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Abstract In this paper, we present a scheme for the stability analysis of
autonomously controlled production networks with transportations. We model
production networks by differential equations and discrete event simulation
models (DES) from a mathematical and engineering point of view, where trans-
portation times are considered in the models as time delays. Lyapunov functions as
a tool to check the stability of networks are used to calculate stability regions.
Then, this region is refined using the detailed DES. This approach provides a
scheme to determine stability regions of networks with less time consumption in
contrast to a pure simulation approach. In presence of time delays, new challenges
in the analysis occur, which is pointed out in this paper.

Introduction

Production networks are used to describe company or cross-company owned
networks with geographically dispersed plants (Wiendahl and Lutz 2002), which
are connected by transport routes. One of the approaches to handle such complex
systems is to shift from centralized to decentralized or autonomous control.
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In this paper, we consider a certain autonomously controlled production network
scenario consisting of six interconnected plants focus. In the context of production
networks, the concept of autonomous control enables intelligent logistic objects
such as parts and orders, for example, to decide about routes through the system
autonomously. The concept of autonomous control aims at affecting the systems
performance positively (Windt and Hülsmann 2007).

Different autonomous control methods have been developed in the literature
(Scholz-Reiter et al. 2011b). In this paper, the local rational autonomous control
method queue length estimator (QLE) is considered for autonomous decision
making on the network level and on the shop-floor level. On the shop-floor level,
the QLE enables parts to choose a workstation according to local information
about their current workload. In contrast, parts using this method on the network
level estimate the waiting times at succeeding production plants. According to this
method, they will choose the next possible production plant with the shortest
estimated waiting time.

Stability of a production network means that the work in progress (WIP)
remains bounded over time. Instability, by means of an unbounded growth of the
WIP, may cause high inventory costs, downtimes of machines or loss of cus-
tomers, for example. The implementation of autonomous control methods can lead
to instability of the system (Windt 2006; Philipp et al. 2007). Hence, it is necessary
for logistic systems to derive parameters, which guarantee stability.

For the stability analysis, we provide a dual approach: a mathematical and an
engineering point of view. Based on retarded functional differential equations,
Lyapunov-Razumikhin functions (Teel 1998) are used to calculate a stability
region, which includes parameters for which the network is stable (Dashkovskiy
and Naujok 2010c; Dashkovskiy et al. 2010a). These stability parameters are
implemented into a more detailed microscopic model, where all plants are rep-
resented by a complete shop floor. This microscopic view, models the scenario
with the help of a discrete event simulation (DES) tool. Using this approach, the
calculated stability region will be refined. The advantage is that we first apply the
mathematical theory to find in a very fast way those parameters, where stability is
guaranteed. A refinement is performed by simulations, in order to enlarge the set of
parameters, which guarantee stability. This scheme provides an identification of a
stability region with less time consumption in contrast to a pure simulation
approach, where the time needed for the simulations increases exponentially by
increasing the number of plants, parts and machines.

An existing work on stability analysis for production networks without trans-
portations can be found in Scholz-Reiter et al. (2011a), where the mentioned
scheme was firstly introduced. Here, we adopt this approach to networks with
transportations using Lyapunov tools for networks presented in Dashkovskiy and
Naujok (2010c) and applied in Dashkovskiy et al. (2010a, 2011a). In presence of
transportations, i.e., time delays, the dynamics of the network is much more
complex than the dynamics without transportations. The worst-case approach of
the mathematical analysis this leads to a rough calculation of the stability region
that is then calculated more precisely with help of DES. The identification of stable
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or unstable behavior of the network using the DES for the refinement of the
stability region is a challenging task and the abort criterion used in Scholz-Reiter
et al. (2011a) needs to be adapted for networks with time delays.

Modeling

For the illustration of the novel stability analysis approach a particular production
network has been chosen, which is described in this section.

The production network in Fig. 1 consists of six geographically distributed
production locations, which are connected by transportation routes. In this paper
we consider the material flow between the locations, described in Fig. 1 by arrows.
In this scenario the xiðtÞ 2 R for i = 1,…, 6 represents the WIP of the ith location
at time t, where t 2 Rþ and Rþ denotes all positive real values. In the rest of this
paper for the ith production location we write subsystem i. The network of all six
subsystems we name simply whole system.

Each plant of the network is represented by a complete shop floor scenario. It
consists of three parallel production lines. Every line has three workstations and an
input buffer in front of each workstation. The structure allows the parts to switch
lines at every stage. The decision about changing the line is made by the part itself
by internal control rules. This rule on the shop floor level is the QLE.

Subsystem 1 gets some raw material from an external source, denoted by
uðtÞ 2 R and some material from subsystem 6. The material will be processed with
a certain production rate ~f1. Then, a truck loads the processed parts and transports
them to the subsystem 2 or 3, according to the QLE. The transportation time from
subsystem i to j is denoted by sij. The parts will be processed with the rate ~f 2 or ~f 3

and sent to subsystem 4 or 5, according to the QLE. After processing the parts with
the rates ~f 4 and ~f 5 they will be sent to subsystem 6 and processed there ~f 2with the
rate ~f 6. Then, 90 % of the production will be delivered to some customers outside
of the network and 10 % of the production of subsystem 6 will be sent back to
subsystem 1. This can be interpreted as recycling of the waste produced in sub-
system 6, for example.

Fig. 1 The particular production network
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There are two levels of aggregation and modeling. The macroscopic view
focuses on the network level, which consists of production plants only. On the
microscopic level, the network is represented more detailed. In addition to the
macroscopic view, the microscopic view represents the plants as a set of inter-
connected machines. In the following these two views will be described.

Aggregated View Using ODEs

In the macroscopic approach we provide our description and analysis from a
mathematical point of view. The internal structure on the shop floor level of all
subsystems is ignored. All subsystems are autonomously controlled by means of
an autonomous adjustment of the production rates. As in Scholz-Reiter et al.
(2011a), the production rate for the subsystem i can be modeled by

~fiðxiðtÞÞ :¼ ai 1� expð�xiðtÞÞð Þ; i ¼ 1; . . .; 6;

where ai 2 Rþ is the (constant) maximal production rate of the subsystem i. Note
that one can choose any other rate, which fits to a certain scenario. ~f i converges to
ai, if the WIP of the subsystem i is large and ~f i tends to zero, if the WIP of the
subsystem i tends to zero. Accordingly, a huge influx of raw material causes an
increase of the production rate close to the maximum, whereas less influx of raw
material leads to a production rate, which is almost zero.

When modeling the system by retarded differential equations, we assume that
the processed material will be transported at time t to a subsystem according to the
QLE and arrives at the succeeding subsystem at the time t þ sij, where sij can be
interpreted as transportation time needed for the transportation from subsystem i to
j. Here, no delay within the production process is implemented. Note that one can
use variable transportation times sij instead of constant ones such as state- or time-
dependent variables. For example, disturbances on the transport routes can be
taken into account choosing variable sij.

A retarded differential equation describes the rate of change of the WIP along
the time. We model the network by retarded differential equations as follows:

_x1ðtÞ :¼uðtÞ þ 1
10

~f6ðx6ðt � s61ÞÞ � ~f1ðx1ðtÞÞ;

_x2ðtÞ :¼~c12
~f1ðx1ðt � s12ÞÞ � ~f2ðx2ðtÞÞ;

_x3ðtÞ :¼~c13
~f1ðx1ðt � s13ÞÞ � ~f3ðx3ðtÞÞ;

_x4ðtÞ :¼~c24
~f2ðx2ðt � s24ÞÞ þ ~c34

~f3ðx3ðt � s34ÞÞ � ~f4ðx4ðtÞÞ;
_x5ðtÞ :¼~c25

~f2ðx2ðt � s25ÞÞ þ ~c35
~f3ðx3ðt � s35ÞÞ � ~f5ðx5ðtÞÞ;

_x6ðtÞ :¼~f4ðx4ðt � s46ÞÞ þ ~f5ðx5ðt � s56ÞÞ � ~f6ðx6ðtÞÞ;

ð1Þ

456 S. Dashkovskiy et al.



where ~cij represent the QLE. The external input is chosen according to fluctuations
as uðtÞ :¼ AVðsinðtÞ þ 1Þ þ 5; where AV 2 Rþ.

xiðtÞ may also represent other relevant parameters of the system, e.g., the
number of unsatisfied orders. One can extend or change the given production
network to describe any other scenario that can be more large and complex. It is
possible to perform a stability analysis for the extended system.

Detailed View Using DES

By using a DES approach, a more detailed modeling is performed. Due to the
lower aggregation level and the discrete nature of this modeling approach some
parameters from the aggregated differential equation based model have to be
adjusted. The DES represents the flows of materials by discrete parts passing
through the network. This requires an adjustment of the input rate in plant 1. In the
DES model the arrival rate u(t) is cumulated. Whenever this cumulated arrival rate
reaches an integer value a part enters the system at the corresponding time point
t. A second adjustment concerns the production rates of all production plants. In
the detailed view the plants represent a shop-floor scenario with 3 9 3 machines.
Due to the parallel machines offered by the shop-floor, the production rate of a
plant has to be distributed to these parallel machines. In the case at hand each work
station j in the plant i has a maximal production rate of aij ¼ ai

3 .

Stability Analysis

In this section, the scheme and the used tools of a stability analysis are described.
We consider nonlinear dynamical systems of the form

_xðtÞ ¼ f ðxt; uðtÞÞ; ð2Þ

which are called retarded functional differential equations (RFDE), where xt 2
C ½�D; 0�;RNð Þ is defined by xtðsÞ :¼ xðt þ sÞ ; s 2 ½�D; 0�. D denotes the maximal
involved delay and C ½�D; 0�;RNð Þ denotes the Banach space of continuous
functions defined on ½�D; 0� equipped with the norm jjxjj½�D;0� :¼ maxi

maxt2½�D;0� jxiðtÞj. We denote the Euclidian norm in Rn by j � j and the essential
supremum norm for essentially bounded functions u in R+ by jjujj1: u 2 RM is the
external input of the system, which is an essentially bounded measurable function
and f : Cð½�D; 0�;RNÞ � RM ! RN is a nonlinear and locally Lipschitz continuous
functional to guarantee that the system (1) has a unique solution xðtÞ for every
initial condition x0 ¼ n for any n 2 Cð½�D; 0�;RNÞ. An interconnected system is
described by RFDEs of the form
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_xiðt ¼ fiðxt
1; . . .; xt

n; uiðtÞÞ; ð3Þ

i ¼ 1; . . .; n; where xt
i 2 Cð½�D; 0�;RNiÞ, ui 2 RMi and fi : Cð½�D; 0�;RNÞ�

RMi ! RNi . Defining N :¼
Pn

i¼1 Ni; m :¼
Pn

i¼1 Mi; x ¼ ðxT
1 ; . . .; xT

n Þ
T ; u :¼

ðuT
1 ; . . .; uT

n Þ
T and f :¼ ðf T

1 ; . . .; f T
n Þ

T ; (3) can be written in the form (2).
We define local input-to-state stability (LISS) for each subsystem of (3). For

system (2), the definition of LISS can be found in Dashkovskiy et al. (2010a). The
used classes of functions can also be found in Dashkovskiy et al. (2010a).

Definition 1 The ith subsystem of (3) is called LISS, if there exist constants
qi; qi

j; q
u
i [ 0; cij; ci 2 K1 and bi 2 K L, such that for all initial functions

jjxijj �D;0½ � � qi; jjxjjj �D;1½ Þ � qi
j; j 6¼ i and all inputs jjuijj1 � qu

i it holds

jxiðtÞj � max bi jjnijj �D;0½ �; t
� �

;max
j6¼i

cij jjxjjj �D;1½ Þ

� �
; ci jjuijj1
� �

� �

ð4Þ

8t 2 Rþ. cij and ci are called (nonlinear) gains. Note that, if qi; q
i
j; q

u
i ¼ 1 then

the ith subsystem is ISS.
LISS and ISS, respectively, mean that the norm of the trajectories of each

subsystem is bounded. Furthermore, we define the gain matrix
C :¼ ðcijÞ; i; j ¼ 1; . . .; n; cii ¼ 0, which defines a map C : Rn

þ ! Rn
þ by

CðsÞ :¼ max
j

c1jðsjÞ; . . .;max
j

cnjðsjÞ
� 	T

; s 2 Rn
þ: ð5Þ

To check, if the whole network has the ISS property a small gain condition is
needed, which is of the form

CðsÞls; 8s 2 R
n
þnf0g: ð6Þ

Notation l means that there is at least one component i 2 f1; . . .; ng such that
CðsÞi \ si: A local version of the small gain condition (LSGC) can be found in
Dashkovskiy and Rüffer (2010b). A useful tool to verify LISS for time-delay
systems are Lyapunov-Razumikhin functions (LRF) or Lyapunov–Krasovskii
functionals (LKF), see Teel (1998) and Dashkovskiy and Naujok (2010c). In this
paper, we use LRF, but the analysis considering LKF is similar. For systems of the
form (2) one can find the definition of LRF for example in Teel (1998) and for
systems of the form (3) LRFs are defined in Dashkovskiy and Naujok (2010c).
With these definitions we quote the following:

Theorem 1 Consider the interconnected system (3). Assume that each subsystem
has an LISS-LRF Vi, i ¼ 1; . . .; n. If the corresponding gain-matrix C satisfies the
LSGC, then the whole system of the form (2) is LISS.
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The proof can be found in Dashkovskiy and Naujok (2010c) with corresponding
changes according to the LISS property. This Theorem completes the mathe-
matical part of the stability analysis and the identification of the stability region of
the network, which is the set of parameter constellations guaranteeing LISS: One
has to find a LISS-LRF for each subsystem of (3) and to check, if the LSGC is
satisfied. From these conditions the stability region will be identified in a first step.
From Theorem 1 we know that the whole network possesses the LISS property.

In a second step the identified stability region will be refined using DES. By
LRFs and the LSGC, we obtain a rough estimation of the stability region. The DES
can investigate the system and its behavior in a more detailed way. The drawback
of the identification of the stability region based only of the DES approach is that
one has to simulate all possible combinations of free systems variables. By a linear
growth of the number of subsystems and the variables this leads to an exponential
growth of time needed for the simulation runs such that a determination of the
stability region in an acceptable time is not possible.

The advantage of the presented approach in this paper is that the identification
of the stability region using the mathematical approach is possible in a short time,
where only few parameter constellations are left for investigation in view of
stability. This can be performed by the DES and the stability region of networks
can be identified with less time consumption in total in contrast to an approach
only based on simulation runs. An illustration of the scheme can be found in
Scholz-Reiter et al. (2011a).

Stability Evaluation

In this section, we determine the stability region of the scenario, introduced in
section Modeling from a mathematical point of view and refine it using the DES.

Determining Stability Regions

We choose ViðxiÞ ¼ xi; i ¼ 1; . . .; 6 as the LRF candidates for the subsystems,
define the Lyapunov gains for the first subsystem by

vuðuðtÞÞ :¼� ln 1� uðtÞðjjujj1 þ 0:1 � a6Þ
jjujj1ð1� euÞa1

� 	

;1[ eu [0;

v61ðjjVd
6 ðx6ÞjjÞ :¼� ln 1� jjujj1 þ 0:1 � a6

ð1� e61Þa1
ð1� expð�jjVd

6 ðx6ÞjjÞÞ
� 	

;1 [ e61 [ 0:

where jjVd
i ðxiðtÞÞjj :¼ maxs2½t�D;t� jVðxðsÞÞj. The gains of the other subsystems are

chosen accordingly and by similar calculations as in (Dashkovskiy and Naujok
2010c), we can show that ViðxiÞ are the LRFs of the subsystems. All subsystems
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are LISS and the gain-matrix consisting of vij satisfies the small-gain condition.
All the calculations are skipped, because of the limited space.

To guarantee that the Lyapunov gains are well-defined, we get conditions for ai:
a1 [ jjujj1 þ 0:1a6; a2 [ a1; a3 [ a1; a4 [ a2 þ a3; a5 [ a2 þ a3; a6 [ a5 þ a4

from which we get that subsystem 1 is LISS with qu
1 :¼ a1 � a6 [ jjujj1. Note that

these conditions are derived only for the particular scenario. For other scenarios,
one may get other stability conditions. Subsystems 2–5 are ISS. If these conditions
are satisfied for any input u(t), we get by Theorem 1 that the whole system is LISS,
i.e., the WIP of the whole system is bounded. Note that the choice of the input
u(t) can be arbitrary. The higher jjujj1 is, the higher the maximal production rates
are needed to guarantee the fulfillment of the conditions for ai and to guarantee
stability.

Refining Stability Regions by Using a DES Model

The abort criterion defines unstable states of the network as follows: a simulation
run is considered to be unstable whenever the WIP starts to grow persistently in a
predefined time interval about 10 % (Scholz-Reiter et al. 2011a). On the basis of
this abort criterion, an approach is proposed which reduces the maximal produc-
tion rate of all plants in different simulation runs in steps of 1 % until the abort
criterion is satisfied. The reduced maximal production rates are the results of the
refinement. Due to the autonomous decision making on the network level the
quantities shipped between the locations may vary. A static approach, which
reduces the production rates of all plants uniformly seem not to be suitable. Thus,
the approach used in this paper extends the static approach presented above. The
new refinement procedure has to take into account that the shipment between
plants is related to the production rates of preceding plants. Thus, the refinement
procedure varies the maximal production rate of each plant separately.

In order to provide a systematic refinement of the production rates, an approach
based on an algorithmic scheme is proposed: The refinement algorithm aims at
finding the smallest maximal production rates for all plants guaranteeing stability.
In the beginning the algorithm and its parameters are initialized. It starts with an
arbitrarily network configuration, which is considered to be stable. The algorithm
consists of two iterative loops. The inner iteration reduces stepwise the maximal
production rates of the plants at one network stage S and starts the simulation. This
iteration will be repeated until the abort criterion is satisfied. After this, the counter
S is set to the next network stage and the inner loop will be repeated again, until
the counter S equals the number of the last production stage. In this case the
counter of the second iteration i is increased and the counter S is set again to the
first network stage. The second outer iteration causes the repetition of the inner
iteration until a pre-defined amount of iteration steps are reached.
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Results of the Stability Analysis

We set sij ¼ 1. The results of the analysis, i.e., the identification of stability
regions, are the same for other values of sij. Figure 2 shows the results of the
mathematical stability analysis for the production plant 1 against the arrival rate
amplitude variation AV. The figures for the other plants are similar. Within the
mathematically identified stability region, stability of the network can be guar-
anteed. However, below the border of this region stable systems behavior neither
can be guaranteed nor negated. In this area, the stability of the network is
investigated by simulations. For the refinement of the stability region the algorithm
described above is applied, where the calculated bounds of the stability region are
the initial values. The simulated stability region of Fig. 2 is the result of the
refinement. The simulation model has stable behavior above the simulative derived
stability border. Below this border, unstable behavior was observed.

Comparing the results of the mathematically determined and the refined sta-
bility regions, it can be noticed that gap between the mathematical and the sim-
ulated results grows with increasing AV. For AV = 60, the difference between the
simulated and the calculated bounds of stability is 67 %. This can be explained by
the usage of the worst case within the mathematical stability property ISS, namely
the supremum norm. In particular, for oscillating inputs, like in the case at hand
the maximal value is used to derive stability parameters. By increasing AV this
leads to bigger mathematical bounds of stability. Figure 3 illustrates the results of
the simulation based refinement more detailed. It depicts the WIP against time of
all plants for a simulation run with AV = 4. The left column of Fig. 3 shows the
results for the stable situation (a1 = 10.4, a2 = 5.41, a3 = 5.41, a4 = 5.2,

Fig. 2 Stability region of plant 1 for increasing AV
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a5 = 5.2, a6 = 12.13). By contrast the right column shows the results of an
unstable situation (a2 = 4.98 and a3 = 4.98). The results of the right column are
determined by reducing the maximal production rates of network stage by 1 %.

In the unstable situation, the maximal production rate of plant 2 and plant 3 is
not sufficient to process the incoming material. The WIP of this plant starts to grow
consequently and the network is considered to be unstable. This example shows
that the mathematically determined stability region can be refined to a sharp and
precise bound of stability. Note that the oscillating behavior is caused by the
presence of time delays.

Summarizing these results it shows the symbiotic character of the dual
approach combining mathematical stability analysis and simulation. The simula-
tion of the model leads to sharp and accurate stability borders. However, without a
properly chosen start configuration a time intensive trial and error approach is
necessary. Here the mathematical theory helps to find parameter constellations
which guarantee the stability of the network. These results are used as start
parameters in the simulation model. This reduces the range of possible parameters
to test in the simulation approach. Accordingly, the presented stability analysis
scheme can be performed more efficient compared to a trial and error approach.

Fig. 3 Stable and unstable situation for AV = 4
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Summary and Outlook

This paper presented an approach for the stability analysis of autonomously
controlled production networks with transportations. Tools from mathematical
stability theory were combined with the simulation of dynamic systems, which has
the advantage of less time consumption in contrast to a pure simulation approach
to identify stability regions. The approach has been applied to an exemplarily
autonomously controlled production network in order to identify parameter con-
stellation which guarantee the stability of the entire network.

Future research will focus on applying this combined approach to more com-
plex scenarios with different autonomous control methods. The presented approach
can be used for the identification of regions of effective or optimal behavior of the
network in view of economic or logistic goals.
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