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Abstract. The class doughnut graphs is a subclass of 5-connected pla-
nar graphs. It is known that a doughnut graph admits a straight-line
grid drawing with linear area, the outerplanarity of a doughnut graph is
3, and a doughnut graph is k-partitionable. In this paper we show that a
doughnut graph exhibits a recursive structure. We also give an efficient
algorithm for finding a shortest path between any pair of vertices in a
doughnut graph. We also propose a nice application of a doughnut graph
based on its properties.

1 Introduction

A five-connected planar graph G is called a doughnut graph if G has an embed-
ding Γ such that (a) Γ has two vertex-disjoint faces each of which has exactly
p vertices, p > 3, and all the other faces of Γ has exactly three vertices; and
(b) G has the minimum number of vertices satisfying condition (a). Figure 1(a)
illustrates a doughnut graph where F1 and F2 are two vertex disjoint faces. Fig-
ure 1(b) illustrates a doughnut like embedding of G where F1 is embedded as
the outer face and F2 is embedded as the inner face. A doughnut graph and their
spanning subgraphs admit straight-line grid drawings with linear area [2,3]. The
outerplanarity of this class is 3 [3], and it is k-partitionable [5].
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Fig. 1. (a) A doughnut graph G, and (b) a doughnut embedding of G
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Fig. 2. (a) A straight-line drawing of a p-doughnut graph G where p = 4, and (b)
illustration for four partition of edges of G

In this paper we present our results on recursive structure, shortest paths and
topological properties of a doughnut graph.

2 Recursive Structure of Doughnut Graphs

A class of graphs has a recursive structure if every instance of it can be created by
connecting the smaller instances of the same class of graphs. We now show that
the doughnut graphs have a recursive structure. Let G be a p-doughnut graph. A
doughnut graph G is 5-regular and has exactly 4p vertices. Furthermore, G has
three vertex-disjoint cycles C1, C2 and C3 with p, 2p and p vertices respectively,
such that V (C1) ∪ V (C2) ∪ V (C3)=V (G). Let z1, z2, ..., z2p be the vertices of
C2 in counter clockwise order such that z1 has exactly one neighbor on C1. Let
x1 be the neighbor of z1 on C1, and let x1, x2, ..., xp be the vertices of C1 in
the counter clockwise order. Let y1, y2, ..., yp be the vertices on C3 in counter
clockwise order such that y1 and yp are the right neighbor and the left neighbor
of z1, respectively. Let D be a straight-line grid drawing of a p-doughnut graph
G with linear area [2], as illustrated in Figure 2(a). We partition the edges of
D as follows. The left partition consists of the edges - (i) (x1, xp), (ii) (z1, z2p),
(iii) (y1, yp), (iv)(x1, z2p) and (v) (z1, yp); and the right partition consists of the
edges - (i) (zp, zp+1), (ii) the edge between the two neighbors of zp on C1 if
zp has two neighbors on C1 otherwise the edge between the two neighbors of
zp+1 on C1, (iii) the edge between the two neighbors of zp on C3 if zp has two
neighbors on C3 otherwise the edge between the two neighbors of zp+1 on C3,
(iv) the edge between zp and its right neighbor on C1 if zp has two neighbors
on C1 otherwise the edge between zp+1 and its left neighbor on C1, and (v) the
edge between zp and its right neighbor on C3 if zp has two neighbors on C3

otherwise the edge between zp+1 and its left neighbor on C3. The graph G is
divided into two connected components if we delete the edges of the left and the
right partitions from G. We call the connected component that contains vertex
xp the top partition of edges and we call the connected component that contains
vertex x1 the bottom partition of edges.

Figure 2(b) illustrates four partitions of edges (indicated by dotted lines) of a
p-doughnut graph G in Figure 2(a) where p = 4. We now construct a (p1 + p2)-
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doughnut graph G from a p1-doughnut graph G1 and a p2-doughnut graph G2.
We first construct two graphsG′

1 andG′
2 fromG1 andG2, respectively, as follows.

We partition the edges of G1 into left, right, top and bottom partitions. Then
we identify the vertex xi+1 of the top partition to the vertex yi of the right
partition, the vertex zp1+1 of the top partition to the vertex zp1 of the right
partition, and the vertex yi+1 of the top partition to the vertex xi of the right
partition. Thus we construct G′

1 from G1. Figure 3(c) illustrates G′
1 which is

constructed from G1 in Figure 3(a) where p1 = 4. In case of construction of G′
2,

after partitioning (left, right, top, bottom) the edges of G2 we identify the vertex
y′p2

of left partition to the vertex x′
1 of the bottom partition, vertex z′2p2

of the
left partition to the vertex z′1 of the bottom partition, and the vertex x′

p2
of left

partition to the vertex y′1. Figure 3(f) illustrates G′
2 which is constructed from

G2 in Figure 3(d) where p2 = 5. We finally construct a (p1+p2)-doughnut graph
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Fig. 3. Illustration for construction of a (p1+p2)-doughnut graph G from a p1-doughnut
graph G1 and a p2-doughnut graph G2 where p1 = 4 and p2 = 5
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G as follows. We identify the vertices yi+1, zp1+1, xi+1 of G′
1 to the vertices of

x′
p2
, z′2p2

, y′p2
of G′

2, respectively; and identify the vertices of yi, zp1 , xi of G
′
1 to

the vertices of x′
1, z

′
1, y

′
1 of G′

2, respectively. Clearly the resulting graph G is a
(p1 + p2)-doughnut graph as illustrated in Fig. 3(h).

We thus have the following theorem.

Theorem 1. Let G1 be a p1-doughnut graph and let G2 be a p2-doughnut graph.
Then one can construct a (p1 + p2)-doughnut graph G from G1 and G2.

3 Finding a Shortest Path

A shortest path between any pair of vertices of a doughnut graph can be found
efficiently as stated in the following theorem.

Theorem 2. Let G be a p-doughnut graph. Then a shortest path between any
pair of vertices u and v of G can be found in O(ls) time, where ls is the length
of the shortest path between u and v.

We have a constructive proof of Theorem 2. The detail is omitted in this extended
abstract.

4 Topological Properties of Doughnut Graphs

Let G be a p-doughnut graph. The number of vertices of G is 4p where p(> 3)
is an integer. A p-doughnut graph is maximal fault tolerant since it is 5-regular.
Every p-doughnut graph G has a doughnut embedding Γ where vertices of G
lie on three vertex disjoint cycles C1, C2 and C3 such that C1 is the outer cycle
containing p vertices, C2 is the middle cycle containing 2p vertices and C3 is
the inner cycle containing p vertices. Then one can easily see that the diameter
of a p-doughnut graph is �p/2�+ 2. Moreover, a doughnut graph admits a ring
embedding since a doughnut graph is Hamilton-connected [5].

Table 1. Topological comparison of doughnut graphs with various Cayley graphs

Topology number diameter degree connectivity Fault Hamiltonian
of nodes tolerance

n-cycle n �n/2� 2 2 maximal yes

Cube-connected d2d �5d/2� − 2 3 3 maximal yes
-cycle [6]

Wrapped around d2d �3d/2� 4 4 maximal yes
butterfly
graph [4]

d-Dimensional 2d d d d maximal yes
hypercube

[1]

p-doughnut 4p �p/2� + 2 5 5 maximal yes
graphs [2]
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5 Conclusion

We have shown that doughnut graphs exhibit recursive structure. We have pro-
posed an efficient algorithm to find shortest path between any pair of vertices
which exploit the structure of the graph. We have also found that doughnut
graph has smaller diameter, higher degree and connectivity, maximal fault toler-
ance and ring embedding. There are several parameters like connectivity, degree,
diameter, symmetry and fault tolerance which are considered for building inter-
connection networks [7]. Table 1 presents the topological comparison of various
Cayley graphs, which are widely used as interconnection networks, with dough-
nut graphs. The table shows that topological properties of doughnut graphs are
very much similar to interconnection networks. We may have an efficient routing
scheme using shortest path finding algorithm.Thus doughnut graphs may find
nice applications as interconnection networks.
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