
Faster Replacement Paths Algorithm

for Undirected, Positive Integer Weighted
Graphs with Small Diameter

Jay Mahadeokar and Sanjeev Saxena

Dept. of Computer Science and Engineering,
Indian Institute of Technology,

Kanpur, India-208 016

Abstract. We consider the replacement path problem for undirected
graphs in case of edge failures. Given a 2-edge connected graph G(V, E),
where n = |V | and m = |E|, for each edge e on the shortest s− t path of
G, we are to report the shortest s− t path in G \ e. If d is the diameter
of the graph, the proposed algorithm takes O(m+ d2) time.

For graphs where d = O(
√
m), typically dense graphs, or graphs with

small diameter we have a linear time solution.

1 Introduction

The replacement paths problem in case of edge failure is:

given a 2-edge connected graph G(V,E), for each edge e on the shortest
s− t path of G, report the shortest s− t path in G \ e.

There exists a trivial solution where replacement path for every edge e is com-
puted by running shortest path algorithm independently on G \ e. Let d be the
diameter of the graph. As there can be at most d edges on the shortest path,
this takes O(d(m + n logn)) time.

Malik et.al.[6] describe an O(m + n logn) time solution for the problem on
undirected graphs with positive weights. This algorithm was rediscovered by
Hershberger and Suri [3] (see e.g. [7,4] for brief history). Their algorithm consists
of two main parts:

– Finding the shortest path trees rooted at s and t.
– Reporting the replacement paths for each edge on s−t path using the shortest

path trees.

In this paper we describe a new algorithm for the second part. The proposed
algorithm takes O(m + d2) time. If d = O(

√
m) this results in a linear time

algorithm for the second part. If the graph has integer weights, then we use the
linear time algorithm of Thorup [11] for the first part. Or, if the graph is planar,
then we can use the O(n) time shortest path algorithm described by Henzinger
et al.[5] instead, to get a linear time algorithm for the problem.

S. Arumugam and B. Smyth (Eds.): IWOCA 2012, LNCS 7643, pp. 81–85, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

82 J. Mahadeokar and S. Saxena

Nardelli et al [8] have described an O(mα(m,n)) time algorithm for solving
the most vital edge problem, which also solves the replacement paths problem.
They also use the linear time algorithm of Thorup [11] for the first part. For
the second part, they use the transmuter [9,10] data structure described by
Tarjan. Note that the technique described in this paper is simpler and easier to
implement.

2 Replacement Paths in Case of Edge Failure

We assume that the graph G(V,E) is undirected and edges have positive integer
weights. For s, t ∈ V , we will denote the shortest path from s to t by P =
{v0, v1, v2...vt} with s = v0 and t = vt. So, for every edge e = (vk, vk+1), k
= 0...t − 1, we want to report the corresponding replacement path, that is the
shortest s− t path in the graph G \ e.

Like[6,3] we also find the shortest path trees X rooted at s and Y rooted at t
respectively. Any edge e = (x, y) ∈ P divides the tree X into two disjoint trees
(Xs) and (Xt) such that s ∈ Xs and t ∈ Xt.

Let the “reduced cost” of an edge (u, v) be

ϕ(u, v) = d(s, u) + c(u, v) + d(v, t)

Here d(s, u) is the length of the shortest path from s to u, c(u, v) is the cost of
edge (u, v) and d(v, t) is the length of the shortest path from v to t. Since G is
an undirected graph, d(v, t) = d(t, v), the length of the shortest path of a node
v from t in the shortest path tree Y . Hershberger and Suri [3], use the property
that the shortest path in the graph G \ e is the path through a non-tree edge
(u, v) such that u ∈ Xs, v ∈ Xt and ϕ(u, v) is minimum.

We say that such edge (u, v) is the replacement edge of e and ϕ(u, v) is the
replacement cost of e.

Note that the edge (u, v) belongs to the fundamental cut set [2] of edge e.
We preprocess non-tree edges in O(m + d2) time, so that for any given tree

edge (vk, vk+1) on P , the corresponding replacement edge (u, v) can be found in
O(d) time. Since there can be O(d) edges in P , we can compute the replacement
cost for each edge in O(d2) time.

Let us carry out preorder traversal on the shortest path tree X . Let pre(v)
denote the preorder number of node v and desc(v) denote the number of descen-
dants of v, including v. Let

α(v) = pre(v) + desc(v)

Let Ti be the set of nodes that are descendents of node vi (including vi) but not
of vi+1. Thus, the nodes of the tree are partitioned into sets T0, T1...Tt−1.

Let Ni be the set of non-tree edges, between Ti and Ti+b (for b ≥ 1). Less
informally:

Ni = {(x, y) | (x ∈ Ti and y ∈ Tj) ∀ j ≥ i+ 1}
Thus, the non-tree edges are partitioned into sets N0, N1, . . ., Nt−1.

Faster Replacement Paths Algorithm for Graphs with Small Diameter 83

2.1 Preprocessing

For graphs with integer weights, the shortest path trees can be obtained in
O(n+m) time using algorithm described by Thorup[11]. We can easily determine
the preorder number and number of descendents of nodes in linear time. Hence
the values pre(v) , desc(v) , α(v) and ϕ(u, v) are determined in O(n) time.

We use bucket sort to sort these non-tree edges (say (u, v)) on the pre(v), the
preorder number of the second entry v, in O(n +m) time.

By post order traversal, we can easily determine the sets of tree edges
T0, T1, . . . , Tt−1 in linear time. Then by looking at each non-tree edge one by
one, we can put it the sets Nj , in constant time. Thus, the sets N1, . . ., Nt−1 of
non-trees edges can also be constructed in O(m+ n) time.

Berkman et al. [1] has shown that an array A[1 : n] can be preprocessed in
linear time to answer range minima queries of the following form in constant
time:

For 1 ≤ i, j ≤ n find the smallest item in A[i], A[i+ 1]..., A[j − 1], A[j].

We preprocess each set Ni independently to answer range minima query with
reduced cost ϕ as the key. Since the total number of elements in all the sets
together is O(m) we need O(m) time to perform this step.

For each set Ni and for every vertex vj , j ≥ i+1 on P , we maintain the rank
of pre(vj) in Ni. In other words we find the “pointer” Pre[i, j] which will points
to the smallest element in Ni which is greater than or equal to pre(vj).

These pointers can be obtained by doing a binary search for each pre(vj) in
Ni, but that will take (t log |Ni|) time.

Alternatively, we can also get the ranks by merging sorted array
pre(vi), pre(vi+1), . . ., pre(vt) with Ni. This will take O(t + |Ni|) time. Or total
time for all i’s will be

∑
O(t+ |Ni|) = O (

∑
t+

∑ |Ni|) = O(t2 +m).
We similarly find pointer A[i, j] which points to largest element in Ni which

is smaller than or equal to α(vj).
Thus the total time taken by algorithm preprocess is O(m + d2)

2.2 Reporting Replacement Paths

To report the replacement path for edge (vk,vk+1) we are interested in all (non-
tree) edges (u, v) which connect a non-descendant of vk+1 to a descendant of
vk+1. Because of preprocessing, we can assume that for any non tree edge (u, v),
pre(u) < pre(v)

Case 1: (v is not a descendant of vk+1) Let us first consider the case when
u is a descendant of vk+1 and v is not.
As u is a descendant:

pre(vk+1) ≤ pre(u) < α(vk+1)

and as v is a non-descendant:

84 J. Mahadeokar and S. Saxena

α(vk+1) ≤ pre(v) ≤ n

As u is a descendant of vk+1, u will be in Tk+1

⋃
. . .

⋃
Tt and as v is a non

descendant, v will be in T0

⋃
T1

⋃
. . .

⋃
Tk. As the edges in Ni have one point

in Ti, all these edges will be present in N0

⋃
N1

⋃
. . .

⋃
Nk. Hence, we only

need to look at edges in N0

⋃
N1

⋃
. . .

⋃
Nk.

Case 2: (u is a non-descendant) In the other case, u is not a descendant of
vk+1 but v is a descendant of vk+1.
As u is not a descendant:

0 < pre(u) < pre(vk+1)

and as v is a descendant of vk+1,

pre(vk+1) ≤ pre(v) < α(vk+1)

Further, u will be in T0

⋃
T1

⋃
. . .

⋃
Tk and v will be in Tk+1

⋃
. . .

⋃
Tt.

As edges in Ni have one point in Ti, all these edges will be present in
N0

⋃
N1

⋃
. . .

⋃
Nk. Hence, we only need look at edges inN0

⋃
N1

⋃
. . .

⋃
Nk.

As the process of finding the edge in the two cases is similar, we will only discuss
implementation of the first case.

Let Ck = N0 ∪N1 ∪ . . . ∪Nk be the set of candidate edges which satisfy the
conditions of Case 1. From this set we want to report the edge with the least
reduced cost ϕ.

Because the way we constructed Ni during preprocessing, we can assume that
edges in each Ni are sorted according according to pre(v).

For each set Ti for i ≤ k, we find the edge with minimum ϕ value between
pre(vk+1) and α(vk+1) by performing the following range minima query:

(Ni, Pre[i, k + 1], A[i, k + 1]).

These are edges in Ni with pre(v) between pre(vk+1) and α(vk+1); in other words
we are only looking at those edges of Ni for which v is a descendant of vk+1.

Each of these queries takes O(1) time. As there are k queries, total time will
be O(k). But, since k = O(d) time is O(d).

The replacement edge in Case 1, for (vk, vk+1) is the edge corresponding to
the minimum of these range minima queries.

By a similar procedure, we can find a replacement edge in the other case for
(vk, vk+1). The required replacement edge will be the one with smaller ϕ-value.

We repeat the procedure, for each tree edge (vk, vk+1) ∈ P . The total time to
find all these replacement edges is O(dk) = O(d2).

If (u, v) is the replacement edge with minimum reduced cost ϕ(u, v) among
all these replacement edges, then the replacement path R for P as the path
(P (s, v) ∈ X) +(u, v) + (P (v, t) ∈ Y).

Thus the total time required to find the replacement path for P including the
preprocessing step is O(m+ d2).

Faster Replacement Paths Algorithm for Graphs with Small Diameter 85

3 Conclusion

We have proposed an O(m+d2) time algorithm for the replacement paths prob-
lem in case of edge failures for undirected graphs with positive integer weights.
If diameter d of the graph is O(

√
m) then, our algorithm runs in linear time. For

undirected, integer weighted dense graphs or sparse graphs with small diameter,
our algorithm performs better than the existing algorithms. For planar graphs,
our algorithm takes O(n+d2) time. Thus we conclude that the replacement path
problem can be solved as efficiently as the shortest path problem, if diameter of
graph is O(

√
m)

References

1. Berkman, O., Schieber, B., Vishkin, U.: Optimal doubly logarithmic parallel al-
gorithms based on finding all nearest smaller values. J. Algorithms 14, 344–370
(1993)

2. Deo, N.: Graph Theory with Applications to Engineering and Computer Science.
Prentice-Hall (1974)

3. Hershberger, J., Suri, S.: Vickrey prices and shortest paths: what is an edge worth?
In: Proc. FOCS, pp. 252–259 (2001)

4. Hershberger, J., Suri, S.: Erratum to ”Vickrey Pricing and Shortest Paths: What
is an Edge Worth? In: FOCS, p. 809 (2002)

5. Henzinger, M.R., Klein, P., Rao, D., Subramanian, S.: Faster shortest-path algo-
rithms for planar graphs. J. Comput. Syst. Sci. 55, 3–33 (1997)

6. Malik, K., Mittal, A.K., Gupta, S.K.: The most vital arcs in the shortest path
problem. Oper. Res. Letters 8, 223–227 (1989)

7. Nardelli, E., Proietti, G., Widmayer, P.: Finding the most vital node of a shortest
path. Theoretical Computer Science 296, 167–177 (2003)

8. Nardelli, E., Proietti, G., Widmayer, P.: A faster computation of the most vital
edge of a shortest path. Inf. Process. Lett. 79(2), 81–85 (2001)

9. Tarjan, R.: Sensitivity Analysis of Minimum Spanning Trees and Shortest Path
Trees. Information Processing Letters 14(1), 30–33 (1982)

10. Tarjan, R.: Applications of path compression on balanced trees. J. ACM 26, 690–
715 (1979)

11. Thorup, M.: Floats, Integers, and Single Source Shortest Paths. In: Meinel, C.,
Morvan, M. (eds.) STACS 1998. LNCS, vol. 1373, pp. 14–24. Springer, Heidelberg
(1998)

	Faster Replacement Paths Algorithm for Undirected, Positive Integer Weighted Graphs with Small Diameter
	Introduction
	Replacement Paths in Case of Edge Failure
	Preprocessing
	Reporting Replacement Paths

	Conclusion
	References

