U3, V3,W3)
with

U3 = U2W2V1
2 − U1W1V2

2, V3 = V2W2U1
2 − V1W1U2

2,

W3 = U2V2W1
2 − U1V1W2

2 . (5)

The doubling of the point (U1, V1,W1) on Hd is the point (U3, V3,W3) given by

U3 = V1(W1
3 − U1

3), V3 = U1(V1
3 −W1

3), W3 = W1(U1
3 − V1

3) . (6)

We note that the addition formulae (5) is not unified, i.e., the formulae do not
work to double a point. The following set of formulae are unified which make
Hessian curves interesting against side-channel attacks [1,2].

The sum of the points (U1, V1,W1) and (U2, V2,W2) on Hd is the point
(U3, V3,W3) given by

U3 = V2W2W1
2 − U1V1U2

2, V3 = U2V2V1
2 − U1W1W2

2,

W3 = U2W2U1
2 − V1W1V2

2 . (7)

Furthermore, by swapping the order of the points in the addition formulae (7),
we obtain the following unified formulae.

U3 = V1W1W2
2 − U2V2U1

2, V3 = U1V1V2
2 − U2W2W1

2,

W3 = U1W1U2
2 − V2W2V1

2 . (8)

We recall [6, Propositions 1], which describes the exceptional cases of the addition
formulae (5).

Proposition 1. The addition formulae (5) work for all pairs of points P1, P2

on Hd if and only if P1 − P2 is not the point at infinity.

Since the curve Hd over F3m has only one F3m-rational point at infinity, the
addition formulae (5) work for all distinct pairs of F3m-rational inputs.

We recall [6, Propositions 2], that explains the exceptional cases of the addi-
tion formulae (7).
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Proposition 2. The addition formulae (7) work for all pairs of points P1, P2

on Hd if and only if P1 − P2 �= (−1, 0, 1).

Similarly, the addition formulae (8) work for all pairs of points P1, P2 on Hd if
and only if P1−P2 is not a 3-torsion point of Hd with X-coordinate equals 0. So,
the set of formulae (7) and (8) are complement of each other, i.e., if formulae (7)
do not work for the pair of inputs P1, P2, then the other do work.

As a consequence, the doubling formulae (6) work for all points of the curve
Hd. Moreover, for the subgroup H of Hd(F3m) not including the point (−1, 0, 1),
the addition formulae (7) (and (8)) work for all pairs of points in H.

2.3 Birational Equivalence

We note that every Hessian curve Hd over F3m has a point of order 3. Moreover,
every elliptic curve over F3m with a point of order 3 can be given in generalized
Hessian form (see [6]) and so in Hessian form. From §2.1, we recall that an
ordinary elliptic curve over F3m has a point of order 3 if and only if it can be
given by the equation y2 = x3 + x2 + b, for some b ∈ Fq. Therefore, we have the
birational equivalence between these two forms.

The ordinary elliptic curve Eb in Weierstraß form Eb : y
2 = x3+x2+b, where

b �= 0, via the map (x, y) &→ (u, v) defined by

x = d(u+ v) and y = d(u− v)

is birationally equivalent to Hessian curve Hd : u3 + v3 + 1 = duv, where d3 =
−1/b. The inverse map (u, v) &→ (x, y) is given by

x = −(u+ v)/d and y = −(u− v)/d.

In the projective model, the point (U, V,W ) on the projective curve

Hd : U3 + V 3 +W 3 = dUVW,

is mapped to the point (−(U +V ),−(U −V ), dW ) on the projective Weierstraß
curve

Eb : ZY 2 = X3 +X2Z + bZ3,

where b = −1/d3. Furthermore, via the inverse map, the point (X,Y, Z) on Eb is
corresponded to the point (X +Y,X − Y, Z/d) on Hd. So, we suggest to use the
scaled projective coordinate system (X,Y, T ), where dT = Z and (X,Y, Z) is a
point on Eb. Then, the scaled point (X,Y, T ) on Eb is corresponded to the point
(X +Y,X−Y, T ) on Hd. Furthermore, via the inverse map, the point (U, V,W )
on Hd is corresponded to the scaled point (−(U + V ),−(U − V ),W ) on Eb.

3 Explicit Formulae for Ordinary Weierstraß Form

In this section, we show how to use a new projective coordinate system to speed
up basic point operations on ordinary Weierstraß elliptic curves with a point of
order 3 over finite fields of characteristic three.
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Here, we consider elliptic curves in Weierstraß form

Eb : Y
2Z = X3 +X2Z + bZ3,

where b ∈ F3m , b �= 0. We let b = −1/d3 for some d ∈ Fq, i.e., d = (−1
b )3

(m−1)

.
We use the scaled projective system, where the point (X,Y, T ) is a scaled point,
if T = Z/d and (X,Y, Z) is a projective point on E−1/d3 . We note that points
(1/d,±1/d, 1) are the points of order three on E−1/d3 . The correspondence be-
tween the scaled projective coordinates and the affine coordinates is given as
follows

(
X

dT
,
Y

dT
)↔ (X,Y, T ).

3.1 Point Doubling

Here, using the scaled projective coordinates system, we provide a new formulae
for point doubling for the elliptic curve E−1/d3 : Y 2Z = X3 + X2Z − Z3/d3,
where d ∈ F3m .

Let (X1, Y1, T1) be a scaled point on E−1/d3 , i.e., T1 = Z1/d and (X1, Y1, Z1)
is a point on E−1/d3 . So, dY 2

1 T1 = X3
1 + dX2

1T1 − T 3
1 . Let (X3, Y3, T3) =

[2](X1, Y1, T1), which is the doubling in the scaled projective coordinates sys-
tem. From the affine doubling formula (2), we have

X3 = d(X2
1Y1 − Y 3

1 )T1 +X1Y
3
1 , Y3 = d(X1Y

2
1 −X3

1 )T1 − Y 4
1 , T3 = T1Y

3
1 .

Then
X3 = X1Y

3
1 −X3

1Y1 + Y1(X
3
1 + dX2

1T1 − dY 2
1 T1),

Y3 = X1(dY
2
1 T1 − dX2

1T1)− Y 4
1 = X1(X

3
1 − T 3

1 )− Y 4
1 .

Therefore, we obtain

X3 = X1Y
3
1 + Y1T

3
1 −X3

1Y1, Y3 = X4
1 − Y 4

1 −X1T
3
1 , T3 = T1Y

3
1 . (9)

The following algorithm computes (X3, Y3, T3), i.e., the doubling of the point
(X1, Y1, T1).

A = X1 + Y1, B = X1 − Y1, D = (T1 −A)3,
E = (B − T1)

3, F = B ·D, G = A ·E, H = T1 · (D + E),
X3 = F +G, Y3 = F −G, T3 = H.

The cost of above algorithm is 3M + 2C, where M is the cost of a field multi-
plication and C is the cost of cubing.

The following proposition shows that the doubling formulae is complete.

Proposition 3. The doubling formulae (9) work for all input points on E−1/d3 .

Proof. Let P = (X1, Y1, T1) be a scaled point on E−1/d3 such that the doubling
formulae (9) do not work for the input P . Thus, we have

X3 = X1Y
3
1 + Y1T

3
1 −X3

1Y1 = 0, Y3 = X4
1 − Y 4

1 −X1T
3
1 = 0, T3 = T1Y

3
1 = 0.
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From T3 = 0, we have T1 = 0 or Y1 = 0. By the curve equation we have
dY 2

1 T1 = X3
1 + dX2

1T1 − T 3
1 . If T1 = 0 then X1 = 0. From Y3 = 0, we obtain

Y1 = 0. So (X1, Y1, T1) = (0, 0, 0) which is a contradiction. If Y1 = 0, by Y3 = 0
we have X1(X1−T1)

3 = 0. Then, by the curve equation we obtain T1 = 0, which
is a contradiction. ��

3.2 Point Addition

Now, we provide the addition formulae for the scaled points on E−1/d3 : Y 2Z =
X3 +X2Z − Z3/d3

Let P1 = (X1, Y1, T1) and P2 = (X2, Y2, T2) be two scaled points on E−1/d3 ,
i.e., T1 = Z1/d, T2 = Z2/d and (X1, Y1, Z1), (X2, Y2, Z2) are points on E−1/d3 .
Let (X3, Y3, T3) be the sum of P1 and P2, where T3 = Z3/d and (X3, Y3, Z3) is
a point on E−1/d3 . From the affine addition formulae (1), we have

X3 = dT1T2(X2T1 −X1T2)((Y2T1 − Y1T2)
2 − (X2T1 −X1T2)

2)
−(X2T1 −X1T2)

3(X2T1 +X1T2),
Y3 = −dT1T2(Y2T1 − Y1T2)((Y2T1 − Y1T2)

2 − (X2T1 −X1T2)
2)

+(X2T1 −X1T2)
3(Y2T1 + Y1T2),

T3 = T1T2(X2T1 −X1T2)
3.

Then, we obtain

X3 = T2(X
2
1X2 +X1Y1Y2 +X2Y

2
1 )− T1(X1X

2
2 + Y1X2Y2 +X1Y

2
2 ),

Y3 = T2(X
2
1Y2 +X1Y1X2 + Y2Y

2
1 )− T1(Y1X

2
2 +X1X2Y2 + Y1Y

2
2 ),

T3 = T 2
1 (X2 + Y2)(X2 − Y2)− T 2

2 (X1 + Y1)(X1 − Y1).
(10)

The following addition algorithm performs the addition formulae (10), which
requires 12M.

A1 = X1 + Y1, B1 = X1 − Y1, A2 = X2 + Y2, B2 = X2 − Y2,
D = T1 ·A2, E = T1 ·B2, F = T2 · A, G = T2 · B,
H = A1 ·B2, I = A2 · B1, X3 = G · I − E ·H,
Y3 = F ·H −D · I, T3 = D ·E − F ·G.

Notice that (T1 −X1)
3 = aT1(X1 + Y1)(X1 − Y1). Then, we have

T1T2 · (T 2
1 (X2 + Y2)(X2 − Y2)− T 2

2 (X1 + Y1)(X1 − Y1))
= (1/d)(T 3

1 (T2 −X2)
3 − T 3

2 (T1 −X1)
3) = (1/d)(X1T2 −X2T1)

3.

Therefore, we obtain

X3 = T2T
2
1 (X1X

2
2 + Y1X2Y2 +X1Y

2
2 )− T1T

2
2 (X

2
1X2 +X1Y1Y2 +X2Y

2
1 ),

Y3 = T2T
2
1 (Y1X

2
2 +X1X2Y2 + Y1Y

2
2 )− T1T

2
2 (X

2
1Y2 +X1Y1X2 + Y2Y

2
1 ),

T3 = (1/d)(X2T1 −X1T2)
3.

(11)
We write

X3 = T1(X2 + Y2)T
2
2 (X1 − Y1)

2 + T1(X2 − Y2)T
2
2 (X1 + Y1)

2

−T2(X1 + Y1)T
2
1 (X2 − Y2)

2 − T2(X1 − Y1)T
2
1 (X2 + Y2)

2
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and

Y3 = T1(X2 + Y2)T
2
2 (X1 − Y1)

2 − T1(X2 − Y2)T
2
2 (X1 + Y1)

2

−T2(X1 + Y1)T
2
1 (X2 − Y2)

2 + T2(X1 − Y1)T
2
1 (X2 + Y2)

2.

Therefore, we have the following addition algorithm which requires 10M+1C+
1D, where D is the cost of a field multiplication by the constant 1/d.

A1 = X1 + Y1, B1 = X1 − Y1, A2 = X2 + Y2, B2 = X2 − Y2,
D = B1 · T2, E = A2 · T1, F = A1 · T2, G = B2 · T1, H = D ·E
I = F ·G, J = F · I, K = E ·H, X3 = D ·H + J −G · I −K,

Y3 = X3 + J +K, Z3 = (1/d)(D + F − E −G)3.

The cost of mixed scaled addition formulae is 8M+1C+1D, by setting T1 = 1.

3.3 Unified Addition Formulae

Here, we study the unified addition formulae. In general, the unified addition for-
mulaework for all but finitelymanypairs of points.The complete addition formulae
emphasize towork for all inputs.We recall that the affine addition formulae (1) and
projective formulae (11) do notwork to double a point.More precisely, the addition
formula (11) do not work for the points P1 and P2 if and only if P1−P2 = (0, 1, 0).

Hereafter, we give some unified addition formulae for E−1/d3 : Y 2Z = X3 +
X2Z −Z3/d3. The unified addition formulae make the curve E−1/d3 interesting
against side-channel attacks.

Let P1 = (X1, Y1, T1) and P2 = (X2, Y2, T2) be two scaled points on E−1/d3 ,
where T1 = Z1/d, T2 = Z2/d and (X1, Y1, Z1), (X2, Y2, Z2) are points on E−1/d3 .
Then, Q1 = (X1 + Y1, X1 − Y1, T1) and Q2 = (X2 + Y2, X2 − Y2, T2) are points
of Hd. From the unified formulae (7) we obtain the point (U3, V3,W3) on Hd,
where

U3 = T 2
1 T2(X2 − Y2)− (X1 + Y1)(X1 − Y1)(X2 + Y2)

2,
V3 = −T1T

2
2 (X1 + Y1) + (X2 + Y2)(X2 − Y2)(X1 − Y1)

2,
W3 = T2(X1 + Y1)

2(X2 + Y2)− T1(X1 − Y1)(X2 − Y2)
2.

Then, the point (X3, Y3, T3) = ((U3 + V3), (U3 − V3),−W3) is a scaled point of
E−1/d3 , which is the sum of P1 and P2. We obtain

X3 = T1T2(T1(X2 − Y2)− T2(X1 + Y1)) + (X1 − Y1)(X2 + Y2)(X1Y2 +X2Y1),
Y3 = T1T2(T1(X2 − Y2) + T2(X1 + Y1)) + (X1 − Y1)(X2 + Y2)(X1X2 + Y1Y2),
T3 = T1(X1 − Y1)(X2 − Y2)

2 − T2(X1 + Y1)
2(X2 + Y2).

(12)
We note that by swapping the order of the points P1 and P2 we obtain another
unified formulae as follows.

X3 = T1T2(T2(X1 − Y1)− T1(X2 + Y2)) + (X1 + Y1)(X2 − Y2)(X1Y2 +X2Y1),
Y3 = T1T2(T2(X1 − Y1) + T1(X2 + Y2)) + (X1 + Y1)(X2 − Y2)(X1X2 + Y1Y2),
T3 = T2(X1 − Y1)

2(X2 − Y2)− T1(X1 + Y1)(X2 + Y2)
2.

(13)
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Moreover, the algorithm which performs above addition formulae (12) (or (13))
requires 12M.

We recall that the set of formulae (7) and (8) are complement of each other,
so the same property is true for the set of formulae (12) and (13). From Proposi-
tion 2, we see that the addition formulae (12) do not work for the inputs P1, P2

if and only if P1 − P2 = (1, 1, 1).
Then, one can easily see that the doubling formulae (6) work for all points of

the curve Hd. Moreover, for the subgroup G of E−1/d3(F3m) not including the
point (1, 1, d) (or the scaled point (1, 1, 1)), the addition formulae (12) (and (13))
work for all pairs of points in G.

3.4 Point Tripling

When implementing scalar multiplication on elliptic curves over finite fields of
characteristic three, it is convenient to choose a base three expansion for an
exponent k since the cubing operation in the finite field is cheaper than other
basic operations. Now point tripling is considered as follows.

From the affine tripling formulae (3), the tripling of the scaled point (X1, Y1, T1)
on E−1/d3 is the point (X3, Y3, T3) given by

X3 = (X3
1 − T 3

1 )(X
9
1 − T 9

1 + d3X3
1T

6
1 ),

Y3 = d3Y 3
1 T

3
1 (Y

2
1 −X2

1 − T 2
1 −X1T1)

3,
T3 = d2(X9

1T
3
1 − T 12

1 ).
(14)

Then, we have

X3 = (X1 − T1)
3(d3Y 6

1 T
3
1 − d3X6

1T
3
1 + d3X3

1T
6
1 )

= −d3T 3
1 · (X1 − T1)

3(X6
1 − Y 6

1 −X3
1T

3
1 )

= −d3T 3
1 · (X1 − T1)

3(X2
1 − Y 2

1 −X1T1)
3,

Y3 = −d3T 3
1 · Y 3

1 (X
2
1 +X1T1 + T 2

1 − Y 2
1 )

3,
T3 = −d3T 3

1 · (T 9
1 −X9

1 )/d.

So, we obtain
X3 = (X1 − T1)

3(X2
1 − Y 2

1 −X1T1)
3,

Y3 = Y 3
1 (X

2
1 +X1T1 + T 2

1 − Y 2
1 )

3,
T3 = (T 9

1 −X9
1 )/d.

(15)

We also write

X2
1 +X1T1 + T 2

1 − Y 2
1 = (X1 − T1 + Y1)(X1 − T1 − Y1),

X2
1 − Y 2

1 −X1T1 = (X2
1 +X1T1 + T 2

1 − Y 2
1 ) +X1T1 − T 2

1 .

Then, we propose the following very fast point tripling algorithm.

A = X1 − T1, B = (A+ Y1)(A − Y1), D = A(B + T1A),

X3 = D3, Y3 = (Y1B)3, T3 = −(1/d)A9 .

We see that the cost for above point tripling algorithm is 4M+ 4C+ 1D. The
following proposition shows that tripling formulae work for all inputs.
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Proposition 4. The tripling formulae (15) work for all points on E−1/d3 .

Proof. Let P = (X1, Y1, T1) be a scaled point on E−1/d3 : Y 2Z = X3 +X2Z −
Z3/d3 such that the tripling formulae (15) do not work for the point P . Thus,
the formulae (15) output

X3 = 0, Y3 = 0, T3 = (T 9
1 −X9

1 )/d = 0.

From T3 = 0, we have X1 = T1. Then, Y3 = Y 3
1 (X

2
1 +X1T1 +T 2

1 −Y 2
1 )

3 = −Y 5
1 .

Since Y3 = 0, we have Y1 = 0 and then (X1, Y1, T1) = (0, 0, 0) which is a
contradiction. ��

4 Explicit Formulae for Hessian Curves in
Characteristic 3

In this section, we present fast point addition and tripling formulae for Hessian
curves over a field F of characteristic 3.

4.1 Addition and Doubling Formulae

The point addition algorithms for formulae (5) are described in [5,11,19] with
the cost of 12M. Also, these addition formulae can be performed in a parallel
way, see [19]. In particular, the addition formulae (5) in a parallel environment
using 3, 4 or 6 processors require 4M, 3M or 2M, respectively.

Furthermore, from the addition formulae (5), the sum of the points (X1 :
Y1, Z1), (X2, Y2, Z2) on Hd is the point (X3, Y3, Z3) given by

X3 = Z1Z2(X2Z2Y1
2 −X1Z1Y2

2), Y3 = Z1Z2(Y2Z2X1
2 − Y1Z1X2

2),

Z3 = Z1Z2(X2Y2Z1
2 −X1Y1Z2

2) = Z3
1 (X2Y2Z2)− Z3

2 (X1Y1Z1)

= Z3
1 (X

3
2 + Y 3

2 + Z3
2 )/d− Z3

2 (X
3
1 + Y 3

1 + Z3
1 )/d

= (X2Z1 + Y2Z1 −X1Z2 − Y1Z2)
3/d.

Using the next algorithm, the cost of above formulae is 10M+ 1C+ 1D, where
1D is the cost of the multiplication by the constant 1/d.

A = X2Z1, B = Y2Z1, C = X1Z2, D = Y1Z2, E = AD, F = BC,

X3 = DE −BF, Y3 = CF −AE, Z3 = (1/d)(A+B − C −D)3 . (16)

And, the mixed addition formulae requires 8M+1C+1D. We also noticed that,
Kim et al., [12], proposed a mixed addition algorithm which requires 8M+1C+
1D. But, none of above addition algorithms is unified.

The next algorithm evaluates the unified addition formulae (7) for the Hessian
curve Hd with 12M.

A = X1X2, B = Y1Y2, C = Z1Z2, D = X1Z2, E = Y1X2, F = Z1Y2,

X3 = CF −AE, Y3 = BE − CD, Z3 = AD −BF .



Efficient Arithmetic on Elliptic Curves over Fields of Characteristic Three 145

The mixed addition formulae requires 10M by setting Z2 = 1. Furthermore, the
addition formulae (7) can be performed in a parallel way. The following addition
algorithm is similar to the addition algorithm (16) which requires 10M+1C+1D.

A = Z2X1, B = X2X1, C = Y1Y2, D = Z1Y2, E = AD, F = BC,

X3 = DE −BF, Y3 = CF −AE, Z3 = (1/d)(A+B − C −D)3 .

Moreover, this addition algorithm is unified. Also, the cost of the mixed addition
formulae is 8M+ 1C+ 1D by setting X1 = 1.

From the doubling formulae (6), the doubling of the point (X1, Y1, Z1) on Hd

is the point (X3, Y3, Z3) given by

X3 = Y1(Z1 −X1)
3, Y3 = X1(Y1 − Z1)

3, Z3 = Z1(X1 − Y1)
3 .

which requires 3M+ 2C([12]).

4.2 Point Tripling

From §2.3, we recall that the scaled point (X,Y, T ) on Eb is corresponded to
the point (X + Y,X − Y, T ) on the Hessian curve Hd. Furthermore, the point
(U, V,W ) on Hd is corresponded to the scaled point ((U + V ), (U − V ),−T ) on
Eb. The point tripling (15) for Weierstraß form Eb can be used to obtain the
following point tripling algorithm for the Hessian curve Hd. The tripling of the
points (U1, V1,W1) on Hd with d3 = −1/b is the scaled point (U3, V3,W3) given
by the next formulae.

U3 = (U1W
2
1 + V1U

2
1 +W1V

2
1 )

3,
V3 = (U1V

2
1 + V1W

2
1 +W1U

2
1 )

3,
W3 = −(1/d)(U1 + V1 +W1)

9.
(17)

Then, we propose the following point tripling algorithm.

A = U1 + V1 +W1, B = (U1 −W1)(V1 −W1), D = A(B −AZ1), E = V1B

U3 = (D + E)3, V3 = (D − E)3, W3 = −(1/d)A9 .

The cost for above point tripling algorithm is 4M + 4C + 1D. Moreover, from
Proposition 4 we see that the tripling formulae work for all inputs.

5 Operation Count Comparison

The efficiency of implementing elliptic curve cryptosystems depends on the speed
of basic point operations. In this section, we will compare the new formulae for
point operations with the previously known results on the corresponding curve.

We first recall the previous results on ordinary curves in characteristic three.
In [12], Kim et al. proposed a type of projective coordinate system (ML-
coordinates) which consists of four variables and the relationship between this
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Table 1. Costs of point operations for different coordinate systems of elliptic curves
over F3m

Coordinate System Mixed addition Doubling Tripling

Projective[20] 9M+ 2S+ 1C 6M+ 0S+ 3C 7M+ 2S+ 5C
Jacobian[20] 7M+ 3S+ 2C 6M+ 2S+ 3C 5M+ 1S+ 4C+ 1D

López Dahab[20] 10M+ 3S 7M+ 4S+ 2C 10M + 3S+ 5C
Projective in Hessian form[20] 10M 3M + 3C −
Projective in Hessian form[10] - - 6M + 4C + 2D

Jacobian[17] 7M+ 3S+ 2C+ 1D 5M+ 2S+ 3C 3M+ 2S+ 5C+ 1D

ML-coordinates [12] 8M + 2C 5M+ 3S+ 3C 6M + 6C

Hessian form [12] 9M + 1C 3M + 2C −
Hessian form(this work) 8M + 1C + 1D 3M + 2C 4M + 4C + 1D

scaled projective(this work) 8M + 1C + 1D 3M + 2C 4M + 4C + 1D

system and the affine coordinate system is given by (X,Y, Z, T )↔ (X/T, Y/Z3),
where T = Z2. In ML-coordinates, the doubling, mixed addition and tripling for-
mulae in projective coordinates require 5M+ 3S+ 3C, 8M+2C and 6M+6C
respectively, where S denote the cost of a squaring in the finite field of charac-
teristic three. It was noticed that a tripling algorithm cost 3M+ 2S+ 5C+ 1D
using Jacobian projective coordinates in [17].

For convenience, we summarize all results into the following Table 1. From
the table, we can see that the new proposed formulae are always more efficient
than all previous formulae published for basic point operations on curves.

6 Conclusion

In this paper, new basic operation formulae are presented for Hessian curves over
fields of characteristic 3. Also, new point representation called scaled projective
is introduced for Weierstraß elliptic curves in characteristic three. Then, the
efficient basic group operations are provided for this form.

We compared the performance of the proposed formulae to the previously best
results for different coordinates systems. It is shown that the new formulae are
superior to the previously known ones. It should be pointed out that, in double-
base chain representation for a scalar number, the proposed point doubling and
tripling may offer better performance.
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Here, we give some examples of ordinary elliptic curves over some finite field
of characteristic three. The corresponding parameters are defined as follows.

m The extension degree of the ternary field F3m .
f The reduction polynomial of degree m.
b The parameter of the elliptic curve E : y2 = x3 + x2 + b.
r The prime order of the main subgroup of E(F3m).
h The cofactor, that is h = #E(F3m)/r.

E-151: m = 151, f(z) = z151 + 2z2 + 1, h = 3
b = 0x1FC4865AFE00A9216B0B5FD32C6300C4BED0707AE4072A03E55299F157B;
r = 0x359BA2B98CA11D6864A331B45AE711875640BA8E1297230F9EB217FB8393.

E-181: m = 181, f(z) = z181 + 2z37 + 1, h = 3
b = 0x173CB756670960FD06D9438C9A55BE469574A995718B1786C9DAD40C45A7

AC68C208FC3;
r = 0x27367561CDDFD3AAFB8EA1FD4470B1171C349B993B5282BC17E661A1B1

DF65BCE845A035.

E-263: m = 263, f(z) = z263 + 2z69 + 1, h = 3
b = 0x1E47D9F0855EB0ADDCE5948A2A1E5AF24EBFCC3051D647877CFFB91F5

64568C5103A09F22B234CE422567E0629358A740B8944C;
r = 0x994BBF51A32F5E702E4A3FFB7539AC6AAEAAF9B49E4CCA1DE8CE23F9

79DDA476F721963D0BF18B1216F037A8877236007190FD2F.

E-331: m = 331, f(z) = z331 + 2z2 + 1, h = 3
b = 0x52056E6E1C557FC37DD4D21EFFE1D5CA8E1528695E4B13536CF990AE79

C9242B8602535C92522A4EBB87E522ABF5C1CEA952EE52B9F6EA7389304
02CA3713AA0;

r = 0x8361D3334042B3F713BEB5D2C7BFAE83C436C40B479A21A4D1BE815079
F3C07FF992C36206C4E5B5DC9C2206CFB7F1AC1BD0F98A64CAB13DB5
3403AC4007E4875E5.

E-337: m = 337, f(z) = z337 + 2z3 + 1, h = 3
b = 0x359059FA58F98216D63B1FA12F4C194A09FDCFAF27CEEC308FB55B26938

D4A1D2E73ED6E9A17CDF7A84D1FAEDB14E38FC212CD76E460C3C5BFF
688234724B3EC0921;

r = 0x17621926CF1FDF27A973A13C53AD0D7F539BFF4441EE5E9CE59477E3E2B
471F2C6735F0933BB1C1B7ECA1A64D72D8F8F9336B4EE7CCA98AE54623C
8C15D6EF02AC7395.
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Abstract. As hardware capabilities increase, low-power devices such
as smartphones represent a natural environment for the efficient imple-
mentation of cryptographic pairings. Few works in the literature have
considered such platforms despite their growing importance in a post-
PC world. In this paper, we investigate the efficient computation of the
Optimal-Ate pairing over Barreto-Naehrig curves in software at differ-
ent security levels on ARM processors. We exploit state-of-the-art tech-
niques and propose new optimizations to speed up the computation in
the tower field and curve arithmetic. In particular, we extend the concept
of lazy reduction to inversion in extension fields, analyze an efficient al-
ternative for the sparse multiplication used inside the Miller’s algorithm
and reduce further the cost of point/line evaluation formulas in affine
and projective homogeneous coordinates. In addition, we study the effi-
ciency of using M-type sextic twists in the pairing computation and carry
out a detailed comparison between affine and projective coordinate sys-
tems. Our implementations on various mass-market smartphones and
tablets significantly improve the state-of-the-art of pairing computation
on ARM-powered devices, outperforming by at least a factor of 3.7 the
best previous results in the literature.

Keywords: Optimal-Ate pairing, Barreto-Naehrig curves, ARM proces-
sor, pairing implementation.

1 Introduction

In the past decade, bilinear pairings have found a range of constructive applications
in areas such as identity-based encryption and short signatures. Naturally, imple-
menting such protocols requires efficient computation of the pairing function. Con-
siderable work has been done to compute fast pairings on PCs [3,6,8,15,17]. Most
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recently, Aranha et al. [3] have computed the O-Ate pairing at the 128-bit secu-
rity level in under 2 million cycles on various 64-bit PC processors. In contrast,
relatively few articles [1,10] have considered efficient software implementations of
pairings on ARM-based platforms such as hand-held smartphones and tablets.
These platforms arewidely predicted to become a dominant computing platform in
the near future. Therefore, efficient implementation of pairing-based protocols for
these devices is crucial for deployment of pairing-based cryptography in a mobile
world and represents a natural area of research.

In this paper, we investigate efficient pairing computations at multiple security
levels across different generations of ARM-based processors. We extend the work
of Aranha et al. [3] to different BN curves and higher security levels. In addition,
we make several further optimizations and analyze different options available for
implementation at various stages of the pairing computation. We summarize our
contributions as follows:

– Firstly, we extend the concept of lazy reduction employed by Aranha et
al. [3] (see also Longa [13, Chapter 6]) to inversion in extension fields. We
also optimize the sparse multiplication algorithm in the degree 12 extension.

– We examine different choices of towers for extension field arithmetic over
various prime fields including BN-254, BN-446, and BN-638 [8]. We deter-
mine the most efficient implementation of extension fields in the context of
pairing computation over BN-curves from the various choices available.

– The M-type sextic twist [16] has been largely ignored for use in pairing com-
putations, most likely due to the inefficient untwisting map. We demonstrate
that by computing the pairing on the twisted curve, we can bypass the inef-
ficient untwisting. As a result, for the purposes of optimization one can use
either M-type or D-type twists, thus roughly doubling the available choice
of curves.

– Finally, we implement the proposed algorithms for computing the O-Ate
pairing over BN curves on different ARM-based platforms and compare our
measured timing results to their counterparts in the literature. Our exper-
imental results are 3 to 5 times faster than the fastest available in prior
literature, depending on the security level.

Acar et al. [1] have recently raised the question of whether affine coordinates or
projective coordinates are a better choice for curve arithmetic in the context of
software implementation of pairings. Their conclusion is that affine coordinates
are faster at all security levels at or above 128 bits on the ARM platform. In con-
trast, our results (Section 6.2) demonstrate a clear advantage for homogeneous
projective coordinates at the 128-bit security level, although affine coordinates
remain faster at the 256-bit security level. We believe that our findings are more
reliable since they represent a more realistic amount of optimization of the un-
derlying field arithmetic implementation. We stress that, except for the work
described in Section 6.1, our code does not contain any hand-optimized assem-
bly or any overly aggressive optimizations that would compromise portability or
maintainability.
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The rest of this paper is organized as follows. In Section 2, we provide some
background on the O-Ate pairing. In Section 3, we discuss the representation
of extension fields. In Section 4, we describe arithmetic on BN curves including
point addition and doubling presented in different coordinates. We provide oper-
ation counts for our algorithms in Section 5. In Section 6, we present the results
of our implementation of the proposed scheme for computing O-Ate pairings on
different ARM processors, and compare them with prior work.

2 Preliminaries

Barreto and Naehrig [4] describe a family of pairing friendly curves E : y2 = x3+b
of order n with embedding degree 12 defined over a prime field Fq where q and
n are given by the polynomials:

q = 36x4 + 36x3 + 24x2 + 6x+ 1

n = 36x4 + 36x3 + 18x2 + 6x+ 1, (1)

for some integer x such that both q and n are prime and b ∈ F∗
q such that b+ 1

is a quadratic residue.
Let Πq : E → E be the q-power Frobenius. Set G1 = E[n] ∩ ker(Πq − [1])

and G2 = E[n] ∩ ker(Πq − [q]). It is known that points in G1 have coordinates
in Fq, and points in G2 have coordinates in Fq12 . The Optimal-Ate or O-Ate
pairing [18] on E is defined by:

aopt : G2 ×G1 → μn, (Q,P )→ f6x+2,Q(P ) · h(P ) (2)

where h(P ) = l[6x+2]Q,qQ(P )l[6x+2]Q+qQ,−q2Q(P ) and f6x+2,Q(P ) is the appro-
priate Miller function. Also, lQ1,Q2(P ) is the line arising in the addition of Q1

and Q2 at point P . This function can be computed using Miller’s algorithm [14].
A modified version of the algorithm from [14] which uses a NAF representation
of x is given in Algorithm 1.

Let ξ be a quadratic and cubic non-residue over Fq2 . Then the curves E′ : y2 =
x3 + b

ξ (D-type) and E′′ : y2 = x3 + bξ (M-type) are sextic twists of E over Fq2 ,
and exactly one of them has order dividing n [3]. For this twist, the image G

′
2

of G2 under the twisting isomorphism lies entirely in E′(Fq2). Instead of using a
degree 12 extension, the point Q can now be represented using only elements in
a quadratic extension field. In addition, when performing curve arithmetic and
computing the line function in the Miller loop, one can perform the arithmetic
in G

′
2 and then map the result to G2, which considerably speeds up operations

in the Miller loop.

2.1 Notations and Definitions

Throughout this paper, lower case variables denote single-precision integers, up-
per case variables denote double-precision integers. The operation × represents
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Algorithm 1. Miller’s Algorithm for the O-Ate Pairing [14]
Input: Points P,Q ∈ E[n] and integer n = (nl−1, nl−2, · · · , n1, n0)2 ∈ N.

Output: fn,P (Q)
qk−1

n .
1: T ← P, f ← 1
2: for i = l − 2 down to 0 do
3: f ← f2 · lT,T (Q)
4: T ← 2T
5: if li �= 0 then
6: f ← f · lT,P (Q)
7: T ← T + P
8: end if
9: end for

10: f ← f
qk−1

n

11: return f

multiplication without reduction, and ⊗ represents multiplication with reduc-
tion. The quantities m, s, a, i, and r denote the times for multiplication, squar-
ing, addition, inversion, and modular reduction in Fq, respectively. Likewise,
m̃, s̃, ã, ĩ, and r̃ denote times for multiplication, squaring, addition, inversion,
and reduction in Fq2 , respectively, and mu, su, m̃u, and s̃u denote times for mul-
tiplication and squaring without reduction in the corresponding fields. Finally,
mb, mi, mξ, and mv denote times for multiplication by the quantities b, i, ξ,
and v from Section 3.

3 Representation of Extension Fields

Efficient implementation of the underlying extension fields is crucial to achieve
fast pairing results. The IEEE P1363.3 standard [9] recommends using towers
to represent Fqk . For primes q congruent to 3 mod 8, we employ the following
construction of Benger and Scott [5] to construct tower fields:

Property 1. For approximately 2/3rds of the BN-primes q ≡ 3 mod 8, the poly-
nomial y6 − α, α = 1 +

√
−1 is irreducible over Fq2 = Fq(

√
−1).

This gives the following towering scheme:⎧⎪⎨⎪⎩
Fq2 = Fq[i]/(i

2 − β), where β = −1.
Fq6 = Fq2 [v]/(v

3 − ξ), where ξ = 1 + i.

Fq12 = Fq6 [w]/(w
2 − v).

Based on this scheme, multiplication by i requires one negation over Fq, and
multiplication by ξ requires only one addition over Fq2 . For primes congruent to
7 mod 8, we use the following construction which can be proven using the same
ideas as those in Benger and Scott [5]:
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Property 2. For approximately 2/3rds of the BN-primes q ≡ 7 mod 8, the poly-
nomial y6 − α, α = 1 +

√
−2 is irreducible over Fq2 = Fq(

√
−2).

This gives the following towering scheme:⎧⎪⎨⎪⎩
Fq2 = Fq[i]/(i

2 − β), where β = −2.
Fq6 = Fq2 [v]/(v

3 − ξ), where ξ = 1 + i.

Fq12 = Fq6 [w]/(w
2 − v).

All things being equal, the towering scheme derived from Property 1 is slightly
faster for a given bit size. However, in practice, desirable BN-curves are rare,
and it is sometimes necessary to use primes q ≡ 7 mod 8 in order to optimize
other aspects such as the Hamming weight of x. In particular, the curves BN-446
and BN-638 [8] have q ≡ 7 mod 8. In such cases, Property 1 does not apply, so
we use the towering scheme derived from Property 2. We also considered other
approaches to construct tower extensions as suggested in [8], but found the above
schemes consistently resulted in faster pairings compared to the other options.

3.1 Finite Field Operations and Lazy Reduction

Aranha et al. [3] proposed a lazy reduction scheme for efficient pairing compu-
tation in tower-friendly fields and curve arithmetic using projective coordinates.
We extensively exploit their method and extend it to field inversion and curve
arithmetic over affine coordinates. The proposed schemes using lazy reduction
for inversion are given in Algorithms 2, 3 and 4 for Fq2 , Fq6 and Fq12 , respectively.
The total savings with lazy reduction vs. no lazy reduction are one Fq-reduction
in Fq2-inversion, and 36 Fq-reductions in Fq12 -inversion (improving upon [3] by
16 Fq-reductions). Interestingly enough, if one applies the lazy reduction tech-
nique to the recent Fq12 inversion algorithm of Pereira et al. [8], it replaces two
m̃u by two s̃u but requires five more r̃ operations, which ultimately makes it
slower in practice in comparison with the proposed scheme.

Algorithm 2. Inversion over Fq2 employing lazy reduction technique
Input: a = a0 + a1i; a0, a1 ∈ Fq; β is a quadratic non-residue over Fq

Output: c = a−1 ∈ Fq2

T0 ← a0 × a0

T1 ← −β · (a1 × a1)
T0 ← T0 + T1

t0 ← T0 mod p
t0 ← t−1

0 mod p
c0 ← a0 ⊗ t0
c1 ← −(a1 ⊗ t0)
return c = c0 + c1i
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Algorithm 3. Inversion over Fq6 employing lazy reduction technique
Input: a = a0 + a1v + a2v

2; a0, a1, a2 ∈ Fq2

Output: c = a−1 ∈ Fq6

T0 ← a0 × a0

t0 ← ξa1

T1 ← t0 × a2

T0 ← T0 − T1

t1 ← T0 mod p
T0 ← a2 × a2

T0 ← ξT0

T1 ← a0 × a1

T0 ← T0 − T1

t2 ← T0 mod p
T0 ← a1 × a1

T1 ← a0 × a2

T0 ← T0 − T1

t3 ← T0 mod p
T0 ← t0 × t3
T1 ← a0 × t1
T0 ← T0 + T1

t0 ← ξa2

T1 ← t0 × t2
T0 ← T0 + T1

t0 ← T0 mod p
t0 ← t−1

0

c0 ← t1 ⊗ t0
c1 ← t2 ⊗ t0
c2 ← t3 ⊗ t0
return c = c1 + c2v + c3v

2

Algorithm 4. Inversion over Fq12 employing lazy reduction technique
Input: a = a0 + a1w; a0, a1 ∈ Fq6

Output: c = a−1 ∈ Fq12

T0 ← a0 × a0

T1 ← v · (a1 × a1)
T0 ← T0 − T1

t0 ← T0 mod p
t0 ← t−1

0 mod p
c0 ← a0 ⊗ t0
c1 ← −a1 ⊗ t0
return c = c0 + c1w

The line function in the Miller loop evaluates to a sparse Fq12 element con-
taining only three of the six basis elements over Fq2 . Thus, when multiplying
the line function output with fi,Q(P ), one can utilize the sparseness property to
avoid full Fq12 arithmetic (Algorithm 5). For the BN-254 curve [8], our sparse
multiplication algorithm requires 13m̃ and 44ã when a D-type twist is involved.
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Algorithm 5. D-type sparse-dense multiplication in Fq12

Input: a = a0 + a1w + a2vw; a0, a1, a2 ∈ Fq2 , b = b0 + b1w; b0, b1 ∈ Fq6

Output: ab ∈ Fq12

A0 ← a0 × b0[0], A1 ← a0 × b0[1], A2 ← a0 × b0[2]
A ← A0 + A1v + A2v

2

B ← Fq6SparseMul(a1w + a2vw, b1)
c0 ← a0 + a1, c1 ← a2, c2 ← 0
c ← c0 + c1v + c2v

2

d ← b0 + b1
E ← Fq6SparseMul(c, d)
F ← E − (A+B)
G ← Bv
H ← A+G
c0 ← H mod p
c1 ← F mod p
return c = c0 + c1w

Algorithm 6. Fq6SparseMul, used in Algorithm 5
Input: a = a0 + a1v; a0, a1 ∈ Fq2 , b = b0 + b1v + b2v

2; b0, b1, b2 ∈ Fq2

Output: ab ∈ Fq6

A ← a0 × b0, B ← a1 × b1
C ← a1 × b2ξ
D ← A+ C
e ← a0 + a1, f ← b0 + b1
E ← e× f
G ← E − (A+B)
H ← a0 × b2
I ← H +B
return D +Gv + Iv2

A similar dense-sparse multiplication algorithm works for M-type twists, and re-
quires an extra multiplication by v. We note that our approach requires 13 fewer
additions over Fq2 compared to the one used in [3] (lazy reduction versions).

3.2 Mapping from the Twisted Curve to the Original Curve

Suppose we take ξ (from the towering scheme) to be the cubic and quadratic non-
residue used to generate the sextic twist of the BN-curve E. After manipulating
points on the twisted curve, they need to be mapped to the original curve. In
the case of a D-type twist, the untwisting isomorphism is given by:

Ψ : (x, y)→ (ξ
1
3x, ξ

1
2 y) = (w2x,w3y), (3)

where both w2 and w3 are basis elements, and hence the untwisting map is
almost free. If one uses a M-type twist the untwisting isomorphism is given as
follows:

Ψ : (x, y)→ (ξ−
2
3x, ξ−

1
2 y) = (ξ−1w4x, ξ−1w3y). (4)
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Untwisting of (4) is not efficient as the one given in (3). However, if we compute
the pairing value on the twisted curve instead of the original curve, then we
do not need to use the untwisting map. Instead, we require the inverse map
which is almost free. Therefore, we compute the pairing on the original curve E
when a D-type twist is involved, and on the twisted curve E′ when an M-type
twist is involved. Using this approach, we have found that both twist types are
equivalent in performance up to point/line evaluation. The advantage of being
able to consider both twist types is the immediate availability of many more
useful curves for pairing computation.

3.3 Final Exponentiation Scheme

We use the final exponentiation scheme proposed in [7], which represents the
current state-of-the-art for BN curves. In this scheme, first q12−1

n is factored into
q6 − 1, q2 + 1, and q4−q2+1

n . The first two factors are easy to exponentiate. The
remaining exponentiation q4−q2+1

n can be performed in the cyclotomic subgroup.
Using the fact that any fixed non-degenerate power of a pairing is a pairing, we
raise to a multiple of the remaining factor. Recall that q and n are polynomials
in x, and hence so is the final factor. We denote this polynomial as d(x). In [7]
it is shown that

2x(6x2 + 3x+ 1)d(x) = λ3q
3 + λ2q

2 + λ1q + λ01 + 6x+ 12x2 + 12x3

+ (4x+ 6x2 + 12x3)p(x) + (6x+ 6x2 + 12x3)p(x)2

+ (−1 + 4x+ 6x2 + 12x3)p(x)3, (5)

where

λ3(x) = −1 + 4x+ 6x2 + 12x3,

λ2(x) = 6x+ 6x2 + 12x3

λ1(x) = 4x+ 6x2 + 12x3

λ0(x) = 1 + 6x+ 12x2 + 12x3. (6)

To compute (6), the following exponentiations are performed:

f &→ fx &→ f2x &→ f4x &→ f6x &→ f6x2 &→ f12x2 &→ f12x3

. (7)

The cost of computing (7) is 3 exponentiations by x, 3 squarings and 1 multipli-
cation. We then compute the terms a = f12x3

f6x2

f6x and b = a(f2x)−1, which
require 3 multiplications. The final pairing value is obtained as

af6x2

fbpap
2

(bf−1)p
3

, (8)

which costs 6 multiplications and 6 Frobenius operations. In total, this method
requires 3 exponentiations by x, 3 squarings, 10 multiplications, and 3 Frobe-
nius operations. In comparison, the technique used in [3] requires 3 additional
multiplications and an additional squaring, and thus is slightly slower.
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4 Curve Arithmetic

In this section, we discuss our optimizations to curve arithmetic over affine and
homogeneous projective coordinates. We also evaluated other coordinate systems
such as Jacobian coordinates but found that none were faster than homogeneous
coordinates for our application.

4.1 Affine Coordinates

Let the points T = (x, y) and Q = (x2, y2) ∈ E′(Fq) be given in affine coordi-
nates, and let T +Q = (x3, y3) be the sum of the points T and Q. When T = Q
we have

m =
3x2

2y

x3 = m2 − 2x

y3 = (mx− y)−mx3

For D-type twists, the secant or tangent line evaluated at P = (xP , yP ) is given
by:

l2Ψ(T )(P ) = yP −mxPw + (mx− y)w3. (9)

To compute the above, we precompute x̄P = −xP (to save the cost of comput-
ing the negation on-the-fly) and use the following sequence of operations which
requires 1ĩ, 3m̃, 2s̃, 7ã, and 2m if T = Q. In comparison, the doubling formula
in Lauter et al. [12] costs 3 additional ã.

A =
1

2y
B = 3x2 C = AB D = 2x x3 = C2 −D

E = Cx− y y3 = E − Cx3 F = Cx̄P

l2Ψ(T )(P ) = yP + Fw + Ew3

Similarly, when T �= Q we use the following sequence of operations which requires
1ĩ, 3m̃, 1s̃, 6ã, and 2m – saving 2ã compared to the addition formula in Lauter
et al. [12].

A =
1

y2 − y
B = x2 − x C = AB D = x+ x2 x3 = C2 −D

E = Cx− y y3 = E − Cx3 F = Cx̄P

l2Ψ(T )(P ) = yP + Fw + Ew3

In an M-type twist, the tangent line evaluated at Ψ(P ) = (xPw
2, yPw

3) is given
by:

l2T (Ψ(P )) = yPw
3 −mxPw

2 + (mx− y), (10)

and can be computed in a similar way.
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4.2 Homogeneous Coordinates

During the first iteration of the Miller loop, the Z-coordinate of the point Q has
value equal to 1. We use this fact to eliminate a multiplication and three squar-
ings using a special first doubling routine in the first iteration. Recently, Arahna
et al. [3], presented optimized formulas for point doubling/line evaluation. We
note that the twisting point P given by (xP /w

2, yP /w
3) is better represented by

(xPw, yP ), which is obtained by multiplying by w3. This eliminates the multipli-
cation by ξ and gives the following revised formula. Let T = (X,Y, Z) ∈ E′(Fq2)
be in homogeneous coordinates. Then 2T = (X3, Y3, Z3) is given by:

X3 =
XY

2
(Y 2 − 9b′Z2)

Y3 =

[
1

2
(Y 2 + 9b′Z2)

]2
− 27b′2Z4

Z3 = 2Y 3Z

In the case of a D-type twist, the corresponding line function evaluated at P =
(xP , yP ) is given by:

l2Ψ(T )(P ) = −2Y ZyP + 3X2xPw + (3b′Z2 − Y 2)w3

We compute this value using the following sequence of operations.

A =
XY

2
B = Y 2 C = Z2 E = 3b′C F = 3E X3 = A · (B − F )

G =
B + f

2
Y3 = G2 − 3E2 H = (Y + Z)2 − (B + C) Z3 = B ·H

l2Ψ(T )(P ) = HȳP + 3X2xPw + (E −B)w3

Aranha et al. [3] observe m̃− s̃ ≈ 3ã and hence computing XY directly is faster
than using (X + Y )2, Y 2 and X2 on a PC. However, on ARM processors, we
have m̃− s̃ ≈ 6ã. Thus, the latter technique is more efficient on ARM processors.
The overall cost of point doubling and line evaluation is 2m̃, 7s̃, 22ã, and 4m,
assuming that the cost of division by two and multiplication by b′ are equivalent
to the cost of addition. Similarly, we compute point addition and line function
evaluation using the following sequence of operations which uses 11m̃, 2s̃, 8ã,
and 4m (saving 2 Fq2 additions over [3]). Note that x̄P and ȳP are precomputed
to save again the cost of computing −xP and −yP .

A = Y2Z B = X2Z θ = Y −A λ = X −B C = θ2

D = λ2 E = λ3 F = ZC G = XD H = E + F − 2G

X3 = λH I = Y E Y3 = θ(G−H)− I Z3 = ZE J = θX2 − λY2

lΨ(T+Q)(P ) = λȳP + θx̄Pw + Jw3

In the case of an M-type twist the corresponding line computation can be com-
puted using the same sequences of operations as above. As in [3], we also use
lazy reduction techniques to optimize the above formulae (see Table 1).
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Table 1. Operation counts for 254-bit, 446-bit, and 638-bit prime fields

E′(Fp2) Arith. 254-bit 446-bit/638-bit
Doubl/Eval (Proj) 2m̃u + 7s̃u + 8r̃ + 25ã + 4m 2m̃u + 7s̃u + 8r̃ + 34ã + a+ 4m

Doubl/Eval (Affi) ĩ+ 3m̃u + 2s̃u + 5r̃ + 7ã + 2m ĩ+ 3m̃u + 2s̃u + 5r̃ + 7ã+ 2m

Add./Eval (Pro) 11m̃u + 2s̃u + 11r̃ + 10ã+ 4m 11m̃u + 2s̃u + 11r̃ + 10ã + 4m

Add/Eval (Affi) ĩ+ 3m̃u + s̃u + 4r̃ + 6ã+ 2m ĩ+ 2m̃u + s̃u + 3r̃ + 6ã+ 2m

First doubl./Eval 3m̃u + 4s̃u + 7r̃ + 14ã + 4m 3m̃u + 4s̃u + 7r̃ + 23ã + a+ 4m

p-power Frob. 2m̃+ 2a 8m̃ + 2a

p2- power Frob. 4m 16m̃ + 4a

Fp2 Arith. 254-bit 446-bit/638-bit
Add/Subtr./Nega. ã = 2a ã = 2a

Mult. m̃ = m̃u + r̃ = 3mu + 2r + 8a m̃ = m̃u + r̃ = 3mu + 2r + 10a

Squaring s̃ = s̃u + r̃ = 2mu + 2r + 3a s̃ = s̃u + r̃ = 2mu + 2r + 5a

Mult. by β mb = a mb = 2a

Mult. by ξ mξ = 2a mξ = 3a

Inversion ĩ = i+ 2mu + 2su + 3r + 3a ĩ = i+ 2mu + 2su + 3r + 5a

Fp12 Arith. 254-bit 446-bit/638-bit
Multi. 18m̃u + 110ã + 6r̃ 18m̃u + 117ã + 6r̃

Sparse Mult. 13m̃u + 6r̃ + 48ã 13m̃u + 6r̃ + 54ã

Sparser Mult. 6m̃u + 6r̃ + 13ã 6m̃u + 6r̃ + 14ã

Affi. Sparse Mult. 10m̃u + 6r̃ + 47ã + 6mu + a 10m̃u + 53ã+ 6r̃ + 6mu + a

Squaring 12m̃u + 6r̃ + 73ã 12m̃u + 6r̃ + 78ã

Cyclotomic Sqr. 9s̃u + 46ã+ 6r̃ 9s̃u + 49ã+ a+ 6r̃

Simult. Decomp. 9m̃ + 6s̃ + 22ã + ĩ
9m̃+ 6s̃+ 24ã + ĩ (BN-446)
16m̃+ 9s̃+ 35ã + ĩ (BN-638)

p-power Frob. 5m̃+ 6a 5m̃ + 6a

p2-power Frob. 10m+ 2ã 10m + 2ã

Expon. by x

45m̃u + 666s̃u + 467r̃u+

45m̃u + 378s̃u+ 3943ã + ĩ (BN-446)
275r̃ + 2164ã + ĩ 70m̃ + 948s̃ + 675r̃+

5606ã + 158a + ĩ (BN-638)
Inversion 25m̃u + 9s̃u + 16r̃ + 121ã + ĩ 25m̃u + 9s̃u + 18r̃ + 138ã + ĩ

Compressed Sqr. 6s̃u + 31ã+ 4r̃ 6s̃u + 33ã+ a+ 4r̃

5 Operation Counts

We provide here detailed operation counts for our algorithms on the BN-254,
BN-446, and BN-638 curves used in Acar et. al [1] and defined in [8]. Table 1
provides the operation counts for all component operations. Numbers for BN-446
and BN-638 are the same except where indicated.

For BN-254, using the techniques described above, the projective pairing
Miller loop executes one negation in Fq, one first doubling with line evaluation,
63 point doublings with line evaluations, 6 point additions with line evalua-
tions, one p-power Frobenius in E′(Fp2), one p2-power Frobenius in E′(Fp2), 66
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Table 2. Cost of the computation of O-Ate pairings using various coordinates

Curve Coordinates Cost
Proj. Miller loop 1841m̃u + 457s̃u + 1371r̃ + 9516ã + 284m + 3a

BN-254 Aff. Miller loop 70̃i+ 1658m̃u + 134s̃u + 942r̃ + 8292ã + 540m + 132a

Final exp. 386m̃u + 1164s̃u + 943r̃ + 4̃i+ 7989ã + 30m + 15a

Proj. Miller loop 3151m̃u + 793s̃u + 2345r̃ + 18595ã + 472m + 117a

BN-446 Aff. Miller loop 118̃i+ 2872m̃u + 230s̃u + 1610r̃ + 15612ã + 920m + 230a

Final exp. 386m̃u + 2034s̃u + 1519r̃ + 4̃i+ 13374ã + 30m + 345a

Proj. Miller loop 4548m̃u + 1140s̃u + 3557r̃ + 27198ã + 676m + 166a

BN-638 Aff. Miller loop 169̃i+ 4143m̃u + 330s̃u + 2324r̃ + 22574ã + 1340m + 333a

Final exp. 436m̃u + 2880s̃u + 2143r̃ + 4̃i+ 18528ã + 30m + 489a

sparse multiplications, 63 squarings in Fp2 , 1 negation in E′(Fp2), 2 sparser (i.e.
sparse-sparse) multiplications [3], and 1 multiplication in Fp12 . Using Table 1,
we compute the total number of operations required in the Miller loop using
homogeneous projective coordinates to be

ML254P = a+ 3m̃u + 7r̃ + 14ã+ 4m+ 63(2m̃u + 7s̃u + 8r̃ + 25ã+ 4m) +

6(11m̃u + 2s̃u + 11r̃ + 10ã+ 4m) + 2m̃+ 2a+ 4m+

66(m̃u + 6r̃ + 48ã) + 63(12m̃u + 6r̃ + 73ã) + ã+

2(6m̃u + 6r̃ + 13ã) + 18m̃u + 110ã+ 6r̃

= 1841m̃u + 457s̃u + 1371r̃+ 9516ã+ 284m+ 3a.

Similarly, we also compute the Miller loop operation costs for BN-446 and BN-
638 and for projective and affine coordinates, and give the results in Table 2.

We also compute the operation count for the final exponentiation. For BN-
254, the final exponentiation requires 6 conjugations in Fp12 , one negation in
E′(Fp2), one inversion in Fp12 , 12 multiplications in Fp12 , two p-power Frobenius
in Fp12 , 3 p2-power Frobenius in Fp12 , 3 exponentiations by x, and 3 cyclotomic
squarings. Based on these costs, we compute the total number of operations
required in the final exponentiation and give the result in Table 2. Similarly, we
also compute the final exponentiation operation cost for BN-446 and BN-638.
The total operation count for the pairing computation is the cost of the Miller
loop plus the final exponentiation.

6 Implementation Results

To evaluate the performance of the proposed schemes for computing the O-Ate
pairing in practice, we implemented them on various ARM processors. We used
the following platforms in our experiments.

− A Marvell Kirkwood 6281 ARMv5 CPU processor (Feroceon 88FR131) op-
erating at 1.2 GHz. In terms of registers it has 16 32-bit registers r0 to r15
of which two are for the stack pointer and program counter, leaving only 14
32-bit registers for general use.
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− An iPad 2 (Apple A5) using an ARMv7 Cortex-A9 MPCore processor op-
erating at 1.0 GHz clock frequency. It has 16 128-bit vector registers which
are available as 32 64-bit vector registers, as these registers share physical
space with the 128-bit vector registers.

− A Samsung Galaxy Nexus (1.2 GHz TI OMAP 4460 ARM Cortex-A9). The
CPU microarchitecture is identical to the Apple A5. We included it to ex-
amine whether different implementations of the Cortex-A9 core have com-
parable performance in this application.

Our software is based on version 0.2.3 of the RELIC toolkit [2], with the GMP
5.0.2 backend, modified to include our optimizations. Except for the work de-
scribed in Section 6.1, all of our software is platform-independent C code, and
the same source package runs unmodified on all the above ARM platforms as
well as both x86 and x86-64 Linux and Windows PCs. Our implementation also
supports and includes BN curves at additional security levels beyond the three
presented here. For each platform, we used the standard operating system and
development environment that ships with the device, namely Debian Squeeze
(native C compiler), XCode 4.3.0, and Android NDK (r7c) for the Kirkwood,
iPad, and Galaxy Nexus respectively.

We present the results of our experiments in Table 3. For ease of comparison we
have also included the numbers from [1] in Table 3. Roughly speaking, our timings
are over three times faster than the results appearing in [1], which itself represents
the fastest reported times prior to our work. Specifically, examining our iPad re-
sults, which were obtained on an identical micro-architecture and clock speed, we
find that our implementation is 3.7, 3.7, and 5.4 times faster on BN-254, BN-446,
and BN-638, respectively. Some, but not all, of the improvement can be attributed
to faster field arithmetic; for example,Fq-field multiplication on the RELIC toolkit
is roughly 1.4 times as fast on the iPad 2 compared to [1]. A more detailed compar-
ison based on operation counts is difficult because [1] does not provide any oper-
ation counts, and also because our strategy and our operation counts rely on lazy
reduction, which does not play a role in [1].

6.1 Assembly Optimization

In order to investigate the potential performance gains available from hand op-
timized machine code, we implemented the two most commonly used field arith-
metic operations (addition and multiplication) for the BN-254 curve in ARM
assembly instructions. Due to the curve-specific and platform-specific nature of
this endeavor, we performed this work only for the BN-254 curve and only on
the Linux platforms (Marvell Kirkwood and Galaxy Nexus).

The main advantage of assembly language is that it provides more control for
lower level arithmetic computations. Although the available C compilers are quite
good, they still produce inefficient code since in the C language it is infeasible to
express instructionpriorities.Moreover, onecanusehand-optimizedassembly code
to decompose larger computations into small pieces suitable for vectorization. We
employ the following techniques to optimize our implementation in assembly:
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Table 3. Timings for affine and projective pairings on different ARM processors and
comparisons with prior literature. Times for the Miller loop (ML) in each row reflect
those of the faster pairing.

Marvell Kirkwood (ARM v5) Feroceon 88FR131 at 1.2 GHz [This work]
Field Lang Operation Timing [μs]
Size a m r i I/M ã m̃ s̃ ĩ ML FE O-A(a) O-A(p)

254-bit ASM 0.12 1.49 1.12 17.53 11.8 0.28 4.08 3.44 23.57 9,722 6,176 16,076 15,898

C
0.18 1.74 1.02 17.40 10.0 0.35 4.96 4.01 24.01 11,877 7,550 19,427 19,509

446-bit 0.20 3.79 2.25 34.67 9.1 0.38 10.74 8.57 48.90 42,857 23,137 65,994 65,958
638-bit 0.27 6.82 3.83 52.33 7.7 0.51 18.23 14.93 77.11 98,044 51,351 149,395 153,713

iPad 2 (ARM v7) Apple A5 Cortex-A9 at 1.0 GHz [This work]
Field Lang Operation Timing [μs]
Size a m r i I/M ã m̃ s̃ ĩ ML FE O-A(a) O-A(p)

254-bit 0.16 1.28 0.93 13.44 10.5 0.25 3.48 2.88 19.19 8,338 5,483 14,604 13,821
446-bit C 0.16 2.92 1.62 27.15 9.3 0.26 8.03 6.46 37.95 32,087 17,180 49,365 49,267
638-bit 0.20 5.58 2.92 43.62 7.8 0.34 15.07 12.09 64.68 79,056 40,572 119,628 123,410

Galaxy Nexus (ARM v7) TI OMAP 4460 Cortex-A9 at 1.2 GHz [This work]
Field Lang Operation Timing [μs]
Size a m r i I/M ã m̃ s̃ ĩ ML FE O-A(a) O-A(p)

254-bit ASM 0.05 0.93 0.55 9.42 10.1 0.10 2.46 2.07 13.79 6,147 3,758 10,573 9,905

C
0.07 0.98 0.53 9.62 9.8 0.13 2.81 2.11 14.05 6,859 4,382 11,839 11,241

446-bit 0.12 2.36 1.27 23.08 9.8 0.22 6.29 5.17 32.27 25,792 13,752 39,886 39,544
638-bit 0.19 4.87 3.05 38.45 7.9 0.45 12.20 10.39 56.78 65,698 33,658 99,356 99,466

NVidia Tegra 2 (ARM v7) Cortex-A9 at 1.0 GHz [1]
Field Lang Operation Timing [μs]
Size a m r i I/M ã m̃ s̃ ĩ ML FE O-A(a) O-A(p)

254-bit 0.67 1.72 n/a 18.35 10.7 1.42 8.18 5.20 26.61 26,320 24,690 51,010 55,190
446-bit C 1.17 4.01 n/a 35.85 8.9 2.37 17.24 10.84 54.23 97,530 86,750 184,280 195,560
638-bit 1.71 8.22 n/a 56.09 6.8 3.48 31.81 20.55 91.92 236,480 413,370 649,850 768,060

− Loop unrolling: since the maximum number of bits of the operands are
known, it makes sense to unroll all loops in order to provide us the ability
to avoid conditional branches (which basically eliminates branch prediction
misses in the pipeline), reorder the instructions, and insert carry propagate
codes at desired points.

− Instruction re-ordering: by careful reordering of non-dependent instructions
(in terms of data and processing units), it is possible to minimize the number
of pipeline stalls and therefore execute the code faster. Two of the most
frequent multi-cycle instructions used in our code are word multiplication
and memory reads. Each 32-bit word multiplication takes between 3 and 6
cycles and each memory read needs 2 cycles. By applying loop unrolling, it
is possible to load the data required for the next multiplication while the
pipeline is performing the current multiplication. Also, lots of register clean-
ups and carry propagation codes are performed while the pipeline is doing a
multiplication.

− Register allocation: all of the available registers were used extensively in
order to eliminate the need to access memory for fetching the operands or
store partial results. This improves overall performance considerably.

− Multiple stores: ARM processors are capable of loading and storing multi-
ple words from or to the memory by one instruction. By storing the final
result at once instead of writing a word back to memory each time when a
new result is ready, we minimize the number of memory access instructions.
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Also, we do some register clean-ups (cost-free) when the pipeline is perform-
ing the multiple store instruction. It is worth mentioning that while it was
possible to write 8 words at once, only 4 words are written to memory at
each time because the available non-dependent instructions to re-order after
the multiple store instruction are limited.

Table 3 includes our measurements of pairing computation times using our as-
sembly implementation alongside the results for the C implementation. We find
that the BN-254 pairing using hand-optimized assembly code is roughly 20%
faster than the C implementation. In all cases, the projective pairing benefits
more than the affine pairing, because we did not hand-optimize the inversion
routine in assembly.

6.2 Affine vs. Homogeneous Coordinates

Acar et al. [1] assert that on ARM processors, small inversion to multiplication
(I/M) ratios over Fq render it more efficient to compute a pairing using affine
coordinates. If we are using a prime q congruent to 3 mod 8, then compared
to a projective doubling step, an affine doubling step costs an extra ĩ and an
unreduced multiplication, and saves 5s̃u +3r̃+16.5ã+2m. Compared to a first
doubling, it costs an extra ĩ and saves 2s̃u+2r̃+6.5ã+2m. An addition step costs
an extra ĩ and saves 8m̃u+ s̃u+7r̃+3ã+2m; and a dense-sparse multiplication
needs an additional 6m and saves 3m̃u+3r̃+0.5ã. Thus, the difference between
an affine and projective pairing is 70i− 659mu − 396r− 4417a.

From Table 3, we observe that the two pairings are roughly equal in perfor-
mance at about the 446-bit field size. At this field size, we have m ≈ 1.5r and
m ≈ 15a. Plugging these estimates into the expression 70i−659mu−396r−4417a,
we find that an affine pairing is expected to be faster than a projective pairing
whenever the I/M ratio in the base field falls below about 10.0. The results of
Table 3 indicate that our I/M ratios cross this point slightly above 446 bits.
We observe that both affine and projective pairings achieve similar performance
in our implementation on ARM processors, with an advantage in the range of
1%-6% for projective coordinates on BN-254, and a slight advantage for affine
coordinates on BN-638, with slightly better results for projective coordinates on
BN-446. These results overturn those of Acar et al. [1] which show too much
advantage in favor of affine coordinates (well above 5%). However, there are
situations in which affine coordinates would be preferable even at the 128-bit
security level (e.g., products of pairings). Different conclusions may hold for
assembly-optimized variants at higher security levels, which are not included in
our analysis.

7 Conclusions

In this paper, we present high speed implementation results of the Optimal-Ate
pairing on BN curves for different security levels. We extend the concept of lazy



164 G. Grewal et al.

reduction to inversion in extension fields and optimize the sparse multiplication
algorithm in the degree 12 extension. Our work indicates that D-type and M-type
twists achieve equivalent performance for point/line evaluation computation, with
only a very slight advantage in favor of D-type when computing sparse multiplica-
tions. In addition, we include an efficient method from [7] to perform final expo-
nentiation and reduce its computation time. Finally, we measure the Optimal-Ate
pairing over BN curves on different ARM-based platforms and compare the tim-
ing results to the leading ones available in the open literature. Our timing results
are over three times faster than the previous fastest results appearing in [1]. Al-
though the authors in [1] find affine coordinates to be faster on ARM in all cases,
based on our measurements we conclude that homogeneous projective coordinates
are unambiguously faster than affine coordinates for O-Ate pairings at the 128-bit
security level when higher levels of optimization are used.
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Abstract. At the CHES workshop last year, Ghosh et al. presented an
FPGA based cryptoprocessor, which for the first time ever makes it pos-
sible to compute an eta pairing at the 128-bit security level in less than
one milli-second. The high performance of their cryptoprocessor comes
largely from the use of the Karatsuba method for field multiplication.
In this article, for the same type of pairing we propose hybrid sequen-
tial/parallel multipliers based on the Toeplitz matrix-vector products
and present some optimizations for the final exponentiation, resulting in
high performance cryptoprocessors. On the same kind of FPGA devices,
our cryptoprocessor performs pairing faster than that of [12] while re-
quiring less hardware resources. We also present ASIC implementations
and report that the three-way split multiplier based cryptoprocessor con-
sumes less energy than the two-way.

1 Introduction

Since 2001, cryptographic pairing has been used extensively to develop various
security protocols, including the well known identity based encryption [3] and
the short signature scheme [4]. For such protocols, pairing is by far the most
computation intensive operation. A pairing algorithm typically requires thou-
sands of additions and multiplications followed by a final exponentiation over
very large finite fields. From the implementation point of view, pairing is thus
very challenging; in fact it is computationally far more demanding than classical
cryptographic schemes such as elliptic curve cryptography.

In this paper, we consider hardware implementation of a type of pairing known
as the ηT pairing [17] on elliptic curves defined over extended binary fields.
Specifically, we focus on the 128-bit security level. During the past few years
several pairing implementations for 128-bit security level have been published for
various field characteristics [13,6,7,12,1,15,10,11]. Here we consider pairing over
elliptic curve E(F21223 ), for which we also need to deal computations over F24·1223 .
In CHES 2011, Ghosh et al. [12] have proposed a cryptoprocessor architecture

L.R. Knudsen and H. Wu (Eds.): SAC 2012, LNCS 7707, pp. 166–183, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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for computing such ηT pairing at the 128-bit security level, and reported its
implementation results based on field programmable gate arrays (FPGA). The
cryptoprocessor has a hybrid sequential/parallel architecture for multiplication
in F21223 and performs the inversion of a non-zero element of F24·1223 using linear
algebra. More specifically, using the Karatsuba formula, a multiplication in F21223

is broken down into nine separate multiplications of polynomials of size 306 bits
each. This allows the cryptoprocessor perform one F21223 multiplication in ten
clock cycles, i.e., nine cycles are used for nine 306-bit multiplications and one
cycle for the reconstruction and the reduction of the product. For Xilinx Virtex6
FPGA, the cryptoprocessor of Ghosh et al. [12] takes 190 μs only, making it the
fastest 128-bit secure ηT pairing unit available up until now (also see [1] for a
more recent comparison).

Our Work: In this paper, we propose a new cryptoprocessor for the 128-bit
security level ηT pairing on the same supersingular elliptic curve used in [12].
The proposed cryptoprocessor is different than that in [12] in a number of ways,
and when implemented on the same type of FPGA devices, it performs the pair-
ing in much less time. The primary difference, which is also the main source
of improvements, lies in the multiplier over F21223 , which is typically the most
area consuming component of such a cryptoprocessor. We use an asymptoti-
cally better, namely Toeplitz-matrix vector product (TMVP) based approach
for multiplication in F21223 . To the best of our knowledge, this is the first time
that TMVP based multipliers are used in the implementation of pairing. The
two-way split and the three-way split TMVP formulas of [8] result in multipli-
ers which are more efficient in area and time compared to those based on the
corresponding Karatsuba formulas. For example, the two-way TMVP formula
enables us perform one F21223 multiplication in nine clock cycles (instead of ten
cycles using the Karatsuba), and the three-way formula does it only in six clock
cycles without a proportional increase in area.

In our work, we also improve the final exponentiation operation for the pair-
ing cryptoprocessor. Typically, this exponentiation is performed via costly oper-
ations including several multiplications over F21223 along with an inversion and
an exponentiation to the power of 2612 over F24·1223 . We reduce the complexity
of the inversion by adapting the norm based approach [5] over the tower fields
F21223 ⊂ F22·1223 ⊂ F24·1223 We find that a square root can take a considerably
fewer number of bit operations than a squaring operation in F21223 , and follow-
ing [2], we use this feature to reduce the computational cost of the exponentiation
to the power 2612 by replacing the sequence of squaring by a sequence of square
root operations.

In terms of hardware realization, we report both FPGA and application spe-
cific integrated circuit (ASIC) implementations of the proposed cryptoprocessor.
To the best of our knowledge, these are the first ASIC implementations for ηT
pairing at the 128-bit security level using binary supersingular curves. Based on
the ASIC results, we find that the three-way split multiplier based cryptoproces-
sor is a greener choice as it consumes less energy than its two-way counterpart.
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Organization: The remainder of this paper is organized as follows: in Section 2
we briefly review ηT pairing and analyze different operations involved in it. In
Section 3 we briefly review two approaches to multiply elements of F21223 based
on Toeplitz-matrix vector products and provide their respective implementation
results. Then in Section 4, we present several improvements to the final exponen-
tiation in ηT pairing. In Section 5 we present the overall architecture for the ηT
pairing and implementation results. We compare our schemes with best known
results and wind up the paper with some concluding remarks in Section 6.

2 Pairing Algorithm

Pairing: We consider supersingular elliptic curve E defined by the following
equation Y 2 + Y = X3 +X over the finite field Fq, where q = 21223. As stated
in [17], we have #E(F21223 ) = 5r where r = (21223+2612+1)/5 is a 1221-bit prime
divisor and the curve E has an embedding degree k = 4. We construct the field
Fqk = F24·1223 through two extensions of degree two F22·1223 = F21223 [u]/(u

2 +
u+ 1) and F24·1223 = F22·1223 [u]/(v

2 + v + u). Now if we denote μr the subgroup
of order r of F∗

qk = F∗
24·1223 and if we pick an element P ∈ E(F21223 ) of order r,

we can define the ηT pairing

ηT : 〈P 〉 × 〈P 〉 −→ μr

as ηT (P1, P2) = e(P1, ψ(P2)) where e is the Tate paring and ψ(x, y) = (x +
u2, y+ xu+ v). The security level of this pairing is equal to 128 bits. In [17] the
authors have proposed Algorithm 1 for the computation of the ηT pairing.

Algorithm 1. ηT pairing [17]

Require: P2 = (x1, y1) and P2 = (x2, y2) ∈ E(F21223)[r]
Ensure: ηT (P1, P2)

T ← x1 + 1
f ← T · (x1 + x2 + 1) + y1 + y2 + (T + x2)u+ v
for i = 1 to 612 do

T ← x1, x1 ← √
x1, y1 ← √

y1
g ← T · (x1 + x2) + y1 + y2 + x1 + 1 + (T + x2)u+ v
f ← f · g
x2 ← x2

2, y2 ← y2
2

end for
return(f (22·1223−1)(21223−2612+1))

The for loop in Algorithm 1 is a re-expression of the Miller’s loop of the
Tate pairing for the special curve E and the ηT pairing considered here. We
remark that the main operations performed in Algorithm 1 are two square roots
in F21223 in the first step of the for loop, one multiplication T · (x1 + x2) in
F21223 plus several additions for the computation of g, one special multiplication
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f · g in F24·1223 for the computation of f , two squarings in F21223 and the final
exponentiation f (22·1223−1)(21223−2612+1) in F24·1223 .

Addition of two elements of a binary field corresponds to bit-wise XOR oper-
ations and, for field F21223 , the bit-parallel implementation of an adder requires
1223 two-input XOR gates. Below we briefly describe squaring and square root
operations for elements of F21223 . The other operations are discussed in subse-
quent sections.

Square and Square Root: The field F21223 is constructed as F21223 =
F2[x]/(x

1223 + x255 + 1). The squaring of A =
∑1223

i=0 aix
i in F21223 can, in this

situation, be performed as follows

A2 =
∑1222

i=0 aix
2i mod (x1223 + x255 + 1)

=
∑127

i=0 aix
2i +

∑254
i=128(ai + ai+612−128 + ai+1224−256)x

2i

+
∑611

i=255(ai + ai+612−128)x
2i +

∑126
i=0(ai+612 + ai+1224−128)x

2i+1

+
∑610

i=127 ai+612x
2i+1.

Based on the aforementioned expression, the squaring in F21223 can be imple-
mented with 738 XOR gates and a delay of 2DX .

The square root of an element A =
∑1223

i=0 aix
i in F21223 can be expressed as

√
A =

√∑611
i=0 a2ix

2i +
√∑610

i=0 a2i+1x2i+1

=
(∑611

i=0 a2ix
i
)
+
√
x
(∑610

i=0 a2i+1x
i
)
.

Since x = x256 + x1224 mod (1 + x255 + x1223), we have
√
x = x128 + x612

mod (1+x255+x1223), and, after replacing
√
x with x256+x1224, we obtain that√

A can be computed as

√
A =

∑127
i=0 a2ix

i +
∑611

i=128(a2i + a2i−256+1)x
i

+
∑126

i=0(a2i+1 + a2(i+612−128)+1)x
i+612 +

∑610
i=127 a2i+1x

i+612.

Hence a square root can be implemented with 611 XOR gates and a delay of
DX . Consequently, the number of bit operations is lower in a square root than
squaring in F21223 defined by x1223 + x255 +1. We take advantage of this feature
in the final exponentiation of pairing.

Unlike squaring and square root operations, the various multiplications ap-
pearing in the ηT paring algorithm are more difficult to implement. In the next
section we present two multiplier architectures used in our proposal for ηT pair-
ing cryptoprocessor.

3 Multiplier Architectures

In the ηT pairing algorithm, the main operations include multiplications with
inputs in one of the three fields F21223 = F2[x]/(x

1223 + x255 + 1), F22·1223 =
F21223 [u]/(u

2 + u+ 1) and F24·1223 = F22·1223 [v]/(v
2 + v + u). The authors in [12]



170 J. Adikari, M.A. Hasan, and C. Negre

have designed a multiplier architecture for F21223 and perform multiplications in
the extended fields F22·1223 and F24·1223 through a sequence of multiplications in
F21223 . This method for the multiplication over F22·1223 and F24·1223 is reviewed
later in Subsection 3.3. For the multiplication in F21223 the authors in [12] use a
hybrid sequential and parallel recursion of the Karatsuba formula for polynomial
multiplication. In the next subsection we investigate an alternative approach,
which is based on the formulation of multiplication over F21223 as Toeplitz matrix
vector products.

3.1 Multiplication in F21223 through Toeplitz Matrix Vector
Products

The field F21223 is the set of binary polynomials of degree < 1223 modulo the
irreducible trinomial x1223+x255+1. For two given elements A =

∑1222
i=0 aix

i and

B =
∑1222

i=0 bix
i, the product of A and B can be computed by first performing a

polynomial multiplication and then reduce it modulo x1223+x255+1. As stated
in [16], this multiplication and reduction can be re-expressed as follows

A×B mod (x1223 + x255 + 1) = A× (
∑1222

i=0 bix
i) mod (x1223 + x255 + 1)

=
∑1222

i=0 A(i)bi

where A(i) = (xi × A) mod (x1223 + x255 + 1). This means that the prod-
uct in F21223 can be seen as a matrix-vector product MA × B where MA =[
A(0) A(1) · · · A(1222)

]
. We can further arrange this matrix-vector product. In-

deed if we define the following 1223× 1223 circulant matrix

U =

[
0 I968×968

I255×255 0

]
,

then matrix TA = U ·MA is obtained by removing the top 255 rows and placing
them below the other 968 rows of MA. The resulting matrix TA has the following
Toeplitz structure:
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a255 a254+a1222 · · · a0+a968 a1222+a967 · · · a510+a255 · · · a257+a2+a970 a256+a1+a969

a256 a255 · · · a1+a969 a0+a968 · · · a511+a256 · · · a258+a3+a971 a257+a2+a970

.

.

.
.
.
.

a1221 a1220 · · · · · · · · · · · · · · · · · · · · · a1222 + a967

a1222 a1221 · · · · · · · · · · · · · · · · · · · · · a0 + a968

a0 a1222 · · · · · · · · · · · · · · · · · · · · · a1 + a969

.

.

.
.
.
.

a253 a252 · · · · · · · · · · · · · · · · · · · · · a254 + a1222

a254 a253 · · · · · · · · · · · · · · · · · · · · · a255

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The product C = A×B mod (x1223 + x255 +1) is obtained by first performing
this Toeplitz matrix vector product C′ = TA · B and then by switching the top
968 coefficients of C′ with its other 255 coefficients.

We take advantage of the Toeplitz matrix vector product (TMVP) expression
of a multiplication in F21223 since a TMVP can be performed using a subquadratic
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method [19,8]. This subquadratic method is obtained by recursively applying
two-way or three-way split formulas. Assuming that T is an n × n Toeplitz
matrix and V is a column vector with n rows, the two-way split formula reduces
a TMVP of size n to three TMVPs of size n/2 each as follows:

T · V =

[
T1 T0

T2 T1

]
·
[
V0

V1

]
=

[
P0 + P1

P2 + P1

]
, where

⎧⎨⎩
P0 = (T0 + T1) · V1,
P1 = T1 · (V0 + V1),
P2 = (T1 + T2) · V0.

(1)

In [8] we can also find a three-way split formula which reduces a TMVP of size
n to six TMVPs of size n/3 as follows:

T · V =

[
T2 T1 T0

T3 T2 T1

T4 T3 T2

]
·
[
V0

V1

V2

]
=

[
P0 + P3 + P4

P1 + P3 + P5

P2 + P4 + P5

]
, where

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

P0 = (T0 + T1 + T2) · V2,
P1 = (T1 + T2 + T3) · V1,
P2 = (T2 + T3 + T4) · V0,
P3 = T1 · (V1 + V2),
P4 = T2 · (V0 + V2),
P5 = T3 · (V0 + V1).

(2)
When applied recursively, the above formulas provide a multiplication with sub-
quadratic complexity.The complexities of the two- and three-way split formulas
are reported in Table 1. For details on the evaluation of these complexities the
reader may refer to [8]. For comparison purposes, we also provide the complex-
ities of the two-way and the three-way polynomial approaches presented in [18]
and [9]. The complexities in Table 1 show that, in each type of splits, TMVP
approaches outperform polynomial approaches and are thus more suitable to
design finite field multipliers.

Table 1. Area and time complexities of two-way and three-way split polynomial mul-
tiplication and TMVP

Formula Method #AND #XOR Delay
type

Two-way
Poly. mult. nlog2(3) 6nlog2(3) − 8n+ 2 DA + 3 log2(n)DX

with Karatsuba ([18])

Poly. mult. with [9] nlog2(3) 6nlog2(3) − 8n+ 2 DA + 2 log2(n)DX

TMVP with [8] nlog2(3) 5.5nlog2(3) − 7n+ 1.5 DA + 2 log2(n)DX

Three-way
Poly. mult. with [18] nlog3(6) 5.33nlog3(6) − 7.33n+ 2 DA + 4 log3(n)DX

Poly. mult. with [9] nlog3(6) 5.33nlog3(6) − 7.33n+ 2 DA + 3 log3(n)DX

TMVP with [8] nlog3(6) 4.8nlog3(6) − 5n+ 0.2 DA + 3 log3(n)DX

3.2 Hybrid Sequential/Parallel TMVP Multiplier

In order to use the TMVP formulas (1) and (2) in our design of a multiplier for
the field F21223 , we begin with two important issues. First, in order to apply the
TMVP formula, the size of the considered TMVP must be divisible by 2 or 3.
The solution we adopt here is to extend the matrices (by extending the diagonal)
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and the vectors (by padding 0) up to a size divisible by 2 or 3. For example for
n = 1223 we can extend it to 1224, which is divisible by 2 and 3. If needed, we
can repeat this strategy during the recursion.

The second and more challenging issue is that a fully parallel multiplier for the
field F21223 is too large to fit in common FPGA devices. To this end, we adopt the
approach used in [12] in the case of polynomial multiplication with the Karatsuba
formula. Specifically, instead of performing all the computations in parallel, we
process the recursion of the TMVP formulas through a hybrid sequential/parallel
process. Below we describe this approach by applying one recursion of the three-
way split formula. We have done also an hybrid sequential/parallel multiplier
based on two recursions of the two-way split TMVP formula (1). Because of lack
of space, we cannot present this case in details in this paper. The reader may
refer to the forthcomming technical report extending the current paper for these
details.

Three-Way Hybrid Sequential/parallel TMVP Multiplier for n =
1224. The first hybrid sequential/parallel TMVP multiplier for n = 1224 in-
cludes hardware for splitting the associated Toeplitz matrices and vectors of size
1224 in three ways. The splitting leads to six TMVP instances of size 408 each.
One fully parallel hardware unit performs these six TMVPs one after another.
Some additional hardware is used to temporarily store and combine the resulting
408-bit outputs into a 1224-bit product.

The overall architecture of this multiplier is depicted in Fig. 1 and a brief
operational description follows.

Referring to Fig. 1, the entries of the Toeplitz matrix and the vector are
stored it two registers, namely Tin and Rin. We note that the Toeplitz matrix
is completely defined by its top row and left most column. Following (2), the
entries are split as follows:

T · V =

⎡⎣T2 T1 T0

T3 T2 T1

T4 T3 T2

⎤⎦ ·
⎡⎣V0

V1

V2

⎤⎦
where matrices Ti, i = 0, 1, . . . , 4 and vectors Vi, i = 0, 1, 2 are of size 408. The
CONVERTOR block computes, through from the 1223 bit stored in Tin the
coefficients of the first column and the first row of T . Then the Tnet block of
Fig. 1 sequentially generates the six matrices

(T2 + T1 + T0), (T3 + T2 + T1), (T4 + T3 + T2), T1, T2, T3,

involved in the six products Pi, i = 0, . . . , 5 of (2). In parallel to the formation of
the matrices, the Vnet block of Fig. 1 generates the following six corresponding
vectors

V2, V1, V0, (V1 + V2), (V0 + V2), (V0 + V1).

The (matrix and vector) outputs of Tnet and Vnet are input to a fully parallel
unit which computes TMVP of size 408 each. The parallel unit consists of three
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Fig. 1. Multiplier architecture

recursions of three-way split TMVP formula and one two-way split TMVP for-
mula: 408 → 136 → 46 → 16 → 8, the TMVPs of size 8 are performed with a
quadratic method.

This parallel unit sequentially outputs the six products P0, P1, . . . , P5 defined
in (2). These products Pi, i = 0, . . . , 5, are accumulated in the block labeled as
OUTnet of Fig. 1 to form the result W = T ·V . Some additional details of blocks
Tnet, Vnet and OUTnet are depicted in Fig. 2.

Implementation Results of the Multiplier. We have implemented in FPGA
and ASIC the two-way and three-way hybrid sequential/parallel multipliers pre-
sented in the previous subsections. Our main goal has been to optimize the speed.
Below we present the FPGA implementations; for lack of space we omit the ASIC
implementations for the multipliers, but we do report the ASIC implementations
of the complete cryptoprocessor later in the paper.

The multiplier designs have been placed and routed on Xilinx xc6vlx365t-3

FPGA by executing Xilinx Integrated Software Environment (ISETM) version
12.4. The synthesis tool for FPGA estimated LUT counts and operating frequen-
cies for our three- and two-way hybrid sequential/parallel multipliers. In Table 2
we have reported these results along with the results of Ghosh et al. [12].

Table 2 shows that the proposed two-way hybrid sequential/parallel multi-
plier is better than the multiplier presented in [12], considering both LUTs and
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Fig. 2. Blocks of the hybrid three-way sequential/parallel multiplier

Table 2. FPGA Place & Route implementation synthesis results and comparisons for
F21223 multipliers

Multiplier architecture LUTs
Freq. # Clock Cycles Latency Area × time
(MHz) per mult (ns) (LUTs) (ms)

Sequential use of 306 bit
30,148 250 10 40.0 1.21

parallel Karatsuba Mult [12]

Two-way 306-bit
19,721 271 9 33.2 0.65TMVP Mult

Three-way 408-bit
33,546 267 6 22.5 0.75TMVP Mult (Subsec. 3.2)

frequency. The improvement in the number of LUT is mainly due to the use
of TMVP approach for finite field multiplication. The reduction of the delay
is partly explained by the use of the TMVP approach, but is also due to the
reduced number of clock cycle (9 instead of 10) needed for a multiplication. The
proposed three-way hybrid sequential/parallel multiplier present an alternative
to the proposed two-way multiplier and the multiplier of [12]. Specifically, it has
the largest number of LUTs, but offers the highest frequency and smallest serial
use number (i.e., 6 vs. 9 and 10). This results in a multiplier which is less area
efficient but faster than the proposed two-way multiplier.

3.3 Multiplication in Fields F22·1223 and F24·1223

In this section we review the method used to multiply two elements in F22·1223 and
to multiply two elements in F24·1223 . This method uses one recursion (resp. two
recursions) of Karatsuba to reduce the multiplication in F22·1223 (resp. F24·1223)
to several multiplications in F21223 . These multiplications are performed through
one of the two multipliers presented in the previous subsection.
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Multiplication in F22·1223 : The elements of F22·1223 = F21223 [u]/(u
2+u+1) are

considered as degree one polynomial in u. We can thus reduce one multiplication
in F22·1223 to three multiplications in F21223 using the Karatsuba formula. Indeed,
let A = A0 + A1u and B = B0 + B1u be two elements of F22·1223 . We perform
these three products P0 = A0B0, P1 = (A0 + A1)(B0 + B1) and P2 = A1B1.
We then reconstruct and reduce modulo u2 + u+ 1 the product C = A× B as
follows

C = P0 + (P1 + P0 + P2)u+ P2u
2

= P0 + P2 + (P1 + P0)u mod (u2 + u+ 1)

The cost of this method is equal to 3 multiplications and 4 additions in the field
F21223 .

Multiplication in F24·1223 . The elements of F24·1223 = F22·1223 [v]/(v
2 + v + u)

are considered as degree one polynomial in v. We reduce one multiplication in
F24·1223 to three multiplications in F22·1223 by applying the Karatsuba formula.
Indeed, let A = (A0 + A1u) + (A2 + A3u)v and B = B0 + B1u + (B2 + B3u)v
be two elements of F24·1223 . We first perform three products P0 + P1u = (A0 +
A1u)(B0+B1u), P2+P3u = (A0+A2+(A1+A3)u)(B0+B2+(B1+B3)u) and
P4 + P5u = (A2 + A3u)(B2 + B3u) in F22·1223 and then reconstruct C = A× B
modulo v2 + v + u as follows

C = (P0 + P1u) + (P2 + P3u+ P0 + P1u+ P4 + P5u)v + (P4 + P5u)v
2

= (P0 + P5 + (P1 + P4 + P5)u)
+(P2 + P0 + (P3 + P1)u)v mod (v2 + v + u, u2 + u+ 1).

The cost of this approach is equal to 3 multiplications in F22·1223 plus 9 additions
in F21223 . Using the cost of one multiplication in F22·1223 previously evaluated,
we obtain a cost of 9 multiplications and 21 additions in F21223 .

Cost of f · g in Algorithm 1: The most costly operation in the Miller’s loop
of Algorithm 1 is the multiplication f · g. Thanks to the special form of g =
g0+ g1u+ v, this multiplication can be reduced to two multiplications in F22·1223

plus a few additions. Indeed, if we write f = f0 + f1u+ f2v+ f3uv, we have the
following:

fg = (f0 + f1u)(g0 + g1u) + (f2 + f3u)(g0 + g1u)v + (f0 + f1u+ f2v + f3uv)v
= ((f0 + f1u)(g0 + g1u) + f2 + f3 + f3u)

+ ((f2 + f3u)(g0 + g1u) + f0 + f3 + (f1 + f3)u) v

This expression requires two multiplications, namely (f0 + f1u)(g0 + g1u) and
(f2 + f3u)(g0 + g1u) in F22·1223 , plus the additions of the resulting terms to
f2+f3+f3u and f0+f3+(f1+f3)u. Consequently, the cost of f ·g in Algorithm 1
is 6 multiplications and 15 additions in F21223 .

4 Final Exponentiation

In this section, we focus on the final operation of the ηT pairing (Algorithm 1).

This operation is to compute (f (22·1223−1)(21223−2612+1)) for a given f ∈ F24·1223 .
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We begin with the strategy presented in [12]: we first raise f to the power

22·1223 − 1 and then raise f ′ = f (22·1223−1) to the power (21223 − 2612 + 1). This
method is restated in Algorithm 2.

Algorithm 2. Final exponentiation

Require: f ∈ F24·1223

Ensure: f (22·1223−1)(21223−2612+1)

Step 1. S ← f22·1223

Step 2. T ← f−1

Step 3. S ← S × T // S is equal to f (22
2·1223−1)

Step 4. T ← S22·1223 // T is equal to (f22
2·1223−1)2

22·1223
= f1−22

2·1223

Step 5. T ← T 2612 // T is then equal to f (22
2·1223−1)(−2612)

Step 6. R ← S21223 // R is equal to f (22
2·1223−1)(21223)

Step 7. R ← R · T · S // R is finally equal to f (22
2·1223−1)(21223−2612+1)

Step 8. return(R)

Note that in Step 4, we have used the fact that f24·1223 = f, since f ∈ F24·1223 ,

to derive the expression f1−22
2·1223

of T . In Algorithm 2 a number of operation
are performed including

– Powering to some 2 power exponents, like the power 2612 in Step 5 and the
powers 21223 and 22·1223 in Step 1, Step 4 and Step 6.

– Multiplication in the field F24·1223 in Step 3 and Step 7.
– Inversion in F24·1223 in Step 2.

We now specify how we perform the above operations. A multiplication in F24·1223

is performed using the method given in Subsection 3.3. For the powering to 21223

and 22·1223, we use the formula stated in the following lemma.

Lemma 1. Let f = f0+f1u+f2v+f3uv ∈ F4·1223 , then the following identities
hold

(i) u4 = u and v16 = v.

(ii) f21223 = (f0 + f1 + f2) + (f1 + f2 + f3)u+ (f2 + f3)v + f3uv.

(iii) f22·1223 = (f0 + f2) + (f1 + f3)u+ f2v + f3uv.

The proof is not difficult: i) is the direct consequence of the definition of u and
v, and ii) and iii) are consequences of the little Fermat theorem and of i). Due
to lack of space we omit the proof of this lemma.

For the other operations, i.e., inversion in F24·1223 and exponentiation to the
power 2612, we propose some new optimizations. These optimizations are given
in the following two subsections.
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4.1 Inversion in F24·1223

To perform the inversion in F24·1223 we use an approach similar to the one used
for some implementations of AES Sbox [5]. The proposed inversion is based on
the following well known expression A−1 = Ar−1 × (Ar)−1, which can be used
to compute an inverse in an extension of degree two Fq2 over Fq by taking r = q.
This reduces the computation of an inversion in Fq2 to an inversion in Fq as
follows

A−1 = Aq(A1+q)−1,

since A1+q is in Fq. As A1+q is a norm relative to the field extension Fq2 over
Fq, this approach is often referred to as the norm approach for field inversion.
In our situation we apply this approach twice: first to reduce the inversion in
F24·1223 to an inversion in F22·1223 with q = 22·1223 and then to reduce the latter
inversion in F22·1223 to an inversion in F21223 with q′ = 21223. This method is
detailed in Algorithm 3.

Algorithm 3. Inversion in F24·1223

Require: A = A0 + A1u + A2v + A3uv
Ensure: A−1

Step 1. R0 +R1u+R2v+R3uv ← (A0 +A2) + (A1 +A3)u+A2v+A3uv // R = A22·1223

Step 2. S0 + uS1 ← (A1 + uAu)(R1 + uRu) + u(R2 + uR3)
2 // S = A × A22·1223

Step 3. T0 + T1u ← S0 + S1 + S1u // T = S21223

Step 4. U ← S0T0 + S1T1 // U = S × S21223

Step 5. V ← InvF
21223

(U) // V the inverse of U

Step 6. W0 ← T0V + T1V u // W = T × V
Step 7. (Z0 + Z1u) ← (R0 + uR1)(W0 + W1u), (Z2 + uZ3)) ← (R2 + R3u)(W0 + W1u) //
Z = R × W

return(Z = Z0 + Z1u + Z2v + Z3uv)

We now evaluate the cost of Algorithm 3 in terms of the operations in F21223 .
Specifically, we count the number of additions (Add), squarings (Squ), multipli-
cations (Mul) and inversion (Inv) in F21223 . It is easy to see that Step 1 requires
2Add and Step 3 only 1Add. Step 4 requires 1Mul, 1Squ plus one Add (we
have a squaring since S1 = T1), Step 5 requires one Inv and Step 6 requires
2Mul. Finally, Step 2 and Step 7 contribute three multiplications in F22·1223 ,
which leads to 9Mul + 9Add in F21223 . The terms u(R2 + uR3)

2 = R2
2u + R2

3

mod (u2 + u + 1) in Step 2 contributes to 2Squ + 2Add. We finally obtain the
overall cost of Algorithm 3: 14Add+ 3Squ+ 10Mul+ 1Inv.

In our proposed architecture, the additions and the squaring operations are
performed through dedicated fully parallel adder and squarer. The multiplica-
tions are done through one of the F21223 multipliers presented in Section 3. We
perform the inversion in F21223 using the algorithm of Itoh-Tsujii [14]. This
method expresses the inversion as a sequence of squarings and multiplications
specified by an addition chain. There exist several addition chains suitable to
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Table 3. Complexity of the proposed approach for the final exponentiation

#Add #Squ/SquRoot #Mult

Step 1. 2 0 0
Step 2. 14 1,225 24
Step 3. 21 0 9
Step 4. 2 0 0
Step 5. 2 2,444 0
Step 6. 6 0 0
Step 7. 42 0 18

Total 89 3669 51

perform an inversion efficiently. The addition chain we use to compute the inverse
of a is as follows

s← a, s← s2 · s, r ← s, s← s(2
2) · s, s← s(2

2), r ← r · s, s← s(2
4) · s,

s← s(2
8) · s, s← s(2

16) · s, s← s(2
32) · s, s← s(2

4), r ← r · s, s← s(2
64) · s,

s← s(2
64), r ← r · s, s← s(2

128) · s, s← s(2
256) · s, s← s(2

512) · s, s← s(2
128),

r← r · s, r ← r2,

and the last r satisfies r = a−1. The resulting complexity of the inversion is
equal to 14Mul and 1222Squ in F21223 .

This means that the total cost in terms of additions, squarings and multipli-
cations of the proposed inversion in F24·1223 is

14Add+ 1225Squ+ 24Mul.

In [12], the same inversion operation is performed by solving a system of equa-
tions and it incurs a cost of 57Add+ 1230Squ+ 50Mul.

4.2 Complexity Evaluation and Comparison of the Final
Exponentiation

Using the following expression given [2] of the exponentiation to the power 2612

in F24·1223 (f0+f1u+f2v+f3uv)
2612 = (f2−611

0 )+(f2−611

1 )u+(f2−611

2 )+(f2−611

3 )uv.
this exponentiation is reduced to four independent sequences of 611 square roots,
and these four sequences can be performed in parallel. Based on this and the cost
of inversion in F24·1223 from the previous subsection, in Table 3 we list the cost of
each step of Algorithm 2 using the complexity results stated in Subsection 3.3,
Lemma 1 and Subsection 4.1. The cost of each step is then added to obtain
the overall cost of the proposed approach for the final exponentiation. We now
compare the proposed approach with that of [12]. To this end, first we correct
a small error in [12] which reports the 612 squarings for Step 5 as squarings in
F21223 instead of squarings in F24·1223 . Since a squaring in F24·1223 has a cost of
4Squ+4Add in F21223 , the actual complexity of the method of [12] is 3083Add+
3872Squ + 98Mul. We then remark that the proposed approach reduces the
number of additions, squarings and multiplications compared to that of [12].
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5 Proposed Cryptoprocessor for ηT Pairing and
Implementation Results

The final architecture for the ηT pairing is depicted in Fig. 3. There are three main
blocks in ourpairing-based cryptoprocessor, namelybinary arithmetic unit (BAU),
input and squaring unit (ISU) and data handling unit (DHU). The different com-
putations involved in Algorithm 1, i.e., the operations of the Miller’s loop and the
operations of the final exponentiation, are distributed in the three blocks BAU,
ISU and DHU. Specifically, BAU has five 1223-bit registers, one binary field mul-
tiplier, one adder and two squaring units. Both squaring units are connected in
series to compute two squarings (X22) in a single clock cycle during the computa-
tion of an inversion in F21223 . Any of the registers R0, R1, R2, R3 and RX can be
added through the field adder by settingR+1 signal to high.R2 is set to one at the
beginning of computation as required by Algorithm 1. Note that ourmultiplier op-
erates in steady state when theMiller’s loop is computed. Hence themultiplication
costs are only six and nine clock cycles in three-way split and two-way split multi-
plier structures, respectively. The ISU block has five 1223-bit registers to store the
intermediate values x1, x2, y1, y2 and T values during the Miller’s loop computa-
tion (cf. Algorithm 1). In final exponentiation, the computation T 2612 ∈ F24·1223 is
performed through four sequences of 611 square roots in the ISU block. When ex-
tended field multiplication is performed in Miller’s loop and final exponentiation,
intermediate values are stored in eight 1223-bit registers in DHU. Powering to the
exponent 21223 during the final exponentiation are also computed in DHU. Fur-
thermore, DHU handles transferring data from BAU to ISU and vice versa. There
are two variants of this architecture: the three-way variant which uses the three-
way hybrid sequential/parallel multiplier and the two-way variant which uses the
two-way hybrid sequential/parallel multiplier.

In Table 4, we present the FPGA synthesis results of the two variants of the
cryptoprocessor. We have run several test vectors through both implementations
and both have been verified for correctness. In our design special attention was
given to handle input and outputs in a more manageable way. This is because
we have four 1223-bit inputs and four 1223-bit outputs. Current FPGA devices
cannot handle such large amount of input/output in parallel. As a result, our
VHDL codes were written for FPGA devices to support 306-bit words for in-
put and output, i.e., an 1223-bit input is accepted in four steps. The results
presented here do not include input and output timings and are purely on the
computational time required to perform a single pairing.

The frequencies do not change compared to the frequencies of the multiplier
(Table 2). Indeed the the critical path of the cryptoprocessor is part of the
multiplier in F21223 . The other parts of the architecture does not vary in the two
considered variants of the cryptoprocessor, i.e., two-way and three-way variants.
A consequence is that the difference in LUTs between the two architectures
is roughly the same as the difference in LUTs of the multiplier in F21223 (cf.
Table 2). We remark also that ∼= 80% of the computation time is consumed by
the Miller’s loop and ∼= 20% is consumed by the final exponentiation.
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Fig. 3. Proposed ηT pairing architecture

Table 4. Implementation results for FPGA (Virtex-6)

Cryptoprocessor Max. Processor #CC Multiplier Time #CC #CC/ #CC
Design Freq. (LUTs) per (LUTs) (μs) for all per per Ext.

(MHz) pairing Mults. Inverse Mult.

Two-way
271 50,179 40,320 19,721 148.78 38,562 794 89

way hybrid
seq/para

Three-way
267 63,103 27,308 33,546 102.40 25,710 752 62

hybrid
seq/para

#CC denotes number of clock cycles.

In Table 5 we present our results for ASIC. The VHDL code is fed into Syn-
opsys Design Compiler Version E-2010.12 for synthesizing with TSMC 65nm
library TCBN65GPLUS at best case corner. At 500MHz the architecture which uses
the two-way sequential/parallel multiplier needs 80.64μs and the architecture
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Table 5. Implementation results for ASIC

Architecture Gates Area (μm2) Time (μs) Power (mW) Energy (μJ/calc) calc.s/J

Two-way split 497,417 716,281 80.640 389.139 31.38 31,867

Three-way split 548,453 789,773 54.616 486.300 26.56 37,651

using the three-way sequential/parallel multiplier needs 54.616μs per calcula-
tion. Energy consumption is calculated as power × time for a single computa-
tion and reported in Table 5. Obviously the architecture using the three-way
sequential/parallel multiplier consumes more power, whereas a pairing based
computation needs less energy in the same circuit, implying that the three-way
approach is greener than the two-way.

6 Comparison and Conclusion

As the pairing algorithm used in the paper is heavily dominated by more than
four thousand multiplications over F21223 , it has thus been crucial to deploy high
performance multiplier(s). To this end, the use of the Toeplitz matrix-vector
product approach has enabled us to reduce the area and time requirements
considerably. In order to explore area-time trade-offs for designs dealing with a
large field like F21223 , we have implemented both two-way and three-way split
based multipliers in a hybrid sequential/parallel manner.

Using our two-way and three-way split multipliers, we have implemented the
resulting ηT pairing cryptoprocessors in FPGA and ASIC. In Table 6 we have
reported some known implementation results for pairing at the 128-bit secu-
rity level. As it can be seen from Table 6, the previous best results is the one

Table 6. Comparison results for FPGA and ASIC

Design Curve FPGA Area Freq. Time (μs) A (slice) ·T (sec)

(Slices/DSP)

Fan et al. [11] E/Fp256 xc6vx240-3 4,014/42 210 1,170 −
Ghosh et al. [13] E/Fp256 xc4vlx200-12 5,2000 50 16,400 852.8

Estibals [7] E/F35·97 xc4vlx200-11 4,755 192 2,227 10.6
Aranha et al. [1] Co/F2367 xc4vlx200-11 4,518 220 3,518 15.9
Ghosh et al. [12] E/F21223 xc4vlx200-11 35,458 168 286 10.1
Ghosh et al. [12] E/F21223 xc6vlx130t-3 15,167 250 190 2.9
This work/2-way E/F21223 xc6vlx365t-3 13,596 271 148 2.0
This work/3-way E/F21223 xc6vlx365t-3 16,403 267 102 1.7

Design Curve ASIC Tech. Area (Gates) Freq. Time (μs) A (gates) ·T (sec)

Kammler et al.[15] E/Fp256 130 nm CMOS 97,000 338 15,800 1,532.6
Fanet al. [10] E/Fp256 130 nm CMOS 183,000 204 2,900 530.7

This work/2-way E/F21223 65 nm CMOS 497,417 500 80.64 40.1
This work/3-way E/F21223 65 nm CMOS 548,453 500 54.616 29.9
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presented in [12] which requires 190μs to complete a single computation of the
ηT pairing. The work presented here requires 102μs (∼45% improvement) for
the architecture using the three-way-sequential/parallel multiplier and 148μs
(∼22% improvement) for the architecture using a two-way sequential/parallel
multiplier. Our FPGA implementations also offer the best area-time products.
Our ASIC implementations are faster and have better area-time products than
those of the previous best implementations.
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Abstract. Myriads of ultra-constrained 4-bit micro controllers (MCUs)
are deployed in (mostly) legacy devices, some in security sensitive appli-
cations, such as remote access and control systems or all sort of sensors.
Yet the feasibility and practicability of standardized cryptography on
4-bit MCUs has been mostly neglected. In this work we close this gap
and provide, to the best of our knowledge, the first implementations of
ECC and SHA-1, and the fastest implementation of AES on a 4-bit MCU.
Though it is not the main focus of this paper, we have investigated the
SCA resistance trade-offs for ECC by implementing a variety of coun-
termeasures. We hope that our comprehensive, highly energy-efficient
crypto library—that even outperforms all previously published imple-
mentations on low-power 8-bit MCUs—will give rise to a variety of se-
curity functionalities, previously thought to be too demanding for these
ultra-constrained devices.

Keywords: 4-bit MCU, AES, Elliptic Curve Cryptography, SHA-1,
Lightweight Cryptography.

1 Introduction

Current market figures for embedded processors are hard to obtain in the open
literature, nevertheless a book from 2003 indicates that 98 percent of all proces-
sors are embedded [48] and a publication from 1997 states with regards to the
market shares of 4-, 8- and 16-bit micro controllers (MCUs): “Like any ecosys-
tem, the smallest creatures appear in the greatest numbers” [47]. Though these
market shares have certainly changed over the last 15 years—away from 4-bit
MCUs and towards 8-, 16-, and 32-bit MCUs—it also indicates that myriads
of 4-bit MCUs are deployed in legacy devices, e.g. watches and toys, but also
security sensitive applications such as remote access and control systems, car
immobilizers [45], one-time password generators, and all sorts of sensors.

8-bit MCUs have been long used as the platform of choice to evaluate the
efficiency of cryptographic algorithms in embedded devices. On one hand this
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is a perfectly sound forward-looking approach, while on the other hand, this
approach excludes myriads of 4-bit legacy devices, many of which could benefit
from security functionalities. It is these legacy devices which make us believe
that it is worth to evaluate the feasibility and practicability of cryptographic
algorithms on 4-bit MCUs.

The feasibility of block cipher implementations on 4-bit MCUs has been shown
in [50] using PRESENT [4] as an example. Shortly after, HUMMINGBIRD [13] —
already broken [39] and replaced by a successor called HUMMINGBIRD-2 [14]—
was implemented on the same 4-bit MCU [15]. Recently, also AES [34] as the
first standardized algorithm1 and PRINTcipher [24] have been implemented on
the same platform [23].

In order to enable widespread security functionalities—such as legally bind-
ing sensor readings or secure firmware updates—not only block ciphers but also
cryptographic hash functions and public key cryptography are required. To the
best of our knowledge, no implementation on a 4-bit MCU has been published
for the latter two categories so far. Hence, we close this gap by providing the first
implementations of the SHA-1 hash function [35] and Elliptic Curve Cryptogra-
phy (ECC) using the 160-bit curve secp160r1 [7]. We have also implemented AES,
yielding the fastest implementation on a 4-bit MCU. All our highly-optimized
implementations even outperform implementations on low-power 8-bit MCUs.

As side-channel attacks (SCA), such as Timing attacks [27], Simple Power
Analysis (SPA) and Differential Power Analysis (DPA) [28], are a major con-
cern for embedded devices, we have implemented basic countermeasures against
them, though it is beyond the scope of this paper. As a matter of fact, our im-
plementations of AES and SHA-1 are timing attack resistant, and for ECC we have
investigated different DPA resistance-security trade-offs.

The remainder of this work is organized as follows. In Section 2 the tar-
get platform is briefly introduced before various implementations with different
optimization goals of the AES and SHA-1 are presented in Sections 3.1 and 4,
respectively. Subsequently, in Section 5 elliptic curve cryptography is treated. A
wide variety of optimization tricks are described and different countermeasures
against timing attacks, SPA and DPA are implemented. Then, in Section 6 our
results are—where available—compared with previous implementations on 4-bit
MCUs, and for the sake of completeness with implementations on 8-bit MCUs.
Finally, Section 7 concludes this paper.

2 Target Platform and Design Flow

The Epson S1C63 family of MCUs was introduced in 2011 and is one of the most
recent 4-bit low-power architectures. All members of the S1C63 family have a 4-
bit core along with ROM, RAM, LCD drivers, I/O ports and a wide instruction
set (mostly 1-2 cycles) with a linear addressing space without pages. It also has
a two-stage pipeline (fetch and execute) and a maximum of 15 and 63 hardware

1 PRESENT has been recently standardized as well [20].
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and software interrupt vectors respectively, depending on the MCU being used.
The MCUs differ mainly in the memory size ranging from 6kB to 50kB and
on-board components, such as UART or hardware multiplier [41]. Our goal was
to use the most constrained S1C63003 which has just 6kB of code ROM, 128
bytes of RAM and no data ROM. However, since this is not sufficient for the
extensive computations of ECC, we moved to S1C63016 (only for ECC), which
has 26kB of code ROM, 1kB of RAM and 2kB of data ROM. S1C63016 also has
an integer multiplier/divider which is absent in S1C63003.

There are 47 basic types of instructions with 8 addressing modes (411 instruc-
tions in all). It has two 4-bit data registers A and B; two 16-bit index registers X,
Y for 4-bit indirect data access; two stack pointers SP1 (16-bit) and SP2 (8-bit);
a 4-bit condition flag register F which consists of extension E, interrupt I, carry
C and zero flag Z; an 8-bit extend register EXT for extended addressing mode.
Table 1 gives a list of the most frequently used instruction and its instruction
cycles. Each instruction cycle is equal to 2 clock cycles2.

Table 1. Frequently used instructions [41] of EPSON S1C63 family MCU

Mnemonic* Cycles

LD [%ir]+,%r; LD %r,[%ir]+; ADC %r,[%ir]; ADC %r, [%ir]+ 1

AND %F,imm4; OR %F,imm4; CMP %r,%[ir]+; CMP [%ir]+,%r 1

JR sign8; JRNC sign8; JRNZ sign8; CALR imm8; RET 1

LDB % EXT, %BA; LDB %rr, imm8; ADD %ir, %BA; ADD %ir,sign8 1

LD [%ir]+,[%ir]+; LDB [%X]+,%BA; ADC [%ir]+,%r; 2

INC [addr6]; DEC [addr6]; XOR [%ir]+,%r; EX %r,[%ir]+ 2

RETD 3

*ir = index register (X or Y); r= data register (A, B or F); addr6= 6-bit absolute
data address; imm8= 8-bit immediate data; sign8= signed 8-bit digit; rr=

XL,XH,YL,YH.

Details of the design flow of this MCU can be found in [44]. For debugging we
use a software simulator on the PC that can even simulate an LCD (Fig.1(a)),
and a hardware tool called In-Circuit Emulator (ICE), an FPGA-based emula-
tion board (Fig.1(b)) [43]. The code is first tested on the software simulator or
on the ICE and can then be burned on the target board. The advantage of using
the ICE over software simulator is to ensure the proper operation of the system
before burning it onto the target board (Figure 1(c)). The software simulator
and the debugger are used to get the cycle count and code size of the tested
functions which are the two most common performance metrics for embedded
platforms. Furthermore, we provide estimated energy consumptions based on
public datasheets as an additional performance metric.

2 In the remainder of the paper we refer to instruction cycles as cycles.
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(a) Software simulator (b) In-circuit emulator

(c) Target board

Fig. 1. S1C63 family development tools [43]

3 The Advanced Encryption Standard

In this section we will first give a brief introduction to the Advanced Encryption
Standard (AES). Subsequently, starting from a näıve implementation, we will
describe several tricks applied for either code size or speed optimization. Table 2
summarizes our AES implementation results.

3.1 Introduction to AES

The Advanced Encryption Standard [34] is a symmetric block cipher with a block
size of 128 bits and key sizes of 128, 192, and 256 bits, called AES-128, AES-192,
and AES-256, respectively. The input and round keys are organized as a 4×4
state array, with each element being one byte. Encryption and decryption require
Nr = 10, 12, and 14 rounds for AES-128, AES-192, and AES-256, respectively. Each
round of AES is composed of the following four operations: SubBytes, ShiftRows,
MixColumns and AddRoundKey. For details please refer to [11,34].

3.2 Näıve Implementation of AES

To implement AES on a 4-bit architecture, every byte of the state array and the
key state array, staterc and keyrc, should be split into two 4-bit values. We use
statercn and keyrcn, where n = 0 or 1 denotes the high or low nibble. We now
give a brief overview of our näıve AES implementation on Epson’s 4-bit MCU.

SubBytes : In a straight forward implementation, each byte of the state array is
substituted by using a look-up table, called S-Box, that consists of 256 8-bit en-
tries. We split the S-Box into 16 tables, SBOXi with 0 ≤ i ≤ 15, each containing
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16 entries. According to the manual of our target platform [41], table look-ups
are realized by a combination of “LD”, “JR %BA” and “RETD” instructions. It
takes 11 cycles to substitute one byte, and in total SubBytes takes 163 cycles,
i.e, 11 cycles for the first look-up, 10×15 cycles for the remaining look-ups (only
10 cycles/look-up because of the post-increment functionality), and 2 cycles for
the call/return instruction and has a code size of 475 bytes.

ShiftRows : We exchange the location of elements in rows 1 to 3 of the state ar-
ray nibble by nibble. For example, when exchanging state100,101 and state130,131,
we have to copy state100,101 to registers A and B, then copy state130,131 to
state100,101. Finally, the state130,131 is replaced by registers A and B. In total
90 cycles and 36 bytes of code size are required for ShiftRows and InvShiftRows.

MixColumns : This step is a matrix multiplication, using coefficients {01},
{02}, and {03} for encryption ({09}, {0B}, {0D} and {0E} for decryption). The
element multiplication can be implemented by using only shifts and XORs. In
case the higher nibble of the multiplication result is greater than 7, we need a
modulo reduction, that is an XORwith the constant “0x1B”. To achieve a constant
time implementation, we use a dummy reduction (XOR with “0x00”) in case the
higher nibble is less or equal than 7. In our constant time implementation, in total
MixColumns requires 1297 cycles and 555 bytes of code size, and invMixColumns
requires 6207 cycles and 1554 bytes of code size.

AddRoundKey: It performs a nibble-wise XOR between the state array and key
state arrays. In total 113 cycles and 43 bytes of code size are required for the
AddRoundKey operation. After everyAddRoundKey operation, theKey Schedule
is performed to generate the next round key. In total, Key Schedule requires 204
cycles and 114 bytes of code size for encryption (276 cycles and 150 bytes of
code size for decryption).

3.3 Memory-Optimized Implementation of AES

In order to reduce the memory requirement, we have applied the following opti-
mization tricks.

Code Structure Optimization Process : We need the extended register for call
and jump instructions if the relative address is more than 8 bits. These ex-
tended instructions consist of two “regular” instructions, thus doubling the code
size. Hence, we rearranged parts of the code in memory to avoid these extended
instructions. Furthermore, we combined MixColumns, Key Expansion, and Ad-
dRoundKey operations in the same function for AES-128 and AES-256, but not for
AES-192 due to the different Key Expansion routine. We also combined SubBytes
and ShiftRows into one function to save code space.

MixColumns/InvMixColumns Optimization Process : We have implemented
the technique proposed in [11] but did not achieve significant code savings for
encryption. Hence, we stuck to the direct multiplication. For decryption, this
technique will reduce the code size by 30%, and it is 3.5 times faster than the
direct multiplication.

Key Expansion Optimization Process : In our näıve implementation, every
byte of the last column of the key state array is loaded from RAM to process
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substitution, rotation, and XOR with the round constants and then stored back
to the key state array. The “EX” instruction is used to exchange values between
RAM and the registers A and B. When using this “EX” instruction efficiently one
can combine a load from RAM and store to RAM into one instruction, hence
halving the number of instructions required for loading and saving the state.

3.4 Speed-Optimized Implementation of AES

In order to speed up the näıve implementation as much as possible, we have
applied the following optimization tricks.

Code Structure Optimization Process : To speed up our implementation we
used two well-known techniques called loop-unrolling and inline expansion.When
unwinding a loop, the instructions are replicated as many times as the loop will
be processed, to avoid the overhead due to conditional branching. Inline expan-
sion is a similar technique: it replaces the function call by the actual contents of
the to-be-called function, thus saving the function call.

MixColumns/InvMixColumns Optimization Process : By using look-up tables
for multiplication by {02}, {03}, {09}, {0B}, {0D} and {0E} we could speed
up MixColumns by 29% and invMixColumns by a factor of more than 3. These
gains come at an additional memory cost of 72% and 32%, respectively.

3.5 Implementation Results

All implementations of AES are tailored for the most constrained member of
the MCU family, the Epson S1C63003 MCU running at 3 Volt. Table 2 com-
pares our näıve and optimized implementations. For encryption, we could re-
duce the code size up to 15% for the memory-optimized implementation. For
the speed-optimized version, we could boost the speed of the algorithm by al-
most 22%. For decryption, we could reduce the code size by almost 15% for the
memory-optimized version and could boost the speed by almost 72% for the
speed-optimized one. In addition, we also calculated the throughput of all ver-
sions and the energy consumption for computing one block of AES. The power
consumptions were estimated based on information from datasheets or from in-
formation directly received from the manufacturer by using the formula voltage
* current * (cycles*2) / frequency.

We have also AES implementations providing both encryption and decryption
functionality. The memory-optimized version requires 2625, 2999, and 2895 bytes
(about 10% more than the respective decryption-only variant), and the speed-
optimized variant requires 4674, 4962, 5698 bytes (about 12% more than the
respective decryption-only variant).

4 SHA-1

In this section we will first give a brief introduction into the Secure Hash Al-
gorithm (SHA-1). Subsequently, starting from a näıve implementation, we will
describe several tricks that we applied to optimize the implementation regarding
to code size and speed.
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Table 2. Implementation results of AES

Encryption
AES-128 AES-192 AES-256

Näıve
Mem Spd

Näıve
Mem Spd

Näıve
Mem Spd

Opt Opt Opt Opt Opt Opt

Code size [bytes] 1,426 1,294 2,645 1,715 1,468 2,942 1,677 1,458 3,280

Cycles 17,675 17,347 13,729 21,188 20,883 16,524 24,979 24,771 19,474

T’put @32.768KHz 0.1159 0.1181 0.1492 0.0967 0.0981 0.1239 0.0820 0.0827 0.1052
[kbps] @4MHz 14.144 14.412 18.210 11.799 11.971 15.130 10.008 10.092 12.838

Energy @32.768KHz 7.44 7.31 5.78 8.92 8.79 6.96 10.52 10.43 8.20
[μJ/block] @4MHz 5.83 5.72 4.53 6.99 6.89 5.45 8.24 8.17 6.43

Decryption

Code Size [bytes] 3,062 2,462 4,152 3,416 2,670 4,542 3,382 2,698 4,825

Cycles 64,636 23,901 18,688 78,315 28,552 22,120 92,378 33,554 26,242

T’put @32.768KHz 0.0317 0.0857 0.1096 0.0262 0.0717 0.0926 0.0222 0.0610 0.0780
[kbps] @4MHz 3.868 10.460 13.378 3.192 8.756 11.302 2.706 7.451 9.527

Energy @32.768KHz 27.22 10.07 7.87 32.98 12.02 9.32 38.90 14.13 11.05
[μJ/block] @4MHz 21.33 7.89 6.17 25.84 9.42 7.30 30.48 11.07 8.66

4.1 Introduction to SHA-1

SHA-1 is one of the Secure Hash Standards published by the National Institute
of Standards and Technology (NIST) [35] in 1995. SHA-1 is an iterative, one-way
hash function that can process messages up to a length < 264 bits and produces
a 160-bit message digest. According to [35], there are two stages of SHA-1, i.e.,
preprocessing and hash computation.

Preprocessing stage: It consists of the following 3 steps.

1. Padding: The message is padded by a single ’1’ bit followed by the necessary
number (0 ∼ 511) of ’0’ bits, and then the bit length of the original message,
represented by a 64-bit integer, is appended. After padding, the bit length
will be a multiple of 512.

2. Parsing the padded message: This step divides the message into N blocks,
each block containing 512 bits.

3. Initialize Hash Value: In this step the 160-bit starting value is initialized by
five 32-bit words as follows: A = 0x67452301, B = 0xEFCDAB89,
C = 0x98BADCFE, D = 0x10325476 and E = 0xC3D2E1F0.

Hash computation: This stage is the heart of SHA-1 and consists of 80 rounds.
Each round (see Fig. 2) uses a function ft(B,C,D) and processes constants (Kt)
as described in Table 3.

After processing all N blocks, the resulting 160-bit message digest is the
concatenation of A‖B‖C‖D‖E. For further details, please refer to [35].
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Fig. 2. One round of SHA-1 computation

Table 3. SHA-1 function (ft(B,C,D)) and constants (Kt)

Round (t) ft(B,C,D) Kt

0 to 19 (B ∧ C) ⊕ (¬B ∧D) 0x5A827999

20 to 39 B ⊕ C ⊕D 0x6ED9EBA1

40 to 59 (B ∧ C)⊕ (B ∧D)⊕ (C ∧D) 0x8F1BBCDC
60 to 79 B ⊕ C ⊕D 0xCA62C1D6

4.2 Implementation of SHA-1

There are two different methods to compute message scheduling as mentioned
in [35]. We choose the method for devices with limited memory.

There are five operations required for SHA-1: AND, NOT, XOR, Left Rotation
andModulo Addition. However, as the MCU does not support NOT, we use XOR
with 0xF instead. The 5-bit left rotation is implemented by first swapping 4-bit
words within the 32-bit chunk and then left rotating the result by 1-bit. For
the 30-bit left rotation, we apply a similar technique, i.e., first swapping 4-bit
words within the 32-bit chuck to get a 28-bit left rotation and then doing a
1-bit left rotation twice. The 5-bit left rotation requires 223 bytes of code and
180 clock cycles. The 30-bit left rotation reuses some sub-functions in the 5-bit
left rotation, so it requires additional 21 bytes and in total takes 301 cycles. In
addition, the 32-bit modulo addition requires 82 bytes of code and 93 cycles.

Memory-Optimized Implementation: As for AES we tried to avoid extended
jumps and calls by rearranging parts of the code. Furthermore, in the specifica-
tion of SHA-1 it can be seen that the round function of rounds 60 to 79 uses the
same round function as rounds 20 to 39. Thus, we can use the same function
twice and hence, save 13 bytes of program memory at no additional timing cost.

Speed-Optimized Implementation: We have applied 2-bit right rotation instead
of 30-bit left rotation. As a consequence, we could speed up this part by 17%,
while the code size increased a mere 7% as compared to the memory-optimized
version. We also applied loop-unrolling where possible and inline expansion of
the function left rotation, right rotation and modulo addition. Additionally, we
also applied the trick for minimizing the round function as mentioned in [31] to
boost up the speed.
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4.3 Implementation Results

Our SHA-1 can be implemented on the smallest Epson S1C63003 MCU running
at 3 volts. Detailed results are provided in Table 8 in Sec. 6. As can be seen the
speed-optimized version requires 14% more memory, but it can boost the speed
by almost 24% in comparison to the memory-optimized implementation.

5 Elliptic Curve Cryptography

Elliptic curve cryptography (ECC) [26,32] is a public-key cryptography with much
smaller key sizes than RSA or other public-key systems based on the discrete
logarithm problem. Because of its small key sizes, it is very suitable for con-
strained devices. ECC can be used to implement a wide variety of applications,
such as Diffie-Hellman key exchange (e.g. ECDH [40]) or digital signatures (e.g.
ECDSA [21]) amongst others.

ECC relies upon group operations in elliptic curve group, and a group E over
field Fp can be defined by the points (x, y) satisfying the short Weierstrass form:

E : y2 = x3 + ax+ b, where 4a3 + 27b2 �= 0.

In “Standards for Efficient Cryptography 2” [7] a curve is specified by a sextuple:
(p, a, b, G, n, h), where p is the prime, a and b are the curve parameters, G is a
base point with order n, and h is the cofactor. In this paper, we have implemented
ECDH using the 160-bit curve secp160r1 of SEC 2 on the S1C63016 MCU.

5.1 Efficient Implementation of ECC

The computation in ECC can be divided into three layers: prime field arithmetic
at the bottom, point arithmetic in the middle, and protocol on top. The three
layers are implemented separately and the implementations at the lowest level
greatly impacts the overall run time, hence optimizations at this level are crucial.

Prime Field Arithmetic. The curves suggested by SEC 2 employ pseudo
Mersenne primes, e.g., p = 2160 − 231 − 1 in secp160r1. Modulo operations will
be much more efficient than using the Barrett reduction [3] or the Montgomery
multiplication [33]. We have implemented the following operations in this layer.

Modular addition/subtraction: The näıve addition/subtraction with reduction
takes at most 428 cycles. It might be susceptible to timing attacks because of
the unfixed run time. By using some extra data RAM a fixed run time of 292
cycles is achieved. Besides, the code size can be optionally reduced from 352 to
291 bytes along with the data RAM usage increasing from 40 to 60 bytes.

Multiplication (M) and Squaring (S): According to our implementation results
(Table 4), row-wise (operand scanning form) multiplication is more suitable for
the 4-bit architecture than column-wise (product scanning form) and hybrid [49]
algorithms. When using row-wise multiplication, the first operand remains un-
changed for the whole row, and only the second operand needs to be updated.
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This is why, compared to the column-wise and hybrid method, the row-wise
method requires less IO operations and hence resulting in a better performance.

The main bottlenecks on this 4-bit MCU are carry handling and the slow mul-
tiplication instruction3. The first one can be solved by using additional 160-bit of
memory to accumulate the results of atomic multiplications in one round of the
row-wise multiplication instead of adding them to the final result separately. The
second one can be solved by interleaving multiplication with other instructions.
These two improvements together deliver about twice the performance, i.e., re-
ducing the run time from 28,680 to 16,690 cycles with a code size of 324 bytes
and an additional 10-byte data RAM. A separate squaring algorithm [6] further
improves the performance, each squaring takes 12,985 cycles at an additional
cost of 330 bytes of code size.

Table 4. Implementation results of field arithmetic

Näıve implementation No. of cycles Code size [bytes]

Row-wise [19] 28,680 300

Column-wise[19] 30,953 344

Hybrid [49] 29,485 368

Bisection: For an even number, division by 2 is a right shift of its binary
representation. For an odd number, an extra addition of the prime p is required
before the right shift.

Inversion (I): We have implemented the binary extended GCD algorithm [25,
Ch 4.5.2] which requires multi-precision addition/subtraction and right shift
(division by 2).

Reduction: Because of the pseudo Mersenne prime p = 2160 − 231 − 1 in the
curve secp160r1, the 320-to-160-bit reduction can be evaluated by shift and add.
A näıve implementation of reducing from MSB to LSB takes 1,604 cycles with
a code size of 775 bytes, and most of them are spent on the carry handling. In
order to avoid this bottleneck, we rearrange the reduction as

H × 2160 + L ≡ H × (231 + 1) + L

≡ H + L+ (H ≪ 31) +H159∼129 × 231 (mod p), (1)

where H and L are the most and least significant 160 bits of the 320-bit value
respectively, “≪ 31” is a 31-bit left rotation, and H159∼129 is the most signifi-
cant 31 bits of H . By accumulating the carries of the three additions and then
handling them together, the performance will be significantly improved, and it
requires only 679 cycles and 624 bytes.

Point Arithmetic. The major computation in ECC is the point multiplication
nP which can be evaluated through the combination of point doubling 2P and

3 Refer to the specifications in the Epson technical manual [42].
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point addition P1 +P2. Instead of representing points in affine coordinates (A),
we employ Jacobian projective coordinates (J ) to implement point doubling and
addition. A point (x, y) in A can be represented by (x, y, 1) in J , and a point
(X,Y, Z) in J is identical to the point (X/Z2, Y/Z3) in A. The advantage of
using projective coordinates is that we only need 1I after finishing the point
multiplication instead of 1I for every point doubling and point addition in affine
coordinates. The following are the three point operations, and detailed results
are summarized in Table 5 and Table 6.

Point doubling (D): We implement point doubling in Jacobian coordinates
(2J → J ). It requires 4M and 4S as well as some minor field operations, or
alternatively 3M and 5S by using the trick αβ = 1

2

(
(α+ β)2 − α2 − β2

)
[29].

Since in our implementation 1S ≈ 0.7M, this trick achieves 2% speed-up along
with 3% increment in code size.

Point addition/subtraction (A): Point addition in mixed coordinates (J +A →
J ) takes 8M and 3S, or 7M and 4S by using the trick described above. Point
subtraction is similar to point addition but has an extra subtraction to calculate
the y-coordinate.

Point Multiplication (PM): The left-to-right binary PM requires 159D and on
average 80A. When recoding the scalar to non-adjacent form (NAF) [36], PM
requires 159D and on average 53A, that is, about 14% speed-up compared to
the one with a binary scalar. However, the NAF algorithm recodes from right
to left and needs more data RAM to separately store the NAF-recoded signed-
digit scalar. To overcome this, we have employed the left-to-right analogue of
NAF [22] to achieve PM along with on-the-fly scalar recoding.

Table 5. Implementation results of point arithmetic

Operation Description No. of cycles Code size [bytes]

Point doubling 4M + 4S 128,453 1,038
2J → J 3M + 5S 125,883 1,064

Point addition 8M + 3S 183,698 1,945
J +A → J 7M + 4S 181,343 1,994

Protocol Layer. Optimizations at this level depend on the protocol being imple-
mented.We focus on the Elliptic CurveDiffie-Hellman key exchange (ECDH) [19].
Each key exchange requires 2PM and 2I.

5.2 Side Channel Resistant Implementations of ECC

The immunity against side-channel attacks is also investigated. All prime field
arithmetic in our implementation takes a fixed amount of time and is resistant to
timing attacks. We also investigate the performance and side-channel immunity
of various PM algorithms in the curve arithmetic.

Double-and-add-always algorithm [10]: It achieves a regular computational
sequences by introducing dummy operations. A regular computational sequence
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Table 6. Implementation results of point multiplication and SCA

Point multiplication algorithm
Cycles Code size Side-channel

[millions] [bytes] immunity

Left-to-right PM 35.20 7,201 -

Left-to-right PM with left-to-right NAF 30.39 10,387 -

Double-and-add-always 49.48 8,042 SPA

BRIP 50.00 8,080 SPA,RPA,ZPA,DPA

Randomization of scalar (20-bit) 33.21 10,404 DPA

Randomization of scalar (64-bit) 43.04 10,531 DPA

Randomized projective coordinates 31.50 10,282 DPA

Randomization of scalar (20-bit) &
33.52 10,501 DPA

Randomized projective coordinates

can prevent SPA but it is still vulnerable to DPA and other sophisticated attacks,
e.g., Refined Power Analysis (RPA) [17] and Zero Power Analysis (ZPA) [1].

Binary expansion with random initial point (BRIP) [30]: In BRIP, the inter-
mediate result of PM is blinded by a random point R. It is also a double-and-add-
always algorithm but without dummy operations and thus making it resistant
to even DPA, RPA and ZPA.

Randomization of scalar [10]: The scalar d is randomized by d′ = d+n×#E,
where #E is the curve order and n is a random number. There is an inherent
security-efficiency trade-off: Using, say, a 20-bit random number already provides
a decent level of DPA resistance as it multiplies the effort of an attacker by 6
orders of magnitude while having a mere 10% overhead in execution time.4 For a
highly secure implementation using a 64-bit random number the timing increases
by around 42%.

Randomized projective coordinates [10]: A point P = (x, y) can be represented
in Jacobian projective coordinates as (r2x, r3y, r) for any r ∈ Z∗

p. When comput-
ing dP by the left-to-right scalar algorithm, the temporary result T is initialized
by T = P , and in each iteration, updated by T = 2T and optionally T = T +P .
In our implementation, instead of randomizing P , we only randomize the initial
value of T , i.e., P is still of affine coordinates, to avoid the much more expensive
point addition in Jacobian coordinates (J + J → J , 12M and 4S).

Table 6 summarizes the implementation results of various point scalar multi-
plication algorithms. All of them are implemented by using Jacobian projective
coordinates. In randomization of scalar and randomized projective coordinates,
the scalar will be also recoded by the left-to-right NAF method. As one can see,
BRIP is the most secure one but also the slowest. For constrained devices, we
suggest using 20-bit randomization of scalar along with randomized projective
coordinates, as it provides basic resistance against DPA and also increases the
difficulty for SPA [8] due to the NAF-recoded scalar.

4 Assuming a successful DPA would require 100 measurements, it would take around
54 years to measure the power consumption compared to 26 minutes without ran-
domization.
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6 Discussion

In this work we have already shown the feasibility of implementing symmetric
and asymmetric cryptography on 4-bit MCUs. What is left to be shown is the
practicability and meaning of cryptography on 4-bit MCUs in real-world scenar-
ios as well as the performance in comparison to common 8-bit implementations
regarding three important criteria for embedded systems: energy consumption,
speed and code size. As already pointed out in Section 2, we use the software
simulator and the debugger to obtain the cycle count and the code size. Power
figures from the data sheet are used to estimate the energy consumption of our
implementations.

6.1 AES

We compare our 4-bit AES implementation with the only other 4-bit AES im-
plementation known so far [23] and with two recent 8-bit AES implementations
[5,37]. The MCUs used in [5,37] belong to the megaAVR family, which are pop-
ular 8-bit processors used in research as well as in embedded devices. The most
notable difference to our 4-bit MCU is that the megaAVRs have 32 8-bit registers
which can all be used as destination registers of arithmetic operations. In addi-
tion, the megaAVRs support the pre-decrement and post-increment functional-
ity, whereas our 4-bit MCU only supports the post-increment functionality.

Table 7 shows the results regarding speed, code size and energy consumption
for different optimization strategies. It should be noted that the comparison
is not completely fair since the ATmega128 and the AT90USB162 are not the
lowest-power devices but still are stated as low-power MCUs by Atmel. Note
further that it was not possible to compare the energy consumptions at the same
frequency because the manufacturers only provide numbers for one (the most
typical) frequency of their MCUs. To estimate the energy consumption of our
4-bit MCU we chose 4 MHz because first, at this frequency our implementations
can be directly compared to most of the 8-bit implementations in the following
sections, and second, this configuration is also the most energy efficient.

Table 7. Comparison of different AES implementations

MCU Opt.
Enc. Dec. Code size Energy∗∗

[cycles] [cycles] [bytes] [μJ/block] @ 3V

4-bit
Epson S1C63

Speed 13,929 18,688 4,674 4.6 @ 4MHz
Size 16603 23,901 2,625 5.5 @ 4MHz

MARC4 [23]
Speed 15,977 20,801 3,679 14.3 @ 1MHz
Size 24,012 34,432 1,775 21.6 @ 1MHz

8-bit
ATmega128 [37] - 3,766 4,558 3,410 14.1 @ 4MHz

AT90USB162 [5]
Speed 2,740 3,648 1,912 7.2 @ 8MHz
Size 2,942 3,690 1,912∗ 7.7 @ 8MHz

∗ uses less RAM. ∗∗ energy consumption for encryption.
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Not surprising, the 8-bit implementations of AES beat the 4-bit implemen-
tations by an order of magnitude in terms of speed since the AES operations
are predestined to be very efficient on 8-bit architectures. But, as one can see,
our implementation beats the implementation on the MARC4 in terms of speed.
Hence, we can claim that this implementation is the fastest 4-bit implementation
of AES up to now. More importantly, our implementation is the most efficient
one in terms of energy consumption as it consumes nearly half the energy per
block in comparison to the best 8-bit implementation and it outperforms the
other implementations by a factor of approximately three. This can be seen as
a strong argument for implementing cryptography on a 4-bit MCU since en-
ergy consumption is arguably one of the most important criteria for low-power
devices.

6.2 SHA-1

We only found two references for SHA-1 implementations on an 8-bit MCU in
[38], which are compared to our 4-bit implementation in Table 8.

Table 8. Comparison of different SHA-1 implementations

MCU Opt.
Cycles Code size Energy

per block [bytes] [μJ/block] @ 3V

4-bit Epson S1C63
Speed 87,788 2,324 29.0 @ 4 MHz
Size 108,666 2,038 35.9 @ 4 MHz

8-bit
ATmega128 [16]

Generic
63,000 4,000 236 @ 4 MHz

megaAVR family [12] 37,030 1,022 139 @ 4 MHz

*Since [12] is a generic implementation, we used the properties of the ATmega128 to
estimate the energy consumption.

As can be seen our implementation takes roughly double the clock cycles and
double the size compared to the best 8-bit implementation. This is due to the
fact that SHA-1 mostly uses primitive instructions (1 cycle) on 4- or 8-bit of
data. Hence, we need roughly twice the amount of instructions resulting in twice
the amount of cycles and code size. But again, our implementation on the 4-bit
MCU outperforms the other implementation in terms of energy consumption by
a factor of almost five.

6.3 ECC

In this section we compare our 4-bit ECC implementation regarding speed and
code size with three other 8-bit implementations using the same curve, i.e.
secp160r1, found in [18] and [9]. [18] describes two implementations on two
different MCUs, namely the Chipcon CC1010 and the Atmel ATmega128. [9]
describes a ECC implementation on an Atmel ATmega8 [2] which is very similar
to the ATmega128 as both belong to the megaAVR family.
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The Chipcon CC1010 is an 8-bit MCU which implements the 8051 instruc-
tion set [46]. The most notable properties are that every instruction cycle takes
4 clock cycles, hence quartering the effective frequency. Second, the 8-bit accu-
mulator is the destination register for all arithmetic functions resulting in the
same complexity for storing or further processing intermediate results as on our
4-bit MCU, thus making the CC1010 a perfect candidate for the comparison.

As can be seen in Table 9 a field multiplication on the 4-bit MCU takes
around 8 times as many instruction cycles as the fastest implementation on an
8-bit controller and twice as many cycles as on the CC1010. This is due to the
fact that a multiplication instruction on the Epson S1C63 requires 10 cycles,
compared to only 2 cycles and 5 cycles on the ATmega and on the CC1010,
respectively. This fact also leads to a higher time share of the field multiplication.

As a consequence, our fastest point multiplication requires roughly 5 times
more instruction cycles than the fastest ATmega implementation and twice as
many instruction cycles as the CC1010. But, as for AES and SHA-1, the 4-bit
implementation beats the 8-bit implementations by a factor of more than two
regarding the energy consumption.

Table 9. Comparison of ECC implementations

MCU
Point Mul. Field Mul. Time share Code size Energy
[cycles in M] [cycles] in PM [bytes] [mJ/block] @ 3V

4-bit Epson S1C63 30.39 16,690 88% 10,616 10.02 @ 4 MHz

8-bit
ATmega128 [18] 6.48 1,986 77% 3,682 24.3 @ 4 MHz
ATmega8 [9] 10.4 n/a n/a 7,080∗ 28.08 @ 4 MHz
CC1010 [18] 16.88 9,321 85% 2,166 253.2 @ 4 MHz

∗ includes ECDSA.

7 Conclusion

In this work we have studied the feasibility and practicability of standardized
cryptography on a 4-bit MCU. We have provided the fastest implementation
of AES, and the first implementations of SHA-1 and ECC, this way proving their
feasibility on an ultra-constrained 4-bit MCUs. More interesting, however, is
that all three primitives require between 39% to 79% less energy than previously
published implementations on low-power 8-bit MCUs. Our crypto modules can
be combined to enable a wide range of different applications. For example, non-
timing critical applications, such as legally binding sensor readings or secure
firmware updates can be achieved using ECDSA [21] by combining our SHA-1 and
ECC modules.

Though it is not the main focus of this paper, we have investigated the SCA re-
sistance trade-offs for ECC by implementing a variety of countermeasures. Future
work includes implementation of SCA countermeasures for AES and evaluation of
our implemented SCA countermeasures for ECC and AES by conducting physical
experiments, which was beyond the scope of this work. Another interesting topic
might be the analysis of the resistance against fault attacks of 4-bit MCUs.



Feasibility and Practicability of Standardized Cryptography 199

Acknowledgement. The authors were supported in part by the Singapore
National Research Foundation under Research Grant NRF-CRP2-2007-03. The
authors would also like to thank Andreas Enge for many fruitful discussions.

References

1. Akishita, T., Takagi, T.: Zero-Value Point Attacks on Elliptic Curve Cryptosystem.
In: Boyd, C., Mao, W. (eds.) ISC 2003. LNCS, vol. 2851, pp. 218–233. Springer,
Heidelberg (2003)

2. Atmel Corporation. ATmega8/ATmega8L datasheet (February 2011),
http://www.atmel.com/Images/doc2486.pdf

3. Barrett, P.: Implementing the Rivest Shamir and Adleman Public Key Encryp-
tion Algorithm on a Standard Digital Signal Processor. In: Odlyzko, A.M. (ed.)
CRYPTO 1986. LNCS, vol. 263, pp. 311–323. Springer, Heidelberg (1987)

4. Bogdanov, A.A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher. In:
Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007), http://lightweightcrypto.org/present/

5. Bos, J.W., Osvik, D.A., Stefan, D.: Fast implementations of AES on various plat-
forms. Cryptology ePrint Archive, Report 2009/501 (2009)
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Abstract. We revisit meet-in-the-middle (MITM) attacks on block ci-
phers. Despite recent significant improvements of the MITM attack, its
application is still restrictive. In other words, most of the recent MITM
attacks work only on block ciphers consisting of a bit permutation based
key schedule such as KTANTAN, GOST, IDEA, XTEA, LED and Pic-
colo. In this paper, we extend the MITM attack so that it can be applied
to a wider class of block ciphers. In our approach, MITM attacks on
block ciphers consisting of a complex key schedule can be constructed.
We regard all subkeys as independent variables, then transform the game
that finds the user-provided key to the game that finds all independent
subkeys. We apply our approach called all subkeys recovery (ASR) at-
tack to block ciphers employing a complex key schedule such as CAST-
128, SHACAL-2, KATAN, FOX128 and Blowfish, and present the best
attacks on them with respect to the number of attacked rounds in liter-
ature. Moreover, since our attack is simple and generic, it is applied to
the block ciphers consisting of any key schedule functions even if the key
schedule is an ideal function.

Keywords: block cipher, meet-in-the-middle attack, key schedule,
CAST-128, SHACAL-2, KATAN, FOX128, Blowfish, all subkeys recov-
ery attack.

1 Introduction

Meet-in-the-middle (MITM) attack, originally introduced in [9], is a generic
cryptanalytic technique for block ciphers. It was extended to preimage attacks
on hash functions, and several novel techniques to extend the attack have been
developed [3,14,4,25,5,11]. Then, it has been shown that those advanced tech-
niques are also applied to block ciphers [7,13,6,18].

Since the MITM attack mainly exploits a low key-dependency in a key sched-
ule, it works well for a block cipher having a simple key schedule such as a key
schedule based only on a bit permutation. In fact, most of the recent MITM at-
tacks were applied to ciphers having a simple key schedule such as KTANTAN,
GOST, IDEA, XTEA, LED and Piccolo [7,13,18,26,15]. However, as far as we
know, no results have been known so far for block ciphers consisting of a complex
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key schedule1 except for the recent attack on AES [6]. In general, the MITM
attack at least requires two sets of neutral key bits, which are parts of secret key
bits, to compute two functions independently. For a simple key schedule such as a
permutation based key schedule, since each subkey is directly derived from some
secret key bits, it is relatively simple to find “good” neutral key bits. Yet, for a
cipher equipped with a complex key schedule, finding neutral key bits, which is
the core technique of the MITM attack, is likely to be complicated and specific.
For instance, the MITM attack on the 8-round reduced AES-128 in [6] looks
complicated and specific, i.e., it seems difficult to directly apply their technique
to other block ciphers not having the AES key schedule.

In this paper, we extend the MITM attack, then present a generic and simple
approach to evaluate the security of ciphers employing a complex key schedule
against the MITM attack. The basic concept of our approach is converting the
game of finding the user-provided key (or the secret key) to the game of find-
ing all subkeys so that the analysis can be independent from the structure of
the key schedule, by regarding all subkeys as independent variables. This sim-
ple conversion enables us to apply the MITM attack to a cipher using any key
schedule without analyzing the key schedule. We refer this attack as all sub-
keys recovery (ASR) attack for simplicity, while our approach is a variant of
the MITM attack. We first apply the ASR attack to CAST-128, Blowfish and
FOX128 in a straightforward way, then show the best attacks on them with
respect to the number of attacked rounds in literature. Moreover, to construct
more efficient attack, we present how to efficiently find useful state that contains
a smaller number of subkey bits by analyzing internal components, then apply
it to SHACAL-2 and KATAN family. The attacks presented in this paper are
summarized in Table 6 (see also Table 2). We emphasize that our attack can
be applied to any block cipher having any key schedule function even if the key
schedule is an ideally random function. This implies that our approach gives
generic lower bounds on the security of several block ciphers against the MITM
attacks.

This paper is organized as follows. Section 2 gives some notations used through-
out this paper. The basic concept of the ASR attack is presented in Section 3. The
applications of the basic ASR attack to CAST-128 and Blowfish are demonstrated
in Section 4. Some advanced techniques and those applications to SHACAL-2 and
KATAN family are introduced in Sections 5 and 6, respectively. Section 7 discusses
several features of the ASR attack. Finally, we conclude in Section 8.

2 Notation

The following notation will be used throughout this paper:

1 In this paper, we refer a complex key schedule as a non-permutation based key
schedule such as a key schedule having non-linear components.
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a||b : Concatenation.
|a| : Bit size of a.

≫ or ≪ : Right or left bit rotation in 32-bit word.
⊕ : Bitwise logical exclusive OR (XOR) operation.
� : Addition modulo 232 operation.
� : Subtraction modulo 232 operation.

3 All Subkeys Recovery (ASR) Attack

In this section, the basic concept of the all subkeys recovery (ASR) attack is
introduced. First, we briefly present the basic concept, then, the detailed proce-
dure of the basic ASR attack is given. Finally, we show an ASR attack on the
balanced Feistel network as a concrete example.

3.1 Basic Concept

The previous MITM attack aims to determine the user-provided key by finding
good neutral key bits which are parts of the user-provided key. In order to find
good neutral key bits, an attacker needs to thoroughly analyze the key schedule.
In general, this makes the analysis complex and specific, and it is difficult to
evaluate the security of a wide class of block ciphers, including ciphers having a
complex key schedule, against the MITM attack.

The basic concept of the ASR attack is to convert the game of finding the
user-provided key to the game of finding all subkeys, regarding all subkeys as
independent variables. Note that an attacker is able to encrypt/decrypt any
plaintexts/ciphertexts by using all subkeys, even if the user-provided key is un-
known. In addition, if a key schedule is invertible, then the user-provided key is
obtained from all subkeys.

In the ASR attack, analyzing the key schedule is not mandatory, since we
only treat subkeys (not secret key). Obviously, this makes analysis simpler than
finding good neutral key bits. In fact, the ASR attack depends only on the sizes of
the secret key and the round keys, and the structure of the data processing part
such as balanced Feistel network and SPN (substitution-permutation-network).

Moreover, in the ASR attack, the underlying key schedule can be treated as
an ideal function. In other words, our attack works even if the key schedule is an
ideal function. A concrete block cipher employs an weaker key schedule than an
ideal one. Thus, the number of attacked rounds may be extended by thoroughly
analyzing the key schedule. However, even without analyzing the key schedule,
we show several best attacks on several block ciphers in the single-key setting
in the following sections. Thanks to the MITM approach, our attack requires
extremely low data requirement, though it requires a lot of memory which is
the same order as the time complexity. We may employ memoryless collision
search [23] to reduce the memory requirements, while it requires a slightly larger
computations, i.e., the time complexity is multiplied by a small constant.
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Fig. 1. Basic concept of ASR attack

3.2 Recovering All Subkeys by MITM Approach (Basic Attack)

Let us explain the basic procedure of the ASR attack. As explained in the previ-
ous section, we regard all subkeys in the cipher as independent variables. Then,
we apply the MITM approach to determine all subkeys that map a plaintext
to the ciphertext encrypted by the (unknown) secret key. Suppose that n-bit
block cipher E accepting a k-bit secret key K consists of R rounds, and an �-bit
subkey is introduced each round (see Fig. 1).

First, an attacker determines an s-bit matching state S. The state S can be
computed from a plaintext P and a set of subkey bits K(1) by a function F(1)

as S = F(1)(P,K(1)). Similarly, S can be computed from the ciphertext C and

another set of subkey bits K(2) by a function F(2) as S = F−1
(2) (C,K(2)). K(3)

denotes a set of the remaining subkey bits, i.e., |K(1)|+ |K(2)|+ |K(3)| = R · �. By
using those K(1) and K(2), the attacker can independently compute F(1)(P,K(1))

and F−1
(2) (C,K(2)). Note that the equation F(1)(P,K(1)) = F−1

(2) (C,K(2)) holds

when the guessed subkey bits K(1) and K(2) are correct. Due to parallel guesses
of K(1) and K(2), we can efficiently check if the guessed key bits are correct. After

this process, it is expected that there will be 2R·�−s key candidates. Note that the
number of key candidates can be reduced by parallel performing the matching
with additional plaintext/ciphertext pairs. In fact, using N plaintext/ciphertext
pairs, the number of key candidates is reduced to 2R·�−N ·s, as long as N ≤
(|K(1)| + |K(2)|)/s. Finally, the attacker exhaustively searches the correct key
from the surviving key candidates. The required computations (i.e. the number
of encryption function calls) of the attack in total Ccomp is estimated as

Ccomp = max(2|K(1)|, 2|K(2)|)×N + 2R·�−N ·s. (1)

The number of required plaintext/ciphertext pairs is max(N, �(R · �−N ·s)/n�).
The required memory is about min(2|K(1)|, 2|K(2)|)×N blocks, which is the cost
of the table used for the matching. Obviously, the ASR attack works faster than
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the brute force attack when Eq.(1) is less than 2k, which is required computations
for the brute force attack. For simplicity, we omit the cost of memory access for
finding a match between two lists, assuming that the time complexity of one
table look-up is negligible compared to that of one computation of F(1) or F(2).
The assumption is quite natural in most cases. However, strictly speaking, those
costs should be considered. In other words, the cost of (max(2|K(1)|, 2|K(2)|)×N)
memory accesses is added to Eq.(1).

If the number of attacked rounds R and the size of the matching state s are
fixed, the time complexity and the memory requirement are dominated by |K(1)|
and |K(2)|. Thus, smaller |K(1)| and |K(2)| lead to more efficient attacks with
respect to the time and memory complexity. Therefore, the key of the ASR attack
is to find the matching state S computed by the smallest max(|K(1)|, |K(2)|).

3.3 ASR Attack on Balanced Feistel Networks

Let us show examples of the ASR attack. Suppose that an example cipher E
with n-bit block and k-bit secret key consists of R rounds of the balanced Feistel
network as illustrated in Fig. 2. Let the round function F be an (n/2)-bit keyed
bijective function. Here, for simplicity, we assume that an (n/2)-bit subkey is
introduced before F each round. Also, ki denotes the i-th round subkey.

As depicted in Fig. 3, an (n/2)-bit state S can be computed independently
from (n/2)-bit subkey kr. In other words, S can be computed from P and K(1) ∈
{k1, k2, ..., kr−1}. Also, S can be obtained from C andK(2) ∈ {kr+1, kr+2, ..., kR}.

When n = k/2 (e.g., a 128-bit block cipher accepting a 256-bit key), 7 rounds
of E can be attacked in a straightforward manner. In this attack, both F(1) and
F(2) are composed of 3 rounds of E, and thus the sizes of K(1) and K(2) are both
3n/2 bits. As explained in Section 3.2, using six plaintext/ciphertext pairs, the
total time complexity Ccomp is estimated as
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Ccomp = max(2|K(1)|, 2|K(2)|)×N + 2R·�−N ·s

= 23n/2 × 6 + 27·n/2−6·n/2 ≈ 23n/2 (= 23k/4  2k)

The required memory is around 6× 23n/2 blocks. Since Ccomp is less than 22n(=
2k), the attack works faster than the exhaustive key search. Note that the number
of attacked rounds might be extended by exploiting the subkey relations. Thus,
the number of attacked rounds 7 is considered as the lower bounds on the security
of this modelled cipher against the ASR attack.

Similarly to this, when n = k (e.g., a 128-bit block cipher accepting a 128-bit
key), the attack on at least 3 rounds of E is constructed. In this case, F(1) and
F(2) consist of 1 round of E, and the sizes of K(1) and K(2) are both n/2 bits.
Therefore, using 3 plaintext/ciphertext pairs (i.e. N = 3), the required time
complexity Ccomp is estimated as

Ccomp = max(2|K(1)|, 2|K(1)|)×N+2R·�−N ·s = 2n/2×3+1 (= 2k/2×3+1 2k).

The required memory is around 3 × 2n/2 blocks. Consequently, the ASR attack
works faster than the brute force attack, which requires about 2n computations.

Roughly speaking, when Eq.(1) is less than 2k, the ASR attack works faster
than the brute force attack. Therefore, the necessary condition for the basic ASR
attack is that the size of subkey is less than the size of secret key.

4 Basic ASR Attacks on CAST-128 and Blowfish

The generic attack on a balanced Feistel network explained in the previous sec-
tion can be directly applied to a concrete block cipher. In this section, we apply
the basic ASR attacks to CAST-128 and Blowfish. In those attacks, the round
function F is assumed to be any function even ideal. However, in the case of a
concrete cipher, the underlying round function F is specified, i.e., it can be an-
alyzed. By deeply analyzing the round function, the number of attacked rounds
may be increased. Such advanced techniques are introduced in the next sections.

The basic parameters of the ciphers analyzed in this paper are listed in Table 1.
Table 2 shows the parameters of our (ASR) attacks in this paper.

4.1 Descriptions of CAST-128 and Blowfish

Description of CAST-128. CAST-128 [1,2] is a 64-bit Feistel block cipher
accepting a variable key size from 40 up to 128 bits (but only in 8-bit increments).
The number of rounds is 16 when the key size is longer than 80 bits. First, the
algorithm divides the 64-bit plaintext into two 32-bit words L0 and R0, then the
i-th round function outputs two 32-bit data Li and Ri as follows:

Li = Ri−1, Ri = Li−1 ⊕ Fi(Ri,K
rnd
i ),

where Fi denotes the i-th round function and Krnd
i is the i-th round key con-

sisting of a 32-bit masking key Kmi and a 5-bit rotation key Kri . Each round
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Table 1. Basic parameters of our target ciphers

algorithm
block size key size subkey size # rounds

(n) (k) (�) (R)

CAST-128 [1] 64 40 ≤ k ≤ 128 37 12 (k ≤ 80), 16 (k > 80)
Blowfish [27] 64 128 ≤ k ≤ 448 32 16

Blowfish-8R∗ [27] 64 128 ≤ k ≤ 192 32 8
SHACAL-2 [12] 256 k ≤ 512 32 64

KATAN32/48/64 [8] 32/48/64 80 2 254
FOX128 [16] 128 256 128 16

∗ Fewer iteration version of Blowfish specified in [27] as a possible simplification.

function Fi consists of four 8 to 32-bit S-boxes, a key dependent rotation, and
logical and arithmetic operations (addition, subtraction and XOR). Fi has three
variations, and the positions of three logical or arithmetic operations are varied
in each round. However, we omit the details of Fi, since, in our analysis, it is
regarded as the random function that outputs a 32-bit random value from a
32-bit input Ri and a 37-bit key Krnd

i .

Description of Blowfish. Blowfish [27] is a 16-round Feistel block cipher with
64-bit block and variable key size from 128 up to 448 bit. Several possible simpli-
fications of Blowfish were also described in [27]. We refer one of them that is an
8-round variant (fewer iterations) of Blowfish accepting less than 192 bits of key as
Blowfish-8R. First, Blowfish divides a 64-bit plaintext into two 32-bit state L0 and
R0. Then the i-th round output state (Li||Ri) is computed as follows:

Ri = Li−1 ⊕Krnd
i , Li = Ri−1 ⊕ F (Li ⊕Krnd

i ),

where Krnd
i is a 32-bit round key at round i. The F-function F consists of four

8 × 32 key dependent S-boxes. Note that, in the last round, the 64-bit round
key is additionally XORed with the 64-bit state. In this paper, we assume that
F-function is known by an attacker, and it is a random 32-bit function. The
assumption, i.e., the known F-function setting, has already been used in [29,17].

4.2 ASR Attack on 7-Round Reduced CAST-128

The generic attack on a balanced Feistel network can be directly applied to
a variant of CAST-128 which accepts a more than 114 bits key. This variant
consists of 16 rounds, since the key size is longer than 80 bits. While the size of
each subkey of the CAST-128 is 37 bits including a 32-bit masking key and a 5-
bit rotation key, the above explained attack still works faster than the exhaustive
key search. For the 7-round reduced CAST-128, we use |K(1)| = |K(2)| = 111(=
37 × 3), since each of F(1) and F(2) consists of three rounds of the CAST-128.
Consequently, using six plaintext/ciphertext pairs, the total time complexity
Ccomp for the attack on the 7-round reduced CAST-128 is estimated as follows:



All Subkeys Recovery Attack on Block Ciphers 209

Table 2. Parameters of our attacks presented in this paper

algorithm
# attacked |K(1)| |K(2)| |K(3)| s attacked
rounds (forward) (backward) (remains) key size

CAST-128 7 111 111 37 32 120 ≤ k ≤ 128

Blowfish† 16 256 288 32 32 292 ≤ k ≤ 448

Blowfish-8R† 8 128 160 32 32 163 ≤ k ≤ 192

SHACAL-2 41 484 492 336 4 485 ≤ k ≤ 512

KATAN32 110 68 70 82 1 80

KATAN48 100 71 71 58 1 80

KATAN64 94 71 71 46 1 80

FOX128 5 224 224 192 32 256

† Known F-function setting.

Ccomp = max(2|K(1)|, 2|K(2)|)×N + 2R·�−N ·s

= 2111 × 6 + 27·37−6·32 = 2111 × 6 + 267 ≈ 2114.

The number of required known plaintext/ciphertext pairs is only 6 (= max(6,
�(258−6·32)/64�), and the required memory is about 2114 (= min(2111, 2111)×6)
blocks. Recall that our attack works faster than the exhaustive key search only
when the key size of the reduced CAST-128 is more than 114 bits. As far as we
know, the previous best attack on the reduced CAST-128 was for only 6 rounds
in the single-key setting [31]2. Thus, surprisingly, this simple attack exceeds the
previously best attack on the reduced CAST-128 with respect to the number of
attacked rounds.

4.3 ASR Attack on Full Blowfish in Known F-function Setting

In this section, we apply the ASR attack on Blowfish block cipher in the known
F-function setting as with [29,17].

For the full (16-round) Blowfish, we choose R8 as the 32-bit matching state,
i.e., s = 32. Then K(1) and K(2) include 256 (= 32× 8) and 288 (= 32× 9) bits
of subkeys, respectively, and K(3) = 32. When N = 9 (≤ (256 + 288)/32), the
time complexity for finding all subkeys is estimated as

Ccomp = max(2256, 2288)× 9 + 2576−9·32 = 2292.

The number of required data is only 9 (=max(9, �(576−9·32)/64�)) known plain-
text/ciphertext pairs, and required memory is about 2260 (=min(2256, 2288)× 9)
blocks. In this setting, the attack works faster than the exhaustive key search
when the key size is more than 292 bits.

Similarly to the attack on the full Blowfish, for the full (8-round) Blowfish-
8R, we choose R4 as the 32-bit matching state, i.e., s = 32. Then K(1) and K(2)

2 The differential attacks on the 8- and 9-round reduced CAST-128 in weak-key setting
were presented in [30].



210 T. Isobe and K. Shibutani

include 128 (= 32 × 4) and 160 (= 32 × 5) bits of subkeys, respectively, and
K(3) = 32. When N = 5 (≤ (128 + 160)/32), the time complexity for finding all
subkeys is estimated as

Ccomp = max(2128, 2160)× 5 + 2320−5·32 = 2163.

The number of required data is only 5 (=max(5, �(320−5·32)/64�)) known plain-
text/ciphertext pairs, and the required memory is about 2131 (=min(2128, 2160)×
5) blocks. In this setting, the attack works faster than the exhaustive key search
when the key size is more than 163 bits.

Note that these attacks are the first results on the full Blowfish with all key
classes in the known F-function setting, while the attacks presented in [29,17]
work only in the weak key setting, i.e., weak F-functions.

5 Application to SHACAL-2

In this section, we apply the ASR attack to SHACAL-2 block cipher. After a
brief description of SHACAL-2, we present the basic ASR attack on the reduced
SHACAL-2 without analyzing the internal functions of the cipher. Then, by ana-
lyzing the functions of the cipher, we show the matching state that contains fewer
bits of subkeys. Finally, we demonstrate an advanced ASR attack by using this
matching state. Recall that the basic ASR attack regards internal components
such as an F-function of the balanced Feistel network as a black-box function,
while the advanced ASR attack analyzes the internal components. An ASR at-
tack on the 5-round reduced FOX128 is presented in Appendix A as another
example of the advanced ASR attack.

5.1 Description of SHACAL-2

SHACAL-2 [12] is a 256-bit block cipher based on the compression function of
SHA-256 [10]. It was submitted to the NESSIE project and selected to be in the
NESSIE portfolio [22].

SHACAL-2 inputs the plaintext to the compression function as the chaining
variable, and inputs the key to the compression function as the message block.
First, a 256-bit plaintext is divided into eight 32-bit words A0, B0, C0, D0, E0,
F0, G0 and H0. Then, the state update function updates eight 32-bit variables,
Ai, Bi, ..., Gi, Hi in 64 steps as follows:

T1 = Hi �Σ1(Ei)� Ch(Ei, Fi, Gi)�Ki �Wi,

T2 = Σ0(Ai)�Maj(Ai, Bi, Ci),

Ai+1 = T1 � T2, Bi+1 = Ai, Ci+1 = Bi, Di+1 = Ci,

Ei+1 = Di � T1, Fi+1 = Ei, Gi+1 = Fi, Hi+1 = Gi,
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where Ki is the i-th step constant, Wi is the i-th step key (32-bit), and the
functions Ch, Maj, Σ0 and Σ1 are given as follows:

Ch(X,Y, Z) = XY ⊕XZ,

Maj(X,Y, Z) = XY ⊕ Y Z ⊕XZ,

Σ0(X) = (X ≫ 2)⊕ (X ≫ 13)⊕ (X ≫ 22),

Σ1(X) = (X ≫ 6)⊕ (X ≫ 11)⊕ (X ≫ 25).

After 64 steps, the function outputs eight 32-bit words A64, B64, C64, D64, E64,
F64, G64 and H64 as the 256-bit ciphertext. Hereafter pi denotes the i-th step
state, i.e., pi = Ai||Bi||...||Hi.

The key schedule of SHACAL-2 takes a variable length key up to 512 bits
as the inputs, then outputs 64 32-bit step keys. First, the 512-bit input key is
copied to 16 32-bit words W0, W1, ..., W15. If the size of the input key is shorter
than 512 bits, the key is padded with zeros. Then, the key schedule generates
48 32-bit step keys (W16, ...,W63) from the 512-bit key (W0, ...,W15) as follows:

Wi = σ1(Wi−2)�Wi−7 � σ0(Wi−15)�Wi−16, (16 ≤ i < 64),

where the functions σ0(X) and σ1(X) are defined by

σ0(X) = (X ≫ 7)⊕ (X ≫ 18)⊕ (X # 3),

σ1(X) = (X ≫ 17)⊕ (X ≫ 19)⊕ (X # 10).

5.2 Basic ASR Attack on 37-Step Reduced SHACAL-2

We directly apply the ASR attack described in Section 3 to SHACAL-2. This
leads to the attack on the 37-step reduced SHACAL-2.

Due to a generalized Feistel network-like structure of SHACAL-2, the i-
step 32-bit word Ai is computed without using subkeys Wi,Wi+1, ...,Wi+6 as
mentioned in [14]. Thus, the 15-step state A15 can be computed by each of
F(1)(P,K(1)) and F−1

(2) (C,K(2)), where K(1) ∈ {W0,W1, ...,W14} and K(2) ∈
{W22, ...,W36}. Since |K(1)| = |K(2)| = 480(= 32 × 15) and the size of the
matching state A15 is 32 bits, by using 22 known plaintext/ciphertext pairs, the
time complexity to compute all subkey bits is estimated as

Ccomp = max(2480, 2480)× 22 + 237·32−22·32 ≈ 2485.

The required memory is about 2485 blocks. Note that this attack finds a secret
key more efficiently than the exhaustive key search only when the key size is
more than 485 bits.

Surprisingly, this simple attack exceeds the previous best attack on the re-
duced SHACAL-2 in the single-key setting for 32 steps [28] with respect to the
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Fig. 4. Overview of 41 round attack on reduced SHACAL-2

number of attacked rounds 3. In the following, by deeply analyzing the functions
used in SHACAL-2, we show further improvements.

5.3 Advanced ASR Attack on 41-Step Reduced SHACAL-2

In order to extend the basic ASR attack, we choose the lower 4 bits of A16 as
the matching state. Using this matching state, the 41-step reduced SHACAL-2
can be attacked. The forward and backward functions F(1) and F(2) are given
as follows (see also Fig. 4).

Forward Computation in F(1): Due to the structure of SHACAL-2, the
lower 4 bits of A16 can be computed from the 15-th state p15 and the lower
4 bits of W15, since the other bits of W15 are not affected to the lower 4 bits
of A16. Thus, the matching state S (the lower 4 bits of A16) is calculated as
S = F(1)(P,K(1)), where K(1) ∈ {W0,W1, ...,W14, the lower 4 bits of W15} and
|K(1)| = 484(= 32× 15 + 4).

Backward Computation in F(2): We give the following observation.

Observation 1. The lower t bits of Aj−10 are obtained from the j-th state pj
and the lower t bits of three subkeys Wj−1, Wj−2 and Wj−3.

3 The MITM preimage attacks on the reduced SHA-256 were proposed in [5,19].
However, these attacks can not be directly applied to SHACAL-2, because in the
block cipher setting, these attacks require the code book, i.e., they require all plain-
text/ciphertext pairs. Also, due to those high time complexity, they do not seem to
work faster than the exhaustive key search.
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In the backward computation, i.e., the inverse step function, the (j − 1)-th step
state pj−1 is computed from the j-th step state pj as follows:

Hj−1 = Aj �Σ0(Bj)�Maj(Bj , Cj , Dj)�Σ1(Fj)

�Ch(Fj , Gj , Hj)�Kj−1 �Wj−1,

Dj−1 = Ej �Aj �Σ0(Bj)�Maj(Bj , Cj , Dj),

Gj−1 = Hj , Fj−1 = Gj , Ej−1 = Fj , Cj−1 = Dj, Bj−1 = Cj , Aj−1 = Bj .

Thus, pj−1 except for Hj−1 is obtained from pj . The lower t bits of Hj−1 can be
computed from pj and the lower t bits of Wj−1. Similarly, from Aj−1, ..., Gj−1

and the lower t bits of Hj−1 and Wj−2, we can compute Aj−2, ..., Fj−2 and
the lower t bits of Gj−2 and Hj−2. Furthermore, Aj−3, ..., Ej−3 and the lower
t bits of Fj−3 and Gj−3 are computed from Aj−2, ..., Fj−2 and the lower t bits
of Gj−2, Hj−2 and Wj−3. Again, as mentioned in [14], Aj−10 is determined by
pj−3 without Wj−10, ...,Wj−16. This relation can be translated to “the lower t
bits of Aj−10 are determined from only Aj−3, ..., Ej−3 and the lower t bits of
Fj−3, Gj−3 and Hj−3”. Therefore, Aj−10 can be obtained from pj and the lower
t bits of Wj−1,Wj−2 and Wj−3.

From Observation 1, the matching state S (the lower 4 bits of A16) can be
computed as S = F−1

(2) (C,K(2)), where K(2) ∈ {W26, ...,W40, the lower 4 bits of

W23, W24 and W25}. Thus, |K(2)| = 492(= 32× 15 + 4× 3).

Evaluation. Recall that the matching state S is the lower 4 bits of A16, |K(1)| =
484, |K(2)| = 492 and |K(3)| = 336 (= 32×7+(32−4)×4). Thus, using 244 known
plaintext/ciphertext pairs (i.e. N = 244 ≤ (484 + 492)/4), the time complexity
for finding all subkeys is estimated as

Ccomp = max(2484, 2492)× 244 + 21312−244·4 = 2500.

The number of required data is 244 (=max(244, �(1312− 244 · 4)/256�)) known
plaintext/ciphertext pairs. The memory size is 2492 (=min(2484, 2492) × 244)
blocks. The attack works more efficiently than the exhaustive key search when
the key size is more than 500 bits.

6 Application to KATAN Family

In this section, we analyze KATAN family including KATAN32, KATAN48 and
KATAN64. First, we briefly describe the specification of KATAN family. Then,
we explain our attack strategy for finding the matching state depending on fewer
key bits. Finally, we develop ASR attacks on the reduced KATAN32/48/64. We
emphasize that all of our attacks on the reduced KATAN presented in this
section are the best (exponential-advantage) attacks in the single key setting
with respect to the number of attacked rounds.
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Table 3. Parameters of KATAN family

Algorithm |L1| |L2| x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 y6
KATAN32 13 19 12 7 8 5 3 18 7 12 10 8 3
KATAN48 19 29 18 12 15 7 6 28 19 21 13 15 6
KATAN64 25 39 24 15 20 11 9 38 25 33 21 14 9

6.1 Description of KATAN

KATAN [8] family is a feedback shift register-based block cipher consisting of
three variants: KATAN32, KATAN48 and KATAN64 whose block sizes are 32-,
48- and 64-bit, respectively. All of the KATAN ciphers use the same key schedule
accepting an 80-bit key and 254 rounds. The plaintext is loaded into two shift
registers L1 and L2. Each round, L1 and L2 are shifted by one bit, and the least
significant bits of L1 and L2 are updated by fb(L2) and fa(L1), respectively.
The bit functions fa and fb are defined as follows:

fa(L1) = L1[x1]⊕ L1[x2]⊕ (L1[x3] · L1[x4])⊕ (L1[x5] · IR)⊕ k2i,

fb(L2) = L2[y1]⊕ L2[y2]⊕ (L2[y3] · L2[y4])⊕ (L2[y5] · L2[y6])⊕ k2i+1,

where L[x] denotes the x-th bit of L, IR denotes the round constant, and k2i
and k2i+1 denote the 2-bit i-th round key. Note that for KATAN family, the
round number starts from 0 instead of 1, i.e., KATAN family consists of round
functions starting from the 0-th round to the 253-th round. Li

1 or Li
2 denote the

i-th round registers L1 or L2, respectively. For KATAN48 or KATAN64, in each
round, the above procedure is iterated twice or three times, respectively. All of
the parameters for the KATAN ciphers are listed in Table 3.

The key schedule of KATAN ciphers copies the 80-bit user-provided key to
k0, ..., k79, where ki ∈ {0, 1}. Then, the remaining 428 bits of the round keys are
generated as follows:

ki = ki−80 ⊕ ki−61 ⊕ ki−50 ⊕ ki−13 for i = 80, ..., 507.

6.2 Attack Strategy

Recall that the key of our attack is to find the state that contains as small
number of subkey bits as possible. In order to find such states, we exhaustively
observe the number of key bits involved in each state per round. A pseudo code
for counting the number of subkey bits involved in the forward direction for
KATAN32 is described in Algorithm 1. We use similar code to observe how many
subkey bits are affected to each state of KATAN32 in the backward direction.
Also, similar codes are used for counting the number of subkey bits related to
each state of KATAN48 and KATAN64. As an example, Table 4 shows the results
obtained by this algorithm when R = 63 of KATAN32 in the forward direction.
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Algorithm 1. Counting the number of key bits involved in each state

Require: R /* Evaluated number of rounds */
Ensure: LK1[0], . . . ,LK1[|L1| − 1] and LK2[0], . . . ,LK2[|L2| − 1] /* The number of

key bits involved in each state after R round */
1: LK1[i] ← 0 for i = 0, . . . , |L1| − 1
2: LK2[i] ← 0 for i = 0, . . . , |L2| − 1
3: for i = 0 to R − 1 do
4: for j = 0 to |L1| − 2 do
5: LK1[(|L1| − 1)− j] ← LK1[(|L1| − 1)− j − 1]
6: end for
7: for j = 0 to |L2| − 2 do
8: LK2[(|L2| − 1)− j] ← LK2[(|L2| − 1)− j − 1]
9: end for
10: LK1[0] ← LK2[y1] + LK2[y2] + LK2[y3] + LK2[y4] + LK2[y5] + LK2[y6] + 1
11: LK2[0] ← LK1[x1] + LK1[x2] + LK1[x3] + LK1[x4] + (LK1[x5] · IR) + 1
12: end for
13: return LK1[0], . . . ,LK1[|L1| − 1] and LK2[0], . . . ,LK2[|L2| − 1]

6.3 ASR Attack on 110-Round Reduced KATAN32

We consider the 110-round variant of KATAN32 starting from the first (0-th)
round. In this attack, L63

2 [18] is chosen as the matching state.

Forward Computation in F(1): As shown in Table 4, L63
2 [18] depends on

68 subkey bits. This implies that L63
2 [18] can be computed by a plaintext P

and 68 bits of subkeys. More specifically, L63
2 [18] = F(1)(P,K(1)), where K(1) ∈

{k0, ..., k54, k56, k57, k58, k60, ..., k64, k68, k71, k73, k77, k88} and |K(1)| = 68.

Backward Computation in F(2): Table 5 shows the result obtained by Al-
gorithm 1 modified to backward direction on KATAN32 with R = 47 starting
from 110 round. In the backward computation, the matching state L63

2 [18] is
computed as L63

2 [18] = F−1
(2) (C,K(2)), where K(2) ∈ {k126, k138, k142, k146, k148,

k150, k153, k154, k156, k158, k160, . . . k219}, and |K(2)| = 70.

Evaluation. For the 110-round reduced KATAN32, the matching state S is
chosen as L63

2 [18] (1-bit state). Since |K(3)| = 82(= 2 × 110 − 68 − 70) which
is more than 80 bits, we first determine only K(1) and K(2). After that, we
additionally mount the MITM approach in order to determine the remaining 82
bits of subkeys.

When N = 138 (≤ (68+70)/1), the time complexity for finding K(1) and K(2)

is estimated as

Ccomp = max(268, 270)× 138 + 2138−138·1 = 277.1.

The number of required data is 138 (=max(138, �(138 − 138 · 1)/32�)) known
plaintext/ciphertext pairs. The required memory size is about 275.1 (=min(268,
270) ×138) blocks.
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Table 4. Results on KATAN32 with R = 63 in forward direction (starting round = 0)

LK1[i] 0 1 2 3 4 5 6 7 8 9 10 11 12
# key bits 108 104 102 100 98 98 96 94 92 88 86 84 84

LK2[i] 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

# key bits 104 102 100 98 100 93 92 90 88 90 87 85 83 77 75 75 75 74 68

Table 5. Results on KATAN32 with R = 47 in backward direction (starting round =
109)

LK1[i] 0 1 2 3 4 5 6 7 8 9 10 11 12
# key bits 44 46 48 50 52 54 56 58 60 62 64 66 68

LK2[i] 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

# key bits 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70

Finally, we need to find the remaining 82 bits of subkeys by using the simple
MITM approach in the setting where K(1) and K(2) are known. The required
complexity and memory for this process is roughly estimated as 241. These costs
are obviously much less than those of finding K(1) and K(2).

6.4 ASR Attack on 100-Round Reduced KATAN48

We consider the 100-round variant of KATAN48 starting from the first (0-th)
round. In this attack, L58

2 [28] is chosen as the matching state.
In the forward computation, L58

2 [28] depends on 71 key bits, namely L58
2 [28] =

F(1)(P,K(1)), where K(1) ∈ {k0, . . . k60, k62, k64, k65, k66, k69, k71, k72, k75, k79,
k86}, and |K(1)| = 71. In the backward computation, L58

2 [28] depends on 71 key

bits, namely L58
2 [28] = F−1

(2) (C,K(2)), where K(2) ∈ {k116, k122, k124, k128, k130,
k132, k134, k135, k136, k138, . . . k199}, and |K(2)| = 71. Since the size of matching
state s is 1, |K(1)| = |K(2)| = 71 and |K(3)| = 58(= 2× 100− 71− 71), by using
N = 128 (≤ (71+ 71)/1) known plaintext/ciphertext pairs, the time complexity
for finding all subkeys is estimated as

Ccomp = max(271, 271)× 128 + 2200−128·1 = 278.

The number of required data is 128 (=max(128, �(200 − 128 · 1)/48�)) known
plaintext/ciphertext pairs. The memory size is 278 (=min(271, 271)×128) blocks.

6.5 ASR Attack on 94-Round Reduced KATAN64

Similarly to the attack on the 100-round reduced KATAN48, we consider the 94-
round variant of KATAN64 starting from the first (0-th) round. In this attack,
L54
2 [38] is chosen as the 1-bit matching state.
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Table 6. Summary of the attacks in the single-key setting

algorithm
# attacked

time
memory

data reference
rounds [block]

CAST-128
6 288.51 Not given 253.96 KP [31]
7 2114 2114 6 KP this paper (Section 4.2)

Blowfish∗1 4 - - 221 CP [24]

Blowfish† 8 - - 248 CP [29]
16 2292 2260 9 KP this paper (Section 4.3)

Blowfish-8R† 8 2160 2131 5 KP this paper (Section 4.3)

SHACAL-2
32 2504.2 248.4 243.4 CP [28]
41 2500 2492 244 KP this paper (Section 5)

KATAN32∗2
78 276 Not given 216 CP [21]
110 277 275.1 138 KP this paper (Section 6.3)

KATAN48∗2
70 278 Not given 231 CP [21]
100 278 278 128 KP this paper (Section 6.4)

KATAN64∗2
68 278 Not given 232 CP [21]
94 277.68 277.68 116 KP this paper (Section 6.5)

FOX128
5 2205.6 Not given 29 CP [32]
5 2228 2228 14 KP this paper (Appendix A)

† Known F-function setting.
∗1 The attacks on the full Blowfish in the weak key setting were presented in

[29] and [17].
∗2 The accelerating key search techniques for the full KATAN32/48/64 were

presented in [20].

In the forward computation, L54
2 [38] depends on 71 subkey bits, namely L54

2 [38]
= F(1)(P,K(1)), where K(1) ∈ {k0, . . . k61, k63, k64, k65, k66, k68, k69, k71, k75,
k82}, and |K(1)| = 71. In the backward computation, L54

2 [38] depends on 71 sub-

key bits, namely L54
2 [38] = F−1

(2) (C,K(2)), where K(2) ∈ {k108, k110, k114, k116,
k118, k120, k122, k124, . . . k187}, and |K(2)| = 71. Since s = 1, |K(1)| = |K(2)| = 71,
and |K(3)| = 46(= 2× 94 − 71− 71), by using N = 116 (≤ (71 + 71)/1) known
plaintext/ciphertext pairs, the time complexity for finding all subkeys is esti-
mated as

Ccomp = max(271, 271)× 116 + 2188−116·1 = 277.68.

The number of required data is 116 (=max(116, �(188 − 116 · 1)/64�)) known
plaintext/ciphertext pairs. The memory size is 277.68 (=min(271, 271) × 116)
blocks.

7 Discussion

On the ASR attack, an attacker attempts to recover all subkeys instead of the
user-provided key, regarding all subkeys as independent variables. Note that, if
there is no equivalent key, which is a reasonable assumption for a moderate block
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cipher, there obviously exist unique subkeys that map a given plaintext to the
ciphertext encrypted by a secret key. In the standard MITM attack, determining
neutral key bits and constructing initial structure called bicliques seem two of
the most complicated and important parts in the attack process. However, in our
attack, those two procedures are not required, since the attacker focuses only on
subkeys and all subkeys are treated equally. Moreover, in the ASR attack, it is not
mandatory to analyze the underlying key schedule, since it basically focuses only
on the data processing part. These features make the attack simple and generic.
While the ASR attack is simple and generic as explained, it is still powerful
attack. Indeed, we can significantly improve the previous results on several block
ciphers as summarized in Table 6 (see also Table 2 for the details of the target
ciphers). We emphasize that our approach is not polynomial-advantage attack
such as [20], which requires access of all possible keys, but exponential-advantage
attack. Moreover, our attack works on the block ciphers using any key schedule
functions even if it is ideal.

While all subkeys are regarded as independent variables in the ASR attack,
there must exist some relations between them in an actual block cipher. Thus, if
an attacker exploits some properties in the underlying key schedule, the attacker
may be able to enhance the attacks presented in this paper. For instance, the
following techniques might be useful:

– Finding the user-provided key from the part of subkeys.
– Reducing the search space of subkeys by using relation of subkeys.

Since the purpose of this paper provides generic approach to evaluate the secu-
rity of block ciphers, we do not show these specific and dedicated techniques.
However, by using such techniques, the number of attacked rounds might be
increased.

8 Conclusion

We have proposed a new but simple and generic attack on block ciphers. The
proposed attack called all subkeys recovery (ASR) attack is based on the meet-
in-the-middle (MITM) attack. The previous MITM attack applied to several
block ciphers consisting of a simple key schedule such as a permutation based
key schedule, since the MITM attack mainly exploits the weakness in the key
schedule. However, there have been a few results on the block ciphers having
complex key schedule.

In this paper, we applied the ASR attack to several block ciphers employing
complex key schedule, regarding all subkeys as independent variables. We showed
the ASR attacks on the 7-, 41-, 110-, 100-, 94- and 5-round reduced CAST-
128, SHACAL-2, KATAN32, KATAN48, KATAN64 and FOX128, respectively.
Moreover, we presented the ASR attacks on the full Blowfish in the known F-
function setting. All of our results except for the attack on the reduced FOX128
significantly improved the previous results with respect to the number of attacked
rounds.
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https://www.cosic.esat.kuleuven.be/nessie/deliverables/decision-final.pdf
https://www.cosic.esat.kuleuven.be/nessie/deliverables/decision-final.pdf


All Subkeys Recovery Attack on Block Ciphers 221

A.1 Description of FOX128

FOX128 is a variant of FOX family [16] consisting of a 16-round modified Lai-
Massey scheme with 128-bit block and 256-bit key. A 128-bit input state at round
i is denoted as four 32-bit words (LLi−1 || LRi−1 || RLi−1 || RRi−1). The i-th
round function updates the input state using the 128-bit i-th round key Krnd

i

as follows:

(LLi||LRi) = (or(LLi−1 ⊕ φL)||LRi−1 ⊕ φL)

(RLi||RRi) = (or(RLi−1 ⊕ φR)||RRi−1 ⊕ φR),

where or denotes a function converting two 16-bit inputs x0 and x1 to x1 and
(x0 ⊕ x1), and (φL||φR) = f64((LLi−1 ⊕ LRi−1)||(RLi−1 ⊕RRi−1),K

rnd
i ). f64

consisting of two 8 8-bit S-box layers sigma8 separated by the 8 × 8 MDS ma-
trix mu8 returns a 64-bit data from a 64-bit input X and two 64-bit subkeys
LKrnd

i and RKrnd
i as (sigma8(mu8(sigma8(X ⊕ LKrnd

i )) ⊕ RKrnd
i ) ⊕LKrnd

i ).
Two 64-bit subkeys LKrnd

i and RKrnd
i are derived from Krnd

i as Krnd
i =

(LKrnd
i ||RKrnd

i ).

A.2 ASR Attack on 5-Round Reduced FOX128

For the 5-round reduced FOX128, the following one-round keyless linear relation
can be exploited for the matching:

LLi+1 ⊕OR−1(LRi+1) = LLi ⊕ LRi.

If we know LL2 and LR2, LL2⊕OR−1(LR2) can be obtained. Thus, we choose
LL2 and LR2 as the matching state in the forward computation. The 32-bit
states LL2 and LR2 are computed from a 128-bit subkey Krnd

1 , a 64-bit subkey
LKrnd

2 and the left most 32 bits of RKrnd
2 , i.e., (LL2, LR2) = F(1)(P,K(1)),

where K(1) ∈ {Krnd
1 , LKrnd

2 , the left most 32 bits of RKrnd
2 }, and |K(1)| =

224(= 128 + 64 + 32). Similarly, we choose LL3 and LR3 as the matching state
in the backward computation. Since the similar relation holds in the backward
computation, LL3 and LR3 are computed as (LL3, LR3) = F−1

(2) (C,K(2)), where

K(2) ∈ {Krnd
5 , LKrnd

4 , the left most 32 bits of RKrnd
4 }, and |K(2)| = 224. Thus,

using the parameter N = 13 (≤ (224+224)/32), the time complexity for finding
all round keys is estimated as

Ccomp = max(2224, 2224)× 13 + 2640−13·32 = 2228.

The number of required data is only 13 (=max(13, �(640− 13 · 32)/64�)) known
plaintext/ciphertext pairs, and required memory is about 2228 (=min(2224, 2224)×
13) blocks.
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Abstract. KASUMI is a block cipher which consists of eight Feistel
rounds with a 128-bit key. Proposed more than 10 years ago, the confi-
dentiality and integrity of 3G mobile communications systems depend on
the security of KASUMI. In the practically interesting single key setting,
only up to 6 rounds have been attacked so far. In this paper we use some
observations on the FL and FO functions. Combining these observations
with a key schedule weakness, we select some special input and output
values to refine the general 5-round impossible differentials and propose
the first 7-round attack on KASUMI with time and data complexities
similar to the previously best 6-round attacks. This leaves now only a
single round of security margin.

The new impossible differential attack on the last 7 rounds needs
2114.3 encryptions with 252.5 chosen plaintexts. For the attack on the
first 7 rounds, the data complexity is 262 known plaintexts and the time
complexity is 2115.8 encryptions.

Keywords: KASUMI, Impossible Differential, Cryptanalysis.

1 Introduction

The block cipher KASUMI is designed for 3GPP (3rd Generation Partnership
Project, which is the body standardizing the next generation of mobile tele-
phony) as the basis of confidentiality and integrity algorithms by ETSI SAGE
[11]. Nowadays, it is widely used in UMTS, GSM and GPRS mobile communi-
cations systems [12].

KASUMI has eight Feistel rounds with a 128-bit key optimized for hardware
performance, and is a slightly modified version of the block cipher MISTY1 [7].
Because of its importance, KASUMI attracts a great deal of attention of cryp-
tology researchers. Several attacks on variants of KASUMI were published in
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past years [8,9,10]. In the single-key setting, the best result is an impossible dif-
ferential attack on a 6-round version of the cipher presented by Kühn [5]. In the
related-key setting, Blunden and Escott gave a differential attack of KASUMI
reduced to 6 rounds [3]. Later, Biham et al. introduced related-key boomerang
and rectangle attacks on the full 8-round KASUMI, which need 278.7 and 276.1

encryptions respectively [2]. At Crypto 2010, Dunkelman et al. proposed a prac-
tical related-key attack on the full KASUMI by using a new strategy named
sandwich attack [4], which is a formal extension of boomerang attack. However,
these attacks assume control over the differences of two or more related keys in
all the 128 key bits. This gives not only the attacker a lot more degrees of free-
dom, it also renders the resulting attack inapplicable in most real-world usage
scenarios.

For an impossible differential attack, the secret key is obtained by eliminat-
ing wrong keys which bring about the input and output values of the impos-

sible differential. The general 5-round impossible differential (0, a)
5R
� (0, a) [1],

that holds for any balanced Feistel scheme, was used to attack 6-round KA-
SUMI, where a is a 32-bit non-zero value [5]. We observe that the output dif-
ference only depends on 64 bits of the key when the input difference is selected
as (0, ∗‖0). Hence we consider a new, more fine-grained impossible differential

(0, al‖0) 5R
� (0, al‖0), where al is a 16-bit non-zero value. We mount this impos-

sible differential on round 2 to 6 to analyze the last 7 rounds, and the input
and output values of the impossible differential obtained by partial encryption
and decryption in the extended rounds only depend on 112 bit keys. The attack
costs 252.5 chosen plaintexts and 2114.3 encryptions. Because the positions of the
FL and FO functions are different in even rounds and odd rounds, the above
impossible differential attack is not applied to the first 7 rounds. However, we
have some new observations on the FL function, with which the wrong keys are
eliminated earlier than before. The new attack on the first 7 rounds of KASUMI
needs 262 known plaintexts and 2115.8 encryptions. A summary of our attacks
and previous attacks with a single key is given in Table 1.

Table 1. Summary of the attacks on KASUMI

Attack Type Rounds Data Time Source

Higher-Order Differential 5 222.1 CP 260.7 Enc [10]
Higher-Order Differential 5 228.9 CP 231.2 Enc [9]
Integral-Interpolation 6 248 CP 2126.2 Enc [8]
Impossible Differential 6 255 CP 2100 Enc [5]
Impossible Differential 7(2-8) 252.5 CP 2114.3 Enc Sect. 4
Impossible Differential 7(1-7) 262 KP 2115.8 Enc Sect. 5

CP refers to the number of chosen plaintexts.
KP refers to the number of known plaintexts.
Enc refers to the number of encryptions.
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The paper is organized as follows. We give a brief description of the block
cipher KASUMI in Sect. 2. Some observations used in our cryptanalysis are
shown in Sect. 3. In Sect. 4, we propose an improved impossible differential
attack on the last 7 rounds of KASUMI. And the impossible differential attack
on the first 7 rounds of KASUMI is presented in Sect. 5. We summarize the
findings and conclude in Sect. 6.

2 Description of KASUMI

KASUMI works on a 64-bit block and uses a 128-bit key. We give a brief descrip-
tion of KASUMI in this section and discuss cost models for evaluating attack
complexities.

Key Schedule. In order to make the hardware significantly smaller and reduce
key set-up time, the key schedule of KASUMI is much simpler than the original
key schedule of MISTY1. The 128-bit key K is divided into eight 16-bit words:
k1,k2, ..., k8, i.e., K = (k1, k2, k3, k4, k5, k6, k7, k8). In each round, eight key
words are used to compute the round subkeys, which are made up of three parts
KLi, KOi and KIi. Here, KLi = (KLi,1,KLi,2), KOi = (KOi,1,KOi,2,KOi,3)
and KIi = (KIi,1, KIi,2, KIi,3). We summarize the details of the key schedule
of KASUMI in Tab. 2.

Table 2. The key schedule of KASUMI

Round KLi,1 KLi,2 KOi,1 KOi,2 KOi,3 KIi,1 KIi,2 KIi,3
1 k1 ≪ 1 k′

3 k2 ≪ 5 k6 ≪ 8 k7 ≪ 13 k′
5 k′

4 k′
8

2 k2 ≪ 1 k′
4 k3 ≪ 5 k7 ≪ 8 k8 ≪ 13 k′

6 k′
5 k′

1

3 k3 ≪ 1 k′
5 k4 ≪ 5 k8 ≪ 8 k1 ≪ 13 k′

7 k′
6 k′

2

4 k4 ≪ 1 k′
6 k5 ≪ 5 k1 ≪ 8 k2 ≪ 13 k′

8 k′
7 k′

3

5 k5 ≪ 1 k′
7 k6 ≪ 5 k2 ≪ 8 k3 ≪ 13 k′

1 k′
8 k′

4

6 k6 ≪ 1 k′
8 k7 ≪ 5 k3 ≪ 8 k4 ≪ 13 k′

2 k′
1 k′

5

7 k7 ≪ 1 k′
1 k8 ≪ 5 k4 ≪ 8 k5 ≪ 13 k′

3 k′
2 k′

6

8 k8 ≪ 1 k′
2 k1 ≪ 5 k5 ≪ 8 k6 ≪ 13 k′

4 k′
3 k′

7

x ≪ i : x rotates left by i bits.
k′
i = ki ⊕ ci,where the cis are fixed constants.

Encryption. KASUMI is a Feistel structure with 8 rounds. Each round is
made up of an FL function and an FO function. In odd numbered rounds the
FL function precedes the FO function, whereas in even numbered rounds the
FO function precedes the FL function. See Fig. 1 (a) for an illustration.

Let Li−1||Ri−1 be the input of the i-th round, and then the round function is
defined as

Li = FO(FL(Li−1,KLi),KOi,KIi)⊕Ri−1,
Ri = Li−1,
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Fig. 1. The structure and building blocks of the block cipher KASUMI

where i = 1, 3, 5, 7.‘⊕‘ denotes the bitwise exclusive-or (XOR), and ‘‖‘ represents
the concatenation. When i = 2, 4, 6, 8,

Li = FL(FO(Li−1,KOi,KIi),KLi)⊕Ri−1,
Ri = Li−1.

Here, L0‖R0, L8‖R8 are the plaintext and ciphertext respectively, and Li−1,
Ri−1 denote the left and right 32-bit halves of the i-th round input.

The FL function is a simple key-dependent boolean function, depicted in
Fig. 1 (c). Let the inputs of the FL function of the i-th round be XLi =
XLi,l‖XLi,r, KLi = (KLi,1,KLi,2), the output be Y Li = Y Li,l‖Y Li,r, where
XLi,l, XLi,r, Y Li,l and Y Li,r are 16-bit integers. And the FL function is defined
as follows:

Y Li,r = ((XLi,l ∧KLi,1) ≪ 1)⊕XLi,r, (1)

Y Li,l = ((Y Li,r ∨KLi,2) ≪ 1)⊕XLi,l, (2)

where ‘∧‘ and ‘∨‘ denote bitwise AND and OR respectively, and ‘x ≪ i‘ implies
that x rotates left by i bits. FLi is the FL function of i-th round with subkey
KLi.
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The FO function provides the non-linear property in each round, which is
another three-round Feistel structure consisting of three FI functions and key
mixing stages. The FO function is depicted in Fig. 1 (b). There is a 96-bit
subkey in FO function of each round (48 subkey bits used in the FI functions
and 48 subkey bits in the key mixing stages). Let XOi = XOi,l‖XOi,r, KOi =
(KOi,1,KOi,2,KOi,3), KIi = (KIi,1, KIi,2, KIi,3) be the inputs of the FO
function of i-th round, and Y Oi = Y Oi,l‖Y Oi,r be the corresponding output,
where XOi,l, XOi,r, Y Oi,l, Y Oi,r and XIi,3 are 16-bit integers. Then the FO
function has the form

XIi,3 = FI((XOi,l ⊕KOi,1),KIi,1)⊕XOi,r,
Y Oi,l = FI((XOi,r ⊕KOi,2),KIi,2)⊕XIi,3,
Y Oi,r = FI((XIi,3 ⊕KOi,3),KIi,3)⊕ Y Oi,l.

For simplicity, define the FO function of i-th round as FOi.
The FI function uses two sboxes S7 and S9 which are permutations of 7-bit to

7-bit and 9-bit to 9-bit respectively. Suppose the inputs of the j-th FI function
of the i-th round are XIi,j , KIi,j and the output is Y Ii,j , where XIi,j and Y Ii,j
are 16-bit integers. In order to abbreviate the FI function, we define half of FI
function as FI, which is a 16-bit to 16-bit permutation. The structure of FI and
FI is depicted in Fig. 1 (d). Y Ii,j = FI(XIi,j) is defined as

Y Ii,j [0− 8] = S9(XIi,j[7− 15])⊕XIi,j [0− 6],

Y Ii,j [9− 15] = S7(XIi,j[0− 6])⊕ Y Ii,j [0− 6],

where z[i1− i2] denotes the (i2 − i1 +1) bits from the i1-th bit to i2-th bit of z,
and ‘0‘ is the least significant bit. The FI function is simplified as

Y Ii,j = FI(XIi,j ,KIi,j) = FI((FI(XIi,j)⊕KIi,j) ≪ 7).

Denote FIi,j as the j-th FI function of the i-th round with subkey KIi,j .

3 Some Observations of KASUMI

Let ΔX = X ⊕X ′ be the difference of two values X and X ′. We describe some
observations on the FO and FL functions, which are used in our cryptanalysis
of KASUMI.

Observation 1. Given a pair of input values (XO,XO′) of the FO function
with difference ΔXO = (ΔXOl‖ ΔXOr) = (al‖0), where al is a 16-bit non-zero
value. Let ΔY O (ΔY Ol‖ΔYOr) be the corresponding output difference, and then
ΔY O only depends on the 64-bit subkey KI1, KO1, KI3 and KO3.

Observation 2. [6] Let X, X ′ be l-bit values, and ΔX = X ⊕X ′. Then there
are two difference properties of AND and OR operations, such that

(X ∧K)⊕ (X ′ ∧K) = ΔX ∧K,

(X ∨K)⊕ (X ′ ∨K) = ΔX ⊕ (ΔX ∧K).
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Observation 3. Let al‖ar be the input differences of functions FL1 and FL7,
and the input differences of FI1,2 and FI7,2 be zero. Then the following equations
hold.

(al ∧ (k1 ≪ 1)) ≪ 1 = ar, (3)

(al ∧ (k7 ≪ 1)) ≪ 1 = ar. (4)

The input differences of FI1,2 and FI7,2 are zero, so the right 16 bits of output
differences of FL1 and FL7 are zero. By the definition of the FL function and
Observation 2, equations (3) and (4) hold. The following two observations are
deduced as well.

Observation 4. Based on equations (3) and (4), we can get

(al ≪ 1) ∨ ¬ar = 0xffff. (5)

Because the equations (3) and (4) can be represented as 16 parallel equations,

al[j + 1] ∧ k1[j] = ar[j + 2],

al[j + 1] ∧ k7[j] = ar[j + 2],
j = 0, 1, . . . , 15. (6)

it is obvious that there are only 3 out of 4 values of (al[j+1], ar[j+2]) possible,
i.e. (0, 0), (1, 0), (1, 1), where j+1 and j+2 are values mod 16. Therefore we have
Observation 4. And the equation (5) holds with probability (34 )

16 = 2−6.64 when
both al and ar are uniformly chosen from 216 values. This observation is used
to select some special impossible differentials to decrease the time complexity of
the key recovery in the attack on the first 7-round KASUMI.

Observation 5. Suppose (al[j + 1], ar[j + 2]) is chosen uniformly from the set
{(1, 1), (1, 0), (0, 0)}, where j = 0, . . . , 15, the expected number of the subkey
(k1, k7) such that the equations (3) and (4) both hold together is 216.

For each equation (6), there are 4 values of the subkey (k1[j], k7[j]) when (al[j+
1], ar[j + 2]) = (0, 0), and there is a value of the subkey (k1[j], k7[j]) when
(al[j + 1], ar[j + 2]) = (1, 0) or (al[j + 1], ar[j + 2]) = (1, 1). Suppose (al[j + 1],
ar[j + 2]) is chosen uniformly from the set {(1, 1), (1, 0), (0, 0)}, the expected
number of the subkey (k1, k7) is

16∑
j=1

(
16
j

)(
1

3

)j

4j
(
2

3

)16−j

= 216.

This observation is used to eliminate wrong keys for the impossible differential
attack on the first 7 rounds of KASUMI.

Precomputation. In order to decrease the time complexity, we consider FI as
a big sbox, and construct two key dependent difference tables of FI. For all 231

possible input pairs (XI,XI ′) of the FI function, and 216 possible subkeys KI,
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compute the corresponding output pairs (Y I, Y I ′). Store the subkey KI and
output value Y I in a hash table T1 indexed by 48-bit value (XI‖XI ′‖ΔY I).
Then there is one KI for each index on average. Store the value (XI, Y I) in
a hash table T2 indexed by 48-bit value (KI‖ΔXI‖ΔY I), and then each XI
corresponds to an index on average.

4 Impossible Differential Attack on the Last 7 Rounds of
KASUMI

The generic 5-round impossible differential of Feistel structure is utilized to

analyze 6-round KASUMI, which is: (0, a)
5R
� (0, a), where a is a 32-bit non-

zero value [5]. Combined with the Feistel structure of the round function, some
special values of a are selected to attack the 7-round version of KASUMI.

For the attack on the last 7 rounds, we select the 5-round impossible differ-
ential as:

(0, al‖0) 5R
� (0, al‖0),

where al is 16-bit non-zero value. The choice of difference al‖0 is to minimize the
key words guessing when the differential is used to attack the last 7 rounds of
KASUMI. We mount the 5-round impossible differential from round 3 to round
7, and extend one round forward and backward, respectively.

Based on observations 1 and 2, we know that, if the input difference of the
second round is selected as ΔL1 = (al‖0), k5 and k7 are not involved in the
computation of the output difference (ΔL2, ΔR2). Similarly, for the backward
direction, the input difference of the 8th round (ΔL7, ΔR7) can be obtained by
avoiding guessing (k3, k5). Apparently, k5 does not affect either (ΔL2, ΔR2) or
(ΔL7, ΔR7), which can help us to reduce the complexity of the attack.

The impossible differential attack on the last 7-round variant of KASUMI is
demonstrated as follows, see also Fig. 2.

1. Choose 2n structures of plaintexts, with each structure containing 248 plain-
texts (L1, R1) = (∗‖x, ∗‖∗), where x is a fixed 16-bit value, ‘*‘ takes all
the possible 16-bit values. There exist 295 pairs whose input differences are
of the form (∗‖0, ∗‖∗) in each structure. Query their corresponding cipher-
texts (L8, R8) and store (L1, R1, L8, R8) in a hash table indexed by 32-bit
values L1,l ⊕ R8,l and R8,r. Save the plaintext-ciphertext pair, such that
ΔL1,l = ΔR8,l and ΔR8,r = 0. There are 2n+95−32 = 2n+63 kept pairs on
average.

2. Considering the key schedule and the definition of the round function, the sub-
key (k4, k6, k7, k8) can be deduced by guessing the 48-bit subkey (k1, k2, k3).
Therefore we guess the subkey (k1, k2, k3) and compute the value ΔXL8,l =
ΔY O8,l for each plaintext-ciphertext pair. In accordance with the round-
function FO, we get ΔY I8,1 = ΔY O8,l. Partially decrypt (R8,l, R

′
8,l) to get

the intermediate value (XI8,1, XI ′8,1). Then obtain the candidate k′4 by ac-
cessing table T1.
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Fig. 2. Impossible differential attack on KASUMI reduced to rounds 2-8

3. Calculate thevalueΔXL2,l = ΔY O2,l = ΔY I2,1, partially encrypt (L1,l, L
′
1,l)

to get the intermediate value (XI2,1, XI ′2,1), and then search the candidate k′6
from table T1.

4. Compute the value ΔXL2,r (ΔY O2,r), and get the difference of intermediate
value ΔY I2,3 = ΔY O2,l ⊕ ΔY O2,r. Since ΔXI2,3 = ΔY O2,l is known, we
can get (XI2,3, XI ′2,3) by a memory access to hash table T2. Then partially
encrypt (XI2.1, XI ′2,1) to obtain k8.

5. From k8 and Observation 4, we get the value ΔXL8,r (ΔY O8,r), and then
obtain the difference of intermediate value ΔY I8,3 = ΔY O8,l ⊕ ΔY O8,r.
Partially encrypt (XI8,1, XI ′8,1) to get the value (XI8,3, XI ′8,3), and then
obtain the candidate of k′7 through a memory access to hash table T1. Thus
16-bit k7, 48-bit subkey k4‖k6‖k8 and 48-bit guessed value k1‖k2‖k3 result
in the impossible differential. Discard these 64-bit values from the list of all
the 264 possible values of the subkey (k4, k6, k7, k8).

6. For each guess of (k1, k2, k3), there are several 64-bit key words (k4, k6, k7,
k8) kept after the 2

63+n-pair filters. Search for the remaining 16-bit key word
k5, and get the right key. Otherwise, return to Step 2, and repeat the above
process.

Complexity Evaluation. In Step 6, the number of remaining values in the
list is about ε = 2112(1 − 1

264 )
2n+63

. To find a balance between the complexity
of searching the right key in Step 6 and the complexity of Steps 1-5, we choose
n = 4.5, and then ε = 296. Then the attack needs about 2n+48 = 252.5 chosen
plaintexts.
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In the first step, we need about 2n+48 = 252.5 encryptions to get the corre-
sponding ciphertexts. Step 2 costs 2n+63+32 = 299.5 memory accesses to compute
k4. In Steps 3, 4 and 5, we need to access a table of size 248 for each plaintext-
ciphertext pair and subkey (k1, k2, k3). Step 6 requires about 296 × 216 = 2112

encryptions to search for the correct key. We assume the complexity of one mem-
ory access to T1 and T2 to be about a one-round encryption. The total complexity
of our attack is hence about 2n+63×248×3/7+2112 = 2114.3 7-round encryptions.

5 Impossible Differential Attack on the First 7 Rounds of
KASUMI

To analyze the first 7 rounds of KASUMI, we specify the 5-round impossible
differential as:

(0, al‖ar) 5R
� (0, al‖ar).

Combined with the key words distribution, we mount the 5-round impossible
differential from round 2 to round 6, and extend one round forward and backward
respectively (see Fig. 3). The difference al‖ar that satisfies Observation 4 is used
to make the input difference of FI1,2 and FI7,2 be 0. Then we utilize Observation
1 to decrease the time complexity. In this case, the difference ΔL1 and ΔR6 do
not depend on the key word k4 by key schedule algorithm (see Fig. 3). In the
following, we demonstrate a known plaintext attack on 7-round KASUMI.

5-Round Impossible Differential

Round 7

ΔL6=(al||ar)ΔR6=(0||0)

ΔL1=(0||0) ΔR1=(al||ar)

 

 

 

k1 1

  FI  FI  FI   

k2 5 k5' k7 13
k8'

 

YO1L0

0

Round 1

 

 

 

 

k7 1

k1'

 FI  FI  FI     

k8 5 k3' k5 13
k6'

 

L6 YO7

0

R0

ΔL7=(c1||c2)ΔR7=(al||ar)

ΔL0=(al||ar) ΔR0=(b1||b2)
k3'

Fig. 3. Impossible differential attack on the first 7 rounds of KASUMI
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Data Collection. For 2m plaintextsP (L0, R0), query their ciphertextsC(L7, R7),
and store the (P,C) pairs in a hash table with index L0 ⊕ R7. There are about
22m−33 pairs whose input and output differences are (al‖ar, ∗) and (∗, al‖ar) re-
spectively, where ‘*‘ is any 32-bit value. Save the pairs whose differences (al‖ar)
make the equation (5) hold. There are about 22m−33 × (3/4)16 = 22m−39.64 pairs
kept on average. For the remaining plaintext-ciphertext pairs, the differences sat-
isfy ΔL0 = (al‖ar), ΔR7 = (al‖ar) and (al ≪ 1) ∨ ¬ar = 0xffff . We use the
difference (al‖ar) as the index for kept plaintext-ciphertext pairs.

Key Recovery

1. Guess (k1, k7), for all the differences (al‖ar), apply Observation 3 to filter
the pairs. Keep the pairs whose differences satisfy equations (3) and (4). By
Observation 5, there are 22m−39.64+16−32 = 22m−55.64 pairs left for every
(k1, k7) on average.

2. Guess k5, for each remaining pair, the input and output differences of FI1,1
are computed as ΔXI1,1 = ΔL0,l, ΔY I1,1 = ΔR0,l. Then look up table
T2 to get the input and output values XI1,1, Y I1,1 of FI1,1. Compute the
input values XI1,3 and XI ′1,3 by partial encryption, and thoutput difference
ΔY I1,3 = ΔR0,l ⊕ΔR0,r. Then k8 is obtained by accessing table T1.

3. By partial decryption, the intermediate values XI7,1 and XI ′7,1 are deduced
from L6 = R7 and L′

6 = R′
7, and ΔY I7,1 = ΔL7,l. Then access table T1 to

get k3 and Y I7,1.

4. XI7,3 andXI ′7,3 are deduced by partial decryption, and the output difference
ΔY I7,3 = ΔL7,l ⊕ΔL7,r, so k6 is obtained by looking up in table T1. Then
compute Y L1 by the function FL1, and k2 = (Y L1,l ⊕ XI1,1) ≫ 5. Thus
the key words (k2, k3, k6, k8) produce the impossible differential, discard it
from the list of the 264 possible values and start a new guess.

5. For every guess (k1, k5, k7), there are about 2
64×(1−2−64)2m−55.64 key words

(k2, k3, k6, k8) kept after the 22m−55.64 pairs filter. Exhaustively search for
the 16-bit key word k4 for the kept values of key words, and get the right
key. Otherwise go to Step 1, and repeat the above process.

Complexity Evaluation. Let m = 62. In the data collection process, we need
2m = 262 encryptions and 22m−33 = 291 computations of equation (5). There
are 316 values for (al‖ar) in total by Ovservation 3. For each (k1, k7) and al‖ar,
compute the equations (3) and (4) in Step 1, which needs 232 × 316 × 1/4× 1/7
encryptions of 7-round KASUMI. Steps 2-4 cost 22m−55.64 × 248 × 4 = 2118.36

accesses to memory of size 248 and 22m−55.64× 248 = 2116.36 accesses to memory
of size 264. In Step 5, the expected number of remaining keys is 234.4. We spend
248×234.4×216 = 298.4 7-round computations to exhaustively search for the right
key. Suppose one memory access is equivalent to one round encryption. Hence
the total time complexity is about 298.4 + 2118.36 × 1/7 + 2116.36 × 1/7 = 2115.8

7-round encryptions, and the data complexity is about 262 known plaintexts
and the memory complexity is estimated by the storage of the pairs, which is
22m−39.64 × 16 = 284.36 bytes.
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6 Conclusion

In this paper, we extend the 12-year old impossible differential attack on 6-round
KASUMI to 7 rounds, thereby reducing the security margin from 2 rounds to
1 round. We refine the impossible differential by selecting some special input
difference values. In order to get the secret key with lower computational com-
plexity we treat FI as a big sbox and construct the difference distribution table
with the dependent 16-bit subkey KI. Besides, we give some observations on
the FL function with a special input difference, with which we give the first
impossible differential attack on the first 7 rounds. The impossible differential
attack on the last 7 round needs 2114.3 encryptions with 252.5 chosen plaintexts,
and 2115.8 encryptions with 262 known plaintexts for the first 7 rounds.
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Abstract. In this paper, an improvement for integral attacks against
Feistel ciphers is discussed. The new technique can reduce the complex-
ity of the key recovery phase. This possibly leads to an extension of the
number of attacked rounds. In the integral attack, an attacker guesses a
part of round keys and performs the partial decryption. The correctness
of the guess is judged by examining whether the XOR sum of the results
becomes 0 or not. In this paper, it is shown that the computation of the
XOR sum of the partial decryptions can be divided into two indepen-
dent parts if the analysis target adopts the Feistel network or its variant.
Then, correct key candidates are efficiently obtained with the meet-in-
the-middle approach. The effect of our technique is demonstrated for
several Feistel ciphers. Improvements on integral attacks against LBlock,
HIGHT, and CLEFIA are presented. Particularly, the number of at-
tacked rounds with integral analysis is extended for LBlock.

Keywords: Integral attack, Meet-in-the-middle, Feistel, Partial-sum,
LBlock, HIGHT, CLEFIA.

1 Introduction

The integral attack is a cryptanalytic technique for symmetric-key primitives,
which was firstly proposed by Daemen et al. to evaluate the security of Square
cipher [1], and was later unified as integral attack by Knudsen and Wagner
[2]. The crucial part is a construction of an integral distinguisher : an attacker
prepares a set of plaintexts which contains all possible values for some bytes and
has a constant value for the other bytes. All plaintexts in the set are passed to
the encryption oracle. Then, the corresponding state after a few rounds has a
certain property, e.g. the XOR of all texts in the set becomes 0 with probability
1. Throughout the paper, this property is called balanced.

A key recovery attack can be constructed by using this property. An attacker
appends a few rounds to the end of the distinguisher. After she obtains a set
of the ciphertexts, she guesses a part of round keys and performs the partial
decryption up to the balanced state. If the guess is correct, the XOR sum of the
results always becomes 0. Hence, the key space can be reduced.

L.R. Knudsen and H. Wu (Eds.): SAC 2012, LNCS 7707, pp. 234–251, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Fig. 1. Left: previous approach, Right: our approach

The application of the integral attack to AES [3, 4] and AES based ciphers is
widely known. Moreover, for AES, Ferguson et al. proposed an improved tech-
nique called partial-sum [5], which utilizes the property of an MDS multiplication
e.g. the MixColumns (MC) operation in AES. It observes that each output byte
of the MC operation is a linear combination of four input bytes, (x0, x1, x2, x3).
Therefore the sum of the output value

⊕
MC(x0, x1, x2, x3) can be computed in

byte-wise independently, i.e.
⊕

(a0 · x0)⊕
⊕

(a1 · x1)⊕
⊕

(a2 · x2)⊕
⊕

(a3 · x3),
where a0, a1, a2, a3 are some coefficients.

Another popular block-cipher construction is the Feistel network, which sep-
arates the state Xi to the left half XL

i and the right half XR
i . It updates the

state by XR
i+1 ← XL

i and XL
i+1 ← XR

i ⊕ F (XL
i ,Ki), where F is called a round

function and Ki is a round key for updating i-th round. Variants of the Feistel
network, e.g., generalized or modified Feistel network are also popular designs.

Several papers have already applied the integral attack to ciphers with the
Feistel network or its variant. In this paper, we call such ciphers Feistel ciphers.
Examples are the attacks on Twofish [6], Camellia [7–10], CLEFIA [11, 12],
SMS4 [13], Zodiac [14], HIGHT [15], and LBlock [16].

Our Contributions

In this paper, an improvement for integral attacks against Feistel ciphers is dis-
cussed. The new technique can reduce the complexity of the key recovery phase.
This possibly leads to an extension of the number of attacked rounds. The ob-
servation is described in the right-hand side of Fig. 1, which is very simple, but
can improve many of previous integral attacks. Assume that the balanced state
appears on the state XR

i , thus an attacker examines if
⊕

(XR
i ) = 0 or not. Due

to the linearity of the computation, this can be transformed as
⊕

Zi =
⊕

XL
i+1,

where Zi is the state after the round function is applied. Finally, we can compute
the left-hand side and right-hand side of this equation independently, and the
key candidates that result in the balanced state of XR

i are identified by checking
the matches between two values. The match can be done with the meet-in-the-
middle technique [17–19]. Therefore, the efficiency of the attack can be improved.
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Table 1. Comparison of attack results

Target Key size Approach #Rounds Data Time Memory (bytes) Reference

LBlock 80 bits Imp. Diff. 21 262.5 273.7 255.5 [21]
RK Imp. Diff. 23 240 270 − [22]
Integral 18 262 236 220 [16]
Integral 18 262 212 216 This paper
Integral 20 263.6 239.6 235 This paper

HIGHT 128 bits Imp. Diff. 27 258 2126.6 2120 [23]
RK Diff. 32 257.84 2123.17 − [24]
Integral 18 262 236 220 [16]
Integral 22 262 2118.71 264 [15]
Integral 22 262 2102.35 264 This paper

CLEFIA 128 bits Improb. Diff. 13 2126.83 2126.83 2105.32 [25]
(-128) Imp. Diff. 13 2117.8 2121.2 − [26]

Integral 12 2115.7 2116.7 2100 [11]
Integral 12 2115.7 2103.1 275.2 This paper

The complexity for the integral attacks is only for recovering partial key bits and does
not include the one for processing the data, while the complexity for the impossi-
ble/improbable differential attacks is for the full key recovery.
18-round attacks on LBlock recovers only 16 bits, and the exhaustive search on remain-
ing 64 bits takes 264 computations. However, we can avoid it by iterating the attack
for other balanced bytes and recover more key bits.

Moreover, our technique can be combined with the partial-sum technique, which
exploits another aspect of the independence in some computation1.

We demonstrate the effect of our technique by applying it to several Feistel
ciphers. The results are summarized in Table 1. The complexities for recovering
partial key bits are compared for the integral attacks because this paper mainly
focuses on the improvement of the key recovery phase inside the integral attack
and does not pay attentions to the trivial additional exhaustive search of remain-
ing key bits. The first application is a block-cipher LBlock [16]. We first show an
improvement of the 18-round attack by [16]. [16] claimed that the attack could
be extended up to 20 rounds. However, we show that the attack is flawed. Then,
we construct a first successful integral attack against 20-round LBlock by us-
ing our technique. Moreover, we further reduce the complexity by applying the
partial-sum technique. The second application is a block-cipher HIGHT [15]. We
first show that the previous 22-round attack can be trivially improved, and then,
the complexity is further reduced by using our technique. The last application
is a block-cipher CLEFIA [12], which uses the generalized Feistel network, and
its round function takes the SP function. We combine the partial-sum technique
with our approach, and improve 12-round attack on CLEFIA-128.

1 The same strategy is used in the dedicated attack on TWINE [20].
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Note that for Feistel ciphers, an impossible/improbable differential attack is
often the best analysis in the single-key setting. In fact, our approach only works
for fewer rounds than those attacks. Nevertheless, we believe that presenting a
new approach for improving integral attacks is useful, because integral attacks
have already been established as a basic tool of the cryptanalysis. In Table 1, we
also list the complexity of the current best related-key attack for comparison.

Paper Outline

The organization of this paper is as follows. Section 2 gives preliminaries. Sec-
tion 3 explains our basic idea to improve the integral analysis for Feistel ciphers.
Section 4 applies our technique to LBlock, HIGHT, and CLEFIA-128. Finally,
we conclude this paper in Section 5.

2 Preliminaries

2.1 Notations for Integral Attack

The integral attack is a cryptanalytic technique for symmetric-key primitives,
which was firstly proposed by Daemen et al. to evaluate the security of the
Square cipher [1]. Its brief description has already given in Section 1. To discuss
integral distinguishers, the following notations are used in this paper.

“A (Active)” : all values appear exactly the same number in the set of texts.
“B (Balanced)” : the XOR of all texts in the set is 0.
“C (Constant)” : the value is fixed to a constant for all texts in the set.

2.2 Partial-Sum Technique

The partial-sum technique was introduced by Ferguson et al. [5] in order to
improve the complexity of the key recovery phase in the integral attack. The
original attack target was AES. In the key recovery phase of the AES, the partial
decryption involves 5 bytes of the key and 4 bytes of the ciphertext. Suppose
that the number of data to be analyzed, n, is 232 and the byte position b of each
ciphertext is denoted by Cb,n. Then, the equation can be described as follows.

232⊕
n=1

[
S4

(
S0(c0,n⊕ k0)⊕S1(c1,n⊕ k1)⊕S2(c2,n⊕ k2)⊕S3(c3,n⊕ k3)⊕ k4

)]
. (1)

With a straightforward method, the analysis takes 232+40 = 272 partial decryp-
tions, while the partial-sum technique can perform this computation only with
248 partial decryptions. The idea is partially computing the sum by guessing
each key byte one after another.

The analysis starts from 232 texts (c0,n, c1,n, c2,n, c3,n). First, two key bytes
k0 and k1 are guessed, and S0(c0,n ⊕ k0) ⊕ S1(c1,n ⊕ k1) is computed for each
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guess. Let xi,n be
⊕i

p=0(Sp(cp,n⊕ kp))
2. Then, S0(c0,n⊕ k0)⊕S1(c1,n⊕ k1) can

be represented by x1,n, and Eq. (1) becomes

232⊕
n=1

[
S4

(
x1,n ⊕ S2(c2,n ⊕ k2)⊕ S3(c3,n ⊕ k3)⊕ k4

)]
.

The original set includes 232 texts, but now only 3-byte information (x1, c2, c3)
is needed. Hence, by counting how many times each of 3-byte values (x1, c2, c3)
appears and by only picking the values that appear odd times, the size of the
data set is compressed into 3 bytes. For the second step, a single key byte k2 is
guessed, and the size of the data set becomes 2 bytes (x2, c3). For the third step,
a single key byte k3 is guessed, and the size of the data set becomes 1 byte (x3).
Finally, a single byte k4 is guessed and Eq. (1) is computed for each guess.

The complexity for the guess of k0, k1 is 216× 232 = 248, for the guess of k2 is
216 × 28 × 224 = 248. Similarly, the complexity is preserved to be 248 until the
last computation.

2.3 Previous Integral Attack for Feistel Ciphers

Assume that the right half of the state in round i, denoted by XR
i , has the bal-

anced property. To recover the key, many of previous attacks use all information
that relates to XR

i . This is illustrated in the left-hand side of Fig. 1. Let #K(X)
be the number of key bits that need to be guessed to obtain the value of X by
the partial decryption. Similarly, let #C(X) be the number of ciphertext bits
that are used to obtain X by the partial decryption. Many of previous attacks

spend 2#K(XR
i )+#C(XR

i ) computations to obtain
⊕

(XR
i ).

3 Meet-in-the-Middle Technique for Integral Attacks

In this section, we explain our idea that improves the time complexity and the
amount of memory to be used in the key recovery phase. The observation is very
simple, but can improve many of previous integral attacks on Feistel ciphers.

Let n be the number of texts.
⊕

n(X
R
i,n) can be described as

⊕
n(Zi,n ⊕

XL
i+1,n), where Zi is the state after the round function is applied. We only use

the notation n to show that the sum of the value is later computed. The struc-
ture is illustrated in the right-hand side of Fig. 1. Due to the linear computa-
tion, the sum of each term can be computed independently. Hence, the equation⊕

n(X
R
i,n) = 0, can be written as⊕

n

Zi,n =
⊕
n

XL
i+1,n. (2)

Then, we compute
⊕

n Zi,n for all guesses of #K(Zi) and store the result in a
table, and independently compute

⊕
n X

L
i+1,n for all guesses of #K(XL

i+1) and

2 Notation xi,n is somehow confusing. xi,n represents the sum of i S-box outputs.
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store the result in a table. Finally, the key values that result in the balanced
state can be identified with the same manner as the meet-in-the-middle attack
i.e. by checking the matches between two tables. The time complexity of the
attack can be reduced into

max{2#K(Zi)+#C(Zi), 2#K(XL
i+1)+#C(XL

i+1)}. (3)

Note that if the key bits to compute Zi and XL
i+1 have some overlap, we can

apply the three subset meet-in-the-middle attack [17] i.e., the shared bits are
firstly guessed, and for each guess, the other bits are independently computed.
Let Ks be a set of bits for the shared key, and |Ks| is the bit number of Ks.
Then, the memory complexity of the attack can be reduced into

max{2#K(Zi)+#C(Zi)−|Ks|, 2#K(XL
i+1)+#C(XL

i+1)−|Ks|}. (4)

Due to the structure of the Feistel network, the first item is always bigger than
the second item. Thus, the time and memory complexity is simply written as

(Time,Memory) =
(
2#K(Zi)+#C(Zi), 2#K(Zi)+#C(Zi)−|Ks|). (5)

4 Applications of Our Technique

In this section, we demonstrate several applications of our technique by improv-
ing previous integral attacks against several ciphers. The goal of this section is
to show that our technique can be applied to a wide range of Feistel ciphers.
Therefore, we do not optimize each attack by looking inside of the key schedule.
We omit its description, and assume that each round key is independent.

4.1 LBlock

LBlock is a light-weight block-cipher proposed at ACNS 2011 by Wu and Zhang
[16]. The block size is 64-bits and the key size is 80 bits. It adopts a modified
Feistel structure with 32 rounds, and its round function consists of the key
addition, an S-box layer, and a permutation of the byte positions. The plaintext
is loaded into an internal state XL

0 ‖XR
0 . The state XL

i ‖XR
i is updated by using

a round key Ki and the round function described in Fig. 2. We denote the j-th
byte (1 byte is 4 bits for LBlock) of a 32-bit word X by X [j], where 0-th byte is
the right most byte in the figure.

Previous 18-Round Attack. The designers showed a 15-round integral distin-
guisher. For a set of 260 plaintexts with the form of (AAAC AAAAAAAAAAAA),
the state after 15 rounds, (XL

15‖XR
15), has the form of (???? ???? ?B?B ?B?B). By

using this property, the designers showedan 18-roundkey recovery attack. The key
recovery phase is illustrated in Fig. 3. The attacker guesses a part of round keys,
and decrypts the ciphertexts up to the fourth byte of XR

15 and checks if its sum is
0 or not. As shown in Fig. 3, five bytes of the ciphertext (XL

18[0, 6] andXR
18[1, 4, 6])
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Fig. 2. LBlock Round function

and four bytes of keys (K17[1, 4],K16[4], and K15[4]) relate to the partial decryp-
tion for XR

15[4]. The attacker first counts how many times each of 5-byte values
XL

18[0, 6], X
R
18[1, 4, 6] appears and only picks values that appear odd times. Hence,

at most 24∗5 = 220 values are stored in a memory. Then, for each guess of four key
bytes, she computes the correspondingXR

15[4] and computes the sum. The attack
complexity is 220 × 216 = 236 partial decryptions.

Improved 18-Round Attack. The attack complexity can be improved by
applying our technique. The condition

⊕
XR

15[4] = 0 can be written as⊕
Z15[6] =

⊕
XL

16[6]. (6)

As shown in Fig. 3, the computation of Z15[6] involves three bytes of the cipher-
text (XL

18[6] and XR
18[4, 6]) and three bytes of round keys (K17[4],K16[4], and

K15[4]), which are denoted by numbers in red square brackets. Similarly, the
computation of XL

16[6] involves two bytes of the ciphertext (XL
18[0] and XR

18[1])
and a single byte of a round key (K17[1]), which are denoted by numbers in blue
round brackets. The attack procedure is as follows.

1. Query 260 plaintexts which has the form of (AAAC AAAA AAAA AAAA).
2. Prepare the memory which stores how many times each three-byte value

XL
18[6], X

R
18[4, 6] appears, and pick the values which appear odd times. Do

the same for two-byte values XL
18[0], X

R
18[1].

3. For all three-byte keys K17[4],K16[4], and K15[4], compute Z15[6] for all
three-byte values XL

18[6], X
R
18[4, 6] and store its sum in a list LZ15 .

4. For all values of a single-byte key K17[1], compute XL
16[6] for all two-byte

values XL
18[0], X

R
18[1] stored in the memory and store its sum in a list LXL

16
.

5. Check the matches between LZ15 and LXL
16
. If the matches are found, output

the corresponding 4-byte keys as correct key candidates.

Step 2 requires a memory to store 212 3-byte values. Step 3 requires a complexity
of 212 × 212 = 224 partial decryptions and a memory to store 212 sums. Step 4
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requires a complexity of 24×28 = 212 partial decryptions and a memory to store
24 sums. Step 5 is performed with 212 table look-ups, and 216×2−4 = 212 values
are output as correct key candidates.

By iterating the above steps 3 times, a single key candidate is obtained, which
requires 224 18-round LBlock computations and the memory to store 212 LBlock
state. This is faster than the previous 18-round attack. The data complexity is
the same as the previous attack, which is 4× 260 = 262 chosen plaintexts.

Further Improvement with the Partial-Sum Technique. The attack com-
plexity can be further improved with the partial-sum technique. the computation
of
⊕

Z15[6] can be written as follows:⊕
S
[
S
(
S(XR

18[4]⊕K17[4])⊕XL
18[6]⊕K16[4]

)
⊕XR

18[6]⊕K15[4]
]
. (7)

In the previous section, this was computed with 224 computations, but we can
compute it only with 216 computations with the partial-sum technique. The
analysis starts from 3-byte tuple (XL

18[6], X
R
18[4], X

R
18[6]) with 212 data. Firstly a

single key byte K17[4] is guessed, and S(XR
18[4] ⊕K17[4])⊕XL

18[6] is computed
for each guess. Let y1 be the result. Then, the data can be compressed into 2-
byte tuple (y1, X

R
18[6]). Secondly, K16[4] is guessed and S(y1⊕K16[4])⊕XR

18[6] is
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computed for each guess. Let y2 be the result. Then, the data can be compressed
into 1-byte y2. Finally, for each guess of K15[4],

⊕
Z15[6] is computed by S(y2⊕

K15[4]).
The guess of K17[4] requires 2

4 · 212 = 216 computations. The guess of K16[4]
requires 24 · 24 · 28 = 216 computations. Finally, the guess of K15[4] requires
24 · 24 · 24 · 24 = 216 computations. In summary, the time complexity of the
attack is reduced into 216.

Remarks. The 18-round attack only recovers 16 bits of subkeys. Hence, the
exhaustive search on the remaining 64 bits costs 264, which is much more ex-
pensive. This can be avoided by performing the above procedure on the other
balanced bytes. We stress that the queried data can be shared among the anal-
ysis for different balanced bytes. Hence, the data complexity keeps unchanged
and only the time and memory complexity increases linearly.

Extension to 20-Round Attack. Wu and Zhang [16] claimed that the attack
could be extended up to 20 rounds because only 12 key bytes relate to the
partial decryption for XR

15[4]. However, we show that this attack is flawed. It is
true that 12 key bytes relate to XR

15[4], i.e., #K(XR
15[4]) = 48. However, they

did not consider the increase of the number of bytes in the ciphertext that relate
to XR

15[4]. The analysis is given in Fig. 4. It shows that #C(XR
15[4]) is 48 (12

bytes). Hence, their attack requires 248+48 = 296 partial decryptions, which is
more expensive than the brute force attack.

In our approach, as shown in Fig. 4, both of #K(Z15[6]) and #C(Z15[6])
are 32 (8 bytes). Hence, the complexity to analyze a single set is reduced to
232+32 = 264, which is faster than the brute force attack. For each analysis,
the key space becomes 2−4. Hence, by repeating the analysis 12 times, 12 bytes
of the key space is reduced to 1. Moreover, similarly to the 18-round attack,
the partial-sum technique can be applied to compute

⊕
Z15[6]. The details are

omitted due to the limited space. For each guess of a single-key byte, the data
is compressed by 1 byte. Hence, the final complexity becomes 24 · 232 = 236.

Note that, the attack outputs 11 bytes of the key candidates (244) as a result
of the first analysis. To store these candidates, more memory than for storing
#C(Z15[6]) is necessary. This can be avoided by analyzing 4 sets of plaintexts
simultaneously, and thus the effect of the matching part with the meet-in-the-
middle approach becomes 4 times. As a result, the key space after the result of
the first analysis becomes 8 bytes, which is the same size as #C(Z15[6]).

In summary, our attack is the first successful integral attack against 20-round
LBlock with approximately 12 ∗ 236 ≈ 239.6 LBlock computations, 8 ∗ 232 bytes
of memory, and 12∗260 ≈ 263.6 chosen plaintexts. The previous attack evaluated
that 13 sets of plaintexts are necessary to recover the key with a high success
probability. Under the same philosophy, our attack also requires 13 ∗ 236 ≈ 239.7

LBlock computations, and 263.7 chosen plaintexts.
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Table 2. Key schedule for the keys that relate to the key recovery phase

SK0
69 SK73 SK0

76 SK77 SK80 SK81 SK84 SK85 SK0
87 WK5 WK6 WK7

MK0
1 MK13 MK0

8 MK9 MK3 MK4 MK7 MK0 MK0
2 MK1 MK2 MK3

F0 F1 F0

[SK69
0]

F1

F0 F1 F0

[SK73]

F1

F0 F1

(SK76
0)

F0

[SK77]

F1

F0 F1
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Fig. 5. Key recovery phase for 22-round HIGHT

4.2 HIGHT

HIGHT is a light-weight block-cipher proposed at CHES 2006 by Hong et al.
[27]. The block size is 64 bits and the key size is 128 bits. It adopts the gen-
eralized Feistel structure with 8 branches and 32 rounds. The round function
consists of the ARX structure. The plaintext is loaded into an internal state
X0,7‖X0,6‖ · · · ‖X0,0. The state Xi,7‖Xi,6‖ · · · ‖Xi,0 is updated by using round
keys SK4i, SK4i+1, SK4i+2, SK4i+3 and the round function. We denote the k-th
bit of a byte Xi,j by Xk

i,j . Note that each round key is a copy of a part of the
original secret key K, and which part is used is defined in the specification. Be-
cause the previous attack by Zheng et al. [15] has already exploited the relation
of subkeys, we need to consider it to improve the attack.

Previous 22-Round Attack. Zheng et al. showed a 17-round integral distin-
guisher. For a set of 256 plaintexts with the form of (A,A,A,A,A,A,A,C),
the state after 17 rounds, (X17,7‖X17,6‖ · · · ‖X17,0), has the form of
(?, ?, ?, ?, B0, ?, ?, ?), where B0 stands for the balanced state with respect to the
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0-th bit. By using this property, Zheng et al. showed a 22-round key recovery
attack. The key recovery phase for the 22-round attack is illustrated in Fig. 5.

The attacker prepares a set of 256 plaintexts that satisfies the above
form. As shown in Fig. 5, 48 bits of the ciphertext (C7, C6, C5, C4, C3, C2)
and 75 bits of round keys (SK0

69, SK73, SK
0
76, SK77, SK80, SK81, SK84,

SK85, SK
0
87,WK5,WK6,WK7) relate to the partial decryption for X0

17,3. The
related 75 bits of the round keys have some overlap with respect to the original
secret key. The key schedule for these keys is given in Table 2. Here, MK stands
for “Master Key”, which is the original secret key.

By considering Table 2, the number of bits that need to be guessed is 65.
Zheng et al. guessed all 65 key bits, and applied the partial decryption for all
ciphertexts. Therefore, they concluded that the attack complexity to analyze
one set was 256 × 265 = 2121 partial decryptions. As a result of analyzing one
set, the key space can be reduced by 1 bit. Hence, the attack is repeated for
65 sets. Zheng et al. showed that the complexity for 65 iterations was 256(265 +
264+ · · ·+21) ≈ 2122 partial decryptions, which is equivalent to 2118.71 22-round
HIGHT encryptions.

Simple Improvement of the Previous Attack. We show that the attack
by Zheng et al. can be improved very simply. Because the partial decryption
involves only 48 bits of the ciphertext, the data to be analyzed can be reduced
into 248 ciphertexts. This is done by counting how many times each of 48-bit
values appears, and only picking values which appear odd times.

Moreover, for the 7th byte of the ciphertext, C7, only the least significant
bit, C0

7 , is needed to compute X0
17,3. Therefore, the data to be analyzed can be

further reduced into 241 ciphertexts.
In summary, the attack complexity becomes 241(265 + 264 + · · ·+ 21) ≈ 2107

partial decryptions, which is equivalent to 2103.71 22-round HIGHT encryptions.

Application of Our Technique. By using our technique, the complexity can
be further improved. The condition for

⊕
X0

17,3 = 0 is written as
⊕

X0
18,4 =⊕

Z0
17,3. The partial decryption for Z0

17,3 involves 73 bits of round keys and 40
bits of ciphertexts. The partial decryption for X0

18,4 involves 34 bits of round
keys and 25 bits of ciphertexts. If the key schedule is considered, #K(Z0

17,3)
is 64 and #K(X0

18,4) is 26 respectively, while 24 key bits are overlapped. The
dominant complexity is the computations for

⊕
Z0
17,3. According to Eq. (5), the

time complexity is 240+64 = 2104 partial decryptions to analyze a single set.
To reduce the key space into 1, the attack is iterated 65 times. However,

the attack complexity cannot be evaluated as 240(264 + 263 + · · · + 21) with
the meet-in-the-middle approach. This is because the discarded key candidates
are uniformly distributed in the key space. Hence, our strategy is applying the
meet-in-the-middle approach 2 times to reduce the key space from 265 to 263, and
then perform the previous attack method to further reduce the key space into 1.
Finally, the attack complexity is 2104 + 2104 + 241 · (263 + 262 + · · ·+ 21) ≈ 2106

partial decryptions.
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Fig. 6. Round function of CLEFIA

The previous work compared the complexity for one partial decryption and
one HIGHT encryption by counting the number of F functions to be calculated.
7 F0/F1 functions are involved in the partial decryption and 22 ∗ 4 = 88 F0/F1

functions are involved in the 22-round HIGHT encryptions. Hence, 2106 partial
decryptions are equivalent to 2106×7/88 ≈ 2102.35 22-round HIGHT encryptions.
Note that 264 key candidates are output as a result of the first analysis. To store
these values, the memory to store 264 keys is necessary.

In summary, the attack complexity becomes 2102.35 22-round HIGHT encryp-
tions, the memory to store 264 keys, and 65 ∗ 256 ≈ 262 chosen plaintexts.

4.3 CLEFIA

CLEFIA is a block-cipher proposed at FSE 2007 by Shirai et al. [12]. The block
size is 128 bits and the key size can be chosen from 128 bits, 192 bits, or 256 bits.
It adopts the generalized Feistel structure with 4 branches and 18 rounds for a
128-bit key. The round function consists of the key addition, S-box application,
and multiplication by an MDS matrix. The plaintext is loaded into an internal
state X0,0‖X0,1‖ · · · ‖X0,15. The state Xi,0‖Xi,1‖ · · · ‖Xi,15 is updated by using
round keys RK2i, RK2i+1 and the round function described in Fig. 6.

Li et al. showed a 9-round integral distinguisher for CLEFIA [11]. A set of 2112

plaintexts should have the form of (AAAA AAAA A′
0A

′
1A

′
2A

′
3 AAAA), where A

′
0

is v⊕w, A′
1 is 2v⊕ 8w, A′

2 is 4v⊕ 2w, A′
3 is 6v⊕aw, and v and w are two active

bytes. Then, the state after 9 rounds, (X9,0‖X9,1‖ · · · ‖X9,15), has the form of
(???? BBBB ???? ????). By using this property, Li et al. showed a 11-round
basic attack and a 12-round extended attack.

Previous 11-Round Attack. The key recovery phase is described in Fig. 7. An
equivalent transformation is applied to the 10th round.M−1

0 (X9,4, X9,5, X9,6, X9,7)
is still a balanced state becauseM0 is a linear operation (anMDSmatrixmultiplica-
tion). The attacker guesses roundkeys and aims to detect if the sum of the 0-th byte
ofM−1

0 (X9,4, X9,5, X9,6, X9,7) is 0 or not. The equation that the attacker computes
can be written as follows:



246 Y. Sasaki and L. Wang

S0

S1

S0

S1

RK18

?, ?, ?, ?

C0, C1, C2, C3

M0
-1

M0

?, ?, ?, ? ?, ?, ?, ?B, B, B, B

S1

S0

S1

S0

RK21

M1

WK3WK2

C4, C5, C6, C7 C8, C9, C10, C11 C12, C13, C14, C15

S M

Balanced

S M

Z9,0

Z10,0

Fig. 7. Key recovery phase for 11-round CLEFIA

⊕[
S0

(
S1(C8 ⊕RK21,0)⊕ 08 · S0(C9 ⊕RK21,1)⊕

02 · S1(C10 ⊕RK21,2)⊕ 0a · S0(C11 ⊕RK21,3)⊕ C12 ⊕RK ′
18,0

)]
=
⊕

C′, (8)

where RK ′
18,0 = WK3,0⊕RK18,0 and C′ is the 0-th byte ofM−1

0 (C0, C1, C2, C3),
i.e., C′ = C0⊕02 ·C1⊕04 ·C2⊕06 ·C3. The simple method requires 240+40 = 280

partial decryptions, while Li et al. compute it only with 256 partial decryptions
by using the partial-sum technique.

For 2112 chosen-plaintexts, the attacker only picks 5-byte values (C8, C9, C10,
C11, C12) and 4-byte values (C0, C1, C2, C3) that appear odd times. Then, the
right-hand side of Eq. (8) can be computed with at most 232 M−1

0 computations.
The computation for the left-hand side of Eq. (8) starts from 240 texts of 5-byte
values (C8, C9, C10, C11, C12). For simplicity, let t0, t1, . . . , tl and r0, r1, . . . , rl be

the ciphertext bytes and the corresponding key bytes. Then, let xi be
⊕i

p=0 S(tp⊕
rp). Firstly, the attacker guesses two key bytes r0 and r1 and computes x1. Then,
the size of the data to be analyzed can be reduced to 4 bytes (x1, C10, C11, C12).
Secondly, the attacker guesses a single key byte r2, and computes x2. Then, the
size of the data can be reduced to 3 bytes (x2, C11, C12). Similarly, the attacker
guesses r3 and picks 2-byte data (x3, C12), then guesses r4 and computes the
final sum. The complexity for computing x1 is 216 · 240 = 256, for computing x2

is 216 · 28 · 232 = 256, and similarly the complexity of 256 is preserved until the
final sum is obtained. With the analysis for one data set, the key space becomes
2−8 times. Li et al. analyzed 6 data sets to uniquely determine the key. The final
complexity was estimated as 254 11-round CLEFIA encryptions.
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Improving the Previous 11-Round Attack. We show that the partial-sum
technique in the 11-round attack by Li et al. can be improved without using our
meet-in-the-middle technique. To compute the left-hand side of Eq. (8), Li et
al. guessed two key bytes r0 and r1 to obtain x1. This procedure seems to come
from the original partial-sum application by Ferguson et al. [5], which guessed
two key bytes at the first step. However, in the analysis for Feistel ciphers, the
equation to compute the sum (the left-hand side of Eq. (8) for CLEFIA) has
already included a term that only consists of a ciphertext byte (without a key
byte). This is actually different from Eq. (1) for AES. Therefore, guessing only
a single byte r0 is enough to compress the data from 240 to 232.

In details, we firstly guess a single byte RK21,0 and compute S1(C8⊕RK21,0)⊕
C12 for 240 texts. Let x′

0 be the result of this computation. We then focus on a 4-
byte tuple x′

0, C9, C10, C11, and compress the data size to 232 by only picking the
values that appear odd times. For the second step, we guess a single byte RK21,1

and compute 08 ·S0(C9⊕RK21,1)⊕x′
0 for 232 texts. Let x′

1 be the result. Then,
the data size can be reduced to 224 by focusing on 3-byte tuple x′

1, C10, C11. We
continue the similar procedure until the final sum is obtained. The complexity
for computing x′

0 is 28 · 240 = 248, for computing x′
1 is 28 · 28 · 232 = 248, and

similarly the complexity of 248 is preserved until the final sum is obtained.
In summary, the attack complexity can be reduced by a factor of 28, and the

total complexity is reduced to approximately 246 11-round CLEFIA encryptions.

Previous 12-Round Attack. Based on our understandings, we explain the
12-round attack by Li et al. The key recovery phase is described in Fig. 8.
Several equivalent transformations are applied. An important property is that
the whitening key WK3 only affects the balanced state linearly. Therefore, after
taking the sum of 2112 texts, the impact of WK3 disappears. Hereafter, WK3 is
ignored. The equation that the attacker computes can be written as follows:

⊕[
S0

(
S1(b0 ⊕RK′

21,0)⊕ 08 · S0(b1 ⊕RK′
21,1)⊕ 02 · S1(b2 ⊕RK′

21,2)⊕

0a · S0(b3 ⊕RK′
21,3)⊕ C8 ⊕RK18,0

)
⊕

(
y1 · S1(C8 ⊕RK23,0)⊕

y2 · S0(C9 ⊕RK23,1)⊕ y3 · S1(C10 ⊕RK23,2)⊕ y4 · S0(C11 ⊕RK23,3)
)]

=
⊕

C′, (9)

where (b0, b1, b2, b3) is a 4-byte word for (X10,8, X10,9, X10,10, X10,11), y0, y1, y2,
y3 are coefficients derived from M1 and M−1

0 , C′ is the 0-th byte of
M−1

0 (C12, C13, C14, C15), and RK ′
21 is RK21⊕WK2. The computation of

⊕
C′

is done with at most 232 computations. The attacker firstly guesses 4 key bytes
RK22,0, . . . , RK22,3 and computes (b0, b1, b2, b3) for all texts. Then, the left-hand
side of Eq. (9) is computed with the partial-sum technique. We omit the detailed
procedure. Li et al. concluded that the complexity to analyze one set is 2120 par-
tial decryptions.
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Fig. 8. Key recovery phase for 12-round CLEFIA

Improved 12-Round Attack. The attack by Li et al. can be improved by
introducing the meet-in-the-middle approach. Eq. (9) is transformed as follows;⊕

S0

(
S1(b0 ⊕RK ′

21,0)⊕ 08 · S0(b1 ⊕RK ′
21,1)⊕ 02 · S1(b2 ⊕RK ′

21,2)⊕

0a · S0(b3 ⊕RK ′
21,3)⊕ C8 ⊕RK18,0

)
=
⊕(

y1 · S1(C8 ⊕RK23,0)⊕ y2 · S0(C9 ⊕RK23,1)⊕ y3 · S1(C10 ⊕RK23,2)⊕

y4 · S0(C11 ⊕RK23,3)
)
⊕
⊕

C′. (10)

The attack procedure for each set of 2112 texts is as follows.

1. With processing 2112 plaintexts, we count how many times each value of
9-byte tuple (C0, C1, . . . , C8), each value of 4-byte tuple (C8, C9, C10, C11),
and each value of 4-byte tuple (C12, C13, C14, C15) appears.

2. We compute the second term of the right-hand side of Eq. (10), i.e.,
⊕

C′.
3. We compute the first term of the right-hand side of Eq. (10) for the exhaus-

tive guess of RK23, and compute XOR with
⊕

C′. The result, which is the
right-hand side of Eq. (10) for each guess of RK23, is stored in a list LX10,0 .

4. For each guess of RK22 (in total 232 iterations), we do as follows.
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(a) For 272 texts (C0, C1, . . . , C8), we compute (b0, b1, b2, b3) and count how
many times each of 5-byte tuple (b0, b1, b2, b3, C8) appears. Therefore,
the data size is compressed into 240, and the equation becomes exactly
the same as the left-hand side of Eq. (10).

(b) We compute the left-hand side of Eq. (10) by guessing five key bytes
RK ′

21, RK18,0 with the same method as our improved 11-round attack.
The result is stored in a list Lz9,0 .

5. Finally, we identify right-key candidates by searching for matches between
two lists LX10,0 and Lz9,0 .

Step 2 requires at most 232 computations. Step 3 requires at most 264 computa-
tions with the straightforward method, which is already enough small. This can
be further reduced into 248 computations with the partial-sum technique. After
Step 3, we obtain a list LX10,0 with 232 entries. Step 4(a) requires 232 ·272 = 2104

partial decryptions. Because our 11-round attack requires 248 partial decryp-
tions, Step 4(b) requires 232 · 248 = 280 partial decryptions. As a result of Step
5, we expect to obtain 232+72−8 = 296 matches, because the key space is reduced
by a factor of 28 with the analysis of a single set.

By iterating the analysis with 13 different sets, we expect to obtain a unique
solution of 13 key bytes. Note that, by analyzing 4 or more sets simultaneously,
the efficiency of the match becomes 4 times or more, and the number of right-key
candidates becomes 232+72−(4∗8) = 272 or less. This can avoid using 296 memory
after the analysis of the first set.

In summary, the bottle-neck of the complexity is Step 4(a), which requires 2104

0.5-round computations. This is equivalent to 2104/24 ≈ 299.4 12-round CLEFIA
encryptions. After iterating the procedure for 13 sets, the complexity becomes 13·
299.4 ≈ 2103.1 12-round CLEFIA computations. The bottle-neck of the memory is
for counting how many times each value of 9-byte tuple (C0, C1, . . . , C8) appears
for 2112 ciphertexts, which requires 272 9-byte information. This is equivalent
to 275.2 bytes or 271.2 CLEFIA state. The data complexity is the same as the
previous work, which is 13 · 2112 ≈ 2115.7 chosen plaintexts.

5 Concluding Remarks

In this paper, we showed an improvement for the integral analysis against Feistel
ciphers, which recovers the key by using the meet-in-the-middle approach. We
focus on the independence of two computations in the partial decryption for
Feistel ciphers, and it reduces the time and memory for the key-recovery phase.
Our technique can be combined with the partial-sum technique. We applied
our technique for several Feistel ciphers, and showed that the previous integral
attacks on LBlock, HIGHT, and CLEFIA-128 could be improved. Particularly,
the number of attacked rounds with integral analysis was extended for LBlock.

One possible future work is deriving the limitation of the integral attack, i.e.,
how many rounds can be potentially attacked by combining currently known
techniques such as the meet-in-the-middle and partial-sum techniques. As was
done in this paper, the integral attack seems to have more room to be improved.
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Then, presenting new techniques is an interesting topic, e.g., application of the
partial-sum technique for HIGHT. Because HIGHT adopts two non-commutative
operations, XOR and modular addition, the application of the partial-sum is not
obvious. We leave it as an open problem.

Acknowledgments. We would like to thank the anonymous reviewers for many
helpful comments, especially for the potential application of the partial-sum
technique to LBlock.
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1 UPMC, Université Paris 6, LIP6
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Abstract. We describe a lattice attack on DSA-like signature schemes under the
assumption that implicit information on the ephemeral keys is known. Inspired
by the implicit oracle of May and Ritzenhofen presented in the context of RSA
(PKC2009), we assume that the ephemeral keys share a certain amount of bits
without knowing the value of the shared bits. This work also extends results of
Leadbitter, Page and Smart (CHES2004) which use a very similar type of par-
tial information leakage. By eliminating the shared blocks of bits between the
ephemeral keys, we provide lattices of small dimension (e.g. equal to the number
of signatures) and thus obtain an efficient attack. More precisely, by using the
LLL algorithm, the complexity of the attack is polynomial. We show that this
method can work when ephemeral keys share certain amount of MSBs and/or
LSBs, as well as contiguous blocks of shared bits in the middle. Under the Gaus-
sian heuristic assumption, theoretical bounds on the number of shared bits in
function of the number of signed messages are proven. Experimental results show
that we are often able to go a few bits beyond the theoretical bound. For instance,
if only 2 shared LSBs on each ephemeral keys of 200 signed messages (with no
knowledge about the secret key) then the attack reveals the secret key. The success
rate of this attack is about 90% when only 1 LSB is shared on each ephemeral
keys associated with about 400 signed messages.

Keywords: DLP, ECDSA, Lattice attack, Oracle, Implicit information.

1 Introduction

The security of the main public-key cryptosystems is based on the difficulty of solv-
ing certain mathematical problems. In this context, the most commonly used prob-
lems come from Number Theory, most notably the integer factorization problem and
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the discrete logarithm on finite cyclic groups. For instance, an efficient factorization
leads immediately to an attack on the RSA cryptosystem. The security of RSA is
then partly based on the presumed difficulty of factoring large integers. Indeed, the
most efficient published factoring algorithms have sub exponential asymptotic run-
ning times ([Pom84, Len87, LL93]) and it is not known whether efficient factoriza-
tion can be done in polynomial time on a classical Turing machine. Another classi-
cal example is the discrete logarithm problem on a finite cyclic group, upon which
is based the security of the ElGamal encryption system, the Diffie-Hellman key ex-
change and the DSA-like signature schemes. Despite the proven fact that a generic
algorithm for computing discrete logarithms in any group is necessarily an exponen-
tial algorithm ([Tes01, Sho97, Sha71, Pol78, Pol00]), once again, subexponential al-
gorithms are known to solve some instances of the discrete logarithm problem, i.e. on
well-defined classes of groups. For instance, discrete logarithms can be computed in
subexponential time on the multiplicative group of finite fields ([AD93]) or on some
hyperelliptic curves ([ADH94, ADH99]). Conversely, there is no known subexponen-
tial algorithm to solve the discrete logarithm problem on the group of rational points of
a well-chosen elliptic curve.

Instead of trying to solve directly a hard mathematical problem, we can rather look
at which information should be added in order to solve this problem in polynomial
time. With this objective in mind, Rivest and Shamir introduced in [RS86] the notion
of oracle to formalize this approach and showed that a RSA modulus N = pq of bit
size n (with p and q balanced prime factors of n) can be factored in polynomial time
as soon as the n/3 most significant bits (MSB) from one of the factors are known. This
result was next improved with the so-called Coppersmith’s method based on lattice
basis reduction as introduced in [Cop96], and which reduced the number of needed bits
known to only one-half of the MSB of one of the factors. Beyond the theoretical interest,
this additional information can be provided for instance with the help of side-channel
analysis and the discovery of some leaks of secret information in some cryptographic
systems, and brought to the attacker under the form of an oracle.

In this article, we focus on the Digital Signature Algorithm (DSA) [FIP94] of which
the security is based on the difficulty of computing discrete logarithms. The Elliptic
Curve Digital Signature Algorithm (ECDSA) [JMV01] is the elliptic curve variant of
DSA. The ElGamal [ElG85] and the Schnorr [Sch90] digital signature schemes are
also variants of DSA but are rarely used in practice. Anyway, we note that all results
presented in this article could be applied to any of these variants. Without redefining the
DSA-like schemes (see section 2 for details), we only recall that each user is associated
with a pair of private key/public key, such that the private key is the discrete logarithm
in a given group of the public key. The user private key and a randomly generated
number, called the ephemeral key, are required to compute the signature of a message.
The ephemeral key must remain secret and is to be renewed for any new message to be
signed.

The first proposal of using an oracle on DSA comes from Howgrave-Graham and
Smart in [HGS01] using the LLL lattice reduction algorithm ([LLL82]) to take ben-
efit from the knowledge of a small number of bits in many ephemeral keys. For in-
stance, they show experimentally that if only 8 bits out of 160 bits are known from each
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ephemeral keys for 30 signed messages, then the secret key is known in less than 10
seconds. However, these results were only heuristics, even though confirmed by exper-
imentation. Nguyen and Shparlinski then presented in [NS02] the first polynomial time
algorithm that provably recovers the secret DSA key if about log1/2(q) LSB (or MSB)
of each ephemeral key are known (q denoting the order of the chosen group, see sec-
tion 2) for a polynomially bounded number of corresponding signed messages. They
also show that the case of arbitrary consecutive bits requires much more known bits
(about twice as much). Finally, in addition of proving the heuristic attack of [HGS01],
Nguyen and Shparlinski ([NS02]) also improved the experimental results of [HGS01]
by showing that only 3 known bits of each ephemeral key for 100 signed messages
are enough to make the attack feasible. The previous attack is adapted to the case of
ECDSA [NS03] and other DSA-like signature schemes like the Nyberg-Rueppel vari-
ants of DSA [MNS01]. It is also necessary to mention another analysis that shows the
threats associated with the use of private keys generated from an imperfect source of
randomness. The attack of Bellare, Goldwasser and Micciancio [BGM97] shows that
DSA is totally insecure if private keys are produced by weak pseudo-random num-
ber generator such as the Knuth’s linear congruential generator. When private keys are
smaller than a certain bound, Poulakis proposed in [Pou09] an attack on (EC)DSA us-
ing the LLL algorithm and an algorithm to compute the integral points of a class of
conics.

Note that unlike the case of RSA, where the oracle gives a way to directly com-
pute the factors of the modulus, all these methods against the DSA-Like cryptosystems
bypass the problem of computing discrete logarithm, but rather take advantage of the
particular form of the modular equality defining the signature (see (1) in section 2).

At PKC 2009 [MR09], May and Ritzenhofen, in the context of factorization, highly
restricted the power of the oracle. They did not assume that the oracle explicitly outputs
bits but rather provides only implicit information. This unusual oracle applied against
the cryptosystem RSA was formalized as follows: given an RSA modulus N1 = p1q1 as
input, the oracle outputs a different RSA modulus N2 = p2q2 such that the factors of N2

shared a certain amount of bits with the factors of the modulus N1. The implicit nature
of the information given by the oracle is due to the fact that the value of the shared
bits remains unknown as long as the modulus N1 or N2 are not factored. Surprisingly,
May and Ritzenhofen give an efficient lattice-based algorithm that provably factors N1

and N2 in quadratic time provided that factors of the two moduli shared enough of
their least significant bits (LSB). They also showed that this algorithm extends to an
algorithm with more than one oracle query, which improves upon the required number
of shared LSB. This cryptanalysis with the help of an implicit oracle was next extended
to the case of shared MSB (and both LSB/MSB) in [FMR10, SM09] and the bound on
the required number of shared bits was also improved.

In the case of DSA, an attack using implicit information of a totally different kind
was already proposed by Leadbitter, Page and Smart in [LPS04] and made effective in
[Tak06a, Tak06b]. From a theoretical point of view, this attack can also be formalized
by queries to an oracle which returns a message signed with an ephemeral key of the
form k = y+ 2wy+ 22wx, i.e. such that the w first bits of k are equal to the w next bits.
Experiments show that the repetition of a 4-bits window in the ephemeral keys of 20
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Table 1. Summary of our results

Inner product Canonical Weighted Euclidean

Lattice spanned by the basis M (6) of section 4.1

linearly dependent rows vectors
of the matrix (8) obtained by re-
moving the second column of
M

the basis M (6) of sec-
tion 4.1

linearly dependent rows
vectors of the matrix (8)
obtained by removing the
second column of M

constraints on the
secret key a

a ≤ 2N−δ or exhaustive search
on the δ msb (section 4.2.1)

No constraint (a can be up to N
bits)

a≤ 2N−δ or exhaustive
search on the δ msb
(section 4.2.1)

No constraint (a can be
up to N bits)

Bounds on the
number of shared
bits δ function
of the number of
messages n

δ ≥ 2N+(n−1)
n+1 +

c−log2(
n+1

n )
2

(Theorem 1)
δ ≥ 2N+(n−2)

n +
c−log2(

n
n−1 )

2
(Theorem 2)

δ ≥ N+(n−1)
n +

c(n+1)
2n

(Theorem 3a)
δ ≥ N+(n−2)

n−1 + cn
2(n−1)

(Theorem 3b)

signatures is enough to recover the secret key. This attack is motivated by side-channel
analysis. According to the authors, recovering some relation amongst the bits of the
secret keys (called “second order leakage”) is much more probable than determining the
values of such bits because of implementation protections against side-channel analysis.
They also described many realistic scenarii where this type of leakage could occur.

Our contribution is to define an attack on DSA-like schemes using implicit informa-
tion, like in [LPS04], but with an oracle very similar to the one introduced by May and
Ritzenhofen ([MR09]). More precisely, we assume that on input of a signed message
(m1,s1) an oracle outputs different signed message (m2,s2) signed with the same se-
cret key and such that the ephemeral keys k1 and k2 (used to signed the messages m1

and m2 respectively) share a certain amount δ of bits. This oracle only gives implicit
information about the bits of the ephemeral keys because the value of the shared bits
remains unknown as long as the ephemeral keys stay unknown (or equivalently as long
as the secret key stays unknown). In other words, we only know that there are equalities
between δ bits of the unknown ephemeral keys used to sign the given messages. We
show that this implicit information should be extracted by constructing a lattice which
contains a very short vector such that its components yield the secret key. The attack
succeeds when this vector is found by the LLL lattice reduction algorithm ([LLL82]),
that is when it is small enough. This happens when the ephemeral keys share enough
bits δ . This method also works for an arbitrary number n of oracle’s queries, each new
piece of information decreasing the number of required shared bits.

As usual in lattice basis reduction problems, we have to use the Gaussian heuristic to
find a condition on the number of shared bits δ in function of the number of messages
n for this vector to be the shortest of the lattice. This condition can be improved by the
use of a weighted Euclidean inner product instead of the canonical inner product during
the reduction algorithm. A variant of this lattice is also proposed so that the complexity
of the attack becomes independent of the secret key size and is polynomial time in n
(assuming that the bound on δ is verified). In this case, the lattice is spanned by a set of
linearly dependent vectors and the condition on δ is slightly deteriorated. A summary
of our method and the proposed improvements can be found in table 1.

As an example of our results, the theorem 3 proves that under the Gaussian heuristic
assumption, only 4 LSBs shared on each ephemeral keys of 100 signed messages are
enough to make a never-failing attack and that with only 3 LSBs shared, the method
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needs about 200 signed messages. The result of experiments confirms these theoretical
values with a computation time less than 5s, and they even show that the number of
messages can be most of the time reduced to an amount comparable to the one which
is described in [NS02] despite of the weakness of the oracle. However, these experi-
ments also showed that the success rate of this attack is about 90% when only 1 LSB is
shared on each ephemeral key of about 400 signed messages. Interestingly enough, this
improves the experimental results of [NS02] where the best experiment corresponds to
3 LSB known (even though LSB are not even known in our contribution).

Throughout this paper, we use common results on euclidean lattice summarized in
Appendix A. Section 2 recall the (EC)DSA signature algorithm. Section 3 provides
a concrete scenario to justify the existence of this implicit information. In section 4,
we present our method by beginning with the case of shared MSB and LSB (subsec-
tion 4.1). Essential improvements are proposed in subsection 4.2. In subsection 4.3, we
present our method when they are many blocks of shared bits. Finally, we present the
result of our experiments in section 5.

2 DSA-Style Signature Scheme

The Digital Signature Algorithm was adopted in 1993 by the U.S. government’s Na-
tional Institute of Standards and Technology (NIST) to become the Digital Signature
Standard (DSS) [FIP09]. It is much more used than ElGamal [ElG85] and Schnorr
[Sch90] digital signature schemes which are variants of DSA. Thus, we focus on DSA
although our attack is transferable to others.

The (EC)DSA algorithm ([FIP09, JMV01]) is defined over a finite abelian group G
of prime order q. The group G is chosen as a subgroup of F× (resp. E(F)) for DSA
(resp. ECDSA) where F is a finite field (resp. E(F) the group of rational points of an
elliptic curve defined over F). For security reason, the size of q is chosen to be at least
160 bits. More precisely, the last revision of the standard ([FIP09, JMV01]) specifies
that the parameter q must verify 2N−1 < q < 2N where N ∈ {160,224,256}. The private
key is an integer a∈ {1, . . . ,q−1} and the public key is the group element A= ga where
g is a publicly known generator of G. Let the function f : G−→ Fq be defined by

f :

{
x ∈ G⊂ F×p &−→ x mod q for DSA
(x,y) ∈G⊂ E(Zp) &−→ x mod q for ECDSA

The signer chooses an hash function h mapping messages to G. To sign a message m,
he chooses a random number k ∈ {1, . . . ,q−1} called the ephemeral key and computes
(here we present the computation in the case of DSA only)

r = f (gk) and s = k−1(h(m)+ ar) mod q (1)

The signature on the message m is then the pair (r,s). The verification of the signature
is performed by checking

f (gs−1h(m) mod q As−1r mod q) = f (gs−1(h(m)+ar) mod q) = f (gk) = r
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3 Possible Application Scenario

As stated in [LPS04] in reference to side-channel analysis, ”the assumption that an at-
tacker may be able to determine a specific set of bits from the ephemeral secrets is less
probable than when the original attacks were first published. It is far more probable that
second order, seemingly innocuous information can still be recovered and used by the
attacker, even if a defense against the first order leakage is implemented”. Indeed, there
are always many situations where implicit information can be found despite the imple-
mentation of typically recommended countermeasures. In this paper, as in [LPS04], the
attacker is only assumed to be able to determine relations of equality between bits of the
ephemeral keys. In addition to the three scenarii given as examples in [LPS04] where
implicit information is collected by a power analysis or a timing attack (involving a
fixed table implementation of elliptic curve point multiplication, address-bit DPA and
cache analysis), we suggest other scenarii which are specifically relevant to our model.

Using invasive attacks, an attacker could lock some bits of the register or memory
containing the ephemeral key. This kind of attack largely depends on the implementa-
tion and requires a good knowledge of the target, which presupposes at least a partial
reverse engineering of the chip. Lasers are then used to cut some wires or to modify the
chip (see Skorobogatov thesis [Sko05]). More generally, a lot of fault attacks assume
that some bits of the memory are flipped to zero (as in [NNTW05]). But it seems more
general to assume that the attacked bits take an indeterminate value.

In addition to weak and wrong implementations (e.g. [GJQ97]), we could also think
to destructive applications with a malicious manipulation of random generators for in-
stance. This application could be possible on both embedded systems and software
implementation, for instance with physical disturbances, invasive attacks or with ma-
licious softwares. Moreover, the presence of a random number generator testing suite
([Bro11, RSN+10]) does not seem to be an effective countermeasure (see experimental
results in section 5.3).

4 Embedding into a Lattice Problem

In this section, we study the security of (EC)DSA given a set of messages signed with
the same secret key, and such that the secret ephemeral keys share a certain amount
of bits. We recall that the values of these common bits are unknown to us. Thus, the
information about the unknown ephemeral keys are implicitly given by the set of signed
messages. In other words, we only know that there are some relations amongst the bits
of the ephemeral keys used to sign the messages. To ease the exposition of this method,
the bit length of the modulus q is noted by N (i.e. we have 2N−1 < q < 2N).

We will show how the secret key can be revealed by lattice basis reduction provided
that there are enough messages or relations between the bits of the ephemeral keys.
These constraints are estimated by relating our method to the Gaussian heuristic (see
theorem 6 of Appendix A). Since all the complexities given in this paper depend on
the complexity of computing a shortest vector in a given lattice, we set the following
notation.
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Notation 1. The time complexity of computing a shortest vector of a d-dimensional
lattice L of Zn will be denoted by C (d,B), where B = logmaxi(‖bi‖). Notice that com-
puting a shortest vector of any lattice is a NP-hard problem ([Ajt98]) called the Shortest
Vector Problem (SVP).

For certain families of lattices (i.e. under certain conditions on lattices), the shortest
vector can be computed with the LLL Algorithm. In this case, we have that C (d,B) =
O(d5(d + B)B), i.e. polynomial time in d and B ([NS05], see Appendix A). In this
paper, we seek to always stay in this situation.

We first present the case when most significant bits (MSB) and/or less significant
bits (LSB) are shared and next the case when blocks of bits are shared.

4.1 Shared MSB and LSB

We first assume that we have n messages mi (i = 1, . . . ,n) with the associated signatures
(ri,si) such that all the corresponding ephemeral keys ki share a total of δ bits between
the MSB and LSB independently of i (see Figure 1). Thus, they are of the form

ki = k+ 2tk̃i + 2t′k′ for all i = 1, . . . ,n (2)

where

0≤ k < 2t , 0≤ k′ < 2N−t′ , δ = N− t ′+ t and 0≤ k̃i < 2N−δ

with k and k′ common for all the ki (i.e. independent of i).

ki= k k̃i k′

N−δ

0 t t ′ N

Fig. 1. Ephemeral keys

Note that all the values of ki, k, k̃i and k′ are unknown. In the n equations (1) defining
the signature ⎧⎪⎪⎪⎨⎪⎪⎪⎩

m1 + ar1− s1k1 ≡ 0 (mod q)
m2 + ar2− s2k2 ≡ 0 (mod q)

...
...

...
...

mn + arn− snkn ≡ 0 (mod q)

(3)

we substitute the ki by (2) and eliminate the common variables k and k′. Then we have⎧⎪⎪⎪⎨⎪⎪⎪⎩
(s−1

1 m1− s−1
2 m2) + a(s−1

1 r1− s−1
2 r2)− 2t(k̃1− k̃2) ≡ 0 (mod q)

(s−1
1 m1− s−1

3 m3) + a(s−1
1 r1− s−1

3 r3)− 2t(k̃1− k̃3) ≡ 0 (mod q)
...

...
...

...
(s−1

1 m1− s−1
n mn) + a(s−1

1 r1− s−1
n rn)− 2t(k̃1− k̃n) ≡ 0 (mod q)

(4)
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Let αi, βi, κi ∈ Z be such that⎧⎨⎩
αi := 2−t(s−1

1 m1− s−1
i mi) mod q

βi := 2−t(s−1
1 r1− s−1

i ri) mod q
κi := k̃1− k̃i

then (4) becomes ⎧⎪⎪⎪⎨⎪⎪⎪⎩
α2 + aβ2−κ2 ≡ 0 (mod q)
α3 + aβ3−κ3 ≡ 0 (mod q)

...
...

...
...

αn + aβn−κn ≡ 0 (mod q)

(5)

where a and κi are unknown, βi and αi are known. The set of solutions

L = {(x0,x1, . . . ,xn) ∈ Zn+1|x0αi + x1βi− xi ≡ 0 (mod q) for all i = 2, . . . ,n}

forms an (n+ 1)-dimensional lattice spanned by the row vectors of the following basis
matrix

M =

⎛⎜⎜⎜⎜⎜⎝
1 0 α2 . . . αn

0 1 β2 . . . βn

0 0 q . . . 0
...

...
...

. . .
...

0 0 0 . . . q

⎞⎟⎟⎟⎟⎟⎠ (6)

Note that v0 = (1,a,κ2,κ3, . . . ,κn) is an element of the lattice L. Indeed by (5), there
are λ2, . . . ,λn ∈ Z such that

(1,a,λ2, . . . ,λn) ·M = v0 (7)

If we were able to find this vector v0 in L, then we could recover the secret key a. Thus,
we would like to give some conditions so that the vector v0 be a short vector in L, and
therefore may be obtained by lattice basis reduction.

However, it is easy to see that the norm of v0 is lower bounded by the secret key a,
which can be an integer of roughly N bits. The second component of v0 is then much
bigger than the next ones which are (N−δ )-bits integers. Actually, v0 has no reason to
be a short vector of L while a is so high. Therefore we will first assume that the secret
key a is smaller than 2N−δ , before adapting the lattice to be able to find the secret keys
up to N-bit size.

This temporary assumption makes v0 short in the lattice L, but we are still unable
to prove that it is the shortest vector of L. Therefore, the Gaussian heuristic (see Ap-
pendix A), which is usually applied in this situation, gives us a way to estimate the
required number δ of shared bits in function of the number of available messages so
that v0 is likely to be the shortest vector of L.

Assumption 1. The Gaussian heuristic (theorem 6 of Appendix A) holds with the lattice

L. Thus, if v0 is shorter than the Gaussian heuristic λ1(L) ≈
√

d
2πe Vol(L)

1
d then it is a

shortest vector of L.
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Experiments of the section 5 confirm this assumption which seems to be true in practice
with the lattices used in our method.

Theorem 1. Let n messages mi (i = 1, . . . ,n) with the associated signatures (ri,si) such
that the ephemeral keys ki share a total of δ bits between the MSB and LSB. Under
assumption 1 and, under the assumption that the secret key a is smaller than 2N−δ , then
a can be computed in time C (n+ 1, 1

2 log2(n− 1)+N) as soon as

δ ≥ 2N +(n− 1)
n+ 1

+
1+ log2(πe)− log2(

n+1
n )

2

Proof. First of all, we find an upper-bound for the norm of v0. Under our assumptions,
each coefficient of v0 is an integer of about (N− δ ) bits (except the first one which is
equal to 1). Thus, we have the following inequality:

‖v0‖2 ≤
n

∑
i=1

22(N−δ ) = 22(N−δ )+log2 n

On the other hand, thanks to the upper-triangular shape of the matrix M, the volume of
L is easily computed as Vol(L) = q(n−1) > 2(N−1)(n−1). We now seek the condition on
δ and n under which the norm of v0 is smaller than the Gaussian heuristic:

22(N−δ )+log2(n) ≤ n+ 1
2πe

22(N−1) n−1
n+1

which is equivalent to

δ ≥ 2N +(n− 1)
n+ 1

+
1+ log2(πe)− log2(

n+1
n )

2
��

4.2 Proposal for Improvements

Until now, we made the assumption that a≤ 2N−δ to simplify the presentation. Actually,
this assumption is rarely verified by the secret key, so we have to adapt the previous
attack to be able to find the secret key up to N-bit long. We suggest three ways, which
may be concurrent to each other, to reach this goal.

4.2.1 Exhaustive Search
If δ is reasonably small then the method comes down to the previous one with an
exhaustive search on the δ -most significant bits of a. Indeed, we have a = ã+ 2N−δ a′

with ã < 2N−δ and a′ < 2δ . An exhaustive search is then made on a′ with the previous
lattice L in which we set αi = 2−t(s−1

1 m1− s−1
i mi)+ a′2−t(s−1

1 r1− s−1
i ri). The bound

given by the theorem 1 remains true with this method.
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4.2.2 Remove the Second Column
There is an other way to make the previous attack independent of the size of the se-
cret key, but this trick needs a slight modification of the LLL Reduction Algorithm
([Poh87]). Let the lattice L′ spanned by the row vectors of the following matrix

M′ =

⎛⎜⎜⎜⎜⎜⎝
1 α2 . . . αn

0 β2 . . . βn

0 q . . . 0
...

...
. . .

...
0 0 . . . q

⎞⎟⎟⎟⎟⎟⎠ , n > 2 (8)

The matrix M′ is the matrix M without the second column. As previously, we have that
v′0 = (1,κ2,κ3, . . . ,κn) is an element of the lattice L′. Indeed, there are λ2, . . . ,λn ∈ Z

such that
(1,a,λ2, . . . ,λn) ·M′ = v′0 (9)

However, the row vectors of this matrix M′ are not linearly independent. Thus, they
do not form a basis of the lattice L′ and the original LLL algorithm can not be applied
directly. In this case, we use the MLLL algorithm ([Poh87]) which is a variant of LLL
in which the input vectors can be linearly dependent, and has the same complexity as
the LLL algorithm.

Remark 1. Note that the secret key must be read in the transformation vector
(1,a,λ2, . . . ,λn) and not in the reduced basis. We could also have removed the first
column, but experiments show that the required number of messages is greater in this
case.

The lattice L′ used in this case is different from the lattice L of theorem 1. The bound
and the volume must be updated.

Lemma 1. The volume of the lattice L′ defined by the matrix M′ given as (8) is equal
to qn−2.

Proof. The sublattice S of L′ spanned by the row vectors of the following matrix⎛⎜⎜⎜⎝
1 α2 . . . αn

0 q . . . 0
...

...
. . .

...
0 0 . . . q

⎞⎟⎟⎟⎠
is a n-dimensional lattice. The dimension of the lattice L′ defined by the matrix M′ given
as (8) is equal to the dimension of its sublattice S, therefore S is a full-rank sublattice
of L′ (see [NV09]). We consider a lattice as a group and we have the classical relation
between volume and index: Vol(S) = Vol(L′)[L′ : S]. Now, it is easy to see that Vol(S) =
qn−1 and [L′ : S] = q, from which we get Vol(L′) = qn−2. ��

The following theorem is directly derived from this lemma.
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Theorem 2. Let n messages mi (i = 1, . . . ,n, n > 2) with associated signatures (ri,si)
such that the ephemeral keys ki share a total of δ bits between the MSB and LSB
(see Figure 1). Under the assumption 1, the secret key a can be computed in time
C (n, 1

2 log2(n− 1)+N) as soon as

δ ≥ 2N +(n− 2)
n

+
1+ log2(πe)− log2(

n
n−1 )

2

The required number of shared bits δ is slightly larger with the lattice L′ defined by the
matrix M′ given as (8) than the one given in the theorem 1. Experiments confirm this
fact but the success rate is now independent of the secret key size (see section 5).

Remark 2. As a referee pointed out to us, this result may be reworded by CVP instead
of SVP. This will be detailed in an extended version of this paper.

4.2.3 Weighted Euclidean Inner Product: In order to obtain the v0 vector (7) (or
similarly the v′0 vector (9)) within a LLL-reduced basis, we can also use a weighted
Euclidean inner product, to take advantage of the knowledge of the components size of
the targeted vector. For example, we can take the following inner product of two vectors

〈(x0, . . . ,xn),(y0, . . . ,yn)〉 :=
n

∑
i=0

xiyi22(N−�log2(v0,i)�)

during the LLL algorithm. In practice, this trick drastically reduces the required number
of shared bits δ (see section 5).

Remark 3. Weights can be used without needing to change the norm. Indeed, it is equiv-
alent to multiplying all columns of the lattice by the corresponding weight.

As previously, a bound can be obtained with Gaussian Heuristic.

Theorem 3. Let n messages mi (i = 1, . . . ,n, n > 2) with associated signatures (ri,si)
such that the ephemeral keys ki share a total of δ bits between the MSB and LSB. Under
the assumption 1, the secret key a can be computed

a. with the exhaustive search method in time δC (n+ 1, 1
2 log2(n)+ δN) as soon as

δ ≥ N +(n− 1)
n

+
(n+ 1)(1+ log2(πe))

2n
(10)

b. with the lattice L′ (8) in time C (n, 1
2 log2(n− 1)+ δN) as soon as

δ ≥ N +(n− 2)
n− 1

+
n(1+ log2(πe))

2(n− 1)
(11)

Proof. Let an integer k ≥ N− δ . We use a weighted Euclidean inner product such that
each component of the targeted vector v0 have the same size k (i.e. the i-th weight is
equal to k−�log2(v0,i)�).
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a. With the exhaustive search method, a close approximation of the vector v0 (7)
is computed. Its norm is given by ‖v0‖2 = ∑n+1

i=1 v2
0,i2

2(k−�log2(v0,i)�) ≤ ∑n+1
i=1 22k =

22k+log2(n+1) and the volume of the lattice (6) is

Vol(L) = 2k2k−(N−δ )(q2k−(N−δ ))(n−1) ≥ 2k(n+1)+n(δ−1)−N+1.

Using the Gaussian heuristic assumption, we have 22k+log2(n+1) ≤ n+1
2πe

(2k(n+1)+n(δ−1)−N+1)
2

n+1 which is equivalent to (10).
b. We apply the same method with the n-dimensional lattice L′ (8) and the seek vec-

tor v′0 (9). We obtain ‖v′0‖2 = ∑n
i=1 v′20,i2

2(k−�log2(v
′
0,i)�) ≤ ∑n

i=1 22k = 22k+log2(n) and

Vol(L′) = 2k(q2k−(N−δ ))(n−1)

q ≥ 2n(k−1)+δ (n−1)−N+2. The Gaussian heuristic assump-

tion gives 22k+log2(n) ≤ n
2πe (2

n(k−1)+δ (n−1)−N+2)
2
n which is equivalent to (11).

Note that both results are independent of the variable k. ��

4.3 Blocks of Shared Bits

The previous attack can be generalized to the case of ephemeral keys sharing several
blocks of bits. Thus, we now assume that we have n messages mi (i = 1, . . . ,n) with
associated signatures (ri,si) such that the ephemeral keys ki share a total of δ bits
dispatched between l blocks of bits. We denote by δi the number of bits of the i-th block
bi at position pi (see Figure 2). For convenience we simplify the notation as follows: let
t = (t1, . . . , tl) be a l-tuple of integers then we set 2t = (2t1 , . . . ,2tl ) Then the ephemeral
key ki is of the form

ki = 2p ·b+ 2t ·ki for all i = 1, . . . ,n (12)

where b = (b1, . . . ,bl) is the vector of shared bits blocks, with the position vector p =
(p1, . . . , pl) of the l blocks, and ki = (ki,0, . . . ,ki,l) the vector of no shared bits blocks
at positions t = (t0, . . . , tl). After stating that t0 := 0 and pl+1 := N, it follows that for
all i = 1, . . . ,n, and for all j = 1, . . . , l, we must have

t j = p j + δ j, δ = ∑
j

δ j, 0≤ b j < 2δ j and 0≤ ki, j < 2(p j+1−t j)

ki= ki,0

δ1

b1 ki,1

δ j

b j ki, j

δl

bl ki,l

0 p1 t1 p j t j pl tl N

Fig. 2. Ephemeral keys
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Note that the values of ki, ki, j and b j are all unknown. In the n signature equations (1),
we substitute the ki by (12) and we eliminate the common variable b, then we have⎧⎪⎪⎪⎨⎪⎪⎪⎩

(s−1
1 m1− s−1

2 m2) + a(s−1
1 r1− s−1

2 r2)−∑l
j=0 2t j (k1, j−k2, j) ≡ 0 (mod q)

(s−1
1 m1− s−1

3 m3) + a(s−1
1 r1− s−1

3 r3)−∑l
j=0 2t j (k1, j−k3, j) ≡ 0 (mod q)

...
...

...
...

(s−1
1 m1− s−1

n mn) + a(s−1
1 r1− s−1

n rn)−∑l
j=0 2t j (k1, j−kn, j) ≡ 0 (mod q)

(13)

Let αi, βi ∈ Z and κi, t ∈ Zl be such that⎧⎪⎪⎨⎪⎪⎩
αi := (s−1

1 m1− s−1
i mi) mod q

βi := (s−1
1 r1− s−1

i ri) mod q
κi := (k1,1, . . . ,k1,l)− (ki,1, . . . ,ki,l)
t := (t1, . . . , tl)

then (13) becomes ⎧⎪⎪⎪⎨⎪⎪⎪⎩
α2 + aβ2− 2t ·κ2 ≡ k1,0−k2,0 (mod q)
α3 + aβ3− 2t ·κ3 ≡ k1,0−k3,0 (mod q)

...
...

...
...

αn + aβn− 2t ·κn ≡ k1,0−kn,0 (mod q)

(14)

where a and κi are unknown, βi and αi are known. Embedding these equations into the
lattice L spanned by the row vectors of the following basis matrix

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
Il(n−1)+2

α2 . . . αn

β2 . . . βn

2t1I(n−1)
...

2tl I(n−1)

0 qI(n−1)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(15)

we obtain that

v0 = (1,a, k1,1−k2,1, . . . ,k1,1−kn,1︸ ︷︷ ︸ , . . .︸︷︷︸, k1,l −k2,l , . . . ,k1,l−kn,l︸ ︷︷ ︸, k1,0−k2,0, . . . ,k1,0−kn,0︸ ︷︷ ︸)
κi,1 κi, j κi,l αi +aβi−2t ′ ·κi mod q

(16)

is an element of the lattice L. If we were able to find this vector v0 in L, then we could
recover the secret key a.

Example 1. For instance, if we have only one block (i.e. l = 1) of δ shared bits in the
middle, then the n ephemeral keys are of the form

ki = ki,0 + 2p1b1 + 2t1ki,1 for all i = 1, . . . ,n
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where

δ = δ1, t1 = p1 + δ1, 0≤ ki,0 < 2p1 , 0≤ ki,1 < 2N−t1 and 0≤ b1 < 2δ1

and αi, βi, κi ∈ Z be such that⎧⎨⎩
αi := (s−1

1 m1− s−1
i mi) mod q

βi := (s−1
1 r1− s−1

i ri) mod q
κi := k1,1−ki,1

In this case, (14) becomes⎧⎪⎪⎪⎨⎪⎪⎪⎩
α2 + aβ2 + 2t1κ2 ≡ k1,0−k2,0 (mod q)
α3 + aβ3 + 2t1κ3 ≡ k1,0−k3,0 (mod q)

...
...

...
...

αn + aβn + 2t1κn ≡ k1,0−kn,0 (mod q)

and the lattice L is spanned by the row vectors of the following basis matrix

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0 α2 . . . αn

0 1 0 . . . 0 β2 . . . βn

0 0 1 . . . 0 2t1 . . . 0
...

...
...

. . .
...

...
. . .

...
0 0 0 . . . 1 0 . . . 2t1

0 0 0 . . . 0 q . . . 0
...

...
...

...
...

. . .
...

0 0 0 . . . 0 0 . . . q

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The targeted element of L is the vector

v0 = (1,a,κ2, . . . ,κn,k1,0−k2,0, . . . ,k1,0−kn,0) = (1,a,κ2, . . . ,κn,λ2, . . . ,λn) ·M
The proposed improvements of the section 4.2 can also be (directly) applied in the case
of shared bits blocks. Especially, a weighted Euclidean inner product gives rise to the
following estimations of the required number of shared bits in function of the number
of blocks and the number of available messages.

Theorem 4. Let n messages mi (i = 1, . . . ,n, n > 2) with associated signatures (ri,si)
such that the ephemeral keys ki share a total of δ bits dispatched between l blocks of
bits. Under the assumption 1, the secret key a can be computed

a. with the exhaustive search method in time δC ((l + 1)(n− 1)+ 2, 1
2 log2(n− 1)) as

soon as

δ ≥ N +(n− 1)
n

+(1+ log2(πe))
(l + 1)(n− 1)+ 2

2n
(17)

b. with the lattice L′ obtained by removing the second column (8) in time C ((l +
1)(n− 1)+ 1, 1

2 log2(n− 1)) as soon as

δ ≥ N +(n− 2)
n− 1

+(1+ log2(πe))
(l + 1)(n− 1)+ 1

2(n− 1)
(18)

The proof of this theorem is almost similar as the one developed in Section 4.2 and is
given in the Appendix B.
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5 Experimental Results

In order to check the validity and the quality of the bounds on δ , we implemented the
methods on the computational algebra system Magma V2.17-1 ([BCP97]). All the tests
have essentially validated the Gaussian Heuristic assumption (assumption 1) and the
fact that the first gap of the lattices (defined as λ2/λ1, see Annex A) is high enough so
that the shortest vector can be computed with the LLL algorithm. Hence they show the
effectiveness of our method. In the following, the length of q is fixed to N = 160.

5.1 Shared MSB and LSB

The figure 3 is the graph of the four bounds on δ given by the theorems 1, 2 and 3
in function of the number of messages. The table 2 gives more details by listing some
theoretical minimal integer values of the necessary number of LSB/MSB shared bits δ
for a given number of messages.

We conducted experiments of this attack when the ephemeral keys have their δ LSB
in common. For the same reason as the one explained in [NS02], the results for the case
of MSB or both MSB/LSB are not as good as in the LSB case, about one more bit being
required. As the secret key is 160 bits long, we used the independent key size method by
removing the corresponding column of the lattice (see section 4.2.2). Additionally, we
use a weighted Euclidean inner product during the LLL algorithm phase which gives
better results than the canonical inner product (more precisely, we use the inner product
given as an example in section 4.2.3). The experiments are then conducted under the
theorem 3b conditions. Note that we consider an attack to be successful when the secret
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Fig. 3. Theoretical bounds of Theorems 1, 2 and 3 with N = 160
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Table 2. Theoretical minimum for δ with N = 160

Bound on n, number of messages
δ of theorem 3 4 5 6 7 8 9 10 15 20 30 40 50 60 70 80 90 100 200 ∞

1 83 67 56 49 43 39 35 32 23 19 14 11 10 9 8 7 7 7 5 ≈3.05
2 109 83 67 56 49 43 39 35 25 19 14 11 10 9 8 8 7 7 5 ≈3.05
3a 57 44 36 30 27 24 21 20 14 12 9 8 7 6 6 6 5 5 4 ≈3.05
3b 84 57 44 36 30 27 24 21 15 12 9 8 7 6 6 6 5 5 4 ≈3.05

Table 3. Success rate of LSB attack of theorem 3b

δ n, Number of messages
40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 250 300 400 500 600

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 8 10 35 56 91 99 99
2 0 0 0 0 0 2 6 12 24 33 42 58 63 73 80 85 100 100 100 100 100 100
3 0 2 19 34 60 74 82 94 96 97 99 99 99 99 99 100 100 100 100 100 100 100
4 34 76 90 99 99 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
5 96 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Time (s) 0.35 0.58 0.78 0.94 1.2 1.4 1.7 1.9 2.1 2.4 2.6 2.9 3.2 3.5 3.8 4.1 4.2 6.3 8.5 15 27 44

key is found, that is when the targeted vector±v0 (9) is a vector of the reduced basis. For
each δ and each n, we generated 100 tests and store the success rate in the table 3. To
compare experimental values to the theoretical bound, the success rates corresponding
to the theoretical minimal value of δ for a given number of messages are written in red.

First of all, the results show that we have a 100% success rate when δ is the bound
(11) of theorem 3 and then we could say that they confirm that the assumptions we made
are justified. Moreover, we observe that we can often go a few bits beyond the theoretical
bound on δ . Then, the success rate gradually decreases to zero percent with δ .

Another interesting result is that the attack still works with only 1 or 2 shared bits
(δ = 1,2) when there are enough messages. This result is particularly surprising con-
sidering that the theoretical limit is 3 and that the success rate can be higher than 90%
(not to say 99% or 100% when n > 500).

Note also that the step of lattice reduction of this attack is very fast (always less than
a minute, or even less than a second up to n≈ 70).

5.2 Blocks of Shared Bits

Following the bound (18) (better than the bound (17)) of theorem 4, the table 4 gives
some theoretical minimal integer values of the necessary number of total shared bits δ
in function of the number of blocks and the number of messages. Under theses condi-
tions, we conducted a large number of experiments (100 tests for each δ and each n)
whose results are summarized in table 5. Once more, we wrote in red the success rates
corresponding to the theoretical minimal value of δ for a given number of messages.

Contrary to the case of shared LSB/MSB, we may have a success rate lower than
100% when δ was within the bound with the attack of blocks of shared bits (see Sec-
tion 4.3). The reason is that the assumption of the theorem 4 may fail because of the
occurrence of exceptionally short vectors. However, we observe that we can always go
a few bits beyond the theoretical bound on δ keeping a good success rate.
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We can also note that the computation time is longer than in the case LSB/MSB
because of the larger dimension of lattices.

Table 4. Theoretical minimum for δ with
theorem 4b

Number of n, number of messages
blocks l 3 4 5 6 7 8 9 10 15 20 30 40 50 ∞

1 86 59 46 38 32 29 26 23 17 14 11 10 9 6
2 88 61 48 40 34 31 28 26 19 16 13 12 11 8
3 90 63 50 42 37 33 30 28 21 18 15 14 13 10

10 105 78 64 56 51 47 44 42 36 32 30 28 27 24
20 125 98 85 77 71 67 65 62 56 53 50 49 48 44
30 145 119 105 97 92 88 85 83 76 73 71 69 68 65

Table 5. Success rate of theorem 4b with one
block

δ n, number of messages
13 14 15 16 17 18 19 20 30 40 50 60 70 80 90 100

4 0 0 0 0 0 0 0 0 0 0 6 13 19 28 26 49
5 0 0 0 0 0 0 0 0 0 19 32 49 67 78 82 77
6 0 0 0 0 0 0 0 0 13 49 78 89 90 94 100 99
7 0 0 0 0 0 0 0 1 63 89 96 99 97 99 97 96
8 0 0 0 0 2 1 5 20 93 99 99 100 99 98 98 98
9 0 0 0 1 12 21 49 59 99 100 99 99 100 99 100 99

10 0 1 1 21 60 82 95 94 100 100 100 100 99 99 100 100

Time (s) 0.08 0.10 0.13 0.16 0.20 0.23 0.28 0.3 0.8 1.4 2.1 3.0 4.1 5 6 6.8

5.3 Random Number Generator Tests

In the scenario with malicious PRNG, we verified that a defect is experimentally unde-
tectable by conventional tests. Indeed, a 8 GByte bit sequence from the AES OFB ran-
dom number generator in Dieharder ([Bro11]), manipulated to contain enough implicit
information, was used as input for the Dieharder test suite. More precisely, sequences
of some randomly selected bits are repeated in a predictable way. For instance, a se-
quence of 4 bits can be repeated 100 times following a predictable pattern in a random
sequence corresponding to 210 ephemeral keys. The pattern that describes the posi-
tions of corrupted nonces (i.e. ephemeral keys sharing some bits) can be, for example,
a function of the position of the first corrupted nonce. Therefore, in this case we need
an additional step containing an exhaustive search to find the first corrupted nonce (of
complexity of about 210 with this example). All tests of the two referenced statistical
test suites: Dieharder statistical test suite ([Bro11]) and the NIST statistical test suite
(STS) ([RSN+10]) have shown a random behavior at a high confidence level, our ma-
nipulations being then unnoticed when the number of shared bits matches the number
of corrupted nonces to have a 100% success rate (see Table 3). These experiments re-
mind that these tests are not a proof of randomness even though they are common tools
for initial validation. Finally, it has been shown that an exploitable bias is currently
undetectable by conventional statistical tests.

6 Further Developments

Throughout this work, we assumed that all ephemeral keys used in the attack shared a
same block of bits. In this scenario, by the pigeonhole principle, our attack needs, in the
worst case, 2δ + 1 samples before obtaining only two signatures that have ephemeral
keys with δ bits in common. However, from a practical perspective, we would like to use
all the signatures generated by a signer, which is not possible for the moment. Assum-
ing, as in [LPS04], that an attacker can determine, in practice, some relation amongst
the bits of the secret ephemeral keys rather than their specific values, we present below
how to solve this problem by slightly adapting the lattices of our method.
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In this context, our attack can be naturally extended to the more general case where
each ephemeral key ki (i = 1 . . .n) shares δ bits with at least one other key k j (i �= j)
and not necessarily with all of them. For instance, we look at shared MSB/LSB, with
the same notation as in section 4.1. For two fixed positions t and t ′, we can take the
partition P of the set of all ephemeral keys corresponding to the equivalence relation
Rt,t′ , defined such that related ephemeral keys share the first t MSB and the last t ′ LSB
(which represent a total of δ bits). In a given equivalence class [k j], if we have #[k j]≥ 2
then we can apply the method of Section 4.1. For each class [k j], we obtain a system of
#[k j]− 1 modular equations as (5) with

∀ki ∈ [k j] s.t. i �= j,

⎧⎨⎩
αi := 2−t(s−1

j m j− s−1
i mi) mod q

βi := 2−t(s−1
j r j− s−1

i ri) mod q
κi := k̃ j− k̃i

The set of all common solutions of the #P = #
(
{ki, i = 1..n}/Rt,t′

)
systems described

as above forms a lattice similar to (6) of dimension equal to n− #P.
In the same way, other shared bits in other positions (i.e. when t and t ′ are not fixed)

can be exploited by expanding the lattice with the corresponding columns. Also the
same improvement can be developped in the case of shared bits blocks in the middle.
All these further developments will be detailed in an extended version of this paper.
More generally, we could also imagine other forms of implicit information, i.e. an other
relationship than just the equality between bits. For instance, an interesting open ques-
tion is whether we can exploit inequalities or simple relationships between unknown
bits.
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An integer lattice L is a discrete additive subgroup of Zn. It can be generated from
a basis of d independent vectors (b1, . . . ,bd) of Zn by linear combinations with integer
coefficients. A lattice may be described by many different bases. All the bases are then
related by an unimodular transformation. The integer d is called the dimension of L. If
d = n then L is said to be full-rank.

Definition 1. The Gram determinant of b1, . . . ,bd ∈Rn denoted by Δ(b1, . . . ,bd), is the
determinant of the d× d Gram matrix (〈bi,b j〉)1≤i, j≤d.

Definition 2. The volume of L is defined by Vol(L) = Δ(b1, . . . ,bd)
1/2. In other words,

it is the d-dimensional volume of the parallelepiped spanned by the vectors of a basis.

The dimension and the volume are independent of the choice of this basis.
The volume of a lattice is easy to compute with Definition 2 if at least one explicit

basis is known. But, in this article, we also need a way to compute the volume of lattices
spanned by a set of linearly dependent vectors. In this case, the following results on
sublattices is very useful.

Definition 3. A sublattice of L is a lattice M included in L. Clearly, the sublattices of L
are the subgroups of L.

Lemma 2 ([NV09]). A sublattice M of L is full-rank if and only if the group index
[L : M] is finite, in which case we have

Vol(M) = Vol(L)× [L : M].

We also need the following results about lattice basis reduction. More particularly, we
require a way to provide a precise estimation of the expected length of the shortest
vector, which is called the Gaussian heuristic, and a way to get an approximation of this
small vector in polynomial time, which is done by using the LLL algorithm ([LLL82]).

Definition 4. For 1≤ r ≤ d, let λr(L) be the least real number such that there exists at
least r linearly independent vectors of L of euclidean norm smaller or equal to λr(L).
We call λ1(L), . . . ,λd(L) the d minima of L and we call g(L) = λ2(L)/λ1(L) the gap of
L.

Theorem 5 (LLL [LLL82]). Let L be a d-dimensional lattice of Zn given by a basis
(b1, . . . ,bd). Then LLL algorithm computes a reduced basis (v1, . . . ,vd) that approxi-
mates the shortest vector of L within an exponential factor:

‖v1‖ ≤ 2
d−1

4 Vol(L)
1
d

The running time of Nguyen and Stehlé’s version is O(d5(d + logB) logB) where B =
maxi(‖bi‖), see [NS05].

The time complexity of computing a shortest vector of L (which is a NP-Hard prob-
lem [Ajt98]) is denoted here by C (d,B).
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Theorem 6 (Gaussian heuristic [Ajt06]). Let L be a random d-dimensional lattice of
Zn. Then, with overwhelming probability, all the minima of L are asymptotically close
to: √

d
2πe

Vol(L)
1
d

Thus, it is common practice to assume that if a vector v ∈ L is shorter than the Gaussian

heuristic λ1(L) ≈
√

d
2πe Vol(L)

1
d applied to the d-dimensional lattice L then it is the

shortest vector of L. Moreover, when the gap of L is high enough, this vector can be
found in an LLL-reduced basis of L. For lattices proposed in this article, this essential
and common assumption is confirmed by experimental results of section 5 and seems
to be true in practice.

B Proof of Theorem 4

Proof. Let an integer k ≥ N− δ . We use a weighted Euclidean inner product such that
each component of the seek vector v0 have the same size k (i.e. the i-th weight is equal
to k−�log2(v0,i)�).

a. With the exhaustive search method: first note that the dimension of the lattice L
defined by (15) is

dim(L) = (l + 1)(n− 1)+ 2

A close approximation of the norm of vector v0 (16) is then computed:

‖v0‖2 =
dim(L)

∑
i=1

v2
0,i2

2(k−�log2(v0,i)�) ≤
dim(L)

∑
i=1

22k = 22k((l + 1)(n− 1)+ 2)

Next, the volume of the lattice (15) is

Vol(L) = 2k2k−(N−δ )(q2k−p1)(n−1)
l

∏
j=1

2(k−(p j+1−t j))(n−1)

but, we have

(k −p1)(n− 1)+∑l
j=1(k− (p j+1− t j))(n− 1)

= (n− 1)(k− p1+∑l
j=1(k− p j+1 + p j + δ j))

= (n− 1)(k− p1+ lk−∑l
j=1 p j+1 +∑l

j=1 p j +∑l
j=1 δ j)

= (n− 1)(k(l+ 1)− pl+1+ δ )
= (n− 1)(k(l+ 1)−N+ δ )

then

Vol(L) = qn−12k2k−(N−δ )2(n−1)(k(l+1)−N+δ ) ≥ 2k((l+1)(n−1)+2)+n(δ−1)−N+1

Using the Gaussian heuristic assumption, we have

22k+log2(dim(L)) ≤ dim(L)
2πe

(2k dim(L)+n(δ−1)−N+1)
2

dim(L)
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which is equivalent to

δ ≥ N +(n− 1)
n

+(1+ log2(πe))
dim(L)

2n

b. Same computation with the lattice L′ obtained by removing the second column of
(15). The dimension of L′ is equal to (l+1)(n−1)+1. Then a close approximation
of the norm of vector v′0 is

‖v′0‖2 ≤ 22k((l + 1)(n− 1)+ 1)

Next, the volume of L′ is

Vol(L′)=2kqn−2(2k−p1)(n−1)
l

∏
j=1

2(k−(p j+1−t j))(n−1)≥ 2k((l+1)(n−1)+1)+(n−1)δ−N−n+2

Using the Gaussian heuristic assumption, we have

22k dim(L′)≤ dim(L′)
2πe

(2k dim(L′)+(n−1)δ−N−n+2)
2

dim(L′)

which is equivalent to

δ ≥ N +(n− 2)
n− 1

+(1+ log2(πe))
dim(L′)
2(n− 1)

��
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Abstract. In this paper, we present a new methodology to adapt any
kind of lattice reduction algorithms to deal with the modular knapsack
problem. In general, the modular knapsack problem can be solved using
a lattice reduction algorithm, when its density is low. The complexity of
lattice reduction algorithms to solve those problems is upper-bounded
in the function of the lattice dimension and the maximum norm of the
input basis. In the case of a low density modular knapsack-type basis,
the weight of maximum norm is mainly from its first column. Therefore,
by distributing the weight into multiple columns, we are able to reduce
the maximum norm of the input basis. Consequently, the upper bound
of the time complexity is reduced.

To show the advantage of our methodology, we apply our idea over
the floating-point LLL (L2) algorithm. We bring the complexity from
O(d3+εβ2 + d4+εβ) to O(d2+εβ2 + d4+εβ) for ε < 1 for the low den-
sity knapsack problem, assuming a uniform distribution, where d is the
dimension of the lattice, β is the bit length of the maximum norm of
knapsack-type basis.

We also provide some techniques when dealing with a principal ideal
lattice basis, which can be seen as a special case of a low density modular
knapsack-type basis.

Keywords: Lattice Theory, Lattice Reduction, Knapsack Problem, LLL,
Recursive Reduction, Ideal Lattice.

1 Introduction

To find the shortest non-zero vector within an arbitrary lattice is an NP-hard
problem [1]. Moreover, till now there is no polynomial algorithm that finds a
vector in the lattice that is polynomially close to the shortest non-zero vector.
However, there exist several algorithms, for example, LLL [14] and L2 [19], run-
ning in polynomial time in d and β, where d is the dimension of the lattice, and β
is the bit length of the maximum norm of input basis, that find vectors with ex-
ponential approximation (in d) to the shortest non-zero vector. Indeed, in some
lattice based cryptography/cryptanalysis, it may not be necessary to recover the
exact shortest non-zero vector, nor a polynomially close one. Finding one with
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exponential distance to the shortest one is already useful, for instance, to solve
a low density knapsack problem or a low density modular knapsack problem.

Definition 1 (Knapsack Problem). Let {X1, X2, . . . , Xd} be a set of positive

integers. Let c =
∑d

1 siXi, where si ∈ {0, 1}. A knapsack problem is given {Xi}
and c, find each si.

The density of a knapsack, denoted by ρ, is d/β, where β is the maximum bit
length of Xi-s.

Definition 2 (Modular Knapsack Problem). Let {X0, X1, . . . , Xd} be a set

of positive integers. Let c =
∑d

1 siXi mod X0, where si ∈ {0, 1}. A modular
knapsack problem is given {Xi} and c, find each si.

The knapsack problem is also known as the subset sum problem [12]. When∑
si  d, it becomes a sparse subset sum problem (SSSP). The decisional

version of the knapsack problem is NP-complete [9]. However, if its density is
too low, there is an efficient reduction to the problem of finding the shortest
vector from a lattice (refer to [13,21,3]).

In this paper, we deal with a (modular) knapsack problem assuming a uniform
distribution, i.e., Xi-s are uniformly randomly distributed.

We refer to BK as the knapsack-type basis, and BM as the modular knapsack-
type basis. In the rest of the paper, for simplicity, we focus on knapsack-type
basis, although the adoption over a modular knapsack-type basis is straightfor-
ward.

BK =

⎛⎜⎜⎜⎜⎜⎝
X1 1 0 . . . 0
X2 0 1 . . . 0
X3 0 0 . . . 0
...

...
...
. . .

...
Xd 0 0 . . . 1

⎞⎟⎟⎟⎟⎟⎠ , BM =

⎛⎜⎜⎜⎜⎜⎝
X0 0 0 . . . 0
X1 1 0 . . . 0
X2 0 1 . . . 0
...

...
...
. . .

...
Xd 0 0 . . . 1

⎞⎟⎟⎟⎟⎟⎠ .

We also consider a principal ideal lattice basis. A principal ideal lattice is an
ideal lattice that can be represented by two integers. This type of lattice enables
important applications, for instance, constructing fully homomorphic encryption
schemes with smaller key size (see [5,26] for an example of this optimization).

A basis of a principal ideal lattice (see Section 5) maintains a similar form of
modular knapsack basis, with Xi = −αi mod X0 for i ≥ 1, where α is the root
for the principal ideal. The security of the corresponding cryptosystem is based
on the complexity of reducing this basis.

In general, to solve any of the above problems using lattice, one always start
by performing an LLL reduction on a lattice L(BK) (L(BM ), respectively). Then
depending on the type of problem and the result the LLL algorithm produces,
one may perform stronger lattice reduction (BKZ [24,7,2] for example) and/or
use enumeration techniques such as Kannan SVP solver [8].

To date, the complexity of best LLL reduction algorithms for the above three
type of basis is upper bounded by O(d3+εβ2+d4+εβ) [19], although heuristically,
one is able to obtain O(d2+εβ2) in practice when ρ is significantly smaller than
1 [20].
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Our Contribution: We propose a new methodology to reduce low density modu-
lar knapsack-type basis using LLL-type algorithms. Instead of reducing the whole
knapsack-type basis directly, we pre-process its sub-lattices, and therefore, the
weight of Xi-s is equally distributed into several columns and the reduction com-
plexity is thereafter reduced. Although the idea is somewhat straightforward, the
improvement is very significant.

Table 1. Comparison of time complexity

Algorithms Time Complexity

LLL[14] O(d5+εβ2+ε)

LLL for knapsack O(d4+εβ2+ε)

L2[19] O(d4+εβ2 + d5+εβ)

L2 for knapsack[19] O(d3+εβ2 + d4+εβ)

L̃1[22] O(dω+1+εβ1+ε + d5+εβ)

Our rec-L2 O(d2+εβ2 + d4+εβ)

Our rec-L̃1 O(dωβ1+ε + d4+εβ)

Table 1 shows a time complexity comparison between our algorithms and the
existing algorithms. However, we note that the complexities of all the existing
algorithms are in worst-case, or in another words, for any type of basis, the algo-
rithms will terminate in the corresponding time. In contrast, in our algorithm,
we assume a uniform distribution, and therefore, the complexity given for our
recursive reduction algorithms is the upper bound following this assumption.
Nevertheless, we note that such an assumption is quite natural in practice.

Our result is also applicable to a principal ideal lattice basis. In addition,
we provide a technique that further reduces the time complexity. Note that our
technique does not affect the asymptotic complexity as displayed in Table 1.

Paper Organization: In the next section, we review some related area to this
research. In Section 3, we propose our methodology to deal with low density
knapsack-type basis, introduce our recursive reduction algorithm, and analyze
its complexity. Then, we apply our method to L2 and compare its complexity
with non-modified L2 in Section 4. In Section 5, we analyze the special case of
the principal ideal lattice basis. Finally, the last section concludes this paper.

2 Background

2.1 Lattice Basics

In this subsection, we review some concepts of the lattice theory that will be
used throughout this paper. The lattice theory, also known as the geometry of
numbers, was introduced by Minkowski in 1896 [17]. We refer readers to [15,16]
for a more complex account.
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Definition 3 (Lattice). A lattice L is a discrete sub-group of Rn, or equiv-
alently the set of all the integral combinations of d ≤ n linearly independent
vectors over R.

L = Zb1 + Zb2 + · · ·+ Zbd, bi ∈ Rn

B = (b1, . . . , bd) is called a basis of L and d is the dimension of L, denoted as
dim(L). L is a full rank lattice if d equals to n.

For a given lattice L, there exists an infinite number of basis. However, its
determinant (see Definition 4) is unique.

Definition 4 (Determinant). Let L be a lattice. Its determinant, denoted as
det(L), is a real value, such that for any basis B of L, det(L) =

√
det(B · BT ),

where BT is the transpose of B.

Definition 5 (Successive Minima). Let L be an integer lattice of dimension
d. Let i be a positive integer. The i-th successive minima with respect to L,
denoted by λi, is the smallest real number, such that there exist i non-zero linear
independent vectors v1,v2, . . . ,vi ∈ L with

‖v1‖, ‖v2‖, . . . , ‖vi‖ ≤ λi.

The i-th minima of a random lattice (as defined in Theorem 1) is estimated by:

λi(L) ∼
√

d

2πe
det(L) 1

d . (1)

Definition 6 (Hermite Factor). Let B = (b1, . . . , bd) a basis of L. The Her-

mite factor with respect to B, denoted by γ(B), is defined as ‖b1‖
det(L)

1
d
.

Note that Hermite factor indicates the quality of a reduced basis.
Additionally, following the result of [6]:

Theorem 1 (Random Lattice). Let B be a modular knapsack-type basis con-
structing from a modular knapsack problem given by {Xi}. L(B) is a random
lattice, if {Xi} are uniformly distributed.

2.2 Lattice Reduction Algorithms

In 1982, Lenstra, Lenstra and Lovasz [14] proposed an algorithm, known as
LLL, that produces an LLL-reduced basis for a given basis. For a lattice L with
dimension d, and a basis B, where the norm of all spanning vectors in B is
≤ 2β, the worst-case time complexity is polynomial O(d5+εβ2+ε). Moreover, it
is observed in [20] that in practice, LLL seems to be much more efficient in terms
of average time complexity.

In 2005, Nguyen and Stehlé [19] proposed an improvement of LLL, which is
the first variant whose worst-case time complexity is quadratic with respect to β.
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This algorithm is therefore named L2. This algorithm makes use of floating-point
arithmetics, hence, the library that implements L2 is sometimes referred to as
fplll [23]. It terminates with a worst-case time complexity of O(d4+εβ2 + d5+εβ)
for any basis. For a knapsack-type basis, it is proved that L2 terminates in
O(d3+εβ2+ d4+εβ), since there are O(dβ) loop iterations for these bases instead
ofO(d2β) for random bases (see Remark 3, [19]). Moreover, some heuristic results
show that when dealing with this kind of bases, and when d, β grow to infinity,
one obtains Θ(d3β2) when β = Ω(d2), and Θ(d2β2) when β is significantly larger
than d (see Heuristic 3, [20]).

Recently, in 2011, Novocin, Stehlé and Villard [22] proposed a new improved
LLL-type algorithm that is quasi-linear in β. This led to the name L̃1. It is
guaranteed to terminate in time O(d5+εβ + dω+1+εβ1+ε) for any basis, where ω
is a valid exponent from matrix multiplications. To bound ω, we have 2 < ω ≤ 3.
A typical setting in [22] is ω = 2.3.

In [27], van Hoeij and Novocin proposed a gradual sub-lattice reductions algo-
rithm based on LLL that deals with knapsack-type basis. Unlike other LLL-type
reduction algorithms, it only produces a basis of a sub-lattice. This algorithm
uses a worst-case O(d7 + d3β2) time complexity.

For more improvements on LLL with respect to d, we refer readers to
[18,25,10,11].

With regard to the quality of a reduced basis for an arbitrary lattice, the
following theorem provides an upper bound.

Theorem 2. For a lattice L, if (b1, . . . , bn) form an LLL-reduced basis of L,
then,

∀i, ‖bi‖ ≤ 2
d−1
2 max(λi(L)). (2)

Therefore, assuming a uniform distribution, we have the following.

1. If a modular knapsack problem follows a uniform distribution, then its cor-
responding basis forms a random lattice.

2. If L is a random lattice, then λi(L) is with respect to Equation 1.

3. From Equation 1 and 2, we have ‖bi‖ ≤ 2
d−1
2

√
d

2πe det(L)
1
d for a random

lattice.

Hence, for a modular knapsack-type basis, if B = (b1, . . . , bd) forms its LLL-
reduced basis, then

‖bi‖ < 2d det(L) 1
d , 1 ≤ i ≤ d.

In terms of the quality of ‖b1‖, the work in [4] shows that on average cases,
LLL-type reduction algorithms is able to find a short vector with a Hermite
factor 1.0219d, while on worst cases, 1.0754d, respectively. Further, heuristically,
it is impossible to find vectors with Hermite factor < 1.01d using LLL-type
algorithms [4]. By contrast, a recent work of BKZ 2.0 [2] finds a vector with a
Hermite factor as small as 1.0099d.

It has been shown that other lattice reduction algorithms, for instance, BKZ
[24,7], and BKZ 2.0 [2], produce a basis with better quality. However, in general,
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they are too expensive to use. We also note those methods require to perform
at least one LLL reduction.

As for low density knapsack-type basis, the Hermite factor of the basis is
large. This implies that, in general, the output basis of most reduction algorithms
contains the demanded short vector. In this case, the time complexity is more
important, compared with the quality of the reduced basis/vectors. For this
reason, in this paper, we focus only on LLL-type reduction algorithms.

3 Our Reduction Methodology

3.1 A Methodology for Lattice Reduction

In this subsection, we do not propose an algorithm for lattice reduction but rather
a methodology applicable to all lattice reduction algorithms for the knapsack
problem with uniform distribution.

Let A be an LLL-type reduction algorithm that returns an LLL-reduced ba-
sis Bred of a lattice L of dimension d, where Bred = (b1, . . . , bd), 0 < ‖bi‖ <

cd0 det(L)
1
d for certain constant c0. The running time will be c1d

a1βb1 +c2d
a2βb2 ,

where a1, b1, a2 and b2 are all parameters, c1 and c2 are two constants. Without
losing generality, assuming a1 ≥ a2, b1 ≤ b2 (if not, then one term will over-
whelm the other, and hence, making the other term negligible). We note that
this is a formalization of all LLL-type reduction algorithms.

For a knapsack-type basis B of L, where most of the weight of β are from the
first column of the basis matrix B = (b1, b2, . . . , bd), it holds that 2

β ∼ det(L).
Moreover, for any sub-lattice Ls of L that is spanned by a subset of row vectors
{b1, b2, . . . , bd}, it is easy to prove that det(Ls) ∼ 2β . In addition, since we
assume a uniform distribution, the sub-lattice spanned by the subset of vectors
can be seen as a random lattice. Note that the bases of those sub-lattice are
knapsack-type basis, so if one needs to ensure the randomness, one is required
to add a new vector 〈X0, 0, . . . , 0〉 to the basis and convert it to a modular one.
One can verify that this modification will not change the asymptotic complexity.
Nevertheless, in practice, it is natural to omit this procedure.

We firstly pre-process the basis, so that the weight is as equally distributed
into all columns as possible, and therefore, the maximum norm of the new basis
is reduced. Suppose we cut the basis into d/k blocks and each block contains k
vectors. Then one applies A on each block. Since we know that the determinant
of each block is ∼ 2β, this pre-processing gives us a basis with smaller maximum
norm ∼ ck02

β/k. Further, since the pre-processed basis and the initial basis span
the same lattice, the pre-processing will not affect the quality of reduced basis
that a reduction algorithm returns.

Below, we show an example of how this methodology works with dimension 4
knapsack-type basis, where we cut L into two sub-lattices and pre-process them

independently. As a result, Xi ∼ 2β , while xi,j � c202
β
2 for a classic LLL-type

reduction algorithm.
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Bbefore =

⎛⎜⎜⎝
X1 1 0 0 0
X2 0 1 0 0
X3 0 0 1 0
X4 0 0 0 1

⎞⎟⎟⎠ =⇒ Bafter =

⎛⎜⎜⎝
x1,1 x1,2 x1,3 0 0
x2,1 x2,2 x2,3 0 0
x3,1 0 0 x3,4 x3,5

x4,1 0 0 x4,4 x4,5

⎞⎟⎟⎠
Now we examine the complexity. The total time complexity of this pre-processing
is c1dk

a1−1βb1+c2dk
a2−1βb2 . The complexity of the final reduction now becomes

c1d
a1(k log2(c0) + β/k)b1 + c2d

a2(k log2(c0) + β/k)b2 . Therefore, as long as

c1d
a1(k log2(c0) + β/k)b1 + c2d

a2(k log2(c0) + β/k)b2 (3)

+c1dk
a1−1βb1 + c2dk

a2−1βb2 < c1d
a1βb1 + c2d

a2βb2 ,

conducting the pre-processing will reduce the complexity of whole reduction.
In the case where k log2(c0) is negligible compared with β/k, we obtain:

c1d
a1(β/k)b1 + c2d

a2(β/k)b2 + c1dk
a1−1βb1 + c2dk

a2−1βb2

< c1d
a1βb1 + c2d

a2βb2 .

Therefore,

c1

(
da1 − da1

kb1
− dka1−1

)
βb1+c2

(
da2 − da2

kb2
− dka2−1

)
βb2 > 0.

Taking L2 as an example, where a1 = 4, b1 = 2, a2 = 5 and b2 = 1, let k = d/2,
we obtain c1(

7
8d

4 − 4d2)β2 + c2(
15
16d

5 − 2d4)β from the left hand side, which is
positive for dimension d > 2. This indicates that, in theory, when dealing with
a knapsack-type basis, one can always achieve a better complexity by cutting
the basis into two halves and pre-process them independently. This leads to the
recursive reduction in the next section.

3.2 Recursive Reduction with LLL-Type Algorithms

The main idea is to apply our methodology to an input basis recursively, until
one arrives to sub-lattice basis with dimension 2. In doing so, we achieve a
upper bounded complexity of O(da1−b1βb1 + da2−b2βb2). For simplicity, we deal
with lattice whose dimension equals to a power of 2, although same principle is
applicable to lattices with arbitrary dimensions.

Algorithm. We now describe our recursive reduction algorithm with LLL-type
reduction algorithms. Let LLL(·) an LLL reduction algorithm that for any lattice
basisB, it returns a reduced basisBr. Algorithm 1 describes our algorithm, where
B is a knapsack-type basis of a d-dimensional lattice, and d is a power of 2.

Since we have proven that, for any dimension of knapsack-type basis, it is
always better to reduce its sub-lattice in advance as long as Equation 3 holds,
it is straightforward to draw the following conclusion: the best complexity to
reduce a knapsack-type basis with LLL-type reduction algorithms occurs when
one cuts the basis recursively until one arrives with dimension 2 sub-lattices.
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Algorithm 1. Recursive Reduction with LLL algorithm

Input: B, d
Output: Br

number of rounds ← log2 d
Bb ← B
for i ← 1 → number of rounds do

dim of sublattice ← 2i

number of blocks ← d/dim of sublattice
Br ← EmptyMatrix()
for j ← 1 → number of blocks do

Bt ← SubMatrix(Bb, (j−1)∗dim of sublattice+1, 1, j ∗dim of sublattice, d)

Bt ← LLL(Bt)
Br ← V erticalJoin(Br, Bt)

end for
Bb ← Br

end for

In Algorithm 1, EmptyMatrix(·) is to generate a 0 by 0 matrix; SubMatrix
(B, a, b, c, d) is to extract a matrix from B, starting from a-th row and b-th
column, finishing at c-th row and d-th column; while V erticalJoin(A,B) is to
adjoin two matrix with same number of columns vertically.

Complexity. In the following, we prove that the complexity of our algorithm
is O(da1−b1βb1 + da2−b2βb2), assuming ρ < 1.

For the i-th round, to reduce a single block takes c12
ia1( β

2i−1 )
b1+c22

ia2( β
2i−1 )

b2 ,

while there exist d
2i such blocks. Hence, the total complexity is as follows:

log2 d∑
i=1

(
d

2i

)
(c12

ia1(β/2i−1)b1 + c22
ia2(β/2i−1)b2)

= d ·
log2 d∑
i=1

(c12
i(a1−b1−1)+b1βb1 + c22

i(a2−b2−1)+b2βb2)

= c12
b1dβb1

⎛⎝log2 d∑
i=1

2(a1−b1−1)i

⎞⎠+ c22
b2dβb2

⎛⎝log2 d∑
i=1

2(a2−b2−1)i

⎞⎠
< c12

b1dβb1
(
2(log2 d+1)(a1−b1−1)

)
+ c22

b2dβb2
(
2(log2 d+1)(a2−b2−1)

)
< c12

b1dβb1(2d)a1−b1−1 + c22
b2dβb2(2d)a2−b2−1

< c12
a1−1da1−b1βb1 + c22

a2−1da2−b2βb2 .

As a result, we obtain a new time complexity O(da1−b1βb1 + da2−b2βb2).
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4 Applying Recursive Reduction to L2

We adapt the classic L2 as an example. The L2 algorithm uses a worst-case com-
plexity of c1d

4β2 + c2d
5β for arbitrary basis. Therefore, applying our recursive

methodology, one obtains

log2 d∑
i=1

(
d

2i

)(
c12

4i

(
β

2i−1

)2

+ c22
5i

(
β

2i−1

))

=

log2 d∑
i=1

(4c1d2
iβ2 + 2c2d2

3iβ)

= 4c1dβ
2

⎛⎝log2 d∑
i=1

2i

⎞⎠+ 2c2dβ

⎛⎝log2 d∑
i=1

23i

⎞⎠
< 4c1dβ

2(2d) + 2c2dβ1.15d
3

< 8c1d
2β2 + 2.3c2d

4β.

Now we compare our complexity with the original L2 algorithm. As mentioned
earlier, when applying to a knapsack-type basis, the provable worst-case com-
plexity of L2 becomes c1d

3β2+c2d
4β rather than c1d

4β2+c2d
5β as for a random

basis. However, it is worth pointing out that in practice, one can achieve a much
better result than a worst case, since the weight of most Xi is equally distributed
into all the columns. Heuristically, one can expect Θ(c1d

2β2) when d, β go to
infinity and β # d.

Input a knapsack-type basis, the L2 algorithm (and almost all other LLL-type
reduction algorithms) tries to reduce the first k rows, then the k + 1 row, k + 2
row, etc. For a given k + 1 step, the current basis has the following shape:

Bknap−L2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1,1 x1,2 . . . x1,k+1 0 0 . . . 0
x2,1 x2,2 . . . x2,k+1 0 0 . . . 0
...

... · · ·
...

...
... · · ·

...
xk,1 xk,2 . . . xk,k+1 0 0 . . . 0
Xk+1 0 . . . 0 1 0 . . . 0
Xk+2 0 . . . 0 0 1 . . . 0

...
... · · ·

...
...
... · · ·

...
Xd 0 . . . 0 0 0 . . . 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
L2 will reduce the first k+1 rows during this step. Despite that most of the entries

are with small elements (‖xi,j‖ ∼ O(2
β
k )), the worse-case complexity of current

step still depends on the last row of current step, i.e., 〈Xk+1, 0, . . . , 0, 1, 0, . . . , 0〉.
For the recursive reduction, on the final step, the input basis is in the form

of:
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Brec−L2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1,1 x1,2 . . . x1, d2+1 0 0 . . . 0

x2,1 x2,2 . . . x2, d2+1 0 0 . . . 0
...

... · · ·
...

...
... · · ·

...
x d

2 ,1
xk,2 . . . x d

2 ,
d
2+1 0 0 . . . 0

x d
2+1,1 0 . . . 0 x d

2+1, d2+2 x d
2+1, d2+3 . . . x d

2+1,d+1

x d
2+2,1 0 . . . 0 x d

2+2, d2+2 x d
2+2, d2+3 . . . x d

2+2,d+1

...
... · · ·

...
...

... · · ·
...

xd,1 0 . . . 0 xd, d2+2 xd, d2+3 . . . xd,d+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Note that the weight of Xi is equally distributed into d

2 + 1 columns. Hence,
the bit length of maximum norm of basis is reduced from β to approximately
d log2 c0 + 2β/d. Therefore, we achieve a better time complexity. In fact, the
provable new complexity is of the same level of the heuristic results observed in
practice, when β # d.

5 Special Case: Principal Ideal Lattice Basis

In this section, we present a technique when dealing with a principal ideal lattice
basis. Due to the special form of a principal ideal lattice, we are able to reduce the
number of reductions in each round to 1, with a cost of O(d) additional vectors
for the next round. This technique does not effect the asymptotic complexity,
however, in practice, it will accelerate the reduction.

BI =

⎛⎜⎜⎜⎜⎜⎝
δ 0 0 . . . 0

−α mod δ 1 0 . . . 0
−α2 mod δ 0 1 . . . 0

...
...
...
. . .

...
−αd−1 mod δ 0 0 . . . 1

⎞⎟⎟⎟⎟⎟⎠ =⇒ B′
I =

⎛⎜⎜⎜⎜⎜⎝
δ 0 0 . . . 0 0
−α 1 0 . . . 0 0
0 −α 1 . . . 0 0
...

...
...
. . .

...
...

0 0 0 . . . −α 1

⎞⎟⎟⎟⎟⎟⎠ .

Let X0 = δ, one obtains BI in the above form. From BI , one constructs a new
basis B′

I . Then, one can obtain a generator matrix of L(BI) by inserting some
vectors in L to B′

I .
The following example shows how to construct G with d = 5. In this example,

since vector 〈0, 0, δ, 0, 0〉 is a valid vector in L(B), B and G span a same lattice.
Applying a lattice reduction algorithm over G will return a matrix with the top
row that is a zero vector, while the rest form a reduced basis of L.

G =

⎛⎜⎜⎜⎜⎜⎜⎝

δ 0 0 0 0
−α 1 0 0 0
0 −α 1 0 0
0 0 δ 0 0
0 0 −α 1 0
0 0 0 −α 1

⎞⎟⎟⎟⎟⎟⎟⎠ =⇒

⎛⎜⎜⎜⎜⎜⎜⎝

x1,1 x1,2 x1,3 0 0
x2,1 x2,2 x2,3 0 0
x3,1 x3,2 x3,3 0 0
0 0 x1,1 x1,2 x1,3

0 0 x2,1 x2,2 x2,3

0 0 x3,1 x3,2 x3,3

⎞⎟⎟⎟⎟⎟⎟⎠
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To reduce G, we adopt our recursive reduction methodology. We firstly reduce
the top half of G. Since the second half is identical to the top half, except the
position of the elements, we do not need to reduce the second half. Indeed, we
use the result of the top half block and then shift all the elements. In this case,
during our recursive reduction, for round i, instead of doing d/2i reductions,
one need to perform only one reduction. Finally, one reduces the final matrix G,
removes all the zero vectors and start a new round.

With our technique, the number of vectors grows, and this may increase the
complexity of the next round. For the i-th round, the number of vectors grows
by d/2i−1− 1. It will be negligible when d/2i  d. For instance, if we adopt this
approach between the second last round and the last round, this approach will
only increase the number of vectors by 1, while if one uses it prior to the first
round, the number of rows will almost be doubled. In practice, one can choose
to adopt this technique for each round only when it accelerates the reduction.

We note that the asymptotic complexity remains the same, since generally
speaking, the number of vectors remains O(d) as before, while the asymptotic
complexity concerns only d and β.

6 Conclusion

In this paper, we presented a methodology for lattice reduction algorithms used
for solving low density modular knapsack problems. The complexity of poly-
nomial time lattice reduction algorithms relies on the dimension d and the bit
length β of maximum norm of input basis. We prove that for a knapsack-type
basis, it is always better to pre-process the basis by distributing the weight to
many columns as equally as possible. Using this methodology recursively, we
are able to reduce β to approximately 2β/d, and consequently, we successfully
reduce the entire complexity.

We then demonstrated our technique over the floating-point LLL algorithm.
We obtain a provable upper bounded complexity of O(d2+εβ2 + d4+εβ), which
is by far the best provable time complexity for a knapsack-type basis.
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Abstract. The hash function Skein is one of the five finalists of the NIST
SHA-3 competition. It is based on the block cipher Threefish which only
uses three primitive operations: modular addition, rotation and bitwise
XOR (ARX). This paper studies the boomerang attacks on Skein-512.
Boomerang distinguishers on the compression function reduced to 32 and
36 rounds are proposed, with time complexities 2104.5 and 2454 hash com-
putations respectively. Examples of the distinguishers on 28 and 31 rounds
are also given. In addition, the boomerang distinguishers are applicable to
the key-recovery attacks on reduced Threefish-512. The time complexities
for key-recovery attacks reduced to 32-/33-/34-round are about 2181, 2305

and 2424 encryptions. Because the previous boomerang distinguishers for
Threefish-512 are in fact not compatible [14], our attacks are the first valid
boomerang attacks for the reduced-round Skein-512.

Keywords: Hash function, Boomerang attack, Threefish, Skein.

1 Introduction

Cryptographic hash functions, which provide integrity, authentication etc., are
very important in modern cryptology. In 2007, NIST launched a hash competi-
tion for a new hash standard (SHA-3) as the most widely used hash functions
MD5 and SHA-1 were broken [19,20]. Now the competition has come into the
third round (the final round), and 5 finalists out of the candidates are selected.
The finalist Skein [7] is a ARX-type hash function (based on modular addition,
rotation and exclusive-OR). The core of the compression function of Skein is a
tweakable block cipher called Threefish, which is proposed with 256-, 512-, 1024-
bit block sizes and 72, 72, 80 rounds, respectively. When the algorithm entered
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into the second round, the authors changed the rotation constants to refine the
algorithm, and after it was selected as a finalist, the constants used in the key
schedule were updated to resist the rotational attack [10,11].

During the competition, Skein has been attracting the attentions of the crypt-
analysts, and there are several cryptanalytic results on the security of the com-
pression function of Skein and its based block cipher Threefish. At Asiacrypt
2009 [1], Aumasson et al. used the boomerang attack to launch a key recovery
attack on Threefish-512 reduced to 32 rounds and the known-key distinguisher to
35 rounds under the old rotation constants. However, we find that their differen-
tial paths used in the boomerang attacks employ an inverse permutation instead
of the original one. In 2010, Chen et al. also proposed a boomerang attack for the
key recovery of Threefish-512 reduced to 33 and 34 rounds on the new rotation
constants using the method of modular differential. Recently Leurent et al. [14]
gave a boomerang distinguisher for 32-round compression function of Skein-256,
and they also pointed that the differential paths in [6] are incompatible. We
correct the paths in [1] with the right permutation and show that they are also
incompatible under the old rotation constants due to similar contradictions as in
[6]. Besides the boomerang attacks, some other attack methods also appeared for
Skein. At CANS 2010 [16], Su et al. presented free-start near-collisions of Skein-
256/-512 compression functions reduced to 20 rounds and Skein-1024 reduced to
24 rounds. At Asiacrypt 2010 [11], Khovratovich et al. combined the rotational
attack and the rebound attack, and gave distinguishers on 53-round Skein-256
and 57-round Skein-512 respectively, and their technique depends on the con-
stants used in the key schedule. In paper [21], Yu et al. gave a near-collision
attack for Skein-256 using the rebound attack which was also been shown using
incompatible paths [15]. In [12], Khovratovich et al. also gave a preimage at-
tack on 22-round Skein-512 hash function and 37-round Skein-512 compression
function by the biclique method.

Our Contribution. In this paper, we study the boomerang distinguishers on
round-reduced Skein-512. Our analysis is based on two related-key differential
paths of Threefish-512 with high probability. In order to solve the incompatibility
pointed out in [14], we select differences for the key words and tweaks on the
59-th bit instead of the 64-th bit (the 64-th is the most significant bit) for the
top path.

We also reveal that the four paths in the middle 8 rounds are not indepen-
dent, the probability of the distinguisher in the middle 8 rounds is much higher
than the average probability. Based on the differential paths, we give boomerang
distinguisher on the compression function of Skein-512 reduced to 32 round with
complexity 2104.5. The distinguisher can be extended to 36 rounds by adding two
more rounds on the top and bottom of the differential paths respectively. Our
boomerang distinguishers are applicable to the related-key key-recovery attacks
on Threefish-512 reduced to 32, 33 and 34 rounds for 1/4 of the keys. Table 1
summarizes our results.
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The rest of the paper is organized as follows. In Sect.2, we give a brief de-
scription of Skein-512. Sect.3 summaries the boomerang attack. Sect.4 leverages
the boomerang technique to the compression functions of Skein-512. In Sec.5,
we introduce the key-recovery attacks based on our boomerang distinguishers.
Finally, a conclusion of the paper is given in Sect.6.

Table 1. Summary of the attacks on Skein (only the attacks independent of the con-
stants are mentioned)

Attack CF/KP Rounds Time Ref.

Near collisions(Skein-256) CF 20 260 [16]

Near Collisions(Skein-256) CF 32 2105 [21]*

Pseudo-preimage(Skein-512) CF 37 2511.2 [12]

Boomerang Dist.(Skein-256) CF 28 224

[14]Boomerang Dist.(Skein-256) KP 32 257

Boomerang Dist.(Skein-256) CF 32 2114

Key Recovery (Threefish-512) KP 32 2312
[1]*

Boomerang Dist. (Threefish-512) KP 35 2478

Key Recovery (Threefish-512) KP 32 2189

[6]*
Key Recovery (Threefish-512) KP 33 2324.6

Key Recovery (Threefish-512) KP 34 2474.4

Boomerang Dist.(Skein-512) CF 28 240.5

Sec.4

Boomerang Dist.(Skein-512) CF 31 232†
Boomerang Dist.(Skein-512) CF 32 256.5†
Boomerang Dist.(Skein-512) CF 32 2104.5

Boomerang Dist.(Skein-512) CF 33 2125†
Boomerang Dist.(Skein-512) CP 34 2190.6†
Boomerang Dist.(Skein-512) CP 35 2308†
Boomerang Dist.(Skein-512) CP 36 2454†
Key-recovery (Threefish-512) KP 32 2181

Sec.5Key-recovery (Threefish-512) KP 33 2305

Key-recovery (Threefish-512) KP 34 2424

KP: Keyed permutation, CF: Compression Function.
*:The differential paths are incompatible.
†: The initial and final subkeys are not included.

2 Description of Skein-512

Skein is designed by Ferguson et al., which is one of the SHA-3 finalists. It
supports three different internal state sizes (256, 512, and 1024 bits) and each of
these state sizes can support any output size. The word size which Skein operates
on is 64 bits. Skein is based on the UBI (Unique Block Iteration) chaining mode
that uses block cipher Threefish to build a compression function.

The compression function of Skein can be defined as H = E(K,T,M)⊕M ,
where E(K,T,M) is the block cipher Threefish, M is the plaintext, K is the
master key and T is the tweak value. For Skein-512, both M and K are 512
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bits, and the length of T is 128 bits. Let us denote Vi = (ai, bi, ci, di, ei, fi, gi, hi)
as the output value of the i-th round, where ai, bi, ..., hi are 64-bit words. Let
V0 = M be the plaintext, the encryption procedure of Threefish-512 is carried
out for i = 1 to 72 as follows.

If (i − 1) mod 4 = 0, first compute

âi−1 = ai−1 +K(i−1)/4,a, b̂i−1 = bi−1 +K(i−1)/4,b,

ĉi−1 = ci−1 +K(i−1)/4,c, d̂i−1 = di−1 +K(i−1)/4,d,

êi−1 = ei−1 +K(i−1)/4,e, f̂i−1 = fi−1 +K(i−1)/4,f ,

ĝi−1 = gi−1 +K(i−1)/4,g, ĥi−1 = hi−1 +K(i−1)/4,h,

where K(i−1)/4,a, K(i−1)/4,b, ..., K(i−1)/4,h are round subkeys which are involved
in every four rounds. Then carry out:

ai = ĉi−1 + d̂i−1, hi = ai ⊕ (d̂i−1 ≪ Ri,1),

ci = êi−1 + f̂i−1, fi = ci ⊕ (f̂i−1 ≪ Ri,2),

ei = ĝi−1 + ĥi−1, di = ei ⊕ (ĥi−1 ≪ Ri,3),

gi = âi−1 + b̂i−1, bi = gi ⊕ (b̂i−1 ≪ Ri,0),

where Ri,1 and Ri,2 are rotation constants which can be found in [7]. For the sake

of convenience, we denote V̂i−1 = (âi−1, b̂i−1, ĉi−1, d̂i−1, êi−1, f̂i−1, ĝi−1, ĥi−1).
If (i − 1) mod 4 �= 0, compute

ai = ci−1 + di−1, hi = ai ⊕ (di−1 ≪ Ri,1),
ci = ei−1 + fi−1, fi = ci ⊕ (fi−1 ≪ Ri,2),
ei = gi−1 + hi−1, di = ei ⊕ (hi−1 ≪ Ri,3),
gi = ai−1 + bi−1, bi = gi ⊕ (bi−1 ≪ Ri,0).

After the last round, the ciphertext is computed as V̂72 = (â72, b̂72, ..., ĥ72).
The key schedule starts with the master key K = (k0, k1, k2, k3, k4, k5, k6, k7)

and the tweak value T = (t0, t1). First we compute

k8 := 0x1bd11bdaa9fc1a22⊕
7⊕

i=0

ki and t2 := t0 ⊕ t1.

Then the subkeys are derived for s = 0 to 18:

Ks,a := k(s+0)mod9

Ks,b := k(s+1)mod9

Ks,c := k(s+2)mod 9

Ks,d := k(s+3)mod 9

Ks,e := k(s+4)mod9

Ks,f := k(s+5)mod 9 + tsmod 3

Ks,g := k(s+6)mod9 + t(s+1)mod3

Ks,h := k(s+7)mod 9 + s
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3 The Boomerang Attack

The boomerang attack was introduced by Wagner [17] and first applied to block
ciphers; it is an adaptive chosen plaintext and ciphertext attack. Later it was
further developed by Kelsey et al. into a chosen plaintext attack called the
amplified boomerang attack [13], then Biham et al. further developed it into
the rectangle attack [3]. The basic idea of the boomerang attack is joining two
short differential paths with high probabilities in a quartet. The related-key
boomerang attack is proposed in [4] and it uses the related-key differentials
instead of the single-key differentials. Let E be a block cipher with block size
n bits, and it can be decomposed into two sub-ciphers: E = E1 ◦ E0. For the
sub-cipher E0, there is a differential path (α, αk) → β with probability p. And
for the sub-cipher E1, there is a differential path (γ, γk)→ δ with probability q.
Then the related-key boomerang attack can be constructed:

– Randomly choose a pair of plaintexts (P1, P2) such that P2 − P1 = α.

– Compute K2 = K1 +αk, K3 = K1 + γk and K4 = K1 +αk + γk. Encrypt P1,
P2 with the related keys K1 and K2 to get C1 = EK1(P1), C2 = EK2(P2).

– Compute C3 = C1 + δ, C4 = C2 + δ. Decrypt C3, C4 with the related keys
K3 and K4 to get P3 = E−1

K3
(C3), P4 = E−1

K4
(C4).

– Check whether P4 − P3 = α.

It is known that for an n-bit random permutation, P4−P3 = α with probability
2−n. Therefore, the attack is valid if p2q2 > 2−n.

In the known-key setting, a (related-key) boomerang attack can be used to
distinguish a given permutation from a random oracle; it is called known-related-
key boomerang attack in [5]. Applying the known-related-key boomerang attack
to the compression function in the MMO mode, i.e, CF (K,M) = EK(M) +M ,
it is possible to start from the middle rounds because the message M and the
key K can be selected randomly (refer to [5] and [14]). The (known-related-
key) boomerang attack is particularly efficient for the ARX-type hash functions
because their compression functions have strong diffusion after several steps, only
short differential paths with high probabilities can be found. See Fig. 1 for the
schematic view of the boomerang distinguisher for hash functions. The known-
related-key boomerang attack for a permutation (or a compression function in
the MMO structure) can be summarized as follows.

– Choose a random value X1 and K1, compute X2 = X1 + β, X3 = X1 + γ,
X4 = X3 + β and K2 = K1 + βk, K3 = K1 + γk, K4 = K3 + βk.

– Compute backward from quartets (Xi,Ki)
4
i=1 using E−1

0 to obtain P1, P2,
P3 and P4.

– Compute forward from quartets (Xi,Ki)
4
i=1 using E1 to obtain C1, C2, C3

and C4.

– Check whether P2 − P1 = P4 − P3 = α and C3 − C1 = C4 − C2 = δ are
fulfilled.
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Fig. 1. The boomerang attack

Summary up the previous work [5,14], the boomerang distinguisher falls into
three types according to the input and output differences for an n-bit fixed
permutation.

– Type I: A quartet satisfies P2−P1 = P4−P3 = α and C3−C1 = C4−C2 = δ
for fixed α and δ. In this case, the generic complexity is 2n.

– Type II: Only C3 − C1 = C4 − C2 are required (the property is also called
zero-sum or second-order differential collision). In this case, the complexity
for obtaining such a quartet is 2n/3 using Wagner’s generalized birthday
attack [18].

– Type III: A quartet satisfies P2 − P1 = P4 − P3 and C3 − C1 = C4 − C2. In
this case, the best known attack still takes time 2n/2.

4 The Boomerang Distinguisher on Reduced Skein-512

In this section, we describe the known-related-key boomerang attack on Skein-
512 reduced to 36 rounds. As mentioned above, the basic idea of our attack is
to connect two short differential paths in a quartet. The first step of our attack
is to find two short differentials with high probabilities so that the switch in the
middle does not contain any contradictions. Secondly, we derive the sufficient
conditions for the rounds in the middle, and compute the precise probability of
each condition. Thirdly, we correct the conditions in the intermediate rounds by
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modifying the chaining variables, the key K and the tweak value T . Finally, after
the message modification, we search the right quartet that pass the verification
of the distinguisher.

4.1 Round-Reduced Differential Paths for Skein-512

The differences of the master key K = (ki)
7
i=0 and tweak value T = (t0, t1)

selected for the top differential path are Δk0 = 0x0400000000000000, Δt0 =
0x0400000000000000 and Δt1 = 0x0400000000000000. Suppose k8,59 = t0,59 ⊕ 1
and k0,59 = t1,59 ⊕ 1, then there is no difference in the fourth subkey. For the
bottom path, the MSB differences are set in k3, k4 and t1, and this gives no
difference in the eighth subkey. According to the key schedule, the differences
for the subkeys Ki = (Ki,a,Ki,b,Ki,c,Ki,d,Ki,e,Ki,f ,Ki,g,Ki,h) (0 ≤ i ≤ 9) are
shown in Tables 2 and 3.

Table 2. The subkey differences of the top path

s d
Ki,a Ki,b Ki,c Ki,d Ki,e Ki,f Ki,g Ki,h

Differences

0 0
k0 k1 k2 k3 k4 k5 + t0 k6 + t1 k7 + 0

±258 0 0 0 0 ±258 ±258 0

1 4
k1 k2 k3 k4 k5 k6 + t1 k7 + t2 k8 + 1
0 0 0 0 0 ±258 0 ±258

2 8
k2 k3 k4 k5 k6 k7 + t2 k8 + t0 k0 + 2
0 0 0 0 0 0 0 ±258

3 12
k3 k4 k5 k6 k7 k8 + t0 k0 + t1 k1 + 3
0 0 0 0 0 0 0 0

4 16
k4 k5 k6 k7 k8 k0 + t1 k1 + t2 k2 + 4
0 0 0 0 ±258 0 0 0

Table 3. The subkey differences of the bottom path

s d
Ki,a Ki,b Ki,c Ki,d Ki,e Ki,f Ki,g Ki,h

Differences

5 20
k5 k6 k7 k8 k0 k1 + t2 k2 + t0 k3 + 5
0 0 0 0 0 263 0 263

6 24
k6 k7 k8 k0 k1 k2 + t0 k3 + t1 k4 + 6
0 0 0 0 0 0 0 263

7 28
k7 k8 k0 k1 k2 k3 + t1 k4 + t2 k5 + 7
0 0 0 0 0 0 0 0

8 32
k8 k0 k1 k2 k3 k4 + t2 k5 + t0 k6 + 8
0 0 0 0 263 0 0 0

9 36
k0 k1 k2 k3 k4 k5 + t0 k6 + t1 k7 + 9
0 0 0 263 263 0 263 0
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Table 4. The top differential path used for boomerang attacks of Skein-512

Rd Shifts Difference Pr

2
17, 49 0c030025814280b4 08020024800290a0 84689060080a4234 80209020280a0224

2−73

36, 39 603a002310842201 4038002312046020 09421184e3408c32 906008062408c22

3
44, 9 0448004020004010 0448000420000010 2002000002804221 2002000002004021

2−35

54, 56 0044110481000010 0044020401004010 0401000101401014 0001000100401004

4
0000000000800240 0001000080000200 0000110080004000 0000010000004000

2−24

0400000001000010 0400000001000010 0000004400004000 0400000400004000

K1
0000000000000000 0000000000000000 0000000000000000 0000000000000000

–
0000000000000000 0400000000000000 0000000000000000 0400000000000000

4
39, 30 – 0001000080000200 – 0000010000004000

1
34, 24 – 0000000001000010 – 0000000400004000

5
13, 50 0000100080000000 0000000080000000 0400000000000000 0400000000000000

2−8

10, 17 0000004000000000 0000004000000000 0001000080800040 0000000080000040

6
25, 29 0000000000000000 0000000000000000 0000000000000000 0000000000000000

2−3

39, 43 0001000000800000 0001000000000000 0000100000000000 0000100000000000

7
8, 35 0000000000000000 0000000000000000 0000000000800000 0000000000800000

2−1

56,22 0000000000000000 0000000000000000 0000000000000000 0000000000000000

8
0000000000000000 0000000000000000 0000000000000000 0000000000000000

2−1

0000000000000000 0000000000000000 0000000000000000 0400000000000000

K2
0000000000000000 0000000000000000 0000000000000000 0000000000000000

–
0000000000000000 0000000000000000 0000000000000000 0400000000000000

no differences in rounds 9-16

K4
0000000000000000 0000000000000000 0000000000000000 0000000000000000

–
0400000000000000 0000000000000000 0000000000000000 0000000000000000

16
46, 36 0000000000000000 0000000000000000 0000000000000000 0000000000000000

1
19, 37 – 0000000000000000 0000000000000000 0000000000000000

17
33, 27 0000000000000000 0000000000000000 0400000000000000 0000000000000000

2−2

14, 42 0000000000000000 0400000000000000 0000000000000000 0000000000000000

18
17, 49 0400000000000000 0000000000000000 0400000000000000 0000000000000000

2−5

36, 39 0000000000000000 0400000000000100 0000000000000000 0400000000000000

19
44, 9 0400000000000000 0400000000000000 0400000000000100 0400000200000000

2−9

54, 56 0400000000000000 0400100040000100 0400000000000000 0400000000000000

20
0000000200000100 0000004000000000 0000100040000100 0004000000000000

–
0000000000000000 4001100440100100 0000000000000000 0000040200000108

The top path we used consists of 18 rounds. Because ΔK2 = (0, 0, 0, 0, 0, 0, 0,
±258) and ΔK3 = (0, 0, 0, 0, 0, 0, 0, 0), we select the intermediate difference ΔV8

to meet (0, 0, 0, 0, 0, 0, 0,∓258). In this way, we get an 8-round path with zero-
difference from rounds 9 to 16. By extending the difference ΔV8 in the backward
direction for 6 rounds and the difference ΔV̂16 = ΔK4 in the forward direction
for 4 rounds, an 18-round differential path with high probability is obtained.

Similarly, we chooseΔV24 as (0, 0, 0, 0, 0, 0, 0, 2
63) to compensate the difference

ΔK6 = (0, 0, 0, 0, 0, 0, 0, 263), which results in zero difference in rounds 25 to 32.
As a consequence, a 18-round differential path with high probability also can be
acquired by linearly expanding the difference ΔV24 backward for 4 rounds and
the difference ΔV̂32 = ΔK8 forward for 6 rounds.
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Table 5. The bottom differential path used for boomerang attacks of Skein-512

Rd shifts Difference Pr

20
0000000010004800 0020001000004000 0002201000080000 0000200000080000

2−7

8000000020000200 8000000020000200 0000088000080000 8000008000080000

K5
0000000000000000 0000000000000000 0000000000000000 0000000000000000

–
0000000000000000 8000000000000000 0000000000000000 8000000000000000

20
39, 30 – 0020001000004000 – 0000200000080000

2−9

34, 24 – 0000000020000200 – 0000008000080000

21
13, 50 0002001000000000 0000001000000000 8000000000000000 8000000000000000

2−7

10, 17 0000080000000000 0000080000000000 0020001010000800 0000001000000800

22
25, 29 0000000000000000 0000000000000000 0000000000000000 0000000000000000

2−7

39, 43 0020000010000000 0020000000000000 0002000000000000 0002000000000000

23
8, 35 0000000000000000 0000000000000000 0000000010000000 0000000010000000

2−3

56, 22 0000000000000000 0000000000000000 0000000000000000 0000000000000000

24
0000000000000000 0000000000000000 0000000000000000 0000000000000000

2−1

0000000000000000 0000000000000000 0000000000000000 8000000000000000

K6
0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 8000000000000000

no differences in Rounds 25-32

K8
0000000000000000 0000000000000000 0000000000000000 0000000000000000

–
8000000000000000 0000000000000000 0000000000000000 0000000000000000

32
46, 36 0000000000000000 0000000000000000 0000000000000000 0000000000000000

1
19, 37 8000000000000000 0000000000000000 0000000000000000 0000000000000000

33
33, 27 0000000000000000 0000000000000000 8000000000000000 0000000000000000

1
14, 42 0000000000000000 8000000000000000 0000000000000000 0000000000000000

34
17, 49 8000000000000000 0000000000000000 8000000000000000 0000000000000000

1
36, 39 0000000000000000 8000000000002000 0000000000000000 8000000000000000

35
44, 9 8000000000000000 8000000000000000 8000000000002000 8000004000000000

2−1

54, 56 8000000000000000 8002000800002000 8000000000000000 8000000000000000

36
0000004000002000 0000080000000000 0002000800002000 0080000000000000

2−5

0000000000000000 0022008802002008 0000000000000000 0000804000002100

K9
0000000000000000 0000000000000000 0000000000000000 8000000000000000

8000000000000000 0000000000000000 8000000000000000 0000000000000000

36
0000004000002000 0000080000000000 0002000800002000 8080000000000000

2−18

8000000000000000 0022008802002008 8000000000000000 0000804000002100

36
39, 30 – 0000080000000000 – 8080000000000000

2−13

34, 24 – 0022008802002008 – 0000804000002100

37
13, 50 8082000800002000 0000084000042000 8022008802002008 c000806100002180

2−18

10, 17 8000804000002100 882280a802882228 0000084000002000 8082000820202000

38
402280e902000188 818a084884040000 082200e802880328 8092480860210104

2−45

8082084820200000 8220a0e22200a108 8082084800040000 062180eb03840188

The two differential paths are shown in Tables 4 and 5, where we use two
kinds of differences: the XOR difference and the integer modular substraction
difference. In the rounds after adding the subkey, we express the differences in the
positions âi, ĉi, êi and ĝi with the integer modular substraction difference (except
the final adding key round), because the XOR operations are not included when
computing the next chaining value Vi+1; in the other positions of the differential
path, we use the XOR difference.
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4.2 Message Modifications for the Middle Rounds

The conditions of the middle 8 rounds can be satisfied by the message modi-
fications. The two pair short differentials in the boomerang distinguisher from
rounds 16 to 24 are shown in Fig. 2. Let D1, D2 denote the top two paths from
rounds 20 down to 16, and D3, D4 be the bottom two paths from rounds 20 to
24. Then the sufficient conditions for the four paths are shown in Table 6.

If we select the chaining variables V
(1)
20 and the subkey K

(1)
5 randomly, then

the conditions in D1 can be fulfilled by modifying V
(1)
20 , and those in D3 can be

satisfied by modifying K
(1)
5 . But for conditions in D2 and D4, we cannot correct

them directly because the pairs (V
(3)
20 , K

(3)
5 ) and (V

(2)
20 , K

(2)
5 ) are related to the

pair (V
(1)
20 , K

(1)
5 ).

Let us focus on the 39 common non-zero difference bits for D1 and D2 which
are generated by (V

(1)
i , V

(2)
i ) and (V

(3)
i , V

(4)
i ) respectively (i = 20, 19, 18, 17).

We force the values of V
(3)
i in these bits to be equal to the values of V

(1)
i in

the corresponding bits by the message modifications. That is, a
(3)
20,9 = a

(1)
20,9,

a
(3)
20,34 = a

(1)
20,34, b

(3)
20,39 = b

(1)
20,39, · · · , c

(3)
17,59 = c

(1)
17,59, f

(3)
17,59 = f

(1)
17,59 (see Table 7).

As a result, if all the sufficient conditions for the path D1 are satisfied, then
all the conditions in D2 must be satisfied. For the fixed input difference γ of
D3, we can easily deduce that the conditions in Table 7 can be satisfied with
probability 2−7.4, which is much higher than the average probability 2−17. This
is also verified by our experiments. All the conditions in Table 7 can be satisfied

by modifying V
(1)
20 .

Similarly, we can convert the conditions for D4 in Table 6 to those in Table
8. These conditions hold with probability 2−8.4 when D1 hold, which is much
better than the average probability 2−33. All the conditions in Table 8 can be

fulfilled by modifying K
(1)
5 .

Fig. 2. The middle rounds in a boomerang distinguisher
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Table 6. The conditions for differential paths D1, D2, D3 and D4

rounds Conditions for D1 Conditions for D2

20

a
(1)
20,43 ⊕ h

(1)
20,43 = a

(1)
20,34, c

(1)
20,63 ⊕

f
(1)
20,63 = c

(1)
20,9, c

(1)
20,21 ⊕ f

(1)
20,21 = c

(1)
20,31,

c
(1)
20,35 ⊕ f

(1)
20,35 = c

(1)
20,45

a
(3)
20,43 ⊕ h

(3)
20,43 = a

(3)
20,34, c

(3)
20,63 ⊕ f

(3)
20,63 = c

(3)
20,9,

c
(3)
20,21 ⊕ f

(3)
20,21 = c

(3)
20,31, c

(3)
20,35 ⊕ f

(3)
20,35 = c

(3)
20,45

19

a
(1)
19,59 = b

(1)
19,59 ⊕ 1, c

(1)
19,9 = a

(1)
20,9,

c
(1)
19,59 = d

(1)
19,59 ⊕ 1, e

(1)
19,59 = f

(1)
19,59 ⊕ 1,

g
(1)
19,59 = h

(1)
19,59 ⊕ 1, f

(1)
18,9 = c

(1)
19,9,

f
(1)
18,59 = c

(1)
19,59, h

(1)
18,59 = e

(1)
19,59

a
(3)
19,59 = b

(3)
19,59⊕1, c

(3)
19,9 = a

(3)
20,9, c

(3)
19,59 = d

(3)
19,59⊕1,

e
(3)
19,59 = f

(3)
19,59⊕, g

(3)
19,59 = h

(3)
19,59 ⊕ 1, f

(3)
18,9 = c

(3)
19,9,

f
(3)
18,59 = c

(3)
19,59, h

(3)
18,59 = e

(3)
19,59

18
a
(1)
18,59 = g

(1)
19,59, c

(1)
18,59 = a

(1)
19,59,

f
(1)
17,59 = c

(1)
18,59

a
(3)
18,59 = g

(3)
19,59, c

(3)
18,59 = a

(3)
19,59, f

(3)
17,59 = c

(3)
18,59

17 c
(1)
17,59 = a

(1)
18,59, k8,59 = c

(1)
17,59 c

(3)
17,59 = a

(3)
18,59, k8,59 = c

(3)
17,59

Conditions for D3 Conditions for D4

20

b
(1)
20,15 = a

(1)
20,15 ⊕ 1, d

(1)
20,20 = c

(1)
20,20 ⊕ 1,

d
(1)
20,46 = c

(1)
20,46 ⊕ 1, f

(1)
20,10 = e

(1)
20,10 ⊕ 1,

f
(1)
20,30 = e

(1)
20,30⊕1, h

(1)
20,20 = g

(1)
20,20⊕1,

h
(1)
20,40 = g

(1)
20,40 ⊕ 1

b
(2)
20,15 = a

(2)
20,15 ⊕ 1, d

(2)
20,20 = c

(2)
20,20 ⊕ 1, d

(2)
20,46 =

c
(2)
20,46 ⊕ 1, f

(2)
20,10 = e

(2)
20,10 ⊕ 1, f

(2)
20,30 = e

(2)
20,30 ⊕ 1,

h
(2)
20,20 = g

(2)
20,20 ⊕ 1, h

(2)
20,40 = g

(2)
20,40 ⊕ 1

20

b̂
(1)
20,15 = b

(1)
20,15, b̂

(1)
20,37 = b

(1)
20,37,

b̂
(1)
20,54 = b

(1)
20,54, d̂

(1)
20,20 = d

(1)
20,20,

d̂
(1)
20,46 = d

(1)
20,46, f̂

(1)
20,10 = f

(1)
20,10,

f̂
(1)
20,30 = f

(1)
20,30, ĥ

(1)
20,40 = h

(1)
20,40

b̂
(2)
20,15 = b

(2)
20,15, b̂

(2)
20,37 = b

(2)
20,37, b̂

(2)
20,54 = b

(2)
20,54,

d̂
(2)
20,20 = d

(2)
20,20, d̂

(2)
20,46 = d

(2)
20,46, f̂

(2)
20,10 = f

(2)
20,10,

f̂
(2)
20,30 = f

(2)
20,30, ĥ

(2)
20,40 = h

(2)
20,40

21

a
(1)
21,37 = c

(1)
20,37, a

(1)
21,50 = c

(1)
20,50,

e
(1)
21,44 = g

(1)
20,44, g

(1)
21,12 = a

(1)
20,12,

g
(1)
21,29 = a

(1)
20,29, g

(1)
21,37 = b

(1)
20,37,

g
(1)
21,54 = b

(1)
20,54, b

(1)
21,37 = a

(1)
21,37 ⊕ 1,

f
(1)
21,44 = e

(1)
21,44⊕1, h

(1)
21,12 = g

(1)
21,12⊕1,

h
(1)
21,37 = g

(1)
21,37 ⊕ 1

a
(2)
21,37 = c

(2)
20,37, a

(2)
21,50 = c

(2)
20,50,

e
(2)
21,44 = g

(2)
20,44, g

(2)
21,12 = a

(2)
20,12,

g
(2)
21,29 = a

(2)
20,29, g

(2)
21,37 = b

(2)
20,37,

g
(2)
21,54 = b

(2)
20,54, b

(2)
21,37 = a

(2)
21,37 ⊕ 1,

f
(2)
21,44 = e

(2)
21,44 ⊕1, h

(2)
21,12 = g

(2)
21,12 ⊕1,

h
(2)
21,37 = g

(2)
21,37 ⊕ 1

22

e
(1)
22,29 = g

(1)
21,29, e

(1)
22,54 = g

(1)
21,54,

f
(1)
22,54 = e

(1)
22,54 ⊕ 1, g

(1)
22,50 = a

(1)
21,50,

h
(1)
22,50 = g

(1)
22,50 ⊕ 1

e
(2)
22,29 = g

(2)
21,29, e

(2)
22,54 = g

(2)
21,54, f

(2)
22,54 = e

(2)
22,54 ⊕ 1,

g
(2)
22,50 = a

(2)
21,50, h

(2)
22,50 = g

(2)
22,50 ⊕ 1

23 c
(1)
23,29 = e

(1)
22,29, d

(1)
23,29 = c

(1)
23,29 ⊕ 1 c

(2)
23,29 = e

(2)
22,29, d

(2)
23,29 = c

(2)
23,29 ⊕ 1

After the message modifications, the boomerang distinguisher in the middle
8 rounds hold with probability close to 1. We also observe that the differential
path D2 is heavily dependent on D3, and the path D4 is heavily dependent
on D1. The reason of contradictions in the previous attacks on Skein-512 is
that there exist contradict conditions in D2 or D4 when the paths D1 and D3

hold.
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Table 7. The conditions for Differential Path D2 which hold with probability 2−7.4

round conditions pr

20

a
(3)
20,9 = a

(1)
20,9, a

(3)
20,34 = a

(1)
20,34, b

(3)
20,39 = b

(1)
20,39, c

(3)
20,9 = c

(1)
20,9, c

(3)
20,31 = c

(1)
20,31,

c
(3)
20,45 = c

(1)
20,45, d

(3)
20,51 = d

(1)
20,51, f

(3)
20,9 = f

(1)
20,9, f

(3)
20,21 = f

(1)
20,21, f

(3)
20,31 = f

(1)
20,31,

f
(3)
20,35 = f

(1)
20,35, f

(3)
20,45 = f

(1)
20,45, f

(3)
20,49 = f

(1)
20,49 , f

(3)
20,63 = f

(1)
20,63, g

(3)
20,59 = g

(1)
20,9,

h
(3)
20,4 = h

(1)
20,4, h

(3)
20,9 = h

(1)
20,9, h

(3)
20,34 = h

(1)
20,34, f

(3)
20,43 = f

(1)
20,43

1

19

b
(3)
19,59 = b

(1)
19,59, a

(3)
19,59 = a

(1)
19,59(0.75), d

(3)
19,34 = d

(1)
19,34, d

(3)
19,59 = d

(1)
19,59,

c
(3)
19,9 = c

(1)
19,9(0.87), c

(3)
19,59 = c

(1)
19,59(0.94), f

(3)
19,9 = f

(1)
19,9, f

(3)
19,31 = f

(1)
19,31,

f
(3)
19,45 = f

(1)
19,45 , f

(3)
19,59 = f

(1)
19,59 , e

(3)
19,59 = e

(1)
19,59(0.875), h

(3)
19,59 = h

(1)
19,59,

g
(3)
19,59 = g

(1)
19,59(0.97)

0.52

18
a
(3)
18,59 = a

(1)
18,59(0.687), c

(3)
18,59 = c

(1)
18,59(0.29), f

(3)
18,9 = f

(1)
18,9, f

(3)
18,59 =

f
(1)
18,59(0.25), h

(3)
18,59 = h

(1)
18,59(0.937)

0.047

17 c
(3)
17,59 = c

(1)
17,59(0.5), f

(3)
17,59 = f

(1)
17,59(0.5) 0.25

Table 8. The conditions for Differential Path D4 which hold with probability 2−8.4

round conditions pr

20

a
(2)
20,12 = a

(1)
20,12, a

(2)
20,15 = a

(1)
20,15, a

(2)
20,29 = a

(1)
20,29, b

(2)
20,15 = b

(1)
20,15, b

(2)
20,37 =

b
(1)
20,37, b

(2)
20,54 = b

(1)
20,54, c

(2)
20,20 = c

(1)
20,20, c

(2)
20,37 = c

(1)
20,37, c

(2)
20,46 = c

(1)
20,46,

c
(2)
20,50 = c

(1)
20,50, d

(2)
20,20 = d

(1)
20,20, d

(2)
20,46 = d

(1)
20,46, e

(2)
20,10 = e

(1)
20,10, e

(2)
20,30 =

e
(1)
20,30, f

(2)
20,10 = f

(1)
20,10, f

(2)
20,30 = f

(1)
20,30, g

(2)
20,20 = g

(1)
20,20, g

(2)
20,40 = g

(1)
20,40,

g
(2)
20,44 = g

(1)
20,44, h

(2)
20,20 = h

(1)
20,20 , h

(2)
20,40 = h

(1)
20,40

1

b̂
(2)
20,15 = b̂

(1)
20,15, b̂

(2)
20,37 = b̂

(1)
20,37, b̂

(2)
20,54 = b̂

(1)
20,54, d̂

(2)
20,20 = d̂

(1)
20,20, d̂

(2)
20,46 =

d̂
(1)
20,46, f̂

(2)
20,10 = f̂

(1)
20,10(0.5), f̂

(2)
20,30 = f̂

(1)
20,30, ĥ

(2)
20,40 = ĥ

(1)
20,40

0.5

21

a
(2)
21,37 = a

(1)
21,37, a

(2)
21,50 = a

(1)
21,50(0.97), b

(2)
21,37 = b

(1)
21,37, e

(2)
21,44 = e

(1)
21,44(0.5),

f
(2)
21,44 = f

(1)
22,44, g

(2)
21,12 = g

(1)
21,12(0.875), g

(2)
21,29 = g

(1)
21,29, g

(2)
21,37 = g

(1)
21,37(0.875),

g
(2)
21,54 = g

(1)
21,54, h

(2)
21,12 = h

(1)
21,12(0.875), h

(2)
21,37 = h

(1)
21,37

0.32

22
e
(2)
22,29 = e

(1)
22,29(0.84), e

(2)
22,54 = e

(1)
22,54(0.75), f

(2)
22,54 = f

(1)
22,54(0.5), g

(2)
22,50 =

g
(1)
22,50(0.97), h

(2)
22,50 = h

(1)
22,50(0.5)

0.15

23 c
(2)
23,29 = c

(1)
23,29(0.24), d

(2)
23,29 = d

(1)
23,29(0.5) 0.12

4.3 Complexity of the Attack

Using the differential paths given in Table 4 and Table 5, we can construct a
boomerang distinguisher for Skein-512 reduced to 32 rounds (out of 72 rounds).
The top path in the backward direction (rounds 16-4) holds with probability
2−37 after the message modifications. The bottom path in the forward direction
(rounds 20-36) holds with probability 2−24 after message modifications.

So the complexity of the 32-round boomerang distinguisher is 22·(37+24) =
2122 by using the differential paths in Table 4 and 5. It can be reduced to
22·(13+6) × 324+18 ≈ 2104.5 if we only want

⊕4
i=1 Pi = 0 and

⊕4
i=1 Ci = 0,
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Table 9. A quartet that satisfies the paths for rounds 5-36 without the initial and final
subkeys

Message of Round 5

M (1) efeffeca89966f57 b9ede50911910872 b80346f52e40f9b2 413a42e591e3d564

b854665ac709fdc1 5b81218db8689f63 1454025d1e252a79 40086ca8b43d3382

M (2) efefeecb09966f57 b9ede50891910872 b40346f52e40f9b2 453a42e591e3d564

b854661ac709fdc1 5b8121cdb8689f63 1455025d9ea52a39 40086ca8343d33c2

M (3) 5b44c68c6c74d8d8 462dcb0d8f65c514 4660e299d27ed556 1622a67e6860f1b3

8631f78ea11186d9 29bf5dee4c4708bf 54cb280ae171a9fd df5814e7668fdf95

M (4) 5b44d68dec74d8d8 462dcb0c0f65c514 4a60e299d27ed556 1222a67e6860f1b3

8631f7cea11186d9 29bf5dae4c4708bf 54ca280a61f1a9bd df5814e7e68fdfd5

Key

K(1) fd4707e3dc7b1c35 3f64c6f0bd13466a 45e7c90173366b70 dc71a6f93dbfc9d5

5c977a7bbc2dbe6d 56889bd71af7189f 8bc7bcb9d86167a1 0091f15b4d1aeaee

K(2) f94707e3dc7b1c35 3f64c6f0bd13466a 45e7c90173366b70 dc71a6f93dbfc9d5

5c977a7bbc2dbe6d 56889bd71af7189f 8bc7bcb9d86167a1 0091f15b4d1aeaee

K(3) fd4707e3dc7b1c35 3f64c6f0bd13466a 45e7c90173366b70 5c71a6f93dbfc9d5

dc977a7bbc2dbe6d 56889bd71af7189f 8bc7bcb9d86167a1 0091f15b4d1aeaee

K(4) f94707e3dc7b1c35 3f64c6f0bd13466a 45e7c90173366b70 5c71a6f93dbfc9d5

dc977a7bbc2dbe6d 56889bd71af7189f 8bc7bcb9d86167a1 0091f15b4d1aeaee

Tweak

T (1), T (2) 55422f07b9ea59be 511ad7aa13272cc9 51422f07b9ea59be 551ad7aa13272cc9

T (3), T (4) 55422f07b9ea59be d11ad7aa13272cc9 51422f07b9ea59be d51ad7aa13272cc9

Table 10. A quartet that satisfies the paths for rounds 8-36 including the initial and
final subkeys

Message of Round 8

M (1) 81eb65560efb565c 42171413b9dae252 ba7f35e83ceec8b7 d5dbcf318a0ecf74

5d1c176606c51b45 4f8fc8fc188100d4 45d34efc985185f5 673059aaf448427c

M (2) 81eb65560efb565c 42171413b9dae252 ba7f35e83ceec8b7 d5dbcf318a0ecf74

5d1c176606c51b45 4f8fc8fc188100d4 45d34efc985185f5 6b3059aaf448427c

M (3) f96c2ea16f7aa900 7dbe4b7cc9bef8ea f94e7e6cff763332 f44decb0fcb6ecac

7f30973fad83191f 94591dff30d2e161 74c7323813fc5c42 54e6ccf74a6a1d11

M (4) f96c2ea16f7aa900 7dbe4b7cc9bef8ea f94e7e6cff763332 f44decb0fcb6ecac

7f30973fad83191f 94591dff30d2e161 74c7323813fc5c42 58e6ccf74a6a1d11

Key

K(1) bf07320940fa73f1 64561111c05cc195 bbf500154032fa6d 8dff001fb0239bbf

5e36a0172124dd89 50e99cdbc81bab42 3ac1c8825115600a 12b40efea4188dab

K(2) bb07320940fa73f1 64561111c05cc195 bbf500154032fa6d 8dff001fb0239bbf

5e36a0172124dd89 50e99cdbc81bab42 3ac1c8825115600a 12b40efea4188dab

K(3) bf07320940fa73f1 64561111c05cc195 bbf500154032fa6d 0dff001fb0239bbf

de36a0172124dd89 50e99cdbc81bab42 3ac1c8825115600a 12b40efea4188dab

K(4) bb07320940fa73f1 64561111c05cc195 bbf500154032fa6d 0dff001fb0239bbf

de36a0172124dd89 50e99cdbc81bab42 3ac1c8825115600a 12b40efea4188dab

Tweak

T (1), T (2) 8fe4eab7841221ae 82aeedc8d61e677b 8be4eab7841221ae 86aeedc8d61e677b

T (3), T (4) 8fe4eab7841221ae 02aeedc8d61e677b 8be4eab7841221ae 06aeedc8d61e677b
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Table 11. The modified differential path in the middle rounds used for boomerang
attacks of Skein-512 in [1]

Rd shifts The Difference for the top path from rounds 12-16

K3
0000000000000000 0000000000000000 0000000000000000 0000000000000000

8000000000000000 0000000000000000 0000000000000000 0000000000000000

12
33, 49 0000000000000000 0000000000000000 0000000000000000 0000000000000000

8, 42 8000000000000000 0000000000000000 0000000000000000 0000000000000000

13
39, 27 0000000000000000 0000000000000000 8000000000000000 0000000000000000

41, 14 0000000000000000 8000000000000000 0000000000000000 0000000000000000

14
29, 26 8000000000000000 0000000000000000 8000000000000000 0000000000000000

11, 9 0000000000000000 8000010000000000 0000000000000000 8000000000000000

15
33, 51 8000000000000000 8000000000000000 8000010000000000 8000000000000100

39, 35 8000000000000000 8008010000000400 8000000000000000 8000000000000000

16
0000010000000100 0000000100000000 0008010000000400 0000000400000000

0000000000000000 000a014004008400 0000000000000000 0004010000000100

K4
0000000000000000 0000000000000000 0000000000000000 8000000000000000

8000000000000000 0000000000000000 0000000000000000 8000000000000000

16
0000010000000100 0000000100000000 0008010000000400 8000000400000000

8000000000000000 000a014004008400 0000000000000000 0804010000000100

The Difference for the bottom path from rounds 16-20

16
38, 30 4008401080102024 4000400080002004 0440018001000400 0440008000000400
50, 53 0000000000040090 0000000000040080 0200000000008010 0000000000008010

17
48, 20 0000010001000000 0000010000000000 0000000000000010 0000000000000010

43, 31 0200000000000000 0200000000000000 0008001000100020 0000000000100020

18
34, 14 0000000000000000 0000000000000000 0000000000000000 0000000000000000

15, 27 0008001000000000 0000001000000000 0000000001000000 0000000001000000

19
26, 12 0000000000000000 0000000000000000 0008000000000000 0008000000000000

58, 7 0000000000000000 0000000000000000 0000000000000000 0000000000000000

20
0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 8000000000000000

K5
0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 8000000000000000

because the probability for
⊕4

i=1 x
(i)
j = 0 is about 1/3 where x

(i)
j denote the

non-zero difference bits in rounds 4 and 36.
Extending the 32-round boomerang distinguisher for two more rounds in the

backwardand forwarddirections,we can get the 33-/34-/35-/36-roundboomerang
distinguisher on Skein-512 as follows:

– The complexity of 33-round distinguisher (rounds 4-37) is about 22·(13+6) ×
324+13+18 ≈ 2125.

– The complexity of 34-round distinguisher (rounds 3-37) is about 22·(37+6) ×
335+13+18 ≈ 2190.6.

– The complexity of 35-round distinguisher (rounds 3-38) is about 22·(72+82) =
2308.

– The complexity of 36-round distinguisher (rounds 2-38) is about
22·(72+82+73) = 2454.
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Remark: For the 32-/33-/34-round attacks, we use the Type III boomerang
distinguisher, the complexity for the best algorithm is 2256; for the 35-/36-round
attacks, we use the Type I boomerang distinguisher, the generic complexity is
about 2512. Note that the initial and final key-additions are included in our 32-
round reduced Skein-512 but they are not included in the distinguishers for 33
to 36 rounds.

In the following, we give examples of the quartets to show that our technique
used for 32 to 36 rounds attack is valid. Table 9 gives a zero-sum quartet for
rounds 5-36 of Skein-512 (the initial and final subkeys are not included) with⊕4

i=1 V
(i)
5 = 0 and

⊕4
i=1 V

(i)
36 = 0. The complexity of the attack is about 232.

Table 10 gives a zero-sum quartet for rounds 8-36 of Skein-512 with
⊕4

i=1 V
(i)
8 =

0 and
⊕4

i=1 V̂
(i)
36 = 0 (the initial and final subkeys are included). The complexity

of the attack is about 240.5.

4.4 The Incompatibility of Previous Boomerang Attacks on
Threefish-512

In papers [1,2], Aumasson et al. first presented the boomerang distinguishers on
Threefish-512 reduced to 35 rounds. We studied the differential paths used to
boomerang attack in Tables 6 and 7 of [2], and found that they used an inverse
permutation instead of the original one. We correct the permutation and give
the middle 8-round differential paths (see Table 11) using the differences for the
key words and tweaks proposed in [1] under the old rotation constants. For the
top path, the MSB differences are set in k7 and t0. And for the bottom path,
the MSB differences are set in k2, k3, t0 and t1.

From the bottom path, it is easy to deduce that d̂
(1)
16,11 = ĉ

(1)
16,11 ⊕ 1, d̂

(2)
16,11 =

ĉ
(2)
16,11 ⊕ 1. From the top path, we know that d̂

(1)
16,11 = d̂

(2)
16,11, so we get ĉ

(1)
16,11 =

ĉ
(2)
16,11. But from the top path, it’s obvious that ĉ

(1)
16,11 = ĉ

(2)
16,11 ⊕ 1. Hence a

contradiction appears. Similarly, the differences on bit 41 for the top and bottom
paths are also incompatible.

5 Key Recovery Attack on Reduced Threefish-512

Our boomerang distinguishers for 32 to 34 rounds Skein-512 are also applicable
to (related) key recovery attack on Threefish-512. In this case, the complexity for
the middle 8 rounds are added, and the initial and final subkeys are included. For
the fixed input and output differences α and γ, the probabilities of the boomerang
distinguishers for Threefish-512 reduced to 32(rounds 4-36), 33(rounds 4-37),
34(rounds 3-37) rounds are 2−177, 2−301 and 2−419 respectively.

Consequently, we can mount key recovery attacks on reduced Threefish-512
for 1/4 of the key space, with time complexities 2181, 2305 and 2424, respectively.
We give the procedure of the key recovery attack on 32-round Threefish-512 as
an example.
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1. For i = 1, ..., 2179

(a) Randomly choose plaintext P i
1 , compute P i

2 = P i
1 ⊕ α.

(b) Encryptplaintextpair (P i
1, P

i
2)withK

(1),K(2) respectively to get (Ci
1, C

i
2).

ComputeCi
3 = Ci

1⊕δ,Ci
4 = Ci

2⊕δ. Then decrypt (Ci
3, C

i
4)withK

(3),K(4)

respectively to get (P i
3 , P

i
4).

(c) Check whether P i
3 ⊕ P i

4 = α, if so, store the quartet (Ci
1, C

i
2, C

i
3, C

i
4).

2. (a) Guess 128 bits of the final subkey words K9,a,K9,b and subtract them
with the corresponding words of each element of quartets stored in Step
1. If for all the quartets, whose resulting words satisfy that the XOR
differences before the key addition, we store this 128-bit subkey pair
(K9,a,K9,b).

(b) Similarly, sequently guess (K9,c,K9,d) and (K9,f ,K9,h) and checkwhether
the required conditions are satisfied. If yes, store the corresponding key
words.

3. Search the remaining 128 bits of the final subkey by brute force.

The complexity is dominated by Step 1, which is about 2181 32-round encryp-
tions. The expected number of quartets passed Step 2(a) for a false key is
4 × 2−6 = 2−4. Let Y be the number of the quartets passed Step 2(a) for a
false key, using the Poisson distribution, we have Pr(Y ≥ 4) ≈ 0. The expected
quartets passed Step 2(a) for the right key is 4. Let Z be the number of the
quartets passed Step 2(a) for the right key, Pr(Z ≥ 4) ≈ 0.9. The success rate
of Step 2(b) is similar.

6 Conclusions

In this paper, we apply the boomerang attack to distinguish the compression
function of Skein-512 reduced to 36 (out of 72) rounds from a random function.
We select the key difference in the 59-th bit instead of the difference in the most
significant bit to avoid the contradiction in the previous attack for boomerang
attacks on Threefish-512. We also point out that the differential paths used
in the boomerang distinguisher in the middle rounds are not independent. Our
boomerang distinguishers are applicable to the key recovery attack for Threefish-
512 reduced to 34 rounds. Future works on Skein-512 might apply the rebound
attack [8] to Threefish, although it looks very difficult to combine two short
differential paths to a long one.
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Abstract. SM3 is a hash function, designed by Xiaoyun Wang et al. and published
by the Chinese Commercial Cryptography Administration Office for the use of
electronic authentication service system. The design of SM3 builds upon the design
of the SHA-2 hash function, but introduces additional strengthening features. In
this paper, we present boomerang distinguishers for the SM3 compression function
reduced to 32 steps out of 64 steps with complexity 214.4, 33 steps with complexity
232.4, 34 steps with complexity 253.1 and 35 steps with complexity 2117.1. Examples
of zero-sum quartets for the 32-step and 33-step SM3 compression function are
provided. We also point out a slide-rotational property of SM3-XOR, which exists
due to the fact that constants used in the steps are not independent.

Keywords: Cryptanalysis, Boomerang attack, Rotational attack, Slide attack,
SM3.

1 Introduction

In December of 2007, the Chinese National Cryptographic Administration Bureau re-
leased the specification of a Trusted Cryptography Module detailing a cryptoprocessor
to be used within the Trusted Computing framework in China. The module specifies a
set of cryptographic algorithms that includes the SMS4 block cipher, the SM2 asym-
metric algorithm and SM3, a new cryptographic hash function designed by Xiaoyun
Wang et al. [1]. The design of SM3 resembles the design of SHA-2 but includes addi-
tional fortifying features such as feeding two message-derived words into each step, as
opposed to only one in the case of SHA-2.

The only previous work that we are aware of on the analysis of SM3 has been pre-
sented by Zou et al. [2] at ICISC 2011 where a preimage attack on step-reduced SM3 is
provided. In particular, Zou et al. presented attacks on SM3 reduced to 30 steps, starting
from the 7-th step, with time complexity 2249 and 28 steps, starting from the 1-st step
with time complexity 2241.5.
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The use of zero-sums as distinguishers have been introduced by Aumasson et al. [3].
The boomerang attack [4], originally introduced for block ciphers, has been adapted
to the hash function setting independently by Biryukov et al. [5], and Lamberger and
Mendel [6]. In particular, in [5], a distinguisher for the 7-round BLAKE-32 was pro-
vided, whereas in [6] a distinguisher for the 46-step SHA-2 compression function was
provided. The latter SHA-2 result was extended to 47 steps in [7]. In [8], Mendel
and Nad presented boomerang distinguishers for the SIMD-512 compression function.
Sasaki [9] gave a boomerang distinguisher on the full compression function of 5-pass
HAVAL. Sasaki also proposed a 2-dimension sums attack on 48-step RIPEMD-128
and 42-step RIPEMD-160 in [10]. Boomerang distinguishers have also been applied to
Skein and Threefish. In [11] Aumasson et al. proposed a related-key boomerang distin-
guisher on 34-step Skein and a known-related-key boomerang distinguisher on 35-step
Skein. In [12], Leurent and Roy showed that, under some conditions, three independent
paths instead of two can be combined to achieve a distinguisher for the compression
function with complexity 2114. In [13] Chen et al. proposed related-key boomerang
distinguishers on 32-step, 33-step and 34-step Threefish-512. Recently, Yu et al. [14]
proposed boomerang attacks on the 32-step, 33-step and 34-step Skein-512.

Khovratovich et al. introduced rotational distinguishers in [15], where two words
are said to be rotational if they are equal up to bit-wise rotation by some number of
positions. Slide attacks were introduced by Biryukov et al. [16] and subsequently were
applied to many cryptographic primitives.

Our Contribution. In the first part of this paper, we present a boomerang attack on the
SM3 hash function reduced to 32 steps out of 64 steps with complexity 214.4, 33 steps
with complexity 232.4, 34 steps with complexity 253.1 and 35 steps with complexity
2117.1. Particular examples of the boomerang distinguisher for the 32-step and also the
33-step compression function are provided. The previous results and a summary of ours
are given in Table 1.

In the second part of the paper, we present a slide-rotational property of SM3 and we
analyze the SM3-XOR compression function, which is the SM3 compression function
with the addition mod 232 replaced by XOR. In particular, we show that, for SM3-XOR,
one can easily construct input-output pairs satisfying a simple rotational property. Such
a property exists due to the fact that, unlike in SHA-2, the constants in steps i, i + 1,
for i = 0, . . . , 63, i � 15 are computed by bitwise rotation starting from two predefined
independent values. Previously, SHA2-XOR was analyzed in [17].

Paper Outline. The rest of the paper is organized as follows. In Section 2, we briefly
review the specifications of the SM3 hash function and give the notation used in this
paper. A brief overview of boomerang attacks is provided in Section 3. The differential
characteristics, and a description of the boomerang attack process and its complexity
evaluation are provided in Section 4. The slide-rotational property is explained in Sec-
tion 5. Finally, our conclusion is given in Section 6.
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Table 1. Summary of the attacks on the SM3 compression function (CF) and hash function (HF)

Attack CF/HF Steps Complexity Reference
Preimage attack HF 28 2241.5 [2]
Preimage attack HF 30 2249 [2]

Boomerang attack CF 32 214.4 Section 4
Boomerang attack CF 33 232.4 Section 4
Boomerang attack CF 34 253.1 Section 4
Boomerang attack CF 35 2117.1 Section 4

2 Description of SM3 and Notation

In this section, we briefly review relevant specifications of the SM3 hash function and
provide the notation used throughout the paper.

2.1 Description of SM3

The SM3 hash function compresses messages of arbitrary length into 256-bit hash val-
ues. Given any message, the algorithm first pads it into a message of length that is a
multiple of 512 bits. We omit the padding method here since it is irrelevant to our at-
tack. For our purpose, SM3 consists mainly of two parts: the message expansion and
the state update transformation. In here, we briefly review the relevant specifications
of these two components. For a detailed description of the hash function, we refer the
reader to [1].

Message Expansion. The message expansion of SM3 splits the 512-bit message block
M into 16 words mi, (0 ≤ i ≤ 15) , and expands them into 68 expanded message words
wi (0 ≤ i ≤ 67) and 64 expanded message words wi

′(0 ≤ i ≤ 63) as follows:

wi =

{
mi, 0 ≤ i ≤ 15,
P1(wi−16 ⊕ wi−9 ⊕ (wi−3 ≪ 15)) ⊕ (wi−13 ≪ 7) ⊕ wi−6, 16 ≤ i ≤ 67,

wi
′ = wi ⊕ wi+4, 0 ≤ i ≤ 63.

The functions P0(X) which is used in the state update transformation and P1(X) which
is used in message expansion are given by

P0(X) = X ⊕ (X ≪ 9) ⊕ (X ≪ 17),

P1(X) = X ⊕ (X ≪ 15) ⊕ (X ≪ 23).

State Update Transformation. The state update transformation starts from an initial
value IV = (A0, B0,C0,D0, E0, F0,G0,H0) of eight 32-bit words and updates them in
64 steps. In step i + 1(0 ≤ i ≤ 63) the 32-bit words wi and wi

′ are used to update the
state variables Ai, Bi,Ci,Di, Ei, Fi,Gi,Hi as follows:
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Fig. 1. One step of the SM3 hash function

S S 1i = ((Ai ≪ 12) + Ei + (Ti ≪ i))≪ 7,

S S 2i = S S 1i ⊕ (Ai ≪ 12),

TT1i = FFi(Ai, Bi,Ci) + Di + S S 2i + wi
′,

TT2i = GGi(Ei, Fi,Gi) + Hi + S S 1i + wi,

Ai+1 = TT1i, Bi+1 = Ai,Ci+1 = (Bi ≪ 9),Di+1 = Ci,

Ei+1 = P0(TT2i), Fi+1 = Ei,Gi+1 = (Fi ≪ 19),Hi+1 = Gi.

The round constants are Ti = 0x79cc4519 for i ∈ {0, ..., 15} and Ti = 0x7a879d8a, for
i ∈ {16, ..., 63}. As for the bitwise Boolean functions FF(X, Y, Z) and GG(X, Y, Z) used
in each step, we have

FF(X, Y, Z) =

{
X ⊕ Y ⊕ Z, 0 ≤ i ≤ 15,
(X ∧ Y) ∨ (X ∧ Z) ∨ (Y ∧ Z), 16 ≤ i ≤ 63,

GG(X, Y, Z) =

{
X ⊕ Y ⊕ Z, 0 ≤ i ≤ 15,
(X ∧ Y) ∨ (¬X ∧ Z), 16 ≤ i ≤ 63.

If M is the last block, then (A64 ⊕ A0, B64 ⊕ B0,C64 ⊕ C0,D64 ⊕ D0, E64 ⊕ D0, F64 ⊕
F0,G64⊕G0,H64⊕H0) is the hash value. Otherwise (A64⊕A0, B64⊕B0,C64⊕C0,D64⊕D0,
E64 ⊕D0, F64 ⊕F0,G64 ⊕G0,H64 ⊕H0) constitutes the input of the next message block.
One step of the SM3 compression function is depicted in Fig. 1.

2.2 Notation

Our attacks use the integer modular subtraction difference. In here, we introduce the
notation used in throughout the rest of the paper.
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1. X, Y, X′ and Y′ represent four 256-bit middle chaining values.
2. IVX , IVY , IVX′ and IVY′ represent four 256-bit initial values.
3. HX ,HY ,HX′ and HY′ represent four 256-bit outputs of the compression function.
4. MX ,MY ,MX′ and MY′ represent four 512-bit message blocks.
5. wi, j denotes the j-th bit of wi, 0 ≤ j ≤ 31.
6. (Wt)

j
i (t can be X, Y, X′ or Y′) denotes ( j− i+ 1) 32-bit words, wi to wj, where i < j.

7. S i[+ j] = S i + 2 j with no bit carry, S i[− j] = S i − 2 j with no bit carry, where S can
be w, A, B,C,D, E, F,G,H.

8. S Mc
i denotes the chaining value used in step i combined with the middle chaining

value Mc where Mc can be X, Y, X′, Y′, and S can be w,w′, A, B,C,D, E, F,G,H, S S 1,
or S S 2.

3 Boomerang Distinguishers for Hash Functions

In this section, we review known-related-key boomerang attacks which can be used to
distinguish a given permutation from a random oracle. We concentrate on the known-
related-key boomerang attack to the compression function in the Davies-Mayer mode,
i.e., CF(M,K) = E(M,K) ⊕ M. As noted in [5,7,9,14], we can start from middle steps
to construct boomerang distinguishers. Then we have

CF−1
0 (X,K1) ⊕CF−1

0 (X ⊕ β,K2) = α, (1)

and
CF1(X,K1) ⊕ CF1(X ⊕ γ,K3) = δ, (2)

where the differential in CF−1
0 holds with probability p0 and holds with probability p1

in CF1. Using these two differentials, we can construct the boomerang attack for the
compression function CF as follows:

1. Choose a random value X, compute the corresponding value X′ = X ⊕ β, Y =
X ⊕ γ, Y′ = Y ⊕ β and K2 = K1 ⊕ βk,K3 = K1 ⊕ γk,K4 = K3 ⊕ βk.

2. Compute backward from (X,K1), (X′,K2), (Y,K3), (Y′,K4) using CF−1
0 to obtain

P, P′,Q,Q′.
3. Compute forward from (X,K1), (X′,K2), (Y,K3), (Y′,K4) using CF1 to obtain C,C′,

D,D′.
4. Check whether P ⊕ P′ = Q ⊕ Q′ = α and C ⊕ D = C′ ⊕ D′ = δ.

From (1) and (2),

P ⊕ P′ = Q ⊕ Q′ = α and C ⊕ D = C′ ⊕ D′ = δ, (3)

holds with probability at least p2
0 in the backward direction and with probability at least

p2
1 in the forward direction. Hence, assuming that the differentials are independent, the

attack succeeds with probability p2
0 p2

1. The expected number of solutions to (3) is 1, if
we repeat the attack about 1/(p2

0 p2
1) times.

For an n-bit random permutation, there exist 3 types of boomerang distinguishers
which are summarized by Yu et al. in [14]. Here we recall the three distinguishers as
follows.
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– Type I: A quartet that satisfies P ⊕ P′ = Q ⊕ Q′ = α, and C ⊕ D = C′ ⊕ D′ = δ
where the differences α and δ are fixed. In this case, there exists a generic attack
with complexity 2n.

– Type II: A quartet that only satisfies the condition C ⊕ D = C′ ⊕ D′. This type of
attack is called second-order differential collision attack or zero-sum attack. In this
case, we can use Wagner’s generalized birthday attack [19] to obtain a quartet with
the complexity 2n/3.

– Type III: A quartet satisfies the conditions P ⊕ P′ = Q ⊕ Q′ and C ⊕ D = C′ ⊕ D′.
The complexity of this attack is about 2n/2.

In this paper, we apply a type III attack to develop distinguishers for 32/33/34/35 steps
of the SM3 compression function. Therefore, the attack is valid if p2

0 · p2
1 > 2−n/2.

4 Attacks on the SM3 Compression Function

In this section, we describe the proposed boomerang attack on the SM3 compression
function reduced to 32 steps, and then expend our attack to 33, 34 and 35 steps. Firstly,
we give a summary of the differential characteristics to be used to distinguish the target
compression function from random functions. Secondly, we describe how to use the
message modification technique to correct the conditions in the intermediate steps by
modifying the chaining values A16 to H16. We express our attack algorithm on 32-
step SM3 compression function in the third part of this section. Then we evaluate the
complexity of our attack and extend it to 33, 34 and 35 steps.

4.1 Differential Characteristics

In here, we mainly describe the differential characteristics which are used to attack 32-
step SM3 compression function. In Table 2, we present a differential characteristic in
the backward direction from step 16 to step 1 which holds with probability 2−67, and
the sufficient conditions that ensure that this characteristic holds. A differential charac-
teristic in the forward direction from step 17 to step 32 which holds with probability
2−34 and its associated sufficient conditions are presented in Table 3.

Finding the differential characteristics for both backward and forward directions is
an important part of the attack. We construct the differential characteristics as follows.

– The characteristic has a single bit difference in the message word wi at some step, i,
followed by 15 message words without differences. When using such characteristic,
12 steps (the ones that follow i) can be bypassed with probability 1. Because of the
fast diffusion of the difference coming from the message words, any characteristic
that does not follow this strategy will have a low probability.

– In the backward direction, the differences in the message words are chosen as
follows: Δw2 = [+31], Δwi = 0 (0 ≤ i ≤ 15, i � 2). Because Δw2= [+31] and
w2
′ = w2 ⊕ w6, we choose w6,31 = 0 to ensure that Δw2

′= [+31]. Since w18 =

P1(w2 ⊕w9 ⊕ (w15 ≪ 15))⊕ (w5 ≪ 7)⊕w12, by choosing proper w12,14,w12,22 and
w12,31, we can ensure that Δw18= [+14, +22, +31] holds. Combined with w14,i = 0
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Table 2. Differential characteristic for steps 1-16 using signed bit-wise differences (32 steps)

Step Differences of w w′ Pr Sufficient conditions
chaining values
B0:[+22] 2−6 A0,22 = C0,22,
C0:[-31] E0,12 = G0,12,
D0:[-22,+31] D0,22 = 1,D0,31 = 0,
F0:[+12] H0,i = 1(i = 12, 31),
G0:[-31]
H0:[-12,+31]

1 C1:[+31] 2−2 D1,31 = 1,
D1:[-31] H1,31 = 1.
G1:[+31]
H1:[-31]

2 D2:[+31] [+31] [+31] 2−2 D2,31 = 0,
H2:[+31] H2,31 = 0.

3 1
...

...
...

...
...
...

14 [+14,+22,+31] 1
15 A15:[+14,+22,+31] 2−57 A16,i = 0(i = 1, 2, 9, 11, 14, 18, 22, 26, 31),

B16,i = 0(i = 6, 14, 21, 22, 29, 31),
C16,8 = D16,31,C16,23 = D16,14,
C16,31 = D16,22,
(B16 ≪ 12) + F16 = −(T15 ≪ 15),
E16,i = 0(i = 1, 3, 9, 10, 18, 26, 27),⊕

i∈Λ j
E16,i = 0, j ∈ {1, 2, 3},

Λ1 = {6, 14, 15, 16, 22, 24, 30, 31},
Λ2 = {0, 6, 7, 14, 22, 23, 24, 30},
Λ3 = {0, 7, 15, 16, 23, 31}.

16 A16:[+1,+2,+9,+11,
+14,+18,+22,
+26,+31]

B16:[+14,+22,+31]
E16:[+1,+3,+9,+10
+18,+26,+27]

(i = 14, 22, 31), we can get Δw14
′= [+14, +22, +31]. So the differences of the mes-

sage words in the backward direction are Δw2 = [+31], Δw2
′ = [+31], Δw14

′ =
[+14,+22,+31], and all the other message words differences are zero.

If A15[+14,+22,+31] holds, then we can cancel the differences Δw14
′ = [+14,

+22,+31] in step 15, and skip 12 steps from step 15 to step 4 with probability 1.
The following is the derivation for the sufficient conditions in step 16 of Table 2.
The differential characteristic in step 16 is given by:
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Table 3. Differential characteristic for steps 17-32 using signed bit-wise differences

Step Differences of w w′ Pr Sufficient conditions
chaining values

16 A16:[-6] [+3,+4,+5, [+3,+4,+5,
D16:[-6,-11,-13, +11,+13, +11,+13,

-18,-19,-20, +19,+20, +19,+20,
-22,-25,-26] +22,+27] +22,+27]

E16:[-28]
H16:[-4,-5,-11,

-13,-19,-20,
-22,-25,-26]

17 B17:[-6] 2−27 A16,i = 1(i = 6, 23), A16,13 = 0,
F17:[-28] B16,6 = C16,6,

D16,i = 1(i = 6, 11, 13, 18, 19, 20, 22, 25, 26),
E16,28 = 1, F16,28 = G16,28,
H16,i = 1(i = 4, 5, 11, 13, 19, 20, 22, 25, 26).
S S 116,i = 1(i = 3, 18, 25).

18 C18:[-15] 2−2 A17,6 = C17,6,
G18:[-15] E17,28 = 0.

19 D19:[-15] [+15] [+15] 2−2 A18,15 = B18,15,
H19:[-15] E18,15 = 1.

20 1
...

...
...

...
...

...

31 [±6,+15,+30]1 1
32 A32:[±6,+15,+30] 2−3

1 The difference of w2 affects w31,6. In other words, if we choose wX
31,6−wY

31,6 = +1, then the difference
wX′

31,6 − wY′
31,6 = −1, and vice versa (We used ” ± ” to denote this fact). Note that this does not affect

the XOR-differences in step-32.

(A16[+1,+2,+9,+11,+14,+18,+22,+26,+31], B16[+14,+22,+31],C16,D16,

E16[+1,+3,+9,+10,+18,+26,+27], F16,G16,H16) −→
(A15[+14,+22,+31], B15,C15,D15, E15, F15,G15,H15).

1. Because A15 = B16, B15 = (C16 ≫ 9),C15 = D16, E15 = F16, F15 = (G16 ≫
19) and G15 = H16, we choose (B16 ≪ 12)+F16 = −(T15 ≪ 15) to ensure that
ΔS S 1 = Δ((B16 ≪ 12)+F16 + (T15 ≪ 15)) ≪ 7 = [+1,+9,+18] holds and
the conditions B16,i = 0(i = 6, 21, 29) ensure that ΔS S 2 = ΔS S 1 ⊕ Δ(B16 ≪
12)= [+1,+2,+9,+11,+18,+26] holds.

2. The conditions B15,i = C15,i, (i = 14, 22, 31), i.e., C16,8=D16,31, C16,23=D16,14

and C16,31=D16,22 ensure that ΔFF15(A15, B15, C15)= ΔFF15(B16, C16 ≫ 9,
F16)= [+14,+22,+31] hold. Combined with Δw15

′ = 0, we can get ΔD15 =

ΔA16 - (ΔFF15(B16, C16 ≫ 9, D16) + ΔS S 2 + Δw15
′) = 0. Similarly, the

conditions
⊕

i∈Λ j
E16,i = 0, j ∈ {1, 2, 3}, Λ1 = {6, 14, 15, 16, 22, 24, 30, 31},

Λ2 = {0, 6, 7, 14, 22, 23, 24, 30},Λ3 = {0, 7, 15, 16, 23, 31} ensure that ΔH15 = 0
holds.

Thus the above conditions constitute a set of sufficient conditions for the differential
characteristic in step 16.
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Table 4. Differential characteristic for steps 1-16 using signed bit-wise differences (33 steps)

Step Differences of w w′ Pr Sufficient conditions
chaining values
B0:[+22] 2−6 A0,22 = C0,22,
C0:[-31] E0,12 = G0,12,
D0:[-22,+31] D0,22 = 1,D0,31 = 0,
F0:[+12] H0,i = 1(i = 12, 31).
G0:[-31]
H0:[-12,+31]

1 C1:[+31] 2−2 D1,31 = 1,
D1:[-31] H1,31 = 1.
G1:[+31]
H1:[-31]

2 D2:[+31] [+31] [+31] 2−2 D2,31 = 0,
H2:[+31] H2,31 = 0.

3 1
...

...
...

...
...

...

14 [+14,+22,+31] 1
15 A15:[+14,+22,+31] 2−59 A16,i = 0(i = 3, 9, 11, 14, 15, 16, 17, 22, 26, 31),

A16,1 = 1, B16,i = 0(i = 6, 14, 21, 22, 29, 31),
C16,8 = D16,31,C16,23 � D16,14,C16,31 = D16,22,
(B16 ≪ 12) + F16 = −(T15 ≪ 15),
E16,i = 0(i = 1, 3, 9, 10, 18, 26, 27),⊕

i∈Λ j
E16,i = 0, j ∈ {1, 2, 3},

Λ1 = {6, 14, 15, 16, 22, 24, 30, 31},
Λ2 = {0, 6, 7, 14, 22, 23, 24, 30},
Λ3 = {0, 7, 15, 16, 23, 31}.

16 A16:[-1,+3,+9,+11,
+14,+15,+16,
+17,+22,
+26,+31]

B16:[+14,+22,+31]
E16:[+1,+3,+9,+10
+18,+26,+27]

– In the forward direction, we choose the message differences as follows: Δw19 =

[+15], Δwi = 0(20 ≤ i ≤ 34). Since w19
′ = w19 ⊕ w23, we choose w23,15 = 0

to ensure that Δw19
′ = [+15]. Because Δw19 = [+15] and w19 = P1(w3 ⊕ w10

⊕(w16 ≪ 15)) ⊕ (w6 ≪ 7) ⊕ w13, let w3 ⊕ w10 = 0 and (w6 ≪ 7) ⊕ w13 = 0,
to get Δw16= [+3,+4,+5,+11,+13, +19, +20, +22, +27]. If we choose w20,i = 0,
(i = 3, 4, 5, 11, 13, 19, 20, 22, 27) and w23,15 = 0, from w16

′ = w16 ⊕ w20, we can
get Δw16

′ = Δw16. Because w35 =P1(w19 ⊕ w26 ⊕ (w32 ≪ 15)) ⊕(w22 ≪ 7) ⊕ w29

and w31
′ = w31 ⊕ w35, we choose w31,i = 0 (i = 6, 15, 30), such that Δw31

′ =
[±6,+15,+30]1.

1 Because w31 =P1(w15 ⊕ w22 ⊕ (w28 ≪ 15)) ⊕(w18 ≪ 7) ⊕ w25 and Δw18= [+14, +22, +31]
in the backward direction, if we choose wX

31,i = 0 and wY
31,i = 1(i = 6, 15, 30), then the bits

in wX′
31 and wY′

31 are wX′
31,i = 0(i = 15, 30), wX′

31,6 = 1 and wY′
31,i = 1(i = 15, 30), wY′

31,6 = 0. So
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Table 5. Differential characteristic for steps 17-33 using signed bit-wise differences

Step Differences of w w′ Pr Sufficient conditions
chaining values

16 C16:[-0,-2,-5,-6,-18, [+27]
-23,-25,-30,-31]

D16:[-27]
G16:[-0,-2,-5,-6,-16,

-17,-23,-25,-31]
H16:[-3,-8,-10,-11,

-19,-26,-27]
17 A17:[-18] [+0,+2,+7, [+0,+2,+7, 2−54 A16,i=B16,i(i = 0, 2, 5, 6, 23, 25, 30, 31),

D17:[-0,-2,-5,-6,-18, +15,+16, +15,+16, A16,18 � B16,18,
-23,-25,-30,-31] +17,+23, +17,+23, C16,i = 1(i = 0, 2, 5, 6, 18, 23, 25, 30, 31),

E17:[-8] +25,+31] +25,+31] T T 116,8 = 0,D16,27 = 1,
H17:[-0,-2,-5,-6,-16, E16,i=1(i = 0, 2, 5, 6, 16, 23, 31),

-17,-23,-25,-31] E16,i = 0(i = 17, 25),
G16,i = 1(i = 0, 2, 5, 6, 16, 17, 23, 25, 31),
H16,i = 1(i = 3, 8, 10, 11, 19, 26, 27),
T T 216,i = 1(i = 3, 8, 10, 11, 17, 19, 25, 26, 27).

18 B18:[-18] 2−9 A17,i = 1(i = 3, 18), A17,25 = 0,
F18:[-8] B17,18 = C17,18,

E17,8 = 1, F17,8 = G17,8,
S S 117,i = 1(i = 5, 15, 30).

19 C19:[-27] 2−2 A18,18 = C18,18,
G19:[-27] E18,8 = 0.

20 D20:[-27] [+27] [+27] 2−2 A19,27 = B19,27,
H20:[-27] E19,27 = 1.

21 1
...

...
...

...
...

...

32 [+10,+18,+27] 1
33 A32:[+10,+18,+27] 2−3

In this case, the massage word differences in the forward direction are Δw16 =

Δw16
′= [+3,+4,+5,+11,+13,+19,+20,+22,+27],Δw19 = Δw19

′ = [+15],Δw31
′=

[±6,+15,+30], and all the other message words differences are zero.

The following is the derivation for the sufficient conditions for step 17 in Table 3.
The differential characteristic in step 17 is given by:

(A16[−6], B16,C16,D16[−6,−11,−13,−18,−19,−20,−22,−25,−26], E16[−28], F16,

G16[+28],H16[−4,−5,−11,−13,−19,−20,−22,−25,−26]) −→
(A17, B17[−6],C17,D17, E17, F17[−28],G17,H17).

the difference of w2 affects w31,6. In other words, if we choose wX
31,6 − wY

31,6 = +1, then the
difference wX′

31,6 − wY′
31,6 = −1, and vice versa (We used ” ± ” to denote this fact). Note that this

does not affect the XOR-differences in step 32.
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1. From ΔA16 = [−6] and B16,6 = C16,6, we get ΔFF16(A16, B16,C16) = 0. From
ΔE16 = [−28] and F16,28 = G16,28, we get ΔGG16(E16, F16,G16) = 0.

2. From ΔA16 = [−6] and ΔE16 = [−28], it follows that the conditions S S 116,3 =

1, S S 116,25 = 1 ensure ΔS S 116 = [−3,−25]. Combined with the conditions
S S 116,18 = 1, A16,13 = 0 and A16,23 = 1, we can get ΔS S 216 = [+3,+18,−25].
Therefore, ΔA17 = ΔTT116 = 0, and ΔE17 = ΔP0(TT216) = 0.

Thus the above conditions constitute a set of sufficient conditions for the differential
characteristic in step 17.

4.2 Message Modification

We use the message modification technique which has been introduced by Wang et
al. [18] to improve the complexity of our attack. We can modify the chaining val-
ues A16 to H16 to ensure that almost all the conditions in Ai to Hi (i=17,18,19) hold.
For example, in the backward direction, we can modify E16,i(i = 6, 15) to make the
sufficient conditions

⊕
i∈Λ j

E16,i = 0, j∈ {1, 2, 3}, Λ1 = {6, 14, 15, 16, 22, 24, 30, 31},
Λ2 = {0, 6, 7, 14, 22, 23, 24, 30},Λ3 = {0, 7, 15, 16, 23, 31} hold.

In Table 3, there are 31 sufficient conditions from step 17 to step 19 in each dif-
ferential. We can correct all the sufficient conditions in one differential by using mes-
sage modification techniques, and the sufficient conditions S S 116,i = 1(i = 3, 18, 25),
A17,6 = C17,6, E17,28 = 0, A18,15 = B18,15 and E18,15 = 1 are not corrected in another
differential. So the probability of step 17 to step 19 can be improved from 2−2×31 =

2−62 to 2−7. In Table 5, there are 63 sufficient conditions from step 17 to step 18 in
each differential. We can correct all the sufficient conditions in one differential by us-
ing message modification techniques. However, the sufficient conditions TT116,8 = 0,
TT216,i = 1(i = 3, 8, 10, 11, 17, 19, 25, 26, 27), A17,i = 1(i = 3, 18), A17,25 = 0, E17,8 = 1
and S S 117,i = 1(i = 5, 15, 30) are not corrected in the other differential. So the proba-
bility of step 17 to step 18 can be improved from 2−2×63 = 2−126 to 2−17. Consequently,
in this case, the probability of step 17 to step 20 can be improved from 2−2×67 = 2−134

to 2−17−2×4 = 2−25.

4.3 Boomerang Attacks on the 32-Step SM3 Compression Function

The attack algorithm on 32-step SM3 compression function can be summarized as
follows.

1. Choose a random 512-bit message M and expand it to 36 words. Set proper message
words as in section 4.1 to ensure that Δw2 = [+31], Δw2

′ = [+31], Δw14
′= [+14,

+22, +31] in the backward direction, and Δw16 =Δw16
′= [+3,+4, +5, +11, +13,

+19,+20, +22, +27], Δw19 = [+15], Δw19
′= [+15], Δw31

′= [±6, +21, +29] in
the forward direction. Let MX = M, MX′ = M ⊕ Δw2. Expend the messages MX

and MX′ to 36 words WX and WX′ , respectively. Let WY = WX ⊕ Δw19 and WY′ =

WX′ ⊕ Δw19. Then we use the 16 words (WY)34
19 and (WY′ )34

19 to get two 36-word
(WY )35

0 and (WY′ )35
0 by using the message expansion algorithm. Let MY = (WY )15

0 ,
MY′ = (WY′ )15

0 .
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Table 6. Example of a quartet for 32 steps of the SM3 compression function

Message
MX ecffec51 192fa6b4 6314d06c f86f5604 ed6f140d 4597860c 3a4ccc9a b78b2ded

6a5b06f8 33169484 355b11c5 6b81ddd0 1e58820e 78fa46f6 742b217f 4669940f
MX′ ecffec51 192fa6b4 e314d06c f86f5604 ed6f140d 4597860c 3a4ccc9a b78b2ded

6a5b06f8 33169484 355b11c5 6b81ddd0 1e58820e 78fa46f6 742b217f 4669940f
MY e8fff051 1bafa634 6b4cf854 a86ff654 6dea968e 4597060c 524cc49a b78b25ed

6a5b06f8 430624d4 3d5311d5 6b81ddd0 1e58020e 50fa4ef6 742b217f 4669940f
MY′ e8fff051 1bafa634 eb4cf854 a86ff654 6dea968e 4597060c 524cc49a b78b25ed

6a5b06f8 430624d4 3d5311d5 6b81ddd0 1e58020e 50fa4ef6 742b217f 4669940f
Chaining Value

IVX 0d548434 6f039a92 3d5fb868 01b03347 29c6a571 0d8b6217 4f2359fa d6a363f4
IVX′ 0d548434 6f439a92 bd5fb868 81703347 29c6a571 0d8b7217 cf2359fa 56a373f4
IVY 792457dc 8f057732 6137fcd4 7899b663 948b29bf d5f5a832 d9ae3751 c747e405
IVY′ 792457dc 8f457732 e137fcd4 f859b663 948b29bf d5f5b832 59ae3751 4747f405
HX a1e82b03 54b1bb42 2563b063 e514d921 a0eaf1fa 632d0eef e2a999cf ad4964d1
HX′ 3fd356c7 ca7f9b81 3a9694d6 31d02769 b454a3bd c2d2dc37 45ffc720 2e319c71
HY e1e8ab43 54b1bb42 2563b063 e514d921 a0eaf1fa 632d0eef e2a999cf ad4964d1
HY′ 7fd3d687 ca7f9b81 3a9694d6 31d02769 b454a3bd c2d2dc37 45ffc720 2e319c71

2. Randomly choose the chaining values A16, B16, C16, D16, E16, G16 and H16 such
that almost all the conditions used in step 16 and step 172 in Table 2 and Table 3
hold.

3. By using the message modification technique, modify A16,19, H16,28, C16,15 and
G16,15 to make the sufficient conditions A17,6 = C17,6, E17,28 = 0, A18,15 = B18,15

and E18,15 = 1 hold in one of the differentials in the forward direction.
4. Use state update transformation process to get IVX , IVY , IVX′ , IVY′ , HX , HY , HX′

and HY′ . Check whether IVX ⊕ IVX′= IVY ⊕ IVY′ and HX ⊕ HY= HX′ ⊕ HY′ hold.
5. If a quartet is found, then a distinguisher is found. Repeat the above 4 steps with

different messages and chaining values (A16 to H16) until a distinguisher is found.

4.4 Complexity of the Attack

Using the differential characteristics and the message modification technique, we can
construct the boomerang attack for the SM3 compression function reduced to 32 steps.

In the backward direction, all the sufficient conditions used in step 16 can be set in
both of the differentials and the sufficient conditions used in step 3 to step 1 cannot
be corrected in both of the differentials. So the differential characteristic used in the
backward direction holds with probability 2−10. Thus both of the differentials used in
the backward direction hold with probability 2−10×2 = 2−20. In the forward direction, 7
sufficient conditions, from step 17 to step 19, are not corrected in one of the differen-
tials by using message modifications and in step 32, non of the sufficient conditions is
corrected in both of the differentials. Thus both of the differentials used in the forward
direction hold with probability 2−7−3×2 = 2−13 after the message modification.

Hence, we can give a boomerang attack on 32-step SM3 with complexity 220+13 =

233. We can also use the amplified differential characteristics to improve the complexity
of the attack. In this case, both of the two differentials used in the backward direction
hold with probability 2−3.2 and the two differentials used in step 32 hold with probability

2 All the conditions used in step 16 can hold in both of the differentials. In step 17 the conditions
S S 116,i = 1(i = 3, 18, 25) cannot be corrected in one of the differentials and all the other
conditions can hold.
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2−4.2. So we can get a 32-step boomerang distinguisher with complexity 23.2+7+4.2 =

214.4. An example of a 32-step boomerang distinguisher (quartet) is presented in Table 6.

4.5 Attacks on 33/34/35 Steps SM3 Compression Function

In what follows we extend the proposed boomerang distinguisher to the 35-step SM3
compression function. First, we obtain a new 33-step boomerang distinguisher and then
extend it to 35 steps. If we simply add one step in the forward differential characteristic
in Table 3, this will result in some contradictions in A16 and E16 between Table 2 and
Table 3. So we choose the message words differences as follows: Δw2 = [+31], Δwi = 0
(0 ≤ i ≤ 15, i � 2) in the backward direction, and Δw20 = [+27], Δwi = 0(21 ≤ i ≤ 35)
in the forward direction.

We also correct ΔA16 = [−1,+3,+9,+11,+14,+15,+16,+17,+22,+26,+31] and
change one of the sufficient conditions C16,23 = D16,14 to C16,23 � D16,14.

In this case, the backward direction is from step 16 to step 1 and the differential
characteristic which is given in Table 4 holds with probability 2−3.2. The forward di-
rection is from step 17 to step 33 and the differential characteristic is given in Table 5
where 25 sufficient conditions are not corrected in one of the differentials by using
message modifications. So the forward differential characteristic holds with probability
2−25−4.2 = 2−29.2. So we can get the 33-step boomerang distinguisher with complexity
23.2+29.2 = 232.4. In step 34 both of the differentials hold with probability 2−20.7 using the
amplified differential characteristics. Thus we obtain a 34-step boomerang distinguisher
with complexity 232.4+20.7 = 253.1. We also assume A35 and E35 all have 32-bit differ-
ences. Thus the 35-step boomerang distinguisher has a complexity≈ 253.1+2×32 = 2117.1.

5 A Slide-Rotational Property of SM3-XOR

In this section, we show that, in the case of the full SM3-XOR, pairs satisfying a certain
rotational relation can be easily generated. An example of such a pair for the SM3-XOR
is provided in Table 8. Such a property is not known to exist for SHA2-XOR [17].

The above mentioned property exists due to the fact that the constants over the 64
steps of SM3 are related. According to the SM3 specification, in steps j ∈ {0, . . . , 15},
one constant rotated by j is utilized, whereas the other constant rotated by j is used in
steps j ∈ {16, . . . , 63}. Since operations like XOR, FFi, GGi, 0 ≤ i < 64, that are used
in the SM3-XOR step function preserve the rotational property, it is natural to attempt a
rotational attack, as provided below. We note that if instead of SM3-XOR, the original
SM3 compression function is used, the addition mod 232 transforms the attack into a
probabilistic one, as outlined below. Due to the high number of additions per step, it
appears difficult to exploit this rotational property directly and therefore the security of
the SM3 compression function, at this stage of analysis, does not seem to be directly
affected.

Two 32-bit words X, Y are said to be rotational if X = Y <<< n. Let messages W and
W∗ satisfy W∗1 = W0 <<< 1,W∗2 = W1 <<< 1, . . . ,W∗16 = W15 <<< 1. Below, a procedure for
the instant generation of pairs v, v∗ such that
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Table 7. Example of a quartet for 33 steps of the SM3 compression function

Message
MX 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
MX′ 00000000 00000000 80000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
MY 04001c00 02800080 08582838 5000a050 80858283 00008000 68000800 00000800

00000000 7010b050 08080010 00000000 00008000 28000800 00000000 00000000
MY′ 04001c00 02800080 88582838 5000a050 80858283 00008000 68000800 00000800

00000000 7010b050 08080010 00000000 00008000 28000800 00000000 00000000
Chaining Value

IVX 274e6355 3333edb0 14f1b3d9 7be58154 d969d138 bb60c21a ff5909df e92dce5d
IVX′ 274e6355 3373edb0 94f1b3d9 fba58154 d969d138 bb60d21a 7f5909df 692dde5d
IVY 28b7b4d8 fe5f1155 93973138 c10d3808 32d4319b dc8de94e ef594319 8ef80fe1
IVY′ 28b7b4d8 fe1f1155 13973138 414d3808 32d4319b dc8df94e 6f594319 0ef81fe1
HX 52793642 8017615c fbf548ba 8b05cf67 dcb79a73 e1035e10 2caefeae 701d22d9
HX′ 772427a1 b2064c80 0dd79a89 2a809122 8bc2413f 8dd6b954 bad8867b 06c59c18
HY 987f3286 c017e19c fbf548ba 8b05cf67 dabd9677 e1035e10 2caefeae 701d22d9
HY′ bd222365 f206cc40 0dd79a89 2a809122 8dc84d3b 8dd6b954 bad8867b 06c59c18

Table 8. An example for a slide-rotational pair for the SM3-XOR compression function

A1 , B1 , . . . ,H1 0x565060b7 0x125d5655 0x285c7653 0xea f 5 f e1e
0xda8bd7dd 0xb8bb1904 0x43bca f 18 0x7c f 88895

W1
0 , . . . ,W

1
15

0x8 f 450bbd 0x4a0c9922 0x73dd44 f 8 0x9eceaa f 8
0x33b13e20 0xb59d9c33 0x6b5a5 f 23 0xc0d2b468
0x7a9a1e16 0xa f f 62878 0x3 f bb01 f 4 0x75278787
0xac0b849e 0x498 f 3045 0x62687c15 0xd3498eb

A2 , B2 , . . . ,H2 0x24baacaa 0x53285c76 0xd5eb f c3d 0xd f 1ee2a6
0x71763209 0x2bc610e f 0x f 9 f 1112a 0x f f eb86a4

W2
0 , . . . ,W

2
15

0x7e f a7542 0x1e8a177b 0x94193244 0xe7ba89 f 0
0x3d9d55 f 1 0x67627c40 0x6b3b3867 0xd6b4be46
0x81a568d1 0x f 5343c2c 0x5 f ec50 f 1 0x7 f 7603e8
0xea4 f 0 f 0e 0x5817093d 0x931e608a 0xc4d0 f 82a

v∗1 = v0 <<< 1, v∗2 = v1 <<< 8, v∗3 = v2 <<< 1

v∗5 = v4 <<< 1, v∗6 = v5 <<< 18, v∗7 = v6 <<< 1

V∗1 = V0 <<< 1,V∗2 = V1 <<< 8,V∗3 = V2 <<< 1

V∗5 = V4 <<< 1,V∗6 = V5 <<< 18,V∗7 = V6 <<< 1

(4)

is provided, where V = SM3-XOR(v,W), V∗ = SM3-XOR(v∗,W∗) and vi,Vi for 0 ≤
i ≤ 7 denote i-th 32-bit word in the v and V , respectively. For a random function, a
random (v,W), (v∗,W∗) satisfying the above constraints will yield the corresponding V
and V∗ with probability 2−6×32 = 2−192, since (4) imposes 6 32-bit conditions on V , V∗.

5.1 Constructing a Slide-Rotational Pair

In this section, step i denotes the transformation from (Ai, Bi,Ci,Di, Ei, Fi,Gi,Hi) to
(Ai+1, Bi+1,Ci+1,Di+1, Ei+1, Fi+1,Gi+1,Hi+1). For example by step 0 the first compres-
sion function step is denoted. We start by the following observations:

- The slide rotational messages expand to slide-rotational expanded messages with
probability 1. In particular, fix W0, . . . ,W15 and let

W∗1 = W0 <<< 1,W∗2 = W1 <<< 1, . . . ,W∗16 = W15 <<< 1 (5)

After expanding both W and W∗, we have W∗i+1 = Wi <<< 1, for i = {0, 1, . . . , 62}
and also W

′∗
i+1 = W′i <<< 1, for i = {0, 1, . . . , 66}.
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- We recall that Ti, 0 ≤ i ≤ 63 are the step constants. If we have

W∗i+1 = Wi <<< 1,W
′∗
i+1 = W′i <<< 1, Ti+1 = Ti <<< 1 (6)

A∗i+1 = Ai <<< 1, B∗i+1 = Bi <<< 1, . . . ,H∗i+1 = Hi <<< 1 (7)

for i = k, then (7) will also hold for i = k + 1, where k = 0, . . . , 62.

The observations above suggest that sliding can be introduced, as depicted in Fig. 2.
Namely, consider randomly initializing W and letting W∗ satisfy (5). Moreover,

A0, B0 . . . ,H0 is chosen randomly and the inner state registers after the first step in
the second instance of the hash function are initialized according to (7). Then, until step
15, due to (6), the rotational property in the inner state registers will be preserved. Once
the two instances reach steps 15 and 16, respectively, a different step transformation is
applied in the two instances and the rotational property may discontinue. This problem
is bypassed by starting from the middle, i.e., by populating the inner states entering the
critical steps 15 and 16 (see Fig. 2).

5.2 Bypassing Steps 15 and 16

The idea is to start by populating the inner states entering the critical steps 15 and 16
(see Fig. 2). In particular, a rotational pair (A15, . . . ,H15), (A∗16, . . . ,H

∗
16) is carefully

chosen so that (A16, . . . ,H16) and (A∗17, . . . ,H
∗
17) satisfy relation (7). It should be noted

that the rotational property may be destroyed only between A16 and A∗17 and between
E16 and E∗17, since the other registers go through identical rotational-preserving trans-
formations in step 15 and step 16. As for A16 and A∗17, for the purpose of tracking the
possible rotational disturbance between the two registers, the equation to compute these
two registers can be rewritten as

A15 B15 C15 D15 E15 F15 G15 H15

…
 

…
 

…
 

…
 

A63

B64

B0

B0 B64

A’16 B’16 C’16 F’16E’16

F’15

G’16 H’16

…
 

…
 

…
 

…
 

A’64

A’0 A’64

D’16

A’0

B’1
<<< 1

<<< 1

<<< 1

…
 

…
 

Fig. 2. The slide-rotational attack against SM3-XOR
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A16 = FF15(A15, B15,C15) ⊕ (T15 <<< 22) ⊕ α (8)

A∗17 = FF16(A∗16, B
∗
16,C

∗
16) ⊕ (T16 <<< 23) ⊕ α∗ (9)

where α = D15 ⊕ W15 ⊕ W19 ⊕ (((A15 <<< 12) ⊕ E15) <<< 7) ⊕ (A15 <<< 12) and α∗ =
D∗16 ⊕W∗16 ⊕W∗20 ⊕ (((A∗16 <<< 12) ⊕ E∗16) <<< 7) ⊕ (A∗16 <<< 12). Since (7) and (6) hold for
i = 15, α∗ = α <<< 1. Therefore, to have A16 and A∗17 be a rotational pair, it suffices to
make FF15(A15, B15,C15)⊕(T15 <<< 22) and FF16(A∗16, B

∗
16,C

∗
16)⊕(T16 <<< 23) satisfy the

rotational property. After expressing A∗16, B∗16, C∗16 in terms of A15, B15, C15 and using
that FF15 and FF16 preserve the rotational property, the condition can be expressed in
terms of A15, B15, C15 as follows:

FF15(A15, B15,C15) ⊕ FF16(A15, B15,C15) = (T15 ⊕ T16) <<< 22 (10)

When applied on 1-bit values X, Y and Z, the equation FF15(X, Y, Z)⊕FF16(X, Y, Z) = 0
is satisfied for 2 out of 8 (X, Y, Z) values. Since the Hamming weight of the right-hand
side of (10) is equal to 14, the number of solutions to the equation is 218 × 614 =

232×314. As for preserving the rotational property between E16 and E∗17, developing the
registers as in (8) and then forming the equation of the form (10) yields that the number
of solutions E15, F15 and G15 is 432 = 264. Therefore, the number of solutions for
(A15, . . . ,H15) that pass the disturbance in steps 15 and 16 is 232×314×264×264 ≈ 2182.19,
since D15 and H15 are free variables. For such pairs, it follows that relations (4) are
satisfied.

When instead of SM3-XOR, the SM3 compression function is considered, this prop-
erty turns into a probabilistic one. Following [15], if pr = P[(x <<< r) + (y <<< r) =
(x + y) <<< r] where x and y are 32-bit words, then p1 = 2−1.415. Since there exists 8
additions in one SM3 step, the probability that one step and its corresponding slided
step will preserve the rotational property is given by (p1)8 = 2−11.320 [15].

6 Conclusions

In this paper, we have shown an application of the boomerang-style attack on the step-
reduced SM3 compression function. In particular, we presented distinguishing attacks
for 32 steps of the compression function with complexity 214.4, 33 steps with complexity
232.4, 34 steps with complexity 253.1 and 35 steps with complexity 2117.1. Our results
suggest that 35-step SM3 compression does not behave randomly. In the second part of
the paper, a slide-rotational property of SM3-XOR function is exposed and an example
of a slide-rotational pair for SM3-XOR compression function is given.
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Abstract. We analyze the security of the SHA-3 finalist BLAKE. The
BLAKE hash function follows the HAIFA design methodology, and as
such it achieves optimal preimage, second preimage and collision resis-
tance, and is indifferentiable from a random oracle up to approximately
2n/2 assuming the underlying compression function is ideal.

In our work we show, however, that the compression function
employed by BLAKE exhibits a non-random behavior and is in fact
differentiable in only 2n/4 queries. Our attack undermines the provable
security strength of BLAKE in the ideal compression function model, not
only with respect to its overall indifferentiability but also its collision and
(second) preimage security. Our next contribution is the restoration of
the security results for BLAKE in the ideal model by refining the level
of modularity and assuming that BLAKE’s underlying block cipher is
an ideal cipher. We prove that BLAKE is optimally collision, second
preimage, and preimage secure (up to a constant). We go on to show
that BLAKE is still indifferentiable from a random oracle up to the old
bound of 2n/2 queries, albeit under a weaker assumption: the ideality of
its block cipher.

1 Introduction

Hash functions are a main building block for numerous cryptographic applica-
tions. Due to a series of attacks on the widely deployed SHA-1 hash function
by Wang et al. [20], the US National Institute for Standards and Technology
(NIST) recommended the replacement of SHA-1 by the SHA-2 hash function
family and announced a call for the design of a new SHA-3 hashing algorithm
in 2007 [17]. Five candidates, BLAKE [4], Grøstl [13], JH [21], Keccak [7] and
Skein [12], made it to the third and final round of the competition. Evaluating
the security of the remaining five SHA-3 candidates is crucial and particularly
relevant in the ongoing process for the selection of the finalist hash function due
by the end of 2012.

The focus of this work is the provable security of the BLAKE SHA-3 hash
function candidate. To assess the security of BLAKE, we follow the security
criteria listed by NIST in their call for a new SHA-3 hash function: collision,
second preimage, preimage security and resistance to the length extension at-
tacks. The BLAKE hash function is designed by Aumasson et al. [4], and follows

L.R. Knudsen and H. Wu (Eds.): SAC 2012, LNCS 7707, pp. 321–338, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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the HAIFA design methodology of Biham and Dunkelman [8]. Its underlying
compression function f employs internally a block cipher E and exhibits some
similarities with the Davies-Meyer compression function. As described in the
SHA-3 provable security survey by Andreeva et al. [2], BLAKE inherits preim-
age, second preimage, collision, and indifferentiability security guarantees of the
HAIFA design, assuming ideality of the underlying compression function. More
precisely, due to the specific HAIFA counter BLAKE is indifferentiable from a
random oracle in the indifferentiability framework of Maurer et al. [15]. The
advantage of an adversary against the collision and (second) preimage security
of BLAKE is upper bounded by approximately q2/2n and q/2n, respectively.
While all of these results are true in the ideal compression function model, no
concrete (in)differentiability results are known for the BLAKE compression func-
tion, which is the main motivation for this work.

Our Contributions. Firstly, in Sect. 3 we present an attack on the BLAKE
compression function f , which shows that f is differentiable from a random
oracle in 2n/4 queries. This is less than ideally expected, and as a consequence
the existing BLAKE indifferentiability bound, together with the collision and
(second) preimage security bounds from [2], are reduced by a square root. These
findings yield a provable security level that is not compliant with the NIST
security requirements. The indifferentiability attack is a serious motivation for
carrying out further security analysis of the BLAKE mode of operation in a
way that restores its security guarantees. One approach in this direction is to
refine the level of modularity in the security analysis and to investigate security
properties of the BLAKE mode of operation under the assumption that the
underlying block cipher E, rather than the compression function, is ideal.

This brings us to our second contribution, which is presented in Sect. 4. In
the ideal cipher model, we conclude optimal (up to a constant) collision and
(everywhere) preimage security of f . This result is important to establish a strong
confidence in the security of f in the sense that even if f exhibits some non-
ideal behavior, its collision and preimage security are not compromised when E
behaves close to ideal. Furthermore, due to the collision and everywhere preimage
resistance preservation of the HAIFA design [3], the BLAKE mode of operation
inherits the optimal security of f with respect to both properties.

Next, in Sect. 5 we reconsider the second preimage resistance of BLAKE. As
a HAIFA design, BLAKE does not preserve second preimage resistance [3], and
proving second preimage security of BLAKE’s compression function does not di-
rectly translate to the second preimage security of BLAKE. To assess the second
preimage security of BLAKE, we therefore analyze directly the BLAKE mode of
operation in the ideal cipher model and prove it optimally (everywhere) second
preimage resistant, up to a constant. This result confirms BLAKE’s resistance
against the second preimage attacks of Dean [11] and Kelsey and Schneier [14],
even when the non-ideal compression function of BLAKE is employed.

Finally, in Sect. 6 we restore the indifferentiability result of BLAKE to the
old bound of approximately 2n/2 queries by giving a proof with an ideal un-
derlying block cipher E. We show that despite the differentiability of BLAKE’s
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compression function f , in the ideal cipher model the BLAKE mode of operation
does not suffer structural design flaws. We summarize our results on BLAKE in
Table 1.

Our results amount to an important contribution to the security analysis of the
SHA-3 finalist BLAKE in a way that addresses all the security criteria of NIST
listed in their call for a new SHA-3 hash function. We provide a thorough investi-
gation of these security properties for BLAKE in the ideal block cipher model.

Table 1. A summary of our results on the BLAKE hash functionH and its compression
function f in the ideal block cipher model. The bounds denote the required number of
queries to mount an attack.

preimage second preimage collision indifferentiability

f
Θ(2n)
Sect. 4

– Θ(2n/2)
Sect. 4

O(2n/4)
Sect. 3

H Θ(2n)
Sect. 4

Θ(2n)
Sect. 5

Θ(2n/2)
Sect. 4

Ω(2n/2)
Sect. 6

2 Preliminaries

For n ∈ N, let {0, 1}n denote the set of bit strings of length n and let {0, 1}∗
denote the set of bit strings of arbitrary length. For two bit strings x, y, x‖y
denotes their concatenation and x ⊕ y their bitwise XOR. By [x]2 = x‖x we
denote the concatenation of two copies of x. If x is of even length, then xl and
xr denote its left and right halves where |xl| = |xr |. For natural m,n, 〈m〉n is
the encoding of m as an n-bit string. We denote by Bloc(2n) the set of all block
ciphers E : {0, 1}2n × {0, 1}2n → {0, 1}2n, where the first input corresponds to
the key input. A random oracle [5] is a function which provides a random output
for each new query. A random 2n-bit block cipher is a block cipher randomly
sampled from Bloc(2n). A random primitive will also be called “ideal”.

2.1 BLAKE

In accordance with the SHA-3 hash function specification, BLAKE supports
outputs of size n = 224, 256, 384, and 512 bits. In this work we focus on the
variants n = 256, 512, as the 224- and 384-variants are chopped versions of these.

BLAKE takes as input a salt s of n/2 bits (chosen by the user), and a message
M of arbitrary length. The evaluation of H(s,M) is done as follows. Firstly, the
message M is padded into message blocks m1, . . . ,mk of 2n bits, where the
padding function is defined as pad(M) = M‖10−|M|−n/2−2 mod 2n1‖〈|M |〉n/2.
Along with these message blocks, counter blocks t1, . . . , tk of length n/4 bits are
generated. This counter keeps track of the number of message bits hashed so
far and equals 0 if the i-th message block contains no message bits1. Starting

1 In more detail, ti = 〈i2n〉n/4 if i2n ≤ |M |, ti = 〈|M |〉n/4 if (i− 1)2n < |M | ≤ i2n,
and ti = 〈0〉n/4 if |M | ≤ (i− 1)2n.
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from an initial state value h0 ∈ {0, 1}n, the message blocks mi and counter
blocks ti are compressed iteratively into the state using a compression function
f : {0, 1}n × {0, 1}n/2 × {0, 1}2n × {0, 1}n/4 → {0, 1}n. Here, the second input
to f denotes the salt s. The output of the BLAKE hash function is defined as
its final state value H(s,M) = hk.

The compression function f uses a block cipher E : {0, 1}2n × {0, 1}2n →
{0, 1}2n and a constant C ∈ {0, 1}n. A diagram of the function is displayed in
Fig. 1 and an algorithmic description follows.

procedure f(hi−1, s,mi, ti)
vi ← (hi−1‖s‖[tli]2‖[tri ]2)⊕ (0n‖C)
wi ← E(mi, vi)
hi ← wl

i ⊕ wr
i ⊕ hi−1 ⊕ [s]2

return hi

end procedure

hi−1
�/

n

s �/
n/2

tli ������/
n/8

tri ������/
n/8

‖ �/
2n

0n‖C

�

\

2n

�vi �/
2n E

mi

�

\

2n

wi�/
2n

�
	

� �/
n

�� �/
n

�

[s]2

�

\n

�/
n

hi

Fig. 1. The BLAKE compression function f of Sect. 2.1

2.2 Preimage, Second Preimage and Collision Security

An adversary A is a probabilistic algorithm with oracle access to a randomly

sampled block cipher E
$← Bloc(2n). In this work, we consider information-

theoretic adversaries only. This type of adversary has unbounded computational
power, and its complexity is measured by the number of queries made to its
oracle. The adversary can make queries to E and its inverse E−1. These queries
are stored in a query history Q as elements of the form (mj , vj , wj), where j is
the query index, mj is the key input to the block cipher (note that for BLAKE
the message input to f is the key input to E), and vj and wj denote the plaintext
and ciphertext, respectively. Associated to query (mj , vj , wj) we define the value
xj = wl

j ⊕wr
j ⊕hj ⊕ [sj]2 as the output of the compression function f , where we

parse hj‖sj‖t(1)j ‖t
(2)
j ‖t

(3)
j ‖t

(4)
j ← vj ⊕ (0n‖C). In the remainder, we assume that

Q always contains the queries required for the attack and that the adversary
never makes queries to which it knows the answer in advance.

Let F : {0, 1}p → {0, 1}n for p ≥ n be a compressing function instantiated

with a randomly chosen block cipher E
$← Bloc(2n). In this work, F will either
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be the BLAKE mode of operation H or its compression function f . For the
preimage and second preimage security analysis in this work, we consider the
notion of everywhere preimage and second preimage resistance [19]. In the ideal
model setting (where randomness is gained from the ideal primitive rather than
from the use of an explicit random key), these notions are the strongest options
because they guarantee preimage (resp. second preimage) security for every range
(resp. domain) point.

Definition 1. The advantage of an everywhere preimage finding adversary A
is defined as

Advepre
F (A) = max

y∈{0,1}n
Pr

(
E

$← Bloc(2n), z ← AE,E−1

(y) : F (z) = y
)
.

We define by Advepre
F (q) the maximum advantage of any adversary making q

queries to its oracles.

Definition 2. Let λ ≤ p. The advantage of an everywhere second preimage
finding adversary A is defined as

Adv
esec[λ]
F (A) = max

z′∈{0,1}λ
Pr

(
E

$← Bloc(2n), z ← AE,E−1

(z′) :
z �= z′ ∧ F (z) = F (z′)

)
.

We define by Adv
esec[λ]
F (q) the maximum advantage of any adversary making q

queries to its oracles.

In case F denotes the BLAKE compression function f of Sect. 2.1, its domain
points are of the form z = (h, s,m, t). If F is the BLAKE mode of operation H,
its domain points are parsed as z = (s,M) ∈ {0, 1}n/2 × {0, 1}∗, where in the
second preimage notion λ is required to be of length at least n/2 bits.

We define the collision security of a compressing function F as follows.

Definition 3. Fix a constant h0 ∈ {0, 1}n. The advantage of a collision finding
adversary A is defined as

Advcol
F (A) = Pr

(
E

$← Bloc(2n), z, z′ ← AE,E−1

:
z �= z′ ∧ F (z) ∈ {F (z′), h0}

)
.

We define by Advcol
F (q) the maximum advantage of any adversary making q

queries to its oracles.

As before, in case F denotes the compression function f the strings z and z′

are of the form (h, s,m, t) and (h′, s′,m′, t′), and if F is the BLAKE mode of
operation, z and z′ are parsed as (s,M) and (s′,M ′). Note that in all definitions
A can freely choose the salt, e.g. a collision with different salts is counted valid.
Our results directly apply to the setting of a fixed salt.
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2.3 Indifferentiability

The indifferentiability framework introduced by Maurer et al. [15] is an extension
of the classical notion of indistinguishability. It proves that if a construction CG
based on an ideal subcomponent G is indifferentiable from an ideal primitive R,
then CG can replace R in any system. Although recent results by Ristenpart et
al. [18] show that indifferentiability does not capture all properties of a random
oracle, indifferentiability still remains the best way to rule out structural attacks
for a large class of hash function applications.

Definition 4. A Turing machine C with oracle access to an ideal primitive G
is called (tD, tS , q, ε) indifferentiable from an ideal primitive R if there exists a
simulator S, such that for any distinguisher D we have

Advpro
C (D) =

∣∣∣Pr
(
DCG ,G = 1

)
−Pr

(
DR,SR

= 1
)∣∣∣ < ε.

The simulator has oracle access to R and runs in time at most tS. The distin-
guisher runs in time at most tD and makes at most q queries.

In the remainder, we refer to CG ,G as the “real world”, and to R,SR as the
“simulated world”; the distinguisher D converses either with the real or the
simulated world and its goal is to tell both worlds apart. D can query both its
“left oracle” L (either C or R) and its “right oracle” R (either G or S).

For the purpose of the presented indifferentiability results, G throughout de-

notes a random block cipher E
$← Bloc(2n). C is either the BLAKE mode of

operation H or its compression function f , and R will be a random oracle RO
with the same domain and range as C.

3 Differentiability of f

We consider the indifferentiability of the BLAKE compression function f from a
random oracle RO (with the same domain and range as f), when the underlying

block cipher E is sampled uniformly at randomE
$← Bloc(2n). In more detail, we

construct a distinguisher D, such that for any simulator S, D differentiates (f, E)
from (RO,S) in about 2n/4 queries, hence significantly faster than expected.

The differentiability attack considers fixed-points for f , by which we in this
case mean values (h,m, s, t) such that f(h,m, s, t) = h ⊕ [s]2. The presence
of fixed-points of these form have already been pointed out in [4, Sect. 5.2.4].
However, not every block cipher evaluation renders a valid compression function
evaluation, due to the duplication of t in the block cipher input. The simulator
may be able to take advantage of this, which makes the attack proof more
complicated.

Theorem 1. Let E
$← Bloc(2n), and let RO : {0, 1}n+n/2+2n+n/4 → {0, 1}n

be a random compression function. For any simulator S that makes at most
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qS ≤ 2n−3 queries to RO, there exists a distinguisher D that makes at most
2n/4 + 1 queries to its oracles, such that

Advpro
f (D) ≥ 1− e−1 − qS

2n
≥ 0.5.

Proof. Let S be any simulator making at most qS queries to RO. We construct
a distinguisher D that differentiates (f, E) from (RO,S) with a significant prob-
ability. D has query access to (L,R,R−1) (either (f, E,E−1) or (RO,S,S−1))
and operates as follows.

1. D picks 2n/4 distinct messages mj , queries vj ← R−1(mj , 0), and parses

hj‖sj‖t(1)j ‖t
(2)
j ‖t

(3)
j ‖t

(4)
j ← vj ⊕ (0n‖C);

2. If t
(1)
j ‖t

(3)
j �= t

(2)
j ‖t

(4)
j for all j ∈ {1, . . . , 2n/4}, D guesses (L,R) = (RO,S)

and halts;

3. Let j ∈ {1, . . . , 2n/4} be such that t
(1)
j ‖t

(3)
j = t

(2)
j ‖t

(4)
j . D queries h ←

L(hj , sj,mj , t
(1)
j ‖t

(3)
j ), and guesses (L,R) = (f, E) if and only if h = hj ⊕

[sj ]2.

D guesses its oracles correctly except if one of the following events occur:

E1 : ∀ j : t
(1)
j ‖t

(3)
j �= t

(2)
j ‖t

(4)
j

∣∣ (L,R) = (f, E);

E2 : ∃ j : t
(1)
j ‖t

(3)
j = t

(2)
j ‖t

(4)
j and h = hj ⊕ [sj ]2

∣∣ (L,R) = (RO,S).

In particular, Advpro
f (D) ≥ 1−Pr (E1)−Pr (E2). We start with Pr (E2), and we

suppose (L,R) = (RO,S). E2 in fact covers the event that S finds a fixed-point
for RO, namely inputs hj , sj,mj , tj such that RO(hj , sj,mj , tj) = hj ⊕ [sj ]2. As
S makes at most qS queries, it can find such fixed-point with probability at most
qS/2n. Next, we consider Pr (E1), and we suppose (L,R) = (f, E). As E is a
random block cipher and the message blocksmj are all different, the probabilities

Pr
(
t
(1)
j ‖t

(3)
j �= t

(2)
j ‖t

(4)
j

)
are independent for different indices j, and satisfy

Pr
(
t
(1)
j ‖t

(3)
j �= t

(2)
j ‖t

(4)
j

)
= 1−Pr

(
t
(1)
j ‖t

(3)
j = t

(2)
j ‖t

(4)
j

)
= 1− 1/2n/4.

Therefore, Pr (E1) =
(
1− 1/2n/4

)2n/4

≤ e−1. We thus obtain Advpro
f (D) ≥

1− e−1 − qS/2n ≥ 0.5 for qS ≤ 2n−3. ��

4 Collision and Preimage Resistance of f and H
In this section, we analyze the collision and (everywhere) preimage resistance
of the BLAKE compression function f . We achieve optimal security (up to a
constant). As the HAIFA mode of operation preserves collision and everywhere
preimage resistance [3], these results directly carry over to the BLAKE hash
function H. The proofs of Thms. 2 and 3 can be found in the full version of this
paper [1].
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Theorem 2. Let n ∈ N. The advantage of any adversary A in finding a collision

for f after q < 22n−1 queries can be upper bounded by Advcol
f (q) ≤ q(q + 1)

2n
.

Theorem 3. Let n ∈ N. The advantage of any adversary A in finding a preim-

age for f after q < 22n−1 queries can be upper bounded by Advepre
f (q) ≤ 2q

2n
.

5 Second Preimage Resistance of H
Due to the lack of second preimage security preservation [3] of the BLAKE hash
function H, we investigate the second preimage security of H directly, rather
than its compression function (as in the collision and preimage cases). Our proof
shows similarities with the second preimage proof for HAIFA by Bouillaguet and
Fouque [9]. Our proof, however, is realized in the ideal cipher (rather than ideal
compression function) model.

Theorem 4. Let n ∈ N and λ ≥ n/2. The advantage of any adversary A in
finding a second preimage for H after q < 22n−1 queries can be upper bounded
by

Adv
esec[λ]
H (q) ≤ 4q

2n
.

Proof. Let (s′,M ′) ∈ {0, 1}n/2×{0, 1}λ−n/2 be the target preimage. We denote
pad(M ′) = m′

1‖ · · · ‖m′
k′ and denote by t′1, . . . , t′k′ the corresponding counter

values. Note that by construction, t′i′ = 〈i′2n〉n/4 for i′ ∈ {1, . . . , k′ − 2}, t′k′ �=
〈k′2n〉n/4, and t′k′−1 may or may not be of the form 〈(k′ − 1)2n〉n/4. The block
cipher executions corresponding to this hash function evaluation are given to the
adversary for free. That is, A is forced to make the k′ corresponding queries but
will not be charged for this. Denote by h′

0, . . . , h
′
k′ the state values corresponding

to the evaluation of H(s′,M ′).
The goal of the adversary is to find a tuple (s,M) �= (s′,M ′) such that

H(s,M) = H(s′,M ′) and such that the query history contains all block cipher
evaluations required for the computation of H(s,M). We pose the following
claim.

Claim. Suppose A finds (s,M) �= (s′,M ′) such that H(s,M) = H(s′,M ′). De-
note by m1, . . . ,mk, t1, . . . , tk, and h0, . . . , hk the message blocks, counter val-
ues and intermediate state values corresponding to the computation of H(s,M).
There must be i ∈ {1, . . . , k} and i′ ∈ {1, . . . , k′} such that f(hi−1, s,mi, ti) =
f(h′

i′−1, s
′,m′

i′ , t
′
i′), where (hi−1, s,mi) �= (h′

i′−1, s
′,m′

i′) and ti, t
′
i′ satisfy

ti = t′i′ or
(
ti �= 〈i2n〉n/4 and t′i′ �= 〈i′2n〉n/4

)
. (1)

Proof (Proof of claim). As H(s,M) = H(s′,M ′), we have hk = h′
k′ . If |M | �=

|M ′|, then mk �= m′
k′ , tk �= 〈k2n〉n/4 and t′k′ �= 〈k′2n〉n/4, and a collision of the
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prescribed form is found. Thus, suppose |M | = |M ′|. This implies k = k′ and
ti = t′i for i = 1, . . . , k. If s �= s′, a collision for hk is directly found. If s = s′, we
necessarily have M �= M ′ and by the standard collision resistance preservation
proof for the Merkle-Damg̊ard mode of operation (see e.g. [2,3,10,16]), there must
by an index i such that f(hi−1, s,mi, ti) = f(h′

i−1, s
′,m′

i, t
′
i) but (hi−1,mi) �=

(h′
i−1,m

′
i). This completes the proof. ��

It consequently suffices to consider the probability of the adversary finding a
collision with any of the k′ compression function evaluations of H(s′,M ′), such
that the corresponding counter values satisfy (1). We call a collision of this form
a “valid collision”. Thus,

Adv
esec[λ]
H (q) ≤

q∑
j=1

Pr (j-th query is valid collision) . (2)

Let j = 1, . . . , q. We consider the probability that the j-th query results in a
collision with any of the target state values. We distinguish between forward and
inverse queries.

Valid collision by a forward query. The adversary makes an encryption query of
the form (mj , vj) to receive a ciphertext wj such that E(mj , vj) = wj . Parse

hj‖sj‖t(1)j ‖t
(2)
j ‖t

(3)
j ‖t

(4)
j ← vj⊕ (0n‖C). If t

(1)
j ‖t

(3)
j �= t

(2)
j ‖t

(4)
j the query does not

correspond to a compression function evaluation and a valid collision is obtained

with probability 0. Hence, we assume t
(1)
j ‖t

(3)
j = t

(2)
j ‖t

(4)
j . In this case, the query

corresponds to the compression function evaluation f(h, s,m, t
(1)
j ‖t

(3)
j ) = wl

j ⊕
wr

j ⊕ hj ⊕ [sj ]2.

If t
(1)
j ‖t

(3)
j = 〈α2n〉n/4 for some α ∈ {1, . . . , k′ − 1}, this means the query

corresponds to a compression function at the α-th position, and (1) may be

satisfied only for i′ = α. If t
(1)
j ‖t

(3)
j �= α2n for any α ∈ {1, . . . , k′ − 2}, (1) can

be satisfied only for i′ ∈ {k′− 1, k′}. In any other case, there is no i′ that makes
(1) satisfied. In any case, there are at most 2 values that wl

j ⊕ wr
j ⊕ hj ⊕ [sj ]2

may hit in order to render a valid collision. As in the proof of Thm. 2, the j-th
query results in a valid collision with probability at most 2·2n

22n−q .
Valid collision by a inverse query. The analysis follows the same lines. The j-th

query results in a valid collision with probability at most 2·23n/4

22n−q .

A valid collision for the compression function f is generated by either a forward
or inverse query, and the j-th query thus renders a valid collision with probability

at most max
{

2·2n
22n−q ,

2·23n/4

22n−q

}
= 2·2n

22n−q . Summing over all q queries, we obtain

from (2):

Adv
esec[λ]
H (q) ≤

q∑
j=1

2 · 2n
22n − q

≤ 2q2n

22n − q
≤ 4q

2n
,

where the last inequality holds as q < 22n−1. ��
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6 Indifferentiability of H
We show that the BLAKE mode of operation is indifferentiable from a random
oracle in the ideal cipher model. To this end, we construct a simulator such that
any distinguisher requires at least approximately 2n/2 queries to differentiate
(H, E,E−1) from (RO,S,S−1).

Theorem 5. Let E
$← Bloc(2n), and let RO be a random oracle. Let D be any

distinguisher that makes at most qL left queries of maximal length 2n ·� bits (not
including the salt), qR queries to R and R−1, and runs in time t. Then

Advpro
H (D) ≤ 5

q(q + 1)

2n
,

where q = �qL + qR and S is the simulator of Fig. 2, which makes less than qR
queries to RO and runs in time O(q2R).

The remainder of this section is devoted to the proof of Thm. 5. In Sect. 6.1, we
introduce some additional definitions required for the proof. The simulator used
in the proof is introduced and formalized in Sect. 6.2. Then, Thm. 5 is formally
proven in Sect. 7.

6.1 Definitions

To facilitate the analysis, we rewrite the BLAKE padding function pad′, such
that on input of a tuple (s,M) ∈ {0, 1}n/2 × {0, 1}∗ it is defined as

pad′(s,M) = (s‖m1‖t1) ‖ · · · ‖ (s‖mk‖tk),

with m1‖ · · · ‖mk = pad(M) and the ti calculated appropriately based on the
mi. The strings s‖mi‖ti are called augmented message blocks which we will
denote by ai. We analyze the BLAKE hash function with pad′ padding and
respectively its compression function f that accepts inputs of the form (h, a),
with h ∈ {0, 1}n, and a ∈ {0, 1}n/2+2n+n/4 the augmented message.

Let V := {0, 1}2n be the plain- and ciphertext space of both S(m, ·) and
E(m, ·). We define βh,s : V → {0, 1}n as

βh,s(w) = wl ⊕ wr ⊕ h⊕ [s]2.

For h′ ∈ {0, 1}n, we define β−1
h,s(h

′) = {w ∈ {0, 1}2n | wl ⊕ wr ⊕ h ⊕ [s]2 = h′}.
We call these sets the fibers of βh,s. Note that each fiber is of size 2n.

For the construction of the simulator, we will maintain an initially empty
table T , in which all query-response tuples (m, v, w) of S and S−1 are stored.
We write T+

m(v) = w and T−
m(w) = v. Associated to T we define a graph G,

which is initialized with the single node h0. The compression function evaluations
corresponding to the entries of T are maintained in G. The domain and range
of S and S−1 are not intermediate state values and a query-response might not
necessarily correspond to a path in G. In fact, a query-response tuple (m, v, w)
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corresponds to a compression function evaluation and can be converted into a
path in G if and only if v can be parsed as h‖s‖[tl]2‖[tr]2 ← v⊕ (0n‖C). In this
case, the tuple corresponds to the following path in G:

h
s‖m‖t−−−−→ βh,s(w).

Note that if G contains a path h0
a1−→ h1 · · ·

ak−→ hk, this implies T contains all
queries required for the evaluation of f(. . . f(f(h0, a1), a2) . . . , ak) = hk, when f
is instantiated with S.

6.2 Simulator

Designing the simulator comes down to making sure that (RO,S,S−1) matches
(H, E,E−1) as closely as possible. Notice that for (H, E,E−1) an H query is a
chain of E queries which can be converted to

h0
a1−→ h1 · · ·

ak−→ hk,

with a1‖ · · · ‖ak = pad′(s,M) for some s ∈ {0, 1}n/2 and M ∈ {0, 1}∗; it is this
property that the simulator should mimic. What this essentially means is that
the simulator needs to carefully handle queries that may extend the set of nodes
reachable from h0. For any other query, it suffices for the simulator to respond
randomly.

For simplicity and to improve the readability of the simulator, we opt for
a simulator that behaves like a random function. That is, when generating a
random answer it will be sampled from V , therewith allowing collisions in T .
Clearly, this will result in a higher success probability for the distinguisher, but
because the elements of V are of size 2n bits (while the hash function has range
{0, 1}n), this security loss will be negligible. This loss will be reflected in the
bound obtained in Sect. 7.

Recall from Sect. 6.1 that a query-response tuple (m, v, w) adds an edge to
the graph if and only if v can be parsed as h‖s‖[tl]2‖[tr]2 ← v ⊕ (0n‖C) and for

now we simply assume this to be true, adding the edge h
s‖m‖t−−−−→ h′ = βh,s(w)

to G. The main purpose of S is to maintain consistency for the paths leaving
from h0. Thus, we investigate how the simulator handles queries extending any
of these paths.

In case of inverse queries, note that h depends on the output of the simulator,
v. If the simulator generates v uniformly at random, the edge extends a path from
h0 only if h hits any node already reachable from h0. This case occurs with small
probability, and we can safely have the simulator respond randomly on an inverse
query. The resulting security loss is reflected in the obtained indifferentiability
bound derived in Sect. 7.

In case of forward queries, h and a = s‖m‖t are determined by the inputs by
the distinguisher, and thus it may force the number of nodes reachable from h0

to increase. Suppose a path h0
a1−→ h1 · · ·

ak−→ hk = h is in G. We distinguish
among the following cases:
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– a1‖ · · · ‖ak‖a = pad′(s,M) for some s ∈ {0, 1}n/2 and M ∈ {0, 1}∗. The
simulator should assure consistency with RO, hence its answer w should
comply with βh,s(w) = RO(s,M);

– a1‖ · · · ‖ak‖a �= pad′(s,M) for any s ∈ {0, 1}n/2 and M ∈ {0, 1}∗. There is
no consistency required, and the simulator responds randomly.

Two peculiarities may occur in case of a forward query of this form. At first, it
may be the case that a newly added edge extends to two different paths. This
would however mean a compression function collision has occurred, an event
that happens with small probability and results in a security loss in the final
indifferentiability bound obtained in Sect. 7. Secondly, the value h′ = βh,s(w)
may hit a node in the graph, in which case the path will be increased with two
edges. A similar reasoning as for inverse queries applies here: h′ hits another
node in the graph with small probability only, and the simulator does not need
to handle this situation.

The formal description of the simulator is given in Fig. 2. It uses the following
procedure.

procedure findPaths(h, a)
P ← ∅ 	 will contain paths and corresponding messages

for all paths h0
a1−→ h1 · · ·

ak−→ hk in G do
if h = hk and ∃M such that pad′(s,M) = a1‖ · · · ‖ak‖a then

P ← P ∪
{(

M,h0
a1−→ h1 · · ·

ak−→ hk

)}

end if
end for
return P

end procedure

Lemma 1. If the simulator does not return a response retrieved from the table
T , the response will be uniformly distributed over V .

Proof. With a forward query there are two cases, one where the simulator queries
RO and one where it does not. If the simulator does not query RO, then by
definition it responds uniformly over V . If the simulator does query RO, then
it receives an h′ = RO(s,M) uniformly distributed over {0, 1}n. As the fibers
of βh,s form a partition of V , uniformly selecting an element from an arbitrary
fiber of βh,s is the same as uniformly selecting an element from V .

Since the inverse queries of the simulator are by definition uniformly dis-
tributed over V , we attain our result. ��

Now, the formal proof of Thm. 5 is given in Sect. 7: by a game hopping argu-
ment we prove that (RO,SRO, (SRO)−1) is indistinguishable from (HE , E,E−1),
where S is the simulator introduced in this section.

7 Proof of Thm. 5

In this section, we will bound the advantage of any distinguisher in differentiating
the simulated world (with the simulator of Fig. 2) from the real world. The
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Simulator Forward Query

1: procedure S(m,v)
2: if T+

m(v) =⊥ then
3: h‖s‖t(1)‖t(2)‖t(3)‖t(4) ← v ⊕ (0n‖C)

4: w
$← V

5: if t(1)‖t(3) = t(2)‖t(4) then
6: P ← findPaths(h, s‖m‖t(1)‖t(3))
7: if P �= ∅ then

8: (M,path)
$← P

9: w
$← β−1

h,s(RO(s,M))
10: end if

11: add h
s‖m‖t(1)‖t(3)−−−−−−−−−→ βh,s(w) to G

12: end if
13: T+

m(v) ← w
14: end if
15: return T+

m(v)
16: end procedure

Simulator Inverse Query

1: procedure S−1(m,w)
2: if T−

m(w) =⊥ then

3: v ← T−
m(w)

$← V
4: h‖s‖t(1)‖t(2)‖t(3)‖t(4) ← v ⊕ (0n‖C)
5: if t(1)‖t(3) = t(2)‖t(4) then

6: add h
s‖m‖t(1)‖t(3)−−−−−−−−−→ βh,s(w) to G

7: end if
8: end if
9: return T−

m(w)
10: end procedure

Random Oracle

1: procedure RO(s,M)
2: if F [s,M ] =⊥ then 	 F is an array

3: F [s,M ]
$← {0, 1}n

4: end if
5: return F [s,M ]
6: end procedure

Fig. 2. The definition of the simulator S used in the proof of Thm. 5, and the random
oracle RO

proof of indifferentiability consists of a sequence of six games where we specify
three algorithms (Li, Ri, R

−1
i ) (for i = 1, . . . , 6) with which a distinguisher can

interact. These games are given in Fig. 3. The first game corresponds to the
simulated world and the sixth game corresponds to the real world (HE , E,E−1).

By Gi we denote the event DLi,Ri,R
−1
i = 1. Clearly,

Advpro
H (D) = |Pr (G1)−Pr (G6)| ≤

5∑
i=1

|Pr (Gi)−Pr (Gi+1)| . (3)

In the remainder of this section, the distances between the adjacent games will
be bounded, and the claim of Thm. 5 will be directly obtained from (3).

Games 1 and 2

The first game is (RO,SRO , (SRO)−1). The biggest change in the second game
is that HS is called in L2 in line 2. Note that the result of HS is not used and L2

returns a value generated by RO, i.e. the responses of L1 and L2 are identical.
Yet, calling HS still has side effects on game 2 as the simulator’s table and graph
are updated based on the S queries made by HS . As a result the simulator in
game 2 gains more knowledge than the simulator in game 1. In particular, we
will mark each query-response from all calls of S in HS whenever a query has
not been made before by D; these marked query-responses in T represent the
extra knowledge gained by the simulator in game 2. Queries made by D are
made unmarkable in line 12 in R2 and line 22 in R−1

2 , these queries provide the
simulator with no extra information compared to the simulator of game 1.
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Game 1

1: procedure L1(s,M)
2: return RO(s,M)
3: end procedure

4: procedure R1(m, v)
5: return S(m,v)
6: end procedure

7: procedure R−1
1 (m,w)

8: return S−1(m,w)
9: end procedure

Game 2

1: procedure L2(s,M)
2: mark all (m,v, w) used in HS(s,M)
3: return RO(s,M)
4: end procedure

5: procedure R2(m, v)
6: if (m, v, T+

m(v)) is marked then
7: delete (m,v, T+

m(v)) from T
8: delete corresponding path from G
9: end if
10: deleteMarkedPaths(m,v)
11: w ← S(m, v)
12: make (m, v,w) unmarkable
13: return w
14: end procedure

15: procedure R−1
2 (m,w)

16: if (m,T−
m(w), w) is marked then

17: bad ← true
18: delete (m,T−

m(w), w) from T
19: delete corresponding path from G
20: end if
21: v ← S−1(m,w)
22: make (m, v,w) unmarkable
23: return v
24: end procedure

Game 3

1: procedure L3(s,M)
2: return L2(s,M)
3: end procedure

4: procedure R3(m, v)
5: return R2(m, v)
6: end procedure

7: procedure R−1
3 (m,w)

8: if (m,T−
m(w), w) is marked then

9: bad ← true
10: end if
11: return S−1(m,w)
12: end procedure

Game 4

1: procedure L4(s,M)
2: HR4(s,M)
3: return RO(s,M)
4: end procedure

5: procedure R4(m, v)
6: wtemp ← T+

m(v)
7: w ← S(m, v)
8: if wtemp =⊥ then
9: bad ← isCollision(m, v, T+

m(v))
10: end if
11: return w
12: end procedure

13: procedure R−1
4 (m,w)

14: return S−1(m,w)
15: end procedure

Game 5

1: procedure L5(s,M)
2: return HR5(s,M)
3: end procedure

4: procedure R5(m, v)
5: return R4(m, v)
6: end procedure

7: procedure R−1
5 (m,w)

8: return R−1
4 (m,v)

9: end procedure

Game 6

1: procedure L6(s,M)
2: return HR6(s,M)
3: end procedure

4: procedure R6(m, v)
5: return E(m, v)
6: end procedure

7: procedure R−1
6 (m,w)

8: return E−1(m,w)
9: end procedure

Fig. 3. Games 1, . . . , 6 used in the proof of Thm. 5
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Note that if we ignore the lines of code in R2 and R−1
2 dealing with marked

query-responses we are left with lines 11, 13, 21, and 23, where we see that
R2 and R−1

2 simply query S and S−1 and return the result. The rest of the
code is there in order to undo the side effects of HS . A first step in removing
the side effects of HS is, when a marked query is made by D, to remove the
knowledge S has of that query (implemented in the if-statements) and then to
re-query S again. This does not deal with all possible cases because we know
that sometimes S queries RO in order to ensure consistency. In particular, in
game 1 the distinguisher could know that a particular intermediate value should
map to the result of some L1 response while the simulator does not know this,
resulting in a collision. Yet, this collision could be avoided if the simulator knows
all of the intermediate values used through a call to HS . To this end, R2 employs
the following procedure so that S “forgets” the intermediate values:

procedure deleteMarkedPaths(m,v)
h‖s‖t(1)‖t(2)‖t(3)‖t(4) ← v ⊕ (0n‖C)
if t(1)‖t(3) �= t(2)‖t(4) then

return
end if
P ← findPaths(h, s‖m‖t(1)‖t(3))
for all (M,h0

a1−→ · · · ak−→ hk) ∈ P do
for i ← 0, . . . , k − 1 do

if (m, v,w) associated with hi
ai+1−−−→ hi+1 is marked then

delete (m, v,w) from T

delete hi
ai+1−−−→ hi+1 from G

end if
end for

end for
end procedure

When invoked through a forward query, deleteMarkedPaths checks for all
paths to which this particular query extends using the findPaths procedure and
deletes any marked query-responses used along these paths, thereby eliminating
all marked intermediate values used by a HS query.

Now we take a look at R−1
2 and see exactly how the HS query is dealt with.

If the query-response (m,T−
m(w), w) is not marked, then either (m,w) has never

been queried before or the distinguisher has queried (m,w) before; in either case
we get the exact same behavior as R−1

1 . If (m,T−
m(w), w) is marked, then this

means that the distinguisher has not queried (m,w) and that HS has queried
(m,w). Removing (m,T−

m(w), w) from T and G and then querying S−1(m,w)
will return some uniformly chosen response from V . This is the same as never
having queried S−1(m,w) and then querying it, meaning we get the same be-
havior out of S−1 in R−1

2 as in R−1
1 . Note that the newly generated S−1(m,w)

very likely differs from the value previously generated (when it was queried by
HS). However, as L2 never discloses the data from HS , this is not a problem.

Finally we just need to compare R1 with R2. Say that (m, v, T+
m(v)) is un-

marked, i.e. HS has never queried (m, v). When calling deleteMarkedPaths,
there are a few possibilities:
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– findPaths returns the empty set. The subsequent call to S will return some
arbitrary element of V , as would exactly happen in R1;

– findPaths finds some valid path, but there are no marked query-responses
along this path. This means that the distinguisher has queried the full path
itself and S will respond similarly in both R1 and R2;

– findPaths finds a valid path and there are marked query-responses along
this path, but these are removed. Thus, the simulator call from R2 has the
same amount of information as the simulator call from R1.

If (m, v, T+
m(v)) is marked, then knowledge of that particular query-response

is removed. In effect we are then dealing with an unmarked query-response
(m, v, ⊥) and are reduced to the case above.

We have shown that each R2 and R−1
2 query will execute the same code within

S as each R1 and R−1
1 query, respectively, and since they all return the response

of the S query, we have Pr (G1) = Pr (G2).

Games 2 and 3

Note that L2 and L3, and R2 and R3 are exactly the same, so we need to compare
the responses of R−1

2 and R−1
3 . It is clear that R−1

2 and R−1
3 are identical until

bad. The bad event corresponds to HS first querying S resulting in the query-
response (m, v, w) with path h1

a−→ h2, the distinguisher guessing this particular
w correctly from the set β−1

h1,s
(h2), and finally D calling R−1

i (m,w) without
explicitly calling Ri(m, v) (otherwise Ri(m, v) would unmark (m, v, w)). Since
every fiber of β−1

h1,s
has size 2n, an upper bound for the probability of finding

such a w is qR/2
n, as qR bounds the number of right oracle inverse queries by D.

Therefore, as bad can be triggered in both games, |Pr (G2)−Pr (G3)| ≤ 2
qR
2n

.

Games 3 and 4

The following procedure is used in game 4 to detect collisions:

procedure isCollision(m, v,w)
h‖s‖t(1)‖t(2)‖t(3)‖t(4) ← v
if t(1)‖t(3) �= t(2)‖t(4) then

return false
end if
h′ ← βh,s(w)
return (number of edges connected to h′) > 1 	 returns true/false

end procedure

Since R4 is identical to S, L3 and L4 are identical. The only difference between
games 3 and 4 can be found in R3 and R4, yet this is the same difference as
between R1 and R2 and we may conclude that Pr (G3) = Pr (G4).

Games 4 and 5

The difference between games 4 and 5 lies in the response given by the left
oracles: game 4 uses RO while game 5 uses HR5 . We will show that as long as
bad is not triggered, the responses of both left oracles are the same.



Provable Security of BLAKE with Non-ideal Compression Function 337

Lemma 2. As long as bad is not set to true, L4(s,M) = L5(s,M).

Proof. We can write HRi(s,M), with i equal to 4 or 5, as h0
a1−→ h1 · · ·

ak−→ hk,
with a1‖ · · · ‖ak = pad′(s,M). If none of the nodes hj for j > 0 are in G, then
HRi will query Ri in sequence starting from h0 and ending up at RO(s,M)
since the simulator will learn the entire message M in sequence by the time
hk−1

ak−→ hk is queried and can respond with RO(s,M).
On the other hand, if there is some node hj in G, then it must be the case that

the particular path hj−1
aj−→ hj is in G, otherwise HRi(s,M) will trigger bad.

Furthermore hj−2
aj−1−−−→ hj−1 must have been queried before the hj−1

aj−→ hj

query:

– if hj−2
aj−1−−−→ hj−1 is not in G then HRi(s,M) will place it in G resulting in

a collision because hj−1 is already in G, and

– if hj−2
aj−1−−−→ hj−1 is in G then it must have occurred before the aj query

since the result of the aj−1 query would otherwise have ended up as a node
in G.

This means that Ri receives each of the hj−1
aj−→ hj queries in order from j = 1

to k and can respond consistently with RO(s,M). ��
By the collision resistance of the BLAKE compression function (Sect. 4), the
probability of a collision occurring is upper bounded by 2q(q+ 1)/2n. Hence, as

bad can be triggered in both games, |Pr (G4)−Pr (G5)| ≤ 4
q(q + 1)

2n
.

Games 5 and 6

The right oracles of game 6 form a permutation for each message, whereas the
right oracles of game 5 do not. By Lem. 1, the right oracles of game 5 are
uniformally distributed over V (R5 and R−1

5 are essentially just the simulator),
which means that the difference between game 5 and game 6 is the difference
between a permutation and a random function, which we know is bounded as

follows [6]: |Pr (G5)−Pr (G6)| ≤
qR(qR − 1)

22n
.
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ISC 2010. LNCS, vol. 6531, pp. 39–53. Springer, Heidelberg (2011)

3. Andreeva, E., Neven, G., Preneel, B., Shrimpton, T.: Seven-Property-Preserving It-
erated Hashing: ROX. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833,
pp. 130–146. Springer, Heidelberg (2007)

4. Aumasson, J., Henzen, L., Meier, W., Phan, R.: SHA-3 proposal BLAKE (2010);
Submission to NIST’s SHA-3 competition

5. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for design-
ing efficient protocols. In: ACM Conference on Computer and Communications
Security, pp. 62–73. ACM Press, New York (1993)

6. Bellare, M., Rogaway, P.: Code-based game-playing proofs and the security of triple
encryption. Cryptology ePrint Archive, Report 2004/331 (2004)

7. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The KECCAK sponge func-
tion family (2011); Submission to NIST’s SHA-3 competition

8. Biham, E., Dunkelman, O.: A framework for iterative hash functions – HAIFA.
Cryptology ePrint Archive, Report 2007/278 (2007)

9. Bouillaguet, C., Fouque, P.: Practical hash functions constructions resistant to
generic second preimage attacks beyond the birthday bound (2010); Submitted to
Information Processing Letters

10. Damg̊ard, I.B.: A Design Principle for Hash Functions. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)

11. Dean, R.: Formal Aspects of Mobile Code Security. PhD thesis, Princeton Univer-
sity, Princeton (1999)

12. Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas,
J., Walker, J.: The Skein Hash Function Family (2010); Submission to NIST’s
SHA-3 competition

13. Gauravaram, P., Knudsen, L., Matusiewicz, K., Mendel, F., Rechberger, C.,
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Abstract. This paper presents a 64-bit lightweight block cipherTWINE

supporting 80 and 128-bit keys. TWINE realizes quite small hardware
implementation similar to the previous lightweight block cipher propos-
als, yet enables efficient software implementations on various CPUs, from
micro-controllers to high-end CPUs. This characteristic is obtained by
the use of generalized Feistel combined with an improved block shuffle,
introduced at FSE 2010.

Keywords: lightweight block cipher, generalized Feistel, block shuffle.

1 Introduction

Motivation. Recent advances in tiny computing devices, such as RFID and
sensor network nodes, give rise to the need of symmetric encryption with highly-
limited resources, called lightweight encryption. While AES has been widely
deployed, it is often inappropriate for such small devices due to their size/power/
memory constraints, even though there are constant efforts for small-footprint
AES, e.g., [13,30,39]. To fill the gap, many hardware-oriented lightweight block
ciphers have been recently proposed, e.g., [8, 12, 17, 18, 20, 22, 23, 26, 40, 44], and
more.

In this paper, we propose TWINE, a new lightweight 64-bit block cipher. Our
primary goal is to achieve hardware efficiency equivalent to previous proposals,
and at the same time good software performance on various CPUs, from low-end
micro-controllers to high-end ones (such as Intel Core-i series). For this purpose,
we avoid the hardware-oriented design options, most notably a bit permutation,
and build a block cipher using 4-bit components.

Design. Specifically, we employ Type-2 generalized Feistel structure [45], GFS
for short, with 16 nibble-blocks. The drawback of such design is a poor diffusion
property, resulting in a small-but-slow cipher due to quite many rounds. To
overcome the problem, we employ the idea of Suzaki and Minematsu at FSE
’10 [42] which substantially improves diffusion by using a different block shuffle
from the original cyclic shift. As a result, TWINE is also efficient on software
and enables compact unification of encryption and decryption. The features of
TWINE are (1) no bit permutation, (2) generalized Feistel-based, and (3) no
Galois-Field matrix. The components are only one 4-bit S-box, XOR, and 4-
bit-wise permutation (shuffle). As far as we know, this is the first attempt that

L.R. Knudsen and H. Wu (Eds.): SAC 2012, LNCS 7707, pp. 339–354, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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unifies these three features. There is a predecessor called LBlock [44] which has
some resemblances to ours, however TWINE is an independent work and has
several concrete design advantages (See Section 3).

Implementation. We implemented TWINE on hardware and software. Our
hardware implementations suggest that the encryption-only TWINE can be
implemented with 1, 503 Gate Equivalent (GE), and a serialized implementation
results in 1, 011 GEs using a shared sbox architecture. For both cases, we did
not consider the hard-wired key or special key signaling (as employed by [40]).
These figures are comparable to, or even better than, the leading hardware-
oriented proposals, in particular when a standard key treatment is required.

On 8-bit micro-controllers, TWINE is implemented within 0.8 to 1.5 Kbytes
ROM. The speed is relatively fast compared to other lightweight ciphers. We also
tried implementations on 32 and 64-bit CPUs. Due to the nature of GFS (and
the use of identical 4-bit S-box), TWINE is quite easy to implement using a
SIMD instruction doing a vector-permutation, which we call vector-permutation
instruction (VPI). Starting from Hamburg’s works on AES [19], VPI has been
recognized as a powerful tool for fast cryptography (e.g. [1, 10, 11]), and we
find that VPI extremely works fine with TWINE. For example, on Intel Core-i5
U560 we observed 4.75 cycles/byte1 using VPI called pshufb. This figure is quite
impressive in the realm of (lightweight) block ciphers. For reference, we observed
that AES using VPI [19] runs at 6.66 cycles/byte on the same processor. As our
VPI-based implementation has a quite simple structure, it is easy to understand
and port to other CPUs. TWINE’s well-balanced performance under multiple
platforms makes it suitable to heterogeneous networks, consisting of (e.g.) a huge
number of tiny sensor nodes which independetly encrypt sensor information and
one server computer which performs the information aggregation and decryption.

Security. As TWINE is a variant of GFS it is definitely important to evaluate
the security against attacks suitable to GFS, such as the impossible differential
cryptanalysis (IDC) and the saturation cryptanalysis (SC). We perform a thor-
ough analysis (as a new cipher proposal) on TWINE including IDC and SC,
and present IDC against 23-round TWINE-80 and 24-round TWINE-128 as
the most powerful attacks we have found so far. The attack is fully exploits the
key schedule, and can be seen as an interesting example of highly-optimized IDC
against GFS-based ciphers.

The organization of the paper is as follows. In Section 2 we describe the specifi-
cation ofTWINE. Section 3 explains the design rationale for TWINE. Section 4
presents the results of security evaluation, and Section 5 presents the implementa-
tion results of both hardware and software. Section 6 concludes the paper.

2 Specification of TWINE

Notations. A bitwise exclusive-OR is denoted by ⊕. For binary strings, x and
y, x‖y denotes their concatenation. Let |x| denote the bit length of x. If |x| = m,

1 In a double-block encryption. See Section 5.2.
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we may write x(m) to emphasize its bit length. If |x| = 4c for a positive integer
c, we write x → (x0‖x1‖ . . . ‖xc−1), where |xi| = 4, is the partition operation
into the 4-bit sub-blocks. The opposite operation, (x0‖x1‖ . . . ‖xc−1) → x, is
similarly defined. The partition operation may be implicit, i.e., we may simply
write xi to denote the i-th 4-bit subsequence for any 4c-bit string x.

Data Processing Part. TWINE is a 64-bit block cipher with 80 or 128-bit
key. We write TWINE-80 or TWINE-128 to denote the key length. The global
structure of TWINE is a variant of Type-2 GFS [41,45] with 16 4-bit sub-blocks.
A round function of TWINE consists of a nonlinear layer using 4-bit S-boxes
and a diffusion layer, which permutes the 16 blocks. Unlike original Type-2 GFS,
the diffusion layer is not a cyclic shift and is chosen to provide a better diffusion
than the cyclic shift from the result of [42]. This round function is iterated for 36
times for both key lengths, where the diffusion layer of the last round is omitted.
For i = 1, . . . , 36, i-th round uses a 32-bit round key, RKi, which is derived from
the secret key, K(n) with n ∈ {80, 128}, using the key schedule. The encryption
process is written as Algorithm 2.1.

The data processing part essentially consists of a 4-bit S-box, denoted by S,
and a permutation of block indexes, π : {0, . . . , 15} → {0, . . . , 15}, where j-th
sub-block is mapped to π[j]-th sub-block. The figure of the round function is in
Fig. 1. The decryption of TWINE uses the same S-box and key schedule as used
in the encryption, with the inverse block shuffle. See Algorithm 2.2.

Key Schedule Part. The key schedule produces RK(32×36) from the secret
key, K(n), for n ∈ {80, 128}. It is a variant of GFS with few S-boxes (the same
as one used at the data processing). The 80-bit key schedule uses 6-bit round
constants, CONi

(6) = CONi
H(3)‖CONi

L(3) for i = 1 to 35, and Rotz(x) means z-
bit left cyclic shift of x. Its pseudocode is in Algorithm 2.3. For 128-bit key, see
Appendix A. We remark that CONi corresponds to 2i in GF(26) with primitive
polynomial z6 + z + 1.

Algorithm 2.1: TWINE.Enc(P(64), RK(32×36), C(64))

X1
0(4)‖X1

1(4)‖ . . . ‖X1
14(4)‖X1

15(4) ← P, RK1
(32)‖ . . . ‖RK36

(32) ← RK(32×36)

for i ← 1 to 35

do

⎧⎨
⎩
RKi

0(4)‖RKi
1(4)‖ . . . ‖RKi

6(4)‖RKi
7(4) ← RKi

(32)

for j ← 0 to 7 do Xi
2j+1 ← S(Xi

2j ⊕RKi
j)⊕Xi

2j+1

for h ← 0 to 15 do Xi+1
π[h]

← Xi
h

for j ← 0 to 7 do X36
2j+1 ← S(X36

2j ⊕ RK36
j )⊕X36

2j+1

C ← X36
0 ‖X36

1 ‖ . . . ‖X36
14 ‖X36

15

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) C 0 F A 2 B 9 5 8 3 D 7 1 E 6 4

h 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

π[h] 5 0 1 4 7 12 3 8 13 6 9 2 15 10 11 14
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Algorithm 2.2: TWINE.Dec(C(64), RK(32×36), P(64))

X36
0(4)‖X36

1(4)‖ . . . ‖X36
14(4)‖X36

15(4) ← C, RK1
(32)‖ . . . ‖RK36

(32) ← RK(32×36)

for i ← 36 to 2

do

⎧⎨
⎩
RKi

0(4)‖RKi
1(4)‖ . . . ‖RKi

6(4)‖RKi
7(4) ← RKi

(32)

for j ← 0 to 7 do Xi
2j+1 ← S(Xi

2j ⊕RKi
j)⊕Xi

2j+1

for h ← 0 to 15 do Xi−1
π−1[h]

← Xi
h

for j ← 0 to 7 do X1
2j+1 ← S(X1

2j ⊕ RK1
j )⊕X1

2j+1

P ← X1
0‖X1

1‖ . . . ‖X1
14‖X1

15

h 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

π−1[h] 1 2 11 6 3 0 9 4 7 10 13 14 5 8 15 12

FFFFFFFF

ix0 ix1
ix2

ix3 ix4
ix5

ix6
ix7

ix8
ix9

ix10 ix11
ix12

ix13 ix14
ix15

1
0
+ix 1

1
+ix 1

2
+ix 1

3
+ix 1

4
+ix 1

5
+ix 1

6
+ix 1

7
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+ix 1
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14
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15
+ix

iRK
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i
jRK

Fig. 1. Round function of TWINE

Algorithm 2.3: TWINE.KeySchedule-80(K(80), RK(32×36))

WK0(4)‖WK1(4)‖ . . . ‖WK18(4)‖WK19(4) ← K
for r ← 1 to 35

do

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

RKr
(32) ← WK1‖WK3‖WK4‖WK6‖WK13‖WK14‖WK15‖WK16

WK1 ← WK1 ⊕ S(WK0), WK4 ← WK4 ⊕ S(WK16)
WK7 ← WK7 ⊕ 0‖CON r

H , WK19 ← WK19 ⊕ 0‖CON r
L

WK0‖ · · · ‖WK3 ← Rot4(WK0‖ · · · ‖WK3)
WK0‖ · · · ‖WK19 ← Rot16(WK0‖ · · · ‖WK19)

RK36
(32) ← WK1‖WK3‖WK4‖WK6‖WK13‖WK14‖WK15‖WK16

RK ← RK1‖RK2‖ . . . ‖RK35‖RK36

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

CONi 01 02 04 08 10 20 03 06 0C 18 30 23 05 0A 14 28 13 26

i 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

CONi 0F 1E 3C 3B 35 29 11 22 07 0E 1C 38 33 25 09 12 24

3 Design Rationale

3.1 Basic Objective

Our goal is to build a lightweight block cipher enabling compact hardware com-
parable to previous proposals, while keeping the efficiency on multiple CPUs,
from low-end microcontroller to general-purpose 32/64-bit CPU.
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On LBlock. We remark that LBlock [44], proposed independently of ours, is
quite similar to our proposal. It is a 64-bit block cipher using a variant of bal-
anced Feistel whose round function consists of 8 4-bit S-boxes and a nibble-wise
permutation and a 8-bit cyclic shift. Such a structure can be transformed into a
structure proposed at [42], though we do not know whether the authors of [44] are
aware of it. We investigated LBlock in this respect and found that the LBlock’s
diffusion layer is equivalent to that of the decryption of TWINE. Note that this
choice is reasonable from Table 6 of [42], as it satisfies both of the fastest dif-
fusion and the highest immunities against linear and differential attacks among
other block shuffles.

Nevertheless, there are important differences between TWINE and LBlock2.
First, LBlock uses ten distinct S-boxes while TWINE uses single S-box.
TWINE’s design contributes to a compact serialized hardware and fast soft-
ware (indeed, our fast SIMD implementation was impossible if multiple S-boxes
were used). Second, LBlock uses a bit permutation in its key scheduling, which
decreases software efficiency.

3.2 Parameters and Components

Rounds. As far as we investigated, the most powerful attack against TWINE

is a dedicated impossible differential attack, which breaks 23-round TWINE-
80 and 24-round TWINE-128. From this, we consider 36-round TWINE-128
has a sufficient security margin. Employing the same 36-round for TWINE-
80 may look slight odd, however, it enables various multiple-round hardware
implementations with a small overhead as 36 has many factors.

Block Shuffle. The block shuffle π comes from a result of Suzaki and Minematsu
[42]. In [42], it was reported that by changing the block shuffle different from
the ordinal cyclic shift one can greatly improve the diffusion of Type-2 GFS.
Here, goodness-of-diffusion is measured by the minimum number of rounds that
diffuses any input sub-block difference to all output sub-blocks, called DRmax.
Smaller DRmax means a faster diffusion. DRmax of cyclic shift with k sub-
blocks is k, while there exist shuffles with DRmax = 2 log2 k, called “optimum
block shuffle” [42]. Our π is such one3 with k = 16, hence DRmax = 8 while
DRmax = 16 for the cyclic shift. DRmax is connected to the resistance against
various attacks. For example, Type-2 GFS with 16 sub-blocks has 33-round
impossible differential characteristics and 32-round saturation characteristics.
However, using π of Algorithm 2.1 they can be reduced to 14 and 15 rounds.

There exist multiple optimum block shuffles [42]. Hence π was chosen consid-
ering other aspects which is not (directly) related to DRmax. In particular, we

2 We also would like to point out that the security evaluation of LBlock is insufficient.
We already found a saturation attack against 22-round LBlock without considering
the key schedule, thus the security margin is smaller than the claimed by the authors
(20-round), though a recent work [25] shows a 21-round impossible differential attack.

3 More precisely, an isomorphic shuffle to one presented at Appendix B (k = 16, No.
10) of [42].
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chose π considering the the number of differentially and linearly active S-boxes
(See Table 1 in Section 4).

S-Box. The 4-bit S-box is chosen to satisfy (1) the maximum differential and
linear probabilities are 2−2, which is theoretically the minimum for invertible
S-box, and (2) the Boolean degree is 3, and (3) the interpolation polynomial
contains many terms and has degree 14. Following the AES S-box design, we use a
Galois field inversion. Specifically our S-box is defined as y = S(x) = f((x⊕b)−1),
where a−1 denotes the inverse of a in GF(24) (the zero element is mapped
to itself.) with irreducible polynomial z4 + z + 1, and b = 1 is a constant,
and f(·) is an affine function such that y = f(x) with y = (y0‖y1‖y2‖y3) and
x = (x0‖x1‖x2‖x3) is determined as y0 = x2 ⊕ x3, y1 = x0 ⊕ x3, y2 = x0, and
y3 = x1.

Key Schedule. The key schedule of TWINE enables on-the-fly operations and
produces each round key via sequential update of a key state, that is, there is
no intermediate key. As mentioned, it uses no bit permutation. As hardware
efficiency is not our ultimate goal, the design is rather conservative compared
to the recent hardware-oriented ones [12, 34, 40], yet quite simple. For security,
we want our key schedule to have sufficient resistance against slide, meet-in-the-
middle, and related-key attacks.

4 Security Evaluation

4.1 Overview

We examined the security of TWINE against various attacks. Due to the page
limit, we here focus on the impossible differential and saturation attacks and
explain the basic flows of these attacks since they are the most critical attacks
in our evaluation. The results on other attacks, such as differential and linear
attacks, will also be briefly described.

In this section, we use the notations X i
j and RKi

j following Algorithm 2.1,

and define F i
j (x)

def
= S(RKi

j ⊕ x) for i = 1, . . . , 36, j = 0, . . . , 15, and denote

F i
j (x) ⊕ F i

j (x ⊕ δ) by F i
j (δ). For any symbol S let S̄

k
denote the sequence of k

symbols, e.g. 0̄3 means (0, 0, 0) and Ā3 means (A,A,A).

4.2 Impossible Differential Attack

Generally, impossible differential attack [3] is one of the most powerful attacks
against Feistel and GFS-based ciphers, as demonstrated by (e.g.) [14, 31, 43].
We searched impossible differential characteristics (IDCs) using Kim et al.’s
method [21], and found 64 14-round IDCs

(0,α0,0,α1,0,α2,0,α3,0,α4,0,α5,0,α6,0,α7)
14r

�→ (β0,0,β1,0,β2,0,β3,0,β4,0,β5,0,β6,0,β7,0), (1)

where all variables are 4-bit, αi �= 0, βj �= 0 for some i, j ∈ {0, . . . , 7} and
others are 0. Based on this we can attack against 23-round TWINE-80, where
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IDC of 5-th to 18-th rounds with α0 �= 0 and β4 �= 0 is used, and tries to
recover the subkeys of the first 4 rounds and last 5 rounds (144 bits in total).
These subkey bits are uniquely determined via its 80-bit subsequence. A similar
attack is possible against 24-round TWINE-128, using the IDC with α3 �= 0
and β2 �= 0.

The outline of our attack against 23-round TWINE-80 is as follows.

Data Collection. We call a set of 232 plaintexts a structure if its i-th sub-
blocks are fixed to a constant for all i = 2, 4, 5, 6, 7, 8, 9, 14 ∈ {0, . . . , 15} and the
remaining 8 sub-blocks take all 232 values. Suppose we have one structure. From
it we extract plaintext pairs having the difference

(p1, p2, 0, p3, 0̄
6, p4, p5, p6, p7, 0, p0), where pi ∈ {0, 1}4 is non-zero. (2)

We want the 4-round output pairs to be compliant with the left hand side of
Eq. (1) with α0 �= 0 and other αis being zero. Hence plaintext pairs having no
chance to do that are discarded. Here, the property of S-box shows that for any
non-zero px, F

i
j (px) is one of 7 possible values, depending on RKi

j and px. Using

this property we identify 254.56 plaintext pairs of Eq. (2) that have a chance.
Then we encrypt such plaintext pairs and search the ciphertext pairs having the
difference

(0, c1, 0, c2, c3, c4, c0, c5, c6, c7, c8, c9, c10, c11, 0, 0), (3)

where all cis are non-zero 4-bit values. We prepare 229.55 structures and obtain
268.11 ciphertext pairs of the difference Eq. (3) out of all 284.11 ciphertext pairs.

Key Elimination. For each ciphertext pair satisfying Eq. (3), we try to elimi-
nate the wrong guesses for the 80-bit (sub)key vector (K1‖K2‖K3), where |K1| =
20, |K2| = 52, |K3| = 8 and K1 = (RK1

[1,2,3,7],RK
23
0 ), K2 = (RK1

[0,5,6],RK
2
[2,4,6,7],

RK23
[2,4,5],RK

22
[1,3,4]) and K3 = (RK22

[0,2]) (here RKi
[a,b,c] denotes RK

i
a‖RKi

b‖RKi
c).

First, we guess K1 (which can take all possible values). After K1 is guessed, the
number of each 4-bit subkey candidates in K2 is (2 · 6 + 4)/7 ≈ 2.28 on aver-
age from the property of S-box mentioned above. Once K1 and K2 have been
fixed, each RKi

j in K3 will have (2 · 6 + 4)/15 ≈ 1.07 candidates, as we have no
restrictions on the input difference for F s relating to these subkeys. From this
observation, we expect to eliminate 220 · 2.2813 · 1.072 ≈ 235.69 candidates from
a set of 280 values for each plaintext-ciphertext pair. In other words, the wrong
subkey is eliminated with probability 2−44.31.

Consequently, we can attack 23-round TWINE-80 with the data complexity
229.55 · 232 = 261.55 blocks, the time complexity 284.56 · 22/(23 · 8) = 277.04

encryptions, and the memory complexity 280/64 = 274 blocks.
In a similar manner, we can attack 24-round TWINE-128 with the data, time

and memory complexity being 252.21 blocks, 2115.10 encryptions and 2118 blocks
respectively.
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4.3 Saturation Attack

Saturation attack [16] is also a powerful attack against GFS-based ciphers. The
attack traces the set of variables (S0, . . . , S15), where Sk denotes the saturation
status of k-th nibble which is one of the followings:

Constant (C) : ∀i, j, Xi = Xj All (A) : ∀i �= j, Xi �= Xj

Balance (B) :
⊕

i Xi = 0 Unknown (U) : Others

Let α = (α0, . . . , α15) and β = (β0, . . . , β15), αi, βi ∈ {C,A,B, U}, be the initial
and the t-round states. If we have αi = A and βj �= U for some i and j with

probability 1 (i.e. for all keys), α
tr→β is said to be an t-round saturation charac-

teristic (SC). TWINE has 15-round SC with α consisting of one C and fifteen
As and β contains 4 Bs (the remainings are U), for example;

(Ā12, C, Ā3)
15r→(Ū3, B, Ū5, B, Ū3, B, U,B), and (4)

(Ā6, C, Ā9)
15r→(U,B, Ū3, B, U,B, Ū3, B, Ū4). (5)

Suppose we use SC of Eq. (5) to break 22-round TWINE-80. We recover 108-
bit subkey. From the key schedule, the actual subkey bits needed to be guessed
are 72 bits. First we encrypt a set of 260 plaintexts (called S-structure) induced
from the left hand side of Eq. (5), and obtain a set of 260 ciphertexts. Now X i

j

has 260 variations for each i, j, and we let ⊕X i
j to denote the sum of these 260

variations. We also define F i
jout as F

i
j (X

i
j) and define ⊕F i

jout analogously. Next

we calculate ⊕X17
0 and ⊕F 16

0 out for each 108-bit subkey candidate. Here X17
0

is uniquely determined by a certain 40 subkey bits (out of 108 bits). Similarly
F 16
0 out is determined by a certain 60 subkey bits, and the intersection is 28

bits (thus we need 72-bit search). The computation of ⊕F 16
0 out requires 273.80 F

evaluations (amount to 266.34 encryptions of 22-round TWINE). For any subkey
guess if ⊕X17

0 equals to ⊕F 16
0 out the saturation status of ⊕X16

1 is B. If not, then
the guess is wrong and thus eliminated. As this elimination is expected to occur
with probability 1− 1/24, we can reduce the number of subkey candidates from
272 to 268 for one S-structure. With additional 8-bit key guess, the master key is
recovered. Summarizing, the attack with an S-structure requires 260 plaintexts
to be encrypted, and 277 (which follows from 266.34 + 276 + ρ, where ρ denotes
the computation of X17

0 , which is negligible) encryptions. We can further reduce
the time complexity by using multiple S-structures. Using 4 structures, we can
attack 22-round TWINE-80 with the data, time and memory complexity being
262 blocks, 268.43 encryptions and 267 blocks respectively.

In a similar manner (using SC of Eq, (5)), we can attack 23-round TWINE-
128 with the data, time and memory complexity being 262.81 blocks, 2106.14

encryptions and 2103 blocks respectively.

4.4 Differential / Linear Cryptanalysis

The security against differential cryptanalysis (DC) [4] and linear cryptanaly-
sis (LC) [28] are typlically evaluated by the number of differentially and linearly
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active S-boxes, denoted byASD andASL, respectively.We performed a computer-
based search for differential and linear paths, and evaluated ASD and ASL for
each round. As a result, the numbers of ASD and ASL are the same (Table
1). Since our S-box has 2−2 maximum differential and linear probabilities, the
maximum differential and linear characteristic probabilities are both 2−64 for
15 rounds. Examples of 14-round differential (Δ) and linear (Γ ) characteristics
having the minimum I/O weights are as follows. Here, 1 denotes an arbitrary
non-zero difference (mask) and 0 denotes the zero difference (mask) for Δ (Γ ).
They involve 30 active S-boxes, and thus the characteristic probability is 2−60.

Δ = (0̄9, 1, 0, 1, 0, 1, 0, 0)
14r→(0̄3, 1, 0̄4, 1, 0, 0, 1, 0, 0, 1, 1),

Γ = (0̄6, 1, 1, 0̄3, 1, 0, 0, 1, 1)
14r→(0̄9, 1, 0̄3, 1, 0, 1). (6)

Compared to the impossible differential attack, we naturally expect the key
recovery attacks exploiting the key schedule with these differential or linear
characteristic are less powerful, since they have larger weight (number of non-
zero variables) than that of 14-round IDC (having weight 2) and fewer weights
imply the more attackable rounds in the key guessing.

We also remark that a computer-based search for the maximum differential
probability (rather than the characteristic probability) of GFS was performed
by [29]. However, applying their algorithm to our 16-block case seems computa-
tionally infeasible.

Table 1. List of differentially and linearly active S-boxes

Round 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ASD, ASL 0 1 2 3 4 6 8 11 14 18 22 24 27 30 32 35 36 39 41 44

4.5 Key Schedule-Based Attacks

Related-Key Differential Attacks. The related-key attack proposed by Bi-
ham [2] works when the adversary can somehow modify the key input, typically
insert a key differential. For evaluation of such attack, we implemented the search
method by Biryukov et al. [6], which counts the number of active S-boxes for
combined data processing and key schedule parts. See [6] for the algorithmic
details. We searched 4-bit truncated differential paths. As S-box has maximum
differential probability being 2−2, we needed 40 (64) active S-boxes for TWINE-
80 (TWINE-128).

The full-search was only computationally feasible for TWINE-80. As a result,
the number of active S-boxes reaches 40 for the 22-round. Table 2 shows the
search result, where ΔKS, ΔRK, ΔX and AS denote key difference, subkey
difference, data difference, and the number of active S-boxes.

Other Attacks. For the slide attack [7], the key schedule of TWINE inserts
distinct constants for each round. This is a typical way to thwart slide attacks
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Table 2. Truncated differential and its active S-box numbers

Rnd ΔKS ΔRK ΔX AS Rnd ΔKS ΔRK ΔX AS Rnd ΔKS ΔRK ΔX AS

1 4D010 A2 A255 0 9 20160 0C 4545 19 17 C0104 80 8191 38

2 D8108 E1 6931 6 10 01604 00 108C 20 18 01041 08 0824 38

3 010C3 08 9896 8 11 16040 58 D840 21 19 10410 42 4202 39

4 10C30 46 4462 9 12 60402 80 A0E2 22 20 04102 00 0081 39

5 0C302 20 2288 10 13 0402C 05 A630 27 21 41020 84 8100 41

6 C3020 94 9411 11 14 C02C0 88 8D39 30 22 10208 41 4124 41

7 30201 40 0968 14 15 02C01 10 5A2E 33

8 02016 12 1306 15 16 2C010 22 62C3 35

and hence we consider TWINE is immune to the slide attack. For Meet-In-The-
Middle (MITM) attack, we confirmed that the round keys for the first 3 (5)
rounds contain all key bits for the 80-bit (128-bit) key case. Thus, we consider
it is difficult to mount MITM attack (at least in its basic form) against the
full-round TWINE.

5 Implementation

5.1 Hardware

We implemented TWINE on ASIC using a 90nm standard cell library with logic
synthesis done by Synopsys DC Version D-2010.03-SP1-1. Following [8, 12], we
used Scan Flip-Flops (FFs). In our library, a D-FF and 2-to-1 MUX cost 5.5 GE
and 2.25 GE, and a Scan FF costs 6.75 GE. Hence this technique saves 1.0 GE
per 1-bit storage.

The result is shown by Table 3 with a comparison. Note that for some al-
gorithms other than TWINE, the synthesis was not done at 100KHz, hence
we estimated the throughput by scaling. Table 4 shows the detail of TWINE-
80 round-based implementation, where single round function is computed in a
clock. We did not perform a thorough logic minimization of the S-box circuit,
which currently costs 30 GEs. The S-box logic minimization can further reduce
the size. The figures must be taken with cares, because they depend on the type
of FF, technology, library, etc [12]. As suggested by [12], we list Gates/Memory
Bit in the table, which denotes the size (in GE) of 1-bit memory device used for
the key and states.

For serialized implementation, we employ a shared sbox architecture design
where single S-box is repeatedly used in the data processing and the key schedul-
ing. For encryption-onlyTWINE-80, it achieved 1, 011 GEs. We are still working
on it, and the details will be given in the near future.

5.2 Software

We implemented TWINE on Atmel AVR 8-bit micro-controller. The target
device is ATmega163, which has 16K bytes Flash, 512 bytes EEPROM and 1,024
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Table 3. ASIC implementation results

Algorithm Function Block Key Cycles/ Throughput Area Gates / Type

(bit) (bit) block (Kbps@100KHz) (GE†) Memory bit

TWINE Enc 64 80 36 178 1,503 6.75 round

TWINE Enc+Dec 64 80 36 178 1,799 6.75 round

TWINE Enc 64 128 36 178 1,866 6.75 round

TWINE Enc+Dec 64 128 36 178 2,285 6.75 round

TWINE Enc 64 80 393 16.2 1,011 6.75 serial

PRESENT [38] Enc 64 80 563 11.4 1,000 n/a serial

PRESENT [8] Enc 64 80 32 200 1,570 6 round

AES [30] Enc 128 128 226 57 2,400 6 serial

mCRYPTON [24] Enc 64 64 13 492.3 2,420 5 round

SEA [26] Enc+Dec 96 96 93 103 3,758 n/a round

HIGHT [20] Enc+Dec 64 128 34 188.25 3,048 n/a round

KLEIN [17] Enc 64 80 17 376.4 2,629 n/a round

KLEIN [17] Enc 64 80 271 23.6 1,478 n/a serial

DES [23] Enc 64 56 144 44.4 2,309 12.19 serial

DESL [23] Enc 64 56 144 44.4 1,848 12.19 serial

KATAN [12] Enc 64 80 254 25.1 1,054 6.25 serial

Piccolo [40] Enc 64 80 27 237 1,496¶ 6.25 round

Piccolo [40] Enc+Dec 64 80 27 237 1,634¶ 6.25 round

Piccolo [40] Enc 64 80 432 14.8 1,043¶ 6.25 serial

Piccolo [40] Enc+Dec 64 80 432 14.8 1,103¶ 6.25 serial

LED [18] Enc 64 80 1872 3.4 1,040 6/4.67� serial

PRINTcipher [22] Enc 48 80 48 12.5 503	 n/a round

† Gate Equivalent : cell area/2-input NAND gate size (2.82).
¶ Includes a key register that costs 360 GEs; Piccolo can be implemented without a key
register if key signal holds while encryption.

� Mixed usage of two memory units.
� Hardwired key.

Table 4. Component sizes of TWINE-80 encryption

Data Processing (GE) Key Scheduling (GE)

Data register 432 Key register 540 S-box out XOR 16
S-box 240 Round const comp. 2 RC register 33

Round key XOR 64 Round const XOR 12 State register 6
S-box out XOR 64 S-box 60 Others/Control 34

Total 1503

bytes SRAM. We built the four versions: speed-first, ROM-first (minimizing the
consumption), and RAM-first, and the double-block, where two message blocks
are processed in parallel. Such an implementation works for parellelizable mode
of operations. All versions precompute the round keys, i.e. they do not use an
on-the-fly key schedule.

In the speed-first version, two rounds are processed in one loop. This re-
moves the block shuffle between the first and second rounds. RAM load (LD) is
faster than ROM load (LPM), hence the S-box and the constants are stored at
RAM. The data arrangement is carefully considered to avoid carry in the address
computation.
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Table 5. Software implementations on ATmega163

Algorithm Key Block Lang ROM RAM Enc Dec ETput DTput
(bit) (bit) (byte) (byte) (cyc/byte) (cyc/byte) /code† /code‡

TWINE(speed-first) 80 64 asm 1,304 414 271 271 2.14 2.14

TWINE(ROM-first) 80 64 asm 728 335 2,350 2,337 0.40 0.40

TWINE(RAM-first) 80 64 asm 792 191 2,350 2,337 0.43 0.43

TWINE(double block) 80 64 asm 2,294 386 163 163 2.29 2.29

PRESENT [33] 80 64 asm 2,398 528 1,199 1,228 0.28 0.28

DES [36] 56 64 asm 4,314 n/a 1,079 1,019 0.21 0.22

DESXL [36] 184 64 asm 3,192 n/a 1,066 995 0.29 0.31

HIGHT [36] 128 64 asm 8,836 n/a 307 307 0.36 0.36

IDEA [36] 128 64 asm 596 n/a 338 1,924 4.97 0.87

TEA [36] 128 64 asm 1,140 n/a 784 784 1.11 1.11

SEA [36] 96 96 asm 2,132 n/a 805 805 0.58 0.58

AES [9] 128 128 asm 1,912 432 125 181 3.42 2.35

† Encryption Throughput per code: (1/Enc)/(ROM + RAM) (scaled by 106).
‡ Decryption Throughput per code: (1/Dec)/(ROM + RAM) (scaled by 106).

Table 5 shows comparison of TWINE and other lightweight block ciphers.
We list the (scaled) throughput/code ratio for a performance measure (See Table
5 for the formula), following [37]. AES’s performance is still quite impressive,
however, one can also observe a good performance of TWINE.

Vector Permutation Instruction. We also implemented TWINE on CPU
equipped with a SIMD instruction performing a vector permutation, which we
call Vector Permutation Instruction (VPI). Examples of VPI are, vperm in Mo-
torola AltiVec, pshufb in Intel SSE (SSSE3), and vtbl in ARM NEON. The
power of VPI was first presented by Hamburg [19] for AES, and then the same
technique has been applied to various cryptographic functions, e.g. [1, 10, 11].
However, to the best of our knowledge VPI-based lightweight block cipher imple-
mentation is not known to date. In our VPI-based code, we transform TWINE

into an equivalent form shown by the left of Table 2. This form cyclically invokes
4 different shuffles (called half shuffle) on 8 nibbles. Here, “index of RK” denotes
the index of round key, RK, given to the round function (from left to right).

For Intel CPU with SSSE3, we use pshufb for block shuffle and S-box, and
an encryption round of TWINE is computed using only 6 instructions (see the
right of Table 2). Here, the left (right) half of input data is in xmm0, (xmm1), and
eax contains the address of round key. This implementation is not possible for
LBlock due to the use of multiple S-boxes. We remark that this code can treat
two blocks at once (which we call double-block code), since each nibble data is
stored in a byte structure and XMM registers are 128-bit.

Table 6 shows the result, where x/y denotes x encryption speed and y de-
cryption speed in cycles per byte. We also implemented VPI-based AES [19]
and (popular) T-table AES and measured their performance figures. We ob-
serve single-block TWINE is comparable to VPI-based AES, and double-block
TWINE is even faster. The key schedule for 80-bit (128-bit) key spends about
200 (290) cycles on Core i7 2600S.
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round index of RK half shuffle

4i+ 1 0, 1, 2, 3, 4, 5, 6, 7 [1, 0, 4, 5, 2, 3, 7, 6]

4i+ 2 0, 2, 6, 4, 3, 1, 5, 7 [5, 3, 7, 1, 6, 0, 4, 2]

4i+ 3 0, 6, 5, 3, 4, 2, 1, 7 [6, 7, 3, 2, 5, 4, 0, 1]

4i+ 4 0, 5, 1, 4, 3, 6, 2, 7 [2, 4, 0, 6, 1, 7, 3, 5]

movdqa xmm2,[eax] : load RK
pxor xmm2,xmm0 : ⊕ RK
movdqa xmm3,[sbox] : load S-box
pshufb xmm3,xmm2 : apply S-box
pxor xmm1,xmm3 : ⊕ S-box out
pshufb xmm0,[sh] : half shuffle

Fig. 2. (Left) 4-round structure for SIMD-based implementation. (Right) A code of
round function.

Table 6. Enc/Dec speed (in cycles/byte) of TWINE and AES on Intel CPUs

Processor (codename) TWINE(single) TWINE(double) AES(VPI) AES(T-table)

Core i5 U560 (Arrandale) 9.47 / 9.49 4.77 / 4.77 6.66 / 9.12 14.26 / 19.27

Core i7 2600S (Sandy Bridge) 11.10 / 11.11 5.55 / 5.55 7.42 / 9.44 14.04 / 21.17

Core i3 2120 (Sandy Bridge) 15.06 / 15.06 7.55 / 7.53 10.28 / 12.37 19.03 / 28.68

Xeon E5620 (Westmere-EP) 13.62 / 13.65 6.87 / 6.87 14.72 / 17.82 31.60 / 42.69

Core2Quad Q9550 (Yorkfield) 15.16 / 15.60 7.93 / 7.95 12.16 / 14.39 22.74 / 30.94

Core2Duo E6850 (Conroe) 26.85 / 26.86 14.85 / 14.86 22.04 / 25.82 22.43 / 30.76

6 Conclusions

We have presented a lightweight block cipher TWINE, which has 64-bit block
and 80 or 128-bit key. It is primary designed to fit extremely-small hardware,
yet provides a notable software performance from micro-controller to high-end
CPU. This characteristic mainly originates from the Type-2 generalized Feistel
with a highly-diffusive block shuffle. We performed a thorough security analysis,
in particular for the impossible differential and saturation attacks. Although the
result implies the sufficient security of full-round TWINE, its security naturally
needs to be studied further.
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A Key Schedule for 128-Bit Key

Algorithm A.1: TWINE.KeySchedule-128(K(128), RK(32×36))

WK0(4)‖WK1(4)‖ . . . ‖WK30(4)‖WK31(4) ← K
for r ← 1 to 35

do

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

RKr
(32) ← WK2‖WK3‖WK12‖WK15‖WK17‖WK18‖WK28‖WK31

WK1 ← WK1 ⊕ S(WK0),WK4 ← WK4 ⊕ S(WK16),
WK23 ← WK23 ⊕ S(WK30)
WK7 ← WK7 ⊕ 0‖CON r

H ,WK19 ← WK19 ⊕ 0‖CON r
L

WK0‖ · · · ‖WK3 ← Rot4(WK0‖ · · · ‖WK3)
WK0‖ · · · ‖WK31 ← Rot16(WK0‖ · · · ‖WK31)

RK36
(32) ← WK2‖WK3‖WK12‖WK15‖WK17‖WK18‖WK28‖WK31

RK(32×36) ← RK1‖RK2‖ . . . ‖RK35‖RK36

B Test Vectors (in the Hexadecimal Notation)

key length 80-bit 128-bit

key 00112233 44556677 8899 00112233 44556677 8899AABB CCDDEEFF

plaintext 01234567 89ABCDEF 01234567 89ABCDEF

ciphertext 7C1F0F80 B1DF9C28 979FF9B3 79B5A9B8
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Abstract. Diffusion layers with maximum branch numbers are widely
used in block ciphers and hash functions. In this paper, we construct
recursive diffusion layers using Linear Feedback Shift Registers (LFSRs).
Unlike the MDS matrix used in AES, whose elements are limited in a
finite field, a diffusion layer in this paper is a square matrix composed
of linear transformations over a vector space. Perfect diffusion layers
with branch numbers from 5 to 9 are constructed. On the one hand, we
revisit the design strategy of PHOTON lightweight hash family and the
work of FSE 2012, in which perfect diffusion layers are constructed by
one bundle-based LFSR. We get better results and they can be used to
replace those of PHOTON to gain smaller hardware implementations.
On the other hand, we investigate new strategies to construct perfect
diffusion layers using more than one bundle-based LFSRs. Finally, we
construct perfect diffusion layers by increasing the number of iterations
and using bit-level LFSRs. Since most of our proposals have lightweight
examples corresponding to 4-bit and 8-bit Sboxes, we expect that they
will be useful in designing (lightweight) block ciphers and (lightweight)
hash functions.

Keywords: Recursive diffusion Layers, linear transformation, branch
number, MDS matrix, Linear Feedback Shift Register (LFSR).

1 Introduction

Diffusion layer is one of the core components in a block cipher with confusion
layer. And it is also widely used in many other block cipher-based primitives,
for instance, hash functions. The choice of a diffusion layer influences both the
security and the efficiency of a cryptographic primitive. On the one hand, it plays
an important role in providing security against differential cryptanalysis [2] and
linear cryptanalysis [12], which are the two most important cryptanalysis of
block ciphers. On the other hand, with the same security, an elaborate diffusion
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layer may lead to a better performance of a cryptographic primitive on hardware
or/and software implementation.

The strength of a diffusion layer is usually measured by the notation of branch
number. A block cipher using a diffusion layer with a small branch number may
suffer unexpected attacks. Therefore, how to construct diffusion layers with big
branch numbers and low-cost implementations is a challenge for designers.

The most attractive diffusion layers are those with maximum branch numbers,
which are also called perfect or MDS diffusion layers. The common approach to
construct them is to extract MDS matrices from MDS codes [11]. Thus, these
diffusion layers have matrix representations over F2n , where n is usually consis-
tent to the bit length of Sbox used in the confusion layer. Many block ciphers
[1,14,6,7], especially AES, use this design strategy to construct their diffusion
layers.

A problem using MDS matrices as that in AES is that they cannot be im-
plemented in an extremely compact way on hardware. Thus, they are unfitted
in resource constrained environments, such as RFID systems and sensor net-
works. To conquer this drawback while maintain the maximum branch number,
a new design strategy was proposed in the document of PHOTON lightweight
hash family [9] and then used in designing the diffusion layer of LED lightweight
block cipher [8]. Without extracting an MDS matrix in one step, the new strat-
egy constructs a diffusion layer with a bundle-based linear feedback shift register
(LFSR)(see Fig.1). That is, in each step, only the last bundle is updated by a
linear combination of all of the bundles while other bundles are obtained by
shifting the state vector by one position to the left. Each Li is chosen as a multi-
plication with an element in F2n . The LFSR will iterate s times and output the
final state. Suppose A is the state transition matrix of LFSR, then the diffusion
layer obtained by this strategy is the matrix As over F2n .

Fig. 1. LFSR for constructing diffusion layers in PHOTON

As mentioned in [9], this design is very compact in hardware implementa-
tion because it only needs to realize the LFSR and allows to re-use the existing
memory with neither temporary storage nor additional control logic required.
Of course, designers would like the final matrix (i.e., As) to be MDS, so as to
maintain as much diffusion as for the previous strategies. On the other hand,
AES-based method (i.e., lookup tables) can be used to implement such crypto-
graphic primitives in software without suffering their efficiency.
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In FSE 2012, Sajadieh et.al [13] extended this design strategy and proposed
a list of perfect diffusion layers. They considered a linear transformation L of

vector space Fn
2 and chose Li =

�2
j=−1 a

(j)
i · Lj, where a

(j)
i ∈ F2 and 1 ≤ i ≤ s.

The final matrix (i.e., As) obtained from this strategy can be treated as an
sn × sn matrix over F2 or an s × s matrix composed of linear transformations

over Fn
2 . To make it perfect, L and a

(j)
i s should satisfy some conditions. In [13],

firstly, the authors studied the sufficient conditions that make a specific diffusion
layer with s = 4 prefect and then investigated the conditions of other proposals
with a necessary statement.

As multiplications with elements in F2n are specific linear transformations of
vector space Fn

2 , the new strategy provides more choices in constructing diffusion
layers. Thus, designers may obtain perfect diffusion layers with smaller hardware
implementations.

Our Contributions. In this paper, we focus on constructing recursive diffusion
layers using LFSRs, following and extending the design strategy of PHOTON
and [13]. We construct a list of lightweight perfect diffusion layers with maximum
branch numbers from 5 to 9. They mainly distribute in two classes — one class
of them are generated by one bundle-based LFSR, using the design strategy of
PHOTON and [13], while another class of them are constructed by new strategies
using more than one bundle-based LFSRs. Our proposals have smaller hardware
implementations than diffusion layers given in PHOTON lightweight hash fam-
ily and [13]. And they can be used to replace those of PHOTON lightweight
hash family. The best replacement can save 22.3% gate equivalents (GE) in the
diffusion layer. Finally, we construct perfect diffusion layers by increasing the
number of iterations and using bit-level LFSRs.

Outline of This paper. In Section 2, we introduce the definitions of linear trans-
formation, determinant of a matrix over commutative rings and branch number.
Previous results on judging perfect diffusion layers are also discussed. Our strategy
and some criteria for constructing perfect diffusion layers are described in Section
3. In Section 4 and Section 5, we illustrate our results generated by bundle-based
LFSRs.Then,we compare our resultswith knownperfect diffusion layers in Section
6. In Section 7, we investigate some possible manners of constructing new perfect
diffusion layers using LFSRs. Finally, we conclude this paper.

2 Preliminaries

In this section, we first introduce the definitions of linear transformation and
determinant of a matrix over commutative rings. Then, we introduce the notation
of branch number and several statements for constructing prefect diffusion layers.

2.1 Linear Transformation

If V is a vector space over F2, then a linear transformation of V is a map
L : V → V such that
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L(u⊕ v) = L(u)⊕ L(v) (1)

holds for any u,v in V . L is invertible if it is injective and surjective. If linear
transformation L3 = L2 ◦ L1, that is, L3(v) = L2(L1(v)), then L3 is invertible
if and only if L1 and L2 are invertible.

Since there is a square matrix M over F2 such that L(v) = M · v, the invert-
ibility of L is equivalent to the non-singularity of M . Thus, in the subsequent
discussions, we directly use a matrix to represent a linear transformation. One
familiar class of linear transformations is the multiplication with an element in
F2n , that is, L(v) = a · v, where a,v ∈ F2n . Notice that a can be represented as
an n× n matrix over F2 if we treat v as a vector in Fn

2 .

2.2 Matrix over Commutative Rings

In this section, we first review several statements of matrix theorem which are
true over any commutative ring R. More information is advised to [4]. Then, we
introduce a specific commutative ring which is used in this work.

Similar to the classical definition of the determinant, we have

Definition 1. [4] Let A = (Ai,j)1≤i≤s,1≤j≤s be an s×s matrix with entries in a
commutative ring R. The determinant of A, denoted by det(A), is the following
element of R:

det(A) =
�

σ∈P (s)

sgn(σ)A1,σ(1)A2,σ(2) · · ·As,σ(s),

where P (s) denotes the set of all permutations on s letters and sgn(σ) ∈ {1,−1}
is the sign of σ ∈ P (s).

Then, det(AB) = det(A)det(B) and det(AT ) = det(A). Here, AT is the trans-
position of A. Similarly, we have

Theorem 1. [4] Let A = (Ai,j)1≤i≤s,1≤j≤s, then A is invertible if and only if
det(A) ∈ U(R), where U(R) is the set of all invertible elements in ring R.

Now, suppose L is an n× n non-singular matrix over F2 and

S = {
�

a−iL
−i + a0 +

�
ajL

j : i, j ∈ Z+, a−i, a0, aj ∈ F2}

is a set which includes all polynomials of L and L−1. Then, the set S together
with the addition of F2 and the multiplication of polynomials, form a commuta-
tive ring. We denote it by F2[L,L

−1]. Then, we have

Proposition 1. Let B be an element of F2[L,L
−1], then B ∈ U(F2[L,L

−1]) if
and only if B is a n× n non-singular matrix over F2.

Proof. If B ∈ U(F2[L,L
−1]), then there is a C ∈ F2[L,L

−1] such that BC = I.
Thus, when treat B,C and I as matrices over F2, the determinant |B| = 1,
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i.e, B is non-singular. On the contrary, if B is non-singular over F2, then there
is a positive integer m such that Bm = I (Notice that m ≤ 2n − 1 is a finite
integer). The smallest m is called the order of B and can be efficiently computed
by methods introduced in [5]. Since B ∈ F2[L,L

−1], then Bn−1 ∈ F2[L,L
−1]

and it is the inverse of B in F2[L,L
−1]. Thus, B is invertible.

2.3 Branch Number

Suppose v is a vector with s bundles, i.e., v = (v1, v2, . . . , vs), where each vi ∈ Fn
2

is a vector over a finite field F2 with length n. The bundle weight of a vector v,
denoted by wb(v), is equal to the number of non-zero bundles. Then, we have

Definition 2. [7] The differential branch number of a linear diffusion layer D
is given by

Bd(D) = min
v �=0

(wb(v) + wb(D(v))), (2)

where D can be represented as an sn × sn matrix over F2 or an s × s matrix
consisting of linear transformations of Fn

2 .

Similarly, we can define the linear branch number.

Definition 3. [7] The linear branch number of a linear diffusion layer D is
given by

Bl(D) = min
v �=0

(wb(v) + wb(D
T (v))), (3)

where DT is the transposition of D.

Theorem 2. [7] A linear diffusion layer D has a maximum differential branch
number if and only if it has a maximum linear branch number.

For a diffusion layer acting on s bundles, the maximal Bd and Bl is s+1, known
as the singleton bound [11]. And D is called a perfect or MDS diffusion layer if
it takes its maximal Bd and Bl.

2.4 Linear Diffusion Layers with Maximum Branch Numbers

In MDS codes, the most widely used property for constructing an MDS matrix
is

Theorem 3. [11] An [m, s, d] code with generator matrix G = [Is×sDs×(m−s)]
is an MDS code if and only if every square submatrix of D is non-singular, where
D is a matrix over F2n .

In the Proposition 3.1 and Proposition 3.2 of [3], Blaum et.al showed that The-
orem 3 is also valid even we substitute every element of D as a linear transfor-
mation of vector space Fn

2 . Notice that now

D =

�
D1,1 D1,2 · · · D1,m−s

D2,1 D2,2 · · · D2,m−s

...
...

. . .
...

Ds,1 Ds,2 · · · Ds,m−s

�
(4)



360 S. Wu, M. Wang, and W. Wu

is a block matrix with s rows and m − s columns, where each Di,j is an n × n
matrix over F2.

We denote by Di×j a submatrix obtained from D by deleting (s − i) block
rows and (m−s−j) block columns while maintaining the order of other elements
in D. When considering a linear diffusion layer, D is a square matrix, that is,
m = 2s. Then, the results of [3] can be re-described as the following statement.

Theorem 4. A linear diffusion layer D has a maximum branch number if and
only if every square submatrix of D, i.e., Dk×k for 1 ≤ k ≤ s, is non-singular.

To detect a perfect linear diffusion layer, we need to judge whether all�s
k=1

�s
k

��s
k

�
=
�2s
s

�
− 1 submatrices of D are non-singular according to The-

orem 4.

Remark 1. In the paper [13], Sajadieh et. al used the necessary part of this
statement to describe the conditions of some perfect diffusion layers. Now, we
know that they are enough to make those diffusion layers perfect.

3 Our Strategy for Constructing Diffusion Layers

In this paper, we will construct perfect diffusion layers using different kinds of
LFSRs. The strategy introduced in this section are suitable for bundle-based
LFSRs, that is, one or several bundles are updated in each step while others are
obtained by the shift operation. The procedure has four steps.

1. Construct an s× s matrix A = (Ai,j)1≤i,j≤s with each Ai,j =
�

a
(i,j)
k ·Lk ∈

F2[L,L
−1]. Of course, matrix A will be chosen with some structures for low-

cost hardware implementations and reducing the search space.
2. Choose an integer d and compute D = Ad (d ≥ 1) as the final diffusion

layer. Since D is a matrix over F2[L,L
−1], from Theorem 1 and Theorem 4,

we deduce that D is perfect if and only if the determinant of each square
submatrix of D is an invertible element in F2[L,L

−1].
3. Generate the determinants of all square submatrices of D (i.e., Dk×k for

1 ≤ k ≤ s) as the conditions, which is a set of polynomials in F2[L,L
−1].

Notice that if zero is in the condition set, we know D can not be MDS. In
this case, we will change the choice of A or d.

4. Search whether there exists any L such that all polynomials obtained in step
3 are invertible elements in F2[L,L

−1]. Based on Proposition 1, we need to
check whether all conditions are non-singular matrix over F2.

The procedure above can be performed systematically on a computer. To find
perfect diffusion layers with low-cost faster, several criteria are used in this paper.

1. Choose Ai,j with few terms. That is, the number of 1’s in the coefficient list

[. . . , a
(i,j)
−1 , a

(i,j)
0 , a

(i,j)
1 , . . . ] should be as few as possible. The degree of L and

L−1 are also chosen to be low. Thus, Ai,j may be chosen as 0, that is, zero
transformation.
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2. The integer d should be chosen as small as possible, since it determines the
efficiency of getting the final diffusion layerD in both hardware and software
implementation.

3. The linear transformation L should be low-cost in hardware implementation.
Our chief targets are linear transformations with no more than one XOR gate
(Note: one XOR gate needs about 2.66 GE in hardware implementation).
Multiplications with elements in F2n will be the secondary choices.

Additionally, for practical applications, we expect that

4. The perfect diffusion layers proposed in this paper should have examples for
n = 4 and n = 8, since 4-bit Sboxes and 8-bit Sboxes are involved in many
cryptographic primitives.

Remark 2. Suppose y = L·x, where L is an invertible matrix and x,y are column
vectors in Fn

2 . A linear transformation without any XOR gate is a permutation
of the input bits, that is, yi = xi′ , where [1′, 2′, . . . , n′] is a permutation of
[1, 2, . . . , n]. Thus, L is a matrix with exactly n nonzero entries, satisfying that
each row and each column of L have exactly one nonzero entry. Similarly, a linear
transformation with only one XOR gate is a matrix with exactly n+ 1 nonzero
entries, satisfying (1) each row and each column have at least one nonzero entries
and (2) there exists a unique row that has two nonzero entries.

All choices of L with no more than one XOR gate is n! + n! · (n2 − n). For
n = 4 and n = 8, we may enumerate all of them efficiently. For n ≥ 16, only a
small part of them can be enumerated. In this paper, we fix L[i, i+ 1] = 1 (for
1 ≤ i ≤ n− 1) and L[n, 1] = 1, and the search space is reduced to n2 − n+ 1.

In the subsequent two sections, we illustrate our results in constructing perfect
diffusion layers using bundle-based LFSRs. One class of them are obtained by
iterating one LFSR several times, following the design strategy of PHOTON
and [13]. In this design, only one bundle is updated while others are obtained by
shifting the state vector by one position to the left. Then, we extend the strategy
to find them using several bundle-based LFSRs in an iteration.

4 Construct Perfect Diffusion Layers with One
Bundle-Based LFSR

In this section, we revisit the design strategy of PHOTON and [13], which con-
structs recursive diffusion layers with one bundle-based LFSR. That is, we try
to construct its state transition matrix A and choose an iteration number d such
that D = Ad is perfect, where

A =

�
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
L1 L2 L3 · · · Ls

�
(5)
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and Li =
	

a
(i)
k · Lk. For simplicity, we only extract the final row of A, that is,

A
(s)
lfsr = [L1, L2, . . . , Ls],

to illustrate our choice of the LFSR. The cost of A in hardware implementation is
(s−1)n+

�s
i=1 #Li XOR gates if all Lis are nonzero elements of F2[L,L

−1], for
which #Li XOR gates are allocated to the linear transformation Li. To compare
our results with those given in LED, PHOTON and [13], we limit d ≤ s in this
section.

4.1 Perfect Diffusion Layers for s = 4

The best result we find for s = 4 is

A
(4)
lfsr = [L, 1, 1, L2] (6)

with d = 4. It costs 3n+#L+#L2 XOR gates in hardware implementation.
For the convenience of comprehension, we use this example to display how to

generate a condition set. Other proposals in this paper are done similarly.

Following the strategy discussed in Section 3, once A
(4)
lfsr = [L, 1, 1, L2] and

d = 4 are chosen, we calculate

D = A4 =



L 1 1 L2

L3 L2 + L L2 + 1 L4 + 1
L5 + L L4 + L3 + 1 L4 + L2 + L+ 1 L6 + 1
L7 + L L6 + L5 + L+ 1 L6 + L4 + L3 L8 + L4 + L+ 1

�
.

Now, based on Theorem 4, we need to calculate the determinants of all the
square submatrices Dk×k of D. Suppose F is a determinant of Dk×k for some k,
which is a polynomial in F2[L,L

−1], it can be factorized as

F = F i1
1 · F i2

2 · · ·F
ij
j ,

where F1, . . . , Fj are irreducible polynomials and i1, . . . , ij are positive integers.
Then, F is non-singular if and only if its factors F1, . . . , Fj are non-singular.
Thus, F1, . . . , Fj are added to the condition set. For example, suppose k = 1
and D1×1 = D2,4 = L4 + 1, then L + 1 is added to the condition set since
L4 + 1 = (L + 1)4.

After enumerating the determinants of all 69 square submatrices Dk×k (1 ≤
k ≤ 4), we conclude that D = A4 with A

(4)
lfsr = [L, 1, 1, L2] has branch number

5, if the following 12 matrices

L, L+ 1, L2 + L+ 1,
L3 + L+ 1, L3 + L2 + 1, L4 + L3 + 1,

L4 + L3 + L2 + L+ 1, L5 + L2 + 1, L5 + L4 + L3 + L+ 1,
L6 + L5 + L4 + L+ 1, L6 + L5 + L4 + L2 + 1, L7 + L6 + L5 + L4 + 1

are non-singular.
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Table 1. Lightweight linear transformations L for A
(4)
lfsr = [L, 1, 1, L2]

Length of the input example of L

n = 4 [[2, 3], 3, 4, 1]

n = 8 [[5, 6], 7, 5, 8, 4, 3, 1, 2]

n = 16 [[1, 2], 3, 4, . . . , 16, 1]

n = 32 [[2, 4], 3, 4, . . . , 32, 1]

n = 64 [[2, 6], 3, 4, . . . , 64, 1]

Finally, we introduce some lightweight linear transformations of Fn
2 that sat-

isfy the above conditions (see Table 1). Each of them costs only one XOR gate
(2.66 GE) in hardware implementation. Thus, L2 costs two XOR gates. Note
that there are many other similar linear transformations. For simplicity, we ex-
tract the nonzero positions in each row of a matrix to represent it. For example,

[[2, 3], 3, 4, 1] is the representation of matrix



0 1 1 0
0 0 1 0
0 0 0 1
1 0 0 0

�
.

Other Information from the Condition Set. From the condition set, we
observe that L4 +L+ 1 does not belong to it. Thus, for n = 4, L can be chosen
as the multiplication with α, i.e., L(v) = α · v (v ∈ F24), where α is a root of the
irreducible polynomial x4 + x+ 1. This L also costs one XOR gate in hardware
implementation [8].

A question is that why the multiplication with α is also a valid choice. That
is, after replacing L by the multiplication with α, can we make sure that all 12
conditions in the condition set are invertible elements of F24? The answer is yes
and the reasons are shown as following.

– 1, α, α2 and α3 compose a basis of F24 , since α is a root of the irreducible
polynomial x4 + x + 1. That is, for each β ∈ F24 , there is a unique vector
[a0, a1, a2, a3] ∈ F4

2 such that β = a0 + a1α+ a2α
2 + a3α

3.

– Suppose g(x) �= x4 + x+ 1 is another irreducible polynomial, then

g(α) ≡ a0 + a1α+ a2α
2 + a3α

3 mod α4 + α+ 1

is a nonzero element. Thus, g(α) is invertible. For a further step, all con-
ditions in the condition set are irreducible polynomials and not equal to
x4 + x + 1, which implies that they are invertible elements of F24 if L is
chosen as the multiplication with α.

In general, if we observe that an irreducible polynomial f(x) = xn + φ(x) does
not belong to the condition set, then the multiplication with one of its roots can
be chosen as a candidate of L to obtain a perfect diffusion layer over F2n .
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Table 2. Perfect diffusion layers we find for 5 ≤ s ≤ 8, together with the cost in
hardware implementation and the number of conditions

A
(s)
lfsr (d = s) Cost (XOR gates) No. of Cond.

s = 5 [1, L2, L−1, L−1, L2] 4n+ 2(#L2 +#L−1) 21

s = 6 [1, L−2, L−1, L2, L−1, L−2] 5n+#L2 + 2(#L−2 +#L−1) 90

s = 7 [1, L, L−5, 1, 1, L−5, L] 6n+ 2(#L+#L−5) 592

s = 8 [1, L−3, L, L3, L2, L3, L, L−3] 7n+#L2 + 2(#L+#L3 +#L−3) 2629

Table 3. Lightweight linear transformations L for A
(s)
lfsr with 5 ≤ s ≤ 8

Length of the input example of L fit for

n = 4 [[2, 3], 3, 4, 1] s = 5, 6, 7, 8

n = 8 [[5, 6], 7, 5, 8, 4, 3, 1, 2] s = 5, 6, 7, 8

n = 16 [[1, 2], 3, 4, . . . , 16, 1] s = 5, 6
n = 16 [[2, 6], 3, 4, . . . , 16, 1] s = 7, 8

n = 32 [[2, 10], 3, 4, . . . , 32, 1] s = 5, 6, 7, 8

n = 64 [[2, 3], 3, 4, . . . , 64, 1] s = 6, 7
n = 64 [[2, 17], 3, 4, . . . , 64, 1] s = 5, 8

Table 4. Comparison of our diffusion layers with those used in PHOTON

P100 P144 P196 P256 P288

(s, n) (5, 4) (6, 4) (7, 4) (8, 4) (6, 8)

PHOTON 75.33 GE 80 GE 99 GE 145 GE 144 GE

Ours 58.52 GE 74.48 GE 95.76 GE 117.04 GE 127.68 GE

Reduced(%) 22.3 6.9 3.3 19.3 11.3

4.2 Results for 5 ≤ s ≤ 8

The best results we find for 5 ≤ s ≤ 8 are listed in Table 2. In this table, we also
list their cost in hardware implementation. With the increment of s, the number
of conditions that must be satisfied increases rapidly. Due to the lack of space,
we only introduce the conditions for s = 5 in Appendix A.

Several lightweight examples of these diffusion layers are given in Table 3. All
of them and their inverses only cost one XOR gate in hardware implementation.
An interesting observation is that L4 + L + 1 is not included in any of these
condition sets. Thus, the multiplication with α is also a choice for n = 4, where
α is a root of irreducible polynomial x4 + x+ 1.

Application. PHOTON lightweight hash family has 5 variants according to
the size of its internal permutation. Our perfect diffusion layers can be used
to substitute those of PHOTON and obtain smaller hardware implementations.
The specification is given in Table 4. Note that our diffusion layers may perform
better in practice under some available techniques. For instance, in the document
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Fig. 2. Several bundle-based LFSRs for constructing diffusion layers

of PHOTON, the authors mentioned that using their library, the multiplications
with α, α2 and α3 can be implemented in hardware with 2.66 GE, 4.66 GE and
7 GE when using the irreducible polynomial x4 + x + 1, respectively. However,
we evaluate them with 2.66 GE, 5.32 GE and 7.98 GE in Table 4, respectively.
We would like to remark that the diffusion layer of P288 can be further improved
using the results of the next section.

5 Construct Perfect Diffusion Layers with Several
Bundle-Based LFSRs

In this section, we construct perfect diffusion layers with more than one bundle-
based LFSRs. We consider s

2 LFSRs (see Fig.2, upper part, s is even) in an
iteration, where each LFSR composed of two bundles and they form a head-tail
connecting circle. In each step, the last bundle of each LFSR is updated by a
linear combination of all of the bundles in the next LFSR while other bundles are
obtained by shifting the state vector of each LFSR by one position to the left.
Similar to the diffusion layers constructed by one LFSR, this mode also allows
to re-use the existing memory with neither temporary storage nor additional
control logic required.

From the point of view of block cipher structures, these LFSRs consist of a
Type-II Generalized Feistel Structure (GFS, [15]) (see Fig.2, nether part). Thus,
to obtain perfect diffusion layers, we firstly construct a matrix
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A =

�
T U2 0 · · · 0 0
0 T U3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · T U s

2

U1 0 0 · · · 0 T

�
, (7)

and then make D = Ad perfect, where ”0” is a 2n×2n zero matrix over F2 while

T =

�
0 1
0 0


and Ui =

�
0 0

L2i−1 L2i


(1 ≤ i ≤ s

2 ) are 2 × 2 block matrices. We

also focus on Li =
	

a
(i)
k · Lk and use

A
(s)
gfs = [L1, L2, . . . , Ls]

to indicate our choice of A. The cost of implementing the LFSRs is s
2 · n +�s

i=1 #Li XOR gates if all Lis are nonzero elements in F2[L,L
−1].

5.1 Perfect Diffusion Layers for s = 4

The best results we find for s = 4 is

A
(4)
gfs = [L, 1, 1, L] (8)

with d = 4, if the following 7 matrices

L, L+ 1, L2 + L+ 1, L3 + L+ 1,

L3 + L2 + 1, L4 + L3 + 1, L4 + L3 + L2 + L+ 1

are non-singular.
It costs 2n+2#L XOR gates in hardware implementation. Since the condition

set of this choice is included in that of A
(4)
lfsr = [L, 1, 1, L2] with d = 4, all

examples listed in Table 1 and the multiplication with a root of the irreducible
polynomial x4 + x+ 1 for n = 4 fit the above seven conditions.

5.2 Results for s = 6 and s = 8

The best results we find for s = 6 is

A
(6)
gfs = [L, 1, 1, L2, L, L2] (9)

with d = 6. It costs 3n + 2#L + 2#L2 XOR gates in hardware implementa-
tion. And 196 conditions need to be satisfied. However, we do not find linear
transformations with no more than one XOR gates when n = 4 and n = 8.
For n = 4, we find all irreducible polynomials with degree 4 are included in
the condition set. Thus, there is no choices for L ∈ F24 . For n = 8, we find
four irreducible polynomials L8 + L6 + L5 + L2 + 1, L8 + L6 + L3 + L + 1,
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L8 + L6 + L5 + L4 + 1 and L8 + L7 + L3 + L2 + 1 are not included in the con-
dition set. Therefore, L can be chosen as the multiplication with a root of these
polynomials, which costs 3 XOR gates in hardware implementation. Using this
diffusion layer (2.66× (3× 8 + 2× 3 + 2× 6) = 112 GE) to substitute that used
in P288 of PHOTON, we may save 22.2% gate equivalents.

The best results we find for s = 8 is

A
(8)
gfs = [1, L4, 1, L−1, 1, L, 1, L2] (10)

with d = 8. It costs 4n + #L4 + #L + #L−1 + #L2 XOR gates in hardware
implementation. 8692 conditions need to be satisfied. However, we do not find
linear transformations with no more than one XOR gate when n = 4 and n = 8.
What’s more, all irreducible polynomials with degree 4 and 8 are included in the
condition set. Thus, neither L ∈ F24 nor L ∈ F28 satisfies the condition set.

6 Comparison with Known Results

In this section, we compare our bundle-based proposals with those given in
the document of LED, PHOTON and [13]. The comparison mainly consists of
two parts — the cost in hardware implementation and low-cost examples for
n ∈ {4, 8, 16, 32, 64}. Table 5 illustrates the comparison results. In this table,
we generalize the choices in the LED and PHOTON hash family, which only
considered the examples over F24 , to check whether they have lightweight exam-
ples for n ≥ 4. And diffusion layers proposed in [13] are also re-calculated under
the process of Section 3. ”Y” means we find an example with only one XOR
gate, ”YF ” means we do not find examples with no more than one XOR gate,
but there is an example if L is chosen as the multiplication with an element in
F2n . ”N” means we find neither examples with no more than one XOR gate nor
examples in L ∈ F2n .

Some observations are given as follows.

1. All of our proposals (for 4 ≤ s ≤ 8) using one bundle-based LFSR have
examples with one XOR gate when n ∈ {4, 8, 16, 32, 64}, together with the
diffusion layers used in LED, P100, P144, P195 and P256 of PHOTON. And
our proposals have smaller hardware implementation than them.

2. We compare our proposals with 9 diffusion layers given in [13]. We find
four of them can not be perfect when d = s. Another four of them have
bigger hardware implementation than our proposals. Only the diffusion layer

A
(5)
lfsr = [1, L2, 1, 1, L] with d = 5 has slightly better performance than our

proposal when n ≥ 16. However, this diffusion layer does not have examples
when n = 4 and it does not have examples with no more than one XOR gate
when n = 8.

3. Diffusion layers with the smallest hardware implementation in Table 5 are
those constructed by more than one bundle-based LFSRs, especially for s =
4, which has examples with one XOR gate for all n ∈ {4, 8, 16, 32, 64}. The
case with 8 branches (i.e., s = 8) may suffer restrictions in practice because
it does not have examples when n = 4 and n = 8.
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7 Other Recursive Diffusion Layers

In this section, we discuss some possible manners to construct new lightweight
perfect diffusion layers using LFSRs.

7.1 Increase the Number of Iterations

We may obtain more lightweight perfect diffusion layers if the number of itera-
tions is increased. However, the efficiency of getting the final diffusion layer D
is decreased.

When constructing perfect diffusion layers with branch number 5 (i.e., s = 4)
using one bundle-based LFSR (see Fig.1), we find some Lis may be chosen as
the zero transformation if the number of iterations can be greater than s. An
example we obtained is

A
(4)
lfsr = [1, L, 0, 0]. (11)

It costs n+#L XOR gates in hardware implementation and needs 22 iterations
to reach branch number 5, if the following eight matrices

L, L+ 1, L2 + L+ 1,
L3 + L+ 1, L3 + L2 + 1, L4 + L3 + 1,

L4 + L3 + L2 + L+ 1, L5 + L4 + L3 + L2 + 1

are non-singular.
We observe that all examples listed in Table 1 and the multiplication with

a root of the irreducible polynomial x4 + x + 1 for n = 4 fit the above eight
conditions.

7.2 Bit-Level LFSRs

Diffusion layers discussed above are constructed by bundle-based LFSRs. An
instinctive idea is to construct them using bit-level LFSR. That is, the updating
unit in the LFSR is not bundle but bit now. In each step, only a few bits,
for instance, the rightmost m bits, of LFSR are updated by the XOR values of
chosen bit positions while other sn−m bits are obtained by shifting the LFSR by
m bits to the left. When considering bit-level LFSR, Theorem 4 will be directly
used to judge whether a choice of LFSR is perfect after some iterations.

We search all possible LFSRs when s = n = 4 and m ∈ {1, 2}, aim to
find perfect diffusion layers with branch 5 under 4-bit Sboxes. We denote by
x[1], x[2], . . . , x[16] the 16 bits in the LFSR (see Fig.1), where x[16] is the least
significant (rightmost) bit.

– For m = 1, we do not find perfect diffusion layers. However, we find many
almost perfect diffusion layers [10], that is, with differential branch number 4.
They can be detected by a variant of Theorem 4, which will be introduced in
the full version due to the lack of space. Although these diffusion layers do not
reach the maximum branch number, they may still have some applications
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because they are extremely lightweight in hardware implementation. For
example, one LFSR we find is: y = x[1] ⊕ x[7], x[i] = x[i + 1] for 1 ≤ i ≤
15, x[16] = y, which only costs one XOR gate and needs 44 iterations to
reach differential branch number 4. Another example is: y = x[1] ⊕ x[6] ⊕
x[13], x[i] = x[i + 1] for 1 ≤ i ≤ 15, x[16] = y. It costs two XOR gates and
needs 15 iterations to reach differential branch number 4.

– For m = 2, we find a list of perfect diffusion layers. One of the best LFSR is:
y = x[1]⊕ x[6]⊕ x[8]⊕ x[10]⊕ x[13], z = x[2]⊕ x[5]⊕ x[7]⊕ x[10]⊕ x[11]⊕
x[13]⊕ x[14], x[i] = x[i + 2] for 1 ≤ i ≤ 14, x[15] = y, x[16] = z. It costs 10
XOR gates and needs 8 iterations to reach branch number 5.

8 Conclusion

In this paper, we construct a list of lightweight perfect diffusion layers using LF-
SRs. On the one hand, we revisit the design strategy of PHOTON and [13], which
constructs perfect diffusion layers using one bundle-based LFSR. Our propos-
als have smaller hardware implementations than those given in LED, PHOTON
and [13]. They can be used to replace the diffusion layers in PHOTON to gain
better performance. On the other hand, we extend the strategy to construct
perfect diffusion layers using more than one bundle-based LFSRs. The structure
we choose is the Type-II Generalized Feistel Structure. Finally, we discuss some
possible manners to construct perfect diffusion layers by increasing the number
of iterations and using bit-level LFSRs.

Since most of our proposals have low-cost examples which are consistent with
4-bit Sboxes and 8-bit Sboxes, we expect that they will be useful in designing
(lightweight) block ciphers and (lightweight) hash functions.
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Program (Grant No. 2013CB834203) and the National Natural Science Founda-
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A Condition Set of A
(5)
lfsr

A
(5)
lfsr = [1, L2, L−1, L−1, L2] with d = 5 is perfect, if the following 21 matrices

are non-singular.

L,L+ 1, L2 + L+ 1, L3 + L+ 1, L3 + L2 + 1, L4 + L3 + 1,

L4 + L3 + L2 + L+ 1, L5 + L2 + 1, L5 + L3 + 1, L5 + L3 + L2 + L+ 1,

L5 + L4 + L3 + L+ 1, L5 + L4 + L2 + L+ 1, L6 + L3 + 1, L6 + L5 + 1,

L6 + L5 + L4 + L+ 1, L6 + L4 + L3 + L+ 1,

L7 + L3 + 1, L7 + L5 + L2 + L+ 1, L8 + L7 + L2 + L+ 1,

L10 + L6 + L5 + L+ 1, L10 + L9 + L8 + L6 + L4 + L2 + 1.
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Abstract. Private Stream Search allows keyword-based search queries
to be performed on streaming data (or on a database) without revealing
any information about the keywords being searched. Using homomorphic
encryption, Ostrovsky and Skeith proposed a solution to this problem in
2005. However, their solution requires the server to send an answer of size
O(mS logm) bits when m documents of S bits match the query, while a
regular (non-private) query only requires mS bits. Following this work,
some improved schemes have been proposed with the aim of keeping
the reply from the server linear in mS. In this work we propose two
new communication optimal constructions: both allow communication
linear in mS, but they also offer an expansion factor (compared to a
non-private query) asymptotically equal to 1 when m and S increase.
More precisely, our first scheme requires m(S+O(log t)) bits (where t is
the size of the database) and our second scheme m(S +C) where C is a
constant depending only on the chosen computational security level.

Keywords: privacy, keyword search, Reed-Solomon codes, LDPC codes.

1 Introduction

Internet search engines are able to gather a lot of information on users from the
content of the search queries they make. Most users don’t really care about this,
but more and more users would prefer the servers not to learn anything from
their query. This is the goal of Private Stream Search (PSS) algorithms: being
able to perform a keyword-based search query on a server, without disclosing any
information about the keywords in the query. However, even if the number of
users having concerns about privacy is growing, the number of these users that
are willing to trade efficiency for privacy is probably much smaller. Compared
to standard non-private search, PSS should not have a much higher latency
(response time) or bandwidth usage (response size) or be less reliable (miss
some matching documents). This is the main focus of this article.

The first PSS algorithm was introduced by Ostrovsky and Skeith [12,13] in
2005 and makes clever use of homomorphic encryption to hide the content of
the query while still allowing the server to perform some computations on it.
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This scheme requires the use of a public dictionary of possible keywords and is
restricted to OR queries. These restrictions are not the main focus of our work,
but as we discuss later, the use of a fully homomorphic encryption scheme could
remove these restrictions from both the original Ostrovsky-Skeith construction
and the new schemes we present here. Following Ostrovsky and Skeith’s work,
some improvements have been proposed independently by Bethencourt, Song
and Waters [1,2] and by Danezis and Dı́az [4,5]. These improvements have the
same structure as the original scheme and are focused mainly on improving
the size of the response from the server (one of the main issues in the original
proposal) and the reliability of the scheme. However, they are suboptimal in
some aspects.

The main contribution of this paper is the proposal of two new PSS algorithms
combining the ideas of the Ostrovsky and Skeith construction with results from
coding theory, thus allowing for state of the art results that improve significantly
on current PSS schemes. Our first scheme uses Reed-Solomon codes [15] and
allows for a zero-error guarantee, while offering optimal communication rates. It
can however be computationally heavy at the server. Our second scheme is based
on irregular LDPC codes [6,10] and is asymptotically optimal, thus interesting
when a large number of documents (in practice, a few hundreds) match the query.
We also propose an offline-online scheme, with a higher offline computational
cost, but which allows the online step to be as efficient as a standard non-
private search: the response suffers no latency and the communication overhead
remains minimal.

This article is organized in 3 sections. Section 2 contains a description of the
original Ostrovsky-Skeith PSS construction and of the Bethencourt et al. and
Danezis and Dı́az improvements. Then, in Section 3, we present our two new
constructions and give some analysis of their performances. Finally, in Section 4,
we detail some further improvements that apply to our schemes, but also to the
previous PSS schemes.

2 Previous Constructions

2.1 Paillier’s Encryption Scheme

All known private stream search constructions require the use of homomorphic
encryption and the original Ostrovsky-Skeith construction relies on Paillier’s
cryptosystem [14]. The new schemes we present in Section 3 also rely on this
scheme. Of course, any other homomorphic encryption scheme could be used
instead, with only minor modifications to the PSS schemes.

Paillier’s cryptosystem is a public key cryptosystem: in our PSS applications,
a user and a server will communicate, and all encryptions will be done with
respect to the user’s key. We shall denote by E : ZN &→ ZN2 Paillier’s encryp-
tion function and by D : ZN2 &→ ZN the associated decryption function. As the
encryption is randomized, the same message can have different associated cipher-
texts, decrypting to the same value. We thus introduce the notation y ≡ y′ which
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is equivalent to D(y) = D(y′): y and y′ are encryptions of the same message.
With these notations, the homomorphic property can be expressed as:

E(x1)× E(x2) ≡ E(x1 + x2) and E(x)c ≡ E(c× x) for any c ∈ ZN .

Additionally, Paillier’s cryptosystem is semantically secure, so the server cannot
distinguish between E(0) and E(1). For simplicity, we will consider that N is 1024
bits long, but it should of course be chosen according to the required security
level.

The Damg̊ard-Jurik Extension. Semantic security requires a randomized
encryption, which necessarily induces a message expansion: the ciphertext is
larger than the associated message. Paillier’s cryptosystem has a constant ex-
pansion factor of 2, for small messages of logN bits, but also for longer messages
spanning several encrypted blocks.

To improve this, Damg̊ard and Jurik [3] proposed a variant of Paillier’s ho-
momorphic encryption scheme which works very similarly but takes a message
in ZNs (for any value of s) and outputs a ciphertext in ZNs+1 . For a message of
s logN bits, the expansion factor is only s+1

s , which tends to 1 when the mes-
sage size increases. However, the price to pay for this smaller expansion rate is
a factor O(s2) on the cost of encryption/decryption.

Using the Damg̊ard-Jurik encryption scheme with a modulus N of 1024 bits,
the communication overhead is 1024 bits whatever the message size. More gen-
erally, this overhead is a constant C depending only on the required security
level.

2.2 The Ostrovsky-Skeith Construction

A private stream search algorithm works in three steps: first the user builds
a query and sends it to the server, then the server executes the query which
outputs a result that it sends back to the user, finally the user extracts the
queried documents from the result he received. Here is the description of these
three algorithms for the original PSS scheme from Ostrovsky and Skeith [12,13].

Query Construction. Let Ω = {w1, w2, . . . , w|Ω|} be the dictionary of possible
keywords and K ⊆ Ω be the set of keywords the user wants to query. The
query is Q = {q1, q2, . . . , q|Ω|}, where qj = E(1wj∈K) and 1 denotes the indicator
function. The user thus sends an encrypted bit for each element in the dictionary:
this bit is 1 if the keyword is part of the user’s search, 0 otherwise. As each
encryption is independently randomized and due to the semantic security of
Paillier’s cryptosystem, the server cannot tell which of these encrypted bits are
1 and 0.

As part of the query, the user also sends m, the expected number of matching
documents, and γ, a reliability parameter (a larger γ gives a better probability
of recovering all matching documents).
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Query Execution. Upon receiving the query (Q,m, γ), the server first creates a
buffer B of size � = γm and initializes each of its positions to the value 1 ≡ E(0).

Let us assume the database contains t documents. Then, for each document
fi ∈ ZN in the database, the server computes the set Wi ⊆ Ω of keywords in the

dictionary that match document fi. It then computes Fi =
(∏

wj∈Wi
qj
)fi ≡∏

wj∈Wi
E(1wj∈K)fi . Thanks to the homomorphic property of E , we also have:

Fi ≡ E
(
fi
∑

wj∈Wi
1wj∈K

)
. Denoting ci =

∑
wj∈Wi

1wj∈K the number of key-

words of K that match fi, we then have Fi = E(cifi). The server then selects
γ random positions bi = {bi,1, . . . , bi,γ} ⊂ [1,mγ] of the buffer B and updates
each of these γ positions by multiplying its current value by Fi.

After processing all the documents in the database, the j-th buffer position

will be equal to Bj =
∏

i F
1j∈bi

i ≡ E
(∑

i 1j∈bicifi
)
, that is, the encryption of

a linear combination of documents in the database. This linear combination is
sparse if only few documents match the query K, meaning most of the ci are
equal to 0. The server then sends the buffer B back to the user.

In practice, everything happens as if the server had a random binary matrix
H of size γm× t with γ ones in each column and it was computing B ≡ E(H ×
(cifi)i∈[1,t]).

Document Extraction. When receiving the encrypted buffer B, the user starts
by decrypting each buffer position to get D(Bj) =

∑
i 1j∈bicifi. He then scans

the γm decrypted buffer positions for what we call singletons : buffer positions
that contain only one file, that is, positions such that 1j∈bici = 0 for all but
one value of i. The user discards all buffer positions that are not singletons and
extracts the value fi of one document from each singleton.

Asymptotic Cost. The encrypted buffer that is sent back by the server to the
user has size γm. In order for the user to recover the m matching documents
with a high probability of success, γ must be of the order of O(logm). If docu-
ments are S bits long, using Paillier’s cryptosystem, encrypted buffer positions
should be 2S bits long and the answer is thus of order 2mSO(logm). It can
be reduced to m(S + 1024)O(logm) using the Damg̊ard-Jurik extension (with
a 1024-bits modulus N). The expansion factor is only logarithmic in m, but
some improvements are needed to keep the buffer size linear in the number of
matching documents.

2.3 The Danezis-D́ıaz Improvement

In [4,5], Danezis and Dı́az propose to modify slightly Ostrovsky and Skeith’s
construction, allowing them to dramatically decrease the size of the buffer B.
Their algorithm works exactly like the Ostrovsky-Skeith scheme, but with the
following modifications:

– the query Q is the same, but the user chooses a target buffer size � (typically
� = 2m),
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– before processing the query, the server embeds the index i of each document
inside fi,

– when processing the query, instead of adding the document to γ random
buffer positions, the server now uses a public hash function/pseudo-random
number generator h, seeded by the index i, to deterministically choose a
set of d positions where the document fi will be added. The integer d is a
parameter of the system. In terms of matrices, H is such that its i-th column
is Hi = h(i), a binary vector of Hamming weight d.

The main change that Danezis and Dı́az bring is a new document extraction
algorithm. As in the Ostrovsky-Skeith construction, the user starts by looking
for singletons and extracts the value of some documents from these singletons.
However, now, each document also contains its index i, and from i, the user
can generate Hi = h(i) and know exactly where this document was added in the
buffer. He can thus completely remove any document he recovers from the buffer,
thereby uncovering new singletons. This simple iterative decoding algorithm al-
lows for a much smaller buffer than in the original scheme, while maintaining a
decoding cost linear in the buffer size.

This algorithm was only empirically tested by Danezis and Dı́az, but their
experimental results show that a buffer size of � = 2m is sufficient to recover a
high percentage of the m matching documents. However, they do not give any
formal analysis.

2.4 The Bethencourt-Song-Waters Construction

In [1,2], Bethencourt, Song and Waters propose a completely different angle to
improve on the Ostrovsky-Skeith scheme. Their approach is useful when docu-
ments are long (more than logN bits), which will be the case in many appli-
cations. In the previous schemes, the expansion ratio between the number of
matching documents and the buffer size was independent of the document size.
Meaning that even for large documents, the expansion would be logm for the
Ostrovsky-Skeith scheme and 2 for the Danezis-Dı́az variant.

Bethencourt et al. propose to use a similar scheme, but with 3 different buffers.
The first buffer will contain the value of the documents (and will thus scale with
the size of the documents), and the two other buffers are independent of the
document size and are used to send the values of the ci and the indexes i of the
matching documents.

With this technique, Bethencourt et al. are able to achieve an asymptotic
expansion rate of 1 (using the Damg̊ard-Jurik cryptosystem), but their technique
suffers a few drawbacks:

– recovering the indexes i of matching documents relies on Bloom filters and
requires the reply to be of size O(m log t

m) to have a good probability of
success. This dependence in the size t of the database is not desirable and,
as we will see, not necessary.

– recovering the document values requires to solve a linear system of size m×
m, which can be quite expensive compared to the rest of the document
extraction process. Other algorithms have a linear cost in the buffer size.
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3 Two New PSS Constructions

Building on the original Ostrovsky-Skeith scheme, we propose two new commu-
nication optimal constructions. The key idea is to consider that the job of the
server is simply to compute a sparse encrypted vector E(cifi) and then compress
it in the encrypted domain. Thanks to the homomorphic property of Paillier’s
cryptosystem it is possible to compute the syndrome of this vector with respect
to the parity check matrix H of an error correcting code. Using two optimal code
constructions (Reed-Solomon codes [15] and irregular LDPC codes [6,10]) we ob-
tain our two new PSS schemes. Of course, the idea of using a linear function to
compress a sparse vector is not new, but homomorphic encryption allows to do
this in the encrypted domain too. This is also what previous PSS schemes were
doing, without explicitly stating it, and using sub-optimal linear compression.

3.1 A Zero-Error Construction Using Reed-Solomon Codes

Apart from the communication overhead, one drawback of the existing PSS
constructions is that they have a non-zero probability of failure. This is true even
for very large expansion rates. In particular, when the number m of matching
documents is small, the failure probability of all previous schemes becomes higher
for a given expansion rate. We thus propose a deterministic algorithm that will
guarantee that the document extraction will never fail if the number of matching
documents is known. This algorithm uses Reed-Solomon codes and exploits their
MDS (maximum distance separable) property in the following way:

– Reed-Solomon codes can correct up to m errors using 2m syndromes,
– they can also correct m erasures (errors at a known position) using only m

syndromes.

Description of the Construction. A direct application of this would consist
in replacing the matrix H in the PSS algorithm by the parity check matrix of
a Reed-Solomon code over ZN . Then, recovering the value of any m documents
would be equivalent to correcting m errors with the code and would only require
� = 2m buffer positions. However, it is possible to do better than this. Indeed,
this straightforward application allows documents of logN bits, but also allows
a database of up to N elements. In practice the database is much smaller than N
(which for security reasons will be at least 21024), and using a Reed-Solomon code
on ZN is a waste. The server can encode the values of the ci (and their positions)
as errors in a smaller Reed-Solomon code, and then encode the documents as
erasures, which can be efficiently recovered once the ci are known. Here is how
the algorithm works.

Query Construction. This step is the same as for the other algorithms (described
in Section 2.2). Along with the query Q, the user sends an expected number of
results m.
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low weight bits

Fig. 1. Embedding of two Reed-Solomon codes and of fi inside an element of ZN .
|Ω| and t are the dictionary and the database sizes: the zero-paddings allow to avoid
overflows when computing linear combinations of f ′

j,i.

Query Execution. As in the previous constructions, for each document fi, the
server computes the encryption E(ci) of the number of queried keywords match-
ing fi. Then, instead of simply computing E(ci)fi , the server will embed several
values in an integer f ′

j,i ∈ ZN as shown in Fig. 1. This requires two different

Reed-Solomon codes RS and RS′. The code RS will be used to recover the ci
and is defined on Zpt where pt is the smallest prime greater than the database
size t (it should also be greater than the dictionary size |Ω|) and the coefficients
of its parity check matrix are thus defined as RSj,i = ij mod pt. Similarly, RS′

will be used to recover the values of fi and is defined over Zpf
where pf is

the largest prime that can fit in the remaining bits of one plaintext (Paillier or
Damg̊ard-Jurik). We have RS′j,i = ij mod pf . Thus, for each of the m positions
of buffer B, the server multiplies Bj by E(ci)f

′
j,i . Once the whole database has

been processed, Bj ≡ E
(∑t

i=1 cif
′
j,i

)
.

Document Extraction. As usual, the user starts by decrypting the buffer B. He
then splits each plaintext he obtains in 3 parts: the first part corresponding to∑

i ciRS
′
j,ifi, the second to

∑
i ciRS2j,i and the third to

∑
i ciRS2j+1,i. These

linear combinations have been computed in the encrypted domain by the server,
with no reduction modulo pt or pf : this is why some zero-padding is required
(see Fig. 1) to avoid overflows. The user thus starts by reducing the last two
elements modulo pt for each j ∈ [1,m], and gets 2m syndrome positions in RS
of the sparse vector (ci). This is enough to recover the values and positions of
the m non-zero ci elements using the Reed-Solomon error correcting algorithm.

Then, the user reduces the first part of each plaintext modulo pf to obtain m
syndrome positions in RS′ of the sparse vector (cifi). As the non-zero ci elements
are known, the positions of the non-zero cifi are also known, and the user has
to solve an erasure problem. The m syndrome positions are enough to recover
the values of cifi, and thus also of fi.

Computational Cost. Compared to the Ostrovsky-Skeith construction, the
use of Reed-Solomon codes has an heavy impact on the server side computations.
As all the lines of a Reed-Solomon parity check matrix are different, the server
has to compute a modular exponentiation E(ci)f

′
j,i for each coefficient in the

matrix, that is mt exponentiations instead of t in the other algorithms.
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However, on the user side, the computational cost remains similar and will be
dominated by the buffer decryption step. Reed-Solomon decoding costs O(m2)
multiplications in Zpt and Zpf

, which can be upper bounded by O(m2(logN)2).
Decryption costs O(m(logN)3), which will dominate as long as m is smaller
than a few thousands. The document extraction process is thus no longer linear
in m, but the quadratic component is negligible in practice.

Communication Cost. With this scheme, a buffer of size m is enough to
recover m matching documents, which is optimal. However, part of each buffer
position is reserved for the recovery of the ci and for zero-padding. For each
document, an overhead of 5 log t + 3 log |Ω| bits has to be transmitted. The
3 log t + 3 log |Ω| padding bits1 are wasted bits that are due to the structure
of the Paillier encryption scheme: using a different homomorphic encryption
scheme could improve this. The remaining 2 log t bits are however necessary to
get a deterministic zero-error algorithm: the user has to solve an error correction
problem, meaning he will have to learn both the value and the position of the
errors, leading to an overhead of O(log t) bits per document. Overall, for m
matching documents of S bits, this scheme requires 2m(S +O(log t)) bits using
the original Paillier cryptosystem or m(S+1024+O(log t)) using the Damg̊ard-
Jurik extension. Asymptotically, when S tends to infinity, this corresponds to
an expansion ratio (compared to a non-private search) of 2 using Paillier and 1
using Damg̊ard-Jurik.

For non-asymptotic parameters, suppose we take a database of 1 000 billion
documents, a dictionary with 1 million keywords and a query for 5 keywords
returning 200 results, and we use the smallest possible zero-paddings of logm+
log |K| bits. The reply from the server would be 200× 2 048 = 409 600 bits long,
and would consist of 204 800 bits of randomness (added by Paillier’s encryption),
11×3×200 = 6 600 bits of padding, 40×2×200 = 16 000 bits to recover the ci, and
the remaining 182 200 bits to contain the information. This gives an expansion
ratio of only 2.25 for these small parameters, and this ratio will improve when
the document size increases.

Note that this analysis is valid only if the user knows in advance the number
m of matches to expect. This can be the case in some scenarios, but not in a
typical keyword search. In this case, the user will query for m positions and
will receive a syndrome of size m: if less than m documents match the query
he will be able to extract all of them with probability 1, but if more than m
documents match the query he will not be able to decode and will not get any
document. This gives another way of looking at the zero-error property: the
user knows when he misses something, whereas in the Ostrovsky-Skeith scheme,
the user will usually be able to extract at least a few documents, but has no
information whether he got all the documents or not. With our Reed-Solomon
scheme, it is possible to imagine an interactive protocol2 where the user can

1 In practice, this can be reduced to 3 logm+3 log |K| bits, but having a dependency
on m is not really convenient and revealing |K| to the server leaks some information.

2 Special care has to be taken when designing such an interactive protocol, so as not
lose too much privacy by disclosing the actual number of matches to the server.
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query for additional syndrome positions when the decoding fails, thus allowing
him to choose a small m at first and still be sure to get all the documents in the
end.

3.2 An Asymptotically Optimal Construction Using Irregular
LDPC Codes

Description of the Construction. In order to improve the asymptotic com-
munication cost and remove any dependency on the database size t, it is neces-
sary to use a randomized scheme (thus with a non-zero probability of failure):
in that case, it is well known that (irregular) LDPC codes can offer much better
performance than Reed-Solomon codes. However, the error correction problem
also has to be transformed into an erasure correction problem. This is possible
by combining the following ideas (which is similar to what Danezis and Dı́az
proposed):

– instead of using a fix LDPC matrix, generate it from the documents fi
themselves,

– use a decoding algorithm similar to the erasure correction algorithm pro-
posed by Luby and Mitzenmacher for verification codes [8].

Query Construction. This step is the same as for the Ostrovsky-Skeith con-
struction. Instead of m and γ, the user sends the desired buffer length � to the
server.

Query Execution. The server first initializes a buffer B of size � to E(0) in every
position. Then, for each document fi it proceeds as follows:

– compute f ′
i from fi as shown in Fig. 2, adding a padding (with a single 1

between some zeros) and a small non-linear checksum of fi itself (a crypto-
graphic hash of 64 bits can be used),

– compute E(cif ′
i) exactly as in the original scheme,

– using a pseudo-random number generator seeded by fi, generate
3 an integer

d following a given distribution (the best choice for this distribution is dis-
cussed at the end of this section) and generate a uniformly random binary
column vector Hi of length � and Hamming weight d,

– for every non-zero position in Hi, multiply the corresponding position in
buffer B by E(cif ′

i).

In the end, B = E(H × (cif
′
i)) contains the encrypted syndrome of the sparse

(cif
′
i) vector with respect to the parity check matrix H of an irregular LDPC

code.

3 Note that Danezis and Dı́az use the document index i to generate the column Hi,
which requires to number documents. Using the document itself as the seed makes
application to streaming data more natural.
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Fig. 2. Embedding of fi, a padding and a checksum of fi inside an element of ZN . |Ω| is
the dictionary size (a bound on ci) and the paddings avoid overflows when multiplying
f ′
i by ci. In practice, this padding can be reduced to log |K| bits, so just a couple of
bits for queries with a few keywords.

Document Extraction. When receiving buffer B, the user starts by decrypting
it and looks for singletons. The detection of singletons is made easy by the
structure of f ′

i (see Fig. 2). The isolated 1 allows to read the value of ci directly
and divide cif

′
i by it: if it is indeed a singleton, the checksum will be valid and

the value of fi can be recovered, otherwise the checksum will not be valid (with
high probability).

With every singleton the user gets the value of one document fi and can
now regenerate (using the same PRNG as the server) the corresponding column
Hi. Knowing Hi (and ci) it is possible to remove document fi from the other
syndrome positions where it has been added, thus uncovering new singletons,
which in turn can reveal new documents fi. This gives an iterative algorithm
which we analyse asymptotically here.

Choosing an Optimal Column Weight Distribution. In order to analyze
the decoding algorithm, the matrix H can be transformed into a bipartite graph.
On the left of the graph there are m information nodes (the non-zero (cif

′
i)

elements) and on the right there are � parity nodes (the decrypted syndromes).
These nodes are connected by edges: each 1 in H is an edge in the graph, linking
an information node and a parity node. For each edge in the graph, its left degree
is the number of edges connected to its information node and its right degree
the number of edges connected to its parity node. Then the decoding algorithm
consists in repeating the following steps:

– select all edges with right degree 1 (edges connected to singletons),
– remove these edges from the graph as well as the associated left and right

nodes,
– remove all other edges that were connected to the left nodes (no other edges

were connected to the right nodes).

Decoding is successful if, at the end, all the edgeshavebeen removed fromthegraph.
Studying the probability of success of this algorithm for given parameters m

and � is difficult, however, as proven in [9], if the left and right degree distribution
of edges remains constant andm and � tend to infinity, the asymptotic proportion
of edges removed at each step can be computed.
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c

v

c’

Fig. 3. Local view of the bipartite graph as a tree. The dashed lines correspond to
nodes/edges removes at the end of step j. The edge between v and c will be removed
at step j + 1 as one son c′ of v is a singleton (it has no sons remaining at the end of
step j).

Let λ(x) =
∑

i λix
i−1 and ρ(x) =

∑
i ρix

i−1, where λi (resp. ρi) denote the
probability that an edge of the graph has left (resp. right) degree i. Also, let bj
denote the proportion of edges of the graph that are still present after step j
of the algorithm. Then b0 = 1 (all the edges are present before the algorithm
starts) and:

bj+1 = λ(1 − ρ(1− bj)). (1)

We will not prove this formula here (please refer to [9,11] for the complete proof),
but the intuition is the following. During the decoding process, the neighborhood
around the edge (v, c) between a message node v and a parity node c, can be seen
as a tree (see Fig. 3). The decoding process then consists in letting information
flow from the leaves of the tree to its root: the (v, c) edge will be removed from
the graph at step j + 1 if the value of v can be determined at step j + 1 and it
can thus send its value to c. As can be seen on Fig. 3, the value of the message v
can be determined if it has a son c′ that is a singleton at the end of step j of the
algorithm, meaning one of the sons of v is a leaf. The probability this happens
can easily be computed if the distributions λ and ρ are known. The parity node
c′ is connected to k edges with probability ρk and it is a singleton at the end of
step j if its k − 1 sons in the Fig. 3 tree have been removed: this happens with
probability Psingleton =

∑
k ρk(1− bj)

k−1 = ρ(1 − bj).
Similarly, node v has k′ neighbors (and thus k′−1 sons) with probability λk′ , so

one of them will be a singleton with probability 1−
∑

k′ λ′
k(1−Psingleton)

k′−1 =
1−λ(1−Psingleton). The edge (v, c) is thus removed at step j+1 with probability
1− λ(1 − ρ(1− bj)), which leads to formula (1).

Asymptotically, the decoding algorithm is successful if bj
j→∞−→ 0, which will

be the case if:

∀x ∈ [0, 1], λ(1− ρ(1 − x)) ≤ x.

Of course, for finite values ofm and �, the algorithm can fail even if this condition
is verified. The sequence of bj represents the expected evolution of the number
of edges in the graph, but the algorithm will deviate from the average from time
to time.
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Table 1. Minimal expansion rates asymptotically allowing recovery of all the docu-
ments, for specific values of d, in the algorithm of Danezis and Dı́az

d 2 3 4 5 6 7 8 9

minimal �
m

2 1.2218 1.2949 1.4249 1.5697 1.7189 1.8692 2.0192

Application to Danezis and Dı́az’s Algorithm. In [4], Danezis and Dı́az propose
to use a constant weight d for the columns of H . This means that λ(x) = xd−1.
The distribution ρ is a little more complicated as it is induced by λ. A row of H
will have a weight following a binomial distribution: it is the sum of m random

coins equal to 1 with probability d
 . We thus have ρi =

i
md

(
m
i

)(
d


)i(
1 − d

 )
m−i

and so, when m is large, ρ(x) = exp
(
− md

 (1− x)
)
.

The best rate 
m one can achieve for a given d is given in Table 1 and is

obtained from the equation:

∀x ∈ [0, 1],
(
1− exp(−md

 x)
)d−1

≤ x.

The best asymptotic choice is d = 3, which does not mean that for a given m
and � the best probability of success is always achieved for d = 3. This however
proves that Danezis and Dı́az’s algorithm with constant column weight d can
indeed achieve communications linear in m. However, it can never have a good
probability of success for expansion rates smaller than 1.22.

The Harmonic Distribution. Using a constant column weight makes the descrip-
tion of the algorithm easy and gives very good results for some parameters (see
Fig. 5), but it is not optimal.

The decoding problem we are facing is very close to the problem of decod-
ing LT-codes [7] and, for LT-codes, it was proven that the optimal distribution
choice is the so-called Robust Soliton distribution. However, in our context, using
this distribution would correspond to fixing ρ(x), that is, choosing a row weight
distribution. This is not possible as each instance of our decoding problem corre-
sponds to a set of m random columns of H , meaning we only have full control on
the column weight distribution λ(x). The row distribution will always be given

by ρ(x) = exp
(
− md̃

 (1− x)
)
, where d̃ = 1/

∑
i
λi

i is the average column weight
of H . Thus, the constraint on λ(x) is:

∀x ∈ [0, 1], λ
(
1− exp(−md̃

 x)
)
≤ x. (2)

With a change of variable y = 1− exp(−md̃
 x), inequality (2) becomes:

∀y ∈
[
0, 1− exp(−md̃

 )
]
, λ(y) ≤ − 

md̃
ln(1 − y).

The optimal choice is thus the harmonic distribution, consisting in a normalized
Taylor series expansion of − ln(1− x) truncated at order D. It is given by:

λD(x) =
1

H(D)

D∑
i=2

1

i− 1
xi−1 with H(D) =

D∑
i=2

1

i− 1
.
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Fig. 4. Column weight distribution for the harmonic distribution of order 7

These λD(x) distributions will satisfy inequality (2) if the expansion factor 
m is

greater than 1 + 1
D . Any expansion ratio 

m = 1 + ε can thus be chosen by the
user, and using the harmonic distribution of order 1

ε will asymptotically allow
to recover most documents.

The Enhanced Harmonic Distribution. One problem with the harmonic distri-
bution is the presence of columns of weight 2 (see Fig. 4). Any distribution
containing columns of weight 2 will have a non-zero asymptotic probability of
having identical columns4. Indeed, the collision probability Pcol that 2 of the m

matching columns of H are identical is Pcol -
∑

i

( d̃λi
i m
2

)
/
(

i

)
. If the ratio 

m is
constant and m tends to infinity, all the terms in this sum tend to 0, except the

term i = 2. Asymptotically, Pcol
m→∞−→

(
d̃λ2m
2

)2
, which is not negligible for the

harmonic distribution.
This means that, using the harmonic distribution, decoding will often end

with a few (O(1) asymptotically) unrecovered documents. In order to deal with
this issue, one solution is to combine this distribution with a constant weight
distribution to obtain what we call the enhanced harmonic distribution. Each
column of H is the concatenation of a column of length � − �3 following the
harmonic distribution and a column of length �3 of constant weight 3.

In practice, the proportion of collisions tends to 0 when m grows, so the
length �3 can be chosen such that 3

m tends to 0 and the probability of full

recovery still tends to 1. For example, l3 = O(
√
�) would be a reasonable choice.

Asymptotically, these �3 additional rows in H do not increase the expansion
factor. Using this enhanced harmonic distribution with an order D harmonic
distribution, the probability of recovering all m documents tends to 1 when

m > 1 + 1

D and m tends to infinity.

4 If two documents fi generate the exact same column Hi, our decoding algorithm
will be unable to recover any of them as no singleton can ever be obtained.
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Fig. 5. Simulation results for different LDPC weight distributions. The curves repre-
sent the average ratio of recovered documents and the probability of recovering all m
documents as a function of the number of matching documents m for different buffer
sizes �. In (a) and (d) � = 100 and �3 = 10, in (b) and (e) � = 1000 and �3 = 35, and
in (c) and (f) � = 10000 and �3 = 100.

Communication Cost. We compared the different distributions through sim-
ulations and the results we obtained are shown in Fig. 5. One can clearly see
the limitation of the weight 3 distribution: for m > .8� - 

1.22 the probability
of full recovery drops. However, the enhanced harmonic distribution holds to
our expectations, it behaves as expected with a probability of recovering all m
matching documents close to 1 even for expansion rates smaller than 5%.

With this algorithm and the enhanced harmonic distribution, the asymptotic
communication cost of private stream search with m matching documents of S
bits is thus 2m(S + 64 + O(log |Ω|)) using Paillier’s cryptosystem, or m(S +
1088+O(log |Ω|)) using the Damg̊ard-Jurik extension, which corresponds to an
expansion rate of 1 compared to a non-private search.

4 Further Improvements

An Offline-Online Construction. Using any of our two new schemes, it is
possible to reduce the size of the reply from the server almost to the size of a
non-private search result. However, the size of the query the user sends remains
large. The size of a private query is linear in |Ω| whereas it is logarithmic for a
non-private query. To improve this, we propose an offline-online scheme, where
the linear query is sent offline and a logarithmic query is sent online.

A Single Keyword Scheme. We first focus on queries containing a single keyword.
In this case, any query can be obtained as a cyclic shift of any other query. The
scheme works as follows:

– offline, the user generates a query Qj = {q1, . . . , q|Ω|} where qj = E(1) and
qi = E(0) otherwise (with j picked uniformly at random), and sends it to
the server,



386 M. Finiasz and K. Ramchandran

– offline, the server computes all possible cyclic shifts of Qj by i ∈ [0, [Ω| − 1]
positions and executes the corresponding queries. It stores each result in a
separate buffer Bi.

– online, the user wants to query the server for the j′-th keywords and sends
j′ − j mod |Ω| to the server,

– online, the server sends Bj′−j to the user and discards the other Bi,

– the user decrypts/decodes buffer Bj′−j normally.

With this scheme, the online work on the server side is a simple table lookup
and the amount of online communication is very close to the non-private case:
the query is only log |Ω| bits long, and with the PSS schemes we have presented
Bj′−j can also be small.

The offline amount of communication is still the same as for the standard
scheme, but the amount of computation on the server side is multiplied by |Ω|.
However, as this is offline work, it can easily be outsourced to distant server
farm and does not have to be run on the “online” low-latency servers. Of course,
if the amount of offline work is too high, it is also possible to treat the shifted
query online as in the standard scheme: the amount of work the server has to do
will then be the same as in the normal scheme, but most of the communication
will be done offline.

Dealing with Multiple Keywords. To maintain privacy, the offline query the user
sends has to be completely random and, at the same time, it should be possi-
ble to modify it into any other query the user might later want to ask. For a
single keyword, cyclic shifts work well whatever the dictionary size. However,
for several keywords (say k), the user should be able to transform any random
query Qj1,...,jk into any chosen query Qj′1,...,j

′
k
, by simply giving the index of a

permutation.
When k = 2, a solution is to transform each index j into Aj + B mod |Ω|,

where A ∈ [1, |Ω| − 1] and B ∈ [0, |Ω| − 1] are the “permutation index” that the
user will send to the server in the online phase. If |Ω| is prime, then any pair
j1, j2 can be transformed into any pairs j′1, j

′
2 by choosing A = j2−j1

j′2−j′1
mod |Ω|

and B = Aj1 − j′1 mod |Ω|.
Building such families of permutations for larger values of k is not always

simple, and the number of permutations in the family will always have to be at
least

(|Ω|
k

)
. This means that the offline work on the server side will be O(|Ω|k)

times more than in the standard online scheme. Values of k larger than 1 or 2
are therefore not very realistic, and for these values the solutions we presented
work fine.

Using Fully Homomorphic Encryption. The PSS schemes we presented do
not need fully homomorphic encryption (FHE) to work: computing a syndrome
only requires addition and multiplication by a scalar. However, having an efficient
FHE scheme would allow AND queries, whereas the current schemes are limited
to OR queries. Also, the query size could be reduced to O(log |Ω|) encrypted bits
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without having to use an offline-online scheme5. For instance, when querying for
keyword wi, the user could decompose the index i in log |Ω| bits and send two
ciphertexts E(0) and E(1) (or E(1) and E(0)) for each of these bits. The server
can then regenerate the whole query Q by homomorphically multiplying the
encrypted bits corresponding to each index. Continuing on this idea, it would
even be possible to get rid of the dictionary by simply querying a bit string: a
query of 2n encrypted bits would be enough to search any pattern of n bits.

One interesting aspect of this application of FHE, is that the number of ho-
momorphic multiplications that have to be done is independent of the database
size: multiplications are required to reconstruct the query, but not for the stream
search itself. Even if homomorphic multiplication is very expensive, or if the cho-
sen scheme only allows for a few multiplications, it is still possible use it for very
large databases: only the dictionary size is limited.

Also, one should note that the homomorphic encryption scheme used in PSS
does not have to be a public key scheme: only the user encrypts and decrypts
elements (the server simply has to be able to initialize the buffer to E(0), but the
user could send him this initial value). A symmetric homomorphic encryption
scheme with a limit on the number of possible multiplications could thus also be
of interest if it allows a small message expansion rate.

Application to Set Reconciliation. An interesting aspect of the LDPC
scheme we presented is that, even though it behaves like a randomized scheme,
it is fully deterministic. What this means is that if the user already knows a
subset of the documents fi that are going to match the query, he can compute
a buffer B for the documents he knows in the exact same way as the server and
“remove” this buffer from the reply he gets from the server.

This is the idea of set reconciliation: two users A and B know two sets SA

and SB and want to learn the elements the other user knows with the minimal
amount of communication. Classical results from set reconciliation show that
the amount of communication required is only |SA|+ |SB| − 2|SA ∩ SB|.

The same optimal result can be obtained with our construction: if m docu-
ments match the query, but the user already knows m′ of these documents, a
buffer of size m − m′ is (asymptotically) enough. This way, if a user repeats
the same search every day (for example, to monitor changes to a database), the
amount of communication required can be reduced even further by keeping a
cache of the previous search results.

5 Conclusion

We presented two new private stream search constructions allowing minimal
communication from the server to the user. Using Paillier’s cryptosystem, com-
pared to a standard non-private search, the response from the server in our

5 Not that a query of O(log |Ω|) bits is probably not achievable in practice as current
FHE schemes all require some important message expansion, but a poly-logarithmic
query is possible.
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Table 2. Comparison of the computational and communication complexities of the
various PSS schemes. |Ω| is the dictionary size, t is the number of documents in the
database, S is the size of a document in the database, andm is the number of documents
matching the query. n = logN is the size of the modulus used in Paillier’s encryption
and S

n
is the number of plaintext blocks required to encrypt one document. Reply sizes

are given assuming the use of the original Paillier encryption: using the Damg̊ard-Jurik
scheme can gain a factor 2 in the reply sizes of all schemes.

query size server reply size user
(in bits) complexity (in bits) complexity

Non-private search |K| log |Ω| t Sm Sm

Ostrovsky-Skeith 2n|Ω| tn3 2Sm logm S
n
m logmn3

Bethencourt et al. 2n|Ω| tn3 2Sm+ 2nm +
2nm logm

m(S
n
+ logm)n3+m2.376

2n|Ω| tn3 2Sm+ 2nm +
2nm log t

m

m(S
n
+ log t

m
)n3 +

m2.376 + t log t
m

Danezis-Dı́az 2n|Ω| tn3 2.44(S+ log t)m 1.22S
n
mn3

Our RS scheme 2n|Ω| mtn3 2(S + 5 log t+
3 log |Ω|)m

S
n
mn3 +m2n2

Our LDPC scheme 2n|Ω| tn3 2(S+2 log |Ω|)m S
n
mn3

schemes only suffers a factor 2 expansion. Using the Damg̊ard-Jurik extension,
this expansion factor can be made as close to one as required when the docu-
ment size tends to infinity. Also, our Reed-Solomon based construction allows
zero-error rate, meaning the user is guaranteed to get the documents he expects
(or, if he chose m too small, he will know he missed some documents). This
comes at a cost on the server side, but can be a very important feature for some
applications.

The improvements we presented here do not solve all the problems of private
stream search: the computational cost on the server side is still much more than
for a regular search, and the size of the query the user has to send is also a
problem. Still, our LDPC scheme offers better performances than all the previ-
ous private stream search constructions, without any additional computations.
Table 2 gives a comparison of the asymptotic costs of the different PSS schemes
mentioned here.
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Abstract. Methods for enumerating cryptographic keys based on par-
tial information obtained on key bytes are important tools in crypt-
analysis. This paper discusses two contributions related to the practical
application and algorithmic improvement of such tools. On the one hand,
we observe that the evaluation of leaking devices is generally based on
distinguishers with very limited computational cost, such as Kocher’s
Differential Power Analysis. By contrast, classical cryptanalysis usually
considers large computational costs (e.g. beyond 280 for present ciphers).
Trying to bridge this gap, we show that allowing side-channel adversaries
some computing power has major consequences for the security of leak-
ing devices. For this purpose, we first propose a Bayesian extension of
non-profiled side-channel attacks that allows us to rate key candidates
according to their respective probabilities. Then we provide a new deter-
ministic algorithm that allows us to optimally enumerate key candidates
from any number of (possibly redundant) lists of any size, given that
the subkey information is provided as probabilities, at the cost of lim-
ited (practically tractable) memory requirements. Finally, we investigate
the impact of key enumeration taking advantage of this Bayesian for-
mulation, and quantify the resulting reduction in the data complexity of
various side-channel attacks.

1 Introduction

Side-channel attacks represent an important threat to the security of crypto-
graphic hardware products. As a consequence, evaluating the information leak-
age of microelectronic circuits has become an important part in the certification
of secure devices. Most of the tools/attacks that have been published in this
purpose are based on a so-called “divide-and-conquer” approach. That is, in a
first “divide” part, the evaluator/adversary recovers information about different
parts of the master key, usually denoted as subkeys (as a typical example, the
target can be the 16 AES key bytes). Next, a “conquer” part aims to combine the
information gathered in an efficient way, in order to recover the full master key.

Research over the last ten years has been intensive in the optimization of the
divide part of attacks. Kocher et al.’s Differential Power Analysis (DPA) [14]
and Brier et al.’s Correlation Power Analysis (CPA) [6] are notorious examples.
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One limitation of such approaches is their somewhat heuristic nature, as they
essentially rank the subkeys according to scores that do not have a probabilistic
meaning. As demonstrated by Junod in the context of linear cryptanalysis, such
heuristic key ranking procedures may be suboptimal compared to Bayesian key
recoveries [12]. The template attacks introduced by Chari et al. in 2002 typically
aim to get rid of this limitation [7]. By carefully profiling a probabilistic model for
the physical leakages, such attacks offer a direct path towards Bayesian subkey
testing procedures. Template attacks are optimal from an information theoretic
point of view, which makes them a prime tool for the worst-case security evalua-
tion of leaking devices [32]. However, they also correspond to strong adversarial
assumptions that may not be met in practice. Namely, actual adversaries are not
always able to profile an accurate enleakage model, either because of a lack of
knowledge of the target devices or because of physical variability [26]. As a con-
sequence, attacks profiling an “on-the-fly” leakage model such as the stochastic
approach, introduced by Schindler et al. [27] and discussed by Doget et pal. [9],
are an important complement to a worst-case security analysis.

By contrast, only little attention has been paid to the conquer part in side-
channel analysis. That is, in most cases the attacks are considered successful if
all the subkeys are recovered with high confidence, which generally implies an
extremely small time complexity for the offline computations. This situation is
typically exemplified by initiatives such as the DPA contest [22], where the suc-
cess rate in recovering a master key is directly obtained as the success rates for
the concatenated 16 subkeys ranked first. In fact, the most noticeable exceptions
attempting to better exploit computational power in physical attacks are based
on advanced techniques, e.g. exploiting the detection of collisions [4,15,28,29], or
taking advantage of algebraic cryptanalysis [5,20,24,25], of which the practical
relevance remains an open question (because of stronger assumptions). But as
again suggested by previous works in statistical cryptanalysis, optimal key rank-
ing procedures would be a more direct approach in order to better trade data
and time complexities in “standard” side-channel attacks.

In this paper, we improve the divide and the conquer parts of side-channel
attacks, with two main contributions. Regarding the divide part, we start with
the observation that non-profiled side-channel attacks are usually limited by
their heuristic use of scores when ranking subkey candidates. As a consequence,
we propose a method for non-profiled attacks that allows deriving probability
mass functions for the subkey hypotheses. This tool can be viewed as a natural
extension of the stochastic approach, but is also applicable to DPA and CPA.
More generally, expressing the information obtained through non-profiled side-
channel attacks with probabilities allows us to connect them better with template
attacks, where the scores are already expressed as subkey probabilities.

Second, we provide the first comprehensive investigation of the conquer part
of side-channel attacks. For this purpose, we start from the motivation that
testing several billions of key candidates on a modern computer is not far-fetched:
being able to recover a master key after such a computation is indeed a security
breach. Next, we observe that two main solutions for testing key candidates
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from partial information on the subkeys exist in the literature. On the one hand,
Meier and Staffelbach proposed a sampling algorithm in 1991. However, it turns
out that in our side-channel attack context, such a probabilistic search leads to
significant overheads in terms of number of keys to test. On the other hand,
Pan, van Woudenberg, den Hartog and Witteman described a deterministic key
enumeration algorithm at SAC 2010. But large memory requirements prevent
the application of this second solution when the number of keys to enumerate
increases. For example in [21], the authors were limited to the enumeration of
216 candidates. As none of these tools is perfectly suited to our side-channel
attack context, we propose a new deterministic algorithm for key enumeration,
that is time and memory efficient, and allows the optimal enumeration of full
keys by decreasing order of probabilities. It takes advantage of the probability
mass functions of subkeys made available through our first contribution. The
new algorithm can be viewed as an improvement of the SAC 2010 one, in which
we reduce the memory complexity of the enumeration thanks to a recursive
decomposition of the problem. Interestingly, and as previously observed in other
cryptanalysis settings, this improvement of the key ranking strategy also has a
significant impact on the data complexity of side-channel key recoveries.

Summarizing, this work brings an interesting complement to the evaluation
framework in [32]. It allows stating standard side-channel attacks as a data com-
plexity vs. time complexity tradeoff. On the theoretical side, the proposed key
enumeration algorithm leads to a proper estimation of security metrics such as
high-order success rates or guessing entropy, for block cipher master keys (this
estimation was previously limited to subkeys or small orders). In practice, ex-
perimental results also exhibit that considering adversaries with a reasonable
computing power leads to significant improvements of standard side-channel at-
tacks. These gains are particularly interesting if we compare them with the ones
obtained by only working on the statistics in the divide part of side-channel
attacks [31]. Hence, we believe that the tools introduced in this paper have an
important impact for the security evaluations of leaking devices, e.g. for certi-
fication laboratories. In this respect, it is worth noticing the gap between the
computational complexities usually considered in the evaluation of side-channel
attacks and the ones considered for evaluating security against mathematical at-
tacks [16,23]. We also note that the tools introduced in this paper are generic and
have potential impact in other cryptanalytic settings (e.g. based on faults [3],
or statistical [2,18]), although standard side-channel attacks are a very natural
environment for using them. Finally, in order to stimulate authors to consider
the computational aspect of side-channel attacks, we provide an optimized im-
plementation of the enumeration algorithm available in [1].

2 Background

The “standard” side-channel attacks considered in this work use a divide-and-
conquer approach in which the side-channel subkey recovery phase focuses on
one specific operation at a time [17]. In block ciphers like the AES, this operation



An Optimal Key Enumeration Algorithm 393

is usually one 8-bit S-box in the first encryption round. We denote with p and
k the byte of the plaintext and the byte of the key (i.e. the subkey) that are
used in the attack, with x = p ⊕ k the input value of the S-box, and with
y = S(x) the corresponding output value. The goal of a side-channel subkey
recovery phase is to identify the best (and hopefully correct) subkey candidate

k̂ from the set of all possible key hypotheses K, using q measured encryptions.
For each target S-box the adversary collects a data set of pairs {(pi, li)}1≤i≤q

1,
with pi the ith plaintext byte involved in the target S-box computation, and li
the corresponding leakage value. For simplicity, and because it has little impact
on our following discussions, we assume unidimensional leakages. In addition, we
assume leakage samples composed of a deterministic and a random part, with
the deterministic part depending only on the S-box output (i.e. we use the EIS
assumption introduced in [27]). The leakage samples can consequently be written
as li = L(yi) = f(yi) + n, with n a Gaussian distributed noise. In general, side-
channel attacks can be classified as profiled and non-profiled attacks, depending
on whether the adversary can perform a training phase or not.

Profiled attacks, like template attacks [7], take advantage of their profiling
phase to characterize the leaking device with a probabilistic model. This allows
the adversary to rank the subkey hypotheses k according to their actual prob-
abilities: k̂ = argmaxk Pr[k|{(pi, li)}]. These probabilities can then directly be
used to build a Probability Mass Function (PMF): fK(k) = Pr[k|{(pi, li)}], with
K the discrete random variable corresponding to the unknown subkey byte. This
PMF will be needed to perform the key enumeration in Section 4. By contrast,
in the case of non-profiled attacks (e.g. DPA [14] or CPA [6]), the best subkey
hypothesis is not chosen based on probabilities, but on the value produced by
a statistical distinguisher (namely, a difference-of-means test for Kocher’s DPA
and Pearson correlation coefficient for CPA). For these non-profiled attacks,
there is thus no straightforward way to produce the PMF we need to enumer-
ate the master keys. That is, the distinguisher outputs a ranking of the subkey
candidates, which has no probabilistic meaning.

In order to apply our key enumeration algorithm, we need a way to extract
probabilities from a non-profiled attack. For this purpose, we will use a natu-
ral extension of the non-profiled version of Schindler’s stochastic approach [27].
Hence, we first recall how the non-profiled stochastic attack works [9]. A stochas-
tic model θ(y) is a leakage model used to approximate the leakage function:
L(y) - θ(y), where θ(y) is built from a linear basis g(y) = {g0(y), ..., gB−1(y)}
chosen by the adversary (usually gi(y) are polynomials in the bits of y). Eval-
uating θ(y) boils down to estimating the coefficients αi such that the vector
θ(y) =

∑
j αjgj(y) is a least-square approximation of the measured leakages

li. The idea of a non-profiled stochastic attack is to build |K| stochastic models
θk(y) by considering the data set {(pi, li)} under the assumption that the correct
key hypothesis is k. These stochastic models are then used as a distinguisher: for
a correct key hypothesis (and a relevant basis), the error between the predicted
values and the actual leakage values should have a smaller standard deviation

1 In order to lighten the notations, we omit the index 1 ≤ i ≤ q after the data sets.
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than for a wrong key hypothesis. The pseudo-code of the attack is given in Al-
gorithm 1. In general, an interesting feature of such attacks is that they allow
trading robustness for precision in the models, by adapting the basis g(y). That
is, a simpler model with less parameters is more robust, but a more complex
model can potentially more accurately approximate the real leakage function.

Algorithm 1. Non-profiled stochastic attack

1: Acquire {(pi, li)}1≤i≤q .
2: Choose a basis g(y).
3: for k ∈ K do
4: Compute the S-box output hypotheses yi,k = S(pi ⊕ k).
5: Use the basis g(y), the data set and the subkey hypothesis k

in order to build a stochastic model θk.
6: Compute the error vector ek: ei,k = li − θk(yi,k).
7: Evaluate the precision of the model: σk = standard deviation(ek).
8: end for
9: Choose k̂ = argmink σk.

3 Bayesian Extension of Non-profiled SCAs

As the straightforward application of a stochastic attack does not produce PMFs,
we propose in this section to perform an additional Bayesian step after building
the stochastic models. We show that this Bayesian model comparison produces
probabilities, and that the criterion of maximizing the likelihood of the subkey
is equivalent to minimizing the error vector standard deviation, meaning that
this extension indeed ranks the subkeys in the same order as the standard non-
profiled stochastic attack. As a bonus, we observe that this extension also gives
us a very natural way to combine independent leakage samples in an attack. In
the Bayesian version of the non-profiled stochastic attack, we perform a Bayesian
hypothesis test on subkey candidates (under the assumption that the basis used
for the stochastic attack is valid). It consists in estimating the probability of
the observed data set assuming that they are produced from the model θk (i.e.
Pr[{(pi, li)}|θk]). Then, we use Bayes’ theorem to deduce the likelihood of the
models (and thus the probabilities of the subkey hypotheses) given the data (i.e.
Pr[θk|{(pi, li)}]), as described by the pseudo-code of Algorithm 2. A detailled
derivation of relevant probabilities is given in Appendix A.

Algorithm 2. Bayesian non-profiled stochastic attack

1 to 8: Same as Algorithm 1.
9: Perform a Bayesian model comparison: evaluate for each subkey hypothesis the
likelihood Pr[θk|{(pi, li)}] using Bayes’ theorem.
10: Choose k̂ = argmaxk Pr[θk|{(pi, li)}].
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4 A New Algorithm for Combining Subkeys

Following the evaluation framework in [32], different metrics can be used to
analyze the security of an implementation against side-channel attacks. Of par-
ticular interest in this work are the so-called “security metrics” (namely, the
success rate and guessing entropy), of which the goal is to estimate the efficiency
of a given distinguisher in exploiting the leakage to recover keys. Intuitively, a
success rate of order o corresponds to the probability that the correct key is
rated among the o first candidates provided by the distinguisher. The guessing
entropy corresponds to the average number of keys to test before reaching the
correct one. As suggested in [21], one can also consider a guessing entropy of
order o, in order to capture the fact that in practice, only a maximum number
of o keys can be tested by the evaluators. Empirical comparisons of distinguish-
ers using such metrics have been performed in [31], but were limited to subkey
recoveries (i.e. key bytes, typically). In the following, we consequently tackle the
(most practically relevant) problem of how to efficiently estimate these metrics
for master keys. In the extreme case (i.e. success rate of order 1), the solution
is straightforward, as e.g. illustrated by the DPA contest [22]. We consider the
general case of large lists and large orders, to carefully address the problem of
the “conquer” part in a side-channel attack. The problem of extracting the rank
of a correct key is equivalent to the problem of enumerating keys stated below.

Key-Enumeration Problem. The attacker obtains PMFs corresponding to
d independent subkeys, each PMF taking n different values. The problem is to
enumerate complete keys from the most probable to the least probable one.

In the following, we qualify an enumeration algorithm as optimal if it outputs
key candidates in nonincreasing order of posterior probability. The term optimal
refers to the fact that this order minimizes the expected number of key trials.
Any non-optimal algorithm incurs an overhead in terms of trials during the key
recovery phase. Besides, the more subjective term efficient relates to the com-
putational and memory-related costs of the algorithm. For example, the naive
algorithm for solving the enumeration problem generates the list of all possible
key candidates, computes the corresponding likelihood values (by multiplying
subkey probabilities) and sorts them accordingly. While optimal in the previ-
ously described sense, it can only be used with key candidates lists of limited
size, and is therefore very inefficient. In the remainder of this section, we propose
an algorithm that optimally solves the enumeration problem, and allows time
and memory efficient key-enumeration, even when the number and size of subkey
lists makes the naive approach untractable.

4.1 An Optimal and Efficient Key-Enumeration Algorithm

The key enumeration problem can be more readily understood as a geometric
problem. We first consider the simpler bi-dimensional case (i.e. 2 subkeys). The
key space can be identified with a compartimentalized square of length 1. The
enumeration process is illustrated in Figure 1. The 4 columns (resp. rows) cor-
respond to the four possible values of the first (resp. second) subkey, sorted by
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nonincreasing order of probability. Width and height correspond to the proba-

bility of the corresponding subkey. Let us denote by k
(j)
i the jth likeliest value

for the ith subkey. Then, the intersection of row j1 and column j2 is a rectangle

corresponding to the key (k
(j1)
1 , k

(j2)
2 ) with probability equal to the area of the

rectangle. Using this geometric view, an optimal key enumeration algorithm out-
puts compartments by nonincreasing order of area. A solution to this problem
is given in Algorithm 3 and corresponds to the following steps:

0

1

1

k
(j)
1

k
(j)
2

1

Step 1

1

2

Step 2

1

2

3

4

5

. . .

Fig. 1. Geometric representation of the proposed algorithm

Step 1. The most likely key is (k
(1)
1 , k

(1)
2 ). Hence, we output this one first (rep-

resented in dark gray). At this point, the only possible next key candidates are

the successors (k
(2)
1 , k

(1)
2 ) and (k

(1)
1 , k

(2)
2 ), shown in light gray. We denote by F

this set of potential next candidates (where F is standing for frontier).

Step 2. Any new candidate has to belong to the frontier set. We extract the most
likely candidate from this set and output it. It corresponds to rectangle 2 in our
example. F is updated by inserting the potential successors of this candidate.

Next steps. Step 2 is repeated until the correct key is output, or if the size of
the frontier set F exceeds the available memory space.

Note that in step 2, (k
(2)
1 , k

(1)
2 ) is a more likely candidate than (k

(2)
1 , k

(2)
2 ) by

construction. Hence, (k
(2)
1 , k

(2)
2 ) should not be inserted into F (this is represented

on the figure by red crosses). There is a simple rule for handling such cases, which
allows minimizing the memory requirements of our algorithm:

Rule 1. The set F may contain at most one element in each column and row.

Operations on the frontier set can be performed efficiently if candidate keys
are stored in an ordered structure. Indeed, these operations simply consist in
inserting new elements or finding the most likely element in the set and removing
it. Using heaps, these manipulations are logarithmic in the size of the set. The
test of Rule 1 can be implemented using arrays of Boolean values.
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Algorithm 3. Optimal key-enumeration.

F ←− {(k(1)
1 , k

(1)
2 )};

while F �= ∅ do
(k

(i)
1 , k

(j)
2 ) ←− most likely candidate in F ;

Output (k
(i)
1 , k

(j)
2 );

F ←− F \ {(k(i)
1 , k

(j)
2 )};

if i+ 1 ≤ #k1 and no candidate in row i+ 1 then
F ←− F ∪ {(k(i+1)

1 , k
(j)
2 )};

end if
if j + 1 ≤ #k2 and no candidate in column j + 1 then

F ←− F ∪ {(k(i)
1 , k

(j+1)
2 )};

end if
end while

Generalization to Multiple Lists. In practice, one often has to merge to-
gether more than two lists of subkeys. Straightforward extensions of our algo-
rithm to higher dimensions lead to either suboptimal or slow rules for frontier
set reduction. On the one hand, the direct transposition of Rule 1 will minimize
memory, but implies adjacency tests in multiple dimensions, leading to unac-
ceptable reductions of the enumeration speed. On the other hand, simplifying
the rule in order to maintain a good enumeration speed implies the storage of
many non-necessary candidates in the frontier set, which rapidly leads to unsus-
tainable memory requirements. As a result, and in order to obtain good results
for more than two lists, we apply a recursive decomposition of the problem.

For this purpose, we only use the algorithm for merging two lists, and its
outputs are combined to form larger subkey lists which are in turn merged
together. This way, merging n lists is done by merging two lists n−1 times. The
order of merging is such that lists merged together are of similar sizes. Taking
the example of the aes, we notice that enumerating 128-bit keys is done by
merging two lists of size 264. Such lists cannot be generated or stored efficiently.
Fortunately, we can instead generate these lists only as far as required by the key
enumeration. Whenever a new subkey is inserted in the candidate set, we get it
from the enumeration algorithm applied to the lower level (e.g. 64-bit subkeys
are obtained by merging two 232 element lists), and so on. This ensures that
the storage and enumeration effort are minimized. The process is illustrated in
Figure 2. Enumerating 16-byte keys consists in enumerating subkeys taken from

the two 264-element lists k
(j)
0,...,7 and k

(j)
8,...,15, which in turn are built using four

232-element lists k
(j)
0,...,3, k

(j)
4,...,7, etc. This process is repeated until we reach the

original 28-element subkey distributions. The recursive decomposition combined
with our lazy evaluation technique keep computations and memory requirements
to a minimum and allow us to enumerate a large number of key candidates.

The investigations in this paper have connections with previous works in sta-
tistical cryptanalysis. We provide a detailled review in Appendix B.
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Fig. 2. Recursive enumeration from multiple lists of key candidates

5 Experiments

In order to validate our approach, we led several experiments. The cipher under
investigation was the AES, with key size of 128 bits. Our side-channel attacks
targeted the output of the S-boxes in the first round, resulting in 16 indepen-
dent subkey probability mass functions. We used the same assumptions as in
Section 2 and considered simulated leakages, following a Hamming weight leak-
age model on the S-box output, with an independent additive Gaussian noise,
i.e. f(y) = HW(y) +N (0, 42). Note that the type of experiments performed (i.e.
analyzing the impact of key enumeration) is essentially independent of both the
cipher and experimental setup. We carried out both template attacks with per-
fect profiling (since the leakage function is known) and non-profiled Bayesian
stochastic attacks assuming a linear basis made of the S-box output bits. The
enumeration was performed using our open-source optimized implementation [1].

5.1 Comparing Optimal and Probabilistic Key-Enumerations

Table 1 gives some performance results for key enumeration obtained on our
setup (Intel core i7 920 running a 64-bit Ubuntu 11.04 distribution). These com-
parative results show that both the sampling algorithm and ours can output key
candidates at essentially the same speed. The results for the enumeration algo-
rithm described in [21] are also given. As expected, they exhibit larger memory
requirements, which bounds the number of key candidates that can be enumer-
ated and increases time. In practice, this method is limited to 220 candidates.
By contrast, our algorithm allows enumerating 232 keys using less than 1gb.

Next, as mentioned in Section 4, Algorithm 3 performs key trials in the best
possible order, therefore minimizing the enumeration effort at the cost of a grow-
ing amount of memory space. By contrast, the probability-driven algorithm may
miss some key candidates and output some more than once. In order to illustrate
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Table 1. Practical comparison of key-enumeration algorithms (time, min-max mem-
ory)

#trials 216 220 224 228 232 233 235 237

Sampling 0.04s 0.31s 10.1s 160s 2560s X X X

[21] 0.96s 18.1s
X X X X X X

118mb 7.7gb

Ours 0.01s 0.25s 5s 100s 1700s 4058s 5.4h 28.2h
100kb 2mb 3.9mb 30mb 140mb 190mb 560mb 0.9gb+1.7hdd
500kb 3mb 12mb 80mb 530mb 540mb 1.1gb+2.3hdd 1.1gb +6.1hdd

1

22

24

26

28

210

212

100kb

1mb

10mb

100mb

1gb

10gb

20 28 216 224 232 key rank

Overhead Memory

Fig. 3. Overhead of the probability-driven method in function of the key rank (green),
and memory requirements of the deterministic enumeration (light blue)

these differences we led the following experiment. A large number of side-channel
attacks followed by a key recovery were performed, and we measured the key
rank (which is also the number of trials for the optimal algorithm), the ex-
pected number of trials for the probability-driven algorithm and the memory
used during optimal enumeration. Figure 3 illustrates the expected overhead of
the probability-driven method over the deterministic one in terms of key tri-
als (green dots, left scale) and the memory cost of the enumeration algorithm
(blue dots, right scale). We observe that the probability-driven algorithm re-
quires more key trials on average to complete an attack. The overhead increases
consistently, and the median of the expected ratio value (green curve) appears
to tend towards a linear relation on the log-log scale. An approximated power
law gives 16 for 216, 21 for 232, an extrapolated 36 for 240. In some cases, we
also observe overheads very far from the median value (well over 1000), even
when the correct key is ranked among the 4 first ones. On top of this expected
number of trials, we have to consider that, since the probabilistic method follows
a geometric law, the number of key trials will have a very large variance (ap-
proximately the square of expected value). This makes the probabilistic method
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both more costly and less reliable than our deterministic algorithm. Besides, the
memory space requirement of the enumeration method also appears to follow a
power law. Enumerating up to 232 requires only 1gb of memory. Extrapolations
predict a cost of 70gb for 240 keys.

5.2 Application of Key-Enumeration to Side-Channel Attacks

Figure 4 illustrates the success rate of different orders for a template attack, in
function of the number of traces measured. The alternated light and gray zones
correspond to the evolution of the success rate each time the number of tested
keys is multiplied by 16. The rightmost dark gray curve is obtained by only
testing the first key candidate, the first light gray curve by testing 24 keys, then
28, . . . We again considered the optimal and the probabilistic algorithms, for
different number of enumerated key candidates. The optimal enumeration was
led up to 232 candidates, and the probabilistic one up to 228.

0.0
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0.6

0.8

1.0

50 100 150 200 250

success

Optimal enumeration

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200 250
messages

success

Random sampling

Fig. 4. Success rate of template attacks. Left: enumeration, right: sampling.

As expected, allowing more key candidates to be tested can dramatically
increase the efficiency of a key recovery. For 120 messages measured, the best
key candidate is the correct one about 2% of the time, while there is a 91% chance
for the correct key to be found among the first 224 candidates with the optimal
enumeration algorithm (or an 84% chance with the probability driven method).
In other words, increasing the number of key trials significantly improves the
success rate, thereby providing a tradeoff between the data and time complexities
of the attacks. As in the previous subsection, we also observe that the optimal
enumeration algorithm leads to higher success rates compared to the random
sampling for a given number of key trials, at the cost of additional memory
requirements.

Figure 5 provides an orthogonal view of the problem: for a given number of
traces, one can increase the key success rate by enumerating more key candidates.
The figure shows the cumulative probability function (cdf) of key recoveries for
an attack with a fixed number of traces, in function of the number of key trials.
The pmfs used for this experiment are output by two template attacks. The
first attack (left) targets only 2 key bytes, the second (right) targets all 16 key
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Fig. 5. Enumeration success rates. Left: 2 S-boxes, right: 16 S-boxes.

bytes. As expected, the cumulative probability starts from 0 and reaches 1 once
a sufficient number of keys have been tested. Also, the brute force testing is only
possible in the left case (i.e. when we can enumerate the full list).

In general, the side-channel information allows obtaining high success rates
with a limited number of key trials (here, up to 230). More importantly, the figure
again confirms the interest of the deterministic algorithm in terms of “number
of keys to test”. Reaching a similar success rate with the probabilistic algorithm
requires between 22 and 24 more tests, depending on the success rates.

6 Conclusion

This paper complements standard side-channel cryptanalysis by investigating
the improvements obtained by adversaries with non-negligible computational
power. We first proposed an extension of non-profiled stochastic attacks that
outputs probability mass functions, providing us with the likelihood values of
subkey candidates. Next, we proposed a new and deterministic key enumeration
algorithm, in order to take advantage of these likelihood values. Experiments
show that this order-optimal enumeration algorithm is more efficient than a
sampling-based algorithm from Eurocrypt 1991. In particular, the probabilistic
algorithm suffers from its underlying geometric law, that implies an increasingly
large overhead over the deterministic method (in terms of key trials), as the num-
ber of keys to enumerate increases. The deterministic method additionally allows
removing the possibility of worst cases, which makes it a particularly suitable
solution for side-channel security evaluations. Finally, our proposal significantly
reduces the memory requirements of a deterministic algorithm from SAC 2010,
making it the best practical solution for enumeration of up to 240 keys.

As a result, the solutions in this paper allow us to properly trade side-channel
measurements for offline computations. They create a bridge between classical
DPA and brute-force key recovery, where information extracted through side-
channels is used to improve an exhaustive search. Hence, an interesting research
problem is to compare computationally-enhanced DPA attacks with other types
of more computational side-channel attacks, e.g. based on the detection of col-
lisions. The application of enumeration in statistical cryptanalysis is another
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possible direction for further investigations. Note finally that the complete key
recoveries we considered in this work can possibly be performed in a ciphertext-
only context. That is, the adversary can evaluate a key candidate by partially
decrypting the ciphertext and computing the probability of previous-round leak-
ages, which will only be non-negligible when decrypting with the correct key.

Acknowledgements. This work has been funded by the B-CCENTRE with the
financial support from the Prevention of and Fight against Crime Programme of
the European Union, by the the ERC project 280141 (acronym CRASH), by the
Walloon regions MIPSs and SCEPTIC projects. F.-X. Standaert is a Research
Associate of the Belgian Fund for Scientific Research (FNRS-F.R.S).

References

1. http://perso.uclouvain.be/fstandae/source_codes/enumeration/

2. Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. In:
Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21.
Springer, Heidelberg (1991)

3. Biham, E., Shamir, A.: Differential Fault Analysis of Secret Key Cryptosystems.
In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer,
Heidelberg (1997)

4. Bogdanov, A.: Improved Side-Channel Collision Attacks on AES. In: Adams, C.,
Miri, A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 84–95. Springer, Hei-
delberg (2007)

5. Bogdanov, A., Kizhvatov, I., Pyshkin, A.: Algebraic Methods in Side-Channel Col-
lision Attacks and Practical Collision Detection. In: Chowdhury, D.R., Rijmen,
V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 251–265. Springer,
Heidelberg (2008)

6. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, Quisquater (eds.) [11], pp. 16–29

7. Chari, S., Rao, J.R., Rohatgi, P.: Template Attacks. In: Kaliski Jr., B.S., Koç,
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A Bayesian Extension of Non-profiled SCAs

We now show how to compute these probabilities, starting with the probability
of observing the data set {(pi, li)} assuming it is produced by the model θk,
using the subkey hypothesis k. This probability is computed by multiplying the
probabilities of each individual event (pi, li) of the data set:

Pr[{(pi, li)}|θk] = Pr[{(pi, li)}|θk,K = k],

=

q∏
i=1

N (li, θk(S(pi ⊕ k)), σk),

where N (x, μ, σ) is the value of the normal distribution of mean μ and standard
deviation σ evaluated at point x. If we denote the S-box output hypotheses as
yi,k = S(pi ⊕ k), the previous equation can be rewritten as:

Pr[{(pi, li)}|θk] =
q∏

i=1

1√
2π σk

exp
− 1

2σ2
k

(li−θk(yi,k))
2

.

Since σ2
k =

∑i=q
i=1(li−θk(yi,k))2/q (see Algorithm 1), if we use all q measurements,

we can simplify the exponent and move all constants coefficients that do not
depend on k in a normalization term Z, that is:

Pr[{(pi, li)}|θk] = Zσ−q
k . (1)

Then, using Bayes’ theorem, we deduce the probabilities of the subkeys from the
respective likelihood values of the models θk given the data (in other words, we
perform a Bayesian model comparison):

Pr[k|{(pi, li)}] = Pr[θk|{(pi, li)}],

=
Pr[{(pi, li)}|θk].Pr[θk]

Pr[{(pi, li)}]
, (Bayes’ theorem)

=
Pr[{(pi, li)}|θk].Pr[θk]∑

k′∈K Pr[{(pi, li)}|θk′ ].Pr[θk′ ]
.

Assuming a uniform prior Pr[θk]=Pr[k]= 1
|K| and using Equation 1, we get:

Pr[k|{pi, li}] =
σ−q
k∑

k′ σ
−q
k′

.

From these probabilities, we can directly build the PMF required for key enu-
meration. Note that these likelihood values are not exactly the same as the ones
we used in template attacks. In the last case, the characterization of a device al-
lows exploiting a precise estimation of the leakage distributions. By contrast, in
a Bayesian non-profiled stochastic attack, they depend on the basis g(y) chosen
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by the adversary. Finally, the subkey hypotheses can be ranked according to the
likelihood values of the corresponding model given the data, that is:

k̂ = argmax
k

σ−q
k ,

= argmin
k

σk,

i.e. providing the same ranking as for the original non-profiled stochastic attack.
Besides their use for key enumeration in the next section, an appealing property
of using probabilities instead of other criteria (e.g. like a correlation coefficient)
is that combining independent measurement points becomes very natural. Let
us suppose that our implementation leaks information at two different times:
Lt0 = ft0(x)+nt0 and Lt1 = ft1(y)+nt1 (with nti a Gaussian noise). The Bayesian
writing makes it straightforward to combine their corresponding probabilities,
by multiplication and normalization. Note also that the proposed attack can
additionally be seen as a generalization of DPA or CPA, by simply replacing the
leakage basis by a single-bit or Hamming weight model (as observed in [17]).

B Comparison with Previous Works

The investigations in this paper have strong connections with previous works
in the area of statistical cryptanalysis. In particular, the problem of merging
two lists of subkey candidates was encountered by Junod and Vaudenay [13].
The small cardinality of the lists (213) was such that the simple approach that
consists in merging and sorting the lists of subkeys was tractable. Dichtl con-
sidered a similar problem of enumerating key candidates by decreasing order of
probabilities, thanks to partial information obtained for each key bit individu-
ally [8]. We tackle the more general and challenging problem of exploiting any
partial information on subkeys. A frequent reference for solving this problem,
i.e. enumerating many keys from lists that cannot be merged, is the probabilistic
algorithm that was proposed in [19]. In this work, the attacker had no access to
the subkey distributions but was able to generate subkeys according to them.
Hence, the solution proposed was to enumerate keys by randomly drawing sub-
keys according to these distributions. Implementing this algorithm is equivalent
to uniformly picking up a point in the square of Figure 1 and testing the cor-
responding key. This does not require any memory but the most probable keys
may be drawn many times, leading to useless repetitions. Indeed given a correct
key with probability p the number of keys to try before it is found follows a ge-
ometric distribution with parameter p and thus has an expected value equal to
1/p with a variance of 1−p

p2 . By contrast, for Algorithm 3, this number of keys to

test is at most �1/p� (usually much less). Actually, our algorithm will output ex-
actly n keys before the correct one if it is ranked in the n-th position, removing
the variance issues of the probabilistic test. Also in practice, the probability-
driven approach tends to lead to much more tests than optimal deterministic
enumeration, as will be illustrated experimentally in the next section.
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Next, and in terms of complexities, it is easy to see that the probability-driven
algorithm can output new keys in constant time and has a very small memory
requirement. The case of our deterministic enumeration algorithm is more dif-
ficult. The use of heaps for the frontier set and the recursive decomposition of
the problem point towards a logarithmic time complexity. However, it appears
from the experiments in the next section that the algorithm enumerates keys in
amortized time close to constant. Summarizing, both methods lead to a linear
time complexity in the total number of key candidates that are output, with the
enumeration algorithm also requiring a sub-linear amount of memory.

As previously mentioned, an enumeration algorithm similar to ours was pro-
posed in a paper by Pan, van Woudenberg, den Hartog and Witteman [21]. It
also enumerates key candidates in optimal order, but the reduction rule 1 is not
used, nor the recursive decomposition that allows us to efficiently apply rule 1
with more than two lists. Therefore, the frontier set of their algorithm is not
reduced, and the memory requirements are much larger. In practice, since the
main limitation for optimal key enumeration appears to be memory, this non-
minimal version of enumeration does not allow an adversary to output a large
number of key candidates. Moreover, handling a larger frontier set implies time
complexity penalties, which makes our new algorithm faster than this previous
one. Implementation results confirming these claims are given in the next section.

Finally, we note that another related problem is list decoding of convolutional
codes through the Viterbi algorithm (see, e.g. [30]). However, and as previously
mentioned, enumeration and decoding are not the same problems and the lat-
ter one only makes sense in the presence of redundancy, which does not exist
when subkeys are independent of one another. An attempt at using such an al-
gorithm would either lead to combinatorial explosion (i.e. 2128 possible states)
for a deterministic version, or require very large amounts of memory when using
approximate solutions such as beam search. Moreover, list-decoding algorithms
are generally designed to output a small number of most likely candidates de-
termined a priori, whereas we typically target the enumeration of 232 or more
master key candidates, continuing enumeration until the correct key is found.
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