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Abstract. The Steiner n-radial graph of a graph G on p vertices, de-
noted by SRn(G), has the vertex set as in G and n(2 ≤ n ≤ p) vertices
are mutually adjacent in SRn(G) if and only if they are n-radial in G.
While G is disconnected, any n vertices are mutually adjacent in SRn(G)
if not all of them are in the same component. When n = 2, SRn(G) co-
incides with the radial graph R(G). For a pair of graphs G and H on p
vertices, the least positive integer n such that SRn(G) ∼= H, is called the
Steiner completion number of G over H. WhenH = Kp, the Steiner com-
pletion number of G over H is called the Steiner radial number of G. In
this paper, we determine 3-radial graph of some classes of graphs, Steiner
radial number for some standard graphs and the Steiner radial number
for any tree. For any pair of positive integers n and p with 2 ≤ n ≤ p, we
prove the existence of a graph on p vertices whose Steiner radial number
is n.

Keywords: n-radius, n-diameter, Steiner n-radial graph, Steiner com-
pletion number, Steiner radial number.

1 Introduction

Throughout this paper, we consider finite undirected graphs without multiple
edges and loops. Let G be a graph on p vertices and S a set of vertices of G. In
[2], the Steiner distance of S in G, denoted by dG(S), is defined as the minimum
number of edges in a connected subgraph ofG that contains S. Such a subgraph is
necessarily a tree and is called a Steiner tree for S inG. The Steiner n-eccentricity
en(v) of a vertex v in a graph G is defined as en(v) = max{dG(S) : S ⊆ V (G)
with v ∈ S and |S| = n}. The n-radius radn(G) of G is defined as the smallest
Steiner n-eccentricity among the vertices of G, and the n-diameter diamn(G)
of G is the largest Steiner n-eccentricity. The concept of Steiner distance was
further developed in [3,6,5].
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In [4], KM. Kathiresan and G. Marimuthu introduced the concept of radial
graphs. Two vertices of a graph G are said to be radial to each other if the
distance between them is equal to the radius of the graph. The radial graph of
a graph G, denoted by R(G), has the vertex set as in G and two vertices are
adjacent in R(G) if and only if they are radial in G. If G is disconnected, then
two vertices are adjacent in R(G) if they belong to different components of G.

Any n vertices of a graph G are said to be n-radial to each other if the Steiner
distance between them is equal to the n-radius of the graph G. The Steiner n-
radial graph of a graph G, denoted by SRn(G), has the vertex set as in G and
n(2 ≤ n ≤ p) vertices are mutually adjacent in SRn(G) if and only if they are n-
radial in G. If G is disconnected, any n vertices are mutually adjacent in SRn(G)
if not all of them are in the same component. For the edge set of SRn(G), draw
Kn corresponding to each set of n-radial vertices. By taking n = 2, SRn(G)
coincides with R(G). Consider the graph G given in Figure 1.
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Fig. 1.

If we let n = 3, we get that rad3(G) = 3 and that S1 = {v1, v2, v5},
S2 = {v1, v2, v6}, S3 = {v1, v3, v4}, S4 = {v1, v4, v5}, S5 = {v1, v4, v6},
S6 = {v2, v3, v5}, S7 = {v2, v3, v6}, S8 = {v2, v5, v6}, S9 = {v3, v4, v5} and
S10 = {v3, v4, v6} are the sets of 3-radial vertices of G. Hence the Steiner 3-
radial graph of G is as shown in Figure 1. A graph G is called a Steiner 3-radial
graph if SR3(H) ∼= G for some graph H. If G does not contain K3 as a subgraph,
then G is not a Steiner 3-radial graph. The converse of this statement is not true.
For example, the graph G given in Figure 2 is not a Steiner 3-radial graph.
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Let G and H be two graphs on p vertices. If there exists a positive integer n
such that SRn(G) ∼= H, then H is called a Steiner completion of G. The positive
integer n is said to be Steiner completion of G over H if n is the least positive
integer such that SRn(G) ∼= H. For example, the Steiner completion number of
bistar Bp1,p2 overKp1+p2+2−e is p1+p2. If there is no n such that SRn(G) ∼= H,
then the Steiner completion number of G over H is ∞. The Steiner completion
number of G over H is not necessarily equal to the Steiner completion number
of H over G. For the graphs G and H given in Figure 3, the Steiner completion
number of G over H is 3 but the Steiner completion number of H over G is ∞.

�

��

�

�

� �

�

G H

Fig. 3.

When H = Kp, the Steiner completion number of G over H is called the Steiner
radial number of G. That is, the Steiner radial number rS(G) of a graph G is
the least positive integer n such that the Steiner n-radial of G is complete. In
this paper, we determine the Steiner radial number for some classes of graphs
and obtain the Steiner radial number for any tree. Also we prove that for every
pair of integers n and p with 2 ≤ n ≤ p, there exists a graph on p vertices whose
Steiner radial number is n. For graph theoretic terminology we follow [1].

2 Steiner 3-Radial Graphs of Some Classes of Graphs

Proposition 1. Let Pp be any path on p ≥ 3 vertices. Then SR3(Pp) = K2 +
Kp−2 where Kp−2 is the complete graph on p− 2 internal vertices of Pp.

Proof. Let Pp : v1v2 · · · vp−1vp by any path on p ≥ 3 vertices. Then the Steiner
3-eccentricity of each vertex of Pp is p− 1 and hence rad3(Pp) = p− 1. Now for
every vertex vi, 2 ≤ i ≤ p− 1, we have d({vi, v1, vp}) = p− 1. Hence {vi, v1, vp}
where 2 ≤ i ≤ p− 1 forms a K3. So assume p ≥ 4. Also for every pair of vertices
vi and vj , i �= j and 2 ≤ i, j ≤ p − 1, there exists no vk, 1 ≤ k ≤ p, k �= i and
k �= j such that d({vi, vj , vk}) = p − 1 and hence there is no edge between vi
and vj , i �= j and 2 ≤ i, j ≤ p− 1. Therefore SR3(Pp) = K2 +Kp−2 where Kp−2

is the complete graph on p− 2 internal vertices of Pp.

Proposition 2. Let Cp be any cycle of length p ≥ 5. Then

SR3(Cp) =

⎧
⎨

⎩

Cp(k) if p = 3k
Cp(k, k + 1) if p = 3k + 2
Cp(k − 1, k, k + 1) if p = 3k + 1.
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Where the circulant graph Cp(n1, n2, . . . , nl) is obtained from a cycle on p ver-
tices by joining each vertex vi, 1 ≤ i ≤ p with the vertices vi−nj and vi+nj , the
subscripts being taken modulo p, for 1 ≤ j ≤ l. When p = 3, SR3(Cp) = K3 and
when p = 4, SR3(Cp) = K4.

Proof. Clearly SR3(Cp) = K3 or K4 when p = 3, 4 respectively.
Let Cp : v0, v1, v2, . . . , vp−1, v0 be any cycle of length p ≥ 5.

Case 1. p = 3k.
In this case vi−k and vi+k are Steiner 3-eccentric vertices of vi where the

subscripts are taken modulo p. Also Steiner 3-eccentricity of a vertex vi is 2k
for every i and hence rad3(Cp) = 2k. Thus vi−k and vi+k are the only vertices
which are at a 3-radius distance with vi. So that {vi, vi−k, vi+k} forms a K3 in
the corresponding Steiner 3-radial graph. Hence vi is adjacent to vi−k and vi+k

only. This is true for every i. Therefore we get SR3(Cp) = Cp(k).

Case 2. p = 3k + 2.
In this case we have three sets of Steiner 3-eccentric vertices of vi namely S1 =

{vi+(k+1), vi−k}, S2 = {vi+k, vi−(k+1)} and S3 = {vi+(k+1), vi−(k+1)}, where the
subscripts are taken modulo p. Also their distance with vi is 2k+1. Thus vi+(k+1)

and vi−k are vertices which are at a 3-radius distance with vi. So S1 forms a K3

in the corresponding SR3(G). Similarly each set of Steiner 3-eccentric vertices
forms a K3. Hence vi is adjacent to vi+k, vi−k, vi+(k+1) and vi−(k+1). Therefore
SR3(Cp) = Cp(k, k + 1).

Case 3. p = 3k + 1.
In this case we have six sets of Steiner 3-eccentric vertices of vi namely,

{vi+(k+1), vi−k}, {vi+(k+1), vi−(k+1)}, {vi+(k+1), vi−(k−1)}, {vi+k, vi−(k+1)}, {vi+k,
vi−k} and {vi+(k−1), vi−(k+1)}, where the subscripts are taken modulo p. Also
their distance with vi is 2k. If we proceed as in the proof of Case 2, we get
vi is adjacent to vi+k, vi−k, vi+(k+1), vi−(k+1), vi+(k−1) and vi−(k−1) and hence
SR3(Cp) = Cp(k − 1, k, k + 1).

Proposition 3. Let G be any cycle Cp of length p ≥ 5. Then SR3(G) = Cp(1, 2)
where G is the complement of G. When p = 3, 4, SR3(G) = K3,K4 respectively.

Proof. If G ∼= C3, C4 then rad3(G) = ∞. Hence we get SR3(G) = K3,K4 respec-
tively. Let G be any cycle Cp of length p ≥ 5 having the vertices v0, v1, · · · , vp−1.
Then any vertex vi in G is adjacent to all the vertices of G except vi−1 and vi+1.
Here {vi−1, vi+1}, {vi+1, vi+2} and {vi−1, vi−2} are the sets of Steiner 3-eccentric
vertices of vi. Also their distance with vi is 3. That is in G d({vi, vi−1, vi+1}) =
d({vi, vi+1, vi+2}) = d({vi, vi−1, vi−2}) = 3. So e3(vi) = 3 for all i and hence
rad3(G) = 3. Thus {vi, vi−1, vi+1}, {vi, vi+1, vi+2} and {vi, vi−1, vi−2} each forms
a K3 in the corresponding SR3(G). Similarly, each set of Steiner 3-eccentric ver-
tices forms a K3. Therefore vi is adjacent to vi−1, vi+1, vi+2 and vi−2. Hence we
get SR3(G) = Cp(1, 2) for p ≥ 5.
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Proposition 4. For p1 ≤ p2,

SR3(Kp1,p2) =

⎧
⎨

⎩

K1+p2 if p1 = 1
K2+p2 if p1 = 2
Kp1 ∪Kp2 if p1 ≥ 3.

Proof. Let X = {x1, x2, . . . , xp1} and Y = {y1, y2, . . . , yp2} be the bipartition of
Kp1,p2 .

Case 1. p1 = 1.
Then d({x1, yi, yj}) = 2. We have e3(x1) = 2 and rad3(G) = 2. So in the

corresponding Steiner 3-radial graph, {x1, yi, yj} forms a K3. Since yi and yj are
arbitrary vertices of G, we have SR3(K1,p2) = K1+p2 .

Case 2. p1 = 2.
Here |X | = 2 and |Y | ≥ 2. Then e3(x1) = e3(x2) = 2 and hence

rad3(Kp1,p2) = 2. Thus for every pair of vertices vi, vj ∈ V (Kp1,p2), there exists
a vertex vk such that d({vi, vj , vk}) = 2. Therefore any two vertices are adjacent
in SR3(Kp1,p2). Hence we get SR3(Kp1,p2) = K2+p2 .

Case 3. p1 ≥ 3.
Here |X | ≥ 3 and |Y | ≥ 3. Let xi be any vertex of X. Then e3(xi) = 3 and

every two vertices in X different from xi are the Steiner 3-eccentric vertices of
xi. Similarly for yi ∈ Y, e3(yi) = 3 and every two vertices in Y different from yi
are the Steiner 3-eccentric vertices of yi. Therefore rad3(Kp1,p2) = 3 and hence
SR3(Kp1,p2) = Kp1 ∪Kp2 .

Theorem 5. If G is a disconnected graph of order p ≥ 3, then SR3(G) ∼= Kp.

Proof. LetG be a disconnected graph with two components sayG1 and G2. Then
every vertex in G1 is Steiner 3-eccentric with a vertex in G2. Thus e3(vi) = ∞ for
all i and hence rad3(G) = ∞. Therefore for every two vertices vi and vj , there
exists a vertex vk in G such that d({vi, vj , vk}) = ∞. Hence we get SR3(G) = Kp.

Theorem 6. For any integer n ≥ 2, there exists a graph G such that
rad3(G) = n.

Proof. Let n ≥ 2 be any integer. Construct a graph G by adding the vertices
u, v, x and y with a path Pn−1 : v1v2 · · · vn−1 and join u, v to v1 and x, y to vn−1

as shown below.
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Then e3(vi) = n for every vi ∈ V (Pn−1). Also e3(u) = n+ 1. Similarly e3(v) =
e3(x) = e3(y) = n+ 1. Then rad3(G) = min{e3(vi) : vi ∈ V (Pn−1), e3(u), e3(v),
e3(x), e3(y)} = n.

Problem 7. Characterize all Steiner 3-radial graphs.

3 Steiner Radial Number

Observation 8 It follows from the definition that for any connected graph G
on p vertices, 2 ≤ rS(G) ≤ p.

Proposition 9. If rS(G) = n, then Kp is the only Steiner m-radial graph for
G for m ≥ n.

Proof. For a graph G, let rS(G) = n and let r be the n-radius of G. Then
there exists a vertex v in V (G) such that en(v) = r. Let N be a n-element
set containing v with Steiner distance r. Consider the set N ∪ {x}, where x ∈
V (G)−N. Since Steiner n-eccentricity of any n-element set containing v is atmost
r, the set N ∪ {x} is of Steiner distance either r or r+ 1 for any x ∈ V (G)−N.
Otherwise a n-element subset of N ∪{x} with v is of Steiner distance more than
r.

By the same argument, en(u) ≤ en+1(u) for all u ∈ V (G). The result follows
when (n+1)-radius of G is r. If (n+1)-radius of G is r+1, then the vertex v in
V (G) has the minimum Steiner (n+ 1)-eccentricity r + 1. Let vi and vj be any
two vertices of G. Since vi and vj are adjacent in Steiner n-radial of G, there
exists an n-element set S with Steiner distance r. If r + 1 = p− 1, then any set
of n + 1 elements containing vi and vj has the Steiner distance r + 1. Suppose
r+1 < p− 1. If v does not belong to the Steiner tree containing S, then S ∪{v}
has Steiner distance r + 1. If v ∈ S, then also we adjoint a vertex w in S which
does not belong to the Steiner tree containing S such that the Steiner distance
of S ∪ {w} is r + 1. Hence any two vertices vi and vj are adjacent in Steiner
(n+ 1)-radial of G. Hence the result follows.

Theorem 10. rS(G) = 2 if and only if G is either complete or totally discon-
nected.

Proof. When G is complete (respectively a totally disconnected graph), 2-radius
is 1 (respectively ∞) and any pair of vertices has Steiner distance 1 (respectively
∞). Hence rS(G) = 2.

Suppose rS(G) = 2. If G is not complete, then it has a pair of non-adjacent
vertices u and v with d({u, v}) ≥ 2. If the 2-radius of G is 1, u and v are not
adjacent in the Steiner 2-radial of G, a contradiction to rS(G) = 2. If the 2-radius
of G is ≥ 2, then we have d({x, y}) = 1 for all x, y ∈ V (G) where (x, y) ∈ E(G),
hence x and y are not adjacent in the Steiner 2-radial graph of G, so the edge-set
must be empty.
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Proposition 11. For any star graph with p vertices,

rS(K1,p−1) =

{
2 for p = 2
3 for p ≥ 3.

Proof. The case p = 2 follows directly from Theorem 10 as K1,1 = K2. When
p = 3, 2-radius of K1,2 is 1 and Steiner 2-radial of K1,2 is not complete. Also
3-radius of K1,2 is 2 and Steiner 3-radial of K1,2 is K3. For p ≥ 4, let v1 be
the vertex of degree p − 1 and v2, v3, . . . , vp be the pendant vertices of K1,p−1.
By Theorem 10, rS(K1,p−1) can not be 2. The 3-radius of K1,p−1 is 2, since
e3(v1) = 2 and e3(vi) = 3, 2 ≤ i ≤ p. In Steiner 3-radial of G, v1 is adjacent
to each vertex vi, 2 ≤ i ≤ p, since the set {v1, vi, vj(j �= 1, i)} has the Steiner
distance 2. Also vi is adjacent to vj for 2 ≤ i, j ≤ p and i �= j, since the set
{v1, vi, vj} has the Steiner distance 2.

Proposition 12. For any complete bipartite graph Kp1,p2 with p1 ≤ p2 and
p1 �= 1, rS(Kp1,p2) = p1 + 1.

Proof. Let {u1, u2, . . . , up1} and {v1, v2, . . . , vp2} be the two partitions of Kp1,p2 .
When n ≤ p1, en(ui) = n, 1 ≤ i ≤ p1 and en(vi) = n, 1 ≤ i ≤ p2. Hence
radn(Kp1,p2) = n. In Steiner n-radial of G, ui is not adjacent to vj , since the n-
element sets containing ui and vj have only the Steiner distance n−1. Therefore,
rS(Kp1,p2) > p1. When n > p1, en(ui) = n−1, 1 ≤ i ≤ p1 and en(vi) ≥ n−1, 1 ≤
i ≤ p2. Hence radn(Kp1,p2) = n− 1.

In Steiner (p1 + 1)-radial of G, ui is adjacent to uj for 1 ≤ i, j ≤ p1, ui is
adjacent to vj for all 1 ≤ i ≤ p1, 1 ≤ j ≤ p2 and vi is adjacent to vj for all
1 ≤ i, j ≤ p2, since each of the sets {u1, u2, . . . , up1 , vj}, {u1, u2, . . . , up1 , vj} and
{vi, vj , u2, u3, . . . , up1} have the Steiner distance p1 respectively. Hence Steiner
(p1 + 1)-radial of Kp1,p2 is Kp1+p2 .

Theorem 13. For every tree T with m(�= p−1) pendant vertices rS(T ) = m+2.

Proof. Let T be a tree with m pendant vertices x1, x2, . . . , xm and the remaining
vertices be v1, v2, . . . , vp−m. Then en(vi) = p−1 for n = m+1 and hence (m+1)-
radius is p − 1. If vivj is a non-pendant edge in T, then the set {vi, vj} ∪ X,
where X ⊆ {x1, x2, . . . , xm} with |X | = m − 1, has Steiner distance < p − 1.
Therefore, vi is not adjacent with vj in Steiner (m+1)-radial of G. Since (m+2)-
radius is p− 1 and any set {vi, vj , x1, x2, . . . , xm} has Steiner distance p− 1 for
1 ≤ i, j ≤ p−m, Steiner (m+ 2)-radial of G is Kp.

Corollary 14 For every positive integer k ≥ 2, there exists a graph having
Steiner radial number k.

Proposition 15. For any wheel, rS(Wp) =

{
2 for p = 4
3 for p ≥ 5.

Proof. When p = 4, the result follows from Theorem 10. So assume p ≥ 5. Let v1
be vertex of degree p− 1 in Wp and v2, v3, . . . , vp be the vertices on the cycle of
Wp. Since Wp is not complete by Theorem 10, rS(Wp) > 2. Since e3(v1) = 2 and
e3(vi) = 3, 2 ≤ i ≤ p, rad3(G) = 2. For 2 ≤ i, j ≤ p and i �= j, the set {v1, vi, vj}
has the Steiner distance 2 and hence the Steiner 3-radial of Wp is complete.
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Theorem 16. For any pair of integers n and p with 2 ≤ n ≤ p, there exists a
graph on p vertices whose Steiner radial number is n.

Proof. When p = 2, the result is obvious. When p = 3, the only connected
graph on 3 vertices are P3 and K3 in which rS(P3) = 3 and rS(K3) = 2. When
p = 4, rS(K4) = 2, rS(C4) = 3 and rS(P4) = 4. When p ≥ 5, rS(Wp) = 3 by
Proposition 15. Also rS(Kp) = 2 and rS(T ) = m+ 2 where m is the number of
pendant vertices in T and 2 ≤ m ≤ p− 2.
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