
Interactive Video Surveillance
for Perimeter Control

Javier Ortells, Henry Anaya-Sánchez, Raúl Martı́n-Félez,
and Ramón A. Mollineda

Abstract. This chapter presents an interactive video-surveillance solution for
assisting human operators in the control of movements across a multi-region sce-
nario (perimeter control). It has been conceived as a multi-camera system to detect
anomalous trajectory events, such as entering or leaving a region or changing the
walking speed, by means of a dynamic collection of decision rules. They relate
spatio-temporal patterns and event categories (anomalous, unknown, normal), and
are used to assess and classify trajectory events. The interactive paradigm has been
adopted as a natural framework to progressively learn and update rules, particularly
at early stages of the system operation. The approach of continuously improving
system knowledge from user feedback conducts to adaptive, reliable and increas-
ingly automatic systems in a relatively short period of time.

1 Introduction

Video surveillance has become part of our everyday lives. The interest on remote
visual systems for security purposes has grown significantly in the last years, partic-
ularly for those public spaces where a great number of people pass. Some examples
are supermarkets, airports, underground stations, stadiums, shopping centers, etc.
Traditionally, these systems have required a huge amount of human supervision both
in real-time and in a posterior video analysis to state the truth. However, with the
current proliferation of cameras, this exhaustive search has turned into unfeasible.

A major breakthrough of video-surveillance systems is coming about with the de-
velopment of video analytic techniques. They can be roughly defined as autonomous
understanding of events occurring in a scene monitored by multiple video cam-
eras [16]. However, most present-day video-surveillance systems are far from being

Javier Ortells · Henry Anaya-Sánchez · Raúl Martı́n-Félez · Ramón A. Mollineda
Institute of New Imaging Technologies, Universitat Jaume I of Castelló
Av. Sos Baynat s/n, 12071, Castelló de la Plana, Spain
e-mail: {jortells,henry.anaya,martinr,mollined}@uji.es

A.D. Sappa and J. Vitrià: Multimodal Interact. in Image & Video Appl., ISRL 48, pp. 153–167.
DOI: 10.1007/978-3-642-35932-3_9 c© Springer-Verlag Berlin Heidelberg 2013



154 J. Ortells et al.

fully autonomous, particularly when video analytics should deal with complex and
crowded scenes. Furthermore, autonomy is not always an end purpose for some
task solutions, which have an intrinsic interactive nature. While some of them can
be substantially benefited from human feedback, such as speech transcription and
machine translation [18], others require the human involvement in a critical decision
making process, for example, in computer-assisted medical image diagnosis.

The interactive paradigm in computer vision applications allows users to pro-
gressively enhance priors and constraints by adding their knowledge within an op-
erational loop of the system. This approach has several benefits on learning. Firstly,
it exploits human know-how in a natural way (through feedback) for model refine-
ment. Secondly, it leads to solutions that better fit the user demands. Finally, it favors
a dynamic adjustment of models when the user needs or the context changes.

A typical video-surveillance application is an intelligent system designed for mon-
itoring one or more regions of a scene, in order to detect and track particular objects or
situations according to predefined safety rules. When this kind of system is deployed
in simple scenarios, for example, the garden of a house, it is easy to customize the
behavior of the system through a few basic and steady rules [8]. However, in more
complex and changing environments such as large commercial areas, big factories
or public squares, it could be unrealistic to try to foretell every particular situation
that requires a specific management. Thus, a prior and hard-to-change collection of
safety rules does not appear to be the most suitable strategy. Under such shifting con-
ditions, an interactive framework for supporting the on-line management of unseen
events can be a natural alternative to keep a set of meaningful rules updated.

This manuscript proposes an interactive solution to the general problem pre-
viously described. A video-surveillance application for interactively controlling
movements across a multi-region scenario (perimeter control) is here presented. It is
a two-camera prototype to detect anomalous actions on a region model defined in a
real-world scene. The analysis of trajectory data is performed by using a collection
of dynamic spatio-temporal rules. A suitable graphical user interface allows on-the-
fly rule management via emerging windows when a detected event is unknown (rule
definition) or when it is classified as anomalous (alarm and event refinement). This
feedback mechanism has been adopted for progressively building and keeping up-
dated an effective series of rules.

This chapter is organized as follows. Section 2 summarizes the related state-
of-the-art works. The interactive learning approach is explained in Sect. 3. A de-
scription of the implemented system is given in Sect. 4, including scope, system
architecture, main software modules and resources needed. Finally, Sect. 5 gathers
the conclusions of the chapter.

2 Related Work

One of the main applied research areas of video analytic methods focuses on vi-
sual event detection, tracking and classification, looking for anomalies in order
to alert human operators. A broad range of video-surveillance applications can be



Interactive Video Surveillance for Perimeter Control 155

envisioned from this general operational context, such as access and perimeter con-
trol, human identification at a distance, detection of anomalous behaviors of peo-
ple or vehicles, etc. An inspiring survey about methods and applications for video
surveillance of people and vehicle is given in [10]. It presents a general framework
of visual surveillance in dynamic scenes from multiple cameras, and discusses the
principles and methods involved in the main parts of the framework. That paper
also sheds light upon a number of key research problems and directions, providing
a consistent basis for the forthcoming developments. However, although interactive
functions are suggested as a key direction for surveillance applications, no discus-
sion is provided about the importance or convenience of using human feedback for
managing critical decisions with higher confidence in some tasks.

A complementary study of the state-of-the-art of visual surveillance systems was
provided afterwards in [17]. This work focuses in distributed automated surveillance
systems, and it reviews a number of real commercial applications. One of them, DE-
TER [15], consists of two main modules, one for detection, recognition and tracking
of objects, and a second one for threat assessment and alarm management. The lack
of a feedback loop in the alarm module to improve its performance is highlighted
in [17]. In spite of this observation, no other claim toward human interaction in
surveillance systems appears in this survey.

Focusing on specific surveillance solutions, it is compulsory to mention two early
prominent proposals [5, 9]. As a part of the Video Surveillance and Monitoring
(VSAM) project (1997-1999), an ambitious initiative of the DARPA, the Robotics
Institute at Carnegie Mellon University (CMU) and the Sarnoff Corporation devel-
oped a system for autonomous video surveillance and monitoring [5]. This system
included robust methods for detecting and tracking moving objects by multiple co-
operative video sensors, and for classifying these objects into semantic categories
such as human, human group, car and truck. Besides, people activity was also clas-
sified as walking or running. The system GUI had a module for managing Regions
Of Interest (ROIs), that allowed the interactive creation of a polygonal ROI from
a collection of boundary points. The user could also link object types (e.g. human,
vehicles) to ROIs, providing the system with a mechanism for triggering events like
“enter”, “pass through”, “stop in”, etc. The detected activities from all sensors were
transmitted to a central unit, where they were displayed and analyzed.

In [9], a real-time visual surveillance system (W4) for detecting and tracking
people in an outdoor environment is described. From gray-scale and infrared video
imagery, W4 is able to locate and track people and their parts (head, hands, feet,
torso) using models of people’s appearance. W4 can also detect and segment objects
that are being carried by people, so interactions among people and objects can be
described, such as depositing, removing and exchanging objects. However, despite
of the relevance of the above two cited papers, none of them documents any human
feedback function for model improvement.

A methodological work is presented in [7], where a number of critical issues re-
lated to video-surveillance requirements are addressed. For instance, it describes sev-
eral low-level image and video processing techniques such as change detection for
fixed and mobile cameras, background updating, multi-camera view registration, etc.



156 J. Ortells et al.

This paper provides valuable guidelines and resources to new researchers in video
surveillance, to design low-level vision modules. High-level video analysis functions
for scene understanding are beyond the scope of this paper.

Recent progress in embedded sensor technology is encouraging the development
of distributed sensor networks. In particular, smart cameras comprise sensing, pro-
cessing and communication functions, all built in within the same device. Two
papers about distributed networks of embedded smart cameras are [3, 4]. In [3],
a distributed network of smart cameras for surveillance purposes is introduced,
along with the low-level video processing algorithms developed for particular nodes.
Some of the low-level routines included are segmentation, labeling, tracking and
classification of detected objects. On the other hand, in [4], a traffic surveillance
application is proposed. A scalable smart camera hardware architecture is designed
as an open technology to develop distributed intelligent video-surveillance systems.
Each smart camera is assigned to a particular region, and some motion vectors are
defined to represent the spatial relationship among the cameras. These vectors al-
low to check whether an object is moving in the correct direction. A multi-camera
object-tracking application is implemented, where a tracking agent migrates from
one camera to another in no more than one second. This parameter imposes condi-
tions on both maximum vehicle speed and minimum camera distance.

In the literature reviewed, taking advantage of the user’s feedback for a contin-
uous improvement of the models is not a target. We believe that this practice can
help to build adaptive, reliable and efficient systems in a short period of time, which
is especially useful when critical decisions must be made. For example, in the case
of distributed smart camera networks, the inter-node spatial relationships could be
modeled by an interactive approach, in which the network would propose spatial
hypotheses to a human operator for their refinement and validation. These validated
hypotheses (knowledge) could help to infer new and more accurate hypotheses, and
so on. This is the cornerstone of interactive learning: each piece of human feed-
back information must contribute to increase the system robustness and, usually, to
decrease the human-machine interaction effort.

3 Interactive Learning Strategy

As discussed previously, the singularity of the proposed visual surveillance solu-
tion is the interactive strategy to learn and update safety rules as context conditions
change. Object trajectories are monitored, and those events relevant to the system
end-purpose are detected and classified by a collection of rules, which can be inter-
actively defined or modified either on-line or off-line.

From a conceptual perspective, the implemented prototype embodies the follow-
ing two main interactive learning requirements:

• System knowledge increase, by allowing on-the-fly creation of new rules to
model unseen trajectory events.

• System knowledge adapting, by allowing on-the-fly updating of existing rules,
when they are triggered, to model new user needs or a changing environment.



Interactive Video Surveillance for Perimeter Control 157

A simple rule-based approach has been implemented to manage these requirements.
It is able to encapsulate human knowledge through a collection of “if then” declar-
ative statements, which is an easy way for human beings to understand the know-
how description. Considering our goals, this approach has two main strengths: 1)
it makes quick decisions in a repeatable form (deterministic procedure), and 2) it
admits an agile adaptation when a new piece of knowledge is added or an existing
one is updated. These useful qualities are due to the absence of hard constraints on
the order of evaluating the rules. Generally, a conflict-resolution policy is needed
to decide which rule to fire if some of them match with a given problem state. The
simplest approach is possibly to define a rule order for choosing the first triggered
rule. Thus, when a new rule is added, an ordered insertion is enough to adapt the
collection of rules for dealing with an extended problem scope.

An alternative would have been a rule-based decision tree, a structure that can be
induced from a set of rules [2]. Its main merit is that it can potentially organize rules
in a concise and efficient way to take the best decision readily. However, when the
collection of rules changes, the decision tree must be completely re-built in order to
keep it consistent. The complexity of this process depends on the number of rules,
the attributes involved in rule premises, the intersection level between rules, and the
heuristic criteria used to create the tree. In the case of an interactive solution that
starts with no knowledge of the task to be solved, which is also expected to change
frequently, a hard-to-adapt model is not certainly the most suitable choice.

The video-surveillance system here introduced should monitor, describe and clas-
sify (as anomalous, unseen or normal) the trajectory points of moving object across
a scene view. Given a trajectory point description, a rule-based reasoning process
tests the condition of each decision rule against the trajectory point data (known
fact), regarding a predetermined evaluation order. This process searches for a first
matching rule to produce an output. On success, the trajectory event is classified
as anomalous or normal, according to the action associated to the triggered rule.
Otherwise (when no rule is applicable), it is considered as unknown.

The interactive strategy adopted allows a progressive learning and updating of
decision rules, particularly at early stages of the system operation. This approach
leads to the following knowledge life cycle:

Starting Point: The system starts with no knowledge about the surveillance task
to be solved. That is, there are no rules at the beginning, so every trajectory event
is initially classified as unseen.

Learning a New Rule: When an unseen trajectory event is detected, an emerging
GUI asks the user to infer and define a decision rule from this particular event1.
The new rule is then inserted in an orderly manner into the rule set, in such a way
that rules which involve more specific conditions are prioritized. To this end, an
algorithm computes the generality/specificity relation between the new rule and
each existing rule, using two criteria (in the order they appear): 1) the higher the
number of attributes in a rule condition is, the more specific the rule is, and 2)

1 It is also possible to create rules using the standard GUI, out of the main system operation
loop.



158 J. Ortells et al.

when the conditions of two rules are expressed in terms of the same attributes,
an analysis about their intersection is performed. Three possible results are con-
sidered from this analysis: a) if there is no intersection between their attribute
values, both rules are considered as not related; b) if the attribute values that sat-
isfy one rule are subsets of the corresponding attribute values of the other rule,
the former is considered more specific than the latter (the first one can be deemed
as an exception of the second one); and c) when other types of intersections are
found out, the system warns the user about a possible contradiction between both
rules, and no insertion is carried out. Note that the binary relation defined, “more
specific than”, is antisymmetric and transitive, what avoids critical ambiguities in
deciding where to insert. When no generality/specificity relation exists between
two rules, their order of appearance determines the rule order.

Updating a Rule: When an alarm rule is triggered, a related emerging GUI allows
the user to update the rule to fit a new requirement of the task. For example, the
user might modify its parameters or deactive the rule, i.e. to transform the alarm
into a normality rule.

This procedure of continuously improving system knowledge from user feedback
should conduct to an adaptive, reliable and increasingly automatic solution.

4 Prototype Description

In this section, we provide details about the functional scope, system architecture
and the main application modules of the proposed video-surveillance solution.

4.1 Functional Scope

The implemented prototype has been devised as a multi-camera system for perime-
ter control over a region map defined for a real-world scene. A multi-camera object
tracking process allows trajectory monitoring and assessment through a collection
of rules, which can be interactively defined either on-line or off-line.

Apart from the interactive learning capacities (see Sect. 3), the prototype provides
a number of user functions for camera configuration, scene region definition, region
projection over distinct scene views, rule definition, alarm management, real-time
display of the monitored scene views, video recording for off-line analysis, among
others. These end-user functions are supported by some other operations such as
multi-camera acquisition, view-dependent object detection, view-dependent object
tracking, object matching between different camera views, trajectory-based event
detection, rule-based event classification and real-time information display.

Next sections provide details of this operational context.

4.2 System Architecture

Figure 1 illustrates the high-level system architecture. Five main modules can be
identified in the diagram:



Interactive Video Surveillance for Perimeter Control 159

Fig. 1 High-level architecture of the video-surveillance prototype for perimeter control

Multi-camera Video Acquisition: It consists of multi-port firewire cards where
one or more video cameras are plugged into, low-level software drivers to gain
access to the cards, and high-level software components to make easier the inter-
action between the system and the cameras. The output of this module is a stream
of synchronized raw frames for each camera, which feeds the tracking module.

Multi-camera Tracking: The inputs to this module are the streams of synchro-
nized raw frames coming from different cameras and provided by the Video ac-
quisition module. Object tracking is separately performed on each stream by a
particular tracking thread. Then, a collection of synchronized tracking results
(blobs) from all the tracking threads is given to the matching algorithm. It as-
sesses all possible correspondences between blobs tracked on different cam-
eras, looking for multiple views of the same object/subject. When two blobs
are matched, they are tagged with a same code, thus uniquely identifying the
corresponding real-world object/subject in the system. Figure 2 illustrates this
process. The two blobs of a same subject are linked by a common colour of their
bounding box edges, and also by an identical numeric label located on the upper
edge of the bounding box. The output of this module is a collection of matched
blobs, which model the 1 : n relationships between scene real objects and their
camera projections.



160 J. Ortells et al.

Fig. 2 An example of two-camera object tracking. The two silhouettes of a same subject
share a common colour in their bounding box edges and an identical numeric label.

Perimeter Control: The input to this module is trajectory data of tracked objects.
Given a multi-region model defined on a real-world scene and projected onto the
different camera views (view region maps), a collection of rules classify trajec-
tory points obtained from tracking objects across the regions. The use of multiple
cameras covering different viewpoints of a scene should lead to a more accurate
detection of anomalous movements.

GUI: In human-machine interaction, the graphical user interface (GUI) is a crucial
part of the system. On the one hand, the GUI shows a real-time view of each cam-
era with the bounding boxes of the detected objects overprinted on them. On the
other hand, it allows the user to provide feedback to the system for performance
improvement, what mostly occurs as a part of a work session. An intuitive, sim-
ple and easy-to-use GUI has been designed and implemented. In Sect. 4.2.3, the
most important functions provided by the GUI are described.

Main Module: This module coordinates all data flows across the system. As more
than one video stream must be concurrently managed, a multi-threaded design is
set to allow a synchronized video acquisition, tracking and analysis. It also keeps
the main data structures updated, including the collection of decision rules (see
Sect. 3) and the estimated trajectory data obtained from blob positions such as
the movement speed, crossed regions, and so on.

In the following subsections, the three most relevant architecture modules to the
end-purpose of the system are described in detail.

4.2.1 Multi-camera Tracking

As stated above, the term multi-camera tracking is used to refer the process of as-
signing a unique label to multiple camera projections of a same real object/subject.
In this paper, this function consists of two main steps: view-dependent foreground
segmentation, and a matching algorithm to find the proper correspondences between
blobs detected on different cameras. These two steps are explained below.



Interactive Video Surveillance for Perimeter Control 161

Foreground Segmentation – In the proposed system, background modeling is com-
bined with post-processing techniques to retrieve the foreground from each video
frame. The background modeling relies on the adaptive approach introduced in [11].
The aim is to make the system robust enough to deal with dynamic changes that can
appear in the scene views (e.g. global illumination changes produced from day-
night transitions or long-term background updates corresponding to events such as
parking a car in front of a building).

In the background model of a scene view, each color pixel i is represented by

three non-stationary Gaussian distributions
{

N(i)
c

(
μ (i)

c (t),σ (i)
c (t)

)}
, c ∈ {R,G,B},

where each distribution models a RGB-component of the pixel at time t. The
methodology for segmenting the foreground proceeds as follows.

Initially, the learning of the background model of the scene view comprises a
sequence of video frames given as training. Then, to retrieve the foreground of an
incoming frame, its pixels are classified into either background or foreground. A
pixel i is classified into the foreground class if at least one of its three measured RGB
values are out of a confidence region of their corresponding Gaussian distributions.
Otherwise, the pixel is considered as background, and its Gaussian representation is
updated using the equations (1) and (2):

μ (i)
c (t + 1) = αμ (i)

c (t)+ (1−α)z(i)c (t) (1)

(
σ (i)

c (t + 1)
)2

= α
(
(σ (i)

c (t))2 +
(

μ (i)
c (t + 1)− μ (i)

c (t)
)2
)
+

+ (1−α)
(

z(i)c (t)− μ (i)
c (t + 1)

)2
(2)

where z(i)c (t) is the observed value for the RGB-component c of pixel i in the frame,
and the parameter α is the adaptation rate (0 < α < 1). Finally, the foreground is
represented by a binary pixel map, according to the classification of the pixels.

Additionally, post-processing techniques are applied on the binary pixel map
since it frequently contains noise due to motion of small background objects or
shadows. This post-process includes morphological operations and shadow filtering.

Matching Algorithm – In this second step, the multi-camera tracking process is
completed by combining the single-camera tracking corresponding to each scene
view with a matching procedure operating on 2D-scene regions.

Broadly, the single-camera tracking is based on both 1) an appearance model for
each individual in the scene view and 2) a blob overlapping criterion to estimate the
regions occupied by a tracked individual through the video stream frames.

In the matching procedure 2D-scene regions are modeled as Gaussian distribu-
tions, each one being parameterized by both a mean vector and a covariance matrix.
That is, a given region is represented by the maximum likelihood estimated Gaus-
sian distribution that describes the locations of its pixels in the view, and the distance
between regions is calculated in terms of the Bhattacharyya distance.



162 J. Ortells et al.

From these settings, the matching procedure is build upon a stochastic model
of pairs of regions that represents the correspondence between 2D-regions in the
different views according to the real-world 3D-region they represent. This corre-
spondence model between regions in the different scene views is represented by a
finite set of of categories C = {C1, . . . ,Ck}; where each category Ci (1 ≤ i ≤ k) is
centered at a pair of 2D-regions 〈ui,vi〉 (in different scene views) with a high likeli-
hood of representing the same real-world region. Each category Ci is also provided
with deviation parameters σi1 and σi2 .

In this way, given a pair of 2D-regions 〈u,v〉 in different views, the matching
procedure estimates a measure of the confidence this pair of regions is generated
from the model C as showed in Eq. 3:

p(〈u,v〉|C) = 1
k

k

∑
i=1

1
σi1σi2

K
(

d(u,ui)

σi1
,

d(v,vi)

σi2

)
(3)

where d represents the distance function between regions and K is the Gaussian of
the Eq. 4:

K (x,y) = e−
1
2 (x

2+y2) (4)

From the estimated value p(〈u,v〉|C), the matching procedure makes a decision on
whether the regions 〈u,v〉 represents the same real-world scene or not by relying
on an empirical threshold. In the system, the set of categories C is learned from a
synchronized training sequence of video frames from the scene views.

4.2.2 Perimeter Control

The aim of the Perimeter control module is to evaluate and classify trajectory events
using a collection of rules. This section describes how this module works based on
two important data structures: the view region map and the rule.

The term view region map is used to refer the 2D projection of a 3D region
model onto a particular camera view. It provides spatial information to the trajectory
evaluation process. Each view region map is coded by a logic matrix whose size
matches the view resolution. Thereby each camera pixel corresponds to a matrix
cell where the identifier of the pixel region is stored. This data structure makes easy
to check which region a pixel belongs to.

On the other hand, a rule can be formally defined as a condition that can be
formulated in terms of one or more of the following context parameters:

Time Range: This parameter can adopt three different formats, depending of the
nature of the time period used:

i If the rule is intended to control events within the same time period every day,
the starting and finishing times are required.



Interactive Video Surveillance for Perimeter Control 163

ii If the rule is intended to control weekly events within a time period between
two week days (e.g. from every Friday at 22:00 h. to next Monday at 6:00 h.),
these two week days and the starting and finishing times must be provided.

iii If the rule is intended to control events within a time period between two cal-
endar days (e.g. from July 31st at 22:00 h. to September 1st at 6:00 h.), these
two calendar days and the starting and finishing times must be provided.

Current Region: It identifies the region where the object is physically located.
Previous Region: This parameter identifies the region, if any, on which the object

was before entering into the current region.
Movement Speed: This parameter sets a maximum speed limit, in such a way that

higher speeds are considered anomalous.

In addition, the rule must be defined/labeled as either normality or alarm, which
will determine the action taken by the system. The fulfillment of a normality rule
does not cause any visible result. On the contrary, when an alarm rule is triggered,
a warning message alerts the operator, who could also interact with the system to
modify the involved rule.

4.2.3 GUI Capabilities

This section provides an overview of the main functional capabilities of the GUI of
the implemented video-surveillance prototype.

Camera Configuration: At the beginning of a work session, the user can choose
which cameras will be used among those plugged into the multi-port firewire
cards. Besides, the user can configure the cameras by choosing values for some
operating parameters such as the resolution and the sampling frequency.

Region Definition and Region Map Outlining: Regions are defined in a real-
world scene, but they are manually drawn (projected) over each camera view.
This user function supports region definition by a meaningful name and a specific
color, and the creation of view region maps. A drawing tool to outline piecewise
linear closed contours on fixed images was implemented. It is used to draw the
view region map on some key video frame with suitable background information
of each camera view. The tool also supports the visual superposition of a region
map on the video frames as a semi-transparent layer when the system is running.

Interactive Event Management:
• Alarm notification. When an alarm rule is fulfilled, a pop-up window is trig-

gered (see Fig. 3). It allows the user to deactivate the rule, i.e. to transform the
alarm into a normality rule, or to modify its parameters.

• On-line rule definition. When a trajectory event is classified as unknown, a
new window emerges (see Fig. 4) describing the current state and allowing
the user to transform it into an alarm or a normality rule by the GUI shown in
Fig. 5. Some rule parameters are filled in with the collected information. It is
also possible to ignore an unknown event when normality and alarm criteria
are not clear (see the Ignore button in Fig. 4). When this decision is made, a
short-term normality rule for a parameterized period of time is automatically



164 J. Ortells et al.

Fig. 3 An alarm rule is satisfied when a subject enters to the grass area

Fig. 4 An example of an unknown state detection that requires user interaction

created. That means, for a limited amount of time, those situations similar
to the one ignored will be considered as normal. When this time ends, the
provisional rule is removed and similar events will be unknown again.

• Off-line rule definition. A surveillance rule can also be defined at any time
from the application menu. Figure 5 illustrates an example of the definition of
a new alarm rule using time, region and speed parameters.

4.3 Hardware and Software Resources

The implemented prototype has been the result of using a number of specific hard-
ware and software resources. This section summarizes the most relevant ones.

Hardware Resources:
• Two firewire ‘B’ AVT Stingray F-080TM cameras. The prototype was also

tested using other AVT cameras such as Guppy F-036TM (Firewire ‘A’).
• A firewire ‘B’ card with two independent buses to connect Stingray cameras.

The firewire ‘A’ cameras were plugged into two other suitable cards.



Interactive Video Surveillance for Perimeter Control 165

Fig. 5 Example of defining a new alarm rule using time, region and speed parameters

• A Dell XPS 730XTM desktop computer to develop and test the prototype. Its
main features are: Intel CoreTM i7 920 (2.67GHz) CPU, nVidia GeForce GTX
285TM GPU, 6GB RAM, Windows 7 ProfessionalTM 64 bits.

Software Resources:
• Microsoft Visual Studio 9TM [12] was used as development environment.
• AVT Universal Package, which is a programming API to easily operate with

AVT (Allied Vision TechnologiesTM [1]) cameras.
• wxWidgets cross-platform GUI library [19], which is a C++ library that sup-

ports the development of graphic interfaces. It also offers useful methods and
data structures for general purpose programming.

• OpenCV library [13] provides some image processing functions that were
used with the video frames.

• CvBlobslib library [6] was used to perform some tracking and perimeter con-
trol tasks. Some pieces of its source code were modified to fit our purposes.

5 Conclusions and Future Work

This work proposes an interactive video-surveillance solution for assisting hu-
man operators in the control of movements on a multi-region scenario (perimeter



166 J. Ortells et al.

control). Trajectory monitoring is performed by a multi-camera tracking algorithm,
while trajectory event assessment is supported by a dynamic collection of spatio-
temporal rules. An interactive approach has been implemented for allowing human
operators to progressively extend, adapt and refine the system knowledge (rules) by
providing feedback within an operational loop of the system. When an anomalous
or an unknown event is detected, suitable emerging user interfaces allow on-the-fly
rule management for defining or updating rules. This kind of interaction leads to
increasingly automatic operating modes, because the more feedback the user pro-
vides, the less future interactions are expected to be demanded by the system and
more reliable decisions can be autonomously made.

Future developments could involve the integration of non-intrusive biometric
functions such as those based on face, gait or even on a combination of them under a
multi-modal biometric system. Other related applications might be re-identification
of people over different cameras do not sharing the same scene, detection of aban-
doned luggage, and so on. Furthermore, due to the system capability of storing tra-
jectory data, other parameters such as the covered path distance, the scene entry and
exit points, and the exposure time can be straightforwardly estimated, which might
be useful for instance in a control access application.

Acknowledgements. The work documented in this paper has been partially funded by the
five-year Multimodal Interaction in Pattern Recognition and Computer Vision (MIPRCV)
research project (2007-2012) with code CSD2007-00018. Other projects that have also con-
tributed to support this work are TIN2009-14205-C04-04 from the Spanish Ministry of In-
novation and Science, P1-1B2009-04 from Fundació Bancaixa, and PREDOC/2008/04 grant
from Universitat Jaume I.

References

1. Allied Vision TechnologiesTM website, http://www.alliedvisiontec.com
2. Abdelhalim, A., Traore, I.: Converting Declarative Rules into Decision Trees. In: Proc.

of the World Congress on Engineering and Computer Science (WCECS), San Francisco,
USA (2009)

3. Benet, G., Sim, J.E., Andreu-Garcia, G., Rosell, J., Sanchez, J.: Embedded low-level
video processing for surveillance purposes. In: Proc. of 3rd Conference on Human Sys-
tem Interactions (HSI), Rzeszow, Poland, pp. 779–786 (2010)

4. Bramberger, M., Doblander, A., Maier, A., Rinner, B.: Distributed embedded smart cam-
eras for surveillance applications. Computer 39(2), 68–75 (2006)

5. Collins, R.T., Lipton, A.J., Kanade, T., Fujiyoshi, H., Duggins, D., Tsin, Y., Tolliver,
D., Enomoto, N., Hasegawa, O., Burt, P., Wixson, L.: A System for Video Surveillance
and Monitoring. Technical report CMU-RI-TR-00-12, Carnegie Mellon University, Pitts-
burgh, and The Sarnoff Corporation, Princeton, NJ (2000)

6. cvBlobslib library website,
http://opencv.willowgarage.com/wiki/cvBlobsLib

7. Foresti, G.L., Micheloni, C., Snidaro, L., Remagnino, P., Ellis, T.: Active video-based
surveillance system: the low-level image and video processing techniques needed for
implementation. Signal Processing Magazine 22(2), 25–37 (2005)

http://www.alliedvisiontec.com
http://opencv.willowgarage.com/wiki/cvBlobsLib


Interactive Video Surveillance for Perimeter Control 167

8. Frejlichowski, D., Forczmański, P., Nowosielski, A., Gościewska, K., Hofman, R.:
SmartMonitor: An Approach to Simple, Intelligent and Affordable Visual Surveillance
System. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds.) IC-
CVG 2012. LNCS, vol. 7594, pp. 726–734. Springer, Heidelberg (2012)

9. Haritaoglu, I., Harwood, D., Davis, L.S.: W4: Real-Time Surveillance of People and
Their Activities. IEEE Trans. on Pattern Analysis and Machine Intelligence 22(8), 809–
830 (2000)

10. Hu, W., Tan, T., Wang, L., Maybank, S.: A survey on visual surveillance of object motion
and behaviors. IEEE Trans. on Systems, Man, and Cybernetics - Part C 34(3), 334–352
(2004)

11. McKenna, S.J., Jabri, S., Duric, Z., Rosenfeld, A., Wechsler, H.: Tracking Groups of
People. Computer Vision and Image Understanding 80(1), 42–56 (2000)

12. Microsoft Visual Studio 9TM (2008),
http://www.microsoft.com/visualstudio/en-gb/
products/2008-editions

13. OpenCV (Open Source Computer Vision) library website,
http://opencv.willowgarage.com

14. Ortells, J., Anaya-Sánchez, H., Mollineda, R.A.: A demo of an interactive video-
surveillance prototype for perimeter control (2012),
http://miprcv.iti.upv.es/index.php?option=com
%5fcontent&task=view&id=220&Itemid=205

15. Paulidis, I., Morellas, V.: Two examples of indoor and outdoor surveillance systems. In:
Remagnino, P., Jones, G.A., Paragios, N., Regazzoni, C.S. (eds.) Video-based Surveil-
lance Systems, pp. 39–51. Kluwer Academic Publishers, Boston (2002)

16. Regazzoni, C.S., Cavallaro, A., Wu, Y., Konrad, J., Hampapur, A.: Video Analytics
for Surveillance: Theory and Practice. IEEE Signal Processing Magazine 27(5), 16–17
(2010)

17. Valera, M., Velastin, S.A.: Intelligent distributed surveillance systems: a review. IEE
Proc. - Vision, Image and Signal Processing 152(2), 192–204 (2005)

18. Vidal, E., Rodrı́guez, L., Casacuberta, F., Garcı́a-Varea, I.: Interactive Pattern Recogni-
tion. In: Popescu-Belis, A., Renals, S., Bourlard, H. (eds.) MLMI 2007. LNCS, vol. 4892,
pp. 60–71. Springer, Heidelberg (2008)

19. wxWidgets cross-platform GUI library website, http://www.wxwidgets.org

http://www.microsoft.com/visualstudio/en-gb/products/2008-editions
http://www.microsoft.com/visualstudio/en-gb/products/2008-editions
http://opencv.willowgarage.com
http://miprcv.iti.upv.es/index.php?option=com%5fcontent\&task=view\&id=220\&Itemid=205
http://miprcv.iti.upv.es/index.php?option=com%5fcontent\&task=view\&id=220\&Itemid=205
http://www.wxwidgets.org

	Interactive Video Surveillance for Perimeter Control
	Introduction
	Related Work
	Interactive Learning Strategy
	Prototype Description
	Functional Scope
	System Architecture
	Hardware and Software Resources

	Conclusions and Future Work
	References




