Sufficient Condition for $\{C_4, C_{2t}\}$. Decomposition of $K_{2m,2n}$ – An Improved Bound

Shanmugasundaram Jeevadoss and Appu Muthusamy

Department of Mathematics, Periyar University, Salem, Tamil Nadu, India *{*raazdoss,appumuthusamy*}*@gmail.com

Abstract. In this paper, we have improved the bounds of the sufficient conditions obtained by C.C.Chou and C.M.Fu [J. Comb. Optim. 14, 205- 218 (2007)] for the existence of decomposition of complete bipartite graph $K_{2m,2n}$ into cycles of length 4 and 2*t, t >* 2. Further an algorithm is presented to provide such bound which in turn reduce the number of constructions for the existence of required decomposition.

Keywords: complete bipartite graph, cycle decomposition.

1 Introduction

All the graphs considered here are simple. Let $K_{m,n}$ denotes the complete bipartite graph with part sizes *m, n* and let *C^k* denotes the cycle of length *k*. By a deco[mp](#page-4-0)osition of a graph *G* we mean a partition of *G* into edge-disjoint subgraphs G_1, \ldots, G_n such that \bigcup^n $\bigcup_{i=1}^{n} E(G_i) = E(G)$ $\bigcup_{i=1}^{n} E(G_i) = E(G)$ $\bigcup_{i=1}^{n} E(G_i) = E(G)$. If each $G_i \cong H$, for all *i*, then we say that *H* decomposes G , or G has an H – *decomposition* and we denote it by $H|G$; If $H \cong C_k$, we say that *G* has a C_k − *decomposition*. If *G* can be decomposed into p copies of C_{2t} and q copies of C_4 then we say that G has a ${C_4, C_{2t}}$ - decomposition and we write $G = p C_{2t} \oplus q C_4$ where $p, q \in \mathbb{N} \cup \{0\}$, the set of nonnegative integers. For the standard graph-theoretic terminology the reader is referred to [1].

For our convenience, we use some notations as in [3].

Let $D(G) = \{(p,q) | G = pC_{2t} \oplus qC_4 \text{ where } p,q \in N \cup \{0\}\}\$ and $S_r = \{(p,q) | 2tp + qC_4 \text{ where } p,q \in N \cup \{0\}\}\$ $4q = r$ where $p, q \in N \cup \{0\}$. It is easy to see that $D(G) \subseteq S_r$ if *G* has *r* edges. For the two sets *A*, *B* ⊆ *S_{<i>r*} we define *A* + *B* = { $(a_1 + b_1, a_2 + b_2) | (a_1, a_2) \in$ $A, (b_1, b_2) \in B$ and $rA = A + A + \cdots + A$ (*r* times). Let *U* be the set of positive integers and for each $u, v \in U$ and $v \geq u$ we define $K_{u, U} = \bigoplus$ *v*∈*U Ku, v*,

$$
D(K_{u,U}) = \bigcup_{v \in U} D(K_{u,v}) \text{ and } S_{uU} = \bigcup_{v \in U} S_{uv}.
$$

1.1 Program Code

Program 1

The following MATHEMATICA program provides all posible *p*, *q* and its corresponding *u*, *v* such that $2t p + 4 q = 4uv$, where *t* is even and $\frac{t}{2} \leq u, v < t$.

S. Arumugam and B. Smyth (Eds.): IWOCA 2012, LNCS 7643, pp. 143–147, 2012.

c Springer-Verlag Berlin Heidelberg 2012

```
t = input even positive integer;
For [u = t/2, u < t, u^{++}, For [v = u, v < t, v^{++},For [p = 0, p \leq (4 \cdot u \cdot v/2 \cdot t), p++, For [q = 0, q \leq (u \cdot v), q++,
If [(2*t*p) + (4*q) == (4*u*v),Print["u=", u,"v=",v, 2*t,"-", p,"4-", q ]
]]]]]
```
Program 2

The following MATHEMATICA program provides required *p*, *q* and its corresponding *u*, *v* such that $2t p + 4 q = 4uv$, where *t* is even and $\frac{t}{2} \le u, v < t$

```
t = input even positive integer; r = 0;
For [u = t/2, u < t, u^{++}, For [v = u, v < t, v^{++},For [p = r, p \leq ((4*u*v)/(2*t)), p++,For [q = 0, q \leq (4 \cdot u \cdot v - 2 \cdot t \cdot p)/4, q++If [((2*t*p) + (4*q)) == (4*u*v),Print ["u=", u, "v=", v, 2*t "-", p, "4-", q]; u = v + 1; v = v;
For [x = u, x < v, x^{++}, For [y = x, y < v, y^{++},For [s = 0, s < x*y, s++, If[((2*t*p) + (4*s)) == (4*x*y),Print["v=", x, "v=", y, 2*t "-", p, "4-", s]; Break[]]];
If [((2*t*p) + (4*s))] == (4*x*y), Break[]]];If [x == y || x + 1 == y, Break[]]]; r += 1; Break[]
]]]]]
```
Program 3

The following MATHEMATICA program provides all posible *p*, *q* and its corresponding *u*, *v* such that $2t p + 4q = 4uv$, where *t* is odd and $\frac{t+1}{2} \le u$, $v \le \frac{3t-1}{2}$.

```
t = input odd positive integer;
For [u = ((t + 1)/2), u \leftarrow ((3*t - 1)/2), u++,For [v = u, v \le ((3*t - 1)/2), v^{++},For [p = 0, p \le (4*u*v/2*t), p++,For [q = 0, q \leq (u*v), q++,If [(2*t*p) + (4*q) == (4*u*v),Print["u=", u,"v=", v,2*t,"-", p,"4-", q ]
]]]]]
```
Program 4

The following MATHEMATICA program provides required *p*, *q* and its corresponding *u*, *v* such that $2t p + 4q = 4uv$, where *t* is odd and $\frac{t+1}{2} \le u$, $v \le \frac{3t-1}{2}$.

```
t = input odd positive integer; r = 0;
For [u = (t + 1)/2, u \le (3*t - 1)/2, u++,For [v = u, v \le (3*t - 1)/2, v++,For [p = r, p \le ((4*u*v)/(2*t)), p++,For [q = 0, q \leq (4 \cdot u \cdot v - 2 \cdot t \cdot p)/4, q^{++},If [((2*t*p) + (4*q)) == (4*u*v),Print ["u=", u, "v=", v, 2*t "-", p, "4-", q]; u = u + 1; v = v;
For [x = u, x < v, x^{++}, For [y = x, y < v, y^{++},For [s = 0, s < x*y, s++, If[((2*t*p) + (4*s)) == (4*x*y),Print["u=", x,"v=", y, 2*t "-", p,"4-", s]; Break[]]];
If [((2*t*p) + (4*s)) == (4*x*y), Break[]];
If [x == y || x + 1 == y, Break[]]];
r += 2; Break[] ]]]]]
```
Let $X_t = \{(p,q)|p,q \in \mathbb{N} \cup \{0\}$ obtained from Program 1 }, when *t* is even and $Y_t = \{(p,q)|p,q \in \mathbb{N} \cup \{0\}$ obtained from Program 3, when *t* is odd.

Let $P_t = \{(p, q) | p, q \in \mathbb{N} \cup \{0\} \text{ obtained from Program } 2 \}$, when *t* is even and $Q_t = \{(p,q)|p,q \in \mathbb{N} \cup \{0\}$ obtained from Program 4, when *t* is odd.

Sotteau [4] has shown that $K_{m,n}$ has a C_{2k} -decomposition if and only if (i) $m, n \geq k$ (ii) *m* and *n* are even and (iii) $mn \equiv 0 \pmod{2k}$.

C.C.Chou, C.M.Fu and W.C. Huang [2] have shown that *G* can be decomposed into *p* copies of C_4 , *q* copies of C_6 and *r* copies of C_8 for each triple p, q, r of nonnegative integers such that $4p + 6q + 8r = |E(G)|$, in the following two cases: (a) $G = K_{m,n}$, if $m \geq 4, n \geq 6$, and m, n are even, (b) $G = K_{n,n}$ minus a 1 − *f actor*, if *n* is odd.

[C.C](#page-4-1).Chou and C.M.Fu [3] have shown that the existence of ${C_4, C_{2t}}$ – decomposition of $K_{2u, 2v}$, $\frac{t}{2} \leq u, v < t$ (i.e. for all $(p, q) \in X_t$) when *t* even (respectively $\frac{t+1}{2} \leq u, v \leq \frac{3t-1}{2}$, i.e. for all $(p, q) \in Y_t$) when *t* odd) implies such decomposition in $K_{2m, 2n}$, $m, n \ge t$ (respectively in $K_{2m, 2n}$, $m, n \ge \frac{3t+1}{2}$).

In this paper, we show that the existence of ${C_4, C_{2t}}$ decomposition of $K_{2u, 2v}$, for all $(p, q) \in P_t$ when *t* even (respectively $(p, q) \in Q_t$ when *t* odd) implies such decomposition in $K_{2m, 2n}$, $m, n \geq t$ (respectively in $K_{2m, 2n}$, $m, n \geq$ $\frac{3t+1}{2}$). Since $P_t \subseteq X_t$ and $Q_t \subseteq Y_t$, our result reduce the bounds given by C.C.Chou and C.M.Fu [3] which in turn reduce the number of constructions for the existence of such decomposition. Further the existence of ${C_4, C_{2t}}$ – decomposition of $K_{2u, 2v}$ was assured by providing constructions for such decomposition in $K_{2u, 2v}$.

2 ${C_4, C_{2t}}$ **Decompositions of** $K_{2m, 2n}$

Before proving our main results, we require the following properties of S_r .

Lemma 1 ([3]). *Let a, b and t be positive integers.*

(i) If *t* is even and one of *a*, *b* is a multiple of *t* then $S_{2a} + S_{2b} = S_{2a+2b}$. (ii) If *t* is odd and one of a, b is a multiple of *t* then $S_{4a} + S_{4b} = S_{4a+4b}$.

146 S. Jeevadoss and A. Muthusamy

Lemma 2. *Let* $U = \{u \in \mathbb{Z}^+ | \frac{t}{2} \le u < t \}$ *, and* $p, q, s \in \mathbb{Z}^+ \cup \{0\}$ *, the set of nonnegative integers, where t is even.* If $P_t \subseteq D(K_{t, 2U})$, then for each pair $(p, s) \in S_{2tU} \setminus P_t$, there exists a pair $(p, q) \in P_t$, $q < s$ such that $(p, s) \in P_t$ $D(K_{t, 2U})$.

Proof. Let $(p, q) \in P_t$ and $P_t \subseteq D(K_{t, 2U})$ $P_t \subseteq D(K_{t, 2U})$ $P_t \subseteq D(K_{t, 2U})$. Then $K_{t, 2u} = p C_{2t} \oplus q C_4$ for a positive integer $u \in U$ and hence $(p, q) \in S_{2tu}$. Suppose $(p, s) \in S_{2ttU} \setminus P_t$ and *q* < *s*, i.e. $(p, s) \in S_{2tv}$, for a positive integer $v \neq u \in U$ then $s - q = \frac{t(v-u)}{2}$. We decompose $K_{t,2v}$ as follows $K_{t,2v} \cong K_{t,2u} \oplus K_{t,2(v-u)} \cong K_{t,2u} \oplus \frac{t(v-u)}{2}$ $\frac{(-u)}{2}$ *K*_{2,2} ≅ $p C_{2t} \oplus s C_4$. Thus $(p, s) \in D(K_{t, 2v})$, therefore $S_{2tU} \setminus P_t \subseteq D(K_{t, 2U})$. Hence $D(K_{t, 2U}) = S_{2tU}$.

Lemma 3. *Let p be positive integer and let U be as defined in Lemma 2. If t is even and* $P_t \subseteq D(K_{t, 2U})$ *, then* $D(K_{t, 2p}) = S_{2tp}$ *for all* $p \ge \frac{3t+1}{2}$ *.*

Proof. Since *t* is even and $2p \geq 3t + 1$, there is a nonnegative integer *r* such that $2p = rt + 2u, \frac{t}{2} \leq u < t$. Therefore we can decompose $K_{t, 2p}$ into $r K_{t, t}$ and $K_{t, 2u}$ i.e. $K_{t,2p}$ ≅ $rK_{t,t}$ ⊕ $K_{t,2u}$. By the hypothesis, P_t ⊆ $D(K_{t,2U})$. Then by Lemmas 1 and 2, we have $D(K_{t,2p}) \supseteq r D(K_{t,t}) + D(K_{t,2u}) = r S_{t^2} + S_{2tu} = S_{2tp}$. Therefore $D(K_{t,2p}) = S_{2tp}$.

Theorem 1. *Let m, n, u and v be positive integers an[d](#page-2-1) let U be defined as in Lemma 2. If t is even and* $P_t \subseteq \cup$ *u, v*∈*U* $D(K_{2u}, 2v)$ *then* $D(K_{2m}, 2n) = S_{4mn}$ *for* $all \, m, n \geq t.$

Proof. For $2m, 2n \ge t$, we can decompose $K_{2m, 2n}$ as follows: $K_{2m, 2n} \cong$ $K_{2m-t, 2n-t} \oplus K_{2m-t,t} \oplus K_{t, 2n}$. $D(K_{2m, 2n}) \supseteq D(K_{2m-t, 2n-t}) + D(K_{2m-t,t}) +$ *D*($K_{t,2n}$). By the hypothesis, $D(K_{2m-t,2n-t}) = S_{(2m-t)(2n-t)}$. By Lemmas 2 and 3 we have $D(K_{2m-t,t}) = S_{t(2m-t)}$ and $D(K_{t,2n}) = S_{2nt}$. By Lemma 1 and the hypothesis, we have $D(K_{2m,2n}) \supseteq S_{(2m-t)(2n-t)} + S_{(2m-t)t} + S_{2nt} = S_{4mn}$. Thus $D(K_{2m,2n}) = S_{4mn}$.

Lemma 4. *Let* $V = \{u \in \mathbb{Z}^+ | \frac{t+1}{2} \le u \le \frac{3t-1}{2}\}$ *, and* $p, q, s \in \mathbb{Z}^+ \cup \{0\}$ *, the set of nonnegative integers where t is odd.* If $Q_t \subseteq D(K_{2t, 2V})$, then for each *pair* $(p, s) \in S_{4tV} \setminus Q_t$, there exists a pair $(p, q) \in Q_t$, $q < s$ such that $(p, s) \in$ $D(K_{2t, 2V})$ *.*

Proof. Let $(p, q) \in Q_t$ and $Q_t \subseteq D(K_{2t, 2V})$ $Q_t \subseteq D(K_{2t, 2V})$ $Q_t \subseteq D(K_{2t, 2V})$. Then $K_{2t, 2u} = p C_{2t} \oplus q C_4$ for a positive integer $u \in V$ and hence $(p, q) \in S_{4tu}$. Suppose $(p, s) \in S_{4tV} \setminus Q_t$ and $q < s$, i.e. $(p, s) \in S_{4tv}$, for a positive integer $v \neq u \in V$ then $s - q = t(v - u)$. We decompose $K_{2t,2v}$ as follows $K_{2t,2v} \cong K_{2t,2u} \oplus K_{2t,2(v-u)} \cong K_{2t,2u} \oplus t(v-u)$ $u)K_{2,2} \cong p C_{2t} \oplus s C_4$. Thus $(p, s) \in D(K_{2t, 2v})$, therefore $S_{4tV} \setminus Q_t \subseteq D(K_{2t, 2V})$. Hence $D(K_{2t, 2V}) = S_{4tV}$.

Lemma 5. *Let p be positive integer and let V be defined as in Lemma 4. If t is odd and* $Q_t \subseteq D(K_{2t, 2V})$ *, then* $D(K_{2t, 2p}) = S_{4tp}$ for all $p \ge \frac{3t+1}{2}$.

Proof. Since *t* is odd and $2p \geq 3t + 1$, there is a nonnegative integer *r* such that $2p = 2rt + 2u, \frac{t+1}{2} \le u \le \frac{3t-1}{2}$. Therefore we can decompose $K_{2t, 2p}$ into $r K_{2t, 2p}$ and $K_{2t, 2u}$ i.e. $\tilde{K}_{2t, 2p} \cong r\tilde{K}_{2t, 2t} \oplus K_{2t, 2u}$. By the hypothesis, $Q_t \subseteq D(K_{2t, 2U})$. Then by Lemmas 1 and 2, we have $D(K_{2t,2p}) \supseteq r D(K_{2t,2t}) + D(K_{2t,2u}) =$ $r S_{4t^2} + S_{4tu} = S_{4tp}$. Therefore $D(K_{2t, 2p}) = S_{4tp}$.

Theorem 2. [L](#page-3-0)et m, n, u m, n, u and v be positive integers and let V be defined as in *Lemma 4. If t is odd and* $Q_t \subseteq \bigcup$ *u, v*∈*V* $D(K_{2u, 2v})$ $D(K_{2u, 2v})$ $D(K_{2u, 2v})$ *, then* $D(K_{2m, 2n}) = S_{4mn}$ for

all $m, n \ge \frac{3t+1}{2}$.

Proof. For $2m$, $2n \geq 3t + 1$, we can decompose $K_{2m, 2n}$ as follows: $K_{2m, 2n} \cong$ $K_{2m-2t, 2n-2t} \oplus K_{2m-2t, 2t} \oplus K_{2t, 2n-2t} \oplus K_{2t, 2t}. D(K_{2m, 2n}) \supseteq D(K_{2m-2t, 2n-2t})+$ $D(K_{2m-2t, 2t}) + D(K_{2t, 2n-2t}) + D(K_{2t, 2t})$. By the hypothesis, $D(K_{2m-2t, 2n-2t})$ $S_{(2m-2t)(2n-2t)}$. By Lemmas 4 and 5 we have $D(K_{2m-2t,2t}) = S_{2t(2m-2t)}$ $D(K_{2t,2n-2t}) = S_{2t(2n-2t)}$ and $D(K_{2t,2t}) = S_{4t^2}$. By Lemma 1 and the hypothesis, we have $D(K_{2m,2n}) \supseteq S_{(2m-2t)(2n-2t)} + S_{(2m-2t)2t} + S_{2t(2n-2t)} + S_{4t^2} = S_{4mn}$.
Thus $D(K_{2m,2n}) = S_{4mn}$ Thus $D(K_{2m,2n}) = S_{4mn}$.

References

- 1. Bondy, J.A., Murty, U.S.R.: Graph theory with applications. The Macmillan Press Ltd., New York (1976)
- 2. Chou, C.C., Fu, C.M., Huang, W.C.: Decomposition of $K_{m,n}$ into short cycles. Discrete Math. 197/198, 195–203 (1999)
- 3. Chou, C.C., Fu, C.M.: Decomposition of *Km,n* into 4-cycles and 2*t*-cycles. J. Comb. Optim. 14, 205–218 (2007)
- 4. Sotteau, D.: Decomposition of $K_{m,n}(K^*_{m,n})$ into cycles (circuits) of length 2k. J. Combin. Theory Ser. B 30, 75–81 (1981)