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Abstract. We investigate the modeling of uncertain concepts via rough descrip-
tion logics (RDLs), which are an extension of traditional description logics (DLs)
by a mechanism to handle approximate concept definitions via lower and upper
approximations of concepts based on a rough-set semantics. This allows to apply
RDLs to modeling uncertain knowledge. Since these approximations are ulti-
mately grounded on an indiscernibility relation, we explore possible logical and
numerical ways for defining such relations based on the considered knowledge. In
particular, we introduce the notion of context, allowing for the definition of spe-
cific equivalence relations, which are directly used for lower and upper approx-
imations of concepts. The notion of context also allows for defining similarity
measures, which are used for introducing a notion of tolerance in the indiscerni-
bility. Finally, we describe several learning problems in our RDL framework.

1 Introduction

Uncertainty is an intrinsic characteristic of the current Web, which, being a hetero-
geneous and distributed source of information, naturally contains uncertain as well as
incomplete and/or contradictory information. Managing uncertainty is thus a highly im-
portant topic also for the extension of the Web to the Semantic Web (SW).

Particularly, modeling uncertain concepts in description logics (DLs) [1] is gener-
ally done via numerical approaches, such as probabilistic and possibilistic ones [17].
A drawback of these approaches is that uncertainty is introduced in the model (e.g., by
specifying a set of uncertainty measures, such as probability and possibility measures,
respectively), which often has the consequence that the approach becomes conceptu-
ally and/or computationally more complex. An alternative (simpler) approach is based
on the theory of rough sets [22], which gives rise to new representations and ad hoc
reasoning procedures [4]. These languages are based on the idea of indiscernibility.

Among these recent developments, rough description logics (RDLs) [23] have in-
troduced a complementary mechanism that allows for modeling uncertain knowledge
by means of crisp approximations of concepts. RDLs extend classical DLs with two
modal-like operators, the lower and the upper approximation. In the spirit of rough-set
theory, two concepts approximate an underspecified (uncertain) concept C as particular
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sub- and superconcepts, describing which elements are definitely and possibly elements
of the concept, respectively.

The approximations are based on capturing uncertainty as an indiscernibility relation
R among individuals, and then formally defining the upper approximation of a concept
C as the set of individuals that are indiscernible from at least one that is known to
belong to the concept (where (ΔI , ·I) is a standard first-order interpretation):

(C)I := {a ∈ ΔI | ∃b : (a, b) ∈ RI ∧ b ∈ CI} .

Similarly, one can define the lower approximation as

(C)I := {a ∈ ΔI | ∀b : (a, b) ∈ RI → b ∈ CI} .

Intuitively, the upper approximation of a concept C covers the elements of a domain
with the typical properties of C, whereas the lower approximation contains the proto-
typical elements of C. This may be described in terms of necessity and possibility.

To avoid introducing uncertainty into the model (as for the approaches previously
mentioned), these approximations are to be defined in a crisp way. In [23], a method-
ology for representing approximations in a crisp way is introduced and it is also shown
that RDLs can be simulated within standard DLs. Specifically, for any DL DL with uni-
versal and existential quantification, and symmetric, transitive and reflexive roles, the
rough extension of DL can be translated into DL, and reasoning in the rough extension
of DL can be performed by reduction to DL, using a standard DL reasoner.

However, as shown in [19, 20], the representation of the upper and the lower ap-
proximation of a concept C as crisp concepts may not be straightforward. A knowledge
engineer or domain expert may not always be able to give intensional definitions of the
approximated concepts, but only examples for such approximated concepts. To cope
with these issues, the problem of representing concept approximations as crisp con-
cepts can be seen as a learning problem, where one has a given set of examples (and
counterexamples) for the lower (resp., upper) approximation of a given concept C, and
the goal is to learn a crisp concept definition such that the examples and counterexam-
ples are instances of the learned concept and its negation, respectively.

Looking at the semantics of the lower and upper approximations of a concept C (re-
ported above), an important role is played by the indiscernibility relation. But to our
knowledge, there are no existing works (different from [10] of which this paper is an
extension) coping with the problem of defining an indiscernibility relation. Inspired by
existing works on semantic metrics [2] and kernels [9], we propose to exploit semantic
similarity measures, which can be optimized to maximize their capacity of distinguish-
ing really different individuals, as indiscernibility relations. This naturally induces ways
for defining an equivalence relation based on indiscernibility criteria.

The rest of this paper is organized as follows. Section 2 provides some preliminaries
around DLs and RDLs. In Section 3, we introduce contextual indiscernibility relations.
Section 4 proposes a family of similarity measures based on such contexts along with a
suggestion on their optimization. This also allows for the definition of tolerance degrees
of indiscernibility. In Section 5, we introduce and discuss the problem of learning crisp
descriptions of rough concepts. Section 6 finally summarizes the results of this paper
and outlines further applications of ontology mining methods.
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2 Preliminaries

In this section, we first recall the basic notions of description logics (DLs). We then
describe the extension of DLs to rough DLs (RDLs).

2.1 Description Logics

We now briefly recall the syntax and the semantics of DLs. For ease of presentation, we
consider only the DL ALC; for further background and details on other DLs, we refer
the reader to the standard textbook [1].

Basic elements of DLs are atomic concepts and roles. Atomic concepts from a set
NC = {C,D, . . .} are interpreted as subsets of a domain of objects (resources), while
atomic roles from a set NR = {R,S, . . .} are interpreted as binary relations on such
a domain (properties). Individuals represent the objects through names chosen from a
set NI = {a, b, . . .}. Complex concepts are built using atomic concepts and roles by
means of specific concept constructors. The meaning of concepts and roles is defined
by interpretations I = (ΔI , ·I), where ΔI is a set of objects, called domain, and ·I is
an interpretation function, mapping concepts and roles to subsets of the domain and to
binary relations on the domain, respectively.

The top concept � is interpreted as the whole domain ΔI , while the bottom con-
cept ⊥ corresponds to ∅. Complex concepts can be built in ALC using the following
constructors. The conjunction of two concepts C and D, denoted C 
D, is interpreted
as CI∩DI , while the disjunction ofC andD, denotedC�D, is interpreted as CI∪DI .
Finally, there are two restrictions on roles, namely, the existential restriction on R rela-
tive to C, denoted ∃R.C, which is interpreted as the set {x ∈ ΔI | ∃y ∈ ΔI : (x, y) ∈
RI ∧ y ∈ CI}, and the value restriction on R relative to C, denoted ∀R.C, which is
interpreted as {x ∈ ΔI | ∀y ∈ ΔI : (x, y) ∈ RI → y ∈ CI}.

More expressive DLs allow for further constructors. The DL standing behind the
ontology language OWL DL is SHOIQ(D), which extends ALC by transitive roles,
role hierarchies, nominals, inverse roles, and qualified number restrictions, and which
allows to deal with concrete domains D and their specific semantics.

A knowledge base KB = (T ,A) consists of a TBox T and an ABox A. The TBox T
is a set of subsumption axioms C � D and definition axioms A ≡ D, whereA is usually
an atomic concept, and C and D are concepts. They are satisfied in an interpretation I,
or I is a model of them, denoted I |= C � D and I |= A ≡ D, respectively, iff CI ⊆
DI and AI = DI , respectively. The ABox A contains concept membership axioms
C(a) and role membership axioms R(a, b), where C is a concept, R is a role, and a
and b are individuals. They are satisfied in I, or I is a model of them, denoted I |=
C(a) and I |= R(a, b), respectively, iff aI ∈ CI and (aI , bI) ∈ RI , respectively.
An interpretation I satisfies a knowledge base KB , or I is a model of KB , denoted
I |= KB , iff I satisfies all the axioms in KB . An axiom F is a logical consequence of
KB , denoted KB |= F , iff every model of KB is also a model of F .

In DLs, one generally does not make the unique name assumption (UNA), i.e., differ-
ent individuals (which ultimately correspond to URIs in RDF/OWL) may be mapped to
the same object (resource), if not explicitly forbidden. Furthermore, one usually adopts
the open-world assumption (OWA). Thus, an object that cannot be proved to belong to a
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certain concept is not necessarily a counterexample for that concept. This is only inter-
preted as a case of insufficient (incomplete) knowledge for that assertion (i.e., models
can be constructed for both the membership and non-membership case). This assump-
tion is compatible with the typical scenario related to the Semantic Web, where new
resources may continuously be made available (and unavailable) across the Web, and
thus one generally cannot assume complete knowledge.

Some important inference problems in the context of DLs include subsumption
checking, instance checking, and concept retrieval:

Subsumption Checking: Given a knowledge base KB and two concepts (or two roles,
when role hierarchies are allowed) C and D, decide whether KB |= C � D.

Instance Checking: Given a knowledge base KB , a concept C, and an individual a,
decide whether KB |= C(a).

Concept Retrieval: Given a knowledge base KB =(T ,A) and a concept C, compute
the set of all individuals a∈ Ind(A) (among those in A) such that KB |= C(a).

2.2 Rough Description Logics

DLs are suitable for modeling crisp knowledge, but they cannot easily be used to model
approximate information. For example, no explicit mechanism is provided when a def-
inition is not commonly agreed upon, or when exceptions need to be captured. Rough
DLs (RDLs) attempt to close this gap in a conceptually simple way.

The basic idea behind RDLs is to approximate an uncertain concept C by giving an
upper and a lower bound. The upper approximation of C, denoted C , is the set of all
individuals that possibly belong to C, while the lower approximation of C, denoted C,
is the set of all individuals that definitely belong to C. Traditionally, this is modeled
using subsumption axioms; in pure DL modeling, the relation between C and its ap-
proximations C and C is C � C � C.

RDLs are not restricted to particular DLs, and can be defined for an arbitrary DL DL.
Its RDL language RDL has the lower and upper approximation as additional unary
concept constructors, i.e., if C is a concept in RDL, then also C and C are concepts
in RDL. The notions of rough TBox and ABox, as well as rough knowledge base then
canonically extend their classical counterparts.

Example 2.1 (Advertising Campaign). Suppose that we want to use some pieces of data
collected from the Web to find a group of people to serve as addressees for the advertis-
ing campaign of a new product. Clearly, the collected pieces of data are in general highly
incomplete and uncertain. The DL concept Addressee may now be approximated from
below by all the definite addressees and from above by all the potential addressees. So,
we can use a DL to specify the TBox knowledge about Addressee, and in the same time
specify the ABox knowledge about which people are definite and potential addressees,
i.e., belong to the two concepts Addressee and Addressee, respectively. �

A rough interpretation is a triple I = (ΔI , ·I , RI), where ΔI is a domain of objects,
·I is an interpretation function, and RI is an equivalence (i.e., reflexive, symmetric,
and transitive) relation over ΔI . The function ·I maps RDL concepts to subsets of the
domain ΔI , and atomic roles to binary relations over ΔI . It interprets the classical DL
constructs and atomic concepts as usual, and the new constructs as follows:
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– (C)I = {a ∈ ΔI | ∃b ∈ ΔI : (a, b) ∈ RI ∧ b ∈ CI},
– (C)I = {a ∈ ΔI | ∀b ∈ ΔI : (a, b) ∈ RI → b ∈ CI}.

Intuitively, the upper approximation of a concept C covers the elements of a domain
with the typical properties of C, while the lower approximation of C contains the pro-
totypical elements of C.

Example 2.2 (Advertising Campaign cont’d). To define the definite and potential ad-
dressees for the advertising campaign of a new product, we may exploit a classification
of people into equivalence classes. For example, people with an income above 1 million
dollars may be definite addressees for the advertising campaign of a new Porsche, while
people with an income above 100 000 dollars may be potential addressees, and people
with an income below 10 000 dollars may not be addressees. �

One of the advantages of this way of modeling uncertain concepts is that reasoning
comes for free. Indeed, reasoning with approximations can be reduced to standard DL
reasoning, by translating RDL concepts into classical DL concepts with a special re-
flexive and symmetric role.

A translation function for RDL concepts ·t : RDL �→ DL is defined as follows
(introducing the new atomic role R for the indiscernibility relation): For every RDL
concept C, the DL concept Ct is obtained from C by recursively (over the structure
of C) replacing every D and D in C by ∃R.D and ∀R.D, respectively, and using the
identical mapping for all other constructs and atomic concepts. The translation function
is naturally extended to axioms and knowledge bases (see [23]).

For any DL DL with universal and existential quantification, and reflexive, sym-
metric, and transitive roles, there is no increase in expressiveness, i.e., RDLs can be
simulated in (almost) standard DLs: an RDL concept C is satisfiable in a rough inter-
pretation relative to T iff the DL concept Ct is satisfiable relative to T t [23]. In the
presence of negation, other inference problems (such as subsumption checking) can be
reduced to checking concept satisfiability (and finally to checking ABox satisfiability).
Since the translation is linear, the complexity of reasoning in an RDL is the same as the
one of reasoning in its DL counterpart with quantifiers as well as reflexive, symmetric,
and transitive roles.

Since RDLs do not specify the nature of the indiscernibility relation, except pre-
scribing its encoding as a (special) new equivalence relation, we introduce possible
ways for defining it. The first one (see Section 3) makes it depend on a specific set of
concepts determining the indiscernibility of the individuals relative to a specific context
described by the concepts in the knowledge base. Then (see Section 4), we also define
the indiscernibility relation in terms of a similarity measure (based on a context of fea-
tures), which allows for relaxing the discernibility using a tolerance threshold. In case
an indiscernibility relation cannot be specified (e.g., due to lack of knowledge), crisp
descriptions of the concept approximations may be learned (see Section 5).

3 Contextual Indiscernibility Relations

In this section, we first define the notion of a context via a collection of DL concepts.
We then introduce indiscernibility relations based on such contexts. We finally define
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upper and lower approximations of DL concepts using these notions, and we provide
some theoretical results about them.

It is well known that classification by analogy cannot be really general-purpose, since
the number of features on which the analogy is made may be very large [21]. The key
point is that indiscernibility is not absolute, but, rather, an induced notion, which de-
pends on the specific contexts of interest. Instead of modeling indiscernibility through a
single relation in the interpretation, one may consider diverse contexts, each giving rise
to a different relation, which determines also different ways of approximating uncertain
concepts. We first recall the notion of projection function [6].

Definition 3.1 (projection). Let I = (ΔI , ·I) be an interpretation, and let F be a DL
concept. Then, the projection function πI

F : ΔI �→ {0, 1} is defined as follows:

∀a ∈ ΔI : πI
F (a) =

{
1 a ∈ F I ;
0 otherwise.

We define a context as a finite set of relevant features in the form of DL concepts, which
may encode context information for the similarity to be measured [12].

Definition 3.2 (context). A context is a set of DL concepts C = {F1, . . . , Fm}.

Example 3.1 (Advertising Campaign cont’d). One possible context C for the advertis-
ing campaign of a new product is given as follows:

C = {SalaryAboveMillion,HouseOwner,Manager},

where SalaryAboveMillion, HouseOwner, and Manager are DL concepts. �

Two individuals a and b are indiscernible relative to the context C = {F1, . . . , Fm} iff
πFi(a) = πFi(b) for all i ∈ {1, . . . ,m}. This induces an equivalence relation. Note
that one may define multiple such relations by considering different contexts.

Definition 3.3 (indiscernibility relation). Let I = (ΔI , ·I) be an interpretation, and
let C = {F1, . . . , Fm} be a context. Then, the indiscernibility relation RI

C induced by C
under I is defined as follows:

RI
C =

{
(a, b) ∈ ΔI ×ΔI) | ∀i ∈ {1, . . . ,m} : πI

Fi
(a) = πI

Fi
(b)

}
.

Any indiscernibility relation splits ΔI in a partition of equivalence classes (also known
as elementary sets) denoted [a]C, for a generic individual a. Each class naturally induces
a concept, denoted Ca.

Example 3.2 (Advertising Campaign cont’d). Consider again the context C of Exam-
ple 3.1. Observe that C defines an indiscernibility relation on the set of all people, which
is given by the extensions of all atomic concepts constructed from C as its equivalence
classes. For example, one such atomic concept is the conjunction of SalaryAboveMillion,
HouseOwner, and Manager; another one is the conjunction of SalaryAboveMillion,
HouseOwner, and ¬Manager. �
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Fig. 1. Lower and upper approximations of rough concepts

Thus, a C-definable concept has an extension that corresponds to the union of elemen-
tary sets. The other concepts may be approximated as usual (we give a slightly different
definition of the approximations relative to those in Section 2.2).

Definition 3.4 (contextual approximations). Let C = {F1, . . . , Fm} be a context,
let D be a DL concept, and let I be an interpretation. Then, the contextual upper and

lower approximations of D relative to C, denoted D
C

and DC, respectively, are defined
as follows:

– (D
C
)I = {a ∈ ΔI | I �|= Ca 
D � ⊥},

– (DC)
I = {a ∈ ΔI | I |= Ca � D}.

Figure 1 illustrates the contextual upper and lower approximations. The partition is
determined by the feature concepts included in the context, each block standing for one
of the C-definable concepts. The blocks inscribed in the concept polygon represent its
lower approximation, while the blocks having a nonempty intersection with the concept
polygon stand for its upper approximation.

These approximations can be encoded in a DL knowledge base through special indis-
cernibility relationships, as in [23], so to exploit standard reasoners for implementing
inference services (with crisp answers). Alternatively, new constructors for contextual
rough approximation may be defined to be added to the standard ones in the specific DL.

Following an analogous approach to the one presented in [18], it is easy to see that
the following properties hold for these operators:

Proposition 3.1 (properties). Let C = {F1, . . . , Fm} be a context, let D and E be two
DL concepts. Then:
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1. ⊥C = ⊥C
= ⊥,

2. �C = �C
= �,

3. D � EC � DC � EC,

4. D � E
C
= D

C � E
C

,

5. D 
 EC = DC 
 EC,

6. D 
 E
C � D

C 
 E
C

,

7. ¬DC = ¬DC
,

8. ¬DC
= ¬DC,

9. DCC
= DC,

10. D
C
C

= D
C

.

4 Numerical Extensions

In this section, the indiscernibility relation is expressed in terms of a similarity mea-
sure. We introduce contextual similarity measures, and we discuss the aspect of finding
optimal contexts. We finally describe how indiscernibility relations can be defined on
top of tolerance functions.

4.1 Contextual Similarity Measures

Since indiscernibility can be graded in terms of the similarity between individuals, we
propose a set of similarity functions, based on ideas that inspired a family of inductive
distance measures [6, 2]:

Definition 4.1 (family of similarity functions). Let KB = (T ,A) be a knowledge
base. Given a context C = {F1, F2, . . . , Fm}, a family of similarity functions

sCp : Ind(A) × Ind(A) �→ [0, 1]

is defined as follows (∀a, b ∈ Ind(A)):

sCp(a, b) :=
1

m

[∑m

i=1
σi(a, b)

p
] 1

p

, (1)

where p > 0, and the basic similarity function σi (∀i ∈ {1, . . . ,m}) is defined by:

σi(a, b) =

⎧⎨
⎩

1 (KB |= Fi(a) ∧KB |= Fi(b)) ∨ (KB |= ¬Fi(a) ∧KB |= ¬Fi(b));
0 (KB |= ¬Fi(a) ∧KB |= Fi(b)) ∨ (KB |= Fi(a) ∧KB |= ¬Fi(b));
1
2 otherwise.
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The rationale for these functions is that similarity between individuals is determined
relative to a given context [12]. Two individuals are maximally similar relative to a
given concept Fi if they exhibit the same behavior, i.e., both are instances of the con-
cept or of its negation. Conversely, the minimal similarity holds when they belong to
opposite concepts. By the open-world semantics, sometimes a reasoner cannot assess
the concept-membership, hence, since both possibilities are open, an intermediate value
is assigned to reflect such uncertainty.

As mentioned, instance-checking is used for assessing the value of the basic similar-
ity functions. As this is known to be computationally expensive (also depending on the
specific DL language), a simple look-up may be sufficient, especially for ontologies that
are rich of explicit class-membership information (assertions). Hence, alternatively, for
densely populated knowledge bases, the σi’s can be efficiently approximated by defin-
ing them as follows (∀a, b ∈ Ind(A)):

σi(a, b) =

⎧⎨
⎩

1 (Fi(a) ∈ A ∧ Fi(b) ∈ A) ∨ (¬Fi(a) ∈ A ∧ ¬Fi(b) ∈ A);
0 (Fi(a) ∈ A ∧ ¬Fi(b) ∈ A) ∨ (¬Fi(a) ∈ A ∧ Fi(b) ∈ A);
1
2 otherwise.

The parameter p in (1) was borrowed from the form of Minkowski’s measures [24].
Once the context is fixed, the possible values for the similarity function are determined;
hence, p has an impact on the granularity of the measure.

Furthermore, the uniform choice of the weights assigned to the similarity related to
the various features in the sum (1/mp) may be replaced by assigning different weights
reflecting the importance of a certain feature in discerning the various instances. A good
choice may be based on the amount of entropy related to each feature concept (then the
weight vector has only to be normalized) [2].

4.2 Optimization of the Contexts

It is worthwhile to note that Definition 4.1 introduces a family of functions that are
parameterized on the choice of features.

Preliminarily, the very set of both atomic and defined concepts found in the knowl-
edge base can be used as a context.1 But the choice of the concepts to be included in the
context C is crucial, both for the effectiveness of the measure and for the computational
efficiency itself. Specifically, the required computational effort grows with the size of
the context C.

As performed for inducing the pseudo-metric that inspired the definition of the simi-
larity function [6], a preliminary phase may concern finding optimal contexts. This may
be carried out by means of randomized optimization procedures.

Since the underlying idea in the definition of the functions is that similar individuals
should exhibit the same behavior relative to the concepts in C, the context C should rep-
resent a sufficient number of (possibly redundant) features that are able to discriminate
different individuals.

1 Preliminary experiments, reported in [2], demonstrated the effectiveness of the similarity func-
tion using the very set of both atomic and defined concepts found in the knowledge base.
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The problem may be regarded as a learning problem having as a goal finding an
optimal context (given the knowledge base) provided that two crucial factors are con-
sidered/optimized:

– the number of concepts of the context C,
– the discriminating power of the concepts in C in terms of a discernibility factor,

i.e., a measure of the amount of difference between individuals.

The learned discriminating concepts in C may be complex concepts that are built via
the specific constructors of the underlying DL.

A possible solution to the learning problem has been discussed in [6], where a ran-
domized optimization procedure is proposed. This solution is particularly well-suited
when knowledge bases with large sets of individuals are considered.

4.3 Approximation by Tolerance

In [4], a less strict type of approximation is introduced, based on the notion of tolerance.
Exploiting the similarity functions that have been defined in Section 4.1, it is easy to
extend this kind of (contextual) approximation to the case of RDLs.

Let a tolerance function on a set U be any function τ : U × U �→ [0, 1] such that for
all a, b ∈ U , it holds that τ(a, a) = 1 and τ(a, b) = τ(b, a).

Considering a tolerance function τ on a (universal) set U and a tolerance thresh-
old θ ∈ [0, 1], a neighborhood function ν : U �→ 2U is defined as follows:

νθ(a) = {b ∈ U | τ(a, b) ≥ θ}.

For each element a ∈ U , the set νθ(a) is the neighborhood of a.
Consider now the domain ΔI of an interpretation I as a universal set, a similarity

function sCp on ΔI (for some context C) as a tolerance function, and a threshold θ ∈
[0, 1]. It is then easy to derive a tolerance relation2, i.e., a reflexive and symmetric
relation on ΔI , inducing tolerance classes that consist of individuals within a certain
degree of similarity, indicated by the threshold: [a]C,θ = νθ(a). The notions of upper
and lower approximation relative to the tolerance relation induced by C and θ descend
straightforwardly:

– (D)I = {a ∈ ΔI | ∃b ∈ ΔI : sCp(a, b) ≥ θ ∧ b ∈ DI},
– (D)I = {a ∈ ΔI | ∀b ∈ ΔI : sCp(a, b) ≥ θ → b ∈ DI}.

Given the similarity measure defined in Section 4.1 as a tolerance function, the approx-
imation by tolerance allows a less strict approximation with respect to the adoption of
the indiscernibility relation exploited for the case of the contextual approximation (see
Section 3). The granularity of the approximation is specifically controlled by the thresh-
old. Indeed, if θ is (very close to) 1, then we obtain almost the indiscernibility relation
for the contextual approximation. Considering lower values for θ, additional individu-
als will be included in the neighborhood νθ(a) of a given individual a. This aspect may
result to be particularly useful when not enough information is available for defining a
suitable context of interest C.

2 Transitivity is not necessary, however, the case of an indiscernibility relation can be considered
with the equivalence classes [a]θ =

⋂{νθ(b) | a ∈ νθ(b)}.
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Example 4.1 (Advertising Campaign cont’d). Given the context

C = {SalaryAboveMillion,HouseOwner,Manager}

introduced in Example 3.1, θ = 0.8, and the similarity function sCp defined in Sec-
tion 4.1, the concepts Addressee and Addressee will be given by

– (Addressee)I = {a ∈ ΔI | ∃b ∈ ΔI : sCp(a, b) ≥ 0.8 ∧ b ∈ AddresseeI},

– (Addressee)I = {a ∈ ΔI | ∀b ∈ ΔI : sCp(a, b) ≥ 0.8 → b ∈ AddresseeI}. �

Note that these approximations depend on the threshold. Thus, we have a numerical
way to control the degree of indiscernibility that is needed to model uncertain concepts.
This applies both to the standard RDL setting and to the new contextual one presented
in the previous section.

Alternatively, by learning an intensional concept description (see the next Section 5)
for the neighborhood νθ(a), lower and upper approximations of a given concept D may
be defined as for the case of the contextual approximation (see Section 3).

5 Learning Crisp Definitions of Rough Concepts

There may be cases where modeling uncertain knowledge is a difficult task, even in
the framework of RDLs. One main problem is that a domain expert may not always
have a clear idea about the concepts to model via lower and upper concept approxima-
tions, thus having incomplete besides rough concept definitions. Another problem are
the difficulties in defining a suitable indiscernibility relation. Even the indiscernibility
relations in Sections 3 and 4 are based on the notion of a context, which for some cases
may be difficult to define (see, e.g., the Sepsis example in [23]). Furthermore, even the
translation function (presented at the end of Section 2.2) for transforming RDL con-
cepts into crisp concepts, via an appropriate predicate for the indiscernibility relation,
may be hard to apply in practice in DLs with low expressiveness. Furthermore, a do-
main expert often has a clear idea about counterexamples to a concept definition, but
may not be able to give an explanation or a clear definition for them.

To cope with these problems, and to still be able to represent uncertain knowledge
in RDLs, we propose an alternative way, grounded on DL concept learning methods,
for describing lower and upper approximations of a given concept.

Since a domain expert often has a clear idea about counterexamples to a given con-
cept definition, we assume that he/she is able to supply (a) a set of positive examples
for the upper (resp., lower) approximation of a given concept C, i.e., a set of individuals
standing as the possible (resp., certain) instances of the concept C, and (b) a set of neg-
ative examples for the upper (resp., lower) approximation of C, i.e., a set of individuals
that are surely not instances of the upper (resp., lower) approximation of C.

Given these sets of examples, the problem now is to find a suitable crisp definition
for them. Specifically, the problem can be formally defined as follows:

Definition 5.1 (learning problem). Let KB = (T ,A) be a knowledge base. Then,
given
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– Ind(A) the set of all individuals occurring in A,
– a set of positive and negative examples Ind+

C(A) ∪ Ind−
C(A) ⊆ Ind(A) for the

upper (resp., lower) approximation of a given concept C,

we build a concept definition Ĉ such that

KB |= Ĉ(a) ∀a ∈ Ind+
C(A) and KB |= ¬Ĉ(b) ∀b ∈ Ind−

C(A).

Example 5.1 (Advertising Campaign cont’d). Consider again Examples 2.1 and 2.2,
where the RDL concepts Addressee and Addressee are introduced, representing the
definite and potential addressees, respectively, for an advertising campaign for a new
product (i.e., Porsche). Now, a crisp DL definition for each of the two concepts has to
be given. Suppose now that no indiscernibility function is adopted and/or specified, be-
cause the domain expert does not have enough knowledge (e.g., for defining a suitable
context C), but the domain expert is able to identify some instances (i.e., individuals of
the knowledge base, i.e., instances of some concepts in the knowledge base) that are
definitely addressees (positive examples) and that are surely not addressees (negative
examples). This information is exploited for learning an intensional concept description
such that all positive examples are instances of the learned concept and that all negative
examples are instances of the negation of the learned concept. The same process can be
applied for the concept Addressee. In this way, a crisp description for an RDL concept
can be given without adopting any indiscernibility function. �

The definition given above can be interpreted as a generic supervised concept learning
task. The problem consists of finding a DL concept definition Ĉ such that all posi-
tive examples are instances of Ĉ, while all negative examples are instances of ¬Ĉ .
This problem is well-studied in the literature, resulting in different inductive learning
methods that are grounded on the (greedy) exploration of the search space by the adop-
tion of suitable refinement operators for DL representations [14, 15]. Among the most
well-known algorithms and systems, there are DL-FOIL [7], DL-LEARNER3 [16], and
TERMITIS [11]. Hence, given the set of the positive and negative examples for the up-
per (resp., lower) approximation of a conceptC, the crisp definitions of the approximate
concepts can be learned by adopting one of the systems cited above.

Alternatively/additionally, we may also be interested in assessing/learning the crisp
description of the upper (resp., lower) approximation of a crisp conceptD that is already
existing in the knowledge base. In this case, finding a domain expert who provides the
set of positive and negative examples for the upper (resp., lower) approximation of D
may not always be possible. The problem of learning a crisp concept description for the
upper (resp., lower) approximation of D is now shifted to the problem of determining
the positive and negative examples for the upper (resp., lower) approximation of D.
In the following, the possible solutions are illustrated.

Definition 5.2 (positive/negative examples for lower approximation). Let KB =
(T ,A) be a knowledge base. Then, given

– Ind(A) the set of all individuals occurring in A,
– a target atomic concept D,

3 http://dl-learner.org/Projects/DLLearner
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we define

– the set of positive examples as Ind+
D(A) = {a ∈ Ind(A) | KB |= D(a)},

– the set of negative examples as Ind−
D(A) = {a ∈ Ind(A) | KB �|= D(a)}.

The set of the positive examples for the lower approximation of the concept D is given
by all individuals of the knowledge base that are instances4 of D, while the set of
negative examples is given by all individuals for which it is not possible to prove that
they are instances of D. This set includes both the individuals that are instances of ¬D
and the individuals for which the reasoner is not able to give any reply due to the OWA.

Definition 5.3 (positive/negative examples for upper approximation). Let KB =
(T ,A) be a knowledge base. Then, given

– Ind(A) the set of all individuals occurring in A,
– a target atomic concept D,

we define

– the set of positive examples as Ind+

D
(A) = {a ∈ Ind(A) | KB �|= ¬D(a)},

– the set of negative examples as Ind−
D
(A) = {a ∈ Ind(A) | KB |= ¬D(a)}.

The set of the negative examples for the upper approximation of the concept D is given
by all individuals of the knowledge base that are instances of ¬D, while the set of
positive examples is given by all individuals for which it is not possible to prove that
they are instances of ¬D (e.g., because of the absence of disjointness axioms in the
considered ontology). This set includes both the individuals that are instances of D and
the individuals for which the reasoner is not able to give any reply due to the OWA.

Once the set of positive and negative examples for the lower (resp., upper) ap-
proximation of D have been determined, the crisp definition for the lower (resp., up-
per) approximation of D can be learned as illustrated above. Note, however, that the
learned definitions may be noisy when a high percentage of unlabeled examples (due to
the OWA) is included in the set of negative (resp., positive) examples. To cope with this
problem, alternative learning methods such as methods for learning from positive (and
unlabeled) examples [3, 25] only were investigated and can be exploited.

6 Summary and Outlook

Inspired by previous works on dissimilarity measures in DLs, we have defined a notion
of context, which allows to extend the indiscernibility relation adopted by rough DLs,
thus allowing for various kinds of approximations of uncertain concepts within the same
knowledge base. It also saves the advantage of encoding the relation in the same DL
language, thus allowing for reasoning with uncertain concepts through standard tools,
obtaining crisp answers to queries.

Alternatively, these approximations can be implemented as new modal-like language
operators. Some properties of the approximations deriving from the theory of rough sets
have also been investigated.

4 Here, concept retrieval may be adopted.
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A novel family of semantic similarity functions for individuals has also been de-
fined based on their behavior relative to a number of features (concepts). The functions
are language-independent, being based on instance-checking (or ABox look-up). This
allows for defining further kinds of graded approximations based on the notion of tol-
erance relative to a certain threshold.

Since data can be classified into indiscernible clusters, unsupervised learning meth-
ods for grouping individuals on the grounds of their similarity can be used for the defi-
nition of an equivalence relation [13, 6, 8]. Besides, it is also possible to learn rough DL
concepts from the explicit definitions of the instances of particular concepts [14, 15, 7].

Acknowledgments. This work was partially supported by the Engineering and Physi-
cal Sciences Research Council (EPSRC) grant EP/J008346/1 (PrOQAW), the European
Research Council under the EU’s 7th Framework Programme (FP7/2007-2013/ERC)
grant 246858 (DIADEM), a Google Research Award, and a Yahoo! Research Fellow-
ship. Many thanks also to the reviewers of this paper and its URSW-2008 abstract for
their useful and constructive comments, which have helped to improve this work.

References

[1] Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The De-
scription Logic Handbook. Cambridge University Press (2003)

[2] d’Amato, C., Fanizzi, N., Esposito, F.: Query Answering and Ontology Population: An
Inductive Approach. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.)
ESWC 2008. LNCS, vol. 5021, pp. 288–302. Springer, Heidelberg (2008)
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