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1 Introduction

The main purpose of this chapter is to define a coalition value for TU-games
endowed with a cooperation index and a coalition structure. The notion of coop-
eration index (equivalent to that of weighted hypergraph) was introduced in Amer
and Carreras (1995). It provides the foundations for a quantitative theory of
restricted cooperation that exhibits high precision and flexibility and generalizes
several earlier qualitative methods. (For further details on the significance and
scope of cooperation indices, we refer the reader to the above reference.) The
value we associate with situations described by a game and a cooperation index is
a generalization of the Shapley value.

A further step is then suggested by the usefulness of the coalition value as a tool
for the analysis of the game dynamics—coalition formation—, which demands an
extension of this concept to the new situations we are considering. In fact, this is a
crucial point for a full development of the cooperation index theory, because it is
only natural to suppose that the greatest incidence of a cooperation index will be
precisely found in the bargaining process that leads to the formation of coalitions.

We have tried to find an axiomatic system as simple and powerful as possible to
characterize the (generalized) coalition value. A strong symmetry principle (that of
balanced contributions), already suggested in Myerson (1980) and in Hart and
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Mas-Colell (1989), has been used to this end. As a first application of this prin-
ciple, we present in Sect. 2 a new axiomatization of the generalized Shapley value
for games with a cooperation index. In Sect. 3, the (classical) coalition value is
characterized by using two forms of the strong symmetry principle, one for players
within any block and another for blocks of the coalition structure, together with a
weak version of efficiency.

Next, still in Sect. 3, we define a (generalized) coalition value for game situ-
ations where not only a coalition structure but also a cooperation index are given
and characterize it, using again two forms of the strong symmetry principle.
Besides, some special cases are considered where our new coalition value reduces
to more familiar values—in particular to the generalized Shapley value, and not
only when the coalition structure is trivial—or remains unaltered after local
modifications of the coalition structure.

Finally, two numerical examples are considered in Sect. 4. A concluding
remark is in order. Both the Shapley and the coalition value have been commonly
used as measures of power by applying them to simple games. One could then ask
why we do not reduce ourselves to consider only this kind of games. The answer is
that, as will be seen below, modifying a simple game by means of a cooperation
index usually produces a non-simple game—from which we derive the generalized
Shapley and coalition values—, still having a natural interpretation as a ‘‘political
game’’. Hence we develop our theory within the more general framework of (TU)
cooperative games, although all our examples will start with a simple game.

1.1 Notation

We shall be concerned with games with transferable utility (TU-games), i.e. pairs
ðN; vÞ where N is a finite set of players and v : 2N �! R is the characteristic
function, which assigns to every coalition S � N a real number vðSÞ and satisfies
vð/Þ ¼ 0. A carrier for a game ðN; vÞ is a subset K � N such that vðSÞ ¼ vðS \ KÞ
for any S � N. As pointed out in Roth (1988), a player i 2 N is null in ðN; vÞ if
vðSÞ ¼ vðS n figÞ for all S � N. The function v is said to be superadditive if
vðS [ TÞ� vðSÞ þ vðTÞ whenever S \ T ¼ /. If T � S we shall write ST ¼ S n T .
Given a game ðN; vÞ and a coalition T � N, vT will denote the restriction of v to
2NT ; it defines a game ðNT ; vTÞ.

Let N be a finite set and let gN be the set of all unordered pairs (called links and
written i : j) of distinct elements of N. Every g � gN is a graph on N, and one can
then speak of paths and connected components in any S � N. A coalition structure
in N is a partition B of N into nonempty subsets, called blocks. If T � N, BT will
denote the coalition structure induced by B in NT . If I 2 B, BI will denote the
coalition structure B n fIg in NI . When T ¼ fig we shall simply write Ni, vi and Bi.

Finally, given natural numbers s� n we define cðn; sÞ ¼ ðs�1Þ!ðn�sÞ!
n! . Further notation

will be introduced below.
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2 Game Situations and Allocation Rules

To solve a cooperative game is commonly interpreted as defining one or more
payoff vectors that might be accepted by all the players according to some
rationality criteria. In the case of simple games, which are very often used to
represent political decision-making bodies, payoff vectors are usually interpreted
as distributions of power among the agents. The Shapley value (Shapley 1953) is
an essential contribution to this problem, because it applies to any game ðN; vÞ and
selects for it a unique payoff vector UðN; vÞ 2 R

N , which assigns to every player
i 2 N a payoff denoted by UiðN; vÞ.

When considering games with additional information—not stored in the char-
acteristic function—the preceding notions need to be generalized. A game situa-
tion will be a triple ðN; v; IÞ, where ðN; vÞ is a game and I is a mathematical
object that contains the external data we wish to take into account to study the
game. An allocation rule will be a map X that assigns to every game situation
ðN; v; IÞ a payoff vector XðN; v; IÞ 2 R

N .
For instance, the Shapley value itself is an allocation rule for situations where

I ¼ /; the Myerson value (Myerson 1977) is an allocation rule for situations of
the form ðN; v; gÞ, where g is a communication graph on N; the Aumann-Drèze
value (Aumann and Drèze 1974) and the coalition value (Owen 1977; see also
Owen 1995) are allocation rules for situations ðN; v;BÞ, where B is a coalition
structure in N.

This section is devoted to recall the generical principle of strong symmetry and
to obtain a new characterization for the generalized Shapley value associated with
game situations defined by a cooperation index. Roughly speaking, the principle
states: the variation that the payoff to player i undergoes when player j (and all
additional information concerning him) leaves the game must be equal to the
variation of the payoff to player j if i leaves the game.

A version of this principle has already been used by Myerson (1980), with the
name of ‘‘balanced contributions’’, to characterize an extension of the Myerson
value to NTU-games endowed with a (unweighted) communication hypergraph.
Hart and Mas-Colell (1989) use another form of the principle, together with
efficiency, to axiomatize the Shapley value. As they point out (about their version),
‘‘the principle is a straightforward generalization of the equal division of surplus
idea for two-person problems and seems to be a most natural way to compare the
relative position (or strengths) of the players.’’

Here, we wish only to point out that ‘‘elementary’’ proofs (by induction on the
number of players) for both the characterization of the Shapley value (without
using potential theory) and that of the Myerson value (for TU-games) can be
achieved using the standard technique of Theorem 2.1.

For the sake of completeness and also for their repeated use in Sect. 3, we recall
some definitions and results from Amer and Carreras (1995). A game situation
with a cooperation index is a triple ðN; v; pÞ whose third component is a function
p : 2N �! ½0; 1� such that pðfigÞ ¼ 1 for all i 2 N. Generalizing Myerson’s (1980)
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terminology, every T � N such that pðTÞ[ 0 will be called a p-conference.
Overlapping conferences define in a natural way ‘‘paths’’ between players, and
hence a notion of connectedness; the connected components, called islands, form a
partition N=p of N. More generally, PþðS; pÞ will denote the set of partitions of a
given S � N into conferences. If T � N, pT will denote the restriction of p to 2NT ,
and will be written pi when T ¼ fig.

Finally, we recall (Amer and Carreras 1995, Theorem 4.1) that there exists a
unique allocation rule W, applicable to every game situation with a cooperation
index ðN; v; pÞ, that satisfies the following axioms:

1. Local superefficiency: for any island I 2 N=p
X

i2I

WiðN; v; pÞ ¼ max
P2PþðI;pÞ

X

T2P

vðTÞpðTÞ:

2. Fairness: Given R � N and indices p1; p2 such that p1ðSÞ ¼ p2ðSÞ for all S 6¼ R,

WiðN; v; p1Þ �WiðN; v; p2Þ ¼ WjðN; v; p1Þ �WjðN; v; p2Þ 8i; j 2 R:

This allocation rule, that will be called the generalized Shapley value, is defined by
WðN; v; pÞ ¼ UðN; v=pÞ, where ðN; v=pÞ is the p-restricted game given by

ðv=pÞðSÞ ¼ max
P2PþðS;pÞ

X

T2P

vðTÞpðTÞ 8S � N:

Our alternative characterization for W is as follows.

Theorem 2.1 There exists a unique allocation rule X, applicable to every game
situation with a cooperation index ðN; v; pÞ, that satisfies the following axioms:

1. Local superefficiency;
2. Strong symmetry: if i; j 2 T and T is a p-conference,

XiðN; v; pÞ � XiðNj; vj; pjÞ ¼ XjðN; v; pÞ � XjðNi; vi; piÞ:
This rule is X ¼ W, the generalized Shapley value.

Proof (Existence) It suffices to show that W satisfies strong symmetry. From the
fact that PþðS; piÞ ¼ PþðS; pÞ for any S � Ni it follows that vi=pi ¼ ðv=pÞi and,
given that WðN; v; pÞ ¼ UðN; v=pÞ, strong symmetry for W is a consequence of the
Shapley value strong symmetry (see e.g. Hart and Mas-Colell 1989).

(Uniqueness) Let X1;X2 be allocation rules satisfying (1) and (2). We shall
show, by induction on n ¼ jNj, that X1ðN; v; pÞ ¼ X2ðN; v; pÞ for any game situ-
ation ðN; v; pÞ. If n ¼ 1 only local superefficiency matters. Let n [ 1. For any
i; j 2 T , T being any island, strong symmetry says that
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X1
i ðN; v; pÞ � X1

i ðNj; vj; pjÞ ¼ X1
j ðN; v; pÞ � X1

j ðNi; vi; piÞ;
X2

i ðN; v; pÞ � X2
i ðNj; vj; pjÞ ¼ X2

j ðN; v; pÞ � X2
j ðNi; vi; piÞ:

Subtracting these equalities and using the inductive hypothesis it follows that

X1
i ðN; v; pÞ � X2

i ðN; v; pÞ ¼ X1
j ðN; v; pÞ � X2

j ðN; v; pÞ;

and hence the function d, given by dðiÞ ¼ X1
i ðN; v; pÞ � X2

i ðN; v; pÞ, is a constant
function on each island I 2 N=p. Using now local superefficiency, X1

i ðN; v; pÞ ¼
X2

i ðN; v; pÞ is true within each island, and hence in N. h

Let us consider, now, a first example of application of the generalized Shapley
value that shows how to get an a priori evaluation of the power distribution when a
cooperation index matters.

Example 2.2 Let ðN; vÞ be the straight majority game ½2; 1; 1; 1�, that is, the game
where

vðSÞ ¼ 1 if jSj � 2; vðSÞ ¼ 0 otherwise;

and let p be the cooperation index given as follows:

pðfigÞ ¼ 1 for i ¼ 1; 2; 3; pðf1; 2gÞ ¼ 0:7;

pðf1; 3gÞ ¼ 0:5; pðf2; 3gÞ ¼ 0; pðNÞ ¼ 0:

The modified game ðN; v=pÞ is given by

ðv=pÞðfigÞ ¼ 0 for i ¼ 1; 2; 3; ðv=pÞðf1; 2gÞ ¼ 0:7;

ðv=pÞðf1; 3gÞ ¼ 0:5; ðv=pÞðf2; 3gÞ ¼ 0; ðv=pÞðNÞ ¼ 0:7

and the modified Shapley value is

WðN; v; pÞ ¼ UðN; v=pÞ ¼ ð0:4333; 0:1833; 0:0833Þ;

whereas the Shapley value for the original game is constant:

UðN; vÞ ¼ ð0:3333; 0:3333; 0:3333Þ:

The modified value reflects that player 1 is the best placed to form coalitions and
to take profit; player 2 is also in a better position than player 3. In the original game
the players shared 1, whereas in the modified one this amount is reduced to 0.7.
A possible interpretation of this fact is the following: if the players play the game
many times, they will form different coalitions depending on the play, but, in the end,
they will share an average of 0.7 per play (if the cooperation index remains unal-
tered). This seems to be the case of political parties that, instead of forming a
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coalition for the entire legislature, sign partial commitments with different groups
depending on the issue and obtain, then, an inefficient distribution of power.

3 Coalition Value and Cooperation Indices

The coalition value is an allocation rule for game situations with a coalition
structure ðN; v;BÞ. It differs from the Aumann-Drèze value in that it does not
consider B as a final structure for the game but as a starting point for further
negotiations at a higher level (that of blocks in the quotient game): this difference
is reflected in the efficiency condition. The coalition value generalizes the Shapley
value, which arises not only when B ¼ fNg but also when B ¼ ffig=i 2 Ng: these
are the so-called trivial structures. Characterizations somewhat different from the
original one may be found, e.g., in Hart and Kurz (1983) and Winter (1992).

Our first result in this section states a new axiomatization for the coalition
value, using the strong symmetry principle at two levels: for individuals (players)
and for blocks. Note that this allows us to dispense with the null-player and
additivity axioms, which are necessary in other formulations mentioned above. It
will be useful, throughout this section, to write

XKðN; v; IÞ ¼
X

i2K

XiðN; v; IÞ

for any allocation rule X and any K � N.

Theorem 3.1 There exists a unique allocation rule X, applicable to every game
situation with a coalition structure ðN; v;BÞ, that satisfies the following axioms:

1. Efficiency:
P

i2N XiðN; v;BÞ ¼ vðNÞ;
2. Block strong symmetry: for all I; J 2 B

XIðN; v;BÞ � XIðNJ ; vJ ;BJÞ ¼ XJðN; v;BÞ � XJðNI ; vI ;BIÞ;

3. Inner strong symmetry: for all K 2 B and all i; j 2 K

XiðN; v;BÞ � XiðNj; vj;BjÞ ¼ XjðN; v;BÞ � XjðNi; vi;BiÞ:
This rule is X ¼ ŷ, the coalition value.

Proof (Existence) Since our efficiency axiom already appears in other axioma-
tizations of the coalition value (e.g. Winter 1992), it is sufficient to check that ŷ
satisfies both strong symmetry postulates. Let B ¼ fK1;K2; . . .;Kmg, M ¼
f1; 2; . . .;mg be a set of representatives and ðM; uÞ be the quotient game of ðN; vÞ
by B, defined by

uðTÞ ¼ v

�[

q2T

Kq

�
8T � M:
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(Block strong symmetry) We know (Owen 1977) that for any block, say, K ¼ Kr,

ŷKðN; v;BÞ ¼
X

i2K

ŷiðN; v;BÞ ¼ UrðM; uÞ:

Moreover, if I ¼ Ki and ðMi;wÞ is the quotient game of ðNI ; vIÞ by BI , it follows
that w ¼ ui. The Shapley value strong symmetry yields therefore, for all blocks
I ¼ Ki and J ¼ K j,

ŷIðN; v;BÞ � ŷIðNJ ; vJ ;BJÞ ¼ UiðM; uÞ � UiðMj; ujÞ
¼ UjðM; uÞ � UjðMi; uiÞ ¼ ŷJðN; v;BÞ � ŷJðNI ; vI ;BIÞ:

(Inner strong symmetry) Let K ¼ Kr 2 B and assume that i; j 2 K. The explicit
formula for the coalition value (Owen 1977) gives

ŷiðN; v;BÞ ¼
X

T � M
r 62 T

X

S � K
i 2 S

cðm; t þ 1Þcðk; sÞ½vð~T [ SÞ � vð~T [ SiÞ�

where ~T ¼ [q2T Kq, and m, t, k and s are, respectively, the cardinalities of M, T , K
and S. Applying again Owen’s formula we obtain

ŷiðNj; vj;BjÞ ¼
X

T � M
r 62 T

X

S � Kj

i 2 S

cðm; t þ 1Þcðk � 1; sÞ½vð~T [ SÞ � vð~T [ SiÞ�:

A straightforward calculation leads to the following equality:

ŷiðN; v;BÞ � ŷiðNj; vj;BjÞ
¼

X

T � M

r 62 T

X

S � K

i; j 2 S

cðm; t þ 1Þcðk; sÞ½vð~T [ SÞ � vð~T [ SiÞ � vð~T [ SjÞ þ vð~T [ Sfi;jgÞ�:

The symmetrical appearance of i and j in this expression justifies that

ŷiðN; v;BÞ � ŷiðNj; vj;BjÞ ¼ ŷjðN; v;BÞ � ŷjðNi; vi;BiÞ:

(Uniqueness) Let X1, X2 be allocation rules satisfying (1)–(3). We shall show, by
induction on n ¼ jNj, that X1ðN; v;BÞ ¼ X2ðN; v;BÞ for all game situations
ðN; v;BÞ. For n ¼ 1 this follows from efficiency. Let n [ 1. Block strong sym-
metry and the inductive hypothesis imply that the function d, defined by dðIÞ ¼
X1

I ðN; v;BÞ � X2
I ðN; v;BÞ for every I 2 B, is constant. Efficiency implies that d

vanishes. Inner strong symmetry and the induction hypothesis apply to prove that
the function dI , defined by dIðiÞ ¼ X1

i ðN; v;BÞ � X2
i ðN; v;BÞ within each block

I 2 B, is constant on I. In fact, dI vanishes too, since 0 ¼ dðIÞ ¼
P

i2I dIðiÞ, and
hence X1

i ðN; v;BÞ ¼ X2
i ðN; v;BÞ for all i 2 I and all I 2 B, i.e. for all i 2 N. h
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The coalition value has been used to study the dynamics of coalition formation in
game situations of types that could be described by particular cooperation indices.
For example, in Carreras and Owen (1988) and (1996), Carreras et al. (1993), and
Bergantiños (1993): all these papers show applications of game theory to political
science. The procedure is always based on the computation of the coalition value for
the I -restricted game under different coalition structures that are considered
‘‘plausible’’ according to I . This suggests, in fact, that a set of new allocation rules—
one for each type of situation—can be defined in this way, and it seems therefore
interesting to find a common axiomatic characterization for them. (We also provide
in Sect. 4 two numerical examples illustrating that procedure.)

In order to generalize the coalition value to qualitatively restricted game situ-
ations, the case of ðN; v; g;BÞ is perhaps a most basic step in this program and,
indeed, what might be called the Myerson coalition value has been defined and
axiomatized in Vázquez-Brage et al. (1996). In the present work, we complete this
approach by adopting the widest point of view, that of the cooperation indices, and
study therefore a game situation of the form ðN; v; p;BÞ. A (generalized) coalition
value is defined and characterized using the strong symmetry principle.

Let us consider a game situation ðN; v; p;BÞ, where p is a cooperation index andB
is a coalition structure. We will use definitions and results from Amer and Carreras
(1995) that have been remembered in Sect. 2, just preceding Theorem 2.1. One
more definition is needed: we shall say that two B-blocks are linked by p if there
exists a p-conference that intersects both blocks. This defines a graph on B and
allows us to speak of paths between blocks: the connected components of B rela-
tively to this graph will be called superblocks.

We define an allocation rule V , applicable to every game situation of the form
ðN; v; p;BÞ, as follows:

VðN; v; p;BÞ ¼ ŷðN; v=p;BÞ;

where v=p is the p-restricted game. We call V the generalized coalition value.

Theorem 3.2 There exists a unique allocation rule X, applicable to every game
situation ðN; v; p;BÞ, that satisfies the following axioms:

1. Local superefficiency: for every island I 2 N=p
X

i2I

XiðN; v; p;BÞ ¼ max
P2PþðI;pÞ

X

T2P

vðTÞpðTÞ;

2. Block strong symmetry: if R; S 2 B are linked by p

XRðN; v; p;BÞ � XRðNS; vS; pS;BSÞ
¼ XSðN; v; p;BÞ � XSðNR; vR; pR;BRÞ;

3. Inner strong symmetry: for all R 2 B and all i; j 2 R

XiðN; v; p;BÞ � XiðNj; vj; pj;BjÞ ¼ XjðN; v; p;BÞ � XjðNi; vi; pi;BiÞ:
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This rule is X ¼ V , the generalized coalition value.

Proof (Existence) We will prove that V satisfies properties (1)–(3). Let
ðN; v; p;BÞ be a given situation. (Local superefficiency) Define, for any island
I 2 N=p, a game uI in N as follows:

uIðSÞ ¼ max
P2PþðI\S;pÞ

X

T2P

vðTÞpðTÞ 8S � N:

If N=p ¼ fI1; I2; ; Ikg, it can be shown (Amer and Carreras 1995, Proposition 3.5)
that

v=p ¼
Xk

r¼1

uIr :

Since each I 2 N=p is a carrier for uI , the additivity of the classical coalition value
yields, for every island I,

X

i2I

ViðN; v; p;BÞ ¼
X

i2I

ŷiðN; uI ;BÞ ¼ uIðNÞ ¼ max
P2PþðI;pÞ

X

T2P

vðTÞpðTÞ:

(Block strong symmetry) This directly follows from the block strong symmetry of
the coalition value ŷ, because vR=pR ¼ ðv=pÞR for every block R 2 B. (Inner strong
symmetry) The property derives, once more, from the corresponding property of
the classical coalition value, using in this case that vi=pi ¼ ðv=pÞi for any i 2 N.

(Uniqueness) Let X1, X2 be allocation rules that satisfy (1)–(3). We shall show, by
induction on n ¼ jNj, that X1ðN; v; p;BÞ ¼ X2ðN; v; p;BÞ for any game situation
ðN; v; p;BÞ. For n ¼ 1 use local superefficiency only. Let n [ 1. Block strong
symmetry and the inductive hypothesis imply, as in Theorem 3.1, that the function
d, defined by dðRÞ ¼ X1

RðN; v; p;BÞ � X2
RðN; v; p;BÞ for every R 2 B, is constant on

every superblock of B. Then, every superblock U is, as a subset of N, isolated with
respect to p-connectedness, and hence U is the union of some islands, say,
I1; I2; . . .; Ip. If R1;R2; . . .;Rq are the blocks which form U, we have

Xq

h¼1

dðRhÞ ¼
Xq

h¼1

X1
Rh
ðN; v; p;BÞ �

Xq

h¼1

X2
Rh
ðN; v; p;BÞ

¼
Xp

t¼1

X1
It
ðN; v; p;BÞ �

Xp

t¼1

X2
It
ðN; v; p;BÞ

¼
Xp

t¼1

ðv=pÞðItÞ �
Xp

t¼1

ðv=pÞðItÞ ¼ 0;

and, d being a constant function on U, it follows that dðRÞ ¼ 0 for any R in U and
therefore for any R 2 B, since U was arbitrary. Finally, let i; j 2 R 2 B. Inner
strong symmetry and the inductive hypothesis apply to show that the function dR,
defined by dRðiÞ ¼ X1

i ðN; v; p;BÞ � X2
i ðN; v; p;BÞ for every i 2 R, is constant.
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Using that
P

i2R dRðiÞ ¼ dðRÞ ¼ 0 we conclude that dR vanishes. Thus, we have
X1

i ðN; v; p;BÞ ¼ X2
i ðN; v; p;BÞ for every i 2 R and every R 2 B, i.e. for every

i 2 N. h

Now, let us describe the behavior of the generalized coalition value V in some
special cases of game situations of the form ðN; v; p;BÞ.

Examples 3.3 (a) If pðSÞ ¼ 1 for all S � N, then v=p ¼ ve (the superadditive
extension of v) and VðN; v; p;BÞ ¼ ŷeðN; v;BÞ, where ŷe denotes the IR-coalition
value defined by ŷeðN; v;BÞ ¼ ŷðN; ve;BÞ. If, moreover, v is superadditive, then
VðN; v; p;BÞ ¼ ŷðN; v;BÞ.

(b) When B ¼ fNg, block strong symmetry does not matter, whereas the two
other axioms in Theorem 3.2 become those imposed to W in Theorem 2.1;
therefore, VðN; v; p; fNgÞ ¼ WðN; v; pÞ.

(c) In a similar way, if B ¼ ffig=i 2 Ng, inner strong symmetry does not say
anything, the two other axioms coincide with those of Theorem 2.1 and, again,
VðN; v; p; ffig=i 2 NgÞ ¼ WðN; v; pÞ.

(d) Assume v is superadditive, let B be arbitrary and take p ¼ pB, defined by

pBðSÞ ¼
1 if S � Kfor some K 2 B;
0 otherwise.

�

The meaning of pB is obvious: the players may freely negotiate among them within
each block, but they cannot communicate at all with players belonging to other
blocks. Then, VðN; v; pB;BÞ ¼ U0ðN; v;BÞ ¼ WðN; v; pBÞ, where U0 is the Au-
mann-Drèze value. Note that the generalized values V and W coincide, even
though B is not trivial but arbitrary, and that the Aumann-Drèze value is shown to
be a particular case of the generalized coalition value.

To analyze the following examples we need some elementary properties of the
coalition value. Every game v in N can be uniquely written as v ¼

P
T�N aT uT ,

where uT is the T-unanimity game in N and aT ¼
P

R�Tð�1Þt�rvðRÞ for every
nonempty coalition T � N (t and r are the cardinalities of T and R).

Remark 3.4 If K is a carrier for ðN; vÞ, then aT ¼ 0 for all T not contained in K.
From this it follows immediately that if a block of B is a carrier for ðN; vÞ then
ŷðN; v;BÞ ¼ WðN; vÞ.

Remark 3.5 Let ðN; vÞ be a game and let B ¼ fK1;K2; . . .;Kmg be a coalition
structure such that K1 ¼ K 00 [ K 01, K 00 \ K 01 ¼ ; and all members of K 00 are null
players in ðN; vÞ. Let B0 ¼ fK 00;K 01;K2; . . .;Kmg. Then

ŷðN; v;BÞ ¼ ŷðN; v;B0Þ:

Examples 3.6 (a) If B ¼ N=p, then VðN; v; p;N=pÞ ¼ WðN; v; pÞ, since applying
the coalition value additivity to v=p ¼

P
I2N=p uI (recall the proof of Theorem 3.2)
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yields VðN; v; p;N=pÞ ¼
P

I2N=p ŷðN; uI ;N=pÞ, and, using that each island I 2 N=p

is a carrier for ðN; uIÞ, Remark 3.4 above gives

VðN; v; p;N=pÞ ¼
X

I2N=p

ŷðN; uI ;N=pÞ ¼ WðN; v=pÞ ¼ WðN; v; pÞ:

We meet again a situation where B is not trivial but the generalized values V and
W coincide.

(b) Let ðN; v; p;BÞ be a game situation where B ¼ fK1;K2; . . .;Kmg, and
assume that K1 ¼ K 00 [ K 01, K 00 \ K 01 ¼ ; and K 00, K 01 are nonempty and lie in dif-
ferent islands. Let B0 ¼ fK 00;K 01;K2; . . .;Kmg. Therefore

VðN; v; p;BÞ ¼ VðN; v; p;B0Þ:

To prove this we apply again the coalition value additivity to v=p ¼
P

I2N=p uI and

use Remark 3.5 to obtain

VðN; v; p;BÞ ¼
X

I2N=p

ŷðN; uI ;BÞ ¼
X

I2N=p

ŷðN; uI ;B0Þ ¼ VðN; v; p;B0Þ:

Some comments are in order: we have never demanded any kind of compatibility,
between the cooperation index p (or its islands) and the coalition structure B, to
formalize the theory in this section. But, as follows from our latter statement, the
players will have no interest in forming blocks with members of other islands, and
therefore the only interesting coalition structures are, in practice, those where
each island splits into blocks; thus, superblocks (defined before Theorem 3.2) are
reduced to be islands.

(c) Let us assume, now, that a block is included in an island but is not connected
(by conferences). Then, this block cannot split into connected components without
changing the coalition value, as the following counterexample shows. Let N ¼
f1; 2; 3g and vðSÞ ¼ 1 if jSj � 2, vðSÞ ¼ 0 otherwise. Let p be the cooperation
index defined by pðSÞ ¼ 0 if S ¼ f2; 3g and pðSÞ ¼ 1 otherwise, and let
B ¼ ff1g; f2; 3gg. Then, ðv=pÞðSÞ ¼ vðSÞ if S 6¼ f2; 3g and ðv=pÞðf2; 3gÞ ¼ 0;
thus, VðN; v; p;BÞ ¼ ð0:50; 0:25; 0:25Þ. If block f2; 3g is subdivided, a new coa-
lition structure B0 ¼ ff1g; f2g; f3gg arises, for which VðN; v; p;B0Þ ¼
ð0:66; 0:16; 0:16Þ.

An obvious question: if players 2 and 3 cannot communicate because
pðf2; 3gÞ ¼ 0, how can they form a block in B? The null cooperation index
assigned to f2; 3g means that they will not agree to form a coalition, but they may
agree in other questions, e.g. in that they will never form separately a coalition
with player 1! A situation of this kind arose at the beginning of 1993 in the
Parliament of Aragón (Spain). Parties 1 and 2 were holding a coalition govern-
ment, but a proposal of party 2 about a deep amendment of the Autonomy Statute
was refused with the votes of parties 1 and 3 (2 is a regionalist party, whereas 1
and 3 are the main parties at the national level and are not especially inclined to
give further competences to regions).
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4 Two Examples

This final section is devoted to considering two numerical instances where we shall
use the generalized coalition value as a ‘‘dynamic’’ measure of power, leaving to
the generalized Shapley value the ‘‘static’’ role of describing the initial conditions
for the bargaining.

Example 4.1 Let us consider a parliamentary body where four parties share 50
seats, giving rise to the weighted majority game ðN; vÞ � ½26; 20; 15; 11; 4�. For-
mally, this is a very simple situation. Any coalition formed by two of the three
main parties is stable, because the classical coalition value allocates 0.5 units to
each one of its members and they cannot better this allocation by going elsewhere.
But, perhaps, things are not so simple. Assume that parties are politically located
in a classical left-to-right axis as is shown in Fig. 1.

To take into account this ideological component, we introduce a cooperation
index p, derived from the distances between parties. For instance, we find

pðf1; 2gÞ ¼ 1� dð1; 2Þ ¼ 0:3000

pðf1; 3; 4gÞ ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dð1; 4Þ2 þ dð4; 3Þ2

q
¼ 0:7764

and so on, until

pðNÞ ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dð1; 4Þ2 þ dð4; 3Þ2 þ dð3; 2Þ2

q
¼ 0:5417:

The modified game is therefore

v=p ¼ 0:3 uf1;2g þ 0:7 uf1;3g þ 0:6 uf2;3g
� 0:9 uf1;2;3g þ 0:1615 uf1;2;4g þ 0:0764 uf1;3;4g � 0:1615 uN :

From looking at the initial configuration, given by

WðN; v; pÞ ¼ ð0:2389; 0:1635; 0:3351; 0:0389Þ;

it follows that party 3 is really the strongest player. An evaluation of the gen-
eralized coalition value VðN; v; p;BÞ for different coalition structures—essentially,
those where only a v-winning coalition forms—is provided in Table 1, where the
first row gives the generalized Shapley value. It tells us that B ¼
ff1g; f2; 3g; f4gg is the only stable one, and yields

VðN; v; p;BÞ ¼ ð0:0755; 0:2519; 0:4236; 0:0255Þ:

Fig. 1 Party-distribution on a left-to-right axis in Example 4.1
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(Note that player 1 is indifferent between coalitions f1; 3g and f1; 2; 4g, player 2 is
indifferent between f2; 3g and f1; 2; 4g, player 3 between f2; 3g and f1; 3; 4g, and
player 4 would prefer that coalition f1; 2g forms. Player 4 might thus promote
coalition f1; 2; 4g and leave it immediately, but the residual coalition f1; 2g would
then dissolve because player 2 prefers to enter f2; 3g).

Thus, coalition f2; 3g is not ‘‘winning’’ in the classical sense. It obtains
Vf2;3gðN; v; p;BÞ ¼ 0:6755, which is more than ðv=pÞðf2; 3gÞ ¼ 0:6000 but far
from ðv=pÞðNÞ ¼ 0:7764, and the difference is allocated to players 1 and 4 (which
is no longer a dummy player because of its central position). This may be inter-
preted as caused by disagreements between players 2 and 3, which will be often
obliged to negotiate with 1 and/or 4. On the other hand, player 3 receive much
more than player 2, and this is in accordance with Owen’s (1977) intracoalitional
bargaining model if one compares the allocations to players 1, 2, and 3 under
f1; 2g and f1; 3g in v=p. Summing up, the modified model seems to provide a
more realistic view of the political complexity of this situation.

Before proceeding with our second example—the analysis of a real world
situation—, the question of how to determine a cooperation index is worthy of
mention. The cooperation degree of a given coalition (say, of parties) may depend
on many factors: pure ideological positions, strategic conveniences, past experi-
ence, future compromises, existence of simultaneous settings where the involved
parties (or some of them) are meeting and probably bargaining... In Example 4.1
we have suggested a way for computing the cooperation index exclusively in terms
of the left-to-right ideological positions. If one wants to take into account addi-
tional components that influence the relationships between parties, two main
procedures seem to be plausible.

The first one is purely theoretical, and needs to assume that every factor can be
numerically described. In this case, the basic point will be to find a function, of as
many variables as factors we have so defined, mapping in a reasonable way the
domain of these variables (a cartesian product) into the interval ½0; 1� of the real
line. In our opinion, this is an interesting field of research.

The second method is rather of empirical nature, no necessarily more subjective
than the former and, surely, easier to use in practice. By enquiring appropriate

Table 1 Generalized coalition values in Example 4.1

1 2 3 4

No coalition 0.2389 0.1635 0.3351 0.0389
f1; 2g 0.3139 0.2385 0.1716 0.0524
f1; 3g 0.3210 0.0000 0.4172 0.0382
f2; 3g 0.0755 0.2519 0.4236 0.0255
f1; 2; 3g 0.2326 0.1635 0.3422 0.0382
f1; 2; 4g 0.3210 0.2519 0.1575 0.0460
f1; 3; 4g 0.3139 0.0000 0.4236 0.0389
f2; 3; 4g 0.0882 0.2385 0.4172 0.0326
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people, one can obtain a good estimation of the cooperation degree of every
coalition. ‘‘Appropriate people’’ means here, e.g., party leaders or spokesmen,
political scientists and observers, mass media (press, radio, television) commen-
tators and, still better, a combination of all of them. A comparison of parties’
programatic manifestos should be added as a complementary way (last, but not
least) for obtaining the cooperation degree of any coalition. Other possibilities will
be welcome.

In the following example we have assumed the role of political observers, and
have established what we feel is a reasonable cooperation index in view of the
actual behavior of the involved parties.

A final remark on this question. The coalition value is a continuous function of
the unanimity coordinates of the game, for it is linear. On the other hand, the
unanimity coordinates of the modified game v=p are easily seen to be continuous
functions of the cooperation index p, viewed as a vector variable in the
ð2n � n� 1Þ-dimensional unit cube. Thus we conclude that the generalized coa-
lition value is a continuous function of the cooperation index, and hence small
enough errors in evaluating p will give rise to negligible differences in our analysis
of the coalition dynamics of a game by means of V (as can be checked in
Example 4.1).

Example 4.2 The case of the Congreso de los Diputados (Lower House of the
Spanish Parliament) during the 1993–1996 Legislature will be studied here. Eleven
parties elected members to the Congreso in June 1993, giving rise to the following
weighted majority game:

ðN; vÞ � ½176; 159; 141; 18; 17; 5; 4; 2; 1; 1; 1; 1�:

This is an ‘‘apex game’’, because all but the four main parties are null players and
the set of minimal winning coalitions is

Wm ¼ ff1; 2g; f1; 3g; f1; 4g; f2; 3; 4gg:

Disregarding the null players, we obtain a 4-person game whose Shapley value is
given by

UðN; vÞ ¼ ð0:5000; 0:1667; 0:1667; 0:1667Þ:

Formally, the coalition formation is easy to analyze. Only the minimal winning
coalitions are stable, and yield the following coalition values:

ŷðN; v; f1; 2gÞ ¼ ð0:6667; 0:3333; 0; 0Þ

(and analogous results for the two other binary coalitions) and

ŷðN; v; f2; 3; 4gÞ ¼ ð0; 0:3333; 0:3333; 0:3333Þ

(an oversized majority such as f1; i; jg allocates the same payoff to player 1 as
f1; ig or f1; jg, but divides 0.3333 equally among i and j and is therefore not
interesting for these two players).
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There are, however, complex relationships between the Spanish parties. We shall
introduce a cooperation index to describe the political structure and will then obtain
very different and much more clear results in analyzing the coalition formation. For a
better understanding of our index, let us first identify the agents of our game.

Player 1 is the Partido Socialista Obrero Español (PSOE), a left-to-center party
that obtained absolute majority in 1982 and 1986 and just 175 seats in 1989. Player
2 is the Partido Popular (PP), a strong and growing center-right party. Player 3 is
Izquierda Unida (IU), a coalition headed by the old communist party. Player 4 is
Convergència i Unió (CiU), a regionalist middle-of-the-road coalition which was
enjoying absolute majority in the Catalonian Parliament since 1984 and was very
interested in influencing the national policy without entering the government.

Finally, we shall also mention player 5: it is the Partido Nacionalista Vasco
(PNV), another middle-of-the-road regionalist party that is holding with PSOE a
coalition government in the Basque Country since 1986. The reason to include it is
that this party seems to be very important from the cooperation index point of
view; it fails, however, to escape from its dummy position when we modify the
game.

We shall define a cooperation index that takes into account these political
characteristics of the parties. Three reasonable assumptions will make our task
easier:

1. Coalitions S of more than 3 parties are highly improbable, and will then be
assigned pðSÞ ¼ 0.

2. We need to specify pðSÞ for winning coalitions only (recall the definition of the
modified game v=p).

3. Once pðSÞ is given for every coalition S such that jSj ¼ 2, we assume that, for
every T with jT j ¼ 3,

pðTÞ ¼ minfpðSÞ : S � T; jSj ¼ 2g:

These prerequisites and our own opinion about the relationships between parties
give rise to a cooperation index that we describe as follows:

pðf1; 2gÞ ¼ 0; pðf2; 4gÞ ¼ 0:4; pðf1; 3; 4gÞ ¼ 0:2;
pðf1; 3gÞ ¼ 0:3; pðf2; 5gÞ ¼ 0:5; pðf1; 3; 5gÞ ¼ 0:2;
pðf1; 4gÞ ¼ 0:9; pðf3; 4gÞ ¼ 0:2; pðf1; 4; 5gÞ ¼ 0:9;
pðf1; 5gÞ ¼ 1:0; pðf3; 5gÞ ¼ 0:2; pðf2; 3; 4gÞ ¼ 0:1;
pðf2; 3gÞ ¼ 0:1; pðf4; 5gÞ ¼ 1:0;

and pðSÞ ¼ 0 otherwise if jSj[ 1. The modified game is therefore

v=p ¼ 0:3 uf1;3g þ 0:9 uf1;4g � 0:3 uf1;3;4g þ 0:1 uf2;3;4g � 0:1 uf1;2;3;4g:
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Notice that, in spite of its very good degree of affinity with two basic parties
(PSOE and CiU), PNV is still a null player after modifying the game; thus it will
be left aside definitively in our study of the coalition bargaining. Also notice that
ðv=pÞðNÞ ¼ 0:9, and therefore no coalition will share more than this amount
among their members. We have already given an interpretation of this inefficiency
elsewhere in this chapter. By looking at v-winning coalitions with no more than 3
players, the generalized coalition value gives the results contained in Table 2.

A comparison of the Shapley value for games v and v=p (first row of Table 2)
tells us that PP and IU lose power, PSOE remains more or less equally, and CiU
gets a much better position. There are three stable coalitions: the first one is f1; 4g,
whose players, PSOE and CiU, share all the available power; the second is f1; 3g,
formed by PSOE and IU, but they control only a power of 0.6 and leave therefore
0.3 to CiU; the third stable coalition is f2; 3; 4g and, again, its members, PP, IU,
and CiU, obtain only 0.5 in all, thus leaving an important fraction of power in
PSOE’s hands. Finally, note that PSOE holds its optimal value also in oversized
coalitions (f1; 2; 3g and f1; 2; 4g), but they are not stable.

One can then conclude that any observer of the Spanish political life should
agree with this mathematical description of the strategic and ideological tensions
at the Congreso during the last Legislature. In particular, our result would be found
satisfactory because, indeed, a parliamentary coalition between PSOE and CiU has
been supporting a minority government of the socialist party. Furthermore, the
sharing of power among these two parties, given by the fourth row of Table 2,
corresponds very closely to a generalized opinion that PSOE’s cabinet has been
dominated by the conditional support of CiU, which has very often imposed its
criteria on economic and regional (autonomic) policies.

Acknowledgments Research supported by Grant SGR 2009-01029 of the Catalonia Govern-
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tiveness Spanish Ministry.

Table 2 Generalized coalition values in Example 4.2

1 2 3 4

No coalition 0.4750 0.0083 0.0583 0.3583
f1; 2g 0.4833 0.0167 0.0500 0.3500
f1; 3g 0.5083 0.0000 0.0917 0.3000
f1; 4g 0.5083 0.0000 0.0000 0.3917
f1; 2; 3g 0.5083 0.0083 0.0833 0.3000
f1; 2; 4g 0.5083 0.0083 0.0000 0.3833
f1; 3; 4g 0.4833 0.0000 0.0583 0.3583
f2; 3; 4g 0.4000 0.0167 0.0917 0.3917
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