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Abstract. An acyclic k-coloring of a graph G is a mapping φ from
the set of vertices of G to a set of k distinct colors such that no two
adjacent vertices receive the same color and φ does not contain any
bichromatic cycle. In this paper we prove that every triangulated plane
graph with n vertices has a 1-subdivision that is acyclically 3-colorable
(respectively, 4-colorable), where the number of division vertices is at
most 2n − 5 (respectively, 1.5n − 3.5). On the other hand, we prove
an 1.28n (respectively, 0.3n) lower bound on the number of division ver-
tices for acyclic 3-colorings (respectively, 4-colorings) of triangulated pla-
nar graphs. Furthermore, we establish the NP-completeness of deciding
acyclic 4-colorability for graphs with the maximum degree 5 and for pla-
nar graphs with the maximum degree 7.

1 Introduction

A k-coloring of a graph G is a mapping φ from the set of vertices of G to a set
of k distinct colors such that no two adjacent vertices receive the same color.
We call φ an acyclic k-coloring if it does not contain any bichromatic cycle.
The acyclic chromatic number of a graph G is the minimum number of colors
required in any acyclic coloring of G.

Grünbaum [13] first introduced the concept of acyclic coloring in 1973 and
proved that every planar graph admits an acyclic 9-coloring. Then Mitchem [17],
Albertson and Berman [1], Kostochka [15] and finally Borodin [6] improved this
upper bound to 8, 7, 6 and 5, respectively. Since there exist planar graphs requir-
ing 5 colors in any acyclic coloring [13], much research effort has been devoted
to characterize planar graphs that are acyclically 3 or 4-colorable [5]. Both the
problems of deciding acyclic 3 and 4-colorability are NP-hard for planar graphs
with maximum degree 4 and 8, respectively [3,22].
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Grünbaum also considered acyclic colorings of non-planar graphs. He proved
that any graph of maximum degree 3 admits an acyclic 4-coloring. Alon et al. [2]
gave anO(Δ4/3) upper bound and anΩ(Δ4/3/(logΔ)1/3) lower bound on acyclic
chromatic number for the graphs with maximum degree Δ. The currently best
known upper bounds on acyclic chromatic numbers for the graphs with maximum
degree 3, 4, 5 and 6 are 4, 5, 7 and 11, respectively [23,7,16,14]. Little is known
about the time complexity of deciding acyclic colorability for bounded degree
graphs. Acyclic 3-colorability (respectively, 4-colorability) is NP-complete for
bipartite planar graphs with maximum degree 4 (respectively, maximum degree
8) [22]. Recently, Mondal et al. [18] proved that acyclic 4-colorability is NP-
complete for the graphs with maximum degree 7.

A k-subdivision of a graph G is a graph G′ obtained by replacing every edge
of G with a path that has at most k internal vertices. We call these internal
vertices the division vertices of G. Wood [24] observed that every graph has a
2-subdivision that is acyclically 3-colorable. Angelini and Frati [3] proved that
every triangulated planar graph with n vertices has a 1-subdivision with 3n− 6
division vertices that is acyclically 3-colorable. This upper bound on the number
of division vertices reduces to 2n− 6 in the case of acyclic 4-coloring [18].

Acyclic colorings of graphs and their subdivisions find applications in diverse
areas [10,11,12]. For example, an acyclic coloring of a planar graph has been used
to obtain upper bounds on the volume of a 3-dimensional straight-line grid draw-
ing of a planar graph [10]. Consequently, an acyclic coloring of a planar graph
subdivision can give upper bounds on the volume of a 3-dimensional polyline
grid drawing, where the number of division vertices gives an upper bound on
the number of bends sufficient to achieve that volume. The acyclic chromatic
number of a graph helps to obtain an upper bound on the size of “feedback ver-
tex set” of a graph, which has wide applications in operating system, database
system, genome assembly, and VLSI chip design [11]. Acyclic colorings are also
used in efficient computation of Hessian matrix [12].

In this paper we examine acyclic colorings of 1-subdivisions of planar graphs.
We also show some improvement over the previous NP-completeness results in
terms of maximum degree. Our results are as follows.

– In Section 3 we prove that every triangulated plane graph with n vertices has
a 1-subdivision with at most 2n− 5 (respectively, 1.5n− 3.5) division vertices
that is acyclically 3-colorable (respectively, 4-colorable), which significantly
improves the previously best known upper bounds 3n− 6 and 2n− 6 on the
number of division vertices presented in [3,18].

– In Section 4 we establish a 1.28n (respectively, 0.3n) lower bound on the
number of division vertices for acyclic 3 and 4-colorings of triangulated planar
graphs, respectively.

– In Section 5 we show that deciding acyclic 4-colorability is NP-complete for
graphs with maximum degree 5 and for planar graphs with maximum degree 7.
Our results improve the previously known NP-completeness results on acyclic
4-colorability for graphs with maximum degree 7 [18] and for planar graphs
with maximum degree 8 [22].
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2 Preliminaries

In this section we present some definitions and preliminary results that are used
throughout the paper.

Let G = (V,E) be a connected graph with vertex set V and edge set E. By
deg(v) we denote the degree of the vertex v in G. The maximum degree Δ of
G is the maximum of all deg(v), v ∈ V . Let P = u0, u1, u2, . . . , ul+1, l ≥ 1,
be a path of G such that deg(u0) ≥ 3, deg(u1) = deg(u2) = . . . = d(ul) = 2
and d(ul+1) ≥ 3. Then we call the subpath u1, u2, . . . , ul of P a chain of G. A
spanning tree of G is a subgraph of G that is a tree and contains all the vertices of
G. G is k-connected if the minimum number of vertices required to remove from
G to obtain a disconnected graph or a single-vertex graph is k. The following
remark is easy to verify.

Remark 1. Let G be a graph and let G′ be a graph obtained from G by adding
a chain w1, . . . , wj between two distinct vertices u and v of G. Assume that G
admits an acyclic 3-coloring, which can be extended to a 3-coloring φ of G′ such
that the vertices on the path u,w1, . . . , wj , v receive three different colors. Then
φ is an acyclic 3-coloring of G′.

A plane graph G is a planar graph with a fixed planar embedding on the plane.
G delimits the plane into connected regions called faces. The unbounded face is
the outer face of G and all the other faces are the inner faces of G. G is called
triangulated (respectively, internally triangulated) if every face (respectively, ev-
ery inner face) of G contains exactly three vertices on its boundary. The vertices
on the outer face of G are called the outer vertices and all the remaining vertices
are called the inner vertices. The edges on the outer face are called the outer
edges of G.

Let G = (V,E) be a triangulated plane graph with the outer vertices x, y and
z in anticlockwise order on the outer face. Let π = (v1(= x), v2(= y), ..., vn(= z))
be an ordering of all vertices of G. By Gk, 3 ≤ k ≤ n, we denote the subgraph
of G induced by v1 ∪ v2 ∪ ... ∪ vk and by Ck the outer cycle (i.e., the boundary
of the outer face) of Gk. We call π a canonical ordering of G with respect to
the outer edge (x, y) if for each index k, 3 ≤ k ≤ n, the following conditions are
satisfied [21].

(a) Gk is 2-connected and internally triangulated.
(b) If k+1 ≤ n, then vk+1 is an outer vertex of Gk+1 and the neighbors of vk+1

in Gk appears consecutively on Ck.

Assume that for some k ≥ 3, the outer cycle Ck is w1(= x), . . . , wp, wq(=
vk), wr . . . , wt(= y), where the vertices appear in clockwise order on Ck. Then we
call the edges (wp, vk) and (vk, wr) the left-edge and the right-edge of vk, respec-
tively. By L(vk) and R(vk) we denote the vertices wp and wr, respectively. Let
E∗ be the set of edges that does not belong to any Ck, 3 ≤ k ≤ n. Assume that
V ∗ = V − {v1, v2}. Then the graph Tπ = (V ∗, E∗) is a tree. The graph induced
by the right-edges (respectively, left-edges) of the vertices vk, 3 ≤ k ≤ n − 1, is
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also a tree, which we denote by T r
π (respectively, T l

π). In fact, Tπ, T
l
π and T r

π form
a “Schnyder’s realizer” of G [25]. By Gπ we denote the graph obtained from G
by removing all the edges of Tπ. Figure 1(a) illustrates π, Tπ and Gπ.

The existence of Schnyder’s realizer implies that there exists another canonical
ordering π′ = (u1(= z), u2(= x), ..., un(= y)) of G with respect to the outer edge
(z, x) such that the following properties hold [25].

(i) For each index k, 3 ≤ k ≤ n−1, the right-edge e of vertex uk in π′ coincides
with the left-edge of that vertex in π, and hence both Gπ′ and Gπ contains
e. On the other hand, the left-edge of vertex uk belongs to Gπ′ , but does
not belong to Gπ .

(ii) Gπ′ contains all the edges of G except the edges of T r
π .

Figure 1(b) illustrates π′ and T r
π . The vertex v6 in Figure 1(a) and the vertex

u3 in Figure 1(b) are the same, where the left-edge (v6, v1) of v6 coincides with
the right-edge (u3, u2) of u3.
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Fig. 1. (a) A graph G and its canonical ordering π. The edges of Tπ are shown in
dashed lines. All the remaining edges belong to Gπ. (b) The canonical decomposition
π′ of G. The edges of T r

π are shown in dotted lines. All the remaining edges belong to
G′

π. (c) An acyclic 3-coloring of S. (d) An acyclic 3-coloring of S′. The division vertices
are shown in gray color.

3 Acyclic Colorings of Planar Graph Subdivisions

In this section we prove that every triangulated plane graph with n vertices has
a 1-subdivision with at most 2n − 5 (respectively, 1.5n − 3.5) division vertices
that is acyclically 3-colorable (respectively, 4-colorable). To achieve our results
we exploit the properties of canonical orderings of triangulated plane graphs.

Theorem 1. Every triangulated plane graph G with n ≥ 3 vertices has a 1-
subdivision G′ with at most 2n−5 division vertices that is acyclically 3-colorable.

Proof. Let x, y, z be the outer vertices of G in anticlockwise order on the
outer face. Let π = (v1(= x), v2(= y), . . . , vn(= z)) and π′ = (u1(= z), u2(=
x), . . . , un(= y)) be the canonical orderings of G as defined in Section 2. We use
Gπ and Gπ′ to construct the required 1-subdivision G′ and an acyclic 3-coloring
of G′.
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We first construct a 1-subdivision S of Gπ and compute an acyclic 3-coloring
φ of S with the colors c1, c2, c3. We assign colors c1 and c2 to the vertices v1 and
v2, respectively. For 3 ≤ k ≤ n, we assign vk a color other than the colors of L(vk)
and R(vk). We then subdivide the right-edge (vk, R(vk)) with one division vertex
and assign the division vertex the color different from its neighbors. The resulting
1-subdivision of Gπ is the required subdivision S. It is now straightforward to
prove inductively using Remark 1 that the resulting coloring φ of S is an acyclic
3-coloring1. Observe that every edge e of T r

π contains a division vertex z in S
and z along with the two end vertices of e receive three different colors in φ.
This property also holds for the edge (y, z). Figure 1(c) illustrates S.

We then construct a 1-subdivision of Gπ′ and color that subdivision acycli-
cally with colors c1, c2, c3 without changing the colors assigned to the original
vertices by φ. For 3 ≤ k ≤ n − 1, we subdivide the left-edge of uk with one
division vertex z′. If col(uk) = col(L(uk)), then we color z′ with the color other
than the colors of uk and R(uk). Otherwise, we assign z′ the color different from
its neighbors. Finally, we subdivide the left-edge of un with a division vertex
z′′ and color it with the color of the division vertex on (y, z) in S. By Property
(i) of Gπ′ along with the computation of φ observe that col(uk) �= col(R(uk)).
Consequently, the coloring of z′ ensures that the path L(uk), z

′, uk, R(uk) con-
tains vertices of three different colors. This property holds when k = n, i.e.,
the path L(un), z

′′, un, R(un) contains vertices of three different colors. It is now
straightforward to prove inductively using Remark 1 that the coloring of the
resulting 1-subdivision S′ of Gπ′ is an acyclic 3-coloring, which we denote by φ′.
Figure 1(d) illustrates S′.

We now use S and S′ to construct G′. For each edge e in G, we subdivide
e if the corresponding edge in S or S′ contains a division vertex. The resulting
1-subdivision is the required G′. Since φ and φ′ do not contain any conflict, we
can color the vertices of G′ unambiguously. Suppose for a contradiction that the
coloring we compute for G′ contains a bichromatic cycle C. Since S′ is colored
acyclically, C must contain an edge e of G′ that does not correspond to any edge
in S′. By Property (ii) of Gπ′ , e must be an edge of T r

π . Recall that every edge e
of T r

π contains a division vertex z in S and z along with the two end vertices of
e receive three different colors in φ. Therefore, C cannot be a bichromatic cycle,
a contradiction.

Observe that each of the subdivisions S and S′ contains exactly n−2 division
vertices, where only the division vertex on (y, z) is common to both subdivisions.
Therefore, the number of division vertices in G′ is 2n− 5. ��
Theorem 2. Every triangulated plane graph G with n ≥ 3 vertices has a 1-
subdivision G′ with at most 	3(n − 3)/2
 ≈ 1.5n − 3.5 division vertices that is
acyclically 4-colorable.

1 Note that the graph induced by v1, v2 in Gπ is colored acyclically. Assume inductively
that this holds for the graph H , which is a subgraph of Gπ induced by v1, v2, . . . , vz,
where 2 < z < n. The graph induced by v1, v2, . . . , vz, vz+1 in Gπ is obtained by
adding a chain to H and the colors assigned to the vertices on the chain satisfy the
condition of Remark 1.
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Proof. Zhang and He [25] proved that G has a canonical ordering π such that
Tπ contains 	(n− 3)/2
 leaves. (The corresponding Schnyder’s realizer is known
as minimum Schnyder’s realizer.) We use π to compute G′.

We first construct a 1-subdivision H of Gπ and compute an acyclic 3-coloring
of H as follows. We assign colors c1 and c2 to the vertices v1 and v2, respec-
tively. For 3 ≤ k ≤ n, we assign vk a color other than the colors of L(vk) and
R(vk). If col(L(vk)) = col(R(vk)), then we subdivide the edge (vk, R(vk)) with
one division vertex and assign the division vertex the color different from its
neighbors. The resulting 1-subdivision is the required subdivision H . It is now
straightforward to prove inductively using Remark 1 that the resulting coloring
of H is an acyclic 3-coloring.

We now count the number of division vertices in H . Observe that for each
vk, 3 ≤ k ≤ n, if vk is a leaf in Tπ or k = n, then the edge (L(vk), R(vk)) exists.
Consequently, col(L(vk)) �= col(R(vk)) and we do not add any division vertex in
this situation. Since there are 	(n − 3)/2
 leaves in Tπ, the number of division
vertices in H is at most n− 2− 	(n− 3)/2
 − 1 = 	(n− 3)/2
.

To construct G′, we add the edges of Tπ to H by subdividing each edge of
Tπ with one division vertex. We color all the new division vertices with color
c4. The resulting subdivision is the required subdivision G′ of G. Suppose for a
contradiction that the coloring we compute for G′ contains a bichromatic cycle
C. Since H is colored acyclically and Tπ is a tree, C must contain at least one
edge e from Tπ and at least one edge e′ from Gπ. Since the division vertex on
e is colored with c4, and the end vertices of e′ along with the division vertex
on e′ (if any) contribute two different colors to C other than c4, C cannot be a
bichromatic cycle, a contradiction.

Finally, the number of division vertices in G′ is at most n− 3+ 	(n− 3)/2
=
	3(n− 3)/2
 ≤ 1.5n− 3.5. ��
Since the canonical orderings of plane graphs used in Theorems 1 and 2 can be
computed in linear time [25], the proofs of these theorems lead us to linear-time
acyclic coloring algorithms.

Recently, Di Battista, Frati and Pach [4] have proved an O(n log16 n) and
O(n log logn) upper bound on volume of 3D straight-line and polyline draw-
ings of planar graphs, respectively. However, to achieve the O(n log log n) upper
bound they need to allow O(log logn) bends per edge. If we restrict each edge
to have at most one bend, then a similar technique yields an O(n log8 n) upper
bound on volume of 3D polyline drawings as follows.

Every graph G with acyclic chromatic number c and ‘queue number’ q has
‘track number’ t ≤ c(2q)c−1 [10]. The upper bound on the queue number of
planar graphs is O(log4 n) [4]. Since every planar graph G has a subdivision G′

with O(n) division vertices that is acyclically 3-colorable, the track number of
G′ is t = O(log8 n). Dujmović and Wood [9] proved that every c-colorable graph
with n vertices and track-number t has a 3D straight-line drawing with O(nc7t)
volume. Therefore, Theorems 1 and 2 imply the following.
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Remark 2. Every planar graph G admits an O(n log8 n) volume (respectively,
an O(n log12 n) volume) 3D polyline drawing with at most one bend per edge and
at most 2n− 5 bends (respectively, 1.5n− 3.5 bends) in total.

4 Lower Bounds on the Number of Division Vertices

In this section we present a triangulated planar graphG with n vertices such that
any of its 1-subdivisions that is acyclically 3-colorable (respectively, 4-colorable),
contains at least 1.28n (respectively, 0.3n) division vertices.

In Figures 2(a) and (b) we exhibit two planar graphs M and N such that the
following lemma holds.

Lemma 1. Any 1-subdivision of M (respectively, N ) that is acyclically acycli-
cally 3-colorable (respectively, 4-colorable), contains at least 9 (respectively, 3)
division vertices.

Lemma 1 can be verified by case study or by computer programs.
We use M and N along with a recursive graph structure Gk, k ∈ Z

+, to
construct the triangulated planar graphs that give rise to the lower bound. G1 is
the graph shown in Figure 2(c). A set of four edge disjoint empty triangles of G1

are shown in gray, which we call cells. Gk, k > 1, is constructed by inserting a
copy ofG1 into each cell ofGk−1 and then identifying the outer cycle of each copy
of G1 with the boundary of the corresponding cell. Figure 2(d) shows G2. The
number of cells and the number of vertices in Gk is 4k and 4k + 2, respectively.

(a) (b) (c) (d)

Fig. 2. Illustration for (a) M, (b) N , (c) G1, and (d) G2

Let Mk be the graph obtained by inserting a copy of M into each cell of Gk

and then identifying the outer cycle of each copy of M with the boundary of
the corresponding cell. Then the number of vertices in Mk is 4k + 2 + 6 · 4k =
7 · 4k+2. The copies of M are edge disjoint in Mk. Therefore by Lemma 1, any
1-subdivision of Mk that is acyclically acyclically 3-colorable contains at least
9 · 4k = (9t− 18)/7 division vertices, where t = 7 · 4k + 2.

Similarly, for any k ∈ Z
+, we use N to construct a triangulated planar graph

with t′ = 4k + 2 + 9 · 4k vertices such that any of its 1-subdivisions that is
acyclically 4-colorable contains at least 3 · 4k = (3t′ − 6)/10 division vertices.
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Theorem 3. For every k ∈ Z
+, there exists a triangulated planar graph with

t = 7 ·4k+2 vertices (respectively, t′ = 10 ·4k+2 vertices) such that any of its 1-
subdivisions, which is acyclically 3-colorable (respectively, 4-colorable), contains
at least (9t− 18)/7 (respectively, (3t′ − 6)/10) division vertices.

5 NP-Completeness

In this section we first prove that acyclic 4-colorability is NP-hard for the graphs
with maximum degree 5. We then prove that the problem remains NP-hard for
planar graphs with maximum degree 7.

5.1 Acyclic 4-Colorability of Graphs with Δ = 5

To prove the NP-hardness of acyclic 4-colorability for maximum degree 5, we use
the same technique as used in [18] to show the NP-hardness of 4-colorability for
graphs with maximum degree 7. The crucial step is to construct a graph with
low maximum degree such that in any acyclic 4-coloring of G a set of vertices of
G receives the same color.

We use the graph shown in Figure 3(a) for this purpose. We call the graph of
Figure 3(a) a bead and the vertices x, y the poles. A bead contains exactly one
vertex s of degree 4, which we call the center of the bead.

Remark 3. In any acyclic 4-coloring of a bead, the poles get different colors.

(b)(a)
y

u

x

s
v

tr

r s t s t v
u

v

x x

(c)
y y

(d)
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c3 c3 c3c4
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c2

c1 c1

c3
c3c3 c4 c4

c4 c4 c4c3
c3 c3

c2c2

Fig. 3. Illustration for (a) a bead, (b) Gp, (c) a partial acyclic 4-coloring of G2, and
(d) an acyclic 4-coloring of Gp

For any i ∈ Z
+, we now define a graph Gi with maximum degree 5 as follows.

(a) G1 is a bead.
(b) Gi, i > 1, is constructed with an ordered sequence B1, B2, . . . , Bi of i beads

by merging a vertex of degree two of Bj with a vertex of degree three of
Bj+1 and a vertex of degree three of Bj with a vertex of degree two of Bj+1,
where 0 < j < i. A construction for Gi is shown in Figure 3(b).
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Observe that every bead in Gi contains exactly one vertex of degree 4. The
following lemma gives some properties of acyclic 4-colorings of Gi.

Lemma 2. For any p ∈ Z
+, Gp contains an independent set I(Gp) of size

�(p + 1)/2 such that every vertex of I(Gp) is a vertex of degree 4 and in any
acyclic 4-coloring of Gp, the vertices of I(Gp) receive the same color.

Proof. Let B1, B2, . . . , Bp be the ordered sequence of beads in Gp. It suffices to
prove that in any acyclic 4-coloring of Gp, p ≥ 3, the center of bead Bj and the
center of bead Bj+2 receive the same color, where 1 ≤ j ≤ p− 2. To prove this
claim we show that an acyclic 4-coloring of a single bead enforce the subsequent
beads to follow some color pattern.

Figure 3(a) depicts a drawing of a single bead B. By Remark 3, in any acyclic
4-coloring φ of B the poles x, y receive different colors. Let the color of the poles
be c1 and c2. Then all the vertices of B other than the poles are colored with c3
or c4. Without loss of generality assume that col(x) = c1, col(y) = c2, col(u) =
col(r) = col(t) = c3 and col(s) = c4, as shown in Figure 3(c). Then the color of
vertex v in φ can be c3 or c4.

Add another bead B′ to B to form a G2, as shown in Figure 3(c). Let the
poles of B′ be x′ and y′. If col(v) = c3, then both x′ and y′ must be colored with
c4 to avoid any bichromatic cycle. But by Remark 3, this partial coloring cannot
be extended to an acyclic 4-coloring of G2. Consequently, we have col(v) = c4,
which leaves us with the choice {col(x′), col(y′)} ⊆ {c1, c2}, col(t′) = c4 and
col(v′) = c3. It is now straightforward to verify that the resulting coloring is an
acyclic 4-coloring of G2.

Observe that each pole vertex in G2 receives a color from {c1, c2} and the
colors of the center vertices alternate between c3 and c4. Since Gp is obtained
from a repeated addition of beads, the center vertices of the beads Bj and Bj+2

receive the same color, where 1 ≤ j ≤ p − 2. Figure 3(d) illustrates an acyclic
4-coloring of Gp. ��
We now prove the NP-completeness of acyclic 4-colorability for graphs with
maximum degree 5. Observe that given a valid 4-coloring of the vertices of the
input graph, one can check in polynomial time whether the vertices of each pair
of color classes induces a forest. Therefore, the problem is in NP.

To prove the NP-hardness we reduce the NP-complete problem of deciding
acyclic 3-colorability of maximum degree 4 graphs [3] to the problem of deciding
acyclic 4-colorability of maximum degree 5 graphs. Let G be an instance of
acyclic 3-colorability problem, where G has n vertices and the maximum degree
of G is 4. Take a copy of G2n−1 and connect each vertex of G with a distinct
vertex of I(G2n−1) by an edge. Let the resulting graph with maximum degree 5
be G′, which is straightforward to construct in polynomial time. Using the proof
technique of Theorem 3 of [18] we can show that G admits an acyclic 3-coloring
if and only if G′ admits an acyclic 4-coloring. However, we give a stand-alone
proof in the following theorem.

Theorem 4. It is NP-complete to decide whether a graph with maximum degree
5 admits an acyclic 4-coloring.
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Proof. Given a valid 4-coloring of the vertices of the input graph, we can check in
polynomial time whether the vertices of each pair of color classes induces a forest.
Therefore, the problem of deciding 4-colorability is in NP. To prove the NP-
hardness we reduce the NP-complete problem of deciding acyclic 3-colorability
of maximum degree 4 graphs [3] to the problem of deciding acyclic 4-colorability
of maximum degree 5 graphs.

Let G be an instance of acyclic 3-colorability problem, where G has n vertices
and the maximum degree of G is 4. Take a copy of G2n−1 and connect each
vertex of G with a distinct vertex of I(G2n−1) by an edge. Let the resulting
graph with maximum degree 5 be G′, which is straightforward to construct in
polynomial time. By the linkers of G′ we denote these edges that connect the
vertices of I(G2n−1) with the vertices in G. We now show that G admits an
acyclic 3-coloring if and only if G′ admits an acyclic 4-coloring.

We first assume that G admits an acyclic 3-coloring with the colors c1, c2, c3
and then construct an acyclic 4-coloring of G′. For each vertex v in G, color
the corresponding vertex in G′ with col(v). We color G2n−1 acyclically with the
colors c1, c2, c3 and c4 such that the vertices of I(G2n−1) receive color c4. Which
can be done in polynomial time by Lemma 2. If the resulting coloring of G′ is
not acyclic, then there is a bichromatic cycle C. Since G and G2n−1 are colored
acyclically, C must contain a linker. Therefore, some vertex on C must be colored
with color c4. Since no two linkers have a common end vertex, C must contain
an edge e of G. The end vertices of e must have two of the three colors c1, c2, c3.
Consequently, C cannot be a bichromatic cycle, a contradiction.

We now assume that G′ admits an acyclic 4-coloring and then construct an
acyclic 3-coloring of G. By Lemma 2, the vertices in I(G2n−1) are colored with
the same color. Since each vertex in G is adjacent to some vertex in I(G2n−1),
the vertices of G are colored with three colors. Since G′ is colored acyclically,
the coloring of G is acyclic. ��

5.2 Acyclic 4-Colorability of Planar Graphs with Δ = 7

In this section we prove the NP-completeness of acyclic 4-colorability of planar
graphs with maximum degree 7. Ochem [22] proved the NP-hardness of acyclic
4-colorability of bipartite Planar Graphs with maximum degree 8. It does not
seem straightforward to adapt his proof to show the NP-hardness of acyclic
4-colorability of planar graphs with maximum degree 7, even if we relax the
‘bipartite’ condition and try to replace his vertex gadget with another vertex
gadget of low maximum degree that have the same functionality.

To define our vertex and edge gadgets, we first define some special graphs.
A jewel is a graph obtained from a bead by connecting the vertices of degree 2
with distinct vertices of degree 3, as shown in Figure 4(a). By the connectors of
a jewel J we denote the vertices of degree three in J . For any i ∈ Z

+, a necklace
Ni is a graph with maximum degree 6, which is constructed with an ordered
sequence J1, J2, . . . , Ji of i jewels by merging a connector of Jq with a connector
of Jq+1, where 0 < q < i. We use the necklace N15 as the vertex gadget, as
shown in Figure 4(c) inside the dashed rectangle.
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We call the graph of Figure 4(b) a link L, where the vertex w is the connector
of L and each of the vertices l,m, n is a tail of L. In a similar technique as we
used in Lemma 2, we can prove the following lemma.

Lemma 3. The following claims hold:

(a) Let φ be an acyclic 4-coloring of a necklace Ni, i ∈ Z
+. Then all the connec-

tors receive the same color c in φ. Let c′, c′ �= c, be any color among the 4
colors used in φ. Then for any two connectors in Ni, there is a bichromatic
path with colors c′ and c in φ.

(b) In any acyclic 4-coloring of the link L, if col(l) = col(m) = col(n) = c
and there is no bichromatic path between any pair of the tails l,m, n, then
col(w) = c. Furthermore, there exists an acyclic coloring φ of L such that
there is no bichromatic path between any pair of the vertices w, l,m, n.

We use two copies of N11 along with six copies of the link to construct the
edge gadget. Figures 4(c)–(e) illustrate the edge gadget and its hypothetical
representation. We call the vertices w1, w2, w3 and w4 the free connectors of the
edge gadget. We now have the following theorem.

Theorem 5. It is NP-complete to decide whether a planar graph with maximum
degree 7 admits an acyclic 4-coloring.

Proof. In a similar way as in Theorem 4, we can observe that the problem is in
NP. To prove the NP-hardness we reduce the NP-complete problem of deciding
3-colorability of planar graphs with maximum degree 4 [8] to the problem of
deciding acyclic 4-colorability of planar graphs with maximum degree 7.

Let G be an instance of 3-colorability problem, where G has n vertices and
the maximum degree of G is 4. We now construct a graph G′ by replacing the
vertices and edges with appropriate gadgets, as illustrated in Figures 4(c)–(e).
For every vertex gadget X , we connect the edge gadgets incident to X by merging
some of the free connectors such that the resulting graph remains planar and
the maximum degree does not exceed 7. As a consequence, all the edge gadgets
become connected, i.e., removal of all the vertex gadgets leaves a connected
component. See Figures 4(f)-(g). Let the resulting planar graph be G′, which is
straightforward to construct in polynomial time. We now show that G admits a
3-coloring if and only if G′ admits an acyclic 4-coloring.

We first assume that G admits a 3-coloring with the colors c1, c2, c3 and
then construct an acyclic 4-coloring of G′. For every vertex v in G, we color
the connectors of the corresponding vertex gadget in G′ with col(v). We then
color all the remaining connectors with color c4. See Figures 4(h)-(i). Finally,
we color the remaining vertices of G′ according to the Figures 4(a)–(b). Suppose
for a contradiction that the resulting coloring contains a bichromatic path C. It
is straightforward to verify that every vertex gadget and edge gadget is colored
acyclically. Moreover, we have colored every link L in such a way that there is no
bichromatic path between the connector and any of the tails of L (See Lemma 3
and Figure 4(b)). Therefore, the cycle C must pass through at least one edge
gadget Y and its two incident vertex gadgets. Since the connectors of Y are
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Fig. 4. (a) A jewel. (b) A link. (c) An edge e. (d) A vertex and edge gadgets replacing
e. (e) A hypothetical representation of the gadgets. (f) A graph G. (g) G′, which is
obtained from G by first replacing the vertices and edges with appropriate gadgets and
then merging the free connectors as necessary. (h) A 3-coloring φ of G. (i) An acyclic
4-coloring of G′ that corresponds to φ, where a color associated with a vertex or edge
gadget denotes the color of the connectors in that gadget.

colored with c4 and the connectors of its two incident vertex gadgets are colored
with two different colors other than c4, the cycle C cannot be bichromatic, a
contradiction. We now assume that G′ admits an acyclic 4-coloring φ′ and then
construct a 3-coloring ofG. By Lemma 3, all the connectors in each vertex gadget
receive the same color in φ′. We assign the color associated to the connectors of a
vertex gadget in G′ to its corresponding vertex in G. Suppose for a contradiction
that the resulting coloring φ of G is either a 4-coloring or contains two vertices
with the same color that are adjacent in G.

By construction of G′, all the edge gadgets are connected through the connec-
tors. Therefore, the color of the connectors in all the edge gadgets must be the
same. Without loss of generality let that color be c4. Since every vertex gadget
has a connector that is adjacent to some connector in some edge gadget in G′,
no connector of the vertex gadgets can receive color c4. Therefore, φ contains
only three different colors. We are now left with the case when φ contains two
vertices with the same color z that are adjacent in G.
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Let Y be the corresponding edge gadget and let X1,X2 be its incident vertex
gadgets. Figure 4(d) illustrates an example, where Y meets X1 at the connectors
a, b and X2 at the connectors c, d. If both the connectors of X1 and X2 are colored
with color z, then by Lemma 3 we can construct a bichromatic cycle through
a, b, c, d that is contained in the necklaces of X1,X2 and Y. Therefore, any two
connectors that lie in two different vertex gadgets must receive two different
colors if those vertex gadgets are adjacent in G′. Hence, no two adjacent vertices
of G can receive the same color in φ, a contradiction. ��

6 Conclusion

The question “What is the minimum positive constant c such that every trian-
gulated planar graph with n vertices has an acyclic k-coloring, k ∈ {3, 4}, with
at most cn division vertices?” was posed in the 22nd International Workshop
on Combinatorial Algorithms (IWOCA 2011) [20]. Although we proved that
1.28 ≤ c ≤ 2 and 0.3 ≤ c ≤ 1.5 for k = 3 and k = 4, respectively, there is a gap
between the upper bound and the lower bound leaving a scope for improvement.
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IWOCA 2012.
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