

Lecture Notes in Computer Science 7643
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

S. Arumugam W. F. Smyth (Eds.)

Combinatorial
Algorithms
23rd International Workshop, IWOCA 2012
Tamil Nadu, India, July 19-21, 2012
Revised Selected Papers

13

Volume Editors

S. Arumugam
Kalasalingam University
Anand Nagar, Krishanakoil
Tamil Nadu, 626 126, India
E-mail: s.arumugam.klu@gmail.com

W. F. Smyth
McMaster University
Algorithms Research Group
Department of Computing and Software
Hamilton, ON L8S 4K1, Canada
E-mail: smyth@mcmaster.ca

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-35925-5 e-ISBN 978-3-642-35926-2
DOI 10.1007/978-3-642-35926-2
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012954779

CR Subject Classification (1998): G.2.1, G.2.2, I.1, I.3.5, F.2, E.1, E.4, H.1

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2012

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the papers presented at IWOCA 2012, the 23rd Interna-
tional Workshop on Combinatorial Algorithms.

The 23rd IWOCA was held July 19–21, 2012, at Kalasalingam University
(KLU), in rural Tamil Nadu, India, an hour’s flight plus an hour’s car ride south-
west of the state capital, Chennai. The meeting was sponsored and supported
financially by the Department of Science and Technology, Government of India,
New Delhi; by the Council of Scientific and Industrial Research, New Delhi; and
by KLU. It was organized by n-CARDMATH, the National Centre for Advanced
Research in Discrete Mathematics of India, whose director, S. Arumugam, was
both Co-chair of the Program Committee (with W. F. Smyth) and Chair of the
Local Arrangements Committee.

IWOCA descends from the original Australasian Workshop on Combina-
torial Algorithms, first held in 1989, then renamed “International” in 2007
in response to consistent interest and support from researchers outside the
Australasian region. The workshop’s permanent website can be accessed at
http://www.iwoca.org/where links to previous meetings, as well as to IWOCA
2013, can be found.

Using LISTSERVE and other e-mail lists, the IWOCA 2012 call for papers
was distributed around the world, resulting in 88 submission. The EasyChair
system was used to facilitate management of submissions and refereeing, with
three referees from the 45-member Program Committee assigned to each paper.
A total of 21 papers (24%) were accepted, subject to revision, for presentation at
the workshop, with an additional nine papers accepted for poster presentation.
Four invited talks were given:

– Naveen Garg, “Approximation Algorithms for Graphical-TSP”
– Gonzalo Navarro, “Indexing Highly Repetitive Collections”
– Rajeev Raman, “Range Extremum Enqiries”
– Saket Saurabh, “Polynomial Time Preprocessing using Min-Max Theorems

in Combinatorial Optimization”

These proceedings contain all 21 presented papers, together with shortened ver-
sions of the nine poster papers and extended versions of two of the invited talks.

The workshop also featured a problems session, chaired — in the absence
of IWOCA Problems Co-chairs Yuqing Lin and Zsuzsanna Lipták — by Aru-
mugam. The IWOCA problem collection can be found on-line at
http://www.iwoca.org/main problems.php

The 72 registered participants at IWOCA 2012 hold appointments at insti-
tutions in 12 different countries on five continents (Africa, Asia, Europe, North
America, South America). The nations represented were:

Bangladesh (3), Canada (4), Chile (1), Denmark (1), France (1), India
(53), Iran (1), Poland (2), South Africa (1), Taiwan (1), UK (1), USA (3).

VI Preface

Of the 32 papers published here, 19 are principally in the area of graph
theory, seven in combinatorics on words, four in applications to algorithms and
data structures, and two in miscellaneous combinatorial applications. The papers
are grouped by these topic areas in this volume, ordered within each group by
the first author’s surname.

We thank the authors for their valuable combinatorial contributions and the
referees for their thorough, constructive, and enlightening commentaries on the
manuscripts.

September 2012 S. Arumugam
W.F. Smyth

Organization

Program Committee

Faisal Abu-Khzam Lebanese American University, Lebanon
Don Adjeroh West Virginia University, USA
Amihood Amir Bar-Ilan University and Johns Hopkins University,

Israel/USA
Subramanian Arumugam Kalasalingam University, India
Hideo Bannai Kyushu University, Japan
Ljiljana Brankovic University of Newcastle, Australia
Gerth Stølting Brodal Aarhus University, Denmark
Sunil Chandran Indian Institute of Science, India
Charles Colbourn Arizona State University, USA
Maxime Crochemore King’s College London, London, UK and

Université Paris-Est, France
Diane Donovan University of Queensland, Australia
Dalibor Froncek University of Minnesota Duluth, USA
Roberto Grossi Università di Pisa, Italy
Sylvie Hamel University of Montreal, Canada
Jan Holub Czech Technical University in Prague,

Czech Republic
Seok-Hee Hong University of Sydney, Australia
Costas Iliopoulos King’s College London, UK
Ralf Klasing LaBRI - CNRS, France
Rao Kosaraju Johns Hopkins University, USA
Marcin Kubica Warsaw University, Poland
Thierry Lecroq University of Rouen, France
Mirka Miller University of Newcastle, UK
Laurent Mouchard University of Rouen, France
Ian Munro University of Waterloo, Canada
Kunsoo Park Seoul National University, South Korea
Simon Puglisi Royal Melbourne Institute of Technology, Australia
Jaikumar Radhakrishnan Tata Institute of Fundamental Research, India
Sohel Rahman Bangladesh University of Engineering and

Technology
Rajeev Raman University of Leicester, UK
Venkatesh Raman The Institute of Mathematical Sciences, India
Frank Ruskey University of Victoria, Canada
Joe Ryan University of Newcastle, Australia
Joe Sawada University of Guelph, Canada
Michiel Smid Carleton University, Canada
William F. Smyth McMaster University, Canada

VIII Organization

Venkatesh Srinivasan University of Victoria, Canada
Iain Stewart Durham University, UK
German Tischler University of Wuerzburg, Germany
Alexander Tiskin University of Warwick, UK
Lynette Van Zijl Stellenbosch University, South Africa
Ambat Vijayakumar Cochin University of Science and Technology,

India
Koichi Wada Nagoya Institute of Technology, Japan
Sue Whitesides University of Victoria, Canada
Christos Zaroliagis CTI and University of Patras,

The Netherlands/Greece

Additional Reviewers

Ann, Hsing-Yen
Baier, Jan
Basavaraju, Manu
Brlek, Srecko
Diwan, Ajit
Dorbec, Paul
Farràs, Oriol
Feria-Puron, Ramiro
Feroz, Jesun Sahariar
Ferreira, Rui
Foucaud, Florent
Frangioni, Antonio
Froncek, Dalibor
Ghosh, Subir
Golovach, Petr
Goswamy, Partha P.
Goto, Keisuke
Hahn, Gena
Hajiabadi, Mohammad
Holub, Premek
Hsieh, Sun-Yuan
Huang, Chien-Chung
Izumi, Taisuke
Johnson, Matthew
Kamat, Vikram
Kamei, Sayaka
Katayama, Yoshiaki
Kolar, Josef
Kontogiannis, Spyros
Landau, Gad
Lanzi, Leonardo

Lin, Yuqing
Lodaya, Kamal
Marino, Andrea
Matsuzoe, Hiroshi
Miller, Michael
Mishra, Sounaka
Mohar, Bojan
Mondal, Debajyoti
Ono, Hirotaka
Perez-Roses, Hebert
Phanalasy, Oudone
Philip, Geevarghese
Plosila, Juha
Poliak, Martin
Polách, Radomı́r
Pradhan, Dinabandhu
Prencipe, Giuseppe
Proietti, Guido
Pyatkin, Artem
Rejikumar, K
Saha, Tanay Kumar
Semanicova-Fenovcikova, Andrea
Sillasen, Anita Abildgaard
Singh, Tarkeshwar
Tarantilis, Christos
Thomborson, Clark
Togni, Olivier
Trávńıček, Jan
Valicov, Petru
Vetta, Adrian
Zerovnik, Janez

Table of Contents

Bounds on Quasi-Completeness . 1
Malay Bhattacharyya and Sanghamitra Bandyopadhyay

Infinite Random Geometric Graphs from the Hexagonal Metric 6
Anthony Bonato and Jeannette Janssen

Saving on Phases: Parameterized Approximation for Total Vertex
Cover . 20

Henning Fernau

On Graph Identification Problems and the Special Case of Identifying
Vertices Using Paths . 32

Florent Foucaud and Matjaž Kovše

Disjoint Set Forest Digraph Representation for an Efficient Dominator
Tree Construction . 46

Wojciech Fraczak and Andrew Miller

On Some Properties of Doughnut Graphs (Extended Abstract) 60
Md. Rezaul Karim, Md. Jawaherul Alam, and Md. Saidur Rahman

On the Steiner Radial Number of Graphs . 65
K.M. Kathiresan, S. Arockiaraj, R. Gurusamy, and K. Amutha

Further Results on the Mycielskian of Graphs . 73
T. Kavaskar

Approaches and Mathematical Models for Robust Solutions to
Optimization Problems with Stochastic Problem Data Instances 76

Niraj Ramesh Dayama and Ketki Kulkarni

Faster Replacement Paths Algorithm for Undirected, Positive Integer
Weighted Graphs with Small Diameter . 81

Jay Mahadeokar and Sanjeev Saxena

Acyclic Coloring with Few Division Vertices . 86
Debajyoti Mondal, Rahnuma Islam Nishat,
Md. Saidur Rahman, and Sue Whitesides

Degree Associated Edge Reconstruction Number . 100
S. Monikandan and S. Sundar Raj

Touring Polygons: An Approximation Algorithm . 110
Amirhossein Mozafari and Alireza Zarei

X Table of Contents

Super Connectivity of the Generalized Mycielskian of Graphs 122
S. Francis Raj

A Graph Radio k -Coloring Algorithm . 125
Laxman Saha and Pratima Panigrahi

Maximum Order of a Planar Oclique Is 15 . 130
Sagnik Sen

Sufficient Condition for {C4, C2t} - Decomposition of K2m,2n – An
Improved Bound . 143

Shanmugasundaram Jeevadoss and Appu Muthusamy

Incomparability Graphs of Lattices II . 148
Meenakshi Wasadikar and Pradnya Survase

On Antimagic Labeling of Odd Regular Graphs . 162
Tao-Ming Wang and Guang-Hui Zhang

A Graph Theoretic Model to Solve the Approximate String Matching
Problem Allowing for Translocations . 169

Pritom Ahmed, A.S.M. Shohidull Islam, and M. Sohel Rahman

Deterministic Fuzzy Automata on Fuzzy Regular ω-Languages 182
R. Arulprakasam, V.R. Dare, and S. Gnanasekaran

Border Array for Structural Strings . 189
Richard Beal and Donald Adjeroh

Computing the Partial Word Avoidability Indices of Ternary
Patterns . 206

Francine Blanchet-Sadri, Andrew Lohr, and Shane Scott

Computing a Longest Common Palindromic Subsequence 219
Shihabur Rahman Chowdhury, Md. Mahbubul Hasan,
Sumaiya Iqbal, and M. Sohel Rahman

Multiset, Set and Numerically Decipherable Codes over Directed
Figures . 224

Micha�l Kolarz and W�lodzimierz Moczurad

A Sequential Recursive Implementation of Dead-Zone Single Keyword
Pattern Matching . 236

Bruce W. Watson, Derrick G. Kourie, and Tinus Strauss

A Catalogue of Algorithms for Building Weak Heaps 249
Stefan Edelkamp, Amr Elmasry, and Jyrki Katajainen

On Counting Range Maxima Points in Plane . 263
Anil Kishore Kalavagattu, Jatin Agarwal, Ananda Swarup Das, and
Kishore Kothapalli

Table of Contents XI

Indexing Highly Repetitive Collections . 274
Gonzalo Navarro

Range Extremum Queries . 280
Rajeev Raman

Design and Analysis of a Tree-Backtracking Algorithm for Multiset and
Pure Permutations . 288

Ray Jinzhu Chen, Kevin Scott Reschke, and Hailong Hu

GRP CH Heuristic for Generating Random Simple Polygon 293
Sanjib Sadhu, Subhashis Hazarika, Kapil Kumar Jain,
Saurav Basu, and Tanmay De

Author Index . 303

Bounds on Quasi-Completeness

Malay Bhattacharyya and Sanghamitra Bandyopadhyay

Machine Intelligence Unit, Indian Statistical Institute
203 B. T. Road, Kolkata - 700108, India

{malay r,sanghami}@isical.ac.in

Abstract. A graph G = (V,E) is γ-quasi-complete (γ ∈ [0, 1]) if ev-
ery vertex in G is connected to at least γ.(|V | − 1) other vertices. In
this paper, we establish some relationships between the girth and the
quasi-completeness of a graph. We also derive an upper bound 1

2

(
1 +

r
γ

)
+

√
1
4

(
1 + r

γ

)2
+ 2|E|

γ
− r|V |

γ
for the largest order γ-quasi-complete

subgraph in a graph of minimum degree r.

1 Basic Definitions and Preliminaries

Throughout this paper, the term graph is used to denote an unweighted and
undirected simple graph (without self-loops or parallel edges) G = (V,E), where
V and E are the vertex and edge sets, respectively [5]. The degree of a vertex
v, denoted as d(v) in a graph, is the number of edges incident to it. A graph is
called r-regular if every vertex in the graph has degree r. Let us denote δ(G) =
min∀v∈V d(v), the minimum degree of a graph G. The order and size defines the
cardinality of the vertex set and the edge set of a graph, respectively. A subgraph
G′ = (V ′, E′) of a graph G (G′ ⊆ G) is defined such that V ′ ⊆ V and E′ ⊆ E.
Let us assume that the cardinality of a set S is represented as |S|. Now, we have
the following basic definitions.

Definition 1 (γ-quasi-complete graph). A connected graph, G = (V,E), is
said to be γ-quasi-complete (0 < γ ≤ 1) if every vertex in the graph has degree
value at least γ.(|V | − 1), i.e., δ(G) ≥ γ.(|V | − 1).

Definition 2 (γ-quasi-clique). In a graph G = (V,E), a subset of vertices
V ′ ⊂ V forms a γ-quasi-clique (0 < γ ≤ 1) if the subgraph induced by V ′, GV ′ ,
is a γ-quasi-complete graph.

Fig. 1(a) shows an example of a quasi-clique in a quasi-complete graph. There
are some other versions of the problem for an n vertex subgraph with m edges

by the terminology ‘γ-clique’, where m ≥ γ.n.(n−1)
2 [1] or ‘γ-near-clique’, where

m ≥ (1−γ).n.(n−1)
2 [7], which are however different by definition. Quasi-cliques

are generalization of the concept of a clique [6], and therefore, the problem of
finding the maximum quasi-clique is computationally harder than the maximum
clique problem. Note that, a γ-quasi-clique in any arbitrary graph G is always a

S. Arumugam and B. Smyth (Eds.): IWOCA 2012, LNCS 7643, pp. 1–5, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

2 M. Bhattacharyya and S. Bandyopadhyay

(a) (b) (c)

Fig. 1. (a) A 2
3
-quasi-clique induced by the set of vertices {v1, v2, v3, v4} in a 1

4
-quasi-

complete graph. (b-c) Some γ-quasi-complete graphs (γ > 1
|V |−1

) with girth > 3.

γ-clique or a (1− γ)-near-clique, but not the vice versa. Therefore, the problem
of finding the largest quasi-clique in a graph is computationally different than
finding γ-cliques or γ-near-cliques. The decision version and the counting version
of the maximum quasi-clique problem are known to be NP -complete and #P -
complete, respectively [9].

The quasi-completeness property is not necessarily closed under subgraphs.
Note that 1-quasi-complete graph is a complete graph, whereas a 1-quasi-clique
is a clique. A path in a graph is a sequence of edges such that every pair of
subsequent edges share a common vertex. The length of a path is the number of
edges it includes. These precursory details will be used in the subsequent sections
in course of some novel investigations on quasi-cliques.

2 Some Properties

Observation 1. A connected r-regular graph G = (V,E) is γ-quasi-complete
for γ ≤ r

|V |−1 .

An example of this for r = 2 is the subgraph induced by the vertices {v1, v2, v3, v4}
in Fig. 1. A closed path starting and ending with the same vertex in a graph
is defined as a cycle [5]. Since a connected graph with no cycle must have at
least one pendant vertex (i.e., a vertex with degree 1), we have the following
observation.

Observation 2. Any arbitrary acyclic connected graph G = (V,E), of order at
least 2, is γ-quasi-complete for γ ≤ 1

|V |−1 .

The minimum length of a cycle contained in a graph is defined as its girth [5].
Let us define a graph G = (V,E), r©-regular if its girth is r and G is r-regular.
Some interesting relations existing between the girth of a graph and its quasi-
completeness is presented in the following theorem.

Bounds on Quasi-Completeness 3

Theorem 1. Let G = (V,E) be a γ-quasi-complete graph of order at least 3
and g(G) denotes the girth of G, then the maximum values γ can attain

max γ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if g(G) = 3
|V |

2(|V |−1) , if 4 ≤ g(G) ≤
⌈
2|V |+1

3

⌉
− 1 and |V | is even

1
2 , if 4 ≤ g(G) ≤

⌈
2|V |+1

3

⌉
− 1 and |V | is odd

2
|V |−1 , if g(G) =

⌈
2|V |+1

3

⌉
1

|V |−1 , if
⌈
2|V |+1

3

⌉
+ 1 ≤ g(G) ≤ |V | − 1

2
|V |−1 , if g(G) = |V |

1
|V |−1 , if g(G) =∞.

Proof. For the case g(G) = 3, the graph G may be, at the largest of its size,
complete. So, the desired upper bound derives.

When g(G) lies between 4 and
⌈
2|V |+1

3

⌉
−1 (both bounds inclusive), the upper

bound of

⌊
|V |
2

⌋
|V |−1 is derived for a 4©-regular graph of even order. However for the

graphs of odd order, this upper bound can be realized separately. Evidently
for higher girth values, γ will decrease. A 4©-regular graph of order 8 that is
4
7 -quasi-complete is shown in Fig. 1(b).

When g(G) =
⌈
2|V |+1

3

⌉
, the graph may be in the form of two connected

cycles (the entire graph is a cycle with a single chord), sharing
⌈
|V |+1

3

⌉
common

vertices and each of them having a length of
⌈
2|V |+1

3

⌉
. Thus δ(G) = 2, which

gives an upper bound of γ to 2
|V |−1 . One such instance is shown in Fig. 1(c).

The other possible formations of G will result in a lower value of γ.

For
⌈
2|V |+1

3

⌉
+ 1 ≤ g(G) ≤ |V | − 1, G will certainly possess a pendant vertex

and thus the result.
In the case g(G) = |V |, the entire graph is a single cycle and thus 2-regular.

Hence, Observation 1 derives the required upper bound for γ.
The condition g(G) = ∞ arises only when the graph is acyclic, and for that

case Observation 2 produces the result. �	

Remark. A triangle is a cycle of length 3 in a graph. Let G = (V,E) be
a triangle-free γ-quasi-complete graph. As G is triangle-free, any two vertices
v1, v2 ∈ V must satisfy the condition d(v1) + d(v2) ≤ |V |, and for the γ-quasi-
completeness, d(vi) ≥ γ(|V | − 1), ∀vi ∈ V . Combining these two inequalities, we

obtain 2γ(|V | − 1) ≤ |V | ⇒ γ ≤ |V |
2(|V |−1) . Therefore, if a graph G be γ-quasi-

complete for γ > |V |
2(|V |−1) , then it must contain a triangle. The similar result can

also be obtained from the second relation produced in Theorem 1.

The diameter of a graph is the maximum path length between any pair of vertices.
For any arbitrary graph G, the girth g(G) and diameter DG is known to satisfy
the inequality g(G) ≤ (2DG + 1) [8]. We combine this relation with the upper

4 M. Bhattacharyya and S. Bandyopadhyay

bounds of DG derived for a γ-quasi-complete graph in [9,10], with respect to the
parameter γ and obtain the following result.

Lemma 1. If G = (V,E) is a γ-quasi-complete graph of order at least 3 and
g(G) denotes the girth of G, then

g(G)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

= 3, if 1 ≥ γ > |V |−2
|V |−1

≤ 5, if |V |−2
|V |−1 ≥ γ ≥ 1

2

≤ 6
 |V |
�γ(|V |−1)�+1� − 5, if 1

2 > γ > 1
|V |−1 and |V | mod (�γ(|V | − 1)�) = 0

≤ 6
 |V |
�γ(|V |−1)�+1� − 3, if 1

2 > γ > 1
|V |−1 and |V | mod (�γ(|V | − 1)�) = 1

≤ 6
 |V |
�γ(|V |−1)�+1� − 1, if 1

2 > γ > 1
|V |−1 and |V | mod (�γ(|V | − 1)�) ≥ 2

≤ 2|V | − 1, if 1
|V |−1 ≥ γ > 0.

As it is known that the relation δ(G) ≤
⌊
2|E|
|V |
⌋
holds good for any arbitrary

graph G = (V,E) [5], we note the following.

Observation 3. For any arbitrary graph G = (V,E), (δ(G)|V | − 2|E|) ≤ 0.

Let us assume that the maximum order of a γ-quasi-clique in any arbitrary graph
G, i.e., the γ-quasi-clique number of the graph, is denoted as ωγ(G). Then, we
can derive an upper bound for ωγ(G) as follows.

Theorem 2. For a given graph G = (V,E) with δ(G) = r, we have

ωγ(G) ≤ 1

2

(
1 +

r

γ

)
+

√
1

4

(
1 +

r

γ

)2

+
2|E|
γ
− r|V |

γ
. (1)

Proof. Let the maximum order of the γ-quasi-cliques in G be Q. Then, the
total number of edges in G contributed by a γ-quasi-clique of maximum order

is at least Q
2 γ(Q− 1) = γQ(Q−1)

2 . As the graph G has a minimum degree value

of r, the vertices outside the γ-quasi-clique contribute at least r(|V |−Q)
2 edges in

total. Thus, we have

|E| ≥ γQ(Q− 1)

2
+

r(|V | − Q)
2

.

Simplifying the above relation, we obtain

γQ2 − (γ + r)Q+ r|V | − 2|E| ≤ 0.

Solving this, the desired upper bound can be obtained. �	

Remark. It follows that the function f(Q) = γQ2 − (γ + r)Q + r|V | − 2|E|
derived earlier, monotonically increases with Q where Q ≥ γ+r

2γ , as we have

(r|V | − 2|E|) ≤ 0 (Observation 3). So, the upper bound derived in Eqn. (1)
satisfies the monotonicity criterion for Q ≥ 1

2

(
1 + r

γ

)
.

Bounds on Quasi-Completeness 5

Corollary 1. For a given connected graph G = (V,E), we have

ωγ(G) ≤ (γ + 2) +
√
(γ + 2)2 + 8γ(|E| − |V |)

2γ
. (2)

Proof. The total number of edges in G contributed by a γ-quasi-clique of max-

imum order, say Q, is at least Q
2 γ(Q − 1) = γQ(Q−1)

2 , and as because G is
connected, the vertices outside the γ-quasi-clique contribute at least (|V | − Q)
edges. So, we have the inequality |E| ≥ γQ(Q−1)

2 + (|V | − Q), which by solving
derives the required result. �	

3 Conclusion

Finding almost dense subgraphs like quasi-cliques in a graph is interesting for
many real-life applications [3,4]. We present some important properties of quasi-
cliques and conclude with some open directions of study. The boundary relations
between the girth and the γ value of a quasi-complete graph highlighted in
Theorem 1 could be tightened. More rigid upper bounds on the order of the
maximum quasi-cliques are yet to be explored, although there exists a few for
maximum cliques [2]. Moreover, a new class of graphs, namely the r©-regular
graphs, emerges from our results that can be studied further.

References

1. Abello, J., Resende, M.G.C., Sudarsky, S.: Massive Quasi-Clique Detection. In: Ra-
jsbaum, S. (ed.) LATIN 2002. LNCS, vol. 2286, pp. 598–612. Springer, Heidelberg
(2002)

2. Amin, A.T., Hakimi, S.L.: Upper bounds on the order of a clique of a graph. SIAM
J. Appl. Math. 22, 569–573 (1972)

3. Bandyopadhyay, S., Bhattacharyya, M.: Mining the Largest Dense Vertexlet in a
Weighted Scale-free Graph. Fund. Inform. 96(1-2), 1–25 (2009)

4. Bhattacharyya, M., Bandyopadhyay, S.: Analyzing Topological Properties of
Protein-protein Interaction Networks: A Perspective towards Systems Biology. In:
Computational Intelligence and Pattern Analysis in Biological Informatics, pp.
349–368. John Wiley & Sons, Inc., Hoboken (2010)

5. Bollobás, B.: Modern Graph Theory. Graduate Texts in Mathematics, vol. 184.
Springer, New York (1998)

6. Bomze, I.M., Budinich, M., Pardalos, P.M., Pelillo, M.: The Maximum Clique Prob-
lem. In: Du, D.Z., Pardalos, P.M. (eds.) Handbook of Combinatorial Optimization:
Supplementary Volume A, pp. 1–74. Kluwer Academic, Dordrecht (1999)

7. Brakerski, Z., Patt-Shamir, B.: Distributed discovery of large near-cliques In: Pro-
ceedings of the 23rd International Conference on Distributed Computing, Elche,
Spain, pp. 206–220 (2009)

8. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173. Springer,
Heidelberg (2009)

9. Jiang, D., Pei, J.: Mining Frequent Cross-Graph Quasi-Cliques. ACM Trans.
Knowl. Discov. Data 2(4), 16 (2009)

10. Pei, J., Jiang, D., Zhang, A.: On Mining Cross-Graph Quasi-Cliques. In: Proceed-
ings of the 11th ACM SIGKDD, Chicago, Illinois, USA, pp. 228–238 (2005)

Infinite Random Geometric Graphs

from the Hexagonal Metric

Anthony Bonato1 and Jeannette Janssen2

1 Department of Mathematics
Ryerson University
Toronto, Canada

abonato@ryerson.ca
2 Department of Mathematics and Statistics

Dalhousie University
Halifax, Canada

janssen@mathstat.dal.ca

Abstract. We consider countably infinite random geometric graphs,
whose vertices are points in R

n, and edges are added independently with
probability p ∈ (0, 1) if the metric distance between the vertices is below
a given threshold. Assume that the vertex set is randomly chosen and
dense in R

n. We address the basic question: for what metrics is there
a unique isomorphism type for graphs resulting from this random pro-
cess? It was shown in [7] that a unique isomorphism type occurs for the
L∞-metric for all n ≥ 1. The hexagonal metric is a convex polyhedral
distance function on R2, which has the property that its unit balls tile
the plane, as in the case of the L∞-metric. We may view the hexago-
nal metric as an approximation of the Euclidean metric, and it arises
in computational geometry. We show that the random process with the
hexagonal metric does not lead to a unique isomorphism type.

1 Introduction

Geometric random graph models play an important role in the modelling of
real-world networks [21] such as on-line social networks [6], wireless and ad hoc
networks [3,17,19], and the web graph [1,16]. In such stochastic models, vertices
of the network are represented by points in a suitably chosen metric space, and
edges are chosen by a mixture of relative proximity of the vertices and probabilis-
tic rules. In real-world networks, the underlying metric space is a representation
of the hidden reality that leads to the formation of edges. In the case of on-line
social networks, for example, users are embedded in a high dimensional social
space, where users that are positioned close together in the space exhibit similar
characteristics.

Growth is a pertinent feature of most real-life networks, and most stochastic
models take the form of a time process, where graphs increase in size over time.
The limit of such a process as time goes to infinity is a countably infinite graph.
This study of such limiting graphs is in part motivated by the large-scale nature

S. Arumugam and B. Smyth (Eds.): IWOCA 2012, LNCS 7643, pp. 6–19, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Infinite Random Geometric Graphs from the Hexagonal Metric 7

of real-world complex networks. It is expected that the infinite limit will elucidate
the structure that emerges when graphs generated by the process become large.
The limiting graphs are also of considerable interest in their own right.

The study of countably infinite graphs is further motivated by two major
research directions within graph theory and theoretical computer science. First,
there is a well-developed theory of the infinite random graph, or the Rado graph,
written R. The investigation of R lies at the intersection of logic, probability
theory, and topology; see the surveys [11,12,15] or Chapter 6 of [5].

Another line of investigation has focused on so-called graph limits, developed
by Lovász and others [8,9,22]. A framework is given to define the convergence of
sequences of graphs of increasing size. Convergence is based on homomorphism
densities, and the limit object is a symmetric measurable function. Countably
infinite graphs that arise as limits of such sequences can be interpreted as random
graphs sampled from the limiting object.

In [7] we considered infinite limits of a simple random geometric graph model.
In our model, vertices are chosen at random from a metric space, and if the
distance between the two vertices is no larger than some fixed threshold, the
vertices are adjacent with some fixed probability. More precisely, for a space S
with metric d, consider a threshold δ ∈ R+, a countable subset V of S, and
a link probability p ∈ [0, 1]. The Local Area Random Graph LARG(V, δ, p) has
vertices V, and for each pair of vertices u and v with d(u, v) < δ an edge is added
independently with probability p. Note that V may be either finite or infinite.
For simplicity, we consider only the case when δ = 1; we write LARG(V, p) in
this case. The LARG model generalizes well-known classes of random graphs.
For example, special cases of the LARG model include the random geometric
graphs (where p = 1), and the binomial random graph G(n, p) (where S has
finite diameter D, and δ ≥ D). We note that the theory of random geometric
graphs has been extensively developed (see, for example, [2,14] and the book
[23]).

The basic question we consider is whether the graphs generated by this ran-
dom process retain information about the metric space from which they are
derived. In [7] we obtained a positive answer to this question for Rn with the
L∞-metric (for any n ≥ 1). In particular, we showed that in this case, if V is
countably infinite, dense in Rn and randomly chosen, then with probability 1,
any two graphs generated by the LARG(V, δ, p) (for any fixed δ and p) are iso-
morphic. Moreover, the isomorphism type is the same for all values of δ ∈ R+

and p ∈ (0, 1). Thus, we can take the unique infinite graph resulting from this
process to represent the geometry of this particular metric space.

The isomorphism result described above for the L∞-metric lead us to consider
following general question.

Geometric Isomorphism Dichotomy (GID): For which metrics on Rn do we have
the property that graphs generated by the random process LARG(V, δ, p), for
V countably infinite, dense in Rn and randomly chosen, and any δ ∈ R+ and
p ∈ (0, 1) are isomorphic with probability 1?

8 A. Bonato and J. Janssen

In [7], we showed that two graphs generated by LARG(V, δ, p) in R2 with the
L2-(or Euclidean) metric are non-isomorphic with probability 1, thereby answer-
ing the GID in the negative. In the present work, we extend our understanding
of the GID to include another metric on R2, the so-called hexagonal (or hon-
eycomb) metric, written dhex, which is defined by having hexagonal unit balls.
This metric may be seen to lie in between the L∞-metric, where unit balls are
squares, and the Euclidean metric, where unit balls are circles. Hexagons have
the property that they tile the plane (as squares do), but on the other hand they
can be seen as approximate circles. The precise definition of the dhex metric is
given in Section 3.

The hexagonal metric arises in the study of Voronoi diagrams and period
graphs (see [18]) in computational geometry, which in turn have applications to
nanotechnology. The hexagonal metric arises as a special case of convex polygonal
(or polygon-offset) distance functions, where distance is in terms of a scaling of
a convex polygon containing the origin; see [4,13,20]. A precise definition of
this metric is given in Section 3. We note that honeycomb networks formed by
tilings by hexagonal meshes have been studied as, among other things, a model
of interconnection networks; see [24].

Our main result is the following theorem.

Theorem 1. Let V be a randomly chosen, countable, dense set in R2 with the
dhex-metric. Let G and H be two graphs generated by the model LARG(V, p),
where 0 < p < 1. Then with probability 1, G and H are not isomorphic.

The theorem answers the GID in the negative for R2 with the hexagonal metric.
We devote the present article to a sketch of a proof of Theorem 1. Our techniques
are largely geometric and combinatorial (such as Hall’s condition), and appear
in Section 3. In Section 2, we introduce the hexagonal metric and review some of
the concepts developed in [7] which are needed to obtain the non-isomorphism
result. We conclude with a conjecture on the GID for a wide family of metrics
defined by other polygons.

All graphs considered are simple, undirected, and countable unless otherwise
stated. Let N, N+, Z, and R denote the non-negative integers, the positive inte-
gers, the integers, and real numbers, respectively. Vectors are written in bold.
For a reference on graph theory the reader is directed to [25], while [10] is a
reference on metric spaces.

2 Conditions for Isomorphism

2.1 Hexagonal Metric

We now formally define the hexagonal metric. Consider the vectors

a1 =

(
1
0

)
, a2 =

(
1
2

1
2

√
3

)
, and a3 =

(
− 1

2
1
2

√
3

)
.

These are the normal vectors to the sides of a regular hexagon, as shown in
Figure 1.

Infinite Random Geometric Graphs from the Hexagonal Metric 9

aa

1

23

a

Fig. 1. The vectors ai

For x ∈ R2 define the hexagonal norm of x as follows:

‖x‖hex = max
i=1,2,3

|ai · x|,

where “·” is the dot product of vectors. The hexagonal metric in R2 is derived
from the hexagonal norm, and defined by

dhex(x,y) = ‖x− y‖hex .

We may drop the subscript “hex” when it is clear from context. Note that the
unit balls with the hexagonal metric are regular hexagons as in Figure 1. We
denote the metric space consisting of R2 with the hexagonal metric by (R2, dhex).

2.2 Step-Isometries

For the proof of Theorem 1, we rely on the following geometric theorem. Given
metric spaces (S, dS) and (T, dT), sets V ⊆ S and W ⊆ T , a step-isometry from
V to W is a surjective map f : V →W with the property that for every pair of
vertices u, v ∈ V,

dS(u, v)� =
dT (f(u), f(v))�.
Every isometry is a step-isometry, but the converse is false, in general. For ex-
ample, consider R with the Euclidean metric, and let f : R → R be given by
f(x) = (
x�+ x)/2 is a step-isometry, but not an isometry.

A subset V is dense in S if for every point x ∈ S, every ball around x contains
at least one point from V . We refer to u ∈ S as points or vertices, depending
on the context. A crucial step in the proof of isomorphism results of graphs pro-
duced by LARG(V, p) when V is dense in the underlying metric space (S, d), is
that any isomorphism must be a step-isometry. For a rough sketch of this fact,

10 A. Bonato and J. Janssen

observe that if G is a graph produced by LARG(v, d), and if u and v are two
vertices in V so that k <
d(u, v)� < k+1, then with probability 1, there exists a
path of length k from u to v in G. Since no edge can connect vertices at distance
1 or higher, no path of length less than k − 1 can exist between u and v. Thus,
the graph distance equals the floor of the distance. Since an isomorphism must
preserve graph distance, it therefore must also preserve the distance, up to its
integer multiple, and thus, be a step-isometry.

We will use this fact in the form of the following lemma, adapted from [7],
whose proof is omitted.

Lemma 1. Let V be a countable set dense in R2 with the dhex-metric, randomly
chosen, and let G and H be two graphs generated by the model LARG(V, p), where
0 < p < 1. If G and H are isomorphic via f , then with probability 1 we have
that f is a step-isometry.

The following theorem is central to our proof of Theorem 1.

Theorem 2. Let V and W be dense subsets of R2 with the dhex-metric, with
the property that V contains two points p1,p2 so that their distance dhex(p1,p2)
is irrational. Then every step-isometry from V to W is uniquely determined by
the images of p1 and p2.

The next section will be devoted to the proof of Theorem 2. Using Theorem 2,
we may prove Theorem 1. As the proof of Theorem 1 is analogous to the proof
of Theorem 15 in [7], it is omitted.

3 Proof of Theorem 2

To prove Theorem 2, we show first that each finite set of points in the plane
introduces a set of lines (which will be recursively defined below). These lines
will fall into three parallelism classes, defined by their normals ai, for i = 1, 2, 3.
More precisely, for a fixed i ∈ {1, 2, 3}, define Fi to be the family of lines in the
plane with normal vector ai. For r ∈ R, let Fi(r) be the family of lines in Fi

which are at integer distance from the line ai · x = r. Thus, Fi(r) contains the
lines with equations

ai · x = r + z, for some z ∈ Z.

We will show that any step-isometry f between two graphs with dense vertex
sets must be “consistent” with these lines (that is, a point in the domain framed
by a set of lines must be mapped to a point which is framed by a corresponding
set of lines in the range); see Lemma 2. We then show that we can choose these
lines to be dense in Lemma 4, and thereby prove that f is in fact uniquely
determined by a finite set of points.

We now define this notion of consistency in a more precise fashion. Let V ⊆ R2

and f : V → R2 be an injective map. Let r ∈ [0, 1) and i ∈ {1, 2, 3}, and let
σ be a permutation of the index set {1, 2, 3}. The map f is consistent with the

Infinite Random Geometric Graphs from the Hexagonal Metric 11

family of lines Fi(r) with respect to the permutation σ if there exists r′ ∈ [0, 1)
so that for all x ∈ V, for all z ∈ Z,

ai · x < z + r if and only if aσ(i) · x′ < z + r′,

where x′ = f(x).
In the following, we will assume that all sets contain the origin 0, and we

will assume without loss of generality that any map preserves the origin. Note
that we can always replace any set V by an equivalent, translated set V + b =
{v + b : v ∈ V } so that this is indeed the case.

Lemma 2. Suppose that V and W are dense in R2, and f : V → W is a
bijection. If f is a step-isometry, then there exists a permutation σ of the index
set {1, 2, 3} such that f is consistent with the family of lines Fi(0) with respect
to σ for i = 1, 2, 3.

Proof. For 1 ≤ i ≤ 6, let Si be the six sections partitioning R2 formed by the
lines �j : aj · x = 0, where j = 1, 2, 3. See Figure 2.

0

S

S

S S

S5

4

2

1

3

1

S62

3

Fig. 2. The sectors Si and lines �j : ai · x = 0

Note that each of the sectors is uniquely defined by its two bounding lines. For
example, sector S1 contains all points x for which a1 · x < 0 and a2 · x > 0,
and sector S2 contains all points x for which a2 · x < 0 and a3 · x > 0. Thus,
any permutation σ of the index set {1, 2, 3} induces a permutation σ∗ of the
sectors. For example, the permutation σ = (1, 2, 3) induces the permutation
σ∗ = (1, 2, 3, 4, 5, 6) of the sector indices.

Claim. There exist six points vi ∈ V , 1 ≤ i ≤ 6, and a permutation σ of the
index set {1, 2, 3} so that for all i we have that vi ∈ Si and f(vi) ∈ Sσ∗(i), where
σ∗ is the permutation of the sectors induced by σ.

12 A. Bonato and J. Janssen

Proof. Let k = 26. Choose points ui, where i = 0, . . . , 6k − 1, such that the
following four conditions hold.

1. All points lie in a band at distance between k − 1 and k from the origin.
More precisely, for all i, 0 ≤ i < 6k, k − 1 < d(0,ui) < k.

2. Any two consecutive points lie at less than unit distance from each other.
More precisely, for all i, 0 ≤ i < 6k, d(ui,ui+1) < 1, where addition in the
index is taken modulo 6k.

3. Any two points that are not consecutive are further than unit distance apart.
More precisely, for all i and j, 0 ≤ i < 6k, 2 ≤ j ≤ 6k − 2, d(ui,ui+j) > 1,
where addition in the index is taken modulo 6k. Note that if these points
are adjacent if and only if their distance is less than 1, then the points would
form a cycle.

4. For all j, 1 ≤ j ≤ 6, the points u(j−1)k+i, 0 ≤ i < k lie in sector Sj .

For all i, 0 ≤ i < 6k, let u′
i = f(ui), and let U ′ = {u′

i : 0 ≤ i < 6k}. Since f
is a step-isometry, the points u′

i must satisfy conditions (1), (2), and (3) for the
given ui. Note that we cannot conclude that (4) holds as well. However, we can
deduce that each sector must contain at least k − 1 vertices from U ′. Namely,
let u′

s ∈ U ′ be in sector S2. Let u′
t1 and u′

t2 be the vertices with lowest index
and highest index in S2 ∩U ′, respectively. Then u′

t1−1 and u′
t2+1 are in the two

sectors adjacent to S2; without loss of generality u′
t1−1 ∈ S1 and u′

t2+1 ∈ S3. By
condition (1) and by the geometry of the sectors, d(u′

t1−1,u
′
t2+1) ≥ k − 1, and

by condition (2), d(u′
t1−1,u

′
t2+1) < (t2 + 1)− (t1 − 1). Thus,

(t2 + 1)− (t1 − 1) > k − 1,

so t2 − t1 + 1 ≥ k − 1. Since the points u′
t1 , . . . ,u

′
t2 are in S2, it follows that S2

contains at least k − 1 points. The same conclusion holds for the other sectors.
A simple counting argument shows that each sector can contain at most 6k−

5(k − 1) = k + 5 points from U ′ (as there are 6k points ui). For j = 1, 2, . . . , 6,
let U ′

j = {f(u) : u ∈ U ∩ Sj} be the collection of images of points from u that
lie in sector Sj . By condition (4), |U ′

j| = k for all j. Note that k is chosen large
enough so that tk > (t− 1)(k + 5) for any t, 1 ≤ t ≤ 6. Thus, by the pigeonhole
principle the tk vertices from t of the sets U ′

j cannot be contained in less than t
sectors. Thus, Hall’s condition (see for example, [25]) holds, and we can find a
permutation σ∗ of the index set {1, 2, . . . , 6} so that U ′

i ∩ Sσ∗(i) �= ∅. Moreover,
because of the cyclic structure of the points in U ′ implied by conditions (2) and
(3), adjacent sets U ′

j and U ′
j+1 must be mapped by σ∗ to adjacent sectors. This

guarantees that σ∗ is compatible with a permutation σ of the index set {1, 2, 3}
of the lines that define the sectors.

For j = 1, . . . , 6, we can then choose vj ∈ Uj = U ∩ Sj so that f(vj) ∈
U ′
j ∩ Sσ∗(j). This completes the proof of the claim. �

To complete the proof of the lemma, fix the vi and σ as in Claim 3. Let

A = {vi : 1 ≤ i ≤ 6}.

Infinite Random Geometric Graphs from the Hexagonal Metric 13

Without loss of generality, we set σ to be the identity permutation. For a con-
tradiction, assume there exists u ∈ V and i ∈ {1, 2, 3} so that ai · u < 0 but
ai · u′ > 0, where u′ = f(u). Let L = {v ∈ A : ai · v < 0}, and R = A − L =
{v ∈ A : ai · v > 0}. Let L′ = {f(v) : v ∈ L} and R′ = {f(v) : v ∈ R}. By
definition, each of the vertices of A lies in a different sector, so we must have
that |L| = |R| = 3. See Figure 3; we assume in the figure that i = 1, so f is not
consistent with �1.

u

v

5

6

4

2

1

3

v

v
v

v

v

w

b

R = {v , v , v }4 5 6L = {v , v , v }1 2 3

0 5

6

4v'

v'

v'

f

u'
v'

2

1

3

v'

v'

w'

b

0

Fig. 3. The original configuration and its image under f . Dotted lines correspond to
the boundaries of the (partially shown) balls of radius b centred around w and w′.

Choose w so that for some b ∈ Z
+,

dhex(w,x) > b for all x ∈ R ∪ {0}, and

dhex(w,x) < b for all x ∈ L ∪ {u}.

More precisely, the ball with radius b centered at w contains L ∪ {u}, and is
disjoint from R ∪ {0}.

Since f is a step-isometry, if we set w′ = f(w), then

dhex(w
′,x) > b for all x ∈ R′ ∪ {0}, and

dhex(w
′,x) < b for all x ∈ L′ ∪ {u′}.

By the definition of A and the assumption that σ is the identity, for each v ∈ A,
if v is in a certain sector Sj then so is f(v). Thus, ai · v′ < 0 for all v′ ∈ L′.
However, ai ·u′ > 0, so the vertices in L′∪{u′} lie in four different sectors. Thus,
the ball of radius b around w′ must intersect at least four sectors (see Figure 3)
and so contains the origin. Since dhex(w

′,0) > b, this ball cannot contain 0,
which gives a contradiction. �

14 A. Bonato and J. Janssen

Let B be a finite subset of R2. Define a collection of lines L(B) inductively as
follows. To define L0(B): for each w ∈ B, add the three lines through w in the
families Fi, (i = 1, 2, 3,) along with their integer parallels. Specifically, these are
all the lines with equation ai · x = ai ·w + z, where z ∈ Z.

For the inductive step, assume that Lj(B) has been defined for some j ≥ 0.
To define Lj+1(B), for each point p ∈ R

2 which lies on the intersection of two
lines in Lj(B) (which must belong to different, non-parallel families), add the
unique line belonging to the third family. See Figure 4. More precisely, if p is at
the intersection of lines � and m, where l ∈ Fi� and m ∈ Fim (with i� �= im),
then add to Lj+1(B) the line with equation aj ·x = aj ·p, where j is the unique
element in {1, 2, 3}\{i�, im}.

p

Fig. 4. The solid lines are in Li and the dotted line is in Li+1

Finally, define

L(B) =
⋃
i∈N

Li(B).

We prove the following lemma. A step-isometry f : V → W respects the line �
defined by a ·x = r if for all points x ∈ V , a ·x < r implies that a · f(x) = r and
a · x > r implies that a · f(x) > r. For simplicity, we state this more succinctly
by saying that f maps points to the left (right) of � to the left (right) of the line
f(�).

Lemma 3. For a fixed finite subset B of R2, and a step-isometry f : V → W
with V and W dense, f respects all the lines in L(B).

Proof. We proceed by a strong induction on k to show that f respects the lines
in Lk(B). The case i = 0 follows from Lemma 2. Suppose the statement holds

for a fixed k ≥ 0. For the induction step, suppose that �1, �2 ∈
k⋃

i=0

Li(B). Let �3

be a fixed line in Lk+1(B) formed by the intersection of �1 and �2. In this proof,
we will say that a point p is to the right (left) of a line with equation a · x = t
if a · p > t (a · p > t). See Figure 5 for a visualization of the proof.

Infinite Random Geometric Graphs from the Hexagonal Metric 15

v v'

1 1

2 2

3 3
' '

'

'
w

44

f

Fig. 5. The point f(w) does not exist

Assume for a contradiction that v is to the left of �3, and to the right of the
line f(�3) (the case when v is to the right of �3 is similar and so is omitted). Let
�4 be the unique line parallel to �3 and through v.

For 1 ≤ i ≤ 4, let �′i be the line which is the image f(�i). A step-isometry must
respect lines in L0(B), and so must respect �4. As V is dense, we may choose
w ∈ V so that w is to the right of �4, left of �1, and left of �2. See Figure 5.
But then f(w) must be to the right of �′4, to the left of �′1, and to the left of �′2,
which is a contradiction.

We need the following lemma.

Lemma 4. Let B = {0,p}, where ai · p = r ∈ (0, 1). Then the family L(B)
contains all the following lines, where i ∈ {1, 2, 3}, z1, z2 ∈ Z:

ai · x = z1r + z2.

Moreover, if r is irrational, the set of lines L(B) is dense in R2.

0
p

Fig. 6. A triangular lattice

16 A. Bonato and J. Janssen

Proof. Consider the triangular lattice formed by all lines in L0({0}); that is,
all lines with equations ai · x = z, where i = 1, 2, 3 and z ∈ Z. See Figure 6.
Consider the triangle that contains p. We assume that this triangle is framed
by the lines with equations a1 · x = 1, a2 · x = 0 and a3 · x = 0, as shown in
Figure 7. (The proof can easily be adapted to cover all other possibilities.) By
definition, the line �1 defined by a1 · x = r is part of L0(B).

The line �1 intersects the two sides of the triangle in p1 and p2. The point p1

lies on the intersection of the lines from the families F1 and F3. Thus, L1(w)
contains the line �2 in F2 through p1 which has equation a2 ·x = a2 ·p2. Similarly,
L1(w) contains the line �3 in F3 through p2 which has equation a3 ·x = a3 ·p2.
See Figure 7.

1p

a x = 03

0

a x = 02

2p

6p

5p

3p

4p

a x = 11

r

r

1

37

5

4

2

7p

Fig. 7. Generating the line a3 · p2 = 1− r

The lines �2 and �3 intersect the third side of the triangle in p3 and p4,
generating two lines �4 and �5 in L2(B) with equations a3 · x = a3 · p3 and
a2 · x = a2 · p4, respectively. The lines �4 and �5 intersect with the sides of the
triangle in p5 and p6, generating one line �6 in L3(B) with equation a1 · x =
a1 · p5 = a1 · p6.

From the fact that the triangle formed by 0, p1, and p2 is isosceles, it follows
that r = a1 · p = a2 · p1 = a3 · p2. By the comparison of similar triangles, we
obtain that

a1 · p5 = a2 · p4 = a3 · p2 = 1− r.

Now the parallel lines ai · x = r + z2,−r + z2, z2 ∈ Z, may be generated from
all similar triangles in the lattice in an analogous fashion.

Infinite Random Geometric Graphs from the Hexagonal Metric 17

To complete the proof, consider that the lines �2 and �3 intersect in point p7,
which generates a line �7 ∈ F1 as indicated in Figure 7. Since the triangle formed
by p1,p2, and p7 is a reflection of the triangle formed by 0,p1, and p2, it follows
that �7 has equation a1 · x = 2r. This process can be repeated to obtain all the
lines ai · x = z1r + z2, z1, z2 ∈ Z, i = 1, 2, 3.

If r is irrational, then the set {z1r + z2 : z1, z2 ∈ Z} is dense in R (this is
a result from folklore which can be proved by using the pigeonhole principle).
That completes the proof of the lemma. �

We now give a proof of the main theorem in this section.

Proof of Theorem 2. Let f : V → W be a step-isometry. By Lemma 2 there
exists a permutation σ of the index set {1, 2, 3} such that f is consistent with the
family of lines Fi(0) for i = 1, 2, 3 with respect to σ. Without loss of generality,
we assume that σ is the identity. Assume that V has two points whose distance
is irrational; assume without loss of generality that one of them is the origin.
Choose B = {0,p} ⊆ V so that dhex(0,p) is irrational. By Lemma 4, the set of
lines L(B) is dense in R

2. By Lemma 3, f respects the lines in L(B). Thus, any
of the points in V is uniquely defined by their position with respect to all lines
in L(B). Moreover, the same is true for W , and the set of lines generated by the
images of 0 and p. Therefore, once the images of 0 and p are given, each other
vertex has a unique image under f . �

4 Conclusion and Further Work

We have shown that the hexagonal metric on a randomly chosen, dense subset of
R2 can lead to non-isomorphic limit graphs in the LARG random process. Our
main tool was Theorem 2 which proves that a step-isometry f between randomly
chosen dense sets is, with probability 1, determined by the image of two points.
Theorem 2 was proven by exploiting that f is consistent with a dense set of lines
as proved in Lemmas 2 and 4.

The methods described in this article should extend to other polygonal metrics
and higher dimensions. A polygonal metric is one where the unit ball is a (convex)
point-symmetric polygon. The distance between two points a and b given as
follows. Translate the polygon until it is centered at a. Let v be the unique point
on the intersection of the ray from a to b with the boundary of the polygon.
Then the distance is given by the ratio of the (Euclidean) distance between a
and b to the distance between a and v. Alternatively, it is the factor by which
the polygon centered at a would have to be enlarged until it touches b.

To be a metric, the polygon needs to be point-symmetric, and thus, has an
even number of sides. If the number of sides equals 2n for a metric defined in
Rn, then the polygon can be transformed into an n-dimensional hypercube by
rescaling of the coordinates, and thus the metric is equivalent to the L∞-metric.
We conjecture that this is the only case for which the GID is answered in the
affirmative.

18 A. Bonato and J. Janssen

Conjecture 1. For all n ≥ 2, for all convex polygonal distance functions where
the polygon has at least six sides, two graphs generated by LARG(V, p), with
V randomly chosen and dense in Rn, and p ∈ (0, 1), are non-isomorphic with
probability 1.

We showed earlier that the GID is answered in the negative for the Euclidean
metric and R2. We think that the analogous statement is true for the Euclidean
metric in higher dimensions, and that the methods in this paper may suggest a
suitable approach to proving this fact.

References

1. Aiello, W., Bonato, A., Cooper, C., Janssen, J., Pra�lat, P.: A spatial web graph
model with local influence regions. Internet Mathematics 5, 175–196 (2009)

2. Balister, P., Bollobás, B., Sarkar, A., Walters, M.: Highly connected random geo-
metric graphs. Discrete Applied Mathematics 157, 309–320 (2009)

3. Barbeau, M., Kranakis, E.: Principles of Ad Hoc Networking. John Wiley and Sons
(2007)

4. Barequet, G., Dickerson, M.T., Goodrich, M.T.: Voronoi diagrams for convex
polygon-offset distance functions. Discrete & Computational Geometry 25, 271–
291 (2001)

5. Bonato, A.: A Course on the Web Graph. American Mathematical Society Grad-
uate Studies Series in Mathematics, Providence, Rhode Island (2008)

6. Bonato, A., Janssen, J., Pra�lat, P.: The Geometric Protean Model for On-Line
Social Networks. In: Kumar, R., Sivakumar, D. (eds.) WAW 2010. LNCS, vol. 6516,
pp. 110–121. Springer, Heidelberg (2010)

7. Bonato, A., Janssen, J.: Infinite random geometric graphs. Annals of Combina-
torics 15, 597–617 (2011)

8. Borgs, C., Chayes, J., Lovász, L., Sós, V.T., Vesztergombi, K.: Convergent Se-
quences of Dense Graphs I: Subgraph Frequencies, Metric Properties and Testing.
Advances in Math. 219, 1801–1851 (2008)

9. Borgs, C., Chayes, J., Lovász, L., Sós, V.T., Vesztergombi, K.: Convergent Se-
quences of Dense Graphs II: Multiway Cuts and Statistical Physics, Preprint (2007)

10. Bryant, V.: Metric Spaces: Iteration and Application. Cambridge University Press,
Cambridge (1985)

11. Cameron, P.J.: The random graph. In: Graham, R.L., Nešetřil, J. (eds.) Algorithms
and Combinatorics, vol. 14, pp. 333–351. Springer, New York (1997)

12. Cameron, P.J.: The random graph revisited. In: Casacuberta, C., Miró-Roig, R.M.,
Verdera, J., Xambó-Descamps, S. (eds.) European Congress of Mathematics, vol. I,
pp. 267–274. Birkhauser, Basel (2001)

13. Chew, L.P., Kedem, K., Sharir, M., Tagansky, B., Welzl, E.: Voronoi diagrams
of lines in three dimensions under polyhedral convex distance functions. J. Algo-
rithms 29, 238–255 (1998)

14. Ellis, R., Jia, X., Yan, C.H.: On random points in the unit disk. Random Algorithm
and Structures 29, 14–25 (2006)

15. Erdős, P., Rényi, A.: Asymmetric graphs. Acta Mathematica Academiae Scien-
tiarum Hungaricae 14, 295–315 (1963)

16. Flaxman, A., Frieze, A.M., Vera, J.: A geometric preferential attachment model of
networks. Internet Mathematics 3, 187–205 (2006)

Infinite Random Geometric Graphs from the Hexagonal Metric 19

17. Frieze, A.M., Kleinberg, J., Ravi, R., Debany, W.: Line of sight networks. Combi-
natorics, Probability and Computing 18, 145–163 (2009)

18. Fu, N., Imai, H., Moriyama, S.: Voronoi diagrams on periodic graphs. In: Pro-
ceedings of the International Symposium on Voronoi Diagrams in Science and
Engineering (2010)

19. Goel, A., Rai, S., Krishnamachari, B.: Monotone properties of random geometric
graphs have sharp thresholds. Annals of Applied Probability 15, 2535–2552 (2005)

20. Icking, C., Klein, R., Le, N., Ma, L.: Convex distance functions in 3-space are differ-
ent. In: Proceedings of the Ninth Annual Symposium on Computational Geometry
(1993)

21. Janssen, J.: Spatial models for virtual networks. In: Proceedings of the 6th Com-
putability in Europe (2010)

22. Lovász, L., Szegedy, B.: Limits of dense graph sequences. J. Comb. Theory B 96,
933–957 (2006)

23. Penrose, M.: Random Geometric Graphs. Oxford University Press, Oxford (2003)
24. Stojmenovic, I.: Honeycomb networks: Topological properties and communication

algorithms. IEEE Transactions on Parallel and Distributed Systems 8, 1036–1042
(1997)

25. West, D.B.: Introduction to Graph Theory, 2nd edn. Prentice-Hall (2001)

Saving on Phases: Parameterized Approximation

for Total Vertex Cover

Henning Fernau

Fachbereich 4, Abteilung Informatik
Universität Trier, 54286 Trier, Germany

fernau@uni-trier.de

Abstract. Vertex Cover and its variants have always been in the
focus of study of Parameterized Algorithmics. This can be also claimed
for the emergent area of Parameterized Approximation. While Vertex

Cover is known to be solvable in timeO∗(ck) with some c < 2, this is not
the case for variants like Connected Vertex Cover and others that
impose some connectivity requirements on the desired cover. The reason
behind is the two-phase approach that is taken for this kind of problems.
We show that this barrier can be overcome when we are only interested
in approximate solutions. More specifically, we prove that a factor-1.5
approximative solution for Total Vertex Cover can be found in time
O∗(1.151k), where k is some bound on the optimum solution.

1 Introduction

1.1 Motivation

Sometimes, under reasonable complexity theoretic (or other) assumptions, no
progress can be expected for polynomial-time approximation algorithms. Can
we achieve better approximation ratios when allowing fixed-parameter running
times? Here, the parameter is basically given by the optimum solution value.

Various techniques have been developed to this end; we discuss four of them
in somewhat chronological order (although most of these papers seemed to have
been developed in parallel).

– Marx and Razgon [12] derived a parameterized factor-2 approximation for
Edge Multicut with a running time of O∗(ck log k) for some constant c (for
some improvements on this kind of constants, we refer to [13]). Under the
Unique Games Conjecture of Khot [10], no constant-factor approximation
is possible in polynomial time, as shown by S. Chawla, R. Krauthgamer,
R. Kumar, Y. Rabani, and D. Sivakumar [5]. The idea is to transform this
approximation problem to some other parameterized problem that can be
solved using iterated compression.

– Vertex Cover was first studied by N. Bourgeois, B. Escoffier and V. Th.
Paschos [2] from the viewpoint of parameterized approximation. Under the
Unique Games Conjecture of Khot [10], no constant-factor approximation
better than a factor of two is possible in polynomial time, see [11].

S. Arumugam and B. Smyth (Eds.): IWOCA 2012, LNCS 7643, pp. 20–31, 2012.
� Springer-Verlag Berlin Heidelberg 2012

Saving on Phases: Parameterized Approximation for Total Vertex Cover 21

– L. Brankovic and H. Fernau [3,4] considered Vertex Cover and for 3-
Hitting Set. Both cases show that an intercalation of so-called worsening
steps within a (rather simple) branching can lead to dramatic improvements
on the running times of the derived parameterized approximation algorithms
compared to, e.g., the approaches of N. Bourgeois, B. Escoffier and V. Th.
Paschos [2] and also those of M. Fellows, A. Kulik, F. Rosamond, and H.
Shachnai [7] sketched in the next item.

– M. Fellows, A. Kulik, F. Rosamond, and H. Shachnai [7] developed notions of
α-fidelity transformations that are based, in their simplest form, on so-called
(a, b)-reduction steps.

The first example seems to use techniques that are quite problem-specific, al-
though we would pose it as a challenge to come up with a problem that genuinely
uses iterated compression as a solution strategy for parameterized approxima-
tion. As explained elsewhere, the second technique can be generalized to a certain
extent, allowing for parameterized (and moderately exponential) approximation
algorithms for quite some range of problems. It seems to be the case that this
approach needs good kernelization algorithms at one stage. The third approach
relied so far on the existence of simple branching algorithms for the exact solu-
tion. Otherwise, the concept of a worsening step basically corresponds to that of
an (a, b)-reduction step in the last approach. In contrast to that last one, these
worsening steps are interleaved with the branching, while M. Fellows, A. Ku-
lik, F. Rosamond, and H. Shachnai propose to use them at the very beginning,
which enables them to use any (sophisticated) exact parameterized algorithm as
a black box in the second phase.

To summarize the task of parameterized approximation, we are always after
a compromise between guaranteed approximation quality and running time.

1.2 Our Problem: Total Vertex Cover

Recall that a vertex cover is a set of vertices whose removal only leaves isolated
vertices in the graph. A total vertex cover is a vertex cover that induces a graph
without isolated vertices. This notion is formed in analogy to the better known
notion of total dominating set, which is a dominating set that induces a graph
without isolated vertices. The problem Total Vertex Cover (TVC) asks to
find a minimum total vertex cover or, in its parameterized version, to decide if a
vertex cover of size at most k exists. The size of the smallest total vertex cover
of a graph is also known as its TVC number. For instance, a cycle Cn has a
TVC number of � 23n�, while it possesses a vertex cover set of size � 12n�. As it is
known [8] that this problem (under standard parameterization and modulo some
complexity-theoretic assumptions) does not admit polynomial-size kernels, the
second approach does (most likely) not apply. However, in the terminology of
M. Fellows, A. Kulik, F. Rosamond, and H. Shachnai, “Select an edge and put
both vertices into the cover” is also here a (1, 1)-reduction step. Without going
into details, this means that from the 1+1 = 2 vertices put into the approximate
cover, at least one vertex belongs to some minimum total vertex cover. We can

22 H. Fernau et al.

apply this rule as a preprocessing rule a certain number of times. Observe that
this preprocessing never creates single-vertex components within the cover, so
that finally we can apply any exact parameterized algorithm. The best current
algorithm [9] needs time O∗(2.3655k). This leads (leaving out some details at
this place) to an O∗(2.3655(1+(1−α))k) time, factor-α approximation for TVC.
More concretely, TVC can be factor- 32 approximated in time O∗(1.5381k). To
explain this running time, consider the following algorithm:

1. Select k/2 matching edges.
2. Run the best TVC algorithm with parameter k/2 on the remaining graph.

As the reader will see, the first step is just the worsening step used in our algo-
rithm that will allow to factor- 32 approximate TVC in time O∗(1.151k), hence
largely improving on the time derived when using the sophisticated algorithm [9]
as a black box. In fact, that algorithm uses some sort of Hitting Set algorithm
(parameterized by the number of edges) in the second phase. This fact alone pro-
hibits any exact algorithm faster thanO∗(ck) for some c < 2 with some two-phase
approach. It would be hence quite a challenge to improve on the approximation
algorithm presented in this paper using the ideas of fidelity-preserving transfor-
mations and some exact parameterized algorithm, as this would (most likely)

not help get below O∗(
√
2
k
) for some factor-1.5 approximation.

1.3 Our Results and the Organization of the Paper

We will mostly focus on presenting several factor- 32 TVC approximation algo-
rithms. In Section 2, we will explain the basic ideas and show that these lead
to improved algorithms even with the most simplistic vertex cover branching. It
also describes how some annotations can be used along the branching. Section 3
sketches improvements due to further exact and approximate reduction rules and
how a different branching strategy (also used in [3] for vertex cover) can be
used to finally obtain the claimed running time of O∗(1.151k). In Section 4, we
discuss how our factor- 32 TVC approximation algorithm scales for any approxi-
mation factor between one and two, and we also suggest applying our techniques
(and also those from [7]) to obtain results for related problems, concluding with
some open problems from the area of parameterized approximation.

2 Putting Worsening Steps Inside of the Branching

As mentioned above, the strategy to design efficient parameterized approxima-
tion algorithms for Vertex Cover and for Hitting Set was to intercalate
branching with worsening steps and to analyze the obtained algorithm. By “in-
vesting” the worsening steps to work in the direction of better branchings and
by developing new (approximate) reduction rules, we were able to improve on
algorithms based (for instance) on the approach of [7]. This idea would be hard
to follow for the current problem, as the algorithm from [9] is based on some
type of Measure&Conquer analysis, which would have to be adapted. Rather,

Saving on Phases: Parameterized Approximation for Total Vertex Cover 23

we will use the worsening steps in order to completely avoid the costly second
phase of the exact algorithm (at least for approximation factors worse than 3

2).
This means that we employ the worsening edges to maintain as an invariant of

the algorithm that all previously selected cover vertices induce a graph without
isolated vertices.

In its simplest version, such an algorithm (aiming first of all at a factor- 32
approximation) might look as follows:

1. Select a high-degree vertex x and put either x or N(x) into the cover.
2. This branching is accompanied with the following worsening rule:

Whenever a vertex u is put into the cover, select some edge eu = {v, w} with
v ∈ N(u) and u �= w; put v and w into the cover, as well.

In either branch, at least one vertex u is put into the cover due to (exact) branch-
ing. Selecting an edge eu in the vicinity ensures to things: (1) Two out of the
three vertices put into the cover must be in any minimum solution that contains
u. (2) The selected vertices are connected, so that no isolated vertices would
show up in the cover. This basic algorithm would already maintain the claimed

invariant, and the algorithm would surely have a running time (of O∗(
√
2
k
)),

better than any other approach (as sketched above). Item (2) requires that an
edge eu in the vicinity of u can be found. So, what if u has degree zero (so it
has no neighbors)? Or if all neighbors of u are of degree one (so, eu does not ex-
ist)? We will overcome these difficulties by using some reduction rules that have
been used, in a similar form, already in [9], and also by relaxing the vicinity
requirement. To this end, we adapt the idea of marking vertices. To implement
this idea, we introduce a marking function μ on the vertex set V of the (input)
graph G. So, the algorithm will actually deal with marked graph instances. We
are going to explain the meaning of the marking μ : V → {−1, 0, 1, 2} in the
following:

– μ(v) = −1: unmarked vertex v
At the very beginning of the algorithm all vertices are unmarked.

– μ(v) ≥ 0: marked vertex v

– μ(v) = 1: v belongs to the (partial) total vertex cover

– μ(v) = 2: Like μ(v) = 1, knowing that some x ∈ N(v) obeys μ(x) ≥ 1.

– μ(v) = 0: Some x ∈ N(v) obeys μ(x) ≥ 1.

We will employ the following marking update rules :

1. (μ(v) = −1 ∧ ∃x ∈ N(v) : μ(x) ≥ 1) =⇒ μ(v)← 0.
2. (μ(v) = 1 ∧ ∃x ∈ N(v) : μ(x) ≥ 1) =⇒ μ(v)← 2.
3. If none of the previously listed rules apply, delete all 2-marked vertices.

The correctness of these rules is immediate from the described semantics of the
marking. In particular, we can delete 2-marked vertices once all their (possibly
previously unmarked) neighbors have been 0-marked or 2-marked. We can as-
sume we are always dealing with a μ-marked updated graph. Such a graph has
the following properties:

24 H. Fernau et al.

1. There is no unmarked vertex that is known to be in the vertex cover or in
the neighborhood of a vertex from the vertex cover.

2. There is no 1-marked vertex that is neighbor of a vertex known to belong to
the vertex cover.

3. There is no vertex that is 2-marked.

So, we have exhaustively applied the marking update rules to render a marked
graph updated. We always apply the following exact reduction rules:

Degree-0 Rule: If G is a μ-marked updated graph instance and x is a vertex of
degree 0, then do the following:

– If x is 1-marked, then we have a NO-instance.
– Otherwise, delete x.

The rule is clearly correct: If a vertex is 1-marked, it must still find a partner in
its neighborhood, which is impossible for an isolated vertex. So, our μ-marked
graph contains no isolated vertices.

Our rule for leaf vertices is much more complicated.

Degree-1 Rule: If G is a μ-marked updated graph instance and x is a vertex of
degree 1 with unique neighbor y, then do the following:

1. If x is unmarked or 0-marked, we distinguish two subcases:
(a) If y has degree 1, then do:

If μ(x) = 0, then μ(x)← 2.
Else (i.e., x is unmarked) if μ(y) = 0, then μ(y)← 2.
Otherwise, μ(x)← 1, μ(y)← 1.

(b) Otherwise, y has degree at least 2.
If μ(y) ≤ 0, then μ(y)← μ(y) + 2.
Always delete x.

2. Otherwise, x is 1-marked: μ(y)← 1.

Lemma 1. The Degree-1 Rule is correct.

Proof. Since G is updated, μ(z) ≤ 1 for each z. Let x be of degree one, with y
being its unique neighbor. We discuss all possible markings separately below.

If x is 1-marked, then (in order to avoid an immediate NO) its unique neigh-
bor y must be 1-marked, as well. The update rules will then change μ(x) ← 2
and μ(y)← 2 and finally delete both x and y.

Now, assume that x is 0-marked.
If y is of degree one, as well, we can use x to cover the edge xy, and x will have

a partner in the cover due to the marking. This solution is optimal irrespectively
of the current marking of y. In particular, if μ(y) = 1 (which is its maximal
value), then x must be in the cover, as well, to satisfy the totality requirement.

If y is of higher degree, we can argue as follows: If y is not in the optimum
cover (respecting previous choices), then x and at least one other neighbor x′

of y must be in the cover.We can replace such a solution by one that replaces x by

Saving on Phases: Parameterized Approximation for Total Vertex Cover 25

y in the cover. This is reflected by adding two to the marking of y and deleting
x, covering the cases μ(y) = −1 and μ(y) = 0. In a sense, the fact that x has
already a partner in the cover (as indicated by its marking) does not help.

Finally, assume that x is unmarked.
If y is of degree one, as well, we can use y to cover the edge xy only if μ(y) = 0,
as y will have a partner in the cover due to the marking. Otherwise, there is no
partner of neither x nor y in the cover (although we might have fixed μ(y) = 1
before): So, x and y must go into the cover together to avoid isolates in the total
cover.

If y is of higher degree, we can argue as before. �	

Notice that we did not yet make the handling of the parameter explicit, but as
we do not aim at the two-phase approach, we can easily decrement the parameter
whenever we fix a vertex by 1-marking it.

We still have to describe the worsening step in our scenario (μ-marked graphs)
more formally. Observe that we can assume that our μ-marked updated graph
has minimum degree at least two. In order to guarantee a sufficient number of
worsening steps, we do some book-keeping with the help of the counter ws-count
that is always initialized by the number of vertices put into the cover by branch-
ing.

Worsening Step. If ws-count > 0, do:
(a) If there is some vertex u with μ(u) = 1, select some v ∈ N(u) and some
w ∈ N(v)− u.
By the marking update rules, μ(v) ≤ 0.
μ(v)← 1. μ(w)← 2.
(b) If there is no u with μ(u) = 1, select any edge and put both endpoints into
the cover.
In both cases, decrement ws-count.

Reasoning behind:
To cover the edge vw, at least one vertex (v or w) is needed; we take both.
Observe that μ(u) = 1 can be only due to exact branching or reduction rule
steps at this point.
The marking update rules will finally delete the whole path uvw (of length two).

We can now present our basic algorithm for finding a factor- 32 -approximation
to a total cover of a graph G with marking function μ (satisfying μ(v) ≤ 1 for
all v) and parameter k; this is displayed in Table 1.
“Increment marking” of v means: μ(v)← μ(v) + 2.

Invariant: Before Step 4, ∀v : μ(v) ≤ 0.
Namely, this is due to the interplay between the worsening step and the marking
update rules. The invariant guarantees that no increment of the marking leads
to values larger than two.

We did not make explicit how to deal with the parameter k. As k upperbounds
the size of an optimum solution, we can decrease k by one whenever we 1-mark a
vertex due to branching or due to the exact reduction rules. However, although
the worsening step introduces two 1-marked vertices, we should decrease k only

26 H. Fernau et al.

Table 1. Simple branching with marking

Input: (G,μ, k,ws-count)
1. Apply marking update rules.
2. If possible: apply low-degree reduction rule and goto 1.
3. If possible: apply a worsening step and goto 1.
4. Possibly, the graph is now empty or the parameter is no longer positive � Stop!
5. Let x be a highest-degree vertex (with μ(x) ≤ 0).
Branch as follows: either increment the marking of x, or of all of its neighbors,
deleting x.

by one, as only one of the two vertices is “for sure”. The worsening step is correct,
as out of u, v, w, at least two vertices, namely u (due to being 1-marked) and v
or w (due to the edge vw) must be in any exact total cover (respecting previous
choices). It is important to note that after applying one worsening step, the
marking update rules trigger again. They will finally delete all vertices u, v, w
that took part in the worsening step. Hence, after applying the marking update
rules, a vertex marked 1 was marked due to branching or due to (exact) reduction
rules and not due to a worsening step. This is an important second invariant of
our algorithm. In particular, in the second recursive branch, the 1-marked (at
least two) vertices are worsened one by one. By some additional book-keeping
(using the counter ws-count) we can make sure that, whenever we increment the
marking of some y in the branching, k finally drops by at least two. The obvious
immediate “danger” for the necessary number of applications of the worsening
step comes from possibly neighbored vertices that are 1-marked by branching;
these would disappear using the update rules, but we can select one additional
edge for worsening purposes anywhere in the graph afterwards.

As the degree of a vertex x that we branch at is at least two, this gives
a O∗(ck)-algorithm for factor- 32 approximation, where c =

√
φ ≈ 1.28, with

φ ≈ 1.62 being the golden ratio number. Recall again that irrespectively of
whether the marking of x or of all of its neighbors is incremented, which would
let the parameter drop by some number �, with � = 1 in the first branch and
� ≥ 2 in the second one, by triggering either reduction rules or the worsening
rule, the parameter can be decreased by another amount of �. This is already
quite nice, but we can further improve on this due to some additional structural
properties as explained in the following.

3 Improved Branching

One main source of profit in the Vertex Cover approximation algorithm from
[3] was the following structural lemma:

Lemma 2. In a triangle-free graph with minimum degree δ ≥ 2, any vertex v
has a vertex u at distance two.

In order to make use of it, we must deal with triangles. This can be done by the
following rule, which is obviously true for total vertex covers, as well, in the sense

Saving on Phases: Parameterized Approximation for Total Vertex Cover 27

of guaranteeing a factor of 3
2 . So, the Triangle Rule is not an exact reduction

rule but an approximate one, as we can be (only) sure that two out of the three
vertices that we have put into the cover will appear in any optimum solution.
This is important for the sequence of rule applications, as the Triangle Rule
should be applied after the worsening steps and then trigger again the marking
update rules.

Triangle Rule: If G is an μ-marked updated graph instance and x, y, z form a
triangle in G, then 1-mark x, y, z in G and decrease the parameter k by two.

To further improve on our branching, we also show how to deal with vertices
of degree two; this is again an approximate rule and should be applied after the
worsening steps.

Degree-2 Rule: If G is a μ-marked updated triangle-free graph instance with only
unmarked and 0-marked vertices, and if y is an unmarked vertex of degree two,
with neighbors x and z, then 2-mark x, y, z in G and decrease the parameter k
by two.

This rule is correct, as even if y is put into the cover, x or z must be put into
the cover to satisfy the totality requirement.

Further notice that the (exact) Folding Rule known from vertex cover, see
[6], can be applied if y is 0-marked, as well as its two neighbors x and z; recall
that the folding rule allows to decrement the parameter and that the folded
vertex should be also 0-marked. This rule is an exact rule and could be applied
before the worsening steps.

So, at this point of the algorithm, immediately before branching, the only
remaining degree-2 vertices are 0-marked and have at least one unmarked neigh-
bor, as we consider only μ-marked updated triangle-free graphs with unmarked
and 0-marked vertices.

Claim: No branching algorithm that works like the one in Table 1, plus inte-
grating the previous two reduction rules, ever picks a vertex of degree two for
branching.
Proof. Assume that the claim would be false. Then, the algorithm would pick a
0-marked vertex x for branching. At least one of its neigbors, say y, is unmarked.
Clearly, y has degree at most two. But this means that y would have been
eliminated by the Degree-2 Rule (or some other rule). �	
Wecan conclude that the simple branching algorithmwould run in timeO∗(1.211k)
for a factor- 32 approximation: in the first branch, one vertex is put into the cover
(plus twomore due to worsening), and in the second, at least � ≥ 3 (plus 2�more by
worsening); this yields a branching vector of (2, 2�) which is no worse than (2, 6).

We are now going to explain an even better branching strategy akin to the one
employed in [3]. By our arguments above, the graph before doing any branch-
ing has minimum degree two and is triangle-free. These are the assumptions of
Lemma 2; so there are two vertices x, z with dist(x, z) = 2. Notice again that at
this stage of the algorithm, all vertices are unmarked or 0-marked.

We branch on these vertices as follows: Consider a path xyz of length two and
apply the following reasoning.

28 H. Fernau et al.

1. If at least one of the end vertices of the path, that is, x or z, is in some
minimum cover (respecting the previous choices) then the cover remains
unchanged if we add the edge xz and therefore we can treat xyz as a (hy-
pothetical) triangle and add all three vertices to the approximate cover by
marking them with one. Clearly, the parameter should drop by two.

2. In the case that neither of the end vertices of the path (x and z) belongs
to any minimum vertex cover (respecting the previous choices), then we
remove x, z from the graph and add N(x)∪N(z) to the (approximate) cover
by 1-marking these vertices.
Since we are not after a minimum total vertex cover but rather a factor-
3
2 approximation, we select |N(x) ∪ N(z)| disjoint edges in the subsequent
worsening steps and add their end vertices to the approximate cover. This
will reduce the parameter by at least 2|N(x)∪N(z)|. Notice that if we cannot
find enough edges in the worsening steps, then this branch of the search tree
will stop, so that this special case does not affect the running time analysis.

Due to our claim, we never invoke this branching on a vertex x with d(x) = 2.
As we will see, this branching strategy gives a (2,10) branch (or better), leading
to a branching number of 1.151.

Theorem 1. Total Vertex Cover can be approximated in time O∗(1.151k)
up to a factor of 3

2 .

Proof. Let us analyze the suggested branching strategy of the algorithm sum-
marized in Table 2.

Clearly, if all vertices u at distance two from some degree-3 or degree-4 vertex
x selected for branching satisfyN(u) ⊆ N(x), then N [N [x]] is a small component
that can be solved to optimality in constant time.

If |N(x) ∪ N(z)| ≥ 5 for some z with dist(x, z) = 2, then this gives a (2,10)
branch (or better), leading to a branching number of 1.151. We refer to this case
by (∗) in the following. Therefore, the claimed running time holds in particular
if d(x) ≥ 4 due to the previous paragraph, as either d(x) ≥ 5 or d(x) = 4 and
some vertex z at distance two from x obeys N(z) \N(x) �= ∅. The running time
claim can be also confirmed if |N(x) ∪N(z)| = 4 by some case analysis that is
similar to the one for vertex cover presented in the long version of [3] but
distinctively different in several details; more precisely, one of the following cases
applies.
(1) There are no vertices at distance three from x; the corresponding small
component can be solved in constant time.
(2) There is exactly one vertex w at distance three from x: then, either we have
again a small component or w is a cut vertex; then, we can then argue that a cut
vertex branching is beneficial. (Details on cut vertex branching in more general
terms can be found in the long version of [3].)
More precisely, as x has degree three and this is the maximum degree in the
graph, the neighbors y, y′, y′′ of x each have at most two further neighbors. By
the Degree-1 Rule, we can assume that all vertices at distance three from x,
collected in the set Z, have at least two neigbors. Since w, being a cut vertex,

Saving on Phases: Parameterized Approximation for Total Vertex Cover 29

Table 2. Improved factor- 3
2
parameterized approximation for TVC

Input: (G,μ, k,ws-count)
1. Apply marking update rules.
2. If possible: apply exact low-degree reduction rule and goto 1.
3. If possible: apply a worsening step and goto 1.

{Now, ∀v : μ(v) ≤ 0.}
4. If possible: apply approximate reduction rule and goto 1.

{Now, ∀v : μ(v) ≤ 0 and the graph has minimum degree at least two.}
5. Possibly, the graph is now empty or the parameter is no longer positive � Stop!
6. Let x be a highest-degree vertex. Select a path xyz.

Branch as follows:
Either increment marking all of x, y, z (decrease k by two)
or of all of N(x)∪N(z) (delete x, z, decrease k by ws-count, where ws-count ←

|N(x) ∪N(z)|).

has one or two neighbors in Z, so that 2 ≤ |Z| ≤ 4. The graph induced by
{x, y, y′, y′′} ∪ Z has TVC number at least three, and the graph induced by
{x, y, y′, y′′} and at least one vertex from Z has TVC number at least two (no
triangles), so that we can reduce (due to worsening steps) the parameter k by at
least 8 if w goes into the approximate total vertex cover and by 2 · (d(w)+2) ≥ 8
if w is not put into the cover but N(w), assuming that the small component
containing x is solved in constant time, so that the branching continues with the
graph component(s) that do not contain x. The branching number is below 1.1.
(3) There are at least two vertices w1, w2 at distance three from x. Then, we can
(again) branch on a pair (x, z) with z ∈ Z. If N(x) ∪N(z) goes into the cover,
then first notice that any z′ �= z, z′ ∈ Z, would now be of degree one (so that
the according rule would apply) if d(z′) = 2 before the branching. As this case
can be analyzed as in (∗). So, we can assume that all vertices in Z are of degree
three to create a bad case. A similar argument applies to the neighbors of x (now
to improve the branching when x and z go into the cover): also they (all) must
be of degree three for a bad case. If any z, z′ ∈ Z have a common neighbor, say
y′, (while y is the “usual” common neighbor of x and z) that is also a neighbor
of x, then removing xyz would turn y′ into a degree-1 vertex, again yielding a
better branching. So, Z-vertices have exactly one neighbor within N(x), and all
two other neigbors are at distance 2 and 3 from x. Therefore, |N(x)∪N(z)| ≥ 5
for any z at distance two from x, contradicting our case distinction. �	

4 Further Consequences and Questions

Algorithms based on fidelity-preserving transformations [7] scale well on TVC
in the sense that, whatever approximation factor we aim at, we can obtain it,
together with an according running time upper bound. As we use the same
local-ratio type argument and our worsening step is nothing else than a (1, 1)-
reduction step, we can conclude:

30 H. Fernau et al.

Corollary 1. For any α ≥ 3
2 , there exists an O∗(1.3248(2−α)k) time, factor-α

approximation for TVC.

For better approximation ratios, our technique cannot avoid finally resorting to
exact algorithms. Recall that (1, 1)-reduction steps can be used prior to any exact
algorithm. Similarly, we can run our factor- 32 approximation algorithm with
some appropriately scaled lower budget and then start the exact algorithm; here,
we can profit from the fact that seach-tree algorithm can cope with μ-marked
instances. We have to find some maximum β such that β · 32 + (1− β) ≤ α, i.e.,
β = 2α − 2. So, we run our optimized factor- 32 approximation algorithm with
parameter β · k and then the exact algorithm with parameter (1− β) · k.

Corollary 2. For any α ≤ 3
2 , there exists an O∗(1.3248(α−1)k · 2.3655(3−2α)k)

time, factor-α approximation for TVC.

A t-total vertex cover of a graph G is a vertex cover S that each connected
component of the subgraph of G induced by S has at least t vertices. Examples:
t = 1: Classical VC; t = 2: total VC. For the cycle Cn, n ≥ t, a minimum t-total
vertex cover has � t

t+1n� many vertices. Accordingly, we get minimization and
parameterized problems termed t-Total Vertex Cover.

Taking all vertices of a path on t vertices into the cover yields a (
 t2�, �
t
2�)

reduction step for t ≥ 2. As shown in [8], exact parameterized algorithm running

in time O∗
(
16.1k+O(log2 k)

)
(for any fixed t) are known. The approach of M.

Fellows et al. [7] would yield:

Corollary 3. For any t ≥ 2 and 1 ≤ α ≤ 2, t-TVC can be approximated up to

a factor of α in time O∗
(
16.1γt(α)k+O(log2 k)

)
, where γt(α) =

t−α
 t
2 �

� t
2 �

.

In concrete terms, this is an O∗
(
16.1

3−α
2 k+O(log2 k)

)
-time, factor-α approxima-

tion for 3-TVC, leading to some O∗(8.1k+O(log2 k)) factor- 32 algorithm.
Now, reconsider our factor- 32 algorithm for TVC again. The worsening steps

are used in a way to make sure that only paths of cover vertices of length two are
created. This is in particular true for the simplistic branching analyzed in Sec-
tion 2. For the improved branching, additional arguments would be necessary to
make it work. Hence, we only state the following somewhat weaker consequence,
which is nonetheless much better than what was stated above:

Corollary 4. 3-TVC is approximable in time O∗(1.273k) up to a factor of 3
2 .

We leave out the details of a corresponding algorithm, as we would need to adapt,
for instance, the reduction rules to cope with other markings. They should now
indicate that a cover vertex already belongs to a cover component with two but
not with three (or more) elements, or that a non-cover vertex is neighbor of a
cover vertex that (at that point) only stays on its own in the cover.

Vertex Cover and all variants discussed in this paper allow for polynomial-
time approximations up to a factor of two. Actually, the local-ratio technique

Saving on Phases: Parameterized Approximation for Total Vertex Cover 31

shows this factor for TVC (and also, for instance, for 4-TVC) by “exhaustively”
using the (1, 1)-reduction step (or (2, 2)-reduction step for 4-TVC).

Similar problems (showing the same approximation factors) are Edge Domi-

nating Set, Connected Vertex Cover and also weighted problem variants.
The two mentioned problems also admit parameterized algorithms based on a 2-
phase approach; see [1]. It is however unclear how to obtain good parameterized
approximation algorithms, avoiding the costly second phase.

References

1. Binkele-Raible, D., Fernau, H.: Parameterized measure & conquer for problems
with no small kernels. Algorithmica 64, 189–212 (2012)

2. Bourgeois, N., Escoffier, B., Paschos, V.T.: Approximation of max independent
set, min vertex cover and related problems by moderately exponential algorithms.
Discrete Applied Mathematics 159(17), 1954–1970 (2011)

3. Brankovic, L., Fernau, H.: Combining Two Worlds: Parameterised Approximation
for Vertex Cover. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010, Part
I. LNCS, vol. 6506, pp. 390–402. Springer, Heidelberg (2010)

4. Brankovic, L., Fernau, H.: Parameterized Approximation Algorithms for Hitting

Set. In: Solis-Oba, R., Persiano, G. (eds.) WAOA 2011. LNCS, vol. 7164, pp.
63–76. Springer, Heidelberg (2012)

5. Chawla, S., Krauthgamer, R., Kumar, R., Rabani, Y., Sivakumar, D.: On the hard-
ness of approximating multicut and sparsest-cut. Computational Complexity 15(2),
94–114 (2006)

6. Chen, J., Kanj, I.A., Jia, W.: Vertex cover: further observations and further im-
provements. Journal of Algorithms 41, 280–301 (2001)

7. Fellows, M.R., Kulik, A., Rosamond, F., Shachnai, H.: Parameterized Approxima-
tion via Fidelity Preserving Transformations. In: Czumaj, A., Mehlhorn, K., Pitts,
A., Wattenhofer, R. (eds.) ICALP 2012, Part I. LNCS, vol. 7391, pp. 351–362.
Springer, Heidelberg (2012)

8. Fernau, H., Fomin, F.V., Philip, G., Saurabh, S.: The Curse of Connectivity: t-
Total Vertex (Edge) Cover. In: Thai, M.T., Sahni, S. (eds.) COCOON 2010. LNCS,
vol. 6196, pp. 34–43. Springer, Heidelberg (2010)

9. Fernau, H., Manlove, D.F.: Vertex and edge covers with clustering properties: Com-
plexity and algorithms. Journal of Discrete Algorithms 7, 149–167 (2009)

10. Khot, S.: On the power of unique 2-prover 1-round games. In: Reif, J.F. (ed.)
Proceedings on 34th Annual ACM Symposium on Theory of Computing, STOC,
pp. 767–775. ACM Press (2002)

11. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2 − ε.
Journal of Computer and System Sciences 74, 335–349 (2008)

12. Marx, D., Razgon, I.: Constant ratio fixed-parameter approximation of the edge
multicut problem. Information Processing Letters 109(20), 1161–1166 (2009)

13. Raman, V., Ramanujan, M.S., Saurabh, S.: Paths, Flowers and Vertex Cover. In:
Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 382–393.
Springer, Heidelberg (2011)

On Graph Identification Problems

and the Special Case of Identifying Vertices
Using Paths�

Florent Foucaud1 and Matjaž Kovše2,3

1 Univ. Bordeaux, LaBRI, UMR5800, F-33400 Talence, France
CNRS, LaBRI, UMR5800, F-33400 Talence, France

florent.foucaud@gmail.com
2 Faculty of Natural Sciences and Mathematics, University of Maribor,

SI-2000 Maribor, Slovenia
3 Bioinformatics Group, Department of Computer Science and Interdisciplinary

Center for Bioinformatics, Univ. of Leipzig, Härtelstrasse 16-18,
D-04107 Leipzig, Germany
matjaz.kovse@gmail.com

Abstract. In this paper, we introduce the identifying path cover prob-
lem: an identifying path cover of a graph G is a set P of paths such that
each vertex belongs to a path of P , and for each pair u, v of vertices,
there is a path of P which includes exactly one of u, v. This problem is
related to a large variety of identification problems. We investigate the
identifying path cover problem in some families of graphs. In particular,
we derive the optimal size of an identifying path cover for paths, cycles,
hypercubes and topologically irreducible trees and give an upper bound
for all trees. We give lower and upper bounds on the minimum size of
an identifying path cover for general graphs, and discuss their tightness.
In particular, we show that any connected graph G has an identifying

path cover of size at most
⌈

2(|V (G)|−1)
3

⌉
. We also study the computa-

tional complexity of the associated optimization problem, in particular
we show that when the length of the paths is asked to be of a fixed value,
the problem is APX-complete.

Keywords: Test cover, Identification, Paths, Approximation.

1 Introduction

This paper aims to study the new optimization problem of identifying the vertices
of a graph by means of paths, which we call the identifying path cover problem.
We first relate this problem to a large number of other problems and review a
part of the associated literature, before giving its definition.

� This research is supported by the ANR Project IDEA - Identifying coDes in Evolving
grAphs, ANR-08-EMER-007, 2009-2012.

S. Arumugam and B. Smyth (Eds.): IWOCA 2012, LNCS 7643, pp. 32–45, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Path Identification in Graphs 33

1.1 On Test Covers and the Identification Problem

Identification problems have been addressed many times in the last decades
under different denominations and in different contexts. We present two general
problems from the literature which have almost the same definition, and which
we herein call the minimum test cover problem and the minimum identification
problem. Instances of these problems are set systems, i.e. pairs consisting of a
set I of elements (“individuals”) and a set A of subsets of I (“attributes”).

Among these two problems, the minimum test cover problem, in short MIN-
TC, seems to have been studied first and is probably better known. Given a set
system of individuals and attributes, the MIN-TC problem asks for a minimum
subset C of A such that for each pair I, I ′ of I, there is an element C of C such
that exactly one of I, I ′ is covered by C, that is, belongs to C (we say that C
separates I from I ′). The MIN-TC problem appears in a large number of papers
under different denominations (minimum test cover problem [8], minimum test
collection problem [13], minimum test set problem [18]). In fact, a well-celebrated
theorem of J. A. Bondy on induced subsets [3] can be seen as the first study of
this problem.

In this paper and as in a large portion of the literature dealing with special
cases of this kind of problems, we are interested in a slight modification of MIN-
TC, where not only each pair of individuals has to be separated, but also, each
individual has to be covered. We call this problem the minimum identification
problem, MIN-ID for short (note that it has been studied under the denomination
of discriminating code problem in [4], but we use our terminology in order to fit
to special cases described later). MIN-TC and MIN-ID are very close to each
other, since for any solution to one of them, there is a solution to the other one
whose size differs by at most 1: any solution to MIN-ID is also one for MIN-TC,
and, given a solution C to MIN-TC which is not a valid solution to MIN-ID, at
most one individual I may not be covered by C. It is then sufficient to add an
arbitrary attribute A covering I to C to get a valid solution to MIN-ID.

Both MIN-TC and MIN-ID can be seen as special cases of the well-known
minimum set cover problem [13,15], MIN-SC for short, where, given a base set
X and a set S of subsets of X , it is asked to find a minimum subset C of S
covering all elements of X [8]. MIN-TC and MIN-ID enjoy the same computa-
tional complexity. It is known that both problems are O(ln(|I|))-approximable
(where I denotes the set of individuals of the input) using a reduction to MIN-
SC [18]. On the other hand, both problems are not only NP-hard [4,13] but have
also been shown to be NP-hard to approximate within a factor of o(ln(|I|)) by
reduction from MIN-SC [2,8].

A natural restriction of MIN-ID is, given some integer k, the one where the
sets of A all have exactly k elements. We will call this problem MIN-ID-k.

1.2 Related Problems

In this paper, we study a special case of MIN-ID. Just as some particular cases of
MIN-SC arising from specific structures have gained a lot of interest (consider for

34 F. Foucaud and M. Kovše

example all variants of the minimum dominating set problem, or the minimum
vertex cover problem), it is of interest to investigate special cases of the MIN-ID
problem having a particular structure. In this line of research, many specific
cases arising from graph theory are of particular interest since graphs model
networks of all kinds and are found in real world applications. For example, in
the identifying code problem [9,12,16], one wants to identify each vertex v using
vertices at distance at most 1 from v. This problem can be seen as MIN-ID where
I = V (G) and A is the family of the balls around each vertex. This problem has
been generalized to digraphs [6,11], and to the case where also sets of at most �
vertices are to be separated and where vertices can identify at some prescribed
distance r ≥ 1 [12]. One may also ask to identify the edges of G using edges, i.e.
I = E(G) and A is the set of all edge-balls around each edge of G [10]. Rather
than considering full balls, also partial balls may be considered, as in the case
of watching systems [1], where I = V (G), and A is the family of all stars in G.
Finally, the case where I = V (G) and A is the set of all cycles in G has been
considered in [14,20].

1.3 The Identifying Path Cover Problem

In this paper, we study MIN-ID when I = V (G) and A is the set of all paths
of G. This problem was first mentioned in a discussion between the first author,
J. L. Sewell and P. J. Slater. We call it minimum identifying path cover problem,
MIN-IDPC for short and it studies the following notion:

Definition 1. Given a graph G, a set P of paths of G is an identifying path
cover if each vertex of G belongs to a path of P (it is covered) and if for each
pair u, v of vertices, there is a path of P which contains exactly one of u, v (u, v
are separated).

We point out that the covering condition is not implied by the separation condi-
tion, since even when all pairs are separated, one vertex of the graph may remain
uncovered. We denote by pID(G) the minimum number of paths required in any
identifying path cover of G. Then, MIN-IDPC is the problem, given a graph G,
of determining the value of pID(G). An example of an identifying path cover P
of the cube H3 is given in Fig. 1, where the four thick paths belong to P (the
full, the densely dotted, the loosely dotted and the dashed-dotted path). Note
that an identifying path cover of G always exists: consider the set of all 0-paths
of G, that is, P = V (G).

Given an integer k ≥ 1, we will also discuss the natural variant MIN-IDPC-k
of MIN-IDPC, where one wants to find a minimum identifying k-path cover of G,
that is, a set of paths of exactly k vertices forming an identifying path cover of G.
We denote by pID

k (G) the size of a minimum identifying k-path cover of G. Unlike
for the general MIN-IDPC problem, not all graphs admit an identifying k-path
cover. We call a graph admitting an identifying k-path cover, k-path identifiable.
This is the case if, first of all, each vertex ofG lies on a k-path, and if for each pair
u, v of vertices, there is a k-path covering exactly one of u, v. For example, the

Path Identification in Graphs 35

Fig. 1. An (optimal) identifying path cover of the hypercube H3: p
ID(H3) = 4

path graphs Pk−1 and P2k−2 are not k-path identifiable. Observe that these two
conditions are also sufficient: if both are fulfilled, taking all k-paths of G gives a
valid identifying k-path cover of G. Being k-path identifiable is polynomial-time
checkable since there are at most

(
n
k

)
= O(nk) k-paths in G.

1.4 Applications

Problems MIN-TC and MIN-ID have a broad variety of applications, for example
in the diagnosis of faults or diseases, biological identification, pattern recogni-
tion [8,18]. When the instance of the problem arises from substructures of a
graph, the main applications are routing in networks [17] and the location of
threats in facilities or networks using sensors [16]: vertices are the “individuals”,
sensors are the “attributes”. Sensors may monitor closed neighbourhoods (iden-
tifying codes) or sub-neighbourhoods (watching systems). If sensors are capable
of monitoring the vertices lying on a path, we have the situation of an identifying
path cover. One can for example imagine sensors in the form of laser detectors,
or mobile detecting devices patrolling back and forth along their path.

1.5 Outline of the Paper

We start by giving some preliminary results in Section 2, in the form of bounds
from the literature valid for the general MIN-ID problem (which we apply to
MIN-IDPC) and some observations valid only for MIN-IDPC. We continue by
studying MIN-IDPC in some basic families of graphs in Sections 3 and 4: we give
exact values for parameter pID in paths, cycles, topologically irreducible trees,
and an upper bound for trees in general. We use the latter to provide the upper
bound pID(G) ≤

⌈
2n
3

⌉
for any connected graph. Finally, we show in Section 5

that MIN-IDPC-k is APX-complete for any k ≥ 3 by means of an L-reduction
from the minimum vertex cover problem. We conclude with some open questions
in Section 6.

2 Preliminary Observations

The following lower bound was observed in [16] in the context of identifying
codes but we refer to [4] for the general statement.

Theorem 2 ([4,16]). Let (I,A) be an instance of MIN-ID, and let C be a
solution to it. Then |C| ≥ log2(|I|+ 1).

36 F. Foucaud and M. Kovše

The following upper bound can be seen as a direct corollary of Bondy’s theo-
rem [3]. We refer to [4] for a formal proof in this context.

Theorem 3 ([3,4]). Let (I,A) be an instance of MIN-ID, and let C be an
inclusionwise minimal solution to it. Then |C| ≤ |I|.
Consider an instance of MIN-ID-k. Then, another lower bound holds. This bound
was (to our knowledge) first observed in the context of identifying codes in [16],
but the proof works in the more general context of MIN-ID-k.

Theorem 4 ([16]). Let k ≥ 1 and (I,A) be an instance of MIN-ID-k. Then

for any solution C, |C| ≥ 2|I|
k+1 .

Applying theorems 2, 3 and 4 to MIN-IDPC and MIN-IDPC-k, we get:

Theorem 5. Let G be a graph on n vertices and k ≥ 1 an integer. Then log2(n+
1) ≤ pID(G) ≤ n and max{log2(n+ 1), 2n

k+1} ≤ pID

k (G) ≤ n.

It is easily observed that in the complete graph Kn, since we have full freedom
to choose the paths in the identifying path cover, pID(Kn) = �log2(n+ 1)�. In
fact, much sparser graphs also fulfill this bound, such as the hypercubes: one
can easily come up with a solution with �log2(n+ 1)� paths. A similar problem
of identification using cycles is addressed in [14,20]; we refer to these papers
for the construction. Since removing an edge from a cycle yields a path, their
construction is also valid in our case:

Theorem 6 ([14,20]). Let Hd be the hypercube of dimension d with n = 2d

vertices. Then pID(Hd) = �log2(n+ 1)�.
One can easily see that the bound pID

k (G) ≥ 2n
k+1 is tight; given two integers

k ≥ 1 and p ≥ k, one can construct a graph G with pID

k (G) = p. To do so, one
has to take care that for each of the p paths of the solution, there is a vertex
that belongs only to this path. All other vertices must belong to distinct sets of
exactly two paths of the solution.

Since the set of paths of a graph G is a superset of the set of paths of a
subgraph H of G, if H is spanning the vertices of G, any identifying path cover
of H will also be one for G. We get the following proposition:

Proposition 7. Let G be a graph and H a spanning subgraph of G. Then
pID(G) ≤ pID(H).

The following proposition will be useful. The bound will be shown to be tight
for the star (see Thm. 12).

Proposition 8. If G is a graph having l vertices of degree 1, pID(G) ≥
⌈
2l
3

⌉
.

Proof. A vertex v of degree 1 can only be covered by a path P if v is an endpoint
of P , and two vertices of degree 1 cannot be covered only by the same path
(otherwise they are not separated from each other). If a degree 1 vertex is the
endpoint of k paths, then these k paths can cover at most k+1 degree 1 vertices.
Hence, the minimum is reached when k = 2 when two degree 1 vertices are
identified with three paths. �	

Path Identification in Graphs 37

3 Identifying Path Covers of Paths and Cycles

We first investigate identifying path covers in simple graphs such as paths and
cycles. The path and the cycle on n vertices are denoted Pn and Cn, respectively.
We start with a lower bounds for these graphs.

Proposition 9. Let G be a connected graph of maximum degree 2 having m
edges and l vertices of degree one. Then pID(G) ≥

⌈
m+l
2

⌉
.

Proof. Let u,v be two adjacent vertices of G. In any identifying path cover P of
G, there must be a path P that either ends in u and does not contain v, or ends
in v and does not contain u (let us say that P cuts the edge uv). Moreover, for
any vertex of degree 1, there is a path of P that ends in it. Since one single path
can at most cut or cover two edges/degree 1 vertices, the result follows. �	

Theorem 10. For any n ≥ 1, pID(Pn) =
⌈
n+1
2

⌉
.

Proof. The lower bound comes from Prop. 9. For the upper bound, let V (Pn) =
{v0, ..., vn−1} and P = {vi...vi+�n

2 � | i ∈ {0, ..., �n2 � − 1}} be a set of �n2 � paths.
If n is odd, P is an identifying path cover of cardinality �n2 � = �n+1

2 �. If n is
even, P separates all pairs of vertices, and covers all vertices but vn−1. Hence,
P ∪ {v0, ..., vn−1} is an identifying path cover of cardinality �n+1

2 �. �	

Theorem 11. It holds that pID(C3) = 2, pID(C4) = 3 and for any n ≥ 5,
pID(Cn) =

⌈
n
2

⌉
.

Proof. For n �= 4, the lower bounds come from Prop. 9, and from Thm. 2 for
n = 4. We give constructions for the upper bounds. Let V (Cn) = {v0, ..., vn−1}.
One can check that {v0v1, v1v2} and {v0v1, v1v2, v2v3} are valid identifying path
covers of C3 and C4. For n ≥ 5, let P = {vivi+1vi+2 | i even, i < n − 1}. If n
is even, P is a identifying path cover of Cn of cardinality

⌈
n
2

⌉
. Otherwise, the

pairs v0, v1 and vn−2, vn−1 are covered but not separated. Then P ∪ {vn−1v0}
is an identifying path cover of Cn of cardinality

⌈
n
2

⌉
. �	

4 The Case of Trees with an Application to All Graphs

We start by giving the value of parameter pID for the star on n vertices, denoted
K1,n−1. The provided construction and bound will prove useful in what follows.

Theorem 12. It holds that pID(K1,n−1) =
⌈
2(n−1)

3

⌉
.

Proof. The lower bound follows from Prop. 8. Let v0, ..., vn−1 be the leaves of
K1,n−1 and c its central vertex. Let P be the set P = {vicvi+1 | i �= 2 mod 3}
of 2
n3 � paths. If n = 0 mod 3, P is an identifying path cover of K1,n−1. If
n = 1 mod 3, P ∪ {cvn−1} is, and if n = 2 mod 3, P ∪ {cvn−2, cvn−1} is. �	

We call the procedure used in the proof of Thm. 12 ”covering three leaves with
two paths”. A tree is topologically irreducible if it has no vertex of degree 2.

38 F. Foucaud and M. Kovše

Theorem 13. Let T be a tree with l leaves. Then we have

(i) if T is topologically irreducible, then pID(T) =
⌈
2l
3

⌉
,

(ii) if T has t vertices of degree two, then
⌈
2l
3

⌉
≤ pID(T) ≤

⌈
2l
3

⌉
+
⌈
t
2

⌉
.

Proof. The lower bound in both cases follows from Prop. 8.
If T is topologically irreducible, we show how to construct an identifying path

cover which size is meeting the lower bound.
First, determine the center of T (that is, the set of vertices of minimum largest

distance to any other vertex of T). By Jordan’s theorem, the center of a tree
consists of either a single vertex or a pair of adjacent vertices.

Starting from the center of T , decompose the vertex set of T into layers
labelled 0, . . . , h, where h is the radius of T (the minimum largest distance among
pairs of vertices of T). The labels correspond to the distance to the center. For
� ∈ {0, . . . , h}, let T≤� be the sub-tree of T induced by layers 0, ..., �.

In the case when the center of T consists of a single vertex T≤1 is isomorphic
to a star, and in the case when the center consists of two adjacent vertices, it
is isomorphic to a tree with two adjacent vertices of degree at least 3, and all
other vertices of degree 1. In both cases, it is straightforward to find a solution
of size

⌈
2l
3

⌉
.

For i ∈ {2, . . . , h} we now describe how to extend the valid solution of T≤i−1

to the solution of T≤i. For any vertex v from layer i− 1, we choose an arbitrary
neighbour from layer i and extend the corresponding paths (by our construction
always exactly one or two paths are ending in a leaf) from the identifying path
cover to the neighbour. Now we have two vertices covered by exactly the same
set of paths, and still many uncovered vertices, all of them from layer i (at
least one more uncovered neighbour for any vertex from layer i − 1). Now we
contract all covered vertices into a single vertex, obtaining a star. Then we order
(arbitrarily) all other remaining vertices and do the procedure ”covering three
leaves with two paths”, as done in the case of the proof of Thm. 12. Doing this
we separate all uncovered vertices from layer i. We then expand the obtained
star together with the chosen paths into the original tree, where a path between
two leaves expands through the unique shortest path in T between these two
leaves. Doing this we also separate the two vertices, one from layer i − 1 and
the other from layer i, which were sharing the same paths. Vertices from layers
0, 1, . . . , i− 2 still remain separated and covered.

Doing this procedure until we reach layer h and tree T≤h = T , we obtain

at each layer i a solution of size
⌈
2(li−1)

3

⌉
for a tree T≤i, where li denotes the

number of vertices from layer i. At the end we obtain a solution of size
⌈
2l
3

⌉
for

T≤h = T . This concludes the proof of the first part of the theorem.
If T is arbitrary, we first contract all vertices of degree 2 to obtain the topo-

logically irreducible tree T ′ and find a solution for T ′ as described above. Then
we subdivide edges of T ′ to obtain tree T , keeping (expanding) the same identi-
fying path cover. Now, observe that we may get pairs of vertices which are not
separated from each other. Each such pair contains a vertex of degree 2. Using

Path Identification in Graphs 39

a similar procedure as in the proof of Thm. 10, we can use
⌈
t
2

⌉
additional paths

to get a solution reaching the upper bound from (ii). �	

By Prop. 7, we get an identifying path cover P of a connected graph G by
choosing a spanning tree T of G and constructing P using Thm. 13 on T . We
get the following improvement of Thm. 3 for the case of identifying path covers
of connected graphs. Note that by Thm. 12, this bound is tight for stars.

Theorem 14. For any connected graph G on n vertices, pID(G) ≤
⌈
2(n−1)

3

⌉
.

Unlike for many other variants of identification problems (such as identifying
codes, see [9]), Thm. 14 shows that one needs much less sensors than n in order
to identify connected graphs, which may prove useful in practice. We remark
that the similar upper bound 2n

3 holds for the size of a watching system (i.e. an
“identifying star cover”) in any connected graph on n vertices [1].

The bound of Thm. 14 can be refined in the following way. Let γC(G) denote
the connected domination number of a graph G (that is, the minimum size of
a dominating set of G inducing a connected subgraph) and let L(G) denote the
maximum number of leaves in a spanning tree of G. One can observe that for
a connected graph G on n vertices, we have n = γC(G) + L(G). Hence using
Prop. 7 and Thm. 13 we get the following upper bound.

Theorem 15. For any connected graph G on n vertices, it holds that pID(G) ≤⌈
2(n−γC(G))

3

⌉
+
⌈
γC(G)

2

⌉
.

5 On the Complexity of MIN-IDPC-k

In this section, we discuss the computational complexity of MIN-IDPC-k. It is
shown in [8] that MIN-IDPC-k is approximable within a factor of O(ln(k)) for
any k ≥ 1. In fact, when k = 1, we are allowed only paths of length 0 (that
is, vertices) and MIN-IDPC-1 is trivial: the only solution consists of the whole
set of vertices. When k = 2, we want to identify the vertices using paths of two
vertices, i.e. edges. This problem is equivalent to MIN-ID-2, where each attribute
is common to exactly two individuals. Indeed, an edge can precisely be seen as
such an attribute. This case has already been studied in [8], where a strong link
between MIN-ID-2 and the maximum P3-packing problem was established; the
authors give a 7

6 -approximation for MIN-ID-2 and show that it is APX-hard by
reduction from the maximum 3-dimensional matching problem.

We next prove that MIN-IDPC-k is APX-hard for all k ≥ 3, i.e. that there ex-
ists a constant c (depending on k) for which MIN-IDPC-k is not c-approximable.
We use the framework of L-reductions. We recall the definition of an L-reduction
between two optimization problems P and Q in Definition 16. It is known that
if such a reduction exists and P is APX-hard, then Q is APX-hard as well. For
more details, see [19]. Given an optimization problem P and a solution s to an
instance x of P , we denote by costP (x, s), the value of s, and by optP (x), the
value of an optimal solution to x.

40 F. Foucaud and M. Kovše

Definition 16. Let P and Q be two optimization problems. An L-reduction from
P to Q is a four-tuple (f, g, α, β) where f and g are polynomial time computable
functions and α, β are positive constants with the following properties:

1. Function f maps instances of P to instances of Q and for every instance x
of P, optQ(f(x)) ≤ α · optP (x).

2. For every instance x of P and every solution y of f(x), g maps the pair
(f(x), y) to a solution y′ of x such that |optP (x) − costP (x, g(f(x), y

′))| ≤
β · |optQ(f(x))− costQ(f(x), y

′)|.

The problem minimum vertex cover in cubic graphs, MIN-VC-3 for short, given
a cubic graph, is to find a minimum set of vertices such that each edge is covered
by a vertex of the set. MIN-VC-3 is APX-hard [7].

Theorem 17. Let k ≥ 3. There is an L-reduction (with parameters α = 40k2−
116k + 47 and β = 1) from MIN-VC-3 to MIN-IDPC-k in graphs of maximum
degree 4. Hence MIN-IDPC-k is APX-complete, even in this class of graphs.

Before giving the proof of Thm. 17, we first provide two useful gadgets and
exhibit some of their properties. Given k ≥ 3, we call these gadgets k-gadget
of type A (see Fig. 3 for an example when k = 3 and Fig. 2 when k = 4) and
k-gadget of type B (see Fig. 4). Both gadgets include an attachment vertex which
will be identified with a vertex of the rest of the graph in our constructions. The
k-gadget of type A is the basis for the construction of the k-gadget of type B,
which includes k− 3 copies of the k-gadget of type A. The k-gadget of type B is
described in Fig. 4, but we define the k-gadget of type A more formally. Using
these two gadgets, we construct a vertex k-gadget and an edge k-gadget which
will be needed in the reduction (see Fig. 5). The idea of the k-gadget of type A
is to attach it at a vertex and make sure that this vertex can be easily covered
and identified by a locally optimal solution; the idea of the k-gadget of type B
is to force a path from outside the gadget to go through the attached vertex.

v33

v32

v31v30P3

v23

v22

v21v20P2

v13

v12

v11v10P1

v63

v62

v61 v60 P6

v53

v52

v51 v50 P5

v43

v42

v41 v40 P4

P1 P2 P3

P4 P5 P6

vA

Fig. 2. Construction of the 4-gadget of type A

Path Identification in Graphs 41

vA

dc

b1

a1

b2

a2

G

(a) The 3-gadget of type A

v

G

A

(b) Representing a k-gadget of type A

Fig. 3. The k-gadgets of type A

v

A

A

u

a b

G

··
·

k
−

3
ti
m
es

v

G

B

Fig. 4. The k-gadget of type B and its representation

In order to construct the k-gadget of type A, we use a construction of an ex-
tremal graph for the lower bound 2n

k+1 ≤ pID

k (G) (Theorem 5). This construction
is detailed in Definition 18.

Definition 18. Let k ≥ 3 be an integer. If k = 3, the k-gadget of type A with
attachment vertex vA is the graph of Fig. 3. When k ≥ 4, the k-gadget of type A
is constructed as follows (see Fig. 2):

– Let P1, . . . , P2(k−1) be 2(k−1) vertex-disjoint paths, where for i ∈ {1, . . . , 2(k−
1)}, Pi = {vi0, . . . , vik−1}.

– Consider the complete bipartite graph B whose vertices are P1, . . . , P2(k−1).
It is (k − 1)-regular.

– Select a (k − 1)-edge-colouring of B with colours from {1, . . . , k − 1} (or
equivalently, find a partition of the edges of B into k− 1 perfect matchings).

– If k is even or c /∈ {
k2�, �
k
2 �}, for each edge {Pi, Pj} (assume i ≤ j) of B

coloured with colour c, identify vertices vic and vjc . If k is odd and c =
k/2�
(resp. c = �k/2�), identify vertices vi
k/2� and vj�k/2� (resp. v

i
�k/2� and vj
k/2�).

– We let the attachment vertex vA be vertex vik−1 for some arbitrary i ∈
{1, . . . , 2(k − 1)}.

We let xA = 2(k − 1). Note that when k ≥ 4, xA is the number of degree 1
vertices in a k-gadget of type A.

Let G be a cubic graph on n vertices and m = 3n
2 edges. We construct the graph

f(G) by replacing every vertex v by a copy of vertex gadget Gv and each edge

42 F. Foucaud and M. Kovše

a1

A

A

bc

A

A

a2

k
−

2
ti
m
es

k
−

2
ti
m
es

··
·

··
·

(a) Edge k-gadget

B

y1

A A

B

y2

A A

B

y3

A

A

x1z1

A

A

x2z2

A

A

x3z3

··
·

··
·

··
·

· · · · · ·

k
−

2
ti
m
es

k
−

2
ti
m
es

k
−

2
ti
m
es

⌈
k−3
2

⌉
times

⌊
k−3
2

⌋
times

(b) Vertex k-gadget

Fig. 5. Reduction k-gadgets for vertices and edges

e by a copy of edge gadget Ge (see Fig. 5). Given a vertex v incident to edges
e1, e2, e3 in G, the vertices x1, x2, x3 of Gv are identified each with either one of
the vertices a1, a2 of Ge1 , Ge2 , Ge3 in f(G). It is easily noticed that since G is
cubic, f(G) has maximum degree 4.

The first main idea of the reduction is to simulate the covering of an edge e by
the separation of vertices b and c in Ge by a path going through b. The second
main idea is, given a vertex v, to encode the fact that v is part of a vertex cover
of G, by having path y1 . . . y3 inside the path cover of f(G) (which enables us
to “cover” the three edge-gadgets corresponding to the three edges incident to
v in G). The proof of the validity of the reduction uses the following Claims 19,
20 and 21 about the gadgets of type A and B.

Claim 19. Let A be k-gadget of type A (k ≥ 4). Then, for each pair v, v′ of the
xA vertices of degree 1 in A, there is no path of length k − 1 between v and v′.
Moreover, vertex vA is at distance at least k − 1 of any degree 1-vertex in A.

Proof. If k is even, then A is bipartite with all degree 1 vertices in the same part.
Hence all paths between two degree 1 vertices have even length, but k−1 is odd.
If k is odd, by contradiction consider a path P between two degree 1 vertices
of A. If for any i, there is no vertex of the form vi
k/2� or vi�k/2� in P , then P
cannot be of length k − 1 because there is no such path of length more than
k− 3. Hence P contains some vertex vi
k/2� or vi�k/2�. But in either case, P must
have at least k + 1 vertices, a contradiction. The second part of the statement
follows immediately from the choice of vertex vA in the construction of A. �	

In what follows, we let G be a graph and P , an identifying path cover of G.

Claim 20. Let A be a k-gadget of type A (k ≥ 3) attached at vertex vA in G.
Then, there is a set of at least xA paths of P having an endpoint in A, and none
of these paths can reach a vertex outside of A. Moreover, there is a set of xA

paths in A which can be used to cover and identify all vertices of A.

Path Identification in Graphs 43

Proof. When k = 3, we note that we need at least three 3-paths in order to
cover the three degree 1 vertices of A. Doing so, we need an additional path to
separate either a1 from b1 or a2 from b2. Finally, the four paths a1 . . . d, a2 . . . d,
c . . . b1, b2 . . . vA fulfill the last part of the statement.

If k ≥ 4, the first part of the statement follows easily from Claim 19: no path
can be used to cover two degree 1 vertices in A, and no path starting outside of
A can cover a degree 1 vertex of A. Considering the xA paths of the construction
of A proves the second part of the statement. �	

Claim 21. Let B be a k-gadget of type B attached at some vertex v in G. Then,
at least xB = xA(k − 3) + 2 paths of P are entirely contained in B. Moreover,
if exactly xB paths of P are entirely contained in B, then there is an additional
path of P containing vertex v. Finally, there exists such a set of xB paths.

Proof. Following Claim 20, we need at least xA paths in each of the k− 3 copies
of the k-gadget of type A in B. In order to dominate vertices a and b, we need
two additional paths Pa and Pb starting in a and b, which completes the first
part of the claim. For the second part, by Claim 20, among these paths, only
paths of type Pa or Pb can contain vertex v. If Pa or Pb or both Pa, Pb dominate
v, then v is not separated from either a, b or u, proving the second part. Taking
the solution from Claim 20 for each copy of the k-gadget of type A together with
the paths a . . . v and b . . . v, we get the last part of the claim. �	

We are now ready to prove Thm. 17.

Proof (Proof of Thm. 17). We first prove that the first part of Def. 16 holds.
Let C∗ be a minimum vertex cover of G. We construct an identifying k-path
cover P of f(G) as follows. For each copy of a gadget of type A (resp. type B),
take the solution of size xA described in the proof of Claim 20 (resp. of size xB

of Claim 21) into P . Now, for each edge e of G, add an arbitrary path starting
in vertex c of Ge. For each vertex v of G, add three arbitrary paths starting in
vertices z1, z2 and z3, respectively. Let e1, e2, e3 be the three edges incident to
v in G, and b1, b2, b3, the three vertices labelled b in Ge1 , Ge2 , Ge3 . If v ∈ C∗,
add path y1 . . . y3 of Gv, as well as paths x2 . . . b1, x3 . . . b2 and x1 . . . b3 to P . If
v /∈ C∗, add paths x1 . . . y1, x2 . . . y2 and x3 . . . y3 to P .

The reader can check that P is an identifying k-path cover of f(G), and that:

|P| ≤ |C∗|+ (2(k − 2)xA + 1)m+ ((3(k − 2) + k − 3)xA + 3xB + 6)n (1)

Since G is cubic, each vertex of C∗ can cover at most three edges and we have
|C∗| ≥ m

3 and hence m ≤ 3|C∗| and n ≤ 2|C∗|. We get: pID

k (G) ≤ |P| ≤
(16 + (14k − 30)xA + 6xB)|C∗| and hence (1) of Def. 16 is fulfilled with α =
16 + (14k − 30)xA + 6xB ≤ 40k2 − 116k+ 47.

It remains to prove the second part of Def. 16. Let P be an identifying k-path
cover of f(G). We construct a vertex cover C using P . First of all, by Claim 20,
each gadget of type A contains at least xA paths of P , and by Claim 21, each
gadget of type B contains at least xB = xA(k− 3) + 2 paths of P . Moreover, in

44 F. Foucaud and M. Kovše

each vertex gadget, at least three paths belong to P in order to cover vertices
z1, z2, z3. However, using the structure of the vertex- and edge-gadgets together
with Claim 21, if there are exactly that many paths, in each vertex-gadget, we are
not able to separate vertices y1, y2, y3 from their respective neighbours, as well as
vertices x1, z1, x2, z2, and x3, z3 (similarly, vertices b and c in each edge-gadget).
Besides the paths of P that we already considered, in any vertex-gadget, at least
three paths are required in order to cover vertices x1, y1, x2, y2, x3, y3. If there
are exactly three, then they must be x1 . . . y1, x2 . . . y2, x3 . . . y3. We construct
C as follows: for each vertex v of G, if there are at least four such additional
paths in Gv, we add v to C. Set C is a vertex cover of G: indeed, when v ∈ C,
the paths in the copies of the gadgets of type A and B in Gv could be replaced
by the “standard” solution given in Claims 20 and 21. Moreover, the (at least)
four additional paths of P in Gv could be replaced by y1 . . . y3 and three paths
starting at x1, x2, x3 covering the three vertices labelled b in the three edge-
gadgets corresponding to the three edges incident to v in G. Hence these edges
would be covered. This procedure would give an easy constructable identifying
path cover P ′ with P ′ ≤ P , and since all vertices labelled b are covered by a
path of P ′, C is a vertex cover of G. Furthermore, we have |C| ≤ |P| − (2(k −
2)xA +1)m− ((3(k − 2) + k − 3)xA + 3xB + 6)n. Applying the construction to
a minimum identifying k-path cover, we get |C∗| ≤ |C| ≤ pID

k (G) − (2(k −
2)xA + 1)m− ((3(k − 2) + k − 3)xA + 3xB + 6)n. Together with Equation (1),
this implies:

|C∗| = pID

k (G)− (2(k − 2)xA + 1)m− ((3(k − 2) + k − 3)xA + 3xB + 6)n (2)

From Equations (1) and (2), we get |C| − |C∗| ≤ |P| − pID

k (G), which implies
||C∗| − |C|| ≤ |pID

k (G) − |P||; hence (2) of Def. 16 is fulfilled with β = 1. �	

6 Conclusion and Open Problems

We conclude with some open problems. We gave a procedure to compute the
exact value of parameter pID for topologically irreducible trees, but only gave an
upper bound for general trees. It seems not easy to extend the algorithm to the
latter case, but it would be interesting to design an(other) algorithm to solve it.
Regarding MIN-IDPC-k, we mentioned that not all graphs admit an identifying
k-path cover. Identifiable graphs have been studied for some other identification
problems [5]; it would be interesting to do so in our context, i.e. studying k-path
identifiable graphs. Finally, we have settled the complexity of MIN-IDPC-k by
showing that it is APX-complete. However, the question of the complexity of
the general MIN-IDPC problem remains open.

Acknowledgements. We would like to thank P. J. Slater and J. L. Sewell for
motivating us to study this problem. We also thank O. Schaudt for giving the
idea of Theorem 15.

Path Identification in Graphs 45

References

1. Auger, D., Charon, I., Hudry, O., Lobstein, A.: Watching systems in graphs: an
extension of identifying codes. Discrete Appl. Math. (in press)

2. Berger-Wolf, T.Y., Laifenfeld, M., Trachtenberg, A.: Identifying codes and the set
cover problem. In: Proc. 44th Annual Allerton Conference on Communication,
Control and Computing (September 2006)

3. Bondy, J.A.: Induced subsets. J. Comb. Theory B 12(2), 201–202 (1972)
4. Charon, I., Cohen, G., Hudry, O., Lobstein, A.: Discriminating codes in bipartite

graphs. Adv. Math. Commun. 4(2), 403–420 (2008)
5. Charon, I., Honkala, I., Hudry, O., Lobstein, A.: Structural properties of twin-free

graphs. Electron. J. Comb. 14, R16 (2007)
6. Charon, I., Hudry, O., Lobstein, A.: Identifying and locating-dominating codes:

NP-completeness results for directed graphs. IEEE T. Inform. Theory 48(8), 2192–
2200 (2002)

7. Chleb́ık, M., Chleb́ıková, J.: Complexity of approximating bounded variants of
optimization problems. Theor. Comput. Sci. 354, 320–338 (2006)

8. De Bontridder, K.M.J., Halldórsson, B.V., Halldórsson, M.M., Hurkens, C.A.J.,
Lenstra, J.K., Ravi, R., Stougie, L.: Approximation algorithms for the test cover
problem. Math. Program. B 98, 477–491 (2003)

9. Foucaud, F., Guerrini, E., Kovše, M., Naserasr, R., Parreau, A., Valicov, P.: Ex-
tremal graphs for the identifying code problem. Eur. J. Combin. 32(4), 628–638
(2011)

10. Foucaud, F., Gravier, S., Naserasr, R., Parreau, A., Valicov, P.: Identifying codes
in line graphs. To appear in J. Graph Theor.

11. Foucaud, F., Naserasr, R., Parreau, A.: Characterizing extremal digraphs for iden-
tifying codes and extremal cases of Bondy’s theorem on induced subsets. Graphs
Comb. (in press)

12. Frieze, A., Martin, R., Moncel, J., Ruszinkó, M., Smyth, C.: Codes identifying sets
of vertices in random networks. Discrete Math. 307(9-10), 1094–1107 (2007)

13. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman (1979)

14. Honkala, I., Karpovsky, M., Litsyn, S.: Cycles identifying vertices and edges in
binary hypercubes and 2-dimensional tori. Discrete Appl. Math. 129(2-3), 409–419
(2003)

15. Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput.
Syst. Sci. 9, 256–278 (1974)

16. Karpovsky, M., Chakrabarty, K., Levitin, L.B.: On a new class of codes for iden-
tifying vertices in graphs. IEEE T. Inform. Theory 44, 599–611 (1998)

17. Laifenfeld, M., Trachtenberg, A., Cohen, R., Starobinski, D.: Joint monitoring and
routing in wireless sensor networks using robust identifying codes. In: Proc. IEEE
Broadnets 2007, pp. 197–206 (September 2007)

18. Moret, B.M.E., Shapiro, H.D.: On minimizing a set of tests. SIAM J. Sci. Stat.
Comp. 6(4), 983–1003 (1985)

19. Papadimitriou, C.: Computational Complexity. Addison-Wesley (1994)
20. Rosendahl, P.: On the identification of vertices using cycles. Electron. J. Comb. 10,

P1 (2003)

Disjoint Set Forest Digraph Representation

for an Efficient Dominator Tree Construction

Wojciech Fraczak1,2 and Andrew Miller2

1 Université du Québec en Outaouais, Gatineau, Québec, Canada
2 Benbria Corporation, Ottawa, Ontario, Canada

Abstract. We consider a non-orthodox representation of directed graphs
which uses the “disjoint set forest” data structure. We show how such
a representation can be used in order to efficiently find the dominator
tree. Even though the performance of our algorithm does not improve
over the already known algorithms for constructing the dominator tree,
the approach is new and it gives place to a highly structured and simple
to follow proof of correctness.

1 Introduction

In the context of a directed graph (digraph) G with a root (starting) vertex s,
vertex x is called a dominator of vertex y, if every directed path from s to y
contains x. The set {x0, x1, . . . , xn} of all dominators for vertex y is ordered
with respect to the order of the first (or last) occurrences of the dominators in a
path from s to y (the order remains the same for all such paths). Therefore, we
have x0 = s and xn = y. The vertex xn−1, if it exists, is called the immediate
dominator of y. The set of pairs (x, y) of vertexes such that x is the immediate
dominator of y, defines a tree structure over vertexes, called “dominator tree”.

Dominators and dominator trees were initially studied in the context of the
flow diagram analysis for computer programs compilation and optimization of
computer programs, [4,3]. However, dominators find many applications in other
areas of computer science such as networking, parallel computing, or even formal
language theory.

In this paper we give a new efficient algorithm for finding the dominator
tree for a given digraph with a root (start) vertex. Our algorithm runs in time
O(m ·α(m,m)), where m is the number of edges in the graph and α denotes the
inverse of Ackermann’s function1. This time complexity is achieved by using a
non-orthodox digraph representation where vertexes are represented as pairs of
sets of incoming and outgoing edges. Thus, a digraph is seen as two partitions of
edges, sources and destinations, each represented by the data structure called a
disjoint set forest [5,6]. Even though the performance of our algorithm does not
improve over the already known algorithms for constructing the dominator tree
[6,2], the approach is new and it gives place to a highly structured and simple
to follow proof of correctness.

1 The inverse of Ackermann’s function is a very slowly growing function; for all prac-
tical cases, α(m,n) ≤ 4, see [5].

S. Arumugam and B. Smyth (Eds.): IWOCA 2012, LNCS 7643, pp. 46–59, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Disjoint Set Forest Digraph Representation 47

2 Preliminaries

We consider directed graphs with a root vertex s, such that there exists a directed
path from s to every vertex of the graph.

We will deal with dynamic transformations of digraphs, so we need a notion
that makes it possible to keep track of changing positions of a directed edge as
the graph evolves. Thus we adopt the following, slightly non-orthodox definition
of a directed graph (digraph).

Definition 1. A digraph is a quadruple, G = (V,E, ξ, s), where:

– V is a finite set of vertexes,
– E is a finite set of edges,
– ξ is a mapping from E to V × V , and
– s is an element from V , called “root” (or “start”).

Intuitively, every edge e of E is associated to its source u ∈ V and its destination
v ∈ V , defined by mapping ξ, i.e., ξ(e) = (u, v). We refer to source u and
destination v of edge e by writing ξ(e)

−
and ξ(e)

+
, respectively. Often, when ξ is

known from the context, we will write e− and e+ instead of ξ(e)− and ξ(e)+. The
digraph will be subject to dynamic changes which may result in the incremental
evolution of its set of vertexes V , its set of edges E, and its mapping ξ. Especially
important are dynamic changes of ξ, which may be viewed as migrations of edges.

Notice that our definition allows multi-edges and self-loops, hence many edges
may have the same source and destination.

By E(v) we denote the set of all edges outgoing from v, i.e., E(v)
def
= {e ∈

E | e− = v}. By E−1(v) we denote the set of all edges incoming to v, i.e.,

E−1(v)
def
= {e ∈ E | e+ = v}.

A path π in G = (V,E, ξ, s) from a vertex u to v is a finite sequence of edges
π = e1e2 . . . en such that e1

− = u, en
+ = v, and ei

+ = ei+1
− for i ∈ [1, n). It is

assumed that every vertex v is accessible from s, i.e., there exists a path from s
to v.

A vertex v is a dominator of a vertex u if and only if v is present on every path
from s to u (a vertex is present on a path if it is a source or a destination of one of
the edges of the path). The set of all dominators of a vertex u in G is denoted by
DG(u); the order of first (or last) occurrences of the dominators of v is the same
in all paths from s to v. Thus, it is natural to represent the set of dominators
of v as an ordered list δG(v) of vertexes, δG(v) = (u0, u1, . . . , un−1, un), with
u0 = s and un = v. The vertex un−1, if it exists (i.e., when v �= s), is called the
immediate dominator of v and will be denoted by PG(v) (“Parent” of v in G).

Proposition 1. If δG(vn) = (v0, v1, . . . , vn) then, for i ∈ {1, . . . , n}, PG(vi) =
vi−1 and δG(vi) = (v0, . . . , vi).

Due to Proposition 1, the dominators of all vertexes of a digraph can be rep-
resented in the form of a tree, called the dominator tree, defined by PG as the
“parent” relation. The root vertex s is the root of the dominator tree.

48 W. Fraczak and A. Miller

Let G = (V,E, ξ, s) be a digraph. The set of dominators of v ∈ V is related
to its “incoming” neighbors in the following way.

Proposition 2. DG(v) = {v} ∪
⋂

e∈E−1(v) DG(e
−).

We need a nomenclature which generalizes the standard DFS (Depth-First Search,
[1]) concepts, such as DFS tree, edge partitioning, and discovery order of ver-
texes. For that purpose we introduce the notion of a “digraph annotation”.

Definition 2. An annotation of a digraph G = (V,E, ξ, s) is a pair A = (≤, F),
where ≤ is a total order on V and F ⊆ E is a set of edges, such that:

1. F is a spanning tree of G with root s, i.e., for any vertex v ∈ V , there exists
exactly one path from s to v with edges from F .
We write v �A u to say that v is an ancestor of u in F . Intuitively, v �A u
implies the existence of the unique path from v to u using edges from F .

2. The partial order �A induced by F is compatible with ≤, i.e., v �A u implies
v ≤ u, for all vertexes v, u ∈ V .

3. For every edge e ∈ E, if e− ≤ e+ then e− �A e+.

By v �≈A u we denote that vertexes u and v are not comparable in �A, i.e.,
neither v �A u nor u �A v. Whenever an annotation A is known from the
context, we will write � and �≈ instead of �A and �≈A, respectively. The strict
orders induced by ≤ and � will be denoted by < and ≺, respectively.

The above definition of an “annotation” generalizes the standard DFS as
stated in the following lemma.

Lemma 3. Let G = (V,E, ξ, s) be a given digraph. The standard DFS (Depth-
First Search) starting in s, defines an annotation (≤, F) of G, where F is the
DFS tree and u ≤ v iff discovery time of u is smaller or equal to the discovery
time of v.

Let A = (≤, F) be an annotation of G = (V,E, ξ, s). We define the following
partitioning of E = EA

T ∪ EA
F ∪ EA

C ∪EA
B induced by A:

– EA
T

def
= F – tree edges

– EA
F

def
= {e ∈ E | e− ≺ e+} \ F – forward edges

– EA
B

def
= {e ∈ E | e+ � e−} – back edges

– EA
C

def
= {e ∈ E | e+ �≈ e−} – cross edges

Edges from EA
T , EA

F , EA
C , and EA

B are called tree edges, forward edges, cross edges,
and back edges, respectively. Intuitively, they correspond to the well-known DFS
edge partitioning. Notice, that e ∈ EA

C ∪EA
B if and only if e+ ≤ e−.

3 Deriving Partial Information about Dominators from
an Annotation

An annotation A = (≤, F) of a digraph G = (V,E, ξ, s) reveals many useful
facts about the dominator tree of G, as shown in this section.

Disjoint Set Forest Digraph Representation 49

All dominators of a vertex v lay on the path of every spanning tree F from the
root s to v, i.e., they are ancestors of v in F . Therefore, if δG(v) = (v0, v1, . . . , vn),
then v0 ≺A v1 ≺A . . . ≺A vn, for any annotation A = (≤, F) of G = (V,E, ξ, s)
and any vertex v ∈ V .

Proper nesting: The pairs of vertexes, (PG(v), v) are always ordered with respect
to ≺. The pairs (PG(v), v) exhibit some nesting properties which are presented
graphically in Fig. 1 and stated formally in the following two lemmas.

s

e

e+

e−PG(e−)

PG(e+)

vPG(v)PG(u) us

b)

a)

Fig. 1. Illustration for: a) Lemma 4, b) Lemma 5. Solid arrows represent edges, dash
arrows represent paths composed only from tree edges, and dot arrows represent any
path.

Lemma 4. Let e ∈ E be an edge and let A be an annotation of G = (V,E, ξ, s).
If s �∈ {e−, e+} and e− �= PG(e

+) then PG(e
+) �A PG(e

−).

Lemma 5. Let u, v ∈ V and let A = (≤, F) be an annotation of G = (V,E, ξ, s).
If PG(u) ≺A v ≺A u then PG(u) �A PG(v).

Siblings: Let us consider a particular case of a vertex with exactly two incoming
edges, one tree edge and one forward edge.

Lemma 6. Let A be an annotation of G = (V,E, ξ, s) and u ∈ V be a vertex
such that there are exactly two incoming edges to u, E−1(u) = {e, f}, with
e ∈ ET and f ∈ EF .

1. If e− = f− then PG(u) = e− = f−.
2. If PG(e

−) � f− ≺ e− then PG(u) = PG(e
−). (See Fig. 2)

Proof. 1.) PG(u) = e− = f−, since every path from s to u ends by e or f .
2.) By Proposition 2,DG(u) = {u}∪(DG(e

−)∩DG(f
−)). Because u �∈ DG(e

−)
and e− �∈ DG(f

−), DG(u) \ {u} = (DG(e
−) \ {e−}) ∩ DG(f

−). PG(e
−) is a

dominator of f−; otherwise, there would be a path from s to e− passing by f−

and avoiding PG(e
−). By Proposition 1, DG(e

−) \ {e−} ⊆ DG(f
−). Therefor,

DG(u) \ {u} = DG(e
−) \ {e−}, i.e., PG(u) = PG(e

−). �	

50 W. Fraczak and A. Miller

us
e

PG(e−) f− e−

f

Fig. 2. Illustration for Lemma 6(2)

Cycles:

Lemma 7. Let e ∈ EB be a back edge and u a vertex between e+ and e−, i.e.,
e+ � u � e−. If PG(u) � e+ then PG(u) = PG(e

+). (See Fig. 3)

s

e

uPG(u) e+ e−

Fig. 3. Illustration for Lemma 7

Proof. By Lemma 5, PG(u) � PG(e
+). On the other hand, for every vertex z

between PG(u) and e+, i.e., PG(u) ≺ z ≺ e+, there is a path from s to e+ ending
by e which avoids z. Thus, PG(e

+) = PG(u). �	

4 Graph Transformations

In this section we define the notation for local transformations of a digraph,
namely: adding, removing, and redirecting edges, and removing and merging
vertexes.

Definition 3. Let G = (V,E, ξ, s) be a digraph, u, v ∈ V , and e ∈ E.

1. By G− e we denote the graph obtained by the removal of edge e from G.

G − e
def
= (V,E \ {e}, ξ|E\{e}, s), where ξ|E′ for some E′ ⊆ E, denotes the

function ξ restricted to elements of E′.
2. By G + (u, v) we denote the graph obtained by the addition of a new edge

from u to v in G.

G+ (u, v)
def
= (V,E ∪ {f}, ξ′, s) where f �∈ E, ξ′|E

def
= ξ, and ξ′(f) def

= (u, v).

3. By G[e/(u, v)] we denote the graph obtained by the substitution of the source
and the destination of edge e in graph G by vertexes u and v, respectively.

G[e/(u, v)]
def
= (V,E, ξ′, s) where ξ′(x) def

=

{
(u, v) if x = e
ξ(x) otherwise

.

If we want to change only the source or the destination of edge e we will write
G[e/(u,)] or G[e/(, u)] meaning G[e/(u, e+)] and G[e/(e−, u)], respectively.

Disjoint Set Forest Digraph Representation 51

4. By G − u we denote the graph obtained by the removal of vertex u from G
together with the removal of all edges connected to u.

G− u
def
= (V \ {u}, E′, ξ|E′ , s) where E′ def

= E \ (E(u) ∪E−1(u)).

The above operations extend naturally to sets. For example, we will write
G− {e1, . . . , ek} instead of G− e1 − . . .− ek.

5. By G[u← v] we denote the graph in which vertex v is merged into vertex u
with all self-loops on the merged vertex u removed. Formally:

G1 = (V1, E1, ξ1, s1) = G[E−1(v)/(, u)],
G2 = (V2, E2, ξ2, s2) = G1[E1(v)/(u,)],
G3 = G2 − (E2(u) ∩E−1

2 (u)),

G[u← v]
def
= G3 − v.

Addition or Removal of Edges. Adding or removing an outgoing edge of
a vertex does not change the dominators of the vertex. Moreover, if adding (or
removing) an incoming edge to vertex u does not change the dominators of u,
then no vertex of the digraph changes its dominators. More formally:

Lemma 8. Let G = (V,E, ξ, s) be a digraph, u, v ∈ V , and G′ = G+ (u, v).

1. δG(u) = δG′(u).

2. If δG(v) = δG′(v) then δG(x) = δG′(x) for every vertex x ∈ V .

Proof. 1.) Every path π from s to u passing by the new edge e in G′ (with
ξ′(e) = (u, v)) is not simple2 and thus it passes by all vertexes of a direct path π′

from s to u. Thus, the intersection of vertexes of π and π′ is the set of vertexes
of π′, i.e., δG(u) = δG′(u). In general, this implies that in order to calculate
dominators of a vertex x we can consider only simple paths from s to x.

2.) Consider a vertex x ∈ V . The set of all simple paths in G from s to x can
be partitioned into the set of paths passing by v, and the set of paths avoiding
v. Every simple path from s to x through v can be split into a simple path from
s to v, followed by a simple path from v to x. In G′, the set of simple paths from
s to x avoiding v and the set of simple paths from v to x, are the same as in G.
Since δG(v) = δG′(v), all dominators of x in G and G′ are the same and they
occur in the same order, hence δG(x) = δG′(x). �	

Migration of Edges. If vertex v is not the immediate dominator of vertex
u then an edge from v to u can be replaced by an edge from the immediate
dominator of v to u, without changing dominators of any vertex of the graph
(see Fig. 4).

Lemma 9. Let e be an edge in a digraph G = (V,E, ξ, s) and ξ(e) = (v, u). If
PG(u) �= v, then PG′(x) = PG(x) for G′ = G[e/(PG(v), u)] and every x ∈ V .

2 A path π = e1e2 . . . en is simple if it does not contain loops, i.e., for i, j ∈ [1, n],
e+i = e−j iff j = i+ 1.

52 W. Fraczak and A. Miller

u u

PG(v) PG(v)

vv

G′G

e

e

Fig. 4. Illustration for Lemma 9

Proof. In view of Lemma 8, it is sufficient to prove that δG′(u) = δG(u), where
G′ = G[e/(v′, u)] and v′ = PG(v).

Let Πe(u), Π
′
e(u) be the sets of all simple paths from s to u ending by an

edge different from e in G and G′, respectively. Notice that Πe(u) and Π ′
e(u) are

the same. Let Π(v), Π ′(v′) be the sets of all simple paths from s to v in G and
from s to v′ in G′, respectively.

The set of dominators of u in G is the intersection of the set Se(u) of vertexes
occurring on every path in Πe(u), with the set S(v) of vertexes occurring on
every path in Π(v), i.e., DG(u) = Se(u) ∩ ({u} ∪ S(v)). The set of dominators
of u in G′ is: DG′(u) = S′

e(u) ∩ ({u} ∪ S′(v′)), where S′
e(u) = Se(u) and S′(v′)

denote the set of vertexes occurring on every path in Π ′(v′).
Since no path in Π(v) nor in Π ′(v′) uses e, (otherwise, such a path would not

be simple), and since no other vertex than v′ = PG(v) on a path from v′ to v
is a dominator of v, we have S(v) = S′(v′) ∪ {v}. Thus DG(u) = DG′(u). The
existence of a simple path from s to u in G avoiding v, which is also a path is
G′, implies the same order of dominators of u in G and G′. �	

The following lemma says that we can add an edge to a digraph G from v to u
without changing any dominators, whenever all dominators of u in G, except u
itself, are also dominators of v.

Lemma 10. Let u, v ∈ V be vertexes in a digraph G = (V,E, ξ, s). If DG(u) \
{u} ⊆ DG(v), then PG+(v,u)(x) = PG(x) for every x ∈ V .

Proof. In view of Lemma 8, it is sufficient to prove that δG′(u) = δG(u), where
G′ = G+ (v, u). Consider all simple paths from s to u in G′. Only paths ending
with the new edge are not present in G. However, by Lemma 8(1), δG(v) =
δG′(v), and thus every vertex x ∈ DG(u) is present on every path in G′ from s
to u ending with the new edge, i.e., DG′(u) = (DG(v)∪ {u})∩DG(u) = DG(u).
Since every path in G is also a path in G′, the order of dominators does not
change, implying δG′(u) = δG(u). �	

The next lemma says that if vertexes v, v′ have the same immediate dominator,
i.e., PG(v

′) = PG(v), and there is a path from s to some vertex u avoiding both
v and v′, then every edge e from v to u can be replaced by an edge from v′ to u
without changing any dominators in the graph, as long as every incoming edge
of v is duplicated towards v′ (see Fig. 5).

Disjoint Set Forest Digraph Representation 53

Lemma 11. Let e be an edge in a digraph G = (V,E, ξ, s), ξ(e) = (v, u), and
v′ a vertex in V such that PG(v) = PG(v

′). If there is a path from s to u
avoiding both v and v′, then for every x ∈ V we have PG′(x) = PG(x), where
G′ = G[e/(v′, u)] + {(g−, v′) | g ∈ E−1(v)}.

u u
v′ v′

vv

G G′

PG(v) = PG(v′) PG(v) = PG(v′)

e

s s

e

Fig. 5. Illustration for Lemma 11

Proof. We split the construction of G′ from G into two steps:

1. G1 = G+ (v′, u) + {(x−, v′) | x ∈ E−1(v)}: adding a new edge f between v′

and u and a new edge from every “incoming neighbor” of v towards v′;
2. G2 = G1− e: removing e. The resulting digraph G2 is isomorphic to G′. The

two digraphs differ only by the name of the new edge (e in G′ and f in G2)
from v′ to u.

The dominators are preserved by each of the above transformations.
The preservation of the dominators in Step 1 is implied by Lemma 10 by

adding the edges one by one in any order.
Consider Step 2, which generatesG2 by removing edge e fromG1. By Lemma 8,

it is sufficient to prove that δG2(u) = δG1(u). Because we remove edge e, we have
DG1(u) ⊆ DG2(u). We prove that DG1(u) = DG2(u), by contradiction. Suppose,
z ∈ DG2(u) and z �∈ DG1(u). There must exist a simple path π from s to u
in G1 avoiding z. The path ends by e, if not it is also present in G2 or is not
simple. I.e., π = π′xe, where x ∈ E−1(v). For every such path in G1 there exists
a path π′x′f in G2, where f and x′ are edges added in Step 1. Thus, z ∈ {v, v′}.
However, by supposition, there is path from s to u which avoids v or v′. The
path is present in G, G1, and G2. We conclude that there is no such z. �	

s f

e

v

Fig. 6. Illustration for Lemma 13

54 W. Fraczak and A. Miller

As a corollary, together with Lemma 8, we state that if PG(v) is not a dominator
of any of the out-neighbors of vertex v (as defined in Lemma 11), then vertex v
can be merged into vertex v′ without changing the dominators for all remaining
vertexes.

Corollary 12. Let G = (V,E, ξ, s) be a digraph, v, v′ two different vertexes in
V such that PG(v) = PG(v

′), and U = {u | ∃e ∈ E, ξ(e) = (v, u)} the set of all
out-neighbors of v.

If PG(v) is a dominator for no vertex u from U , i.e., ∀u ∈ U PG(v) �∈ DG(u),
then for every vertex x ∈ V \ {v}, we have δG(x) = δG[v′←v](x).

Elimination of Forward Edges

Lemma 13. Let A be an annotation of G = (V,E, ξ, s) and e, f ∈ EF be two
forward edges sharing the destination, i.e., e+ = f+. If e− �A f− then PG(x) =
PG−f (x) for every x ∈ V .

Proof. (Lemma 13, (Fig. 6) Suppose that DG(v) �= DG−f (v), i.e., there is a
vertex z such that z ∈ DG−f(v) and z �∈ DG(v). Consider a simple path π in G
from s to v which avoids z. It has to end by f , i.e., π = π′f (if not π is present
in G − f or is not simple). For every such path in G − f there is a path in G
which instead of f takes the tree edges from f− to v. Thus, f− � z, i.e., z is not
a dominator of u in G− f either. �	

5 Algorithm “Dominator Tree”

The algorithm finds the dominator tree of a given digraph G = (V,E, ξ, s). It
is based on a series of transformations of the digraph without modifying the
underlying dominator tree. Some transformations will remove edges or modify
edges, using Lemmas 9 and 11, and other transformations will remove vertexes.

The idea of the algorithm is the following. During consecutive transformations
performed by the algorithm the underlying digraph shrinks and new parts of the
dominator tree become available. Upon completion of the algorithm the digraph
is reduced to a single vertex and the entire dominator tree is computed.

A vertex u will be removed from the graph as soon as we find its “parent”
in the dominator tree, or we find one of its “younger siblings”, i.e., a vertex v
such that v < u and PG(u) = PG(v). For finding the parent of a vertex u, we
use Lemma 6(1), and for finding a sibling we use Lemma 6(2) or Lemma 7. All
incoming and outgoing edges of the removed vertex u are redirected to the parent
or the sibling, respectively, in such a way that the dominators of all remaining
vertexes do not change.

5.1 Description of the Algorithm

The algorithm has three parts: firstly, we calculate an initial annotation A = (≤
, F) for the input graph G = (V,E, ξ, s); secondly, we calculate a representation
of the dominator tree; finally, we print out the dominator tree by reporting the
immediate dominator of every vertex of the graph.

Disjoint Set Forest Digraph Representation 55

Part I. Calculate Annotation

Run DFS in order to find an initial annotation A = (≤, F) of the input digraph
G, see Lemma 3. No edge is marked.

Part II. Find the Dominator Tree

Let Gi = (Vi, Ei, ξi, si) be a local variable initialized to value of G.

For every vertex u, in decreasing order of ≤A do:

Step 1. While there is a non marked edge e ∈ Ei, such that ξi(e) = (u, v) and
u < v, for some v ∈ Vi, (i.e., e is a tree or forward edge) do:
1. Mark e.
2. If all incoming edges of v are marked then:

(a) Examine the tree edge f ∈ Ei ∩ F , i.e., ξi(f) = (x, v), for some
x ∈ Vi.

(b) If x = u then:

Output: PG(v) = u Action: Gi ⇐ Gi[u← v] (1)

I.e., merge vertex v into u: change the origin of all outgoing edges of
v to u and remove the self-loops (see Fig. 7, Action 1). Notice that
this operation can add new edges to the list of edges to be considered
in this step.

(c) Else, i.e., if x �= u:

Output: PG(v) = PG(x) Action: Gi ⇐ Gi[x← v] (2)

I.e., merge vertex v into x (see Fig. 7, Action 2).
Step 2. While there is an edge e ∈ Ei such that ξi(e) = (v, u), u ≤ v, and

u �A v, for some vertex v ∈ Vi, do:
1. If e is a self-loop, i.e., u = v, then:

Output: none Action: Gi ⇐ Gi − e (3)

2. Else, we consider the tree edge f ∈ Ei ∩ F such that ξi(f) = (x, v) for
some vertex x ∈ Vi:

Output: PG(v) = PG(u) Action: Gi ⇐ Gi[x← v] (4)

I.e., merge vertex v into x (see Fig. 7, Action 4). Notice that the edge e
is not removed yet; it will be removed once it becomes a self-loop.

Part III. Using OUTPUT of Part II, Find PG(v), for Every v

The value for the immediate dominator of a vertex v was reported in Part II
in one of two forms: 1) directly, i.e., by PG(v) = u; or 2) indirectly, i.e., by
PG(v) = PG(u), with u �A v.

In order to directly output the immediate dominator of every vertex v, re-
examine all OUTPUTs of Part II in reverse order. In this case every statement
PG(v) = PG(u) occurs when the value for PG(u) is already known.

56 W. Fraczak and A. Miller

Action 1 Action 2 Action 4

u

Gi[u← v]

u

x

e

Gi[x← v]

v

x

u

e

f

Gi

u

x

e

Gi[x← v]

v

x

u

e

f

Gi

u

v

e
f

Gi

Fig. 7. Examples of Graph Transformations

5.2 Correctness

Lemma 14. Let G be a digraph, (≤, F) an annotation of G, and Gi one of
the digraph instances generated by Part II of algorithm “Dominator tree”. At
every step the pair Ai = ({(u, v) ∈ Vi × Vi | u ≤ v}, F ∩ Ei) (i.e., the initial
annotation (≤, F) of G restricted to elements of Gi) is an annotation of Gi.

Proof. (Lemma 14) We have to check that all transformations, i.e., Actions 1, 2,
3, and 4, of the digraphGi = (Vi, Ei, ξi, s) are preserving the following properties:

1. F ∩ Ei is a spanning tree of Gi.
Action 3 removes an edge not in F . All other actions, i.e., 1, 2, and 4, remove
a vertex v with its incoming tree edge and redirect all incomming tree edges
of v towards the parent of v in F . Thus edges in F ∩Ei constitute a spanning
tree of Gi after every transformation.

2. Let e ∈ Ei such that ξi(e) = (x, y). If x ≤ y then x � y, i.e., there is a path
from x to y in Gi using edges from F ∩ Ei.
Action 3 removes an edge not in F thus does not change any path using
edges from F ∩ Ei.
Actions 1, 2, and 4, remove a vertex v with its incoming tree edge f and
reattach all outgoing edges of v to f−. Let π be a path using edges from F∩Ei

from vertex x to vertex y (both different from v) before the transformation.
The sequence of edges of π restricted to edges from F ∩ Ei \ {f} is also a
path in the new graph from x to y.

3. All actions preserve both � and ≤ relations on remaining vertexes, thus the
initial invariant � ⊆ ≤ is preserved. �	

Lemma 15. Let A = (≤, F) be the initial annotation (as calculated in Part
I) of the input graph G = (V,E, ξ, s). Let u ∈ V be the current vertex and
Gi = (Vi, Ei, ξi, s) the current digraph of the main For-loop of Part II.

1. For every v ∈ Vi, PG(v) ≤ u. Moreover, once the first While-loop is termi-
nated, i.e., all outgoing forward edges of u are marked, we have PG(v) < u.

2. For every e ∈ Ei, if e
+ � e− then e+ ≤ u.

I.e., there is no loop in the processed part of Gi.
3. Every OUTPUT reports correctly PGi(v), where Gi is the current instance of

the graph (before action).

Disjoint Set Forest Digraph Representation 57

4. No ACTION changes the dominators of the vertexes remaining in Gi.

Proof. (Lemma 15) For the initial graph Gi = G, the two first statements are
trivially true because we start the For-loop with the largest u, i.e., for all x ∈ V ,
x ≤ u.

Every transformation preserves the validity of statements 1–4:

Actions 1 and 2:
An edge e is marked only if u = e− ≤ e+, i.e., e is a tree edge or a forward
edge. Moreover all incoming edges to v = e+ have been marked when visiting
vertexes u′, with u ≤ u′ < v. Every such edge, except the incoming tree
edge f of v and the forward edge e, can be removed (Lemma 13) without
changing the dominator tree of the digraph. Thus, we can assume that there
are exactly two incoming edges to v, the tree edge f and the forward edge
e. Lemma 6 applies:
1. If f− = u then PGi(v) = u, by Lemma 9,
2. If f− �= u then PGi(v) = PGi(f

−), by Corollary 12.
Let Gi be the graph just after terminating While-loop 1, i.e., when all
outgoing forward edges of u are marked. We prove that for every vertex v in
Gi we have PGi(v) ≤ u (knowing already that PGi(v) ≤ u). By contradiction,
assume that the set of vertexes B = {v ∈ Vi | u ∈ DGi(v)}\{u} is not empty.
For every x ∈ B we have: u ≺ x and there is at least one unmarked edge g
incoming to x. Since g− has u as a dominator (otherwise u is not a dominator
of g+), we conclude that B contains a loop, which contradicts invariant 2.

Action 3:
By Lemma 8, selfloops can be removed without changing the dominators.

Action 4:
Let e be the back edge ξi(e) = (u, v), with v < u, v ≺ u. By Lemma 7,
PGi(u) = PGi(v). By Corollary 12, Action 4 does not change the dominators
in Gi.

After having processed a vertex u, i.e., terminating While-loop 2, the properties
1 and 2 are valid for the immediate predecessor of u with respect to ≤. �	

Theorem 16. Algorithm “Dominator tree” correctly computes the immediate
dominator of any vertex of the input graph.

Proof. By Lemma 3, the DFS of Part I finds an initial annotation of the input
graph. Lemmas 14 and 15 imply the theorem. When the sink vertex is processed,
i.e., Part II is terminated, the graph Gi becomes a single sink vertex, which
means that all vertexes have been removed and their immediate dominator was
reported directly or undirectly. In Part III, the algorithm prints the direct value
of the immediate dominator of every vertex (except sink) of the input graph. �	

6 Efficient Implementation of “Dominator Tree”

An efficient implementation of the algorithm can be done by using the data
structure called disjoint set forest [5,6] which efficiently implements disjoint set
union.

58 W. Fraczak and A. Miller

The disjoint set union problem consists in carrying out a sequence of oper-
ations of find(x) and union(A,B) starting with a collection of disjoint sets;
find(x) determines the set containing element x, and union(A,B) produces the
union of set A and B, destroying A and B.

Connections in a graphG = (V,E, ξ, s) can be represented by two partitions of

edges: Src
def
= E/{(e,f)|e−=f−} and Dst

def
= E/{(e,f)|e+=f+}, i.e., two edge names

are in the same equivalence class of Src or of Dst, if they have the same source
or the same destination, respectively. For example, an equivalence class A in Src

corresponds to a vertex u which is the source of all edges from A. Thus, a vertex
u defines an equivalence class {e ∈ E | e− = u} in Src, denoted by Src[u], and
an equivalence class {e ∈ E | e+ = u} in Dst, denoted by Dst[u].

In such a representation, an action G ⇐ G[u ← v] translates into Dst[u] ⇐
union(Dst[u], Dst[v]) and Src[u]⇐ union(Src[u], Src[v]).

In order to make the selection of an edge in While-loop of Step 1 and While-
loop Step 2, in constant time, we attach to every vertex u two lists of edges,
out list[u] and in list[u]. List in list is initialized as the list of all incom-
ing edges of u. List out list[u] is the list of outgoing “forward” edges. List
out list[u] is initialized as empty; a non-back edge e with ξ(e) = (u, v) is added
to out list[u] when vertex v is visited. Thus, when u is visited, out list[u]
contains all outgoing edges of u whose destination has been already visited, i.e.,
e ∈ out list[u] iff ξe = (u, v) and u < v.

The While-loop of the Step 2, Part II, of the algorithm may be rewritten into
a For-loop over the incoming back edges. Thus, the destination end of every back
edge is considered once.

6.1 Complexity

Selecting an edge satisfying the condition of the loop “while” in Step 1 consists
in taking an element from list out list[u] and hence is done in constant time.
Finding the source of the selected edge uses one find operation. Marking an edge
in Step 1.(a) and verifying condition 1.(b) is done in constant time. Merging
a vertex into another one uses two union operations and a concatenation of
out lists. In Step 2 we consider all incoming edges of u from list in list[u].
We find e− using one find operation per edge. If e is a back edge, removing all
vertexes between e− and u uses two union operation and one find operation
per removed vertex. Otherwise, if e is not a back edge, we add e to out list[e−]
which is done in constant time.

In summary, the only non constant time operations union and find, which
are prefomed O(m) times (where m is number of edges of the initial digraph).
In view of [6], this takes O(mα(m,m)) time, where α is the inverse Ackermann
function.

Acknowledgments. Jurek Czyzowicz and Andrzej Pelc contributed to this
work during its initial stage.

Disjoint Set Forest Digraph Representation 59

References

1. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. The MIT
Press and McGraw-Hill Book Company (1989)

2. Georgiadis, L., Tarjan, R.E.: Finding dominators revisited: extended abstract. In:
Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2004, pp. 869–878. SIAM (2004)

3. Lowry, E.S., Medlock, C.W.: Object code optimization. Commun. ACM 12, 13–22
(1969), http://doi.acm.org/10.1145/362835.362838

4. Prosser, R.T.: Applications of boolean matrices to the analysis of flow diagrams.
Papers Presented at the Eastern Joint IRE-AIEE-ACM Computer Conference, IRE-
AIEE-ACM 1959 (Eastern), December 1-3, pp. 133–138. ACM Press, New York
(1959), http://doi.acm.org/10.1145/1460299.1460314

5. Tarjan, R.: Efficiency of a good but not linear set union algorithm. Journal of the
Association for Computing Machinery 22(2), 215–225 (1975)

6. Tarjan, R., Leeuwen, J.: Worst-case analysis of set union algorithms. Journal of the
Association for Computing Machinery 31(2), 245–281 (1984)

http://doi.acm.org/10.1145/362835.362838
http://doi.acm.org/10.1145/1460299.1460314

On Some Properties of Doughnut Graphs

(Extended Abstract)

Md. Rezaul Karim1, Md. Jawaherul Alam2, and Md. Saidur Rahman2

1 Dept. of Computer Science and Engineering, University of Dhaka,
Dhaka-1000, Bangladesh
rkarim@univdhaka.edu

2 Dept. of Computer Science and Engineering, Bangladesh University of Engineering
and Technology (BUET), Dhaka-1000, Bangladesh

jawaherul@gmail.com, saidurrahman@cse.buet.ac.bd

Abstract. The class doughnut graphs is a subclass of 5-connected pla-
nar graphs. It is known that a doughnut graph admits a straight-line
grid drawing with linear area, the outerplanarity of a doughnut graph is
3, and a doughnut graph is k-partitionable. In this paper we show that a
doughnut graph exhibits a recursive structure. We also give an efficient
algorithm for finding a shortest path between any pair of vertices in a
doughnut graph. We also propose a nice application of a doughnut graph
based on its properties.

1 Introduction

A five-connected planar graph G is called a doughnut graph if G has an embed-
ding Γ such that (a) Γ has two vertex-disjoint faces each of which has exactly
p vertices, p > 3, and all the other faces of Γ has exactly three vertices; and
(b) G has the minimum number of vertices satisfying condition (a). Figure 1(a)
illustrates a doughnut graph where F1 and F2 are two vertex disjoint faces. Fig-
ure 1(b) illustrates a doughnut like embedding of G where F1 is embedded as
the outer face and F2 is embedded as the inner face. A doughnut graph and their
spanning subgraphs admit straight-line grid drawings with linear area [2,3]. The
outerplanarity of this class is 3 [3], and it is k-partitionable [5].

2

(a)

g

F1
F

n

e

a

d

j
i

p
k m

l

c

b f

o
h

b

F

F2

j

f
n

p

k

1

d

h

l

g

om cia e

(b)

Fig. 1. (a) A doughnut graph G, and (b) a doughnut embedding of G

S. Arumugam and B. Smyth (Eds.): IWOCA 2012, LNCS 7643, pp. 60–64, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

On Some Properties of Doughnut Graphs 61

xp

z2p
py

z1

xp

z2p

z1

py

y1

x1

xi+1

zp+1

zp

xi

yi

yi+1

zp

xix1

xi+1

yiy1

zp+1

yi+1

zp+1

yi+1

z2p

x1
xi

xi+1

py

z1 zp

yi

(a) (b)

Left

Top

Right

Bottom

xp
C1

C

y1
C

2

3

Fig. 2. (a) A straight-line drawing of a p-doughnut graph G where p = 4, and (b)
illustration for four partition of edges of G

In this paper we present our results on recursive structure, shortest paths and
topological properties of a doughnut graph.

2 Recursive Structure of Doughnut Graphs

A class of graphs has a recursive structure if every instance of it can be created by
connecting the smaller instances of the same class of graphs. We now show that
the doughnut graphs have a recursive structure. Let G be a p-doughnut graph. A
doughnut graph G is 5-regular and has exactly 4p vertices. Furthermore, G has
three vertex-disjoint cycles C1, C2 and C3 with p, 2p and p vertices respectively,
such that V (C1) ∪ V (C2) ∪ V (C3)=V (G). Let z1, z2, ..., z2p be the vertices of
C2 in counter clockwise order such that z1 has exactly one neighbor on C1. Let
x1 be the neighbor of z1 on C1, and let x1, x2, ..., xp be the vertices of C1 in
the counter clockwise order. Let y1, y2, ..., yp be the vertices on C3 in counter
clockwise order such that y1 and yp are the right neighbor and the left neighbor
of z1, respectively. Let D be a straight-line grid drawing of a p-doughnut graph
G with linear area [2], as illustrated in Figure 2(a). We partition the edges of
D as follows. The left partition consists of the edges - (i) (x1, xp), (ii) (z1, z2p),
(iii) (y1, yp), (iv)(x1, z2p) and (v) (z1, yp); and the right partition consists of the
edges - (i) (zp, zp+1), (ii) the edge between the two neighbors of zp on C1 if
zp has two neighbors on C1 otherwise the edge between the two neighbors of
zp+1 on C1, (iii) the edge between the two neighbors of zp on C3 if zp has two
neighbors on C3 otherwise the edge between the two neighbors of zp+1 on C3,
(iv) the edge between zp and its right neighbor on C1 if zp has two neighbors
on C1 otherwise the edge between zp+1 and its left neighbor on C1, and (v) the
edge between zp and its right neighbor on C3 if zp has two neighbors on C3

otherwise the edge between zp+1 and its left neighbor on C3. The graph G is
divided into two connected components if we delete the edges of the left and the
right partitions from G. We call the connected component that contains vertex
xp the top partition of edges and we call the connected component that contains
vertex x1 the bottom partition of edges.

Figure 2(b) illustrates four partitions of edges (indicated by dotted lines) of a
p-doughnut graph G in Figure 2(a) where p = 4. We now construct a (p1 + p2)-

62 M.R. Karim, M.J. Alam, and M.S. Rahman

doughnut graph G from a p1-doughnut graph G1 and a p2-doughnut graph G2.
We first construct two graphsG′

1 andG′
2 fromG1 andG2, respectively, as follows.

We partition the edges of G1 into left, right, top and bottom partitions. Then
we identify the vertex xi+1 of the top partition to the vertex yi of the right
partition, the vertex zp1+1 of the top partition to the vertex zp1 of the right
partition, and the vertex yi+1 of the top partition to the vertex xi of the right
partition. Thus we construct G′

1 from G1. Figure 3(c) illustrates G′
1 which is

constructed from G1 in Figure 3(a) where p1 = 4. In case of construction of G′
2,

after partitioning (left, right, top, bottom) the edges of G2 we identify the vertex
y′p2

of left partition to the vertex x′
1 of the bottom partition, vertex z′2p2

of the
left partition to the vertex z′1 of the bottom partition, and the vertex x′

p2
of left

partition to the vertex y′1. Figure 3(f) illustrates G′
2 which is constructed from

G2 in Figure 3(d) where p2 = 5. We finally construct a (p1+p2)-doughnut graph

xp1

xp1

x1 x1 xi xixi

xi+1 xi+1 xi+1

z1 z1zp1
zp1 zp1

p1+1z
p1+1z p1+1zz2p1 z2p1

yp1 yp1
y1 y1yi yi yi

yi+1 yi+1
yi+1

x1
xi

xi

xp1 xi+1

xi+1

z1

z2p1

yp1
y1 yi

yi+1

yi+1
p1+1z

zp1

zp1

p1+1z
yi

(c)

x1
xi

xi

xp1 xi+1

xi+1

z1

z2p1

yp1
y1 yi

yi+1

yi+1
p1+1z

zp1

zp1

p1+1z
yi

xp2
’ xp2

’ xp2
’

z2p2
’

z2p2
’

z2p2
’

x1’ x1’
x1’

z1’ z1’
z1’

zp2
’

z +1p2
’

xi’

xi+1’

yp2
’ yp2

’
yp2
’

y1’

y1’
y1’

yi’
yi+1’

yi’
yi+1’

z +1p2
’

zp2
’

xi+1’

xi’

xi+1’

yi’
yi+1’

y1’

z +1p2
’

zp2
’

xi’x1’

yp2
’

z1’
z2p2
’

z2p2
’

yp2
’

xp2
’

xp2
’

y1’

z1’

x1’

xi+1’

yi’
yi+1’

y1’

z +1p2
’

zp2
’

xi’x1’

yp2
’

z1’
z2p2
’

z2p2
’

yp2
’

xp2
’

xp2
’

y1’

z1’

x1’

z2p

x1

z1

xi+1

xi

yi+1

yi

zp

zp+1

y1

C1

(b)(a)

(g)

(e) (f)(d)

(h)

xp

py C

C

3

2

Fig. 3. Illustration for construction of a (p1+p2)-doughnut graph G from a p1-doughnut
graph G1 and a p2-doughnut graph G2 where p1 = 4 and p2 = 5

On Some Properties of Doughnut Graphs 63

G as follows. We identify the vertices yi+1, zp1+1, xi+1 of G′
1 to the vertices of

x′
p2
, z′2p2

, y′p2
of G′

2, respectively; and identify the vertices of yi, zp1 , xi of G
′
1 to

the vertices of x′
1, z

′
1, y

′
1 of G′

2, respectively. Clearly the resulting graph G is a
(p1 + p2)-doughnut graph as illustrated in Fig. 3(h).

We thus have the following theorem.

Theorem 1. Let G1 be a p1-doughnut graph and let G2 be a p2-doughnut graph.
Then one can construct a (p1 + p2)-doughnut graph G from G1 and G2.

3 Finding a Shortest Path

A shortest path between any pair of vertices of a doughnut graph can be found
efficiently as stated in the following theorem.

Theorem 2. Let G be a p-doughnut graph. Then a shortest path between any
pair of vertices u and v of G can be found in O(ls) time, where ls is the length
of the shortest path between u and v.

We have a constructive proof of Theorem 2. The detail is omitted in this extended
abstract.

4 Topological Properties of Doughnut Graphs

Let G be a p-doughnut graph. The number of vertices of G is 4p where p(> 3)
is an integer. A p-doughnut graph is maximal fault tolerant since it is 5-regular.
Every p-doughnut graph G has a doughnut embedding Γ where vertices of G
lie on three vertex disjoint cycles C1, C2 and C3 such that C1 is the outer cycle
containing p vertices, C2 is the middle cycle containing 2p vertices and C3 is
the inner cycle containing p vertices. Then one can easily see that the diameter
of a p-doughnut graph is
p/2�+ 2. Moreover, a doughnut graph admits a ring
embedding since a doughnut graph is Hamilton-connected [5].

Table 1. Topological comparison of doughnut graphs with various Cayley graphs

Topology number diameter degree connectivity Fault Hamiltonian
of nodes tolerance

n-cycle n �n/2	 2 2 maximal yes

Cube-connected d2d �5d/2	 − 2 3 3 maximal yes
-cycle [6]

Wrapped around d2d �3d/2	 4 4 maximal yes
butterfly
graph [4]

d-Dimensional 2d d d d maximal yes
hypercube

[1]

p-doughnut 4p �p/2	 + 2 5 5 maximal yes
graphs [2]

64 M.R. Karim, M.J. Alam, and M.S. Rahman

5 Conclusion

We have shown that doughnut graphs exhibit recursive structure. We have pro-
posed an efficient algorithm to find shortest path between any pair of vertices
which exploit the structure of the graph. We have also found that doughnut
graph has smaller diameter, higher degree and connectivity, maximal fault toler-
ance and ring embedding. There are several parameters like connectivity, degree,
diameter, symmetry and fault tolerance which are considered for building inter-
connection networks [7]. Table 1 presents the topological comparison of various
Cayley graphs, which are widely used as interconnection networks, with dough-
nut graphs. The table shows that topological properties of doughnut graphs are
very much similar to interconnection networks. We may have an efficient routing
scheme using shortest path finding algorithm.Thus doughnut graphs may find
nice applications as interconnection networks.

Acknowledgement. This work is supported by Bangladesh Academy of
Sciences.

References

1. Bhuyan, L., Agarwal, D.P.: Generalized hypercube and hyperbus structure for a
computer network. IEEE Trans. Comput. 33, 555–566 (1984)

2. Karim, M.R., Rahman, M.S.: Straight-line grid drawings of planar graphs with linear
area. In: Proceedings of Asia-Pacific Symposium on Visualisation 2007, pp. 109–112.
IEEE (2007)

3. Karim, M.R., Rahman, M.S.: On a class of planar graphs with straight-line grid
drawings on linear area. Journal of Graph Algorithms and Applications 13(2),
153–177 (2009)

4. Leighton, F.T.: Introduction to parallel algorithms and architectures: Arrays-trees-
hypercubes. Morgan Kaufmann Publishers (1992)

5. Nahiduzaman, K.M., Karim, M.R., Rahman, M.S.: A linear-time algorithm for k-
partitioning doughnut graphs. INFOCOMP 8(1), 8–13 (2009)

6. Preparata, F.P., Vuillemin, J.: The cube-connected-cycles: A versatile network for
parallel computation. Communications of the ACM 24, 300–309 (1981)

7. Xu, J. (ed.): Topological Structure and Analysis of Interconnection Networks.
Kluwer Academic Publishers (2001)

On the Steiner Radial Number of Graphs

K.M. Kathiresan1, S. Arockiaraj2, R. Gurusamy2, and K. Amutha3

1 Center for Research and Post Graduate Studies in Mathematics
Ayya Nadar Janaki Ammal College
Sivakasi - 626 124,Tamil Nadu, India

2 Department of Mathematics
Mepco Schlenk Engineering College

Mepco Engineering College (PO)-626005
Sivakasi, Tamil Nadu, India

3 Department of Mathematics
Sri Parasakthi College, Courtallam, Tamil Nadu, India

{kathir2esan,sarockiaraj 77}@yahoo.com,
{sahama2010,amuthakaruppasamy}@gmail.com

Abstract. The Steiner n-radial graph of a graph G on p vertices, de-
noted by SRn(G), has the vertex set as in G and n(2 ≤ n ≤ p) vertices
are mutually adjacent in SRn(G) if and only if they are n-radial in G.
While G is disconnected, any n vertices are mutually adjacent in SRn(G)
if not all of them are in the same component. When n = 2, SRn(G) co-
incides with the radial graph R(G). For a pair of graphs G and H on p
vertices, the least positive integer n such that SRn(G) ∼= H, is called the
Steiner completion number of G over H. WhenH = Kp, the Steiner com-
pletion number of G over H is called the Steiner radial number of G. In
this paper, we determine 3-radial graph of some classes of graphs, Steiner
radial number for some standard graphs and the Steiner radial number
for any tree. For any pair of positive integers n and p with 2 ≤ n ≤ p, we
prove the existence of a graph on p vertices whose Steiner radial number
is n.

Keywords: n-radius, n-diameter, Steiner n-radial graph, Steiner com-
pletion number, Steiner radial number.

1 Introduction

Throughout this paper, we consider finite undirected graphs without multiple
edges and loops. Let G be a graph on p vertices and S a set of vertices of G. In
[2], the Steiner distance of S in G, denoted by dG(S), is defined as the minimum
number of edges in a connected subgraph ofG that contains S. Such a subgraph is
necessarily a tree and is called a Steiner tree for S inG. The Steiner n-eccentricity
en(v) of a vertex v in a graph G is defined as en(v) = max{dG(S) : S ⊆ V (G)
with v ∈ S and |S| = n}. The n-radius radn(G) of G is defined as the smallest
Steiner n-eccentricity among the vertices of G, and the n-diameter diamn(G)
of G is the largest Steiner n-eccentricity. The concept of Steiner distance was
further developed in [3,6,5].

S. Arumugam and B. Smyth (Eds.): IWOCA 2012, LNCS 7643, pp. 65–72, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

66 K.M. Kathiresan et al.

In [4], KM. Kathiresan and G. Marimuthu introduced the concept of radial
graphs. Two vertices of a graph G are said to be radial to each other if the
distance between them is equal to the radius of the graph. The radial graph of
a graph G, denoted by R(G), has the vertex set as in G and two vertices are
adjacent in R(G) if and only if they are radial in G. If G is disconnected, then
two vertices are adjacent in R(G) if they belong to different components of G.

Any n vertices of a graph G are said to be n-radial to each other if the Steiner
distance between them is equal to the n-radius of the graph G. The Steiner n-
radial graph of a graph G, denoted by SRn(G), has the vertex set as in G and
n(2 ≤ n ≤ p) vertices are mutually adjacent in SRn(G) if and only if they are n-
radial in G. If G is disconnected, any n vertices are mutually adjacent in SRn(G)
if not all of them are in the same component. For the edge set of SRn(G), draw
Kn corresponding to each set of n-radial vertices. By taking n = 2, SRn(G)
coincides with R(G). Consider the graph G given in Figure 1.

�
�

� ��

�

�

�� �

� �

��

�

v1 v3

v2

v4

v6 v5G
v4

v5 v3

v2v6

v1

SR3(G)

Fig. 1.

If we let n = 3, we get that rad3(G) = 3 and that S1 = {v1, v2, v5},
S2 = {v1, v2, v6}, S3 = {v1, v3, v4}, S4 = {v1, v4, v5}, S5 = {v1, v4, v6},
S6 = {v2, v3, v5}, S7 = {v2, v3, v6}, S8 = {v2, v5, v6}, S9 = {v3, v4, v5} and
S10 = {v3, v4, v6} are the sets of 3-radial vertices of G. Hence the Steiner 3-
radial graph of G is as shown in Figure 1. A graph G is called a Steiner 3-radial
graph if SR3(H) ∼= G for some graph H. If G does not contain K3 as a subgraph,
then G is not a Steiner 3-radial graph. The converse of this statement is not true.
For example, the graph G given in Figure 2 is not a Steiner 3-radial graph.

�

�

� �

�

v2 v1 v5

v3 v4

G :

Fig. 2.

On the Steiner Radial Number of Graphs 67

Let G and H be two graphs on p vertices. If there exists a positive integer n
such that SRn(G) ∼= H, then H is called a Steiner completion of G. The positive
integer n is said to be Steiner completion of G over H if n is the least positive
integer such that SRn(G) ∼= H. For example, the Steiner completion number of
bistar Bp1,p2 overKp1+p2+2−e is p1+p2. If there is no n such that SRn(G) ∼= H,
then the Steiner completion number of G over H is ∞. The Steiner completion
number of G over H is not necessarily equal to the Steiner completion number
of H over G. For the graphs G and H given in Figure 3, the Steiner completion
number of G over H is 3 but the Steiner completion number of H over G is ∞.

�

��

�

�

� �

�
G H

Fig. 3.

When H = Kp, the Steiner completion number of G over H is called the Steiner
radial number of G. That is, the Steiner radial number rS(G) of a graph G is
the least positive integer n such that the Steiner n-radial of G is complete. In
this paper, we determine the Steiner radial number for some classes of graphs
and obtain the Steiner radial number for any tree. Also we prove that for every
pair of integers n and p with 2 ≤ n ≤ p, there exists a graph on p vertices whose
Steiner radial number is n. For graph theoretic terminology we follow [1].

2 Steiner 3-Radial Graphs of Some Classes of Graphs

Proposition 1. Let Pp be any path on p ≥ 3 vertices. Then SR3(Pp) = K2 +
Kp−2 where Kp−2 is the complete graph on p− 2 internal vertices of Pp.

Proof. Let Pp : v1v2 · · · vp−1vp by any path on p ≥ 3 vertices. Then the Steiner
3-eccentricity of each vertex of Pp is p− 1 and hence rad3(Pp) = p− 1. Now for
every vertex vi, 2 ≤ i ≤ p− 1, we have d({vi, v1, vp}) = p− 1. Hence {vi, v1, vp}
where 2 ≤ i ≤ p− 1 forms a K3. So assume p ≥ 4. Also for every pair of vertices
vi and vj , i �= j and 2 ≤ i, j ≤ p − 1, there exists no vk, 1 ≤ k ≤ p, k �= i and
k �= j such that d({vi, vj , vk}) = p − 1 and hence there is no edge between vi
and vj , i �= j and 2 ≤ i, j ≤ p− 1. Therefore SR3(Pp) = K2 +Kp−2 where Kp−2

is the complete graph on p− 2 internal vertices of Pp.

Proposition 2. Let Cp be any cycle of length p ≥ 5. Then

SR3(Cp) =

⎧⎨⎩
Cp(k) if p = 3k
Cp(k, k + 1) if p = 3k + 2
Cp(k − 1, k, k + 1) if p = 3k + 1.

68 K.M. Kathiresan et al.

Where the circulant graph Cp(n1, n2, . . . , nl) is obtained from a cycle on p ver-
tices by joining each vertex vi, 1 ≤ i ≤ p with the vertices vi−nj and vi+nj , the
subscripts being taken modulo p, for 1 ≤ j ≤ l. When p = 3, SR3(Cp) = K3 and
when p = 4, SR3(Cp) = K4.

Proof. Clearly SR3(Cp) = K3 or K4 when p = 3, 4 respectively.
Let Cp : v0, v1, v2, . . . , vp−1, v0 be any cycle of length p ≥ 5.

Case 1. p = 3k.
In this case vi−k and vi+k are Steiner 3-eccentric vertices of vi where the

subscripts are taken modulo p. Also Steiner 3-eccentricity of a vertex vi is 2k
for every i and hence rad3(Cp) = 2k. Thus vi−k and vi+k are the only vertices
which are at a 3-radius distance with vi. So that {vi, vi−k, vi+k} forms a K3 in
the corresponding Steiner 3-radial graph. Hence vi is adjacent to vi−k and vi+k

only. This is true for every i. Therefore we get SR3(Cp) = Cp(k).

Case 2. p = 3k + 2.
In this case we have three sets of Steiner 3-eccentric vertices of vi namely S1 =

{vi+(k+1), vi−k}, S2 = {vi+k, vi−(k+1)} and S3 = {vi+(k+1), vi−(k+1)}, where the
subscripts are taken modulo p. Also their distance with vi is 2k+1. Thus vi+(k+1)

and vi−k are vertices which are at a 3-radius distance with vi. So S1 forms a K3

in the corresponding SR3(G). Similarly each set of Steiner 3-eccentric vertices
forms a K3. Hence vi is adjacent to vi+k, vi−k, vi+(k+1) and vi−(k+1). Therefore
SR3(Cp) = Cp(k, k + 1).

Case 3. p = 3k + 1.
In this case we have six sets of Steiner 3-eccentric vertices of vi namely,

{vi+(k+1), vi−k}, {vi+(k+1), vi−(k+1)}, {vi+(k+1), vi−(k−1)}, {vi+k, vi−(k+1)}, {vi+k,
vi−k} and {vi+(k−1), vi−(k+1)}, where the subscripts are taken modulo p. Also
their distance with vi is 2k. If we proceed as in the proof of Case 2, we get
vi is adjacent to vi+k, vi−k, vi+(k+1), vi−(k+1), vi+(k−1) and vi−(k−1) and hence
SR3(Cp) = Cp(k − 1, k, k + 1).

Proposition 3. Let G be any cycle Cp of length p ≥ 5. Then SR3(G) = Cp(1, 2)
where G is the complement of G. When p = 3, 4, SR3(G) = K3,K4 respectively.

Proof. If G ∼= C3, C4 then rad3(G) =∞. Hence we get SR3(G) = K3,K4 respec-
tively. Let G be any cycle Cp of length p ≥ 5 having the vertices v0, v1, · · · , vp−1.
Then any vertex vi in G is adjacent to all the vertices of G except vi−1 and vi+1.
Here {vi−1, vi+1}, {vi+1, vi+2} and {vi−1, vi−2} are the sets of Steiner 3-eccentric
vertices of vi. Also their distance with vi is 3. That is in G d({vi, vi−1, vi+1}) =
d({vi, vi+1, vi+2}) = d({vi, vi−1, vi−2}) = 3. So e3(vi) = 3 for all i and hence
rad3(G) = 3. Thus {vi, vi−1, vi+1}, {vi, vi+1, vi+2} and {vi, vi−1, vi−2} each forms
a K3 in the corresponding SR3(G). Similarly, each set of Steiner 3-eccentric ver-
tices forms a K3. Therefore vi is adjacent to vi−1, vi+1, vi+2 and vi−2. Hence we
get SR3(G) = Cp(1, 2) for p ≥ 5.

On the Steiner Radial Number of Graphs 69

Proposition 4. For p1 ≤ p2,

SR3(Kp1,p2) =

⎧⎨⎩
K1+p2 if p1 = 1
K2+p2 if p1 = 2
Kp1 ∪Kp2 if p1 ≥ 3.

Proof. Let X = {x1, x2, . . . , xp1} and Y = {y1, y2, . . . , yp2} be the bipartition of
Kp1,p2 .

Case 1. p1 = 1.
Then d({x1, yi, yj}) = 2. We have e3(x1) = 2 and rad3(G) = 2. So in the

corresponding Steiner 3-radial graph, {x1, yi, yj} forms a K3. Since yi and yj are
arbitrary vertices of G, we have SR3(K1,p2) = K1+p2 .

Case 2. p1 = 2.
Here |X | = 2 and |Y | ≥ 2. Then e3(x1) = e3(x2) = 2 and hence

rad3(Kp1,p2) = 2. Thus for every pair of vertices vi, vj ∈ V (Kp1,p2), there exists
a vertex vk such that d({vi, vj , vk}) = 2. Therefore any two vertices are adjacent
in SR3(Kp1,p2). Hence we get SR3(Kp1,p2) = K2+p2 .

Case 3. p1 ≥ 3.
Here |X | ≥ 3 and |Y | ≥ 3. Let xi be any vertex of X. Then e3(xi) = 3 and

every two vertices in X different from xi are the Steiner 3-eccentric vertices of
xi. Similarly for yi ∈ Y, e3(yi) = 3 and every two vertices in Y different from yi
are the Steiner 3-eccentric vertices of yi. Therefore rad3(Kp1,p2) = 3 and hence
SR3(Kp1,p2) = Kp1 ∪Kp2 .

Theorem 5. If G is a disconnected graph of order p ≥ 3, then SR3(G) ∼= Kp.

Proof. LetG be a disconnected graph with two components sayG1 and G2. Then
every vertex in G1 is Steiner 3-eccentric with a vertex in G2. Thus e3(vi) =∞ for
all i and hence rad3(G) = ∞. Therefore for every two vertices vi and vj , there
exists a vertex vk in G such that d({vi, vj , vk}) =∞. Hence we get SR3(G) = Kp.

Theorem 6. For any integer n ≥ 2, there exists a graph G such that
rad3(G) = n.

Proof. Let n ≥ 2 be any integer. Construct a graph G by adding the vertices
u, v, x and y with a path Pn−1 : v1v2 · · · vn−1 and join u, v to v1 and x, y to vn−1

as shown below.

�

�

�����

�

�

u

v

v1 v2 v3 vn−2 vn−1

x

y

Fig. 4.

70 K.M. Kathiresan et al.

Then e3(vi) = n for every vi ∈ V (Pn−1). Also e3(u) = n+ 1. Similarly e3(v) =
e3(x) = e3(y) = n+ 1. Then rad3(G) = min{e3(vi) : vi ∈ V (Pn−1), e3(u), e3(v),
e3(x), e3(y)} = n.

Problem 7. Characterize all Steiner 3-radial graphs.

3 Steiner Radial Number

Observation 8 It follows from the definition that for any connected graph G
on p vertices, 2 ≤ rS(G) ≤ p.

Proposition 9. If rS(G) = n, then Kp is the only Steiner m-radial graph for
G for m ≥ n.

Proof. For a graph G, let rS(G) = n and let r be the n-radius of G. Then
there exists a vertex v in V (G) such that en(v) = r. Let N be a n-element
set containing v with Steiner distance r. Consider the set N ∪ {x}, where x ∈
V (G)−N. Since Steiner n-eccentricity of any n-element set containing v is atmost
r, the set N ∪ {x} is of Steiner distance either r or r+ 1 for any x ∈ V (G)−N.
Otherwise a n-element subset of N ∪{x} with v is of Steiner distance more than
r.

By the same argument, en(u) ≤ en+1(u) for all u ∈ V (G). The result follows
when (n+1)-radius of G is r. If (n+1)-radius of G is r+1, then the vertex v in
V (G) has the minimum Steiner (n+ 1)-eccentricity r + 1. Let vi and vj be any
two vertices of G. Since vi and vj are adjacent in Steiner n-radial of G, there
exists an n-element set S with Steiner distance r. If r + 1 = p− 1, then any set
of n + 1 elements containing vi and vj has the Steiner distance r + 1. Suppose
r+1 < p− 1. If v does not belong to the Steiner tree containing S, then S ∪{v}
has Steiner distance r + 1. If v ∈ S, then also we adjoint a vertex w in S which
does not belong to the Steiner tree containing S such that the Steiner distance
of S ∪ {w} is r + 1. Hence any two vertices vi and vj are adjacent in Steiner
(n+ 1)-radial of G. Hence the result follows.

Theorem 10. rS(G) = 2 if and only if G is either complete or totally discon-
nected.

Proof. When G is complete (respectively a totally disconnected graph), 2-radius
is 1 (respectively∞) and any pair of vertices has Steiner distance 1 (respectively
∞). Hence rS(G) = 2.

Suppose rS(G) = 2. If G is not complete, then it has a pair of non-adjacent
vertices u and v with d({u, v}) ≥ 2. If the 2-radius of G is 1, u and v are not
adjacent in the Steiner 2-radial of G, a contradiction to rS(G) = 2. If the 2-radius
of G is ≥ 2, then we have d({x, y}) = 1 for all x, y ∈ V (G) where (x, y) ∈ E(G),
hence x and y are not adjacent in the Steiner 2-radial graph of G, so the edge-set
must be empty.

On the Steiner Radial Number of Graphs 71

Proposition 11. For any star graph with p vertices,

rS(K1,p−1) =

{
2 for p = 2
3 for p ≥ 3.

Proof. The case p = 2 follows directly from Theorem 10 as K1,1 = K2. When
p = 3, 2-radius of K1,2 is 1 and Steiner 2-radial of K1,2 is not complete. Also
3-radius of K1,2 is 2 and Steiner 3-radial of K1,2 is K3. For p ≥ 4, let v1 be
the vertex of degree p − 1 and v2, v3, . . . , vp be the pendant vertices of K1,p−1.
By Theorem 10, rS(K1,p−1) can not be 2. The 3-radius of K1,p−1 is 2, since
e3(v1) = 2 and e3(vi) = 3, 2 ≤ i ≤ p. In Steiner 3-radial of G, v1 is adjacent
to each vertex vi, 2 ≤ i ≤ p, since the set {v1, vi, vj(j �= 1, i)} has the Steiner
distance 2. Also vi is adjacent to vj for 2 ≤ i, j ≤ p and i �= j, since the set
{v1, vi, vj} has the Steiner distance 2.

Proposition 12. For any complete bipartite graph Kp1,p2 with p1 ≤ p2 and
p1 �= 1, rS(Kp1,p2) = p1 + 1.

Proof. Let {u1, u2, . . . , up1} and {v1, v2, . . . , vp2} be the two partitions of Kp1,p2 .
When n ≤ p1, en(ui) = n, 1 ≤ i ≤ p1 and en(vi) = n, 1 ≤ i ≤ p2. Hence
radn(Kp1,p2) = n. In Steiner n-radial of G, ui is not adjacent to vj , since the n-
element sets containing ui and vj have only the Steiner distance n−1. Therefore,
rS(Kp1,p2) > p1. When n > p1, en(ui) = n−1, 1 ≤ i ≤ p1 and en(vi) ≥ n−1, 1 ≤
i ≤ p2. Hence radn(Kp1,p2) = n− 1.

In Steiner (p1 + 1)-radial of G, ui is adjacent to uj for 1 ≤ i, j ≤ p1, ui is
adjacent to vj for all 1 ≤ i ≤ p1, 1 ≤ j ≤ p2 and vi is adjacent to vj for all
1 ≤ i, j ≤ p2, since each of the sets {u1, u2, . . . , up1 , vj}, {u1, u2, . . . , up1 , vj} and
{vi, vj , u2, u3, . . . , up1} have the Steiner distance p1 respectively. Hence Steiner
(p1 + 1)-radial of Kp1,p2 is Kp1+p2 .

Theorem 13. For every tree T with m(�= p−1) pendant vertices rS(T) = m+2.

Proof. Let T be a tree with m pendant vertices x1, x2, . . . , xm and the remaining
vertices be v1, v2, . . . , vp−m. Then en(vi) = p−1 for n = m+1 and hence (m+1)-
radius is p − 1. If vivj is a non-pendant edge in T, then the set {vi, vj} ∪ X,
where X ⊆ {x1, x2, . . . , xm} with |X | = m − 1, has Steiner distance < p − 1.
Therefore, vi is not adjacent with vj in Steiner (m+1)-radial of G. Since (m+2)-
radius is p− 1 and any set {vi, vj , x1, x2, . . . , xm} has Steiner distance p− 1 for
1 ≤ i, j ≤ p−m, Steiner (m+ 2)-radial of G is Kp.

Corollary 14 For every positive integer k ≥ 2, there exists a graph having
Steiner radial number k.

Proposition 15. For any wheel, rS(Wp) =

{
2 for p = 4
3 for p ≥ 5.

Proof. When p = 4, the result follows from Theorem 10. So assume p ≥ 5. Let v1
be vertex of degree p− 1 in Wp and v2, v3, . . . , vp be the vertices on the cycle of
Wp. Since Wp is not complete by Theorem 10, rS(Wp) > 2. Since e3(v1) = 2 and
e3(vi) = 3, 2 ≤ i ≤ p, rad3(G) = 2. For 2 ≤ i, j ≤ p and i �= j, the set {v1, vi, vj}
has the Steiner distance 2 and hence the Steiner 3-radial of Wp is complete.

72 K.M. Kathiresan et al.

Theorem 16. For any pair of integers n and p with 2 ≤ n ≤ p, there exists a
graph on p vertices whose Steiner radial number is n.

Proof. When p = 2, the result is obvious. When p = 3, the only connected
graph on 3 vertices are P3 and K3 in which rS(P3) = 3 and rS(K3) = 2. When
p = 4, rS(K4) = 2, rS(C4) = 3 and rS(P4) = 4. When p ≥ 5, rS(Wp) = 3 by
Proposition 15. Also rS(Kp) = 2 and rS(T) = m+ 2 where m is the number of
pendant vertices in T and 2 ≤ m ≤ p− 2.

Acknowledgments. The authors thank the anonymous referees for careful
reading and detailed comments which helped in restructuring the paper in the
present form.

References

1. Buckley, F., Harary, F.: Distance in graphs. Addison-Wesley, Reading (1990)
2. Chartrand, G., Oellermann, O.R., Tian, S., Zou, H.B.: Steiner distance in graphs.

Casopis Pro Pestovani Matematiky 114(4), 399–410 (1989)
3. Day, D.P., Oellermann, O.R., Swart, H.C.: Steiner distance-hereditary graphs. SIAM

J. Discrete Math. 7, 437–442 (1994)
4. Kathiresan, K.M., Marimuthu, G.: A study on radial graphs. Ars Combin. 96, 353–

360 (2010)
5. Oellermann, O.R., Tian, S.: Steiner centers in graphs. J. Graph Theory 14(5), 585–

597 (1990)
6. Raines, M., Zhang, P.: The Steiner distance dimension of graphs. Australasian J.

Combin. 20, 133–143 (1999)

Further Results on the Mycielskian of Graphs

T. Kavaskar

Department of Mathematics, Bharathidasan University, Tiruchirappalli-620024, India
t kavaskar@yahoo.com

Keywords: Mycielskian of a graph, acyclic chromatic number, domina-
tor chromatic number, independent domination number.

1 Introduction

All graphs considered here are finite, undirected, connected and non-trivial.
In the mid 20th century there was a question regarding, triangle-free graphs
with arbitrarily large chromatic number. In answer to this question, Myciel-
ski [7] developed an interesting graph transformation as follows: For a graph
G = (V,E), the Mycielskian of G is the graph μ(G) with vertex set consisting
of the disjoint union V ∪ V ′ ∪ {u}, where V ′ = {x′ : x ∈ V } and edge set
E ∪ {x′y : xy ∈ E} ∪ {x′u : x′ ∈ V ′}. We call x′ the twin of x in μ(G) and
vice versa and u, the root of μ(G). We can define the iterative Mycielskian of
a graph G as follows: μm(G) = μ(μm−1(G)), for m ≥ 1. Here μ0(G) = G. It is
well known [7] that if G is triangle free, then so is μ(G) and that the chromatic
number χ(μ(G)) = χ(G) + 1. There had been several papers on Mycielskian of
graphs. Few of the references are [2], [3], [5], [7], [8]. Several graph parameters,
especially in domination theory, on Mycielskian of graphs have been discussed
in [2], [8].

We say that a set S ⊆ V (G) is a dominating set of G if every vertex x ∈
V (G)\S has at least one neighbor in S. The domination number of G is defined
by γ(G) = min{|S| : S is a dominating set of G}. A set S ⊆ V (G) is said to be
an independent dominating set of G [4] if S is a dominating set of G and the
induced subgraph 〈S〉 has no edge in G. The independent domination number
of G is defined by i(G) = min{|S| : S is an independent dominating set of G}.
A set S ⊆ V (G) is said to be acyclic domination set of G if it is a dominating
set of G and 〈S〉 is a forest. The acyclic dominating number of G is defined by
γa(G) = min{|S| : S is an acyclic domination set of G}.

A proper k-coloring, V1, V2, . . . , Vk, of G is said to be acyclic k-coloring if for
1 ≤ i < j ≤ k, 〈Vi∪Vj〉 is a forest. The acyclic chromatic number of G is defined
by: χa(G) = min{k : G has an acyclic k-coloring}. A proper k-coloring of G is
said to be dominator k-coloring [6] if for every vertex v ∈ V (G), N [v] contains
at least one color class. The dominator chromatic number of G is defined by:
χd(G) = min{k : G has a dominator k-coloring}.

In this paper, we determine the independent domination number, acyclic chro-
matic number and dominator chromatic number of the Mycielskian and the it-
erated Mycielskian of a graph with respect to their parent graphs.

S. Arumugam and B. Smyth (Eds.): IWOCA 2012, LNCS 7643, pp. 73–75, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

74 T. Kavaskar

2 Main Results

We start with the following well-known result on the domination number of the
Mycielskian.

Theorem 21 ([2]). For any graph G, γ(μ(G)) = γ(G)+1.

We now show that similar results hold good for the independent domination
number of μ(G).

Theorem 22. For any graph G, i(μ(G)) = i(G) + 1.

Proof. Let S be an independent dominating set of G with |S| = i(G). Then
S ∪ {u} is an independent dominating set of μ(G) and hence i(μ(G)) ≤ i(G)+1.
Suppose i(μ(G)) ≤ i(G). Let T be an independent dominating set of μ(G) with
|T | = i(μ(G)) ≤ i(G). If u ∈ T , then T \{u} is an independent dominating set
of G and hence i(μ(G)) − 1 = |T \{u}| ≥ i(G), a contradiction. Thus u /∈ T ,
which implices that T ∩ V ′ �= ∅. Similarly we get a contradiction for this case
also. Thus i(μ(G)) ≥ i(G)+1 and hence i(μ(G)) = i(G) + 1.

Iteratively applying Theorem 22, we get

Corollary 23. For any graph G, i(μm(G)) = i(G) +m.

Next we discuss the acyclic domination number of μ(G). Let S be an acyclic
dominating set of G with |S| = γa(G), then S ∪{u} is an acyclic dominating set
of μ(G). Hence we have the following result.

Proposition 24. For any graph G, γa(μ(G)) ≤ γa(G) + 1.

We have an example for (γa(G)+1)−γa(μ(G)) is arbitrarily large. For example,
consider a graph G is obtained by joining k pendent vertices to each vertex of the
cycle Cn for any k ≥ 2 and n ≥ 3. One can easily check that γa(G) = n+ k − 1
and γa(μ(G)) = n+ 1.

We now recall that the well-known result on the chromatic number of the My-
cielskian.

Theorem 25 ([7]). For any graph G, χ(μ(G)) = χ(G)+1.

Next we show that similar results hold good for the acyclic chromatic number
and dominator chromatic number of μ(G).

Theorem 26. For any graph G, χa(μ(G)) = χa(G) + 1.

Proof. Let V1, V2, . . . , Vk be a acyclic k-coloring, where k = χa(G). Now set
Ui = Vi ∪ V ′

i , for i, 1 ≤ i ≤ k and Uk+1 = {u}. Then U ′
is forms a acy-

cile coloring of μ(G) using k + 1 colors and hence χa(μ(G)) ≤ χa(G) + 1.
Next to prove χa(μ(G)) ≥ χa(G) + 1. Suppose χa(μ(G)) < χa(G) + 1. Let
k = χa(μ(G)). Then μ(G) has a acyclic k-colors. We have to show that G has a
acyclic (k − 1)-coloring. Proof of this is similar to the Theorem 25 given in [7].
Thus χa(μ(G)) = χa(G) + 1.

Iteratively applying Theorem 26, we get

Further Results on the Mycielskian of Graphs 75

Corollary 27. For any graph G, χa(μ
m(G)) = χa(G) +m.

Finally we determine the dominator chromatic number of μ(G).

Theorem 28. For any graph G, χd(μ(G)) = χd(G) + 1.

Iteratively applying Theorem 28, we get

Corollary 29. For any graph G, χd(μ
m(G)) = χd(G) +m.

Acknowledgement. This research was supported by Dr.D.S. Kothari Post
Doctoral Fellowship, University Grants Commission, Government of India grant
F.4-2/2006(BSR)/13-511- 2011(BSR) dated 26-08-2011 at the Department of
Mathematics, Bharathidasan University, Tiruchirappalli-620024, India.

References

1. Coekayne, E.J., Hedetniemi, S.T., Miller, D.J.: Properties of hereditary hypergraphs
and middle graphs. Canad. Math. Bull. 21(4), 461–468 (1978)

2. Fisher, D.C., McKenna, P.A., Boyer, E.D.: Hamiltonicity, diameter, domination,
packing, and biclique partitions of Mycielski’s graphs. Discrete Applied Mathemat-
ics 84(1-3), 93–105 (1998)

3. Chang, G.J., Huang, L., Zhu, X.: Circular chromatic numbers of Mycielski’s graphs.
Discrete Mathematics 205(1-3), 23–37 (1999)

4. Halldorsson, M.M.: Approximating the minimum maximal independence number.
Information Processing Letters 46(4), 169–172 (1993)

5. Larsen, M., Propp, J., Ullman, D.: The fractional chromatic number of Mycielski’s
graphs. J. Graph Theory 19, 411–416 (1995)

6. Chellali, M., Maffray, F.: Dominator Colorings in Some Classes of Graphs. Graphs
and Combinatorics 28, 97–107 (2012)

7. Mycielski, J.: Sur le coloriage des graphs. Colloq. Math. 3, 161–162 (1955)
8. Lin, W., Wu, J., Lam, P.C.B., Gu, G.: Several parameters of generalized Myciel-

skians. Discrete Applied Mathematics 154, 1173–1182 (2006)

Approaches and Mathematical Models

for Robust Solutions to Optimization Problems
with Stochastic Problem Data Instances

Niraj Ramesh Dayama� and Ketki Kulkarni

Indian Institute of Technology Bombay,
Powai-400 076, India

1 Introduction

Practical applications of scheduling, routing and other generic constrained op-
timization problems often involve an uncertainty in the values of the data pre-
sented in the problem data instances. On the contrary, most of the established
algorithms for typical classes of well-studied problems in the field of constrained
optimization assume that deterministic precise values of data would be known.
Hence, any solution developed for a specific optimization problem with a given
problem data instance would become non-optimal and/or infeasible when applied
to another data instance with even slight perturbation. We argue the fallacy of
using solutions developed based on the mean values of data for real life prob-
lems having stochastic data. This paper presents frameworks for solving typical
constrained optimization problems where the exact values of the problem data
instances are not known; only the mean, variance and probable distribution of
every governing parameter is available. The solutions, thus generated, should
continue to be feasible, close-to-optimal and relatively ”good” for a range of val-
ues around the initially assumed precise deterministic values. Thus, if the input
parameters of a particular optimization problem are stochastic with a known
distribution, then the techniques being presented yield a robust solution that
is applicable to almost any instance in the entire range of values possible. We
develop results for the traveling salesman problem and sequence dependent job
scheduling problem with time constraints.

TSP with time windows (TSPTW) corresponds to the problem of job schedul-
ing with sequence dependent processing time. This is a practical industrial ap-
plication where the sequence dependent setup time between a pair of jobs cannot
be exactly determined but will typically be a probabilistic distribution around a
mean value. TSPTW with time windows is an excellent test criterion to decide
the efficacy of the techniques and algorithms presented here because, for suffi-
ciently restrictive time windows, an optimal solution for a given problem data
instance may actually become infeasible with even small change in the parame-
ters from the problem instance.

� Corresponding author.

S. Arumugam and B. Smyth (Eds.): IWOCA 2012, LNCS 7643, pp. 76–80, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Optimization Approaches for Stochastic Problem Data Instances 77

The efficacy of the proposed algorithm is discussed using two criteria, which
are quantified as follows:

1. Robust solution : A solution Ŝ is said to be robust if it is infeasible for less
than a specified fraction of the permissible problem data instances. Robust-
ness has been quantitatively defined in the next paragraph.

2. Quality of solution for data instance: For a problem data instance described
by (A,B,E), let the optimal route be S and the optimal objective value of
cumulative traversal cost (for S) be c. Also, for another proposed solution

Ŝ, let the cumulative traversal cost be ĉ. Then the quality of Ŝ for the data
instance (A, B, E) is c/ĉ. In general, we would like to have the quality as
high as possible. Also, c/ĉ ≤ 1.

3. Overall quality of solution: The overall quality of a proposed solution Ŝ is
the norm of quality of that solution for all observed data instances where
that solution is feasible. For this paper, we take the norm as the maximum
(worst case) value.

4. Overall robustness of a solution: The overall robustness of a solution is the
ratio of the number of problem instances where it is feasible to the number
of total observed problem instances.

2 Problem Definition and Formulation

The problem is defined on a directed complete graphG = (V,E), where, the node
set V = 0, 1, . . . , n, n+ 1 is a set of (n + 2) nodes. Here, the nodes 1, 2, . . . , n
indicate individual cities to be visited. The nodes 0 and n+1 are notional depot
nodes (indicating start or end of routes). There exists a non-negative real cost
value Ei,j associated with every edge {i, j} ∈ E. Traversal of edge {i, j} ∈ E
will imply that the salesman traversing that edge {i, j} spends time Eij . Every
node in i ∈ V has a time window [Ai, Bi] associated with it. The problem now
is to find a route of minimum cumulative traversal cost (collective cost of edges
traversed); the route starts from depot 0, terminates at the depot n + 1 and
visits every node in i ∈ V exactly once, within its own time window [Ai, Bi].
The values of Ai, Bi are precisely known; values of Eij are stochastic with known
distribution.

We assume that a solution procedure based on MIP formulation for deter-
ministic TSPTW is available. However, as compared to a standard formulation
for TSPTW, our MIP formulation is expected to have one additional feature -
besides specifying the sequence dependent traversal time between any pair of
successive nodes, an additional wait time Ci can be imposed at any node node
i. Other details of this MIP formulation (while a non-trivial exercize) is beyond
the scope of this document. We combine this MIP formulation with simulation
process to form a hybrid optimization-simulation (HOS) algorithm .

Outline of HOS Algorithm: We start by constructing the mean edge cost
matrix Ē from the mean values of individual Eij . Then, a standard MIP for-
mulation is used to find the optimal route R̄ for (A,B, Ē). R̄, considered as a

78 N.R. Dayama and K. Kulkarni

seed solution, is given as input to simulation. Around 25 ∼ 50 iterations with
∼ 30 replications each are performed for each suggested solution. If the route
violates any time window restriction in any city, then the violated city and the
maximum value of time violation is noted. A listing of time violations is resent
to the MIP algorithm as Ci values. The MIP algorithm modifies the route so as
to wait Ci at every preceding city for the time as listed in the time violations for
the next city in the route. Based on this, the new optimal route as determined
by the MIP algorithm is now passed back to the simulation model. It is expected
that the new route reports fewer number of violations during the iterations of
the simulation model. This new route would probably be sub-optimal for several
of the permissible problem data instances; but should be feasible for many more
of them. Hence, overall robustness of solution improves, while possibly getting a
lower overall quality of the solution. If overall robustness is better than desired,
the algorithm terminates; otherwise further iterations are possible. This HOS
algorithm can be summarized as follows:

1. Get seed optimum solution from MIP solver.
2. Perform multiple runs of stochastic simulation model for the seed solution.
3. From analysis of violated nodes, choose suitable truncation point. If no vio-

lations found or if termination criterion is met, STOP.
4. Using data of violated nodes, get new sequence from MIP and go to Step 2

The simulation model has been implemented using Anylogic 6.5.0. The model
takes the route or sequence of cities to be visited as the input. Multiple runs are
performed using the Parameter Variation experiment in Anylogic. If a sequence
violates any time window restriction, the model is terminated and violated time
instance is noted along with the city that violated it. The data of violated nodes
and corresponding times is collected for 300 samples and analyzed to generate
feedback for iteration of the DP solver.

Explanation of Simulation Model: We assume that the edge costs Eij have

normal distribution (N (μ, σ)). Let Ŝ(E) be a solution for data instance with

Edge cost matrix E. The efficacy of Ŝ(E) solution for any data instance with
edge costs in the range E ±σ is of interest. Let P be the set of feasible solutions
for the constraint set defined by (A,B). A solution Ŝ(E) ∈ P is a robust solution
for the data instance (A,B,E ∼ N(μ, σ)) with significance level kσ if and only

if it belongs to the set P’, where P ′ =
{
Ŝ(E) ∈ P |Ŝ(E + λσ) ∈ P∀0 ≤ λ ≤ k

}
Computational Procedure: Consider that a real life situation involves finding
a route or schedule where the number of nodes to be traversed (say n), the time
windows for every node (say A,B) are known precisely. Values for edge costs
edge costs E = Eij are not known precisely but their distribution is known.

For this situation, a proposed route or schedule Ŝ has been identified. Now, m
more permissible problem data instances based on E1, E2, . . . , Em are devel-
oped within the specified ranges and with the specified distribution. Then, the
simulation model is executed to find how Ŝ performs for these problem data
instances E1, E2, . . . , Em. For every problem data instance, we check whether Ŝ

Optimization Approaches for Stochastic Problem Data Instances 79

is feasible for Ek . . . k ∈ 1, 2, . . .m. If Ŝ is feasible for some Ek, then determine
the objective value (cumulative traversal cost) of Ŝ for Ek. If not feasible, find
the values Ci ∀i ∈ V such that Ci >max(violation at city i in Ek) and call the
MIP to regenerate the route. This procedure repeats till the truncation point.

Let the cumulative traversal costs of these m problem data instances be
c1, c2, . . . , cm. If Ŝ is feasible for Ek, then we set ck equal to the cumulative
traversal cost of Ŝ for Ek. If Ŝ is infeasible for Ek, we set ck equal to a very
large integer.

The utopian objective was to find a route Ŝ that minimizes the maxi-
mum value of ck. In practice, the variance and range for E might too large to
get any solution Ŝ that is feasible over the entire range. So, the more practical
objective is to determine a solution Ŝ that remains feasible over all specified
(very large) number of possible values of E, while minimizing the worst value of
ck on those feasible situations. In this interpretation of the objective, we are ne-
glecting the (very few) infeasibility cases while determining the worst ck but we
would restrict the maximum possible number of such infeasibility cases. Thus,
the algorithm yields a route Ŝ that minimizes the maximum value of ck
for all feasible cases, while ensuring that infeasibility is not permitted
for more than a pre-specified number of cases. This maximum number of
infeasible cases can be specified as a fraction of m.

3 Computational Experiments

Developing Problem Data Instance

1. Select a particular problem size (n). Here, n = 5, 10, 15, 20.
2. For given n, randomly generate n points on a 500 × 500 grid. Only integer

values of coordinates are considered.
3. Choose time window values A,B so that only around n different independent

feasible routes can traverse all n nodes within the time restrictions. Having
too few or too many different feasible routes makes the time windows too
loose or too tight and violates the rationale behind the discussion.

4. Repeat the steps 1-3 to generate about 50+ instances of every problem size.

Details of Computations: Consider a problem data instance of size n = 5.
We get the values of (A,B,E) as follows:

A=
(
0 0 0 0 0

)
, B=

(
100 20 8 40 50

)

The Edge cost matrix E =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 2 3 4 5 6
1 0 5 9 5 3 3
1 1 0 3 3 3 3
4 4 1 0 1 1 1
1 1 1 1 0 1 1
1 1 1 1 1 0 1
1 1 1 1 1 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
This yields the initial seed solution Ŝ =

(
3 4 2 1 5

)
. Also consider another

candidate solution Ŝ′ =
(
2 3 4 1 5

)
. Now, we question the efficacy of Ŝ and

80 N.R. Dayama and K. Kulkarni

Ŝ′ for permissible problem data instances obtained by perturbation of E. Let a
permissible problem data instance be (A,B,E′), where E′ = Eij ± λσ. During
the simulation model runs, we get several different values for E’. For example,
consider: ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 2 3.5 4 5 6
1 0 5 9 5 2.14 3
1 0.75 0 3 3 3 3
4 4 1 0 0.75 1 1
1 1 0.68 1 0 1 1
1 1 1 1 1 0 1
1 1 1 1 1 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
Quality of Solutions: We find that for this particular sequence Ŝ, the cumula-
tive traversal cost (objective value) for this E’ is 11.4. However, it is noted that

the optimal route for E’ is Ŝ′ and the cumulative traversal cost (objective value)

for Ŝ′ on E’ is 8.89.
So, the quality of Ŝ for (A,B,E’) is 8.89

11.4 = 0.78 and the quality of Ŝ′ for

(A,B,E’) is (1.0). Atleast in this specific case, Ŝ′ has a much better quality than

Ŝ.
In a similar fashion, the values of the qualities for many different values of E’

can be determined by the simulation model and hence the overall quality of the
solution can be calculated.

Robustness of Solutions: After multiple (300) runs of the simulation model
for different permissible values of (A,B,E′) , 300 samples are obtained. Of these
300, 4 samples show violations for a particular city node (city 4, for our data

instance) for the solution sequence Ŝ. On the contrary, for the solution sequence

Ŝ′, we get 258 violations out of 300. So, Ŝ′ had a better solution quality for one
specific problem data instance but poor overall robustness as compared to Ŝ.

We notice that Ŝ was feasible for the given E’ value. If, it continues to be
feasible for all other E’ values, then the solution Ŝ is totally feasible. Otherwise,
its overall robustness can be calculated and was found to be very good (296

feasible out of 300 is near to 6σ). However, quality of solution for Ŝ is found to
be quite poor.

A suitable truncation point is selected to cover 99.99%(6σ) of time violations.
This information is given to the DP solver, which suggests a new sequence. This
may or may not take multiple iterations, depending on the size of the problem
and uncertainty in the underlying system. For the chosen data instance, satisfac-
torily robust solution Ŝ with near 6σ robustness is achieved after two iterations.

Conclusion: We have designed a new framework in which stochastic inputs for
optimization problems can be defined and solved. We have defined the termi-
nologies for such problems and thereafter presented algorithms which can handle
such situations.

Faster Replacement Paths Algorithm

for Undirected, Positive Integer Weighted
Graphs with Small Diameter

Jay Mahadeokar and Sanjeev Saxena

Dept. of Computer Science and Engineering,
Indian Institute of Technology,

Kanpur, India-208 016

Abstract. We consider the replacement path problem for undirected
graphs in case of edge failures. Given a 2-edge connected graph G(V, E),
where n = |V | and m = |E|, for each edge e on the shortest s− t path of
G, we are to report the shortest s− t path in G \ e. If d is the diameter
of the graph, the proposed algorithm takes O(m+ d2) time.

For graphs where d = O(
√
m), typically dense graphs, or graphs with

small diameter we have a linear time solution.

1 Introduction

The replacement paths problem in case of edge failure is:

given a 2-edge connected graph G(V,E), for each edge e on the shortest
s− t path of G, report the shortest s− t path in G \ e.

There exists a trivial solution where replacement path for every edge e is com-
puted by running shortest path algorithm independently on G \ e. Let d be the
diameter of the graph. As there can be at most d edges on the shortest path,
this takes O(d(m + n logn)) time.

Malik et.al.[6] describe an O(m + n logn) time solution for the problem on
undirected graphs with positive weights. This algorithm was rediscovered by
Hershberger and Suri [3] (see e.g. [7,4] for brief history). Their algorithm consists
of two main parts:

– Finding the shortest path trees rooted at s and t.
– Reporting the replacement paths for each edge on s−t path using the shortest

path trees.

In this paper we describe a new algorithm for the second part. The proposed
algorithm takes O(m + d2) time. If d = O(

√
m) this results in a linear time

algorithm for the second part. If the graph has integer weights, then we use the
linear time algorithm of Thorup [11] for the first part. Or, if the graph is planar,
then we can use the O(n) time shortest path algorithm described by Henzinger
et al.[5] instead, to get a linear time algorithm for the problem.

S. Arumugam and B. Smyth (Eds.): IWOCA 2012, LNCS 7643, pp. 81–85, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

82 J. Mahadeokar and S. Saxena

Nardelli et al [8] have described an O(mα(m,n)) time algorithm for solving
the most vital edge problem, which also solves the replacement paths problem.
They also use the linear time algorithm of Thorup [11] for the first part. For
the second part, they use the transmuter [9,10] data structure described by
Tarjan. Note that the technique described in this paper is simpler and easier to
implement.

2 Replacement Paths in Case of Edge Failure

We assume that the graph G(V,E) is undirected and edges have positive integer
weights. For s, t ∈ V , we will denote the shortest path from s to t by P =
{v0, v1, v2...vt} with s = v0 and t = vt. So, for every edge e = (vk, vk+1), k
= 0...t − 1, we want to report the corresponding replacement path, that is the
shortest s− t path in the graph G \ e.

Like[6,3] we also find the shortest path trees X rooted at s and Y rooted at t
respectively. Any edge e = (x, y) ∈ P divides the tree X into two disjoint trees
(Xs) and (Xt) such that s ∈ Xs and t ∈ Xt.

Let the “reduced cost” of an edge (u, v) be

ϕ(u, v) = d(s, u) + c(u, v) + d(v, t)

Here d(s, u) is the length of the shortest path from s to u, c(u, v) is the cost of
edge (u, v) and d(v, t) is the length of the shortest path from v to t. Since G is
an undirected graph, d(v, t) = d(t, v), the length of the shortest path of a node
v from t in the shortest path tree Y . Hershberger and Suri [3], use the property
that the shortest path in the graph G \ e is the path through a non-tree edge
(u, v) such that u ∈ Xs, v ∈ Xt and ϕ(u, v) is minimum.

We say that such edge (u, v) is the replacement edge of e and ϕ(u, v) is the
replacement cost of e.

Note that the edge (u, v) belongs to the fundamental cut set [2] of edge e.
We preprocess non-tree edges in O(m + d2) time, so that for any given tree

edge (vk, vk+1) on P , the corresponding replacement edge (u, v) can be found in
O(d) time. Since there can be O(d) edges in P , we can compute the replacement
cost for each edge in O(d2) time.

Let us carry out preorder traversal on the shortest path tree X . Let pre(v)
denote the preorder number of node v and desc(v) denote the number of descen-
dants of v, including v. Let

α(v) = pre(v) + desc(v)

Let Ti be the set of nodes that are descendents of node vi (including vi) but not
of vi+1. Thus, the nodes of the tree are partitioned into sets T0, T1...Tt−1.

Let Ni be the set of non-tree edges, between Ti and Ti+b (for b ≥ 1). Less
informally:

Ni = {(x, y) | (x ∈ Ti and y ∈ Tj) ∀ j ≥ i+ 1}
Thus, the non-tree edges are partitioned into sets N0, N1, . . ., Nt−1.

Faster Replacement Paths Algorithm for Graphs with Small Diameter 83

2.1 Preprocessing

For graphs with integer weights, the shortest path trees can be obtained in
O(n+m) time using algorithm described by Thorup[11]. We can easily determine
the preorder number and number of descendents of nodes in linear time. Hence
the values pre(v) , desc(v) , α(v) and ϕ(u, v) are determined in O(n) time.

We use bucket sort to sort these non-tree edges (say (u, v)) on the pre(v), the
preorder number of the second entry v, in O(n +m) time.

By post order traversal, we can easily determine the sets of tree edges
T0, T1, . . . , Tt−1 in linear time. Then by looking at each non-tree edge one by
one, we can put it the sets Nj , in constant time. Thus, the sets N1, . . ., Nt−1 of
non-trees edges can also be constructed in O(m+ n) time.

Berkman et al. [1] has shown that an array A[1 : n] can be preprocessed in
linear time to answer range minima queries of the following form in constant
time:

For 1 ≤ i, j ≤ n find the smallest item in A[i], A[i+ 1]..., A[j − 1], A[j].

We preprocess each set Ni independently to answer range minima query with
reduced cost ϕ as the key. Since the total number of elements in all the sets
together is O(m) we need O(m) time to perform this step.

For each set Ni and for every vertex vj , j ≥ i+1 on P , we maintain the rank
of pre(vj) in Ni. In other words we find the “pointer” Pre[i, j] which will points
to the smallest element in Ni which is greater than or equal to pre(vj).

These pointers can be obtained by doing a binary search for each pre(vj) in
Ni, but that will take (t log |Ni|) time.

Alternatively, we can also get the ranks by merging sorted array
pre(vi), pre(vi+1), . . ., pre(vt) with Ni. This will take O(t + |Ni|) time. Or total
time for all i’s will be

∑
O(t+ |Ni|) = O (

∑
t+
∑
|Ni|) = O(t2 +m).

We similarly find pointer A[i, j] which points to largest element in Ni which
is smaller than or equal to α(vj).

Thus the total time taken by algorithm preprocess is O(m + d2)

2.2 Reporting Replacement Paths

To report the replacement path for edge (vk,vk+1) we are interested in all (non-
tree) edges (u, v) which connect a non-descendant of vk+1 to a descendant of
vk+1. Because of preprocessing, we can assume that for any non tree edge (u, v),
pre(u) < pre(v)

Case 1: (v is not a descendant of vk+1) Let us first consider the case when
u is a descendant of vk+1 and v is not.
As u is a descendant:

pre(vk+1) ≤ pre(u) < α(vk+1)

and as v is a non-descendant:

84 J. Mahadeokar and S. Saxena

α(vk+1) ≤ pre(v) ≤ n

As u is a descendant of vk+1, u will be in Tk+1

⋃
. . .
⋃
Tt and as v is a non

descendant, v will be in T0

⋃
T1

⋃
. . .
⋃
Tk. As the edges in Ni have one point

in Ti, all these edges will be present in N0

⋃
N1

⋃
. . .
⋃
Nk. Hence, we only

need to look at edges in N0

⋃
N1

⋃
. . .
⋃
Nk.

Case 2: (u is a non-descendant) In the other case, u is not a descendant of
vk+1 but v is a descendant of vk+1.
As u is not a descendant:

0 < pre(u) < pre(vk+1)

and as v is a descendant of vk+1,

pre(vk+1) ≤ pre(v) < α(vk+1)

Further, u will be in T0

⋃
T1

⋃
. . .
⋃
Tk and v will be in Tk+1

⋃
. . .
⋃
Tt.

As edges in Ni have one point in Ti, all these edges will be present in
N0

⋃
N1

⋃
. . .
⋃
Nk. Hence, we only need look at edges inN0

⋃
N1

⋃
. . .
⋃
Nk.

As the process of finding the edge in the two cases is similar, we will only discuss
implementation of the first case.

Let Ck = N0 ∪N1 ∪ . . . ∪Nk be the set of candidate edges which satisfy the
conditions of Case 1. From this set we want to report the edge with the least
reduced cost ϕ.

Because the way we constructed Ni during preprocessing, we can assume that
edges in each Ni are sorted according according to pre(v).

For each set Ti for i ≤ k, we find the edge with minimum ϕ value between
pre(vk+1) and α(vk+1) by performing the following range minima query:

(Ni, Pre[i, k + 1], A[i, k + 1]).

These are edges in Ni with pre(v) between pre(vk+1) and α(vk+1); in other words
we are only looking at those edges of Ni for which v is a descendant of vk+1.

Each of these queries takes O(1) time. As there are k queries, total time will
be O(k). But, since k = O(d) time is O(d).

The replacement edge in Case 1, for (vk, vk+1) is the edge corresponding to
the minimum of these range minima queries.

By a similar procedure, we can find a replacement edge in the other case for
(vk, vk+1). The required replacement edge will be the one with smaller ϕ-value.

We repeat the procedure, for each tree edge (vk, vk+1) ∈ P . The total time to
find all these replacement edges is O(dk) = O(d2).

If (u, v) is the replacement edge with minimum reduced cost ϕ(u, v) among
all these replacement edges, then the replacement path R for P as the path
(P (s, v) ∈ X) +(u, v) + (P (v, t) ∈ Y).

Thus the total time required to find the replacement path for P including the
preprocessing step is O(m+ d2).

Faster Replacement Paths Algorithm for Graphs with Small Diameter 85

3 Conclusion

We have proposed an O(m+d2) time algorithm for the replacement paths prob-
lem in case of edge failures for undirected graphs with positive integer weights.
If diameter d of the graph is O(

√
m) then, our algorithm runs in linear time. For

undirected, integer weighted dense graphs or sparse graphs with small diameter,
our algorithm performs better than the existing algorithms. For planar graphs,
our algorithm takes O(n+d2) time. Thus we conclude that the replacement path
problem can be solved as efficiently as the shortest path problem, if diameter of
graph is O(

√
m)

References

1. Berkman, O., Schieber, B., Vishkin, U.: Optimal doubly logarithmic parallel al-
gorithms based on finding all nearest smaller values. J. Algorithms 14, 344–370
(1993)

2. Deo, N.: Graph Theory with Applications to Engineering and Computer Science.
Prentice-Hall (1974)

3. Hershberger, J., Suri, S.: Vickrey prices and shortest paths: what is an edge worth?
In: Proc. FOCS, pp. 252–259 (2001)

4. Hershberger, J., Suri, S.: Erratum to ”Vickrey Pricing and Shortest Paths: What
is an Edge Worth? In: FOCS, p. 809 (2002)

5. Henzinger, M.R., Klein, P., Rao, D., Subramanian, S.: Faster shortest-path algo-
rithms for planar graphs. J. Comput. Syst. Sci. 55, 3–33 (1997)

6. Malik, K., Mittal, A.K., Gupta, S.K.: The most vital arcs in the shortest path
problem. Oper. Res. Letters 8, 223–227 (1989)

7. Nardelli, E., Proietti, G., Widmayer, P.: Finding the most vital node of a shortest
path. Theoretical Computer Science 296, 167–177 (2003)

8. Nardelli, E., Proietti, G., Widmayer, P.: A faster computation of the most vital
edge of a shortest path. Inf. Process. Lett. 79(2), 81–85 (2001)

9. Tarjan, R.: Sensitivity Analysis of Minimum Spanning Trees and Shortest Path
Trees. Information Processing Letters 14(1), 30–33 (1982)

10. Tarjan, R.: Applications of path compression on balanced trees. J. ACM 26, 690–
715 (1979)

11. Thorup, M.: Floats, Integers, and Single Source Shortest Paths. In: Meinel, C.,
Morvan, M. (eds.) STACS 1998. LNCS, vol. 1373, pp. 14–24. Springer, Heidelberg
(1998)

Acyclic Coloring with Few Division Vertices

Debajyoti Mondal1,�, Rahnuma Islam Nishat2,
Md. Saidur Rahman3, and Sue Whitesides2,��

1 Department of Computer Science, University of Manitoba, Winnipeg, MB, Canada
2 Department of Computer Science, University of Victoria, Victoria, BC, Canada

3 Department of Computer Science and Engineering,
Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh

jyoti@cs.umanitoba.ca, rnishat@uvic.ca,

saidurrahman@cse.buet.ac.bd, sue@uvic.ca

Abstract. An acyclic k-coloring of a graph G is a mapping φ from
the set of vertices of G to a set of k distinct colors such that no two
adjacent vertices receive the same color and φ does not contain any
bichromatic cycle. In this paper we prove that every triangulated plane
graph with n vertices has a 1-subdivision that is acyclically 3-colorable
(respectively, 4-colorable), where the number of division vertices is at
most 2n − 5 (respectively, 1.5n − 3.5). On the other hand, we prove
an 1.28n (respectively, 0.3n) lower bound on the number of division ver-
tices for acyclic 3-colorings (respectively, 4-colorings) of triangulated pla-
nar graphs. Furthermore, we establish the NP-completeness of deciding
acyclic 4-colorability for graphs with the maximum degree 5 and for pla-
nar graphs with the maximum degree 7.

1 Introduction

A k-coloring of a graph G is a mapping φ from the set of vertices of G to a set
of k distinct colors such that no two adjacent vertices receive the same color.
We call φ an acyclic k-coloring if it does not contain any bichromatic cycle.
The acyclic chromatic number of a graph G is the minimum number of colors
required in any acyclic coloring of G.

Grünbaum [13] first introduced the concept of acyclic coloring in 1973 and
proved that every planar graph admits an acyclic 9-coloring. Then Mitchem [17],
Albertson and Berman [1], Kostochka [15] and finally Borodin [6] improved this
upper bound to 8, 7, 6 and 5, respectively. Since there exist planar graphs requir-
ing 5 colors in any acyclic coloring [13], much research effort has been devoted
to characterize planar graphs that are acyclically 3 or 4-colorable [5]. Both the
problems of deciding acyclic 3 and 4-colorability are NP-hard for planar graphs
with maximum degree 4 and 8, respectively [3,22].

� Work of the author is supported in part by the University of Manitoba Graduate
Fellowship.

�� Work of the author is supported by the Natural Sciences and Engineering Research
Council of Canada (NSERC) and the University of Victoria.

S. Arumugam and B. Smyth (Eds.): IWOCA 2012, LNCS 7643, pp. 86–99, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Acyclic Coloring with Few Division Vertices 87

Grünbaum also considered acyclic colorings of non-planar graphs. He proved
that any graph of maximum degree 3 admits an acyclic 4-coloring. Alon et al. [2]
gave anO(Δ4/3) upper bound and anΩ(Δ4/3/(logΔ)1/3) lower bound on acyclic
chromatic number for the graphs with maximum degree Δ. The currently best
known upper bounds on acyclic chromatic numbers for the graphs with maximum
degree 3, 4, 5 and 6 are 4, 5, 7 and 11, respectively [23,7,16,14]. Little is known
about the time complexity of deciding acyclic colorability for bounded degree
graphs. Acyclic 3-colorability (respectively, 4-colorability) is NP-complete for
bipartite planar graphs with maximum degree 4 (respectively, maximum degree
8) [22]. Recently, Mondal et al. [18] proved that acyclic 4-colorability is NP-
complete for the graphs with maximum degree 7.

A k-subdivision of a graph G is a graph G′ obtained by replacing every edge
of G with a path that has at most k internal vertices. We call these internal
vertices the division vertices of G. Wood [24] observed that every graph has a
2-subdivision that is acyclically 3-colorable. Angelini and Frati [3] proved that
every triangulated planar graph with n vertices has a 1-subdivision with 3n− 6
division vertices that is acyclically 3-colorable. This upper bound on the number
of division vertices reduces to 2n− 6 in the case of acyclic 4-coloring [18].

Acyclic colorings of graphs and their subdivisions find applications in diverse
areas [10,11,12]. For example, an acyclic coloring of a planar graph has been used
to obtain upper bounds on the volume of a 3-dimensional straight-line grid draw-
ing of a planar graph [10]. Consequently, an acyclic coloring of a planar graph
subdivision can give upper bounds on the volume of a 3-dimensional polyline
grid drawing, where the number of division vertices gives an upper bound on
the number of bends sufficient to achieve that volume. The acyclic chromatic
number of a graph helps to obtain an upper bound on the size of “feedback ver-
tex set” of a graph, which has wide applications in operating system, database
system, genome assembly, and VLSI chip design [11]. Acyclic colorings are also
used in efficient computation of Hessian matrix [12].

In this paper we examine acyclic colorings of 1-subdivisions of planar graphs.
We also show some improvement over the previous NP-completeness results in
terms of maximum degree. Our results are as follows.

– In Section 3 we prove that every triangulated plane graph with n vertices has
a 1-subdivision with at most 2n− 5 (respectively, 1.5n− 3.5) division vertices
that is acyclically 3-colorable (respectively, 4-colorable), which significantly
improves the previously best known upper bounds 3n− 6 and 2n− 6 on the
number of division vertices presented in [3,18].

– In Section 4 we establish a 1.28n (respectively, 0.3n) lower bound on the
number of division vertices for acyclic 3 and 4-colorings of triangulated planar
graphs, respectively.

– In Section 5 we show that deciding acyclic 4-colorability is NP-complete for
graphs with maximum degree 5 and for planar graphs with maximum degree 7.
Our results improve the previously known NP-completeness results on acyclic
4-colorability for graphs with maximum degree 7 [18] and for planar graphs
with maximum degree 8 [22].

88 D. Mondal et al.

2 Preliminaries

In this section we present some definitions and preliminary results that are used
throughout the paper.

Let G = (V,E) be a connected graph with vertex set V and edge set E. By
deg(v) we denote the degree of the vertex v in G. The maximum degree Δ of
G is the maximum of all deg(v), v ∈ V . Let P = u0, u1, u2, . . . , ul+1, l ≥ 1,
be a path of G such that deg(u0) ≥ 3, deg(u1) = deg(u2) = . . . = d(ul) = 2
and d(ul+1) ≥ 3. Then we call the subpath u1, u2, . . . , ul of P a chain of G. A
spanning tree of G is a subgraph of G that is a tree and contains all the vertices of
G. G is k-connected if the minimum number of vertices required to remove from
G to obtain a disconnected graph or a single-vertex graph is k. The following
remark is easy to verify.

Remark 1. Let G be a graph and let G′ be a graph obtained from G by adding
a chain w1, . . . , wj between two distinct vertices u and v of G. Assume that G
admits an acyclic 3-coloring, which can be extended to a 3-coloring φ of G′ such
that the vertices on the path u,w1, . . . , wj , v receive three different colors. Then
φ is an acyclic 3-coloring of G′.

A plane graph G is a planar graph with a fixed planar embedding on the plane.
G delimits the plane into connected regions called faces. The unbounded face is
the outer face of G and all the other faces are the inner faces of G. G is called
triangulated (respectively, internally triangulated) if every face (respectively, ev-
ery inner face) of G contains exactly three vertices on its boundary. The vertices
on the outer face of G are called the outer vertices and all the remaining vertices
are called the inner vertices. The edges on the outer face are called the outer
edges of G.

Let G = (V,E) be a triangulated plane graph with the outer vertices x, y and
z in anticlockwise order on the outer face. Let π = (v1(= x), v2(= y), ..., vn(= z))
be an ordering of all vertices of G. By Gk, 3 ≤ k ≤ n, we denote the subgraph
of G induced by v1 ∪ v2 ∪ ... ∪ vk and by Ck the outer cycle (i.e., the boundary
of the outer face) of Gk. We call π a canonical ordering of G with respect to
the outer edge (x, y) if for each index k, 3 ≤ k ≤ n, the following conditions are
satisfied [21].

(a) Gk is 2-connected and internally triangulated.
(b) If k+1 ≤ n, then vk+1 is an outer vertex of Gk+1 and the neighbors of vk+1

in Gk appears consecutively on Ck.

Assume that for some k ≥ 3, the outer cycle Ck is w1(= x), . . . , wp, wq(=
vk), wr . . . , wt(= y), where the vertices appear in clockwise order on Ck. Then we
call the edges (wp, vk) and (vk, wr) the left-edge and the right-edge of vk, respec-
tively. By L(vk) and R(vk) we denote the vertices wp and wr, respectively. Let
E∗ be the set of edges that does not belong to any Ck, 3 ≤ k ≤ n. Assume that
V ∗ = V − {v1, v2}. Then the graph Tπ = (V ∗, E∗) is a tree. The graph induced
by the right-edges (respectively, left-edges) of the vertices vk, 3 ≤ k ≤ n − 1, is

Acyclic Coloring with Few Division Vertices 89

also a tree, which we denote by T r
π (respectively, T l

π). In fact, Tπ, T
l
π and T r

π form
a “Schnyder’s realizer” of G [25]. By Gπ we denote the graph obtained from G
by removing all the edges of Tπ. Figure 1(a) illustrates π, Tπ and Gπ.

The existence of Schnyder’s realizer implies that there exists another canonical
ordering π′ = (u1(= z), u2(= x), ..., un(= y)) of G with respect to the outer edge
(z, x) such that the following properties hold [25].

(i) For each index k, 3 ≤ k ≤ n−1, the right-edge e of vertex uk in π′ coincides
with the left-edge of that vertex in π, and hence both Gπ′ and Gπ contains
e. On the other hand, the left-edge of vertex uk belongs to Gπ′ , but does
not belong to Gπ .

(ii) Gπ′ contains all the edges of G except the edges of T r
π .

Figure 1(b) illustrates π′ and T r
π . The vertex v6 in Figure 1(a) and the vertex

u3 in Figure 1(b) are the same, where the left-edge (v6, v1) of v6 coincides with
the right-edge (u3, u2) of u3.

(=) (=)(=)

(=) (=)

(=)(=) (=)(=)

(=) (=)

(=)
(a) (b) (d)(c)

u2

u6

u4 u5

u1

v1

v3

v4 v5

v6

v7

x xyv2

z z

u7 y

c2

c3

c3

c1

c1

c1

c1

c1

c3

c1
c2

c3
c3

c1

c3

c2

c2

u2

u6

u4 u5

u3

u1

v1

v3

v4 v5

v6

v7

x xyv2

z z

u7 y

c3

c1
c2

u3

c1
c2

c2

c1

Fig. 1. (a) A graph G and its canonical ordering π. The edges of Tπ are shown in
dashed lines. All the remaining edges belong to Gπ. (b) The canonical decomposition
π′ of G. The edges of T r

π are shown in dotted lines. All the remaining edges belong to
G′

π. (c) An acyclic 3-coloring of S. (d) An acyclic 3-coloring of S′. The division vertices
are shown in gray color.

3 Acyclic Colorings of Planar Graph Subdivisions

In this section we prove that every triangulated plane graph with n vertices has
a 1-subdivision with at most 2n − 5 (respectively, 1.5n − 3.5) division vertices
that is acyclically 3-colorable (respectively, 4-colorable). To achieve our results
we exploit the properties of canonical orderings of triangulated plane graphs.

Theorem 1. Every triangulated plane graph G with n ≥ 3 vertices has a 1-
subdivision G′ with at most 2n−5 division vertices that is acyclically 3-colorable.

Proof. Let x, y, z be the outer vertices of G in anticlockwise order on the
outer face. Let π = (v1(= x), v2(= y), . . . , vn(= z)) and π′ = (u1(= z), u2(=
x), . . . , un(= y)) be the canonical orderings of G as defined in Section 2. We use
Gπ and Gπ′ to construct the required 1-subdivision G′ and an acyclic 3-coloring
of G′.

90 D. Mondal et al.

We first construct a 1-subdivision S of Gπ and compute an acyclic 3-coloring
φ of S with the colors c1, c2, c3. We assign colors c1 and c2 to the vertices v1 and
v2, respectively. For 3 ≤ k ≤ n, we assign vk a color other than the colors of L(vk)
and R(vk). We then subdivide the right-edge (vk, R(vk)) with one division vertex
and assign the division vertex the color different from its neighbors. The resulting
1-subdivision of Gπ is the required subdivision S. It is now straightforward to
prove inductively using Remark 1 that the resulting coloring φ of S is an acyclic
3-coloring1. Observe that every edge e of T r

π contains a division vertex z in S
and z along with the two end vertices of e receive three different colors in φ.
This property also holds for the edge (y, z). Figure 1(c) illustrates S.

We then construct a 1-subdivision of Gπ′ and color that subdivision acycli-
cally with colors c1, c2, c3 without changing the colors assigned to the original
vertices by φ. For 3 ≤ k ≤ n − 1, we subdivide the left-edge of uk with one
division vertex z′. If col(uk) = col(L(uk)), then we color z′ with the color other
than the colors of uk and R(uk). Otherwise, we assign z′ the color different from
its neighbors. Finally, we subdivide the left-edge of un with a division vertex
z′′ and color it with the color of the division vertex on (y, z) in S. By Property
(i) of Gπ′ along with the computation of φ observe that col(uk) �= col(R(uk)).
Consequently, the coloring of z′ ensures that the path L(uk), z

′, uk, R(uk) con-
tains vertices of three different colors. This property holds when k = n, i.e.,
the path L(un), z

′′, un, R(un) contains vertices of three different colors. It is now
straightforward to prove inductively using Remark 1 that the coloring of the
resulting 1-subdivision S′ of Gπ′ is an acyclic 3-coloring, which we denote by φ′.
Figure 1(d) illustrates S′.

We now use S and S′ to construct G′. For each edge e in G, we subdivide
e if the corresponding edge in S or S′ contains a division vertex. The resulting
1-subdivision is the required G′. Since φ and φ′ do not contain any conflict, we
can color the vertices of G′ unambiguously. Suppose for a contradiction that the
coloring we compute for G′ contains a bichromatic cycle C. Since S′ is colored
acyclically, C must contain an edge e of G′ that does not correspond to any edge
in S′. By Property (ii) of Gπ′ , e must be an edge of T r

π . Recall that every edge e
of T r

π contains a division vertex z in S and z along with the two end vertices of
e receive three different colors in φ. Therefore, C cannot be a bichromatic cycle,
a contradiction.

Observe that each of the subdivisions S and S′ contains exactly n−2 division
vertices, where only the division vertex on (y, z) is common to both subdivisions.
Therefore, the number of division vertices in G′ is 2n− 5. �	

Theorem 2. Every triangulated plane graph G with n ≥ 3 vertices has a 1-
subdivision G′ with at most �3(n − 3)/2� ≈ 1.5n − 3.5 division vertices that is
acyclically 4-colorable.

1 Note that the graph induced by v1, v2 in Gπ is colored acyclically. Assume inductively
that this holds for the graph H , which is a subgraph of Gπ induced by v1, v2, . . . , vz,
where 2 < z < n. The graph induced by v1, v2, . . . , vz, vz+1 in Gπ is obtained by
adding a chain to H and the colors assigned to the vertices on the chain satisfy the
condition of Remark 1.

Acyclic Coloring with Few Division Vertices 91

Proof. Zhang and He [25] proved that G has a canonical ordering π such that
Tπ contains �(n− 3)/2� leaves. (The corresponding Schnyder’s realizer is known
as minimum Schnyder’s realizer.) We use π to compute G′.

We first construct a 1-subdivision H of Gπ and compute an acyclic 3-coloring
of H as follows. We assign colors c1 and c2 to the vertices v1 and v2, respec-
tively. For 3 ≤ k ≤ n, we assign vk a color other than the colors of L(vk) and
R(vk). If col(L(vk)) = col(R(vk)), then we subdivide the edge (vk, R(vk)) with
one division vertex and assign the division vertex the color different from its
neighbors. The resulting 1-subdivision is the required subdivision H . It is now
straightforward to prove inductively using Remark 1 that the resulting coloring
of H is an acyclic 3-coloring.

We now count the number of division vertices in H . Observe that for each
vk, 3 ≤ k ≤ n, if vk is a leaf in Tπ or k = n, then the edge (L(vk), R(vk)) exists.
Consequently, col(L(vk)) �= col(R(vk)) and we do not add any division vertex in
this situation. Since there are �(n − 3)/2� leaves in Tπ, the number of division
vertices in H is at most n− 2− �(n− 3)/2� − 1 = �(n− 3)/2�.

To construct G′, we add the edges of Tπ to H by subdividing each edge of
Tπ with one division vertex. We color all the new division vertices with color
c4. The resulting subdivision is the required subdivision G′ of G. Suppose for a
contradiction that the coloring we compute for G′ contains a bichromatic cycle
C. Since H is colored acyclically and Tπ is a tree, C must contain at least one
edge e from Tπ and at least one edge e′ from Gπ. Since the division vertex on
e is colored with c4, and the end vertices of e′ along with the division vertex
on e′ (if any) contribute two different colors to C other than c4, C cannot be a
bichromatic cycle, a contradiction.

Finally, the number of division vertices in G′ is at most n− 3+ �(n− 3)/2�=
�3(n− 3)/2� ≤ 1.5n− 3.5. �	

Since the canonical orderings of plane graphs used in Theorems 1 and 2 can be
computed in linear time [25], the proofs of these theorems lead us to linear-time
acyclic coloring algorithms.

Recently, Di Battista, Frati and Pach [4] have proved an O(n log16 n) and
O(n log logn) upper bound on volume of 3D straight-line and polyline draw-
ings of planar graphs, respectively. However, to achieve the O(n log log n) upper
bound they need to allow O(log logn) bends per edge. If we restrict each edge
to have at most one bend, then a similar technique yields an O(n log8 n) upper
bound on volume of 3D polyline drawings as follows.

Every graph G with acyclic chromatic number c and ‘queue number’ q has
‘track number’ t ≤ c(2q)c−1 [10]. The upper bound on the queue number of
planar graphs is O(log4 n) [4]. Since every planar graph G has a subdivision G′

with O(n) division vertices that is acyclically 3-colorable, the track number of
G′ is t = O(log8 n). Dujmović and Wood [9] proved that every c-colorable graph
with n vertices and track-number t has a 3D straight-line drawing with O(nc7t)
volume. Therefore, Theorems 1 and 2 imply the following.

92 D. Mondal et al.

Remark 2. Every planar graph G admits an O(n log8 n) volume (respectively,
an O(n log12 n) volume) 3D polyline drawing with at most one bend per edge and
at most 2n− 5 bends (respectively, 1.5n− 3.5 bends) in total.

4 Lower Bounds on the Number of Division Vertices

In this section we present a triangulated planar graphG with n vertices such that
any of its 1-subdivisions that is acyclically 3-colorable (respectively, 4-colorable),
contains at least 1.28n (respectively, 0.3n) division vertices.

In Figures 2(a) and (b) we exhibit two planar graphsM and N such that the
following lemma holds.

Lemma 1. Any 1-subdivision of M (respectively, N) that is acyclically acycli-
cally 3-colorable (respectively, 4-colorable), contains at least 9 (respectively, 3)
division vertices.

Lemma 1 can be verified by case study or by computer programs.
We use M and N along with a recursive graph structure Gk, k ∈ Z

+, to
construct the triangulated planar graphs that give rise to the lower bound. G1 is
the graph shown in Figure 2(c). A set of four edge disjoint empty triangles of G1

are shown in gray, which we call cells. Gk, k > 1, is constructed by inserting a
copy ofG1 into each cell ofGk−1 and then identifying the outer cycle of each copy
of G1 with the boundary of the corresponding cell. Figure 2(d) shows G2. The
number of cells and the number of vertices in Gk is 4k and 4k + 2, respectively.

(a) (b) (c) (d)

Fig. 2. Illustration for (a) M, (b) N , (c) G1, and (d) G2

Let Mk be the graph obtained by inserting a copy of M into each cell of Gk

and then identifying the outer cycle of each copy of M with the boundary of
the corresponding cell. Then the number of vertices in Mk is 4k + 2 + 6 · 4k =
7 · 4k+2. The copies ofM are edge disjoint inMk. Therefore by Lemma 1, any
1-subdivision of Mk that is acyclically acyclically 3-colorable contains at least
9 · 4k = (9t− 18)/7 division vertices, where t = 7 · 4k + 2.

Similarly, for any k ∈ Z+, we use N to construct a triangulated planar graph
with t′ = 4k + 2 + 9 · 4k vertices such that any of its 1-subdivisions that is
acyclically 4-colorable contains at least 3 · 4k = (3t′ − 6)/10 division vertices.

Acyclic Coloring with Few Division Vertices 93

Theorem 3. For every k ∈ Z+, there exists a triangulated planar graph with
t = 7 ·4k+2 vertices (respectively, t′ = 10 ·4k+2 vertices) such that any of its 1-
subdivisions, which is acyclically 3-colorable (respectively, 4-colorable), contains
at least (9t− 18)/7 (respectively, (3t′ − 6)/10) division vertices.

5 NP-Completeness

In this section we first prove that acyclic 4-colorability is NP-hard for the graphs
with maximum degree 5. We then prove that the problem remains NP-hard for
planar graphs with maximum degree 7.

5.1 Acyclic 4-Colorability of Graphs with Δ = 5

To prove the NP-hardness of acyclic 4-colorability for maximum degree 5, we use
the same technique as used in [18] to show the NP-hardness of 4-colorability for
graphs with maximum degree 7. The crucial step is to construct a graph with
low maximum degree such that in any acyclic 4-coloring of G a set of vertices of
G receives the same color.

We use the graph shown in Figure 3(a) for this purpose. We call the graph of
Figure 3(a) a bead and the vertices x, y the poles. A bead contains exactly one
vertex s of degree 4, which we call the center of the bead.

Remark 3. In any acyclic 4-coloring of a bead, the poles get different colors.

(b)(a)
y

u

x

s
v

tr

r s t s t v
u

v

x x

(c)
y y

(d)

c1

c3 c3 c3c4

c1 c2
c2

c1 c1

c3
c3c3 c4 c4

c4 c4 c4c3
c3 c3

c2c2

Fig. 3. Illustration for (a) a bead, (b) Gp, (c) a partial acyclic 4-coloring of G2, and
(d) an acyclic 4-coloring of Gp

For any i ∈ Z+, we now define a graph Gi with maximum degree 5 as follows.

(a) G1 is a bead.
(b) Gi, i > 1, is constructed with an ordered sequence B1, B2, . . . , Bi of i beads

by merging a vertex of degree two of Bj with a vertex of degree three of
Bj+1 and a vertex of degree three of Bj with a vertex of degree two of Bj+1,
where 0 < j < i. A construction for Gi is shown in Figure 3(b).

94 D. Mondal et al.

Observe that every bead in Gi contains exactly one vertex of degree 4. The
following lemma gives some properties of acyclic 4-colorings of Gi.

Lemma 2. For any p ∈ Z+, Gp contains an independent set I(Gp) of size

(p + 1)/2� such that every vertex of I(Gp) is a vertex of degree 4 and in any
acyclic 4-coloring of Gp, the vertices of I(Gp) receive the same color.

Proof. Let B1, B2, . . . , Bp be the ordered sequence of beads in Gp. It suffices to
prove that in any acyclic 4-coloring of Gp, p ≥ 3, the center of bead Bj and the
center of bead Bj+2 receive the same color, where 1 ≤ j ≤ p− 2. To prove this
claim we show that an acyclic 4-coloring of a single bead enforce the subsequent
beads to follow some color pattern.

Figure 3(a) depicts a drawing of a single bead B. By Remark 3, in any acyclic
4-coloring φ of B the poles x, y receive different colors. Let the color of the poles
be c1 and c2. Then all the vertices of B other than the poles are colored with c3
or c4. Without loss of generality assume that col(x) = c1, col(y) = c2, col(u) =
col(r) = col(t) = c3 and col(s) = c4, as shown in Figure 3(c). Then the color of
vertex v in φ can be c3 or c4.

Add another bead B′ to B to form a G2, as shown in Figure 3(c). Let the
poles of B′ be x′ and y′. If col(v) = c3, then both x′ and y′ must be colored with
c4 to avoid any bichromatic cycle. But by Remark 3, this partial coloring cannot
be extended to an acyclic 4-coloring of G2. Consequently, we have col(v) = c4,
which leaves us with the choice {col(x′), col(y′)} ⊆ {c1, c2}, col(t′) = c4 and
col(v′) = c3. It is now straightforward to verify that the resulting coloring is an
acyclic 4-coloring of G2.

Observe that each pole vertex in G2 receives a color from {c1, c2} and the
colors of the center vertices alternate between c3 and c4. Since Gp is obtained
from a repeated addition of beads, the center vertices of the beads Bj and Bj+2

receive the same color, where 1 ≤ j ≤ p − 2. Figure 3(d) illustrates an acyclic
4-coloring of Gp. �	

We now prove the NP-completeness of acyclic 4-colorability for graphs with
maximum degree 5. Observe that given a valid 4-coloring of the vertices of the
input graph, one can check in polynomial time whether the vertices of each pair
of color classes induces a forest. Therefore, the problem is in NP.

To prove the NP-hardness we reduce the NP-complete problem of deciding
acyclic 3-colorability of maximum degree 4 graphs [3] to the problem of deciding
acyclic 4-colorability of maximum degree 5 graphs. Let G be an instance of
acyclic 3-colorability problem, where G has n vertices and the maximum degree
of G is 4. Take a copy of G2n−1 and connect each vertex of G with a distinct
vertex of I(G2n−1) by an edge. Let the resulting graph with maximum degree 5
be G′, which is straightforward to construct in polynomial time. Using the proof
technique of Theorem 3 of [18] we can show that G admits an acyclic 3-coloring
if and only if G′ admits an acyclic 4-coloring. However, we give a stand-alone
proof in the following theorem.

Theorem 4. It is NP-complete to decide whether a graph with maximum degree
5 admits an acyclic 4-coloring.

Acyclic Coloring with Few Division Vertices 95

Proof. Given a valid 4-coloring of the vertices of the input graph, we can check in
polynomial time whether the vertices of each pair of color classes induces a forest.
Therefore, the problem of deciding 4-colorability is in NP. To prove the NP-
hardness we reduce the NP-complete problem of deciding acyclic 3-colorability
of maximum degree 4 graphs [3] to the problem of deciding acyclic 4-colorability
of maximum degree 5 graphs.

Let G be an instance of acyclic 3-colorability problem, where G has n vertices
and the maximum degree of G is 4. Take a copy of G2n−1 and connect each
vertex of G with a distinct vertex of I(G2n−1) by an edge. Let the resulting
graph with maximum degree 5 be G′, which is straightforward to construct in
polynomial time. By the linkers of G′ we denote these edges that connect the
vertices of I(G2n−1) with the vertices in G. We now show that G admits an
acyclic 3-coloring if and only if G′ admits an acyclic 4-coloring.

We first assume that G admits an acyclic 3-coloring with the colors c1, c2, c3
and then construct an acyclic 4-coloring of G′. For each vertex v in G, color
the corresponding vertex in G′ with col(v). We color G2n−1 acyclically with the
colors c1, c2, c3 and c4 such that the vertices of I(G2n−1) receive color c4. Which
can be done in polynomial time by Lemma 2. If the resulting coloring of G′ is
not acyclic, then there is a bichromatic cycle C. Since G and G2n−1 are colored
acyclically, C must contain a linker. Therefore, some vertex on C must be colored
with color c4. Since no two linkers have a common end vertex, C must contain
an edge e of G. The end vertices of e must have two of the three colors c1, c2, c3.
Consequently, C cannot be a bichromatic cycle, a contradiction.

We now assume that G′ admits an acyclic 4-coloring and then construct an
acyclic 3-coloring of G. By Lemma 2, the vertices in I(G2n−1) are colored with
the same color. Since each vertex in G is adjacent to some vertex in I(G2n−1),
the vertices of G are colored with three colors. Since G′ is colored acyclically,
the coloring of G is acyclic. �	

5.2 Acyclic 4-Colorability of Planar Graphs with Δ = 7

In this section we prove the NP-completeness of acyclic 4-colorability of planar
graphs with maximum degree 7. Ochem [22] proved the NP-hardness of acyclic
4-colorability of bipartite Planar Graphs with maximum degree 8. It does not
seem straightforward to adapt his proof to show the NP-hardness of acyclic
4-colorability of planar graphs with maximum degree 7, even if we relax the
‘bipartite’ condition and try to replace his vertex gadget with another vertex
gadget of low maximum degree that have the same functionality.

To define our vertex and edge gadgets, we first define some special graphs.
A jewel is a graph obtained from a bead by connecting the vertices of degree 2
with distinct vertices of degree 3, as shown in Figure 4(a). By the connectors of
a jewel J we denote the vertices of degree three in J . For any i ∈ Z+, a necklace
Ni is a graph with maximum degree 6, which is constructed with an ordered
sequence J1, J2, . . . , Ji of i jewels by merging a connector of Jq with a connector
of Jq+1, where 0 < q < i. We use the necklace N15 as the vertex gadget, as
shown in Figure 4(c) inside the dashed rectangle.

96 D. Mondal et al.

We call the graph of Figure 4(b) a link L, where the vertex w is the connector
of L and each of the vertices l,m, n is a tail of L. In a similar technique as we
used in Lemma 2, we can prove the following lemma.

Lemma 3. The following claims hold:

(a) Let φ be an acyclic 4-coloring of a necklace Ni, i ∈ Z+. Then all the connec-
tors receive the same color c in φ. Let c′, c′ �= c, be any color among the 4
colors used in φ. Then for any two connectors in Ni, there is a bichromatic
path with colors c′ and c in φ.

(b) In any acyclic 4-coloring of the link L, if col(l) = col(m) = col(n) = c
and there is no bichromatic path between any pair of the tails l,m, n, then
col(w) = c. Furthermore, there exists an acyclic coloring φ of L such that
there is no bichromatic path between any pair of the vertices w, l,m, n.

We use two copies of N11 along with six copies of the link to construct the
edge gadget. Figures 4(c)–(e) illustrate the edge gadget and its hypothetical
representation. We call the vertices w1, w2, w3 and w4 the free connectors of the
edge gadget. We now have the following theorem.

Theorem 5. It is NP-complete to decide whether a planar graph with maximum
degree 7 admits an acyclic 4-coloring.

Proof. In a similar way as in Theorem 4, we can observe that the problem is in
NP. To prove the NP-hardness we reduce the NP-complete problem of deciding
3-colorability of planar graphs with maximum degree 4 [8] to the problem of
deciding acyclic 4-colorability of planar graphs with maximum degree 7.

Let G be an instance of 3-colorability problem, where G has n vertices and
the maximum degree of G is 4. We now construct a graph G′ by replacing the
vertices and edges with appropriate gadgets, as illustrated in Figures 4(c)–(e).
For every vertex gadget X , we connect the edge gadgets incident to X by merging
some of the free connectors such that the resulting graph remains planar and
the maximum degree does not exceed 7. As a consequence, all the edge gadgets
become connected, i.e., removal of all the vertex gadgets leaves a connected
component. See Figures 4(f)-(g). Let the resulting planar graph be G′, which is
straightforward to construct in polynomial time. We now show that G admits a
3-coloring if and only if G′ admits an acyclic 4-coloring.

We first assume that G admits a 3-coloring with the colors c1, c2, c3 and
then construct an acyclic 4-coloring of G′. For every vertex v in G, we color
the connectors of the corresponding vertex gadget in G′ with col(v). We then
color all the remaining connectors with color c4. See Figures 4(h)-(i). Finally,
we color the remaining vertices of G′ according to the Figures 4(a)–(b). Suppose
for a contradiction that the resulting coloring contains a bichromatic path C. It
is straightforward to verify that every vertex gadget and edge gadget is colored
acyclically. Moreover, we have colored every link L in such a way that there is no
bichromatic path between the connector and any of the tails of L (See Lemma 3
and Figure 4(b)). Therefore, the cycle C must pass through at least one edge
gadget Y and its two incident vertex gadgets. Since the connectors of Y are

Acyclic Coloring with Few Division Vertices 97

y

u

x

s
v

tr

u v
m
n

l
w

(a) (b)

(h) (i)

G

(g)(f)

(d) (e)

a

(c)

b d

c

w

l

m

n

x y

a

b

z

d

g

h

i

j

k

p
q

e
f

G

w w
4

w1

1 1

c

2

c

4

c

c

w2

4

4
c

c

w2

4

2

3

c

w1

4

w
3

c

w
4

4

c
c c

c c
2 3

2

1

c c

1

c

4

c

3

Fig. 4. (a) A jewel. (b) A link. (c) An edge e. (d) A vertex and edge gadgets replacing
e. (e) A hypothetical representation of the gadgets. (f) A graph G. (g) G′, which is
obtained from G by first replacing the vertices and edges with appropriate gadgets and
then merging the free connectors as necessary. (h) A 3-coloring φ of G. (i) An acyclic
4-coloring of G′ that corresponds to φ, where a color associated with a vertex or edge
gadget denotes the color of the connectors in that gadget.

colored with c4 and the connectors of its two incident vertex gadgets are colored
with two different colors other than c4, the cycle C cannot be bichromatic, a
contradiction. We now assume that G′ admits an acyclic 4-coloring φ′ and then
construct a 3-coloring ofG. By Lemma 3, all the connectors in each vertex gadget
receive the same color in φ′. We assign the color associated to the connectors of a
vertex gadget in G′ to its corresponding vertex in G. Suppose for a contradiction
that the resulting coloring φ of G is either a 4-coloring or contains two vertices
with the same color that are adjacent in G.

By construction of G′, all the edge gadgets are connected through the connec-
tors. Therefore, the color of the connectors in all the edge gadgets must be the
same. Without loss of generality let that color be c4. Since every vertex gadget
has a connector that is adjacent to some connector in some edge gadget in G′,
no connector of the vertex gadgets can receive color c4. Therefore, φ contains
only three different colors. We are now left with the case when φ contains two
vertices with the same color z that are adjacent in G.

98 D. Mondal et al.

Let Y be the corresponding edge gadget and let X1,X2 be its incident vertex
gadgets. Figure 4(d) illustrates an example, where Y meets X1 at the connectors
a, b and X2 at the connectors c, d. If both the connectors of X1 and X2 are colored
with color z, then by Lemma 3 we can construct a bichromatic cycle through
a, b, c, d that is contained in the necklaces of X1,X2 and Y. Therefore, any two
connectors that lie in two different vertex gadgets must receive two different
colors if those vertex gadgets are adjacent in G′. Hence, no two adjacent vertices
of G can receive the same color in φ, a contradiction. �	

6 Conclusion

The question “What is the minimum positive constant c such that every trian-
gulated planar graph with n vertices has an acyclic k-coloring, k ∈ {3, 4}, with
at most cn division vertices?” was posed in the 22nd International Workshop
on Combinatorial Algorithms (IWOCA 2011) [20]. Although we proved that
1.28 ≤ c ≤ 2 and 0.3 ≤ c ≤ 1.5 for k = 3 and k = 4, respectively, there is a gap
between the upper bound and the lower bound leaving a scope for improvement.

Acknowledgment. We thank Bangladesh Academy of Sciences (BAS) for pro-
viding research travel grants to Md. Saidur Rahman for presenting the paper at
IWOCA 2012.

References

1. Albertson, M.O., Berman, D.M.: Every planar graph has an acyclic 7-coloring.
Israel Journal of Mathematics 28(1–2), 169–174 (1977)

2. Alon, N., McDiarmid, C., Reed, B.A.: Acyclic coloring of graphs. Random Struct.
Algorithms 2(3), 277–288 (1991)

3. Angelini, P., Frati, F.: Acyclically 3-Colorable Planar Graphs. In: Rahman, M. S.,
Fujita, S. (eds.) WALCOM 2010. LNCS, vol. 5942, pp. 113–124. Springer, Heidel-
berg (2010)

4. Di Battista, G., Frati, F., Pach, J.: On the queue number of planar graphs. In: 51th
Annual IEEE Symposium on Foundations of Computer Science (FOCS 2010), pp.
365–374 (2010)

5. Borodin, O.V., Ivanova, A.O.: Acyclic 5-choosability of planar graphs without ad-
jacent short cycles. Journal of Graph Theory 68(2), 169–176 (2011)

6. Borodin, O.V.: On acyclic colorings of planar graphs. Discrete Mathemat-
ics 306(10–11), 953–972 (2006)

7. Burnstein, M.I.: Every 4-valent graph has an acyclic 5-coloring. Soobsc Akad. Nauk
Grucin 93, 21–24 (1979)

8. Dailey, D.P.: Uniqueness of colorability and colorability of planar 4-regular graphs
are NP-complete. Discrete Mathematics 30(3), 289 (1980)

9. Dujmović, V., Wood, D.R.: Three-dimensional grid drawings with sub-quadratic
volume. In: Pach, J. (ed.) Towards a Theory of Geometric Graphs. Contemporary
Mathematics. American Mathematical Society (2004)

10. Dujmović, V., Morin, P., Wood, D.R.: Layout of graphs with bounded tree-width.
SIAM Journal of Computing 34, 553–579 (2005)

Acyclic Coloring with Few Division Vertices 99

11. Fertin, G., Godard, E., Raspaud, A.: Minimum feedback vertex set and acyclic
coloring. Inf. Process. Lett. 84(3), 131–139 (2002)

12. Gebremedhin, A.H., Tarafdar, A., Pothen, A., Walther, A.: Efficient computation
of sparse hessians using coloring and automatic differentiation. INFORMS Journal
on Computing 21, 209–223 (2009)

13. Grünbaum, B.: Acyclic colorings of planar graphs. Israel Journal of Mathemat-
ics 14(4), 390–408 (1973)

14. Hocquard, H.: Graphs with maximum degree 6 are acyclically 11-colorable. Inf.
Process. Lett. 111(15), 748–753 (2011)

15. Kostochka, A.V.: Acyclic 6-coloring of planar graphs. Diskretn. Anal. 28, 40–56
(1976)

16. Kostochka, A.V., Stocker, C.: Graphs with maximum degree 5 are acyclically 7-
colorable. Ars Mathematica Contemporanea 4(1), 153–164 (2011)

17. Mitchem, J.: Every planar graph has an acyclic 8-coloring. Duke Mathematical
Journal 41(1), 177–181 (1974)

18. Mondal, D., Nishat, R.I., Whitesides, S., Rahman, M. S.: Acyclic Colorings of
Graph Subdivisions. In: Iliopoulos, C.S., Smyth, W.F. (eds.) IWOCA 2011. LNCS,
vol. 7056, pp. 247–260. Springer, Heidelberg (2011)

19. Mondal, D., Nishat, R.I., Whitesides, S., Rahman, M.S.: Acyclic colorings of graph
subdivisions revisited. Journal of Discrete Algorithms (to appear, 2012)

20. Nishat, R.I.: Acyclic 3-colorings and 4-colorings of planar graph subdivisions,
http://www.iwoca.org/main_iwocaproblems.php (accessed July 2012)

21. Nishizeki, T., Rahman, M.S.: Planar Graph Drawing. World Scientific (2004)
22. Ochem, P.: Negative results on acyclic improper colorings. In: European Conference

on Combinatorics (EuroComb 2005), pp. 357–362 (2005)
23. Skulrattanakulchai, S.: Acyclic colorings of subcubic graphs. Information Process-

ing Letters 92(4), 161–167 (2004)
24. Wood, D.R.: Acyclic, star and oriented colourings of graph subdivisions. Discrete

Mathematics & Theoretical Computer Science 7(1), 37–50 (2005)
25. Zhang, H., He, X.: Canonical ordering trees and their applications in graph drawing.

Discrete & Computational Geometry 33(2), 321–344 (2005)

http://www.iwoca.org/main_iwocaproblems.php

Degree Associated Edge Reconstruction Number

S. Monikandan1,� and S. Sundar Raj2

1 Department of Mathematics, Manonmaniam Sundaranar University,
Tirunelveli - 627 012, India

2 Department of Mathematics, Vivekananda College,
Kanyakumari - 629 701, India

{monikandans,sundarrajvc}@gmail.com

Abstract. An edge-deleted subgraph of a graph G is called an ecard of
G. An ecard of G with which the degree of the deleted edge is also given is
called a degree associated ecard (or da-ecard) of G. The edeck (da-edeck)
of a graph G is its collection of ecards (da-ecards). The degree associated
edge reconstruction number, dern(G), of a graph G is the size of the
smallest collection of ecards of G uniquely determines G. The adversary
degree associated edge reconstruction number, adern(G), of a graph G
is the minimum number k such that every collection of k da-ecards of
G uniquely determines G. We prove that dern(G)= adern(G)=1 for any
regular graph G or any bidegreed graph G with exactly one vertex of
different degree, which differs by at least three. We determine dern and
adern for all complete bipartite graphs except K1,3. We also prove that
dern(G)≤ 2 and adern(G)≤ 3 for any complete 3-partite graph G with
n vertices in which all partite sets are equal in size as possible and a few
other results.

Keywords: reconstruction number, edge reconstruction number, card,
dacard.

1 Introduction

All graphs considered are nonempty, simple, finite and undirected. We shall
mostly follow the graph theoretic terminology of [1]. Graphs whose vertices all
have one of two possible degrees are called bidegreed graphs. A balanced complete
m-partite graph of order n, denoted by Tm,n, is one whose vertex set can be par-
titioned into m subsets V1, V2, ..., Vm (called partite sets) such that each vertex
in Vi is adjacent to every vertex in Vj if and only if i �= j and ||Vi |−|Vj || ≤ 1.
A tree T is a bistar if it contains exactly two vertices that are not endvertices.
The bistar with central vertices of degrees m+1 and n+1 is denoted by Dm,n.
A vertex-deleted subgraph or card G − v of a graph G is the unlabeled graph
obtained from G by deleting the vertex v and all edges incident to v. The or-
dered pair (d(v), G− v) is called a degree associated card or dacard of the graph
G, where d(v) is the degree of v in G. The deck (dadeck) of a graph G is its

� Research is supported by the DST, Govt. of India, Grant No. SR/S4/MS:628/09.

S. Arumugam and B. Smyth (Eds.): IWOCA 2012, LNCS 7643, pp. 100–109, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Degree Associated Edge Reconstruction Number 101

collection of cards (dacards). Following the formulation in [2], a graph G is re-
constructible if it can be uniquely determined from its deck.

For a reconstructible graphG, Harary and Plantholt [3] have defined the recon-
struction number rn(G) to be the minimum number of vertex-deleted subgraphs
which can only belong to its deck and not to the deck of any other graph, thus
uniquely identifying the graph G. Myrvold [4] has studied, for a reconstructible
graph G, the adversary reconstruction number, which is the minimum number
k such that every collection of k cards of G is not contained in the deck of any
other graph H , H �∼= G. For a reconstructible graph G from it’s dadeck, Ra-
machandran [6] has defined the degree associated reconstruction number drn(G)
of a graph G to be the size of the smallest subcollection of the dadeck of G which
is not contained in the dadeck of any other graph H , H �∼= G. The edge recon-
struction number, degree associated edge reconstruction number and adversary
degree associated edge reconstruction number of a graph are defined similarly
with edge deletions instead of vertex deletions.

The degree of an edge e, denoted by d(e), is the number of edges adjacent to
e. That is, if e = uv is an edge, then d(e) = d(u) + d(v) − 2. An edge-deleted
subgraph (or ecard) G− e of a graph G is the unlabeled graph obtained from G
by deleting the edge e. The ordered pair (d(e), G − e) is called a degree associ-
ated ecard or da-ecard of the graph G. The edeck (da-edeck) of a graph G is its
collection of ecards (da-ecards). For an edge reconstructible graph G, the edge
reconstruction number ern(G) is defined to be the size of the smallest subcollec-
tion of the edeck of G which is not contained in the edeck of any other graph
H , H �∼= G. For an edge reconstructible graph G from its da-edeck, the degree
associated edge reconstruction number of a graph G, denoted by dern(G), is the
size of the smallest subcollection of the da-edeck of G which is not contained
in the da-edeck of any other graph H , H �∼= G. The adversary degree associated
edge reconstruction number of a graph G, adern(G), is the minimum number k
such that every collection of k da-ecards of G is not contained in the da-edeck
of any other graph H , H �∼= G.

In this paper, we prove that dern(G) = adern(G) = 1 for any regular graph
G or any bidegreed graph G with exactly one vertex of different degree, which
differs by at least three. We also determine dern and adern for all complete bi-
partite graphs (except K1,3), paths, wheels and bistars. Finally, we prove that
dern(G) ≤ 2 and adern(G) ≤ 3 for any balanced complete 3-partite graph G.

2 dern and adern of Regular and Bidegreed Graphs

An s-blocking set of G is a family IF of graphs such that G /∈ IF and each
collection of s da-ecards of G will also appear in the da-edeck of some graph of
IF. A graph non-isomorphic to G but having s da-ecards in common with G is
called an s-adversary-blocking graph of G. The graphs K1,3 and K3 ∪K1 are
not edge reconstructible from their da-edeck. All other graphs G with n ≤ 4
vertices have dern(G)=adern(G)=1. The graphs K1,3 ∪ K1 and K3 ∪ 2K1 are
not edge reconstructible from their da-edeck. Most other graphs G with n = 5

102 S. Monikandan and S. Sundar Raj

Table 1. Graphs G on 5 vertices with dern(G) = 3 or adern(G) = 4

G dern(G) adern(G) 2-blocking set 3-adversary-
blocking graph

C4 ∪K1 3
� �

� �

�

K2,3 3
� �

� �

�

K2,3 − e 4 � � � �

�

� � � �

�

� �

� �

�

� �

� �

�

4

4

4 K2,3 − e

� �

� �

�

� �

� �

�

vertices have dern(G)=adern(G)=1. The exceptions are given in Table 1; the
dashed edges of graphs given in the table denote the edges correspond to the
common da-ecards.

A generator of a da-ecard (d(e), G− e) of G is a graph obtained from the da-
ecard by adding a new edge which joins two nonadjacent vertices whose degree
sum is d(e)− 2 and it is denoted by H(d(e), G− e).

For a graph G, to prove dern(G) = k (adern(G) = k), we proceed as follows.

(i) First find the da-edeck of G.
(ii) Determine next all possible generators of every da-ecard of G.
(iii) Finally, show that at least one generator other than G (every generator

other than G) has at most k− 1 da-ecards in common with those of G, and
that at least one generator has precisely k − 1 da-ecards in common with
those of G.

Theorem 1. If G is a bidegreed graph with exactly one vertex of different degree,
which differs by at least three, then dern(G) = adern(G) = 1.

Degree Associated Edge Reconstruction Number 103

Proof. Let G be a bidegreed graph of order n; let G have n−1 vertices of degree

r and one vertex of degree s. Then G has (n−1)r−s
2 da-ecards with associated

edge degree 2r − 2 and s da-ecards with associated edge degree r + s− 2. If we
join the vertices, which are the ends of the removed edge of the graph G, in the
da-ecard (2r − 2, G − e), then H(2r − 2, G − e) ∼= G. To get a generator non-
isomorphic to G, at least one of the two vertices to be joined must be different
from these two ends. But then the degree sum of the two vertices to be joined is
one of the four values namely 2r, 2r−1, r+s and r+s−1. Therefore, any graph
non-isomorphic to G does not have the da-ecard taken as one of its da-ecards.
Similarly, it can be easily proved that any da-ecard of G with associated edge
degree r + s− 2 uniquely determines G, which completes the proof.

Theorem 2. If G is an r-regular non-empty graph, then adern(G) =
dern(G) = 1.

Proof. Each da-ecard of G is of the form (2r− 2, G− e). If we join the vertices,
which are the ends of the removed edge of the graph G, in the da-ecard (2r −
2, G−e), then H(2r−2, G−e) ∼= G. To get a generator non-isomorphic to G, at
least one of the two vertices to be joined must be different from these two ends.
But then the degree sum of the two vertices to be joined is either 2r − 1 or 2r.
Therefore, any graph non-isomorphic to G does not have the da-ecard taken as
one of its da-ecards. Thus, dern(G) = 1 and adern(G) = 1.

Corollary 1. If G ∼= Kn or Cn, then adern(G) = dern(G) = 1 for n > 1.

We now determine dern and adern for paths, wheels, bistars and complete bi-
partite graphs.

Theorem 3. If Pn is the path with n vertices, then dern(Pn) = 1 and

adern(Pn) =

{
1 if n ≤ 4

3 if n > 4
.

Proof. Since all graphs G (except K1,3 and K3 ∪K1) of order at most four have
dern(G) = adern(G) = 1 (Table 1), we assume that n > 4. Clearly, the generator
H(1, P1 ∪ Pn−1) is isomorphic to Pn. The da-ecard of Pn with associated edge
degree 2 has two components. If we join the vertices of different components,
then the generator is isomorphic to Pn. If we join the vertices of same component
(this is possible for n > 4), then the generator has two da-ecards in common
with those of Pn with associated edge degree 2.

Theorem 4. If Wn is the wheel with n (≥ 4) vertices, then dern(Wn) = 1 and

adern(Wn) =

{
3 if n = 6

1 otherwise
.

Proof. For n = 4, the wheel Wn is isomorphic to Kn and adern(Wn) =
dern(Wn) = 1. So, let us take that n ≥ 5. Then there are n − 1 isomorphic
da-ecards of the form (4,Wn − e) and there are n − 1 isomorphic da-ecards of

104 S. Monikandan and S. Sundar Raj

the form (n,Wn − e). There is one vertex of degree n − 2 (≥ 3), n − 2 vertices
of degree 3, and one vertex of degree 2 in the da-ecard (n,Wn − e). Since the
(n − 2)-vertex is adjacent to every other vertex except the 2-vertex, the two
vertices to be joined must be different from the (n − 2)-vertex. Therefore, the
sum of degrees of the two vertices to be joined is 5 or 6. Thus, only for n = 5
or = 6, a graph non-isomorphic to Wn may have the da-ecard taken as one of
its da-ecards. Therefore, it suffices to consider these two cases. When n = 5,
there is only one 3-vertex non-adjacent to the 2-vertex in the da-ecard taken.
If we join these two vertices, then H(n,Wn − e) is isomorphic to Wn. When
n = 6, the only graphs that have exactly one and two da-ecards in common
with those of Wn are, respectively, H1 and H2 shown in Fig. 1. There are only
one (n − 1)-vertex, two 2-vertices and n − 3 (≥ 2) vertices of degree 3 in the
da-ecard (4,Wn − e). Here the sum of degrees of the two 2-vertices is 4 and the
generator H(4,Wn − e) is isomorphic to Wn. The degree sum of all other two
vertices is greater than 4. Hence, for n ≥ 5, any graph non-isomorphic to Wn

does not have the da-ecard in common with that of Wn with associated edge
degree 4, which completes the proof.

� �

� �

�

�

� �

� �

�

�

H1 H2

Fig. 1. The graphs H1 and H2

Theorem 5. For a bistar Dm,n (1 ≤ m ≤ n), dern(Dm,n) = 1 and

adern(Dm,n) =

{
3 if n = m+ 2,m = 2 or n = 2

1 otherwise
.

Proof. Denote the bistar Dm,n simply by G. We consider two cases according to
whether m = n or not.

Case 1. m = n
The graph G has 2n isomorphic da-ecards with associated edge degree n and
one da-ecard with associated edge degree 2n. The da-ecard (n,G − e) has only
one isolated vertex. To get a generator non-isomorphic to G, join two vertices
different from the isolated vertex; this is possible only for n = 2. When n = 2,
two endvertices are joined. If the two endvertices considered have a common
neighbor in the da-ecard (n,G− e), then the generator H(n,G− e) has only one
da-ecard in common with that of G with associated edge degree 2; Otherwise,
the generator has exactly two da-ecards in common with those of G with asso-
ciated edge degree 2.

Degree Associated Edge Reconstruction Number 105

The da-ecard (2n,G − e) has two isomorphic components, each of which is
K1,n. If we join the two vertices of degree n, then the generator H(2n,G − e)
is isomorphic to G. If at least one vertex considered in the da-ecard has degree
different from n, then the degree sum of the two vertices is less than 2n. Thus,
no graph non-isomorphic to G has any da-ecard in common with that of G with
associated edge degree 2n. Thus,

dern(Dn,n) = 1 and adern(Dn,n) =

{
3 if n = 2

1 otherwise
.

Case 2. m �= n
The bistar G has m isomorphic da-ecards with associated edge degree m,n
isomorphic da-ecards with associated edge degree n, one da-ecard with associated
edge degree m + n. For m = 2 only, there exists a graph non-isomorphic to G
having maximum of two da-ecards in common with those of G with associated
edge degree 2 as similar to the case of m = n. The da-ecard (n,G − e) has
an isolated vertex. Suppose the da-ecard has a unique n-vertex. If the isolated
vertex is joined with the n-vertex, then H(n,G− e) is isomorphic to G. Suppose
the da-ecard has two n-vertices (This is possible when m+1 = n). If the isolated
vertex is joined with any n-vertex, then the generator is isomorphic to G. To get
a generator non-isomorphic to G, join two vertices different from the isolated
vertex. This is possible only for two cases, namely n = 2 and n = m+ 2. When
n = 2 (here m = 1 as m < n), the two endvertices are joined. The generator
has two components, one of which is a 4-cycle and the other one is an isolated
vertex. The da-ecard corresponding to each edge of the generator is a da-ecard
of G with associated edge degree 2. Thus, the generator has two da-ecards in
common with those of G with associated edge degree 2. When n = m + 2, an
endvertex is joined with the vertex of degreem+1. The generator is disconnected
with two components, one of which is an isolated vertex and the other has a
triangle. Since no da-ecard of G has a triangle, the da-ecard of the generator
corresponding to the edge of the triangle can only be in common with that of
G. Here the da-ecards of the generator corresponding to the two edges other
than the edge whose ends are of equal degree in the generator are in common
with those of G with associated edge degree n. It is clear that no graph non-
isomorphic to G has a da-ecard in common with that of G with associated edge
degree m+ n. Hence,

dern(Dm,n) = 1 and adern(Dm,n) =

{
3 if n = m+ 2,m = 2 or n = 2

1 otherwise
.

Theorem 6. If G = Km,n, 1 ≤ m ≤ n, then

adern(G) = dern(G) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
3 if m = 2, n = 3

2 if m ≥ 3, n = m+ 1

2 if m ≥ 2, n = m+ 2

1 otherwise (except when m = 1 and n = 3)

.

106 S. Monikandan and S. Sundar Raj

Proof. Since all the da-ecards are isomorphic, adern(Km,n) = dern(Km,n). Let
(A,B) be the bipartition of G, where |A| = m and |B| = n. The graph G has
mn da-ecards, all are isomorphic to (m+ n− 2,Km,n − e). In any generator of
the da-ecard (m+n−2,Km,n−e), it holds that m+n−2 = 2n−1,m+n−2 =
2n,m+ n− 2 = 2m− 1 or m+ n− 2 = 2m. Since m ≤ n, it reduces to the two
cases namely, n = m+ 1 or n = m+ 2.

Case 1. n = m+ 1
In this case, a vertex of degree m in B is joined with the vertex of degree m− 1
in B. Clearly, m ≥ 2 (as otherwise the generator is isomorphic to G). Also, if
m = 2, then G is isomorphic to K2,3 and dern(G) = 3 (Table 1). Since all the
da-ecards of K2,3 are isomorphic, it follows that dern(G)= adern(G) = 3. Thus,
we assume that m ≥ 3. Now the generator has m− 1 (≥ 2) triangles with each
triangle has the newly added edge as the base. Therefore, removal of the newly
added edge can only give a da-ecard in common with that of G. Thus, the gen-
erator has only one da-ecard in common with that of G.

Case 2. n = m+ 2
In this case, the two vertices of degree m in B are joined in the da-ecard taken.
If m = 1, then n = 3, which is excluded in the hypothesis of the theorem. So,
we assume that m ≥ 2. Now, the generator has m (≥ 2) triangles such that each
triangle has the newly added edge as the base. Therefore, removal of the newly
added edge can only give a da-ecard in commonwith that ofG. Thus, the generator
has only one da-ecard in common with that of G, which completes the proof.

3 dern and adern of Balanced Complete Tripartite
Graphs

Theorem 7. (i) For n = 3m, dern(T3,n) = adern(T3,n) = 1.

(ii) For n = 3m+ 1, dern(T3,n) =

{
1 if m = 1

2 if m ≥ 2
.

and adern(T3,n) =

⎧⎪⎨⎪⎩
1 if m = 1

3 if m = 2

2 if m ≥ 3

.

(iii) For n = 3m+ 2, dern(T3,n) = 1 and adern(T3,n) =

⎧⎪⎨⎪⎩
1 if m = 1

3 if m = 2

2 if m ≥ 3

.

Proof. We denote T3,n simply by G; we consider three cases depending on the
fact that n ≡ 0, 1, 2(mod 3).

(i) n ≡ 0 (mod 3)

In this case, n = 3m for some m and the graph is a 2m-regular graph, and hence,
by Theorem 2, dern(T3,n) = 1 and adern(T3,n) = 1.

Degree Associated Edge Reconstruction Number 107

(ii) n ≡ 1 (mod 3)

Now n = 3m+1 for some integerm. Let (A,B,C) be the tripartition of G, where
|A| = |C| = m and |B| = m+1. The graph has 2m2 +2m isomorphic da-ecards
with associated edge degree 4m−1 and m2 isomorphic da-ecards with associated
edge degree 4m. When m = 1, the generator H(4m,G− e) is isomorphic to G.
So, we take that m ≥ 2. If we join the two vertices of degree 2m, each one is
adjacent to none of the m − 1 vertices of degree 2m + 1, then the generator is
isomorphic to G. To get a graph non-isomorphic to G, join two vertices different
from these vertices. We join two vertices of degree 2m from set B and let the
newly added edge be x. Clearly the da-ecard of the generator H(4m,G − e)
corresponding to the edge x is a da-ecard of G with associated edge degree 4m.
Any other da-ecard of H corresponding to the edge of degree 4m is not a da-
ecard of G, since in the da-ecard of G, there are two non-adjacent 2m-vertices
having no common (2m+ 1)-neighbor, whereas the da-ecard of H(4m,G− e) is
not so. Also no da-ecard of H corresponding to the edge of degree 4m − 1 is a
da-ecard of G, since the (2m− 1)-vertex of the da-ecard of G is adjacent to each
of the (2m+ 1)-vertices of the da-ecard, whereas the da-ecard of H(4m,G− e)
is not so. Thus, for m ≥ 2, H(4m,G− e) has only one da-ecard in common with
that of G with associated edge degree 4m.

When m = 1, the generator H(4m − 1, G − e) is isomorphic to G. When
m ≥ 2, the da-ecard (4m − 1, G − e) has only one (2m − 1)-vertex and it is
adjacent to every (2m+ 1)-vertex in the da-ecard and all the m+ 1 vertices of
degree 2m induce a K1,m. If we join the unique (2m − 1)-vertex with the 2m-
vertex, which is non-adjacent to exactly m−1 vertices of degree 2m+1, then the
generator is isomorphic to G. To get a generator non-isomorphic to G, join the
(2m−1)-vertex with a 2m-vertex different from the vertex selected above. When
m = 2, the generator H(4m− 1, G− e) (Fig. 2; the dashed edges correspond to
the common da-ecards) has exactly two da-ecards, corresponding to the newly
added edge and an edge adjacent with this edge, in common with those of G
with associated edge degree 4m − 1. Any other da-ecard corresponding to the
edge of degree 4m− 1 contains a (2m− 1)-vertex adjacent with a 2m-vertex or
all the 2m-vertices of the da-ecard are mutually adjacent, but which does not
hold in the da-ecard of G.

� �

� �

� �

�

Fig. 2. The generator H(4m− 1, G− e)

108 S. Monikandan and S. Sundar Raj

When m > 2, the generator has only one da-ecard in common with that of
G with associated edge degree 4m − 1. Since any graph non-isomorphic to G
having a da-ecard in common with that of G with associated edge degree 4m
does not have any da-ecard in common with that of G with associated edge
degree 4m− 1, it follows that any graph non-isomorphic to G having a da-ecard
in common with that of G with associated edge degree 4m − 1 cannot have
any da-ecard in common with that of G with associated edge degree 4m. Hence

dern(T3,n) =

{
1 if m = 1

2 if m ≥ 2
and adern(T3,n) =

⎧⎪⎨⎪⎩
1 if m = 1

3 if m = 2

2 if m ≥ 3

.

(iii) n ≡ 2 (mod 3)
Here n = 3m + 2 for some integer m. Let (A,B,C) be the tripartition of the
graph, where |A| = |C| = m + 1 and |B| = m. The graph has m2 + 2m + 1
isomorphic da-ecards with associated edge degree 4m and 2m2+2m isomorphic
da-ecards with associated edge degree 4m+1. Clearly, the generatorH(4m,G−e)
is isomorphic to G, since in the da-ecard exactly two non-adjacent vertices with
each one is of degree 2m and all other vertices are of degree greater than 2m.
Thus, it follows that no graph non-isomorphic to G has a da-ecard in common
with that of G with associated edge degree 4m. ...(E1)

If m = 1, then the generator H(4m+ 1, G− e) is isomorphic to G.
Whenm = 2, there is only one 2m-vertex in the da-ecard (4m+1, G−e) and

all the (2m + 1)-vertices induce a tripartite subgraph
Km,m−1,m+1. Let D,E and F denote the set of m,m − 1 and m + 1 vertices
in the tripartition of the induced subgraph, respectively. Then the 2m-vertex is
adjacent to all the vertices of the da-ecard (4m + 1, G − e) except the vertices
of E and F . The unique (2m+2)-vertex in the da-ecard taken is adjacent to all
the vertices of the da-ecard except the vertices of E. If we join the 2m-vertex
with the (2m + 1)-vertex, which is non-adjacent to that (2m + 2)-vertex, then
the generator H(4m + 1, G − e) is isomorphic to G. If we join the 2m-vertex
with any other (2m+1)-vertex, then the generator has exactly two da-ecards in
common with those of G with associated edge degree 4m+ 1.

If m ≥ 3, then there is only one 2m-vertex in the da-ecard (4m+1, G− e)
and all the (2m + 1)-vertices induce a tripartite subgraph Km,1,m+1. Let D,E
and F denote, respectively, the set of m, 1 and m+1 vertices in the tripartition
of the induced subgraph. The 2m-vertex is adjacent to all the vertices of the
da-ecard (4m+ 1, G− e) except the vertices of E and F . Each (2m+ 2)-vertex
is adjacent to no other (2m + 2)-vertex. Also each (2m + 2)-vertex is adjacent
to every other vertex except the (2m+1)-vertex of the set E. If we join the 2m-
vertex with the (2m+ 1)-vertex, non-adjacent to each of the (2m+ 2)-vertices,
then H(4m + 1, G − e) is isomorphic to G. If we join the 2m-vertex with any
other (2m + 1)-vertex, then the generator has only one da-ecard in common
with that of G with associated edge degree 4m+ 1 corresponding to the newly
added edge. By (E1), when m ≥ 2, these generators (non-isomorphic to G) have

Degree Associated Edge Reconstruction Number 109

no da-ecard in common with that of G with associated edge degree 4m. Hence,

dern(T3,n)= 1 and adern(T3,n)=

⎧⎪⎨⎪⎩
1 if m = 1

3 if m = 2

2 if m ≥ 3

.

4 Conclusion

It follows, from their definitions, that dern(G) ≤ min {ern(G), adern(G)}. How-
ever, ern(G) and adern(G) are not comparable in general. For instance, adern(C4∪
2K1) = 3 = ern(C4 ∪ 2K1), adern(K1,4 ∪ K1) = 1 < 2 = ern(K1,4 ∪K1) and
adern(K3 ∪ K2 ∪ K1) = 4 > 2 = ern(K3 ∪ K2 ∪ K1). Moreover, if all the da-
ecards of a graph G are isomorphic, then it is clear that dern(G) = adern(G).
But the condition is not necessary. For instance, the graph G = P4 ∪ 2K1 has
non-isomorphic da-ecards and dern(G)=adern(G)=1.

Acknowledgment. We are thankful to anonymous referees for their many
valuable comments which largely improved the style of the paper and the
proof of Theorem 7. The work reported here is supported by the Project
SR/S4/MS:628/09 awarded to the first author by the Department of Science
and Technology, Government of India, New Delhi.

References

1. Harary, F.: Graph Theory. Addison Wesley, Mass. (1969)
2. Harary, F.: On the reconstruction of a graph from a collection of subgraphs. In:

Fieldler, M. (ed.) Theory of Graphs and its Applications, pp. 47–52. Academic
Press, New York (1964)

3. Harary, F., Plantholt, M.: The graph reconstruction number. J. Graph Theory 9,
451–454 (1985)

4. Myrvold, W.J.: The ally and adversary reconstruction problems. Ph.D. Thesis, Uni-
versity of Waterloo (1988)

5. Myrvold, W.J.: The ally-reconstruction number of a disconnected graph. Ars Com-
bin. 28, 123–127 (1989)

6. Ramachandran, S.: Degree associated reconstruction number of graphs and di-
graphs. Mano. Int. J. Mathematical Sciences 1, 41–53 (2000)

7. Ramachandran, S.: The Reconstruction number for Ulam’s Conjecture. Ars Com-
bin. 78, 289–296 (2006)

8. Barrus, M.D., West, D.B.: Degree-associated reconstruction number of graphs. Dis-
crete Math. 310, 2600–2612 (2010)

9. Molina, R.: The Edge Reconstruction Number of a Disconnected Graph. J. Graph
Theory 19(3), 375–384 (1995)

Touring Polygons: An Approximation Algorithm

Amirhossein Mozafari and Alireza Zarei

Department of Mathematical Sciences
Sharif University of Technology

Abstract. In this paper, we introduce a new version of the shortest path
problem appeared in many applications. In this problem, there is a start
point s, an end point t, an ordered sequence S=(S0 = s, S1, ..., Sk, Sk+1 =
t) of sets of polygons, and an ordered sequence F=(F0, ..., Fk) of simple
polygons named fences in �2 such that each fence Fi contains polygons
of Si and Si+1. The goal is to find a path of minimum possible length
from s to t which orderly touches the sets of polygons of S in at least
one point supporting the fences constraints. This is the general version
of the previously answered Touring Polygons Problem (TPP). We prove
that this problem is NP-Hard and propose a precision sensitive FPTAS
algorithm of O(k2n2/ε2) time complexity where n is the total complexity
of polygons and fences.

Keywords: Computational geometry, approximation algorithm, tour-
ing polygons, minimum link path.

1 Introduction

Finding a shortest path is a basic subroutine in computational geometry and
appears in many applications in mathematics and engineering. There are sev-
eral types of shortest path problems. In its most conventional form, we have a
weighted graph and the problem is to obtain the shortest path (path of mini-
mum weight) from a source node to a destination[5]. In this paper, we introduce
a special version of the shortest path problem in which we have an ordered set
S=(S0, ..., Sk+1) of sets of polygons, a start point s, an end point t, and an or-
dered set of polygonal fences F=(F0, ..., Fk) in $2, such that Fi contains Si and
Si+1. In this notation we assume that S0 is the start point s and Sk+1 is the
end point t. The goal is to find the shortest path P (path of minimum length)
from s to t such that P intersects at least one point of a polygon from each
set Si according to their order in such a way that the portion of this path from
Si to Si+1 lies inside Fi. This problem can be considered as a general version
of the known Touring Polygons Problem (TPP)[6]. In TPP we have only one
polygon in each set Si. We denote the general version in which each Si may
contain more than one polygon by TMP (Touring Multiple-polygons Problem).
Fig. 1 shows an example of TPP and Fig. 2 shows an example of TMP. In the
unconstrained version of TMP and TPP, denoted by UTMP and UTPP respec-
tively, all fences Fi are assumed to be the whole plane which means that there

S. Arumugam and B. Smyth (Eds.): IWOCA 2012, LNCS 7643, pp. 110–121, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Touring Polygons: An Approximation Algorithm 111

Fig. 1. An example of the TPP with polygons (P1, P2, P3) and fences (F0, F1, F2, F3)

Fig. 2. The TMP with three sets of polygons ({P1,1, P1,2}, {P2,1}, {P3,1, P3,2, P3,3})
and fences (F0, F1, F2, F3)

is no constraint for the path from Si to Si+1. This problem has applications in
several well-known problems in computational geometry including Watchman
Route[4,11], Zookeeper[9], Safari[12], and Part Cutting[7] problems. Dror et.al
[6] proved that TPP is NP-Hard when the polygons are non-convex and allowed
to intersect each other. This implies that our problem is also NP-Hard when
the polygons in S can intersect each other. In this paper, we prove that TMP is
NP-Hard even if the polygons are disjoint and convex.

In this paper, we propose a precision sensitive ε-approximation algorithm for
the TMP which is based on solving the shortest path problem on a graph built
on the vertices of the polygons and some extra vertices put on the boundaries
of these polygons. In the rest of this paper, in Section 2 we propose a precision
sensitive FPTAS algorithm for TMP when the polygons are disjoint. In Section
3, we analyse the efficiency of this algorithm and show that the running time of
this algorithm is the same as the running time of the best known approximation
algorithm for TPP. In Section 4 we extend this algorithm to the overlapped
situations. In Section 5, we prove the NP-Hardness of the TMP.

112 A. Mozafari and A. Zarei

2 The FPTAS Algorithm

In this section we assume that consecutive sets of polygons Si and Si+1 are
disjoint from each other. This means that for all Pr ∈ Si and Pq ∈ Si+1 we have
Pr ∩Pq = ∅. Recall that we set S0 as a set that consists of the single point s and
Sk+1 as a set that has the single point t. In Section 4, we extend this algorithm
to the overlapped case.

To obtain an ε−approximation solution for this problem we use the pseudo
approximation technique (PAT) described in [2]. The sketch of this method is
as follows. If X is the space of all solutions of a problem and x∗ ∈ X is an
optimal solution, X is classified into subsets XR ⊆ X for different values of a
real parameter R ≥ 0 which is called the search radius. This classification must
satisfy three properties: (1) if R1 ≤ R2, then XR1 ⊆ XR2 , (2) there exists R

∗ ≥ 0
such that XR∗ = X . (3) if length(x∗) ≤ R then length(x∗

R) = length(x∗) where
x∗
R is an optimal solution in XR. Having these properties, by constructing a

pseudo approximation algorithm for the search radius R and iteratively running
it for different values of R, an accurate ε−approximation algorithm is obtained.
To be able to use this method the pseudo approximation algorithm must have
this property that for each R ≥ 0 and fixed ε ≥ 0

length(xapr
R) ≤ length(x∗

R) + εR,

where xapr
R is the solution obtained by the pseudo approximation algorithm for

the search radius R.
Now, we describe how to use PAT for solving the TMP. Denote by X the set

of all solutions (acceptable paths) in our problem and use a search radius R ≥ 0
to classify all solutions in X . We define XR as the set of all solutions which
are completely inside the disk of radius R with center s. Also, we denote x∗ as
an optimal solution (solution with minimum length) in X and x∗

R an optimal
solution in XR (note that if XR = ∅ we set length(x∗

R) =∞).
In order to use PAT, we need to check the three properties that the definition

of the search radius must satisfy. It is simple to check that these properties are
satisfied by the definition of our search radius and the classification method.
Therefore, if we can obtain a pseudo approximation algorithm, we can use the
PAT method to obtain an ε−approximation algorithm.

For fixed R > 0, we restrict our problem to this disk, i.e., we remove all parts
of polygons and fences which are outside this disk. In this restriction, an edge
e of a polygon is replaced by e ∩ DR(s) where DR(s) is the disk of radius R
and center s. We put �4k/ε� points on each edge of polygons and divide each
edge into �4k/ε� + 1 fragments of equal length. The length of each fragment
is at most 2Rε/4k (we call these points as extra points). We build a directed
weighted visibility graph, DVG, which its vertex set is the set of vertices of
polygons and fences and the extra points. An edge −→uv exists in DVG if and only
if these conditions holds:

Touring Polygons: An Approximation Algorithm 113

1. u corresponds to a vertex or extra point of Si or a vertex of fence Fi.
2. v corresponds to a vertex or extra point of Si+1 or a vertex of fence Fi.
3. The corresponding points of u and v are visible from each other with respect

to fence Fi, i.e.,their connecting segment lies completely inside fence Fi.

The weight of an edge −→uv is set to be the distance between the corresponding
points of its vertices. We run a shortest path algorithm like Dijkstra[5] from s
to t in this directed graph to obtain the path xapr

R .

Lemma 1. If xapr
R exists, it belongs to XR.

Proof. According to its construction, all vertices of DVG lie inside DR(s).
Therefore, the path xapr

R entirely lies inside this disk. To complete the proof,
We must show that xapr

R is an acceptable path, i.e., it starts from s, ends at t,
and intersects at least one polygon in each Si in their correct order and satisfies
the fences constraints. Trivially, xapr

R starts from s and ends at t. Assume that
< pr, pr+1, ..., pq > is a sub-path in xapr

R where pr and pq are respectively the
first vertices of xapr

R belonging to the polygon sets Si and Si+1 for 0 ≤ i ≤ k.
According to the direction of the edges in DVG, the outward edges from pr is
only to Fi and Si+1 vertices, and the inward edges to pq is restricted to the
vertices of Fi and Si. Therefore, the vertices between pr+1 and pq−1 in path
< pr, pr+1, ..., pq > only belong to the vertices of Fi (note that it is possible
that pr and pq are directly connected by an edge which means that the path
< pr, ..., pq > is a single edge). Moreover, each edge −→uv which its start vertex
belongs to Si or Fi and its end vertex belongs to Fi or Si+ 1 follows the visi-
bility constraints of fence Fi. This implies that the sub-path < pr, ..., pq > lies
inside the fence Fi. Finally, we prove by contradiction that path Xapr

R intersects
the polygon sets Si according to their order. Assume that i is the smallest value
which Si polygons are not intersected by xapr

R just after entering a polygon in
Si−1. According to the direction of the edges in DVG, after entering a poly-
gon in Si−1 the path xapr

R can only enter a vertex of Fi−1 or Si and to leave
the vertices of Fi−1 it must enter a vertex of Si. Therefore, if x

apr
R ends at t, it

must pass through a vertex of Si after leaving Si−1. �

Now, we analyse the relation between xapr
R and x∗

R. We can locate a sequence
of pi points on x∗

R where pi is the first intersection point of x∗
R and the set of

polygons Si after visiting the polygon sets S1, ..., Si−1. Here, p0 and pk+1 are
respectively the start point s and the end point t. Therefore, the optimal path
x∗
R can be divided into k sub-paths which the i’th sub-path (0 ≤ i ≤ k) starts

from a point pi ∈ Si and ends at a point pi+1 ∈ Si+1. These sub-paths are
denoted by x∗

R(i) (Fig. 3).
Each point pi lies on the boundary of a polygon in Si. This boundary point

may be a vertex of a polygon in Si, an extra point on an edge or a point on a
fragment of length at most Rε/2k. According to the definition of pi points, each
sub-path x∗

R(i) lies inside fence Fi. Moreover, each sub-path x∗
R(i) lies inside a

geometric structure called hourglass defined as bellow.

114 A. Mozafari and A. Zarei

Fig. 3. Sub-path x∗
R(i)

Assume that bs and be are respectively the fragments of length at most Rε/2k
containing the points pi and pi+1 of the sub-path x∗

R(i). Note that in some cases
bs or be may be a single point. The corresponding hourglass of x∗

R(i) is the region
defined by these segments and the two shortest paths connecting the endpoints
of bs and be that x∗

R(i) lies between them. Fig. 4 shows some configurations for
hourglass shapes.

Fig. 4. Some configurations of hourglass shapes

We denote the sequence of hourglasses by H0, ..., Hk where each Hi contains
x∗
R(i). The end points of x∗

R(i) lie on two edges of Hi that their lengths are at
most Rε/2k. These edges are shown as thick segments in Fig. 4 and we call them
as the base edges of hourglass Hi. Let si and li be respectively the minimum
and maximum length shortest paths that connect a point from one base edge of
Hi to a point on the other base edge which completely lie inside Hi (or on its
boundary). Fig. 5 shows some configurations for si and li paths. We define Lmin

and Lmax as follows :

Lmin =

k∑
i=0

|si|

Lmax =

k∑
i=0

|li|

Lemma 2. Lmax ≤ Lmin + εR.

Touring Polygons: An Approximation Algorithm 115

Fig. 5. Some configurations for si and li

Proof. To prove the relation between Lmin and Lmax we first obtain the re-
lation between |si| and |li| and extend it to Lmin and Lmax. Assume that for
a hourglass Hi, the paths si and li are respectively composed of the sequence
of points < pl1 , ..., plr > and < ps1 , .., psq >. The points pl1 and ps1 lie on one
base edge of Hi and plr and psq lie on the other base edge. Consider a new
path mi =< pl1 , ps1 , ps2 , ..., psq , plr >. The path mi connects the end points of li
and completely lies inside Hi. While li is the shortest path between these points,
|li| ≤ |mi|. On the other hand, the length of the base edges on which the segment
pl1ps1 and psqplr lie are at most Rε/2k. Therefore,

|li| ≤ |mi| ≤ |si|+ 2(Rε/2k) = |si|+Rε/k.

From the above relation we prove the relation between Lmin and Lmax :

Lmax =

k∑
i=0

|li| ≤
k∑

i=0

|si|+ k(Rε/k) = Lmin + εR. �

Now, we can prove the relation between xapr
R and x∗

R which is required in the
pseudo approximation algorithm of the PAT method.

Lemma 3. length(xapr
R) ≤ length(x∗

R) + εR.

Proof. It is trivial that |si| ≤ |x∗
R(i)| ≤ |li|. Therefore, we have :

Lmin ≤ length(x∗
R) ≤ Lmax.

Moreover, length(x∗
R) ≤ length(xapr

R) and length(xapr
R) ≤ Lmax. The reason of

the latter inequality is that if we use a path from s to t which lies only on the
boundary of the sequence of Hi regions, its length is at most Lmax and it is a
valid path in DVG. Therefore, the length of xapr

R cannot be greater than the
length of this path. Hence, we have :

Lmin ≤ length(x∗
R) ≤ length(xapr

R) ≤ Lmax.

Combining this relation with the result of Lemma 2 we obtain the final result:

Lmin ≤ length(x∗
R) ≤ length(xapr

R) ≤ Lmax ≤ Lmin + εR ≤ length(x∗
R) + εR.

=⇒ length(x∗
R) ≤ length(xapr

R) ≤ length(x∗
R) + εR. �

116 A. Mozafari and A. Zarei

Now, we have all of the requirements of PAT and we can use this method to have
the correct FPTAS algorithm. We assume that all inputs are rational numbers.
If we set R∗ as 2L where L is the maximum bit length of the input integers,
we can use the conversion procedure of PAT to obtain a precision sensitive
ε−approximation algorithm. In the next section we analyse the efficiency of this
algorithm.

3 Efficiency of the Algorithm

The running time of this algorithm depends on the size of the built graph and
running time of finding the shortest path from s to t in this graph. We first
obtain the complexity of computing a pseudo approximation path for fixed ε
and R. We have O(k/ε) points on each edge and if n is the complexity of our
problem (number of vertices of all polygons and fences) we have O(nk/ε) ver-
tices in the graph. Let fi (0 ≤ i ≤ k) be the number of these vertices inside
Fi (vertices of Fi and vertices and extra points of Si and Si+1). We can con-
struct visibility graph for each Fi in f2

i time[1]. The sum of fis is O(nk/ε) so
we can construct entire visibility graph in O(n2k2/ε2) time. The number of ver-
tices of this graph is O(nk/ε). Therefore, running Dijkstra algorithm on this
graph takes O(n2k2/ε2) time. Hence, we can obtain a pseudo approximation
path in O(n2k2/ε2) time. To obtain the ε-approximation path with the geomet-
ric search of the PAT method[2], we use the pseudo approximation algorithm
O(log log(R∗/length(x∗))) times. We assume that all inputs are rational num-
bers each of which consists of integer numerator and denominator. If we set R∗

as 2L where L is the maximum bit length of the input integer in our system,
the maximum value of R∗ is 2L and minimum value of length(x∗) is 2−L. Then
we need to run the pseudo approximation algorithm for O(log log(22L)) times.
While on a typical machine L is constant, we must run the pseudo approxima-
tion algorithm a constant number of times. This means that the total running
time of this algorithm is O(k2n2/ε2).

4 Extending to the Overlapped Cases

In Section 2, we proposed an ε-approximation algorithm for solving the TMP
when polygons in Si are disjoint from polygons in Si+1. In this section, we
extend this algorithm to the cases where polygons in Si are allowed to intersect
polygons in Si+1. Fig. 6 shows an example where the approximation factor of our
algorithm is not depend on the value of ε and for arbitrarily small value of ε it
remains large. In this example, we have three sets of polygons (S1 = {P1,1}, S2 =
{P2,1}, S3 = {P3,1}) each of which has one polygon. For this configuration, the
approximation factor of the algorithm is approximately 2 even for infinitely small
value of ε.

This problem happens because in our algorithm the touring path is forced to
touch the polygons in their boundaries. But, as seen in this example, we can
obtain better approximation by touching some polygons (P2,1 in this example)

Touring Polygons: An Approximation Algorithm 117

Fig. 6. A negative example for the first algorithm on intersecting polygons

in its interior. In order to solve problem we need to built DVG in such a way
that handles such situations. We built DVG as follows. The vertex set of DVG
is the same as before, but, there is a directed edge −→uv in this graph if and only
if any one of the following conditions holds:

1. u and v are visible vertices of a fence with respect to that fence.
2. u is a vertex or an extra point on the boundary of a polygon of Si which

lies inside at least one polygon from each set Si+1, ..., Si+j and does not lie
inside a polygon of Si+j+1, and v is a point of some polygon in Si+r for
1 ≤ r ≤ j + 1 which u and v are visible from each other with respect to
Fi+r−1, or,
v is a vertex of Fi+r for 0 ≤ r ≤ j which is visible from u with respect to
this fence.

3. u is a vertex of fence Fi and v is a vertex or extra point of a polygon of Si+1

and u and v are visible from each other with respect to Fi.

Lemma 4. Running Dijkstra algorithm from s to t on this graph returns a valid
pseudo approximation path.

Proof. (Sketch) Let xapr
R be this path. By the same argument as Lemma 1

and according to the construction of the graph, it is simple to show that each
path from s to t in this graph touches all polygon sets in correct order supporting
the fences constraints. This means that xapr

R is a valid touring path.
To satisfy the pseudo approximation path requirement, we must show that
length(xapr

R) ≤ length(x∗
R) + εR. Consider x∗

R as a sequence of k + 1 sub-paths
(0 ≤ i ≤ k) such that x∗

R(i) starts from the first point of x∗
R that lies on Si

after touring Si−1 and ends at the first point of x∗
R that lies on Si+1. While Si

polygons may have intersections, a sub-path x∗
R(i) may have zero length. It is

simple to prove that the start point (end point) of x∗
R(i) lies on the boundary of

a polygon of a set Sj (Sl) 0 ≤ j ≤ i (j ≤ l ≤ k + 1). We denote the fragments
that contain the start and end points of x∗

R(i) by f s
i and fe

i , respectively. Triv-
ially, fs

0 = s and fe
k+1 = t. Moreover, fs

i+1 = fe
i . We build a path P from s to

t in DVG where length(P) ≤ length(x∗
R) + εR. This path follows x∗

R in such a
way that for each sub-path x∗

R(i) which ends at a point on fe
i , its correspond-

ing sub-path in P , denoted by Pi, either (Case 1) ends at an endpoint of fe
i or

(Case 2) another fragment gei ∈ Si+1 which intersects fe
i . Case 1 happens when

the segment xia lies inside Fi+1 where xi is the endpoint of x∗
R(i) on fe

i and a

118 A. Mozafari and A. Zarei

is an endpoint of fe
i at which Pi ends. Otherwise, Case 2 happens in where gei

is a fragment of Si+1 which its intersection point with fe
i is the closest to xi. It

is simple to show that if fe
i ∈ Si+1 Case 1 happens and in Case 2 the fragment

gei always exists which intersects fe
i .

Now, we inductively on i for 0 ≤ i ≤ k follow the path x∗
R and build the

path P and show that in each step 0 ≤ i ≤ k, length(P) increases by at most
length(x∗

R(i)) + Rε/k. For i = 0, we start from s and if s ∈ S1 then x∗
R(0)

and hence P0 have zero length. Otherwise, x∗
R(0) lies inside a hourglass with

s and fe
0 ∈ S1 as its bases. By the same argument as for the non-overlapping

polygons, we can build P0 from s to an endpoint of fe
0 with length at most

length(x∗
R(0)) +Rε/k. For i > 0, we consider two cases, length(x∗

R(i)) = 0 and
length(x∗

R(i)) �= 0 separately.
Assume that length(x∗

R(i)) = 0. Based on the cases applied on Pi−1 and Pi,
four options may happens which are shown in Fig. 7.

Fig. 7. Building Pi when length(x∗
R(i)) = 0

In this figure f s
i = fe

i = fe
i−1 = ab, xi is the end point of x∗

R(i), c is the
endpoint of Pi−1 and d is the endpoint of Pi. In all options we can find the union
of paths Pi−1 and Pi which starts from a and ends at an endpoint of dd′ in such a
way that their total length is at most length(x∗

R(i−1))+ length(x∗
R(i))+2Rε/k.

Now assume that length(x∗
R(i)) �= 0. Hence, we also have four options based on

the cases applied on Pi−1 and Pi shown in Fig. 8 and we can build proper paths as
well. �

Fig. 8. Building Pi when length(x∗
R(i))
= 0

Touring Polygons: An Approximation Algorithm 119

5 Complexity of the Problem

In this section, we show that UTMP (Unconstrained Touring Multiple-polygons
Problem) is NP-Hard even for the L1 norm and the case that all polygons are
convex and disjoint from each other. Our proof is similar to the NP-Hardness
proof of UTPP in Section 6 of [6] which itself is based on the NP-Hardness
proof of three-dimensional shortest path problem[3]. This proof is a reduction
from 3-SAT. Suppose that we have an instance of the 3-SAT problem with n
variables b1, ..., bn and m clauses Ci = (li1 ∨ li2 ∨ li3). For fixed points s and t
we construct a sequence of sets of polygons with total complexity O(n+m) for
which solving the UTMP enables us to determine whether our 3-SAT problem
has a satisfying truth assignment. We construct five kinds of gadgets : 2-way
path splitter that doubles the number of shortest paths, 3-way path splitter that
triples the number of shortest paths without changing their order (Fig. 9), path
shuffler that performs a perfect shuffle of the input paths, literal filter that selects
paths whose encodings have 0 or 1 in the ith bit (literal filters consisting of n
shufflers and one horizontal segment to stretch all paths having special bit equal
to 0 or 1) (Fig. 10), clause filter that determines whether a specific clause has
satisfying truth assignment (Fig 11).

In these gadgets we have only line segment polygons which are convex and
disjoint from each other and their angle with the x-axis is 0,±45 and 90. In
this construction, we use n 2-way splitters to create 2n distinct paths each of
which encodes a truth assignment for n variables. Then, we use sequence of m
clause filters each consisting of three literal filters contained between two 3-way
splitters. This permits us to filter those paths fail to satisfy each clause. Fig. 12
shows how we can select polygonal sets to build three parallel literal filters inside
a clause filter. We need to put a blocker set after each shuffler. Each blocker set
has a segment that determines whether the output paths of the shuffler need to
be stretched. As shown in Fig. 10, if this segment is full no output path is forced
to be stretched.

Note that we can always modify size and position of these gadgets to enforce
that each input path directly goes to one of the segments without bending or
intersecting endpoint of segments. Finally, we use 2-way splitters to collect all
paths back to a single path that terminates at t. In this construction, all segments
are in the plane and disjoint from each other. So, the initial 3-SAT problem has

Fig. 9. Two and Three way path splitter

120 A. Mozafari and A. Zarei

Fig. 10. Shuffle and Literal filter

Fig. 11. Clause filter gadget

Fig. 12. Three shuffle gadgets in parallel

Touring Polygons: An Approximation Algorithm 121

a satisfying truth assignment if and only if the solution of this UTMP problem
is equal to the distance from s to t.

References

1. Asano, T., Asano, T., Guibas, L., Hershberger, J., Imai, H.: Visibility-polygon
search and Euclidean shortest paths. In: Proc. 26th IEEE Symposium on Founda-
tions of Computer Science, pp. 155–164 (1985)

2. Asano, T., Kirkpatrick, D., Yap, C.: Pseudo approximation algorithms, with appli-
cations to optimal motion planning. In: Proc. 18th Annu. ACM Sympos. Comput.
Geom., pp. 170–178 (2002)

3. Canny, J., Reif, J.H.: New lower bound techniques for robot motion planning prob-
lems. In: Proc. 28th Annu. IEEE Sympos. Found. Comput. Sci, pp. 49–60 (1987)

4. Chin, W., Ntafos, S.: Shortest Watchman Routes in Simple Polygons. Discrete and
Computational Geometry 6(1), 9–31 (1991)

5. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
MIT press (2009) ISBN 978-0-262-03384-8

6. Dror, M., Efrat, A., Lubiw, A., Mitchell, J.: Touring a sequence of polygons. In:
Proc. STOC 2003, pp. 473–482 (2003)

7. Dror, M.: Polygon plate-cutting with a given order. IIE Transactions 31, 271–274
(1999)

8. Guibas, L.J., Hershberger, J.: optimal shortest path queries in simple polygon. J.
Comput. Syst. Sci. 39, 126–152 (1989)

9. Hershberger, J., Snoeyink, J.: An efficient solution to the zookeeper’s problem. In:
Proc. 6th Canadian Conf. on Comp. Geometry, pp. 104–109 (1994)

10. Li, F., Klette, R.: Rubberband algorithms for solving various 2D or 3D shortest
path problems. In: Proc. Computing: Theory and Applications, The Indian Statis-
tical Institute, Kolkata, pp. 9–18. IEEE (2007)

11. Tan, X., Hirata, T.: Constructing Shortest Watchman Routes by Divide and Con-
quer. In: Ng, K.W., Balasubramanian, N.V., Raghavan, P., Chin, F.Y.L. (eds.)
ISAAC 1993. LNCS, vol. 762, pp. 68–77. Springer, Heidelberg (1993)

12. Tan, X., Hirata, T.: Shortest Safari Routes in Simple Polygons. In: Du, D.-Z.,
Zhang, X.-S. (eds.) ISAAC 1994. LNCS, vol. 834, pp. 523–531. Springer, Heidelberg
(1994)

Super Connectivity of the Generalized

Mycielskian of Graphs

S. Francis Raj

Department of Mathematics, Pondicherry University, Puducherry-605014, India
francisraj_s@yahoo.com

Keywords: Mycielskian, Generalized Mycielskian, Vertex-connectivity,
Edge- connectivity, Super connectivity, Super edge connectivity.

1 Introduction

All graphs considered in this paper are simple, finite, nontrivial and undirected.
Let G be a graph with vertex set V 0 = {v00 , v01 , . . . , v0n−1} and edge set E0.

Given an integer m ≥ 1, the m-Mycielskian (also known as the generalized
Mycielskian) of G, denoted by μm(G), is the graph whose vertex set is the
disjoint union

V 0 ∪ V 1 ∪ . . . ∪ V m ∪ {u},
where V i = {vij ; v0j ∈ V 0} is the i-th copy of V 0, i = 1, 2, . . . ,m, and edge set

E0 ∪
(m−1
∪
i=0
{vijvi+1

j′ : v0j v
0
j′ ∈ E0}

)
∪ {vmj u : vmj ∈ V m}.

For every pair i, j ∈ {0, 1, . . . ,m}, i �= j, and s ∈ {0, 1, . . . , n−1}, the vertices
vis ∈ V i and vjs ∈ V j are considered as twins of each other. Also if S ⊆ V 0,
then Si ⊆ V i denotes the twins of the vertices of S in V i. The Mycielskian of
G, denoted by μ(G), is simply μ1(G).

The Mycielskian and generalized Mycielskians have fascinated graph theorists
a great deal. This has resulted in studying several graph parameters of these
graphs [see for instance [1], [3], [4], [7], [8]].

The connectivity κ(G) of a connected graph G is the least positive integer k
such that there exists S ⊆ V (G), |S| = k and G\S is disconnected or becomes
trivial. The edge connectivity κ′(G) of a connected graph G is defined similarly.
A graph G is super connected, or simply super-κ, if every minimum vertex cut is
the set of neighbors of a vertex of G, that is, every minimum vertex cut isolates
a vertex. Similarly, we can define super-κ′ graphs (Refer [5], [6]).

The vertex-connectivity and edge-connectivity of the generalized Mycielskian
of any digraph has already been determined in [4]. Also the super connectivity
and super edge connectivity of the Mycielskian of graphs have been discussed in
[5]. In this paper, we study the super connectivity and super edge connectivity
of the generalized Mycielskian of graphs. This turns out to be a generalization
of the result due to L. Guo et.al. [5].

S. Arumugam and B. Smyth (Eds.): IWOCA 2012, LNCS 7643, pp. 122–124, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Super Connectivity of the Generalized Mycielskian of Graphs 123

2 Super Connectivity of the Generalized Mycielskian

For generalized Mycielskian, the following results have already been determined.

Theorem 21 ([4]). If G is a connected graph, then κ(μm(G)) ≥ κ(G) + 1.

Theorem 22 ([4]). If G is a connected graph, then κ(μm(G)) = κ(G) + i + 1
iff δ(G) = κ(G) + i for each i, 0 ≤ i < mκ(G).

Remark 23. If S is a minimum vertex cut of G with |S| = κ(G) and Si is the

corresponding set of twins in V i, then S
m
∪
i=1

Si ∪ {u} is a vertex cut of μm(G).

Therefore κ(G) + 1 ≤ κ(μm(G)) ≤ (m+ 1)κ(G) + 1.

Theorem 24 ([4]). If G is a connected graph, then (i) κ(μm(G)) = (m +
1)κ(G) + 1 iff δ(G) ≥ (m + 1)κ(G) and (ii) κ(μm(G)) = min{δ(G) + 1, (m +
1)κ(G) + 1}.

With the help of these results, let us discuss about the super connectivity of the
generalized Mycielskian. First, let us consider the following cases.

(a) Let G = Kn, n ≥ 2. In this case, μm(Kn), m ≥ 2 is not super connected,
as one can see that κ(G) = δ(G) = n − 1 and κ(μm(G)) = n. Thus the set
S = V 1 forms a vertex cut and this S does not isolate a vertex.

(b) Let G = Ka,b = {X,Y }, |X | = a, |Y | = b, b ≥ a. In this case
μm(Ka,b), m ≥ 3 is not super connected, as one can see that κ(G) = δ(G) = a
and κ(μm(G)) = a+ 1. The set S = X1 ∪ {u} is a minimum vertex which does
not isolates a vertex.

Let us find a necessary and sufficient condition for graphs G other than Kn

and Ka,b for which μm(G) is super connected.

Theorem 25. Let G be a connected graph where G /∈ {Kn,Ka,b} and n ≥ 2.
Then μm(G) is super-κ iff δ(G) < (m+ 1)κ(G).

Proof. Let us first assume that for G /∈ {Kn,Ka,b} and n ≥ 2, μm(G) is super-κ.
Suppose δ(G) ≥ (m+1)κ(G). Then by Theorem 24, κ(μm(G)) = (m+1)κ(G)+1.

Thus by Remark 23, if S is a minimum vertex cut of G then S
m
∪
i=1

Si ∪ {u} is a
minimum vertex cut of μm(G) which does not isolate any vertex. Hence μm(G)
is not super-κ, a contradiction.

Secondly assume that δ(G) < (m+1)κ(G). Then by Theorem 22, κ(μm(G)) =
δ(G)+ 1. Suppose μm(G) is not super-κ, then there exist a minimum vertex cut
S of μm(G) such that S does not isolate a vertex, that is, S �= Nμm(G)(v), for
any v ∈ V (μm(G)). We then divide the proof into two cases: (i) u /∈ S (ii) u ∈ S.
Proving Case (i) is not very tedious. But Case (ii) requires a little involvement
to get through. In both the case we would show that μm(G)\S is connected, a
contradiction.

A consequence of the above result is the following result due to L.Guo et.al [5].

124 S. Francis Raj

Corollary 26 For a connected graph G with |V (G)| ≥ 2, μ(G) is super-κ if and
only if δ(G) < 2κ(G).

Proof. For any graphs G /∈ {Kn,Ka,b}, put m = 1 in Theorem 25. For G = Kn

or Ka,b, we can directly verify that μ(G) is super-κ.

We next consider the super edge-connectivity of the generalised Mycielskian.
Let us recall the result proved in [4].

Theorem 27 ([4]). If G is a connected graph, then κ′(μm(G)) = δ(μm(G)) =
δ(G) + 1.

Let us first consider the case when G = K2. In this case, μm(K2), m ≥ 1 is not
super connected, as one can see that κ(G) = δ(G) = 1 and κ(μm(G)) = 2. Thus
if V (K2) = {v, w}, then the set F = {vw1, v1w} forms a edge cut and this F
does not isolate any vertex.

We have shown that for any connected graph G with |V (G)| ≥ 2, μm(G) is
super-κ′ if and only if G �= K2. This generalise the result proved by L. Guo et.al.
[5] that for any connected graph G with |V (G)| ≥ 2, μ(G) is super-κ′ if and only
if G �= K2.

References

1. Balakrishanan, R., Francis Raj, S.: Connectivity of the Mycielskian of a graph.
Discrete Math. 308, 2607–2610 (2007)

2. Balakrishnan, R., Ranganathan, K.: A Textbook of Graph Theory. Springer, New
York (2000)

3. Fisher, D.C., McKena, P.A., Boyer, E.D.: Hamiltonicity, diameter, domination,
packing and biclique partitions of the Mycielski’s graphs. Discrete Appl. Math. 84,
93–105 (1998)

4. Francis Raj, S.: Connectivity of the generalised Mycielskian of digraphs, Graphs
and Combin., doi: 10.1007/s00373-012-1151-5

5. Guo, L., Liu, R., Guo, X.: Super Connectivity and Super Edge Connectivity of the
Mycielskian of a Graph. Graphs and Combin. 28, 143–147 (2012)

6. Liu, J., Meng, J.: Super-connected and super-arc-connected Cartesian product of
digraphs. Inform. Process. Lett. 108, 90–93 (2008)

7. Lam, P.C.B., Gu, G., Lin, W., Song, Z.: Circular Chromatic Number and a gener-
alization of the construction of Mycielski. J. Combin. Theory, Ser. B 89, 195–205
(2003)

8. Lin, W., Wu, J., Lam, P.C.B., Gu, G.: Several parameters of generalised Myciel-
skians. Discrete Appl. Math. 154, 1173–1182 (2006)

9. Mycielski, J.: Sur le colouriage des graphes. Colloq. Math. 3, 161–162 (1955)

A Graph Radio k-Coloring Algorithm

Laxman Saha� and Pratima Panigrahi

Department of Mathematics, Indian Institute of Technology Kharagpur,
Kharagpur 721302, India

laxman.iitkgp@gmail.com,

pratima@maths.iitkgp.ernet.in

Abstract. For a positive integer k, a radio k-coloring of a simple con-
nected graph G = (V (G), E(G)) is a mapping f : V (G) → {0, 1, 2, . . .}
such that |f(u)− f(v)| � k+1− d(u, v) for each pair of distinct vertices
u and v of G, where d(u, v) is the distance between u and v in G. The
span of a radio k-coloring f , rck(f), is the maximum integer assigned by
it to some vertex of G. The radio k-chromatic number, rck(G) of G is
min{rck(f)}, where the minimum is taken over all radio k-colorings f of
G. If k is the diameter of G, then rck(G) is known as the radio number of
G. In this paper, we give an algorithm to find an upper bound of rck(G).
We also give an algorithm that implement the result in [16,17] for lower
bound of rck(G). We check that for cycle Cn, upper and lower bound
obtained from these algorithms coincide with the exact value of radio
number, when n is an even integer with 4 � n � 400. Also applying
these algorithms we get the exact value of the radio number of several
circulant graphs.

Keywords: Channel assignment, Radio k-coloring, Radio k-chromatic
number, Span.

1 Introduction

A number of graph coloring problems have their roots in a communication prob-
lem known as the channel assignment problem. The channel assignment problem
is the problem of assigning channels (non-negative integers) to the stations in
an optimal way such as the interference is avoided, see Hale [3]. The interference
is closely related to the location of the stations. Radio k-coloring of graphs is a
variation of this channel assignment problem. For a positive integer k, a radio
k-coloring f of a simple connected graph G is an assignment of non-negative
integers to the vertices of G such that for every two distinct vertices u and v of
G, |f(u) − f(v)| � k + 1 − d(u, v). The span of a radio k-coloring f , rck(f), is
the maximum integer assigned by f to some vertex of G. The radio k-chromatic
number, rck(G) of G is min{rck(f)}, where the minimum is taken over all radio
k-colorings f of G. If k is the diameter of G, then rck(G) is known as the radio
number and is denoted by rn(G).

� Corresponding author.

S. Arumugam and B. Smyth (Eds.): IWOCA 2012, LNCS 7643, pp. 125–129, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

126 L. Saha and P. Panigrahi

The problem of finding radio k-chromatic number of a graph is of great inter-
est for its widespread applications to channel assignment problem. So far, radio
k-chromatic number is known for very limited families of graphs and specific
values of k. Radio number of Cn and Pn [12], C2

n[11], P
2
n [10], Qn [4] and com-

plete m-ary trees [13] are determined. Ortiz et al. [15] have studied the radio
number of generalized prism graphs and have computed the exact value for some
particular cases. A lower bound for radio number of any tree have been given
in [9] by Liu. In [16,17], Saha et al. have given a lower bound for rck(G) of an
arbitrary graph G.
The objective of this paper is to provide an algorithm to find an upper bound
of rck(G) of an arbitrary graph G and implementation of the results in [16,17]
for a lower bound of the same.

2 Algorithm to Find a Lower Bound of rck(G)

In this section, we give the Algorithm 1 to find a lower bound of rck(G).

Algorithm 1. Finding a lower bound of rck(G)

Data: Positive integer k and G be an n-vertex graph.
Result: Lower bound of rck(G).
Using Floyed-Warshall’s algorithm compute the distance matrix D[n][n]
=(d[i][j])n×n, where d[i][j] represents the distance between the vertex i and j
of G.
for l = 0 to n− 1 do

for i = 0 to n− 1 do
for j = 0 to n− 1 do

s[l][i][j] = d[l][j] + a[i][j] + a[j][i]
if b � s[l][i][j] and i
∈ {l, j} and j
= l then

b = s[l][i][j]
end

end

end

end
if k = diam(G) and n is an even integer then

Lower bound =
⌈

3(k+1)−b
2

⌉ (
n−2
2

)
+ 1

end
else

Lower bound =
⌈

3(k+1)−b
2

⌉ ⌊
n−2
2

⌋
end
Print Lower bound.

A Graph Radio k-Coloring Algorithm 127

3 Radio k-Coloring Algorithm

In this section, we developed an algorithm that gives a radio coloring of an arbi-
trary graph G and hence finds an upper bound of rck(G). The time complexity
of this algorithm is O(n3).

Algorithm 2. Finding a radio k-coloring of a graph

input : G be an n-vertex simple connected graph and k be a positive integer.
output: A radio k-coloring of G.
begin

Compute the adjacency matrix a[n][n] of G.
Using Floyed-Warshall’s algorithm compute the distance matrix
D[n][n] = (d[i][j])n×n, where d[i][j] represents the distance between the
vertex i and j of G.
Initialization : Choose a vertex r, c be a two dimensional matrix
for i = 0 to n− 1 do

for j = 0 to n− 1 do
if k + 1 � d[i][j] then

c[i][j] = k + 1− d[i][j]

else
c[i][j] = 0

c[j][i] = c[i][j]

c[i][i] = ∞, a large number

l = r /* Use r as the initialization vertex */

print : l and its color is zero /* Use zero is the color of r */

for i = 1 to n− 1 do
min = ∞, a large number
for j = 0 to n− 1 do

if min � c[l][j] then
min = c[l][j]
p = j

for j = 0 to n− 1 do
c[p][j] = c[p][j] + min

for j = 0 to n− 1 do
if c[p][j] < c[l][j] then

c[p][j]=c[l][j]

print : p and min /* Use min is the color of the vertex p */

l = p

Example 1. In this example, we explain the intermediate stages of Algorithm
2 considering G as the graph in Fig. 1.

Let k = 4. Here D is the distance matrix and C0 is the k-labeling matrix. Let
Rp

j be the jth-row of a matrix Cp. Here we consider r = x1 is the initial vertex.

128 L. Saha and P. Panigrahi

1x

2x

3x

4x

5x

6x

7x 8x

Fig. 1. The graph G

0

9

3

15

5

 12

74

Fig. 2. Radio 4-coloring of G

Give color 0 to the vertex x1. Minimum element of 1st- row of the matrix C0

is 3 and a position of this minimum element is at 3rd-column of the matrix
C0. We assign color 3 to the vertex x3. Replace the 3rd-row of the matrix C0

by max{R0
3 + 3, R0

1}, let this new matrix be C1. The minimum element in 3rd-
row of the matrix C1 is 4 and a position of this minimum element is at 7th

column. We give color 4 to the vertex x7. Replace the 7th-row of the matrix C1

by max{R1
7 + 4, R1

3} and we obtained a new matrix C2. The minimum element
in 7th-row of the matrix C2 is 5 and a position of this minimum element is at
5th-column. We assign color 5 to the vertex x5. By similar way we can give a
coloring of the vertices of G as shown in Fig.2.

D :

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 2 1 2 1 2 2
1 0 1 1 2 2 3 3
2 1 0 2 3 3 4 4
1 1 2 0 1 2 3 3
2 2 3 1 0 3 4 4
1 2 3 2 3 0 1 1
2 3 4 3 4 1 0 2
2 3 4 3 4 1 2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

C0 :

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∞ 4 3 4 3 4 3 3
4 ∞ 4 4 3 3 2 2
3 4 ∞ 3 2 2 1 1
4 4 3 ∞ 4 3 2 2
3 3 2 4 ∞ 2 1 1
4 3 2 3 2 ∞ 4 4
3 2 1 2 1 4 ∞ 3
3 2 1 2 1 4 3 ∞

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

C1 :

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∞ 4 3 4 3 4 3 3
4 ∞ 4 4 3 3 2 2

∞ 7 ∞ 6 5 5 4 4
4 4 3 ∞ 4 3 2 2
3 3 2 4 ∞ 2 1 1
4 3 2 3 2 ∞ 4 4
3 2 1 2 1 4 ∞ 3
3 2 1 2 1 4 3 ∞

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

C2 :

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∞ 4 3 4 3 4 3 3
4 ∞ 4 4 3 3 2 2
∞ 7 ∞ 6 6 5 4 4
4 4 3 ∞ 4 3 2 2
3 3 2 4 ∞ 2 1 1
4 3 2 3 2 ∞ 4 4

∞ 7 ∞ 6 5 8 ∞ 7
3 2 1 2 1 4 3 ∞

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

A Graph Radio k-Coloring Algorithm 129

References

1. Chartrand, G., Erwin, D., Harrary, F., Zhang, P.: Radio labeling of graphs. Bull.
Inst. Combin. Appl. 33, 77–85 (2001)

2. Chartrand, G., Erwin, D., Zhang, P.: A graph labeling problem suggested by FM
channel restrictions. Bull. Inst. Combin. Appl. 43, 43–57 (2005)

3. Hale, W.K.: Frequency assignment, Theory and application. Proc. IEEE 68, 1497–
1514 (1980)

4. Khennoufa, R., Togni, O.: The radio antipodal and radio numbers of the hypercube.
Ars Combin. 102, 447–461 (2011)

5. Khennoufa, R., Togni, O.: A note on radio antipodal colorigs of paths. Math.
Bohem. 130(1), 277–282 (2005)

6. Kola, S.R., Panigrahi, P.: Nearly antipodal chromatic number ac′(Pn) of a path
Pn. Math. Bohem. 134(1), 77–86 (2009)

7. Kola, S.R., Panigrahi, P.: On Radio (n−4)-chromatic number the path Pn. AKCE
Int. J. Graphs Combin. 6(1), 209–217 (2009)

8. Kola, S.R., Panigrahi, P.: An improved Lower bound for the radio k-chromatic
number of the Hypercube Qn. Comput. Math. Appl. 60(7), 2131–2140 (2010)

9. Liu, D.D.-F.: Radio number for trees. Discrete Math. 308, 1153–1164 (2008)
10. Liu, D.D.-F., Xie, M.: Radio Number for Square Paths. Ars Combin. 90, 307–319

(2009)
11. Liu, D.D.-F., Xie, M.: Radio number for square of cycles. Congr. Numer. 169,

105–125 (2004)
12. Liu, D., Zhu, X.: Multi-level distance labelings for paths and cycles. SIAM J.

Discrete Math. 19(3), 610–621 (2005)
13. Li, X., Mak, V., Zhou, S.: Optimal radio labellings of completem-ary trees. Discrete

Appl. Math. 158, 507–515 (2010)
14. Morris-Rivera, M., Tomova, M., Wyels, C., Yeager, Y.: The radio number of

CnDCn. Ars Combin. (to appear)
15. Ortiz, J.P., Martinez, P., Tomova, M., Wyels, C.: Radio numbers of some general-

ized prism graphs. Discuss. Math. Graph Theory 31(1), 45–62 (2011)
16. Saha, L., Panigrahi, P.: Antipodal number of some powers of cycles. Discrete

Math. 312, 1550–1557 (2012)
17. Saha, L., Panigrahi, P.: On Radio number of power of cycles. Asian-European J.

Math. 4, 523–544 (2011)

Maximum Order of a Planar Oclique Is 15

Sagnik Sen1,2,�

1 Univ. Bordeaux, LaBRI, UMR5800, F-33400 Talence, France
2 CNRS, LaBRI, UMR5800, F-33400 Talence, France

sen@labri.fr

Abstract. An oclique is an oriented graph where every pair of dis-
tinct non-adjacent vertices are connected by a directed path of length 2.
Klostermeyer and MacGillivray conjectured that the maximum order of
a planar oclique is 15. In this article we settle that conjecture.

1 Introduction

An oriented graph �G is a directed graph obtained by replacing each edge uv of
a simple graph G with an arc (ordered pair of vertices) �uv or �vu . The graph �G

is an orientation of G and G is the underlying graph of �G, denoted by und(�G).

We denote by V (�G) and A(�G) respectively the set of vertices and arcs of �G.
Similarly, V (G) and E(G) denote respectively the set of vertices and edges of
G. In this article, by graph we will mean either a simple undirected graph or an
oriented graph.

The set of all vertices adjacent to a vertex v in a graph is the set of neighbours
and is denoted by N(v). For oriented graphs, if there is an arc �uv, then u is an
in-neighbour of v and v is an out-neighbour of u. The sets of all in-neighbours
and out-neighbours of v are denoted by N−(v) and N+(v) respectively. Two
vertices u and v agree or disagree with each other on another vertex w if w ∈
Nα(u) ∩Nα(v) or Nα(u) ∩Nα(v) respectively, where {α, α} = {+,−}. A path
obtained by two consecutive arcs �uv and �vw is called a 2-dipath.

An oriented k-colouring [1] of an oriented graph �G is a mapping f from the

vertex set V (�G) to the set {1, 2,, k} such that, (i) f(u) �= f(v) whenever u

and v are adjacent and (ii) if �xy and �uv are two arcs in �G, then f(x) = f(v)

implies f(y) �= f(u). The oriented chromatic number χo(�G) of an oriented graph
�G is the smallest integer k for which �G has an oriented k-colouring. An oriented
clique or simply oclique is an oriented graph �G for which χo(�G) = |�G| = |V (�G)|.
Note that, ocliques can hence be characterized as those oriented graphs whose
any two distinct vertices are either adjacent or connected by a 2-dipath. Note
that an oriented graph with an oclique of order n as a subgraph has oriented
chromatic number at least n, where the order of a graph G is the number of its
vertices, denoted by |G|.

For the family P of planar graphs we have 17 ≤ χo(P) ≤ 80 where the lower
bound is due to Marshall [2] and the upper bound to Raspaud and Sopena [3].

� This work is supported by ANR GRATEL project ANR-09-blan-0373-01.

S. Arumugam and B. Smyth (Eds.): IWOCA 2012, LNCS 7643, pp. 130–142, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Maximum Order of a Planar Oclique Is 15 131

Tightening these bounds are challenging problems in the domain of oriented
colouring. A naturally related question to this problem is: What is the maximum
order of a planar oclique? In order to find the answer to this question, Sopena [4]
found a planar oclique of order 15 while Klostermeyer and MacGillivray [5]
showed that there is no planar oclique of order more than 36 and conjectured
that the maximum order of a planar oclique is 15. In this paper we settle this
conjecture by proving the following result:

Theorem 1. If �G is a planar oclique, then |�G| ≤ 15.

The distance d(u, v) between two vertices u, v of a graph G is the length (number
of edges or arcs) of a shortest path joining u and v. Similarly, the directed distance
�d(u, v) between two vertices u, v of an oriented graph �G is the length (number
of arcs) of a shortest directed path joining u and v. The diameter of a graph
G is the maximum of d(u, v) taken over all (u, v) ∈ V (G) × V (G). Clearly any
oclique has diameter at most 2.

C−−

C−+

C++

C+−

S−
x

S+
x

S−
y

S+
y

x y

Fig. 1. Structure of 	G (not a planar embedding)

2 Proof of Theorem 1

For a graph G, D ⊆ V (G) dominates G if any vertex of G is either in D
or adjacent to a vertex in D. The domination number of a graph G is the
minimum cardinality of a dominating set. Goddard and Henning [6] showed
that every planar graph of diameter 2 has domination number at most 2 except
for a particular graph on eleven vertices.

Let �B be a planar oclique dominated by the vertex v. Sopena [1] showed
that any oriented outerplanar graph has an oriented 7-colouring. Hence let c be
an oriented 7-colouring of the oriented outerplanar graph obtained from �B by
deleting the vertex v. Now for u ∈ Nα(v) let us assign the colour (c(u), α) to u
for α ∈ {+,−} and the colour 0 to v. It is easy to check that this is an oriented

15-colouring of �B. Hence any planar oclique dominated by one vertex has order
at most 15.

132 S. Sen et al.

Now let �G be a planar oclique with |�G| > 15. Clearly �G has diameter 2.

Then by the above discussion, the domination number of �G is 2. Without loss
of generality, we may assume that �G is triangulated.

We define the partial order � for the set of all dominating sets of order 2 of
�G as follows: for any two dominating sets D = {x, y} and D′ = {x′, y′} of order

2 of �G, D′ � D if and only if |N(x′) ∩N(y′)| ≤ |N(x) ∩N(y)|.
Let D = {x, y} be a maximal dominating set of order 2 of �G with respect to �.

Also for the rest of this article, t, t′, α, α, β, β are variables satisfying t = {x, y}
and {α, α} = {β, β} = {+,−}.

Now, we fix the following notations (Fig: 1): C = N(x)∩N(y), Cαβ = Nα(x)∩
Nβ(y), Cα

t = Nα(t) ∩ C, St = N(t) \ C, Sα
t = St ∩Nα(t), S = Sx ∪ Sy.

Hence we have,

16 ≤ |�G| = |D|+ |C|+ |S|. (1)

x y

c0

c1

c2

ci

ck−2

ck−1

R0

R1

Rk−1

Fig. 2. A planar embedding of und(H)

Let �H be the oriented graph obtained from the induced subgraph �G[D ∪ C] of
�G by deleting all the arcs between the vertices from D and between the vertices
from C. Note that it is possible to extend the planar embedding of und(�H) given

in Fig 2 to a planar embedding of und(�G) for some particular ordering of the
elements of, say C = {c0, c1, ..., ck−1}.

Notice that und(�H) has k faces, namely the unbounded face F0 and the faces
Fi bounded by edges xci−1, ci−1y, yci, cix for i ∈ {1, ..., k − 1}. Geometrically,

und(�H) divides the plane into k connected components. The region Ri of �G is the
ith connected component (corresponding to the face Fi) of the plane. Boundary
points of a region Ri are ci−1 and ci for i ∈ {1, ..., k − 1} and, c0 and ck−1 for
i = 0. Two regions are adjacent if and only if they have at least one common
boundary point.

Now for the different possible values of |C|, we want to show that und(�H)
cannot be extended to a planar oclique of order at least 16. Note that, for

Maximum Order of a Planar Oclique Is 15 133

extending und(�H) to �G we can add new vertices only from S. Any vertex v ∈ S
will be inside one of the regions Ri. If there is at least one vertex of S in a region
Ri, then Ri is non-empty and empty otherwise. In fact when there is no chance
of confusion, Ri might represent the set of vertices contained in the region Ri.

As any two distinct non-adjacent vertices of �G must be connected by a 2-
dipath, we have the following three lemmas:

Lemma 1. (a) If (u, v) ∈ Sx × Sy or (u, v) ∈ Sα
t × Sα

t , then u and v are in
adjacent regions.

(b) If (u, c) ∈ Sα
t ×Cα

t , then c is a boundary point of a region adjacent to the
region containing u.

Lemma 2. Let R,R1, R2 be three distinct regions such that R is adjacent to Ri

with common boundary point ci while the other boundary points of Ri is ci for all
i ∈ {1, 2}. If v ∈ Sα

t ∩R and ui ∈ ((Sα
t ∪St′)∩Ri)∪ ({ci}∩Cα

t), then v disagrees
with ui on ci, where i ∈ {1, 2}. If both u1 and u2 exist, then |Sα

t ∩R| ≤ 1.

Lemma 3. For any arc �uv in an oclique, we have |Nα(u) ∩Nβ(v)| ≤ 3.

Lemma 4. |C| ≥ 2.

Proof. We know that x and y are either connected by a 2-dipath or by an arc.
If x and y are adjacent, then as �G is triangulated, we have |C| ≥ 2. If x and y
are non-adjacent, then |C| ≥ 1. Hence it is enough to show that we cannot have
|C| = 1 while x and y are non-adjacent.

x1

x2

xnx

y1

y2

yny

x yc0

Fig. 3. For |C| = 1 while x and y are non-adjacent

If |C| = 1 and x and y are non-adjacent, then the triangulation will force

the configuration depicted in Fig 3 as a subgraph of und(�G), where C = {co},
Sx = {x1, ..., xnx} and Sy = {y1, ..., yny}. Without loss of generality we may
assume |Sy| ≥ |Sx|. Then by (1) we have ny = |Sy| ≥ �(16− 2− 1)/2� = 7.

Clearly nx ≥ 3 as otherwise {c0, y} is a dominating set with at least two
common neighbours {y1, yny} which contradicts the maximality of D.

For nx = 3, we know that c0 is not adjacent to x2 as otherwise {c0, y} is a
dominating set with at least two common neighbours {y1, yny} contradicting the
maximality of D. But then, x2 should be adjacent to yi for some i ∈ {1, ..., ny}
as otherwise d(x2, y) > 2. Now the triangulation will force x2 and yi to have at

134 S. Sen et al.

least two common neighbours. Also x2 cannot be adjacent to yj for any j �= i,
as it will create a dominating set {x2, y} with at least two common neighbours
{yi, yj} contradicting the maximality of D. Hence, x2 and yi are adjacent to
both x1 and x3. Note that, t�t and t�t+k are adjacent if and only if k = 1, as
otherwise d(t�t+1, t

′) > 2 for 1 ≤ �t < �t + k ≤ nt. In this case, by (1) we
have ny = |Sy| ≥ 16 − 2 − 1 − 3 = 10. Assume i ≥ 6. Hence, c0 is adjacent to
yj for all j = 1, 2, 3, 4, as otherwise d(yj , x3) > 2. This implies d(y2, x2) > 2,
a contradiction. Similarly i ≤ 5 will force, (something), a contradiction. Hence
nx ≥ 4.

For nx = 4, c0 cannot be adjacent to both x3 and xnx−2 = x2 as it creates
a dominating set {c0, y} with at least two common neighbours {y1, yny} contra-
dicting the maximality of D. For nx ≥ 5, c0 is adjacent to x3 implies, either for
all i ≥ 3 or for all i ≤ 3, xi is adjacent to c0, as otherwise d(xi, y) > 2. Either
of these cases will force c0 to become adjacent to yj , as otherwise we will have
either d(x1, yj) > 2 or d(xnx , yj) > 2 for all j ∈ {1, 2, ..., ny}. But then we will
have a dominating set {c0, x} with at least two common vertices contradicting
the maximality of D. Hence for nx ≥ 5, c0 is not adjacent to x3. Similarly we
can show, for nx ≥ 5, that c0 is not adjacent to xnx−2.

So for nx ≥ 4, without loss of generality we can assume that c0 is not adjacent
to x3. We know that d(y1, x3) ≤ 2. We have already noted that, tlt and tlt+k

are adjacent if and only if k = 1 for any 0 ≤ lt < lt + k ≤ nt. Hence to have
d(y1, x3) ≤ 2, we must have one of the following edges: y1x2, y1x3, y1x4 or
y2x3. The first edge will imply the edges x2yj as otherwise d(x1, yj) > 2 for all
j = 3, 4, 5. These three edges will imply d(x4, y3) > 2. Hence we do not have
y1x2. We also cannot have the other three edges as they will imply d(x1, y4) > 2.

Hence we are done. �	
Lemma 5. If 2 ≤ |C| ≤ 5, then at most one region of �G is non-empty.

Proof. For pictorial help one can look at Fig 2. For |C| = 2, if x and y are
adjacent, then the region that contains the edge xy is empty, as otherwise tri-
angulation will force x and y to have a common neighbour other than c0 and
c1. So for the rest of the proof we can assume x and y to be non-adjacent for
|C| = 2.

First we shall show that it is not possible to have either Sx = ∅ or Sy = ∅
and have at least two non-empty regions. Without loss of generality assume that
Sx = ∅. Then x and y are non-adjacent, as otherwise y will be a dominating
vertex which is not possible. For |C| = 2, if both Sy ∩ R0 and Sy ∩ R1 are
non-empty, then triangulation will force, either multiple edges c0c1 (one in each
region) or a common neighbour of x, y other than c0, c1, a contradiction. For
|C| = 3, 4 and 5, triangulation implies the edges c0c1, ..., ck−2ck−1, ck−1c0. Hence
every v ∈ Sy must be connected to x by a 2-dipath through ci for some i ∈
{1, 2, ..., k − 1}. Now assume |Sα

y | ≥ |Sα
y | for some α ∈ {+,−}. Then by (1), we

have |Sα
y | ≥ �(16− 2− 5)/2� = 5. Now by Lemma 1, we know that the vertices

of Sα
y would be contained in two adjacent regions for |C| = 4, 5. For |C| = 3,

Sα
y ∩ Ri for all i ∈ {0, 1, 3} implies |Sα

y | ≤ 3 by Lemma 2. Hence without loss
of generality we may assume Sα

y ⊆ R1 ∪ R2. If both Sα
y ∩ R1 and Sα

y ∩ R2 are

Maximum Order of a Planar Oclique Is 15 135

non-empty, then, by Lemma 2, each vertex of Sα
y ∩R1 disagrees with each vertex

of Sα
y ∩ R2 on c1. Hence by Lemma 3 we have |Sα

y ∩ R1|, |Sα
y ∩ R2| ≤ 3. That

implies we have at least two vertices in each of the sets. Without loss of generality
assume that the vertices of Sα

y ∩R1 are connected to x by 2-dipaths through c1.
Hence vertices (at least two) of Sα

y ∩ R2 must be connected to x by 2-dipaths
through c2. But it is not possible to have two vertices of Sy adjacent to both c1
and c2 keeping the graph planar. Hence both Sx and Sy are non-empty.

Now we prove that at most four sets out of the 2k sets St ∩ Ri can be non-
empty, for all t ∈ {x, y} and i ∈ {0, 1, ..., k − 1}. It is trivial for |C| = 2. For
|C| = 4 and 5, the statement follows from Lemma 1. For |C| = 3, we consider
the following two cases:

(i) Assume St ∩ Ri �= ∅ for all t ∈ {x, y} and for all i ∈ {0, 1, 2}. Then by
Lemma 2 we have, |St ∩ Ri| ≤ 1 for all t ∈ {x, y} and for all i ∈ {0, 1, 2}. Then
by (1) we have, 16 ≤ |�G| = 2 + 3 + 4 = 9, a contradiction.

(ii) Assume that five out of the six sets St ∩Ri are non-empty and the other
one is empty, where t ∈ {x, y} and i ∈ {0, 1, 2}. Without loss of generality we
can assume Sx ∩ R0 = ∅. By Lemma 2 we have |St ∩ Ri| ≤ 1 for all (t, i) ∈
{(x, 1), (x, 2), (y, 0)}. Now let u ∈ Sy ∩ R0. Assume u ∈ Nα(y), where {α, α} =
{+,−}. So |Sy∩Ri∩Nα(y)| ≤ 1 for i ∈ {1, 2}, because any wi ∈ Sy∩Ri∩Nα(y)

will have an arc with ci−1 and ci in order to satisfy �d(wi, u) ≤ 2 and d(wi, vi) ≤ 2,
where vi ∈ Sx ∩ R3−i, for all i ∈ {1, 2}. Any wi ∈ Sy ∩ Ri will disagree on c1
with vi ∈ Sx ∩R3−i, for all i ∈ {1, 2} to satisfy �d(wi, vi) ≤ 2. Then by Lemma 3
we have |Sy ∩ Ri ∩Nα(y)| ≤ 3 for all i ∈ {1, 2}. Hence, |Sy ∩Nα(y)| ≤ 6. Also

we have |Sy ∩ Nα(y)| ≤ 3 and |Sx| ≤ 2. Therefore by (1) we have, 16 ≤ |�G| =
2 + 2 + 11 = 15, a contradiction.

Hence at most four sets out of the 2k sets St ∩ Ri can be non-empty, where
t ∈ {x, y} and i ∈ {0, 1, ..., k− 1}.

Now assume that exactly four sets out of the sets St∩Ri are non-empty, for all
t ∈ {x, y} and i ∈ {0, ..., k− 1}. Without loss of generality we have the following
three cases (by Lemma 1):

(i) Assume the four non-empty sets are Sx ∩R1, Sy ∩R0, Sy ∩R1 and Sy ∩R2

(only possible for |C| ≥ 3). We have the edges c0ck−1 and c1c2 by triangulation.
Lemma 2 implies that Sx ∩ R1 = {x1} and that the vertices of Sy ∩ R0 and
the vertices of Sy ∩ R2 disagree with x1 on c0 and c1 respectively. Hence by
Lemma 3, we have |Sy ∩ R0|, |Sy ∩ R2| ≤ 3. For |C| = 3, if every vertex from
Sy ∩R1 is adjacent to either c0 or c1, then {c0, c1} will be a dominating set with
at least four common neighbours {x, y, x1, c2} contradicting the maximality of
D. If not, then triangulation will force x1 to be adjacent to at least two vertices
y1, y2 (say) from Sy. But then, {x1, y} will become a dominating set with at
least four common neighbours {y1, y2, c0, c1} contradicting the maximality of D.
For |C| = 4 and 5, Lemma 1 implies that vertices of Sy ∩ R0 and vertices of
Sy ∩R2 disagree with each other on y. Now by Lemma 2, any vertex of Sy ∩R1

is adjacent to either c0 (if it agrees with the vertices of Sy ∩R0 on y) or c1 (if it
agrees with the vertices of Sy ∩R2 on y). Also vertices of Sy ∩R0 and Sy ∩R2

are connected to x1 by a 2-dipath through c0 and c1 respectively. Now by (1)

136 S. Sen et al.

we have |Sy| ≥ (16 − 2 − 5 − 1) = 8. Hence without loss of generality, at least
four vertices y1, y2, y3, y4 of Sy are adjacent to c0. Hence {c0, y} is a dominating
set with at least five common neighbours {y1, y2, y3, y4, ck−1} contradicting the
maximality of D for |C| = 4. For |C| = 5, each vertex of Sy ∩ R1 disagree with
c3 by Lemma 1 and hence without loss of generality are all adjacent to c0. Now
|Sy ∩ R2| ≤ 3 and |Sy| ≥ 8 implies |Sy ∩ (R0 ∪ R1)| ≥ 5. But every vertex of
Sy ∩ (R0 ∪R1) and c4 are adjacent to c0. Hence {c0, y} is a dominating set with
at least six common neighbours, contradicting the maximality of D for |C| = 5.

(ii) Assume the four non-empty sets are Sx∩R0, Sx∩R1, Sy∩R0 and Sy∩R1.
For |C| = 2 every vertex in S is adjacent to either c0 or c1 (by Lemma 2).
So, {c0, c1} is a dominating set. Hence no vertex w ∈ S can be adjacent to
both c0 and c1 because otherwise {c0, c1} will be a dominating set with at least
three common neighbours {x, y, w} contradicting the maximality of D. By (1)
we have |S| ≥ 16 − 2 − 2 = 12 and hence without loss of generality we may
assume |Sx∩R0| ≥ 3. Assume {x1, x2, x3} ⊆ Sx∩R0. Now all vertices of Sx∩R0

must be adjacent to c0 (or c1), as otherwise it will force all vertices of Sy ∩R1 to
be adjacent to both c0 and c1 (by Lemma 2). Without loss of generality assume
all vertices of Sx ∩ R0 are adjacent to c0. Then all w ∈ Sy will be adjacent to
c0, as otherwise d(w, xi) > 2 for some i ∈ {1, 2, 3}. But then {c0, x} will be a
dominating set with at least three common vertices {x1, x2, x3} contradicting
the maximality of D. For |C| = 3, 4 and 5, every vertex of S will be adjacent
to c0 (by Lemma 2). By (1) we have |S| ≥ (16 − 2 − 5) = 9. Hence without
loss of generality, |Sx| ≥ 5. Hence {co, x} is a dominating set with at least five
common neighbours Sx ∪ {y} contradicting the maximality of D for |C| = 3, 4.
For |C| = 5, we may assume |Sx| = 5 and, x and y are non-adjacent as otherwise
it will create the dominating set {co, x} with at least six common neighbours
Sx ∪ {y} contradicting the maximality of D. Now every vertex of Sy must be
connected to x by a 2-dipath through ci for some i ∈ {0, 1, 2, 3, 4}. By Lemma 1
we know that each vertex of Sy ∩Ri disagree with ci+2 on y for i ∈ {0, 1}. Also
each vertex of Sy ∩ Ri disagree with each vertex of Sx ∩R1−i on c0. Hence, by
Lemma 3, we have |Sy∩R0|, |Sy∩R1| ≤ 3 and, without loss of generality, we may
assume |Sy ∩R0| = 3 and |Sy ∩R1| = 2. Now c2 and c3 agree with each other on
y, as otherwise both the vertices of Sy ∩R1 must be connected by 2-dipaths to
c3 through c2, which is not possible to do keeping the graph planar. This implies
that vertices of Sy ∩R0 and vertices of Sy ∩R1 agree with each other on y but
disagree on c0. Hence there is a vertex in either Sy ∩ R0 or Sy ∩ R1 which is
neither adjacent nor connected by a 2-dipath to x.

(iii) Assume the four non-empty sets are Sx ∩ R1, Sx ∩R2, Sy ∩R0 and Sy ∩
R1 (only possible for |C| = 3). Now Lemma 2 implies that every vertex of
(Sx ∩ R1) ∪ (Sy ∩ R0) is adjacent to c0 and every vertex of (Sx ∩ R2) ∪ (Sy ∩
R1) is adjacent to c1. Moreover triangulation forces the edges c0c2 and c1c2.
Triangulation also forces some vertex v1 ∈ Sy ∩ R1 to be adjacent to c0. This
will create the dominating set {c0, c1} with at least four common neighbours
{x, y, v1, c2} contradicting the maximality of D.

Maximum Order of a Planar Oclique Is 15 137

Hence at most three sets out of the 2k sets St ∩Ri can be non-empty, where
t ∈ {x, y} and i ∈ {0, 1, ..., k− 1}.

Now assume that exactly three sets out of the sets St ∩ Ri are non-empty,
where t ∈ {x, y} and i ∈ {0, ..., k − 1}. Without loss of generality we have the
following two cases (by Lemma 1):

(i) Assume the three non-empty sets are Sx ∩ R0, Sy ∩ R0 and Sy ∩ R1. Tri-
angulation implies the edge c0c1 inside the region R1. For |C| = 2, there exists
u ∈ Sy ∪ R1 such that u is adjacent to both c0 and c1 by triangulation. Now if
|Sy ∪ R1| ≥ 2, then some other vertex v ∈ Sy ∪ R1 must be adjacent to either
c0 or c1. Without loss of generality we may assume that v is adjacent to c0.
Then every w ∈ Sx ∩ R0 will be adjacent to c0 to have d(v, w) ≤ 2. But then
{c0, y} will be a dominating set with at least three common neighbours {c1, u, v}
contradicting the maximality of D. So now let us assume that Sy ∪ R1 = {u}.
Then any w ∈ Sx ∩ R0 is adjacent to either c0 or c1. If |Sx| ≥ 5, then without
loss of generality we can assume that at least three vertices of Sx are adjacent
to c0. Now to have at most distance 2 with all those three vertices, every ver-
tex of Sy would be adjacent to c0. This will create the dominating set {c0, x}
with at least three common neighbours contradicting the maximality of D. Also
|Sx| = 1 clearly creates the dominating set {c0, y} (as x1 is adjacent to c0 by
triangulation) with at least three common neighbours (a vertex from Sy ∩R0 by
triangulation, u and c1) contradicting the maximality of D. For 2 ≤ |Sx| ≤ 4,
c0 (or c1) can be adjacent to at most two vertices of Sy ∩R0 because otherwise
there will be one vertex v ∈ Sy ∩R0 which will force c0 (or c1) to be adjacent to
all vertices of w ∈ Sx in order to satisfy d(v, w) ≤ 2 and create a dominating set
{c0, y} that contradicts the maximality of D. Now, not all vertices of Sx can is
adjacent to c0 (or c1) as otherwise {co, y} (or {c1, y}) will be a dominating set
with at least three common neighbours (u, c1 (or c0) and a vertex from Sy ∩R0)
contradicting the maximality of D. Note that |Sy∩R0| ≥ 11−Sx by (1). Assume
Sx = {x1, ..., xn} with triangulation forcing the edges c0x1, x1x2, ..., xn−1xn,
xnc1 for n ∈ {2, 3, 4}. For |Sx| = 2, at most four vertices of Sy ∩ R0 can be
adjacent to c0 or c1. Hence there will be at least five vertices of Sy ∩ R0 each
connected to x by a 2-dipath through x1 or x2. Without loss of generality, x1 will
be adjacent to at least three vertices of Sy and hence {x1, y} will be a dominating
set contradicting the maximality of D. For |Sx| = 3, without loss of generality
assume that x2 is adjacent to c0. To satisfy d(x1, v) ≤ 2 for all v ∈ Sy ∩R0, at
least four vertices of Sy will be adjacent connected to x1 by a 2-dipath through
x2. This will create the dominating set {x2, y} contradicting the maximality of
D. For |Sx| = 4 we have x2c0 and x3c1 as otherwise at least three vertices of
Sx will be adjacent to either c0 or c1 which is not possible (because it forces all
vertices of Sy to be adjacent to c0 or c1). Now each vertex v ∈ Sy ∩R0 must be
adjacent to either c0 or x2 (to satisfy d(v, x1) ≤ 2) and also to either c1 or x3

(to satisfy d(v, x4) ≤ 2) which is not possible to do keeping the graph planar.
For |C| = 3, 4, 5 by Lemma 2, each vertex of Sx disagree with each vertex of
Sy ∩ R1 on c0. We also have the edge x1c2 for some x1 ∈ Sx by triangulation.
Now by (1) we have, |S| ≥ (16 − 2− 5) = 9. Hence |Sx| ≤ 2 as otherwise every

138 S. Sen et al.

vertex u ∈ Sy will be adjacent to c0 creating a dominating set {c0, t} with at
least six common neighbours St ∪ {c1} for some t ∈ {x, y} contradicting the
maximality of D. Now for |C| = 3, we can assume x and y are non-adjacent as
otherwise {c0, y} will be a dominating set with at least four common neighbours
(x, c1 and, two other vertices each from the sets Sy ∩ R0, Sy ∩ R1 by triangu-
lation) contradicting the maximality of D. Hence triangulation will imply the
edge c1c2. Now for |Sx| ≤ 2, either {c0, c2} is a dominating set with at least
four common neighbours {x, y, c1, x1} contradicting the maximality of D or x1

is adjacent to at least two vertices y1, y2 ∈ Sy ∩ R0 creating a dominating set
{x1, y} (another vertex in Sx must be adjacent to x1 by triangulation) with at
least four common neighbours {y1, y2, c0, c2} contradicting the maximality of D.
For |C| = 4 we have |Sy ∩R1| ≤ 2 as otherwise we will have the dominating set
{c0, y} with at least five common neighbours (c1, vertices of Sy∩R1 and one ver-
tex of Sy ∩R0 by triangulation) contradicting the maximality of D. Now by (1)
we have |Sy ∩R0| ≥ (16−|D|− |C|− |Sx|− |Sy ∩R1|) ≥ (16− 2− 4− 2− 2) = 6.
Now, at most 2 vertices of Sy ∩ R0 can be adjacent to c0 as otherwise {c0, y}
will be a dominating set with at least five common neighbours contradicting the
maximality of D. Also by triangulation in R3 we either have the edge xy or
have the edge c2c3. Also we have either at least four vertices of Sy ∩R0 adjacent
to c3 or at least three vertices of Sy ∩ R0 adjacent to x1 by triangulation. In
either of these cases, a dominating set {c3, y} (because every vertex in Sx will
be adjacent to c0 in order to have distance at most 2 with all the four vertices
of Sy ∩ R0 adjacent to c3) or {x1, y} with at least five common neighbours is
created contradicting the maximality of D. For |C| = 5 by Lemma 1, each vertex
of Sy ∩ Ri must disagree with ci+2 on y. If vertices of Sy ∩ R0 and vertices of
Sy ∩ R1 agree with each other on y, then they must disagree with each other
on c0 which implies |Sy ∩ Ri| ≤ 3 for all i ∈ {0, 1}. If vertices of Sy ∩ R0 and
vertices of Sy ∩R1 disagree with each other on y, then vertices of Sy ∩Ri must
agree with c3−i on y. Then, by Lemma 2, each vertex of Sy ∩ Ri must be con-
nected to c3−i by a 2-dipath through c4−3i which implies |Sy ∩ Ri| ≤ 3 for all
i ∈ {0, 1}. Hence we have |S| = |Sx| + |Sy| ≤ 2 + (3 + 3) = 8. Then by (1) we

have, 16 ≤ |�G| ≤ (2 + 5 + 8) = 15, a contradiction.
(ii)Assume the three non-empty sets are Sx ∩R1, Sy ∩R0 and Sy ∩R2 (only

possible for |C| ≥ 3). By Lemma 2, we have Sx = {x1} and the fact that each
vertex of Sy∩Ri disagrees with ci2/4 on x1. Triangulation implies the edges x1c0,
x1c1, ck−1c0, c0c1 and c1c2. Hence for |C| = 3, {c0, c1} is a dominating set with
at least four common neighbours {x, y, c2, x1} contradicting the maximality of
D. For |C| = 4 and 5 we have, every vertex of Sy∩R0 disagree with every vertex
of Sy ∩ R2 on y. Hence, by Lemma 3, we have |Sy ∩ Ri| ≤ 3 for all ∈ {0, 2}.
Hence by (1) we have 16 ≤ |�G| = |D|+ |C|+ |S| ≤ [2 + 5 + (1 + 3 + 3)] = 14, a
contradiction.

Hence at most two sets out of the 2k sets St ∩ Ri can be non-empty, where
t ∈ {x, y} and i ∈ {0, 1, ..., k− 1}.

Now assume that exactly two sets out of the sets St ∩ Ri are non-empty,
where t ∈ {x, y} and i ∈ {0, ..., k − 1}, yet there are two non-empty regions.

Maximum Order of a Planar Oclique Is 15 139

Without loss of generality assume that the two non-empty sets are Sx ∩R0 and
Sy ∩ R1. Triangulation would force x and y to have a common neighbour other
than c0 and c1 for |C| = 2 which is a contradiction. For |C| = 3, 4, 5 triangulation
implies the edges ck−1c0 and c0c1. By Lemma 2, we know that each vertex of S
is adjacent to c0. By (1) we have |S| ≥ (16 − 2 − 5) = 9. Hence without loss of
generality we may assume |Sx| ≥ 5. Then {c0, x} will be a dominating set with
at least six common neighbours Sx ∪ {ck−1, c1} contradicting the maximality of
D.

Hence we are done. �	

Lemma 6. |C| ≥ 6.

Proof. For |C| = 2, 3, 4, 5 without loss of generality by Lemma 5, we may assume
R1 to be the only non-empty region. Then triangulation will force the configura-
tion depicted in Fig 4 as a subgraph of und(�G), where C = {co, ..., ck−1}, Sx =
{x1, ..., xnx} and Sy = {y1, ..., yny}. Without loss of generality we may assume
|Sy| = ny ≥ nx = |Sx|. Then by (1) we have ny = |Sy| ≥ �(16− 2− 5)/2� = 5.

x y

c0

c1

ck−2

ck−1

x1

x2

xnx

y1

y2

yny

Fig. 4. The only non-empty region is R1

Claim 1: The Lemma is true when nx ≤ 2.
Claim 2: If nx ≥ 3, then the edge titit+l implies l = 1 for 0 ≤ i < i+ l ≤ nt.
Claim 3: If nx ≥ 3, then the edge citj implies j = (nt−1)i+1 for all i ∈ {0, 1}.

Proof of these three claims can be done by using similar ideas used for proving
Lemma 4.

Now for nx ≥ 3, to satisfy d(yny , x1) ≤ 2 we must have (because of the
above claims) either of the following edges: yny−1x1, ynyx1 or ynyx2. If we have
yny−1x1 or ynyx1, then we have a contradiction by forcing d(y1, xnx) > 2. If we
have ynyx2, then also we have a contradiction by forcing d(y1, xnx) > 2 when
nx ≥ 4. For nx = 3, the edge ynyx2 will force all the edges yjx2 to satisfy
d(x3, yj) ≤ 2 for all j ∈ {1, 2..., ny}. But in this case ny ≥ 6 by (1). Hence
{x2, y} is a dominating set with at least six common neighbours contradicting
the maximality of D. Hence using Lemma 4 we are done. �	

140 S. Sen et al.

Lemma 7. If |C| ≥ 6, then the following holds:

(a) |Cαβ | ≤ 3, |Cα
t | ≤ 6, |C| ≤ 12. Moreover, if |Cαβ | = 3, then �G[Cαβ] is a

2-dipath.
(b) |Cα

t | ≥ 5 (respectively 4, 3, 2, 1, 0) implies |Sα
t | ≤ 0 (respectively 1, 4, 5, 6, 7).

Proof. (a) If |Cαβ | ≥ 4, then there will be two vertices u, v ∈ Cαβ with d(u, v) >
2 which is a contradiction. Hence we have the first enequality which implies the
other two. Also if |Cαβ | = 3, then the only way to connect the two non-adjacent
vertices u, v of Cαβ is to connected them with a 2-dipath through the other
vertex (other than u, v) of Cαβ .

(b) Lemma 1(b) implies that, if all elements of Cα
t does not belong to the four

boundary points of any three consecutive regions (like R,R1, R2 in Lemma 2),
then |Sα

t | = 0. Hence we have |Cα
t | ≥ 5 implies |Sα

t | ≤ 0.
By Lemma 2, if all the elements of Cα

t belongs to the four boundary points
c1, c2, c1, c2 of three consecutive regionsR,R1, R2 (like in Lemma 2) and contains
both c1, c2, then |Sα

t | ≤ 1. Also Sα
t ⊆ R by Lemma 2. Hence we have |Cα

t | ≥ 4
implies |Sα

t | ≤ 1.
Now assume that all the elements of Cα

t belongs to the three boundary points
c1, c2, c1 of two adjacent regions R,R1 (like in Lemma 2) and contains both
c1, c2. Then by Lemma 1, v ∈ Sα

t implies v is in R or R1. Now if both Sα
t ∩ R

and Sα
t ∩ R1 are non-empty then each vertex of (Sα

t ∩ R) ∪ {c2} disagree with
each vertex of (Sα

t ∩R1)∪{c1} on c1 (by Lemma 2). Hence by Lemma 3, we have
|(Sα

t ∩R)∪{c1}|, |(Sα
t ∩R1)∪{c2}| ≤ 3 which clearly implies |Sα

t ∩R|, |Sα
t ∩R1| ≤ 2

and |Sα
t | ≤ 4. If one of Sα

t ∩R and Sα
t ∩R1 is empty then we must have |Sα

t | ≤ 3
by Lemma 2 and 3. Hence we have |Cα

t | ≥ 3 implies |Sα
t | ≤ 4.

Let R,R1, R2, c1, c2, c1, c2 be like in Lemma 2 and assume Cα
t = {c1, c2}. By

Lemma 1, v ∈ Sα
t implies v is in R, R1 or R2 and also that both Sα

t ∩ R1

and Sα
t ∩ R2 can not be non-empty. Hence without loss of generality assume

Sα
t ∩ R2 = ∅. Then by Lemma 2, vertices of Sα

t ∩ R1 disagree with vertices of
(Sα

t ∩R)∪{c2} on c1. Hence by Lemma 3 we have, |Sα
t ∩R1|, |(Sα

t ∩R)∪{c2}| ≤ 3
which implies |Sα

t | ≤ 5. Now if Sα
t ∩ R1 = ∅, then we have Sα

t = Sα
t ∩ R. Let

|Sα
t ∩ R| ≥ 6. Now consider the induced graph �O = �G[(S ∩ R) ∪ {c1, c2}]. In

this graph the vertices of (Sα
t ∩R)∪{c1, c2} are pairwise at directed distance at

most two. Hence χo(�O) ≥ 8. But this is a contradiction as �O is an outerplanar
graph and every outerplanar graph has an oriented 7-colouring [1]. Hence we
have |Cα

t | ≥ 2 implies |Sα
t | ≤ 5.

In general Sα
t is contained in two distinct adjacent regions by Lemma 1. With-

out loss of generality assume Sα
t ⊆ R1 ∪ R2. If both Sα

t ∩ R1 and Sα
t ∩ R2 are

non-empty, then by Lemma 2 we know that vertices of Sα
t ∩ R1 disagree with

vertices of Sα
t ∩R2 on c1. Hence |Sα

t ∩R1|, |Sα
t ∩R2| ≤ 3 which implies |Sα

t | ≤ 6.
In particular, if |Cα

t | = 1, then |Sα
t | = 6 implies Cα

t = {c1}. Now assume only
one of the two sets Sα

t ∩R1 and Sα
t ∩R2 is non-empty. Without loss of generality

assume Sα
t ∩ R1 �= ∅. If c0, c1 /∈ Cα

t and |Cα
t | = 1, then we have |Sα

t ∩ R1| ≤ 3

by Lemma 2 and 3. In the induced outerplanar graph �O = �G[(S ∩R1)∪{c1, c2}]

Maximum Order of a Planar Oclique Is 15 141

vertices of Sα
t ∪ (cαt ∩ {c1, c2}) are pairwise at directed distance at most two.

Hence 7 ≥ χo(�O) ≥ |Sα
t ∪ (cαt ∩ {c1, c2})|. Therefore, |Cα

t | ≥ 0 (respectively 1)
implies |Sα

t | ≤ 6 (respectively 7). �	

Lemma 8. |C| ≤ 5.

Proof. Without loss of generality we can suppose |Cα
x | ≥ |Cβ

y | ≥ |Cβ
y | ≥ |Cα

x | (the
last inequality is forced). We know that |C| ≤ 12 and |Cα

x | ≤ 6 (Lemma 7(a)). So
it is enough to show that |S| ≤ 13−|C| for all possible values of (|C|, |Cα

x |, |Cβ
y |)

since it contradicts (1).
For (|C|, |Cα

x |, |Cβ
y |) = (12, 6, 6), (11, 6, 6), (10, 6, 6), (10, 6, 5), (10, 5, 5),

(9, 5, 5), (8, 4, 4) we have |S| ≤ 13−|C| using Lemma 7(b). For (|C|, |Cα
x |, |Cβ

y |) =
(8, 6, 6), (7, 6, 6), (7, 6, 5),(6, 6, 6), (6, 6, 5), (6, 6, 4), (6, 5, 5) we are forced to have
|Cαβ | > 3, which is not possible by Lemma 7(a).

For (|C|, |Cα
x |, |Cβ

y |) = (9, 6, 6) we are forced to have |Cαβ | = |Cαβ | = |Cαβ | =
3 in order to satisfy the first inequality of Lemma 7(a). So �G[Cαβ], �G[Cαβ]

and �G[Cαβ] are 2-dipaths by Lemma 7(a). Without loss of generality we can

assume Cαβ = {c0, c1, c2} and Cαβ = {c3, c4, c5}. Hence by Lemma 1 we have

u ∈ R1 ∪ R2 and v ∈ R4 ∪ R5 for any (u, v) ∈ Sβ
y × Sα

x . Hence by Lemma 1,

either Sβ
y or Sα

x is empty. Without loss of generality assume Sβ
y = ∅. Therefore

we have, |S| = |Sx| = |Sα
x | ≤ 4 (by Lemma 7(b)). So this case is not possible.

Similarly for (|C|, |Cα
x |, |Cβ

y |) = (7, 6, 4) without loss of generality we can

assume that �G[Cαβ] and �G[Cαβ] are 2-dipaths and, Cαβ = {c0, c1, c2}, Cαβ =
{c3, c4, c5} and Cαβ = {c6}. By Lemma 7 we have |Sx| ≤ 6 and |Sy| ≤ 4+1 = 5.
So we are done if either Sx = ∅ or Sy = ∅. So assume both Sx and Sy are
non-empty. First assume that Sβ

y �= ∅. Then by Lemma 1 we have Sβ
y ⊆ R5,

Sα
x ⊆ R5 ∪ R6 and hence Sβ

y = ∅. By Lemma 2, vertices of Sβ
y and vertices of

Sα
x ∩ R5 must disagree with c6 on c5 while disagreeing with each other on c5,

which is not possible. Hence, Sα
x ∩R5 = ∅. Also |Sα

x ∩R6| ≤ 3 as they all disagree
on c5 with the vertex of Sβ

y . So |S| ≤ 4 when Sβ
y �= ∅. Now assume Sβ

y = ∅ hence
Sβ
y �= ∅. Then by Lemma 1 we have Sβ

y ⊆ R1 ∪ R2, S
α
x ⊆ R0 ∪ R1 and hence

Sβ
y = ∅. Assume Sβ

y ∩R2 = ∅ as otherwise vertices of Sα
x will be adjacent to both

c0 and c1 (to be connected to c6 and vertices of Sβ
y ∩R2 by a 2-dipath) implying

|Sα
x | ≤ 1 and hence |S| ≤ 5. If Sα

x ∩ R0 �= ∅, then |Sβ
y ∩ R1| = 1, |Sα

y ∩ R1| ≤ 1

and |Sα
y ∩R0| ≤ 3 by Lemma 2 and hence |S| ≤ 5. If Sα

x ∩R0 = ∅ then we have

|Sβ
y ∩R1| ≤ 2, |Sα

y ∩R1| ≤ 3 and hence |S| ≤ 5. So this case is not possible.
In a similar way one can handle the other cases. �	

Proof of Theorem 1. By Lemma 6 and 8 we get that it is not possible to extend
und(�H) to a planar oclique of order at least 16. Hence we are done. �	

142 S. Sen et al.

References

1. Sopena, E.: Oriented graph coloring. Discrete Mathematics 229(1-3), 359–369 (2001)
2. Marshall, T.H.: Homomorphism bounds for oriented planar graphs. J. Graph The-

ory 55, 175–190 (2007)
3. Raspaud, A., Sopena, E.: Good and semi-strong colorings of oriented planar graphs.

Inf. Process. Lett. 51(4), 171–174 (1994)
4. Sopena, E.: There exist oriented planar graphs with oriented chromatic number at

least sixteen. Inf. Process. Lett. 81(6), 309–312 (2002)
5. Klostermeyer, W., MacGillivray, G.: Analogs of cliques for oriented coloring. Dis-

cussiones Mathematicae Graph Theory 24(3), 373–388 (2004)
6. Goddard, W., Henning, M.A.: Domination in planar graphs with small diameter. J.

Graph Theory 40, 1–25 (2002)

Sufficient Condition for {C4, C2t} -

Decomposition of K2m,2n – An Improved Bound

Shanmugasundaram Jeevadoss and Appu Muthusamy

Department of Mathematics, Periyar University,
Salem, Tamil Nadu, India

{raazdoss,appumuthusamy}@gmail.com

Abstract. In this paper, we have improved the bounds of the sufficient
conditions obtained by C.C.Chou and C.M.Fu [J. Comb. Optim. 14, 205-
218 (2007)] for the existence of decomposition of complete bipartite graph
K2m,2n into cycles of length 4 and 2t, t > 2. Further an algorithm is
presented to provide such bound which in turn reduce the number of
constructions for the existence of required decomposition.

Keywords: complete bipartite graph, cycle decomposition.

1 Introduction

All the graphs considered here are simple. Let Km,n denotes the complete bi-
partite graph with part sizes m, n and let Ck denotes the cycle of length k. By
a decomposition of a graph G we mean a partition of G into edge-disjoint sub-

graphs G1, . . . , Gn such that
n⋃

i=1

E(Gi) = E(G). If each Gi
∼= H , for all i, then

we say that H decomposes G, or G has an H − decomposition and we denote
it by H |G; If H ∼= Ck, we say that G has a Ck − decomposition. If G can be
decomposed into p copies of C2t and q copies of C4 then we say that G has a
{C4, C2t} - decomposition and we write G = p C2t ⊕ q C4 where p, q ∈ N ∪ {0},
the set of nonnegative integers. For the standard graph-theoretic terminology
the reader is referred to [1].

For our convenience, we use some notations as in [3].
Let D(G) = {(p, q)|G = pC2t⊕qC4 where p, q ∈ N∪{0}} and Sr = {(p, q)|2tp+
4q = r where p, q ∈ N ∪ {0}}. It is easy to see that D(G) ⊆ Sr if G has r edges.
For the two sets A, B ⊆ Sr we define A + B = {(a1 + b1, a2 + b2)|(a1, a2) ∈
A, (b1, b2) ∈ B} and rA = A + A + · · · + A (r times). Let U be the set of
positive integers and for each u, v ∈ U and v ≥ u we define Ku, U =

⊕
v∈U

Ku, v,

D(Ku, U) =
⋃

v∈U

D(Ku, v) andSuU =
⋃

v∈U

Suv.

1.1 Program Code

Program 1

The following MATHEMATICA program provides all posible p, q and its corre-
sponding u, v such that 2t p+ 4 q = 4uv, where t is even and t

2 ≤ u, v < t.

S. Arumugam and B. Smyth (Eds.): IWOCA 2012, LNCS 7643, pp. 143–147, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

144 S. Jeevadoss and A. Muthusamy

t = input even positive integer;

For[u = t/2, u < t, u++, For[v = u, v < t, v++,

For[p = 0, p <= (4*u*v/2*t), p++, For[q = 0, q <= (u*v), q++,

If[(2*t*p) + (4*q) == (4*u*v),

Print["u=", u,"v=",v, 2*t,"-", p,"4-", q]

]]]]]

Program 2

The following MATHEMATICA program provides required p, q and its corre-
sponding u, v such that 2t p+ 4 q = 4uv, where t is even and t

2 ≤ u, v < t

t = input even positive integer; r = 0;

For[u = t/2, u < t, u++, For[v = u, v < t, v++,

For[p = r, p <= ((4*u*v)/(2*t)), p++,

For[q = 0, q <= (4*u*v - 2*t*p)/4, q++,

If[((2*t*p) + (4*q)) == (4*u*v),

Print["u=", u,"v=", v, 2*t "-", p,"4-", q]; u = v + 1; v = v;

For[x = u, x < v, x++, For[y = x, y < v, y++,

For[s = 0, s < x*y, s++, If[((2*t*p) + (4*s)) == (4*x*y),

Print["v=", x,"v=", y, 2*t "-", p,"4-", s]; Break[]]];

If[((2*t*p) + (4*s)) == (4*x*y), Break[]]];

If[x == y || x + 1 == y, Break[]]];r += 1; Break[]

]]]]]

Program 3

The following MATHEMATICA program provides all posible p, q and its corre-
sponding u, v such that 2t p+ 4 q = 4uv, where t is odd and t+1

2 ≤ u, v ≤ 3t−1
2 .

t = input odd positive integer;

For[u = ((t + 1)/2), u <= ((3*t - 1)/2), u++,

For[v = u, v <= ((3*t - 1)/2), v++,

For[p = 0, p <= (4*u*v/2*t), p++,

For[q = 0, q <= (u*v), q++,

If[(2*t*p) + (4*q) == (4*u*v),

Print["u=", u,"v=", v,2*t,"-", p,"4-", q]

]]]]]

Program 4

The following MATHEMATICA program provides required p, q and its corre-
sponding u, v such that 2t p+ 4 q = 4uv, where t is odd and t+1

2 ≤ u, v ≤ 3t−1
2 .

Sufficient Condition for {C4, C2t} - Decomposition 145

t = input odd positive integer; r = 0;

For[u = (t + 1)/2, u <= (3*t - 1)/2, u++,

For[v = u, v <= (3*t - 1)/2, v++,

For[p = r, p <= ((4*u*v)/(2*t)), p++,

For[q = 0, q <= (4*u*v - 2*t*p)/4, q++,

If[((2*t*p) + (4*q)) == (4*u*v),

Print["u=", u,"v=", v, 2*t "-", p,"4-", q]; u = u + 1; v = v;

For[x = u, x < v, x++, For[y = x, y < v, y++,

For[s = 0, s < x*y, s++, If[((2*t*p) + (4*s)) == (4*x*y),

Print["u=", x,"v=", y, 2*t "-", p,"4-", s]; Break[]]];

If[((2*t*p) + (4*s)) == (4*x*y), Break[]]];

If[x == y || x + 1 == y, Break[]]];

r += 2; Break[]]]]]]

Let Xt = {(p, q)|p, q ∈ N ∪ {0} obtained from Program 1 }, when t is even and
Yt = {(p, q)|p, q ∈ N ∪ {0} obtained from Program 3}, when t is odd .

Let Pt = {(p, q)|p, q ∈ N∪{0} obtained from Program 2 }, when t is even and
Qt = {(p, q)|p, q ∈ N ∪ {0} obtained from Program 4}, when t is odd .

Sotteau [4] has shown that Km, n has a C2k-decomposition if and only if (i)
m,n ≥ k (ii) m and n are even and (iii) mn ≡ 0 (mod 2k).

C.C.Chou, C.M.Fu andW.C. Huang [2] have shown that G can be decomposed
into p copies of C4, q copies of C6 and r copies of C8 for each triple p, q, r of
nonnegative integers such that 4p+6q+8r = |E(G)|, in the following two cases:
(a) G = Km,n, if m ≥ 4, n ≥ 6, and m,n are even, (b) G = Kn,n minus a
1− factor, if n is odd.

C.C.Chou and C.M.Fu [3] have shown that the existence of {C4, C2t}− de-
composition of K2u, 2v,

t
2 ≤ u, v < t (i.e. for all (p, q) ∈ Xt) when t even (re-

spectively t+1
2 ≤ u, v ≤ 3t−1

2 ,(i.e. for all (p, q) ∈ Yt) when t odd) implies such
decomposition in K2m, 2n, m, n ≥ t (respectively in K2m, 2n, m, n ≥ 3t+1

2).
In this paper, we show that the existence of {C4, C2t}− decomposition of

K2u, 2v, for all (p, q) ∈ Pt when t even (respectively (p, q) ∈ Qt when t odd) im-
plies such decomposition in K2m, 2n, m, n ≥ t (respectively in K2m, 2n, m, n ≥
3t+1
2). Since Pt ⊆ Xt and Qt ⊆ Yt, our result reduce the bounds given by

C.C.Chou and C.M.Fu [3] which in turn reduce the number of constructions for
the existence of such decomposition. Further the existence of {C4, C2t}− decom-
position ofK2u, 2v was assured by providing constructions for such decomposition
in K2u, 2v.

2 {C4, C2t}− Decompositions of K2m, 2n

Before proving our main results, we require the following properties of Sr.

Lemma 1 ([3]). Let a, b and t be positive integers.

(i) If t is even and one of a, b is a multiple of t then S2a + S2b = S2a+2b.
(ii) If t is odd and one of a, b is a multiple of t then S4a + S4b = S4a+4b.

146 S. Jeevadoss and A. Muthusamy

Lemma 2. Let U = {u ∈ Z+| t2 ≤ u < t }, and p, q, s ∈ Z+ ∪ {0}, the set
of nonnegative integers, where t is even. If Pt ⊆ D(Kt, 2U), then for each pair
(p, s) ∈ S2tU \ Pt, there exists a pair (p, q) ∈ Pt, q < s such that (p, s) ∈
D(Kt, 2U).

Proof. Let (p, q) ∈ Pt and Pt ⊆ D(Kt, 2U). Then Kt, 2u = p C2t ⊕ q C4 for a
positive integer u ∈ U and hence (p, q) ∈ S2tu. Suppose (p, s) ∈ S2tU \ Pt and

q < s, i.e. (p, s) ∈ S2tv, for a positive integer v �= u ∈ U then s− q = t(v−u)
2 . We

decompose Kt,2v as follows Kt,2v
∼= Kt,2u ⊕Kt,2(v−u)

∼= Kt,2u ⊕
t(v − u)

2
K2,2

∼=
pC2t ⊕ sC4. Thus (p, s) ∈ D(Kt, 2v), therefore S2tU \ Pt ⊆ D(Kt, 2U). Hence
D(Kt, 2U) = S2tU . �	

Lemma 3. Let p be positive integer and let U be as defined in Lemma 2. If t is
even and Pt ⊆ D(Kt, 2U), then D(Kt, 2p) = S2tp for all p ≥ 3t+1

2 .

Proof. Since t is even and 2p ≥ 3t+1, there is a nonnegative integer r such that
2p = rt+2u, t

2 ≤ u < t. Therefore we can decompose Kt, 2p into r Kt, t and Kt, 2u

i.e. Kt, 2p
∼= rKt, t⊕Kt, 2u. By the hypothesis, Pt ⊆ D(Kt, 2U). Then by Lemmas

1 and 2, we have D(Kt, 2p) ⊇ r D(Kt, t) + D(Kt, 2u) = r St2 + S2tu = S2tp .
Therefore D(Kt, 2p) = S2tp. �	

Theorem 1. Let m,n, u and v be positive integers and let U be defined as in
Lemma 2. If t is even and Pt ⊆

⋃
u, v∈U

D(K2u, 2v) then D(K2m,2n) = S4mn for

all m,n ≥ t.

Proof. For 2m, 2n ≥ t, we can decompose K2m, 2n as follows: K2m, 2n
∼=

K2m−t, 2n−t ⊕K2m−t, t ⊕Kt, 2n. D(K2m, 2n) ⊇ D(K2m−t, 2n−t) +D(K2m−t, t) +
D(Kt, 2n). By the hypothesis, D(K2m−t, 2n−t) = S(2m−t)(2n−t). By Lemmas 2
and 3 we have D(K2m−t,t) = St(2m−t) and D(Kt,2n) = S2nt. By Lemma 1 and
the hypothesis, we have D(K2m,2n) ⊇ S(2m−t)(2n−t) + S(2m−t)t + S2nt = S4mn.
Thus D(K2m,2n) = S4mn. �	

Lemma 4. Let V = {u ∈ Z+| t+1
2 ≤ u ≤ 3t−1

2 }, and p, q, s ∈ Z+ ∪ {0}, the
set of nonnegative integers where t is odd. If Qt ⊆ D(K2t, 2V), then for each
pair (p, s) ∈ S4tV \Qt, there exists a pair (p, q) ∈ Qt, q < s such that (p, s) ∈
D(K2t, 2V).

Proof. Let (p, q) ∈ Qt and Qt ⊆ D(K2t, 2V). Then K2t, 2u = p C2t ⊕ q C4 for a
positive integer u ∈ V and hence (p, q) ∈ S4tu. Suppose (p, s) ∈ S4tV \Qt and
q < s, i.e. (p, s) ∈ S4tv, for a positive integer v �= u ∈ V then s − q = t(v − u).
We decompose K2t,2v as follows K2t, 2v

∼= K2t, 2u ⊕K2t, 2(v−u)
∼= K2t, 2u ⊕ t(v −

u)K2, 2
∼= pC2t⊕sC4. Thus (p, s) ∈ D(K2t, 2v), therefore S4tV \Qt ⊆ D(K2t, 2V).

Hence D(K2t, 2V) = S4tV . �	

Lemma 5. Let p be positive integer and let V be defined as in Lemma 4. If t is
odd and Qt ⊆ D(K2t, 2V), then D(K2t, 2p) = S4tp for all p ≥ 3t+1

2 .

Sufficient Condition for {C4, C2t} - Decomposition 147

Proof. Since t is odd and 2p ≥ 3t+1, there is a nonnegative integer r such that
2p = 2rt+2u, t+1

2 ≤ u ≤ 3t−1
2 . Therefore we can decompose K2t, 2p into r K2t, 2t

and K2t, 2u i.e. K2t, 2p
∼= rK2t, 2t ⊕K2t, 2u. By the hypothesis, Qt ⊆ D(K2t, 2U).

Then by Lemmas 1 and 2, we have D(K2t, 2p) ⊇ r D(K2t, 2t) + D(K2t, 2u) =
r S4t2 + S4tu = S4tp . Therefore D(K2t, 2p) = S4tp. �	

Theorem 2. Let m,n, u and v be positive integers and let V be defined as in
Lemma 4. If t is odd and Qt ⊆

⋃
u, v∈V

D(K2u, 2v), then D(K2m,2n) = S4mn for

all m,n ≥ 3t+1
2 .

Proof. For 2m, 2n ≥ 3t + 1, we can decompose K2m, 2n as follows: K2m, 2n
∼=

K2m−2t, 2n−2t⊕K2m−2t, 2t⊕K2t, 2n−2t⊕K2t, 2t. D(K2m, 2n) ⊇ D(K2m−2t, 2n−2t)+
D(K2m−2t, 2t)+D(K2t, 2n−2t)+D(K2t, 2t). By the hypothesis, D(K2m−2t, 2n−2t)
= S(2m−2t)(2n−2t). By Lemmas 4 and 5 we have D(K2m−2t,2t) = S2t(2m−2t),
D(K2t,2n−2t) = S2t(2n−2t) and D(K2t,2t) = S4t2 . By Lemma 1 and the hypothe-
sis, we haveD(K2m,2n) ⊇ S(2m−2t)(2n−2t)+S(2m−2t)2t+S2t(2n−2t)+S4t2 = S4mn.
Thus D(K2m,2n) = S4mn. �	

References

1. Bondy, J.A., Murty, U.S.R.: Graph theory with applications. The Macmillan Press
Ltd., New York (1976)

2. Chou, C.C., Fu, C.M., Huang, W.C.: Decomposition of Km,n into short cycles.
Discrete Math. 197/198, 195–203 (1999)

3. Chou, C.C., Fu, C.M.: Decomposition of Km,n into 4-cycles and 2t-cycles. J. Comb.
Optim. 14, 205–218 (2007)

4. Sotteau, D.: Decomposition of Km,n(K
∗
m,n) into cycles (circuits) of length 2k. J.

Combin. Theory Ser. B 30, 75–81 (1981)

Incomparability Graphs of Lattices II

Meenakshi Wasadikar and Pradnya Survase�

Department of Mathematics, Dr. B.A.M. University, Aurangabad 431004, India
wasadikar@yahoo.com, survase.pradnya5@gmail.com

Abstract. In this paper, we study some graphs which are realizable and
some which are not realizable as the incomparability graph (denoted by
Γ ′(L)) of a lattice L with at least two atoms. We prove that for n ≥ 4,
the complete graph Kn with two horns is realizable as Γ ′(L). We also
show that the complete graph K3 with three horns emanating from each
of the three vertices is not realizable as Γ ′(L), however it is realizable
as the zero-divisor graph of L. Also we give a necessary and sufficient
condition for a complete bipartite graph with two horns to be realizable
as Γ ′(L) for some lattice L.

Keywords: Incomparability graph, bipartite graph, horn, double star
graph, zero-divisor graph.

1 Introduction

Filipov [5] discuses the comparability graphs of partially ordered sets by defining
the adjacency between two elements of a poset by using the comparability rela-
tion, that is a, b are adjacent if either a ≤ b or b ≤ a. Duffus and Rival [4] discuss
the covering graph of a poset. The papers of Gadenova [6], Bollobas and Rival
[2] discuss the properties of covering graphs derived from lattices. Nimbhorkar,
Wasadikar and Pawar [10] defined the zero-divisor graphs of a lattice L with 0,
by defining the adjacency of two elements x, y ∈ L by x ∧ y = 0.

Also, the concept of the cozero divisor graph of a commutative ring was intro-
duced by M. Afkhami and K. Khashyarmanesh in [1]. Let R be a commutative
ring with identity and let W (R)∗ be the set of all nonzero and nonunit elements
of R. Two distinct vertices a and b in W (R)∗ are adjacent if and only if a /∈ bR
and b /∈ aR.

Recently, Bresar et al. [3] introduced the cover incomparability graphs of
posets and called these graphs as C − I graphs of P . They defined the graph in
which the edge set is the union of the edge sets of the corresponding covering
graph and the corresponding incomparability graph.

In a lattice L, if a, b are incomparable then we write a ‖ b. Let L be a
finite lattice and let W (L) = {x | there exists y ∈ L such that x ‖ y }. The
incomparability graph of L, denoted by Γ ′(L), is a graph with the vertex set

� The second author gratefully acknowledges the financial assistance in the form of
Rajiv Gandhi National Senior Research Fellowship from UGC, New Delhi.

S. Arumugam and B. Smyth (Eds.): IWOCA 2012, LNCS 7643, pp. 148–161, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Incomparability Graphs of Lattices II 149

W (L) and two distinct vertices a, b ∈ W (L) are adjacent if and only if they are
incomparable. Note that Γ ′(L) does not contain any isolated vertex.

Wasadikar and Survase [12] introduced the incomparability graph of a lattice.
Throughout this paper, L is a finite lattice with at least two atoms.
In this paper, we study some more properties of Γ ′(L). In section 2 we show

that, if G is a graph on five vertices without any isolated vertex then G is
realizable as Γ ′(L) for some lattice L if and only if G is not isomorphic to a
member of a set of four graphs. Also we show when the zero-divisor graph and
the incomparability graph of a lattice L are isomorphic. In section 3 we show
that, the complete graph K3 with exactly one pendant emanating from all the
three vertices is not realizable as the incomparability graph of a lattice. However
it is realizable as the zero-divisor graph of a lattice L.

The undefined terms are from West [14], Harary [8] and Gratzer [7].
A graphG is connected if there exists a path between any two distinct vertices.

A graph G is complete if each pair of distinct vertices is joined by an edge. For
a positive integer n, we use Kn to denote the complete graph with n vertices.
A complete bipartite graph is a simple bipartite graph such that two vertices
are adjacent if and only if they belong to different partite sets. The complete
bipartite graph is denoted by Km,n. A graph in which one vertex is adjacent to
every other vertex and no other adjacencies is called a star graph. A vertex of a
graph G is called a pendant vertex if its degree is 1. A graph which is the union
of two star graphs whose centers a and b are connected by a single edge is called
a double star graph.

2 Some Realizable and Non Realizable Graphs

Nimbhorkar, Wasadikar and Pawar [10] associated a zero-divisor graph to a
lattice L with 0, whose vertices are the elements of L and two distinct elements
are adjacent if and only if their meet is 0. Similarly in [11] we define a graph of
a lattice L with 0. We say that an element x ∈ L is a zero-divisor if there exists
a non zero y ∈ L such that x∧y = 0. We denote by Z(L) the set of zero-divisors
of L. We associate a graph Γ (L) to L with the vertex set Z∗(L) = Z(L)− {0},
the set of all nonzero zero-divisors of L and distinct a, b ∈ Z∗(L) are adjacent if
and only if a ∧ b = 0. We call this graph as the zero-divisor graph of L.

Wasadikar and Survase [12] have shown that all connected graphs with at
most four vertices can be realized as Γ ′(L).

In this section we discuss graphs with five vertices. There are 34 graphs with
five vertices (see [8] Appendix 1) out of which 19 are realizable as Γ ′(L).

Definition 1. In a lattice L with 0, a nonzero element a ∈ L is called an atom
if there is no x ∈ L such that 0 < x < a.

Lemma 1. If a lattice L contains n atoms, then these atoms induce a Kn in
the incomparability graph.

We denote by Al = {x ∈ L | x ≤ y for all y ∈ A}.

150 M. Wasadikar and P. Survase

The next theorem characterizes which graphs are realizable as the incompa-
rability graph of a lattice.

Theorem 2. Let G be a graph on five vertices without any isolated vertex.
Then G is realizable as Γ ′(L) for some L if and only if G is not isomorphic to
any of the four graphs shown in Figures 1 to 4 given below.

d e

c

b

a

Fig. 1.

a c

b

e

d

Fig. 2.

a b c d e

Fig. 3.

d

a

b

c

e

Fig. 4.

Proof. We know that, in a lattice the greatest lower bound of any nonempty
finite subset of L exists. Here we show that, the greatest lower bound of some
nonempty finite subset of L does not exist.

Consider the Figure 1. Suppose that G = Γ ′(L) for some lattice L. Since
Γ ′(L) contains a 3 - cycle, L can contain two or three atoms and any two atoms
are adjacent in Γ ′(L). we have the following cases.

Case (i) Suppose, without loss of generality, L has two atoms d, b. We show
that a ∧ c does not exist. Since from Figure 1, d and a are comparable and d is
an atom hence d ≤ a. Similarly d ≤ c. Also a, e are comparable. If a ≤ e, then
d ≤ a implies d ≤ e, a contradiction since d and e are adjacent. Hence e ≤ a.
Similarly e ≤ c. Thus {a, c}l = {0, d, e} but d ‖ e hence a ∧ c does not exist.

Now suppose d, e are the two atoms in L then in a similar manner
{a, c}l = {0, d, e} but d ‖ e. Thus a ∧ c does not exist.

Case (ii) Suppose L has three atoms a, b and c. We show that d ∧ e does not
exist. We note that, {d, e}l = {0, a, c} but a ‖ c hence d ∧ e does not exist. So
Figure 1 cannot be realizable as Γ ′(L).

Now for Figure 2 Suppose that G = Γ ′(L) for some lattice L. We have the
following cases.

Case (i) Suppose L has two atoms a, b. We show that d∧e does not exist. Since
a is an atom we have a ≤ d and a ≤ e. From Figure 2, c and d are comparable.
If d ≤ c, then a ≤ d implies a ≤ c, a contradiction since a and c are adjacent.
Hence c ≤ d. Similarly c ≤ e. Thus {d, e}l = {0, a, c} but a ‖ c. Hence d∧ e does
not exist.

Suppose e, d are the two atoms in L then e ≤ a, e ≤ c and d ≤ a, d ≤ c that
is {a, c}l = {0, d, e} but e ‖ d. Hence a ∧ c does not exist.

Case (ii) Suppose L has three atoms a, b and c. Then by similar arguments as
in the case (ii) of Figure 1, d ∧ e does not exist. So Figure 2 is not realizable as
Γ ′(L).

Incomparability Graphs of Lattices II 151

Consider the Figure 3. Suppose P5 = Γ ′(L) for some lattice L. Then by
Lemma 1 L has exactly two atoms.

Let b and c be the two atoms. Then we have b ≤ d, b ≤ e and c ≤ a, c ≤ e.
Also we have a ≤ d or d ≤ a.
If a ≤ d, then c ≤ a implies c ≤ d, a contradiction since c and d are adjacent.
If d ≤ a, then b ≤ d implies b ≤ a, a contradiction since a and b are adjacent.
Hence neither a ≤ d nor d ≤ a, a contradiction since a and d are not adjacent.
Now let d and e be the two atoms in L. We show that a ∧ b does not exist.

We note that {a, b}l = {0, d, e} but d ‖ e hence a∧ b does not exist. So the path
P5 cannot be realized as Γ ′(L).

Consider the Figure 4. Suppose that G = Γ ′(L) for some lattice L. By Lemma
1 L has exactly two atoms. Let, without any loss of generality, a and b be the
two atoms. Then a ≤ c, a ≤ d and b ≤ e, b ≤ d.

Also we have c ≤ e or e ≤ c. If c ≤ e, then a ≤ c implies a ≤ e, a contradiction
since a and e are adjacent.

If e ≤ c, then b ≤ e implies b ≤ c, a contradiction since b and c are adjacent.
Neither c ≤ e nor e ≤ c, a contradiction since c and e are nonadjacent. Hence
Γ ′(L) cannot be a 5 - gon.

To show the converse, as mentioned earlier, Γ ′(L) cannot have any isolated
vertex. There are 23 graphs on five vertices without isolated vertices. Hence there
are 19 graphs other than the graphs shown in Figures 1 to 4. Each of these 19
graphs is realizable as the incomparability graph of a lattice. These graphs are
shown in Figure 5 to Figure 23.

e

a

b

d

c

Fig. 5.

e

a

b d c

Fig. 6.

e

a

d c b

Fig. 7.

e

d c

a b

Fig. 8.

e

a

b

d

c

Fig. 9.

d

c

e

b

a

Fig. 10.

d

b

c

e

a

Fig. 11.

e

b

c

d

a

Fig. 12.

152 M. Wasadikar and P. Survase

e

a

b d

c

Fig. 13.

d

c
eb

a

Fig. 14.

a

d
ec

b

Fig. 15.

d

c

a b

e

Fig. 16.

a

d

b

e

c

Fig. 17.

b

a c

e

d

Fig. 18.

a

b

c

d e

Fig. 19.

c

d a
b

e

Fig. 20.

b

a

d e

c

Fig. 21.

d

ab

e

c

Fig. 22.

d

a

b

e

c

Fig. 23.

The following are examples of lattices corresponding to the above graphs
respectively.

0

ca b

1

d e

Fig. 5a.

0

d

a c

1

e

b

Fig. 6a.

0

c

a

b

1

d

e

Fig. 7a.

0

a

e

b

1

c d

Fig. 8a.

Incomparability Graphs of Lattices II 153

0

ca
b

1

d

e

Fig. 12a.

0

db a

1

e

c

Fig. 9a.

0

ca b

1

d e

Fig. 10a.

0

ca b

1

d e

Fig. 11a.

0

ca b

1

d

e

Fig. 14a.

0

e

a
d

1

b

c

Fig. 13a.

0

ca b

1

e

d

Fig. 15a.

0

a

d

b

1

c

e

Fig. 16a.

0

a c

d

1

b

e

Fig. 17a.

0

ca b

1

e d

Fig. 18a.

0

ca b

1

e d

Fig. 19a.

0

c

a b

1

e

d

Fig. 20a.

154 M. Wasadikar and P. Survase

0

c

a

b

1

d

e

Fig. 21a.

d

0

f

a c

eb

1

Fig. 22a.

d

0

f

a

c

eb

1

Fig. 23a.

Remark 1. However each graph shown in Figure 1 to Figure 4 can be realized
as a subgraph of Γ ′(L) for some lattice L.

Definition 2. Let L be a lattice then a non-zero element a ∈ L is called meet-
irreducible if a = b ∧ c implies a = b or a = c. Otherwise it is called meet-
reducible.

For example, in Figure 17(a), the elements a, c, d and e are meet-irreducible
whereas the element b is meet-reducible.

Theorem 3. The zero-divisor graph and the incomparability graph of a lattice
L are isomorphic if and only if L does not contain any meet-reducible element.

Proof. Suppose Γ (L) and Γ ′(L) are isomorphic for some lattice L. We want to
show that, L does not contain any meet-reducible element.

Suppose on the contrary L has a meet-reducible element say b then there exist
a, c ∈ L and a, c �= b such that b = a ∧ c. Hence a and c are incomparable. So
there is an edge a − c in Γ ′(L) but a ∧ c �= 0. So a and c are not adjacent in
Γ (L), a contradiction to assumption that Γ (L) and Γ ′(L) are isomorphic.

Conversely suppose L does not contain any meet-reducible element. We want
to show that, Γ (L) and Γ ′(L) are isomorphic. Since L does not contain any
meet-reducible element the set of all zero-divisors and the set of all incomparable
elements are equal hence Γ (L) and Γ ′(L) are isomorphic.

Theorem 4. The complete graph Kn is realizable as the incomparability graph
of a lattice.

Proof. Consider the complete graph Kn. Let ai, i = 1, 2, . . . , n be the vertices
of Kn. The corresponding lattice is as shown in Figure 24.

Incomparability Graphs of Lattices II 155

0

a1 a2

1

an

Fig. 24.

a2

0

b2

b1a1

1

an bm

Fig. 25.

a

cb

x1 x2 x3 x4

Fig. 26.

0

a3a1 a2

x1

xm

1

an

Fig. 27.

Theorem 5. Any complete bipartite graph Km,n is realizable as the incompa-
rability graph of a lattice.

Proof. Consider the complete bipartite graph Km,n. Let V1 = {a1, a2, . . . , an}
and V2 = {b1, b2, . . . , bm} be the two partitions. The corresponding lattice is as
shown in Figure 25.

3 Graphs with Horns

Let G be a graph. All pendant vertices which are adjacent to the same vertex of
G together with edges is called a horn.

For example, in Figure 26, X = {x1, x2, x3, x4} together with the edges a −
x1, a− x2, a− x3, a− x4 is a horn at a, and is denoted as a−X .

We denote the complete graph Kn together with m horns X1, X2, . . . , Xm by
Kn(m) where a1 −X1, a2 −X2, . . . , am −Xm, ai ∈ V (Kn) and 0 ≤ m ≤ n.

We note that K1(1), K2(1) and K2(0) are star graphs, K2(2) is a double star
graph.

Theorem 6. The complete graph Kn(1), n ≥ 3 is realizable as the incompara-
bility graph of a lattice.

Proof. Consider the complete graph Kn. Let X be a horn in Kn at the vertex
an where X = {x1, x2, . . . , xm} and let ai, i = 1, 2, . . . , n be the vertices of Kn.
The corresponding lattice is as shown in Figure 27.

Corollary 7. The complete graph K3(1) is realizable as the incomparability
graph of a lattice.

Proof. Consider the complete graph K3. Let a, b and c be the three vertices of
K3 and let X be horn at c. Let X = {x1, x2, . . . , xn}. The corresponding lattice
is as shown in Figure 28.

156 M. Wasadikar and P. Survase

0

ca b

x1

xn

1

Fig. 28.

ym

a

x1

0

y1

b

xn

c

1

Fig. 29.

Y

b

a c

Z
X

Fig. 30.

a

0

x1

c

z1

b

y1

1

xnymzp

Fig. 31.

Lemma 8. The complete graphK3(2) is realizable as the incomparability graph
of a lattice.

Proof. Consider the complete graph K3. Let a, b and c be the three vertices of
K3 and let X and Y be horns at a and b respectively. Let X = {x1, x2, . . . , xn}
and Y = {y1, y2, . . . , ym}. The corresponding lattice is as shown in Figure 29.

Theorem 9. The complete graph K3(3) is not realizable as the incomparability
graph of a lattice. However it is realizable as the zero-divisor graph of a lattice
L.

Proof. Consider the complete graphK3. Let a, b and c be the three vertices ofK3

and let X , Y and Z be horns at a, b and c respectively. Let X = {x1, x2, . . . , xn},
Y = {y1, y2, . . . , ym} and Z = {z1, z2, . . . , zp}.

Case (i) Suppose L has two atoms a and b. Then a ≤ zj for
j = 1, 2, . . . , p, a ≤ yk for k = 1, 2, . . . ,m and b ≤ xi for i = 1, 2, . . . , n, b ≤ zj
for j = 1, 2, . . . , p.

Also we have yk ≤ xi or xi ≤ yk.
If yk ≤ xi, then a ≤ yk implies a ≤ xi, a contradiction since a and xi are

adjacent.
If xi ≤ yk, then b ≤ xi implies b ≤ yk, a contradiction since b and yk are

adjacent.
Hence neither yk ≤ xi nor xi ≤ yk, a contradiction since xi and yk are not

adjacent.
Suppose a and x1 are the two atoms in L. We have a ≤ zj for j = 1, 2, . . . , p,

a ≤ yk for k = 1, 2, . . . ,m and x1 ≤ xi for i = 2, . . . , n, x1 ≤ zj for j = 1, 2, . . . , p,
x1 ≤ b, x1 ≤ c, x1 ≤ yk for k = 1, 2, . . . ,m.

Incomparability Graphs of Lattices II 157

Also we have
(i) yk ≤ c or c ≤ yk (ii) yk ≤ zj or zj ≤ yk (iii) b ≤ zj or zj ≤ b.

If yk ≤ c, then a ≤ yk implies a ≤ c, a contradiction since a and c are adjacent.
Hence c ≤ yk.

If yk ≤ zj , then c ≤ yk implies c ≤ zj, a contradiction since c and zj are
adjacent. Hence zj ≤ yk.

We have b ≤ zj or zj ≤ b.
If b ≤ zj, then zj ≤ yk implies b ≤ yk, a contradiction since b and yk are

adjacent.
If zj ≤ b, then a ≤ zj implies a ≤ b, a contradiction since a and b are adjacent.
Hence neither b ≤ zj nor zj ≤ b, a contradiction since b and zj are not

adjacent.
Case (ii) Suppose L has three atoms a, b and c. Then we have a ≤ zj, a ≤ yk,

b ≤ xi, b ≤ zj , c ≤ xi and c ≤ yk.
Also we have yk ≤ xi or xi ≤ yk.
If yk ≤ xi, then a ≤ yk implies a ≤ xi, a contradiction since a and xi are

adjacent.
If xi ≤ yk, then b ≤ xi implies b ≤ yk, a contradiction since b and yk are

adjacent.
Hence neither yk ≤ xi nor xi ≤ yk since xi and yk are not adjacent. Hence

K3(3) cannot be realized as Γ ′(L).
However it is realizable as the zero-divisor graph of a lattice L see Figure 31.

0

a2

a1
x2

1

xm

x1

an

y1

yp

Fig. 32.

a1

bm

0

b2

b1

an

a2

1

Fig. 33.

xp

a2

0

a1x1

b1

1

bm an

Fig. 34.

xn

ym

a2

0

a1x1

b1

b2

1

y1

Fig. 35.

158 M. Wasadikar and P. Survase

Theorem 10. The complete graph Kn(2), n ≥ 4 is realizable as the incompa-
rability graph of a lattice.

Proof. Consider the complete graph Kn. Let ai, i = 1, 2, . . . , n be the vertices of
Kn and letX and Y be horns at a1 and an respectively. LetX = {x1, x2, . . . , xm}
and Y = {y1, y2, . . . , yp}. The corresponding lattice is as shown in Figure 32.

Theorem 11. A double star graph is realizable as the incomparability graph
of a lattice.

Proof. Let G = Γ ′(L) be a double star graph with centers a1, b1 and end vertices
bj, j = 2, 3, . . . ,m and ai, i = 2, . . . , n. The corresponding lattice is as shown in
Figure 33.

Next we discuss some Theorems for complete bipartite graphs with a horn. We
denote the complete bipartite graph Km,n together with P horns by Km,n(P).

Remark 2. Let Km,n be the complete bipartite graph with partitions
V1 = {a1, a2, . . . , an} and V2 = {b1, b2, . . . , bm}. Then by Theorem 5, Km,n is
realizable as Γ ′(L). Since the ai are non-adjacent in Γ ′(L), they are comparable
in L. So we can arrange them as a1 < a2 < a3 < . . . < an. Similarly, we can
arrange bj as b1 < b2 < . . . < bm.

Using this Remark we have the following Theorems.

Theorem 13. K2,2(2) is realizable as Γ ′(L) if and only if both the horns are
at vertices a1 and b2.

Proof. Consider the complete bipartite graph K2,2. Let V1 = {a1, a2} and
V2 = {b1, b2} be the two partitions. Let X = {x1, x2, · · · , xn} and
Y = {y1, y2, · · · , ym} be the two horns. If the two horns are at a1 and b2 re-
spectively as shown in Figure (i), then the corresponding lattice is as shown in
Figure 35.

Y

b2b1

a1 a2

X

Figure (i)

Y

b2b1

a1 a2

X

Figure (ii)

Y

b2b1

a1 a2

X

Figure (iii)

Conversely, we consider the two cases.

Incomparability Graphs of Lattices II 159

Case (i) Suppose the horns X and Y are at a1 and a2 respectively, see Figure
(ii) and let this graph be realizable as Γ ′(L) for some lattice L. Clearly L does
not contain three atoms as K2,2 does not contain a 3 - cycle.

Subcase (i) Suppose a1 and b1 are the two atoms.
Then a1 ≤ a2, a1 ≤ yk, b1 ≤ yk for each k and b1 ≤ xi for each i.
Also we have a2 ≤ x1 or x1 ≤ a2.
If a2 ≤ x1, then a1 ≤ a2 implies a1 ≤ x1, a contradiction since a1 and x1 are

adjacent.
If x1 ≤ a2, then b1 ≤ x1 implies b1 ≤ a2, a contradiction since a2 and b1 are

adjacent.
Hence neither a2 ≤ x1 nor x1 ≤ a2, a contradiction since x1 and a2 are not

adjacent.
Subcase (ii) Suppose a1 and x1 are the two atoms. Then a1 ≤ a2, x1 ≤ b1,

x1 ≤ b2, x1 ≤ a2, a1 ≤ yk and x1 ≤ yk for each k .
We know that, in a lattice the greatest lower bound of any nonempty finite

subset of L exists. We now show that the greatest lower bound of
A = {a2, y1, y2, . . . , ym} does not exist. The possible set of lower bounds of A is
{0, a1, x1, . . . , xn}. If a1 is the greatest lower bound, then xi ≤ a1, a contradiction
since a1 is an atom.

If any xi is the greatest lower bound then a1 ≤ xi, a contradiction since
a1 ‖ xi. Hence the greatest lower bound of A does not exist. So K2,2 is not
realizable as Γ ′(L) if both the horns are at vertices a1 and a2 respectively.

Case (ii) Suppose both the horns are at vertices a1 and b1 respectively see
Figure (iii).

Subcase (i) Suppose a1 and b1 are the two atoms. Then by similar manner as
in case (i) we get a contradiction.

Subcase (ii) a1 and x1 are the two atoms. Then a1 ≤ a2, x1 ≤ b1, x1 ≤ b2,
x1 ≤ a2, a1 ≤ yk and x1 ≤ yk for each k .

By Remark 2 we have b1 ≤ b2.
Also we have b2 ≤ yk or yk ≤ b2.
If b2 ≤ yk, then b1 ≤ b2 implies b1 ≤ yk, a contradiction since b1 and yk are

adjacent.
If yk ≤ b2, then a1 ≤ yk implies a1 ≤ b2, a contradiction since a1 and b2 are

adjacent.
Hence neither b2 ≤ yk nor yk ≤ b2, a contradiction since b2 and yk are not

adjacent.
Hence K2,2(2) is not realizable as Γ ′(L) if both the horns are at vertices a1

and b1 respectively.

Theorem 14. A complete bipartite graph with two horns, that is Km,n(2),
m > 2 or n > 2 is realizable as Γ ′(L) for some lattice L if and only if the two
horns are at vertices a1, an or at vertices a1, bm.

Proof. Consider the complete bipartite graph Km,n. Suppose, without loss of
generality, n > 2. Let V1 = {a1, a2, . . . , an} and V2 = {b1, b2, . . . , bm} be the two

160 M. Wasadikar and P. Survase

partitions. Let X = {x1, x2, . . . , xp} and Y = {y1, y2, . . . , yr} be the two horns.
If the horns are at a1 and an respectively then the corresponding lattice is shown
in Figure 36. If the horns are at a1 and bm respectively then the corresponding
lattice is shown in Figure 37.

xp

yr

a2

0

a1x1

b1

1

bm an

y1

Fig. 36.

xp

yr

a2

0

a1x1

b1

1

bm an

y1

Fig. 37.

Conversely consider the complete bipartite graphKm,n and let both the horns
be at vertices from the same partite set say V1.

We have V1 = {a1, a2, . . . , an}and V2 = {b1, b2, . . . , bm}. Let X and Y be
the two horns at a1 and ai, i �= n respectively where X = {x1, x2, . . . , xp} and
Y = {y1, y2, . . . , yr}. Let this graph be realizable as Γ ′(L) for some lattice L.
Clearly L does not contain three atoms as Km,n does not contain a 3 - cycle.
Case (i) Suppose a1 and b1 are the two atoms. We have a1 ≤ yj for j = 1, 2, . . . , r,
b1 ≤ yj for j = 1, 2, . . . , r and b1 ≤ xl, l = 1, 2, . . . , p.

Also we have a2 ≤ x1 or x1 ≤ a2.
If a2 ≤ x1, then a1 ≤ a2 implies a1 ≤ x1, a contradiction since a1 and x1 are

adjacent.
If x1 ≤ a2, then b1 ≤ x1 implies b1 ≤ a2, a contradiction since b1 and a2 are

adjacent.
Hence neither a2 ≤ x1 nor x1 ≤ a2, a contradiction since a2 and x1 are not

adjacent.
Case (ii) Suppose that a1 and x1 are the two atoms. Since x1, x2, . . . , xp are

comparable we can arrange them as x1 < x2 < . . . < xp. Similarly we have
y1 < y2 < . . . < yr, a1 < a2 < . . . < an and b1 < b2 < . . . < bm. Now xk ≤ y1 or
y1 ≤ xk for each k. y1 ≤ xk then a1 ≤ y1 implies a1 ≤ xk, a contradiction. Hence
xk ≤ y1 for each k. Thus we have x1 < x2 < . . . < xp < y1 < y2 < . . . < yr.

Now yr ≤ ai+1 or ai+1 ≤ yr.
If ai+1 ≤ yr then ai ≤ yr, a contradiction. Hence yr ≤ ai+1. Thus we have

the chain x1 < x2 < . . . < xp < y1 < y2 < . . . < yr < ai+1 < . . . < an.

Incomparability Graphs of Lattices II 161

Now for k ≤ i−1, either yj ≤ ak or ak ≤ yj for each j. If yj ≤ ak then ak ≤ ai
implies yj ≤ ai, a contradiction. Hence ak ≤ yj .

Now since y1, b1 are not adjacent, we have y1 ≤ b1 or b1 ≤ y1. If y1 ≤ b1 then
a2 ≤ y1 implies a2 ≤ b1, a contradiction since a2 and b1 are adjacent.

If b1 ≤ y1 then y1 ≤ ai+1 implies b1 ≤ ai+1, a contradiction since b1 and ai+1

are adjacent. Hence neither y1 ≤ b1 nor b1 ≤ y1and y1 and b1 are not adjacent,
a contradiction.

Acknowledgment. The authors are thankful to the referees for many fruitful
suggestions for improvement of the paper.

References

1. Afkhami, M., Khashyarmanesh, K.: The cozero divisor graph of a commutative
ring. Southeast Asian Bull. Math. 35, 753–762 (2011)

2. Bollobas, B., Rival, I.: The maximal size of the covering graph of a lattice. Algebra
Universalis 9, 371–373 (1979)

3. Bresar, B., Changat, M., Klavzar, S., Kovse, M., Mathews, J., Mathews, A.: Cover
- incomparability graphs of posets. Order 25, 335–347 (2008)

4. Duffus, D., Rival, I.: Path lengths in the covering graph. Discrete Math. 19, 139–158
(1977)

5. Filipov, N.D.: Comparability graphs of partially ordered sets of different types.
Collq. Maths. Soc. Janos Bolyai 33, 373–380 (1980)

6. Gedenova, E.: Lattices, whose covering graphs are s- graphs. Colloq. Math. Soc.
Janos Bolyai 33, 407–435 (1980)

7. Grätzer, G.: General Lattice Theory. Birkhauser, Basel (1998)
8. Harary, F.: Graph Theory, Narosa, New Delhi (1988)
9. Nimbhorkar, S.K., Wasadikar, M.P., Demeyer, L.: Coloring of meet semilattices.

Ars Combin. 84, 97–104 (2007)
10. Nimbhorkar, S.K., Wasadikar, M.P., Pawar, M.M.: Coloring of lattices. Math. Slo-

vaca 60, 419–434 (2010)
11. Wasadikar, M., Survase, P.: Some properties of graphs derived from lattices. Bull.

Calcutta Math. Soc. 104, 125–138 (2012)
12. Wasadikar, M., Survase, P.: Incomparability Graphs of Lattices. In: Balasubra-

maniam, P., Uthayakumar, R. (eds.) ICMMSC 2012. CCIS, vol. 283, pp. 78–85.
Springer, Heidelberg (2012)

13. Wasadikar, M., Survase, P.: The zero-divisor graph of a meet-semilattice. J. Com-
binatorial Math. and Combinatorial Computing (accepted)

14. West, D.B.: Introduction to Graph Theory. Prentice-Hall, New Delhi (1996)

On Antimagic Labeling of Odd Regular Graphs

Tao-Ming Wang and Guang-Hui Zhang

Department of Applied Mathematics
Tunghai University

Taichung, Taiwan 40704, R.O.C
wang@go.thu.edu.tw

Abstract. An antimagic labeling of a finite simple undirected graph
with q edges is a bijection from the set of edges to the set of integers
{1, 2, · · · , q} such that the vertex sums are pairwise distinct, where the
vertex sum at vertex u is the sum of labels of all edges incident to such
vertex. A graph is called antimagic if it admits an antimagic labeling. It
was conjectured by N. Hartsfield and G. Ringel in 1990 that all connected
graphs besides K2 are antimagic. Another weaker version of the conjec-
ture is every regular graph is antimagic except K2. Both conjectures
remain unsettled so far. In this article, certain classes of regular graphs
of odd degree with particular type of perfect matchings are shown to
be antimagic. As a byproduct, all generalized Petersen graphs and some
subclass of Cayley graphs of Zn are antimagic.

Keywords: antimagic labeling, regular graph, perfect matching, 2-factor,
generalized Petersen graph, Cayley graph, circulant graph.

1 Introduction

All graphs in this paper are finite simple, undirected, and without loops unless
otherwise stated. In 1990, N. Hartsfield and G. Ringel [9] introduced the concepts
called antimagic labeling and antimagic graphs.

Definition 1. For a graph G = (V,E) with q edges and without any isolated
vertex, an antimagic edge labeling is a bijection f : E → {1, 2, · · · , q}, such that
the induced vertex sum f+ : V → Z+ given by f+(u) =

∑
{f(uv) : uv ∈ E} is

injective. A graph is called antimagic if it admits an antimagic labeling.

N. Hartsfield and G. Ringel showed that paths, cycles, complete graphs Kn

(n ≥ 3) are antimagic. They conjectured that all connected graphs besides K2

are antimagic, which remains unsettled. In 2004 N. Alon et al [1] showed that
the last conjecture is true for dense graphs. They showed that all graphs with
n(≥ 4) vertices and minimum degree Ω(log n) are antimagic. They also proved
that if G is a graph with n(≥ 4) vertices and the maximum degree Δ(G) ≥ n−2,
then G is antimagic and all complete partite graphs except K2 are antimagic. In
2005, T.-M. Wang [15] studied antimagic labeling of sparse graphs, and showed
that the toroidal grid graphs are antimagic. In 2008, T.-M. Wang et al. [16]

S. Arumugam and B. Smyth (Eds.): IWOCA 2012, LNCS 7643, pp. 162–168, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

On Antimagic Labeling of Odd Regular Graphs 163

showed various types of graph products are antimagic. In 2009, D. Cranston [7]
proved that all regular bipartite graphs are antimagic. While many various types
of graphs have been shown to be antimagic [2,3,4,5,6,10,11,17,18], the question
of antimagic-ness of regular graphs still remains open. In this paper, we consider
the antimagic labeling of certain classes of regular graphs with perfect matchings.
For more conjectures and open problems on antimagic graphs and related type of
graph labeling problems, please see the dynamic survey article of J. Gallian [8].

2 Antimagic Labeling of 3-Regular Graphs

In 2000, M. Miller and M. Bača studied antimagic labelings of arithmetic type
for generalized Petersen graphs [2], which are referred as (a, d)-antimagic label-
ings. Note that (a, d)-antimagic labelings are requiring all vertex sums form an
arithmetic progression, hence also antimagic. M. Miller and M. Bača showed
(a, d)-antimagic-ness of GP (n, 2) for certain n, and also listed conjectures for
other generalized Petersen graphs.

In this section we show the generalized Petersen graphs are antimagic by
proving a more general theorem regarding 3-regular graphs with a particular
type of perfect matchings, which contain generalized Petersen graphs as special
cases. A r-factor of a graph is a r-regular spanning subgraph, and a 1-factor is
a perfect matching. A factorization of a graph is a decomposition of the graph
into union of factors so that the edge set is partitioned.

Theorem 2. Let G be 3-regular with 2n vertices {u1, u2, · · · , un, v1, v2, · · · , vn}
and M = {uivi| 1 ≤ i ≤ n} be a perfect matching of G. Assume additionally
that {u1, u2, · · · , un} and {v1, v2, · · · , vn} induce two 2-regular subgraphs of G
respectively. Then G is antimagic.

Proof. Let G = M
⊕

F = M
⊕

(F1 ∪ F2), where the 2-factor F is a disjoint
union of two 2-regular subgraphs F1 and F2, each with n vertices. Let V (F1) =
{u1, u2, · · · , un} and V (F2) = {v1, v2, · · · , vn}. Now we give an edge labeling f
by the following steps. First we label the edges of M via f(uivi) = 3i for each
1 ≤ i ≤ n. Then labeling over edges of F = F1∪F2 as follows. Since F1 and F2 are
2-regular graphs, we assign an orientation so that over each connected component
(connected 2-cycle) the flow is either clockwise or counter-clockwise. We labeling
over F by setting fout(w) and f in(w) respectively to be the outgoing edge label
from the vertex w and the incoming edge label to the vertex w, according to the
given orientation. Precisely we give the labeling as follows:

fout(ui) = 3n+ 1− 3i, fout(vi) = 3n+ 2− 3i

for each 1 ≤ i ≤ n. We claim this labeling f is antimagic. Note that the vertex
sum f+(ui) for each vertex ui is f+(ui) = fout(ui) + f(uivi) + f in(ui), which
is (3n + 1 − 3i) + (3i) + f in(ui) = 3n + 1 + f in(ui) for each 1 ≤ i ≤ n. Also
note that f in(ui) = fout(uki) for a unique ki, where 1 ≤ ki �= i ≤ n, and
{1, · · · , n} = {k1, · · · , kn}. Therefore f+(ui) = 3n+ 1 + f in(ui) = 6n + 2 − 3ki

164 T.-M. Wang and G.-H. Zhang

are pairwise distinct for 1 ≤ i ≤ n. Similarly we obtain f+(vi) = 3n+2+f in(vi)
which are pairwise distinct for 1 ≤ i ≤ n. Then f is antimagic since for each
1 ≤ i ≤ n, we see f+(ui) ≡ 2 (mod 3) and f+(vi) ≡ 1 (mod 3). �

Definition 3. Let n, k be integers such that n ≥ 3 and 1 ≤ k ≤
n−1
2 �. The

generalized Petersen graph GP (n, k) is defined by V (GP (n, k)) = {ui, vi| 1 ≤
i ≤ n}, and E(GP (n, k)) = {uiui+1, uivi, vivi+k| 1 ≤ i ≤ n} where the subscripts
are taken modulo n. (See Figure 1.) We call u1, u2, · · · , un an outer cycle, and
v1, v2, · · · , vn an inner cycle.

GP(7,3)GP(7,3)GP(5,1)GP(5,1) GP(6,2)GP(6,2)

u1

u2

u3u4

u5

u1

u2

u3u4

u5

u6 u1

u2

u3

u4u5

u6

u7
v1

v2

v3
v4

v5
v1

v2

v3
v4

v5

v6 v1

v2

v3

v4
v5

v6

v7

Fig. 1. Examples of generalized Petersen graphs

Note that all generalized Petersen graphs are 3-regular with 2n vertices, 3n edges,
and admitting perfect matchings {uivi| 1 ≤ i ≤ n}. Obviously {u1, u2, · · · , un}
and {v1, v2, · · · , vn} induce two 2-regular subgraphs respectively. Therefore, as a
byproduct of the above Theorem 2:

Corollary 4. Every generalized Petersen graph GP (n, k) is antimagic.

Example 5. In the following Figure 2 antimagic labelings of GP (5, 2) and
GP (6, 2) are given.

3 Antimagic Labeling of Odd Regular Graphs

In this section, we extend previous Theorem 2 to a more general situation for
regular graphs of odd degree. First we state a result we need here and also in
later sections:

Theorem 6. (J. Petersen, 1891) Let G be a 2r-regular graph. Then there
exists a 2-factor in G.

On Antimagic Labeling of Odd Regular Graphs 165

2525

20202323

2828

31312626

3434

2929

3737

3232

2222 3535

GP(5,2)GP(5,2) GP(6,2)GP(6,2)

1717

2020

2323 2626

2929

2222

2525

2828 3131

1919

13131

4

7

1010

3

6

91212

1515
2
1414

11118

5

4

1

1616

1313

1010

7

31818

1515

1212 9

6

2

1717

14141111

8

5

Fig. 2. GP(5,2) and GP(6,2) are antimagic

Notice that after removing edges of the 2-factor by the Petersen Theorem, we
will get an even regular graph again and again. Thus an even regular graph has
a 2-factorization.

Theorem 7. Let r ≥ 1 and let G be a (2r + 1)-regular graph with 2n vertices
{u1, u2, · · · , un, v1, v2, · · · , vn} and M = {uivi| 1 ≤ i ≤ n} be a perfect matching
of G. Assume additionally that {u1, u2, · · · , un} and {v1, v2, · · · , vn} induce two
2r-regular subgraphs of G respectively. Then G is antimagic.

Proof. LetG = M
⊕

(F1∪F2), where F1 and F2 are two 2r-regular subgraphs F1

and F2, each induced by n vertices, {u1, u2, · · · , un} and {v1, v2, · · · , vn} respec-
tively. Note that by Petersen’s Theorem 6, F1 and F2 can be factored as unions
of 2-factors, say F1 = F 1

1

⊕
F 2
1

⊕
· · ·
⊕

F r
1 and F2 = F 1

2

⊕
F 2
2

⊕
· · ·
⊕

F r
2 re-

spectively, where F j
1 and F k

2 are 2-factors for each 1 ≤ j ≤ r and each 1 ≤ k ≤ r
respectively.

Now we give an antimagic labeling f by the following steps. Note that G has
(2r+1)n edges. First we split all edge labels 1, 2, · · · , (2r+1)n into 2r+1 groups as
follows: {1, 2, · · · , n}, {n+1, n+2, · · · , 2n}, · · · · · · {2rn+1, 2rn+2, · · · , (2r+1)n}.
Then we will put these groups of labels in order over the edges of F 1

1 , F
2
1 , · · ·,

F r
1 , F

1
2 , F

2
2 , · · ·, F r

2 , and M respectively in below.
We define recursively that Gk = M

⊕
(F 1

1 ∪ F 1
2)
⊕
· · ·
⊕

(F k
1 ∪ F k

2) for 1 ≤
k ≤ r, and it is not hard to see G = Gr. Therefore G1 = M

⊕
(F 1

1 ∪ F 1
2),

G2 = G1

⊕
(F 2

1 ∪ F 2
2), · · ·, till Gr = Gr−1

⊕
(F r

1 ∪ F r
2) = G. Since F j

1 and F k
2

are 2-factors for each 1 ≤ j ≤ r and each 1 ≤ k ≤ r respectively, as before we
assign an orientation so that over each connected component (connected 2-cycle)
the flow direction is either clockwise or counter-clockwise. We set fout

k (w) and
f in
k (w) respectively, for each 1 ≤ k ≤ r, to be the outgoing edge label over the
2-factor (F k

1 ∪ F k
2) from the vertex w and the incoming edge label to the vertex

w according to the given orientation. On the other hand, we denote f+(w) to
be the induced vertex sum at the vertex w, and we use f+

k (w) to stand for the

166 T.-M. Wang and G.-H. Zhang

partial vertex sum at w for Gk for each 1 ≤ k ≤ r. Then we may start labeling
recursively over G1, G2, · · ·, Gr = G.

Precisely we give the labeling in the following steps:

Step 1: For G1 = M
⊕

(F 1
1 ∪ F 1

2): first for the edges of the perfect match-
ing M we set f(uivi) = 2rn+ i for each 1 ≤ i ≤ n. Then over (F 1

1 ∪ F 1
2) we set

fout
1 (ui) = 1+(2r+1)n− f(uivi) and fout

1 (vi) = rn+1+(2r+1)n− f(uivi) re-
spectively for each 1 ≤ i ≤ n. Therefore f+

1 (ui) = f in
1 (ui)+ f(uivi)+ fout

1 (ui) =
1 + (2r+ 1)n+ f in

1 (ui). Also note that fout
1 (ui) = f in

1 (uj) for a unique j, where
1 ≤ j �= i ≤ n. Therefore f+

1 (ui) = 1 + (2r + 1)n+ f in
1 (ui) = i+ 1 + (2r + 1)n,

for 1 ≤ i ≤ n, which form a sequence of consecutive integers. Similarly f+
1 (vi) =

1+ (3r+1)n+ f in
1 (vi) = i+1+ (3r+1)n, for 1 ≤ i ≤ n, which form a sequence

of consecutive integers.

Step 2: For G2, G3, ..., Gr we proceed recursively as follows: For 2 ≤ k ≤ r,
over (F k

1 ∪ F k
2) we set fout

k (ui) = (2r + 1 + k2 − k)n + k − f+
k−1(uivi) and

fout
k (vi) = (2kr+ r+ k2− k+1)n+ k− f+

k−1(vi) respectively for each 1 ≤ i ≤ n.

Therefore f+
k (ui) = f in

k (ui)+f+
k−1(ui)+fout

k (ui) = (2r+1+k2−k)n+k+f in
k (ui).

Also note that fout
k (ui) = f in

k (uj) for a unique j, where 1 ≤ j �= i ≤ n. Therefore
f+
k (ui) = i+ k+ (2r+ k2)n for 1 ≤ i ≤ n, which form a sequence of consecutive
integers. Similarly f+

k (vi) = i + k + (2kr + 2r + k2)n for 1 ≤ i ≤ n, which form
a sequence of consecutive integers.

Then this labeling f is antimagic, since the vertex sum at the vertex ui is
f+(ui) = i+r+(2r+r2)n for 1 ≤ i ≤ n, and similarly f+(vi) = i+r+(2r+3r2)n
for 1 ≤ i ≤ n, which shows that the vertex sums form a strictly monotone se-
quence f+(u1) < f+(u2) < · · · < f+(un) < f+(v1) < f+(v2) < · · · < f+(vn). �

To obtain more examples, we consider the Cayley graphs of Zn, which are also
known as circulant graphs as follows:

Definition 8. A circulant graph CIRn(S) with n vertices, with respect to S ⊂
{1, 2, · · · ,
n2 �}, is a graph with the vertex set V (CIRn(S)) = {0, 1, 2, · · · , n− 1},
and the edge set is formed by the following rule:

E(CIRn(S)) = {ij : i− j ≡ ±s (mod n), s ∈ S}.

Note that the circulant graph CIRn(S) is also called a Cayley graph of the finite
cyclic group Zn generated by S.

Example 9. Note that for n ≥ 5, the circulant graphs CIR2n({a, b, n}) (where
0 < a �= b < n, n odd, and gcd(2n, a) = gcd(2n, b) = 2) are 5-regular graphs
with perfect matchings, which satisfy the assumption in Theorem 7. Therefore
CIR2n({a, b, n}) are antimagic. See Figure 3 for the example CIR14({4, 6, 7}).

In a similar fashion, we may construct an infinite class of circulant graphs
which represent the class of odd (2r + 1)-regular graphs, for each r ≥ 2, with
perfect matchings, as stated in Theorem 7.

On Antimagic Labeling of Odd Regular Graphs 167

u1

u2

u3

u4

u5

u6

u7

v1

v2

v3

v4

v5

v6

v7

Fig. 3. Circulant graph CIR14({4, 6, 7}) (Cayley graph of Z14 generated by {4, 6, 7})

4 Concluding Remark

In this article, we obtain antimagic labelings of a class of odd regular graphs with
particular types of 1-factors, which contain the generalized Petersen graphs and
certain circulant graphs as subclasses. Hopefully these results may be helpful to
resolve more general situations regrading the conjecture that every regular graph
except K2 is antimagic, or helpful to resolve the Hartsfields-Ringel conjecture
that every connected graph except K2 is antimagic.

Acknowledgement. This research is partially supported by the National Cen-
ter of Theoretical Sciences (NCTS) of Taiwan, via the CTS Fellowship. The first
author wishes to express his most sincere thanks to the organization NCTS,
which makes the presentation of the paper possible in IWOCA conference held
on July 19-24, 2012, in Krishnankoil, Tamil Nadu, India.

References

1. Alon, N., Kaplan, G., Lev, A., Roditty, Y., Yuster, R.: Dense graphs are antimagic.
Journal of Graph Theory 47(4), 297–309 (2004)

168 T.-M. Wang and G.-H. Zhang

2. Miller, M., Bača, M.: Antimagic valuations of generalized Petersen graphs. Aus-
tralasian Journal of Combinatorics 22, 135–139 (2000)

3. Bača, M., Jendrol, S., Miller, M., Ryan, J.: Antimagic Labelings of Generalized
Petersen Graphs That Are Plane. Ars Combinatoria (2004)

4. Barrus, M.D.: Antimagic labeling and canonical decomposition of graphs. Infor-
mation Processing Letters 110(7), 261–263 (2010)

5. Cheng, Y.: A new class of antimagic Cartesian product graphs. Discrete Mathe-
matics 308(24), 6441–6448 (2008)

6. Cheng, Y.: Lattice grids and prisms are antimagic. Theoretical Computer Sci-
ence 374(1V3), 66–73 (2007)

7. Cranston, D.: Regular bipartite graphs are antimagic. Journal of Graph The-
ory 60(3), 173–182 (2009)

8. Gallian, J.A.: A dynamic survey of graph labeling. The Electronic Journal of Com-
binatorics DS6, 1–79 (2001)

9. Hartsfield, N., Ringel, G.: Pearls in Graph Theory, pp. 108–109. Academic Press,
Inc., Boston (1990) (Revised version 1994)

10. Hefetz, D.: Anti-magic graphs via the combinatorial nullstellensatz. Journal of
Graph Theory 50(4), 263–272 (2005)

11. Huang, P.Y., Wong, T.L., Zhu, X.: Weighted-1-antimagic graphs of prime power
order. To appear in Discrete Mathematics (2011)

12. Lee, M., Lin, C., Tsai, W.: On Antimagic Labeling For Power of Cycles. Ars Com-
binatoria 98, 161–165 (2011)

13. Petersen, J.: Die Theorie der regularen graphs. Acta Mathematica (15), 193–220
(1891)

14. Stewart, B.M.: Magic graphs. Canadian Journal of Mathematics 18, 1031–1059
(1966)

15. Wang, T.-M.: Toroidal Grids Are Anti-magic. In: Wang, L. (ed.) COCOON 2005.
LNCS, vol. 3595, pp. 671–679. Springer, Heidelberg (2005)

16. Wang, T.M., Hsiao, C.C.: On Antimagic Labeling for Graph Products. Discrete
Mathematics 308, 3624–3633 (2008)

17. Wong, T.L., Zhu, X.: Antimagic labelling of vertex weighted graphs. To appear in
Journal of Graph Theory (2011)

18. Zhang, Y., Sun, X.: The antimagicness of the Cartesian product of graphs. Theo-
retical Computer Science 410, 727–735 (2009)

A Graph Theoretic Model to Solve

the Approximate String Matching Problem
Allowing for Translocations

Pritom Ahmed, A.S.M. Shohidull Islam, and M. Sohel Rahman

A�EDA Group,
Department of CSE, BUET, Dhaka 1000, Bangladesh

{pritom.11,sohansayed}@gmail.com, msrahman@cse.buet.ac.bd

Abstract. In this paper, we visit the problem of approximate string
matching allowing for translocations. We study the graph theoretic model
proposed by [5] and extending the model, devise an efficient algorithm to
solve the approximate string matching allowing for translocations. The
resulting algorithm is an adaptation of the classic shift-and algorithm.
For patterns having length similar to the word-size of the target machine,
the algorithm runs in O(n + mk2) time for fixed length translocation
where n,m and k are the length of the text, pattern and the translocation
respectively.

1 Introduction

In text processing, approximate string matching is a fundamental problem which
consists of finding inexact (as opposed to exact) matches of a pattern in a string.
The accuracy of a match is measured in terms of the sum of the costs of the edit
operations necessary to convert the string into an exact match.

Most biological string matching methods are based on Levenshtein distance [6]
or on the Damerau edit distance [4]. The edit operations in the Levenshtein dis-
tance are deletion, insertion and substitution of characters, while the Damerau
edit distance allows swaps of characters, i.e., transpositions of two adjacent char-
acters. These distances assume that changes between strings occur locally, i.e.,
only a small portion of the string is involved in the mutation event. However,
large scale changes are also possible. For example, large pieces of DNA can be
moved from one location to an adjacent location (Translocations) where more
than two characters may be involved.

1.1 Our Contribution

In this paper, we investigate the approximate string matching problem under a
string distance whose edit operations are translocations of equal length factors.
Our algorithm is based on a graph-theoretic approach which is an extension of

S. Arumugam and B. Smyth (Eds.): IWOCA 2012, LNCS 7643, pp. 169–181, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

170 P. Ahmed, A.S.M.S. Islam, and M.S. Rahman

the work of Rahman & Illiopoulos [5]. Using the model, we devise an efficient al-
gorithm to solve the approximate string matching problem allowing fixed length
translocation. The resulting algorithm is an adaptation of the classic shift-and
algorithm [3] and runs in O(mk2 + n)) time if the pattern is similar in size to
the size of the word in the target machine where n, m and k are the length of
text, pattern and allowed translocation respectively. We also extend our work to
handle the version when all length translocations are allowed. Notably, to the
best of our knowledge the only attempt to solve the problem can be found in [2].
And our result is comparable to the result of [2].

1.2 RoadMap

The rest of the paper is organized as follows. In Section 2, we present some
preliminary definitions. Section 3 presents our Graph-Theoretic model to solve
the pattern matching problem allowing fixed length translocations. In Section 4,
we present our algorithm to solve the problem. In Section 5, we analyse the time
complexity of our algorithm. Finally, we briefly conclude in Section 7.

2 Preliminaries

A string is a sequence of zero or more symbols from an alphabet Σ. A string X
of length n is denoted by X [1..n] = X1X2 . . . Xn, where Xi ∈ Σ for 1 ≤ i ≤ n.
The length of X is denoted by |X | = n. A string w is called a factor of X if
X = uwv for u, v ∈ Σ∗; in this case, the string w occurs at position |u| + 1 in
X . The factor w is denoted by X [|u| + 1..|u| + |w|]. A k-factor is a factor of
length k. A prefix (or suffix) of X is a factor X [x..y] such that x = 1 (y = n),
1 ≤ y ≤ n (1 ≤ x ≤ n). We define i-th prefix to be the prefix ending at position
i i.e. X [1..i], 1 ≤ i ≤ n. On the other hand, i-th suffix is the suffix starting at
position i i.e. X [i..n], 1 ≤ i ≤ n.

Definition 1. Given two strings X and Y , the mutation distance, md(X,Y), is
based on the following operation:

1. Translocation: a factor of the form ZW is transformed into WZ, provided
that |Z| = |W | > 0. The translocation size in this case is said to be |W | = |Z|.

Each translocation operation is assigned unit cost. Mutation distance, md(X,Y)
gives the number of Translocation operation required to convert X into Y .

Notice that, by definition, the maximum length of the factors involved in a
translocation is
|X |/2�, where X is the string under consideration. Moreover,
there are strings X , Y such that X can not be converted into Y by any sequence
of translocations. In these cases, md(X,Y) =∞. When md(X,Y) <∞, we say
that X md-matches Y and vice versa, i.e., X ⇔md Y . If X md-matches with a
factor Y [i − |X | + 1 . . . i] of Y , then we say X has an md-match at position i

A Graph Theoretic Model 171

of Y or alternatively, X has an md-occurrence at i of Y 1. If the translocation
size is fixed (say, k) and X ⇔md Y then we say that X k-md-matches Y , i.e.,
X ⇔k−md Y .

Problem “FLT” (Pattern Matching with Fixed Length Translocations).
Given a text T = T1T2 . . . Tn where |T | = n and a pattern P = P1P2 . . . Pm where
|P | = m, we want to find each location i such that P has a k-md-match in T at
position i where, m ≤ i ≤ n and k is the given size of translocation.

Problem “ALT” (Pattern Matching with All Length Translocations).
Given a text T = T1T2 . . . Tn where |T | = n and a pattern P = P1P2 . . . Pm where
|P | = m, we want to find each location i such that P has a k-md-match in T at
location i where, m ≤ i ≤ n and k = 1, 2, . . . ,
n/2� is the size of translocation.

Problem “MLT” (Pattern Matching with Multiple Length Translo-
cations). Given a text T = T1T2 . . . Tn where |T | = n and a pattern P =
P1P2 . . . Pm where |P | = m, we want to find each location i such that P has a
kj-md-match in T at location i where, m ≤ i ≤ n and kj ∈ {k1, k2, . . . , kq} are
the desired translocation sizes such that kj ≤
n/2� for all j ∈ {1, . . . , q}.
We conclude this section with a definition of the degenerate string with an
example.

Definition 2. A string X is said to be degenerate, if it is built over the potential
2|Σ| − 1 non-empty sets of letters belonging to Σ.

Example 1. Suppose we are considering DNA alphabet i.e. Σ = ΣDNA =
{A,C, T,G}. Then we have 15 non-empty sets of letters belonging to ΣDNA.
In what follows, the set containing A and T will be denoted by [AT] and the
singleton [C] will be simply denoted by C for ease of reading.

3 A Graph-Theoretic Model for Pattern Matching with
Fixed Length Translocation

In this section, we present a new graph-theoretic model to solve Problem FLT.
Our model is inspired by the work of [5]. In our model, we view the text and
the pattern as two separate graphs. We start with the following definition of a
T -graph borrowed from [5].

Definition 3. Given a text T = T1 . . . Tn, a T -graph, denoted by TG =
(V T , ET), is a directed graph with n vertices and n − 1 edges such that V T =
{1, 2, . . . n} and ET = {(i, i + 1)|1 ≤ i < n}. For each i ∈ V T we define
label(i) = Ti and for each edge e ≡ (i, j) ∈ ET we define label(e) ≡ label((i, j)) ≡
(label(i), label(j)) = (Ti, Tj).

1 Note that, contrary to the usual practice of reporting the starting position as the
occurrence, we have used the end point of a match as the occurrence.

172 P. Ahmed, A.S.M.S. Islam, and M.S. Rahman

Note that the labels in the above definition may not be unique. Also, we normally
use the labels of the vertices and the edges to refer to them.

Now we define a P-graph which is extended significantly from the model of [5]
to handle our problems.

Definition 4. Given a text P = P1 . . . Pm, and a translocation size k, a P-
graph, denoted by PG = (V P , EP), is a directed graph. The vertex set V P can
be partitioned into three disjoint vertex sets namely V P

down, V
P
middle, V

P
up such that

−k ≤ up ≤ −1, 1 ≤ down ≤ k, and middle = 0. The partition is defined
in a (2k + 1) × m matrix M as follows. For the sake of notational symme-
try, we use M [up], M [middle] and M [down] to denote respectively the rows
M [−k] . . .M [−1], M [0] and M [1] . . .M [k] of the matrix M , respectively (please
see Figure 1). The following terms are required for the rest of the definitions:

x = m− �m
k
	 × k

yup =

{
(m− x− up− 1) if (m− x− up− 1) ≥ m for −k ≤ up ≤ −1,

(m− x− up− 1− k) Otherwise.

zdown =

{
(m− x+ down− 1− k) if (m− x+ down− 1) ≥ m for 1 ≤ down ≤ k,

(m− x+ down− 1− 2k) Otherwise.

The vertex partitions are defined as follows:

1. V P
up = {M [up, k−up],M [up, k−up+1], . . .M [up, yup]} where, −k ≤ up ≤ −1.

2. V P
middle = {M [middle, 0],M [middle, 1], . . .M [middle,m]} where, middle =

0.
3. V P

down = {M [down, down],M [down, down + 1], . . .M [down, zdown]} where,
1 ≤ down ≤ k.

The labels of the vertices are derived from P as follows:

1. For each vertex M [up, i] ∈ V P
up where, −k ≤ up ≤ −1 and k − up ≤ i ≤ yup:

label(M [up, i]) = Pi−k (1)

2. For each vertex M [middle, i] ∈ V P
middle where, 1 ≤ i ≤ m and middle = 0:

label(M [middle, i]) = Pi (2)

3. For each vertex M [down, i] ∈ V P
down where, 1 ≤ down ≤ k and down ≤ i <

zdown:

label(M [down, i]) = Pi+k (3)

The edge set EP is defined as the union of the sets EP
up, E

P
middle and EP

down as
follows:

1. EP
up = {(M [up, i],M [−up, i + 1]) | (i + 1 + up) = kq}⋃
{(M [up, i],M [middle, i+1]) | (i+1+up) = kq}

⋃
{(M [up, i],M [up, i+

1]) | (i + 1 + up) �= kq}, where k − up ≤ i ≤ yup − 1, q = 2, 3,

A Graph Theoretic Model 173

2. EP
middle = {(M [0, i],M [0, i + 1]) | 1 ≤ i ≤ m − 1}

⋃
{((M [0, i],M [j, i +

1]) | 1 ≤ i ≤ m− 2k , j = (imod k) + 1}
3. EP

down = {(M [down, i],M [−down, i + 1]) | (i + 1 − down) = kq}⋃
{(M [down, i]),M [down, i+1]) | (i+1−down) = kq}, where down ≤ i ≤

zdown − 1, q = 1, 2....

The labels of the edges are derived from using the labels of the vertices in an
obvious way.

Example 2. Suppose, P = abbcdbcddacbbbaac and translocation size, k = 3. The
corresponding P-graph is shown in Figure 1. The row and column numbers are
shown on the left and above respectively. V P

up consists of the vertices of rows

−1,−2 and −3, V P
middle consists of the vertices of rows 0 and V P

down consists of
the vertices of row 1, 2 and 3. The edges starting from vertices in V P

up, V
P
middle

and V P
down are called EP

up, E
P
middle and EP

down respectively.

Lemma 1. The graph PG has at most 2mk+2k+m−4k2 vertices and at most
2mk+ 3m− 4k− 4k2 − 1 edges. This will happen only when m+ 1 = kq, where
q (≥ 3) is a natural number.

Proof. Due to space constraint the proof will be given in the journal version.

Definition 5. Given a P-graph PG, a path Q = u1 � u� = u1u2 . . . u� is given
by a sequence of consecutive directed edges 〈(u1, u2), (u2, u3), . . . (u�−1, u�)〉 in
PG starting at node u1 and ending at node u�. The label of the path u1 � u�

is label(u1 � u�) = label(u1)label(u2). . . label(u�). The length of the path Q,
denoted by len(Q), is the number of edges on the path and hence is �− 1 in this
case. It is easy to note that the length of a longest path in PG is m− 1.

Definition 6. If we have two strings X,Y and X ⇔md Y . Then a factor of
Y is referred to as a PSfactor of X. A k-PSfactor is a PSfactor of length
k + 1 where, k is the size of translocation. The first edge of a path, u0 � uk (in
P-graph) corresponding to a PSfactor is called an F-edge.

Definition 7. If we have a path u1 � uk, where k is the size of the translocation
and all of the vertices lie in the same row either in V P

up or V P
down (not in V P

middle),

then we call those k vertices a Block. There are O(
m

k
) blocks in each row of

M [up] and M [down]. Furthermore, consider a block represented by the path u1 �
uk with col(uk) = j. Then, if M [0, j + k − 1] has two outgoing edges, the Block
is called a C-block.

Example 3. In Figure 1, on row −3, {b, c, d} of column 6, 7, 8 respectively forms
a block. It is also a C-block as M [0, 8+3− 1] = M [0, 10] has two outgoing edges
one to M [0, 11] another to M [2, 11]. On the other hand, {b, c, d} on row −3,
column 9, 10, 11, is a block but not a C-block.

174 P. Ahmed, A.S.M.S. Islam, and M.S. Rahman

Fig. 1. P-graph for pattern abbcdbcddacbbbaac and k = 3

Definition 8. Given a P-graph PG and a T -graph TG for translocation size
k, we say that PG matches TG at position i ∈ [1..n] if and only if there ex-
ists a path Q = u1u2 . . . um in PG having u1 ∈ {M [0, 1],M [+1, 1]} and um ∈
{M [−k,m],M [0,m]} such that for j ∈ [1..m] we have label(uj) = Ti−m+j.

The above definitions set up our model to solve Problem FLT. The following
Lemma presents the idea for the solution. Due to space constraint the proof of
the lemma will be provided in the journal version.

Lemma 2. Given a pattern P of length m, a text T of length n and an integer k
as the translocation size, suppose PG and TG are the P-graph and T -graph of P
and T , respectively. Then, P has k-md-occurrence at location i ∈ [m,m+1 . . . n]
of T if and only if PG matches TG at position i ∈ [m,m+ 1 . . . n] of TG.

It is clear that the number of possible paths of length m−1 in PG is exponential
in m. So spelling all the paths and then performing a pattern matching against,
possibly, an index of T is very time consuming unless m is a constant. We on
the other hand exploit the above model in a different way and apply a modified
version of the classic shift-and algorithm to solve the problem FLT.

4 Algorithms for Problem FLT

In this section, we use the model proposed in Section 3 to devise a novel and
efficient algorithm for the approximate string matching allowing for fixed length
translocations.We are using a modified version of Shift-And algorithm [3]. Due to
space constraints we are not giving any description on the Shift-And algorithm.
The reader unfamiliar with the Shift-And algorithm is referred to [3].

A Graph Theoretic Model 175

Fig. 2. P-graph for pattern acbab with k = 1

The idea is described as follows. First of all, the shift-and algorithm can be
extended easily for the degenerate patterns [1]. In our model for solving problem
FLT, the pattern can be thought of having a set of letters at each position
i as follows: P̃ = [M [−k, i],M [−k + 1, i],M [−k + 2, i] . . . ,M [0, i], . . . ,M [k −
2, i],M [k− 1, i],M [k, i]]. Note that we have used P̃ instead of P above because,
in our case, the sets of characters in the consecutive positions in the pattern P
do not have the same relation as in a usual degenerate pattern. Particularly in
our case, a match at position i + 1 of P will depend on the previous match of
position i as the following example shows.

Example 4. Suppose, P = acbab and T = bcbaaabcba and k = 1. The P-graph
of P is shown in Figure 2. So, in line of above discussion, we can say that
P̃ = [ac][acb][cba][ba][ab]. Now, as can be easily seen, if we consider degenerate

match, then P̃ matches T at position 2 and 6. However, P ⇔1−md T only at
position 6; not at position 2. To elaborate, note that at position 2, the match
is due to c. So, according to the graph PG the next match has to be an a and
hence at position 2 we can not have a match.

In what follows, we present a novel technique to adapt the shift-and algorithm
to tackle the above situation. We use the P-graph as follows. For the sake of
convenience, in the discussion that follows, we refer to both P̃ and the pattern
P as though they were equivalent; but it will be clear from the context what we
really mean. Suppose, we have a match up to position i < m of P̃ in T [j−i+1..j].
Now we have to check whether there is a ‘match’ between Tj+1 and Pi+1. For
a simple degenerate match, we only need to check whether Tj+1 ∈ Pi+1 or not.
However, as the Example 4 shows, for our case we need to do more than that.
What we do is as follows. Suppose that Tj = c = M [z, i], −k ≤ z ≤ k. Now, from
the P-graph we know which of the M [r, i + 1],−k ≤ r ≤ k can follow M [z, i].
So, for example, even if M [q, i+ 1] = Tj+1 we can’t continue if there is no edge
from M [z, i] to M [q, i+ 1] in the P-graph.

In what follows, we will use the following concept. Two edges (u, v), (x, y)
of the P-graph are said to be the ‘same’ if label(u) = label(x) and label(v) =
label(y), i.e., if the two edges have the same labels. Also, given an edge (u0, u1) ≡
(M [i1, j1],M [i2, j2]) we say that edge (u0, u1) ‘belongs to’ column j2, i.e., where

176 P. Ahmed, A.S.M.S. Islam, and M.S. Rahman

the edge ends and we say col((u0, u1)) = j2. Now we traverse all the edges and
construct a set of k-PSfactors S = {S1 . . . S�}. We use the label of the path
u1 � uk which corresponds to a k-PSfactor Si as the name of Si. Now, we
construct P-masks PSj , 1 ≤ j ≤ � such that PSj [g] = 1, 1 ≤ g ≤ m, if and only
if, there is a k-PSfactor, Sj having col(F -edge) = g.

With the P-masks at our hand, we now compute Rj+1 as follows:

Rj+1 = SHIFT (Rj) AND DTj+1 AND PSj

Note that, to locate the appropriate P-mask, we need to perform a look up in
the database using the factor TjTj+1 . . . Tj+k. However, we still have a problem
to take care of as discussed in the following subsection.

Fig. 3. The problem described in Section 4.1

4.1 The Problem

The problem occurs when the pattern has the following form [As shown in Figure
3]:
〈(P [i] = P [i+2k])∧(P [i+k] = P [i+3k])〉

∨
〈(P [i+2k] = P [i+4k])∧(P [i+3k] =

P [i+ 5k])〉
∨
.

In such cases, if j = i mod k then we can not distinguish between ((j + 1)
mod k)th row and ((j + 2) mod k)th row of the P-graph thus yielding wrong
result which is shown in the following example.

Example 5. The algorithm described in Section 4 accepts ‘adbabbccbaddabaac’
as a 3-md -match string of ‘abbcdbaddccbabaac’ which is shown in Figure 4.

A Graph Theoretic Model 177

Fig. 4. The wrong result described in Section 4.1

Algorithm 1. Algorithm for Approximate String Matching Allowing for Fixed
Length Translocation

1: result ← 2pattern−size − 1
2: checkup ← checkdown ← 0
3: find D-Mask for T0

4: result ← result & D-Maskvalue

5: result ← result >> 1
6: for j = 0 to (n− k) do
7: find P-Mask, Up-mask, Down-Mask, Middle-Mask for snippet sj
8: find D-Mask for Tj+1

9: result ← result & P-Mask & D-Mask
10: temp ← prevcheckup[j mod k] >> k
11: checkup ← checkup | upmask
12: checkup ← checkup & ∼ downmask & ∼ middlemask
13: prevcheckup[j mod k] ← checkup
14: result ←∼ (temp & checkup) & result
15: temp ← prevcheckdown[j mod k] >> k
16: checkdown ← checkdown | downmask
17: checkdown ← checkdown & ∼ upmask
18: prevcheckdown[j mod k] ← checkdown
19: result ←∼ (temp & checkdown) & result
20: x ← 2k−1

21: if (check & x) = x && ((checkup & x) < x) && ((checkdown & x) < x) then
22: Match found ending at position (j + k − 1)
23: end if
24: result ← result >> 1
25: end for

178 P. Ahmed, A.S.M.S. Islam, and M.S. Rahman

4.2 Fixing the problem

We start this section with the following definition that will be useful in the rest
of this paper with k as the size of translocation.

Definition 9. A level change means change of row in the Matrix M for one of
the following cases :

– Ongoing Translocation, i.e., going up from a position (i1, j) to (i2, j+1)
where (i1 > middle) AND (i2 < middle) AND (i1 = −i2).

– End of Previous & Beginning of new Translocation, i.e., going down
from a position (i1, j) to (i2, j+1) where (i1 < middle) AND (i2 > middle)
AND (i1 = −i2).

– A End of Translocation, i.e., going from a position (i1, j) to (i2, j + 1)
where (i1 < middle) AND (i2 = middle).

– A Beginning of Translocation, i.e., going down from a position (i1, j) to
(i2, j + 1) where (i1 = middle) AND (i2 > middle).

In order to fix the problem mentioned in Section 4.1, we will introduce three
new masks namely up, down and middle in our algorithm as follows.

1. This time we construct up-masks, upSj , 1 ≤ j ≤ � such that upSj [g] = 1
if and only if, there is a k-PSfactor Si with F -edge ≡ (M [i1, j1],M [i2, g])
having i1 > 0 and i2 = −i1.

2. We construct down-masks, downSj , 1 ≤ j ≤ � such that downSj [g] = 1
if and only if, there is a k-PSfactor Si with F -edge ≡ (M [i1, j1],M [i2, g])
having 〈(i1 < 0 and i2 = −i1) or (i1 = 0 and i2 > 0)〉.

3. We constructmiddle-masks,middleSj , 1 ≤ j ≤ � such thatmiddleSj [g] = 1
if and only if, there is a k-PSfactor Si with F -edge ≡ (M [i1, j1],M [i2, g])
having 〈(i1 < 0 and i2 = 0) or (i1 = 0 and i2 = 0)〉.

We have to ensure that after a level change at a particular position (i, j), another
level change must follow just after k positions, i.e., at the (i, j + k)th position
in the Matrix M otherwise there can be no match. That is the reason why we
have used these three masks. The detailed explanation is as follows:

1. If a level change has occurred and it is a Beginning of Translocation then
we have to check whether another level change occurs after k positions and
it has to be an Ongoing Translocation, otherwise there can be no match.
So we do the following operations.
At first, we perform the not operation on the up-mask (upSj+k

) then perform
the and operation on the negated value and down-mask (downSj). Then,
we perform not operation on the resulting value. Finally, we perform and
operation on the negated value and resultj+k.

2. If a level change has occurred and it is Ongoing Translocation then we
have to check whether another level change occurs after k positions and it
has to be an End of Translocation or End of Previous & Beginning

A Graph Theoretic Model 179

of new Translocation, otherwise there can be no match. So we do the
following operations.
At first, we perform not operations on the down-mask (downSj+k

) and
middle-mask (middleSj+k

) then perform and operation on the negated val-
ues and up-mask (upSj). Then, we perform not operation on the resulting
value. Finally, we perform and operation on the negated value and resultj+k.

3. This process continues repeatedly until an End of Translocation occurs
or end of pattern is encountered. So we do the following operations.
At first, we perform not operation on the middle-mask (middleSj+k

) then
perform and operation on the negated value and up-mask (upSj). Then,
we perform not operation on the resulting value. Finally, we perform and
operation on the negated value and resultj+k.

The algorithm is formally presented in Algorithm 1.

5 Algorithm Analysis

We use the following lemma for the analysis of the algorithm.

Lemma 3. A Hash table can be used for the database so that insertion and
searching of each PSfactor in database can be done with constant amortized cost
for alphabet of fixed size.

We analyse the algorithm in two parts.

Preprocessing Phase: We have to calculate the total number of k-PSfactors.

Note that, the total number of k-PSfactors beginning at V P
down is = O(

m

k
)×k×k

=O(mk). The total number of k-PSfactors beginning at V P
middle is = O(m)×O(k)

= O(mk). If k ≤ m

6
, then there is at least one C-block in every M [up] where,

−1 ≤ up ≤ −k. In that case, the total number of k-PSfactors that are needed

to be computed is
1

2
(mk2 − 5k3). Thus total number of k-PSfactors is O(mk2)

when k ≤ m

6
. Otherwise, The number is same as the for the case of V P

up, that is

O(mk). So we get the following lemma.

Lemma 4. The time complexity of the preprocessing phase is O((mk2)(m/w))

when k ≤ m

6
, otherwise O((mk)(m/w)). Here w is the target machine word size.

Matching Phase: The retrieval of the mask for each factor of T from the
database and other operations can be done in O(1) i.e. constant in time, accord-
ing to Lemma 3. Since there can be at most O(n) number of factors of T having
length k + 1, so the runtime complexity of the algorithm is O(nm/w).

So, the worst case time complexity of the algorithm is = O((mk2+n)(m/w)).

When k >
m

6
, we get a better time complexity O((mk+n)(m/w)). If the pattern

size is similar to machine word size then we get O(mk2 + n) and when k >
m

6
,

we get O(mk + n).

180 P. Ahmed, A.S.M.S. Islam, and M.S. Rahman

6 Solution for Problem ALT and Problem FLT

We can solve Problem ALT and Problem MLT by extending the solution to
Problem FLT. Due to space constraint, we could not give the full algorithm in
this paper. Hence, we are presenting the results in the following theorems.

Theorem 1. Problem ALT can be solved in O((nk+mk3)(m/w)). If the pattern
size is similar to the word size of the target machine then the time complexity
will be O(nk +mk3).

Theorem 2. Problem MLT can be solved in O((nq +
∑kq

i=k1
mi2)(m/w)). If

the pattern size is similar to the word size of the target machine then the time

complexity will be O(nq +
∑kq

i=k1
mi2).

For this problem, for short patterns, the algorithm of [2] will run in O(nr). Here
r = r2 − r1 where r2 and r1 are respectively the maximum and minimum of the
given translocation sizes i.e., k1, k2, . . . kq. As q ≤ r, there is a clear improvement
in our result.

7 Conclusion

In this paper, we have revisited the Pattern Matching with fixed length translo-
cation, a variant of the classic pattern matching problem. We have extended the
graph-theoretic approach [5] to model the problem. Then, using the model, we
have devised an efficient algorithm to solve the problem. The resulting algorithm
is an adaptation of the classic shift-and algorithm and runs in O(n +mk2) for
fixed length translocation if the pattern-length is similar to the word-size in the
target machine. Notably, the best known algorithm for pattern matching allow-
ing for all length translocation runs in O(nk) and uses dynamic programming
approach [2]. This seems to be the first attempt to provide an efficient solution
to the pattern matching problem for fixed length translocation without using dy-
namic programming approach. Moreover, the techniques used in our algorithm
are quite simple and easy to implement. We believe that this new variant of the
graph theoretic model could be used to devise more efficient algorithms and a
similar approach can be taken to model similar other variants allowing opera-
tions like inversion, swap matching, of the classic pattern matching problem.

References

1. Baeza-Yates, R.A., Gonnet, G.H.: A new approach to text searching. Commun.
ACM 35(10), 74–82 (1992)

2. Cantone, D., Faro, S., Giaquinta, E.: Approximate string matching allowing for
inversions and translocations. In: Holub, J., Žďárek, J. (eds.), pp. 37–51 (2010)

3. Charras, C., Lecroq, T.: Handbook of Exact String Matching Algorithms. College
Publications (2004)

A Graph Theoretic Model 181

4. Damerau, F.: A technique for computer detection and correction of spelling errors.
Commun. ACM 7(3), 171–176 (1964)

5. Iliopoulos, C.S., Rahman, M.S.: A New Model to Solve the Swap Matching Problem
and Efficient Algorithms for Short Patterns. In: Geffert, V., Karhumäki, J., Bertoni,
A., Preneel, B., Návrat, P., Bieliková, M. (eds.) SOFSEM 2008. LNCS, vol. 4910,
pp. 316–327. Springer, Heidelberg (2008)

6. Levenshtein, V.: Binary Codes Capable of Correcting Deletions, Insertions and
Reversals. Soviet Physics Doklady 10, 707 (1966)

Deterministic Fuzzy Automata on Fuzzy Regular

ω-Languages

R. Arulprakasam1, V.R. Dare2, and S. Gnanasekaran3

1 Department of Mathematics, CK College of Engineering and Technology,
Cuddalore-607 003

2 Department of Mathematics, Madras Christian College, Chennai-600 059
3 Department of Mathematics , Periyar Arts College, Cuddalore-607 001

r.arulprakasam@yahoo.com,
rajkumardare@yahoo.com,

sargunam.g.sekaran@gmail.com

Abstract. In this paper, the concept of fuzzy local ω-language, Büchi
fuzzy local ω-language are studied and we give some closure properties
of fuzzy local ω-languages. We also establish relationship between deter-
ministic fuzzy local automaton and fuzzy local ω-language. Further we
show that every fuzzy regular ω-language is a projection of a Büchi fuzzy
local ω-language.

Keywords: Local automaton, Local ω-language, Fuzzy set, Determin-
istic fuzzy automaton, Fuzzy regular ω-language.

1 Introduction

The notion of a fuzzy set was introduced by Zadeh [9] and it has application
in many fields of sciences. Fuzzy regular language have many important appli-
cations including learning systems, pattern recognition, database theory, lexical
analysis in programming language compilations and user-interface translations.
Roughly speaking, in recent years their application have been further extended
to include parallel processing, image generation, compression type theory for
object-oriented languages and DNA computing, etc. Fuzzy automata was intro-
duced by Wee in [8]. Fuzzy automaton provide a reliable formal basis for the
theory of computing with words. Formal languages are precise while natural
languages are quite imprecise. To reduce a gap between these two constructs,
it becomes advantageous to introduce fuzziness into the structures of formal
languages. This leads to the concept of fuzzy languages. In [8] Wee started the
studies of fuzzy languages accepted by fuzzy automata. More recent development
of algebraic theory of fuzzy automata and fuzzy languages can be found in book
by Mordeson and Malik [6]. Berstel and Pin [2] have defined local automata and
shown that a language is local if and only if it is recognized by a local automaton.
Béal [1] gave a more general definition of local automata. Caron [3] has made
use of equivalent definition in order to generalize the result stated by Berstel

S. Arumugam and B. Smyth (Eds.): IWOCA 2012, LNCS 7643, pp. 182–188, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Deterministic Fuzzy Automata on Fuzzy Regular ω-Languages 183

and Pin [7]. D.S.Malik et al [5] and S.Gnanasekaran [4] studied the closure prop-
erties of fuzzy regular languages and fuzzy local languages on finitary case. The
present paper is mainly concerned with the languages of infinite words (that is,
ω-words) rather than finite words. The basic definitions of this paper are given in
Section 2. In Section 3 we introduce two subclasses of fuzzy regular ω-languages
that are fuzzy local ω-languages and Büchi fuzzy local ω-languages. Further,
we give some closure properties of these classes of languages under intersection
and union. In Section 4 deterministic fuzzy automaton acceptance condition on
infinite words, fuzzy local automaton, are introduced and we characterize fuzzy
local ω-languages by fuzzy automata. Finally, we show that every fuzzy regular
ω-language is a projection of a Büchi fuzzy local ω-language.

2 Preliminaries

In this section, we recall some basic concepts on fuzzy set, local ω-languages,
deterministic fuzzy automata.

2.1 Fuzzy Subset

Suppose that X is a universal set. A fuzzy set A, or rather a fuzzy subset A
of X , is defined by a function assigning to each element x of X a value A(x)
in the real unit closed interval [0, 1]. Such a function is called a membership
function, which is a generalization of the characteristic function associated to a
crisp subset of X . The value A(x) characterizes the degree of membership of x
in A.

We denote by F(X) the set of all fuzzy subsets of X and by P(X) the power
set of X . For any A,B ∈ F(X), we say that A is contained in B (or B contains
A), denoted by A ⊆ B, if A(x) ≤ B(x) for all x ∈ X . We say that A = B if and
only if A ⊆ B and B ⊆ A. A fuzzy set is said to be empty if its membership
function is identically zero on X . We use φ to denote the empty fuzzy set.

For any family λi, i ∈ I, of elements of [0, 1], we write ∨i∈Iλi or ∨{λi |i ∈ I}
for the supremum of {λi |i ∈ I}, and ∧i∈Iλi or ∧{λi |i ∈ I} for the infimum.
In particular, if I is finite, then ∨i∈Iλi and ∧i∈Iλi are the greatest element and
the least element of {λi |i ∈ I} respectively. Given A,B ∈ F(X), the union of
A and B, denoted A ∪ B, is defined by the membership function (A ∪B)(x) =
A(x) ∨ B(x) for all x ∈ X , the intersection of A and B, denoted A ∩ B, is
given by the membership function (A ∩ B)(x) = A(x) ∧ B(x) for all x ∈ X .
Let λ ∈ [0, 1] and A ∈ F(X). The scale product λA of λ and A is defined by
(λA)(x) = λ ∧ A(x) for every x ∈ X , which is again a fuzzy subset of X.

2.2 Local ω-Languages

Let Σ be a finite alphabet and Σ∗ be the set of all finite words over Σ. For each
u ∈ Σ∗, we denote by P1(u), the prefix of u of length 1 and by F2(u), the set of all
factors of u of length 2. We denote by S1(u), the suffix of u of length 1. An infinite

184 R. Arulprakasam, V.R. Dare, and S. Gnanasekaran

word α over Σ is a function α : N → Σ from the set N of all positive integers
to Σ. We represent the infinite word α as α = a1a2 · · · where α(i) = ai ∈ Σ, for
all i. We denote by Σω, the set of all infinite words over Σ. For α ∈ Σω, inf2(α)
denotes the set of all elements of F2(α), each of which repeats infinite number of
times in α. A language L ⊆ Σω is called local if there exists a pair (I, C), where
I ⊆ Σ and C ⊆ Σ2 such that L = {α ∈ Σω : P1(α) ∈ I, F2(α) ⊆ C}.

2.3 Deterministic Fuzzy Automaton

A deterministic fuzzy automaton is a tuple M = (Q,Σ, δ, q0, F) where Q is
a finite non-empty set of states, Σ is a finite alphabet, δ : Q × Σ → Q is a
transition function, q0 ∈ Q is the initial state and F is a fuzzy final subset of Q
(that is, F : Q→ [0, 1]). The language accepted by M is the fuzzy subset L(M)
of Σ∗, defined by L(M)(u) = F (δ(q0, u)). A fuzzy language L is said to be a
fuzzy regular language if there exists a deterministic fuzzy automaton M such
that L = L(M).

3 Fuzzy Local ω-Language

In this section we define fuzzy local ω-languages, Büchi fuzzy local ω-languages
and study their properties.

Definition 31. The pair S = (λ1, λ2) is called a fuzzy local system if λ1 is a
fuzzy subset of Σ and λ2 is a fuzzy subset of Σ2. The fuzzy ω-language L over
Σ whose membership function defined by L(α) = λ1(P1(α))

∧
(
∧

x∈F2(α)
λ2(x)),

∀α ∈ Σω is called the fuzzy ω-language generated by S and we write L = Lω(S).

Definition 32. The fuzzy ω-language L over Σ is called a fuzzy local ω-language
if L = Lω

L(S) for some fuzzy local system S.

Example 33. Consider the fuzzy ω-language whose membership function is
given by

L(α) =
{
0.5 if α = (ab)ω,
0 otherwise.

Let us consider S = (λ1, λ2), where

λ1(x) =
{
0.5 if x = a,
0 otherwise

and

λ2(x) =

{
0.6 if x = ab,
0.5 if x = ba,
0 otherwise.

Then L = Lω(S) and therefore L is a fuzzy local ω-language.

Remark. The class of all local ω-languages is a proper subset of the class of all
fuzzy local ω-languages.

Deterministic Fuzzy Automata on Fuzzy Regular ω-Languages 185

Theorem 34. If L1 and L2 are fuzzy local ω-languages over Σ, then L1 ∩L2 is
a fuzzy local ω-language over Σ.

Proof: If L1 and L2 are fuzzy local ω-languages, then L1 = Lω(S1) for some
fuzzy local system S1 = (λ

′
1, λ

′
2) and L2 = Lω(S2) for some fuzzy local system

S2 = (λ
′′
1 , λ

′′
2). Consider the local system S = (λ1, λ2) where λ1 = λ

′
1 ∧ λ

′′
1 and

λ2 = λ
′
2 ∧ λ

′′
2 . We show that Lω(S) = Lω(S1) ∩ Lω(S2) = L1 ∩ L2.

For α ∈ Σω,

Lω(S)(α) = λ1(P1(α)) ∧
(
∧x∈F2(α)λ2(x)

)
=
(
(λ

′
1 ∧ λ

′′
1)(P1(α))

)
∧
(
∧x∈F2(α)(λ

′
2 ∧ λ

′′
2)(x)

)
=
(
λ

′
1(P1(α)) ∧ λ

′′
1 (P1(α))

)
∧
(
∧x∈F2(α)(λ

′
2(x) ∧ λ

′′
2 (x))

)
=
(
λ

′
1(P1(α))∧(∧x∈F2(α)λ

′
2(x))

)
∧
(
λ

′′
2 (P1(α)) ∧ (∧x∈F2(α)λ

′′
2 (x))

)
= Lω(S1)(α) ∧ Lω(S2)(α)

= L1(α) ∧ L2(α)

= (L1 ∩ L2)(α)

Thus Lω(S) = L1 ∩ L2.

Therefore L1 ∩ L2 is a fuzzy local ω - language.

Note that union of two fuzzy local ω-languages over Σ needs not be a fuzzy local
ω-language.

Example 35. Consider the fuzzy ω-languages L1 and L2 over Σ = {a, b} whose
membership functions are defined by

L1(α) =
{
0.3 if α = a(bc)ω,
0 otherwise.

L2(α) =
{
0.4 if α = aω,
0 otherwise.

and

(L1 ∪ L2)(α) =

{
0.4 if α = aω,
0.3 if α = a(bc)ω,
0 otherwise.

If L1 ∪ L2 is fuzzy local ω-language, then there exists a fuzzy local system S =
(λ1, λ2) such that L1 ∪ L2 = Lω(S). Here λ1(a),λ2(aa),λ2(ab), λ2(bc), λ2(cb)
are all greater than zero and therefore L1 ∪ L2(a

n(bc)ω) �= φ, n ≥ 1 . But
L1(a

n(bc)ω) = 0 and L2(a
n(bc)ω) = 0 which is a contradiction.

Theorem 36. If Σ1 and Σ2 are two disjoint subsets of the alphabet Σ whose
union is Σ and if L1 ⊆ Σω

1 and L2 ⊆ Σω
2 are fuzzy local ω-languages, then

L1 ∪ L2 is also a fuzzy local ω-language.

186 R. Arulprakasam, V.R. Dare, and S. Gnanasekaran

Proof: Since L1 and L2 are fuzzy local ω-languages over Σω
1 and Σω

2 , we have
L1 = Lω(S1) for some fuzzy local system S1 = (λ

′
1, λ

′
2) and L2 = Lω(S2) for

some fuzzy local system S2 = (λ
′′
1 , λ

′′
2). Consider the local system S = (λ1, λ2)

where λ1 = λ
′
1 ∨ λ

′′
1 and λ2 = λ

′
2 ∨ λ

′′
2 . Here L1 and L2 are defined on disjoint

domains Σω
1 and Σω

2 , respectively. We can view them as having same domain
Σω by defining L1(α) = 0 for every α ∈ Σω − Σω

1 and L2(α) = 0 for every
α ∈ Σω −Σω

2 . We have to show that Lω(S) = Lω(S1) ∪ Lω(S2) = L1 ∪ L2.
For α ∈ Σω,

Lω(S)(α) = λ1(P1(α)) ∧ (∧x∈F2(α)λ2(x))

=
(
(λ

′
1 ∨ λ

′′
1)(P1(α))

)
∧
(
∧x∈F2(α)(λ

′
2 ∨ λ

′′
2)(x)

)
=
(
λ

′
1(P1(α)) ∨ λ

′′
1 (P1(α))

)
∧
(
∧x∈F2(α)(λ

′
2(x) ∨ λ

′′
2 (x))

)
=
(
λ

′
1(P1(α)) ∧ (∧x∈F2(α)λ

′
2(x))

)
∨
(
λ

′′
1 (P1(α)) ∧ (∧x∈F2(α)λ

′′
2 (x)

)
= Lω(S1)(α) ∨ Lω(S2)(α)

= L1(α) ∨ L2(α)

= (L1 ∪ L2)(α)

Thus Lω(S) = L1 ∪ L2.

Therefore L1 ∪ L2 is a fuzzy local ω-language.

Definition 37. A fuzzy ω-language L over Σ is called a Büchi fuzzy local ω-
language if there exists a triple S = (λ1, λ2, λ3) where λ1 is a fuzzy subset of Σ
and λ2, λ3 are fuzzy subsets of Σ2 such that λ3 ≤ λ2 and whose membership
function is L(α) = λ1(P1(α))

∧
(
∧

x∈F2(α)
λ2(x))

∧
(
∨

x∈inf2(α)
λ3(x)), ∀α ∈ Σω

and we write L = Lω
B(S).

Example 38. Consider a fuzzy ω-language L whose membership function is
given by

L(α) =
{
0.5 if α = a+bω,
0 otherwise.

Let us consider the fuzzy local system S = (λ1, λ2, λ3), where

λ1(x) =
{
0.5 if x = a,
0 otherwise.

λ2(x) =

{
0.6 if x = ab,
0.5 if x ∈ {aa, bb},
0 otherwise.

and
λ3(x) =

{
0.5 if x = bb,
0 otherwise.

Then L = Lω(S) and therefore L is a Büchi fuzzy local ω-language.

Remark. The class of all fuzzy local ω-languages Lω
L is a subset of the class of

all Büchi fuzzy local ω-languages Lω
B .

Example 39. The language L in example 3.8 is a Büchi fuzzy local ω-language.
But L is not a fuzzy local ω-language, otherwise, aω ∈ L. Therefore Lω

L ⊂ Lω
B.

Deterministic Fuzzy Automata on Fuzzy Regular ω-Languages 187

4 Fuzzy Local Automaton

In this section we define deterministic fuzzy automaton on infinite words, fuzzy
local automaton and we characterize the fuzzy local ω-languages by fuzzy au-
tomaton.

Definition 41. Let M = (Q,Σ, δ, q0, F) be a deterministic fuzzy automaton. If
α = a1a2 · · · ∈ Σω, the sequence ρ = q0q1q2 · · · of states from Q is called a run of
M for α, if for each n ≥ 1, qn = δ(qn−1, an). The range of α, denoted by ran(ρ),
is the set ran(ρ) = {q0, q1, · · ·}. The acceptance value of ρ on α is acc(ρ, α)
where acc(ρ, α) =

∧
q∈ran(ρ) F (q). The fuzzy ω-language L(M) accepted by M is

a fuzzy subset of Σω with membership function defined by Lω(M)(α) = acc(ρ, α).
A fuzzy ω-language L is said to be a fuzzy regular ω-language if there exists a
deterministic fuzzy automaton M such that L = Lω(M).

Definition 42. A deterministic fuzzy automaton M = (Q,Σ, δ, q0, F) is said
to be local if for every a ∈ Σ, the set {δ(q, a) : q ∈ Q} contains at most one
element.

Theorem 43. L ⊆ Σω is a fuzzy local ω-language if and only if L is recognized
by a fuzzy local automaton.

Proof: Let L be a fuzzy local ω-languages, then there exists a fuzzy local system
S = (λ1, λ2) where λ1 is a fuzzy subset of Σ and λ2 is a fuzzy subset of Σ2 such
that Lω(S) = λ1(P1(α))

∧
(
∧

x∈F2(α)
λ2(x)), ∀α ∈ Σω. Consider the fuzzy finite

automaton M = (Q,Σ, δ, q0, F) where Q = {{[λ]} ∪ {[a] : a ∈ Σ} ∪ {[u] : u ∈
Σ2}}, q0 = {[λ]}, and δ is defined as follows: For all a, b ∈ Σ,

δ([λ], a) = [a] if λ1(a) �= 0,

δ([a], b]) = [ab] if λ2(ab) �= 0 and

For all u = ab ∈ Q and c ∈ Σ,

δ([ab], c) = [bc] if λ2(bc) �= 0.

The fuzzy final state F is defined by

F ([p]) =

{
λ1(p) if p ∈ Σ,
λ2(p) if p ∈ Σ2.

Then L = Lω(M).
Conversely, assume that L ⊂ Σω is recognized by fuzzy local automaton M =
(Q,Σ, δ, q0, F). Consider the fuzzy local system S = (λ1, λ2) where, for each
a ∈ Σ,

λ1(x) =
{
1 if δ(q0, a) ∈ Q,
0 otherwise.

and for each u ∈ Σ2,

λ2(u) =
{
F (δ(q, u)) if δ(q, u) ∈ Q,
0 otherwise.

Then Lω(M) = Lω(S).

188 R. Arulprakasam, V.R. Dare, and S. Gnanasekaran

Theorem 44. Every fuzzy regular ω-language is a projection of a Büchi fuzzy
local ω-language.

Proof: Let L be a fuzzy regular ω-language. Let L be recognized by the fuzzy
automaton M = (Q,Σ, δ, q0, F). Let Γ = Q × Σ × Q. Let λ1 : Γ −→ [0, 1] be
defined by

λ1(q1, a, q2) =
{
1 if q1 = q0,
0 otherwise.

Let λ2 : Γ 2 −→ [0, 1] be defined by

λ2((q1, a, q2)(q3, a, q4)) =
{
1 if q2 = q3,
0 otherwise.

Let λ3 : Γ 2 −→ [0, 1] be defined by

λ3((q1, a, q2)(q3, a, q4)) =
{
F (q4) if q2 = q3,
0 otherwise

.

Let L1 = Lω(S), where S is the fuzzy local system S = (λ1, λ2, λ3) over
Σ. Then L1 is a Büchi fuzzy local ω-language. Let the projection map f :
Γ −→ Σ be defined by f(q1, a, q2) = a. This map can be extended to Γω as
f((q1, a, q2)(q3, b, q4) . . .) = ab Then f(L1) = L.

References

1. Béal, M.P.: Codes circulaires, automates locaux et entropie. Theoretical Compute
Science 57, 283–302 (1988)

2. Berstel, J., Pin, J.-E.: Local languages and the Berry - Sethi algorithm. Theoretical
Computer Science 155, 439–446 (1996)

3. Caron, P.: Families of locally testable languages. Theoretical Computer Science 242,
361–376 (2000)

4. Gnanasekaran, S.: Fuzzy local languages. International Mathematical Forum 5(44),
2149–2155 (2010)

5. Malik, D.S., Mordeson, J.N.: On Fuzzy regular languages. Information Sciences 88,
263–273 (1996)

6. Mordeson, J.N., Malik, D.S.: Fuzzy automata and languages. Chapman and Hall,
CRC (2002)

7. Perrin, D., Pin, J.-E.: Infinite Words, Automata, Pure and Applied Mathematics,
vol. 141. Elsevier (2004)

8. Wee, W.G., Fu, K.S.: A Formation of Fuzzy Automata and its application as a model
of learning system. IEEE Transactions on in Systems Science and Cybernetics 5(3),
215–223 (1969)

9. Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)

Border Array for Structural Strings

Richard Beal and Donald Adjeroh

West Virginia University
Lane Department of Computer Science and Electrical Engineering,

Morgantown, WV 26506
r.beal@computer.org, don@csee.wvu.edu

Abstract. The border and parameterized border (p-border) arrays are
data structures used in pattern matching applications for traditional
strings from the constant alphabet Σ and parameterized strings (p-
strings) from the constant alphabet Σ and the parameter alphabet Π . In
this work, we introduce the structural border (s-border) array as defined
for an n-length structural string (s-string) T . The s-string is a p-string
with the existence of symbol complements in some alphabet Γ . These dif-
ferent alphabets add to both the intricacies and capabilities of pattern
matching. Initially, we provide a construction that executes in O(n2)
time to build the s-border array. The paper establishes theory to im-
prove the result to O(n) by proving particular properties of the s-border
data structure. This result is significant because of the generalization of
the s-string, which is a step beyond the p-string. Using the same con-
struction algorithm, we show how to modify the s-string alphabets to
also construct the p-border and the traditional border arrays in linear
time.

Keywords: structural matching, parameterized matching, structural
string, parameterized string, parameterized border, s-match, p-match,
s-string, p-string, p-border, border.

1 Introduction

The border array is a fundamental data structure in string theory used for pat-
tern matching, classifying strings, etc. [1]. A parameterized string (p-string), as
identified by Baker [2], is a generalized string from the constant alphabet Σ and
the parameter alphabetΠ . The parameterized border array (p-border) is the tra-
ditional border array problem observed in terms of p-strings [3,4,5]. Similarly,
p-border is also useful in parameterized pattern matching (p-matching), which
is a type of pattern matching where constant symbols σ ∈ Σ match and there
exists a bijection between the parameter symbols π ∈ Π . Consider the example
p-strings that represent program statements z=y ∗ f/++y; and a=b ∗ f/++b;
over the alphabet sets Σ = {∗, /,+,=, ; } and Π = {a, b, f, y, z}. Here, a p-
match exists because constant symbols σ ∈ Σ match and parameter symbols
π ∈ Π properly align, namely in the first statement z, y, and f are consistently
substituted by a, b, and f respectively in the second statement. The p-match

S. Arumugam and B. Smyth (Eds.): IWOCA 2012, LNCS 7643, pp. 189–205, 2012.
� Springer-Verlag Berlin Heidelberg 2012

190 R. Beal and D. Adjeroh

problem offers a new way to address pattern matching in significant applications
regarding the identification of plagiarism in academia and industry [6] and also,
detecting unauthorized use of source code [7].

A variation of the p-match problem is known as structural matching (s-
matching) between structural strings (s-strings) [8]. The s-string adds the
notion of complementary pairs of parameter symbols in some alphabet Γ .
Detecting an s-match requires identifying a p-match and ensuring that the
parameter complements are consistent. For instance, consider the alphabets
Σ = ∅, Π = {A,U,C,G}, and Γ = {(A,U), (C,G)} and consider the sequences
S = UAUAU and T = GCGCG. Notice that where parameters U and A exist
in S, there exist substitutions of parameters G and C respectively in T . Also,
notice that where the complements U and A exist in S, the complement sym-
bols G and C align in T . These observations identify that S and T s-match. This
type of matching is relevant for analyzing biological data such as RNA sequences
or secondary structures, since the complementary base pairing can be analyzed
using the s-match [8]. Currently, the s-match problem is handled via structural
suffix trees (s-suffix trees) [8]. In many situations, the huge practical space of
an s-suffix tree poses a significant problem, which led to the development of the
structural suffix array (s-suffix array) [9]. In this paper, we are motivated to
introduce yet another significant data structure for the s-match problem: the
structural border array.

Main Contributions: We introduce the structural border array (s-border)
as defined for an n-length structural string (s-string) T . Initially, we provide
constructions that execute in time O(n3) and O(n2) to build the s-border array.
The paper establishes theory to improve the result to O(n) by proving par-
ticular properties of the s-border data structure. Using the same construction
algorithm, we show how to modify the s-string alphabets to also construct both
the parameterized border (p-border) and the traditional border array in linear
time. Our solution to the p-border problem is a symbol-based approach different
from the automaton-oriented solution presented in [3]. The following formalizes
our main results.

Theorem 2. Given an n-length s-string T , there is an algorithm that constructs
the s-border array Bs in O(n) time.

Theorem 3. Given an n-length s-string T , the algorithm construct Bs con-
structs the p-border array Bp and the traditional border array B each in O(n)
time.

2 Background

Baker [6] identifies three types of pattern matching: (1) exact matching, (2) pa-
rameterized matching (p-match), and (3) matching with modifications. The first
p-match breakthroughs, namely, the prev encoding and the parameterized suffix
tree (p-suffix tree), were introduced by Baker [2]. Additional improvements to the
p-suffix tree are given in [10,11,12]. Like the traditional suffix tree [1,13,14], the
p-suffix tree [2] implementation suffers from a large practical memory footprint.

Border Array for Structural Strings 191

One p-matching solution to address the space problem is the parameterized suffix
array (p-suffix array) in [15,16]. An expected linear time p-suffix array construc-
tion is given in [17]. The work of [18] proves the existence of sub-quadratic and
near-linear time worst case p-suffix array constructions. Other solutions that
address the p-match problem without the space limitations of the p-suffix tree
include the parameterized-KMP [19] and parameterized-BM [20], variants of tra-
ditional pattern matching approaches. These particular approaches use a variety
of heuristics for shifting the matches to p-match efficiently. Further, the p-match
problem is addressed via the Shift-OR mechanism in [21]. Idury et al. [3] studied
a heuristic known as the pfail function to address the multiple p-match prob-
lem using the traditional Aho-Corasick automata. This pfail function is now
known as the parameterized border array (p-border), analogous to the traditional
border array [1], and has been studied in a variety of combinatorial problems in
[4,5]. Other p-match data structures are studied in [22]. A closely related variant
of the p-match problem is the structural pattern matching (s-match) problem,
introduced by Shibuya [8]. The s-match is used in [8] for RNA analysis by a
structural suffix tree (s-suffix tree). An s-suffix tree is similar in nature to the
p-suffix tree [2] and constructed in similar time. The practical space used by the
s-suffix tree was the motivation to introduce a more lightweight data structure
known as the structural suffix array (s-suffix array) [9]. In this paper, we intro-
duce the structural border array (s-border) for the s-match problem and provide
a linear time construction. We show how to use our algorithm to also construct,
in linear time, the p-border and the traditional border arrays.

3 Preliminaries

A string on an alphabet Σ is a production T = T [1]T [2]...T [n] from Σn with
n = |T | the length of T . We will use the following string notations: T [i] refers to
the ith symbol of string T , T [i...j] refers to the substring T [i]T [i+1]...T [j], and
T [i...n] refers to the ith suffix of T : T [i]T [i+ 1]...T [n]. The m-length prefix of a
suffix is the substring with the first m symbols of the suffix. The notation S ◦ T
denotes the concatenation between the strings S and T . We divide the remainder
of the preliminaries into parameterized string (p-string) theory, structural string
(s-string) theory, and current border array definitions.

3.1 Parameterized Strings

The area of parameterized pattern matching defines the finite alphabets Σ and
Π . Alphabet Σ denotes the set of constant symbols while Π represents the set
of parameter symbols. We assume the use of indexed alphabets. Alphabets are
defined such that Σ ∩Π = ∅. A terminal symbol $ /∈ (Σ ∪Π) may be appended
to a string for completeness or omitted for brevity.

Definition 1. Parameterized string (p-string): A p-string is a production
T of length n from (Σ ∪Π)∗$.

192 R. Beal and D. Adjeroh

Consider the alphabet arrangements Σ = {A,B} and Π = {w, x, y, z}. Example
p-strings include S = AxByABxy$, T = AwBzABwz$, and U = AyByAByy$.

Definition 2. ([15,16]) Parameterized matching (p-match): A pair of p-
strings S and T are p-matches with n = |S| iff |S| = |T | and each 1 ≤ i ≤ n
corresponds to one of the following:

1. S[i], T [i] ∈ (Σ ∪ {$}) ∧ S[i] = T [i]

2. S[i], T [i] ∈ Π ∧ ((a) ∨ (b)) /* parameter bijection */
(a) S[i] �= S[j], T [i] �= T [j] for any 1 ≤ j < i

(b) S[i] = S[i− q] iff T [i] = T [i− q] for any 1 ≤ q < i

In our example, we have a p-match between the p-strings S and T since every
constant/terminal symbol matches and there exists a bijection of parameter
symbols between S and T . U does not satisfy the parameter bijection to p-match
with S or T . The process of p-matching leads to defining the prev encoding.

Definition 3. ([15,16]) Previous (prev) encoding: Given Z as the set of
non-negative integers, the function prev : (Σ ∪ Π)∗$ → (Σ ∪ Z)∗$ accepts a
p-string T of length n and produces a string Q of length n that (1) encodes
constant/terminal symbols with the same symbol and (2) encodes parameters to
point to previous like-parameters. More formally, Q is constructed of individual
Q[i] with 1 ≤ i ≤ n where:

Q[i] =

⎧⎨⎩
T [i], if T [i] ∈ (Σ ∪ {$})
0, if T [i] ∈ Π ∧ T [i] �= T [j] for any 1 ≤ j < i
i− k, if T [i] ∈ Π ∧ k = max{j|T [i] = T [j], 1 ≤ j < i}

For a p-string T of length n, the above O(n) space prev encoding demands
the worst case construction time O(n log(min{n, |Π |})), which follows from the
discussions of Baker [2,20] and Amir et al. [19] on the dependency of alphabet
Π in p-match applications. Note that with indexed alphabets and an auxiliary
O(|Π |) mapping structure, prev is constructed in linear time.

Lemma 1. With an indexed alphabet, the construction of prev(T) requires O(n)
time where n = |T |.

For a general n-length p-string T , we identify that while T [i...n] is a traditional
suffix, these T [i...n] under the prev encoding, i.e. prev(T [i...n]), are known as
parameterized suffixes or p-suffixes. In practice, prev may be represented by
an array of characters or even integers, i.e., perhaps representing distances with
negative integers, representing constants with positive integers, and representing
the terminal with zero. Note that the convenient notation prev(T)[j] is equiv-
alent to P [j] where P = prev(T) and is similar for other like functions. It is
often convenient to work with prev encodings as strings. Using Definition 3,
our examples evaluate to prev(S) = A0B0AB54$, prev(T) = A0B0AB54$,
prev(U) = A0B2AB31$. The following proposition is fundamental to the p-
matching problem.

Border Array for Structural Strings 193

Proposition 1. ([2]) Two p-strings S and T p-match when prev(S) =
prev(T).

The example prev encodings show a p-match between S and T since prev(S) =
A0B0AB54$ and prev(T) = A0B0AB54$. The encoding prev is supplemented
by the encoding forw.

Definition 4. Forward (forw) encoding: Let the function rev(T) reverse the
p-string T and repl(T, x, y) replace all occurrences in T of the symbol x with
y. We define the function forw for the p-string T of length n as forw(T) =
rev(repl(prev(rev(T)), 0, n)).

Our definition of the forw encoding generates output mirroring the fw encoding
used by Deguchi et al. [15,16]. The forw encodings in our example with n = 9
are forw(S) = A5B4AB99$, forw(T) = A5B4AB99$, forw(U) = A2B3AB19$.

3.2 Structural Strings

As an addendum to the p-string preliminaries, we present the following to formal-
ize the theory of structural strings (s-strings). An s-string is an n-length p-string
T = T [1]T [2]...T [n] production from the constant symbol alphabet Σ and the
parameter alphabet Π with Σ∩Π = ∅. We terminate the string with a terminal
$ /∈ Σ ∪ Π . An s-string is a p-string with the added notion of complementary
symbols, by which two symbols may uniquely correspond to one another. The
notion that the s-string is a p-string allows us to apply the prev encoding, forw
encoding, and the remaining p-string theory presented in this work. The s-string
definition follows.

Definition 5. ([8]) Structural string (s-string): An s-string is a p-string
T of length n from (Σ ∪ Π)∗$. Pairs of the parameter symbols, say (πj , πk) ⊆
Π = {π1, π2, ..., π|Π|}, may uniquely correspond to one another and behave as
complements. We further define the alphabet Γ = {p1, p2, ..., p|Γ |} to represent
the complements within Π as a set of pairs pi = (πj , πk) for some j and k such
that only complement(πj) = πk and complement(πk) = πj.

Consider the alphabet arrangements Σ = {A,B}, Π = {v, w, x, y, z}, and Γ =
{(w, x), (y, z)}. Example s-strings include S = AxBzzywv$, T = AwByyzxv$,
and U = AwByyxzv$. Analyzing the complement symbols between two s-strings
is the additional work in the structural match (s-match) beyond the parameter
bijection observed in the p-match problem.

Definition 6. ([8]) Structural matching (s-match): A pair of s-strings S
and T are s-matches with n = |S| iff |S| = |T | and each 1 ≤ i ≤ n corresponds
to one of the following:

194 R. Beal and D. Adjeroh

1. S[i], T [i] ∈ (Σ ∪ {$}) ∧ S[i] = T [i]

2. S[i], T [i] ∈ Π∧((a)∨(b))∧((c)∨(d)) /*parameter bijection AND complement
mapping*/
(a) S[i] �= S[j], T [i] �= T [j] for any 1 ≤ j < i

(b) S[i] = S[i− q] iff T [i] = T [i− q] for any 1 ≤ q < i

(c) S[i] �= complement(S[j]), T [i] �= complement(T [j]) for any 1 ≤ j < i

(d) S[i] = complement(S[i − q]) iff T [i] = complement(T [i − q]) for any
1 ≤ q < i

In our working example, S and T s-match. The s-string U does not s-match with
either S or T . The act of verifying Definition 6 between a pair of s-strings is quite
involved. Shibuya [8] shows that we can use the p-string prev encoding in Defini-
tion 3 and the compl encoding in Definition 7 to assist in identifying an s-match.

Definition 7. ([8]) Complement (compl) encoding: Given Z as the set of
non-negative integers, the function compl : (Σ ∪Π)∗$ → (Σ ∪ Z)∗$ accepts an
s-string T of length n and produces a string Q of length n that (1) encodes con-
stant/terminal symbols with the same symbol and (2) encodes parameters to point
to their previous complementary parameters. More formally, Q is constructed
of individual Q[i] with 1 ≤ i ≤ n where:

Q[i] =

⎧⎨⎩
T [i], if T [i] ∈ (Σ ∪ {$})
0, if T [i] ∈ Π ∧ T [i] �= complement(T [j]) for any 1 ≤ j < i
i− k, if T [i] ∈ Π ∧ k = max{j | T [i] = complement(T [j]), 1 ≤ j < i}

We observe the similarity between compl (of Definition 7) and prev (of Defini-
tion 3) where compl(T) = prev(T) with the mapping structure (π, π) ∈ Γ ∀ π ∈
Π . In the worst case, since each π ∈ Π is, by Definition 5, the complement
of only one other symbol, then |Γ | = |Π |. Thus, the compl encoding can be
constructed using similar considerations as in prev construction.

Lemma 2. With an indexed alphabet, the construction of compl(T) requires
O(n) time where n = |T |.

In our working example, compl(S) = compl(T) = A0B00150$ and compl(U) =
A0B00420$. Moreover, prev(S) = prev(T) = prev(U) = A0B01000$. It is
proven in [8] that combining the prev and compl encoding into the encoding
sencode, as formalized in Definition 8, leads to identifying an s-match. This
s-match scheme is presented in Proposition 2.

Definition 8. ([8]) Structural encoding (sencode): Given Z as the set of
non-negative integers, the function sencode : (Σ ∪ Π)∗$ → (Σ ∪ Z ∪ Z)∗$ ac-
cepts an s-string T of length n and produces a string Q of length n that (1)
encodes constant/terminal symbols with the same symbol and either (2a) en-
codes parameters to point to an existing previous parameter or (2b) encodes
remaining parameters to point to previous complementary parameter symbols.
More formally, Q is constructed of individual Q[i] with 1 ≤ i ≤ n where:

Border Array for Structural Strings 195

Q[i] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
T [i], if T [i] ∈ (Σ ∪ {$})
prev(T)[i], if prev(T)[i] > 0

compl(T)[i], if compl(T)[i] > 0 ∧ prev(T)[i] = 0

0, otherwise

Proposition 2. ([8]) Two s-strings S and T s-match when sencode(S) =
sencode(T).

It follows from the construction of prev and compl in Lemma 1 and Lemma 2
that the construction of sencode (in Definition 8) is accomplished similarly.

Lemma 3. With an indexed alphabet, the construction of prev(T), compl(T),
and sencode(T) requires O(n) time where n = |T |.

In the working example, sencode(U) = A0B01420$ and sencode(S) =
sencode(T) = A0B01150$. Thus, S and T are confirmed to s-match.

For a general n-length s-string T , we identify that while T [i...n] is a tradi-
tional suffix, these T [i...n] under the sencode encoding, i.e. sencode(T [i...n]),
are known as structural suffixes or s-suffixes. It is identified in [8] that the fol-
lowing function is used to obtain the symbol at j from the s-suffix at i.

Definition 9. ([8]) structural-suffix (s-suffix) symbol retrieval: Given an
n-length s-string T, let prevT = prev(T), complT = compl(T), and Z represent
the set of non-negative integers. Further, let i, j ∈ Z such that 1 ≤ i ≤ n and
1 ≤ j ≤ (n− i+1). The function sencode : (T, i, j)→ (Σ∪Z∪Z∪{$}) retrieves
the symbol at j of the s-suffix sencode(T [i...n]), i.e. sencode(T [i...n])[j].

sencode(T, i, j) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

T [j + i − 1], if T [j + i− 1] ∈ (Σ ∪ {$})
prevT [j + i− 1], if 0 < prevT [j + i − 1] < j

complT [j + i − 1], if 0 < complT [j + i − 1] < j ∧ prevT [j + i− 1] = 0

0, otherwise

The significance of sencode(T, i, j) is that we can retrieve s-suffix symbols ef-
fortlessly in an algorithmic environment. However, this function still requires
alphabet membership questions x ∈ X even though the preprocessed prevT =
prev(T) and complT = compl(T) have already answered these questions. As-
suming that the symbol alphabets are logged during preprocessing, each call to
sencode(T, i, j) function executes in constant time.

Lemma 4. Each call to sencode(T, i, j) requires O(1) time.

3.3 Traditional border and Parameterized Border (p-border)
Arrays

The border array, used for exact matching, maintains a list of the length of the
longest border between a prefix of a traditional string W and a complete proper
suffix of the prefix. More formally, the border array is defined as:

196 R. Beal and D. Adjeroh

Definition 10. ([1]) border array (border or B): For an n-length traditional
stringW , the border array is defined for each index 1 ≤ i ≤ n such thatB[1] = 0 and
otherwise B[i] = max({0}∪{k |W [1...k] = W [i−k+1...i], k ≥ 1∧ i−k+1 > 1}).
From the definition, we refer to the substringsW [1...k] andW [i−k+1...i] as bor-
ders. For the working example W = AAABABAB$, B = {0, 1, 2, 0, 1, 0, 1, 0, 0}.

The parameterized border (p-border) array, which was originally defined as
the pfail function in [3], redefines the traditional border array for p-strings and
the p-matching problem.

Definition 11. ([3]) parameterized border array (p-border or Bp): For
an n-length p-string T , the p-border array is defined for each index 1 ≤ i ≤ n
such that Bp[1] = 0 and otherwise Bp[i] = max({0} ∪ {k | prev(T [1...k]) =
prev(T [i− k + 1...i]), k ≥ 1 ∧ i− k + 1 > 1}).
We refer to the substrings T [1...k] and T [i−k+1...i] in the definition as borders.
The borders under the encodings, i.e. prev(T [1...k]) and prev(T [i − k + 1...i]),
are referred to as parameterized borders or p-borders. The p-string T = wzwz$
yields the array Bp = {0, 1, 2, 3, 0}.

4 Structural Border Array

The traditional border array as defined in Definition 10 for traditional strings
compares prefixes of a string, say W , with suffixes of those prefixes. Working
with the individual symbols of the prefixes and suffixes of W is trivial because
W [j...n] is always a suffix of W [1...n] for any j, 1 ≤ j ≤ n. This trivial use
of symbols is not the case with the parameterized border (p-border) of Defini-
tion 11. In the case of a p-string, the p-border identifies the maximum p-match
between borders, in which these borders are under the prev encoding by Propo-
sition 1. The challenge of working with the p-border is the dynamic nature of
prev, which is fundamentally different from the suffixes in traditional border
construction. Further, the way in which symbols are handled in the traditional
border construction is not correct for p-border because of the following lemma,
which is proven in [17,22].

Lemma 5. Given a p-string T of length n, the suffixes of prev(T) are not neces-
sarily the p-suffixes of T , i.e. prev(T [i...n]), 1 ≤ i ≤ n. More formally, if π ∈ Π
occurs more than once in T , then ∃i, s.t. prev(T [i...n]) �= prev(T)[i...n], 1 ≤
i ≤ n.

A simple intuition of the previous lemma is that the encodings of a p-suffix
under prev may change depending on where a parameter begins. We define the
s-border array using the encoding sencode, which is the encoding that identifies
a structural match (s-match) by Proposition 2.

Definition 12. structural border array (s-border or Bs): For an n-length s-
string T , the s-border array is defined for each index 1 ≤ i ≤ n such that Bs[1] =
0 and otherwise Bs[i] = max({0} ∪ {k | sencode(T [1...k]) = sencode(T [i− k +
1...i]), k ≥ 1 ∧ i− k + 1 > 1}).

Border Array for Structural Strings 197

The substrings T [1...k] and T [i − k + 1...i] in the definition are referred to as
borders. When these borders are under the encoding sencode, they are known
as structural borders or s-borders. Since s-border is defined on sencode, which
from Definition 8 is a combination of symbols from the text T , prev(T), and
compl(T), we encounter the same difficulties as p-border. The difference this time
is that the pair of encodings prev and compl dynamically change depending on
the locations of parameters in an s-suffix.

Lemma 6. Given an s-string T of length n, the suffixes of sencode(T) are not
necessarily the s-suffixes of T , i.e. sencode(T [i...n]).

Proof. Consider some s-string T = π1π2π2π2$ over the alphabet of constants
Σ = {σ1}, the alphabet of parameters Π = {π1, π2, π3}, and the alphabet of
complements Γ = {(π1, π3)}. By Definition 8, it is the case that sencode(T) =
prev(T) and hence, this lemma holds by Lemma 5. �	

4.1 Näıve Algorithm

Without investigating properties of our defined s-border array, we can still com-
pute the data structure in a näıve way as shown in Algorithm 1. For an n-length
s-string T , the algorithm computes s-border in roughly O(n3) time, since the
O(n) sencode construction by Lemma 3 is nested within a while loop that
is bounded by n iterations and this O(n2) computation is nested within a for
loop with n iterations. This particular algorithm makes the case for just how
combinatorially difficult it can be to compute s-border.

Algorithm 1. Näıve construction of Bs

1 int [] construct Bs naive(char T [n]) {
2 int i ,k ,m ,Bs [n]= { 0 , 0 , . . . , 0 }
3 for i=2 to n {
4 k=1, m=0
5 while (i−k+1>1) {
6 i f (sencode(T [1 . . . k])=sencode(T [i−k+1 . . . i])) m=k
7 k++
8 }Bs [i]=m
9 }return Bs }

By Lemma 6, the notion that suffixes of sencode(T [1...n]) are not the s-
suffixes of T creates a challenge to correctly retrieve the symbol at j from the
s-suffix at i. Shibuya [8] identifies the function sencode(T, i, j) to accomplish
this, which we display in Definition 9. However, the problem of implementing
the function is the added time to answer many symbol alphabet membership
questions, i.e. T [q] ∈ Σ, T [q] ∈ Π , and T [q] ∈ {$}. We define the following α
encoding to quickly assist in these types of questions.

198 R. Beal and D. Adjeroh

Definition 13. alphabet (α) encoding: Let the set of integer constants be
{SIGMA = 0, P I = 1, TERM = 2}. The encoding α is constructed of individual
i with 1 ≤ i ≤ n where:

α(T)[i] =

⎧⎨⎩
SIGMA, if T [i] ∈ Σ
PI, if T [i] ∈ Π
TERM , if T [i] ∈ {$}

The α encoding is designed to store the alphabet type of each symbol in T for
future access. Consider the variable αT = α(T). Then, we can simply answer
the question T [q] ∈ Π by comparing the integers αT [q] and PI. Since α can be
constructed simultaneously with sencode, then the time bound of Lemma 3 also
holds for α.

Lemma 7. With an indexed alphabet, the construction of α(T) requires O(n)
time where n = |T |.

The previous formulation permits us to introduce the s-match related functions
Ψ and ψ in Algorithm 2. Note that the Ψ and ψ functions correctly implement s-
matching by incorporating elements of Definition 6, Proposition 2, Definition 9,
and Definition 13. Specifically, function ψ(a, b, j) compares the symbols T [a] and
T [b] as they occur in s-suffixes at symbol j, where true is returned when the
symbols s-match. This comparison is accomplished in constant time.

Lemma 8. Each call to ψ executes in O(1) time.

The Ψ(i, j, k) function, which uses a sequence of constant time calls to ψ, returns
the number of symbols m such that sencode(T [i + k − 1...i + k + m − 2]) =
sencode(T [j + k − 1...j + k +m− 2]).

Lemma 9. Each call to Ψ executes in O(m) time, where m is the length of the
current s-match.

We emphasize the inability to obtain a correct s-border solution by trivially
plugging an s-string into a border or p-border construction algorithm. To put

Algorithm 2a. s-matching function Ψ Algorithm 2b. s-matching function ψ

1 char T [n] /� g iven �/
2 char prevT [n]=prev(T)
3 char complT [n]=compl(T)
4 char αT [n]=α(T)
5
6 int Ψ (int i , int j , int k){
7 int a ,b ,m=−1,q=k−1
8 do{
9 q++

10 a=i+q−1,b=j+q−1
11 m++
12 }while (ψ (a ,b ,q)) ;
13 return m
14

}

boolean ψ (int a , int b , int j){
booleanmatch= fa l se
i f (1≤a≤n ∧ 1≤b≤n ∧ αT [a]=αT [b]) {

i f (αT [a]=SIGMA∧T [a]=T [b]) match=true
else i f (αT [a]=PI){ /� d i s t an c e s �/

i f (prevT [a]=prevT [b]=0) match=true
else i f (prevT [a]<j ∧ prevT [b]<j ∧

prevT [a]=prevT [b]) match=true
else i f (prevT [a]≥j∧prevT [b]≥j) match=true
else i f (complT [a]<j ∧ complT [b]<j ∧
complT [a]=complT [b]) match=true
else i f (complT [a]≥j∧complT [b]≥j) match=true

}
}return match }

Border Array for Structural Strings 199

this problem into perspective for an s-string T , let U = sencode(T [1...n]) ◦ $1 ◦
sencode(T [2...n]) ◦ $2 ◦ sencode(T [3...n]) ◦ $3 ◦ ... ◦ $n−1 ◦ sencode(T [n]) where
{$1, $2, ..., $n−1} is the set of unique terminal symbols where $i /∈ {Σ∪Π∪{$}}.
Notice that U contains each s-suffix and thus, Lemma 6 does not apply. Let B =
border(U) compute the traditional border array B for text U . Since U clearly
represents each s-suffix, the resulting array B contains the correct results for Bs

within the multitude of elements in B. However, the problems with this approach
are (1) computing the s-border elements Bs[i] will require us to postprocess the
resulting B to find the maximum border ending at symbol i in the original T
and (2) the construction of Bs can do no better than the length of U , which is
of length O(n2). Note that the s-border array only has n elements. From the
previous example with running time O(n2) and the näıve O(n3) approach in
Algorithm 1, we are motivated to further investigate properties of s-border. This
leads to an improved algorithm for constructing the s-border.

4.2 Improved Algorithm

A key property used to construct the traditional border array B is the property
that B[i + 1] ≤ B[i] + 1. This property helps progress matches by oracling the
previous array element and comparing the subsequent symbols. We prove that
even though the s-suffixes change from Lemma 6, this property still holds when
considering the s-border array, which is defined on prefixes of suffixes under
sencode. That is, the way in which the sencode is defined, which is a combi-
nation of prev and compl, does not invalidate this traditional border property.
In Fig. 1, we illustrate that a prefix named prefix of an s-suffix is such that
prefix = sencode(T)[1...|prefix|]. More specifically, the way in which distances
refer previously in the text allows us to treat prefix as a valid encoding itself.
This is exactly what is needed for the s-border construction. Such is not true
for encodings like forw from Definition 4. For construction algorithms, we em-
phasize that one must always consider the impact of the encoding scheme (see
[18,22]).

baba b bdcbaba b bdc

2210 3 1102210 3 110

T

sencode(T)

prefix=sencode(T[1…4])

dcba f aefdcba f aef

nnn7 n nn2nnn7 n nn2

T

forw(T)

prefix≠forw(T[1…4])=nnnn

Fig. 1. Displaying the intricacies of prefixes for s-string encoded suffixes using Σ = ∅,
Π = {a, b, c, d, e, f}, and Γ = {(a, b), (c, d)}, where n is fixed: n = 8

Lemma 10. Given an s-string T of length n, the individual s-border elements
Bs[i] are such that Bs[i+ 1] ≤ Bs[i] + 1 ∀ i, 1 ≤ i < n.

200 R. Beal and D. Adjeroh

Proof. Initially, Bs[1] = 0 by Definition 12. Consider that Bs[i] = k for some
i, 1 < k < n. Without loss of generality, assume that k > 2. Then, by Def-
inition 12, sencode(T [1...k]) = sencode(T [i − k + 1...i]) is the maximum s-
border of T [1...i]. Consider j = i + 1. What we know is that (1) already
sencode(T [1...k]) = sencode(T [i − k + 1...i]) and (2) prev (from Definition 3)
and compl (from Definition 7) are defined such that the dynamically changing
elements T [i] ∈ Π of Lemma 6 are encoded to point to previous elements in the
s-suffix, which means that appending elements to the s-suffix does not modify
the encodings of the already existing s-suffix (see Fig. 1). From (2) and Def-
inition 12, there cannot exist any s-border of T [1...j] longer than one symbol
beyond the maximum s-border at i, that is, the s-match of length Bs[i] + 1. Let
a = sencode(T [1...1 + k])[k + 1] and b = sencode(T [j − k...j])[k + 1]. It follows
that if a = b, then also sencode(T [1...1 + k]) = sencode(T [j − k...j]). Thus,
Bs[j] = k + 1. If a �= b, then it follows that 0 ≤ Bs[j] ≤ Bs[i] = k. Therefore,
Bs[j] ≤ k + 1. �	

The previous lemma gives us the ability to offer the improvement
construct Bs improved in Algorithm 3. This algorithm makes use of the s-
match related functions in Algorithm 2. Using the Ψ and ψ functions, the tech-
nique behind Algorithm 3 is to start from the left of the s-string, find the longest
s-matches, and populate the elements of Bs. A heuristic is used to determine
whether or not s-matching may yield new elements of Bs. The following theorem
formalizes the algorithm and its running time.

Theorem 1. Given an n-length s-string T , construct Bs improved constructs
the s-border array Bs in time O(max{n, bφ}), where b is the length of the longest
s-border and φ is based on the s-string.

Proof. We first prove that the technique behind the algorithm is correct. Let
Bs = {0, 0, ..., 0}. Maintain a pointer to index h such that the s-border subarray
Bs[1...h− 1] is always complete. Initially, h = 2 since Bs[1] = 0 by Definition 12.
Next, we find the longest s-match of say m symbols between T [1...n] and T [j...n]
where j = 2. Let q = m. By Lemma 10, we know that while m > 0, then we
can assign Bs[j + m − 1] = m and let m = m − 1. The previously populated
elements are the longest s-borders for indices j+ q− 1, j+ q− 2, etc. because we
have started at j = 2 and no s-border can be longer for these elements. Thus,
Bs[1...j+ q−1] is now complete. Set h = j+ q. We continue at j = 3 considering
the following cases.

– If j = h, we continue the same process to find Bs[j] and populate other Bs

elements exactly like the initial part of the proof for j = h because only
Bs[1...h− 1 = j − 1] is complete.

– When j < h and an s-match exists between the symbols at h− j + 1 in the
s-suffixes at 1 and j, i.e. sencode(T [1...n])[h−j+1] = sencode(T [j...n])[h−
j + 1], then the following s-match of m symbols can be conducted:
sencode(T [1...m]) = sencode(T [j...j + m − 1]). (Otherwise, no longer s-
border is possible.) Since Bs[1...j...h−1] is already complete with the longest

Border Array for Structural Strings 201

s-borders, only when the m exceeds the complete section of Bs is there a
newly introduced s-border, i.e. when j + m − 1 ≥ h. So, any newly intro-
duced s-border to the incomplete part of Bs must be maximum because in
previous steps j− 1, j− 2, etc. we have considered, but not found, s-borders
that could be only longer. Considering s-borders for future j + 1, j + 2, etc.
will only introduce shorter s-borders than the current s-border of length m.
Now that we have new maximum s-borders, populate only the new find-
ings. It follows from Lemma 10 that we can let q = m and assign the other
known maximum s-borders, that is, while m > 0 ∧ j + m − 1 ≥ h, assign
Bs[j +m− 1] = m and let m = m− 1. Finally, set h = j + q to signify that
now Bs[1...h− 1 = j + q − 1] is complete.

– Otherwise, no s-matching is necessary because it is not possible to introduce
a longer s-border with the current s-suffixes considered.

The previous cases are considered for subsequent j = 4, 5, ..., n. In each case,
we are finding the longest s-matches between the s-suffixes at 1 and j with each
Bs element populated at most once using the first appropriate value. Since j
increases and we populate Bs using the earliest relevant s-match found, sub-
sequent j will only produce smaller s-borders in sencode due to the fact that
appending symbols in prev (from Definition 3) and compl (from Definition 7)
does not modify the encodings of the already existing s-suffix (see Fig. 1). Thus,
the algorithm correctly computes Bs.

We now analyze the running time via the displayed Algorithm 3. Assume an
indexed alphabet. Then, prev(T), compl(T), sencode(T), and α(T) are con-
structed in O(n) time by Lemma 3 and Lemma 7. Since ψ executes in constant
time via Lemma 8, the running time of the entire algorithm is clearly dependent
on the s-matching of Ψ in line 9. This line is responsible for a sequence of symbol
comparisons to conduct s-matches of which will require O(b) comparisons in the
worst case with b as the length of the maximum s-match by Lemma 9 and in
this case, b is the also the longest s-border. This line is called when either (1)
j = h or (2) j < h and there exists an s-match between two symbols. In case (1),
at most b symbols may be matched, but h will be incremented so h = j + b will
force case (2). Case (2) is where any additional rematching is performed, that is,
matching symbols in T that may have already been visited in case (1). So, the
total comparisons by line 9 during an execution of the algorithm in case (1) is
in O(n). Further, the time required for the comparisons in case (1) is absorbed
by the time bound required by the construction of the initial encodings. Let φ
be the number of times that case (2) is executed. Then, the algorithm executes
in O(max{n, bφ}) time. �	
Depending on the s-string, there are cases in which Algorithm 3 will execute in
linear time. That is, when either b or φ is small, the construct Bs improved

algorithm executes in O(n) time for an n-length s-string T . This is a significant
improvement from the previously discussed solutions requiring time O(n2) and
O(n3), but there are still cases when the algorithm will require more than lin-
ear time. Below, we discuss yet a further improvement to the Bs construction
algorithm.

202 R. Beal and D. Adjeroh

4.3 Further Improvement

We now investigate another fundamental property used in the traditional border
construction. That is, the way in which the next longest border is found. Consider
the longest border b1 of T . If b2 is the longest border of b1, then b2 is the next
longest border of T . With this property, we can oracle previous border elements,
B[e] with e = B[i] > 0, to find the next longest border of T [1...i]. This property
is used when the current longest border cannot be extended further and so, we
can try the next longest border of which the final symbols may possibly match.
Should the last symbol of the second longest border not match, we can oracle
the third longest border, etc. So, the oracle may be recursive to the vth level:
B1[i] = B[i], B2[i] = B[B[i]],..., Bv[i] = B[Bv−1[i]]. Even with the changing s-
suffixes by Lemma 6, we prove that this property also holds for s-strings and the
s-border.

Lemma 11. Given an s-string T of length n, we find the length qv of the vth

longest s-border by qv = Bv
s [i] while Bs[i] > 0 and qv = 0 otherwise.

Proof. Consider the s-border array Bs for some element Bs[i] = q1 > 0. Then,
sencode(T [1...q1]) = sencode(T [i − q1 + 1...i]) is the maximum s-border, i.e.
the first longest s-border, of T [1...i] by Definition 12. Now, consider the second
longest s-border of T [1...i] of length q2, 0 < q2 < q1. Let Bs1 = sborder(T [1...q1])
compute the s-border array for the input s-string. From the previous discussion
of Fig. 1, it follows now that the first longest s-border of T [1...q1] is also the
second longest s-border of T [1...i], i.e. Bs1 [q1]. Since sencode(T [1...Bs1[q1]]) =
sencode(T [1...Bs[q1]]) by Definition 8 and Proposition 2, the element is already
known from the original Bs array element Bs[q1], i.e. Bs[Bs[i]] = B2

s [i]. Thus,
additional constructions of Bsj via sborder are excessive and unnecessary. For
the vth longest border of T [1...i], we must take the first longest s-border of
T [1...i], i.e. q1 = Bs[i] > 0, then the first longest s-border of T [1...q1], i.e. q2 =
Bs[q1] > 0, then the first longest s-border of T [1...q2], i.e. q3 = Bs[q2] > 0, ...,
then the first longest s-border of T [1...qv−1], i.e. qv = Bs[qv−1] > 0. Overall,
qv = Bv

s [i]. In any case, when Bs[j] = 0 for some j, then no such longest s-border
and subsequent s-borders can exist. So, qv = Bv

s [i] = 0. �	

With the previously proven properties in Lemma 10 and Lemma 11, we are
now able to propose a further improved solution in Algorithm 4 to compute
the s-border. This is analogous to traditional border construction with the core
difference being how the individual s-suffix symbols are observed and compared.
Essentially, the proofs of Lemma 10 and Lemma 11 in addition to the s-match
related functions in Algorithm 2 “evolve” the traditional border properties and
construction algorithm to now construct the s-border array in O(n) time.

Theorem 2. Given an n-length s-string T , there is an algorithm that constructs
the s-border array Bs in O(n) time.

Proof. Algorithm construct Bs builds the required s-border array. The cor-
rectness of the algorithm follows from the proofs relating s-border properties

Border Array for Structural Strings 203

to traditional border construction properties in Lemma 10 and Lemma 11 and
also, the correctness of the s-matching functions in Algorithm 2, which are de-
veloped using the theoretical foundations in Definition 6, Proposition 2, Defini-
tion 9, and Definition 13. We now analyze the running time of construct Bs

from Algorithm 4. The key to the analysis is observing how many times Ψ
in line 7 executes in relation to how quickly the array Bs is filled. Respec-
tively, the variables that correspond to these events are m and h. Initially,
h = 2, j = 2, and k = 1. Say that originally Ψ executes m1 comparisons.
Then, by Lemma 9, there exists a current longest s-match of length m1, i.e.
sencode(T [1...m1]) = sencode(T [j...j + m1 − 1]). Now, m1 elements of Bs are
populated and then h is advanced beyond the populated elements: h = j +m1.
Since sencode(T [1...m1+1]) �= sencode(T [j...j+m1]), then either (1) line 12 is
executed as an attempt to extend the next longest s-border starting at element
k or (2) line 13 resets the algorithm to consider the s-suffix starting at h because
no longer s-border exists. When case (1) executes, there are at most m1 next
longest s-borders to try. From Lemma 11, the next longest s-border is known
to match and so Ψ continues the s-match at k so that no rematching is done.
That is, now j = h − k + 1 and subsequent s-matches of length m2, m3, etc.,
generally mg, via Ψ are performed by sencode(T [i+ k − 1...i+ k +mg − 2]) =
sencode(T [j+k−1...j+k+mg−2]) rather than rematching the already known
s-border by sencode(T [i...i+ k +mg − 2]) = sencode(T [j...j + k+mg − 2]). In
other words, each mg is the number of symbols that the s-match is extended,
rather the the complete length of the s-match. When case (2) executes, even less
work is done. Thus, Ψ performs a total of O(n) comparisons during the execution
of the algorithm. Since advances in h directly correspond to the s-match com-
parisons by Ψ and since there are at most a total of O(n) next longest s-borders
amortized across the O(n) total work by Ψ , then the theorem holds. �	

Algorithm 3. Improved Bs construction

1 char prevT [n] , complT [n] ,αT [n]
2 int [] construct Bs improved(char T [n]) {
3 int h=2,i=1,j ,k=1,m ,q ,x
4 int Bs [n]= { 0 , 0 , . . . , 0 }
5 prevT=prev(T) , complT=compl(T) ,αT=α(T)
6 for j=2 to n {
7 x=h−j+1,m=q=0
8 i f (j=h ∨ (j<h ∧ ψ (i+x−1,j+x−1,x))){
9 q=m=Ψ (i ,j ,k)

10 while (m>0 ∧ j+m−1≥h){
11 Bs [j+m−1]=m , m−−
12 }h=j+q
13 }
14 }return Bs }

Algorithm 4. Further improved Bs

construction
char prevT [n] , complT [n] ,αT[n]
int [] construct Bs (char T [n]) {
int h=2,i=1,j=2,k=1,m ,q ,w=0
int Bs [n]= { 0 , 0 , . . . , 0 }
prevT=prev(T) , complT=compl(T) ,αT=α(T)
while (h≤n){
q=m=Ψ (i ,j ,k)
while (m>0 ∧ j+m−1≥h){
Bs [j+m−1]=m+w , m−−

}h=j+q
i f (w+q>0 ∧ Bs [w+q]>0){
k=Bs [w+q]+1 ,j=h−k+1,w=k−1

} else { k=1,j=h ,w=0 }
}return Bs }

5 Generalization

From the previous section, the facts that s-suffix symbols are oracled efficiently
and s-border shares fundamental construction properties used in traditional

204 R. Beal and D. Adjeroh

border construction leads to a O(n) construction of s-border for an n-length
s-string T . This result is significant not only for the s-border, but also for p-
border and the traditional border. Such is the case because by modifying the al-
phabet for s-strings, the s-match problem becomes tailored for p-matching and
even traditional matching. The following lemmas formalize the generalization
possibilities for the construct Bs algorithm.

Lemma 12. Given an n-length s-string T , the algorithm construct Bs con-
structs the p-border array Bp in O(n) time.

Proof. Set the alphabet of complement symbols to null: Γ = ∅. Now, if T [i] =
π1 ∈ Π , then no such complement π2 ∈ Π exists and so compl(T)[i] = 0 by
Definition 7. At the same time, the T [i] ∈ Π will be 0 ≤ prev(T)[i] < n by Defi-
nition 3. So, either sencode(T)[i] = T [i] for T [i] ∈ (Σ ∪{$}) or sencode(T)[i] =
prev(T)[i] for T [i] ∈ Π by Definition 8. Already prev(T)[i] = T [i] for T [i] ∈
(Σ ∪ {$}) by Definition 3. So, under these conditions sencode(T) = prev(T)
and s-matching by Proposition 2 is equivalent to p-matching by Proposition 1.
Then, the s-border problem of Definition 12 is reduced to the p-border problem
of Definition 11. Therefore, construct Bs constructs the p-border array Bp in
O(n) time by Theorem 2. �	

Lemma 13. Given an n-length s-string T , the algorithm construct Bs con-
structs the traditional border array B in O(n) time.

Proof. Collect the parameter symbols into the set of constant symbols: Σ =
Σ ∪ Π . Now, set the alphabets of parameter and complement symbols to null:
Π = Γ = ∅. In these conditions, sencode(T)[i] = T [i] for T [i] ∈ (Σ ∪Π ∪ {$})
by Definition 8. Then, s-matching by Proposition 2 is reduced to traditional
matching and the s-border problem of Definition 12 is reduced to the traditional
border of Definition 10. Therefore, construct Bs constructs the border array B
in O(n) time by Theorem 2. �	

We summarize the foregoing results in the following theorem:

Theorem 3. Given an n-length s-string T , the algorithm construct Bs con-
structs the p-border array Bp and the traditional border array B each inO(n) time.

6 Conclusions

In this paper, we introduce the structural border array (Bs) for structural strings
(s-strings). We provide numerous algorithms that continually improve our Bs

construction for the n-length text T by exploiting the properties of the s-border
array, ultimately arriving to an O(n) solution. Finally, we provide a connection
between Bs, the traditional border array (B), and the parameterized border
array (Bp) by showing that each array can be constructed with the same Bs

construction algorithm.

Border Array for Structural Strings 205

References

1. Smyth, W.: Computing Patterns in Strings. Pearson, New York (2003)
2. Baker, B.: A theory of parameterized pattern matching: Algorithms and applica-

tions. In: STOC 1993, pp. 71–80 (1993)
3. Idury, R., Schäffer, A.: Multiple matching of parameterized patterns. Theor. Com-

put. Sci. 154, 203–224 (1996)
4. I, T., Inenaga, S., Bannai, H., Takeda, M.: Counting Parameterized Border Arrays

for a Binary Alphabet. In: Dediu, A.H., Ionescu, A.M., Mart́ın-Vide, C. (eds.)
LATA 2009. LNCS, vol. 5457, pp. 422–433. Springer, Heidelberg (2009)

5. I, T., Inenaga, S., Bannai, H., Takeda, M.: Verifying a Parameterized Border Array
in O(n1.5) Time. In: Amir, A., Parida, L. (eds.) CPM 2010. LNCS, vol. 6129, pp.
238–250. Springer, Heidelberg (2010)

6. Baker, B.: Finding clones with dup: Analysis of an experiment. IEEE Trans. Soft-
ware Eng. 33(9), 608–621 (2007)

7. Zeidman, B.: Software v. software. IEEE Spectr. 47, 32–53 (2010)
8. Shibuya, T.: Generalization of a suffix tree for RNA structural pattern matching.

Algorithmica 39(1), 1–19 (2004)
9. Beal, R.: Parameterized Strings: Algorithms and Data Structures. MS Thesis. West

Virginia University (2011)
10. Kosaraju, S.: Faster algorithms for the construction of parameterized suffix trees.

In: FOCS 1995, pp. 631-637 (1995)
11. Cole, R., Hariharan, R.: Faster suffix tree construction with missing suffix links.

SIAM J. Comput. 33(1), 26–42 (2003)
12. Lee, T., Na, J., Park, K.: On-line construction of parameterized suffix trees for

large alphabets. Inf. Process. Lett. 111(5), 201–207 (2011)
13. Gusfield, D.: Algorithms on Strings, Trees and Sequences: Computer Science and

Computational Biology. Cambridge University Press, Cambridge (1997)
14. Adjeroh, D., Bell, T., Mukherjee, A.: The Burrows-Wheeler Transform: Data Com-

pression, Suffix Arrays and Pattern Matching. Springer, New York (2008)
15. I, T., Deguchi, S., Bannai, H., Inenaga, S., Takeda, M.: Lightweight Parameterized

Suffix Array Construction. In: Fiala, J., Kratochv́ıl, J., Miller, M. (eds.) IWOCA
2009. LNCS, vol. 5874, pp. 312–323. Springer, Heidelberg (2009)

16. Deguchi, S., Higashijima, F., Bannai, H., Inenaga, S., Takeda, M.: Parameterized
suffix arrays for binary strings. In: PSC 2008, pp. 84-94 (2008)

17. Beal, R., Adjeroh, D.: p-Suffix Sorting as Arithmetic Coding. In: Iliopoulos, C.S.,
Smyth, W.F. (eds.) IWOCA 2011. LNCS, vol. 7056, pp. 44–56. Springer, Heidelberg
(2011)

18. Beal, R., Adjeroh, D.: p-Suffix Sorting as Arithmetic Coding. JDA 16, 151–169
(2012)

19. Amir, A., Farach, M., Muthukrishnan, S.: Alphabet dependence in parameterized
matching. Inf. Process. Lett. 49, 111–115 (1994)

20. Baker, B.: Parameterized pattern matching by Boyer-Moore-type algorithms. In:
SODA 1995, pp. 541–550 (1995)

21. Fredriksson, K., Mozgovoy, M.: Efficient parameterized string matching. Inf. Pro-
cess. Lett. 100(3), 91–96 (2006)

22. Beal, R., Adjeroh, D.: Parameterized longest previous factor. Theor. Comput.
Sci. 437, 21–34 (2012)

Computing the Partial Word

Avoidability Indices of Ternary Patterns�

Francine Blanchet-Sadri1, Andrew Lohr2, and Shane Scott3

1 Department of Computer Science, University of North Carolina,
P.O. Box 26170, Greensboro, NC 27402–6170, USA

blanchet@uncg.edu
2 Department of Mathematics, Mathematics Building,
University of Maryland, College Park, MD 20742, USA

alohr1@umd.edu
3 School of Mathematics, Georgia Institute of Technology,

686 Cherry Street, Atlanta, GA 30332–0160, USA
scottsha@ksu.edu

Abstract. We study pattern avoidance in the context of partial words.
The problem of classifying the avoidable unary patterns has been solved,
so we move on to binary, ternary, and more general patterns. Our results,
which are based on morphisms (iterated or not), determine all the ternary
patterns’ avoidability indices or at least give bounds for them.

1 Introduction

Pattern avoidance is a topic of interest in Combinatorics on Words. A pattern is
a sequence over an alphabet of variables, which are denoted by A,B,C, etc. An
occurrence of a pattern is obtained by replacing the variables with arbitrary non-
empty words, such that two occurrences of the same variable are replaced by the
same word. A pattern p is unavoidable if every infinite word has an occurrence
of p; otherwise, p is avoidable. More precisely, p is k-unavoidable if every infinite
word over a k-letter alphabet has an occurrence of p; otherwise, p is k-avoidable.
The avoidability index of p is the smallest integer k such that p is k-avoidable
(if no such integer exists, the avoidability index is ∞).

Deciding the avoidability of a pattern can be done easily [1,11], but decid-
ing whether a given pattern is k-avoidable has remained an open problem. An
alternative is the problem of classifying all the patterns over a fixed number of
variables, i.e., to find the avoidability indices of all the patterns over a fixed
number of variables. For the lower bounds, we use the so-called backtracking
algorithm from [7], while for the upper bounds, we provide HD0L systems. For a
finite alphabet Σ, a morphism f : Σ∗ → Σ∗, and a0 ∈ Σ, the tuple (Σ, f, a0) is
called a D0L system (Deterministic 0-sided Lindenmeyer system) and the D0L

� This material is based upon work supported by the National Science Foundation
under Grant No. DMS–1060775. We thank Sean Simmons from the Massachusetts
Institute of Technology for his very valuable comments and suggestions.

S. Arumugam and B. Smyth (Eds.): IWOCA 2012, LNCS 7643, pp. 206–218, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Computing the Partial Word Avoidability Indices of Ternary Patterns 207

language generated by the system is the set {fn(a0) | n ∈ N}. For example, the
Thue–Morse morphism t(a) = ab and t(b) = ba gives the D0L system ({a, b}, t, a)
generating the language {ε, a, ab, abba, abbabaab, abbabaabbaababba, . . .}. For a
D0L system (Σ, f, a0), the fixed point is fω(a0) = limn→∞ fn(a0), provided the
limit exists. The Thue–Morse word is tω(a). Now, for a morphism g : Σ∗

1 → Σ∗
2

with alphabets Σ1, Σ2 and a D0L system (Σ1, f, a0), the tuple (Σ1, f, a0, Σ2, g) is
called an HD0L system whose generated language is the set {g ◦fn(a0) | n ∈ N}.

The problem of determining the avoidability indices of all the binary patterns
has been completely solved (see Chapter 3 of [9]). Binary patterns fall into three
categories: the patterns ε, A, AB, ABA, and their complements, are unavoidable
(or have avoidability index∞); the patterns AA, AAB, AABA, AABB, ABAB,
ABBA, AABAA, AABAB, their reverses, and complements, have avoidability
index 3; all other patterns, and in particular all binary patterns of length six
or more, have avoidability index 2. Ternary patterns, as well as more general
patterns, have also been the subject of investigation [6,9,10].

Recently, Blanchet-Sadri et al. [4] determined all the “non-trivial” avoidability
indices of the binary patterns in partial words, or sequences that may have some
undefined positions, called holes and denoted by *’s, that match every letter of
the alphabet over which they are defined (we also say that * is compatible with
each letter of the alphabet). For example, a*bca*b is a partial word with two
holes over the alphabet {a, b, c}, and aabcabb is a full word created by filling in
the first hole with a and the second one with b. They showed that, if no variable
of the pattern is substituted by a partial word consisting of only one hole, the
avoidability index of the pattern remains the same as in the full word case, and
they started the classification in the non-restricted to non-trivial case.

In this paper, we investigate the problem of classifying all the avoidable
ternary patterns, those over three variables A,B,C, with respect to partial word
avoidability. First, we complete the classification of all the binary patterns that
was started by Blanchet-Sadri et al., i.e., we prove that the avoidability index of
the pattern ABABA is two and the one of the pattern ABBA is three. Next, we
classify the avoidability indices of almost all of the ternary patterns and show
that only four are left in order to complete the classification (for those we give
lower and upper bounds).

The contents of our paper is as follows: In Section 2, we give some background
on partial words and patterns (for more information, see [2,9]). In Section 3,
we complete the classification of the avoidability indices of binary patterns. In
Section 4, we make some observations for general pattern avoidance. In Section 5,
we describe an algorithm to search for an HD0L system avoiding a given pattern.
In Section 6, we discuss the classification of the ternary patterns. Finally in Sec-
tion 7, we conclude with some remarks. Note that, due to the 14-page restriction,
we cannot put in an appendix our ternary lexicon which lists the partial word
avoidability indices for the ternary patterns, or at least lists bounds for them
(the lexicon will appear in a future expanded version of our paper).

208 F. Blanchet-Sadri, A. Lohr, and S. Scott

2 Preliminaries

Let Σ be an alphabet, a non-empty finite set of symbols. Each element a ∈ Σ is
a letter. A (full) word over Σ is a concatenation of letters from Σ while a partial
word over Σ is a concatenation of symbols from Σ� = Σ ∪ {*}, the alphabet Σ
being augmented with the “hole” symbol * (a full word is a partial word without
holes). We denote by u[i] the symbol at position i of a partial word u. The length
of u, |u|, is the number of symbols in u. The empty word ε is the unique word
of length zero. The set of all full words (resp., non-empty full words) over Σ is
denoted by Σ∗ (resp., Σ+), while the set of all partial words (resp., non-empty
partial words) over Σ is denoted by Σ∗

� (resp., Σ+
�). The set of all full (resp.,

partial) words over Σ of length n is denoted by Σn (resp., Σn
�).

A partial word u is a factor of a partial word v if there exist x, y such that
v = xuy (the factor u is proper if u �= ε and u �= v). We say that u is a prefix
of v if x = ε and a suffix of v if y = ε. We denote by Pref(v) the set of all
prefixes of v and by Suf(v) the set of all suffixes of v. If u and v are two partial
words of equal length, then u is compatible with v, denoted u ↑ v, if u[i] = v[i]
whenever u[i], v[i] ∈ Σ. If u, v are non-empty compatible partial words, then uv
is called a square. Moreover, a full word compatible with a factor of a partial
word v is called a subword of v. For example, *b* is a factor of abb*b**ba and
bbb is a subword compatible with that factor.

Let Δ be an alphabet with Σ ∩Δ = ∅. We call the letters of Δ pattern vari-
ables and denote them by A,B,C, etc. A pattern is a word over the alphabet
Σ ∪Δ. A factor u ∈ Σ+ of a pattern is called a pattern constant. For example,
AA is the square pattern, aAaAa is the overlap pattern. Other patterns include
the binary pattern ABBA and the ternary pattern AABAACACCBAACA.
We denote by alph(p) the set of distinct variables in pattern p. For a partial
word w ∈ Σ∗

� and pattern p ∈ (Σ ∪ Δ)∗, we say that w meets p or p occurs
in w if there exists some non-erasing morphism ϕ : (Σ ∪ Δ)∗ → Σ∗, which
acts as the identity over Σ, such that ϕ(p) is compatible with a factor of w.
We say w avoids p when it does not meet p. For example, abab meets AA,
acbcaba avoids aAaAa, and ababaabc*a*cd**aba meets ABBA. These defini-
tions also apply to infinite partial words w over Σ which are functions from
N to Σ�.

A pattern p is called k-avoidable if for every h ∈ N there is a partial word with
h holes over a k-letter alphabet avoiding p, or, equivalently, if there is an infinite
partial word over a k-letter alphabet with infinitely many holes which avoids p.
We say that p is avoidable if it is k-avoidable for some k. For example, AB is
unavoidable, AA is unavoidable in partial words, AA is 3-avoidable in full words,
and AAA is 2-avoidable [4]. For a given pattern p, we define the avoidability index
μ(p) as the minimal k such that p is k-avoidable. If p is unavoidable, we write
μ(p) =∞. For example, μ(AB) =∞, μ(AABB) = 3, and every binary pattern
p of length six or greater satisfies μ(p) = 2 [4].

For a given pattern p, can we determine μ(p)? A concept useful to answer
this question is division of patterns. If p occurs in a pattern q, then p divides q.

Computing the Partial Word Avoidability Indices of Ternary Patterns 209

For instance, p = ABACBABC divides q = ABABCBABBC (replacing C by
BC gives q from p). If p divides q and an infinite partial word avoids p then it
also avoids q, and so μ(q) ≤ μ(p).

3 Completion of the Classification of Binary Patterns

The algorithms described later have provided us with the morphisms necessary
to complete the classification of the avoidability indices for binary patterns.

Let Σ = {a, b}, let t : Σ∗ → Σ∗ be the Thue–Morse morphism, and let
χ : Σ∗ → Σ∗

� be the morphism defined by χ(a) = a and χ(b) = baaa*babbb.

Theorem 1. The pattern ABABA is 2-avoidable by χ ◦ tω(a).

Next, let Σ = {a, b, c} and θ : Σ∗ → Σ∗ be the generalized Thue–Morse mor-
phism given by θ(a) = abc, θ(b) = ac, and θ(c) = b.

Lemma 1. The word θω(a) avoids both AA and bAbcAb.

Now, ABBA is 2-unavoidable for full words, which must also be true for partial
words. We can prove that ABBA is 3-avoidable by considering the morphism
ϕ : Σ∗ → Σ∗� given by ϕ(a) = cccbc, ϕ(b) = ca*bcbba, and ϕ(c) = baa. The
proof, based on an analysis of cases, depend on Lemmas 1, 2, and 3.

Lemma 2. Let u and v be length five or greater factors of ϕ(x), with x a full
word over Σ. If u and v are compatible, then they are also equal.

Lemma 3. The square subwords of ϕ ◦ θω(a) are aa, bb, cc, acac, baba, cbcb.

Theorem 2. The pattern ABBA is 3-avoidable by ϕ ◦ θω(a).

Taken together with the results of [4,5], the complete classification of the binary
patterns is summarized in the following theorem.

Theorem 3. For partial words, binary patterns fall into three categories:

1. The binary patterns ε, A, AA, AAB, AABA, AABAA, AB, ABA, and
their complements, are unavoidable (or have avoidability index ∞).

2. The binary patterns AABAB, AABB, ABAB, ABBA, their reverses, and
complements, have avoidability index 3.

3. All other binary patterns, and in particular all binary patterns of length six
or more, have avoidability index 2.

4 Observations for General Pattern Avoidance

The following definitions are useful for our purposes. Let Σ be an alphabet.
For a letter a ∈ Σ and a subset I ⊆ N, we define the function fillaI : Σ∗

� → Σ∗,
where for w ∈ Σ∗� : fill

a
I (w)[i] = a if w[i] = * and i ∈ I, fillaI (w)[i] = w[i] otherwise.

We write fillaN as simply filla. For a word w ∈ Σ∗ and a subset I ⊆ N, we define

210 F. Blanchet-Sadri, A. Lohr, and S. Scott

the function digI : Σ∗ → Σ∗
� , where digI(w)[i] = * if i ∈ I; digI(w)[i] = w[i]

otherwise. By digj for j ∈ N, we mean dig{j}.
A k-unavoidable pattern p is (h, k)-deep if there exists m ∈ N such that every

partial word w over a k-sized alphabet meets p whenever w has at least h holes
separated pairwise from each other and from the first and final position of the
word by factors of length m or greater. We call h : N \ {0, 1} → N the depth
function of an unavoidable pattern p if for all k, p is (h(k), k)-deep and is not
(j, k)-deep for any j < h(k). When the depth function of p is bounded, we call its
supremum d, the depth of p, and say that p is d-deep. A k-unavoidable pattern
p is k-shallow if p is (0, k)-deep or (1, k)-deep. If p is k-shallow for all k, we call
p shallow. We say that p is k-non-shallow if it is not k-shallow.

Note that if p is k-shallow it is unavoidable; however, the converse is, in
general, false. Every shallow pattern has depth 1 or 0. Naturally, any pattern
which is k-unavoidable in the full word case is (0, k)-deep and therefore k-shallow.
Further, if p is a (h1, k)-deep pattern and p meets pattern q then q is (h2, k)-deep
for some h2 ≤ h1. In particular, if q | p and p is k-shallow then q is k-shallow.
If a pattern p is (h1, k1)-deep, then it is also (h2, k1)-deep for all h2 ≥ h1 and
(h1, k2)-deep for all k2 ≤ k1. Hence the depth function is always non-decreasing,
and if the depth exists, the depth function is ultimately constant.

The following lemma classifies the depth of binary patterns.

Lemma 4. The k-unavoidable binary patterns fall into five categories with re-
spect to depth:

1. The patterns ε, A, AB, and ABA are shallow with depth 0.

2. The patterns AA and AAB are shallow with depth 1.

3. The pattern AABA is 3-shallow, 4-non-shallow, and has depth 2.

4. The pattern AABAA is 2-shallow and 3-non-shallow, and has depth function
h satisfying h(2) = 0 and, for all k ≥ 3, h(k) = k + 1.

5. The patterns AABAB, AABB, ABAB, ABBA are 2-shallow.

Proof. For Statement 2, it is known that in the full word case AA and AAB are
2-unavoidable but 3-avoidable, hence they are (0, 2)-deep, but not (0, k)-deep for
any k ≥ 3. Any word of length at least three with a hole contains an occurrence
of AAB and any word of length two or greater with a hole contains an occurrence
of AA. Hence they are also (1, k)-deep for all k, and therefore shallow. �	

We can prove the following theorem.

Theorem 4. Let p0, . . . , pn be k-unavoidable patterns over Δ. Let A1, . . . , An

be variables which are not in Δ. Then p0A1p1 · · ·Anpn is k-unavoidable if any
of the following conditions hold:

1. alph(pi) and alph(pj) are pairwise disjoint for all i �= j;

2. there exists some k-shallow pattern p such that p0, . . . , pn are factors of p;
further, if p is (0,k)-deep, so is p0A1p1 · · ·Anpn.

Computing the Partial Word Avoidability Indices of Ternary Patterns 211

Proof. For Condition 2, let p0, p1, . . . , pn be k-unavoidable patterns over Δ, let p
be a k-shallow pattern such that p0, . . . , pn are factors of p, and let A1, A2, . . . , An

be variables not inΔ. LetΣ be a k-letter alphabet, and let w be an infinite partial
word over Σ with infinitely many holes. Let m ∈ N be the integer implied by
the k-shallowness of p.

Write w = w′
0w0w

′
1w1 · · · , where the wi’s are length m factors with at least

one hole and the w′
i’s are factors of w. There are at most (k+1)m possible wi, so

at least one must occur infinitely often; call it x. Then w = y0xy1xy2 · · ·xyn+1,
where yi are factors of w. Because p is k-shallow, we have that x meets pattern p,
so there is some non-erasing morphism h : (Δ∪ {A1, . . . , An})∗ → Σ∗ such that
h(p) is compatible with a factor of x. Thus, for some xi, x

′
i, x

′′
i , we may write

x = xix
′
ix

′′
i where x′

i ↑ h(pi), and w = y0x0x
′
0x

′′
0y1x1x

′
1x

′′
1y2 · · ·xnx

′
nx

′′
nyn+1.

This clearly has an occurrence of q = p0A1p1 · · ·Anpn, for let f : (Δ ∪
{A1, . . . , An})∗ → Σ∗ be the morphism defined by f(B) = filla(x

′′
i−1yixi) if

B = Ai, and f(B) = h(B) otherwise, where a ∈ Σ. Then w has factors compat-
ible with f(q), so w meets q.

If p is (0, k)-deep, then the same argument holds with any filling of the holes
in w and with wi any length m factor, and it follows that q is (0, k)-deep. �	

We can deduce the following corollaries.

Corollary 1. The sequence of patterns defined recursively by p0 = A0A0 and
pn+1 = pnAn+1pn is 2-unavoidable.

Corollary 2. Let p be a pattern of only distinct variables over Δ and i <
|p| such that p0, p1, . . . , pn ∈ Δ∗ are compatible with factors of digi(p). Let
A1, . . . , An be distinct variables not in Δ. Then p0A1p1 · · ·Anpn is unavoidable.

Applying Theorem 4 as well as Corollary 2 to the patterns in Lemma 4 imply, for
instance, that the ternary pattern AABAAC, its reversal, its permutations, and
its factors are unavoidable; the pattern AABACAAB (resp., AABAACAAB),
its reversal, its permutations, and its factors are 3-unavoidable (resp.,
2-unavoidable). There are many patterns that can be classified this way!

In the rest of this section, we construct partial words avoiding patterns avoid-
able for full words. Let p be a pattern over Δ = {A1, . . . , An}. When we discuss
ternary patterns, we write A = A1, B = A2, and C = A3. Suppose that p is
avoided by w, an infinite full word over a k-letter alphabet Σ = {a1, a2, . . . , ak}.
There are a finite number of length three factors of w, so at least one has infinitely
many non-overlapping occurrences. Then there exists an infinite integer sequence
〈im〉 where |im−im′ | ≥ 3 and w[im−1..im+1] = w[im′−1..im′+1] for all distinct
m,m′. Let 〈jm〉 be an infinite subsequence of 〈im〉 such that jm > 2jm−1+5, and
form the partial word w′ from w by replacing w[jm− 1..jm+1] with ak+1*ak+2.
Then w′ is an infinite partial word with infinitely many holes over the alphabet
Σ∪{ak+1, ak+2}. It turns out that w′ and its reverse, rev(w′), have many useful
properties and avoid many patterns between them.

We refer to Ai,j as the jth occurrence of Ai in p, though we drop these
subscripts when they are clear from the context. For a factor q of p, we write qi

212 F. Blanchet-Sadri, A. Lohr, and S. Scott

for an occurrence of q beginning at index i of p. We define a relation on the set
of factors of p, Fact(p), by qi � qj if qi is an abelian factor of qj and there are
non-overlapping occurrences of qi and qj . For example, if p = ABCDCB then
B �B, B �AB, BC �DCB, and CB �BC.

Assume that for some non-erasing morphisms h, g : (Δ × {1, . . . , |p|})∗ →
(Σ ∪ {ak+1, ak+2})∗� we have w′ = u1h(p)v1, where h(Ai,j) ↑ h(Ai,�) for all
1 ≤ j, � ≤ |p|, and for some factor w′′ of rev(w′) we have w′′ = u2g(p)v2. This is
equivalent to w′ and rev(w′) meeting p. When w′ or rev(w′) avoid p, we arrive
at a contradiction and have that p is (k + 2)-avoidable. Write

–
�
qi when h(qi) is a hole;

–
�
qi when ak+1 is a suffix of h(qi);

–
�
qi when ak+2 is a prefix of h(qi);

–
��
qi when ak+1* is a suffix of h(qi);

–
��
qi when *ak+2 is a prefix of h(qi);

–
�
qi when for some proper factor u of w′, u is a factor of h(qi) and h(qi) is a
factor of *ak+2uak+1*;

–
1
qi when h(qi) has length one.

We can deduce the following formal system.

Theorem 5. The following rules of inference hold:

(a)
�

Ai,j =⇒ ∀� :
1

Ai,�

(b)
�

Ai,jA�,m =⇒
�

Ai,j

�
A�,m

(c) Ai,j

�
A�,m =⇒

�
Ai,j

�
A�,m

(d) ¬ �
qi

�
qj

(e)
�

Ai,j =⇒ ∀� :
�

Ai,� ∨
�

Ai,�

(f)
�

Ai,j =⇒ ∀� :
�

Ai,� ∨
�

Ai,�

(g)
�
qi ∧ (

��
qj ∨

�
qj) =⇒

�
qi

(h) (
�
qi ∨

��
qi) ∧

�
qj =⇒

�
qi

(i)
��
qi ∨

��
qi =⇒ ∀� : ��

q� ∨
��
q�

(j)
��
qi ∧

��
qj =⇒ ∀� : �

q� ∨ h(q�) ∈ {*ak+2, ak+1*}
(k) ∃Ai,j :

�
Ai,j,

��
Ai,j , or

��
Ai,j

(l)
�
qi =⇒ ¬ qi � qj

(m) Ai,jA�,mAi,j+2 =⇒ ¬
�

A�,m

We obtain the following corollary.

Corollary 3. The pattern ABACBC is 4-avoidable.

Computing the Partial Word Avoidability Indices of Ternary Patterns 213

Proof. Set p = ABACBC. There are 2-letter full words avoiding ABACBC
[10], i.e., p is (0, 2)-deep. Theorem 5 (k) shows one of the variables has an image
length of one or two with a hole. We examine cases according to which variable
satisfies this property. Note that rev(p) and p have identical lexical form, so it
suffices to consider only cases where the holed variable is one of the first three

variables. Note that by Theorem 5 (m), we never have
�
B.

Consider for instance
�
ABACBC. By (a) and (b), we have

�
A

�
B

1

ACBC, and

it follows by (f) that
�
A

�
B

1

AC
�
BC. Then we have

�
A

�
B

1

A
��
C

�
B

��
C or

�
A

�
B

�
A

�
C

�
B

1

C. But,

by (g),
�
A

�
B

1

A
��
C

�
B

��
C has

�
BC and BC � BAC, and by (h),

�
A

�
B

�
A

�
C

�
B

1

C has
�
B and

B �BC, so both stand in contradiction to Theorem 5 (l).

Several near identical constructions using fewer variables can avoid many other
patterns with specific structures occurring in their factors.

Theorem 6. Let p be a pattern over alphabet Δ with a squared variable factor
AA for some A ∈ Δ. There is a word w over a four-letter alphabet such that:

1. If there are factors Aq1A and q2 of p such that q1� q2, then either the image
of q1 in w consists of a single letter or p is 4-avoidable.

2. If there are factors q2 and AAq1A or Aq1AA such that q1 � q2, then p is
4-avoidable.

3. If there are factors q2 and AAq1BB such that q1 � q2 for some B ∈ Δ, then
p is 3-avoidable.

5 An Algorithm to Search for an HD0L System Avoiding
a Given Pattern

We first describe an algorithm used to attempt to find an HD0L system avoiding
a given pattern over a given alphabet size k. The algorithm begins by generating
a list of D0L systems. Our D0L generation algorithm on full words first gen-
erates a list of all words of a given fixed length that avoid the pattern using
the backtracking algorithm. Then, for each of these words, say w, it calculates
all possible morphisms, say f , such that w ∈ Pref(fω(a)). We determine f by
iterating over all legal lengths of images of letters under f , for which w uniquely
defines the morphism. As w is only a finite prefix of fω(a), the algorithm does
not consider many D0Ls which do avoid p, but have letter images on the order
of or larger than w. This restriction also means that, so long as the first letter
appears somewhere in the image of a letter other than as the first letter of its
image, then every letter on which f is defined appears infinitely often in fω(a).

At this point, the algorithm has found many thousands of D0Ls which avoid
p for a finite prefix, but may not avoid p in general. Though these could be
verified by the HD0L system checking algorithm of [7], it would be entirely
unfeasible to check each of these individually. However, checking the length n
prefix of fω(a) for an occurrence of p takes our algorithm O(ni+2), where i is
the number of variables. By continuing to check while letting n grow very large,

214 F. Blanchet-Sadri, A. Lohr, and S. Scott

we have multiple rounds of elimination, each one considering longer and longer
prefixes. This means that for the longest length prefixes that we check, very few
morphisms are left, offsetting the much greater computational cost for each.

Typically by length n = 1000, only a handful are left due to the length
restriction on the word w that we used to generate the morphisms. Once only
the morphisms whose fixed point avoid it for a very long length are left, we
run the HD0L system checking algorithm of [7] on these remaining D0Ls to
ensure that they avoid p. Note that for the computationally complex steps of
this procedure, there is very little shared data, and none of it is being modified
during those steps, so, concurrency is very good.

Algorithm 1. generate a D0L system to avoid a pattern

Require: length is an integer that must be tuned between potentially missing a D0L
and speed, mesh is a list of integers, the lengths at which the candidate morphisms
are tested

Ensure: program prints each D0L that it finds that avoids the pattern within the first
max{i ∈ mesh} letters of its fixed point

1: for all w ∈ backTrack(length) do
2: for all f ∈ D0L− for − word(w) do
3: for all i ∈ mesh do
4: if fω(a)[0..i) meets p then
5: break to a new f
6: if H-D0Lchecker(f, id) then
7: print f

To generate an HD0L system avoiding a pattern p, we first run the D0L gen-
eration algorithm on an alphabet of a greater size, since we know that the inner
morphism must avoid the pattern on its own if we have any hope of the HD0L
system avoiding the pattern p. We then separately generate outer morphisms by
generating a set of long “seed” words with holes avoiding p using a modification
of the backtracking algorithm in which we start with a hole in the middle and
try to add letters alternating sides. If in this generation phase, we are unable to
add any letter to one side, then we know that the pattern is not avoidable with
infinitely many holes. Each seed word w is paired with each D0L, say f .

By iterating image sizes for the letters of w, an outer morphism g is determined
such that w is a finite prefix of g ◦ fω(a). Then, we apply a refining procedure
similar to the D0L case, in which a longer and longer prefix of g◦fω(a) is checked
for an occurrence of p. After greatly reducing the number of HD0L systems we
have, we verify those remaining with the partial word HD0L system checking
algoritm described in [3].

Note, in order to assure that the generated HD0L system contains infinitely
many holes, it suffices to know that the seed word contains at least (in practice,
exactly) one, meaning that the image on one of the letters in the inner alphabet
contains at least one hole, and that every letter of the underlying D0L system
occurs infinitely often.

Computing the Partial Word Avoidability Indices of Ternary Patterns 215

Algorithm 2. generate a morphism whose fixed point is given

Require: w is a prefix of the morphisms we are trying to find, b is a partial function
from Σ to Σ+ (initially defined for no a ∈ Σ), i and j are integers (initially 0)

Ensure: program prints each morphism f it finds that can be uniquely defined by w,
up to the lengths of the images of letters; note also that fω(a) contains infinitely
many of each letter in Σ

1: while j < len(w) do
2: if w[i] ∈ Domain(b) then
3: if b(w[i]) = w[j..j + Len(b(i))) then
4: i ← i+ 1
5: j ← j + Len(b(w[i]))
6: else
7: return
8: else
9: for k = 1..len(w) − j do
10: D0L − for − word(w, i ← i + 1, j ← j + k, b ← f where f(x) = b(x) for

x ∈ Domain(b) and f(w[i]) = w[j..j + k))
11: return
12: if Domain(b) = Σ and ∃a ∈ Σ \ w[0] such that b(a) = u1w[0]u2 or

b(w[0])[1..len(b(w[0]))) = u1w[0]u2 then
13: print b
14: return

Algorithm 3. generate a HD0L system to avoid a pattern

Require: length is an integer that must be tuned between potentially missing a HD0L
and speed, mesh is a list of integers, the lengths at which the candidate HD0LS
are tested

Ensure: program prints each HD0L that it finds that avoids the pattern within the
first max{i ∈ mesh} letters of its fixed point

1: for all w ∈ randomizedBackTrack(length) do
2: for all f ∈ D0L− for − pattern(p) do
3: for all h ∈ HD0L− for − word(w, f) do
4: for all i ∈ mesh do
5: if h(fω(a))[0..i) meets p then
6: break to a new f
7: if H-D0Lchecker(f, h) then
8: print f, h

216 F. Blanchet-Sadri, A. Lohr, and S. Scott

Algorithm 4. generate HD0L systems to avoid a pattern, given a prefix and an
inner morphism

Require: f is an inner morphism, w is a prefix of the final word, b is a partial function
Σ → Σ+, i and j are integers (initially 0)

Ensure: program prints each fully defined HD0L that it finds that uses the given D0L
to have a fixed point with given prefix

1: while j < len(w) do
2: if fω(a)[i] ∈ Domain(b) then
3: if b(fω(a)[i]) = w[j..j + Len(b(i))) then
4: i ← i+ 1
5: j ← j + Len(b(fω(a)[i]))
6: else
7: return
8: else
9: for k = 1..len(w) − j do
10: D0L − for − word(w, i ← i + 1, j ← j + k, b ← g where g(x) = b(x) for

x ∈ Domain(b) and g(fω(a)[i]) = w[j..j + k))
11: return
12: if Domain(b) = Σ then
13: print b
14: return

6 Classification of the Ternary Patterns

In classifying the avoidability indices of the ternary patterns, it is useful to con-
sider the directed tree of patterns T , where the root of T is labelled by ε and each
node has children labelled by every canonical pattern formed by appending A,
B, C to the parent node’s pattern, with all edges directed from parent to child.
We have a partial order relation defined on the set of canonical ternary patterns
by q > p if there is a path in T from the node labelled by pattern q to the node la-
belled by pattern p.
Because q > p means q | p, we have that μ(q) ≥ μ(p). The classification is
complete when every node of T is appended with the avoidability index of the
pattern labelling it.

First, we use unavoidability rules to rule out known 2-unavoidable patterns,
and proceed via a depth-first search to find 2-avoidable patterns which are iden-
tified as such using division arguments from the binary patterns and the HD0L
finding algorithm described in Section 5. Once a pattern p is known to have avoid-
ability index two, we know its children, grandchildren, etc., also have avoidability
index two. We find by exhaustion that every ternary pattern with length twelve
or greater is 2-avoidable. This leaves us with finitely many ternary patterns to
classify.

Next, for any remaining pattern p, we use division arguments and our results
to establish bounds on the avoidability index of p.

Finally, we try running the algorithms of Section 5 on successively larger
outer alphabet sizes, starting at the known lower bound, and going up to one

Computing the Partial Word Avoidability Indices of Ternary Patterns 217

less than the known upper bound in search of an HD0L system which avoids
p. Because the algorithm for finding HD0Ls has so many tuning parameters,
the implementation used attempted to tweak these parameters, if no HD0L was
found.

Here, as an example, is one branch of the tree T , starting with ABCABA:

ABCABA ∞

. . . C 2. . . B 3

. . . C 2. . . B 3

. . . C 2. . . B 2. . .A 2

. . . A 2

. . .A 4

. . . C 2. . . B 2. . . A 2

7 Concluding Remarks, Conjectures, and Open Problems

Note that there are ternary patterns with avoidability index 5 for partial words
(for instance AABCABA), while no such ternary pattern exists for full words
[7]. Indeed, to our knowledge the only known patterns with an index of 5 for full
words require at least nine variables (for instance

ABV ACWBAXBCY CDAZDCD

is such a pattern [8]).
Frequently, the lower bound is provided by Theorem 4 from patterns of known

depth. The conditions on Theorem 4 can most likely be significantly weakened.
We conjecture in particular that if p is k-shallow and p1 and p2 are (h1, k)-deep
and (h2, k)-deep respectively, then p1Ap2 is (h1 + h2, k)-deep. In general, what
relation does the depth of p1Ap2 have with the depth of p1 and p2? Classification
of the depths of patterns may give insight.

Every 0-deep pattern that is may be seen to be written in the form of Corol-
lary 2. We conjecture that every unavoidable pattern may be written in this
form and that Corollary 2 may be implemented into an algorithm which decides
the partial word avoidability of a pattern.

We believe the sequence of Corollary 1 has maximal length 2-unavoidable
pattern pn with |pn| = 3 × 2n−1 − 1. This would mean that any classification
of the patterns using k variables by our method would need never explicitly
calculate morphisms for any pattern 3× 2k−1 or longer.

In addition, a World Wide Web server interface at

www.uncg.edu/cmp/research/patterns2

has been established for automated use of our Pattern Avoidance Automated
Archive. Given as input a pattern over any alphabet of variables, the Archive

218 F. Blanchet-Sadri, A. Lohr, and S. Scott

attempts to determine the avoidability index or bounds of it, using the algorithms
described in our paper. The Archive first checks for unavoidability. If no reason
to suspect unavoidability is found, it attempts to generate HD0Ls which avoid
it. Note that the HD0L finder is not implemented for patterns with more than
three distinct variables. Suggested HD0Ls are also output, and can be verified
using our HD0L verification algorithm found there.

References

1. Bean, D.R., Ehrenfeucht, A., McNulty, G.: Avoidable patterns in strings of sym-
bols. Pacific Journal of Mathematics 85, 261–294 (1979)

2. Blanchet-Sadri, F.: Algorithmic Combinatorics on Partial Words. Chapman &
Hall/CRC Press, Boca Raton, FL (2008)

3. Blanchet-Sadri, F., Black, K., Zemke, A.: Unary Pattern Avoidance in Partial
Words Dense with Holes. In: Dediu, A.-H., Inenaga, S., Mart́ın-Vide, C. (eds.)
LATA 2011. LNCS, vol. 6638, pp. 155–166. Springer, Heidelberg (2011)

4. Blanchet-Sadri, F., Mercaş, R., Simmons, S., Weissenstein, E.: Avoidable binary
patterns in partial words. Acta Informatica 48(1), 25–41 (2011)

5. Blanchet-Sadri, F., Mercaş, R., Simmons, S., Weissenstein, E.: Erratum to: Avoid-
able binary patterns in partial words. Acta Informatica 49, 53–54 (2012)

6. Cassaigne, J.: Unavoidable binary patterns. Acta Informatica 30, 385–395 (1993)
7. Cassaigne, J.: Motifs évitables et régularités dans les mots. PhD thesis, Paris VI

(1994)
8. Clark, R.J.: The existence of a pattern which is 5-avoidable but 4-unavoidable.

International Journal of Algebra and Computation 16, 351–367 (2006)
9. Lothaire, M.: Algebraic Combinatorics on Words. Cambridge University Press,

Cambridge (2002)
10. Ochem, P.: A generator of morphisms for infinite words. RAIRO-Theoretical In-

formatics and Applications 40, 427–441 (2006)
11. Zimin, A.I.: Blocking sets of terms. Mathematics of the USSR-Sbornik 47, 353–364

(1984)

Computing a Longest Common Palindromic
Subsequence

Shihabur Rahman Chowdhury, Md. Mahbubul Hasan,
Sumaiya Iqbal, and M. Sohel Rahman

A�EDA Group
Department of CSE, BUET, Dhaka - 1000, Bangladesh

{shihab,mahbub86,sumaiya,msrahman}@cse.buet.ac.bd

Abstract. The longest common subsequence (LCS) problem is a classic and
well-studied problem in computer science. Palindrome is a string, which reads
the same forward as it does backward. The longest common palindromic sub-
sequence (LCPS) problem is an interesting variant of the classic LCS problem
which finds the longest common subsequence between two given strings such
that the computed subsequence is also a palindrome. In this paper, we study
the LCPS problem and give efficient algorithms to solve this problem. To the
best of our knowledge, this is the first attempt to study and solve this interesting
problem.

Keywords: Longest common subsequence, Palindromes, Dynamic program-
ming, Range query.

1 Introduction

The longest common subsequence (LCS) problem is a classic and well-studied prob-
lem in computer science with a lot of variants arising out of different practical sce-
narios. In this paper, we introduce and study the longest common palindromic subse-
quence (LCPS) problem: given a pair of strings X and Y over the alphabet Σ, the goal
of the LCPS problem is to compute a LCS Z of X and Y such that, Z is a palin-
drome. In what follows, for the sake of convenience we will assume, that X and Y have
equal length, n. But our result can be easily extended to handle two strings of different
length.

String and sequence algorithms related to palindromes have attracted stringology
researchers since long [2, 4, 6–8]. The LCPS problem also seems to be a new inter-
esting addition to the already rich list of problems related to palindromes. To the best
of our knowledge, there exists no research work in the literature on computing longest
common palindromic subsequences. However, the problem of computing palindromes
and variants in a single sequence has received much attention in the literature. Man-
acher discovered an on-line sequential algorithm that finds all ‘initial’1 palindromes in

1 A string X[1 . . . n] is said to have an initial palindrome of length k if the prefix S[1 . . . k] is a
palindrome.

S. Arumugam and B. Smyth (Eds.): IWOCA 2012, LNCS 7643, pp. 219–223, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

220 S.R. Chowdhury et al.

a string [7]. Gusfield gave a linear-time algorithm to find all ‘maximal’ palindromes in a
string [3]. Authors in [8] solved the problem of finding all palindromes in SLP (Straight
Line Programs)-compressed strings. Very recently, Tomohiro et. al. worked on pattern
matching problems involving palindromes [9].

In this paper, we propose two methods for finding an LCPS, given two strings. Firstly
we present a dynamic programming algorithm to solve the problem with time complex-
ity O(n4), where n is the length of the strings (Section 3). Then, we present another
algorithm that runs in O(R2 log2 n log logn) time (Section 4). Here, the set of all or-
dered pair of matches between two strings is denoted by M and |M| = R. Due to
space constraints all the proofs are omitted.

2 Preliminaries

We assume a finite alphabet, Σ. For a string X , we denote its substring xi . . . xj (1 ≤
i ≤ j ≤ n) by Xi,j . For two strings X and Y , if a common subsequence Z of X and Y
is a palindrome, then Z is said to be a common palindromic subsequence (CPS). A CPS
of two strings having the maximum length is called the Longest Common Palindromic
Subsequence (LCPS) and we denote it byLCPS(X,Y). The set of all matches between
two strings X and Y is denoted by M and it is defined as, M = {(i, j) : 1 ≤ i ≤
n, 1 ≤ j ≤ n and xi = yj}. And we have, |M| = R. We define, Mσ as a subset of
M such that all matches within this set match to a single character σ ∈ Σ. We have
|Mσ| = Rσ . Each member ofMσ is called a σ-match.

3 A Dynamic Programming Algorithm

We observe that the natural classes of sub-problems for LCPS correspond to pairs of
substrings of the two input sequences. Based on this observation we present the follow-
ing theorem which proves the optimal substructure property of the LCPS
problem.

Theorem 1. Let X and Y are two sequences of length n, and Xi,j and Yk,� are two
substrings of X and Y respectively. Let Z = z1z2 . . . zu be the LCPS of the two sub-
strings, Xi,j and Yk,�. Then, the following statements hold,

1. If xi = xj = yk = y� = a (a ∈ Σ), then z1 = zu = a and z2 . . . zu−1 is an LCPS
of Xi+1,j−1 and Yk+1,�−1.

2. If xi = xj = yk = yl condition does not hold then, Z is an LCPS of (Xi+1,j and
Yk,�) or (Xi,j−1 and Yk,�) or (Xi,j and Yk,�−1) or (Xi,j and Yk+1,�).

Based on Theorem 1 we give the following recursive formulation for the length of
LCPS(X,Y):

Computing a Longest Common Palindromic Subsequence 221

lcps[i, j, k, �] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 i > j or k > �

1 (i = j and k = �)

and

(xi = xj = yk = y�

2 + lcps[i+ 1, j − 1, k + 1, �− 1] (i < j and k < �)

and

xi = xj = yk = y�

max(lcps[i+ 1, j, k, �], lcps[i, j − 1, k, �],

lcps[i, j, k + 1, �], lcps[i, j, k, �− 1]) (i ≤ j and k ≤ �)

and

(xi = xj = yk = y�)

does not hold

(1)

lcps[i, j, k, �] is the length of the LCPS of Xi,j and Yk,�. The length of
LCPS(X,Y) will be stored at lcps[1, n, 1, n]. We can compute this length in O(n4)
time using a bottom up dynamic programming.

4 A Second Approach

We shall first reduce our problem to a geometry problem and then solve it with the help
of modified version of range tree data structure. First, we make the following claim.

Claim 1. Any common palindromic subsequence Z = z1z2 . . . zu of two strings X and
Y can be decomposed into a set of σ-match pairs (σ ∈ Σ).

It follows from Claim 1 that constructing a CPS of X and Y can be seen as con-
structing an appropriate set of σ-match pairs between them. An arbitrary σ-match pair,
〈(i, k), (j, �)〉 (say m1), from among all σ-match pairs between X and Y , can be seen
as inducing a substring pair in them. Now we want to construct a CPS Z with length
u, placing m1 at the two ends of Z . Clearly we have z1 = zu = xi = xj = yk = y�.
To compute Z , we will have to recursively select σ-match pairs between Xi,j and Yk,�.
This will yield a set of σ-match pairs corresponding to Z . If we consider all possible
σ-match pairs as the two end points of Z , then the longest one obtained will be an LCPS
of X and Y . Each match between X and Y can be visualized as a point on a n × n
rectangular grid with integer coordinates. Any σ-match pair defines two corner points
of a rectangle and thus induces a rectangle in the grid. Now, our goal is to take a σ-
match pair as the two ends of a CPS and recursively construct the set of σ-match pairs
from within the induced rectangle. In particular we take the following steps to compute
LCPS(X,Y):

222 S.R. Chowdhury et al.

1. Identify an induced rectangle (say Ψ1) by a pair of σ-matches. Then, pair up σ-
matches within Ψ1 to obtain another rectangle (say Ψ2) and so on until we encounter
either of the following two terminating conditions:

T1. If there is no point within any rectangle. This corresponds to the case when
there is no match between the substrings.

T2. If it is not possible to take any pair of σ-matches within any rectangle. In this
case we pair a match with itslef, it corresponds to the single character case in
our Dynamic Programming solution.

2. We repeat the above step for all possible σ-match pairs (∀σ ∈ Σ). At this point,
we have a set of nested rectangle structures. An increase in the nesting depth of
the rectangle structures as it is being constructed, corresponds to adding a pair of
symbols2 to the resultant palindromic subsequence. Hence, the set of rectangles
with maximum nesting depth gives us an LCPS.

Now the problem reduces to the following interesting geometric problem: Given a set of
nested rectangles defined by the σ-match pairs ∀σ ∈ Σ, we need to find the set of rect-
angles having the maximum nesting depth. We refer to this problem as the Maximum
Depth Nesting Rectangle Structures (MDNRS) problem.

We assume, without the loss of generality that (i, k) and (j, �) correspond to the
lower left corner and upper right corner of the rectangle Ψ〈(i, k), (j, �)〉. Now, a rectan-
gle Ψ ′(〈(i′, k′), (j′, �′)〉) will be nested within rectangle Ψ(〈(i, k),
(j, l)〉) iff the following condition holds:

i′ > i and k′ > k and j′ < j and �′ < �⇔ (i′, k′,−j′,−�′) > (i, k, j, �).
Now we convert a rectangle Ψ(〈(i, k), (j, �)〉) to a 4-D point PΨ (i, k,−j,−�)

and say that, a point (x, y, z, w) is chained to another point (x′, y′, z′, w′) iff
(x, y, z, w) > (x′, y′, z′, w′). Then, a rectangle Ψ ′(〈(i′, k′), (j′, �′)〉), is nested
within a rectangle Ψ(〈(i, k), (j, �)〉) iff the point PΨ ′(i′, k′,−j′,−�′) is chained to
the point PΨ (i, k,−j,−�). Hence, the MDNRS problem in 2-D reduces to find-
ing the set of corresponding points in 4-D having the maximum chain length.
We refer to this problem as Maximum Chain Length (MCL) Problem. We solve the
MCL problem in O(R2 log2 n log logn) time using a modified version of 3-D range
tree data structure [1]. A d-dimension range tree, T is in the form of multi-level trees
using an inductive definition on d. Any update and query operation in T can be done
in O(logd n) time. So in 3-D, our query and update performs in O(log3 n) time where
the array is of n× n× n size. We process the 4-D points (x, y, z, w) in non-increasing
order of the highest dimension w. For each point (x, y, z, w) we query in T for max-
imum value at (x′, y′, z′) where x′ > x, y′ > y and z′ > z. The obtained value is
incremented and stored at the point (x, y, z). We can update the value at (x, y, z) in 3-D
Range tree and query for the maximum in O(log3 n) time. For theO(R2) points it will
take O(R2 log3 n) time to solve the MCL problem. In the deepest level of our range
tree we are doing a 1-D range maximum query, with the query range always having
the form [x, n]. According to Rahman et. al. such queries can be answered using a Van
Emde Boas data structure in O(log logn) time [5]. Using this technique, the running
time to solve the MCL (which in turn solves the LCPS problem) problem reduces to
O(R2 log2 n log logn).

2 If condition T2 is reached, only a symbol shall be added.

Computing a Longest Common Palindromic Subsequence 223

5 Conclusion and Future Works

We have presented aO(n4) time dynamic programming algorithm for solving the LCPS
problem. Then, we have identified and studied some interesting relation of the problem
with computational geometry. Then we solved the problem using a modified range tree
data structure in O(R2 log2 n log logn) time. However, our results can be easily ex-
tended for the case where the two input strings are of different lengths. Further research
can also be carried out towards studying different other variants of the LCPS problem.

References

1. Bentley, J.L., Friedman, J.H.: Data structures for range searching. ACM Comput. Surv. 11,
397–409 (1979)

2. Breslauer, D., Galil, Z.: Finding all periods and initial palindromes of a string in parallel.
Algorithmica 14, 355–366 (1995)

3. Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer Science and Computa-
tional Biology. Cambridge University Press, New York

4. Hsu, P.-H., Chen, K.-Y., Chao, K.-M.: Finding All Approximate Gapped Palindromes. In:
Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 1084–1093.
Springer, Heidelberg (2009)

5. Iliopoulos, C., Rahman, M.: A new efficient algorithm for computing the longest common
subsequence. Theory of Computing Systems 45, 355–371 (2009)

6. Kolpakov, R., Kucherov, G.: Searching for gapped palindromes. Theoretical Computer Sci-
ence, 5365–5373 (November 2009)

7. Manacher, G.: A new linear-time on-line algorithm for finding the smallest initial palindrome
of a string. Journal of the ACM 22, 346–351 (1975)

8. Matsubara, W., Inenaga, S., Ishino, A., Shinohara, A., Nakamura, T., Hashimoto, K.: Efficient
algorithms to compute compressed longest common substrings and compressed palindromes.
Theoretical Computer Science 410, 900–913 (2009)

9. Tomohiro, I., Inenaga, S., Takeda, M.: Palindrome Pattern Matching. In: Giancarlo, R.,
Manzini, G. (eds.) CPM 2011. LNCS, vol. 6661, pp. 232–245. Springer, Heidelberg (2011)

Multiset, Set and Numerically Decipherable

Codes over Directed Figures

Micha�l Kolarz and W�lodzimierz Moczurad

Institute of Computer Science, Faculty of Mathematics and Computer Science,
Jagiellonian University, �Lojasiewicza 6, 30-348 Kraków, Poland

michael.kolarz@gmail.com, wkm@ii.uj.edu.pl

Abstract. Codes with various kinds of decipherability, weaker than the
usual unique decipherability, have been studied since multiset decipher-
ability was introduced in mid-1980s. We consider decipherability of di-
rected figure codes, where directed figures are defined as labelled poly-
ominoes with designated start and end points, equipped with catenation
operation that may use a merging function to resolve possible conflicts.
This is one of possible extensions generalizing words and variable-length
codes to planar structures.

Here, verification whether a given set is a code is no longer decidable
in general. We study the decidability status of figure codes depending
on catenation type (with or without a merging function), decipherability
kind (unique, multiset, set or numeric) and code geometry (several classes
determined by relative positions of start and end points of figures). We
give decidability or undecidability proofs in all but two cases that remain
open.

1 Introduction

The classical notion of a code requires that an encoded message should be de-
coded uniquely, i.e. the exact sequence of codewords must be recovered. In some
situations, however, it might be sufficient to recover only the multiset, the set or
just the number of codewords. This leads to three kinds of decipherability, known
asmultiset (MSD), set (SD) and numeric decipherability (ND), respectively. The
original exact decipherability is called unique decipherability (UD).

Multiset decipherability was introduced by Lempel in [15], whilst numeric de-
cipherability originates in [10] by Head and Weber. The same authors in [11]
develop what they call “domino graphs” providing a useful technique for deci-
pherability verification. A paper by Guzman [9] defined set decipherability and
presented a unifying approach to different decipherability notions using varieties
of monoids. Contributions by Restivo [19] and Blanchet-Sadri and Morgan [4]
settle Lempel’s conjectures for some MSD and SD codes. Blanchet-Sadri in [3]
characterizes decipherability of three-word codes, whilst Burderi and Restivo re-
late decipherability to the Kraft inequality [6] and to coding partitions [5]. A
paper by Salomaa et al. [20], although not directly concerned with decipher-
ability, uses ND codes (dubbed length codes) to study prime decompositions of
languages.

S. Arumugam and B. Smyth (Eds.): IWOCA 2012, LNCS 7643, pp. 224–235, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Multiset, Set and Numerically Decipherable Codes over Directed Figures 225

Extensions of classical words and variable-length word codes have also been
widely studied. For instance, Aigrain and Beauquier introduced polyomino codes
in [1]; two-dimensional rectangular pictures were studied by Giammarresi and
Restivo in [8], whilst in [16] Mantaci and Restivo described an algorithm to ver-
ify tree codes. The interest in picture-like structures is not surprising, given the
huge amounts of pictorial data in use. Unfortunately, properties related to deci-
pherability are often lost when moving to a two-dimensional plane. In particular,
decipherability testing (i.e. testing whether a given set is a code) is undecidable
for polyominoes and similar structures, cf. [2,17].

In [14] we introduced directed figures defined as labelled polyominoes with
designated start and end points, equipped with catenation operation that uses a
merging function to resolve possible conflicts. This setting is similar to symbolic
pixel pictures, described by Costagliola et al. in [7], and admits a natural defini-
tion of catenation. The attribute “directed” is used to emphasize the way figures
are catenated; this should not be confused with the meaning of “directed” in e.g.
directed polyominoes. We proved that verification whether a given finite set of
directed figures is a UD code is decidable. This still holds true in a slightly more
general setting of codes with weak equality (see [18]) and is a significant change
in comparison to previously mentioned picture models, facilitating the use of di-
rected figures in, for instance, encoding and indexing of pictures in databases. On
the other hand, a directed figure model with no merging function, where catena-
tion of figures is only possible when they do not overlap, has again undecidable
UD testing [12,13].

In the present paper we extend the previous results by considering not just
UD codes, but also MSD, SD and ND codes over directed figures. We prove
decidability or undecidability for each combination of the following orthogonal
criteria: catenation type (with or without a merging function), decipherability
kind (UD, MSD, SD, ND) and code geometry (several classes determined by
relative positions of start and end points of figures). Two combinations remain
open, however.

We begin, in Section 2, with definitions of directed figures and their catena-
tions. Section 3 defines decipherability kinds and shows the relationship between
codes of that kinds. In Section 4 main decidability results for decipherability ver-
ification are given.

2 Preliminaries

Let Σ be a finite, non-empty alphabet. A translation by vector u = (ux, uy) ∈ Z2

is denoted by tru, tru : Z2 , (x, y) -→ (x + ux, y + uy) ∈ Z2. By extension, for
a set V ⊆ Z2 and an arbitrary function f : V → Σ define tru : P(Z2) , V -→
{tru(v) | v ∈ V } ∈ P(Z2) and tru : ΣV , f -→ f ◦ tr−u ∈ Σtru(V).

Definition 1 (Directed figure, cf. [14]). Let D ⊆ Z2 be finite and non-
empty, b, e ∈ Z2 and � : D → Σ. A quadruple f = (D, b, e, �) is a directed figure
(over Σ) with

226 M. Kolarz and W. Moczurad

domain dom(f) = D,
start point begin(f) = b,
end point end(f) = e,
labelling function label(f) = �.

Translation vector of f is defined as tran(f) = end(f)− begin(f). Additionally,
the empty directed figure ε is defined as (∅, (0, 0), (0, 0), {}), where {} denotes a
function with an empty domain. Note that the start and end points need not be
in the domain.

The set of all directed figures over Σ is denoted by Σ�. Two directed figures x, y
are equal (denoted by x = y) if there exists u ∈ Z2 such that

y = (tru(dom(x)), tru(begin(x)), tru(end(x)), tru(label(x))).

Thus, we actually consider figures up to translation.

Example 1. A directed figure and its graphical representation. Each point of the
domain, (x, y), is represented by a unit square in R2 with bottom left corner
in (x, y). A circle marks the start point and a diamond marks the end point of
the figure. Figures are considered up to translation, hence we do not mark the
coordinates.

({(0, 0), (1, 0), (1, 1)}, (0, 0), (2, 1), {(0, 0) -→ a, (1, 0) -→ b, (1, 1) -→ c})

a�b
c*

Definition 2 (Catenation, cf. [14]). Let x = (Dx, bx, ex, �x) and y =
(Dy, by, ey, �y) be directed figures. If Dx ∩ trex−by (Dy) = ∅, a catenation of x
and y is defined as

x ◦ y = (Dx ∪ trex−by (Dy), bx, trex−by (ey), �),

where

�(z) =

{
�x(z) for z ∈ Dx,
trex−by (�y)(z) for z ∈ trex−by (Dy).

If Dx ∩ trex−by (Dy) �= ∅, catenation of x and y is not defined.

Definition 3 (m-catenation, cf. [14]). Let x = (Dx, bx, ex, �x) and y =
(Dy, by, ey, �y) be directed figures. An m-catenation of x and y with respect to a
merging function m : Σ ×Σ → Σ is defined as

x ◦m y = (Dx ∪ trex−by (Dy), bx, trex−by (ey), �),

where

�(z) =

⎧⎨⎩
�x(z) for z ∈ Dx \ trex−by (Dy),
trex−by (�y)(z) for z ∈ trex−by (Dy) \Dx,
m(�x(z), trex−by (�y)(z)) for z ∈ Dx ∩ trex−by (Dy).

Multiset, Set and Numerically Decipherable Codes over Directed Figures 227

Notice that when x ◦ y is defined, it is equal to x ◦m y, regardless of the merging
function m.

Example 2. Let π1 be the projection onto the first argument.

a�b
c
* ◦π1

a�

b c*
=

a�b
c
a
c*

The “non-merging” catenation is not defined for the above figures. Note that the
result of (m-)catenation does not depend on the original position of the second
argument.

Observe that ◦ is associative, whilst ◦m is associative if and only if m is as-
sociative. Thus for associative m, Σ�

m = (Σ�, ◦m) is a monoid (which is never
free).

Abusing this notation, we also write X� (resp. X�
m) to denote the set of all

figures that can be composed by ◦ catenation (resp. ◦m m-catenation) from
figures in X ⊆ Σ�. When some statements are formulated for both ◦ and ◦m,
we use the symbol • and “x • y” should then be read as “x ◦ y (resp. x ◦m y)”.
Similarly, “x ∈ X�•” should be read as “x ∈ X� (resp. x ∈ X�

m)”.
From now on let m be an arbitrary associative merging function.

3 Codes

In this section we define a total of eight kinds of directed figure codes, resulting
from the use of four different notions of decipherability and two types of cate-
nation. Note that by a code (over Σ, with no further attributes) we mean any
finite non-empty subset of Σ� \ {ε}.

Definition 4 (UD code). Let X be a code over Σ. X is a uniquely decipher-
able code, if for any x1, . . . , xk, y1, . . . , yl ∈ X the equality x1◦· · ·◦xk = y1◦· · ·◦yl
implies that (x1, . . . , xk) and (y1, . . . , yl) are equal as sequences, i.e. k = l and
xi = yi for each i ∈ {1, . . . , k}.

Definition 5 (UD m-code). Let X be a code over Σ.X is a uniquely decipher-
able m-code, if for any x1, . . . , xk, y1, . . . , yl ∈ X the equality x1 ◦m · · · ◦m xk =
y1 ◦m · · · ◦m yl implies that (x1, . . . , xk) and (y1, . . . , yl) are equal as sequences.

In the remaining definitions, we use the obvious abbreviated notation.

Definition 6 (MSD code and m-code). Let X be a code over Σ. X is a
multiset decipherable code (resp. m-code), if for any x1, . . . , xk, y1, . . . , yl ∈ X
the equality x1 • · · · •xk = y1 • · · · • yl implies that {{x1, . . . , xk}} and {{y1, . . . , yl}}
are equal as multisets.

Definition 7 (SD code and m-code). Let X be a code over Σ. X is a set de-
cipherable code (resp. m-code), if for any x1, . . . , xk, y1, . . . , yl ∈ X the equality
x1 • · · · • xk = y1 • · · · • yl implies that {x1, . . . , xk} and {y1, . . . , yl} are equal as
sets.

228 M. Kolarz and W. Moczurad

Definition 8 (ND code and m-code). Let X be a code over Σ. X is a nu-
merically decipherable code (resp. m-code), if for any x1, . . . , xk, y1, . . . , yl ∈ X
the equality x1 • · · · • xk = y1 • · · · • yl implies k = l.

Proposition 1. If X is a UD (resp. MSD, SD, ND) m-code, then X is a UD
(resp. MSD, SD, ND) code.

Proof. Assume X is not a UD (resp. MSD, SD, ND) code. Then for some
x1, . . . , xk, y1, . . . , yl ∈ X we have x1 ◦ · · · ◦ xk = y1 ◦ · · · ◦ yl with (x1, . . . , xk)
and (y1, . . . , yl) not satisfying the final condition of the respective definition. But
then, irrespective of m, x1 ◦m · · · ◦m xk = y1 ◦m · · · ◦m yl and X is not a UD
(resp. MSD, SD, ND) m-code. �	

Note that the converse does not hold. A code may, for instance, fail to satisfy
the UD m-code definition with x1 ◦m · · · ◦m xk = y1 ◦m · · · ◦m yl and still be a
UD code simply because some catenations in x1 ◦ · · · ◦xk and y1 ◦ · · · ◦ yl are not
defined.

Example 3. Take X = {x = a�*}. X is not a UD m-code, since x ◦m x = x. It is
a trivial UD code, though, because x ◦ x is not defined.

Proposition 2. Every UD code is an MSD code; every MSD code is an SD code
and an ND code. Every UD m-code is an MSD m-code; every MSD m-code is
an SD m-code and an ND m-code.

Proof. Obvious. Examples may be given to show that all those inclusions are
strict.

Before proceeding with the main decidability results, note that for UD, MSD and
ND m-codes there is an “easy case” that can be verified quickly just by analyzing
the translation vectors of figures. This is reflected in the followng theorem.

Theorem 1 (Necessary condition). Let X = {x1, . . . , xn} be a code over Σ.
If there exist α1, . . . , αn ∈ N, not all equal to zero, such that

∑n
i=1 αitran(xi) =

(0, 0), then X is not an ND m-code (and consequently neither an MSD nor UD
m-code).

Proof. Let

x = x1 ◦m · · · ◦m x1︸ ︷︷ ︸
α1

◦m x2 ◦m · · · ◦m x2︸ ︷︷ ︸
α2

◦m · · · ◦m xn ◦m · · · ◦m xn︸ ︷︷ ︸
αn

.

Now consider the powers of x (with respect to ◦m), xi for i ≥ 1. Since tran(x) =
(0, 0), each of the powers has the same domain. There is only a finite number of
possible labellings of this domain, which implies that regardless of the merging
function and labelling of x, there exist a, b ∈ N, a �= b such that xa = xb. Hence
X is not an ND m-code. �	

Definition 9 (Two-sided and one-sided codes). Codes that satisfy the con-
dition of Theorem 1 will be called two-sided. Codes that do not satisfy it will be
called one-sided.

Multiset, Set and Numerically Decipherable Codes over Directed Figures 229

These conditions can be intrepreted geometrically as follows: Translation vectors
of a two-sided code do not fit in an open half-plane. For a one-sided code, there
exists a line passing through (0, 0) such that all translation vectors are on one
side of it.

Example 4. The following set of figures is a two-sided code, with translation
vectors (1, 2), (1,−2) and (−2, 0):

a�b
c
* a�

b c* a* b �

It is a one-sided code, if the rightmost figure is removed.

Corollary 1. If X is an ND m-code, then X is one-sided.

4 Decidability of Verification

In this section we summarize all non-trivial decidability results for the decipher-
ability verification. We aim to prove the decidability status for for each com-
bination of the following orthogonal criteria: catenation type (with or without
a merging function), decipherability kind (UD, MSD, SD, ND) and code ge-
ometry (one-sided, two-sided, two-sided with parallel translation vectors). Two
combinations remain open, however.

Because of space constraints, we only present outlines of the (un)decidability
proofs. Moreover, proofs that have already appeared in our previous work and al-
gorithms are omitted altogether; references to respective papers are given. Note,
however, that in all decidable non-trivial cases there exist algorithms to test the
decipherability in question; the algorithms effectively find a double factorization
of a figure if the answer is negative.

4.1 Positive Decidability Results

Theorem 2 (see [14], Section 4). Let X be a one-sided code over Σ. It is
decidable whether X is a UD m-code.

Theorem 3 (see [12], Section 3). Let X be a one-sided code over Σ. It is
decidable whether X is a UD code.

Generalizing Theorems 2 and 3, we obtain a similar result for one-sided MSD,
SD and ND codes and m-codes.

Theorem 4. Let X be a one-sided code over Σ. It is decidable whether X is a
{UD, MSD, SD or ND} {code or m-code}.

Proof (outline). For x1, . . . , xk, y1, . . . , yl ∈ X�
• we definie a configuration as a

pair of sequences ((x1, . . . , xk), (y1, . . . , yl)). A successor of such configuration is
either ((x1, . . . , xk, z), (y1, . . . , yl)) or ((x1, . . . , xk), (y1, . . . , yl, z)) for some z ∈

230 M. Kolarz and W. Moczurad

X . If a configuration C2 is a successor of C1, we write C1 ≺ C2. By ≺∗ we denote
the transitive closure of ≺. For a configuration C = ((x1, . . . , xk), (y1, . . . , yl))
let us denote:

L(C) = {x1, . . . , xk},
L•(C) = x1 • . . . • xk,

R(C) = {y1, . . . , xl},
R•(C) = y1 • . . . • yl.

Now consider a starting configuration ((x), (y)), for x, y ∈ X , x �= y. Assume that
there exists a configuration C such that L•(C) = R•(C) and ((x), (y)) ≺∗ C.
Now we have:

– X is not a UD code (resp. UD m-code),
– if L(C) = R(C) as multisets then X is not an MSD code (resp. MSD m-

code),
– if L(C) = R(C) as sets then X is not an SD code (resp. SD m-code),
– if |L(C)| = |R(C)| then X is not an ND code (resp. ND m-code).

A configuration C ′ such that C′ ≺∗ C and L•(C) = R•(C) for some C, is called
a proper configuration.

Our goal is either to show that there exists no proper configuration, or to find
such configuration(s). In the former case, X is a code (resp. m-code) of each
kind. In the latter case, if we find one of such configurations, X is already not a
UD code (resp. UD m-code). To verify whether X is an MSD, SD or ND code
(resp. m-code), we have to check the above conditions for all possible proper
configurations.

Notice that we do not need all of the information contained in configurations;
only the labellings that can be changed by future catenations need to be stored.
Hence instead of a configuration C we can consider a reduced configuration de-
fined as a pair (πRC(L•(C), R•(C)), πRC (R•(C), L•(C))) where

πRC(z, z
′) = (end(z), label(z) |D(z))

and D(z) is an appropriately chosen domain.
Now, geometric considerations allow us to define “bounding areas” for figures

and hence bound the span of configurations to be checked. Hence the number of
reduced configurations, up to translation, is finite and there is a finite number of
proper configuration to check. Consequently, we can verify whether X is a UD,
MSD, SD or ND code (resp. m-code). �	

Combined with Theorem 1, this proves the decidability for all UD, MSD and
ND m-codes. The case of two-sided SD m-codes remains unsolved, however.

Two-sided codes with parallel translation vectors constitute an interesting
special case.

Theorem 5 (see [13], Section 4). Let X = {x1, x2, . . . , xn} be a two-sided
code over Σ with parallel translation vectors, i.e. there exists a vector τ ∈ Z

2

Multiset, Set and Numerically Decipherable Codes over Directed Figures 231

such that tran(xi) = αiτ for some αi ∈ Z (i = 1, 2, . . . , n), with αi’s not all
positive and not all negative. It is decidable whether X is a UD code.

This can again be generalized to two-sided MSD, SD and ND codes with parallel
translation vectors:

Theorem 6. Let X be a two-sided code over Σ with parallel translation vectors.
It is decidable whether X is a UD, MSD, SD or ND code.

Proof (outline). Let X ⊆ Σ� be finite and non-empty and let begin(x) = (0, 0)
for each x ∈ X . Since translation vectors of elements of X are parallel, there
exists a shortest vector τ ∈ Z2 such that

∀x ∈ X : tran(x) ∈ Zτ = {jτ | j ∈ Z} .

If all translation vectors of elements ofX are (0, 0), then the decidability problem
is trivial.

We define the following bounding areas :

BL = {u ∈ Z
2 | 0 > u · τ},

B0 = {u ∈ Z
2 | 0 ≤ u · τ < τ · τ},

BR = {u ∈ Z
2 | τ · τ ≤ u · τ} .

• •�
(0, 0)

τ

B0BL BR

Fig. 1. Bounding areas BL, B0 and BR

For a non-empty figure x ∈ Σ�, bounding hulls of x are sets:

hull(x) =
⋃

n=m...M

trnτ (B0),

hull∗(x) =
⋃

n=−M...−m

trnτ (B0),

where

m = min{n ∈ Z | trnτ (B0) ∩ (dom(x) ∪ {begin(x), end(x)}) �= ∅},
M = max{n ∈ Z | trnτ (B0) ∩ (dom(x) ∪ {begin(x), end(x)}) �= ∅} .

In addition, for the empty figure, hull(ε) = ∅ and hull∗(ε) = ∅.

232 M. Kolarz and W. Moczurad

Our goal is either to find a figure x ∈ X� that has two different factorizations
over elements of X , or to show that such a figure does not exist. If it exists,
without loss of generality we can assume it has the following two different x-
and y-factorizations :

x = ẋ1ẍ1 · · · ẍk−1ẋkẍk = ẏ1ÿ1 · · · ÿl−1ẏlÿl

where ẋ1 �= ẏ1, begin(ẋ1) = begin(ẏ1) = (0, 0) and for i ∈ {1, . . . , k} and
j ∈ {1, . . . , l} we have:

ẋi ∈ X and hull(ẋi) ∩ B0 �= ∅,
ẍi ∈ X� ∪ {ε} and hull(ẍi) ∩ B0 = ∅,
ẏj ∈ X and hull(ẏj) ∩ B0 �= ∅,
ÿj ∈ X� ∪ {ε} and hull(ÿj) ∩ B0 = ∅ .

Now we consider all possible pairs of sequences ((ẋi)i, (ẏj)j) as starting configu-
rations. Observe that there can be only a finite number of such configurations,
since ⋃

i=1...k

dom(ẋi) ⊆
⋃
x∈X

(hull(x) ∪ hull∗(x)),

⋃
i=1...l

dom(ẏi) ⊆
⋃
x∈X

(hull(x) ∪ hull∗(x))

and the set on the right hand side is bounded in the direction of τ . Also note
that if there is no starting configuration for X , then obviously X is a UD code
and consequently an MSD, SD and ND code.

We consider independently all starting configurations constructed for X and
we proceed with L- and R-configurations, which encode possible factorizations,
restricted to BL and BR, respectively.

Consider the R-configuration (L-configuration is handled in a similar way). We
say that an R-configuration is terminating if it satisfies the following conditions:

– the domain and labelling of the x-part of the R-configuration match the
domain and labelling of its y-part,

– if a location of the end point of the whole figure is encoded in the R-
configuration, then its location is the same in both x- and y-parts,

– all points that should be linked together are trivially linked, since they are
the same points.

Now observe that all parts of an R-configuration are bounded: domains are
contained in the area restricted by the widest hull of elements of X ; multisets
describing start/end points to be matched cannot be infinite, since eventually all
points must be linked. There are only finitely many such configurations. Either
we find a terminating R-configuration, or we consider all configurations that can
be obtained from a given starting configuration.

Note that if for some starting configuration we obtain a pair of terminating L-
and R-configurations, then X is not a UD code (it can still be an MSD, SD or ND

Multiset, Set and Numerically Decipherable Codes over Directed Figures 233

code, though). On the other hand, if we show that for all starting configurations
such pair of terminating L- and R-configurations cannot be reached, then X is
a UD code (and hence an MSD, SD and ND code).

Similarly as in Theorem 4, to verify whether X is an MSD, SD or ND code,
we have to check the following conditions for all possible pairs C of terminating
L- and R-configurations:

– if πx(C) = πy(C) as multisets then X is not an MSD code,

– if πx(C) = πy(C) as sets then X is not an SD code,

– if |πx(C)| = |πy(C)| then X is not an ND code,

where πx(C) and πy(C) denote respective multisets of elements used in the con-
struction of C. Note that computation of πx(C) and πy(C) requires the history
of C to be kept; this does not spoil the finiteness of the part of C that has to be
kept. �	

4.2 Negative Decidability Results

Theorem 7 (see [12], Section 2). Let X be a two-sided code over Σ. It is
undecidable whether X is a UD code.

This result can again be extended to other decipherability kinds:

Theorem 8. Let X be a two-sided code over Σ. It is undecidable whether X is
a UD, MSD, SD or ND code.

Proof (outline). We prove Theorem 8 for UD codes. It is clear that exactly the
same reasoning can be applied to MSD and SD codes. For ND codes we use some
additional techniques, described at the end of this proof.

Let Σ = {a}. For h, hN , hE , hS , hW ∈ Z+ such that hN , hE , hS , hW ≤ h and
b, e ∈ {N,E, S,W} we define a directed hooked square DHSh(hN , hE , hS , hW)be
to be a directed figure f ∈ Σ� with “hooks” of appropriate length. See Figure 2
for a sample directed figure.

Now we encode the Post Correspondence Problem (PCP) in a set of directed
figures over Σ = {a}. PCP can be stated as follows: Let A = {a1, . . . , ap} be a
finite alphabet, x1, . . . , xk, y1, . . . , yk ∈ A+ such that xi �= yi for i ∈ {1, . . . , k}.
Find a sequence i1, . . . , in ∈ {1, . . . , k}, n ≥ 2, such that xi1 · · ·xin = yi1 · · · yin .

We describe a set of directed figures X such that a given PCP instance has a
solution if and only if X is a UD code. The set X is built with directed hooked
squares.

Note that the above reasoning does not work for ND codes, since both fac-
torizations have exactly the same number of figures. However, it can be adapted
for ND codes: we replace basic directed hooked squares for both “x-part” and
“y-part” with 25 squares. In the “x-part” the 25 squares will be connected (into
one figure), while in the “y-part” they will be disconnected. �	

234 M. Kolarz and W. Moczurad

a
a
a
a
a

a
a
a
a
a
a
a
a

a
a
a
a
a

a
a
a
a
a
a
a
a

a
a
a
a
a

a
a
a
a
a
a
a
a

a
a
a
a
a

a

a
a
a
a
a
a
a

a
a
a
a
a

a
a

a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a

a
a

a
a
a

a

a
a
a
a
a
a
a

a

a

a
a
a
a

a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a

a

a
a
a
a
a
a

a
a
a
a
a
a
a

a
a
a
a
a
a

a
a
a
a
a
a
a

a
a
a
a
a
a�

*
1

2

3

4 ��

Fig. 2. DHS4(1, 2, 3, 4)
N
E ; full and reduced graphical representation

4.3 Summary of Decidability Results

The following table summarizes the status of decipherability decidability. Decid-
able cases are marked with a +, undecidable ones with a −. Combinations that
are still open are denoted with a question mark.

UD MSD ND SD
1 One-sided codes + + + +
2 One-sided m-codes + + + +
3 Two-sided codes − − − −
4 Two-sided m-codes + + + ?
5 Two-sided codes with parallel vectors + + + +
6 Two-sided m-codes with parallel vectors + + + ?

5 Final Remarks

Note that the positive decidability cases depicted in lines 4 and 6 are trivial. By
Theorem 1, two-sided UD, MSD or ND m-codes do not exist. For other decidable
combinations, respective proofs lead to effective verification algorithms.

On the other hand, the case of two-sided SD m-codes is non-trivial; both SD
and not-SD codes of this kind exist. However, none of the proof techniques we
have used so far can be adapted to this case.

References

1. Aigrain, P., Beauquier, D.: Polyomino tilings, cellular automata and codicity. The-
oretical Computer Science 147(1-2), 165–180 (1995)

Multiset, Set and Numerically Decipherable Codes over Directed Figures 235

2. Beauquier, D., Nivat, M.: A codicity undecidable problem in the plane. Theoretical
Computer Science 303(2-3), 417–430 (2003)

3. Blanchet-Sadri, F.: On unique, multiset, set decipherability of three-word codes.
IEEE Transactions on Information Theory 47(5), 1745–1757 (2001)

4. Blanchet-Sadri, F., Morgan, C.: Multiset and set decipherable codes. Computers
and Mathematics with Applications 41(10-11), 1257–1262 (2001)

5. Burderi, F., Restivo, A.: Coding partitions. Discrete Mathematics and Theoretical
Computer Science 9(2), 227–240 (2007)

6. Burderi, F., Restivo, A.: Varieties of codes and kraft inequality. Theory of Com-
puting Systems 40(4), 507–520 (2007)

7. Costagliola, G., Ferrucci, F., Gravino, C.: Adding symbolic information to pic-
ture models: definitions and properties. Theoretical Computer Science 337, 51–104
(2005)

8. Giammarresi, D., Restivo, A.: Two-dimensional finite state recognizability. Funda-
menta Informaticae 25(3), 399–422 (1996)

9. Guzmán, F.: Decipherability of codes. Journal of Pure and Applied Algebra 141(1),
13–35 (1999)

10. Head, T., Weber, A.: The Finest Homophonic Partition and Related Code Con-
cepts. In: Privara, I., Ružička, P., Rovan, B. (eds.) MFCS 1994. LNCS, vol. 841,
pp. 618–628. Springer, Heidelberg (1994)

11. Head, T., Weber, A.: Deciding multiset decipherability. IEEE Transactions on In-
formation Theory 41(1), 291–297 (1995)

12. Kolarz, M.: The code problem for directed figures. Theoretical Informatics and
Applications RAIRO 44(4), 489–506 (2010)

13. Kolarz, M.: Directed Figure Codes: Decidability Frontier. In: Thai, M.T., Sahni, S.
(eds.) COCOON 2010. LNCS, vol. 6196, pp. 530–539. Springer, Heidelberg (2010)

14. Kolarz, M., Moczurad, W.: Directed figure codes are decidable. Discrete Mathe-
matics and Theoretical Computer Science 11(2), 1–14 (2009)

15. Lempel, A.: On multiset decipherable codes. IEEE Transactions on Information
Theory 32(5), 714–716 (1986)

16. Mantaci, S., Restivo, A.: Codes and equations on trees. Theoretical Computer
Science 255, 483–509 (2001)

17. Moczurad, W.: Brick codes: families, properties, relations. International Journal of
Computer Mathematics 74, 133–150 (2000)

18. Moczurad, W.: Directed Figure Codes with Weak Equality. In: Fyfe, C., Tino, P.,
Charles, D., Garcia-Osorio, C., Yin, H. (eds.) IDEAL 2010. LNCS, vol. 6283, pp.
242–250. Springer, Heidelberg (2010)

19. Restivo, A.: A note on multiset decipherable code. IEEE Transactions on Informa-
tion Theory 35(3), 662–663 (1989)

20. Salomaa, A., Salomaa, K., Yu, S.: Variants of codes and indecomposable languages.
Information and Computation 207(11), 1340–1349 (2009)

A Sequential Recursive Implementation

of Dead-Zone Single Keyword Pattern Matching

Bruce W. Watson1, Derrick G. Kourie2, and Tinus Strauss2

1 FASTAR, Dept. of Informatics, Stellenbosch University, South Africa
bruce@fastar.org

2 FASTAR, Dept. of Computer Science, University of Pretoria, South Africa
{derrick,tinus}@fastar.org

Abstract. Earlier publications provided an abstract specification of a
family of single keyword pattern matching algorithms [18] which search
unexamined portions of the text in a divide-and-conquer fashion, gen-
erating dead-zones in the text as they progress. These dead zones are
area of text that require no further examination. Here the results are
described of implementing in C++ a sequential recursive version of the
algorithm family, where all instances of a single keyword p in a text S
are sought—the online keyword matching problem where S may not be
precomputed.

We show that each step may involve a window shift of up to 2 ×
|p| − 1 characters—almost twice as much (and therefore potentially al-
most twice as fast) as the maximum of |p| characters possible with
the Boyer-Moore family of algorithms. Our counterintuitive improve-
ment over Boyer-Moore algorithms is achieved by simultaneously shifting
left and right. Ongoing benchmarking shows [12] that such bidirectional
shifts are highly efficient—and we make specific comparisons here to Hor-
spool’s algorithm [9], regarded as one of the most efficient algorithms of
the Boyer-Moore family.

1 Introduction and Background

At the Second Prague Stringology Club Workshop (1997), a paper was presented
describing a new family of string pattern matching algorithms [17]. The proceed-
ings of the first years of the Prague Workshop were not widely distributed, and
a related paper describing this family of algorithms was published in 2003 in the
South African Computer Journal [18].

The family of algorithms was articulated as a single abstract algorithm, itself
derived from a näıvely formulated primitive statement of requirements. These
requirements are given as first order predicate calculus formulae, which enunciate
the algorithm’s pre- and post-conditions. The primitive algorithmic form is then
refined in a correctness-by-construction fashion [11] to produce the resulting
abstract algorithm. Each refinement step involves the strengthening of the post-
condition and/or the weakening of the precondition. This approach is consonant
with, for example, Meyer’s notion of refinement in the object-oriented context

S. Arumugam and B. Smyth (Eds.): IWOCA 2012, LNCS 7643, pp. 236–248, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Sequential Recursive Implementation 237

[13], where a subclass inherits an abstract routine from a superclass and refines
it by strengthening the post-condition and/or weakening the precondition.

Section 2 is dedicated to a high-level description of the abstract algorithm.
The abstraction itself can be concretized in many ways1 and that is why it may
be regarded as representing a family of algorithms. For reasons that will become
apparent in Section 2, we shall henceforth characterise this family as dead-zone
(DZ) pattern matching algorithms, and the abstract algorithm to be described
may be thought of as standing at the root of a taxonomy of DZ algorithms.

Our contribution here is an optimised implementation of the family of al-
gorithms (along with some specific family members), as well as performance
characterisation (in terms of match attempts), and a revised algorithm skele-
ton compared to previous publications [18]. The implementation is described in
Section 3. It will be seen that our implementation investigates the consequences
of several possible search orders through the pattern. It also investigates sev-
eral ways of computing shift values at the end of a matching cycle (after a
match attempt). Because C++ is well-suited to handling such variations via
its templates and object-oriented features, it was the language of choice for the
current sequence of experiments. Moreover, because the base abstraction of DZ
algorithms was articulated in terms of recursive calls, the current C++ imple-
mentation retained this recursive approach.

Our implementation choices reflect the fact that, in this paper, our interest
is not in raw speed so much as in the number of match probes. (Execution
performance is revisited in [12].) We will show in Section 4 that the dead-zone
algorithm can adjudicate that there is no match of pattern p in string S in less

than
⌈
|S|
|p|
⌉
match probes. This is less than the Horspool algorithm [9], broadly

considered to be one of the most efficient algorithms.
Section 5 closes with a reflection on the consequences of our results, and

outlines our intended future research agenda on dead-zone pattern matching.
Throughout this paper, we contrast the DZ algorithms with Horspool’s Boyer-

Moore-style algorithm. We are aware of the multitude of more recent algorithms,
many of which are variants on Horspool’s or use alternative match orders, newer
hardware instructions, etc. Horspool’s algorithm remains competitive against
those newer algorithms, and most of the later techniques can also be applied to
the DZ family of algorithms. There are several outstanding overviews of keyword
pattern matching algorithms, for example [6,7,14,8,3,4].

2 The Abstract Algorithm

The recursive version of the abstract DZ algorithm derived in [18] has been
reproduced in Algorithm 1 in a slightly modified form. The intention in this
section is to give a high-level intuitive account of this algorithm. See [18] for a
detailed account of its correctness

1 Just as the Boyer-Moore algorithm skeleton can be concretized with a variety of
shift functions, etc.

238 B.W. Watson, D.G. Kourie, and T. Strauss

The recursive procedure is called dzmat. It searches in text S for all occur-
rences of pattern p. However, it does not search all of S. Instead, its search is
limited to a range of integer indices2 into S designated as [live low, live high).
The nomenclature live was chosen to indicate that searching in this interval is
still a live concern because the algorithm has yet to explore whether some indices
in the live zone correspond to matches in S. Note that the algorithm assumes
that live is maximal; any extension of its boundaries, either to the left or to the
right, would be into dead territory.

In earlier versions of the abstract algorithm, a variable dead was used to
represent a set of “dead” indices—“dead” in the sense that it has already been
established whether or not S indexed by an integer in dead will lead to a match.
Note that some indices in dead may be match positions in S that have already
been reported. In [18], variable dead was used to rigorously express the invariants;
as we omit those proofs here, we omit dead from the current version of dzmat.
Nevertheless, we continue to characterise the family of algorithms that are based
on growing a dead-zone of indices as DZ algorithms.

Algorithm 1 (Abstract DZ Matcher)
proc dzmat(live low, live high)→

if (live low ≥ live high)→ skip
[] (live low < live high)→

j : =
(live low+ live high)/2�;
i : = 0;
{ invariant: (∀ k : k ∈ [0, i) : pmo(k) = Sj+mo(k)) }
do ((i < |p|) cand (pmo(i) = Sj+mo(i)))→

i : = i+ 1
od;
{ postcondition: (∀ k : k ∈ [0, i) : pmo(k) = Sj+mo(k))

∧ if i < |p| then pmo(i) �= Sj+mo(i) }
if i = |p| → print(‘Match at ’, j)
[] i < |p| → skip
fi;
new dead left : = j − shift left(i, j) + 1;
new dead right : = j + shift right(i, j);
dzmat(live low, new dead left);
dzmat(new dead right + 1, live high)

f i
corp

The first invocation of dzmat is parameterised by the initial boundaries of the
live zone as follows: dzmat(0, |S| − |p| + 1); i.e. the live zone encompasses all
except the last |p| − 1 indices of S. The last |p| − 1 indices are already in the

2 Note that we follow the convention that indexing in S and p starts at 0 and ends at
position S.length−1, p.length−1 respectively. Also by convention, integer intervals
are generally indicated as closed from below and open from above. Thus, the indices
into S are in the interval [0, |S|).

A Sequential Recursive Implementation 239

dead-zone as there is no possibility of a match of length |p| occurring there.
All those indices are therefore implicitly relegated to the dead-zone. Note that
dzmat assumes that S and p are globally available to all its invocations, including
recursive invocations.

Turning now to the algorithmic steps within the algorithm, it is immediately
clear that (live low ≥ live high) (i.e. live = ∅) serves as the recursion base case
for terminating the recursion. If, alternatively, (live low < live high) (i.e.live �= ∅)
then j is computed as an index into S from which the next match attempt will
take place. Note that although j is computed as the midpoint of live, this is
not entirely necessary; as will be seen in Subsection 3.3, other starting positions
within the live range are legitimate.

Using i to reference into p and i and j to reference into S, a loop matches
symbols of p against those of S. The order in which this matching takes place
is not necessarily left-to-right, i.e. p0 against Sj , p1 against Sj+1, etc. Instead,
the match order is determined by a bijective function mo : [0, |p|)→ [0, |p|). The
abstract DZ algorithm allows for any permuted order to be predetermined by the
implementor of the algorithm—i.e. the implementor may define mo according to
personal or application domain determined preferences, and the choice will have
consequences in subsequent parts of the algorithm. Subsection 3.1 specifies the
match orders available in our C++ implementation.

The loop terminates upon the first mismatch, or if a complete match is found.
In the latter case, j, the starting position in S of the match, is printed out.

The next step in the abstract DZ algorithm is the computation of the new por-
tion of dead territory that can be inferred as a result of the matchings that have
taken place. Two functions, shift right and shift left, are used for this purpose. A
high-level explanation of the role of these functions will be given below, and more
concrete detail is provided in Section 3. For the moment, note that the returned
value of shift right is added to j, and is considered to be the upper bound of an
interval that can be added into the (implicit) dead-zone region. Similarly, the
returned value of shift left is subtracted from j + 1 and is regarded as the lower
bound of this interval—i.e. the closed interval [new dead left, new dead right] is
seen as augmenting the dead-zone of S as determined to date. However, no ex-
plicit bookkeeping of this dead-zone region is needed. Instead, two recursive calls
are made to dzmat. The first probes the remaining live zone in the (contiguous)
interval [live low, new dead left), and the second the rest of the live zone in the
contiguous interval [new dead right + 1, live high).

To gain some insight into the role of the two shift functions, consider the visual
representation of the search just after calling these functions as given in Figure
1. The figure shows how matching has progressed until a mismatch after i itera-
tions has been found. To make things interesting, it is assumed that the match
ordering as determined by mo has resulted in the probing of the two shaded
areas in the live zone of S. Based on this information, the right shift function
has determined that there are no match opportunities in [j + 1, new dead right)
to be forfeited. Subsequent matching may therefore resume at the right-shifted
position new dead right+1 and rightward of this. Likewise, the left shift function

240 B.W. Watson, D.G. Kourie, and T. Strauss

has determined that there are no match opportunities in [new dead left, j) to be
forfeited. Thus another matching activity may also resume at the left-shifted po-
sition new dead left−1 and leftward of this position. Since index j has just been
checked, the entire interval [new dead left, new dead right+1) can be considered
to be part of the dead-zone.

p

dead

�new dead left(= j − shift left(i, j) + 1) �new dead right(= j + shift right(i, j))

�
live low

�
j − (|p| − 1) �

j
�

mo(i)
�

j + (|p| − 1)

�
live high

Fig. 1. dzmat state after calling shift right and shift left

Note that, as with dzmat, the shift functions are assumed to have global ac-
cess to S and p. The abstract DZ algorithm leaves it up to the implementor to
determine how these shift functions determine their respective shift distances.
Clearly, in any given implementation, each shift function will depend on the or-
der determined by mo for that implementation. These will typically be variants
and combinations of Knuth-Morris-Pratt (KMP), Boyer-Moore (BM), and Hor-
spool shift functions [10,2,9]. Furthermore, virtually all of the shift functions in
the BM-type of algorithms would be adaptable for use in DZ3. Subsection 3.2
outlines the various shift functions developed in our current implementation. The
key thing to note here, however, is that every mismatch leads to the possibility
of claiming dead-zone territory both to the left and the right of j. This possibility
of doubly claiming dead-zone “real estate” is unique amongst the various classes
of pattern matching algorithms.

The next section discusses how the foregoing abstract algorithm was imple-
mented in C++.

3 A C++ Implementation

The DZ algorithm family has been implemented in an extremely compact C++
toolkit comprising less than five hundred lines of code, most of which are com-
ments. The toolkit (available from the authors by email) is oriented towards
readability and performance while making use of the safety-aspects of C++,
such as the string class, etc. (Using the C++ string class stands in contrast
to C, in which strings are arrays of characters.) The high abstraction level of
C++ compared to C is often viewed as a source of inefficiency, though this is

3 See any of [6,7,14,3] for overviews and also [4] and [15, §4.4.1] for a systematic way
of deriving such functions

A Sequential Recursive Implementation 241

almost a misplaced concern given the high quality of C++ optimising compilers.
Throughout the code, we have made use of C++ idioms such as inline func-
tions, function objects, and template parameterisation. The code is generally
structured as a simplified version of the toolkit in [5,16].

Given that DZ is a family of algorithms, there are several axes of parameter-
isation, all of which are discussed in the following sections: match orders, shift
functions, and the choice of match attempt point (variable j in the abstract
algorithm).

3.1 Match Orders: Permutations Over [0, |p|)
Match orders are typically extremely simple functions. The toolkit includes:

Forward Left-to-right, best known from the KMP algorithm [10].
Reverse Right-to-left, typically from classical BM algorithms [2].
Outside-in p0 then p|p|−1 then p1 then p|p|−2, etc. An additional variant is

provided which starts with the last character of p.
Inside-out The middle character of p and working outwards both left and right.
Lockstep p0 then p|p|/2 then p1 then p|p|/2+1, etc.

The C++ for the Reverse match order, implemented as a function object for
performance, is shown in Listing 1.1.

Listing 1.1. Reverse match order function object

1 struct MO rev {
2 in l ine int operator () (int i , const std : : s t r i n g &p) const {
3 a s s e r t (i >= 0 && i < p . l ength ()) ;
4 return p . l ength () − 1 − i ;
5 }
6 } ;

3.2 Shift Functions

Shift functions have also been implemented as classes, given that they typically
contain some shift tables or other precomputed information used to make shifts.
The following shift functions are provided:

Näıve Always make a shift of one character left and one right. This gives a
brute-force algorithm.

KMP/BM This shifter which is parameterised by the match order (class) in
use. It contains two shift functions, precomputed (in the constructor of the
class) to the minimum shift distances that realign the keyword, given the
(partial) match information. When using the forward (resp. reverse) match
order, the left- and right-shifters degenerate to the classical reverse-BM (resp.
KMP) and KMP (resp. BM).

First & last A shifter resembling Horspool’s, which uses the symbol in S aligned
with p|p|−1 to determine the right-shift distance. Furthermore, it uses the
S-symbol aligned with p0 to determine the left-shift distance. Just as in
Horspool’s original algorithm, this shifter gives particularly good results.

242 B.W. Watson, D.G. Kourie, and T. Strauss

An example of the left-shift member function is (for the KMP/BM shifter) is
shown in Listing 1.2.

Listing 1.2. Left-shift member function

1 int s h i f t l e f t (int i , const std : : s t r i n g &in , int j) const {
2 a s s e r t (i >= 0 && i <= plen && j >= 0 && j < in . l ength ()) ;
3 return sh l [i] ;
4 }

3.3 Match Attempt Point

Throughout this paper, we have discussed match attempt points which are mid-
way between the low- and high-bounds. Just as other choices of pivot in Quick-
sort can lead to interesting algorithm variants, the toolkit also supports other
match attempt points:

Mid-point As used in dzmat.

First-third Choose j at the 1
3 point between live low and live high.

Left-most Choose live low. This degenerates the algorithm to the traditional
left-to-right algorithms. When combined with the classical match orders (for-
ward and reverse), this arrives at KMP and classical BM algorithms.

Right-most Choose live high. This degenerates to the classical right-to-left al-
gorithm, in analogue to the left-most chooser.

3.4 The Pattern Matcher Class

Procedure dzmat is embedded as a member function within a pattern matcher
class. The class is template parameterised by the match order, the shift function
and the match attempt point chooser. Template parameterisation fixes these
parameters at compile-time, thereby making all inlineable functions and code
available to the C++ optimiser—a significant performance gain even thought the
code is split out in the smaller classes described above. The pattern matcher class
constructor builds a local shifter object for use in the dzmat member function.
The only significant deviation from the abstract algorithm in Section 2 is that the
C++ recursive member function also returns a [lo, hi) pair designating the dead-
zone as discovered in that recursive invocation. This is then used to maximally
merge dead-zones over adjacent calls—something which was not done in the
original algorithm in [18]. The resulting performance gains are the subject of
ongoing work.

3.5 Performance Tuning Potential

The body of the matcher procedure is no more complex than implementations
of BM-type algorithms (such as Horspool’s), and consists of:

A Sequential Recursive Implementation 243

– Integer comparison for detecting empty ranges to terminate recursion. This
is usually a two-cycle pipelined operation, and resembles the |S|-overrun
check in BM-type algorithms, though those algorithms can make use of a
‘sentinel’ on the right of S to avoid this; we continue tuning DZ for a similar
trick.

– Typically division by two4 for computing the match attempt point. Division
by two is also a single-cycle operation on modern processors, usually as
arithmetic right-shift.

– Character comparisons for the match attempt. This can be tuned as in any
similar algorithm.

– A table lookup for shift distances. These tables typically fit within cache and
are of similar structure to BM-type algorithms.

– Integer arithmetic for computing the shift distances—an operation also ap-
pearing in BM-type algorithms. In our case, we require two such operations
(for right- and left-shift), though these will occur in parallel on most modern
processors with multiple arithmetic units.

– Two recursive invocations.5. This brings forth two tuning concerns:

1. A reasonable question is whether there is a risk of stack-overflow in such
recursive algorithms (or their ‘tail-recursion optimised’ versions)? When
making match attempts at the mid-point (between low and high), the
depth of the recursion is bounded by log2 |S| because each invocation cuts
the live range at least in half. This remains small even for extremely large
strings6, and the risk of stack-overflow is negligible.

2. Recursion is often wrongly perceived as being inefficient. Modern C++
optimising compilers can eliminate tail recursion, and thereby the over-
head of the procedure call, instead using a loop and customised stack for
the arguments which are ‘passed.’ In dzmat, the arguments consist only
of the low- and high-bounds, though the stack depth is doubled because
there are two dzmat tail-calls. In cases where a C++ compiler is unable
to make this optimisation automatically, manual tail-recursion elimina-
tion is a trivial code-transformation. The maximum number of stack
entries, log2 |S|, is easy to compute at run-time by counting arithmetic
right shifts of |S|. The stack (entries being two integers, for low and high)
can be pre-allocated before matching begins. Alternatively a statically
allocated array of 2048 low/high pairs will allow for all conceivable input
strings7. Each ‘recursion step’ (now iteration) then involves only updat-
ing a top-of-stack pointer. The performance of such an implementation
is reported in [12].

4 Typically because the match attempt chooser may choose for first-third, or left-most,
etc., though at compile-time thanks to the use of templates.

5 These invocations are a form of tail recursion, meaning they occur a the end of
dzmat. They are therefore subject to special optimisations.

6 For example, log2(one megabyte) is only 20, and log2(one petabyte) = 50.
7 where ‘conceivable’ means up to length 21024, which seems reasonable, given the
current estimates of particles in the observable universe are ∼ 2266.

244 B.W. Watson, D.G. Kourie, and T. Strauss

4 Results

As discussed in Section 3, the C++ implementation can be viewed as a proof-
of-concept, oriented towards exploring general algorithm behaviour, such as the
number of match attempts, shift distances, etc. Most of the sublinear algorithms
appearing in the literature have a worst-case performance quadratic in the size of
the input—O(|S|2). This typically occurs in pathological cases such as searching

for pattern am in input an. Their best case performance isO(|S|
|p|), often occurring

when S and p have disjoint alphabets. In such cases, Horspool’s algorithm (and
related variants) make shifts of |p|, giving a total number of match attempts of⌈

|S| − |p|+ 1

|p|

⌉
Indeed, every such left-to-right algorithm, however clever the shift function, is
limited to shifts of |p|+c where the constant c is the size of some lookahead—for
example two or three symbols as used in the Berry-Ravindran algorithm [1].

DZ displays the same worst-case performance, on the same types of patholog-
ical cases. The best-case performance is, however, significantly better: at each
step, DZ can eliminate up to 2|p| − 1 symbols of S, yielding a match-attempt
count of⌈

|S| − |p|+ 1

2|p| − 1

⌉
This is, of course, also O(|S|

|p|), though the practical consequences can be signifi-

cant, performing half the number of match attempts. Horspool’s algorithm can
shift up to |p| for a single character/shift-table lookup; Section 3.5 shows that DZ
requires two character (and one shift-table) lookups to shift up to 2|p| − 1. This
seemingly similar performance differs significantly: DZ’s character lookups and
shift arithmetic is easily parallelisable (even without programmer intervention,
whereby modern processors use multiple logic units).

Two simple examples illustrate this, both of which are, admittedly, explicitly
chosen to highlight when such a factor of two improvement (of DZ over classical
algorithms such as BM) in match attempts occurs.

4.1 Matching abracadabra in The quick brown fox...

A trace of Horspool’s algorithm shows it making four match attempts8

Attempting a match at 0

The quick brown fox jumped over th//e///////lazy//////dog

abracadabra

Match got as far as i = 0. Will now shift right by 2

8 This output is taken directly from the our implementation, with the addition of the
strike-through text. Note that the last |p| − 1 symbols of S are already dead.

A Sequential Recursive Implementation 245

Attempting a match at 2

///The quick brown fox jumped over th//e///////lazy//////dog

abracadabra

Match got as far as i = 0. Will now shift right by 11

Attempting a match at 13

////The/////////quick/////brown fox jumped over th//e///////lazy//////dog

abracadabra

Match got as far as i = 0. Will now shift right by 11

Attempting a match at 24

////The/////////quick////////brown//////fox///////jumped over th//e///////lazy//////dog

abracadabra

Match got as far as i = 0. Will now shift right by 11

DZ traces as follows, making only three match attempts (note in some cases
negative range bounds due to empty ranges and over-shifting off the left end of
S):

Invoked with a live-zone of [0,34). Attempting a match at 17

The quick brown fox jumped over th//e///////lazy//////dog

abracadabra

Match got as far as i = 0. Will now shift left/right by 11/11

New dead-zone is [7,28).

Left will be [0,7) and right will be [28,34)

Invoked with a live-zone of [0,7). Attempting a match at 3

The qui///ck////////brown//////fox//////////jumped///over th//e///////lazy//////dog

abracadabra

Match got as far as i = 0. Will now shift left/right by 11/11

New dead-zone is [-7,14).

Left will be [0,-7) and right will be [14,7)

Invoked with a live-zone of [28,34). Attempting a match at 31

////The/////////quick////////brown//////fox//////////jumped///over th//e///////lazy//////dog

abracadabra

Match got as far as i = 0. Will now shift left/right by 11/4

New dead-zone is [21,35).

Left will be [28,21) and right will be [35,34)

4.2 Matching 01234 in a31

This keyword/input combination gives the longest possible shift distances. Hor-
spool’s algorithm traces as follows, making six match attempts:

Attempting a match at 0

aaaaaaaaaaaaaaaaaaaaaaaaaaa//////aaaa

01234

246 B.W. Watson, D.G. Kourie, and T. Strauss

Match got as far as i = 0. Will now shift right by 5

Attempting a match at 5

///////aaaaaaaaaaaaaaaaaaaaaaaaaaa//////aaaa

01234

Match got as far as i = 0. Will now shift right by 5

Attempting a match at 10

//////////////aaaaaaaaaaaaaaaaaaaaaaaaaaa//////aaaa

01234

Match got as far as i = 0. Will now shift right by 5

Attempting a match at 15

/////////////////////aaaaaaaaaaaaaaaaaaaaaaaaaaa//////aaaa

01234

Match got as far as i = 0. Will now shift right by 5

Attempting a match at 20

////////////////////////////aaaaaaaaaaaaaaaaaaaaaaaaaaa//////aaaa

01234

Match got as far as i = 0. Will now shift right by 5

Attempting a match at 25

///////////////////////////////////aaaaaaaaaaaaaaaaaaaaaaaaaaa//////aaaa

01234

Match got as far as i = 0. Will now shift right by 5

The DZ trace shows it makes half as many match attempts

Invoked with a live-zone of [0,27). Attempting a match at 13

aaaaaaaaaaaaaaaaaaaaaaaaaaa//////aaaa

01234

Match got as far as i = 0. Will now shift left/right by 5/5

New dead-zone is [9,18).

Left will be [0,9) and right will be [18,27)

Invoked with a live-zone of [0,9). Attempting a match at 4

aaaaaaaaa////////////aaaaaaaaaaaaaaaaaa//////aaaa

01234

Match got as far as i = 0. Will now shift left/right by 5/5

New dead-zone is [0,9).

Left will be [0,0) and right will be [9,9)

Invoked with a live-zone of [18,27). Attempting a match at 22

/////////////////////////aaaaaaaaaaaaaaaaaaaaaaaaaaa//////aaaa

01234

Match got as far as i = 0. Will now shift left/right by 5/5

New dead-zone is [18,27).

Left will be [18,18) and right will be [27,27)

A Sequential Recursive Implementation 247

5 Conclusion

The foregoing clearly demonstrated that the class of DZ algorithms has the
potential to significantly reduce the number of match attempts—to as little
as half that required in Horspool-like algorithms. This is because it offers the
possibility of claiming dead-zone territory by shifting to both the left and the
right of a match attempt. In Figure 1, the maximum territory to be claimed
is between j + (|p| − 1) and j − (|p| − 1), yielding a total of 2|p| − 1 spaces in
comparison to |p| in other algorithms.

First results of an efficient implementation are reported in [12]. The perfor-
mance costs are buried in matters such as recursion overhead, checking for empty
ranges and midpoint determination, some of which can be optimised as shown
in Section 4. The DZ algorithm clearly allows of parallel computation of the
recursive parts. Experiments in this regard, among other extensions, form part
of our ongoing research.

Acknowledgements. We would like to thank the anonymous referees for their
constructive comments. We also received useful technical feedback from several
other people, including Gonzalo Navarro, Bill Smyth and Rajeev Raman (during
IWOCA), and Maxime Crochemore and Thierry Lecroq. Moreover, some of the
approaches in the dead-zone algorithm derivation were inspired by discussions
with Edsger Dijkstra and Tony Hoare.

References

1. Berry, T., Ravindran, S.: A fast string matching algorithm and experimental re-
sults. In: Holub, J., Simánek, M. (eds.) Proceedings of the Prague Stringology Club
Workshop 1999, pp. 16–26. No. Collaborative Report DC-99-05, Czech Technical
University, Prague, Czech Republic (1999)

2. Boyer, R.S., Moore, J.S.: A fast string searching algorithm. Communications of the
ACM 20(10), 62–72 (1977)

3. Charras, C., Lecroq, T.: Handbook of exact string matching algorithms. Kings
College Publications (2004)

4. Cleophas, L., Watson, B.W., Zwaan, G.: A new taxonomy of sublinear right-to-left
scanning keyword pattern matching algorithms. Science of Computer Program-
ming 75, 1095–1112 (2010)

5. Cleophas, L.G., Watson, B.W.: Taxonomy-Based Software Construction of SPARE
Time: A case study. IEE Proceedings — Software 152(1), 29–37 (2005)

6. Crochemore, M.A., Rytter, W.: Text Algorithms. Oxford University Press (1994)
7. Crochemore, M.A., Rytter, W.: Jewels of Stringology. World Scientific Publishing

Company (2003)
8. Faro, S., Lecroq, T.: 2001–2010: Ten years of exact string matching algorithms.

In: Holub, J., Žďárek, J. (eds.) Proceedings of the Prague Stringology Conference
2011, pp. 1–2. Czech Technical University in Prague, Czech Republic (2011)

9. Horspool, R.N.: Practical fast searching in strings. Software — Practice & Expe-
rience 10(6), 501–506 (1980)

10. Knuth, D.E., Morris, J., Pratt, V.R.: Fast pattern matching in strings. SIAM Jour-
nal of Computing 6(2), 323–350 (1977)

248 B.W. Watson, D.G. Kourie, and T. Strauss

11. Kourie, D.G., Watson, B.W.: The Correctness-by-Construction Approach to Pro-
gramming. Springer (2012)

12. Mauch, M., Watson, B.W., Kourie, D.G., Strauss, T.: Performance assessment of
dead-zone single keyword pattern matching. In: Kroeze, J. (ed.) Proceedings of
the South African Institute of Computer Scientists and Information Technologists
Conference, Pretoria, South Africa (October 2012)

13. Meyer, B.: Object-Oriented Software Construction, 2nd edn. Addison-Wesley
(1998)

14. Smyth, W.F.: Computing Patterns in Strings. Addison-Wesley (2003)
15. Watson, B.W.: Taxonomies and Toolkits of Regular Language Algorithms. Ph.D

dissertation. Eindhoven University of Technology, Eindhoven, Netherlands (1995)
16. Watson, B.W., Cleophas, L.: SPARE Parts: A C++ toolkit for String Pattern

Recognition. Software — Practice & Experience 34(7), 697–710 (2004)
17. Watson, B.W., Watson, R.E.: A new family of string pattern matching algorithms.

In: Holub, J. (ed.) Proceedings of the Second Prague Stringologic Workshop, pp.
12–23. Czech Technical University, Prague, Czech Republic (July 1997)

18. Watson, B.W., Watson, R.E.: A new family of string pattern matching algorithms.
South African Computer Journal 30, 34–41 (2003); for rapid access, A reprint
of this article appears on www.fastar.org. This journal remains the appropriate
citation reference

www.fastar.org

A Catalogue of Algorithms for Building

Weak Heaps

Stefan Edelkamp1, Amr Elmasry2,3, and Jyrki Katajainen2

1 Faculty 3—Mathematics and Computer Science, University of Bremen,
PO Box 330 440, 28334 Bremen, Germany

edelkamp@tzi.de
2 Department of Computer Science, University of Copenhagen,

Universitetsparken 1, 2100 Copenhagen East, Denmark
{elmasry,jyrki}@diku.dk

3 Computer and Systems Engineering Department, Alexandria University,
Alexandria 21544, Egypt

Abstract. An array-based weak heap is an efficient data structure for
realizing an elementary priority queue. In this paper we focus on the con-
struction of a weak heap. Starting from a straightforward algorithm, we
end up with a catalogue of algorithms that optimize the standard algo-
rithm in different ways. As the optimization criteria, we consider how to
reduce the number of instructions, branch mispredictions, cache misses,
and element moves. We also consider other approaches for building a
weak heap: one based on repeated insertions and another relying on a
non-standard memory layout. For most of the algorithms considered, we
also study their effectiveness in practice.

1 Introduction

In its elementary form, a priority queue is a data structure that stores a col-
lection of elements and supports the operations construct , find -min, insert , and
extract-min. In applications, for which this set of operations is sufficient, the
basic selection that the users have to make is to choose between binary heaps
[9] and weak heaps [3]. Both of these data structures are known to perform well,
and the difference in performance is quite small in typical cases.

Most library implementations are based on binary heaps. However, one reason
why a user might select a weak heap over a binary heap is that weak heaps are
known to perform less element comparisons in the worst case. In Table 1 we
summarize the results known for these two data structures.

In [4] we showed that, for weak heaps, the cost of insert can be improved to
an amortized constant. The idea is to use a buffer that supports constant-time
insertion. A new element is inserted into the buffer as long as the number of its
elements is below the threshold. Once the threshold is reached, a bulk insertion
is performed by moving all elements of the buffer to the weak heap. This modi-
fication increases the number of element comparisons per extract-min by one.

S. Arumugam and B. Smyth (Eds.): IWOCA 2012, LNCS 7643, pp. 249–262, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

250 S. Edelkamp, A. Elmasry, and J. Katajainen

Table 1. The worst-case number of element comparisons performed by two elementary
priority queues; n denotes the number of elements stored in the data structure prior
to the operation in question

data structure construct find -min insert extract -min

binary heap [6,9] 2n 0 �lgn� 2�lg n�
weak heap [3] n− 1 0 �lgn� �lg n�

In this paper we study the construction of a weak heap in more detail. The
standard algorithm for building a weak heap is asymptotically optimal, involving
small constant factors. Nevertheless, this algorithm can be improved in several
ways. The reason why we consider these different optimizations is that it may be
possible to apply the same type of optimizations for other similar fundamental
algorithms. For some applications the proposed optimizations may be significant
although we do not consider any concrete applications per se.

Our catalogue of algorithms for building a weak heap include the following:

Instruction optimization: We utilize bit-manipulation operations on the word
level to find the position of the least-significant 1-bit fast. Since the used
bit-manipulation operations are native on modern computers, a loop can be
replaced by a couple of instructions that are executed in constant time.

Branch optimization: We describe a simple optimization that reduces the
number of branch mispredictions from O(n) to O(1). On modern computers
having long pipelines, a branch misprediction can be expensive.

Cache optimization: We improve the cache behaviour of an alternative weak-
heap construction algorithm by implementing it in a depth-first manner. The
resulting algorithm is cache oblivious. We give a recursive implementation
and point out how to convert it to an iterative implementation.

Move optimization: We reduce the bound on the number of element moves
performed from 3n to 2n. In the meantime, we keep the number of element
comparisons performed unchanged.

Repeated insertions: We show that by starting from an empty weak heap and
inserting elements repeatedly into it one by one, the overall construction only
involves at most 3.5n+O(lg2 n) element comparisons.

New memory layout: We investigate an alternative weak-heap array embed-
ding that does not need any complex ancestor computations.

The experiments discussed in the paper were carried out on a laptop (model
Intel R© CoreTM2 CPU P8700 @ 2.53GHz) running under Ubuntu 11.10 (Linux
kernel 3.0.0-16-generic) using g++ compiler (gcc version 4.6.1) with optimization
level -O3. The size of L2 cache was about 3 MB and that of the main mem-
ory 3.8 GB. Input elements were 4-byte integers and reverse bits occupied one
byte each. All execution times were measured using the function gettimeofday

in sys/time.h. Other measurements were done using the tools available in
valgrind (version 3.6.1). For a problem of size n, each experiment was repeated
226/n times and the average was reported.

A Catalogue of Algorithms for Building Weak Heaps 251

8
6

1

0

3

2

7

11

5

9

4
2

64 75

9

1

3

8

a)

9

2

2

1

0

7

56

4

1

3

11
9 8

4 5 7 6

3

8

b)

Fig. 2. a) An input of 10 integers and b) a weak heap constructed by the standard
algorithm. The reverse bits are set for grey nodes.

Even though we only consider array-based weak heaps, it deserves to be men-
tioned that pointer-based weak heaps can be used to implement addressable
priority queues, which also support delete and decrease operations (see [2,4]).

2 The Standard Weak-Heap Construction Procedure

A weak heap (see Fig. 2) is a binary tree that has the following properties:

1. The root of the entire tree has no left child.
2. Except for the root, the nodes that have at most one child are at the last

two levels only. Leaves at the last level can be scattered, i.e. the last level is
not necessarily filled from left to right.

3. Each node stores an element that is smaller than or equal to every element
stored in the right subtree of this node.

From the first two properties we deduce that the height of a weak heap that has
n elements is �lgn�+ 1. The third property is called the weak-heap ordering or
half-tree ordering. In particular, this property enforces no relation between an
element in a node and those stored in the left subtree of this node.

In an array-based implementation, besides the element array a, an array r of
reverse bits is used, i.e. ri ∈ {0, 1} for i ∈ {0, . . . , n− 1}. The array index of the
left child of ai is 2i+ ri, the array index of the right child is 2i+1− ri, and the
array index of the parent is
i/2� (assuming that i �= 0). Using the fact that the
indices of the left and right children of ai are reversed when flipping ri, subtrees
can be swapped in constant time by setting ri ← 1− ri.

The distinguished ancestor of aj , j �= 0, is the parent of aj if aj is a right child,
and the distinguished ancestor of the parent of aj if aj is a left child. We use
d -ancestor(j) to denote the index of such ancestor. By the weak-heap ordering,
no element is smaller than the element at its distinguished ancestor.

The join operation combines two weak heaps into one conditioned on the
following settings. Let ai and aj be two nodes in a weak heap such that the
element at ai is smaller than or equal to every element in the left subtree of aj .
Conceptually, aj and its right subtree form a weak heap, while ai and the left

252 S. Edelkamp, A. Elmasry, and J. Katajainen

subtree of aj form another weak heap. (Note that ai cannot be a descendant of
aj .) If the element at aj is smaller than that at ai, the two elements are swapped
and rj is flipped. As a result, the element at aj will be smaller than or equal to
every element in its right subtree, and the element at ai will be smaller than or
equal to every element in the subtree rooted at aj . Thus, join requires constant
time and involves one element comparison and possibly an element swap.

In the standard bottom-up construction of a weak heap (see Fig. 3) the nodes
are visited one by one in reverse order, and the two weak heaps rooted at a node
and its distinguished ancestor are joined. It has been shown, for example in [5],
that the amortized cost to get from a node to its distinguished ancestor is O(1).
Hence, the overall construction requires O(n) time in the worst case. Moreover,
n− 1 element comparisons and at most n− 1 element swaps are performed.

procedure: d -ancestor (j: index)
while (j bitand 1) = r�j/2�

j ← �j/2	
return �j/2	

procedure: join(i, j: indices)
if aj < ai

swap(ai, aj)
rj ← 1− rj

procedure: construct (a: array of n elements, r: array of n bits)
for i ∈ {0, 1, . . . , n− 1}

ri ← 0
for j = n− 1 to 1 step −1

i ← d -ancestor (j)
join(i, j)

Fig. 3. Standard construction of a weak heap

3 Instruction Optimization: Accessing Ancestors Faster

The number of instructions executed by the standard algorithm can be reduced
by observing that the reverse bits are initialized to 0 and set bottom-up while
scanning the nodes. Therefore, the distinguished ancestor can be computed from
the array index by considering the position of the least-significant 1-bit. On most
computers this position can be computed by using the native primitive operation
that counts the number of trailing 0-bits in a word.

Assuming the availability of the needed hardware support, this refinement
makes the analysis of the algorithm straightforward: Each distinguished ancestor
is accessed in constant worst-case time, and for each node (except the root) one
element comparison and at most one element swap are performed.

A Catalogue of Algorithms for Building Weak Heaps 253

procedure: d -ancestor (j: index)
z ← trailing zero count(j);
return j >> (z + 1)

Fig. 4. A faster way of finding the distinguished ancestor of a node

To test the effectiveness of this idea in practice, we programmed the standard
algorithm and this instruction-optimized refinement. When implementing the
function trailing zero count , we tried both the built-in functions builtin ctz
and builtin popcount provided by our compiler (g++); in out test environ-
ment the former led to a superior performance. As seen from the numbers
in Table 5, the instruction optimization made the program faster, and the
numbers in Table 6 verify that the number of instructions executed actually
reduced.

Table 5. Standard vs. instruction-optimized constructions; execution time divided by
n in nanoseconds; the elements were given in random order

n standard
instruction optimized

builtin ctz

210 10.49 7.86
215 10.26 7.49
220 10.61 7.83
225 10.96 8.16

Table 6. Standard vs. instruction-optimized constructions; number of instructions
executed divided by n; the elements were given in random order

n standard
instruction optimized

builtin ctz builtin popcount

210 215 220 225 22.5 12.5 16.5

4 Branch Optimization: No if Statements

Branch prediction is an important efficiency issue in pipelined processors, as
upon a conditional branch being fetched the processor normally guesses the
outcome of the condition and starts the execution of the instructions in one of
the branches speculatively. If the prediction was wrong, the pipeline must be
flushed, a new set of instructions must be fetched in, and the work done with
the wrong branch of the code is simply wasted. To run programs efficiently in
this kind of environment one may want to avoid conditional branches if possible.

254 S. Edelkamp, A. Elmasry, and J. Katajainen

The standard weak-heap construction algorithm has few conditional branches.
By our instruction optimization we already removed the loop used for com-
puting the distinguished ancestors. In accordance, the main body of the algo-
rithm has two unnested loops that both end with a conditional branch; but only
when stepping out of a loop a misprediction is incurred. Hence, the main issue
to guarantee O(1) branch mispredictions is to remove the if statement in the
join procedure. To do that, we replace the conditional branch with arithmetic
operations.

procedure: join(i, j: indices)
smaller ← (aj < ai)
Δ ← smaller ∗ (j − i)
k ← i+Δ
� ← j −Δ
t ← a�

ai ← ak

aj ← t
rj ← smaller

Fig. 7. Joining two weak heaps without a conditional branch

As shown in Table 8, combining this optimization with that described in the
previous section, in our test environment the running times again improved. In
fact, these are the best running times among those of the algorithms presented
in this paper. As confirmed in Table 9, for the branch-optimized version the
number of branch mispredictions incurred is indeed negligible.

Table 8. Instruction-optimized vs. branch-optimized constructions; execution time
divided by n in nanoseconds; the elements were given in random order

n
instruction
optimized

branch
optimized

210 7.86 6.28
215 7.49 6.39
220 7.83 6.72
225 8.16 7.08

5 An Alternative Construction: Don’t Look Upwards

Another way of building a weak heap is to avoid climbing to the distinguished
ancestors altogether. We still build the heap bottom-up level by level, but we
fix the weak-heap ordering by considering each node and its right subtree. The
idea comes from Floyd’s algorithm for constructing binary heaps [6]. To mimic
this algorithm we need the sift -down procedure, which is explained next.

A Catalogue of Algorithms for Building Weak Heaps 255

Table 9. Standard vs. instruction-optimized vs. branch-optimized constructions; total
number of mispredicted branches; the elements were given in random order

n standard
instruction
optimized

branch
optimized

210 1 061 512 1
215 34 171 16 385 1
220 1 093 963 524 110 2
225 35 005 433 16 776 271 34

Assume that the elements at the right subtree of aj obey the weak-heap
ordering. The sift -down procedure is used to establish the weak-heap ordering
between the element at aj and those in the right subtree of aj . Starting from
the right child of aj , the last node on the left spine of the right subtree of
aj is identified; this is done by repeatedly visiting left children until reaching
a node that has no left child. The path from this node to the right child of
aj is traversed upwards, and join operations are repeatedly performed between
aj and the nodes along this path. The correctness of the sift -down procedure
follows from the fact that, after each join , the element at location j is less
than or equal to every element in the left subtree of the node considered in the
next join .

With sift -down in hand, a weak heap can be constructed by calling the proce-
dure on every node starting from the the lower levels upwards (see Fig. 10).
Unfortunately, the running times achieved for this method are not satisfac-
tory, as indicated in Table 11. Compared to the standard method, the slow-
down is more significant for large values of n. We relate this behaviour to cache
effects.

procedure: sift-down(j: index)
k ← 2j + 1− rj
while 2k + rk < n

k ← 2k + rk
while k
= j

join(j, k)
k ← �k/2	

procedure: construct (a: array of n elements, r: array of n bits)
for i ∈ {0, 1, . . . , n− 1}

ri ← 0
for j = �n/2	− 1 to 0 step −1

sift-down(j)

Fig. 10. An alternative construction of a weak heap

256 S. Edelkamp, A. Elmasry, and J. Katajainen

Table 11. Standard vs. alternative constructions; execution time divided by n in
nanoseconds; the elements were given in random order

n standard alternative

210 10.49 11.16
215 10.26 11.66
220 10.61 18.44
225 10.96 19.96

6 Cache Optimization: Depth-First Construction

To avoid the bad cache performance of the previous method, the nodes of the
heap should be visited in depth-first rather than in breadth-first order. This
idea, applied for binary heaps in [1], improves the locality of accesses as the
traversal tends to stay longer at nearby memory locations. The number of ele-
ment comparisons obviously remains unchanged. A recursive procedure is given
in Fig. 12.

procedure: df -construct (i, j: indices)
if j < �n/2	

df -construct (j, 2j + 1)
df -construct (i, 2j)

join(i, j)

procedure: construct (a: array of n elements, r: array of n bits)
for i ∈ {0, 1, . . . , n− 1}

ri ← 0
if n > 1

df -construct (0, 1)

Fig. 12. Recursive depth-first weak-heap construction

Although we do not explicitly use the sift -down procedure here, we would
like to point out that this method is a cache-optimized version of the method
described in the previous section. Following the guidelines given in [1], it is not
difficult to avoid recursion when implementing the procedure.

The running times given in Table 13 indicate that we are far from those of
the standard method. On the other hand, the cache-miss rates given in Table 14
indicate that the depth-first construction has a better cache behaviour.

7 Move Optimization: Trading Swaps for Delayed Moves

Now we implement the aforementioned depth-first construction in a different
way (see Fig. 15). The idea is to walk down the left spine of the child of the root

A Catalogue of Algorithms for Building Weak Heaps 257

Table 13. Standard vs. cache-optimized constructions; execution time divided by n in
nanoseconds; the elements were given in random order

n standard
cache

optimized

210 10.49 15.05
215 10.26 15.08
220 10.61 15.21
225 10.96 15.20

Table 14. The number of cache misses incurred by different algorithms as a factor of
n/B, where B is the block size in words; the elements were given in random order

n standard
instruction
optimized

alternative
cache

optimized

210 1.25 1.25 1.25 1.25
215 1.25 1.25 1.25 1.25
220 1.72 1.52 6.38 1.25
225 2.47 2.23 7.36 1.25

and call the procedure recursively at every node we visit. After coming back from
the recursive calls, the sift -down operation is applied to restore the weak-heap
ordering at the root. In the worst case the number of element moves performed
by this algorithm is the same as that performed by the standard algorithm. For
both algorithms, n − 1 swaps may be performed. As each swap involves three
element moves (element assignments), the number of element moves is bounded
by 3n.

To reduce the bound on the number of element moves to 2n, we postpone
the swaps done during the sift -down operation. A similar approach was used
by Wegener [8] when implementing sift -down in a bottom-up manner for binary
heaps. The idea is to use a bit vector (of at most lgn bits) that indicates the

procedure: df -construct (i: index)
j ← 2i+ 1
while j < �n/2	

df -construct (j)
j ← 2j

sift-down(i)

procedure: construct (a: array of n elements, r: array of n bits)
for i ∈ {0, 1, . . . , n− 1}

ri ← 0
if n > 1

df -construct (0)

Fig. 15. Another implementation for depth-first weak-heap construction

258 S. Edelkamp, A. Elmasry, and J. Katajainen

winners of the comparisons along the left spine; a 1-bit indicates that the cor-
responding element on the spine was the smaller of the two elements involved in
this comparison. Of course, we still compare the next element up the spine with
the current winner of the executed comparisons. After the results of the com-
parisons are set in the bit vector, the actual element movements are performed.
More precisely, the elements corresponding to 1-bits are rotated; this accounts
for at most μ+ 2 element moves if all the μ + 1 elements on the left spine plus
the root are rotated (assuming that the number of nodes on the left spine of the
child of the root is μ). To calculate the number of element moves involved, we
note that the sum of the lengths of all the left spines is n − 1. In addition, we
note that the sift -down operation will be executed for at most n/2 nodes; these
are the non-leaves. The 2n bound follows. See Tables 16 and 17.

Table 16. Standard vs. move-optimized constructions; execution time divided by n in
nanoseconds; the elements were given in random/decreasing orders

standard move optimized
n random decreasing random decreasing

210 10.49 7.86 22.60 19.91
215 10.26 7.60 22.02 18.43
220 10.61 7.95 22.14 18.52
225 10.96 8.30 22.11 18.53

Table 17. Standard vs. move-optimized constructions; number of moves per element;
the elements were given in random/decreasing orders

standard move optimized
n random decreasing random decreasing

210 1.49 2.99 1.16 1.99
215 1.49 2.99 1.16 1.99
220 1.49 3.00 1.16 2.00
225 1.50 3.00 1.16 2.00

8 Repeated Insertions: Non-linear Work, Yet a Linear
Number of Element Comparisons

To insert an element e into a weak heap, we first add e to the next available
array entry. To reestablish the weak-heap ordering, we use the sift -up procedure.
As long as e is smaller than the element at its distinguished ancestor, we swap
the two elements and repeat for the new location of e using the join procedure.
Thus, sift -up at location j requires O(lg j) time and involves at most �lg(1+ j)�
element comparisons.

A Catalogue of Algorithms for Building Weak Heaps 259

procedure: sift-up(j: index)
while j
= 0

i ← d -ancestor (j)
before ← rj
join(i, j)
if before = rj

break
j ← i

procedure: construct (a: array of n elements, r: array of n bits)
for k = 1 to n− 1

rk ← 0
if (k bitand 1) (*)

r�k/2� ← 0
sift-up(k)

Fig. 18. Constructing a weak heap by repeated insertions

When constructing a weak heap using repeated insertions (see Fig. 18), we
observed that, while the execution time increased with n, the number of element
comparisons stayed constant per element for an increasing value of n (see Tables
19 and 20). As the worst-case input for the experiments we used the sequence of
the form 〈0, n− 1, n− 2, . . . , 1〉 as adviced in [5]. Next we prove that the number
of element comparisons performed is indeed linear in the worst case.

Theorem 1. The total number of element comparisons performed while con-
structing a weak heap using n in-a-row insertions is at most 3.5n+O(lg2 n).

Proof. We distinguish between two types of element comparisons done by the
sift -up operations. An element comparison that involves the root or triggers
the break statement to get out of the while loop is called a terminal element
comparison. There is exactly one such comparison per insertion, except for the
first insertion, resulting in n− 1 terminal element comparisons during the whole
construction. All other element comparisons are non-terminal.

Next we caclulate an upper bound for the number of non-terminal element
comparisons performed. Fix a node x whose height is h, h ∈ {1, 2, . . . , �lgn�+ 1}.
Consider all the non-terminal element comparisons performed between the ele-
ments at x and the distinguished ancestor of x throughout the process. For such
a comparison to take place an element should have been inserted in the right
subtree of x (may include x itself). Consider the first element e that is inserted in
the right subtree of x at distance d from x and results in a non-terminal element
comparison between the elements at x and its distinguished ancestor. That is, d
can take values 0, 1, etc.

For d = 0, the elements at x and its distinguished ancestor are always com-
pared unless x is the root. For d = 1, we have to consider the if statement
marked with a star (*) in the program. When the inserted node is the only child
of x, it is made a left child by updating the reverse bit at x. So this first insertion

260 S. Edelkamp, A. Elmasry, and J. Katajainen

at distance one will never trigger a non-terminal element comparison; only the
second insertion does that. Consider now the case where d ≥ 2. Because of the
non-terminal comparison between the elements at x and its distinguished ances-
tor the reverse bit at x is flipped, and the right subtree of x becomes its left
subtree. All the upcoming insertions that will land in this subtree at distance d
from x will not involve x as a distinguished ancestor. It follows that, for this given
subtree, the element at x will not be compared with that at the distinguished
ancestor of x until an element is inserted below x at distance d + 1 from x. In
conclusion, the node x can be charged with at most one element comparison for
each level of both its subtrees. Summing the number of non-terminating element
comparisons done for all values of d, we get that the element at x is compared
against the element at its distinguished ancestor at most twice its height minus
two; that is at most 2h− 2 times.

In a weak heap of size n, there are at most �n/2h� nodes of height h, h ∈
{1, 2, . . . , �lgn�+ 1}. On the basis of the discussion in the preceeding paragraph
it follows that the number of non-terminal element comparisons is bounded by

�n/2�+
∑�lg n�+1

h=2 (2h− 2) · �n/2h� < 2.5n+O(lg2 n). Adding the n− 1 terminal
element comparisons, the total number of element comparisons performed by all
n insertions is at most 3.5n+O(lg2 n). �	

Observe that the number of element comparisons and that of element moves
go hand in hand so that the number of element moves performed is also linear.
That is, the running time is wasted in distinguished-ancestor calculations and,
unfortunately, we cannot take any shortcuts since some of the reverse bits may
be set above an insertion point.

Table 19. Standard vs. repeated-insertion constructions; execution time divided by n
in nanoseconds; the elements were given in random/special worst-case orders

standard repeated insertions
n random special random special

210 10.49 7.86 31.46 45.91
215 10.26 7.60 32.68 64.09
220 10.61 7.95 33.04 78.00
225 10.96 8.30 33.18 89.36

9 New Memory Layout: Less Work, Different Outcome

There are other possible array embeddings than the standard one (where the
children of the node at location i are at locations 2i and 2i + 1). Consider the
following layout: For a node ai whose depth in the tree is d, its right child is
stored at location i+2d−ri and its left child at location i+2d−1+ri. As with the
standard layout, reverse bits are used to swap the two subtrees. To access the
parent of a node ai whose depth is d, we need an extra check. If i ≥ 2d−1+2d−2,

A Catalogue of Algorithms for Building Weak Heaps 261

Table 20. Standard vs. repeated-insertion constructions; number of element compari-
sons divided by n; the elements were given in random/special worst-case orders

standard repeated insertions
n random special random special

210 0.99 0.99 1.76 3.38
215 0.99 0.99 1.77 3.49
220 0.99 0.99 1.77 3.49
225 1 1 1.77 3.49

the parent is at location i− 2d−1; otherwise, the parent is at location i− 2d−2. If
the depth is not available, it can be computed in constant time using the number
of leading zeros. The main advantage of this dual layout is that the construction
algorithm does not need distinguished-ancestor calculations.

procedure: dual -construct(a: array of n elements, r: array of n bits)
� ← n
while � > 1

for i ∈ {0, . . . , ��/2	}
join(i, ��/2	+ i)

� ← ��/2	

Fig. 21. Constructing a weak heap for the new memory layout

10 Conclusion

The weak heap is an amazingly simple and powerful structure. If perfectly bal-
anced, weak heaps resemble heap-ordered binomial trees [7]. A weak heap is
implemented in an array with extra bits that are used for subtree swapping.

Binomial-tree parents are distinguished ancestors in a weak-heap setting. We
showed that, for Dutton’s construction of weak heaps [3], a distinguished ancestor
can be computed in constant wost-case time. We also provided depth-first weak-
heap building procedures. The standard memory layout is fastest for accessing
neighbouring nodes, but other layouts may lead to a faster construction.

Contrary to binary heaps, repeated insertions lead to a constant number of
element comparisons per inserted element. We proved that a sequence of n inser-
tions in an initially empty weak heap requires at most 3.5n+ O(lg2 n) element
comparisons.

We would like end this paper with a warning: The experimental results re-
ported depended on the environment where the experiments were performed and
on the type of data used as input. In our experimental setup, element compari-
sons and element moves were cheap, and branch mispredictions and cache misses
were expensive. When some of these conditions will change, the overall picture
may drastically change.

262 S. Edelkamp, A. Elmasry, and J. Katajainen

Source Code

The programs used in the experiments are available via the home page of the
CPH STL (http://cphstl.dk/) in the form of a PDF document and a tar file.

References

1. Bojesen, J., Katajainen, J., Spork, M.: Performance engineering case study: Heap
construction. ACM J. Exp. Algorithmics 5, Article 15 (2000)

2. Bruun, A., Edelkamp, S., Katajainen, J., Rasmussen, J.: Policy-Based Benchmark-
ing of Weak Heaps and Their Relatives. In: Festa, P. (ed.) SEA 2010. LNCS,
vol. 6049, pp. 424–435. Springer, Heidelberg (2010)

3. Dutton, R.D.: Weak-heap sort. BIT 33(3), 372–381 (1993)
4. Edelkamp, S., Elmasry, A., Katajainen, J.: The weak-heap data structure: Variants

and applications. J. Discrete Algorithms 16, 187–205 (2012)
5. Edelkamp, S., Wegener, I.: On the Performance of WEAK − HEAPSORT . In:

Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 254–266. Springer,
Heidelberg (2000)

6. Floyd, R.W.: Algorithm 245: Treesort 3. Commun. ACM 7(12), 701 (1964)
7. Vuillemin, J.: A data structure for manipulating priority queues. Commun.

ACM 21(4), 309–315 (1978)
8. Wegener, I.: Bottom-up-heapsort, a new variant of heapsort beating, on an average,

quicksort (if n is not very small). Theoret. Comput. Sci. 118(1), 81–98 (1993)
9. Williams, J.W.J.: Algorithm 232: Heapsort. Commun. ACM 7(6), 347–348 (1964)

http://cphstl.dk/

On Counting Range Maxima Points in Plane

Anil Kishore Kalavagattu, Jatin Agarwal, Ananda Swarup Das,
and Kishore Kothapalli

International Institute of Information Technology, Hyderabad, India
{anilkishore,jatin.agarwal}@research.iiit.ac.in,

anandaswarup@gmail.com,
kkishore@iiit.ac.in

Abstract. We consider the problem of reporting and counting maximal
points in a given orthogonal query range in two-dimensions. Our model
of computation is the pointer machine model. Let P be a static set of
n points in R

2. A point is maximal in P if it is not dominated by any
other point in P . We propose a linear space data structure that can sup-
port counting the number of maximal points inside a 3-sided orthogonal
query rectangle unbounded on its right in O(log n) time. For counting
the number of maximal points in a 4-sided orthogonal query rectangle,
we propose an O(n log n) space data structure that can be constructed
in O(n log n) time and queried upon in O(log n) time. This work pro-
poses the first data structure for counting the number of maximal points
in a query range. Das et al. proposed a data structure for the counting
version in the word RAM model [WALCOM 2012].

For the corresponding reporting versions, we propose a linear size data
structure for reporting maximal points inside a 3-sided query range in
time O(log n + k), where k is the size of the output. We propose an
O(n log n) size data structure for reporting the maximal points in a 4-
sided orthogonal query range in time O(log n+ k), where k is the size of
the output. The methods we propose for reporting maximal points are
simpler than previous methods and meet the best known bounds.

Keywords: Maxima, Plane, Orthogonal range, Reporting, Counting.

1 Introduction

Range searching is one of the widely studied topics in spatial databases and
computational geometry. Informally, range searching can be stated as follows:
Given a set P of objects, we wish to preprocess the data set into a data structure
such that given a query object q, we can efficiently report the objects or count
the number of objects in P ∩ q, the set of objects in both P and q. The problem
has wide applications in geographic information systems, CAD tools, database
retrieval, and the like. The advancement of technology has led to information
explosion and the number of objects inside a query range can be huge. In most
cases, reporting a sample of the result set is preferred. In this regard, we borrow

S. Arumugam and B. Smyth (Eds.): IWOCA 2012, LNCS 7643, pp. 263–273, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

264 A.K. Kalavagattu et al.

the concept of skyline query from the database community. With the increase in
the number of dimensions, the number of skyline points may also increase [3].
Finding the number of skyline points can be useful in reporting every kth skyline
point, reporting the k skyline points in the middle, and many other applications.
In this work, we propose some data structures to solve the problem of skyline
counting and reporting. Henceforth we refer skyline points as maximal points.

1.1 Definitions

We are given a set of n points P = {p1, . . . , pn} in R2. We use x(p) to represent
the x-coordinate of a point p and similarly y(p) to represent its y-coordinate.
A point pi is said to dominate another point pj if both x(pi) ≥ x(pj) and
y(pi) ≥ y(pj) hold. The set P ′ (⊆ P) of all the points, each of which is not
dominated by any other point in P is called the dominating set of P . They
are also called maximal elements, or maxima, of the set P [1]. The maximal
points when sorted by increasing x-coordinate are also sorted by decreasing y-
coordinate, and hence they are also called the staircase of the set. Figure 1(a)
shows the maxima as a staircase.

Fig. 1. Maxima points are shown as filled circles. Maxima of the (a.) point set, (b.)
3-sided orthogonal query range and (c.) 4-sided orthogonal query rectangle

In this work, we consider the following two problems.

Problem 1. We are given a set P of n points in R2. We wish to preprocess
P into a data structure such that given an orthogonal query region q, we can
efficiently report the maximal points of P ∩ q, where P ∩ q is the set of points
in both P and q.

Problem 2. We are given a set P of n points in R2. We wish to preprocess
P into a data structure such that given an orthogonal query region q, we can
efficiently count the number of maximal points of P ∩ q, where P ∩ q is the set
of points in both P and q.

On Counting Range Maxima Points in Plane 265

We consider two types of query ranges for q. In the first type, q is a 3-sided
orthogonal rectangle unbounded on its right, as shown in Figure 1(b). In the
second type, q is a general 4-sided orthogonal rectangle, as shown in Figure 1(c).

1.2 Related Work

The maxima of a static set of two-dimensional points can be computed in optimal
O(n log n) time [4]. Dynamic data structures of linear size that can support re-
porting all maximal points in the plane have been proposed [5,6]. Range maxima
in the two-dimensional point set is studied in [7,8]. In [8] the authors proposed
a static data structure of size O(n log n) that can support reporting maximal
points in a given orthogonal query rectangle in O(log n+ k) time, where k is the
size of the output. Brodal et al. in [7] suggested a dynamic data structure of size
O(n log n) and worst case query time of O(log2 n+ k). Here we consider a static
set of points and computations in pointer machine model. To the best of our
knowledge, we are considering the problem of counting the number of maximal
points inside a query rectangle, for the first time in literature. The previous data

structure of [11] has a query time of O(log
3
2 n

log logn) for the problem of counting the
maximal points in an orthogonal query rectangle in the word RAM model. Our
structures for counting the number of maximal points are built upon their corre-
sponding reporting versions and hence they also support reporting the maximal
points. Though the bounds for reporting maximal points are not improved, the
methods presented here are simpler and achieve the best known bounds. Note
that reporting (resp. counting) maxima of a set of points in a given query range
is different from a dominance query, where the aim is to report all the points
dominating a given query point q. Given a query point q, maximal points of the
north−east quadrant w.r.t the point q are a subset of dominating points, where
as a dominance query results all the points in that quadrant [2].

1.3 Our Results

We present a linear size data structure that supports reporting maximal points
in a 3-sided query range unbounded on its right in O(log n+ k) time, where k is
the size of the output. Counting the number of maximal points in a 3-sided query
range can be supported in O(log n) time using linear space. Reporting the max-
imal points in an orthogonal query rectangle can be done using O(n log n) space
and in O(log n + k) time, where k is the size of the output. The corresponding
counting can be supported in O(log n) time using O(n logn) space.

The rest of paper is organized as follows. In Section 2 we give brief details
of the supporting data structures and outline of our solution. In Section 3 we
give the details of the preprocessing and the query algorithms for reporting and
counting maximal points in a 3-sided query. In Section 4 we extend this to a
general 4-sided query. In Section 5 we propose a better solution for the counting
version based on some observations. In Sections 6 and 7, we briefly discuss some
direct applications of our results and discuss future work.

266 A.K. Kalavagattu et al.

2 Our Solution Framework

Preliminaries: Apart from the standard range tree [12], we use a red-black tree
[9], a balanced binary search tree that maintains a set of n elements in sorted
order. It supports the following operations in O(log n) time using O(n) space :
INSERT(u) inserts the element u into the tree and PREDECESSOR(u) returns
the largest element in the tree that is smaller than or equal to element u. We also
use a persistent version of a red-black tree. We maintain a sorted set of elements.
Initially the data structure S is empty and a new version of the data structure
is created each time a new element is inserted. Thus we obtain a list of versions
of S. A query on S can now be made on any of its previous versions. In [10],
it is shown that after insertion of n elements, the data structure occupies O(n)
space and a query on any previous version takes O(log n) time. We use the terms
persistent sorted set and persistent red-black tree interchangeably.

Outline of Solution: Given a set of points P , the point pa with the maximum
y-coordinate in P is a maximal point, because there is no other point dominat-
ing pa. If we are asked to report all the maximal points in P , we can start by
reporting this point pa. The next maximal point pb is the point with the maxi-
mum y-coordinate among the points not dominated by pa i.e., the points in the
south-east quadrant of pa. The main idea of the solution is, instead of finding
the next maximal point by computing at query time, we can preprocess and
store it. For each point pi in P , we answer the question, if pi is a maximal point,
what is the next maximal point of P immediately following pi, in decreasing
order of y-coordinate. We denote this using nxt[pi]. The nxt points are shown
using pointers in Figure 2 below. If there is no such point, we assign nxt[pi] =
(+∞, 0). This is shown as ∞ in the Figure 2.

Fig. 2. (a.)For each of the points p, nxt[p] is shown using pointers. (b.) Starting from
the point point pa, the maximal points (filled circles) along the nxt pointers.

On Counting Range Maxima Points in Plane 267

3 3-Sided Range Maxima Queries

3.1 Reporting

In this subsection, we present the algorithm for reporting the maximal points in
a 3-sided orthogonal query, unbounded on its right.

Preprocessing. We need to compute the array nxt such that for each point
pi ∈ P , nxt[pi] is the point with the maximum y-coordinate in the south-east(SE)
quadrant of pi. Initialize a red-black tree T and a persistent sorted set S. Sort
the point set P in the decreasing order of x-coordinate and process the points in
that order. We insert the points into T and S with their y-coordinate values as
the key. For each point pi, set nxt[pi] = PREDECESSOR(y(pi)) if there exists
any, otherwise nxt[pi] = (+∞, 0) and then insert pi into the trees T and S. This
requires O(n log n) time. Note that when we are at a point pi, all the points with
x-coordinate larger than x(pi) are already in the trees T and S, and none of the
points with x-coordinate smaller than x(pi) are present in them. Hence the proof
of correctness of nxt pointers follows. We now also have different versions of the
data structure S. Each version Si obtained just after inserting the point pi has
all the points p having x(p) ≥ x(pi) and sorted using the y-coordinate values as
the key.

Query Algorithm. Given a 3-sided orthogonal query q = [xl,∞]× [yb, yt], we
find the point pa with the maximum y-coordinate in P ∩ q using the persistent
sorted set S as follows. Using binary search, identify the version of S that existed
just after the insertion of all points having x-coordinate ∈ [xl,∞]. Query this
version of S with PREDECESSOR(yt) to obtain the point pa. Initialize p = pa.

While y(p) is not less than yb, report the point p and set p← nxt[p]

The proof of correctness is as follows. The point pa ∈ P ∩ q with the maximum
y-coordinate is a maximal point, because there is no other point in P ∩ q that
dominates pa. Let pk = nxt[pi], for any maximal point pi reported. If pk ∈ q,
then pk is the point with the maximum y-coordinate in the South-east quad-
rant of pi and hence the next maximal point in the decreasing y-coordinate,
immediately following pi. If pk /∈ q, then the orthogonal rectangular region
[x(pi),∞] × [yb, y(pi)] is empty and hence there exists no more maximal point
following pi. The main computation involved is in finding the first maximal
point pa and then just following the nxt pointers from there, reporting a maxi-
mal point each time. We now conclude this subsection by stating the following
theorem.

Theorem 1. Given a set P of n points in R2, we can preprocess P into a lin-
ear space data structure in O(n log n) time such that, given a 3-sided orthogonal

268 A.K. Kalavagattu et al.

query q = [xl,∞] × [yb, yt], we can report the maximal points of P ∩ q in time
O(log n+ k), where k is the size of the output.

3.2 Counting

In this subsection, we present the algorithm for counting the number of maximal
points in a 3-sided orthogonal query, unbounded on its right.

Preprocessing.We compute the array nxt as given in Section 3.1. Let nxtm[pi] =
nxt[nxt[... m times[pi]]], the point reached after making exactly m moves by
following the nxt pointers, starting from pi. If there is no such point, then
nxtm[pi] = (+∞,−∞). We compute the sparse table jmp having n rows and
(logn + 1) columns. The ith row corresponds to the point pi and for k ∈
{0, .., logn} jmp[pi][k] = nxt2

k

[pi]. We compute the table jmp of size O(n log n)
in O(n log n) time using dynamic programming and the recurrence, jmp[p][0] =
nxt[p] and for k > 0, jmp[p][k] = jmp[jmp[p][k − 1]][k − 1].

Query Algorithm. Given a 3-sided orthogonal query q = [xl,∞]× [yb, yt], we
first find the point pa with the maximum y-coordinate in P ∩ q, as described in
the query algorithm of Section 3.1. The number of maximal points in P ∩ q is
equal to the minimum m such that y(nxtm[pa]) < yb and can be computed in
O(log n) time using MinJumps(pa, yb, n) as described below.

Program MinJumps (p, ylim, n)

var

k := log(n)

jumps := 0

while k >= 0

if y(jmp[p][k]) >= ylim

jumps := jumps + power(2,k)

p := jmp[p][k]

end-if

k := k - 1

end-while

return jumps + 1

end-MinJumps

The above procedure essentially finds the number of maximal points encountered
before we cross the lower bound yb on the y-coordinate, by following the nxt
points starting from the point pa. We now conclude this section with the following
theorem.

Theorem 2. Given a set P of n points in R2, we can preprocess P into a
data structure of size O(n logn) in time O(n logn)such that, given a 3-sided
orthogonal query q = [xl,∞] × [yb, yt], we can count the number of maximal
points of P ∩ q in time O(log n).

On Counting Range Maxima Points in Plane 269

4 4-Sided Range Maxima Queries

4.1 Reporting

In this subsection, we present the algorithm for reporting maximal points among
the points in the given query orthogonal rectangle.

Preprocessing. The data structure is a standard layered range tree [12] in
which the main tree stores the points sorted by increasing x-coordinate values
at the leaves. Each internal node u is associated with the points in the leaves
of the sub-tree rooted at u. A secondary structure Au at each internal node u
is an array storing the points associated with it in decreasing order of the y-
coordinate values. The array A at each node can be constructed by carrying out
merge sort using the y-coordinate values as keys. The array nxt[u] is computed
while merging the left child lc(u) and the right child rc(u) of u. Each point p
from rc(u) computes nxt[u][p] = nxt[rc(u)][p] and for each point p from lc(u),
nxt[u][p] is the point with maximum y-coordinate between nxt[lc(u)][p] and prc,
where prc is the recent most point from rc(u) merged into Au. In order to speed
up query time, we use fractional cascading [12] at the cost of storing additional
pointers at each node. Let w and v be the left and right children of u respectively.
While merging the secondary arrays Aw and Av to construct Au, we create and
store pointers as follows. Each index i of Au stores two pointers, one pointing to
the largest value in Aw which is smaller than or equal to Au[i] and similarly the
other pointing to the largest value in Av which is smaller than or equal to Au[i].
The merging step takes linear time at each node, resulting in total O(n log n)
preprocessing time.

Query Algorithm. Given an orthogonal query rectangle q = [xl, xr]× [yb, yt],
the query algorithm for reporting maximal points in p ∩ q is as follows:

1. The range of x-coordinates in [xl, xr] can be expressed as the disjoint union
of l = O(log n) canonical subsets. Let the canonical subset of nodes be
ν1, ν2, . . . , νl from left to right in that order, as shown in the Figure 3(a).

2. Find the node νsplit, which is the least common ancestor of ν1 and νl. Find
the index of the point with the largest y-coordinate less than or equal to yt
in Aνsplit using binary search.

3. Process the canonical nodes in reverse order, starting from νl back to ν1, as
follows. Initialize i← l, ylow ← yb.

4. Consider the node νi. Find the point ptopi ∈ νi with the largest y-coordinate
less than or equal to yt. This can be obtained by following the pointer from
Aνsplit at the index found in step 2.

5. If there is no point ptopi, skip this step. Let p = ptopi.

While y(p) ≥ ylow, report the point p and set p← nxtνi [p]

The points reported are the maximal points of P ∩ q, which are associated
with the node νi.

270 A.K. Kalavagattu et al.

Fig. 3. (a.)Range tree with the canonical nodes highlighted (b.) Processing a 4-sided
range maxima query

6. At this point, we processed the nodes νl, νl−1, . . . , νi. If ptopi exists, then set
ylow ← ptopi. Set i ← i − 1 and if i ≥ 1, move to the node νi and repeat
from step 4, else exit.

Theorem 3. Given a set P of n points in R2, we can preprocess P into a data
structure of size O(n log n) in time O(n log n)such that, given an orthogonal
query rectangle q = [xl, xr]× [yb, yt], we can report the maximal points of P ∩ q
in time O(log n+ k), where k is the number of maximal points reported.

Proof : At each of the O(log n) levels of the tree, each point is stored in array
A and array nxt and has two pointers to its children. So the space required is
O(n log n). At each of the O(log n) levels of the tree, at most two nodes are visited
[12]. When we visit a canonical node u, we also have the pointer to the maximal
point pa with maximum y-coordinate in u and hence reporting the maximal
points starting from pa, by following the nxt pointers takes O(m) time, where m
is the number of maximal points reported at u. So the overall time complexity
is O(log n+ k) �	

4.2 Counting

The basic structure is same as the one used for reporting in Section 4.1. Similar
to counting described in Section 3.2, we maintain a sparse table at each internal
node of the range tree. At each of the O(log n) levels of the tree, we use additional
O(nh) space for storing the sparse table, where h is the height of the level. The
total space required is thus O(n log2 n). Given an orthogonal query rectangle
q = [xl, xr]× [yb, yt], we follow similar to the query algorithm of 4.1 and instead
of the step 5, we sum up the count MinJumps(ptopi, ylow, n) at each of the
O(log n) canonical nodes. The total time taken is O(log2 n). We conclude this
section with the following theorem.

Theorem 4. Given a set P of n points in R2, we can preprocess P into a data
structure of size O(n log2 n) in time O(n log2 n) such that, given an orthogonal

On Counting Range Maxima Points in Plane 271

rectangle q = [xl, xr] × [yb, yt], we can count the number of maximal points of
P ∩ q in O(log2 n) time.

5 Further Improvements

As we can see in the previous section, to facilitate counting queries, space and
time complexities increased by a factor of logn than the reporting version. This
is due to maintenance of a sparse table to find the number of points along
a maximal chain between two points. Consider a horizontal slab query q =
[−∞,∞] × [yl, yh] and let the point with the maximum y-coordinate and the
point with the maximum x-coordinate inside q be pymax and pxmax respectively.
Reporting maxima of q can start with the point pymax , which is a maximal point
and proceed further down, till the last maximal point. The main observation
is, the maximal point with the minimum y-coordinate is the point with the
maximum x-coordinate in q, pxmax . So, for a horizontal slab, the maximal chain
starting from the point pymax must pass through the point pxmax . We state this
in the following lemma.

Lemma 1. Given any horizontal slab query q = [−∞,∞]× [yl, yh] , by follow-
ing the nxt pointers along the maximal chain, starting from the point with the
maximum y-coordinate in q, the point with the maximum x-coordinate in q is
encountered, which is also the maximal point having minimum y-coordinate.

Using the above lemma, we can now improve the bounds for the counting version
as follows.

5.1 3-Sided Range Maxima Counting Queries

We preprocess the point set P such that, given a 3-sided orthogonal query range
q unbounded on its right, we can find the point pymax in time O(log n), as
explained in Section 3.1. Also, preprocess P for efficient 1D range maximum
queries on x-coordinate, such that the point pxmax can be found in constant
time using additional linear storage space. Along with the nxt pointer for each
of the points, we also store level information, where for a given point p, level[p]
is the number of points starting from p, along the maximal chain by following
the nxt pointers, till the end of the chain. This can be found while computing
nxt pointers using, level[p] = level[nxt[p]] + 1 if nxt[p] exists and level[p] = 0
otherwise. Using the above lemma, we know that the point pxmax is present along
the maximal chain further down, starting from the point pymax . So the difference
in their levels gives the number of points between them, along their maximal
chain. The following steps summarizes the query algorithm.

1. Find the point pymax as described in the query algorithm of Section 3.1
2. Find the point pxmax using 1D RMQ
3. Number of maximal points of q = level[pymax] - level[pxmax] + 1

We now conclude this subsection by stating the following theorem.

272 A.K. Kalavagattu et al.

Theorem 5. Given a set P of n points in R2, we can preprocess P into a linear
space data structure in O(n log n) time such that, given a 3-sided orthogonal
query q = [xl,∞]× [yl, yh], we can count the number of maximal points of P ∩ q
in time O(log n).

5.2 4-Sided Range Maxima Counting Queries

We preprocess the point set P as explained in Section 4.2, except that we do not
compute the sparse table jmp. The tree is a standard layered range tree, with
the following additional preprocessing.

1. Fractional cascading among the secondary arrays at each node, having points
sorted by y-coordinate values. Using this we can binary search for the query
bounds on y-coordinate in the root and find the point with maximum y-
coordinate in each of the canonical nodes in total time O(log n).

2. Each of the secondary arrays is also preprocessed for 1D range maximum
queries (RMQ) such that, given two indices in a secondary array, we can
find the point with the maximum x-coordinate in constant time, using linear
space at each node.

3. Along with the nxt pointers for the points at each node, we also compute
the level values, as explained in the previous section.

For the query algorithm, given an orthogonal query rectangle q = [xl, xr] ×
[yl, yh], we proceed similar to that of Section 4.2, but instead of the O(log n) com-
putations using jmp table, we find the points pymax and pxmax inside q in each
of the canonical nodes from right to left, and sum up the counts (level[pymax] -
level[pxmax] + 1).

We now conclude this subsection by stating the following theorem.

Theorem 6. Given a set P of n points in R2, we can preprocess P into a data
structure of size O(n log n) in time O(n log n) such that, given an orthogonal
query rectangle q = [xl, xh]× [yl, yh], we can count the number of maximal points
of P ∩ q in time O(log n).

6 Remarks

We proposed data structures for counting the number of maximal points and
also reporting the maximal points in an orthogonal query range. Using the in-
formation stored in the table jmp, we can find the kth maximal point in the
decreasing order of y-coordinate value, in time O(log n). Computing the nxt
points with respect to the set P allow us to report the maximal points of P ,
starting from any other point. So the methods proposed can be easily extended
to various other applications like, reporting the k maximal points in the mid-
dle, reporting every kth maximal point starting from the first maximal point
etc., which can be treated as sample of the skyline points in the query range.

On Counting Range Maxima Points in Plane 273

The rectangular visibility query problem can be solved using four 4-sided range
maxima structures [7]. Our data structure described in Section 5.2 can be used
to find the number of rectangularly visible points from a given query point in
O(log n) time.

7 Conclusion

In this work, we studied the problem of reporting and counting maximal points in
a given orthogonal query range, in the pointer machine model. We restricted the
point set to static two-dimensional points. It will be interesting to see dynamic
range maxima counting in plane and counting range maxima in dimensions more
than two.

References

1. Bentley, J.L.: Multidimensional divide-and-conquer. Communications of the
ACM 23(4), 214–229 (1980)

2. JáJá, J., Mortensen, C.W., Shi, Q.: Space-Efficient and Fast Algorithms for Mul-
tidimensional Dominance Reporting and Counting. In: Fleischer, R., Trippen, G.
(eds.) ISAAC 2004. LNCS, vol. 3341, pp. 558–568. Springer, Heidelberg (2004)

3. Chan, C.-Y., Jagadish, H.V., Tan, K.-L., Tung, A.K.H., Zhang, Z.: Finding k-
dominant skylines in high dimensional space. In: Proceedings of the ACM SIGMOD
International Conference on Management of Data (2006)

4. Kung, H.T., Luccio, F., Preparata, F.P.: On finding the maxima of a set of vectors.
Journal of the ACM 22(4), 469–476 (1975)

5. Frederickson, G.N., Rodger, S.H.: A New Approach to the Dynamic Maintenance
of Maximal Points in a Plane. Discrete & Comp. Geom. 5, 365–374 (1990)

6. Janardan, R.: On the Dynamic Maintenance of Maximal Points in the Plane. In-
formation Processing Letters 40(2), 59–64 (1991)

7. Brodal, G.S., Tsakalidis, K.: Dynamic Planar Range Maxima Queries. In: Aceto,
L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6755, pp. 256–267.
Springer, Heidelberg (2011)

8. Kalavagattu, A.K., Das, A.S., Kothapalli, K., Srinathan, K.: On Finding Skyline
Points for Range Queries in Plane. In: Proceedings of 23rd Canadian Conference
on Computational Geometry (CCCG), pp. 343–346 (2011)

9. Bayer, R.: Symmetric Binary B-Trees: Data Structure and Maintenance Algo-
rithms. Acta Informatica 1, 290–306 (1972)

10. Sarnak, N., Tarjan, R.E.: Planar point location using persistent search trees. Com-
munications of the ACM 29, 669–679 (1986)

11. Das, A.S., Gupta, P., Kalavagattu, A.K., Agarwal, J., Srinathan, K., Kothapalli,
K.: Range Aggregate Maximal Points in the Plane. In: Rahman, M. S., Nakano, S.-i.
(eds.) WALCOM 2012. LNCS, vol. 7157, pp. 52–63. Springer, Heidelberg (2012)

12. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational
Geometry: Algorithms and Applications. Springer (2000) ISBN 3-540-65620-0

13. Yu, C.C., Hon, W.K., Wang, B.F.: Improved Data Structures for Orthogonal Range
Successor Queries. Computational Geometry: Theory and Applications 44, 148–159
(2011)

Indexing Highly Repetitive Collections

Gonzalo Navarro

Dept. of Computer Science, University of Chile
gnavarro@dcc.uchile.cl

Abstract. The need to index and search huge highly repetitive sequence
collections is rapidly arising in various fields, including computational
biology, software repositories, versioned collections, and others. In this
short survey we briefly describe the progress made along three research
lines to address the problem: compressed suffix arrays, grammar com-
pressed indexes, and Lempel-Ziv compressed indexes.

1 Introduction

After a years-long race to sequence the first human genome in the early 2000’s,
sequencing has become a routine activity that costs a few thousand dollars1

and large sequencing companies are producing thousands of genomes per day2.
Maintaining databases of millions of genomes will be a real possibility very soon.
With a storage requirement of about 715 MB per human genome (about 3× 109

bases using 2 bits each), storing, say, one million genomes is perfectly realistic
(around 700 TB). However, sequence analysis tools require indexed access to the
data, where one can carry out pattern searches and mining. Such indexes require
at the very least 50 bits per base (one pointer), raising the 700 TB to more than
16 PB (petabytes). Those sizes, especially if we require fast indexed access to
the data, exceed today’s technological possibilities within reasonable cost.

What makes this challenge affordable is that most of those genomes (if we
assume they belong to the same species, say human) are very similar to each
other — 99.99% similar according to typical figures (although there is some
debate about the exact value). If we were able to index such a collection within
space proportional to the number of differences between the genomes, and not
to their total size, then a one-million genome collection could be indexed within
1.6 TB, which is perfectly feasible. Yet, we still do not know how to do this.

Other scenarios where a set of very similar sequences is indexed and pattern
searches are provided on them are software repositories (where versions form a
tree or graph structure) and versioned document collections (such as Wikipedia
or the Internet Wayback Machine, where versions have a linear structure).

In this short survey we will cover the results achieved on the challenge of
storing and indexing those “highly repetitive” sequence collections. We will focus
on the following scenario, looking for a balance of generality and simplicity that
leads to both useful and algorithmically interesting research:

1 The Guardian Jan 12, 2012, “Company announces low-cost DNA decoding machine”.
2 The New York Times Jan 12, 2011, “DNA sequencing caught in deluge of data”.

S. Arumugam and B. Smyth (Eds.): IWOCA 2012, LNCS 7643, pp. 274–279, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Indexing Highly Repetitive Collections 275

1. The collection has d documents of total length n, where each document is
an arbitrary string of symbols over an alphabet of size σ. This is general
enough to consider DNA, proteins, source code, natural language, etc. Then
the uncompressed data size is n log σ bits (our logarithms are in base 2) and
a classical index requires O(n log n) bits.

2. The collection is repetitive, meaning that most documents can be covered
by a few chunks that appear in other documents. This captures most cases,
in particular those with known linear, tree, etc. version structures as well as
those with unknown version structures like DNA collections. Yet, it leaves
aside special cases such as reverse complemented repetitions that are frequent
in DNA, which must be dealt with separately.

3. We wish to store and index the collection in a way that provides efficient ac-
cess, that is, extracting any substring of any document, and searches, that is,
locating the occurrences of string patterns in the collection. We ignore more
complex searches such as approximate matching, complex pattern matching,
sequence mining, etc. Yet this is challenging enough to leave aside methods
like encoding the differences, which may support access but not searches.

4. We wish to use space proportional to the “repetitiveness” of the collection.
While we seek for techniques that work on any collection without any ex-
plicit structure, we analyze them on a simplified case where there is one
uncompressible base sequence of length � and then d − 1 other sequences
identical to the base one, where s edit operations (single character inser-
tions, deletions, and replacements) have been done on them. Ideally, we
should achieve � logσ+O(s logn) bits of space, as well as search time within
O((m+ occ) polylogn) to find the occ occurrences of a pattern of length m.

2 Compressed Suffix Arrays

The suffix array [18] is a classical structure to support pattern searches. Assume
the d documents are concatenated into a single string T [1, n], using a special
symbol “$” to mark the end of the documents. Each string T [i, n] is called a
suffix and is identified with its starting point i. The suffix array A[1, n] is a
permutation of [1..n] where all the suffixes are listed in lexicographic order. The
occurrences of P [1,m] in T can be seen as the suffixes of T that start with P ,
and these form a contiguous interval of A that can be binary searched in time
O(m log n), where m owes to the time needed to compare P with a suffix of A.

The suffix array uses n logn bits, but can be compressed into O(n log σ) bits
by means of the Ψ function [13,23], Ψ(i) = A−1[(A[i] mod n) + 1], which tells
where the value A[i] + 1 appears in A. With a bitmap D[1, n] that marks the
points in A where the first letter of suffixes change, and a string S[1, σ] noting the
different symbols of T in order, we know that the first letter of suffix T [A[i], n]
is S[rank(D, i)], where rank(D, i) counts the number of 1s in D[1, i]. Moreover,
the second letter is S[rank(D,Ψ(i))], the third is S[rank(D,Ψ2(i))], and so on.
With a preprocessing of D to solve rank in constant time, we can do the binary
search in O(m log n) time using Ψ , S and D, and without A or T .

276 G. Navarro

In principle Ψ would also require n logn bits, but it is shown to be compressible
as it is covered by σ increasing ranges. In fact, those ranges feature a much
richer structure [12,21], which allows one to represent the whole index within
nHk(T) + o(n log σ) bits for any k < logσ n (roughly), where Hk(T) ≤ log σ is
the empirical k-th order entropy of T [19,21]. This is a statistical compressibility
measure sensitive to symbols distribution but blind to long-range repetitions: If
we concatenate two copies of T , its k-th order entropy is 2nHk(TT) ≥ 2nHk(T),
so the space of such compressed indexes simply doubles [16].

What is most interesting for us is that, when the text contains long and
frequent repetitions of a string, long runs of consecutive values appear on Ψ
[10,17]. In our model of s edits, it is shown that Ψ contains � runs of length d
when s = 0, and then each edit breaks, on average (assuming the base text and
the edits are uniformly generated), O(logσ �) runs. As a consequence, Ψ can be
represented using � logσ +O(s logσ � logn) bits on average.

A further problem is that, since we do not store A, knowing the interval of
A given by the binary search is not sufficient to output the occurrence positions
(which would be the content of the cells of A within the range). This can be
done within O(log n) time per occurrence if we use O(n) further bits of space
for sampling the suffix array [23]. Such sampling also provides extraction of any
substring of T of length t in time O(t+log n). While various attempts to reduce
those O(n) bits have been made [17], they have not been successful in practice.
Further, they [17] show that, while LZ78-based compression [25] is poor on highly
repetitive sequences, LZ77-based compression [24] is extremely promising.

3 Lempel-Ziv (LZ77) Compressed Indexes

The compression that most accurately reflects the kind of repetitiveness we wish
to capture is Lempel-Ziv’s, particularly the LZ77 parsing [24]. Here we advance
in T , and at each step generate a new phrase by taking the longest prefix of the
remaining text that has already appeared before in T , plus one further letter.
Let us call z the number of phrases generated by such a parsing. It is not hard
to see that, in our model, it holds z ≤ �/ logσ �+ s.

Extracting an arbitrary substring of T is not easy in an LZ77 parsing. If we
call h ≤ n the “height” of the parse, that is, the maximum number of times a
single character is copied, then a substring of length t is extracted in time O(t h)
(variants that speed this up [16] may produce more phrases than edits).

Searching for patterns yields further complications. An occurrence of P in T
may be split across phrases, that is, a prefix P [1, i] may match a suffix of a phrase,
and the corresponding suffix P [i+1,m] may match a prefix of the concatenation
of the following phrases. Such occurrences cut by a phrase boundary are called
primary, whereas the others are called secondary. The strategy of LZ77-based
indexes [15,16] is to find both types of occurrences with different means.

Let T = Z1 . . . Zz be the partition of T into phrases. For primary occurrences,
we index all reverse phrases Zrev

j and all suffixes starting at phrase boundaries,
ZkZk+1 . . . Zz. Both sets are connected in a grid where the rows correspond

Indexing Highly Repetitive Collections 277

to the lexicographically sorted Zrev
j and the columns to the lexicographically

sorted ZkZk+1 . . . Zz. Points in this grid connect reverse phrases Zrev
j with the

following suffix, Zj+1Zj+2 . . . Zz. At query time, P is partitioned into P [1, i] and
P [i+1,m] in the m−1 possible ways. We find the interval of the reverse phrases
starting with (P [1, i])rev (i.e., phrases ending with P [1, i]) and the interval of the
phrase-aligned suffixes starting with P [i+1,m]. Then each point in the grid in the
intersection of the row and column ranges is precisely one primary occurrence.

For secondary occurrences, a structure to describe which portions of T are
copied where, is used to track copies of areas where primary occurrences appear.
Those copies are secondary occurrences, which must be recursively tracked for
further secondary occurrences, until all are reported.

The most recent index of this family [16] uses O(z logn) bits of space and
can search for P in time O(m2h + (m + occ) logε z), for any constant ε > 0,
if we use the best grid representation that fits in this space [3]. The term m2

owes to the search for all the partitions of P , and the h factor to the time to
extract the phrase prefixes/suffixes when determining the intervals of rows and
columns. The term O(m logε z) refers to the m − 1 range searches on the grid,
and O(occ logε z) to the time to report each point (i.e., primary occurrence) in
the grid. Secondary occurrences take just constant time each. Note that the h
factor is highly undesirable, as it is limited only by n in the worst case.

4 Grammar Compressed Indexes

Grammar compression is a successful approach to factor out repetitiveness in
a text. It derives a context-free grammar that generates (only) T , and such a
grammar can be small if T is repetitive. While finding the smallest grammar that
generates T is NP-complete and popular methods offer poor approximation ra-
tios [22,5], an O(log n) approximation is easy to achieve by converting the LZ77
factorization, which lower-bounds the smallest grammar, into a balanced gram-
mar [22]. A more sophisticated approximation [4] achieves ratio O(log(n/g∗)),
where g∗ is the size of the smallest grammar. We will call g the size (total length
of the rules) of our grammar that generates T , where it holds z ≤ g ≤ z logn.
In our model it is easy to obtain g ≤ �/ logσ �+ s logn. It has been shown that a
grammar representation using O(g logn) bits provides access to any substring of
T of length t in time O(t+ logn) [2], much better than with LZ77 compression.

The concept of primary and secondary occurrences is useful here too. Given
a rule X → ABC . . ., a prefix P [1, i] may match a suffix of the string generated
by A, and the corresponding suffix P [i+1,m] may match a prefix of the string
generated by BC . . ., and thus P will have a primary occurrence inside the string
generated by X . Occurrences of X elsewhere yield secondary occurrences of P .

In the most recent grammar-based compressed index [8], primary occurrences
are handled very much as in LZ77 parsings, by indexing the reverse string gen-
erated by nonterminals and the strings generated by the following sequences of
nonterminals on right hands of the grammar productions. Tracking secondary
occurrences is done by using a pruned version of the parse tree of T , where all

278 G. Navarro

Table 1. Simplified complexities for current approaches to index repetitive collections

Approach Space +� log σ Time +O(occ log n) Extract time

Suffix arrays [17] (avg. space) O(n+ s logσ � log n) O(m log n) O(t+ log n)
Grammar compression [2,8] O(s log2 n) O(m2 +m log n) O(t+ log n)
Lempel-Ziv compression [16] O(s log n) O(m2h+m log n) O(t h)

the nodes labeled by a given nonterminal containing a primary occurrence are
found. To find the text position of an occurrence at a node v, the grammar tree
is traversed upwards from v to the root. Each label (i.e., nonterminal) found
in this upward traversal is a source of further secondary occurrences, and as
such is sought in the tree node labels. The grammar is transformed so that it
is guaranteed that any nonterminal appears at least twice in the tree, and thus
the upward traversal time is amortized with more secondary occurrences.

The resulting structure requires O(g logn) bits of space and supports searches
in time O(m2 + (m+ occ) logε g) for any constant ε > 0 [8].

5 Conclusions

Table 1 summarizes the state of the art in very broad terms. While suffix arrays
offer the ideal search time O((m+occ) logn), they are far from the ideal space of
� logσ + O(s log n), which is offered only by Lempel-Ziv indexes. These in turn
are far from the ideal time complexity, both for searching and for extracting sub-
strings. Grammar compression offers an intermediate space/time tradeoff that
might be attractive. This theoretical picture coincides pretty well with practical
experiences on biological and natural language sequence collections [6,7].

The most obvious challenge ahead is to combine good space and time on
repetitive sequences. For example, a recent development combining grammars
and LZ77 parsing [11] achieves O(m2 + (m + occ) log log z) search time and
O(z logn log log z) bits of space (i.e., slightly superlinear on the LZ77 compressed
size). Other close relatives of LZ77 parsings may also yield interesting indexes in
particular application scenarios [14,20,9]. A further challenge is to support more
complex searches, for example suffix tree functionality [1].

References

1. Abeliuk, A., Navarro, G.: Compressed Suffix Trees for Repetitive Texts. In:
Calderón-Benavides, L., González-Caro, C., Chávez, E., Ziviani, N. (eds.) SPIRE
2012. LNCS, vol. 7608, pp. 30–41. Springer, Heidelberg (2012)

2. Bille, P., Landau,G., Raman, R., Sadakane, K., Rao Satti, S.,Weimann, O.: Random
access to grammar-compressed strings. In: Proc. 22nd SODA, pp. 373–389 (2011)

3. Chan, T., Larsen, K., Patrascu, M.: Orthogonal range searching on the RAM,
revisited. In: Proc. 27th SoCG, pp. 1–10 (2011)

4. Charikar, M., Lehman, E., Liu, D., Panigrahy, R., Prabhakaran, M., Rasala, A., Sa-
hai, A., Shelat, A.: Approximating the smallest grammar: Kolmogorov complexity
in natural models. In: Proc. 34th STOC, pp. 792–801 (2002)

Indexing Highly Repetitive Collections 279

5. Charikar, M., Lehman, E., Liu, D., Panigrahy, R., Prabhakaran, M., Sahai, A.,
Shelat, A.: The smallest grammar problem. IEEE Trans. Inf. Theo. 51(7), 2554–
2576 (2005)

6. Claude, F., Fariña, A., Mart́ınez-Prieto, M., Navarro, G.: Compressed q-gram in-
dexing for highly repetitive biological sequences. In: Proc. 10th BIBE, pp. 86–91
(2010)

7. Claude, F., Fariña, A., Mart́ınez-Prieto, M., Navarro, G.: Indexes for highly repet-
itive document collections. In: Proc. 20th CIKM, pp. 463–468 (2011)

8. Claude, F., Navarro, G.: Improved Grammar-Based Compressed Indexes. In:
Calderón-Benavides, L., González-Caro, C., Chávez, E., Ziviani, N. (eds.) SPIRE
2012. LNCS, vol. 7608, pp. 180–192. Springer, Heidelberg (2012)

9. Do, H.-H., Jansson, J., Sadakane, K., Sung, W.-K.: Fast relative Lempel-Ziv self-
index for similar sequences. In: Proc. FAW-AAIM, pp. 291–302 (2012)

10. Fischer, J., Mäkinen, V., Navarro, G.: Faster entropy-bounded compressed suffix
trees. Theor. Comp. Sci. 410(51), 5354–5364 (2009)

11. Gagie, T., Gawrychowski, P., Kärkkäinen, J., Nekrich, Y., Puglisi, S.J.: A Faster
Grammar-Based Self-index. In: Dediu, A.-H., Mart́ın-Vide, C. (eds.) LATA 2012.
LNCS, vol. 7183, pp. 240–251. Springer, Heidelberg (2012)

12. Grossi, R., Gupta, A., Vitter, J.: High-order entropy-compressed text indexes. In:
Proc. 14th SODA, pp. 841–850 (2003)

13. Grossi, R., Vitter, J.: Compressed suffix arrays and suffix trees with applications
to text indexing and string matching. SIAM J. Comp. 35(2), 378–407 (2006)

14. Huang, S., Lam, T.W., Sung, W.K., Tam, S.L., Yiu, S.M.: Indexing Similar DNA
Sequences. In: Chen, B. (ed.) AAIM 2010. LNCS, vol. 6124, pp. 180–190. Springer,
Heidelberg (2010)

15. Kärkkäinen, J.: Repetition-Based Text Indexing. PhD thesis, Dept of Comp. Sci.,
Univ. of Helsinki, Finland (1999)

16. Kreft, S., Navarro, G.: On compressing and indexing repetitive sequences. Theor.
Comp. Sci. (to appear, 2012); Earlier versions in Proc. DCC 2010 and Proc. CPM
2011

17. Mäkinen, V., Navarro, G., Sirén, J., Välimäki, N.: Storage and retrieval of highly
repetitive sequence collections. J. Comp. Biol. 17(3), 281–308 (2010)

18. Manber, U., Myers, E.: Suffix arrays: a new method for on-line string searches.
SIAM J. Comp., 935–948 (1993)

19. Manzini, G.: An analysis of the Burrows-Wheeler transform. J. ACM 48(3), 407–
430 (2001)

20. Maruyama, S., Nakahara, M., Kishiue, N., Sakamoto, H.: ESP-Index: A Compressed
Index Based on Edit-Sensitive Parsing. In: Grossi, R., Sebastiani, F., Silvestri, F.
(eds.) SPIRE 2011. LNCS, vol. 7024, pp. 398–409. Springer, Heidelberg (2011)

21. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Comp. Surv. 39(1),
article 2 (2007)

22. Rytter, W.: Application of Lempel-Ziv factorization to the approximation of
grammar-based compression. Theo. Comp. Sci. 302(1-3), 211–222 (2003)

23. Sadakane, K.: New text indexing functionalities of the compressed suffix arrays. J.
Alg. 48(2), 294–313 (2003)

24. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE
Trans. Inf. Theo. 23(3), 337–343 (1977)

25. Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding.
IEEE Trans. Inf. Theo. 24(5), 530–536 (1978)

Range Extremum Queries

Rajeev Raman

University of Leicester, UK

Abstract. There has been a renewal of interest in data structures for
range extremum queries. In such problems, the input comprises N points,
which are either elements of a d-dimensional matrix, that is, their coor-
dinates are specified by the 1D submatrices they lie in (row and column
indices for d = 2), or they are points in IRd. Furthermore, associated with
each point is a priority that is independent of the point’s coordinate. The
objective is to pre-process the given points and priorities to answer the
range maximum query (RMQ): given a d-dimensional rectangle, report
the points with maximum priority. The objective is to minimze the space
used by the data structure and the time taken to answer the above query.
This talk surveys a number of recent developments in this area, focussing
on the cases d = 1 and d = 2.

1 Introduction

Range searching is one of the most fundamental problems in computer science
with important applications in areas such as computational geometry, databases
and string processing. The range searching problem is defined as follows. The
input is a set S of N points in Rd, where each point is associated with satellite
data, and an associative and commutative aggregation function f defined on the
satellite data. We wish to preprocess the input to create a data structure with
reasonable space usage that answers queries of the following form quickly: given
any axis-aligned d-dimensional rectangle R, return the value of f on the satellite
data of all points in R ∩ S. Researchers have considered range searching with
respect to diverse aggregation functions such as emptiness checking, counting,
reporting, minimum/maximum, etc. [13,18,24]. In general, the aggregation func-
tion is assumed to be decomposable: i.e. for any pair of disjoint sets X,X ′ ⊆ S,
f(X ∪ X ′)1 can be computed in constant time from f(X) and f(X ′). Here, a
distinction can be made between functions f that allow inverses, i.e. allow f(X)
to be computed in constant time from f(X ∪X ′) and f(X ′), and those that do
not (these are said to be in the general semigroup model [13]). In this talk we
will focus on the case where f is the maximum (or symmetrically, the minimum)
function. This aggregation function is the most commonly studied among those
that do not allow inverses. Although the max/min function does not have an
inverse, it has special properties that allow relatively efficient solutions.

1 A slight abuse of notation: f should be defined over the satellite data in the set of
points.

S. Arumugam and B. Smyth (Eds.): IWOCA 2012, LNCS 7643, pp. 280–287, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Range Extremum Queries 281

1.1 Problem Variants

We consider two variants of the problem when d = 2: the 2D array variant, and
the 2D rank space variant.

2D array variant. The input to this problem is a two dimensionalm by n arrayA
of N = m ·n elements from a totally ordered set. We assume w.l.o.g. that m ≤ n
and that all the entries of A are distinct. The query rectangle R is specified by
four indices i1, i2, j1, j2 s.t. 0 ≤ i1 ≤ i2 ≤ m − 1 and 0 ≤ j1 ≤ j2 ≤ n − 1,
that is, R = [i1 · · · i2]× [j1 · · · j2]. The response to a query is the position of the
maximum element in the query range, i.e., RMQ(A, q) = argmax(i,j)∈RA[i, j].
See Fig. 1.

2D geometric rank space variant. For simplicity, we focus on the case where the
points are in rank space. the x-coordinates of the N points are N = {0, . . . , N −
1}, and the y-coordinates are given by a permutation υ : [N] → [N], such that
the points are (i, υ(i)) for i = 0, . . . , N − 1. The priorities ofthe points are given
by another permutation π such that π(i) is the priority of the point (i, υ(i)).
The query rectangle R is specifed by two points from [N]× [N] and includes the
boundaries. If the original and query points are points in R2, then the problem
can be reduced to a problem in rank space in O(lgN) time with a linear space
structure [18,13]. Observe that in the 1D case, the geometric rank space and
array variants coincide.

8

9

4

6

1

3

2

7

5

8

9

4

6

1

3

2

7

5

59

24

80

48

 9

37

17

12

76

11

37

25

36

20

38

 3

85

 5

90

96

63

59

79

30

97

82

50

53

95

57 79

68

9524

80

48

 9

37

17

12

76

11

37

25

36

20

38

 3

85

 5

90

96

63

59

79

30

97

82

50

53

57 79

68

59

Fig. 1. Geometric 2D RMQ: a 4-sided query (top left) and a 2-sided query (top right);
the hollow point is the one that is reported as the answer to the query. Array 2D RMQ:
a 4-sided query (bottom left) and a 2-sided query (bottom right); the circled entry is
the one reported as the answer to the query.

282 R. Raman

The algorithms we give will sometimes decompose the given problem into sub-
queries which are (apparently) simpler, namely 2-sided and 3-sided queries. In
general a 2-sided query only directly specifies two sides of the rectangle, the other
two being specified by a boundary of the region spanned by the input (see Fig. 1).
A 3-sided query only directly specifies three sides of the rectangle, the remaining
one being specified by a boundary of the region spanned by the input. In the
geometric case, a 2-sided query may be specified by a point p = (px, py), and
the query will return the point with maximum priority point among all points
with x-coordinate ≤ px and y-coordinate ≥ py (or any of the three symmetric
alternatives (≤ px,≤ py), (≥ px,≤ py) and (≥ px,≥ py)).

1.2 Models and Measures

In both the above problems, the model of computation assumed for proving
upper bounds is the the word-RAM model with word size Θ(lgN) bits2. In all
cases, we are given the input, and we wish to pre-process the input to create a
data structure, that can answer the desired query. A few measures can be used
compare solutions: (a) the time (and space) used to create the data structure
(the preprocessing time/space) (b) the time taken to answer a query, after pre-
processing and (c) the space taken by the data structure. Our focus is firstly on
(c) and secondarily on (b) — we are usually not concerned with (a). We consider
three separate ways to measure the space usage.

General model. In this model we consider just the overall space used by the
data structure, which includes a representation of the input plus any additional
information that the data structure uses to answer queries. This is the least
restrictive model.

Indexing model. In this case, we consider separately the space used for the input
and the data structure. The input is considered to be stored “remotely” in some
kind of read-only memory and is accessible through an access operation. In this
case, the data structure is called an index, or succinct index. There are several
motivations for differentiating the extra space used by the data structure from
the input. One motivation is technological — it is increasingly the case that
data is stored remotely (e.g. “storage as a service”) and is relatively expensive
to access. In this case, the index, if it is significantly smaller than the input, may
be stored in a computer’s local storage, while the input may be stored remotely.
A well-designed index will provide a good trade-off between the amount of local
storage space required and the number of accesses to remote memory. Other,
more algorithmic, motivations are discussed by Barbay et al. [3]. Clearly, an
index is only interesting if it requires asymptotically less space than the input.
Thus, the indexing model is more constrained than the general model.

The access operation can be of several kinds. For example, in the matrix
version of the problem, we access the entries of the original matrix. In the geo-
metric version of the problem, we consider that the point coordinates are stored

2 lg x = log2x.

Range Extremum Queries 283

remotely, and the access function is an orthogonal range-reporting query, which
reports the coordinates of all points that lie within a query rectangle.

Encoding model. In this case, the input data is pre-processed and an encoding
E is created. Once the encoding E is created, the input is no longer accessible
and all queries have to be answered using E alone. Again, clearly, an encoding
is interesting only if it requires aysmpotically less space than the input. Having
an encoding E of the input that takes less space than the input itself may seem
contradictory at first. If it is possible to deduce the input by performing queries
on E, then in general interesting encodings do not exist. However, if it is not
possible to deduce the input by asking queries from E, then we can (effectively)
partition all possible inputs into equivalence classes such that each member of
the equivalence class gives the same answer to all possible queries, and only
indicate in which equivalence class our given input lies. If this takes significantly
less memory than storing the entire input, we say that the effective entropy [20]
of the problem is low. The encoding model is the most constrained of the three
memory models we consider.

The encoding model is useful when the access operation is too expensive to
use. It can also be used when say (part of) the input is generated randomly and
has no particular intrinsic signficance. For example Kaplan et al. [22] show that
performing RMQs using random priorities leads to interesting data structures
for approximate higher-dimensional geometric queries.

2 1D Array Case

In the 1D case, the geometric and array variants coincide, and the problem seems
to be well-understood. In the encoding model, it is known that any encoding must
be of size at least 2N−O(lgN) bits [28,16], and this bound is tight. Observe that
the input cannot be reconstructed by asking RMQ queries: if the input array is
A[1..N] and the maximum element is in position i, then we cannot determine
the relative ordering of any elements A[j] and A[k], where j < i < k, by means
of RMQ queries. Furthermore, there are data structurs that encode an array in
2N+o(N) bits so that 1D RMQs can be answered in O(1) time after O(N)-time
preprocessing [16,14]. In the indexing model, Brodal et al. [8] showed that an
index of size O(N/c) bits suffices to answer queries in O(c) time, and that this
trade-off is optimal.

3 2D Array Case

After the initial consideration of this problem by Chazelle and Rosenberg [12],
motivated by the rapid increase of applications of 1D RMQ, Amir et al. restarted
the investigation of 2D RMQ [1]. In particular, they asked in what ways the 2D
and 1D RMQ problems differ, and the answer turns out to be relatively complex.

284 R. Raman

Table 1. Space/time tradeoffs for 2D range maximum searching in the word RAM

Citation Space (in words) Query time

Gabow et al. [19] O(N lgN) O(lgN)

Chazelle’88 [13] O(N lgε N) OlgN

Chan et al.’10 [10] O(N lgε N) Olg lgN

Karpinski et al.’09 [23] O(N(lg lgN)O(1)) O(lg lgN)2

Chazelle’88 [13] O(N lg lgN) O(lgN lg lgN)

Chazelle’88 [13] O(1
ε
N) O(lg1+ε N)

Farzan et al. [8] O(N) O(lgN lg lgN)

– In the indexing model, Brodal et al. [8], building upon Atallah and Yuan’s [2]
earlier result, showed that there is an index that answers 2D RMQs in O(1)
time, using O(N) bits, and that can be constructed in O(N) preprocessing
time. Thus, in this model, 1D and 2D RMQs are equivalent.

– In the encoding model, Demaine et al. [15] showed that, unlike 1D RMQ,
non-trivial (size o(N lgN) bits) encodings for 2D RMQs do not exist for
square n × n matrices. Generalizing Demaine et al.’s result, Brodal et al.
showed that for general m×n matrices with m ≤ n, any encoding must take
Ω(N lgm) bits, which is o(N lgN) bits if m . n, and complemented this
with an encoding of O(Nm) bits. Golin et al. [20] showed that for random
A, the expected size of an encoding is Θ(N) bits (Golin et al. also showed
that the expected size of an encoding in the random 1D case is Θ(N) bits).
Thus, in the encoding model, 1D and 2D RMQs are not equivalent except
in special cases.

– Coming back to the indexing model, Brodal et al. [8] showed that with an
index of size O(N/c) bits, Ω(c) query time is needed to answer queries, and
gave an index of size O(N/c) bits that answered queries in O(c lg2 c) time.
Brodal et al. [7] gave an index of size O(N/c) bits that takes O(c lg c(lg lg c)2)
query time, thus improving the time-space tradeoff, but there still remains
a gap with the 1D RMQ case.

4 2D Geometric Case

Existing results on this problem are summarised in Table 1. All of this work
is in the general model (note that all of the space bounds given in Table 1 are
Ω(N lgN) bits, so are uninteresting in the index or encoding models). Gabow et
al. [19], basing their approach on the classic range tree [5] gave a solution that
took O(N lgN) words of space. Chazelle [13] used ideas similar to the wavelet
tree [17] in order to break through the N lgN space barrier. He gave a number
of trade-offs, some of which were improved by Chan et al. [23,10]. Nekrich [25]
gives a nice survey of much of this work. These approaches, however, do not
seem to be able to achieve space below O(N lg lgN) words.

However, obtaining linear space (O(N) words) space is an important objective
in geometric data structures. Data structures with non-linear space usage but

Range Extremum Queries 285

good worst-case query times are rarely preferred in practice to space-partioning
methods such as quadtrees and k-D trees, which have linear space usage (but
poor worst-case query time). Chazelle’s linear-space data structure used O(1εN)

words with a query time O(lg1+ε N) for any fixed ε > 0. Farzan et al. [8] recently
gave a linear-space data structrue with O(lgN lg lgN), or “almost” logarithmic,
query time. Farzan et al.’s data structure uses a number of results on 2D queries
of various kinds including range counting [21] range reporting [10], range selec-
tion [9] and in fact even the 2D array RMQ results of [8,2]. However, it adds two
new ingredients.

As with many other solutions to range-searching problems, the solution of
Farzan et al. breaks the given 4-sided query into 2-, 3- and 4-sided sub-queries.
The first new contribution of Farzan et al. is to note that to answer 2-sided range
maxima queries on a problem of size m, one need not store the entire total order
of priorities using Θ(m lgm) bits: O(m) bits suffice, i.e., the effective entropy of 2-
sided queries is low. However, this does not help immediately, since the effective
entropy is low only if the point coordinates are known, but storing the point
coordinates themselves would take Θ(m lgm) bits. To circumvent this problem,
Farzan et al. represent these 2-sided problems as succinct indices: these succinct
indices do not store the point coordinates themselves, but are able to access point
coordinates by means of an orthogonal range reporting query. Interestingly, this
component can be viewed as a stand-alone succinct index result for 2-sided 2D
RMQ, and this result was used by Brodal et al. [7] to obtain trade-offs for the
indexing model.

5 Conclusions and Open Problems

We have summarized some of the known results for the 2D RMQ problem, both
its array and geometric variants. A number of questions are still open:

1. What is the precise complexity of encoding 2D array RMQ in the case m.
n?

2. What is the precise trade-off between index size and query time, in the
indexing model, for 2D array RMQ?

3. Can Farzan et al.’s solution for 2D geometric RMQ be improved to take
O(lgN/ lg lgN) time while still using O(N) space (their approach intrinsi-
cally requires Ω(lgN/ lg lgN) time when using O(N) space [26]). Solving
the following combinatorial problem would help:

Given n non-intersecting horizontal lines in 2D and an integer pa-
rameter k, 1 ≤ k ≤ n. Partition the 2D plane into O(n/k) rectangles
such that (a) no rectangle contains more than O(k) lines, or parts of
lines (b) at most O(

√
k) lines cross the boundary of any rectangle.

It is possible to achieve (a) and (b), if the relaxation to rectangular regions
is dropped, via the planar separator theorem (see e.g. [6]). Alternatively, we
can achieve (a) but not (b) using rectangular regions [4,11].

4. Can we solve geometric 2D range maxima in O(N) space and o(lgN/ lg lgN)
time? A lower bound of Ω(lg lgN) follows from [27].

286 R. Raman

References

1. Amir, A., Fischer, J., Lewenstein, M.: Two-Dimensional Range Minimum Queries.
In: Ma, B., Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 286–294. Springer,
Heidelberg (2007)

2. Atallah, M.J., Yuan, H.: Data structures for range minimum queries in multi-
dimensional arrays. In: Proc. 20th Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 150–160. SIAM (2010)

3. Barbay, J., He, M., Munro, J.I., Rao, S.S.: Succinct indexes for strings, binary
relations and multi-labeled trees. In: Bansal, N., Pruhs, K., Stein, C. (eds.) SODA,
pp. 680–689. SIAM (2007)

4. Bender, M.A., Cole, R., Raman, R.: Exponential Structures for Efficient Cache-
Oblivious Algorithms. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M.,
Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 195–207.
Springer, Heidelberg (2002)

5. Bentley, J.L.: Decomposable searching problems. Information Processing Let-
ters 8(5), 244–251 (1979)

6. Bose, P., Chen, E.Y., He, M., Maheshwari, A., Morin, P.: Succinct geometric in-
dexes supporting point location queries. In: Mathieu, C. (ed.) SODA, pp. 635–644.
SIAM (2009)

7. Brodal, G.S., Davoodi, P., Lewenstein, M., Raman, R., Rao, S.S.: Two Dimensional
Range Minimum Queries and Fibonacci Lattices. In: Epstein, L., Ferragina, P.
(eds.) ESA 2012. LNCS, vol. 7501, pp. 217–228. Springer, Heidelberg (2012)

8. Brodal, G.S., Davoodi, P., Rao, S.S.: On space efficient two dimensional range
minimum data structures. Algorithmica 63(4), 815–830 (2012)

9. Brodal, G.S., Jørgensen, A.G.: Data Structures for Range Median Queries. In:
Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 822–831.
Springer, Heidelberg (2009)

10. Chan, T.M., Larsen, K.G., Pătraşcu, M.: Orthogonal range searching on the
ram, revisited. In: Proceedings of the 27th Annual ACM Symposium on
Computational Geometry, SoCG 2011, pp. 1–10. ACM, New York (2011),
http://doi.acm.org/10.1145/1998196.1998198

11. Chan, T.M., Patrascu, M.: Transdichotomous results in computational geometry,
I: Point location in sublogarithmic time. SIAM J. Comput. 39(2), 703–729 (2009)

12. Chazelle, B., Rosenberg, B.: Computing partial sums in multidimensional arrays.
In: Proc. 5th Annual Symposium on Computational Geometry, pp. 131–139. ACM
(1989)

13. Chazelle, B.: A functional approach to data structures and its use in multidimen-
sional searching. SIAM J. Comput. 17(3), 427–462 (1988); prel. vers. FOCS 1985

14. Davoodi, P., Raman, R., Rao, S.S.: Succinct Representations of Binary Trees for
Range Minimum Queries. In: Gudmundsson, J., Mestre, J., Viglas, T. (eds.) CO-
COON 2012. LNCS, vol. 7434, pp. 396–407. Springer, Heidelberg (2012)

15. Demaine, E.D., Landau, G.M., Weimann, O.: On Cartesian Trees and Range Min-
imum Queries. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas,
S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 341–353. Springer,
Heidelberg (2009)

16. Fischer, J., Heun, V.: Space-efficient preprocessing schemes for range minimum
queries on static arrays. SIAM J. Comput. 40(2), 465–492 (2011)

17. Foschini, L., Grossi, R., Gupta, A., Vitter, J.S.: When indexing equals compres-
sion: Experiments with compressing suffix arrays and applications. ACM Trans.
Algorithms 2(4), 611–639 (2006)

http://doi.acm.org/10.1145/1998196.1998198

Range Extremum Queries 287

18. Gabow, H.N., Bentley, J.L., Tarjan, R.E.: Scaling and related techniques for geom-
etry problems. In: Proc. 16th Annual ACM Symposium on Theory of Computing,
pp. 135–143. ACM (1984)

19. Gabow, H.N., Bentley, J.L., Tarjan, R.E.: Scaling and related techniques for geom-
etry problems. In: Proc. 16th Annual ACM Symposium on Theory of Computing,
pp. 135–143. ACM (1984)

20. Golin, M., Iacono, J., Krizanc, D., Raman, R., Rao, S.S.: Encoding 2D Range
Maximum Queries. In: Asano, T., Nakano, S.-I., Okamoto, Y., Watanabe, O. (eds.)
ISAAC 2011. LNCS, vol. 7074, pp. 180–189. Springer, Heidelberg (2011)

21. JáJá, J., Mortensen, C.W., Shi, Q.: Space-Efficient and Fast Algorithms for Mul-
tidimensional Dominance Reporting and Counting. In: Fleischer, R., Trippen, G.
(eds.) ISAAC 2004. LNCS, vol. 3341, pp. 558–568. Springer, Heidelberg (2004)

22. Kaplan, H., Ramos, E., Sharir, M.: Range minima queries with respect to a ran-
dom permutation, and approximate range counting. Discrete & Computational
Geometry 45(1), 3–33 (2011)

23. Karpinski, M., Nekrich, Y.: Space Efficient Multi-dimensional Range Reporting.
In: Ngo, H.Q. (ed.) COCOON 2009. LNCS, vol. 5609, pp. 215–224. Springer, Hei-
delberg (2009)

24. Mehta, D.P., Sahni, S. (eds.): Handbook of Data Structures and Applications.
Chapman & Hall/CRC (2009)

25. Nekrich, Y.: Orthogonal range searching in linear and almost-linear space. Comput.
Geom. 42(4), 342–351 (2009)

26. Patrascu, M. (data) structures. In: FOCS, pp. 434–443. IEEE Computer Society
Press (2008)

27. Patrascu, M., Thorup, M.: Time-space trade-offs for predecessor search. In: Klein-
berg, J.M. (ed.) STOC, pp. 232–240. ACM (2006)

28. Vuillemin, J.: A unifying look at data structures. Communications of the
ACM 23(4), 229–239 (1980)

Design and Analysis of a Tree-Backtracking

Algorithm for Multiset and Pure Permutations

Ray Jinzhu Chen1, Kevin Scott Reschke2, and Hailong Hu3

1 Fast Switch, Dublin, OH USA
rchen@dataverify.com

2 Department of Computer Science, Stanford University, Stanford, CA, USA
3 Software School, Xiamen University, Xiamen, China

Abstract. A tree-backtracking-based technique, permutation tree gen-
eration with Anterior-items-in-an-array for Remaining Distinct Elements
(ARDE), is introduced for multiset and pure permutations. We ana-
lyze the algorithm at the assembly level and obtain its time formula for
pure permutations. We mathematically prove that our time formula
is 11.5% faster than the corresponding formula of the previous fastest
algorithm for pure permutations for any length N > 3. We also offer
related source codes and executable files on our web site for others to
use.

Keywords: tree-backtracking, tree generation, multiset permutation.

1 PureARDE Pure Permutation Tree (See Fig. 1 and 2)

Without loss of generality, here we consider N distinct elements numbered
0, 1, · · · , N − 1.

Definition 1. (Permutation array a) a[] = {a[0], a[1], · · · , a[N − 1]} is the
integer array used for receiving and storing the output permutation.

Definition 2. (“PureARDE Permutation Tree Structure”) A PureARDE Per-
mutation Tree is a pure permutation generation tree. A node value exists inside
the node. A node value at level p indicates a[p]. A path from any leaf to the root
is a permutation a[] = {a[0], a[1], · · · , a[N − 1]}.

Definition 3. (Position and tree level variable, p) p represents the current po-
sition in a[] as well as the current node level in the permutation tree.

Definition 4. (Next position variable np) np(np = p − 1) is the next position
to be processed in a[].

Definition 5. (“Remaining positions”) The remaining positionsnp, np−1, · · · , 1, 0
are the positions that we have not processed for the current output.

S. Arumugam and B. Smyth (Eds.): IWOCA 2012, LNCS 7643, pp. 288–292, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Design and Analysis of a Tree-Backtracking 289

Definition 6. (Remaining elements r) Multiset r is comprised of the remaining
elements for the remaining positions.

Definition 7. (RDE: Remaining Distinct Elements) The set RDE is com-
prised of the remaining distinct elements for the remaining positions. For pure
permutation, RDE = r, since there are no duplicated elements in r.

Definition 8. (Distinct integer array d) d[] = {d[0], d[1], · · · , d[N − 1]} is the
distinct integer array used to track RDE. We use the anterior items in d[] to
dynamically represent the current RDE.

Definition 9. (PureARDE: Pure-permutation Anterior-items-in-an-array for
RDE) We always keep the RDE for a node at tree level p as the first p(p = np+1)
items, d[0], d[1], · · · , d[np] of d[]. We call the items PureARDE. In Fig. 1, the
PureARDE are the underlined elements in d[] for each node. Note: PureARDE
can be directly referred to in d[] by the first np+ 1 indices in a loop to quickly
generate nodes and to backtrack. Fig. 2 shows the C code.

290 R.J. Chen, K.S. Reschke, and H. Hu

2 ARDE Multiset Permutation Tree (See Fig. 3 and 4)

Definition 10. (Variable k) Integer variable k indicates the number of remain-
ing distinct integers to fill the remaining positions a[np], a[np− 1], · · · , a[0].

Definition 11. (Variable k1) We use variable k1 to store the value of k − 1.

Definition 12. (ARDE: Anterior-items-in-an-array for RDE) In multiset per-
mutation, we always keep the RDE for a node at tree level p as the first k(k =
k1 + 1) items, d[0], d[1], · · · , d[k1], of d[]. We call the items ARDE. In Fig. 3,
the ARDE are the underlined elements in d[] for each node.

Definition 13. (c[]) Integer array c[] is used to dynamically record the current
counts of the integers in ARDE. (In Fig. 3, the current counts are the underlined
items in c[]).

3 Assembly Level Analysis (See Fig. 5, 6 and 7)

Sedgewick [3] showed that assembly level analysis is required to compare pure
permutation algorithms fairly. In this section, we analyze PureARDE at as-
sembly level with MMIXAL [2] and compare it with the fastest known pure
permutation in [4] (we call it Sedgewick02).

The PureARDE MMIXAL code in Fig. 7 refers to the improved PurePerm(int
np) in [1]. We use P to represent the number of times that PurePerm procedure
(line 40) is called (see Fig. 1, 6 and 7). PurePerm is called when np � 3, therefore

P =
∑N

j=4(nodes at tree level p = j) = 1+N+N(N−1)+N(N−1) (N − 2)+

...+N∗...∗6∗5 = N !
∑N

k=4 1/k! =
N !(e− 1− 1/1!− 1/2!− 1/3!)�. That is, P =

0.051615N !�. We use F to represent the number of times that npGt3 (line 93)
is executed (see Fig. 6). Line 93 is called by PurePerm procedure when np > 3,

Design and Analysis of a Tree-Backtracking 291

therefore F =
∑N

j=5(nodes at tree level p = j) = 1 +N +N(N − 1) +N(N −
1) (N − 2) + ... +N ∗ ... ∗ 6 = N !

∑N
k=5 1/k! =

⌊
N !(e − 1− 1

1! −
1
2! −

1
3! −

1
4!)
⌋
.

That is, F =
0.009949N !�.
Similar to [3], we add one column next to the MMIXAL code for the cor-

responding C code, and one more column for the time spent on the line. As
Sedgewick [3] did, we exclude the time for the Output() call since it is the same
for all algorithms. Each line cost equals (the MMIXAL command execution time)
* (the number of the times the line is executed), based on Fig. 1, 5, and 6.

– Based on the definition of P, line 40 costs υP since each CMP costs υ.
– Based on the definition of F, line 93 costs υF since each GET costs υ.
– In line 41, condition np > 3 happens the same number of times as line 93

does. So the BP, based on MMIXAL rules, costs υP+2υF.
– Lines 43 to 46 happen at tree level p = 3. So they happen N!/ 24 times since

there are N!/ 24 nodes for s = 3 at level p = 3.
– The lines from 48 to 73 are executed N !/6 times, once for each time we have

to directly output the last three elements. Each LDB or STB costs μ+υ, so
each line costs (μ+υ)N !/6. We do not calculate Output() time for any of
the algorithms since they are all the same.

292 R.J. Chen, K.S. Reschke, and H. Hu

– In line 76, condition s = 0 at tree level p = 3 happens N !/24 times, so the
BZ line, based on MMIXAL rules, costs υN !/6+2υN !/24 = υ(6N !/24).

– Lines 78-83 happen 3N !/24 times when s > 0 at tree level p = 3.
– Lines 84-85 happen N !/24 times when s = 0 at tree level p = 3.
– Lines 94-98 happen F times as line 93 does.
– Line 103 happens for each PurePerm call except for the calls from lines 26

and 97. So line 103 happens P -1-F times. Therefore, lines 99 to 105 happen
P -1-F times.

– Lines 107 and 108 happen F times as line 93 does.
– Line 106 happens the same number of times as line 105 does. The number of

times that s � 0 happens equals the number of times that line 105 happens
minus the number of times that line 107 happens, which is F. Therefore,
the PBNN line, based on MMIXAL rules, costs 3υ(P -1-F)-2υ(P -1-F -F) =
υ(P -1+F).

After assessing the time for each line, we obtain the time formula for PureARDE:

PureARDE Time(N) = {Sum of the executing time of lines from line 40 to 108}
= (10P+6F+96N !/24-8)υ + (4P+79N !/24-2F -4)μ ≈ 4.5758N !υ +3.4782N !μ.
Based on [1, 3, 4], for N ≥ 4,
Sedgewick02 Time(N) = {Sum of the executing time of lines with μ or υ}
= (26N !/6+3AN/6+9BN/6+5N -1)υ + (19N !/6+2BN/6+N -2)μ
≈ 5.575N !υ + 3.406N !μ

We assume, with Sedgewick [3], that “instructions which reference data in
memory take two time units, while jump instructions and other instructions
which do not reference data in memory take one time unit.” So, μ+υ = 2υ.
Therefore μ = υ and Sedgewick02 Time(N)/PureARDE Time(N) = 1.115.

References

1. Chen, R.J., Reschke, K.S., Tong, M.: Code of evaluation and comparison for multiset
permutations (2010),
http://software.xmu.edu.cn/View/ArticleShow.aspx?aid=3108

2. Knuth, D.E.: MMIX: A RISC Computer for the New Millennium. In: The Art of
Computer Programming. Fascicle, vol. 1. Addison-Wesley, Co., Inc., Reading (2005)

3. Sedgewick, R.: Permutation generation methods. ACM Computing Surveys
(CSUR) 9, 137–164 (1997)

4. Sedgewick, R.: Permutation generation methods. Dagstuhl Workshop on Data Struc-
tures, Wadern, Germany (2002),
http://www.cs.princeton.edu/~rs/talks/perms.pdf (accessed March 22, 2009)

http://software.xmu.edu.cn/View/ArticleShow.aspx?aid=3108
http://www.cs.princeton.edu/~rs/talks/perms.pdf

GRP CH Heuristic for Generating Random

Simple Polygon

Sanjib Sadhu, Subhashis Hazarika, Kapil Kumar Jain, Saurav Basu,
and Tanmay De

Department of Computer Science and Engineering,
National Institute of Technology, Durgapur
{sanjibsadhu411,hsubhashis,jainkkapil,
saurabh.basu.cs,tanmoydeynitd}@gmail.com

Abstract. A heuristic ‘GRP CH’ has been proposed to generate a ran-
dom simple polygon from a given set of ‘n’ points in 2-Dimensional plane.
The “2-Opt Move” heuristic with time complexity O(n4) is the best
known (referred in [1]) among the existing heuristics to generate a simple
polygon. The proposed heuristics, ‘GRP CH’ first computes the convex
hull of the point set and then generates a random simple polygon from
that convex hull. The ‘GRP CH’ heuristic takes O(n3) time which is less
than that of “2-opt Move” heuristic. We have compared our results with
“2-Opt Move” and it shows that the randomness behaviour of ‘GRP CH’
heuristic is better than that of “2-Opt Move” heuristic.

Keywords: Simple polygon, Convex Hull,Visibility of a line segment.

1 Introduction

There are several importances of generating a simple polygon randomly from a
given set of points, e.g. verifying time complexity for geometric algorithm and
generating the test instances of geometric problem. In this paper, our attempt is
to generate randomly a simple polygon from a set S={s1,s2,. . .,sn} of n points
which lie on a 2-dimensional plane.

Although there exists a lot of heuristics to generate a random polygon from
n points, still it is an open problem to generate it uniformly at random, i.e.
generating a polygon with probability (1j) if there exists j simple polygons on
set S in total. We have designed a new heuristic which generate a large number
of unique random polygons than the existing heuristic and also with less time
complexity. Our heuristic is based on the construction of convex hull of point
set and the visibility of a line segment from a point.

A polygon P is said to be simple[7] if it does not contain any hole and no
edges of it intersect with each other, except that neighbouring edges meet only
at their common end point known as vertices of the polygon.

A subset S of the plane is called convex[7] if and only if for any pair of points
p, q ∈ S the line segment l(p, q) is completely contained in S. The Convex Hull
CH(S) of a point set S is the smallest convex set that contains S.

S. Arumugam and B. Smyth (Eds.): IWOCA 2012, LNCS 7643, pp. 293–302, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

294 S. Sadhu et al.

An edge e(u, v) of a simple polygon is said to be fully visible from a point
r if and only if both the end points u & v of the edge e are visible [6] to the
point r.

In this paper, we have designed a new heuristic known as “GRP CH” for
generating a random simple polygon from a set of n points and this runs with
time complexity O(n3). Since the “2-Opt Move” heuristic[1] is the best known
(referred in [1]) among the existing heuristics with time complexity O(n4) to
generate a simple polygon, we have compared our result with that of “2-Opt
Move” heuristic. Our result shows that the randomness behaviour of “GRP CH”
heuristic is much better than that of “2-Opt Move” heuristic.

This paper is organized as follows: In Section 2, the existing heuristics are
described. Section 3 deals with detailed description of our proposed heuris-
tic “GRP CH”. In Setion 4 results are discussed. We conclude our paper in
Section 5.

2 Literature Survey

From 1992, the generation of geometric objects became an interesting research
topic to the researchers. Epstein[3] studied random generation of triangulation.
Zhu[5] designed an algorithm to generate an x-monotone polygon on a given
set of vertices uniformly at random. A heuristics for generating simple polygons
was investigated by ORourke et. al.[2] in 1991. However, the vertices move while
creating a polygon in their algorithm. The 2-Opt Moves heuristic was first pro-
posed to solve the traveling salesman problem by J.van Leeuwen et. al.[4] In 1996,
Thomas Auer et. al.[1] presented a study of all heuristics present at that time and
reported a variety of comparison among them. There implementations are now
part of RANDOMPOLYGONGENERATOR, RPG which is publicly available
via http://www.cosy.sbg.ac.at/~held/projects/rpg/rpg.html. The exist-
ing heuristics for random polygon generating simple polygon are discussed below:

– Permute & Reject
“Permute & Reject” has been designed by Thomas Auer et. al[1]. The al-
gorithm creates a permutation of S and check whether this permutation
corresponds to a simple polygon. If the polygon is simple then it is output;
otherwise a new polygon is generated. Obviously, the actual running time of
this method mainly depends on how many polygons need to be generated in
order to encounter a simple polygon. Clearly, “Permute & Reject” produce
all possible polygons with a uniform distribution, but this algorithm is not
applicable to anything but extremely small set of points.

– Space partitioning
To generate a random simple polygon Thomas Auer et. al.[1] designed “Space
partitioning” algorithm which recursively partitions a set of point S into
subsets and those subsets have disjoint convex hulls. The algorithm has been
described in detail in [1]. In the worst case, this algorithm takes O(n2) time.
Unfortunately, Space Partitioning does not generate every possible polygon
on S.

http://www.cosy.sbg.ac.at/~held/projects/rpg/rpg.html

GRP CH Heuristic for Generating Random Simple Polygon 295

– Steady Growth
“Steady Growth” has also been designed by Thomas Auer et. al. [1]. As
initialization, Steady Growth randomly select three points s1, s2, s3 from
the set S such that no other point of S lies within convex hull, CH(s1, s2,
s3). This convex hull is taken as a start polygon. In each of the following
iteration steps a point s is chosen in such a way that by appending s to
the polygon, it’s convex hull again does not contain any further points of
the point set. Then an edge (u,v) of the polygon that is completely visible
from s is searched and replaced by the chain (u,s,v). This way the polygon
is extended with the point s. By using “Steady Growth”, one can compute
a simple polygon in at most O(n2) time. Unfortunately “Steady Growth”
does not generate every possible polygon on S.

– 2-Opt Move
Although Zhu et al.[5] gave the idea of “2-Opt Move” first, it was designed
by Thomas Auer et. al.[1] in 1992. This algorithm first generates a random
permutation of S, which again is regarded as the initial polygon P. Any self
intersections of P are removed by applying so called “2-Opt Move”. Every
“2-Opt move” replaces a pair of intersecting edges (vi,vi+1), (vj ,vj+1) with
the edges (vj+1,vi+1) and (vj ,vi) as shown in Fig1. In this application, at
each iteration of the algorithm one pair of intersecting edge is chosen at
random and the intersection is removed. Leeuwen et al.[4] has shown that

vi

vj

vi+1vj+1

vi

vj

vi+1vj+1

Fig. 1. An example of a 2-opt move

for obtaining a simple polygon, at most O(n3) many “2-Opt move” required
to be applied. Thus, an overall time complexity of O(n4) can be achieved.
The “2-Opt Move” heuristic will produce all possible polygons, but not with
a uniform distribution[5]. However, this is reported as the best heuristic[1]
among all the existing ones in the sense that it produces variety of different
simple polygons from the point set S.

3 Proposed Heuristics

The proposed heuristic GRP CH is a randomized algorithm which generates a
random simple polygon from a set of n points lying on a 2-dimensional plane.

296 S. Sadhu et al.

3.1 Assumption

The point set S lie on a plane in general position that means no three points or
vertices are co-linear. The polygon is represented by clockwise orientation of its
vertices.

3.2 GRP CH Algorithm

The convex hull of the point set S is first constructed by using Graham’s scan[7]
algorithm. Therefore all the remaining points will lie inside the convex hull. This
convex hull is taken as polygon P which will be modified later. Now randomly
select a point vi and find out how many edges of the polygon P are fully visible
from that point vi. Select any of those visible edges randomly, say e(v1, v2).
Therefore, each point as well as each visible edges has equal chance of being
selected. Now connect the two ends (v1, v2) of that edge with the corresponding
point vi and delete that selected edge e(v1, v2) of P . After this, the modified
polygon will remain simple one. Repeat the same procedure for the remaining
points.

Procedure GRP_CH

Input: A set S of points in 2-D Plane.

Output: A simple polygon P with vertex set V

represented in clockwise order.

Begin

Q = CH (S);

// Q is the vertices on the convex hull of the point set S

P’= ConvexHull_Edges(S);

//P’ is set of edges of the convex hull

S = S \ Q ;

while (S is not empty) do

v = Random (S); // randomly select one point from the set S

E = FullyVisibleEdges(P’, m, v);

//m is no of vertices of P’

// E is the set of edges fully visible from the point v

if (E==NULL) then exit;

// simple polygon is not possible in this case

e = Random (E);

// randomly select one edge from the set E

P’ = P’ \ e;

P’ = P’ U {v1, v} U {v, v2};

S = S \ v;

EndWhile

P= P’

End

GRP CH Heuristic for Generating Random Simple Polygon 297

FullyVisibleEdges (P, m, v)

Input: Polygon P with m vertices,

a point v from which visibility is to be checked.

Output: the edge set E, visible from point v.

Begin

E=NULL;

for i=1 to m

if (the two end points of edge Ei are visible from v)

// Edge Ei is visible from point v

E=E U { ei }

Endif

Endfor

Return E

End

The Fig 2 describes the algorithm step by step graphically on a set of 8 points.
The GRP CH algorithm generates all possible polygons that can be generated
from a given set of fixed points. There exists always a sequence in which our
algorithm can construct any simple polygon(which is really possible to draw
using those set of fixed points) from its convex hull.

3.3 Analysis of GRP CH Algorithm

Computation of the convex hull [Graham’s Scan algorithm] takes O(n logn)
time. To find out whether the two lines intersect or not can be implemented in
constant time. So, a particular edge which is visible or not from a point, can be
checked in O(k) time where k is the convex hull edges. Since k≤ n, this time
will be O(n) and hence, the set of edges which are fully visible from a point can
be computed in O(n2) time. The while loop runs over n− k times, hence overall
GRP CH algorithm takes O(n3) time.

3.4 Limitation of GRP CH Algorithm

There may arise a particular situation when there is no fully visible edge of
polygon P for the randomly selected point p as shown in Fig.3. In such cases, our
algorithm cannot generate a simple polygon. We stop and restart our algorithm.
It is less likely that again the same points and the same edges will be selected
in same order like before.

4 Result and Discussion

The “GRP CH” algorithm has been implemented in C++ programming lan-
guage. For random number generation rand() function has been used and this
rand() function belong to standard C library. Our code handles input and output

298 S. Sadhu et al.

p1

p2

p3

p3 p3

(a) Set of 8 points

(c) Edge e1 is selected randomly and removed.
(d)

(e)
(f)

(b) Convex Hull of 8 points. Randomly select point p1 .

e1

Fig. 2. Successive step of the GRP CH heuristic

GRP CH Heuristic for Generating Random Simple Polygon 299

(0, 5)

(40, 10)

(70, 80)

(55, 30)

(130,−20)
(80, 5)

p(55, 15)

Fig. 3. The point p cannot see any edge of the polygon fully. In this instance, the
GRP CH heuristic fails.

in floating point format. Also, all numerical calculations are based on standard
floating point arithmetic. We emphasize that we have not experienced any ro-
bustness problems in use of our code. All other software, hardware specification
given below
Platform:
Operating System (Ubuntu), Ubuntu Release 10.04 (lucid), Kernel Linux 2.6.32-
30-generic,GNOME 2.30.2
Hardware:
Memory : 2.0 GiB, Processor 0 : Intel(R) Core(TM)2 Duo CPU T5550 @ 1.83
GHz, Processor 1 : Intel(R) Core(TM)2 Duo CPU T5550 @ 1.83 GHz
Software:
GNU g++ 4.4.3, CGAL 3.7
Two different series of experiments has been performed:

1. Probability of Success of GRP CH Algorithm
The “GRP CH” algorithm takes the random point set as input. The car-
dinality of point set in each simulation are 5, 10, 15, . . ., 195, 200. Each
simulation consists of 10,000 runs and the position of the point sets remains
unaltered throughout a simulation. However, in next simulation new posi-
tion of the point sets are taken. For each such simulation, a log file has been
generated to count the number of simple polygon generated. It has been ob-
served that the success rate to obtain a simple polygon is 100 percent when
cardinalities of point set is not large. However the success rate of generation
of random simple polygon drops slightly for large point set. This is due to the
limitation of our algorithm (Section 3.4). The Fig 4 shows the probability of
success of generating a random simple polygon from the point set Si.
The Fig 3 shows a set of seven points(along with their co-ordinates) from
which a polygon consisting of six vertices has been generated using “GRP CH”

300 S. Sadhu et al.

heuristic; however in next step the simple polygon will not be generated since
the next point to be selected lies at position (55,15) which is within the “non-
visible-zone” of the generated polygon. For this point set, the “GRP CH”
heuristic has been executed 10,000 times out of which simple polygons are
generated 99,472 times. Therefore, the probability of getting a simple poly-
gon is 0.994.

 0.8

 0.85

 0.9

 0.95

 1

 20 40 60 80 100 120 140 160 180 200

P
ro

ba
bi

lit
y

of
 s

uc
ce

ss

Cardinality of the Point Set (Si)

Generating Random Simple Polygon using GRP_CH Heuristic

Success Probability

Fig. 4. The Probability of success for generating random simple polygon from a set of
points lying on a 2-dimensional plane

2. Unique polygons generated for given cardinality of the point set
We found out the number of unique polygons generated from the set of the
all simple polygons generated on each simulation for the point sets of car-
dinalities 5, 6, 7,. . ., 12, 13. Here also, for each simulation which consists of
10,000 runs, the position of the point sets remains unaltered. The results
of “GRP CH” algorithm and “2-Opt Move” for the same set of input con-
figuration has been shown in the Table 1. The Fig 5 shows graphically the
average of the values of Table 1. For lower cardinality set, our results are
comparable to “2-opt Move” algorithm while as the cardinality of the point
set increases, “GRP CH” produces more no. of unique polygons than “2-opt
Move” heuristic. Therefore, we can infer from the result that the randomness
behaviour of “GRP CH” heuristic is much better than that of “2-Opt Move”
heuristic, although each simulation consists of 10,000 run. However, “2-Opt
Move” has probability of success to generate the simple polygon is always
one.

GRP CH Heuristic for Generating Random Simple Polygon 301

Table 1. The number of unique polygons generated by “2-Opt Moves” and “GRP CH”
algorithm

Simulation
Number

|S| −→ 5 6 7 8 9 10 11 12 13

1 2-Opt 4 12 17 57 83 135 167 1171 3569
GRP CH 4 12 17 57 83 136 179 1792 6125

2 2-Opt 8 5 19 60 251 341 1987 813 2065
GRP CH 8 5 19 60 254 359 2696 976 3277

3 2-Opt 4 5 17 57 105 888 484 2611 2022
GRP CH 4 5 17 57 105 980 534 4061 3558

4 2-Opt 4 13 19 67 210 440 552 2578 3615
GRP CH 4 12 17 57 83 136 179 1792 6125

5 2-Opt 4 13 17 72 34 590 1041 2450 2225
GRP CH 4 13 17 72 34 631 1358 3874 3341

6 2-Opt 4 5 19 61 95 357 1227 681 3197
GRP CH 4 5 19 61 95 366 1606 939 5911

7 2-Opt 4 12 19 26 30 127 1168 3913 2777
GRP CH 4 12 19 26 30 130 1507 6052 4777

8 2-Opt 4 12 6 27 83 312 562 1694 2128
GRP CH 4 12 6 27 83 326 611 2424 3353

9 2-Opt 8 13 19 61 216 372 499 2491 4614
GRP CH 8 13 19 61 217 405 557 4026 7076

10 2-Opt 8 12 46 163 102 343 2137 760 2042
GRP CH 8 12 46 163 102 361 2790 936 3536

 5
 120

 400

 1000

 2000

 3000

 4000

 4700

 5 6 7 8 9 10 11 12 13

N
um

be
r

of
 U

ni
qu

e
S

im
pl

e
P

ol
yg

on
 g

en
er

at
ed

Cardinality of the Point Set (Si)

Unique Simple Polygon generated using "GRP_CH’’ and "2-Opt Move’’ Heuristic

2-Opt Move Heuristic
GRP_CH Heuristic

Fig. 5. The number of unique simple polygon generated in “GRP CH” is larger than
that of “2-Opt Move” when more number of point sets are taken as input

302 S. Sadhu et al.

5 Conclusion and Future Work

We have presented a heuristic for generating random simple polygons. It has been
shown that the probability of successful generation of a random simple polygon
by “GRP CH” is very good for point sets of cardinality below 100. However it
tends to decrease as the cardinality of point sets increases. The experiment has
been carried out also to find out the number of unique polygons generated on
10,000 runs for the given set of point and compared the results with existing
“2-Opt Move” method. We have shown also that the number of unique simple
polygons generated by “GRP CH” algorithm are larger than that of “2-Opt
Move” and hence the randomness behaviour of “GRP CH” heuristic is much
better than that of “2-Opt Move” heuristic.

From a theoretical point of view, it remains an open problem to generate poly-
gons on a given set of points uniformly at random. Our heuristic has improved
the present existing heuristics although it has a limitation and the removal of
that limitation will be a future work.

References

1. Auer, T., Held, M.: Heuristics for the Generation of Random Polygons. In: Proc.
8th Canadian Conference Computational Geometry, Ottawa, Canada, pp. 38–44.
Carleton University Press (1996)

2. O’Rouke, J., Virmani, M.: Generating Random Polygons. Technical Report 011, CS
Dept., Smith College, Northampton, MA 01063 (1991)

3. Epstein, P., Sack, J.: Generating triangulation at random. ACM Transaction on
Modeling and Computer Simulation 4(3), 267–278 (1994)

4. Leeuwen, J.V., Schoone, A.A.: Untangling a travelling salesman tour in the plane. In:
Muhlbacher, J.R. (ed.) Proc. 7th Conference Graph-theoretic Concepts in Computer
Science (WG 1981), pp. 87–98 (1982)

5. Zhu, C., Sundaram, G., Snoeyink, J., Mitchel, J.S.B.: Generating random polygons
with given vertices. Comput. Geom. Theory and Application 6(5), 277–290 (1996)

6. Ghosh, S.K.: Visibility Algorithm in the plane. Cambridge University Press (2007)
7. Kreveld, M.V., Berg, M.D., Schwartskopf, O., Overmars, M.: Computational Geom-

etry, Algorithm and Application. Springer (1996)

Author Index

Adjeroh, Donald 189
Agarwal, Jatin 263
Ahmed, Pritom 169
Alam, Md. Jawaherul 60
Amutha, K. 65
Arockiaraj, S. 65
Arulprakasam, R. 182

Bandyopadhyay, Sanghamitra 1
Basu, Saurav 293
Beal, Richard 189
Bhattacharyya, Malay 1
Blanchet-Sadri, Francine 206
Bonato, Anthony 6

Chen, Ray Jinzhu 288
Chowdhury, Shihabur Rahman 219

Dare, V.R. 182
Das, Ananda Swarup 263
Dayama, Niraj Ramesh 76
De, Tanmay 293

Edelkamp, Stefan 249
Elmasry, Amr 249

Fernau, Henning 20
Foucaud, Florent 32
Fraczak, Wojciech 46

Gnanasekaran, S. 182
Gurusamy, R. 65

Hasan, Md. Mahbubul 219
Hazarika, Subhashis 293
Hu, Hailong 288

Iqbal, Sumaiya 219
Islam, A.S.M. Shohidull 169

Jain, Kapil Kumar 293
Janssen, Jeannette 6
Jeevadoss, Shanmugasundaram 143

Kalavagattu, Anil Kishore 263
Karim, Md. Rezaul 60

Katajainen, Jyrki 249
Kathiresan, K.M. 65
Kavaskar, T. 73
Kolarz, Micha�l 224
Kothapalli, Kishore 263
Kourie, Derrick G. 236
Kovše, Matjaž 32
Kulkarni, Ketki 76

Lohr, Andrew 206

Mahadeokar, Jay 81
Miller, Andrew 46
Moczurad, W�lodzimierz 224
Mondal, Debajyoti 86
Monikandan, S. 100
Mozafari, Amirhossein 110
Muthusamy, Appu 143

Navarro, Gonzalo 274
Nishat, Rahnuma Islam 86

Panigrahi, Pratima 125

Rahman, Md. Saidur 60, 86
Rahman, M. Sohel 169, 219
Raj, S. Francis 122
Raj, S. Sundar 100
Raman, Rajeev 280
Reschke, Kevin Scott 288

Sadhu, Sanjib 293
Saha, Laxman 125
Saxena, Sanjeev 81
Scott, Shane 206
Sen, Sagnik 130
Strauss, Tinus 236
Survase, Pradnya 148

Wang, Tao-Ming 162
Wasadikar, Meenakshi 148
Watson, Bruce W. 236
Whitesides, Sue 86

Zarei, Alireza 110
Zhang, Guang-Hui 162

	Title
	Preface
	Organization
	Table of Contents
	Bounds on Quasi-Completeness
	Basic Definitions and Preliminaries
	Some Properties
	Conclusion
	References

	Infinite Random Geometric Graphs from the Hexagonal Metric
	Introduction
	Conditions for Isomorphism
	Hexagonal Metric
	Step-Isometries

	Proof of Theorem 2
	Conclusion and Further Work
	References

	Saving on Phases: Parameterized Approximation for Total Vertex Cover
	Introduction
	Motivation
	Our Problem: Total Vertex Cover
	Our Results and the Organization of the Paper

	Putting Worsening Steps Inside of the Branching
	Improved Branching
	Further Consequences and Questions
	References

	On Graph Identification Problems and the Special Case of Identifying Vertices Using Paths
	Introduction
	On Test Covers and the Identification Problem
	Related Problems
	The Identifying Path Cover Problem
	Applications
	Outline of the Paper

	Preliminary Observations
	Identifying Path Covers of Paths and Cycles
	The Case of Trees with an Application to All Graphs
	On the Complexity of MIN-IDPC-k
	Conclusion and Open Problems
	References

	Disjoint Set Forest Digraph Representation for an Efficient Dominator Tree Construction
	Introduction
	Preliminaries
	Deriving Partial Information about Dominators from an Annotation
	Graph Transformations
	Algorithm ``Dominator Tree''
	Description of the Algorithm
	Correctness

	Efficient Implementation of ``Dominator Tree''
	Complexity

	References

	On Some Properties of Doughnut Graphs
	Introduction
	Recursive Structure of Doughnut Graphs
	Topological Properties of Doughnut Graphs
	Conclusion
	References

	On the Steiner Radial Number of Graphs
	Introduction
	Steiner 3-Radial Graphs of Some Classes of Graphs
	Steiner Radial Number
	References

	Further Results on the Mycielskian of Graphs
	Introduction
	Main Results
	References

	Approaches and Mathematical Models for Robust Solutions to Optimization Problems with Stochastic Problem Data Instances
	Introduction
	Problem Definition and Formulation
	Computational Experiments

	Faster Replacement Paths Algorithm for Undirected, Positive Integer Weighted Graphs with Small Diameter
	Introduction
	Replacement Paths in Case of Edge Failure
	Preprocessing
	Reporting Replacement Paths

	Conclusion
	References

	Acyclic Coloring with Few Division Vertices
	Introduction
	Preliminaries
	Acyclic Colorings of Planar Graph Subdivisions
	Lower Bounds on the Number of Division Vertices
	NP-Completeness
	Acyclic 4-Colorability of Graphs with = 5
	Acyclic 4-Colorability of Planar Graphs with = 7

	Conclusion
	References

	Degree Associated Edge Reconstruction Number
	Introduction
	dern and adern of Regular and Bidegreed Graphs
	dern and adern of Balanced Complete Tripartite Graphs
	Conclusion
	References

	Touring Polygons: An Approximation Algorithm
	Introduction
	The FPTAS Algorithm
	Efficiency of the Algorithm
	Extending to the Overlapped Cases
	Complexity of the Problem
	References

	Super Connectivity of the Generalized Mycielskian of Graphs
	Introduction
	Super Connectivity of the Generalized Mycielskian
	References

	A Graph Radio k-Coloring Algorithm
	Introduction
	Algorithm to Find a Lower Bound of rck(G)
	Radio k-Coloring Algorithm
	References

	Maximum Order of a Planar Oclique Is 15
	Introduction
	Proof of Theorem 1
	References

	Sufficient Condition for {C4, C2t} - Decomposition of K2m,2n – An Improved Bound
	Introduction
	Program Code

	 {C4, C2t}- Decompositions of K2m, 2n
	References

	Incomparability Graphs of Lattices II
	Introduction
	Some Realizable and Non Realizable Graphs
	Graphs with Horns
	References

	On Antimagic Labeling of Odd Regular Graphs
	Introduction
	Antimagic Labeling of 3-Regular Graphs
	Antimagic Labeling of Odd Regular Graphs
	Concluding Remark
	References

	A Graph Theoretic Model to Solve the Approximate String Matching Problem Allowing for Translocations
	Introduction
	Our Contribution
	RoadMap

	Preliminaries
	A Graph-Theoretic Model for Pattern Matching with Fixed Length Translocation
	Algorithms for Problem FLT
	The Problem
	Fixing the problem

	Algorithm Analysis
	Solution for Problem ALT and Problem FLT
	Conclusion
	References

	Deterministic Fuzzy Automata on Fuzzy Regular ω-Languages
	Introduction
	Preliminaries
	Fuzzy Subset
	Local -Languages
	Deterministic Fuzzy Automaton

	 Fuzzy Local -Language
	 Fuzzy Local Automaton
	References

	Border Array for Structural Strings
	Introduction
	Background
	Preliminaries
	Parameterized Strings
	Structural Strings
	Traditional border and Parameterized Border (p-border) Arrays

	Structural Border Array
	Naïve Algorithm
	Improved Algorithm
	Further Improvement

	Generalization
	Conclusions
	References

	Computing the Partial Word Avoidability Indices of Ternary Patterns
	Introduction
	Preliminaries
	Completion of the Classification of Binary Patterns
	Observations for General Pattern Avoidance
	An Algorithm to Search for an HD0L System Avoiding a Given Pattern
	Classification of the Ternary Patterns
	Concluding Remarks, Conjectures, and Open Problems
	References

	Computing a Longest Common Palindromic Subsequence
	Introduction
	Preliminaries
	A Dynamic Programming Algorithm
	A Second Approach
	Conclusion and Future Works
	References

	Multiset, Set and Numerically Decipherable Codes over Directed Figures
	Introduction
	Preliminaries
	Codes
	Decidability of Verification
	Positive Decidability Results
	Negative Decidability Results
	Summary of Decidability Results

	Final Remarks
	References

	A Sequential Recursive Implementation of Dead-Zone Single Keyword Pattern Matching
	Introduction and Background
	The Abstract Algorithm
	A C++ Implementation
	Match Orders: Permutations Over [0,|p|)
	Shift Functions
	Match Attempt Point
	The Pattern Matcher Class
	Performance Tuning Potential

	Results
	Matching abracadabra in The quick brown fox…
	Matching 01234 in a31

	Conclusion
	References

	A Catalogue of Algorithms for Building Weak Heaps
	Introduction
	The Standard Weak-Heap Construction Procedure
	Instruction Optimization: Accessing Ancestors Faster
	Branch Optimization: No if Statements
	An Alternative Construction: Don't Look Upwards
	Cache Optimization: Depth-First Construction
	Move Optimization: Trading Swaps for Delayed Moves
	Repeated Insertions: Non-linear Work, Yet a Linear Number of Element Comparisons
	New Memory Layout: Less Work, Different Outcome
	Conclusion
	References

	On Counting Range Maxima Points in Plane
	Introduction

	Definitions
	Related Work
	Our Results

	Our Solution Framework
	3-Sided Range Maxima Queries
	Reporting
	Counting

	4-Sided Range Maxima Queries
	Reporting
	Counting

	Further Improvements
	3-Sided Range Maxima Counting Queries
	4-Sided Range Maxima Counting Queries

	Remarks
	Conclusion
	References

	Indexing Highly Repetitive Collections
	Introduction
	Compressed Suffix Arrays
	Lempel-Ziv (LZ77) Compressed Indexes
	Grammar Compressed Indexes
	Conclusions
	References

	Range Extremum Queries
	Introduction
	Problem Variants
	Models and Measures

	1D Array Case
	2D Array Case
	2D Geometric Case
	Conclusions and Open Problems
	References

	Design and Analysis of a Tree-Backtracking Algorithm for Multiset and Pure Permutations
	PureARDE Pure Permutation Tree (See Fig. 1 and 2)
	ARDE Multiset Permutation Tree (See Fig. 3 and 4)
	Assembly Level Analysis (See Fig. 5, 6 and 7)
	References

	GRP CH Heuristic for Generating Random Simple Polygon
	Introduction
	Literature Survey
	Proposed Heuristics
	Assumption
	 GRP_CH Algorithm
	Analysis of GRP_CH Algorithm
	Limitation of GRP_CH Algorithm

	Result and Discussion
	Conclusion and Future Work
	References

	Author Index

