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Abstract Both metabolic and manufacturing systems face fluctuating environ-
mental influences and thus share the common challenge to maintain a high level of
efficiency for a variety of different conditions. Therefore, transferring methods
used for analyzing one of the systems can lead to gaining new insights in the other.
Following-up on previous findings on analogies in metabolic and manufacturing
systems, our approach now is to analyze and compare complex network measures
such as centrality or flow activity in both systems to identify quantified relations.
The results show that both systems also display distinct statistical differences in
addition to their various structural similarities.

Introduction

The metabolism of a cell and the material flow network of a manufacturing system
are both faced with highly variable environmental influences, such as fluctuating
input factors or disturbances within the system. Thus, they share comparable
challenges: they have to efficiently and sustainably cope with uncertain and
varying system conditions while also displaying a high performance under normal
circumstances. Therefore, exploring parallels between metabolic and manufac-
turing systems seems promising, as analysis or control methods that are applicable
in one of the two systems can be suitable for the other one as well.

Some analogies of metabolic and manufacturing systems have already been
described in the past, such as parallels between certain objects in the systems (e.g.,
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enzymes in metabolism and machines in manufacturing) (Tharumarajah et al. 1998)
or the process of evolutionary optimization in both systems (Armbruster et al. 2005).
In a previous approach, we have enhanced those ideas by pointing out further sim-
ilarities, such as in network topology, system dynamics and flow control (Becker
et al. 2011). Although the analogies between the two systems seem obvious,
approaches so far have stayed on a rather descriptive level, and no quantifiable
relation in system behavior of metabolic and manufacturing systems has been
revealed yet.

Therefore, in this paper we seek to give a quantitative statement on parallels
between metabolic and manufacturing systems by applying and comparing com-
plex network measures to a dataset of a metabolic and a manufacturing network.
This allows us, on the one hand, to verify the validity of the existing qualitative
analogies between the two system types. On the other hand, this analysis can help
finding improved methods for the analysis of networks in manufacturing systems.

The paper is structured as follows. The second section will thus give a
description of the analogies between metabolic and manufacturing systems as yet
proposed. In the third section, different complex network measures and their
application in metabolic and manufacturing systems will be presented. The fourth
section illustrates and investigates the results of our comparison of complex net-
work measures in metabolic and manufacturing systems. A discussion and con-
clusion is then given in the fifth section.

Analogies in Metabolic and Manufacturing Systems

Metabolic and manufacturing systems share obvious commonalities regarding
their structure and their functions. Metabolism can be seen as a system dealing
with transportation, decomposition, and production of compounds. Helbing et al.
(2009) claim that logistics as the organization, coordination, and optimization of
material flows is an omnipresent characteristic of biological systems. This simi-
larity has often been the trigger for the development of bio-inspired approaches in
logistics and manufacturing. In logistics, methods for transport network design
using fungal networks (Bebber et al. 2007; Tero et al. 2010) or optimization
methods for logistics processes such as vehicle routing based on ant algorithms
(Bell and McMullen 2004 ) have been proposed. In spite of the high number of
bio-inspired approaches in logistics, there have been few investigations so far
which attempt to unravel the fundamental mechanisms that enable manufacturing
systems to benefit from biological structures. First works point out the structural
similarities between biological and manufacturing systems and their components
(e.g., cells and production units) (Tharumarajah et al. 1998) as well as similarities
in control between the two systems (Ueda et al. 1997).

Our previous work includes a qualitative synopsis of matching elements
between metabolic and manufacturing systems on the levels of network topology,
network elements, flow organization, and system dynamics (Becker et al. 2011).
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The network topology of material flow networks in manufacturing systems can be
modeled by a directed graph, which consists of network elements, in particular of
nodes representing machines or assembly stations and (weighted) links repre-
senting the corresponding material flow between the machines. Similarly,
metabolism as a complete set of biochemical reactions within an organism (e.g., a
cell) can be seen as a sequence of transformations of substrates into products. The
interactions between substrates, reactions, and products can then represented as a
network. The substrates and products correspond to the raw material and finished
products in a manufacturing system. Most reactions in a metabolism are enabled
through the catalytic activity of enzymes, which correspond to machines in
manufacturing.

Flow control in both network types depends on the structure and plasticity of
the network. Although the control mechanisms themselves are rather different,
there are similar layers of control: on the one hand, there are global ‘strategies’,
represented by a production plan in manufacturing systems and by external signals
that control metabolic functions. On the other hand, there are local feedback
mechanisms, e.g., dispatching rules in manufacturing and concentration-triggered
suppression or stimulation of reactions.

The system dynamics layer depicts the actual routing functions within a material
flow or metabolic network. This routing happens at each node in the system and
determines the subsequent path of the flow elements through the network. In
manufacturing systems, the system dynamics are influenced by lot sizes, setup
times, and technological restrictions. Metabolic structures are more complex, as
metabolic regulation is controlled by gene regulation, covalent enzyme modifi-
cations, and regulation of the enzyme through non-covalent binding with other
molecules.

Complex Network Theory and Measures

Research on complex systems using approaches from graph theory or statistical
mechanics (Albert and Barabási 2002) is a well-established scientific field. Dif-
ferent types of networks, such as random graphs (Erdös and Renyi 1959), small-
world (Watts and Strogatz 1998), or scale-free networks (Barabási and
Albert 1999) have been identified and analyzed. Therefore, a large variety of
network measures regarding topology and structure of networks (Costa et al. 2007;
Ziv et al. 2005) has been defined.

As a considerable number of real world networks, such as social or biological
networks, implicate the characteristics of complex systems, a wide range of sci-
entific disciplines focus on the application of findings from complex network
theory to real networks in order to understand and predict system behavior. So far,
many different system types, such as communication (Albert et al. 1999), bio-
logical (Barabási and Oltvai 2004), or social networks (Newman and Park 2003),
have been analyzed using complex network measures.
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The study of metabolic networks from a graph-theoretical point of view has
been a search for specific characteristics that can be attributed to principles of
evolution. In this context, degree distribution (Jeong et al. 2000), modularity
(Hartwell et al. 1999), hierarchy (Ravasz et al. 2002), and architectural robustness
(Giaever et al. 2002; Papin and Palsson 2004) have been investigated and a very
characteristic non-randomness of metabolic systems has been established. Despite
the success of topological analyses the true features of metabolic networks are a
matter of ongoing debate (Montañez et al. 2010), and a connection to evolutionary
design principles is difficult (Papp et al. 2009).

In manufacturing, complexity poses an increasing challenge: manufacturing
systems tend to become larger (i.e., increase the amount of elements) and highly
connected. Therefore research in manufacturing focuses on finding ways to
describe, measure, and manage complexity, in order to competitively deal with it
(Papakostas et al. 2009; Vrabič and Butala 2011). First applications of complexity
measures, such as degree distributions or clustering coefficients, exist for material
flow networks in logistics (Hammel et al. 2008; Peters et al. 2008). Thus, complex
networks measures seem as an ideal common analysis method for the comparison
of metabolic and manufacturing systems on a structural level.

Comparison of Network Measures in Metabolic
and Manufacturing Systems

In this section, we analyze and compare a metabolic and a manufacturing network
using different complex network measures. Here, we use a network representation
of all reactions occurring in Escherichia coli K-12 metabolism. Currency
metabolites (energy carrier molecules) were manually removed to reveal the
underlying disparate structure (Ma and Zeng 2003). The resulting bipartite net-
work (bipartite, as it contains both metabolite and reaction nodes) was then pro-
jected onto the reactions nodes. The resulting network contains only reactions
nodes and they are linked if they share a common metabolite. The metabolic fluxes
were computed using a flux balance approach (Varma and Palsson 1994) on the
latest model E. coli metabolism (Feist et al. 2007).

The manufacturing network is based on a job shop production system of a tool
manufacturer. The product range comprises around 5,000 different variants and the
system consists of around 300 workstations. To depict this system as a graph, the
nodes represent the workstations, whereas the links represent the material flow
between the work stations. The amount of material flow was derived from a data
set of feedback data from one year of production in the job shop.

Firstly, we compare the in-degree distributions in both networks. The degree of
a node indicates its connectivity within the network. The out-degree and the total
degree of the nodes are similarly distributed for both networks, so we only show
the in-degree, which is most relevant for the dynamic data. Figure 1 illustrates the
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in-degree distribution for the metabolic and the manufacturing network. The
distributions clearly show that both networks are characterized by a small number
of nodes with high degrees, whereas the majority of nodes have only a few links
connected to them. This points to the existence of ‘‘hub’’ nodes in the network
having a central task or a gateway function.

The second measure regarding network topology is the betweenness centrality
distribution. The betweenness centrality Bk, of a node k, is defined as the sum over the
number of shortest paths between all pairs of nodes i and j that pass through node
k divided by the total number of shortest paths between i and j (Freeman 1977). It
similarly quantifies the importance of the respective node in the system. Usually,
there is a significant correlation between node degree and betweenness centrality in a
network, which is the case for the networks considered here. As one would expect,
the betweenness centrality values of the metabolic and the manufacturing networks
indicate that there is a limited number of central nodes, while the majority of nodes is
of moderate centrality (see Fig. 2). Therefore, we conclude that, although both
networks originate from two particular different domains, their topology in terms of a
connectivity pattern is to a high extent alike. In order to question this likeness, we
produced random ensembles for both networks with an edge-switch algorithm (Milo
et al. 2002). The deviation from randomness is apparent but cannot be adequately
systematized.

Thirdly, we compare the distribution of active nodes, in order to determine how
the activity of flows is distributed among the nodes in the networks in contrast to
the topological key figures presented above. The metabolic system has been
simulated in a variety of environments. For each node we have counted the number
of environments in which this particular node has been active. As the manufac-
turing system does not operate in different environments, we have alternatively
separated the manufacturing data in periods of time of equal length. These periods
can serve as surrogates for environments, because each period comprises distinct
demand represented by an individual set of production orders. After analyzing

Origin
Metabolism
Production

Fig. 1 In-degree distribution
of the metabolic and the
manufacturing network. The
data was fit with a power-law
using maximum likelihood
estimation. The power-law
coefficient alpha was
determined to be 1.742 with a
95 % confidence interval of
1.644–1.848 for the
production network and 1.891
with an interval of
1.835–1.951 for the
metabolic network
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different period lengths, we decided to use a length of seven days, resulting in
51 complete periods. All alternative period lengths (except extreme values like
one day or 365 days) basically show a similar pattern of distribution. We picked
one week as an appropriate period, because it is able to represent a common, yet
individual set of processing orders in this specific manufacturing company.

Figure 3 illustrates the activity distribution of the metabolic and the manu-
facturing network. The general shapes of the two curves are fairly similar and of
sigmoidal shape. The curve of the metabolic system shows a long plateau of highly
active nodes and a rather long tail of seldom-active nodes, which means that there
are a high number of standard reactions as well as extremely specialized reactions,
whereas only few reactions show intermediate activity. Compared to the metabolic

1

Fig. 2 Betweenness centrality distribution in the metabolic (left) and the manufacturing network
(right). Comparison of the network in black with an ensemble of randomized networks in red
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Fig. 3 Distribution of active
nodes in the metabolic
network (for different media)
and in the manufacturing
network (for different time
intervals)
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system, the manufacturing system seems slightly less specialized. The tail indi-
cates that a considerable amount of machines is not active most of the time,
meaning that a higher amount of nodes is active for the majority of environments
(i.e., for most of the production orders carried out). However, as mentioned above,
the shape of the curve depends to a certain extent on the sampling of environ-
mental conditions and, in the case of the industrial network, on the time
discretization.

The fourth measure to be compared is the mean throughput per node in relation
to its standard deviation, normalized by the mean throughput. We chose a loga-
rithmic scale for analyzing the flows in the networks as we are focusing on smaller
flows and activity (see Fig. 4). For the metabolic system, there is a tendency that
flows have a higher relative variation in general, whereas the variations of the
production system seem to follow a more distinct pattern: the majority of nodes
have a small flux yet a high variation. We assume that there is a focus on the
stability of high fluxes while smaller fluxes show stronger fluctuations.

Finally, we want to analyze the interaction of flow with network topology.
Therefore, Fig. 5 depicts the betweenness centrality of a node depending on the
mean flux. This enables us to check whether there is a relation between the
importance of a node in terms of throughput and its topological position in the
network. Although we saw in the beginning that on a topological level, hub nodes
exist, it now looks as if these hubs are not that clearly visible in terms of flow
intensity. Seemingly, there is no correlation between flux and centrality in the
metabolic network. However, the manufacturing network shows a slight relation
between centrality and flux for higher centrality values.

Origin
Metabolism
Production

Fig. 4 Mean throughput per
node in relation to the
standard deviation
normalized by the mean
throughput in the metabolic
and the manufacturing
network. The distribution of
the fluxes in the production
network follows a tight
power-law (not shown)
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Conclusion and Outlook

In this paper, we have analyzed and compared different network measures for data
from a metabolic and a manufacturing network. Following-up on other approaches
that compare biological and engineered systems on a network level (6), we use
networks as a common language that allows for the comparison of abstract
measures between systems with fundamentally different purpose. We show for the
first time that technical and biological ‘production networks’, in addition to their
many structural similarities also display distinct statistical differences. Strikingly,
the differences identified here concern the dynamics of material flow in these
networks. In particular, the variation of intermediate-sized and very large fluxes is
systematically suppressed (i.e., evolutionarily controlled) in the metabolic net-
work, compared to the manufacturing network. Also, in the manufacturing net-
work the mean flow through a node is coupled to the node’s betweenness
centrality, which is not observed in the metabolic network. We see further
potential in the analysis of such dynamic aspects, yet future approaches will also
have to focus on a larger-scale analysis based on datasets of several metabolic and
manufacturing networks.
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