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1 Introduction

In ordinary voting games, each player’s vote is yes or no. Some researchers have
worked on modifications in order to deal with more than two options, and these
modifications are divided into two major categories. One is multi-alternative
games, defined by Bolger (1986, 1993), which enables players to choose among
more than two independent alternatives; e.g., voting in an election in which more
than two candidates are running. The other is multi-choice games, defined by
Hsiao and Raghavan (1993) and Hsiao (1995), which enable players to choose
among more than two participation levels, e.g., voting a yes/no or casting a blank
vote. The latter means that the voter is not sufficiently in favor to vote yes, but not
sufficiently against to vote no. Both modifications can be discussed not only in the
class of voting games but also in broader class of cooperative games. In what
follows we will focus on the relationship of multi-choice games and fuzzy games.

In multi-choice games, three values have been proposed as a generalization of
the well-known Shapley value (Shapley 1953): those of Hsiao and Raghavan
(1993) and Hsiao (1995), of Derks and Peters (1993), and of van den Nouweland
et al. (1995). Although the value of Hsiao and Raghavan is derived from a set of
axioms, the weight of each participation level must be defined exogenously. To
calculate the value of Derks and Peters, we do not need weights, but the value
depends on the step number of participation levels, which should be an ordinal
number. The value of van den Nouweland et al. is advantageous, because it does
not depend on exogenous numbers, and more so, it is capable of an interpretation
using permutation like the Shapley value.
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Before the concept of multiple-choice gained importance, Aubin (1981, 1993)
defined fuzzy games, where each player chooses a participation level in the interval
½0; 1�. This definition seems closely related to the idea of the multi-choice games. The
fuzzy value of Aubin is known as a generalized Shapley value in the fuzzy games.

In this chapter, we discuss two values: the multi-choice value of van den
Nouweland et al. and the fuzzy value of Aubin. Our purpose is to show that the
multi-choice value is consistent with the fuzzy value when the number of par-
ticipation levels is sufficiently large. Section 2 describes the basic notation of
multi-choice games and fuzzy games, and introduces the multi-choice value of
Nouweland et al., and the fuzzy value of Aubin. Section 3 presents a tool, called a
piecewise multilinear function, to extend a multi-choice game to a fuzzy game in a
natural way. Section 4 contains the main results of this study, which show that the
multi-choice value converges to the fuzzy value as the number of participation
levels increases. A numerical example illustrates the result. Section 5 concludes.

2 Preliminaries

2.1 Multi-Choice Games

Let us review the multi-choice game defined by van den Nouweland et al. (1995).
Let N ¼ f1; 2; . . .; ng be the set of players van den Nouweland (1993) and Each
player i 2 N chooses a participation level si 2 Mi ¼ f0; 1; . . .; mig, where the
number of levels mi � 1 is an integer. That is, player i has mi þ 1 alternatives
from which to choose a particular level of participation intensity. The n-tuple

s ¼ ðs1; � � � ; snÞ 2
Y

i2N
Mi

is called multi-choice coalition. Function

v :
Y

i2N
Mi ! Rwithvð0; . . .; 0Þ ¼ 0

is called the characteristic function; vðsÞ is the value that N can gain as a group
when the coalition is s. The triple ðN; ðMiÞi2N ; vÞ is called a multi-choice game.
The set of all multi-choice games with player set N is denoted by MCN . Note that,
if Mi ¼ f0; 1g for all i 2 N, the games in MCNare equivalent to the usual
cooperative games.

If N and ðMiÞi2N are well defined, we simply call v a multi-choice game. We
assume that every multi-choice game v is monotonic nondecreasing with respect to
s. In the following discussion, we also assume that each player has the same set of
participation levels so that Mi ¼ M ¼ f0; 1; . . .; mg for all i 2 N; and the set of
all coalitions MN .

The analogue of unanimity games for multi-choice games is minimal-effort
games ut defined by
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utðsÞ ¼
1; if si � ti for all i
0; otherwise

�

where s; t 2 MN . We call ti player i’s required level of ut. This means that the
group gets 1 if every player i 2 N chooses a level higher than or equal to ti 2 M.
Every multi-choice game v is described as a linear combination of ut. This is an
extended version of the well-known theorem that every vector is expressed as a
linear combination of mutually orthogonal unit vectors.

For arbitrary v, dividend DvðsÞ is given recursively by

Dvð0; . . .; 0Þ ¼ 0; and

DvðsÞ ¼ vðsÞ �
X

r� s:r 6¼s

DvðrÞ:

This dividend corresponds to the coefficient of the linear combination, that is,

vðsÞ ¼
X

t2MN

DvðtÞutðsÞ:

Note that DvðsÞ\þ1, because

DvðsÞ ¼ vðsÞ þ ðn � 1Þvðs � IÞ �
X

i2N

vðs � I þ eiÞ;

where ei is the unit n-vector whose ith component equals 1, and I ¼ ð1; . . .; 1Þ.
We also note that

X

s2MN

DvðsÞ ¼ vðm; . . .; mÞ:

2.2 Generalized Shapley Value

Van den Nouweland et al. (1995) proposed a generalized Shapley value. Let us
define an order with mn elements by bijection r : N � ðM � f0gÞ ! f1; . . .; mng.
An order r is said to be admissible if it satisfies rði; jÞ\ rði; j þ 1Þ for all 1 i 2 N
and j 2 f1; . . .; m � 1g; then there are

ðmnÞ!
ðm!Þn

admissible orders. The set of all admissible orders for a game v is denoted by NðvÞ.

1 For other solution concepts for multi-choice games such as a core, see van den
Nouweland(1993), van den Nouweland et al.(1995), and Branzei et al.(2005).
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Given an admissible order r, let kth coalition be sr;k, where

sr;k
i ¼ maxfj 2 Mjrði; jÞ\ kg [ f0g

for all i 2 N, and the marginal contribution of i given j be

wr
i;j ¼ vðsr;rði;jÞÞ � vðsr;rði;jÞ�1Þ

for all i 2 N and j 2 f1; . . .; mg.

Definition 1 (van den Nouweland et al. 1995) Let v 2 MCN . The multi-choice
value uðvÞ is the expected marginal contribution of v over all admissible orders,
i.e.,

ui;jðvÞ ¼
ðm!Þn

ðmnÞ!
X

r

wr
i;j

for all i 2 N and j 2 f1; � � � ;mg.

This value is defined by an m � n matrix. In this chapter, adding a column of
figures, let us define the total multi-choice value UðvÞ ¼ ðU1; . . .; UnÞ as

UiðvÞ ¼
Xm

j¼1

ui;jðvÞ:

2.3 Fuzzy Games

Aubin (1981, 1993) discussed a fuzzy generalization of the ordinary cooperative
games. Let N ¼ f1; . . .; ng be the set of players. Each player i 2 N chooses
among participation (si ¼ 1), nonparticipation (si ¼ 0), and fuzzy participation

(si 2 ð0; 1Þ). The n-tuple s ¼ ðs1; . . .; snÞ 2 ½0; 1�N is called the fuzzy coalition.

The fuzzy game is the pair ðN; vFÞ, where vF : ½0; 1�N ! R is continuously dif-
ferentiable and satisfies vFð0; . . .; 0Þ ¼ 0. The set of all fuzzy games with player
set N is denoted by FGN .

Aubin (1981) developed the concept of generalized fuzzy games from an axi-
omatic approach, similar to Shapley (1953).

Definition 2 (Aubin 1981) Let vF 2 FGN . The fuzzy value is defined by

HðvFÞ ¼
Z 1

0
rvFðt; . . .; tÞdt;

where rvFð�Þ is the gradient of vF .
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In other words, the fuzzy value evaluates the gradient of vF only on the main

diagonal of n-cube ½0; 1�N .

3 Fuzzy Games with Piecewise Multilinear Functions

In this section, we present a way to derive a fuzzy game vF 2 FGN from a multi-
choice game v 2 MCN . Without loss of generality, renumber the participation
levels of a multi-choice game so that the highest level m equals m

m ¼ 1, i.e.,
M ¼ f0; 1

m;
2
m; . . .; 1g. Then, the multi-choice game v is defined only on the grid

points in n-cube ½0; 1�N . We fill the in-between space of this cube using multi
linear functions.

Define vFðsÞ ¼ vðsÞ if s is on a grid point; otherwise, define vFðsÞ using a

piecewise multilinear function z : MN ! ½0; 1�N . If we divide every edge of a unit
n-cube into m equal parts, there would exist a unique small n-cube for which the
length of each side equals 1

m, which includes s. Since we have already defined vFðsÞ
for each point of this small cube, define vF ¼ zv by

zvðsÞ ¼ vðxÞ þ mn
X

T�N

Y

j2T

ðsj � xjÞ
Y

j 62T

ðxj � sj þ
1
m
Þ v x þ eT

m

� �
� vðxÞ

� �
;

where xi 2 f0; 1
m;

2
m; . . .; m�1

m g is such that xi\sj\xiþ1=m for all i 2 N, and eT is an
n-tuple such that

eT
i ¼

1; i 2 T
0: i 62 T

�

We will call vF ¼ zv a fuzzy game with the piecewise multilinear function
extended from a multi-choice gamev. Figure 1 illustrates the graphical image of
the piecewise multilinear function derived from the two-person minimal effort
game ut, if their required level is t ¼ ð24; 3

4Þ as an example.
To clarify the idea of piecewise multilinear functions, see the following three

examples.

Example 1 If the number of participation levels is only 1, the multi-choice game v
coincides with an ordinary cooperative game. The piecewise multilinear function
extended from this game is shown as

zvðsÞ ¼
X

T�N

vðeTÞ
Y

j2T

sj

Y

j 62T

ð1 � sjÞ;

which is equal to a multilinear extension of an ordinary cooperative game, defined
by Owen (1972). Hence, the fuzzy value, which evaluates the gradient of v on the
main diagonal of ½0; 1�N , coincides with the Shapley value of the cooperative game.
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Example 2 Let us compute the fuzzy value of the fuzzy game extended from two-
person ðm þ 1Þ-choice minimal-effort game ut, where t ¼ ðt1; t2Þ. Let us first
assume t1 [ t2. There exists ðxj; xkÞ 2 M2 such that xj \ t1 � xjþ1=m and
xk \ t2 � xkþ1=m When we evaluate rzut ¼ ðr1zut; r2zutÞ on the main diagonal

of ½0; 1�2, gradient r1zut equals m on ðxj; xjþ1=m� � ðxj; xjþ1=m�; otherwise, it
equals 0. On the other hand, r2zut equals 0 anywhere on the main diagonal of

½0; 1�2. Let us next assume t1 ¼ t2. Then the elements of gradientr1zut andr2zut

on ðxj; xjþ1=m� � ðxj; xjþ1=m� equal ms1 and ms2, respectively. Thus,

HðzutÞ ¼
ð1; 0Þ t1 [ t2;
ð12; 1

2Þ t1 ¼ t2;
ð0; 1Þ t1 \ t2:

8
<

:

Example 3 The fuzzy value for n-person multi-choice minimal-effort game ut is
obtained analogously. Let HðutÞ be the set of players who are required for the
highest participation level in ut: i.e.,

HðutÞ ¼ fi 2 Nj8k 2 N; ti � tkg:

Then the fuzzy value for player i is

HiðzutÞ ¼
1
jHj ; i 2 HðutÞ
0: i 62 HðutÞ

�

Since H is a linear operator, the fuzzy value for games zv, extended from
general multi-choice games v, is written as a linear combination of the values
given in Example 3.

Fig. 1 Piecewise multilinear
function derived from ut ,
where t ¼ ð24; 3

4Þ
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4 Main Theorem

In this section, we discuss the limit property of the multi-choice value. Denote the
multi-choice game with m þ 1 participation levels by vm, the multi-choice value
of the game by umðvmÞ, and the total multi-choice value of the game by UmðvmÞ, to
clarify the number of participation levels.

Theorem 1 Let vm be an ðm þ 1Þ-choice game and zvm be the related fuzzy game
with the piecewise multilinear function. Then, for every e [ 0 there exists me such
that, for all i 2 N,

sup
v
jUm

i ðvmÞ �HiðzvmÞj\e for all m [ me:

Before we prove this theorem, let us consider two-person ðm þ 1Þ-choice
minimal-effort game ut, defined in Sect. 2.1, and the related fuzzy game zut. For
r; s 2 M ¼ f0; 1=m; . . .; 1g, define f ðr; sÞ as

f ðr; sÞ ¼ ðm!Þ2

ð2mÞ! �
ðmr þ ms � 1Þ!
ðmr � 1Þ!ðms � 1Þ! �

ð2m � mr � msÞ!
ðm � mrÞ!ðm � msÞ! :

Note that both mr and ms are integers. Since the total multiple-choice value for
the minimal-effort game ut is written as

Um
i ðutÞ ¼

ðm!Þn

ðnmÞ!
X

s2LðutÞ

ð
P

k2N sk � 1Þ!
ð
Q

k2N
k 6¼i

sk!Þ � ðsi � 1Þ! �
ðmn �

P
k2N skÞ!Q

k2N ðm � skÞ!
;

where LðutÞ ¼ fs 2 MN : si ¼ ti; and sj � tj for all j 6¼ ig, the total multi-
choice value for two-person ðm þ 1Þ-choice minimal-effort game ut is

Um
1 ðutÞ ¼

X

s2 � t2

f ðt1; s2Þ and Um
2 ðutÞ ¼

X

s1 � t1

f ðs1; t2Þ:

Lemma 2

Xm

s¼0

f ðr; sÞ ¼ 1

Proof Use the identity

ð1� xÞ�m�1 ¼ ð1� xÞ�rð1� xÞ�mþr�1;

and compare the coefficients of xm of both sides. h
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We interpret f ðr; �Þ as a probability density function. Denote a random variable
according to this distribution by X. Note that X is a number in ½0; 1�. We define
FðtÞ ¼ PrðX � tÞ. Then, Um

1 ðutÞ ¼ Fðt2Þ and Um
2 ðutÞ ¼ Fðt1Þ hold.

The following lemma is the two-person version of Theorem 1.

Lemma 3 Consider a two-person ðmþ 1Þ-choice game vm and the related fuzzy
game zvm. For every e [ 0 there exists me such that, for all i 2 N,

sup
v
jUm

i ðvmÞ �HiðzvmÞj\e for all m [ me:

Proof We will first prove this assertion for the class of minimal-effort games ut

defined in Sect. 2.1. Since we already know that the fuzzy value of a two-person
minimal-effort game is given as in Example 2, we calculate the total multi-choice
value for comparison. Let us calculate the total multi-choice value for player 1. For
all e [ 0,

PrðjX � t2j [ eÞ � EðjX � t2j2Þ
e2

holds from Chebyshev’s inequality. The denominator of the right-hand value

EðjX � t2j2Þ ¼
½2ð1 � t2Þm þ 2t2 þ 1�t
ðm þ 1Þðm þ 2Þ ! 0

as m! 0, which implies PrðjX � tj\ eÞ ! 1 as m! 0:

Thus we conclude that, for any e [ 0, there exists me such that

m [ me ) PrðX \ t2Þ ¼ 1 � Fðt2Þ\ e;

which means t1 \ t2 (t1 [ t2, resp.) implies that Fðt2Þ converges to 1
(0, respectively), i.e., the total multi-choice value Um

1 converges to 0
(1, respectively), as m! 0.

When t1 ¼ t2, the efficiency and symmetry property of the total multi-choice
value imply

Um
1 ðutÞ ¼ Um

2 ðutÞ ¼ 1
2
;

for all m. Comparing with the fuzzy value in Example 2, we obtain UmðutÞ con-
verges to HðzutÞ as m! 0.

Since z, Um, and H are linear operators, and since the dividend DvðsÞ\1, the
statement holds for any multi-choice game vm. h

As we mention in the previous section, a multi-choice game with the set of

choices M ¼ f0; 1
m; . . .; 1g is defined only on the grid points in n-cube ½0; 1�N .

The total multi-choice value evaluates each player’s contribution on all the paths
from the origin to ð1; . . .; 1Þ to consider his/her expected contribution, while the

fuzzy value evaluates the contribution only on the main diagonal of n-cube ½0; 1�N .
The essential part of the proof is that most of the paths from the origin to ð1; . . .; 1Þ
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are close to the main diagonal when m is sufficiently large. Figure 2 provides an
overview of these paths for different m.

Denote the number of ways of picking s1 from s objects by

s
s1

� �
¼ s!

s1!ðs � s1Þ!
:

Let us assume s objects, numbered n boxes (n � s), and s1 þ � � � þ sn ¼ s.
Denote the number of ways of putting s1 objects into the first box, putting s2

objects into the second box…, and putting sn objects into the n-th box by

s
s1; . . .; sn

� �
¼ s!

s1!. . .sn!
:

To prove Theorem 1, it is useful to generalize the function f as

f ði : ðs1; . . .; snÞÞ ¼
ðm!Þ2

ðnmÞ! �
P

k2N sk � 1
s1; . . .; si � 1; . . .; sn

� �
mn �

P
k2N sk

m� s1; . . .; m � sn

� �
:

Proof of Theorem 1 First, let us consider minimal-effort games and show that the
total multi-choice value converges to the fuzzy value as in Lemma 3. Recall that
HðutÞ is the set of players who are required for the highest participation level in ut,
and that UmðutÞ for player i 62 HðutÞ converges to 0. Without loss of generality,
assume that player 1 is an element of HðutÞ. Then there exists at least one player,
say player 2, who is required a higher participation level t2 [ t1. Then,

Fig. 2 Evaluation of the total multi-choice value
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Um
1 ðutÞ ¼

X

sj � tj;j� 2

f ð1 : ðs1 ; . . . ; snÞÞ

¼ ðm!Þn

ðnmÞ!
X

s2 � t2;

t1 þ s2 � 1

s2

� �
2m � t1 � s2

m � s2

� �

�
X

s3 � t3 ;... ;sn � t3

t1 þ
P

j� 2 sj � 1

t3 ; . . . ; tn

� �
nm � t1 �

P
j� 2 sj

m � t3 ; . . . ;m � tn

� �

� ðm!Þn

ðnmÞ!
X

s2 � t2;

t1 þ s2 � 1

s2

� �
2m � t1 � s2

m � s2

� �

�
X

s3 � 0 ;... ;sn � 0

t1 þ
P

j� 2 sj � 1

t3 ; . . . ; tn

� �
nm � t1 �

P
j� 2 sj

m � t3 ; . . . ;m � tn

� �

¼ ðm!Þn

ðnmÞ!
X

s2 � t2;

t1 þ s2 � 1

s2

� �
2m � t1 � s2

m � s2

� �
�

nm

2m; m ; . . . ;m

� �

¼ ðm!Þ2

ð2mÞ!
X

s2 � t2;

t1 þ s2 � 1

s2

� �
2m � t1 � s2

m � s2

� �
¼ Fðt2Þ:

Since Lemma 3 states that the value Fðt2Þ for t2 [ t1 converges to 0 as m! 0, the
total multi-choice value Um

i ðutÞ for i 62 HðutÞ also converges to 0.
Meanwhile, players in HðutÞ have the same total multi-choice value by sym-

metry. Using
X

i2N

Um
i ðutÞ ¼ 1;

known as the efficiency property, we obtain that the total multi-choice value
Um

i ðutÞ for i 2 HðutÞ converges to 1
h. Comparing this with the fuzzy value, calcu-

lated as in Example 3, the total multi-choice value converges to the fuzzy value for
any minimal-effort game.

Because z, Um, and H are linear operators, and the dividend is DvðsÞ\1, the
statement of Theorem 1 holds for any multi-choice games vm. h

Example 4 Let us calculate the total multi-choice value and fuzzy value for two-
person ðm þ 1Þ-choice minimal-effort game ut, where t ¼ ð24; 3

4Þ. The fuzzy multi-

Table 1 Convergence of
total multiple-choice value

m Um
1 ðutÞ Um

2 ðutÞ
4 0.2429 0.7571
8 0.1573 0.8427
20 0.0527 0.9473
100 0.0001 0.9999
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choice value is HðzutÞ ¼ ð0; 1Þ as shown in Example 2. When m ¼ 4, the graph
of the piecewise multilinear function is shown in Fig. 1. As m becomes larger, the
total multi-choice value converges to the fuzzy value (0, 1) as shown in Table 1.

5 Conclusion

We discussed the limit property of the multi-choice value proposed by van den
Nouweland(1993) and van den Nouweland et al. (1995) and compared this value
with the fuzzy value proposed by Aubin (1981, 1993). The sum of multi-choice
values over choices, which we called the total multi-choice value, derives from
combinatorial interpretation of the well-known Shapley value and depends on the
number of levels m. We concluded that the total multiple-choice value is the
consistent value in the sense that it connects the Shapley value and the fuzzy value.
To obtain this result, we transformed multi-choice game into a fuzzy game,
defined the piecewise multilinear function, and demonstrated that the total mul-
tiple-choice value converges to the fuzzy value for the extended fuzzy game as m
increases.

Finally, I would like to briefly address Bolger’s (1993) multi-alternative games
and the generalized Shapley value. 1 In multi-choice games, we make admissible
orders of both players and alternatives, where all players start by choosing level
zero, and then advance step by step from each level to the next one after another,
and finally choose level m. This is the key to connect the multi-choice value to the
fuzzy value. In contrast, Bolger’s generalization of the Shapley value does not
assume such orders. However, Ono (2001, 2002) constructs the multilinear
extension of the multi-alternative games, which is closely related with a combi-
natorial interpretation. It focuses on a certain alternative, and assumes the coalition
of the players who choose this alternative becomes larger up to the grand coalition.
The Bolger value for a player to choose this alternative is the expected contri-
bution of this player over all such coalition-growing processes. The limit prop-
erties of this value will be studied in future research.
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