On the Steiner Radial Number of Graphs
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Abstract. The Steiner n-radial graph of a graph G on p vertices, de-
noted by SR, (G), has the vertex set as in G and n(2 < n < p) vertices
are mutually adjacent in SR, (G) if and only if they are n-radial in G.
While @ is disconnected, any n vertices are mutually adjacent in SR, (G)
if not all of them are in the same component. When n = 2, SR, (G) co-
incides with the radial graph R(G). For a pair of graphs G and H on p
vertices, the least positive integer n such that SR, (G) = H, is called the
Steiner completion number of G over H. When H = K, the Steiner com-
pletion number of G over H is called the Steiner radial number of G. In
this paper, we determine 3-radial graph of some classes of graphs, Steiner
radial number for some standard graphs and the Steiner radial number
for any tree. For any pair of positive integers n and p with 2 < n < p, we
prove the existence of a graph on p vertices whose Steiner radial number
is n.

Keywords: n-radius, n-diameter, Steiner n-radial graph, Steiner com-
pletion number, Steiner radial number.

1 Introduction

Throughout this paper, we consider finite undirected graphs without multiple
edges and loops. Let G be a graph on p vertices and S a set of vertices of G. In
[2], the Steiner distance of S in G, denoted by dg(S), is defined as the minimum
number of edges in a connected subgraph of G that contains S. Such a subgraph is
necessarily a tree and is called a Steiner tree for S in G. The Steiner n-eccentricity
en(v) of a vertex v in a graph G is defined as e, (v) = max{dg(S) : S C V(G)
with v € S and |S| = n}. The n-radius rad,(G) of G is defined as the smallest
Steiner n-eccentricity among the vertices of G, and the n-diameter diamy,(G)
of G is the largest Steiner n-eccentricity. The concept of Steiner distance was
further developed in [3I6/5].
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In [4], KM. Kathiresan and G. Marimuthu introduced the concept of radial
graphs. Two vertices of a graph G are said to be radial to each other if the
distance between them is equal to the radius of the graph. The radial graph of
a graph G, denoted by R(G), has the vertex set as in G and two vertices are
adjacent in R(G) if and only if they are radial in G. If G is disconnected, then
two vertices are adjacent in R(G) if they belong to different components of G.

Any n vertices of a graph G are said to be n-radial to each other if the Steiner
distance between them is equal to the n-radius of the graph G. The Steiner n-
radial graph of a graph G, denoted by SR,,(G), has the vertex set as in G and
n(2 < n < p) vertices are mutually adjacent in SR,,(G) if and only if they are n-
radial in G. If G is disconnected, any n vertices are mutually adjacent in SR, (G)
if not all of them are in the same component. For the edge set of SR, (G), draw
K, corresponding to each set of n-radial vertices. By taking n = 2,SR,(G)
coincides with R(G). Consider the graph G given in Figure 1.
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Fig. 1.

If we let n = 3, we get that rads(G) = 3 and that S; = {wv1,vs,v5},
Sy = {v1,v2,v6}, S3 = {v1,v3,v4},81 = {vi,v4,05}, S5 = {v1,v4,06},
56 = {1}2, V3, 1}5}, S7 = {’Ug,’U3, 1}6}, Sg = {’Ug,’U5, 1}6}, Sg = {’U3,’U4,’U5} and
S10 = {vs,v4,v6} are the sets of 3-radial vertices of G. Hence the Steiner 3-
radial graph of G is as shown in Figure 1. A graph G is called a Steiner 3-radial
graph if SR3(H) = G for some graph H. If G does not contain K3 as a subgraph,
then G is not a Steiner 3-radial graph. The converse of this statement is not true.
For example, the graph G given in Figure 2 is not a Steiner 3-radial graph.

U3 V4
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Let G and H be two graphs on p vertices. If there exists a positive integer n
such that SR, (G) = H, then H is called a Steiner completion of G. The positive
integer n is said to be Steiner completion of G over H if n is the least positive
integer such that SR, (G) = H. For example, the Steiner completion number of
bistar By, p, over Ky, 1,42 —e is p1 +ps. If there is no n such that SR, (G) = H,
then the Steiner completion number of G over H is co. The Steiner completion
number of G over H is not necessarily equal to the Steiner completion number
of H over G. For the graphs G and H given in Figure 3, the Steiner completion
number of G over H is 3 but the Steiner completion number of H over G is oc.

Fig. 3.

When H = K, the Steiner completion number of G over H is called the Steiner
radial number of G. That is, the Steiner radial number rg(G) of a graph G is
the least positive integer n such that the Steiner n-radial of G is complete. In
this paper, we determine the Steiner radial number for some classes of graphs
and obtain the Steiner radial number for any tree. Also we prove that for every
pair of integers n and p with 2 < n < p, there exists a graph on p vertices whose
Steiner radial number is n. For graph theoretic terminology we follow [I].

2 Steiner 3-Radial Graphs of Some Classes of Graphs

Proposition 1. Let P, be any path on p > 3 vertices. Then SR3(P,) = Ko +
Ky, where K;,_o is the complete graph on p — 2 internal vertices of P,.

Proof. Let P, : v1v2 - - vp—1vp by any path on p > 3 vertices. Then the Steiner
3-eccentricity of each vertex of P, is p — 1 and hence rads(P,) = p — 1. Now for
every vertex v;,2 <14 < p — 1, we have d({v;,v1,v,}) = p — 1. Hence {v;,v1,vp}
where 2 < i < p—1 forms a K3. So assume p > 4. Also for every pair of vertices
v; and v;,4 # j and 2 < 4,5 < p — 1, there exists no vg,1 < k < p,k # 4 and
k # j such that d({vi,v;,vx}) = p — 1 and hence there is no edge between v;
and v;,7 # j and 2 <4, j < p— 1. Therefore SR3(P,) = K2 + K,_2 where K,_-
is the complete graph on p — 2 internal vertices of P,.

Proposition 2. Let C, be any cycle of length p > 5. Then

Cy(k) if p =3k
SR3(Cy) = { Cplk, ki +1) if p=23k+2
Colk— 1Lk k+1) ifp=3k+1.
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Where the circulant graph Cp(ni, na,...,n;) is obtained from a cycle on p ver-
tices by joining each vertex v;,1 < i < p with the vertices vi—pn, and viin;, the
subscripts being taken modulo p, for 1 < j <I. When p =3, SR3(C,) = K3 and
when p =4, SR3(Cp) = Ky4.

Proof. Clearly SR3(Cp) = K3 or K4 when p = 3,4 respectively.
Let Cy, : vg,v1,v2,...,Vp-1,V9 be any cycle of length p > 5.

Case 1. p=3k.

In this case v;_r and v;y) are Steiner 3-eccentric vertices of v; where the
subscripts are taken modulo p. Also Steiner 3-eccentricity of a vertex v; is 2k
for every ¢ and hence rads(Cp,) = 2k. Thus v;_; and v;4 are the only vertices
which are at a 3-radius distance with v;. So that {v;, v;_, v} forms a K3 in
the corresponding Steiner 3-radial graph. Hence v; is adjacent to v;_; and v; g
only. This is true for every i. Therefore we get SR3(C,) = Cp(k).

Case 2. p=3k+2.

In this case we have three sets of Steiner 3-eccentric vertices of v; namely S; =
{Vig (k1) Viek }> S2 = {Vign, Vie (k1) } and Sz = {V; 4 (k41), Vi (k+1) }, Where the
subscripts are taken modulo p. Also their distance with v; is 2k+1. Thus v;4 (441)
and v;_j are vertices which are at a 3-radius distance with v;. So S7 forms a K3
in the corresponding SR3(G). Similarly each set of Steiner 3-eccentric vertices
forms a K3. Hence v; is adjacent to viyk, Vi—k, Vit (k4+1) and v;_(x41). Therefore

SR3(Cp) = Cp(k,k+1).

Case 3. p=3k+1.

In this case we have six sets of Steiner 3-eccentric vertices of v; namely,
{vis ket 15 Vie by {0 (1) s Vi (kr) b {0 (1) Vie (k—1) b {04k Vie (k) s {Vi ks
vi—k} and {v;(k—1),Vi—(k+1)}, Where the subscripts are taken modulo p. Also
their distance with v; is 2k. If we proceed as in the proof of Case 2, we get
v; is adjacent tO Vitk, Vi—k; Vit (k41) Vie (k+1)> Vit (k—1) and v;_(x—1) and hence
SR3(Cp) = Cp(k—1,k, k+1).

Proposition 3. Let G be any cycle Cy, of length p > 5. Then SR3(G) = Cp(1,2)
where G is the complement of G. When p = 3,4, SR3(G) = K3, K, respectively.

Proof. It G = Cs5,Cy then rads(G) = oo. Hence we get SR3(G) = K3, K4 respec-
tively. Let G' be any cycle C), of length p > 5 having the vertices vo, v1,- -, vp—1.
Then any vertex v; in G is adjacent to all the vertices of G except v;—1 and v;11.
Here {v;—1,vit1}, {vit1, vit2} and {v;—1,v;—2} are the sets of Steiner 3-eccentric
vertices of v;. Also their distance with v; is 3. That is in G d({vi, vi—1,vi4+1}) =
d({vi, Vig1,vit2}) = d({vi,vi—1,v;—2}) = 3. So es(v;) = 3 for all ¢ and hence
rads(G) = 3. Thus {v;, vi—1,vit1}, {Vi, Vit1, Vita} and {v;, v;—1,v;—2} each forms
a K3 in the corresponding S R3(G). Similarly, each set of Steiner 3-eccentric ver-
tices forms a K3. Therefore v; is adjacent to v;—1,v;11, V12 and v;_o. Hence we
get SR3(G) = Cp(1,2) for p > 5.
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Proposition 4. For p; < po,

Kiyp, ifpr =1
SR3(KP1,P2) = K2+p2 ifpl =2
K, UK, if pr > 3.

Proof. Let X = {x1,z2,...,2p, } and Y = {y1, 42, ..., Yp, } be the bipartition of
Kpl’pz'

Case 1. p;=1.

Then d({z1,yi,y;}) = 2. We have e3(z1) = 2 and radz(G) = 2. So in the
corresponding Steiner 3-radial graph, {z1,y;, y;} forms a K3. Since y; and y; are
arbitrary vertices of G, we have SR3(K1 p,) = Kiyp,.

Case 2. p; =2.

Here |X| = 2 and |Y| > 2. Then es(z1) = es(z2) = 2 and hence
rads(Kp, p,) = 2. Thus for every pair of vertices v;,v; € V(Kp, p,), there exists
a vertex vy such that d({v;,v;, vr}) = 2. Therefore any two vertices are adjacent
in SR3(Kp, p,)- Hence we get SR3(Kp, p,) = Kotp,-

Case 3. p; > 3.

Here |X| > 3 and |Y| > 3. Let z; be any vertex of X. Then es(x;) = 3 and
every two vertices in X different from z; are the Steiner 3-eccentric vertices of
x;. Similarly for y; € Y, e3(y;) = 3 and every two vertices in Y different from y;
are the Steiner 3-eccentric vertices of y;. Therefore rads(K,, p,) = 3 and hence
SRZ’»(Km,pz) = Kp, U Kp,.

Theorem 5. If G is a disconnected graph of order p > 3, then SR3(G) = K,,.

Proof. Let G be a disconnected graph with two components say G; and Gs. Then
every vertex in G is Steiner 3-eccentric with a vertex in G3. Thus e3(v;) = oo for
all 4 and hence rads(G) = oo. Therefore for every two vertices v; and v;, there
exists a vertex vy in G such that d({v;, v;, v }) = co. Hence we get SR3(G) = K.

Theorem 6. For any integer n > 2, there exists a graph G such that
rads(G) = n.

Proof. Let n > 2 be any integer. Construct a graph G by adding the vertices
u,v,x and y with a path P,_1 : v1vs - - - v, _1 and join u,v to v; and z,y to v,_1
as shown below.

v

(%1 U2 v3

Fig. 4.
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Then e3(v;) = n for every v; € V(P,—1). Also e3(u) = n + 1. Similarly ez(v) =
es(x) = e3(y) = n+ 1. Then rads(G) = min{es(v;) : v; € V(Ph—-1),e3(u), e3(v),
(), e3(y)} = n.

Problem 7. Characterize all Steiner 3-radial graphs.

3 Steiner Radial Number

Observation 8 It follows from the definition that for any connected graph G
on p vertices, 2 < rg(G) < p.

Proposition 9. If r¢(G) = n, then K, is the only Steiner m-radial graph for
G for m > n.

Proof. For a graph G, let rs(G) = n and let r be the n-radius of G. Then
there exists a vertex v in V(G) such that e,(v) = r. Let N be a n-element
set containing v with Steiner distance r. Consider the set N U {z}, where z €
V(G)—N. Since Steiner n-eccentricity of any n-element set containing v is atmost
r, the set N U {z} is of Steiner distance either r or r + 1 for any z € V(G) — N.
Otherwise a n-element subset of N U{z} with v is of Steiner distance more than
r.

By the same argument, e,(u) < ep41(u) for all u € V(G). The result follows
when (n+ 1)-radius of G is r. If (n+ 1)-radius of G is r 4+ 1, then the vertex v in
V(G) has the minimum Steiner (n + 1)-eccentricity r + 1. Let v; and v; be any
two vertices of G. Since v; and v; are adjacent in Steiner n-radial of G, there
exists an n-element set S with Steiner distance r. If r + 1 = p — 1, then any set
of n + 1 elements containing v; and v; has the Steiner distance r + 1. Suppose
r+1 < p—1.If v does not belong to the Steiner tree containing S, then SU{v}
has Steiner distance r + 1. If v € S, then also we adjoint a vertex w in S which
does not belong to the Steiner tree containing S such that the Steiner distance
of SU{w} is r + 1. Hence any two vertices v; and v; are adjacent in Steiner
(n + 1)-radial of G. Hence the result follows.

Theorem 10. r5(G) = 2 if and only if G is either complete or totally discon-
nected.

Proof. When G is complete (respectively a totally disconnected graph), 2-radius
is 1 (respectively co) and any pair of vertices has Steiner distance 1 (respectively
00). Hence rg(G) = 2.

Suppose rg(G) = 2. If G is not complete, then it has a pair of non-adjacent
vertices u and v with d({u,v}) > 2. If the 2-radius of G is 1, u and v are not
adjacent in the Steiner 2-radial of G, a contradiction to rg(G) = 2. If the 2-radius
of G is > 2, then we have d({z,y}) = 1 for all z,y € V(G) where (z,y) € E(G),
hence x and y are not adjacent in the Steiner 2-radial graph of G, so the edge-set
must be empty.



On the Steiner Radial Number of Graphs 71

Proposition 11. For any star graph with p vertices,

2 forp=2
TS(Kl’pl)_{Z’) forp > 3.

Proof. The case p = 2 follows directly from Theorem as K11 = K. When
p = 3, 2-radius of K; 2 is 1 and Steiner 2-radial of K 2 is not complete. Also
3-radius of K2 is 2 and Steiner 3-radial of K 5 is K3. For p > 4, let v; be
the vertex of degree p — 1 and vg,vs,...,v, be the pendant vertices of Kj p_i.
By Theorem [0 rg(K1,,-1) can not be 2. The 3-radius of K7 ,-1 is 2, since
es3(v1) = 2 and e3(v;) = 3,2 < i < p. In Steiner 3-radial of G,v; is adjacent
to each vertex v;,2 < i < p, since the set {v1,v;,v;(j # 1,7)} has the Steiner
distance 2. Also v; is adjacent to v; for 2 < 4,5 < p and i # j, since the set
{v1,v;,v;} has the Steiner distance 2.

Proposition 12. For any complete bipartite graph Ky, p, with p1 < p2 and
D1 7é 177“5'([(1717172) =p1+ 1.

Proof. Let {uy,us,...,up, } and {v1,v2,...,vp, } be the two partitions of K, p,.
When n < py,en(u;)) = n,1 < i < p; and e,(v;)) = n,1 < i < py. Hence
rad, (Kp, p,) = n. In Steiner n-radial of G, u; is not adjacent to v, since the n-
element sets containing u; and v; have only the Steiner distance n—1. Therefore,
rs(Kpy py) > p1- Whenn > p1,e,(u;) =n—1,1<i<pjandey(v;) >n—1,1<
i < pg. Hence rad,, (Kp, p,) =n — 1.

In Steiner (p; + 1)-radial of G, u, is adjacent to u; for 1 < 4,5 < p1, u; is
adjacent to v; for all 1 < ¢ < p1,1 < j < py and v; is adjacent to v; for all
1 <1i,j < po, since each of the sets {u1,us, ..., up,, v}, {u1,us,...,up,,v;} and
{vi,vj, u2, us, ..., up, } have the Steiner distance p; respectively. Hence Steiner
(p1 + 1)-radial of Kp, p, is Kp;4p,-

Theorem 13. For every tree T with m(# p—1) pendant vertices rs(T) = m+2.

Proof. Let T be a tree with m pendant vertices z1, 2, . . ., T, and the remaining
vertices be v1,v2, ..., Vp_m. Then e, (v;) = p—1 for n = m+1 and hence (m+1)-
radius is p — 1. If v;v; is a non-pendant edge in T, then the set {v;,v;} U X,
where X C {z1,x2,...,2Zm} with |X| = m — 1, has Steiner distance < p — 1.
Therefore, v; is not adjacent with v; in Steiner (m+1)-radial of G. Since (m+2)-
radius is p — 1 and any set {v;,vj, 1, 2, ..., Zm | has Steiner distance p — 1 for
1<14,j <p—m, Steiner (m + 2)-radial of G is K.

Corollary 14 For every positive integer k > 2, there exists a graph having
Steiner radial number k.

e 2 forp=4
Proposition 15. For any wheel, rg(W),) = {3 forp> 5.
Proof. When p = 4, the result follows from Theorem [0l So assume p > 5. Let v;
be vertex of degree p — 1 in W), and va,vs, ..., v, be the vertices on the cycle of

W,. Since W), is not complete by Theorem [0 rg(W,) > 2. Since es(vy) = 2 and
e3(vi) =3,2 <4 <p,rad3(G) =2. For 2 <4,j < pand ¢ # j, the set {v1,v;,v;}
has the Steiner distance 2 and hence the Steiner 3-radial of W), is complete.
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Theorem 16. For any pair of integers n and p with 2 < n < p, there ezists a
graph on p vertices whose Steiner radial number is n.

Proof. When p = 2, the result is obvious. When p = 3, the only connected
graph on 3 vertices are P3 and K3 in which rg(P3) = 3 and rg(K3) = 2. When
p =4,rs(Ky) = 2,75(Cs) = 3 and rg(Ps) = 4. When p > 5,rg(W,) = 3 by
Proposition I3l Also rg(K,) = 2 and rs(T") = m + 2 where m is the number of
pendant vertices in 7' and 2 <m < p — 2.
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