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Abstract. In this paper, we have improved the bounds of the sufficient
conditions obtained by C.C.Chou and C.M.Fu [J. Comb. Optim. 14, 205-
218 (2007)] for the existence of decomposition of complete bipartite graph
Ko 2n into cycles of length 4 and 2¢, ¢ > 2. Further an algorithm is
presented to provide such bound which in turn reduce the number of
constructions for the existence of required decomposition.
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1 Introduction

All the graphs considered here are simple. Let K, , denotes the complete bi-
partite graph with part sizes m, n and let C} denotes the cycle of length k. By
a decomposition of a graph G we mean a partition of G into edge-disjoint sub-

n
graphs Gy, ..., G, such that |J E(G;) = E(G). If each G; = H, for all 4, then
i=1

we say that H decomposes GZ, or G has an H — decomposition and we denote
it by H|G; If H = Cj, we say that G has a Cy — decomposition. If G can be
decomposed into p copies of Co; and g copies of Cy then we say that G has a
{Cy, Cq} - decomposition and we write G = p Co; & q Cy where p,q € NU {0},
the set of nonnegative integers. For the standard graph-theoretic terminology
the reader is referred to [IJ.
For our convenience, we use some notations as in [3].

Let D(G) = {(p,q)| G = pCa ®qCy where p,q € NU{0}} and S, = {(p, q)[2tp+
4q = r where p,q € NU{0}}. It is easy to see that D(G) C S, if G has r edges.
For the two sets A, B C S, we define A+ B = {(a1 + b1,a2 + b2)|(a1,a2) €
A, (by,b2) € B} and rA = A+ A+ -+ A (r times). Let U be the set of
positive integers and for each uw,v € U and v > u we define K, y = @ Ky, o,

vel
DKy v)= U DKy )and Sy = U Sus-
velU velU
1.1 Program Code

Program 1

The following MATHEMATICA program provides all posible p, ¢ and its corre-
sponding u, v such that 2t p 4+ 4 ¢ = 4uv, where t is even and ; <u,v<t.
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t = input even positive integer;

For[u = t/2, u < t, u++, For[v =u, v < t, v++,

For[p = 0, p <= (4*xuxv/2%t), p++, For[q = 0, q <= (uxv), g++,
If[(2*%txp) + (4xq) == (4*uxv),

Print["u=", 11,"V=",V, 2*t,"—", p’u4_u’ q]

11111

Program 2

The following MATHEMATICA program provides required p, ¢ and its corre-
sponding u, v such that 2t p 4+ 4 ¢ = 4uv, where t is even and ; <u,v<t

t = input even positive integer; r = O;

For[u = t/2, u < t, u++, Forl[v =u, v < t, v++,

For[p = r, p <= ((4*xuxv)/(2*t)), p++,

For[q = 0, q <= (4xuxv - 2%t*p)/4, g++,

If [((2xt*xp) + (4xq)) == (4*uxv),

Print["u=", u,"v=", v, 2%t "-", p,"4-", ql; u=v + 1; v = v;
For[x = u, x < v, x++, Forl[y = x, y < v, y++,

For[s = 0, s < x*xy, s++, If[((2%t*p) + (4xs)) == (4*xxy),
Print["v=", x,"v=", y, 2%t "-", p,"4-", s]; Break[]]];

If [((2xt*p) + (4xs)) == (4*x*y), Break[]]];

If[x ==y || x + 1 ==y, Break[]]];r += 1; Breakl[]

11111

Program 3

The following MATHEMATICA program provides all posible p, g and its corre-
sponding u, v such that 2¢ p+ 4 ¢ = 4uv, where ¢ is odd and 5! <w, v < 31

t = input odd positive integer;

For[u = ((t + 1)/2), u <= ((3xt - 1)/2), ut++,
For[v = u, v <= ((3*t - 1)/2), v++,

For[p = 0, p <= (4*xuxv/2%t), p++,

For[q = 0, q <= (u*xv), g++,

If[(2*t*p) + (4%q) == (4*uxv),

Print["u=", u,"v=", v,2%t,"-", p’n4_n’ q]

11111

Program 4

The following MATHEMATICA program provides required p, ¢ and its corre-
sponding u, v such that 2t p + 4 ¢ = 4uv, where t is odd and t'gl <u,v< 3t2_1.
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t = input odd positive integer; r = O;

For[u = (t + 1)/2, u <= (3%t - 1)/2, u++,

For[v = u, v <= (3%t - 1)/2, v++,

For[p = r, p <= ((4*xuxv)/(2*t)), p++,

For[q = 0, q <= (4*%uxv - 2%t*p)/4, q++,

If[((2*%t*xp) + (4%q)) == (4*uxv),

Print["u=", u,"v=", v, 2%t "-", p,"4-", ql; u=u + 1; v = v;
For[x = u, x < v, x++, Forly = x, y < v, y++,

For[s = 0, s < x*xy, s++, If[((2%t*p) + (4xs)) == (4*xxxy),
Print["u=", x,"v=", y, 2%t "-", p,"4-", s]; Break[]]];
If[((2*t*p) + (4*s)) == (4*x*y), Break[]1];

If[x ==y || x + 1 ==y, Break[]]];

r += 2; Break[] 11111

Let X; = {(p,q)|p,q € NU {0} obtained from Program 1 }, when ¢ is even and
Y: = {(p, q)|p, ¢ € NU {0} obtained from Program 3}, when ¢ is odd .

Let P, = {(p, q)|p, ¢ € NU{0} obtained from Program 2 }, when ¢ is even and
Q: = {(p,q)|p, g € NU {0} obtained from Program 4}, when ¢ is odd .

Sotteau [4] has shown that K, , has a Cor-decomposition if and only if (i)
m,n >k (ii) m and n are even and (iii) mn = 0 (mod 2k).

C.C.Chou, C.M.Fu and W.C. Huang [2] have shown that G can be decomposed
into p copies of Cy, ¢ copies of Cg and r copies of Cg for each triple p,q,r of
nonnegative integers such that 4p + 6¢+ 8r = |E(G)|, in the following two cases:
(a) G = Ky n, if m > 4,n > 6, and m,n are even, (b) G = K, ,, minus a
1 — factor, if n is odd.

C.C.Chou and C.M.Fu [3] have shown that the existence of {C4, Cot}— de-
composition of Koy, 2y, 5 < u,v < t (i.e. for all (p,q) € X;) when t even (re-
spectively t'gl <wu,v< %’tgl,( i.e. for all (p,q) € Y;) when ¢ odd) implies such
decomposition in Ko, 2, m, n >t (respectively in Koy, 2n, m, n > St;l).

In this paper, we show that the existence of {Cy, Ca:}— decomposition of
Koy, 20, for all (p,q) € P, when t even (respectively (p,q) € Q¢ when ¢ odd) im-
plies such decomposition in Koy, 2, m,n > t (respectively in Kop on, m,n >
3t; 1). Since P; C X; and Q; C Y%, our result reduce the bounds given by
C.C.Chou and C.M.Fu [3] which in turn reduce the number of constructions for
the existence of such decomposition. Further the existence of {Cy, Ca:}— decom-
position of Ks,, 2, was assured by providing constructions for such decomposition
in K2u, 2vu-

2  {C4, Cst}— Decompositions of Koy, an

Before proving our main results, we require the following properties of S..
Lemma 1 ([3]). Let a, b and t be positive integers.

(1) Ift is even and one of a, b is a multiple of t then Saq + Sop = S24+20-
(i) Ift is odd and one of a, b is a multiple of t then Siq + Sap = Saa+4p-
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Lemma 2. Let U = {u € Zﬂé <u <t} and pg,s € ZT U{0}, the set
of nonnegative integers, where t is even. If P, C D(Ky ov), then for each pair
(p, 8) € Saww \ P, there exists a pair (p, q) € P, ¢ < s such that (p, s) €
D(Ky, ov).

Proof. Let (p, q) € P, and P, C D(Ky oy). Then Ky 9, = p Cot @ g Cy for a
positive integer v € U and hence (p, q) € Sat,. Suppose (p, s) € Sa \ Pr and
q < s,1.e. (p, 8) € Saty, for a positive integer v # u € U then s — ¢ = t(U;“). We

t —
decompose Ky 2, as follows Ko, = Kt oy @ Ky o(v—u) = Kt 20 @ (v—u) Koo =

pCa & sC4. Thus (p,s) € D(Ky 2v), therefore Soy \ P € D(Ky o). Hence
D(Ki 2v) = Sawv- a

Lemma 3. Let p be positive integer and let U be as defined in Lemmald. If t is
even and P, C D(Ky ou), then D(Ky op) = Sayp for all p > 3t;'1.

Proof. Since t is even and 2p > 3t + 1, there is a nonnegative integer r such that
2p = rt+42u, ; < u < t. Therefore we can decompose Ky, o, into r K ¢+ and Ky, 2,
ie. Ky op 21Ky 1 ® Ky 9y By the hypothesis, P, C D(K; or). Then by Lemmas
@ and Bl we have D(K; 2p) 2 7 D(Ky, 1) + D(Ky, 20) = 7Sz + Sotw = Soup -
Therefore D(K; 2p) = Sop. O

Theorem 1. Let m,n,u and v be positive integers and let U be defined as in

Lemmal@ If tis even and P, C |J D(Kay, 20) then D(Kam2n) = Samn for
u,velU
all m,n >t.

(a3

Proof. For 2m, 2n > t, we can decompose Ko, 2p as follows: Ko, 2n =2
K2m7t,2n7t S K2m7t,t S Kt,2n~ D(KQm,Zn) 2 D(Kmet, 2n7t) + D(Kmet,t) +
D(K¢, 2n). By the hypothesis, D(Kaom—t,2n—t) = Sam—t)2n—t)- By Lemmas
and [l we have D(Kom_tt) = Syom—¢) and D(K; 2,) = Sane. By Lemma [l and
the hypothesis, we have D(K2m,20) 2 S2m—t)(2n—t) + S@m—t)t + S2nt = Samn-
Thus D(KZm,Zn) = Simn- O

Lemma 4. Let V = {u € Z*|"5' < u < *1'}, and p,q,s € ZT U {0}, the
set of nonnegative integers where t is odd. If Q¢ C D(Ka ov), then for each
pair (p, s) € Suv \ Q+, there exists a pair (p, q) € Q+, q¢ < s such that (p, s) €
D(Kat,2v).

Proof. Let (p, q) € Q; and Q¢ C D(K2,2v). Then Ky 2y = p Co ® q Cy for a
positive integer v € V' and hence (p, q) € Sap,. Suppose (p, s) € Suy \ @ and
q < s,i.e. (p, 8) € Sy, for a positive integer v # u € V then s — ¢ = t(v — u).
We decompose Kot 2, as follows Ko 2y =2 Kot 2y P Ko o(v—u) = Kot 20 ® t(v —
w)Ky o 2 pCo@®sCy. Thus (p,s) € D(Kay, 20), therefore Sy \Qr € D(Kot, 2v ).
Hence D(th’gv) = Syuv. ]

Lemma 5. Let p be positive integer and let V' be defined as in Lemmal[j If t is
odd and Q¢ C D(Ka,2v), then D(Koy op) = Sayp for all p > St;ﬂ.
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Proof. Since t is odd and 2p > 3t + 1, there is a nonnegative integer r such that
2p = 2rt + 2u, tgl <u< Stgl. Therefore we can decompose Ko g5, into r Kot o
and Koy, oy, 1.6. Koy op = 1Koy o1 @ Kot 2y. By the hypothesis, Q; C D(Ka, o).
Then by Lemmas [[l and 2 we have D(Kat 2p) O 7 D(Kot,0t) + D(Kot, 20) =
r Sy + Sapy = Sarp . Therefore D(Kot, 2p) = Satp- O

Theorem 2. Let m,n,u and v be positive integers and let V be defined as in

Lemmal[fl If tis odd and Q: € | D(Kau,20), then D(Kom 2n) = Samn for
u, veV

all m,n > 351

Proof. For 2m, 2n > 3t + 1, we can decompose Ko, 2n as follows: Kop, o =
Kom—2t on—2tDKom—2t 2t S Kot on—2:® Kot 2. D(Kam, 2n) 2 D(Kom—2t, 2n—2t)+
D(Kom—at,2¢) + D(Kot, 2n—2t) + D(Kay, 2¢). By the hypothesis, D(Kom—at, 2n—2¢)
= S(2m—2t)(2n—2t)- By Lemmas [l and 5l we have D(Kapm—2t,2t) = Sat(2m—2t)s
D(KZt,ZTL—Zt) = SZt(2n72t) and D(thgt) = S4t2~ By Lemmam and the hypothe-
sis, we have D(Kam 2n) 2 S(2m—2¢)(2n—2t) +S(2m—2t)2t +S2t(2n—20) +Sa2 = Samn.-
Thus D(sz’gn) = Simn- ]
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