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Functional Magnetic Resonance
Imaging (fMRI)

Sebastian Markett

Abstract Functional magnetic resonance imaging (fMRI) is undoubtedly one of
the most common techniques used in the cognitive neurosciences and neuroeco-
nomics. The methods section of fMRI papers are oftentimes filled with jargon. We
hope to clarify this jargon by defining and explaining the most fundamental con-
cepts. The present chapter has been written to target a broad audience of scholars
and students and explains the principles of fMRI: The reader will learn what signals
are measured in fMRI, how this measure relates to neural activity, and how fMRI
data are most commonly analyzed. This includes a brief summary of physical,
physiological, and statistical ideas. We further present a comprehensive step by step
guide through a typical fMRI data analysis to provide scholars and students with the
appropriate knowledge to understand basic fMRI methodology in research papers
and to judge whether the presented analysis is meaningful and appropriately pro-
tected against the most common pitfalls in the field of neuroimaging.

20.1 Introduction

Functional magnetic resonance imaging (fMRI) has been the major backbone of the
cognitive neurosciences since their very early days. Therefore, it is of little wonder
that this method has become extremely popular in the field of neuroeconomics as
well. A search with the keywords “functional magnetic resonance imaging” and
“neuroeconomics” carried out in Google scholar in early 2016 returned 3120 hits,
approximately a quarter of the hits of a search for “neuroeconomics” on its own.
What has made this research approach so popular? There are four certain reasons:
(a) fMRI has an excellent spatial resolution that allows for the precise anatomical
location of neural activation within the brain (b) fMRI comes with sufficient tem-
poral resolution to detect neural correlates of behavior on the basis of experimental
trials (c) fMRI is very sensitive and can therefore measure subtle differences in
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neural activation between experimental conditions which is a prerequisite to test
theories on human behavior, and (d) fMRI is noninvasive and safe to use in human
research participants because it does not require any pharmacological contrast
agents or the lowering of signal detecting devices into the cranium.

There is probably a fifth reason less persuasive to the critical scholar but with
great impact for the presentation of research results: fMRI outputs beautiful and
intuitively comprehendible images. Even though there are many different ways to
present fMRI data, the most common approach to visualize the results is to mark
activated regions with red- and yellow-colored blobs on an otherwise greyscale
brain. It is these images that has led to the popular notion that fMRI enables the
researcher to observe the living brain in action. This might be true to some extent
but carries one misconception: The colored blobs themselves are no physiological
signals returned by the MRI scanner.1 They stand at the end of many time-
consuming processing and statistical analysis steps and are nothing more than
statistical parameters that reflect differences in signal strength between experimental
conditions. It is only after the analysis that these statistical parameters are color-
coded and then spatially overlaid on a three-dimensional image of the brain. This
explains why this approach to neurophysiological data has been labeled statistical
parametric mapping and the resulting images statistical parametric maps (Friston
et al. 1995).

This chapter is organized in two parts. The first part will focus on the fundamentals
of fMRI to answer the question what signal fMRI scanners actually measure and how
this signal relates to psychological processes. Understanding the fMRI signal requires
some basic knowledge of physics and cell physiology which we hope to cover up in a
comprehensive way for readers who have a background in behavioral economics and
psychology. The second part will focus on data analysis and will deal with the
processing pathway from the raw fMRI data that come out of the MRI scanner to the
well-known statistical parametric maps mentioned earlier. Understanding the anal-
ysis of fMRI data requires some basic knowledge in psychological experimental
design and statistics which we hope to cover up in a comprehensive way for readers
without a background in behavioral economics or psychology.

20.2 Fundamentals of fMRI

fMRI is a four-letter acronym. In the introduction, we have already dealt with the
fourth letter, the i for imaging, and established that fMRI outputs images of the
brain. As a fact, fMRI outputs functional images of the brain. This is what the f
stands for and it means that the images acquired in an fMRI scanner allow for
inferences on brain function, in this case on neural activity. The opposite (or better

1fMRI is a special case of magnetic resonance imaging. Functional (fMRI) and structral
(MRI) images are acquired on the same scanning device.
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the compliment) to fMRI would be structural MRI, an approach not sensitive for
brain function but for brain anatomy (see the chapter by Christian Gaser in this
edition for the role of structural MRI in the context of neuroeconomics). The
remaining two letters in fMRI, the m and the r, stand for magnetic and resonance
respectively. They refer to the means by which an fMRI scanner acquires the
images: fMRI scanners measure magnetic properties of atomic nuclei in the brain
which they accomplish by applying magnetic fields oscillating at the resonant
frequency of these nuclei. We will come back to this later in more detail.

The main question we seek to answer in this part of the chapter is how fMRI
scanners measure neural activity. As a matter of fact, we can answer this question
quite easily on the spot: They do not. This information might come surprising
because we usually speak of neural activity revealed by fMRI but it is true: fMRI
scanners do not measure neural activity directly. What they do measure, however, are
magnetic properties of brain tissues that depend on physiological processes that are
most strongly correlated with the neural activity underlying psychological processes.

20.2.1 The Magnet

All fMR imaging starts with a magnet. We have established earlier that fMRI relies
on the measurement of magnetic properties of atomic nuclei in the brain. This may
sound odd at first glance: If you ever tried to attach a magnet (like the ones that
people use to stick notes to their fridge) to your head it will probably come off
instantly. This is because the head and the brain have no magnetic properties by
themselves. What has magnetic properties, however, are the nuclei of atoms in the
brain. MR image acquisition is based on the fact that some atomic nuclei spin
around themselves. Hydrogen—the most abundant atom in the brain—has such a
spinning nucleus and can therefore be measured by MRI. The nucleus of a
hydrogen atom consists of only one positively charged proton. Because of its
positive charge, the proton creates a tiny magnetic moment when it spins around
itself. This magnetic moment points in the same direction as the proton’s spin axis.
Under normal conditions, the protons’ spin axes will point in random directions,
which mean that the same will apply for the magnetic moments. MR imaging does
not measure the magnetic moments of single nuclei but the sum of all magnetic
moments which is called the net magnetization. Thus, if we tried to measure the
magnetic moments under these normal conditions, we would not be able to pick up
any signal because the moments would cancel each other out. This is where the
magnet enters the stage: If we put our sample (with the containing hydrogen atoms)
into a magnetic field, the spins will start to revolve around an axis that is parallel to
the magnetic field. This additional spin is called precession spin. You can think
about a nucleus’ behavior in the magnetic field and the two spins (the regular and
the precession spin) as a spinning top (like the ones you may have used to play with
as a kid). A spinning top does not only spin around its own axis, it also precesses
around a second axis parallel to the earth’s gravitational field. If you would watch
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the spinning top from above you would see that the precession spin traces a circle
perpendicular to the gravitational field. The precession spins of the nuclei behave in
a similar way, only that they do not align with the earth’s gravitational field but with
the magnetic field applied by the MRI scanner. The axis around which the nuclei
precess is called the longitudinal direction and the plane in which they precess is
called the transversal plane (see Fig. 20.1).

The precession axes align with the magnetic field in two different ways: Either
parallel or antiparallel to the magnetic field. The two states differ regarding their
energy levels: The parallel state is a low-energy state and is therefore the preferred
state of the nuclei. Nonetheless, at each point of time, many nuclei will also spin in
the high-energy antiparallel state. Every now and then each nucleus will change its
state and flip from the parallel to the antiparallel spin and vice versa.

The more nuclei spin in the parallel relative to the antiparallel state, the higher is
the net magnetization in the sample. To get MRI to work we therefore need all (or
most) of the nuclei in the parallel state. This can be accomplished by two means.
The first approach would be to cool down the sample to the point where no or only
little molecular motion occurs. This, however, would be way too cold for the living
brain and is therefore not practical for our purpose. The other approach is the one
used in MRI scanners: If we dramatically increase the field strength of our magnet,
the vast majority of nuclei will align their precession spins with the magnetic field
in parallel. The field strength of strong magnets is given in Tesla (T). MRI scanners
approved for human research participants have field strengths between 1.5 and 9.4T
(to give you an idea of how strong such magnetic fields are: the electromagnets
used to lift cars in junk yards have field strengths of approximately 1 T).
Fortunately, strong magnets do not harm biological tissue which make them safe to
use in human research participants (as long as participants remove all ferromagnetic
objects like glasses, belts, or certain jewelry).

20.2.2 Resonance

With the vast majority of spins in the parallel state, the net magnetization in the
sample points into the same direction as the magnetic field. At this point, however,

Fig. 20.1 Spin of a hydrogen
nucleus around its own axis
(a). When a magnetic field is
applied (b), the nucleus falls
into an additional precession
spin in the transversal plane
(c)
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we have no chance to measure it. In order to do this, controlled changes in net
magnetization need to be observed over time. This is where the resonance (the r in
fMRI) comes into play: The idea behind the r is to attach energy to the nuclei which
forces them leave the low-energy parallel state and flip toward the high-energy
antiparallel state. This process is called excitation and is achieved by applying
additional oscillating magnetic fields to the sample. It is important that the addi-
tional magnetic fields oscillate with the same frequency as the nuclei do. The spin
frequency of a nucleus is called its lamor frequency. The lamor frequency depends
on the amount of protons in the nucleus (which is the same in all hydrogen atoms)
and the strength of the magnetic field. Because the magnet’s field strength is
known, the excitation signals can be adjusted to match the lamor frequency of
hydrogen nuclei. As a result, energy is attached to the nuclei and they flip from their
parallel spin toward the antiparallel spin. When the oscillating magnetic fields are
switched off again, the nuclei will start to flip back into the parallel state while
emitting the attached energy. This energy can be measured by reception coils in the
MRI scanner. The emitted signal is affected by different tissue types and physio-
logical processes. From the behavior of the nuclei returning into the parallel state,
we can infer on properties of the brain tissue. Therefore, it allows for inferences in
brain structure and function.

As outlined above, the nuclei precess around the longitudinal axis parallel to the
magnetic field and precess in the transversal plane that is perpendicular to the
magnetic field. The net magnetization (i.e., the sum of all magnetic moments) that is
measured by MRI can be split up in longitudinal and in a transversal component.
Without excitation of the spin system by oscillating magnetic fields, the transversal
components of the net magnetization cancel each other out and only the longitu-
dinal component parallel to the magnetic field prevails. The excitation pulses are
usually designed to flip the net magnetization by 90° into the transversal plane. In
consequence, the longitudinal component of the net magnetization is set to zero. As
soon as the net magnetization is tipped into the transversal plane, the nuclei’s
precession spins will start their spins at the same starting point. In consequence, the
transversal component of the net magnetization can be measured. After the exci-
tation signals wear off, the nuclei will start to flip back into the parallel state. Two
different components can be measured by the signal detection coils of the MRI
scanner. First, the longitudinal component of the net magnetization will recover
while the spins flip back. The longitudinal recovery is governed by a time constant
that is labeled T1. Second, the spins’ coherence in the transversal plane will start to
dephase until the transversal component of the net magnetization cannot be mea-
sured anymore. The transverse relaxation is governed by a time constant labeled T2.
Different tissue types (grey matter, white matter, cerebrospinal fluid, blood vessels,
and bone) lead to different T1 recovery and T2 relaxation values. In order to con-
struct images, spatial information must be provided along with the information on
recovery or relaxation. You may recall that the lamor frequency of nuclei depends
on the field strength of the magnet. Additional gradients that vary the field strength
gradually across space can therefore be combined with excitation pulses at different
frequencies to allow for a space dependent coding of the signal. This approach
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ensures that one two-dimensional slice of the brain is measured at a time.
A three-dimensional image of the brain can be mathematically reconstructed from
the spatial distribution of T1 or T2 values across different slices.

20.2.3 From Physics to Physiology

MRI protocols that are sensitive to T1 or T2 contrasts provide anatomical images of
the brain. To measure brain function, however, a different signal is needed. Recall
that after the application of excitation pulses, the spins start to precess at the same
starting point in the transversal plane, thus giving rise to the transversal component
of the net magnetization. The dephasing of the spins that leads to transversal
relaxation depends on interactions between the spins of nuclei. This intrinsic factor
is directly reflected in the loss of T2 signal across time (T2 decay). Additionally, the
dephasing is also influenced by an extrinsic factor. Because the spin frequency
(the lamor frequency) depends on the field strength, slight inhomogeneities in the
external magnetic field do also contribute to dephasing. The combination of the
intrinsic and extrinsic factor leads to a signal loss in transverse magnetization that is
governed by a time constant labeled T2

*. Local inhomogeneities in the external
magnetic field can depend on physiological processes in the brain. Therefore, MRI
protocols sensitive to T2

* are the backbone of functional MRI.
How do physiological processes affect the local homogeneity of the magnetic

field? To answer this question we need to discuss energy consumption of the brain.
The cellular basis of psychological processes can be traced to the activity of nerve
cells (neurons). Neurons communicate by short transient changes of their electric
resting potential across the cell membrane. This process does not rely on external
energy. What does require energy, however, are housekeeping tasks of neurons
such as maintaining their resting potential and restoring the resting potential after an
electric signal has traveled along the cell membrane. The energy currency of the
brain is a tiny molecule called adenosine triphosphate (ATP). ATP is synthesized
from glucose, a sugar absorbed from food sources. This synthesis is most efficient
in the presence of oxygen. Both oxygen and glucose need to be delivered to the
brain via the blood stream because the brain cannot store either of the molecules.
Blood is pumped through the vascular system by the heart. On its way from the
heart to the brain, blood is first circulated through the lungs where oxygen is bound
to hemoglobin, the oxygen transport protein in red blood cells. Then, the blood with
the oxygenated hemoglobin is pumped through arteries into all parts of the body
including the brain. The brain is supplied by four major arteries. After entering the
cranium, arteries branch out into smaller arteries that eventually become arterioles
and then capillaries. The capillaries form a fine net of tiny blood vessels that enable
the exchange of oxygen, glucose, and their metabolites between the bloodstream
and nerve cells. At this point, the hemoglobin trades oxygen for waste carbon
dioxide and becomes deoxygenated hemoglobin.
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When you put your hand onto your neck you can feel the dilatation of the
arteries in response to your heartbeat. Before entering the capillaries, the pulsatile
blood supply needs to be slowed down by high-resistance blood vessels to ensure a
steady blood flow. Otherwise, the fine capillaries would burst from peaks in blood
pressure. Where supplying arteries branch out, muscular sphincters control the
blood flow into arterioles and capillaries. When nerve cells in a circumscribed
region increase their activity level and thereby their energy consumption, the
sphincters expand the arterioles to increase blood flow into respective regions in
order to meet the temporally enhanced requirements for glucose and oxygen. That
is, locally confined neural activity leads to a locally confined increase in blood flow
with blood that is rich in oxygenated hemoglobin. fMRI exploits the fact that
hemoglobin has different magnetic properties that depend on the binding of oxygen.
Oxygenated hemoglobin is diamagnetic while deoxygenated hemoglobin is para-
magnetic. Generally, objects with paramagnetic properties cause spin dephasing
when introduced into a magnetic field. An increase in blood flow leads to an
increase in oxygenated hemoglobin relative to deoxygenated hemoglobin. In turn, it
leads to less spin dephasing and in consequence to slower transversal relaxation and
a stronger T2

* signal. That is, MR protocols sensitive to T2
* can use oxygen as an

intrinsic contrast agent of the brain for the mapping of neural activity. In this case,
we speak of blood oxygen level dependent fMRI, or in brief, of BOLD fMRI.

Because the recorded signal in fMRI relies on blood flow dynamics in response
to changing neural events, the signal is called the hemodynamic response. The
typical hemodynamic response as revealed by BOLD fMRI starts with a temporal
offset of 1–2 s to the neural activity that triggered the response. The reason for this
time lag reflects the time window until the feedback loop between active neurons
and their supplying blood vessels has increased the local blood flow. After a steep
rise, the hemodynamic response peaks about 4–5 s later and then falls steadily over
another 5–6 s until it falls below baseline 12–13 s after the triggering neural
activity,. The BOLD signal returns to baseline level approximately 20 s after the
onset of the neural events. From this timing information, we can see that the
hemodynamic response lags the neural events behind and is rather slow compared
to psychological processes that often take only a couple of hundred milliseconds to
finish. Nevertheless, neural correlates of even short-lived psychological processes
can be traced by BOLD fMRI, given individual experimental trials are sufficiently
spaced.

The sampling rate of the MRI scanner needs to be set in a way that sufficient
information on the hemodynamic response will be acquired. The time between
successive excitation pulses of the scanner is called repetition time (TR) and
quantifies the acquisition speed of the scanner in a given experiment. Modern fMRI
scanner that uses echo planar imaging (EPI) pulse sequences can scan the majority
of the brain with a TR of 1–2 s while retaining a sufficient spatial resolution
(usually 3 mm3 voxels). It has been demonstrated that sampling rates below
0.5–1 Hz do not substantially improve the measurement. That is, a TR of 1–2 s
provides an appropriate temporal resolution for fMRI even if the examined psy-
chological processes follow a faster time scale.
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The EPI pulse sequences acquire data in two-dimensional slices from which a
three-dimensional image of the brain can be reconstructed. The brain spans about
12.5 cm from the brainstem to the most dorsal part of the parietal lobe. With
3-mm-slices spaced by a 0.3 mm gap, it would require 38 slices to image the entire
brain. Because the TR depends critically on the number and the spacing of these
slices, the temporal resolution can be improved by omitting parts of the brain during
image acquisition, in most cases the brain stem and the cerebellum. This is a feasible
approach especially in neuroeconomical studies, because cortical or midbrain
structures lie in main interest of most investigations. In the following, we will refer to
functional images acquired in one TR as “volumes” and not “brains” to emphasize
that the processing steps are applied to the functional data irrespective of the degree to
which the entire brain is covered during imaging. Figure 20.2 shows a T1-weighted
anatomical and a T2

*-weighted functional volume from the same participant.

20.2.4 Summary

In the first part of this chapter, we have established that fMRI measures magnetic
properties of brain. Furthermore, we have discussed how vascular activity in the
brain gives rise to the blood oxygen-dependent signal that can be measured by MRI
scanners and allows for inferences on neural activity. We have concluded with
remarks on temporal and spatial properties of the hemodynamic response. This part
was supposed to give a brief overview on the physical and physiological basis of
fMRI. For more in-depth information on the physical and physiological basis of
fMRI, we refer to the excellent textbook by Huettel et al. (2009). In the following,
we will deal with the statistical analysis of the acquired volumes in the context of
statistical parametric mapping.

20.3 Analysis of fMRI Data

The analysis of fMRI data can be separated into three consecutive steps: (a) pre-
processing of functional images (b) first-level analysis of fMRI time series, and
(c) second-level (or higher order) analysis. Preprocessing describes necessary

Fig. 20.2 A high-resolution
T1-weighed anatomical MRI
scan and a BOLD fMRI
image (T2

*-weighed) from the
same participant
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analysis steps that are carried out to ensure that all data are in the same
five-dimensional coordinate space which is a prerequisite for statistical analysis (we
will explain the five dimensions in the following). Then, the first-level analysis is
carried out separately for each participant. It outputs statistical parameters that are
eventually fed into the second-level analysis that aggregates the data across par-
ticipants for statistical inference on activation patterns between groups or in the
population the sample of study participants has been drawn from. All three analysis
steps can be carried out in freely available analysis software tools. The two most
popular tools in the neuroimaging community are Statistical Parametric Mapping
(SPM) that is issued by the Wellcome Trust Centre for Neuroimaging (http://www.
fil.ion.ucl.ac.uk/spm/) and FSL, issued by the Oxford Center for Functional
Imaging of the Brain (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/). Both imaging software
packages can be downloaded for free from the respective websites and come with
detailed documentation and example data sets.

Before we start to discuss preprocessing and first- and second-level analyses in
more depth, we start with some general remarks on experimental design, as this is
the prerequisite to understand what is going on during the analysis steps.

20.3.1 Experimental Design

One inherent property of the BOLD signal is that it is no absolute signal: We
always need to compare the signal to some sort of baseline or control condition.
This control condition can be implicit, that is the hemodynamic activity evoked by a
task is compared to hemodynamic activity while there is no task. This, however,
might come with the downside that the task and the control condition differ in many
different aspects. Let us assume we are interested in hemodynamic activity evoked
by the feedback about the second mover’s behavior in the trust game. In the
experimental condition, the research participants in the role of the proposer face an
information screen that states whether the responder is defected or not. To ensure
that the participants actually process the information on the display, they are asked
to execute some sort of manual response to the information. The evoked hemo-
dynamic response could be compared to a condition were the participants did
nothing. Such a condition, however, would not only differ in the decisive variable
(cooperation versus defection) but also in physical appearance of the display, the
lack of a motor response, and the absence of a monetary outcome. Thus, hemo-
dynamic activity associated with these factors cannot be easily disentangled from
the actual activity inherent to the trust game. Therefore, it is a better idea to contrast
the task condition with an explicit control task that differs only in one aspect critical
to the study. In our example, this could be a computer-raffled lottery where the
participants either loose or win but that most critically lacks the social component of
the trust game (for example, see Delgado et al. 2005). This experimental design
relies on the pure insertion principle inherent to subtractive experimental methods:
Different processes are assumed to be additive. By subtracting the hemodynamic
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response during one process (computer lottery) from the hemodynamic response
during another process (outcome of the trust game), the mere difference in hemo-
dynamic activity between both processes survives the subtraction (neural response
to cooperation or defection). This approach can be very powerful and useful, it
disregards, however, the possibility of non-additivity in the sense of interactions
between task conditions. One way to study such interactions is the use of factorial
designs in which all combinations of two or more independent variables with two or
more levels are administered. If, for example, one would want to study the effect of
absolute versus relative income, possible independent variables are absolute income
(receiving a high or a low amount of money) and relative income (receiving more,
less or just as much as somebody else). In consequence, six different conditions
arise that allow to disentangle additive and interactive effects of absolute and rel-
ative income on reward related hemodynamic activity (see Fliessbach et al. 2007,
for example).

A further comparison strategy is parametric designs. In parametric designs, the
covariation of the BOLD response with a parametrically manipulated independent
variable is examined. If, for example, we are interested in neural correlates of
decision utility during gambles, we could vary the possible gains associated with
the gambles parametrically and examine whether the BOLD signal in a given brain
region responds contingently (see for example Tom et al. 2007).

The previous considerations all dealt with comparison strategies. A further
thriving issue concerns the temporal sequence of stimulus presentation. There are
two main approaches to stimulus timing in BOLD fMRI experimental design:
blocked versus event-related presentation. In a blocked design the research par-
ticipants are asked to alternate between blocks of many trials in the experimental
and the control task. Ideally, the length of the blocks corresponds to the length of
the hemodynamic response (about 10 s). With shorter time intervals, the BOLD
response cannot return to its baseline and the differences between experimental and
control conditions become blurry. With longer blocks, on the other hand, scanner
drift can inflate the differences between experimental and control blocks by intro-
ducing noise to the data. In blocked designs, many experimental trials contribute
linearly to the recorded hemodynamic response. Therefore, blocked designs come
with a high power to detect differences in activation between conditions. The
downside, however, is that temporal information on the hemodynamic response
cannot be analyzed. Furthermore, many research questions cannot be operational-
ized in blocked designs. Many research designs do not allow for an a priori
specification of task and control conditions. Let as assume we are interested in
examining hemodynamic activity associated with continued gambling to recover
previous losses, a phenomenon called “chasing losses”, which is maladaptive
decision behavior common in pathological gambling (Cambell-Meiklejohn et al.
2008). Participants are confronted with the outcomes of gambles and decide
whether they want to continue or quit gambling after experiencing losses. In such
an experiment, the participants’ decision behavior determines if a given experi-
mental trial is assigned to the task (chasing losses) or to the control condition
(quitting gambling). If this research question would be addressed in a blocked
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design, the researchers would need to tell participants to chase losses in one block
of trials and to quit gambling in others. This, however, would eliminate the critical
behavior under the researchers’ scrutiny: Participants would not make the decision
to continue gambling by themselves and no neural activity associated with the
decision making process could be recorded. Because decision-making is one of the
main research interests in neuroeconomics, most studies in the field adopt
event-related designs. In event-related designs, the evoked hemodynamic response
to single experimental trials is examined. The advantage of event-related designs is
that events can be assigned to experimental conditions post hoc. It is also possible
to exclude certain trials from the analysis, for instance error trials or trials in that the
participant fails to respond in a given time window. Furthermore, event-related
designs allow for a precise temporal characterization of the hemodynamic response.
Compared to blocked designs, however, they lack a high degree of detection power.
A further potential drawback is that subsequent presentation of the same events can
introduce an artificial blocked design, where the BOLD response saturates and
becomes equivocal to different task conditions. To counteract this problem, the
interstimulus interval (ISI) should be large and jittered which means that it is
randomly varied in its duration across experimental trials (e.g. a randomly chosen
ISI between 3500 and 6000 ms).

Now that we have established, how experiments can be designed to be suitable
for fMRI we can go on with a discussion how to analyze the data.

20.3.2 Preprocessing

As we have discussed earlier, the best way to think about fMRI data is in voxels.
Each functional volume lies within a three-dimensional grid comprising a large
number of voxels with one activation value assigned to each of them. Each fMRI
run comprises many of these volumes which are acquired consecutively over time.
This results in an activation time series for each voxel (see Fig. 20.3) and, if we
look at all voxels and all time-points at once, one-four dimensional data set (x by y

Fig. 20.3 The BOLD time
series as measured from one
gray matter voxel over a time
period of approximately ten
minutes
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by z by time). We acquire such a four-dimensional data set for each participant in
our experiment. That is, we can think of the data of an entire experiment as a
five-dimensional matrix (a three dimensional brain scanned across time and across
participants, see Fig. 20.4).

Now imagine a perfect world: We can expect various things from a perfect
world: First, we would expect that all voxels in one volume were sampled at the
same time (that is, at a given point in time, for a given participant, all data along
the first three dimensions of our matrix are acquired simultaneously). Second, along
the time dimension, we would expect that data measured in the same voxel merely
reflects changes in activation (and not sampling error) at the same precise
anatomical location (and not that of a neighboring location). And at last, we would
expect the brains of all participants to match spatially, that is, we would expect that
along the fifth dimension (the participants) a given voxel always corresponded to
the same neural structure. Alas, the world is not perfect, especially not for neu-
roimagers: The EPI pulse sequences used for fMRI measure a volume one slice at a
time. With a TR interval of two seconds, this implies that the temporal offset of two
voxels in a single volume can be as large as two seconds. Furthermore, even the
best research participants with the highest motivation to keep still during the
experiment will move their heads no matter how tightly we constrain them
mechanically. Along the time dimension, every millimeter of motion will move
consecutive volumes further away from the first volume, slowly but dramatically
distorting our data across time. Finally, we can intuitively agree that our expectation
on the uniformity of brains across participants cannot hold: It is not only that
peoples’ heads and brains vary in size. There are also individual differences in the
brains’ gyri and sulci.

Fig. 20.4 The five-dimensional nature of BOLD fMRI experiments. The first three dimensions
refer to the three-dimensional brain that is scanned across time (dimension 4). The fifth dimension
refers to different participants who undergo the same imaging protocol

386 S. Markett



Given these constraints on our data, we need to come up with an idea to resolve
these issue. Otherwise we would not be able to meaningfully analyze our data.
Fortunately, there are powerful algorithms available to correct for temporal and
spatial distortions within single volumes, across time and across participants.
However, we should be aware that we substantially alter our data during prepro-
cessing and that in consequence, statistical inferences on brain activation are not
carried out based on data as they were initially measured. Therefore, all prepro-
cessing should be applied carefully and with high caution. Preprocessing steps are
nevertheless necessary means to correct for deviations from our perfect neu-
roimaging world: They ensure that subsequent statistical analysis will be
meaningful.

Usually, preprocessing steps include (1) slice timing, (2) head motion correction,
(3) coregistration/normalization, and (4) spatial smoothing. Temporal bandpass
filtering and detrending can be applied as additional but not necessary steps.

Slice timing refers to the correction of acquisition delays between slices within
the same volume. For the slice timing correction, the user specifies a reference slice
for each volume. Then, an algorithm analyzes the time course in each voxel across
volumes and interpolates how the data points in every other slice of a given volume
would have looked like if they would have been acquired at the same time as the
reference slice. The further away a given slice lies from the specified reference slice,
the stronger the data are altered by the algorithm. Therefore, it is a wise idea to
choose the slice in the middle of the volume as reference. In many cases, the slices
of a single volume are not acquired in ascending or descending order but inter-
leaved (that is, all even slice numbers are imaged before the odd ones). In this case,
slice timing correction is always recommended. In cases where the scanner has
acquired the slices consecutively, slice timing can be omitted if steps are taken to
control for slice acquisition offsets later on during statistical analysis (and the TR is
not too large).

Motion correction provides an algorithm to correct for spatial distortions across
volumes within a single participant because of head motion. Fortunately, we can be
sure that our participants’ heads do not change their size or form during the rela-
tively short fMRI run. That is, all gross deviations between heads across volumes
are almost exclusively attributable to head motion. In the scanner, a head can move
up and down, from left to right and back and forth. That is, it can translate along
three dimensions. Furthermore, it and can rotate around three axes (nodding,
shaking and tilting). We can therefore align the heads within all subsequent vol-
umes with the head in the first volume with a six-parameter transformation. Because
the head itself does not change during transformation, we call this a rigid-body
transformation which has six degrees of freedom. Usually, the parameters for each
volume are saved so that they can be used as covariates (nuisance regressors) during
later statistical analysis. The motion parameters should also be examined for out-
liers. If single participants have moved too excessively during scanning it might be
wise to exclude them from further analysis (usually, translations less than three
millimeters and rotations less than three degrees are considered tolerable).
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Coregistration and normalization are two consecutively applied preprocessing
steps that ensure comparability of the data across participants. As mentioned earlier,
peoples’ brains to not only differ in size but also in gyrification and sulcification.
Therefore, a rigid body transformation as discussed above or a linear transformation
are both not suitable to match one brain with the others. The solution is an affine
transformation with twelve degrees of freedom in total. That is, twelve parameters
are needed to match an individual brain with a group. This process is called nor-
malization. One way to do this would be to choose one representative participant
from your sample (maybe the one who is closest to the mean of demographics like
age or education and a member of the more frequent sex). The next step would be to
apply the affine transformation. During this process all other brains are resized,
squeezed and dragged until they match the reference brain most closely. After the
transformation, each voxel in each volume will contain information on the acti-
vation level of exactly the same neural structure across participants. This approach
of choosing a representative reference brain from the study sample, however, would
come with two major downsides. On the one hand, the researcher would be in need
of a high degree of anatomical skill to precisely identify what structures are acti-
vated during later analysis. On the other hand it would be quite tricky to compare
results across different experiments and across publications. For that reason, neu-
roimagers have agreed on a standard reference brain in a standard coordinate space.
This standard brain has been issued by the Montréal Neurological Institute (MNI).
It unifies anatomical information from 152 white individuals and should therefore
be a close reference template to most brains from healthy individuals of European
descent. Other reference brains are available for individuals from other populations.
Practically, we need to deal with one problem during normalization: As you can see
from Fig. 20.2, the spatial resolution of functional EPI images is not as good as the
spatial resolution of anatomical T1-weighted scans. If the normalization algorithm
was fed by anatomical information from the functional volumes alone, it would lack
detailed information. Coregistration prior to normalization is a recommended res-
olution for this problem. Coregistration takes advantage of two facts: First, it is
relatively easy to precisely align a high resolution anatomical T1-weighted image
with functional volumes from the same person because it requires only a rigid-body
transformation (see above). Second, it is also relatively easy to normalize a T1-
weighted image of a study participant to a T1-weighted reference brain in standard
coordinate space because of the high anatomical detail of the individual T1-image.
For this purpose, a high resolution T1-weighted anatomical image is usually
acquired along with the functional volumes. Then, the functional volumes are
aligned with the individual anatomical image. In a second step, the individual
anatomical image is normalized to the reference brain and the resulting twelve
transformation parameters are then applied to every single functional volume. In
easier words, the individual anatomical image “piggybacks” the individual func-
tional volumes to obtain the best normalization results possible.

Spatial smoothing is the last strongly recommended preprocessing step. The
rationale behind smoothing is to use the information of neighboring voxels to
smooth the signal from each voxel in a volume. As a result, the images become

388 S. Markett



more blurry, but also increase in their signal-to-noise ratio. Smoothing leads to an
increase in statistical power of subsequent statistical tests because the error terms of
the test statistics are reduced and because single peak activation foci will more
likely merge to robust activation clusters. Smoothing takes advantage of the fact
that the time courses of adjacent voxels are highly intercorrelated because for most
psychological processes, the spatial resolution of fMRI scanners exceeds the
functional resolution required to image their neural correlates. Testing theory states
that each measurement is additively composed of a true value and an error term.
The error terms are thought to be independent from each other and have an
expected value equal to zero. Thus, if we average the signal measured in neigh-
boring voxels, we effectively decrease the error term while the true values are more
or less left as they are. The averaging procedure during smoothing applies
weighting to neighboring time series in a way that the time courses of more nearby
voxels contribute more strongly. The weighting is accomplished by applying a
three-dimensional Gaussian kernel that has its peak on the voxel to be smoothed.
The size of the Gaussian kernel is given by its full width at half maximum
(FWHM). The recommended size depends on the resolution of the functional data
(and the neural structures and psychological processes that are imaged). In most
cases, the kernel size varies between 6 and 12 mm FWHM.

This concludes the strongly recommended steps. Additional preprocessing can
include detrending and temporal bandpass filtering. Detrending corrects for linear
trends apparent across the entire time series because such linear trends are most
likely attributable to MRI scanner drift. Bandpass filtering removes frequencies in a
specified frequency band from the time series because certain frequencies do not
reflect neural activity and are therefore most likely attributable to scanner artifacts
or introduced by cardiorespiratory activity of the research participants. In most
cases, a high pass filter of 0.008 Hz is applied, that is, all oscillations in the
frequency bands below this threshold are removed from the data.

20.3.3 First-Level Analysis

A typical first-level analysis aims at the isolation of activation differences between
our experimental conditions of interest on the level of single participants. In con-
sequence, the first-level analysis is carried out for each participant separately. The
most common approach in the context of statistical parametric mapping is to set up
a statistical model that explains the acquired neurophysiological data best and then
conduct inferences on activation differences based on the parameters from this
model. In simple words, the activation data are correlated with the temporal
sequence of experimental events voxel by voxel and inferences are subsequently
conducted based on the correlation coefficients. Usually, a mass univariate approach
is applied: Parameter estimation and statistical inference are conducted separately
for each voxel and results are only combined in the very last step.
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20.3.3.1 Model Specification and Parameter Estimation

The statistical model most widely applied in neuroimaging is called the general
linear model (GLM). In a GLM analysis, a dependent variable (in our case the
neurophysiological data) is predicted by a set of predictors that are linearly (ad-
ditively) combined. In the most simple case, the model equation of a GLM is
y = mx + n, where y refers to the dependent variable, x to one predictor, m to a
weight attached to the predictor (the model parameter) and n to an intercept (a
constant value added to the equation). You may notice that this equation resembles
the linear equations you have solved in high school. Further predictors can be added
to the model (like y = mx1 + px2 + zxn + n) if we believe that this leads to a better
prediction of y. In the context of fMRI, the dependent variable is the BOLD time
series from one voxel. This time series has as many entries as there are volumes in
our fMRI run (in the following we will refer to these time series as vectors). The
model equation needs to be designed in a way that the predictors and their corre-
sponding weights output values for y that come closest to the values in the time
series vector. The experimental conditions in the experiment serve as predictors
with one predictor for each condition. In the simplest case one experimental con-
dition (for instance tapping with the right index finger) is compared with a control
condition (doing nothing; most critically, no tapping with the right index finger).
A basic GLM for this design would be y = mxtapping + pxnothing + n. Let us assume
that the participant in this example experiment alternated between the two tasks
(tapping versus doing nothing) every 20 s for seven times in total. This experiment
would last for 280 s. If we choose to image the brain at a TR of two seconds, we
would acquire 140 functional volumes in the experiment, leaving us with a vector
with 140 entries per voxel. These 140 observations per voxel serve as the criterion
variable y. What do the predictors look like? As mentioned earlier, we plan to
correlate the neurophysiological data with the temporal sequence of experimental
events. Therefore, we need vectors for each predictor that have as many entries as
the BOLD vectors holding the criterion variable. In the simple case of our example,
we will code the onsets of the experimental condition with 1 and leave the value to
1 for the entire duration of the experimental block. That is, the vector of the first
predictor will hold a 1 whenever the participants performed on the tapping task and
a 0 whenever they did nothing. Thus, the first 10 entries of the vector will hold
ones; the next 10 entries will hold zeros and so on. The onset vector for the second
condition (resting) will hold ones whenever the participants are resting, and zeros
whenever the participants perform on other tasks (in our case, tapping their right
index fingers). Now that we have modeled all experimental conditions, further
predictors could be added that are of no interest for the research question per se but
might enhance the model fit by explaining systematic noise in the data. For
example, we could use the six parameters from the motion correction during pre-
processing as six additional predictors. Neuroimagers refer to these control pre-
dictors as covariates of no interest or as nuisance regressors. Note that we are still
dealing with the data of one participant. Therefore, nuisance covariates such as age
or gender that vary across participants cannot be entered to the model at this point.
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After the specification of all predictors, we end up with an m × n matrix, where
m refers to the number of functional volumes and n to the number of predictors. In
this simple case, we have coded our experimental conditions in a binary mode (that
is we have only used ones and zeros). If we believe that the BOLD signal increases
stronger in different realizations of our predictor variable (for example, we measure
brain reactivity to economic gambles and believe that BOLD activity increases with
increasing gains), we could modulate the predictor’s vector with a parameter. In the
example with the gambles, one predictor would carry ones and zeros (whenever the
gamble was shown) and a further predictor would carry the modulator (the potential
gain of the gamble as an integer) whenever the former vector carried a 1.

There is reason to believe that the BOLD signal does not rise and fall in a way
the binary predictors suggest. Figure 20.5 depicts a function that describes the
hemodynamic response that is usually measured in response to stimulation. To
achieve a better fit between the empirical data and the predictors from the GLM, the
onset vectors are convolved with such a hemodynamic response function (HRF). In
most cases, a canonical HRF is used that is distributed along with the analysis
software packages. A further widely applied option is to additionally convolve the
predictors with the HRF’s first temporal derivative. This additional step is a good
means to account for temporal variability of the onset of the hemodynamic
response. In case that slice timing is omitted during preprocessing, this method is
highly recommended.

After the GLM is specified and all regressors in the equation (experimental
conditions, parametric modulators and nuisance covariates) are convolved with the
canonical HRF (and its temporal derivative) the regression weights (called beta

Fig. 20.5 The canonical hemodynamic response function as distributed alongside the SPM
software package
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weights) need to be estimated. This is done by a least square approach: The beta
weights are set in a way that the sum of the squares of the deviations between the
predicted values (the y values) and the empirical data (the BOLD time series) is
minimized. At the end of this process, we end up with one beta weight for each
predictor for each voxel. Call yourself in mind that we are still dealing with single
subjects. The process of setting up the GLM and estimating the corresponding beta
weights is repeated for each participant in the sample. In our simple example
experiment, the temporal layout of experimental conditions is essentially the same
for all participants; i.e., the same GLM with exactly the same predictors (except for
nuisance covariates that are specific for individuals) can be used. In case of more
complex experimental designs, (for instance an event-related design with events
presented in random order), the GLM itself (that is the columns of the m × n ma-
trix) would be the same, the onsets (and modulators), however, would be different
for each participant.

20.3.3.2 Contrasts

Now that we have ended up with beta weights, we can conduct statistical inference
on these weights. This is still carried out separately for each participant. The
question addressed by first-level inferences is: In which voxels and to what extend
do given experimental conditions lead to activation differences? In the most simple
and most widely used case this question is answered by a t-test. A t-test is a
statistical test that contrasts two measurements and assesses whether the difference
is significantly larger as the general variability in the data set. In the case of a
first-level inference, the t-test looks if the difference between the beta weights of
two experimental conditions is larger than an error term that is calculated from the
variability of the fMRI data the GLM cannot explain (while also taking the number
of observations and predictors in the model into account). In more formal terms, the
t-test outputs a t-value that is a quotient of the difference between the beta weights
divided by this error term (sum of squared residuals of the GLM minus number of
functional volumes minus number of all predictors in the GLM). These t-values
follow a t-distribution. Because t-distributions are well-known probability distri-
butions, we can look up the probability by which the obtained t-statistic suggests a
difference between the beta values even though there is not one. If this probability is
sufficiently low, we conclude that the beta weights differ significantly. Different t-
distributions differ from each other in their degrees of freedom (df). For first-level
inferences, the df that correspond to the t-test can be calculated from the number of
data points (number of functional volumes) minus the number of predictors in the
model.

Let us consider our example experiment once again: We would definitely want
to look where activity increases during finger tapping as compared to the resting
condition. For the first contrast, we would therefore subtract the beta value of the
resting-regressor from the beta value of the tapping-regressor for each voxel and
assign this difference to the nominator of the t-value. If we would also be interested
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in activity decreases during motor tapping, we would calculate a second contrast for
which we subtract the beta value of the tapping-regressor from that of the
resting-regressor. The error term is essentially the same for both contrasts, but
differs slightly across voxels: For each data point in our dependent variable we
would calculate the difference between the actual BOLD activity and the value
predicted by our GLM (the residuals). These differences are squared to control for
different signs and then summed up across data points. Finally, we would subtract
the number of data points (240) and the number of regressors in the GLM (two
conditions plus six motion regressors of no interest equals eight) from the sum of
squared residuals. This whole term would then be assigned to the t-value’s
denominator. This step is repeated for all voxels in the brain and then for all
participants in our sample. Thus, we would end up with one map per contrast and
participant that maps the t-values on the brain. Finally, we would calculate the
amount of degrees of freedom for our statistical test (240 data points minus eight
regressors equals 232 degrees of freedom) and look up the corresponding proba-
bility values (p-values) to each t-value that tells us the probability by which the
difference in the beta values can be attributed to chance. Because we want to be sure
to not assume a significant difference between experimental conditions when there
is none, we would want this probability to be low, for example below 0.001 %.
With a t-distribution with 232 df, the t-value would need to be as high as 1.651 to
be considered significant.

This, however, would us only leave with an assessment of statistical significance
between experimental conditions within subjects. In order to assess significance
across or between subjects, we would need to perform additional analyses.

20.3.4 Second-Level Analysis

The rationale behind the second-level analysis is to combine the results from the
first-level analyses of all participants and assess statistical significance across par-
ticipants. Various statistical inferences are possible: In the simplest case, one would
want to examine whether neural activity differences between the conditions
observed on the first-level are idiosyncratic to single participants or can be found in
the majority of participants. This could be accomplished by a one-sample t-test.
A one-sample t-test tests whether the mean of a dependent measure that is calcu-
lated across participants differs significantly from a given value. In the context of a
second-level fMRI analysis, this t-test looks if the mean of activation in one voxel is
significantly different from zero. Different statistical models can be set up,
depending on the research question asked: If, for instance, a group of pathological
gamblers is compared with a group of healthy control participants regarding their
neural response to risky choice, a two-sample t-test that tests for differences in the
mean of neural activity between the two groups is the appropriate statistical test.
Multiple linear regressions and multifactorial models are also possible for more
complex experimental paradigms. Please note that in the vast majority of cases,
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second-level analyses model participants as random effects. This statistical
approach assumes that participants were sampled from an underlying population
and ensures that any inference drawn from the data can be generalized to this
population.

Up to this point, we have not specified on which values the second-level analysis
is carried out. The first-level analysis outputs a t-value for each voxel. This t-value,
however, is not the best means to quantify activation differences between experi-
mental conditions. As outlined previously, the t-values depend not only on the
difference in the beta values but also on the number of data points (i.e., functional
volumes) and predictors in the model. It is a better idea to use a standardized
measure to quantify activation differences. Such a standardized measure is the effect
size that can be calculated for each statistical test on the first level. The effect size
quantifies the magnitude of the activation differences in units of measurement and is
fed into the statistical tests on the second level. For that purpose, the mean (or
differences in means) and the variability of the effect sizes are calculated and
compared in a term such as the t-term. The corresponding df for the t-distribution
can be calculated from the sample size and the number of cells in the experimental
design.

For the second-level analysis, we are more interested in assessing whether an
observed activation difference in our sample reflects a true relationship in the
population than in estimating the size of the effect. Therefore, the statistical
parameters mapped for the visualization of results are usually the test statistics
(such as t-values) rather than the effect sizes of the second-level tests. The test
statistics are thresholded at a given probability (e.g., p < 0.001) which means that
only parameters are considered that are high enough to let us assume that the
observed activation difference cannot be attributed to chance. For visualization
purposes, the statistical parameters that survived the statistical thresholding are
color coded and projected onto a structural MR image in standard coordinate space.
Besides from this height threshold, an extend threshold can be applied additionally.
Because it is very likely that the statistical parameter of a single spatially isolated
voxel exceeded the threshold by chance, it is recommended to specify a minimum
cluster size in voxels (e.g., k > 8) and ignore clusters of adjacent voxels if the
number of co-jointly activated voxels does not exceed this minimum cluster size.

At the end of all these processing steps (preprocessing, first- and second-level
analysis including thresholding) stands one statistical parametric map that informs
us about activation differences between experimental conditions. However, this
approach comes with one major downside that will be discussed and resolved in the
next paragraph.

20.3.4.1 Multiple Comparison Correction

In 2009, a wave of gloating newspaper articles was published in the popular media
sarcastically criticizing functional MRI. The opinions were based on an a study that
had been presented at the Annual Meeting of The Organization for Human Brain
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Mapping (OHBM) earlier that year. What had happened? In the study that is
available online as a conference poster (Bennett et al. 2009) the authors had put a
dead Atlantic salmon (originally bought for food consumption) into the scanner and
run structural and functional MRI on it. While the salmon was in the scanner, the
authors presented visual stimuli and “asked” the salmon to perform a task. Even
though the salmon did not respond to the task behaviorally (most certainly because
it was dead), the authors still ended up with BOLD time series and temporal
information on the sequence of task events that was eventually correlated with the
neurophysiological data. The authors set up a GLM and processed the data up to the
first level (because there was only one salmon involved) as discussed earlier, cal-
culated a contrast between experimental conditions and thresholded the resulting
t-map at p < 0.001 with an extend threshold of three adjacent voxels. Given that the
salmon was not alive during scanning and the task more suitable for human research
participants, results were strikingly surprising: Significant clusters lit up in both the
salmon’s brain and its spinal cord! Clearly, these results were easy bait for the
popular media and fueled skepticism toward neuroimaging in general. How can we
trust neuroimaging results in human research participant when even a dead fish
shows brain activity which looks like it was evoked by an experimental task? To
answer this question we need to take a closer look at a problem called the multiple
comparison problem and how it can be resolved in the context of fMRI.

As outlined in the previous paragraph, the rationale behind statistical hypothesis
testing is to calculate a probability by which the empirically observed difference (or
relationship) in the data was obtained given that there is no such relationship in
reality. If this probability is sufficiently low (e.g., below 0.001 %), we conclude that
the observed effect must reflect a true relationship. However, we should be aware
that in one out of 1000 cases, this conclusion would be wrong—simply because a
very low probability only makes things become unlikely but does not rule them out
entirely. A typical fMRI volume consists of ten-thousands of voxels. Because the
analysis is run separately for each voxel, the number of statistical tests is as high as
the number of voxels. Across all tests, the probability of erroneously assuming a
true relationship because of a very low p-value increases dramatically. Such errors
are called false positives (or alpha-errors) and describe a situation where we decide
to accept a statistic as evidence for a difference between experimental conditions
even though there is none in reality. The problem that arises from the massive
amount of statistical tests run during fMRI analyses is called the multiple testing
problem, or alpha error inflation. This is what happened in the dead salmon study:
Because of the mere number of comparisons, some voxels lit up by chance because
the high t-values suggested an activation difference even though the salmon was not
paying attention to the task (which we can infer from the behavioral data and the
fact that it was dead). Luckily for the neuroimaging community, there are various
methods that can be used to eliminate (or at least minimize) the multiple com-
parison problem.

When we conduct statistical inferences on second-level data we want to make
sure that we do not erroneously assume that a single voxel is active even though it is
not. Furthermore, we want to make sure that across all statistical tests, the chance of
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obtaining a false positive result is very low as well. We can ensure this by cor-
recting for the number of tests conducted. Because we control the alpha error
probability for a family of statistical tests, this procedure has been labeled family
wise error (FWE) rate correction. The standard method for this is the Bonferroni
correction, which accepts a family of statistical tests (such as in the entire brain) as
significant if the alpha error probability of each test in the family is below a
specified significance level that is divided by the number of tests in the family. That
is, if we consider a false positive rate of 0.05 % as acceptable and there are 10,000
voxels in our data set, we would consider a voxel active if the error probability of its
t-value fell short of 0.05/10,000 = 5.0e − 6. Applying the Bonferroni procedure
effectively minimizes the risk of false positive results but it comes with a major
downside. It is very conservative: Whenever we conduct a statistical test, there is
not only the risk of committing an alpha error (i.e., assuming a difference even
though there is none in reality) but also the risk of committing a beta error (i.e.,
assuming no relationship although there is one in reality). Both types of error
depend on each other: With an increasing statistical threshold, the probability of
committing an alpha error decreases but beta errors on the other hand become more
likely. Therefore, Bonferroni correction admittedly controls for alpha error com-
mission but it also increases the chance of committing a beta error. In the context of
fMRI there is reasonable doubt that the Bonferroni correction is the gold standard
for multiple comparison correction. The Bonferroni correction is appropriate for
families of independent statistical tests. In fMRI data, however, full independence
between all tests cannot be assumed: As outlined earlier, data points from neigh-
boring voxels are highly intercorrelated and these correlations are further amplified
by spatial smoothing during preprocessing. Therefore, the number of test families
that require correction is substantially lower than the amount of voxels in the brain,
leaving Bonferroni correction as a too conservative approach. The more appropriate
routine is the application of Gaussian random field theory (RFT) to control the
family wise error rate. RFT is a research body in mathematics that deals with
smooth statistical maps (such as our t-maps). RFT provides tools to estimate the
overall smoothness of the fMRI data set which depends on the degree of spatial
correlations between voxels in the raw data and the size of the Gaussian kernel
applied during smoothing. If the overall smoothness is known, the number of
resolution elements (resels) in the data set can be calculated. The number of resels
equals the number of independent observation in the data set and gives the amount
of test families for that we need to correct. From the number of resolution element,
we can determine the expected Euler characteristic (EC). In the context of func-
tional imaging, the EC gives the number of expected clusters in a smooth statistical
map after thresholding. Because the expected EC depends on the statistical
threshold, it is approximately equivalent to the probability of committing a family
wise error. Thus, the statistical threshold for the second-level analysis that corrects
for multiple comparisons by controlling the family wise error can be inferred from
the EC. This method has been implemented in most analysis software packages. To
come back to the dead salmon in the scanner: After controlling the FWE according
to Gaussian RFT no active voxel could be observed in its central nervous system.
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When we ask how we could trust neuroimaging results when even dead fish show
neural activation contingent with experimental tasks, the answer clearly is: When
we control for multiple comparisons!

20.4 Conclusion

The purpose of this chapter was to give an overview on how fMRI works. We have
covered the physical and physiological basics of the BOLD signal and discussed
processing steps and statistical analysis of BOLD time series in the context of
statistical parametric mapping. It would have been beyond the scope of this chapter
to discuss more advanced functional imaging methods than the mass univariate
approach which is the most common way to analyze fMRI data. For more in-depth
information on statistical parametric mapping, multivariate approaches to BOLD
fMRI data and the analysis of functional connectivity between different brain
regions during task performance, we would like to refer to the SPM textbook by
Friston et al. (2007) and the textbook by Huettel et al. (2009).
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