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Abstract. In this paper, we study some graphs which are realizable and
some which are not realizable as the incomparability graph (denoted by
Γ ′(L)) of a lattice L with at least two atoms. We prove that for n ≥ 4,
the complete graph Kn with two horns is realizable as Γ ′(L). We also
show that the complete graph K3 with three horns emanating from each
of the three vertices is not realizable as Γ ′(L), however it is realizable
as the zero-divisor graph of L. Also we give a necessary and sufficient
condition for a complete bipartite graph with two horns to be realizable
as Γ ′(L) for some lattice L.

Keywords: Incomparability graph, bipartite graph, horn, double star
graph, zero-divisor graph.

1 Introduction

Filipov [5] discuses the comparability graphs of partially ordered sets by defining
the adjacency between two elements of a poset by using the comparability rela-
tion, that is a, b are adjacent if either a ≤ b or b ≤ a. Duffus and Rival [4] discuss
the covering graph of a poset. The papers of Gadenova [6], Bollobas and Rival
[2] discuss the properties of covering graphs derived from lattices. Nimbhorkar,
Wasadikar and Pawar [10] defined the zero-divisor graphs of a lattice L with 0,
by defining the adjacency of two elements x, y ∈ L by x ∧ y = 0.

Also, the concept of the cozero divisor graph of a commutative ring was intro-
duced by M. Afkhami and K. Khashyarmanesh in [1]. Let R be a commutative
ring with identity and let W (R)∗ be the set of all nonzero and nonunit elements
of R. Two distinct vertices a and b in W (R)∗ are adjacent if and only if a /∈ bR
and b /∈ aR.

Recently, Bresar et al. [3] introduced the cover incomparability graphs of
posets and called these graphs as C − I graphs of P . They defined the graph in
which the edge set is the union of the edge sets of the corresponding covering
graph and the corresponding incomparability graph.

In a lattice L, if a, b are incomparable then we write a ‖ b. Let L be a
finite lattice and let W (L) = {x | there exists y ∈ L such that x ‖ y }. The
incomparability graph of L, denoted by Γ ′(L), is a graph with the vertex set
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W (L) and two distinct vertices a, b ∈ W (L) are adjacent if and only if they are
incomparable. Note that Γ ′(L) does not contain any isolated vertex.

Wasadikar and Survase [12] introduced the incomparability graph of a lattice.
Throughout this paper, L is a finite lattice with at least two atoms.
In this paper, we study some more properties of Γ ′(L). In section 2 we show

that, if G is a graph on five vertices without any isolated vertex then G is
realizable as Γ ′(L) for some lattice L if and only if G is not isomorphic to a
member of a set of four graphs. Also we show when the zero-divisor graph and
the incomparability graph of a lattice L are isomorphic. In section 3 we show
that, the complete graph K3 with exactly one pendant emanating from all the
three vertices is not realizable as the incomparability graph of a lattice. However
it is realizable as the zero-divisor graph of a lattice L.

The undefined terms are from West [14], Harary [8] and Gratzer [7].
A graphG is connected if there exists a path between any two distinct vertices.

A graph G is complete if each pair of distinct vertices is joined by an edge. For
a positive integer n, we use Kn to denote the complete graph with n vertices.
A complete bipartite graph is a simple bipartite graph such that two vertices
are adjacent if and only if they belong to different partite sets. The complete
bipartite graph is denoted by Km,n. A graph in which one vertex is adjacent to
every other vertex and no other adjacencies is called a star graph. A vertex of a
graph G is called a pendant vertex if its degree is 1. A graph which is the union
of two star graphs whose centers a and b are connected by a single edge is called
a double star graph.

2 Some Realizable and Non Realizable Graphs

Nimbhorkar, Wasadikar and Pawar [10] associated a zero-divisor graph to a
lattice L with 0, whose vertices are the elements of L and two distinct elements
are adjacent if and only if their meet is 0. Similarly in [11] we define a graph of
a lattice L with 0. We say that an element x ∈ L is a zero-divisor if there exists
a non zero y ∈ L such that x∧y = 0. We denote by Z(L) the set of zero-divisors
of L. We associate a graph Γ (L) to L with the vertex set Z∗(L) = Z(L)− {0},
the set of all nonzero zero-divisors of L and distinct a, b ∈ Z∗(L) are adjacent if
and only if a ∧ b = 0. We call this graph as the zero-divisor graph of L.

Wasadikar and Survase [12] have shown that all connected graphs with at
most four vertices can be realized as Γ ′(L).

In this section we discuss graphs with five vertices. There are 34 graphs with
five vertices (see [8] Appendix 1) out of which 19 are realizable as Γ ′(L).

Definition 1. In a lattice L with 0, a nonzero element a ∈ L is called an atom
if there is no x ∈ L such that 0 < x < a.

Lemma 1. If a lattice L contains n atoms, then these atoms induce a Kn in
the incomparability graph.

We denote by Al = {x ∈ L | x ≤ y for all y ∈ A}.
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The next theorem characterizes which graphs are realizable as the incompa-
rability graph of a lattice.

Theorem 2. Let G be a graph on five vertices without any isolated vertex.
Then G is realizable as Γ ′(L) for some L if and only if G is not isomorphic to
any of the four graphs shown in Figures 1 to 4 given below.
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Proof. We know that, in a lattice the greatest lower bound of any nonempty
finite subset of L exists. Here we show that, the greatest lower bound of some
nonempty finite subset of L does not exist.

Consider the Figure 1. Suppose that G = Γ ′(L) for some lattice L. Since
Γ ′(L) contains a 3 - cycle, L can contain two or three atoms and any two atoms
are adjacent in Γ ′(L). we have the following cases.

Case (i) Suppose, without loss of generality, L has two atoms d, b. We show
that a ∧ c does not exist. Since from Figure 1, d and a are comparable and d is
an atom hence d ≤ a. Similarly d ≤ c. Also a, e are comparable. If a ≤ e, then
d ≤ a implies d ≤ e, a contradiction since d and e are adjacent. Hence e ≤ a.
Similarly e ≤ c. Thus {a, c}l = {0, d, e} but d ‖ e hence a ∧ c does not exist.

Now suppose d, e are the two atoms in L then in a similar manner
{a, c}l = {0, d, e} but d ‖ e. Thus a ∧ c does not exist.

Case (ii) Suppose L has three atoms a, b and c. We show that d ∧ e does not
exist. We note that, {d, e}l = {0, a, c} but a ‖ c hence d ∧ e does not exist. So
Figure 1 cannot be realizable as Γ ′(L).

Now for Figure 2 Suppose that G = Γ ′(L) for some lattice L. We have the
following cases.

Case (i) Suppose L has two atoms a, b. We show that d∧e does not exist. Since
a is an atom we have a ≤ d and a ≤ e. From Figure 2, c and d are comparable.
If d ≤ c, then a ≤ d implies a ≤ c, a contradiction since a and c are adjacent.
Hence c ≤ d. Similarly c ≤ e. Thus {d, e}l = {0, a, c} but a ‖ c. Hence d∧ e does
not exist.

Suppose e, d are the two atoms in L then e ≤ a, e ≤ c and d ≤ a, d ≤ c that
is {a, c}l = {0, d, e} but e ‖ d. Hence a ∧ c does not exist.

Case (ii) Suppose L has three atoms a, b and c. Then by similar arguments as
in the case (ii) of Figure 1, d ∧ e does not exist. So Figure 2 is not realizable as
Γ ′(L).
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Consider the Figure 3. Suppose P5 = Γ ′(L) for some lattice L. Then by
Lemma 1 L has exactly two atoms.

Let b and c be the two atoms. Then we have b ≤ d, b ≤ e and c ≤ a, c ≤ e.
Also we have a ≤ d or d ≤ a.
If a ≤ d, then c ≤ a implies c ≤ d, a contradiction since c and d are adjacent.
If d ≤ a, then b ≤ d implies b ≤ a, a contradiction since a and b are adjacent.
Hence neither a ≤ d nor d ≤ a, a contradiction since a and d are not adjacent.
Now let d and e be the two atoms in L. We show that a ∧ b does not exist.

We note that {a, b}l = {0, d, e} but d ‖ e hence a∧ b does not exist. So the path
P5 cannot be realized as Γ ′(L).

Consider the Figure 4. Suppose that G = Γ ′(L) for some lattice L. By Lemma
1 L has exactly two atoms. Let, without any loss of generality, a and b be the
two atoms. Then a ≤ c, a ≤ d and b ≤ e, b ≤ d.

Also we have c ≤ e or e ≤ c. If c ≤ e, then a ≤ c implies a ≤ e, a contradiction
since a and e are adjacent.

If e ≤ c, then b ≤ e implies b ≤ c, a contradiction since b and c are adjacent.
Neither c ≤ e nor e ≤ c, a contradiction since c and e are nonadjacent. Hence
Γ ′(L) cannot be a 5 - gon.

To show the converse, as mentioned earlier, Γ ′(L) cannot have any isolated
vertex. There are 23 graphs on five vertices without isolated vertices. Hence there
are 19 graphs other than the graphs shown in Figures 1 to 4. Each of these 19
graphs is realizable as the incomparability graph of a lattice. These graphs are
shown in Figure 5 to Figure 23.
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The following are examples of lattices corresponding to the above graphs
respectively.
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Remark 1. However each graph shown in Figure 1 to Figure 4 can be realized
as a subgraph of Γ ′(L) for some lattice L.

Definition 2. Let L be a lattice then a non-zero element a ∈ L is called meet-
irreducible if a = b ∧ c implies a = b or a = c. Otherwise it is called meet-
reducible.

For example, in Figure 17(a), the elements a, c, d and e are meet-irreducible
whereas the element b is meet-reducible.

Theorem 3. The zero-divisor graph and the incomparability graph of a lattice
L are isomorphic if and only if L does not contain any meet-reducible element.

Proof. Suppose Γ (L) and Γ ′(L) are isomorphic for some lattice L. We want to
show that, L does not contain any meet-reducible element.

Suppose on the contrary L has a meet-reducible element say b then there exist
a, c ∈ L and a, c �= b such that b = a ∧ c. Hence a and c are incomparable. So
there is an edge a − c in Γ ′(L) but a ∧ c �= 0. So a and c are not adjacent in
Γ (L), a contradiction to assumption that Γ (L) and Γ ′(L) are isomorphic.

Conversely suppose L does not contain any meet-reducible element. We want
to show that, Γ (L) and Γ ′(L) are isomorphic. Since L does not contain any
meet-reducible element the set of all zero-divisors and the set of all incomparable
elements are equal hence Γ (L) and Γ ′(L) are isomorphic.

Theorem 4. The complete graph Kn is realizable as the incomparability graph
of a lattice.

Proof. Consider the complete graph Kn. Let ai, i = 1, 2, . . . , n be the vertices
of Kn. The corresponding lattice is as shown in Figure 24.
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Theorem 5. Any complete bipartite graph Km,n is realizable as the incompa-
rability graph of a lattice.

Proof. Consider the complete bipartite graph Km,n. Let V1 = {a1, a2, . . . , an}
and V2 = {b1, b2, . . . , bm} be the two partitions. The corresponding lattice is as
shown in Figure 25.

3 Graphs with Horns

Let G be a graph. All pendant vertices which are adjacent to the same vertex of
G together with edges is called a horn.

For example, in Figure 26, X = {x1, x2, x3, x4} together with the edges a −
x1, a− x2, a− x3, a− x4 is a horn at a, and is denoted as a−X .

We denote the complete graph Kn together with m horns X1, X2, . . . , Xm by
Kn(m) where a1 −X1, a2 −X2, . . . , am −Xm, ai ∈ V (Kn) and 0 ≤ m ≤ n.

We note that K1(1), K2(1) and K2(0) are star graphs, K2(2) is a double star
graph.

Theorem 6. The complete graph Kn(1), n ≥ 3 is realizable as the incompara-
bility graph of a lattice.

Proof. Consider the complete graph Kn. Let X be a horn in Kn at the vertex
an where X = {x1, x2, . . . , xm} and let ai, i = 1, 2, . . . , n be the vertices of Kn.
The corresponding lattice is as shown in Figure 27.

Corollary 7. The complete graph K3(1) is realizable as the incomparability
graph of a lattice.

Proof. Consider the complete graph K3. Let a, b and c be the three vertices of
K3 and let X be horn at c. Let X = {x1, x2, . . . , xn}. The corresponding lattice
is as shown in Figure 28.
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Lemma 8. The complete graphK3(2) is realizable as the incomparability graph
of a lattice.

Proof. Consider the complete graph K3. Let a, b and c be the three vertices of
K3 and let X and Y be horns at a and b respectively. Let X = {x1, x2, . . . , xn}
and Y = {y1, y2, . . . , ym}. The corresponding lattice is as shown in Figure 29.

Theorem 9. The complete graph K3(3) is not realizable as the incomparability
graph of a lattice. However it is realizable as the zero-divisor graph of a lattice
L.

Proof. Consider the complete graphK3. Let a, b and c be the three vertices ofK3

and let X , Y and Z be horns at a, b and c respectively. Let X = {x1, x2, . . . , xn},
Y = {y1, y2, . . . , ym} and Z = {z1, z2, . . . , zp}.

Case (i) Suppose L has two atoms a and b. Then a ≤ zj for
j = 1, 2, . . . , p, a ≤ yk for k = 1, 2, . . . ,m and b ≤ xi for i = 1, 2, . . . , n, b ≤ zj
for j = 1, 2, . . . , p.

Also we have yk ≤ xi or xi ≤ yk.
If yk ≤ xi, then a ≤ yk implies a ≤ xi, a contradiction since a and xi are

adjacent.
If xi ≤ yk, then b ≤ xi implies b ≤ yk, a contradiction since b and yk are

adjacent.
Hence neither yk ≤ xi nor xi ≤ yk, a contradiction since xi and yk are not

adjacent.
Suppose a and x1 are the two atoms in L. We have a ≤ zj for j = 1, 2, . . . , p,

a ≤ yk for k = 1, 2, . . . ,m and x1 ≤ xi for i = 2, . . . , n, x1 ≤ zj for j = 1, 2, . . . , p,
x1 ≤ b, x1 ≤ c, x1 ≤ yk for k = 1, 2, . . . ,m.
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Also we have
(i) yk ≤ c or c ≤ yk (ii) yk ≤ zj or zj ≤ yk (iii) b ≤ zj or zj ≤ b.

If yk ≤ c, then a ≤ yk implies a ≤ c, a contradiction since a and c are adjacent.
Hence c ≤ yk.

If yk ≤ zj , then c ≤ yk implies c ≤ zj, a contradiction since c and zj are
adjacent. Hence zj ≤ yk.

We have b ≤ zj or zj ≤ b.
If b ≤ zj, then zj ≤ yk implies b ≤ yk, a contradiction since b and yk are

adjacent.
If zj ≤ b, then a ≤ zj implies a ≤ b, a contradiction since a and b are adjacent.
Hence neither b ≤ zj nor zj ≤ b, a contradiction since b and zj are not

adjacent.
Case (ii) Suppose L has three atoms a, b and c. Then we have a ≤ zj, a ≤ yk,

b ≤ xi, b ≤ zj , c ≤ xi and c ≤ yk.
Also we have yk ≤ xi or xi ≤ yk.
If yk ≤ xi, then a ≤ yk implies a ≤ xi, a contradiction since a and xi are

adjacent.
If xi ≤ yk, then b ≤ xi implies b ≤ yk, a contradiction since b and yk are

adjacent.
Hence neither yk ≤ xi nor xi ≤ yk since xi and yk are not adjacent. Hence

K3(3) cannot be realized as Γ ′(L).
However it is realizable as the zero-divisor graph of a lattice L see Figure 31.
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Theorem 10. The complete graph Kn(2), n ≥ 4 is realizable as the incompa-
rability graph of a lattice.

Proof. Consider the complete graph Kn. Let ai, i = 1, 2, . . . , n be the vertices of
Kn and letX and Y be horns at a1 and an respectively. LetX = {x1, x2, . . . , xm}
and Y = {y1, y2, . . . , yp}. The corresponding lattice is as shown in Figure 32.

Theorem 11. A double star graph is realizable as the incomparability graph
of a lattice.

Proof. Let G = Γ ′(L) be a double star graph with centers a1, b1 and end vertices
bj, j = 2, 3, . . . ,m and ai, i = 2, . . . , n. The corresponding lattice is as shown in
Figure 33.

Next we discuss some Theorems for complete bipartite graphs with a horn. We
denote the complete bipartite graph Km,n together with P horns by Km,n(P ).

Remark 2. Let Km,n be the complete bipartite graph with partitions
V1 = {a1, a2, . . . , an} and V2 = {b1, b2, . . . , bm}. Then by Theorem 5, Km,n is
realizable as Γ ′(L). Since the ai are non-adjacent in Γ ′(L), they are comparable
in L. So we can arrange them as a1 < a2 < a3 < . . . < an. Similarly, we can
arrange bj as b1 < b2 < . . . < bm.

Using this Remark we have the following Theorems.

Theorem 13. K2,2(2) is realizable as Γ ′(L) if and only if both the horns are
at vertices a1 and b2.

Proof. Consider the complete bipartite graph K2,2. Let V1 = {a1, a2} and
V2 = {b1, b2} be the two partitions. Let X = {x1, x2, · · · , xn} and
Y = {y1, y2, · · · , ym} be the two horns. If the two horns are at a1 and b2 re-
spectively as shown in Figure (i), then the corresponding lattice is as shown in
Figure 35.
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Conversely, we consider the two cases.
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Case (i) Suppose the horns X and Y are at a1 and a2 respectively, see Figure
(ii) and let this graph be realizable as Γ ′(L) for some lattice L. Clearly L does
not contain three atoms as K2,2 does not contain a 3 - cycle.

Subcase (i) Suppose a1 and b1 are the two atoms.
Then a1 ≤ a2, a1 ≤ yk, b1 ≤ yk for each k and b1 ≤ xi for each i.
Also we have a2 ≤ x1 or x1 ≤ a2.
If a2 ≤ x1, then a1 ≤ a2 implies a1 ≤ x1, a contradiction since a1 and x1 are

adjacent.
If x1 ≤ a2, then b1 ≤ x1 implies b1 ≤ a2, a contradiction since a2 and b1 are

adjacent.
Hence neither a2 ≤ x1 nor x1 ≤ a2, a contradiction since x1 and a2 are not

adjacent.
Subcase (ii) Suppose a1 and x1 are the two atoms. Then a1 ≤ a2, x1 ≤ b1,

x1 ≤ b2, x1 ≤ a2, a1 ≤ yk and x1 ≤ yk for each k .
We know that, in a lattice the greatest lower bound of any nonempty finite

subset of L exists. We now show that the greatest lower bound of
A = {a2, y1, y2, . . . , ym} does not exist. The possible set of lower bounds of A is
{0, a1, x1, . . . , xn}. If a1 is the greatest lower bound, then xi ≤ a1, a contradiction
since a1 is an atom.

If any xi is the greatest lower bound then a1 ≤ xi, a contradiction since
a1 ‖ xi. Hence the greatest lower bound of A does not exist. So K2,2 is not
realizable as Γ ′(L) if both the horns are at vertices a1 and a2 respectively.

Case (ii) Suppose both the horns are at vertices a1 and b1 respectively see
Figure (iii).

Subcase (i) Suppose a1 and b1 are the two atoms. Then by similar manner as
in case (i) we get a contradiction.

Subcase (ii) a1 and x1 are the two atoms. Then a1 ≤ a2, x1 ≤ b1, x1 ≤ b2,
x1 ≤ a2, a1 ≤ yk and x1 ≤ yk for each k .

By Remark 2 we have b1 ≤ b2.
Also we have b2 ≤ yk or yk ≤ b2.
If b2 ≤ yk, then b1 ≤ b2 implies b1 ≤ yk, a contradiction since b1 and yk are

adjacent.
If yk ≤ b2, then a1 ≤ yk implies a1 ≤ b2, a contradiction since a1 and b2 are

adjacent.
Hence neither b2 ≤ yk nor yk ≤ b2, a contradiction since b2 and yk are not

adjacent.
Hence K2,2(2) is not realizable as Γ ′(L) if both the horns are at vertices a1

and b1 respectively.

Theorem 14. A complete bipartite graph with two horns, that is Km,n(2),
m > 2 or n > 2 is realizable as Γ ′(L) for some lattice L if and only if the two
horns are at vertices a1, an or at vertices a1, bm.

Proof. Consider the complete bipartite graph Km,n. Suppose, without loss of
generality, n > 2. Let V1 = {a1, a2, . . . , an} and V2 = {b1, b2, . . . , bm} be the two
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partitions. Let X = {x1, x2, . . . , xp} and Y = {y1, y2, . . . , yr} be the two horns.
If the horns are at a1 and an respectively then the corresponding lattice is shown
in Figure 36. If the horns are at a1 and bm respectively then the corresponding
lattice is shown in Figure 37.
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Conversely consider the complete bipartite graphKm,n and let both the horns
be at vertices from the same partite set say V1.

We have V1 = {a1, a2, . . . , an}and V2 = {b1, b2, . . . , bm}. Let X and Y be
the two horns at a1 and ai, i �= n respectively where X = {x1, x2, . . . , xp} and
Y = {y1, y2, . . . , yr}. Let this graph be realizable as Γ ′(L) for some lattice L.
Clearly L does not contain three atoms as Km,n does not contain a 3 - cycle.
Case (i) Suppose a1 and b1 are the two atoms. We have a1 ≤ yj for j = 1, 2, . . . , r,
b1 ≤ yj for j = 1, 2, . . . , r and b1 ≤ xl, l = 1, 2, . . . , p.

Also we have a2 ≤ x1 or x1 ≤ a2.
If a2 ≤ x1, then a1 ≤ a2 implies a1 ≤ x1, a contradiction since a1 and x1 are

adjacent.
If x1 ≤ a2, then b1 ≤ x1 implies b1 ≤ a2, a contradiction since b1 and a2 are

adjacent.
Hence neither a2 ≤ x1 nor x1 ≤ a2, a contradiction since a2 and x1 are not

adjacent.
Case (ii) Suppose that a1 and x1 are the two atoms. Since x1, x2, . . . , xp are

comparable we can arrange them as x1 < x2 < . . . < xp. Similarly we have
y1 < y2 < . . . < yr, a1 < a2 < . . . < an and b1 < b2 < . . . < bm. Now xk ≤ y1 or
y1 ≤ xk for each k. y1 ≤ xk then a1 ≤ y1 implies a1 ≤ xk, a contradiction. Hence
xk ≤ y1 for each k. Thus we have x1 < x2 < . . . < xp < y1 < y2 < . . . < yr.

Now yr ≤ ai+1 or ai+1 ≤ yr.
If ai+1 ≤ yr then ai ≤ yr, a contradiction. Hence yr ≤ ai+1. Thus we have

the chain x1 < x2 < . . . < xp < y1 < y2 < . . . < yr < ai+1 < . . . < an.
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Now for k ≤ i−1, either yj ≤ ak or ak ≤ yj for each j. If yj ≤ ak then ak ≤ ai
implies yj ≤ ai, a contradiction. Hence ak ≤ yj .

Now since y1, b1 are not adjacent, we have y1 ≤ b1 or b1 ≤ y1. If y1 ≤ b1 then
a2 ≤ y1 implies a2 ≤ b1, a contradiction since a2 and b1 are adjacent.

If b1 ≤ y1 then y1 ≤ ai+1 implies b1 ≤ ai+1, a contradiction since b1 and ai+1

are adjacent. Hence neither y1 ≤ b1 nor b1 ≤ y1and y1 and b1 are not adjacent,
a contradiction.

Acknowledgment. The authors are thankful to the referees for many fruitful
suggestions for improvement of the paper.
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