
Touring Polygons: An Approximation Algorithm

Amirhossein Mozafari and Alireza Zarei

Department of Mathematical Sciences
Sharif University of Technology

Abstract. In this paper, we introduce a new version of the shortest path
problem appeared in many applications. In this problem, there is a start
point s, an end point t, an ordered sequence S=(S0 = s, S1, ..., Sk, Sk+1 =
t) of sets of polygons, and an ordered sequence F=(F0, ..., Fk) of simple
polygons named fences in �2 such that each fence Fi contains polygons
of Si and Si+1. The goal is to find a path of minimum possible length
from s to t which orderly touches the sets of polygons of S in at least
one point supporting the fences constraints. This is the general version
of the previously answered Touring Polygons Problem (TPP). We prove
that this problem is NP-Hard and propose a precision sensitive FPTAS
algorithm of O(k2n2/ε2) time complexity where n is the total complexity
of polygons and fences.

Keywords: Computational geometry, approximation algorithm, tour-
ing polygons, minimum link path.

1 Introduction

Finding a shortest path is a basic subroutine in computational geometry and
appears in many applications in mathematics and engineering. There are sev-
eral types of shortest path problems. In its most conventional form, we have a
weighted graph and the problem is to obtain the shortest path (path of mini-
mum weight) from a source node to a destination[5]. In this paper, we introduce
a special version of the shortest path problem in which we have an ordered set
S=(S0, ..., Sk+1) of sets of polygons, a start point s, an end point t, and an or-
dered set of polygonal fences F=(F0, ..., Fk) in �2, such that Fi contains Si and
Si+1. In this notation we assume that S0 is the start point s and Sk+1 is the
end point t. The goal is to find the shortest path P (path of minimum length)
from s to t such that P intersects at least one point of a polygon from each
set Si according to their order in such a way that the portion of this path from
Si to Si+1 lies inside Fi. This problem can be considered as a general version
of the known Touring Polygons Problem (TPP)[6]. In TPP we have only one
polygon in each set Si. We denote the general version in which each Si may
contain more than one polygon by TMP (Touring Multiple-polygons Problem).
Fig. 1 shows an example of TPP and Fig. 2 shows an example of TMP. In the
unconstrained version of TMP and TPP, denoted by UTMP and UTPP respec-
tively, all fences Fi are assumed to be the whole plane which means that there

S. Arumugam and B. Smyth (Eds.): IWOCA 2012, LNCS 7643, pp. 110–121, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Touring Polygons: An Approximation Algorithm 111

Fig. 1. An example of the TPP with polygons (P1, P2, P3) and fences (F0, F1, F2, F3)

Fig. 2. The TMP with three sets of polygons ({P1,1, P1,2}, {P2,1}, {P3,1, P3,2, P3,3})
and fences (F0, F1, F2, F3)

is no constraint for the path from Si to Si+1. This problem has applications in
several well-known problems in computational geometry including Watchman
Route[4,11], Zookeeper[9], Safari[12], and Part Cutting[7] problems. Dror et.al
[6] proved that TPP is NP-Hard when the polygons are non-convex and allowed
to intersect each other. This implies that our problem is also NP-Hard when
the polygons in S can intersect each other. In this paper, we prove that TMP is
NP-Hard even if the polygons are disjoint and convex.

In this paper, we propose a precision sensitive ε-approximation algorithm for
the TMP which is based on solving the shortest path problem on a graph built
on the vertices of the polygons and some extra vertices put on the boundaries
of these polygons. In the rest of this paper, in Section 2 we propose a precision
sensitive FPTAS algorithm for TMP when the polygons are disjoint. In Section
3, we analyse the efficiency of this algorithm and show that the running time of
this algorithm is the same as the running time of the best known approximation
algorithm for TPP. In Section 4 we extend this algorithm to the overlapped
situations. In Section 5, we prove the NP-Hardness of the TMP.

112 A. Mozafari and A. Zarei

2 The FPTAS Algorithm

In this section we assume that consecutive sets of polygons Si and Si+1 are
disjoint from each other. This means that for all Pr ∈ Si and Pq ∈ Si+1 we have
Pr ∩Pq = ∅. Recall that we set S0 as a set that consists of the single point s and
Sk+1 as a set that has the single point t. In Section 4, we extend this algorithm
to the overlapped case.

To obtain an ε−approximation solution for this problem we use the pseudo
approximation technique (PAT) described in [2]. The sketch of this method is
as follows. If X is the space of all solutions of a problem and x∗ ∈ X is an
optimal solution, X is classified into subsets XR ⊆ X for different values of a
real parameter R ≥ 0 which is called the search radius. This classification must
satisfy three properties: (1) if R1 ≤ R2, then XR1 ⊆ XR2 , (2) there exists R

∗ ≥ 0
such that XR∗ = X . (3) if length(x∗) ≤ R then length(x∗

R) = length(x∗) where
x∗
R is an optimal solution in XR. Having these properties, by constructing a

pseudo approximation algorithm for the search radius R and iteratively running
it for different values of R, an accurate ε−approximation algorithm is obtained.
To be able to use this method the pseudo approximation algorithm must have
this property that for each R ≥ 0 and fixed ε ≥ 0

length(xapr
R) ≤ length(x∗

R) + εR,

where xapr
R is the solution obtained by the pseudo approximation algorithm for

the search radius R.
Now, we describe how to use PAT for solving the TMP. Denote by X the set

of all solutions (acceptable paths) in our problem and use a search radius R ≥ 0
to classify all solutions in X . We define XR as the set of all solutions which
are completely inside the disk of radius R with center s. Also, we denote x∗ as
an optimal solution (solution with minimum length) in X and x∗

R an optimal
solution in XR (note that if XR = ∅ we set length(x∗

R) = ∞).
In order to use PAT, we need to check the three properties that the definition

of the search radius must satisfy. It is simple to check that these properties are
satisfied by the definition of our search radius and the classification method.
Therefore, if we can obtain a pseudo approximation algorithm, we can use the
PAT method to obtain an ε−approximation algorithm.

For fixed R > 0, we restrict our problem to this disk, i.e., we remove all parts
of polygons and fences which are outside this disk. In this restriction, an edge
e of a polygon is replaced by e ∩ DR(s) where DR(s) is the disk of radius R
and center s. We put
4k/ε� points on each edge of polygons and divide each
edge into
4k/ε� + 1 fragments of equal length. The length of each fragment
is at most 2Rε/4k (we call these points as extra points). We build a directed
weighted visibility graph, DVG, which its vertex set is the set of vertices of
polygons and fences and the extra points. An edge −→uv exists in DVG if and only
if these conditions holds:

Touring Polygons: An Approximation Algorithm 113

1. u corresponds to a vertex or extra point of Si or a vertex of fence Fi.
2. v corresponds to a vertex or extra point of Si+1 or a vertex of fence Fi.
3. The corresponding points of u and v are visible from each other with respect

to fence Fi, i.e.,their connecting segment lies completely inside fence Fi.

The weight of an edge −→uv is set to be the distance between the corresponding
points of its vertices. We run a shortest path algorithm like Dijkstra[5] from s
to t in this directed graph to obtain the path xapr

R .

Lemma 1. If xapr
R exists, it belongs to XR.

Proof. According to its construction, all vertices of DVG lie inside DR(s).
Therefore, the path xapr

R entirely lies inside this disk. To complete the proof,
We must show that xapr

R is an acceptable path, i.e., it starts from s, ends at t,
and intersects at least one polygon in each Si in their correct order and satisfies
the fences constraints. Trivially, xapr

R starts from s and ends at t. Assume that
< pr, pr+1, ..., pq > is a sub-path in xapr

R where pr and pq are respectively the
first vertices of xapr

R belonging to the polygon sets Si and Si+1 for 0 ≤ i ≤ k.
According to the direction of the edges in DVG, the outward edges from pr is
only to Fi and Si+1 vertices, and the inward edges to pq is restricted to the
vertices of Fi and Si. Therefore, the vertices between pr+1 and pq−1 in path
< pr, pr+1, ..., pq > only belong to the vertices of Fi (note that it is possible
that pr and pq are directly connected by an edge which means that the path
< pr, ..., pq > is a single edge). Moreover, each edge −→uv which its start vertex
belongs to Si or Fi and its end vertex belongs to Fi or Si+ 1 follows the visi-
bility constraints of fence Fi. This implies that the sub-path < pr, ..., pq > lies
inside the fence Fi. Finally, we prove by contradiction that path Xapr

R intersects
the polygon sets Si according to their order. Assume that i is the smallest value
which Si polygons are not intersected by xapr

R just after entering a polygon in
Si−1. According to the direction of the edges in DVG, after entering a poly-
gon in Si−1 the path xapr

R can only enter a vertex of Fi−1 or Si and to leave
the vertices of Fi−1 it must enter a vertex of Si. Therefore, if x

apr
R ends at t, it

must pass through a vertex of Si after leaving Si−1. �

Now, we analyse the relation between xapr
R and x∗

R. We can locate a sequence
of pi points on x∗

R where pi is the first intersection point of x∗
R and the set of

polygons Si after visiting the polygon sets S1, ..., Si−1. Here, p0 and pk+1 are
respectively the start point s and the end point t. Therefore, the optimal path
x∗
R can be divided into k sub-paths which the i’th sub-path (0 ≤ i ≤ k) starts

from a point pi ∈ Si and ends at a point pi+1 ∈ Si+1. These sub-paths are
denoted by x∗

R(i) (Fig. 3).
Each point pi lies on the boundary of a polygon in Si. This boundary point

may be a vertex of a polygon in Si, an extra point on an edge or a point on a
fragment of length at most Rε/2k. According to the definition of pi points, each
sub-path x∗

R(i) lies inside fence Fi. Moreover, each sub-path x∗
R(i) lies inside a

geometric structure called hourglass defined as bellow.

114 A. Mozafari and A. Zarei

Fig. 3. Sub-path x∗
R(i)

Assume that bs and be are respectively the fragments of length at most Rε/2k
containing the points pi and pi+1 of the sub-path x∗

R(i). Note that in some cases
bs or be may be a single point. The corresponding hourglass of x∗

R(i) is the region
defined by these segments and the two shortest paths connecting the endpoints
of bs and be that x∗

R(i) lies between them. Fig. 4 shows some configurations for
hourglass shapes.

Fig. 4. Some configurations of hourglass shapes

We denote the sequence of hourglasses by H0, ..., Hk where each Hi contains
x∗
R(i). The end points of x∗

R(i) lie on two edges of Hi that their lengths are at
most Rε/2k. These edges are shown as thick segments in Fig. 4 and we call them
as the base edges of hourglass Hi. Let si and li be respectively the minimum
and maximum length shortest paths that connect a point from one base edge of
Hi to a point on the other base edge which completely lie inside Hi (or on its
boundary). Fig. 5 shows some configurations for si and li paths. We define Lmin

and Lmax as follows :

Lmin =

k∑

i=0

|si|

Lmax =

k∑

i=0

|li|

Lemma 2. Lmax ≤ Lmin + εR.

Touring Polygons: An Approximation Algorithm 115

Fig. 5. Some configurations for si and li

Proof. To prove the relation between Lmin and Lmax we first obtain the re-
lation between |si| and |li| and extend it to Lmin and Lmax. Assume that for
a hourglass Hi, the paths si and li are respectively composed of the sequence
of points < pl1 , ..., plr > and < ps1 , .., psq >. The points pl1 and ps1 lie on one
base edge of Hi and plr and psq lie on the other base edge. Consider a new
path mi =< pl1 , ps1 , ps2 , ..., psq , plr >. The path mi connects the end points of li
and completely lies inside Hi. While li is the shortest path between these points,
|li| ≤ |mi|. On the other hand, the length of the base edges on which the segment
pl1ps1 and psqplr lie are at most Rε/2k. Therefore,

|li| ≤ |mi| ≤ |si|+ 2(Rε/2k) = |si|+Rε/k.

From the above relation we prove the relation between Lmin and Lmax :

Lmax =

k∑

i=0

|li| ≤
k∑

i=0

|si|+ k(Rε/k) = Lmin + εR. �

Now, we can prove the relation between xapr
R and x∗

R which is required in the
pseudo approximation algorithm of the PAT method.

Lemma 3. length(xapr
R) ≤ length(x∗

R) + εR.

Proof. It is trivial that |si| ≤ |x∗
R(i)| ≤ |li|. Therefore, we have :

Lmin ≤ length(x∗
R) ≤ Lmax.

Moreover, length(x∗
R) ≤ length(xapr

R) and length(xapr
R) ≤ Lmax. The reason of

the latter inequality is that if we use a path from s to t which lies only on the
boundary of the sequence of Hi regions, its length is at most Lmax and it is a
valid path in DVG. Therefore, the length of xapr

R cannot be greater than the
length of this path. Hence, we have :

Lmin ≤ length(x∗
R) ≤ length(xapr

R) ≤ Lmax.

Combining this relation with the result of Lemma 2 we obtain the final result:

Lmin ≤ length(x∗
R) ≤ length(xapr

R) ≤ Lmax ≤ Lmin + εR ≤ length(x∗
R) + εR.

=⇒ length(x∗
R) ≤ length(xapr

R) ≤ length(x∗
R) + εR. �

116 A. Mozafari and A. Zarei

Now, we have all of the requirements of PAT and we can use this method to have
the correct FPTAS algorithm. We assume that all inputs are rational numbers.
If we set R∗ as 2L where L is the maximum bit length of the input integers,
we can use the conversion procedure of PAT to obtain a precision sensitive
ε−approximation algorithm. In the next section we analyse the efficiency of this
algorithm.

3 Efficiency of the Algorithm

The running time of this algorithm depends on the size of the built graph and
running time of finding the shortest path from s to t in this graph. We first
obtain the complexity of computing a pseudo approximation path for fixed ε
and R. We have O(k/ε) points on each edge and if n is the complexity of our
problem (number of vertices of all polygons and fences) we have O(nk/ε) ver-
tices in the graph. Let fi (0 ≤ i ≤ k) be the number of these vertices inside
Fi (vertices of Fi and vertices and extra points of Si and Si+1). We can con-
struct visibility graph for each Fi in f2

i time[1]. The sum of fis is O(nk/ε) so
we can construct entire visibility graph in O(n2k2/ε2) time. The number of ver-
tices of this graph is O(nk/ε). Therefore, running Dijkstra algorithm on this
graph takes O(n2k2/ε2) time. Hence, we can obtain a pseudo approximation
path in O(n2k2/ε2) time. To obtain the ε-approximation path with the geomet-
ric search of the PAT method[2], we use the pseudo approximation algorithm
O(log log(R∗/length(x∗))) times. We assume that all inputs are rational num-
bers each of which consists of integer numerator and denominator. If we set R∗

as 2L where L is the maximum bit length of the input integer in our system,
the maximum value of R∗ is 2L and minimum value of length(x∗) is 2−L. Then
we need to run the pseudo approximation algorithm for O(log log(22L)) times.
While on a typical machine L is constant, we must run the pseudo approxima-
tion algorithm a constant number of times. This means that the total running
time of this algorithm is O(k2n2/ε2).

4 Extending to the Overlapped Cases

In Section 2, we proposed an ε-approximation algorithm for solving the TMP
when polygons in Si are disjoint from polygons in Si+1. In this section, we
extend this algorithm to the cases where polygons in Si are allowed to intersect
polygons in Si+1. Fig. 6 shows an example where the approximation factor of our
algorithm is not depend on the value of ε and for arbitrarily small value of ε it
remains large. In this example, we have three sets of polygons (S1 = {P1,1}, S2 =
{P2,1}, S3 = {P3,1}) each of which has one polygon. For this configuration, the
approximation factor of the algorithm is approximately 2 even for infinitely small
value of ε.

This problem happens because in our algorithm the touring path is forced to
touch the polygons in their boundaries. But, as seen in this example, we can
obtain better approximation by touching some polygons (P2,1 in this example)

Touring Polygons: An Approximation Algorithm 117

Fig. 6. A negative example for the first algorithm on intersecting polygons

in its interior. In order to solve problem we need to built DVG in such a way
that handles such situations. We built DVG as follows. The vertex set of DVG
is the same as before, but, there is a directed edge −→uv in this graph if and only
if any one of the following conditions holds:

1. u and v are visible vertices of a fence with respect to that fence.
2. u is a vertex or an extra point on the boundary of a polygon of Si which

lies inside at least one polygon from each set Si+1, ..., Si+j and does not lie
inside a polygon of Si+j+1, and v is a point of some polygon in Si+r for
1 ≤ r ≤ j + 1 which u and v are visible from each other with respect to
Fi+r−1, or,
v is a vertex of Fi+r for 0 ≤ r ≤ j which is visible from u with respect to
this fence.

3. u is a vertex of fence Fi and v is a vertex or extra point of a polygon of Si+1

and u and v are visible from each other with respect to Fi.

Lemma 4. Running Dijkstra algorithm from s to t on this graph returns a valid
pseudo approximation path.

Proof. (Sketch) Let xapr
R be this path. By the same argument as Lemma 1

and according to the construction of the graph, it is simple to show that each
path from s to t in this graph touches all polygon sets in correct order supporting
the fences constraints. This means that xapr

R is a valid touring path.
To satisfy the pseudo approximation path requirement, we must show that
length(xapr

R) ≤ length(x∗
R) + εR. Consider x∗

R as a sequence of k + 1 sub-paths
(0 ≤ i ≤ k) such that x∗

R(i) starts from the first point of x∗
R that lies on Si

after touring Si−1 and ends at the first point of x∗
R that lies on Si+1. While Si

polygons may have intersections, a sub-path x∗
R(i) may have zero length. It is

simple to prove that the start point (end point) of x∗
R(i) lies on the boundary of

a polygon of a set Sj (Sl) 0 ≤ j ≤ i (j ≤ l ≤ k + 1). We denote the fragments
that contain the start and end points of x∗

R(i) by f s
i and fe

i , respectively. Triv-
ially, fs

0 = s and fe
k+1 = t. Moreover, fs

i+1 = fe
i . We build a path P from s to

t in DVG where length(P) ≤ length(x∗
R) + εR. This path follows x∗

R in such a
way that for each sub-path x∗

R(i) which ends at a point on fe
i , its correspond-

ing sub-path in P , denoted by Pi, either (Case 1) ends at an endpoint of fe
i or

(Case 2) another fragment gei ∈ Si+1 which intersects fe
i . Case 1 happens when

the segment xia lies inside Fi+1 where xi is the endpoint of x∗
R(i) on fe

i and a

118 A. Mozafari and A. Zarei

is an endpoint of fe
i at which Pi ends. Otherwise, Case 2 happens in where gei

is a fragment of Si+1 which its intersection point with fe
i is the closest to xi. It

is simple to show that if fe
i ∈ Si+1 Case 1 happens and in Case 2 the fragment

gei always exists which intersects fe
i .

Now, we inductively on i for 0 ≤ i ≤ k follow the path x∗
R and build the

path P and show that in each step 0 ≤ i ≤ k, length(P) increases by at most
length(x∗

R(i)) + Rε/k. For i = 0, we start from s and if s ∈ S1 then x∗
R(0)

and hence P0 have zero length. Otherwise, x∗
R(0) lies inside a hourglass with

s and fe
0 ∈ S1 as its bases. By the same argument as for the non-overlapping

polygons, we can build P0 from s to an endpoint of fe
0 with length at most

length(x∗
R(0)) +Rε/k. For i > 0, we consider two cases, length(x∗

R(i)) = 0 and
length(x∗

R(i)) �= 0 separately.
Assume that length(x∗

R(i)) = 0. Based on the cases applied on Pi−1 and Pi,
four options may happens which are shown in Fig. 7.

Fig. 7. Building Pi when length(x∗
R(i)) = 0

In this figure f s
i = fe

i = fe
i−1 = ab, xi is the end point of x∗

R(i), c is the
endpoint of Pi−1 and d is the endpoint of Pi. In all options we can find the union
of paths Pi−1 and Pi which starts from a and ends at an endpoint of dd′ in such a
way that their total length is at most length(x∗

R(i−1))+ length(x∗
R(i))+2Rε/k.

Now assume that length(x∗
R(i)) �= 0. Hence, we also have four options based on

the cases applied on Pi−1 and Pi shown in Fig. 8 and we can build proper paths as
well. �

Fig. 8. Building Pi when length(x∗
R(i)) �= 0

Touring Polygons: An Approximation Algorithm 119

5 Complexity of the Problem

In this section, we show that UTMP (Unconstrained Touring Multiple-polygons
Problem) is NP-Hard even for the L1 norm and the case that all polygons are
convex and disjoint from each other. Our proof is similar to the NP-Hardness
proof of UTPP in Section 6 of [6] which itself is based on the NP-Hardness
proof of three-dimensional shortest path problem[3]. This proof is a reduction
from 3-SAT. Suppose that we have an instance of the 3-SAT problem with n
variables b1, ..., bn and m clauses Ci = (li1 ∨ li2 ∨ li3). For fixed points s and t
we construct a sequence of sets of polygons with total complexity O(n+m) for
which solving the UTMP enables us to determine whether our 3-SAT problem
has a satisfying truth assignment. We construct five kinds of gadgets : 2-way
path splitter that doubles the number of shortest paths, 3-way path splitter that
triples the number of shortest paths without changing their order (Fig. 9), path
shuffler that performs a perfect shuffle of the input paths, literal filter that selects
paths whose encodings have 0 or 1 in the ith bit (literal filters consisting of n
shufflers and one horizontal segment to stretch all paths having special bit equal
to 0 or 1) (Fig. 10), clause filter that determines whether a specific clause has
satisfying truth assignment (Fig 11).

In these gadgets we have only line segment polygons which are convex and
disjoint from each other and their angle with the x-axis is 0,±45 and 90. In
this construction, we use n 2-way splitters to create 2n distinct paths each of
which encodes a truth assignment for n variables. Then, we use sequence of m
clause filters each consisting of three literal filters contained between two 3-way
splitters. This permits us to filter those paths fail to satisfy each clause. Fig. 12
shows how we can select polygonal sets to build three parallel literal filters inside
a clause filter. We need to put a blocker set after each shuffler. Each blocker set
has a segment that determines whether the output paths of the shuffler need to
be stretched. As shown in Fig. 10, if this segment is full no output path is forced
to be stretched.

Note that we can always modify size and position of these gadgets to enforce
that each input path directly goes to one of the segments without bending or
intersecting endpoint of segments. Finally, we use 2-way splitters to collect all
paths back to a single path that terminates at t. In this construction, all segments
are in the plane and disjoint from each other. So, the initial 3-SAT problem has

Fig. 9. Two and Three way path splitter

120 A. Mozafari and A. Zarei

Fig. 10. Shuffle and Literal filter

Fig. 11. Clause filter gadget

Fig. 12. Three shuffle gadgets in parallel

Touring Polygons: An Approximation Algorithm 121

a satisfying truth assignment if and only if the solution of this UTMP problem
is equal to the distance from s to t.

References

1. Asano, T., Asano, T., Guibas, L., Hershberger, J., Imai, H.: Visibility-polygon
search and Euclidean shortest paths. In: Proc. 26th IEEE Symposium on Founda-
tions of Computer Science, pp. 155–164 (1985)

2. Asano, T., Kirkpatrick, D., Yap, C.: Pseudo approximation algorithms, with appli-
cations to optimal motion planning. In: Proc. 18th Annu. ACM Sympos. Comput.
Geom., pp. 170–178 (2002)

3. Canny, J., Reif, J.H.: New lower bound techniques for robot motion planning prob-
lems. In: Proc. 28th Annu. IEEE Sympos. Found. Comput. Sci, pp. 49–60 (1987)

4. Chin, W., Ntafos, S.: Shortest Watchman Routes in Simple Polygons. Discrete and
Computational Geometry 6(1), 9–31 (1991)

5. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
MIT press (2009) ISBN 978-0-262-03384-8

6. Dror, M., Efrat, A., Lubiw, A., Mitchell, J.: Touring a sequence of polygons. In:
Proc. STOC 2003, pp. 473–482 (2003)

7. Dror, M.: Polygon plate-cutting with a given order. IIE Transactions 31, 271–274
(1999)

8. Guibas, L.J., Hershberger, J.: optimal shortest path queries in simple polygon. J.
Comput. Syst. Sci. 39, 126–152 (1989)

9. Hershberger, J., Snoeyink, J.: An efficient solution to the zookeeper’s problem. In:
Proc. 6th Canadian Conf. on Comp. Geometry, pp. 104–109 (1994)

10. Li, F., Klette, R.: Rubberband algorithms for solving various 2D or 3D shortest
path problems. In: Proc. Computing: Theory and Applications, The Indian Statis-
tical Institute, Kolkata, pp. 9–18. IEEE (2007)

11. Tan, X., Hirata, T.: Constructing Shortest Watchman Routes by Divide and Con-
quer. In: Ng, K.W., Balasubramanian, N.V., Raghavan, P., Chin, F.Y.L. (eds.)
ISAAC 1993. LNCS, vol. 762, pp. 68–77. Springer, Heidelberg (1993)

12. Tan, X., Hirata, T.: Shortest Safari Routes in Simple Polygons. In: Du, D.-Z.,
Zhang, X.-S. (eds.) ISAAC 1994. LNCS, vol. 834, pp. 523–531. Springer, Heidelberg
(1994)

	Touring Polygons: An Approximation Algorithm
	Introduction
	The FPTAS Algorithm
	Efficiency of the Algorithm
	Extending to the Overlapped Cases
	Complexity of the Problem
	References

