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Abstract. Classical ontologies are not suitable to represent imprecise or
vague information, which has led to several extensions using non-classical
logics. In particular, several fuzzy extensions have been proposed in the
literature. In this paper, we present the fuzzy ontology reasoner De-
Lorean, the first to support a fuzzy extension of OWL 2. We discuss how
to use it for fuzzy ontology representation and reasoning, and describe
some implementation details and optimization techniques. An empirical
evaluation demonstrates that these optimizations considerably improve
the performance of the reasoner.

1 Introduction

Ontologies have been successfully used as a formalism for knowledge representa-
tion in several applications. In particular, they are a core element in the layered
architecture of the Semantic Web. In that regard, the language OWL 2 [1] has
very recently become a W3C Recommendation for ontology representation.

Description Logics (DLs for short) [2] are a family of logics for representing
structured knowledge. Each logic is denoted by using a string of capital letters
which identify the constructors of the logic and therefore its complexity. They
have proved to be very useful as ontology languages, in such a way that OWL 2
is closely equivalent to the DL SROIQ(D) [3].

Today, there is a growing interest in the development of knowledge repre-
sentation formalisms able to deal with imprecise knowledge, a very common
requirement in real world applications. Nevertheless, classical ontologies are not
appropriate to deal with imprecision and vagueness in the knowledge, which is
inherent to most real world application domains. Since fuzzy logic is a suitable
formalism to handle these types of knowledge, several fuzzy extensions of DLs
have been proposed [4].

The apparition of the new standard language OWL 2 has motivated a need
to extend ontology editors, reasoners, and other supporting tools. The situation
is similar in the fuzzy case, and having reasoners that are able to support fuzzy
extensions of OWL 2 is of great importance. In this paper we report the imple-
mentation of DeLorean (DEscription LOgic REasoner with vAgueNess)1, the
first reasoner that supports the fuzzy DL SROIQ(D), and hence fuzzy OWL 2.

1 http://webdiis.unizar.es/~fbobillo/delorean
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In a strict sense, DeLorean is not a reasoner but a translator from a fuzzy
ontology language into a classical (i.e., non-fuzzy) ontology language –namely,
the standard language OWL 2. The non-fuzzy ontology resulting from this trans-
lation, which preserves the semantics of the initial fuzzy representation, is after-
wards processed by an integrated classical DL reasoner. According to this ability
of combining the reduction procedure with the classical DL reasoning, we will
simply refer to it as a reasoner.

This paper is organized as follows. Section 2 provides some background on
fuzzy set theory and fuzzy logic. Then, Section 3 describes which fuzzy ontolo-
gies can be managed by the system and how they are represented. Next, Section 4
explains which reasoning tasks can be performed by using the reasoner and how
they are accomplished. In Section 5, we give some implementation details. A
use case and a preliminary evaluation of the implemented optimizations are dis-
cussed in Section 6. Finally, Section 7 sets out some conclusions and prospective
directions for future work.

2 Fuzzy Logic

Fuzzy set theory and fuzzy logic were proposed by L. Zadeh [13] to manage impre-
cise and vague knowledge. While in classical set theory elements either belong to
a set or not, in fuzzy set theory elements can belong to a set to some degree. More
formally, let X be a set of elements called the reference set. A fuzzy subset A of
X is defined by a membership function μA(x), or simply A(x), which assigns any
x ∈ X to a value in the interval of real numbers between 0 and 1. As in the classical
case, 0 means no membership and 1 full membership, but now a value between 0
and 1 represents the extent to which x can be considered an element of X .

Changing the usual true/false convention leads to a new type of propositions,
called fuzzy propositions. Each fuzzy proposition may have a degree of truth in
[0, 1], denoting the compatibility of the fuzzy proposition with a given state of
facts. For example, the truth of the proposition stating than a given tomato is
a ripe tomato is clearly a matter of degree.

In this article we will consider fuzzy formulae (or fuzzy axioms) of the form
φ≥α or φ≤β, where φ is a fuzzy proposition and α, β ∈ [0, 1] [14]. This imposes
that the degree of truth of φ is at least α (resp. at most β). For example,
x is a ripe tomato≥ 0.9 says that we have a rather ripe tomato (the degree of
truth of x being a ripe tomato is at least 0.9).

All classical set operations are extended to fuzzy sets. The intersection, union,
complement and implication set operations are performed by corresponding func-
tions: a t-norm, a t-conorm, a negation, and an implication, respectively. The
combination of them is called a fuzzy logic.

There are three main fuzzy logics: �Lukasiewicz, Gödel, and Product. The im-
portance of these three fuzzy logics is due to the fact that any continuous t-norm
can be obtained as a combination of �Lukasiewicz, Gödel, and Product t-norms. It
is also common to consider the fuzzy connectives originally considered by Zadeh
(Gödel conjunction and disjunction, �Lukasiewicz negation and Kleene-Dienes
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Table 1. Popular fuzzy logics over [0,1]

Family t-norm α ⊗ β t-conorm α ⊕ β negation �α implication α ⇒ β

Zadeh min{α, β} max{α, β} 1 − α max{1 − α, β}
Gödel min{α, β} max{α, β}

{
1, α = 0
0, α > 0

{
1 α ≤ β
β, α > β

�Lukasiewicz max{α + β − 1, 0} min{α + β, 1} 1 − α min{1 − α + β, 1}
Product α · β α + β − α · β

{
1, α = 0
0, α > 0

{
1 α ≤ β
β/α, α > β

implication), which is known as Zadeh fuzzy logic. Table 1 shows these four fuzzy
logics: Zadeh, �Lukasiewicz, Gödel, and Product.

For every α ∈ [0, 1], the α-cut of a fuzzy set A is defined as the (crisp) set
such that its elements belong to A with degree at least α, i.e. {x | μA(x) ≥ α}.

Relations can also be extended to the fuzzy case. A (binary) fuzzy relation
R over two countable sets X and Y is a function R : X × Y → [0, 1]. Several
properties of the relations (such as reflexive, irreflexive, symmetric, asymmetric,
transitive, or disjointness) and operations (inverse, composition) can be trivially
extended to the fuzzy case.

3 Representing Fuzzy Ontologies

In this section we discuss the fuzzy ontologies that DeLorean is able to man-
age. Section 3.1 describes the elements of the supported fuzzy DL SROIQ(D).
Section 3.2 discusses how to create these fuzzy ontologies.

3.1 Fuzzy SROIQ(D)

Fuzzy SROIQ(D) [15,16], extends SROIQ(D) to the fuzzy case by letting
concepts denote fuzzy sets of individuals and roles denote fuzzy binary relations.

Notation. In the following, we will use ⊗ for denoting a t-norm, ⊕ for a t-
conorm, � for a negation, an ⇒ for an implication. The subscript Z denotes
Zadeh fuzzy logic, and G denotes Gödel fuzzy logic.

We will assume that the degrees of truth are rational numbers of the form
α ∈ (0, 1], β ∈ [0, 1) and γ ∈ [0, 1]. Moreover, we will assume a set of inequalities
�� ∈ {≥, >,≤, <}, � ∈ {≥, >}, � ∈ {≤, <}.

Fuzzy SROIQ(D) has three alphabets of symbols for concepts, roles and
individuals.

The concepts of the language are denoted as C,D (if they are complex con-
cepts) and A (if atomic). Some complex concepts will use natural numbers n,m
such that n≥ 0,m > 0.

The roles can be abstract (denoted R) or concrete (denoted T ). RA denotes an
atomic abstract role, R− the inverse role, S a simple role2, and U the universal
role (a relation which is true for every pair of individuals).

2 Simple roles are needed to guarantee the decidability of the logic. Intuitively, simple
roles cannot take part in cyclic role inclusion axioms (see [15] for a formal definition).
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A fuzzy concrete domain (also called a fuzzy datatype) D is a pair 〈ΔD, ΦD〉,
where ΔD is a concrete interpretation domain (for instance, the set of rational
numbers in a given interval), and ΦD is a set of fuzzy concrete predicates d [18].
Typical examples of fuzzy concrete predicates are the trapezoidal, the triangular,
the left-shoulder, and the right-shoulder membership functions. We will restrict
to trapezoidal membership functions, which are more general than the other
mentioned predicates.

The individuals are denoted as a, b (if abstract), and v (if concrete). Abstract
individuals are elements of the interpretation domain, whereas concrete individ-
uals are instances of the concrete interpretation domain.

Syntax. The syntax of fuzzy concepts, roles, and axioms is shown in Table 2.
A fuzzy Knowledge Base (KB) is a finite set of fuzzy axioms, which can be
grouped into a fuzzy ABox with axioms (A1)–(A7), a fuzzy TBox with axioms
(A8)–(A9), and a fuzzy RBox with axioms (A10)–(A20). Note that the only
syntactic differences with respect to crisp SROIQ(D) are (C11), (A1)–(A5),
(A8), (A10)–(A11).

Most axioms are better known by a name. (A1) are named concept assertions,
(A2)–(A5) are role assertions, (A6) are inequality assertions, (A7) are equality
assertions, (A8) are General Concept Inclusions (GCIs, or subclass axioms),
(A9) are concept equivalences, (A10)–(A11) are Role Inclusion Axioms (RIAs,
or sub-role axioms), (A12)–(A13) are role equivalences, (A14) are transitive role
axioms, (A15)–(16) are disjoint role axioms, (A17) are reflexive role axioms,
(A18) are irreflexive role axioms, (A19) are symmetric role axioms, and (A20)
are asymmetric role axioms.

As in the crisp case, GCIs can be used to express some interesting axioms,
such as disjointness of concepts or domain, range and functionality of a role [17].

Example 1. The fuzzy concept assertion 〈RoseDAnjou : RoseWine ≥ 0.75〉 states
that it is almost true that the Rosé D’Anjou wine is a rose wine. RoseDAnjou is
an abstract individual, and RoseWine is a fuzzy concept. �

Semantics. The semantics of the logic is given using the notion of fuzzy inter-
pretation. A fuzzy interpretation I with respect to a fuzzy concrete domain D
is a pair (ΔI , ·I) consisting of a non empty set ΔI (the interpretation domain)
disjoint with ΔD and a fuzzy interpretation function ·I mapping:

– An abstract individual a to an element aI ⊆ ΔI .
– A concrete individual v to an element vD ⊆ ΔD.
– A fuzzy concept C to a function CI : ΔI → [0, 1].
– A fuzzy abstract role R to a function RI : ΔI ×ΔI → [0, 1].
– A fuzzy concrete role T to a function T I : ΔI ×ΔD → [0, 1].
– An n-ary fuzzy concrete predicate d to a function dI : Δn

D → [0, 1].

CI denotes the membership function of the fuzzy concept C w.r.t. I. CI(aI)
denotes to what extent the individual a can be considered an element of the
fuzzy concept C. RI denotes the membership function of the fuzzy role R w.r.t.
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Table 2. Syntax and semantics of the fuzzy DL SROIQ(D)

Concept Syntax (C) Semantics of CI(x)

(C1) A AI(x)
(C2) � 1
(C3) ⊥ 0

(C4) C 
 D CI(x) ⊗ DI(x)

(C5) C � D CI(x) ⊕ DI(x)

(C6) ¬C �CI(x)

(C7) ∀R.C infy∈ΔI {RI(x, y) ⇒ CI(y)}
(C8) ∃R.C supy∈ΔI {RI(x, y) ⊗ CI(y)}
(C9) ∀T.d infv∈ΔD

{TI(x, v) ⇒ dI(v)}
(C10) ∃T.d supv∈ΔD

{TI(x, v) ⊗ dI(v)}
(C11) {α/a} α if x = aI , 0 otherwise

(C12) ≥ m S.C sup
y1,...,ym∈ΔI{minm

i=1{SI(x, yi) ⊗ CI(yi)}
⊗

(⊗1≤j<k≤m{yj �= yk})}
(C13) ≤ n S.C inf

y1,...,yn+1∈ΔI {minn+1
i=1 {SI(x, yi) ⊗ CI(yi)} ⇒

⊕1≤j<k≤n+1{yj = yk}}
(C14) ≥ m T.d supv1,...,vm∈ΔD

{minm
i=1{TI(x, vi) ⊗ dI(vi)}

⊗
(⊗j<k{vj �= vk}){

(C15) ≤ n T.d infv1,...,vn+1∈ΔD
{minn+1

i=1 {TI(x, vi) ⊗ dI(vi)} ⇒
(⊕j<k{vj = vk})}

(C16) ∃S.Self SI(x, x)

Role Syntax (R) Semantics of RI(x, y)

(R1) RA RI
A(x, y)

(R2) R− RI(y, x)
(R3) U 1

(R4) T TI(x, y)
Axiom Syntax (τ) Semantics (I satisfies τ if . . . )

(A1) 〈a :C �� α〉 CI(aI) �� α

(A2) 〈(a, b) :R �� α〉 RI(aI , bI) �� α

(A3) 〈(a, b) :¬R �� α〉 �RI(aI , bI) �� α

(A4) 〈(a, v) :T �� α〉 TI(aI , vD) �� α

(A5) 〈(a, v) :¬T �� α〉 �TI(aI , vD) �� α

(A6) 〈a �= b〉 aI �= bI

(A7) 〈a = b〉 aI = bI

(A8) 〈C � D � α〉 inf
x∈ΔI {CI(x) ⇒ DI(x)}� α

(A9) C1 ≡ · · · ≡ Cm ∀
x∈ΔICI

1 (x) = · · · = CI
m(x)

(A10) 〈R1 . . . Rm � R � α〉 infx1,xm+1∈ΔI{supx2...xm∈ΔI {(RI
1 (x1, x2) ⊗ · · · ⊗ RI

m(xm,

xm+1)) ⇒ RI(x1, xm+1)}} � α

(A11) 〈T1 � T2 � α〉 inf
x∈ΔI ,v∈ΔD

{TI
1 (x, v) ⇒ TI

2 (x, v)} � α

(A12) R1 ≡ . . . Rm ∀
x,y∈ΔIRI

1 (x, y) = · · · = RI
m(x, y)

(A13) T1 ≡ . . . Tm ∀
x∈ΔI ,v∈ΔD

RI
1 (x, v) = · · · = RI

m(x, v)

(A14) trans(R) ∀x, y, z ∈ ΔI , RI(x, z) ⊗ RI(z, y) ≤ RI(x, y)

(A15) dis(S1, . . . , Sm) ∀x, y ∈ ΔI ,min{SI
i (x, y), SI

j (x, y)} = 0, ∀1 ≤ i < j ≤ m

(A16) dis(T1, . . . , Tm) ∀x ∈ ΔI , v ∈ ΔD,min{TI
i (x, v), TI

j (x, v)} = 0, ∀1 ≤ i < j ≤ m

(A17) ref(R) ∀x ∈ ΔI , RI(x, x) = 1

(A18) irr(S) ∀x ∈ ΔI , SI(x, x) = 0

(A19) sym(R) ∀x, y ∈ ΔI , RI(x, y) = RI(y, x)

(A20) asy(S) ∀x, y ∈ ΔI , SI(x, y) > 0 then SI(y, x) = 0
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I. RI(aI , bI) denotes to what extent (a, b) can be considered an element of the
fuzzy role R.

Given the operators ⊗,⊕,�,⇒, the fuzzy interpretation function is defined
for fuzzy concepts, roles, concrete domains and axioms as shown in Table 2.
The fuzzy DL Z SROIQ(D) uses the operators in Zadeh fuzzy logic, whereas
G SROIQ(D) uses the operators in Gödel fuzzy logic.

We say that a fuzzy interpretation I satisfies a fuzzy KB K iff I satisfies each
element in K.

3.2 A Fuzzy Ontology Editor

The input fuzzy ontologies supported by DeLorean can be created in 3 ways:

– Encoding the fuzzy ontology in the specific language of the reasoner (referred
in this paper as “DeLorean syntax”). The details of DeLorean syntax
can be found in the web page of the reasoner.

– Creating programmatically a new ontology by using the DeLorean API.
The DeLorean API is a Java library that allows fuzzy ontology manage-
ment (by loading existing ontologies or by creating and populating them)
and solving reasoning tasks. The Javadoc documentation of the API can be
found along with the distribution.

– Using a fuzzy ontology editor tool and then translating the ontology into
DeLorean syntax.

In this section, we focus on the third option, which is the recommended one,
since it allows us to edit fuzzy ontologies in a more abstract way.

A methodology for fuzzy ontology representation using OWL 2 has been re-
cently proposed [26]. The key idea of this representation is to use an OWL 2
ontology and extend their elements with annotations representing the features
of the fuzzy ontology that OWL 2 cannot directly encode. In order to separate
the annotations including fuzzy information from other annotations, a new an-
notation property called fuzzyLabel is used, and every annotation is identified
by the tag fuzzyOwl2.

Example 2. The fuzzy concept assertion of Example 1 is represented by anno-
tating the axiom with the degree ≥ 0.75 as follows:

<ClassAssertion >

<Class IRI=’#RoseWine ’/>

<NamedIndividual IRI=’#RoseDAnjou ’/>

<Annotation >

<AnnotationProperty IRI=’#fuzzyLabel ’/>

<Literal datatypeIRI =’&rdf;PlainLiteral ’>

<fuzzyOwl2 fuzzyType =" axiom">

<Degree value ="0.75" />

</fuzzyOwl2 >

</Literal >

</Annotation >

</ClassAssertion >

�
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Fig. 1. Menu options of the plug-in

Since typing such annotations is a tedious and error-prone task, a Protégé plug-
in has been implemented to make the syntax of the annotations transparent to
the users. The plug-in is freely available3. Once it is installed, a new tab named
Fuzzy OWL enables to use the plug-in. Figure 1 shows the available options.

It is important to remark that the plug-in is generic and not specific to our
reasoner, so it offers the possibility of adding other elements that are not yet
supported by DeLorean; e.g., weighted concepts, weighted sum concepts, fuzzy
modified roles, fuzzy modified datatypes, �Lukasiewicz fuzzy logic . . .

Firstly, the user can create the non-fuzzy part of the ontology using the editor
as usual. Then, the user can define the fuzzy elements of the ontology by using the
plug-in; namely, fuzzy axioms, fuzzy datatypes, fuzzy modifiers, fuzzy modified
concepts, and fuzzy nominals.

Figure 2 illustrates the plug-in use by showing how to create a new fuzzy
datatype. The user specifies the name of the datatype, and the type of the mem-
bership function. Then, the plug-in asks for the necessary parameters according
to the type. A picture is displayed to help the user recall the meaning of the
parameters. Then, after some error checks, the new datatype is created and can
be used in the ontology.

Once the fuzzy ontology has been created with Fuzzy OWL, it has to be trans-
lated into the language supported by a specific fuzzy DL reasoner –DeLorean,
in this case– to allow reasoning with it. For instance, the datatype created in
Figure 2 would be represented by using a trapezoidal function in DeLorean
syntax.

3 http://webdiis.unizar.es/~fbobillo/fuzzyOWL2

http://webdiis.unizar.es/~fbobillo/fuzzyOWL2
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Fig. 2. Creation of a fuzzy datatype

For this purpose, the plug-in includes a general parser that can be customized
to any reasoner by adapting a template code. The parser browses the contents of
the ontology –with OWL API 3 4 [21], which allows iterating over the elements
of the ontology in a transparent way– and prints an informative message. The
output of the process is a fuzzy ontology that can be printed in the standard
output or saved in a text file. If the user selects one of these elements, they
will be discarded when translated into DeLorean syntax, and an informative
message will be displayed to the users.

The template code has been adapted to build two parsers, one for fuzzyDL,
and one for DeLorean. Both the template and the parsers can be freely obtained
from the plug-in web page. Furthermore, similar parsers for other fuzzy DL
reasoners can be easily obtained. To do so, we can replace the default messages
by well-formed axioms, according to the desired fuzzy ontology syntax.

4 Reasoning with DeLorean

In this section we discuss how to reason with the fuzzy ontologies by using
DeLorean. Firstly, Section 4.1 describes the supported reasoning tasks. Then,
Section 4.2 explains how to interact with the application.

4.1 Reasoning Tasks

There are several reasoning tasks in fuzzy SROIQ(D) [19]. We will focus on
the following ones:

4 http://owlapi.sourceforge.net

http://owlapi.sourceforge.net
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– Fuzzy KB satisfiability. A fuzzy interpretation I satisfies (is a model of) a
fuzzy KB K iff it satisfies each axiom in K.

– Concept satisfiability. C is α-satisfiable w.r.t. a fuzzy KB K iff there exists
a model I of K such that CI(x) ≥ α for some x ∈ ΔI .

– Entailment : An axiom τ of the forms (A1)–(A5) is entailed by a fuzzy KB
K iff every model of K satisfies τ .

– Concept subsumption: D subsumes C (denoted C � D) w.r.t. a fuzzy KB K
iff every model I of K satisfies ∀x ∈ ΔI , CI(x) ≤ DI(x).

– Best degree bound (BDB) of an axiom τ of the forms (A1)–(A5) is defined
as the sup{α : K |= 〈τ ≥ α〉}.

DeLorean reasoning algorithms are based on the computation of a crisp ontol-
ogy that preserves the semantics of the qoriginal fuzzy ontology, and therefore
reasoning with the former is equivalent to reasoning with the latter. This kind
of reduction has already been considered in the literature (see for instance [15]
for Zadeh fuzzy DLs and [16] for Gödel fuzzy DLs).

The equivalent crisp ontology has a larger size than the original fuzzy ontology,
because some axioms must be added to keep the same semantics. If we assume
a fixed set of degrees of truth, the size of the equivalent crisp ontology depends
linearly on the size of the fuzzy ontology.

An interesting property is that the computation of the equivalent crisp on-
tology can be reused when adding a new axiom. If the new axiom does not
introduce new atomic concepts, atomic roles, nor a new degree of truth, we just
need to add the reduction of the new axiom.

Example 3. Assume a set of degrees of truth N = {0, 0.25, 0.5, 0.75, 1}. Consider
the fuzzy KB K = {〈RoseDAnjou : ¬RedWine ≥ 0.5〉}, stating that it is almost
true that Rosé D’Anjou is not a red wine. Let us show how to compute the crisp
representation of K in Zadeh fuzzy logic.

To start with, we create 8 new crisp atomic concepts: RoseDAnjou≥0.25,
RedWine≥0.25,RoseDAnjou≥0.5,RedWine≥0.5,RoseDAnjou≥0.75,RedWine≥0.75,
RoseDAnjou≥1, RedWine≥1.

Next, we add some axioms keeping the semantics of these new concepts:
RoseDAnjou≥0.5 � RoseDAnjou≥0.25, RoseDAnjou≥0.75 � RoseDAnjou≥0.5, Rose-
DAnjou≥1 � RoseDAnjou≥0.75, RedWine≥0.5 � RedWine≥0.25, RedWine≥0.75 �
RedWine≥0.5, RedWine≥1 � RedWine≥0.75.

Finally, we represent the axiom in K as RoseDAnjou : ¬RedWine≥0.75.
Now, we shall discuss the case of Gödel fuzzy logic. The procedure is very

similar, but the representation of the axioms in the fuzzy ontology is different,
as it must take into account the different semantics of the fuzzy logical operators.
In particular, the axiom would be represented as RoseDAnjou : ¬RedWine≥0.25.

�

4.2 Using DeLorean

DeLorean can be used as a stand-alone application. In addition, DeLorean
reasoning services can also be used from other programs by means of the De-
Lorean API. For details about the API, we refer the reader to the Javadoc
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Fig. 3. Architecture of DeLorean reasoner

documentation of the package. In this section, we will focus on the user of the
reasoner through its graphical interface.

Figure 3 illustrates the architecture of the system:

– The Parser reads an input file with a fuzzy ontology in DeLorean syntax
and translates it into an internal representation5. It is important to remark
that we can use any language as long as there is a parser that can obtain
an internal representation. Also, we could have several parsers to support
different input languages.

– The Reduction module implements the reduction procedures described in the
previous section. It builds an OWL API model representing an equivalent
crisp ontology that can be exported to an OWL 2 file. The implementation
also takes into account all the optimizations already discussed along this
document.

– The Inference module communicates with a non-fuzzy reasoner (either one
of the integrated reasoners or a reasoner via the OWLlink [25]6 protocol) in
order to perform the reasoning tasks.

– A simple User interface manages inputs and outputs (see details below).

Figure 4 shows a snapshot of the user interface, structured in 4 sections:

Input. Here, the user can specify the input fuzzy ontology and the DL reasoner
that will be used in the reasoning. The possible choices are HermiT [24]7,
Pellet [22]8, and an OWLlink-complaint reasoner. Once a fuzzy ontology is
loaded, the reasoner will check that every degree of truth that appears in it
belongs to the set specified in the section on the right.

5 This parser should not be confused with the translator from the Protégé plug-in into
DeLorean syntax discussed in Section 3.2.

6 http://www.owllink.org
7 http://hermit-reasoner.com
8 http://clarkparsia.com/pellet

http://www.owllink.org
http://hermit-reasoner.com
http://clarkparsia.com/pellet
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Fig. 4. User interface of DeLorean reasoner

(a) (b)

(c) (d)

Fig. 5. (a) Concept satisfiability and KB consistency; (b) Concept and role entailment;
(c) Concept subsumption; (d) BDB
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Degrees of truth. The user can specify here the set of degrees of truth that
will be considered. 0 (false) and 1 (true) are mandatory. Other degrees can be
added, ordered (by moving them up or down), and removed. For the user’s
convenience, it is possible to directly specify a number of degrees of truth,
and they will be automatically generated.

Output. Here, output messages are displayed. Some information about the rea-
soning is shown here, such as the time taken, or the result of the reasoning
task process.

Reasoning. This part is used to perform the different reasoning tasks that De-
Lorean supports. The panel is divided into five tabs, each of them dedicated
to a specific reasoning task (we recall the reader that these reasoning tasks
have been defined in Section 3.1).

Crisp representation. The main reasoning task is the computation of the
equivalent crisp representation of the fuzzy ontology, which is actually
necessary for the other reasoning tasks. In this tab we can export the
resulting non-fuzzy ontology into a new OWL 2 file. This tab can be seen
in Figure 4.

Satisfiability. In this tab (see Figure 5 (a)), the user can perform three
tasks: fuzzy KB consistency, fuzzy concept satisfiability and the compu-
tation of the maximum degree of satisfiability of a fuzzy concept. In the
two latter cases, the interface makes it possible to specify the name of
the fuzzy concept for which the satisfiability test will be computed. Note
that the interface expects the name of a fuzzy concept, and not a concept
expression.

Entailment. In this tab (see Figure 5 (b)), the user can compute, given
the current fuzzy ontology, the entailment of a fuzzy concept assertion
or a fuzzy role assertion. Firstly, the user has to specify the type of
the assertion, and then the corresponding parameters. For fuzzy concept
assertions, the parameters are: name of the individual, name of the fuzzy
concept, inequality sign, and degree of truth. For fuzzy role assertions,
the parameters are: name of the subject individual, name of the role,
name of the object individual, inequality sign, and degree of truth for
fuzzy role assertions.

Subsumption. In this tab (see Figure 5 (c)), after specifying the names of
the subsumed and the subsumer fuzzy concepts, it is possible to compute
the fuzzy concept subsumption.

BDB. Finally, in the fifth tab (see Figure 5 (d)), the user can compute the
BDB of a fuzzy concept assertion or a fuzzy role assertion. As in the case
of entailment, the user has to specify previously the type of the assertion
and the corresponding parameters. For fuzzy concept assertions, the pa-
rameters are: name of the individual and name of the fuzzy concept. For
fuzzy role assertions, the parameters are: name of the subject individual,
name of the role and name of the object individual.
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5 Implementation Details

In this section we briefly explain some implementation details of DeLorean.
In Section 5.1 we run through the different versions of the reasoner and com-
ment their main differences. Then, Section 5.2 summarizes some optimization
techniques that are implemented in order to make the reasoning more efficient.

5.1 Some Historical Notes

The first version of the reasoner was based on Jena API9. It was developed in
Java by relying on the parser generator JavaCC10 and DIG 1.1 interface [20] (to
communicate with crisp DL reasoners). The use of DIG limited the expressivity of
the logic supported by DeLorean to Z SHOIN (OWL DL). From a historical
point of view, this version was the first reasoner that supported a fuzzy extension
of the OWL DL language. Only a few optimizations were implemented.

With the aim of augmenting the expressivity of the logic, we changed the
subjacent API to OWL API 3 [21]. OWL API 3 is supported by several ontol-
ogy reasoners, such as Pellet [22], Fact++ [23] and HermiT. Now, DeLorean
supports both Z SROIQ(D) and G SROIQ(D).

One of the most important differences of OWL API 3 is that it replaces
DIG by OWLlink support. OWLlink is an extensible protocol for communica-
tion between OWL 2 systems that supersedes DIG 1.1 [25]. Since OWLlink is
not widely supported yet, we have also integrated natively Pellet and HermiT
reasoners with DeLorean. Hence, the user is free to choose either one of these
reasoners or a generic one via OWLlink protocol.

5.2 Optimizations

We will summarize here the main optimizations that the reasoner implements.
The interested reader is referred to [15] for details.

Optimizing the Number of New Elements and Axioms. As seen in Sec-
tion 4.1, we must add some new concepts, roles, and axioms to compute an
equivalent crisp ontology. DeLorean reduces the number of new concepts and
roles introduced with respect to a direct translation. For instance, a crisp concept
denoting individuals that belong to a fuzzy concept with a degree less than α is
not needed, since we can use the negation of the α-cut of the fuzzy concept. As
a consequence of the reduction of the number of concepts and roles, the number
of new necessary axioms is reduced as well.

Optimizing GCI Reductions. In some particular cases, the crisp represen-
tation of fuzzy GCIs can be optimized. For example, domain role axioms, range
role axioms, functional role axioms and disjoint concept axioms can be optimized

9 http://jena.sourceforge.net
10 https://javacc.dev.java.net

http://jena.sourceforge.net
https://javacc.dev.java.net
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if we manage them as particular cases, instead of considering them as GCIs. Fur-
thermore, some axioms in the resulting TBox may be unnecessary since they can
be entailed by other axioms.

Allowing Crisp Concepts and Roles. In order to represent a fuzzy concept,
we need to introduce several new concepts, and some new axioms keeping the
semantics among them. In real applications, not all concepts and roles are fuzzy.
If a concept is declared as crisp, we just need one concept to represent it and no
new axioms. The case for fuzzy roles is exactly the same. DeLorean makes it
possible to define crisp concepts and roles. Of course, this optimization requires
some manual intervention during the identification of the crisp elements.

Ignoring Superfluous Elements While Reasoning. The computation of
the equivalent crisp ontology can be designed to promote reusing or efficiency.
A direct translation into the crisp case makes ontology reuse easier when new
axioms are added. The drawback is that reasoning is less efficient. Depending
on the reasoning task, DeLorean promotes reusing or avoiding superfluous
elements and recomputing the crisp representation when necessary.

6 Use Case: A Fuzzy Wine Ontology

This section describes a concrete use case: a fuzzy extension of the well-known
Wine ontology11, a highly expressive SHOIN (D) ontology. Some metrics of the
ontology are shown in the first column of Table 3.

There is a previous empirical evaluation of the reductions of fuzzy DLs to crisp
DLs [27], but the only optimization thereby considered applies to the number
of new elements and axioms. We will show that the additional optimizations
hereby proposed, specially the (natural) assumption that there are some crisp
elements, reduce significantly the number of axioms.

A Fuzzy Extension of the Ontology. We have defined a fuzzy version of the
Wine ontology by adding a degree to the axioms. Given a variable set of degrees
NK, the degrees of truth for fuzzy assertions is randomly chosen in NK. In the
case of fuzzy GCIs and RIAs, the degree is always 1 in special GCIs (namely
concept equivalences and disjointness, domain, range and functional role axioms)
or if there is a crisp element in the left side; otherwise, the degree is 0.5.

Most fuzzy assertions are of the form 〈τ � β〉 with β �= 1. This favors the use
of elements of the forms C�β and R�β , which reduces the number of superfluous
concepts as seen in Section 5.2. Once again, this leads to the worst case from the
point of view of the size of the resulting crisp ontology. Nonetheless, in practice
we will be often able to say that an individual fully belongs to a fuzzy concept,
or that two individuals are fully related by means of a fuzzy role, which is not
the worst case.

11 http://www.w3.org/TR/2003/CR-owl-guide-20030818/wine.rdf

http://www.w3.org/TR/2003/CR-owl-guide-20030818/wine.rdf
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Note that our objective is to build a test case to experiment with and not
to build a fuzzy Wine ontology with interest in the real world. For a serious
attempt to build a fuzzy Wine ontology, we refer the reader to [28].

Crisp Concepts and Roles. A careful analysis of the fuzzy SROIQ(D) KB
brings about that most concepts and roles should be indeed interpreted as crisp
–actually, the classification of concepts and roles into fuzzy or crisp in most cases
may be very subjective and application-dependent.

For example, most subclasses of the class Wine refer to a well-defined ge-
ographical origin of the wines. For instance, Alsatian wine is a wine which
has been produced in the French region of Alsace: AlsatianWine ≡ Wine �
∃locatedAt.{alsaceRegion}. In other applications there could be examples of fuzzy
regions, but this is not our case.

Another important number of subclasses of Wine refer to the type of grape
used, which is also a crisp concept. For instance, Riesling is a wine which has been
produced from Riesling grapes: Riesling ≡ Wine�∃madeFromGrape.{RieslingGra-
pe} � ≥ 1 madeFromGrape.�.

The result of our study has identified 50 fuzzy concepts in the Wine ontology.
The source of the vagueness is summarized in several categories12:

– Color of the wine: WineColor, RedWine, RoseWine, WhiteWine, RedBordeaux,
RedBurgundy, RedTableWine, WhiteBordeaux, WhiteBurgundy, WhiteLoire,
WhiteTableWine.

– Sweetness of the wine: WineSugar, SweetWine, SweetRiesling, WhiteNonSweet-
Wine, DryWine, DryRedWine, DryRiesling, DryWhiteWine.

– Body of the wine: WineBody, FullBodiedWine.
– Flavor of the wine: WineFlavor, WineTaste.
– Age of the harvest: LateHarvest, EarlyHarvest.
– Spiciness of the food: NonSpicyRedMeat, NonSpicyRedMeatCourse, SpicyRed-

Meat, PastaWithSpicyRedSauce, PastaWithSpicyRedSauceCourse, PastaWith-
NonSpicyRedSauce, PastaWithNonSpicyRedSauceCourse, SpicyRedMeat-
Course.

– Sweetness of the food: SweetFruit, SweetFruitCourse, SweetDessert, Sweet-
DessertCourse, NonSweetFruit, NonSweetFruitCourse.

– Type of the meat: RedMeat, NonRedMeat, RedMeatCourse, NonRedMeat-
Course. They are fuzzy because, according to the age of the animal, pork
and lamb are classified as red (old animals) or white (young animals) meat.

– Heaviness of the cream: PastaWithHeavyCreamSauce, PastaWithLightCream-
Sauce. In this case the terms “heavy” and “light” depend on the fat percent-
age, and thus can be a matter of degree.

– Desserts: Dessert, DessertWine, CheeseNutsDessert, DessertCourse, Cheese-
NutsDessertCourse. We make these concepts fuzzy as the question whether
something is a dessert or not does not have a clear answer.

12 Clearly, these categories are not disjoint and some concepts may belong to more
than one, meaning that they are fuzzy for several reasons. For example, DryRedWine
is a fuzzy concept because both “dry” and “red” are vague terms.
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As already discussed, the color, the sweetness, the body and the flavor of a wine
are fuzzy. As a consequence, we can identify 5 fuzzy roles: hasColor, hasSugar,
hasBody, hasFlavor, and hasWineDescriptor, where the role hasWineDescriptor is
a super-role of the others.

Measuring the Importance of the Optimizations. Here, we will restrict to
Z SROIQ (omitting the concrete role yearValue), but allowing the use of Kleene-
Dienes and Gödel implications in the semantics of the axioms (A8), (A10), (A11).

Table 3 shows some metrics of the crisp ontologies obtained in the reduction
of the fuzzy ontology after applying different optimizations.

1. Column “Original” shows some metrics of the original ontology.
2. “None” considers the reduction obtained after applying no optimizations.
3. “(NEW)” considers the reduction obtained after optimizing the number of

new elements and axioms.
4. “(GCI)” considers the reduction obtained after optimizing GCI reductions.
5. “(C/S)” considers the reduction obtained after allowing crisp concepts and

roles and ignoring superfluous elements.
6. Finally, “All” applies all the previous optimizations.

Table 3. Metrics of the Wine ontology and its fuzzy versions using 5 degrees

Original None (NEW) (GCI) (C/S) All

Individuals 206 206 206 206 206 206
Named concepts 136 2176 486 2176 800 191
Abstract roles 16 128 128 128 51 20

Concept assertions 194 194 194 194 194 194
Role assertions 246 246 246 246 246 246

Inequality assertions 3 3 3 3 3 3
Equality assertions 0 0 0 0 0 0

New GCIs 0 4352 952 4352 1686 324
Subclass axioms 275 1288 1288 931 390 390

Concept equivalences 87 696 696 696 318 318
Disjoint concepts 19 152 152 19 152 19

Domain role axioms 13 104 104 97 104 97
Range role axioms 10 80 80 10 80 10

Functional role axioms 6 48 48 6 48 6

New RIAs 0 136 119 136 34 34
Sub-role axioms 5 40 40 40 33 33
Role equivalences 0 0 0 0 0 0
Inverse role axioms 2 16 16 16 2 2

Transitive role axioms 1 8 8 8 1 1

Note that the size of the ABox is always the same, because every axiom in the
fuzzy ABox generates exactly one axiom in the reduced ontology.

The number of new GCIs and RIAs added to preserve the semantics of the
new elements is much smaller in the optimized versions. In particular, we reduce
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from 4352 to 324 GCIs (7.44%) and from 136 to 34 RIAs (25%). This shows the
importance of reducing the number of new crisp elements and their correspond-
ing axioms, defining crisp concepts and roles, and (to a lesser extent) handling
superfluous concepts.

Optimizing GCI reductions turns out to be very useful in reducing the number
of disjoint concepts, domain, range and functional role axioms: 152 to 19 (12.5
%), 104 to 97 (93.27 %), 80 to 10 (12.5 %), and 48 to 6 (12.5 %), respectively.
In the case of domain role, axioms the reduction is not very high because we
need an inverse role to be defined in order to apply the reduction. However, this
happens for only one axiom.

Every fuzzy GCI or RIA generates several axioms in the reduced ontology.
Combining the optimization of GCI reductions with the definition of crisp con-
cepts and roles reduces the number of new axioms: from 1288 to 390 subclass
axioms (30.28 %), from 696 to 318 concept equivalences (45.69 %), and from 40
to 33 sub-role axioms (82.5 %).

Finally, the number of inverse and transitive role axioms is reduced in the
optimized version because fuzzy roles interpreted as crisp introduce one inverse
or transitive axiom instead of several ones. This allows a reduction from 16 to 2
axioms, and from 8 to 1, respectively, which corresponds to the 12.5 %.

Table 4 shows the influence of the number of degrees on the size of the resulting
crisp ontology, as well as on the reduction time (which is shown in seconds), when
all the described optimizations are used. The reduction time is small enough to
allow us to recompute the reduction of an ontology when necessary, thus allowing
us to avoid superfluous concepts and roles.

Table 4. Influence of the number of degrees in the reduction

Crisp 3 5 7 9 11 21

Number of axioms 811 1166 1674 2182 2690 3198 5738
Reduction time - 0.343 0.453 0.64 0.782 0.859 1.75

7 Conclusions and Future Work

This paper has presented the main features of the fuzzy ontology reasoner De-
Lorean, the first one that supports a fuzzy extension of OWL 2. DeLorean
integrates translation and reasoning tasks. Given a fuzzy ontology, DeLorean
computes its equivalent non-fuzzy representation. Then, it uses a classical DL
reasoner to perform the reasoning procedures.

We have also discussed how to create fuzzy ontologies by using a related
Protégé plug-in, as well as the implemented optimizations. Optimizations allow
us to define crisp concepts and roles and to remove superfluous concepts and
roles before applying crisp reasoning. A preliminary evaluation shows that these
optimizations help to reduce significantly the size of the resulting ontology.
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Other fuzzy ontology reasoners can be found in the literature, e.g. Fire [5]13,
fuzzyDL [6]14, GURDL [7], GERDS [8]15, YADLR [9], DLMedia [11]16,
FRESG [12] or ONTOSEARCH2 [10]17. On the one hand, the advantages of
DeLorean are that it supports all the constructors of fuzzy SROIQ(D), and
makes it possible to reuse existing ontology languages, editors, reasoners, and
other existing resources. On the other hand, the equivalent crisp ontologies com-
puted by DeLorean are larger than the original fuzzy ontologies. Hence, other
reasoners, such as ONTOSEARCH2 and DLMedia –which are specifically
designed for scalable reasoning–, would very likely show a better performance
for the fuzzy OWL 2 profiles. Furthermore, some of these reasoners implement
some features that DeLorean currently does not support. Some reasoners solve
new alternative reasoning tasks, such as classification (Fire) or defuzzification
(fuzzyDL), or support different constructors, such as aggregation operators
(fuzzyDL), extended fuzzy concrete domains (FRESG), or alternative uncer-
tainty operators (GURDL).

In future work, we plan to develop a more detailed benchmark and, eventually,
to compare DeLorean against other fuzzy DL reasoners. This is a difficult task,
since different reasoners support different features and expressivities. Moreover,
as far as we know, nowadays there are no public real-world fuzzy ontologies to
test with.
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15. Bobillo, F., Delgado, M., Gómez-Romero, J.: Crisp representations and reason-

ing for fuzzy ontologies. International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems 17(4), 501–530 (2009)
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